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Abstract 

The human hand is used in virtually all aspects of everyday activities involving such 

tasks as selection, manipulation and communication. It is therefore important to 

study and understand how it works. However, a significant difficulty facing traditional 

hand researchers is acquiring accurate 3D data that describes actual human hand 

movements. To address this problem, a multidisciplinary team of researchers from 

kinesiology, computer science and engineering was formed to design and implement 

a Virtual Hand Laboratory to serve as a testbed for future studies of goal-directed 

human hand movements. 

The primary objective of the work described in this thesis is to provide a framework 

for the collection, estimation and display of hand postures from live 3D data. A fast 

lookup table-based inverse kinematic algorithm was developed and used to estimate 

hand postures from real-time 3D data supplied by the Optotrak system, a powerful 

motion capture device. 

The algorithm is executed in two stages: a calibration stage and a run-time stage. 

The former measures the characteristics of the subject's hand in order to customize 

the lookup table while the latter uses the table to estimate the subject's hand posture. 

A polygonal model of the human hand was developed for display of the estimated hand 

posture. A complete system integrating data collection with estimation and display 

of hand postures in real-time was designed and implemented to serve as the platform 

for real-time experiments in the study of goal-directed hand movements. 
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Chapter 1 

Introduction 

People use their hands for many everyday activities involving such tasks as selection, 

manipulation and communication. It is therefore important to study and under- 

stand how it works. Accordingly, the study and analysis of goal-directed human hand 

movement has become an increasingly important topic in the field of human-computer 

interaction (HCI). With the advent of 3D virtual reality systems, gestural input and 

full hand pointing are being explored as the input techniques of choice for future 

computer systems. 

A traditional problem that faces researchers is the acquisition and analysis of 

accurate 3D data describing hand movements. The main purpose of the Virtual 

Hand Project, conducted by a multidisciplinary team that includes researchers from 

kinesiology, computer science and engineering, is to design and implement a Virtual 

Hand Laboratory to serve as a testbed for future studies of goal-directed human hand 

movements. 

The primary objective of this thesis is to  provide a framework and a set of tools 

for the collection, display, estimation and analysis of hand posture from real-time 

3D data. In overview, a motion capture device (Optotrak) periodically samples the 

position of markers on a subject's hand. An inverse kinematic approach is then used 

to convert this 3D positional data into joint angle data which represents the hand 

postures. A 3D polygonal model of the hand is used for the display and animation of 

hand postures. 



CHAPTER 1 .  INTRODUCTION 

Since we manipulate the physical world most often and most naturally with our 

hands, there is a great desire to apply the skills, dexterity, and naturalness of the 

hand directly to the human-computer interface [40]. A number of research projects in 

the past few years dealt with precisely this subject. Much of the work has been done 

in the context of developing virtual environments. 

Motivation 

We believe that the next generation computer systems that employ virtual reality 

(VR) techniques will be the next quantum leap of HCI. This new frontier is currently 

very young and most work has focused on the development of hardware technology 

and the custom implementation of specific applications. There is very little research 

into the higher levels of abstraction that facilitates the composition of new systems. 

The mouse is one of the most popular devices used in almost all Graphics User 

Interfaces (GUIs). It makes direct manipulation of objects on the screen possible 

by allowing selection, dragging and manipulation of these objects. Nevertheless, the 

mouse is no substitute for a human hand which people use in just about all their 

daily tasks. Manipulation of 3D objects on the screen is usually very awkward and 

unnatural for people using only a mouse. The hand is a much more attractive al- 

ternative for a VR system which provides the user with a fully rendered 3D view of 

the objects to be manipulated. Sturman [39] has discussed the use of whole hands as 

an input device. He suggested two paradigms: the manipulation paradigm and the 

sign language paradigm. The manipulation paradigm refers to  point, reach and grab 

interactions. Applying this paradigm, most VR systems use the tip of the index finger 

as a 3D pointer in order to  select items in menus floating in 3D space. This approach 

is a natural way to  use the hand but it ignores the freedom that general hand gesture 

provides. 

The sign language paradigm recognizes hand gestures as a stream of tokens that 

are similar to  signs in sign languages. This visual language can be used to  record 

gesture analytically. The major critique of this paradigm is that the devised gestures 

may not be easy enough for the user to  recall. However, this can be remedied by 
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allowing the user to  define the gestures incrementally [41]. 

To accommodate either of these two major paradigms, the hand movements and 

postures would have to be accurately measured and analyzed. The complexities of 

the function and anatomy of the human hand have long been recognized and many 

studies have been conducted on these topics [a]. Traditional studies of the hand often 

involve experiments on hands from fresh cadaver specimens. Surgical incisions were 

made and markers made of different grades of surgical wire were then inserted into the 

hand to  measure the movements of the tendons and muscles. The data gathered from 

those measurements were then analyzed to derive theoretical biomechanical models of 

the hand [2, 81. Although useful for biomechanical analysis and dynamic simulations, 

these models usually require measurements of the internal forces and torques. These 

measurements are very hard to obtain using non-intrusive procedures. Because our 

intent is not to develop a device for accurate dynamic simulation but rather an input 

device that can easily be used by everyone, methods of measuring the hand postures 

using only non-intrusive techniques are needed. 

A number of devices are available that allow a user to  interact with objects in a 

virtual environment using the hand. The DataGlove developed by Thomas Zimmer- 

man monitors 10 finger joints and the six degrees of freedom of the hand's position 

and orientation 1481. Physically, the DataGlove consists of a lightweight glove fitted 

with specially treated optical fibers along the backs of the fingers. Finger flexion 

bends the fibers, attenuating the light they transmit. The signal strength for each of 

the fibers is sent t o  a processor that determines joint angles based on precalibrations 

for each user. There are numerous other glove based hand input devices such as the 

Dexterous HandMaster, the Power Glove, the CyberGlove, the Space Glove and so on 

[40]. Each of these devices has its own strength and weakness with regard to accuracy, 

speed, and cost. However, a common weakness shared by all of them is that they are 

too restrictive for the hand to move around the space. 

As an alternative, motion tracking devices are non-intrusive and able to measure 

the hand movements frame by frame with only a small number of markers attached 

to the hand. The O ~ t o t r a k  system used in the Virtual Hand Laboratory is such a 

motion capture system. The markers used by the Optotrak system are called infrared 
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emitting diodes (IREDs). The coordinates of these markers are sent by the Optotrak 

system to a SGI workstation where they are used to compute and display the hand 

posture. 

1.2 The Inverse Kinematics Approach for Hand 

Posture Estimation 

Hand postures are usually represented using finger joint angles and orientation of the 

palm. A direct method of measuring joint angles would be to place IREDs on all joints 

of the fingers and simply measure their positions in 3D. The joint angles could then 

be trivially calculated using elementary methods from analytic geometry. However, it 

is well known that occlusion problems make monitoring several IREDs simultaneously 

using the Optotrak system very difficult. 

As an alternative to the direct method, we can minimize the number of IREDs 

used, therefore minimizing the occlusion problem, by only putting one IRED at the tip 

of each finger and use techniques of inverse kinematics to compute the associated joint 

angles. Since inverse kinematic calculations are usually difficult and time consuming, 

the main focus of this research is to provide an efficient real-time inverse kinematic 

algorithm to calculate the joint angles from which hand posture can be calculated. 

Organization of Thesis 

Chapter 2 reviews kinematic methods in general, and discusses their relevance in 

hand posture estimation and provides an overview of hand anatomy and kinematics. 

Chapter 3 formally states the inverse kinematics problem and presents some of the 

commonly used approaches for solving it. In Chapter 4, an efficient real time inverse 

kinematic algorithm is presented. Chapter 5 describes an experiment that measures 

the performance of the algorithm and analyzes the results. The conclusion and future 

work are presented in Chapter 6. 



Chapter 2 

Hand Kinematics 

2.1 Kinematic Methods 

Kinematics is that part of the science of motion which treats motion without regard 

to the forces that cause it. Within the study of kinematics, there are two classes of 

problems: forward kinematics and inverse kinematics. In order to study them, we 

first have to consider the structure of the kinematic chain. 

2.1.1 Link Description 

A kinematic chain may be thought of as a set of rigid bodies connected by joints. 

These bodies are called links. The joints are usually rotational, but may also be 

prismatic. Each rotational joint allows rotation in 1, 2, or 3 orthogonal directions. 

This is called the degree of freedom (DOF) of the joint. Any joint with n degrees 

of freedom may be modeled as n joints of one degree of freedom connected with 

n - 1 links of zero length. Therefore, without loss of generality, we only have to 

consider kinematic chains consisting entirely of joints each having just one degree of 

freedom. The two ends of the kinematic chain are called the base and the end-eflector 

respectively. The base of the chain is fixed at  one position while the end-effector can 

move freely around the space. 

In order to  describe the kinematic chain accurately and effectively, a convention 
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is required. The Denavit-Hartenberg convention[l 1] establishes a framework for sys- 

tematic specification of kinematic chains by using four link parameters for each link 

in the chain. The four link parameters uniquely determines a coordinate frame for 

each link in the chain. The link parameters are defined as shown in Figure 2.1: 

a; = the distance from 2; to  Zi+1 measured along Xi; 

* -a; = t he  angle between Z; and Zi+1 measured about Xi; 

d; = the distance from Xi-1 to  Xi measured along 2;; and 

6; = the angle between Xi-1 and X; measured about Zi. 

The convention for affixing frames of reference on the links is as follows: the Z-axis 

of frame i is coincident with the axis of frame i;  the origin of frame i is located where 

the ai perpendicular intersects the axis of rotation of i + 1; the X-axis points along ai 

in the direction from joint i to joint i + 1; the Y-axis is selected to complete a right 

handed coordinate system. 

Figure 2.1: The link parameters 

To determine the transformation which defines frame i relative to the frame i - 1, 

we can define three intermediate frames P, Q and R for each link. Frame R differs 

from frame i by a rotation of a;. Frame Q differs from R by a translation a;. Frame 

P differs from Q by a rotation 6; and frame i differs from P by a translation d;. These 

transformations can be multiplied together to  obtain a transformation matrix from 

frame i - 1 to frame i. 
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2.1.2 Forward Kinematics 

Forward kinematics involves finding the position and orientation of the end-effector 

relative to  some coordinate system given a set of joint angles for each joint. Using 

the link parameters defined in the previous section, we can define a transformation 

matrix f-'T that transforms a vector in frame i - 1 to frame i. 

Once the link parameters are found for each link and the corresponding link frames 

have been defined, finding the forward kinematic equation is straightforward. The 

individual link transformations can be multiplied together to find the single transfor- 

mation O,T that relates frame n to frame 0. 

i-1 ; T =  

The matrix :T represents the last link's position and orientation in the Cartesian 

space. 

For a planar 3 link kinematic chain, the value of the link parameters a; and cl; are 

0, so the transformation matrix :T reduces to  

where sl..., and cl.,., are shorthand notations for sin(& +. . . + O n )  and cos(O1 +- . $8,) 

respectively, and 11, 12, and l3 are the lengths of the links. From (2.3), the planar 

coordinates x ,  y and orientation 6 are clearly 

- - 
cos 4; - sin 19; 0 a;-1 

sin 4; cos cos 8; cos a;-1 - sin a;-1 - sin ~ ; - ~ d ;  

- sin 4; sin cos 8; sin a;-1 cos a;-1 cos ~ ; - ~ d ;  

0 0 0 1 - - 

(2.1) 
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2.1.3 Inverse Kinematics 

The inverse kinematics problem is essentially the reverse of the forward kinematics 

problem. Inverse kinematics involves finding the joint angles of each link of a kine- 

matic chain given the end-effector location and orientation. This problem has been 

extensively studied in both computer graphics and robotics. Since inverse kinematics 

is the main focus of this thesis, a detailed description and analysis of the related work 

will be presented in the next chapter. The following sections will give a brief overview 

of the application areas of inverse kinematics in both computer graphics and robotics. 

Inverse Kinematics in Computer Graphics 

The area within computer graphics that makes extensive use of inverse kinematics 

is computer animation, in particular, the animation of articulated figures. An ar- 

ticulated figure is usually represented by a collection of kinematic chains connected 

together. Each joint in this articulated structure may have one, two, or three de- 

grees of freedom. The degrees of freedom of an articulated structure increases with 

its complexity. As an example, a detailed approximation of the human skeleton may 

have in excess of two hundred DOF. Although well understood traditional animation 

techniques [25] help animators produce expressive motions in their animation, they 

require extensive manipulation of the figure to achieve the desired effects. It is obvi- 

ously a very difficult task to create animation by manipulating joint angles to  set up 

key frames that place end-effectors of certain kinematic chains in desired locations. 

Multiple iteration of trial and error is generally required to  produce the correct result. 

This approach is certainly very time consuming and error prone. 

It is apparent that inverse kinematics offers an attractive solution to the above 



CHAPTER 2. H A N D  KIiVEMATICS 9 

problem. Instead of letting the animator specify the joint angles that place the end- 

effector at a desired location, the computer automatically calculates these joint angles 

from the link configuration and the end-effector location specified by the animator. 

This technique was used by Girard and Maciejewski [2S] to build the PODA system 

which synthesizes the kinematic model of legged locomotion. Zhao and Badler 1471 

proposed an algorithm that can incorporate various constraints and solve for simulta- 

neous goals. Mielman 1451 has presented two very distinct inverse kinematic algorithms 

suitable for real time manipulation and showed their effectiveness in a powerful in- 

teractive editor LifeForms. By formulating inverse kinematics into an optimization 

problem, Bawa [4] has presented an algorithm which uses an iterative nonlinear con- , 

strained optimization algorithm for solving the inverse kinematics problem. 

Inverse Kinematics in Robotics 

The inverse kinematics problem was first extensively studied in the field of robotics. 

Since computer based robots are usually driven in joint space but the objects to  

be manipulated are expressed in the world coordinate system, the inverse kinematic 

solution is essential in controlling the position and orientation of the end-effector of 

the robot arm to  reach its objects. 

There are two classes of solution methods for the inverse kinematics problem: 

closed form and numerical. In robotics, a closed form solution is usually desired 

for the kinematic chain of a robot arm rather than a numerical solution. Numerical 

solutions are generally much slower than the corresponding closed form solution. Also, 

numerical solutions are not generally guaranteed to converge to the correct solution 

if they converge a t  all. It is therefore hard to  predict the quality of the solution and 

the amount of time required to obtain the solution. For these reasons, researchers in 

robotics usually restrict their attention to  closed form solutions. 

The closed form solution of a kinematic chain can be obtained by one or both of 

the two solution methods: algebraic and geometric. Various algebraic methods include 

the inverse transform method[34], screw algebra[20], dual matrices[lO], and the dual 

quaternion method [46]. Lee and Ziegler[26] have presented a geometric method 
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to  solve the inverse kinematics problem for the PUMA robot. A more thorough 

discussion of closed form solution methods can be found in [14]. 

Hand Model 

Two components of hand model are presented in this thesis: an internal skeletal 

model is developed for the inverse kinematic calculations and a polygonal model for 

representing the outer skin of the hand. In much of the literatures involving animation 

of the hand [36, 44, 71, a simple three link pin joint model is often used internally to 

represent the fingers and for the computation of joint angles. It is, however, found to  

be insufficient in our application. The reasons will be made clear in Chapter 4. We 

have developed an internal skeletal model which generalizes the simple pin joint model 

by considering the effects of the finger joints. After the joint angles are calculated, the 

hand must be displayed on the screen. This is accomplished using a surface polygonal 

model of the hand. The following sections discuss each of the two components in 

detail. 

2.2.1 Human Hand Anatomy 

The hand is one of the most complex mechanisms in the human body as it has more 

than 25 degrees of freedoms. There have been numerous studies of the anatomical 

structure of the hand [2, 42, 431, anatomical representation of which is given in Figure 

2.2. 

The hand consists of five fingers and a palm. Each of the index finger, middle 

finger, ring finger and little finger has three joints. The joint closest to the palm 

is called the metacarpopha langea l  joint, or the MCP joint for short. This joint has 

two degrees of freedom; an adduction-abduction range of approximately 30 degrees 

and a flexion and extension range of about 120 degrees. The remaining two joint 

are the p r o x i m a l  in terpha langea l  (PIP)  joint and d i s ta l  in terphalangeal  (DIP) joint 

respectively. They each have one degree of rotational freedom. The PIP joint has a 

range of 100 degrees while the DIP joint has a range of 60 degrees. 
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Figure 2.2: Anatomy of the human hand 
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The thumb is much more dexterous and therefore much more con~plex than the 

other four fingers. The thumb's proximal joint is known as the carpometacarpa l  

(CMC) joint. It has two degrees of freedom; an adduction-abduction range of about 

120 degrees and flexion and extension range of about 45 degrees. The next joint 

is the metacarpopha langea l  (MCP) joint which also has two degrees of freedom; an 

adduction-abduction range of 30 degrees and a flexion-extension range of 50 degrees. 

The last joint is the i n t e rpha langea l  (IP) joint which has only one degree of freedom 

and has a range of approximately 85 degrees. 

Biomechanical Models of the Hand 

From a biomechanical standpoint, the human hand can be considered as a linkage 

system of intercalated bony segments. The joints between each phalanx are spanned 

by ligaments, tendons and muscles. With the contraction of muscles, these joints 

can be moved in a characteristic manner constrained by the interposing soft tissues 

and the bony articulation [2]. In the hand, most of the tendons span the joint and 

continue their course over one or more joints, thus forming a bi-articular or poly- 

articular system. 

The functional anatomy of the spatial relationships between these tendons and 

muscles and their associated joints have been extensively studied by Landsmeer 121, 

231. Landsmeer also proposed a series of models to represent the various manners in 

which tendons bridge the associated joints. However, these studies show either a lack 

of quantitative description or that the information is restricted in only two dimensions. 

An et al. [2] established a workable model in a three dimensional manner based on 

the direct and careful measurements of 10 normal specimens. Such a model can 

easily be utilized in the study of hand motion or force analysis of hand under various 

functional activities. Various other studies on the tendon excursion and moment arm 

of the finger can be found in [22, 24, 31. Since information about forces acting on 

the finger, the tendon excursion, and the moment arm of the finger cannot easily be 

obtained using non-intrusive techniques, we have to  construct a kinematic model of 

the hand using only the information obtainable by our equipments. 
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2.2.2 Internal Skeletal Model 

In this section we develop an internal skeletal model of the hand based on anatomical 

information. The hand can be considered as an articulated structure composed of rigid 

segments connected by joints. Even though the palm is not completely planar, for the 

sake of simplicity, it can be approximated using a plane whose normal points out from 

the back of the hand. Since the joints of ihe fingers are clearly not simple pin joints, 

there must be a small but significant distance separating two consecutive links at  each 

joint. We will call this distance the length of the joint. It is further hypothesized that 

the lengths of the joints change as the joints rotate. This hypothesis will be verified 

in Chapter 4. Therefore, we use functions F!(@, r!) to  represent the length of the ith 

joint of the j t h  finger. The fingers are numbered from left to right on a right hand. 

The 6j is the joint angle vector of the j th  finger and ri  is the joint radius of the ith 

joint on the j t h  finger. Clearly, if the functions @ are uniformly 0, this model would 

reduce to the simple pin joint model. 

MCP 

1p t 
DIP 

PIP 

MCP 

y Palm 
CMC 

Figure 2.3: Internal Skeletal Model 

Figure 2.3 shows a representation of a skeletal model of the hand. The black dots 

on the figure represent the joints. It is evident from the figure that each finger of the 
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hand is represented a series of joint and rigid links. The functions P! will be derived 

in Chapter 4. 

2.2.3 Polygonal Hand Model 

A polygonal model of the hand is used to represent the surface of the hand. This model 

consists of a list of vertices and a list of polygons, the latter forming the surface of 

the hand. Each polygon is defined by four vertices in the vertex list. 

Figure 2.4: Attachment of vertices onto the bone segments 

Figure 2.5: Finger bending 

The polygonal data of the hand is obtained by digitizing an actual human hand. 

The surface polygons corresponding to each finger segment are initially unknown. 

This information is required in order to bend or rotate a specified finger. To obtain 

the needed information, a program was developed by Sidi Yu to allow the user to 

interactively select vertices and attach them to finger segments. All vertices of the 

polygonal hand model were manually attached to finger segments. Offsets from the 

distal end of each finger segment to the attached vertices are stored. Figure 2.4 shows 
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the attachment of vertices onto the bones to create the polygonal hand model. 

Finger bending is modeled by bending the finger segments and recalculating the 

positions of the vertices corresponding to  each finger segment. The position of the 

distal end of the rotated finger segment is first calculated, then the stored vertex 

offsets were added back to the new distal position of the segment to  obtain the new 

positions of the vertices. This process is shown in Figure 2.5. From the figure, we can 

see that the positions of the vertices four to eight have to  be updated when segment 

B was rotates. 



Chapter 3 

Inverse Kinematics 

Inverse Kinematics has been a practical problem in the field of robotics and computer 

graphics. In the past decades, researchers in both robotics and computer science 

have developed various algorithms to solve the inverse kinematics problem, but none 

seemed to work well in all situations. There are obvious tradeoffs between speed and 

accuracy among different classes of algorithms. In this chapter, the inverse kinematic 

problem is formally stated and various common approaches are presented along with 

their advantages and drawbacks. 

3.1 Problem Definition 

In Chapter 2, the basic notion of a kinematic chain of rigid segments has been in- 

troduced. For simplicity, we will refer to a kinematic chain as a manipulator. Let x 

be the position vector of the end-effector of the manipulator and 8 be the joint angle 

vector of the manipulator. Then the forward kinematic problem can be formulated as 

x = f(6) (3.1) 

By inverting the function f ,  the inverse kinematic problem can be formulated as 
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The inverse kinematic problem is difficult because the function f is usually nonlin- 

ear. If the link parameters and the characteristics of the manipulator are well known 

in advance, we might be able to find a closed form solution. However, for arbitrary 

manipulators, we have to rely on numerical methods for solving systems of nonlinear 

equations. 

3.1.1 Existence of Solution 

The question of whether solutions exist or not is directly related to the manipulator's 

workspace. Intuitively, a workspace is a volume of space which the end-effector of the 

manipulator can reach. For at least one solution to exist, the specified goal point 

must lie within the workspace. There are two definitions of workspaces: dextrous 

workspace and reachable workspace. Dextrous workspace is the volume of space which 

the end-effector can reach with all orientations while the reachable workspace is the 

volume of space which the end-effector can reach in at least one orientation. The 

dextrous workspace is clearly a subset of the reachable workspace. 

Consider the workspace of a two-link manipulator. If the length l1 and l2  of the 

two links are equal then the reachable workspace consists of a disc of radius 211. The 

dextrous workspace consists of only a single point, the origin. This example considers 

a workspace in which all joints of the two-link manipulator can rotate 360 degrees. 

This is rarely the case in actual configurations. When joint limits are a subset of the 

full 360 degrees, the workspace is obviously correspondingly reduced. 

3.1.2 Redundancy 

A manipulator is kinematically redundant if it possesses more degrees of freedom than 

are required to specify a goal for the end-effector. A planar arm with three revolute 

joints has a large reachable workspace and any position in the interior of its workspace 

can be reached with more than one orientation. Therefore, for any goal positions in 

the interior of the workspace, the kinematic equations will yield multiple solutions. 

The fact that a manipulator has multiple solutions can cause problems because 

the system has to be able to choose one. The criteria with which to make a decision 
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Figure 3.1: Possible solutions to reach point B 

vary among different applications. As an example, if the end-effector is at point A as 

shown in Figure 3.1, and we wish to  move to point B, a good choice for the solution 

would be one that minimizes the amount of change of joint angles. Therefore, if there 

is a choice and the previous position of the end-effector is known, we can choose 

the closest solution in joint space. To generalize this idea, we can assign weights to 

different links to  generalize the notion of closeness. 

3.2 Jacobian Based Methods 

From (3.1), it is clear that in order to  obtain f -', we need to solve a system of nonlinear 

equations. To avoid this time consuming process of solving a nonlinear system, we 

can reformulate the problem so that  we have a linear relationship. Differentiating 

(3.1) with respect to time t ,  we have 

where J(8) is the Jacobian matrix. The Jacobian matrix and its inverse are discussed 

in Appendix B. The Jacobian is a multidimensional form of the derivative. At any 

particular instant, 8 has a certain value and J(0) is clearly a linear transformation. 

At a new instant in time, 8 takes on a new value and so does the linear transformation 

J ( 8 ) .  Therefore, the Jacobian is a time-varying linear transformation. 
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3.2.1 Inverse and Pseudoinverse of Jacobian 

Intuitively, J maps the incremental changes in the joint variables to incremental 

changes in the end-effector position and orientation. If the matrix J is square and 

nonsingular, we can compute 0 by 

When this is not the case, J-' does not exist and there is no solution for e .  For an 

arbitrary manipulator, the Jacobian matrix J is not necessarily square and invertible. 

Therefore, a generalized form of the inverse J-' is required that yields a "useful" 

answer for e in the same form as (3.4): 

A commonly used generalized inverse J+ is the Moore-Penrose pseudoinverse[6]. It is 

shown in [5] and [6] that the Moore-Penrose pseudoinverse yields the minimum norm 

solution for the under determined case and the least squares solution for the over 

determined case. 

3.2.2 Singularities 

Most manipulators have values of 0 for which the Jacobian becomes singular. Such 

locations are called singularities. When a manipulator is in a singular configuration, 

it has lost one or more degrees of freedom. This means that there is some direction 

along which it is impossible to move the end-effector no matter what joint rate is 

selected. The two common classes of singularities are 

Workspace boundary singularities are those which occur when the manip- 

ulator is fully stretched out or folded back on itself such that the end-effector is 

near or at the boundary of the workspace. 
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Workspace interior singularities are those which occur away from the workspace 

boundary and generally are caused by two or more joint axes lining up. 

An in depth study of the classification of singularities can be found in [17]. When 

the manipulator is in a singular configuration, the inverse of the Jacobian matrix J is 

undefined. The pseudoinverse solution as defined in (3.5) yields unsatisfactory results 

since there is an undesirable discontinuity a t  the singularity. This often results in 

oscillations and unacceptably high joint velocities. 

The Singular Value Decomposition 

The Singular Value Decomposition (SVD) is a powerful method for the analysis of 

the kinematic properties of manipulators. The SVD theorem states that any matrix 

can be written as the product of three (non-unique) matrices. Decomposing J, we 

have 

J = I J D V ~  (3.6) 

It is also common to  write the SVD of the Jacobian matrix J as vector products. For 

an arbitrary Jacobian, it would be 

i=l 

where m and n are number of rows and columns of 

(3.7) 

J, and o; are diagonal elements 

of D, also known as singular values. The pseudoinverse solution is easily obtained 

from the singular value decomposition by taking the reciprocal of all nonzero singular 

values. In particular, the pseudoinverse of J is given by 

where r is the rank of J. The SVD has been used to  detect and correct the numerical 

instabilities that arise when the manipulator is near its singularities[45, 30, 29, 131. 
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If one or more of the singular values a; are zero, then the original matrix is itself 

singular. The ratio of the largest singular value t o  the smallest one is called the 

condition number of the matrix. If the condition number is too large, then the matrix 

is ill-conditioned. This ill-conditioning is the cause of large joint velocities generated 

by the pseudoinverse near a singular configuration [29]. 

3.2.3 Homogeneous Solution 

For a redundant manipulator, a goal can usually be satisfied in a number of ways. 

It is often desirable to select a solution that is optimal according to some additional 

criteria. Liegeois [27] has shown that the components of the gradient of such a criterion 

can be blended with the pseudoinverse solution. 

e = J f i  + ( I ,  - J f  J ) V H ( B )  (3.9) 

where H ( 0 )  is a potential function to be minimized, I ,  is the nth order identity matrix. 

The first term in (3.9) essentially selects the joint velocity vector which produces the 

desired change in the end-effector position, while the component ( I ,  - J + J )  in the 

second term selects components of the gradient vector V H ( 8 )  that lie in the set of 

homogeneous solutions to  equation (3.4). This has the effect of varying joint velocities 

in such a way that H ( 8 )  is minimized without changing the end-effector position. 

Using this strategy, secondary goals can be created to  avoid collisions with obstacles 

as well as maintain manipulator dexterity by avoiding kinematic singularities. 

3.2.4 The Jacobian Transpose Method 

Although Jacobian and pseudoinverse control methods offer generality and provide 

numerous ways to  exploit redundancy, they suffer from several problems. First, these 

methods tend to  be numerically unstable near singular configurations. Also, a matrix 

inversion is required at each iteration in order to obtain the joint velocity. This tends 

to slow down this class of algorithms and may cause problems if the Jacobian matrix 
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is ill-conditioned. To address these problems, Welman [45] has proposed a Jacobian 

transpose method which is based on a simplified dynamic model. 

This method applies the principle of virtual work 1331 to obtain a linear relationship 

between the external force F applied to the tip of the manipulator and the generalized 

force r.  

The difference between the desired position of the end-effector and the current position 

of the end-effector is then used as the force F pulling on the end-effector toward 

the desired trajectory. Since r is equivalent to the vector of joint acceleration e, a 

simplifying assumption is made to regard r as the joint displacement dl instead of e. 
Therefore, the simple relationship 

is obtained. Once dl is obtained, a single integration step yields a new vector B which 

moves the end-effector towards the desired trajectory. The procedure repeats until 

the end-effector reaches the desired position, or some other stopping criterion is met. 

The Jacobian transpose method has many very attractive properties. First, there is 

no matrix inversion required. This not only speeds up the computation, it also avoids 

dealing with singular matrices. Also, since the computation is very simple at each 

step, the algorithm is able to provide real-time feedback to the user. Since the method 

is based on a simplified dynamic model, the solutions obtained in successive iterations 

are predictable. The end-effector of the manipulator is continuously pulled toward the 

desired trajectory by a force generated with the end-effector position error. Therefore, 

successive iterations would yield configurations that are close to each other and at  the 

same time toward the goal. This characteristic makes the algorithm especially suitable 

for interactive applications in which intermediate solutions are often needed to refresh 

the screen. 
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A major drawback of this algorithm is that it does not address joint limits directly. 

Instead, joint limits are enforced by clamping to  the upper and lower bounds. This 

might cause the algorithm to be trapped at an intermediate configuration and stopped 

only when the maximum number of iterations is reached. In addition, the algorithm 

is not completely immune to singular configurations since the Jacobian matrix itself 

is inherently ill-conditioned. Oscillations and high joint velocities can result near a 

singular configuration. 

3.3 Optimization Based Methods 

A different approach to solving the inverse kinematic problem is to  reformulate it 

into an optimization problem and then apply the standard algorithms of nonlinear 

optimization to  solve it. Since a positional goal of the end-effector can be viewed as 

a simple positional constraint, we can set up an objective function and minimize it 

subject to  a set of constraints. This approach allows us to find a solution that satisfies 

multiple simultaneous constraints [35, 471. The problem is generally formulated as 

minimize P ( 8 )  

subject t o  I; 5 8; < u; i = 1. .  . n 

where P ( 8 )  is the objective function to  minimize, I; and u; are the lower and upper 

joint limits respectively. 

The flexibility offered by the optimization formulation of the inverse kinematic 

problem enables us to specify various kinds of goals. Objective functions can be set 

up for each of them. A detailed discussion of different categories of goals and their 

corresponding objective functions can be found in [47]. 

Solving the constraint optimization problem is not a trivial task. It is still a rel- 

atively new research area that produces collections of numerical methods for each class 

of problem. Rosen's projection method is very effective in treating linear constraints[37]. 

Goldfarb combined the DFP method (a  variable metric method) [12] with Rosen's pro- 

jection method [16]. After that, the variable metric method was significantly improved 
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by the BFGS formula [38]. 

Zhao and Badler have applied nonlinear optimization techniques to their animation 

system Jack. Their animation system specifies a configuration of an articulated figure 

as spatial constraints. The constrained parts of the articulated figure are the end- 

effectors and their counterpart in space are called goals. A goal can be as simple as a 

position, an orientation, a weighted combination of position and orientation, a line, a 

plane, a direction, and so on, or it could be as complicated as a region in the space. 

The optimization algorithm used in Jack is able to adjust the joint angles subject 

to joint limits so that the set of end-effectors concurrently attempts to achieve their 

respective goals. After the end-effectors and the goals are specified by the users, the 

system computes a final configuration. Since it is often impossible to satisfy all the 

goals owing to the actual constraints, the system outputs the best possible solution 

according to the users' assignment of importance to each goal. 

Bawa [4] has proposed another iterative nonlinear constrained optimization algo- 

rithm to  solve the inverse kinematic problem. This algorithm combines the augmented 

Lagrangian method [ls] and the projected Lagrangian method 1151 to achieve super- 

linear convergence. An animation system was built by Bawa that allows real-time 

manipulation of the end-effectors to demonstrate this technique. Similar to the Jack 

animation system, Bawa7s system is also able to handle multiple simultaneous con- 

straints. In addition, a trajectory can be associated with each end-effector over a 

period of time to create a complete animation sequence. Furthermore, real-time per- 

formance of this animation system is ensured by the use of efficient matrix inversion 

techniques. 

Although the optimization formulation of the inverse kinematic problem has many 

advantages, it has some drawbacks as well. Because of the complexity of the problem 

and the scale of the search space, there is no guarantee that the optimizer will find 

a global minimum (or maximum). As a result, it may not return the best solution 

to the problem. Also, because of the iterative nature of the solution methods, it is 

hard to estimate how much time the optimizer will spend on a particular problem. 

Furthermore, since the optimizer is not constrained to  search in any fixed direction, 

intermediate solutions may not be suitable for refreshing the screen even if the screen 
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needs to be refreshed because the optimizer spends a long time to obtain a particular 

solution. 

Table Based Method 

In the efforts toward representing hand postures using a limited number of sensors, 

Amaya et al. [I] have proposed an algorithm that utilizes a lookup table to solve 

the inverse kinematic problem. Since this method is the predecessor of the algorithm 

proposed in this thesis, it will be discussed in detail. The notation used in Amaya's 

paper is discussed in Appendix A. 

There are several motivations for the development of Amaya's algorithm. First, 

it is well known that optical motion tracking systems cannot effectively deal with 

the possibility of the occlusion of markers [32]. If we were to use the direct approach 

described in Section 1.2 which places an IRED on each joint and tip of the fingers, then 

the space in which the hand can freely move around without having any IREDs going 

out of the camera's view would be very small. As a result, only limited movements of 

the hand can be measured. This motivates the use of inverse kinematics to estimate 

the hand posture, since only one IRED is need at the tip of each finger to obtain the 

joint angles of that finger. This effectively enlarges the space in which the hand can 

freely move around without causing occlusion of IREDs. 

A second motivation for the development of Amaya's algorithm was the need for 

speed in real-time computation. The Optotrak system continuously sends positional 

data of IREDs to the data collection system. If a significant amount of time is required 

for the computation of finger joint angles, then the data collection system would not 

be able to keep up with Optotrak system. This means that the data collection system 

would have to discard some incoming data and try to keep up with the Optotrak 

system by computing and displaying the most recent hand posture. Because the 

inverse kinematic equations are very complex and difficult to solve given a small time 

frame, Amaya et al. have suggested using a lookup table to speed it up. 

Given particular constraints of finger motion, there are few sets of joint angles 

that correspond to fingertip positions with respect to the palm. Therefore, if we 
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have a table of fingertip position versus orientation, we can lookup the orientation of 

the fingertip given its position. Using this information from the table, only simple 

calculations are required to obtain the joint angles. Thus, the basic approach behind 

Amaya's algorithm is to  build a lookup table of finger tip orientations using additional 

IRED information before the start of the actual data collection. Then, this lookup 

table is searched during data collection to obtain the current finger tip orientation 

which we can use to  compute the joint angles with minimum effort. This approach 

suggests that the algorithm should proceed in two stages: a preprocessing stage before 

data collection to  build the lookup table and a run-time stage which uses the lookup 

table to compute the joint angles. 

The lookup table built by the preprocessing stage uses the location of the finger 

tip as an index for the corresponding orientation. Amaya et al. made the assumption 

that the position of the finger tip with respect to the root of the finger uniquely 

defines the orientation of the fingertip. The validity of this assumption is discussed in 

Section 3.4.3. The orientation is then used to  determine the joint angles of the finger. 

The orientation of the finger tip is obtained in the preprocessing stage by placing 

additional IREDs on the finger tip as shown in Figure 3.2. However, during run-time, 

only one IRED is needed at the tip to obtain its coordinates with respect to the root 

of the finger. The orientation of the finger tip at run time is obtained by using this 

finger tip coordinate to  index into the lookup table. 

3.4.1 Preprocessing Stage 

The preprocessing stage consists of several steps: 

1.  Registration: The positional measurement of the IREDs mounted on the hand 

with respect to the Optotrak workspace. 

2. Table Building: The recording of position and orientation of the fingertip with 

respect to  the hand as the finger joints are rotated. 

3. Data Filtering: The filtering and regularization of the data recorded in the 

Table Building step. 
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Figure 3.2: IRED placement in the preprocessing stage of Amaya's algorithm. 

Regist rat ion 

In the registration step, the lengths of the segments of the index finger and the thumb 

are measured using a caliper. The hand is then placed palm down on top of its scanned 

image on a fixed, rigid and flat surface as shown in Figure 3.2. Mounted on the back 

of the hand are three IREDs and on the tip of the finger are mounted another three 

IREDs. The positions of these IREDs in the Optotrak space (or global space) are d;,; 

and di:i. Recall that d,h,; (di:;) represents the position of the ith IRED on the hand 

(fingertip) in the global coordinate system. The following measurements are taken in 

the global coordinate system: 

0 The position of the MCP joint (1 X-Y-Z point). It is done by scanning the 

subject's hand and placing an IRED on the MCP joint of the scanned image. 

0 The position of the fingertip (1 X-Y-Z ~ o i n t ) .  It is also done by placing an 

IRED on the finger tip of the scanned hand. 

0 The position of the IREDs mounted on the back of the subject's hand (3 X-Y-Z 

points). The subject's hand is placed on top of the scanned hand. 
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The position of the IREDs mounted on the tip of the subject's finger (3  X-Y-Z 

points). The subject's hand is placed on top of the scanned hand. 

Using these initial measurements on the subject's right hand, the following trans- 

formations and vectors are defined: 

a 0: - The position of the MCP joint in global space. 

0 [B;] - The orthonormal orientation of the MCP joint in global space. 

0it - The position of the fingertip in global space. 

[Bit] - The orthonormal orientation of the fingertip in global space. 

x h  - The x axis of the hand coordinate system lying along the vector from the 

MCP joint to the fingertip in the plane z = 0. 

y h  - The y axis of the hand coordinate system pointing to the right. 

0 z h  - The z axis of the hand coordinate system which is pointing out of the back 

of the hand. 

0 xjt - The x axis of the fingertip coordinate system lying along the vector from 

the MCP joint to the fingertip in the plane s = 0. 

yj t  - The y axis of the fingertip coordinate system pointing to the right. 

0 z j t  - The z axis of the fingertip coordinate system which is pointing out of the 

back of the hand. 

The hand and fingertip coordinate systems are shown in Figure 3.3. Since zh, yh and 

zh, are unit vectors and they represent a right handed system, the transformation 

matrix [B,"] is orthonormal. In particular, [B,"] satisfies 
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Figure 3.3: The hand and fingertip coordinate systems 

where I is the identity matrix. 

The positions of the IREDs, d& and d::,i, with respect to the hand and fingertip 

coordinate frame are computed as 

The vectors d;, and d;:, will be used to compute the rotation and translation 

of the hand and fingertip coordinate system within the global system. Vectors with 

identical superscript and subscript are assumed to  be constant through all phases of 

the process following their measurement. 

Table Building 

It is assumed by Amaya et al. that the position of the fingertip in relation to the MCP 

joint in the hand coordinate system uniquely defines the orientation of the fingertip. 

Thus, a subject is asked to move his finger as extensively as possible to try to fill out 
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the complete workspace of the finger. In the table building process, the hand and 

finger tip coordinate systems are constructed using the three IREDs on the fingertip 

and the three IREDs on the palm. This is done by writing the unit vectors pointing 

along each of the three axes into the columns of the transformation matrix. The 

origin of these fingertip and hand coordinate systems are translated to the finger tip 

position and the MCP joint respectively. Mathematically, this can be expressed as: 

The goal is to  create a mapping from fingertip position to fingertip orientation 

in hand space. Thus, we measure the position and orientation of the fingertip with 

respect to the hand. 

Recording sufficiently many of these pairs, < O;~,[B:~] >, while the finger joints 

rotate creates the table which defines the mapping we need (i.e. given a position 

0Lt7 we can look up a transformation to orient the fingertip in the hand coordinate 

sys tem) : 

Map : 0Lt + [Bit] (3.21) 

However, the recorded pairs are scattered and usually sufficiently sparse that for 

any particular value of 0Lt there is unlikely to  be a particular tuple < OLt, [Bit] > 
in Map. Since we are interested in the specific [B;'] for a given OLt, we will use the 
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notation [Bhft(p)] to represent an idealized l C h p  where p is a particular value of 0; 

and [Bhft(p)] is the corresponding value of [Bhft] in the map. 

Data Filtering 

For values of Oit where a corresponding value of [13it] is not available from Map, 

Amaya et al. suggest using a 3D Gaussian filter over all of the entries in Map. 

where [Bit()] is the fingertip orientation lookup table, dif ,  is the position of the 
- f t  fingertip, dh represent the neighbors of d& in [B;~()], and w(a) is a Gaussian with 

standard deviation a (in millimeters). It is suggested by Amaya et al. that a value 

of 8mm is sufficient for a. The calculation required to  compute the 3D Gaussian 

convolution is very expensive under the real time experimental system. Instead, this 

computation is performed at regularly spaced grid points as a batch process. The grid 

used has 28 x 24 x 20 points with a point separation of 5mm. This grid of values, 

indexed by Oit, contains filtered values of [Bit] and is called Map'. At run time, 

simple linear interpolation is used to  obtain the intermediate values. The lookup 

table is shown in Figure 3.4. The black dots on the figure represent the table entries. 

3.4.2 Run Time Stage 

After Map' is created, for any value of 0;' we can quickly perform a simple linear 

interpolation of the nearest eight values in Map' for the corresponding value of [Bit]. 

During run time, there are still three IREDs placed on the back of the hand in 

order to  determine the orientation of the hand but only one IRED is placed on the tip 
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Figure 3.4: The lookup table in Amaya7s Algorithm 

Figure 3.5: IRED placement at run time 
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of each finger as shown in Figure 3.5. These IREDs are not required to be placed in 

exactly the same position as in the preprocessing stage. The positions of the IREDs 

on the back of the hand with respect to the hand and fingertip coordinate system are 

determined using equations (3.13) and (3.14). Since there is only one IRED at the 

fingertip, it is necessary to transform the indices of the fingertip orientation map from 

the position of the fingertip to  the position of the IRED. This is accomplished by 

where d::,, is the vector from the fingertip position OLt to the IRED mounted on the 

finger in the fingertip space. This is illustrated in Figure 3.6. At experiment time, we 

know: 

0 d{> - The measured position of the finger IRED in the hand coordinate system. 

This position changes as the finger joints are rotated. 

0 d::,, - The measured position of the fingertip IRED in the fingertip coordinate 

system. This position is constant and is established at the registration step. 

0 [~hf~(0i~)] - The orientation of the fingertip in the hand coordinate system given 

the position of the fingertip. This orientation is constant and is established in 

the calibration and filtering step. 

Thus the unknown is O i t .  In order to use Mapf, we need to build a second index 

into it so that we can use the measured value of d&. We can build this index using 

Equation (3.25). For each entry in Mapf, given the value of d;ivl, we can compute 

the value of dL:, that will be measured at experiment time corresponding to  the 

appropriate tuple < 0(', [B/'] >. Linear interpolation is used to compute the value 

of 0(' and [B/'] for specific values of d&. 

After the orientation of the fingertip is obtained, we can use it to find the position 

of the DIP joint. This is done by subtracting the length of the segment from the DIP 

joint to the fingertip from the current position of the fingertip in the opposite direction 

of the current orientation of the fingertip. Using the location of the DIP joint, we 
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Figure 3.6: The known and unknown vectors when estimating the orientation and 
position of the fingertip 

can solve for the position of the PIP joint by considering the two proximal segments 

of the fingers as a two link manipulator with the end-effector fixed at the DIP joint. 

Craig [9] discusses various analytical methods for solving two link manipulators. 

3.4.3 Discussion 

This table lookup based inverse kinematic method has several merits. Since the finger- 

tip position to  orientation map is built prior to the start of the real time experiment, 

the computation required to obtain the joint angles is kept to a minimum. Its superior 

computational speed makes it quite suitable for real time applications. Also, calibra- 

tion is done for each individual subject and the fingers' workspace is also traced out 

by the subject. Doing so will not only avoid interior and boundary singularities, but 

also ensure that the computed hand posture closely resembles that of the actual hand 

posture of the subject. Furthermore, all the constraints and joint limits are directly 

built into the lookup table since it is constructed using only hand postures attain- 

able by the subject. Therefore, no constraint violation needs to be checked before 

displaying the computed hand posture. 

All methods have drawbacks in one way or another and the table based method 

is no exception. This particular construction of the lookup table relies heavily on 

the assumption that the position of the fingertip in relation to the MCP joint in the 

hand coordinate system uniquely defines the orientation of the fingertip. The result 

produced by this algorithm may not be valid if this assumption fails. In addition, the 



C H A P T E R  3. INVERSE IiINEMATICS 

algorithm first calibrates for the length of each finger segment and makes the assump- 

tion that the finger segments are rigid so their lengths will be constant throughout. 

Although the uniqueness assumption is valid if one assumes the finger joints are 

simple pin joints, the measured length of a finger segment may be perturbed by 

skin movement during an actual experiment. Further, since the joints of the finger 

are clearly not simple pin joints, the previous assumption is invalid even without 

the effect of skin movements. The result is that inconsistent measurement of finger 

segment lengths will occur during an experiment. The accuracy and even existence of 

the computed joint angles rely heavily on the accuracy of the finger segment length 

measurements. This is because the internal skeletal model is assumed to be a simple 

pin joint model. If the measured segment lengths are longer than the actual lengths, 

the set of computed joint angles is surely going to  be inaccurate. Even worse, if 

the measured segment lengths are shorter than the actual lengths, the goal is simply 

beyond the reach of the finger and no solution can be computed. 

This drawback of Amaya's algorithm often causes the data collection system to  

discard data sent by the Optotrak system simply because the finger segment length 

measurements do not match the initial calibration measurements. Therefore, we need 

to develop an algorithm which has the desirable properties of Amaya's algorithm and 

at the same time addresses its drawback. The algorithm we developed to do just this 

is described in Chapter 4. 

3.5 Summary 

In this chapter, we have reviewed some of the most commonly used techniques for solv- 

ing the inverse kinematic problem. Each method consists of distinct advantages and 

disadvantages. Problems inherent in one method may not exist in another. Tradeoffs 

between generality and speed are apparent. For instance, optimization based methods 

tend to be more general in the sense that they can handle problems with an arbitrary 

number of links having a set of possible constraints for each link. However, algorithms 

for nonlinear optimization tend to  be slow due to  its complexity. By comparison, the 

Jacobian based methods are faster, but they are not very good at handling constraints. 
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The fastest method presented in this chapter is the table based method. Because of 

the number of assumption it made about the configuration of the manipulator and 

its workspace, this method can only be applied to a small well known set of simple 

manipulators. Since the human finger can be considered to  be a simple three link 

manipulator with a small number of constraints, the table based method seems to be 

appropriate. 



Chapter 4 

A Table Based Real-time 

Algorithm 

The table based method presented in Chapter 3 provides a quick way of obtaining 

inverse kinematic solutions for simple manipulators. Because of the demand for speed 

in real time applications and because the human finger can often be considered as a 

simple three link manipulator, the table based method is ideal for our application. 

In this chapter, a table based method which addresses the problems discussed in 

Chapter 3 and which is specifically designed to model the human finger is presented. 

This method is relatively simple to implement and provides good performance for the 

intended application. 

4.1 Motivation 

The method presented by Amaya et al. [I] as discussed in Chapter 3 makes the 

assumption that the human finger is a simple three link manipulator with one degree 

of rotational freedom at each joint. Because the joint of the finger is much more 

complex than a simple pin joint and because the IREDs cannot be placed at  the 

center of each joint, this assumption becomes invalid. 

For any simple three link pin joint manipulator, it is necessary that the dis- 

tance from the end-effector to the base is a maximum when the manipulator is fully 
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stretched, or 8 = 0.  We can express the distance between the finger tip and the root 

of the finger as: 

where ptip is the location of the fingertip, p,,, is the location of the MCP joint, and 

d z ,  is the distance between them. 

An experiment was conducted to verify whether the maximum of equation (4.1) 

occurs when a real finger is fully stretched, i.e. when 8 = 0 .  The length of each 

segment of the index finger is measured: the length of the segment from the MCP 

joint to the PIP joint was 45.8mm, the length of the segment from the PIP joint to  the 

DIP joint was 20.lmm, and the length of the segment from the DIP joint to  the tip was 

20.0mm. These measurements were first taken using the Optotrak system and then 

confirmed manually using a ruler. An IRED was placed on both the fingertip and the 

MCP joint of the index finger. The distance between the fingertip and the NICP joint 

was measured as the finger rotates. The result is shown in Figure 4.1. The dotted 

line represents the sum of three segment lengths measured when the index finger is 

fully extended. The solid line is the distance between the fingertip and the MCP joint 

measured by the Optotrak as the index finger rotates. By examining the recorded 

joint angles of the index finger, it is clear that the maximum of equation (4.1) did not 

occur when the index finger was fully extended. Furthermore, a significant number 

of measured distances between the fingertip and the MCP joint are greater than the 

sum of the segment lengths. However, the difference between the measured maximum 

distance and the length of the finger is surprisingly large (about 10mm). Because 

of this unexpected result, the experiment was repeated five times. The results from 

these experiments were similar. This shows that the finger joints are clearly not pin 

joints. Thus, there must be a small distance separating any two consecutive segments. 

Recall that we have called this separating distance the length of the corresponding 

joint in Chapter 2. Moreover, we also know that the length of the joints vary as a 

function of the corresponding joint angles, for otherwise the maximum of equation 

(4.1) would have occurred at 8 = 0.  Therefore, our hypothesis in Chapter 2 has been 
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verified. 

I I I 

Distance - 
Length of Finger (85.96) - - - - -  

200 
Frame 

Figure 4.1: Distance between the finger tip and the MCP joint. 

The fact that the maximum of equation (4.1) does not occur at 0 = 0 has a very 

serious effect on Amaya's algorithm. Because Amaya's algorithm assumes that the 

joints are simple pin joints, it is able to subtract the length of the last segment of the 

length in the opposite orientation of the fingertip to obtain the position of the DIP 

joint. The last step in Amaya's algorithm is to  regard the position of the calculated 

DIP joint as the end-effector position of the two link simple pin joint manipulator 

formed by the first two segments of the finger and solve for their joint angles. Since 

there is distance separating any two consecutive segments of the finger, the calculated 

position of the DIP joint is clearly outside the workspace of this two link manipulator. 

Therefore, the algorithm will not be able to find any solution. It is necessary to 

eliminate this undesirable property in Amaya's algorithm for it to function effectively 

in a real time setting. 
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4.2 IRED Placements 

Before the hand posture can be estimated, IREDs will have to be strategically placed 

on the hand to allow the Optotrak system to  track their positions. This section 

discusses the IRED placements required for calibration as well as for real-time exper- 

iments. For the remainder of this chapter, the i th IRED position in the Optotrak 

coordinate system is denoted as d; . 

4.2.1 IRED positions 

In order to track the position and orientation of the hand, IREDs have to  be placed 

on the dorsal surface of the hand. There are two different IRED placements: one 

for calibration and the other for run time. The calibration step is necessary in order 

to obtain the auxiliary parameters of the finger; these parameters are the length of 

each segment of the finger, the radius r; of the i th joint, and an additional parameter 

p which will be discussed in the next section. After these parameters are collected, 

unneeded IREDs are removed so that only a minimal number of IREDs are left. 

This minimal configuration of remaining IREDs ensures that the occlusion problem 

of the Optotrak system is minimized and the movement of the fingers and the palm is 

not severely restricted by IRED visibility. Since the hand is not flat, any movement 

of the palm or bending of the fingers may block one or more IREDs from the view 

of the camera. Figure 4.2 shows some common situations in which one IRED can go 

out of the view of the Optotrak camera. 

Calibration 

During calibration, the thickness of the finger at each joint is measured. the joint 

radius r; of the i th joint is simply one half of the thickness measured at the i th  joint. 

The thickness is easily measured with a caliper. 

The length of each of the finger segments is measured using the IRED placements 

shown in Figure 4.3. The hand should be placed palm down on a flat table and the 

fingers be fully extended. 
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Figure 4.2: Various cases that an IRED could become invisible to the Optotrak camera 

The length of each individual segment can be calculated by computing the distance 

between IREDs placed at the ends of each segment. IREDs 3 ,  4 ,  and 5 define the 

plane of the palm. The final calibration step measures the ratio between the angles 

of the DIP and the PIP joints of the index finger. We will call this parameter p.  

Rijpkema and Girard [36] suggested that there is a linear relationship between O,;, 

and Odip:  

We can use this relationship to simplify the table building process as discussed in 

Section 4.3 .2 .  The parameter p is computed as the slope of the least squared line that 

passes through the data points (O,;,,, O d i p , )  in the O p i p O d i p  plane. 
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Figure 4.3: IRED placement for measuring segment lengths. 

where n is the number of samples taken. As we will see in the description of the actual 

algorithm, this parameter is used to build the lookup table for the index finger. 

Run Time 

At run time, all but those needed would be removed from the hand. IREDs 7 t o  9 

will be taken off so that we are only measuring the position of the tips of the index 

finger and thumb, the position of the MCP joint of the thumb and the orientation of 

the hand. The remaining IREDs are shown in Figure 4.4. 

4.3 Hand Posture Estimation 

With the position of IREDs 1 to 6 given by the Optotrak system, we can now estimate 

the hand posture. In this section, a simple hand model will be given first, following 
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Figure 4.4: IRED placement for real-time experiment 

which the algorithm that estimates the hand posture from a limited number of IREDs 

will be presented. 

4.3.1 The Proposed Hand Model 

The hand model presented in Chapter 2 is generic in the sense that the inner workings 

of the finger joints are represented by unknown "black box" functions F!(B', p ) .  Since 

accurate biomechanical simulation is not the intent of our application, only a simple 

model of the joint is used. This section describes this simple model and discusses 

some of its assumptions. 

Applying the theory of opposition space [19,31], we can represent the grasping be- 

havior of the hand using only two fingers: the index finger and the thumb. Therefore, 

our simple hand model consists only of those two fingers and the palm. It is assumed 

that the index finger has four degrees of freedom: the MCP joint has two degrees of 

freedom while the DIP and PIP joints each have one degree of freedom. The thumb 

is assumed to have five degrees of freedom: the CMC and the MCP joints each have 

two degrees of freedom while IP has one degree of freedom. For a normal hand, it 
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is easy to see that the fingertip, the PIP joint, the DIP joint, and the MCP joint of 

the index finger lie approximately on the same plane. Furthermore, any movement 

of the hand (without any external force applied to it) cannot change this property. 

Therefore, we can reasonably assume that all segments of the index finger lie on a 

single plane. Similarly, the tip of the thumb, the IP  joint, and the MCP joint of the 

thumb lie approximately on the same plane, so we can again assume that the thumb 

segments between these joints lie on the same plane. As a result, a simple 2D model 

can be used to represent the fingers. The palm of the hand is simply represented by 

a plane and its orientation represents the orientation of the hand. 

The hand coordinate system is such that the x axis is pointing in the direction of 

the index finger when it is fully extended. The y axis is pointing out of the back of 

the hand. The origin of the hand coordinate system is located at the MCP joint of 

the index finger. The z axis points to the right to complete a right handed coordinate 

system. Let x,, y,, and z, be unit vectors in the global coordinate system pointing 

in the direction of the x, y and z axes of the hand coordinate system respectively. Let 

P be the plane containing the palm and its normal is just the vector y, pointing out 

from the back of the hand. 

Figure 4.5: A circular joint 

To develop a model for the finger, it is necessary to examine the finger joints 

more closely. The joints that control the rotation of the segments of the finger have a 

complicated structure of bones, muscles, and tendons. Since the IREDs are placed on 

the dorsal surface of the finger, our measurement of joint rotation is also affected by 
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skin movements. Therefore, to  simplify our model, we are going to assume that the 

joints are circular with radius r; for the i th joint. From Figure 4.5, it is clear that as 

the finger joint i rotates, the distance between the end of segment i and the start of 

segment i + 1 increases. This distance is represented as d;. It  is obvious that d; is a 

function of the joint angle 8; and the joint radius r;. Using techniques from geometry, 

it can be shown that 

0 i d; = 2ri sin - 
2 

where 8; is the i th joint angle ordered from the proximal to distal end of the finger. 

Using di we can construct the functions F ' ( 0 ,  r; )  for the circular joints by considering 

each joint as a hidden link of the finger. Since the position of the MCP joint is 

measured using an IRED, the first hidden link connecting the palm and the proximal 

segment of the finger is not needed. Thus, the finger can be represented using five 

links (including the two hidden links). This is shown in Figure 4.6. 

Hidden Links 

Figure 4.6: The five link representation of a finger 

From standard forward kinematics, it is clear that 
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To derive the formula for 4; ,  we can simply consider the finger as an ordinary five 

link manipulator with the special property that the sum of the two joint angles at 

each end of each hidden link sum to the value of the corresponding original joint angle 

of the joint in which the hidden link represents. From Figure 4.7, it is obvious that 

the angles labeled a and b are the same and a + b = 6;. Therefore, we can express 4; 
as : 

Figure 4.7: Calculation of 4; 

Extending the forward kinematic equations presented in Chapter 2, the location 

of the tip of the index finger can be expressed explicitly as a function of the modified 

joint angles 4;.  

a: = 11 cos 41 + dl  cos 42 + l2 cos d3 + d2 cos $q + l3 cos $5 

Y = 11 sin 41 + dl sin 42 + 12 sin 43 + d2 sin 44 + l3 sin $5 (4.8) 

where (I, y)  is the coordinate of the fingertip in the plane in which the index finger 

lies in. A similar equation can be set up for the thumb. Since both the index finger 

and the thumb have more DOF at the base, this simple model can only calculate a 
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subset of their joint angles. The following is the convention used for naming the joint 

angles: 

0 Index Finger: 

- O F d e x  is the rotation about the y axis at the MCP joint. 

- O F d e x  is the rotation about the z axis at the MCP joint. 

- O F d e x  is the rotation about the z axis at the PIP joint. 

- O F d e x  is the rotation about the 5 axis at the DIP joint. 

0 Thumb: 

- OAhumb is the rotation about the y axis at the CMC joint. 

- BEhumb is the rotation about the z axis at the CMC joint. 

- Oihumb is the rotation about the y axis at the MCP joint. 

- O ~ h u m b  is the rotation about the z axis at the MCP joint. 

- 1 9 ~ ~ " " ~  is the rotation about the z axis at the IP joint. 

The superscripts index and thumb are used to distinguish the joint angles of the 

index finger and the thumb. The values of O p d e x ,  O F d e x l  B;humbl and O ~ h u m b  can be 

determined using the lookup table a t  run time. The values of the remaining joint 

angles are calculated separately. 

Since Oindex represents the rotation of the MCP joint of the index finger about 

the y axis, we can calculate it by taking the dot product of the vector s, with the 

projection of the vector going from the position of the MCP joint to  the index fingertip 

onto the plane P representing the palm. Let t = -*. be the unit vector from the 
II 1- 311 

MCP joint to  the fingertip. This calculation is illustrated in Figure 4.8. 
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Figure 4.8: Calculation of 82dex 

Notice that the angle a between t and the plane P is the sum of the joint angle O F d e x  

and an angle ,B, where P is the angle between t and the vector (d8 - d3) .  The angle 

a can be easily obtained by taking the dot product of x, and t .  We can obtain ,O by 

rotating the vector (d8  - dg)  to  align with the vector [l, 0,0], and moving it to  the 

origin. Then, using the value of O p d e x  and O F d e x  from the lookup table, we can obtain 

the position vector t' = [ t i ,  t&, 0] of the fingertip evaluating the forward equation once. 

The cosine of the angle ,B is then the dot product of the vector [l, 0,0], and [ t i ,  tk, 01. 

Therefore, 8FdeX can be easily obtain by 

olndex = a - p  

The calculation of O F d e x  is illustrated in Figure 4.9. 

Since we are measuring the position of the MCP joint of the thumb, OAhumb and 
d -d O:humb can be calculated very easily. Let m = -&--& be the unit vector that goes 

I I  6 -  411 

from the CMC joint of the thumb to the MCP joint. The  joint angle Okhumb can be 

calculated by projecting the vector m onto the plane P. The dot product of this 

vector and 2, gives the cosine of this angle. This is illustrated in Figure 4.10. Then 

Okhumb can be expressed as 
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Figure 4.9: Calculation of r3;"dex 

MCP 
. : . .  

Figure 4.10: Calculation of 0LhUmb 
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MCP 

Figure 4.1 1: Calculation of 1 9 ~ ~ " ~ ~  

- 0Ahumb - cos 
-1 xs ' P 

IIPII 
The cosine of the joint angle B ~ h u m b  is the dot product of m and y,. Since y, is 

pointing out of the back of the hand, we have to subtract 7r/2 from the resulting 

angle. Therefore, we have 

The calculation of BEhumb is illustrated in Figure 4.11. 

The calculation of B ~ h u m b  can be done using a similar method as the calculation 

of Okhumb. However, in this case, we are projecting the vector T = d -d .w that goes 
2 -  411 

from the MCP joint of the thumb to  the tip onto the plane Pi defined by the positions 

of the MCP joint of the thumb, the CMC joint of the thumb and the MCP joint of 

the index finger. Let I) be the unit normal of the plane P'. The angle ohhumb can be 

calculated by 
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Figure 4.12: Calculation of 19%~""~ 

With the above expressions for the joint angles of the index finger and thumb, the 

simple hand model is complete. The following section will demonstrate how this model 

is used to estimate the hand posture using live data from the Optotrak system. 

4.3.2 The Algorithm 

Like Amaya's algorithm, this algorithm can also be divided into two stages: the 

preprocessing stage and the run time stage. The preprocessing step builds the lookup 

table while the run time step simply searches the lookup table for the solution using 

an appropriate index. 

The algorithm for building the lookup table is very simple. The algorithm Buildln- 

dexTable is given in Appendix C.1. As shown in Figure 4.4, we are measuring the 

location of the tip and the MCP joint of the index finger, so the entire kinematic chain 

of the index finger consists of five links (including the two hidden links). Similarly, 

there are three links between the tip and the MCP joint of the thumb. Before we can 

build a table, we have to select a way to index it. Instead of using the coordinate 

of the tip of the finger as the index as in Amaya's algorithm, we have chosen to  use 
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Figure 4.13: The lookup table build using the algorithm described in the thesis 

the distance lltll between the fingertip and the MCP joint as the index. Since this 

distance is a floating point number, we convert it to  an integer before we use it as the 

index. The index has a range of Omm to  200mm. By default, the interval between 

successive indices is lmm.  If denser indices are required, it can be specified using the 

parameter p as discussed in Appendix C.1. For any values of p less than 1, we have to  

scale lltll up by corresponding factor l l p  and use the integer part as the index. The 

next step is to  evaluate the forward kinematic equation for various values of the joint 

angles and insert these joint angle values into the lookup table using the calculated 

index for each entry. It is possible that more than one set of joint angles have the 

same index. In that case, an array is used to  store all of them and the corresponding 

entry in the lookup table points to the array. The index finger and the thumb have 

different parameters, so a different lookup table is built for each. The lookup table 

build using this algorithm is shown in Figure 4.13. The numbers c; in this figure 

represent the number of sets of joint angles a; having the same index Ilt,ll. 

Since the value of O1 does not affect the value of the index, 0 can simply be 

assigned as its value throughout. Since there are only three links between the tip and 

the MCP joint of the thumb, we can easily transform the algorithm BuildIndexTable 
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in Appendix C.1 into an algorithm BuildThumbTable by removing the inner FOR loop 

and change the five link forward kinematic equations to the three link equations. 

As an alternative to BuildIndexTable, we can use the parameter p to decrease the 

size of the lookup table. Since we know the ratio between the joint angles O2 and 

03, we can remove the inner FOR loop from the BuildIndexTable and set O3 to  pOz. 

Because only one FOR loop is required, the size of the lookup table only increases 

linearly as the precision of the joint angles increases. This significantly increases the 

table building process as well. 

At run time, the lookup table is searched to obtain a subset of the joint angles 

of the finger. The remaining joint angles are computed on the fly. The run-time 

algorithm is given in Appendix C.2. The norm of the vector t is computed to obtain 

the index. Because of the nature of our data, there might be more than one set of 

joint angles that have the same index. An array is used to  store all of them. Since this 

array is relatively small in size, a linear search algorithm can be employed to find the 

set of joint angles according to  some criteria. In our application, it is assumed that the 

relative angular change from one frame to  the next is small. Therefore, the searching 

criterion is to minimize the change from the set of joint angles in the previous frame. 

It is possible that the table entry corresponding to the computed index is empty. In 

this case, the algorithm would then try to find the closest table entry which contains 

a t  least one set of joint angles. 

The algorithm GetIndexJointAngles finds the joint angles of the index finger. Sim- 

ple modifications to GetIndexJointAngles can be made to  change it into GetThumb- 

JointAngles which finds the joint angles of the thumb. The necessary modifications 

are: 

Change the first line from lltll := /Idl - d311 to := /Id2 - dsll 

Replace O F d e x  and Opdex with Oihumb and Oihumb 

Delete all references of O F d e x  

Change the three link forward equations that calculates the value of t: and t', 

to  the two link equations. 
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0 Replace the calculation of O;;"dex by the equations (4.1 I) ,  (4.12) and (4.13). 

0 Change the last line to RETURN {Ohhumb, O~humb, Oihumb, Oihumb, O ~ h u m b ) .  

4.4 Implementation 

A complete data collection system which integrates data collection, estimation and 

display of hand postures has been implemented to  allow the experimenters to collect 

accurate 3D hand posture data. 

4.4.1 The Data Collection System 

There are several modules in the data collection system: getlength, getRntio, getDntn, 

and ikHand. The first two modules are used for the calibration step while the last 

one is used during the run-time step. With the IREDs placed on the subject's hand 

as shown in Figure 4.3, the first module getLength sets the Optotrak camera to a 

frequency of 60Hz and measures this calibration hand posture for 0.5 seconds for a 

total of 30 frames. The lengths of each finger segments are computed a t  each frame 

and the average lengths are then written to a file length.dat. When the second module 

getRatio is invoked, the subject is asked to  freely rotate and bend his fingers. The 

getRatio module collects this data for six seconds and computes the parameter p used 

to build the lookup table using equation (4.3). The value of p is written to ratio.dat. 

Before the start of the run-time stage, the thickness of the finger at each joint would 

have to be measured using a caliper. The values of the thickness data are stored in 

thickness.dat. Now, we have completed the calibration stage. 

At the run-time stage, IREDs 7, 8, and 9 can be taken off the hand. After that,  the 

module ikHand is invoked. It again sets the Optotrak camera to 60Hz and continuously 

collects the positional data of the IREDs. The program computes the hand posture 

at each frame from these positional data and displays the resulting hand posture onto 

the SGI monitor. The collected data is not written to a file since it is very slow to  

display and access the file system at the same time. If the data needs to  be stored, 

the module getData can be used to collect and store the data into a file hand.dat. The 
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stored data can later be viewed using a modified version of the module &Hand which 

gets the input from a file instead of getting it from the Optotrak system. A sample 

display is shown in Figure 4.14. 

Implementation Details 

The main data struciure used in this system is the lookup table. It is implemented 

as a dynamic array. Each element of the table is another dynamic array. This is used 

to store different sets of joint angles having the same index (Iltll). At the run-time 

stage, the value of the index is computed from the live 3D data and this value is 

used directly to  index into the lookup table to obtain the array of sets of joint angles 

having this index value. Since size of this array is very small (usually around three 

and four), a linear search algorithm is used to determine which set of joint angles has 

the minimum deviation from the joint angles of the previous frame. 

All modules are implemented in C++ on a Silicon Graphics Indigo2. The Open 

Inventor Library is used to do the vector calculations and rendering of the hand. 

4.5 Discussion 

The table based inverse kinematic algorithm presented in the previous section uses 

the lookup table approach introduced by Amaya et al. to solve the inverse kinematic 

problem. It addresses some of the weaknesses of Amaya's algorithm by making addi- 

tional assumptions about the finger and joint configurations. In particular, it utilizes 

the notion of hidden joints to simulate the behavior of the finger joint and account for 

the error introduced by skin movement. In addition, this algorithm is stable in the 

sense that it will always return a feasible solution. It is easy to see from the algorithm 

that it always returns the optimal solution in which the end-effector position error 

is minimized. Furthermore, the computational speed is not jeopardized by the accu- 

racy and stability of the algorithm. The algorithm is very fast because no coordinate 

transformation needs to be explicitly performed. This also means that numerical er- 

rors associated with the transformation of coordinate system are eliminated as well. 



Figure 4.14: Display of collected dat,a 
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However, unlike Amaya's algorithm in which the lookup table has to be regularized to 

obtain uniform table entries, there is no clear way to do regularization on the lookup 

table built by this algorithm. Since there can be more than one set of joint angles 

stored in a single entry, simple interpolation of the table entries cannot be done to 

obtain a regularized table. Furthermore, even if interpolation is applied to two entries 

in the table to obtain an entry between them, there can be no guarantee that the 

interpolated joint angles will produce the desired index. 

Unlike the Jacobian based algorithms presented in Chapter 3, this table based 

algorithm does not explicitly address the singularity problem. Instead, this problem 

is avoided by finding the closest feasible solution in the workspace. Also, joint limits 

are usually hard to enforce using Jacobian based algorithms. It is usually done by 

clamping the joint angles to the maximum or the minimum limit. Handling joint 

limits this ways may produce unnatural looking joint angles. In our algorithm, joint 

limits can be explicitly specified in the table building process, so any solutions that 

lie outside the joint limits will not be returned. 

One of the major drawbacks of this algorithm is that it cannot be readily extended 

to handle other manipulators. The algorithm is specifically designed to simulate the 

human finger. Furthermore, it assumes that the relative angular movement between 

the previous frame and the current frame is small. However, even in our application, 

it is possible for the Optotrak camera to miss some frames as the IREDs became 

hidden from its view. As a result, the next valid frame may be drastically different 

from the previous valid frame. In this case, the solution returned by the algorithm 

will be extremely unpredictable. Fortunately, there are many entries in the lookup 

table that contain only a single set of joint angles. The joint angles of the previous 

frame are only used to select among different choices. Since there are no choices if 

one of those entries is selected by the algorithm, this problem would vanish. 
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Experiment and Results 

This Chapter describes an experiment which applies the algorithm presented in Chap- 

ter 4 in a real-time setting and discusses the results obtained from the experiment. 

The main purpose of the experiment is to evaluate the accuracy of the algorithm and 

demonstrate that it can be effectively used in a real-time setting. 

5.1 The Real-time Experiment 

In order to evaluate the accuracy of this table based method, a practical experiment 

was performed. After setting up the equipment, the preprocessing stage begins by 

placing the subject's hand palm down on a flat table. The IREDs were placed as 

shown in Figure 4.3. The equipment setup is shown in Figure 5.1. This calibration 

posture of the subject's hand was sampled at 6OHz for 0.5 second. The lengths of 

the finger segments were computed at each frame. Then, the average lengths of the 

segments from the 30 sampled frames were used as the measured lengths of the finger 

segments to build the lookup table. The subject was then asked to freely move and 

rotate the index finger and the thumb. This data was sampled at 6OHz for six seconds. 

The PIP and DIP joint angles of the index finger were computed at each frame and 

used to obtained the parameter p using equation (4.3). The lookup table was built 

using an accuracy of p = 0.1 which means value of the joint angles stored in each 

entry of the table is accurate to l/lOth of a degree. The hand motion data was again 
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Figure 5.1: Equipment setup 

collected a t  6OHz for six seconds for a total of 360 frames. 

During the run-time stage, only six IREDs were needed as shown in Figure 4.4. 

To determine the accuracy of the methods, the IRED placement was not changed 

from the preprocessing stage. Since there is an IRED on every joint of both the index 

finger and the thumb, the actual joint angles and the position of the fingertips can be 

easily measured. However, the only IRED information given to  the inverse kinematic 

algorithm was the position of the six IREDs required to compute the joint angles in 

run-time. The computed joint angles were compared with the actual joint angles to 

determine the accuracy of our method. In addition, the actual position of the fingertip 

is compared with the computed fingertip position obtained by evaluating the forward 

kinematic calculations using the computed joint angles. 
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5.2 

One of 

IREDs 

Difficulties Encountered 

the major difficulties encountered during the experiment was the occlusion of 

from the Optotrak camera. It is obvious that the hand is not a flat surface, 

so as the hand rotates and the fingers bend, one or more of the IREDs placed on the 

hand are inevitably going to be blocked from the view of the camera. As a result, 

much of t h e  data returned by the Optotrak system was rendered useless. This also 

severely restricts the workspace of the hand. Furthermore, the quality of solution 

from our algorithm can be severely affected since the table based algorithm requires 

the joint angles of the previous frame as initial approximation for the joint angles in 

the current frame. If IREDs in several consecutive frames between one valid frame 

of data and the next were blocked from the camera, the algorithm would have to 

use the last valid frame (not the previous frame) to approximate the joint angles of 

the current valid frame. This is usually not a good approximation and the algorithm 

will probably return poor results. One possible solution to this problem would be to 

surround the subject with Optotrak cameras, so all the IREDs will be in the view of 

at least one camera at all times. This solution, however, cannot be implemented at 

the time of this writing because of the high cost of the equipment. 

Another problem encountered during the experiment was the speed of rendering 

the hand in real-time. As discussed in Chapter 2, the graphic hand is composed 

of many polygons. A significant amount of time is spent in drawing them. In ad- 

dition, deformation calculations are performed in real-time to simulate the bending 

and stretching of the finger. With the additional overhead of polling data from the 

Optotrak system and computing joint angles using our algorithm, the graphic hand 

was not able to be rendered quickly enough to give the illusion of smooth hand move- 

ment. However, after hand tuning the matrix computations used in the deformation 

and speeding up the calculation ~erformed for the inverse kinematic algorithm, the 

graphic hand can now be rendered at approximately 12 frames per second on a Silicon 

Graphics Indigo2 Extreme. As suggested by Welman [45], 10 frames per second is the 

minimum for interactive applications to maintain the illusion of continuous interactive 

control. 



CHAPTER 5. EXPERIMENT AND RESULTS 

Actual DIP joint angle - 
Computed DIP joint anlge - - - - -  
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Frame 

Figure 5.2: Comparison of B!Jdex 
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Actual PIP joint angle - 
Computed PIP joint anlge - - - - -  
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Frame 

Figure 5.3: Comparison of OFdex 
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Actual MCP joint angle - 
Computed MCP joint anlge - - -  - - 

. . . . . . . . 
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Figure 5.4: Comparison of O;"dex 
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Measured x - 
Computed x - - - - -  

0 50 100 150 200 250 300 350 400 
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Figure 5.5:  Comparison of the x coordinate of the tip of the index finger 
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Measured y - 
Computed y ---- .  
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Figure 5.6: Comparison of the y coordinate of the tip of the index finger 
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Error - 

200 
Frame 

Figure 5.7: The error between measured tip location and computed tip location of 
the index finger 
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5.3 Result and Analysis 

The results of the computations are plotted as graphs. The independent variable in 

these plots is time which is represented by the frame number. Comparisons between 

both joint angles and end-effector positions are made for the index finger and the 

thumb. 

5.3.1 The Index Finger 

Since the DIP, P IP  and MCP joints as well as the tip of the index finger all lie on 

the same plane and that we know the location of the MCP joint and the tip, we can 

calculate the angle OFdex exactly in the run-time stage. Therefore, this joint angle is 

not compared. Figures 5.2, 5.3, and 5.4 show the plot of the comparisons between the 

measured joint angles OFdex, OFdex, and OFdex of the index finger and the computed 

joint angles. 

From Figure 5.4, we can see that when the actual joint angle decreases to  negative, 

the computed joint angle tends to  go in the opposite direction. This phenomenon can 

be observed at frames 130 to 155 and 320 to 355. Intuitively, if the MCP joint angle is 

negative, it means that the finger is bending backwards. This causes the value of lltll 

to  decrease, similar to  the situation when the finger is bending forward. Since only the 

value of lltll is used as the index for the lookup table, the algorithm cannot distinguish 

between the two different situations. Therefore, the algorithm just assumes that the 

finger is bending forward which is the more natural movement. As a result, the value 

of the MCP joint angle increases. During typical grasping tasks, it is rarely the case 

if at all, that the index finger needs to bend backwards to complete the given task. 

Therefore, when the algorithm was designed, it is assumed that the index finger can 

only bend forward. 

Since the ultimate goal of inverse kinematics is to  obtain a set of joint angles to 

position the end-effector as close to a desired location as ~ossible, we have plotted 

several graphs comparing the desired x and y coordinates and the x' and y' coordinates 

returned by our inverse kinematic algorithm. 

The negative angular values of frames 130 t o  155 and 320 to 355 in Figure 5.6 
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confirmed that the index finger is indeed bending slightly backwards. Figure 5.7 

shows the error between the desired coordinate (xi, yi) and the computed coordinate 

(x:, Y:). The error e; of the i th frame is computed using the formula 

The average error of Figure 5.7 is 6.01mm. 

5.3.2 The Thumb 

The data collected for the thumb is compared in a similar way. Since we measure the 

position of the CMC and the MCP joint of the thumb at run-time, we can calculate 

the joint angles OhhUmb and OihUmb exactly. Also, we know that the MCP and the IP 

joints as well as the tip of the thumb all lie on the same plane, we can calculate the 

joint angle OihUmb exactly using equation (4.13). Therefore, the only two joint angles 

obtained using the lookup table are OihUmb and OjhUmb. The comparison results are 

shown in Figures 5.8 and 5.9. 
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Actual IP joint angle - 
Computed IP joint anlge - - - - -  I 

150 200 250 300 350 400 
Frame 

Figure 5.8: Comparison of O:h"mb 
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Actual MCP joint angle - 
Computed MCP joint anlge - - - - -  
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Frame 

Figure 5.9: Comparison of 0ihumb 
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Measured x - 
Computed x - - - - -  
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Figure 5.10: Comparison of the x coordinate of the tip of the thumb 

Notice that the difference between the measured joint angles and computed joint 

angles from frame 200 to 300 in both Figures 5.8 and 5.9 are quite large. The values of 

the measured joint angles are large in that interval while the values of the computed 

joint angles are relatively small. This error could be caused by any one or a com- 

bination of two sources. Since the thumb is extremely dextrous, the skin movement 

on the thumb is very significant. An IRED was placed on top of the MCP joint and 

on the tip of the thumb to  measure their distance. This distance is the value of the 

index into the lookup table. If the position of the IRED measuring the position of the 

MCP joint is severely affected by skin movement, the value of the index would not be 

computed very accurately. This could cause serious error in our computation. Also, 

since the radius of the IP  joint (including the IRED thickness) is estimated using a 

ruler, it might not be very accurate. This introduces additional error into our com- 

putation. Placing the IREDs on rigid materials that are tightly fixed to  the thumb 
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Figure 5.1 1: Comparison of the y coordinate of the tip of the thumb 
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I 

Error - 
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Figure 5.12: The error between measured tip location and computed tip location of 
the thumb 
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helps reducing errors caused by skin movement. However, this will severely restrict 

the movement of the thumb. Radius estimation error can be reduced by adjusting this 

radius parameter before the experiment until the computed movement of the thumb 

is similar to the actual movement. 

Not very surprisingly, significant errors from frame 200 to 300 are observed from 

the plots of the thumb tip location. The average error of Figure 5.12 is 7.lmm. 

5.4 Summary 

An experiment was conducted to measure the performance of the proposed table 

based inverse kinematic algorithm. From the experimental results, we can see that 

the algorithm works extremely well for the index finger. Error between measured tip 

location and computed tip location only becomes large when the index finger bends 

backwards. Fortunately, this is rarely possible without external force exerted on the 

finger. The error for the thumb becomes significant when the value of the joint angle 

at the IP joint become large. This error can be reduced by eliminating skin movement 

effects on IRED position and careful estimates of the IP joint radius. 
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Conclusions 

We have examined the solutions to the inverse kinematic problem applied to  the 

determination of hand posture in real-time. As an alternative to various algebraic 

and numerical methods published in robotics and computer graphics journals, a simple 

but very fast lookup table based inverse kinematic algorithm has been developed for 

the computation of the joint angles of the index finger and the thumb from live 3D 

positional data. This algorithm has been integrated into a complete data collection 

system which is able to calibrate, collect and display hand postures of test subjects 

in experiments. 

A similar table based inverse kinematic algorithm was proposed by Amaya et al. 

[I]. However, the algorithm presented in this thesis addresses some of its weaknesses. 

The major contributions of this thesis include: 

developed a more accurate model of the finger using circular joints; 

developed a fast table-based algorithm which can be used effectively in real-time; 

integrated the polygonal representation of the outer surface of the hand into the 

display routines; and 

developed a data collection system which integrates data collection, hand pas- 

ture estimation and display of the hand. 
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6.1 Summary 

When doing this research, it is apparent that no one single inverse kinematic algo- 

rithm is uniformly superior to others and is suitable for all types of applications. For 

instance, computer animations systems requires their inverse kinematic algorithms 

to be able to produce "useful" intermediate solutions to refresh the screen in order 

to  maintain the level of interactivity. On the other hand, trajectory control systems 

of robots require their inverse kinematic algorithms to produce accurate joint angle 

solutions to maintain the trajectory of the end-effector of the robot. So, the ability to 

produce intermediate solution is of little interest to these systems. By contrast, the in- 

verse kinematic algorithms used in a real-time environment such as the one described 

in this thesis, is required to process incoming data (possibly containing noise) and 

produce a solution as quickly as possible. The quality of solution, of course, greatly 

depends on the correctness of the incoming data as well as any measured calibration 

parameters. 

In Chapter 4, we have presented an algorithm which estimates a human hand 

posture from a limited number of IREDs. The key to this method is lookup tables 

built during a calibration step which measure the characteristics of different subjects' 

hands. With this information, the run-time system determines the joint angles of both 

the index finger and the thumb. The method presented provides the computational 

speed required for our real-time application and reasonable approximation of the hand 

postures of the subject. The solution returned by this algorithm is a compromise 

between accurate end-effector position and "natural" looking joint angles since it 

neither requires the end-effector to be accurately place at a particular point with no 

regard to the value of the joint angles nor it tries to set the joint angles in a way that 

the position of the end-effector is completely ignored. Instead, the algorithm tries to 

find a set of reasonably natural joint angles such that the error between the distance of 

the measured end-effector position and computed end-effector position is minimized. 

In Chapter 5, the method has been confirmed to produce adequate results. 
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Future Work 

Since this thesis is only a part of the efforts in trying to construct a Virtual Hand 

Laboratory, there is still considerable work left to be done. First, the inverse kinematic 

algorithm presented in Chapter 4 is planned to be integrated into the head tracking 

system developed by Valerie Summers. This will provide a stereo view of the virtual 

hand for the subject while the experiment is in progress. Also, the calibration of the 

hand and the head tracking devices can be done together as one step. This will not 

only save time, but will also provide additional viewing information such as location 

of the viewer and so on for the display subroutine. 

Since a neural network generalizes the notion of a lookup table, we would like to 

investigate ways to define a neural network to solve the inverse kinematics problem. 

Compared to a lookup table, the neural network has the added advantage that it 

can "learn" from past results. Since a neural network is essentially a lookup table, 

the processing speed would be comparable to  the table based method described in 

Chapter 4. Further research is needed to define the structure of the neural network 

and its training method. 

In order for the virtual hand to be truly useful, the occlusion problem would have 

to be solved. One way to solve this problem would be to place more than one Optotrak 

camera around the subject. If an IRED is occluded from the view of one camera, the 

other cameras will still be able to sense its position. Because of the high cost of the 

needed equipment, it is very unlikely that this method can be implemented in the 

near future. 

In addition, a hierarchical spline representation of the hand can be constructed to 

allow for different resolutions of display of the hand. Using this property, experiments 

can be done to investigate the appropriate level of realism of the graphic hand needed 

to carry out a typical kinesiology experiment. 

Furthermore, we plan to  investigate ways to construct lookup tables having a 

uniform distribution of entries. Doing so, in theory, will speed up the time required 

to search the lookup table and resolve collisions present in each entry of the table. 
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Notations Used in Amaya's Paper 

Three coordinate frames are employed in Amaya's algorithm: the Optotrak "global" 

frame, the "hand" frame at the MCP joint created by three IREDs on the back of 

the hand, and the "fingertip" frame on the tip of the finger created by three IREDs 

on the fingertip. 

The matrix [B] is the basis matrix of a coordinate system where the i th  basis vector 

is placed at the i th  column of [B] .  The vector 0 is the position vector of the origin 

of a coordinate system. The superscripts and subscripts on both [B] and 0 read: 

Asource- f rame 
destination- f rame 

The source frame is the frame of reference in which the input vector is currently 

expressed in which the destination frame is the frame of reference in which the output 

vector going to  be expressed in. The positions of the IREDs are represented by the 

vector d .  The notation used is: 

d I R E D  group 
coordinate- f rame,IRED number 

The subscripts below other vectors represent the coordinate frame of that vector 
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Jacobian Matrix and Its Pseudoinverse 

The Jacobian is a matrix of first derivatives. To derive it, we can differentiate the 

elements of equation (3.1) to get 

dx, = a i m  a i m  a f m  
-do1 + -dB2 + . . . + -do, 
a01 (302 86, 

Dividing by the differential time element dt  and writing in matrix notation, we have 

; = ~ ( e ) c i  

and clearly J is 

I . . .  

2.L 
asl ae2 . 
a 2& 
ael ae, . . . J =  . 

af, L a,, a,, . . U E  J 
den 

If J is not a square matrix or does not have a full rank, J-' does not exist and there 

is no solution for t!l. In order to find a useful solution for 9, the generalized inverse 
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of J is usually used. A commonly used generalized inverse J+ is the Moore-Penrose 

pseudoinverse[6]. The pseudoinverse J+ is defined as 

+ - J T  J j T ) - 1  
J -  ( 

for the under determined case and 

+ - J T  J ) - 1  J T  
J  - (  

for the over determined case. 
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C. l  Algorithm to build the lookup table 
This section presents an algorithm that builds the lookup table for the index finger. 

The lookup table is built by evaluating the forward kinematics equations for $ degree 

increments for each of the PIP and DIP joint angles, where p is the precision of the 

joint angles. The index used for the lookup table is the distance between the tip of 

the finger and the MCP joint. Since the value of O1 (the MCP joint angle) does not 

affect the value of the index, it is set to  0. 
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ALGORITHM: BuildIndexTa ble 

Input: The segment length I ;  ordered from the MCP joint to the tip. The joint radius 

r;  of each joint. The joint li,mits for the DIP and PIP joints. The precision, p, of the 

joint angle. 

Output: A joint angle lookup table having lltll as its index. Each entry in the table 

consists of a counter and an array of joint angles. 

BEGIN 

d l  := 0 

FOR t z  := (pipLowerLimit/p) T O  (pipUpperLimit /p)  BY 1 DO 

FOR t3  := (dipLowerLimit/p) T O  (dipUpperLimit lp)  BY 1 DO 

82 := t2p  

03 := t3p 

do := 2rl sin d2/2 

dl := 2r2 sin d3/2 

$0 := d* 

41 := 40 + 8212 

4 2  := $1 + 0212 

$3 := $2 + 6312 

$4 := 43 + 0312 

x := ll cos $1 + do cos 4 2  + l 2  cos $3 + dl cos $4 + E3 cos 45 
Y := 11 sin $1 + do sin $2 + 12 sin $3 + dl sin $4 + l3 sin qh5 

index := &G 
P 

Table[index].angleList[count] := (02, 193) 

Table[index].count := Table[index].count + 1 

END /* FOR */ 
END /* FOR */ 
RETURN Table 

END 
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C.2 Algorithm to search the lookup table 
This section presents an algorithm that searches the lookup table at run-time 

to  obtain a subset of the needed joint angles. The algorithm first computes the 

index value (the distance between fingertip and the MCP joint). Then, it looks for 

the corresponding entry in the lookup table. If this entry is empty, the algorithm 

searches both forward and backwards to find the closest non-empty entry. After this 

entry is found, the algorithm then determines whether there are more than one set 

of joint angles stored in this entry. If not, the only set of joint angles stored in this 

entry is returned. Otherwise, the algorithm finds the set of joint angles which has the 

minimum change from the set of joint angles of the previous frame. This set of joint 

angles is then returned. This algorithm also checks to make sure that the angle P is 

less than or equal to the angle cr (a and ,B are discussed in Chapter 4). 
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ALGORITHM: GetIndexJointAngles 

Input: The lookup table. The IREDs' positional vectors d; in the global frame as in 

Figure 4.4. The indez finger joint angles { i 3 ~ d e x 1 ,  dFder ' )  of the previ0.u~ frame. The 

precision, p, of the joint angles. 

Output: The joint angles of index finger for the current frame. 

BEGIN 

less := FALSE 

minErr := maxFloat 

position := 0 

index := Ilt l l /p 

IF Table[index].count = 0 /* i f  this entry is empty */ 
found := FALSE 

forward := index 

backward := index 

WHILE (NOT found) /* find first non-empty entry in either direction 

* / 
forward := foward + 1 

backward := backward - 1 

found := ((Table[ f orward] .count>O) OR (Table[backward] .count > O ) )  

END /* WHILE */ 
IF (Table[forward].count > 0) T H E N  /* get search direction */ 

indez := forward 

ELSE 

index := backward 

END /* IF */ 
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END /* IF */ 
WHILE (NOT less) /* if angle ,B is not less than a */ 

FOR i := 0 TO Table[index].count - 1 BY 1 DO 

{02, 03) := Table[index] .angleList [i] 

t: = 11 + 12 C O S ( ~ ~ )  + C O S ( ~ ~  + 63) 

t& = 12 sin(&) + l3 cos(02 + 03) 

p := cos- t ;  

(J- 1 
index1)2 + (OFdex - err  := J((a - 8) - + (02 - o2 @dex')2 

IF (/3 <= a )  

IF (NOT less) 

minErr  = er r  

position = i 

less = TRUE 

ELSE 

IF (err < minEr r )  THEN 

minErr  = er r  

position = i 

END / *  IF */ 
END /* IF */ 

END /* IF */ 
E,ND /* FOR */ 
IF  (NOT less) 

position = 0 

index := index + 1 

END /* IF */ 
END /* WHILE */ 
{OFdex, Ogdex) := Table[index] .angleList [position] 

P := t - y , ( t .  Y,) 

t i  = 11 + 12 cos(O2) + 13 cos(O2 + 03) 

tk = 12 sin(02) + cos(02 + 03) 



CHAPTER 6. CONCL USIONS 

END 
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