
A Perceptually Accurate Model of the Hand

by

Ye Lu

B. A.Sc. (Computing Science) Simon Fraser University, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE O F

MASTER OF APPLIED SCIENCE

in the School

of

Engineering Science

@ Ye Lu 1997

SIMON FRASER UNIVERSITY

July 1997

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Ye Lu

Degree: Master of Applied Science

Title of Thesis: A Perceptually Accurate Model of the Hand

Examining Committee: Dr. Kamal Gupta, Associate Professor

Chair

DL John C. Dill, Professor

Senior Supervisor

Dr. Tom W. Calvert, Prafessor

Supervisor

Dr. Ze-Nian Li, Associate Professor

School of Computing Science .

External Examiner

Date Approved: ~ u l y 25 , 1997

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project or extended essay (the title of which is shown below) to users of the
Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed without
my written permission.

Title of ThesidProjectlExtended Essay

"A Perceptually Accurate Model of the Hand"

Author:
(signature)

u
(name)

July. 1997
(date)

Abstract

The human hand is used in virtually all aspects of everyday activities involving such

tasks as selection, manipulation and communication. It is therefore important to

study and understand how it works. However, a significant difficulty facing traditional

hand researchers is acquiring accurate 3D data that describes actual human hand

movements. To address this problem, a multidisciplinary team of researchers from

kinesiology, computer science and engineering was formed to design and implement

a Virtual Hand Laboratory to serve as a testbed for future studies of goal-directed

human hand movements.

The primary objective of the work described in this thesis is to provide a framework

for the collection, estimation and display of hand postures from live 3D data. A fast

lookup table-based inverse kinematic algorithm was developed and used to estimate

hand postures from real-time 3D data supplied by the Optotrak system, a powerful

motion capture device.

The algorithm is executed in two stages: a calibration stage and a run-time stage.

The former measures the characteristics of the subject's hand in order to customize

the lookup table while the latter uses the table to estimate the subject's hand posture.

A polygonal model of the human hand was developed for display of the estimated hand

posture. A complete system integrating data collection with estimation and display

of hand postures in real-time was designed and implemented to serve as the platform

for real-time experiments in the study of goal-directed hand movements.

Dedication

To My Parents

Acknowledgments

I would like to thank my senior supervisor Dr. John C. Dill for his invaluable guidance,

enthusiasm and financial support throughout the course of this work. I am also very

grateful to my supervisor Dr. Tom Calvert for his helpful comments and insightful

suggestions during the research and writing of this thesis. I would also like to thank

Dr. Ze-Nian Li for taking the time t o be my external examiner.

Many other people have helped and contributed their time to the research of this

thesis. My thanks to Dr. Kellogg S. Booth and Jason Harrison of the University of

British Columbia for their invaluable comments. Thanks to Sidi Yu for his efforts in

the development of the polygonal model of the hand. Thanks to Dr. Kenji Amaya for

his inspiration and development of the initial algorithm. Thanks to Dr. Hongsheng

Chin for his mathematical expertise as well as his friendship. Thanks t o Wan Gong

for proofreading the draft of this thesis.

I would also like to take this opportunity to express my gratitutes toward everyone

in the Human Motor Systems Laboratory of the School of Kinesiology at Simon Fraser

University, especially Dr. Christine MacKenzie, Dr. Evan Graham, Yanqing Wang,

Beth Brown and Chris Ivens for their valuable suggestions and help in setting up the

equipments for the experiment.

Last but certainly not least, I will always be indebted to my parents, Xiqi Lu and

Taiqiong Ma, and my brother Joe Lu, for their support and confidence in me. This

thesis would not have been possible without their kindness and encouragement.

This research is supported in part by the NSERC Strategic Grant.

Contents

Approval .
Abstract .
Dedication .
Acknowledgments .
List of Figures .
1 Introduction .

. 1.1 Motivation

1.2 The Inverse Kinematics Approach for Hand Posture Estimation

1.3 Organization of Thesis .
2 Hand Kinematics .

2.1 Kinematic Methods .
2.1.1 Link Description .
2.1.2 Forward Kinematics
2.1.3 Inverse Kinematics

2.2 Hand Model .
2.2.1 Human Hand Anatomy
2.2.2 Internal Skeletal Model
2.2.3 Polygonal Hand Model

3 Inverse Kinematics .
3.1 Problem Definition .

. 3.1.1 Existence of Solution

3.1.2 Redundancy .
3.2 Jacobian Based Methods .

3.2.1 Inverse and Pseudoinverse of Jacobian 19

3.2.2 Singularities . 19

3.2.3 Homogeneous Solution 21

3.2.4 The Jacobian Transpose Method 21

3.3 Optimization Based Methods 23

3.4 Table Based Method . 25

3.4.1 Preprocessing Stage 26

3.4.2 RunTimeStage . 31

3.4.3 Discussion . 34

. 3.5 Summary 35

4 A Table Based Real-time Algorithm 37

4.1 Motivation . 37

4.2 IRED Placements . 40

4.2.1 IRED positions . 40

4.3 Hand Posture Estimation . 42

4.3.1 The Proposed Hand Model 43

4.3.2 The Algorithm . 51

4.4 Implementation . 54

4.4.1 The Data Collection System 54

. 4.5 Discussion 5.5

5 Experiment and Results . 58

5.1 The Real-time Experiment . 58

5.2 Difficulties Encountered . 60

5.3 Result and Analysis . 67

5.3.1 The Index Finger . 67

. 5.3.2 The Thumb 68

. 5.4 Summary 74

. 6 Conclusions 75

6.1 Summary . 76

. 6.2 Future Work 77

. Appendix: A 78

vii

Appendix: B . 79

. Appendix: C S1

. Bibliography S7

List of Figures

2.1 The link parameters .
2.2 Anatomy of the human hand .
2.3 Internal Skeletal Model .
2.4 Attachment of vertices onto the bone segments
2.5 Finger bending .

3.1 Possible solutions to reach point B
3.2 IRED placement in the preprocessing stage of Amaya's algorithm . . .
3.3 The hand and fingertip coordinate systems
3.4 The lookup table in Amaya's Algorithm
3.5 IRED placement at run time .
3.6 The known and unknown vectors when estimating the orientation and

position of the fingertip .

4.1 Distance between the finger tip and the MCP joint
4.2 Various cases that an IRED could become invisible to the Optotrak

camera .
4.3 IRED placement for measuring segment lengths
4.4 IRED placement for real-time experiment
4.5 A circular joint .
4.6 The five link representation of a finger
4.7 Calculation of 4; .
4.8 Calculation of 6$dex .
4.9 Calculation of OYdex .

4.10 Calculation of Ohhumb .
4.1 1 Calculation of 04humb .
4.12 Calculation of Oihumb .
4.13 The lookup table build using the algorithm described in the thesis . .
4.14 Display of collected data .

5-1 Equipmeatsetup .
5.2 Comparison of O F d e x .
5.3 Comparison of 09dex .
5.4 Comparison of Of"dex .
5.5 Comparison of the x coordinate of the tip of the index finger
5.6 Comparison of the y coordinate of the tip of the index finger
5.7 The error between measured tip location and computed tip location of

the index finger .
5.8 Comparison of Oihumb .
5.9 Comparison of OihUmb .
5.10 Comparison of the x coordinate of the tip of the thumb
5.11 Comparison of the y coordinate of the tip of the thumb
5.12 The error between measured tip location and computed tip location of

the thumb .

Chapter 1

Introduction

People use their hands for many everyday activities involving such tasks as selection,

manipulation and communication. It is therefore important to study and under-

stand how it works. Accordingly, the study and analysis of goal-directed human hand

movement has become an increasingly important topic in the field of human-computer

interaction (HCI). With the advent of 3D virtual reality systems, gestural input and

full hand pointing are being explored as the input techniques of choice for future

computer systems.

A traditional problem that faces researchers is the acquisition and analysis of

accurate 3D data describing hand movements. The main purpose of the Virtual

Hand Project, conducted by a multidisciplinary team that includes researchers from

kinesiology, computer science and engineering, is to design and implement a Virtual

Hand Laboratory to serve as a testbed for future studies of goal-directed human hand

movements.

The primary objective of this thesis is to provide a framework and a set of tools

for the collection, display, estimation and analysis of hand posture from real-time

3D data. In overview, a motion capture device (Optotrak) periodically samples the

position of markers on a subject's hand. An inverse kinematic approach is then used

to convert this 3D positional data into joint angle data which represents the hand

postures. A 3D polygonal model of the hand is used for the display and animation of

hand postures.

CHAPTER 1 . INTRODUCTION

Since we manipulate the physical world most often and most naturally with our

hands, there is a great desire to apply the skills, dexterity, and naturalness of the

hand directly to the human-computer interface [40]. A number of research projects in

the past few years dealt with precisely this subject. Much of the work has been done

in the context of developing virtual environments.

Motivation

We believe that the next generation computer systems that employ virtual reality

(VR) techniques will be the next quantum leap of HCI. This new frontier is currently

very young and most work has focused on the development of hardware technology

and the custom implementation of specific applications. There is very little research

into the higher levels of abstraction that facilitates the composition of new systems.

The mouse is one of the most popular devices used in almost all Graphics User

Interfaces (GUIs). It makes direct manipulation of objects on the screen possible

by allowing selection, dragging and manipulation of these objects. Nevertheless, the

mouse is no substitute for a human hand which people use in just about all their

daily tasks. Manipulation of 3D objects on the screen is usually very awkward and

unnatural for people using only a mouse. The hand is a much more attractive al-

ternative for a VR system which provides the user with a fully rendered 3D view of

the objects to be manipulated. Sturman [39] has discussed the use of whole hands as

an input device. He suggested two paradigms: the manipulation paradigm and the

sign language paradigm. The manipulation paradigm refers to point, reach and grab

interactions. Applying this paradigm, most VR systems use the tip of the index finger

as a 3D pointer in order to select items in menus floating in 3D space. This approach

is a natural way to use the hand but it ignores the freedom that general hand gesture

provides.

The sign language paradigm recognizes hand gestures as a stream of tokens that

are similar to signs in sign languages. This visual language can be used to record

gesture analytically. The major critique of this paradigm is that the devised gestures

may not be easy enough for the user to recall. However, this can be remedied by

C H A P T E R 1. INTROD UCTION

allowing the user to define the gestures incrementally [41].

To accommodate either of these two major paradigms, the hand movements and

postures would have to be accurately measured and analyzed. The complexities of

the function and anatomy of the human hand have long been recognized and many

studies have been conducted on these topics [a]. Traditional studies of the hand often

involve experiments on hands from fresh cadaver specimens. Surgical incisions were

made and markers made of different grades of surgical wire were then inserted into the

hand to measure the movements of the tendons and muscles. The data gathered from

those measurements were then analyzed to derive theoretical biomechanical models of

the hand [2, 81. Although useful for biomechanical analysis and dynamic simulations,

these models usually require measurements of the internal forces and torques. These

measurements are very hard to obtain using non-intrusive procedures. Because our

intent is not to develop a device for accurate dynamic simulation but rather an input

device that can easily be used by everyone, methods of measuring the hand postures

using only non-intrusive techniques are needed.

A number of devices are available that allow a user to interact with objects in a

virtual environment using the hand. The DataGlove developed by Thomas Zimmer-

man monitors 10 finger joints and the six degrees of freedom of the hand's position

and orientation 1481. Physically, the DataGlove consists of a lightweight glove fitted

with specially treated optical fibers along the backs of the fingers. Finger flexion

bends the fibers, attenuating the light they transmit. The signal strength for each of

the fibers is sent t o a processor that determines joint angles based on precalibrations

for each user. There are numerous other glove based hand input devices such as the

Dexterous HandMaster, the Power Glove, the CyberGlove, the Space Glove and so on

[40]. Each of these devices has its own strength and weakness with regard to accuracy,

speed, and cost. However, a common weakness shared by all of them is that they are

too restrictive for the hand to move around the space.

As an alternative, motion tracking devices are non-intrusive and able to measure

the hand movements frame by frame with only a small number of markers attached

to the hand. The O ~ t o t r a k system used in the Virtual Hand Laboratory is such a

motion capture system. The markers used by the Optotrak system are called infrared

CHAPTER 1. INTROD UCTION

emitting diodes (IREDs). The coordinates of these markers are sent by the Optotrak

system to a SGI workstation where they are used to compute and display the hand

posture.

1.2 The Inverse Kinematics Approach for Hand

Posture Estimation

Hand postures are usually represented using finger joint angles and orientation of the

palm. A direct method of measuring joint angles would be to place IREDs on all joints

of the fingers and simply measure their positions in 3D. The joint angles could then

be trivially calculated using elementary methods from analytic geometry. However, it

is well known that occlusion problems make monitoring several IREDs simultaneously

using the Optotrak system very difficult.

As an alternative to the direct method, we can minimize the number of IREDs

used, therefore minimizing the occlusion problem, by only putting one IRED at the tip

of each finger and use techniques of inverse kinematics to compute the associated joint

angles. Since inverse kinematic calculations are usually difficult and time consuming,

the main focus of this research is to provide an efficient real-time inverse kinematic

algorithm to calculate the joint angles from which hand posture can be calculated.

Organization of Thesis

Chapter 2 reviews kinematic methods in general, and discusses their relevance in

hand posture estimation and provides an overview of hand anatomy and kinematics.

Chapter 3 formally states the inverse kinematics problem and presents some of the

commonly used approaches for solving it. In Chapter 4, an efficient real time inverse

kinematic algorithm is presented. Chapter 5 describes an experiment that measures

the performance of the algorithm and analyzes the results. The conclusion and future

work are presented in Chapter 6.

Chapter 2

Hand Kinematics

2.1 Kinematic Methods

Kinematics is that part of the science of motion which treats motion without regard

to the forces that cause it. Within the study of kinematics, there are two classes of

problems: forward kinematics and inverse kinematics. In order to study them, we

first have to consider the structure of the kinematic chain.

2.1.1 Link Description

A kinematic chain may be thought of as a set of rigid bodies connected by joints.

These bodies are called links. The joints are usually rotational, but may also be

prismatic. Each rotational joint allows rotation in 1, 2, or 3 orthogonal directions.

This is called the degree of freedom (DOF) of the joint. Any joint with n degrees

of freedom may be modeled as n joints of one degree of freedom connected with

n - 1 links of zero length. Therefore, without loss of generality, we only have to

consider kinematic chains consisting entirely of joints each having just one degree of

freedom. The two ends of the kinematic chain are called the base and the end-eflector

respectively. The base of the chain is fixed at one position while the end-effector can

move freely around the space.

In order to describe the kinematic chain accurately and effectively, a convention

CHAPTER 2. HAND IiINEMATICS

is required. The Denavit-Hartenberg convention[l 1] establishes a framework for sys-

tematic specification of kinematic chains by using four link parameters for each link

in the chain. The four link parameters uniquely determines a coordinate frame for

each link in the chain. The link parameters are defined as shown in Figure 2.1:

a; = the distance from 2; to Zi+1 measured along Xi;

* -a; = t he angle between Z; and Zi+1 measured about Xi;

d; = the distance from Xi-1 to Xi measured along 2;; and

6; = the angle between Xi-1 and X; measured about Zi.

The convention for affixing frames of reference on the links is as follows: the Z-axis

of frame i is coincident with the axis of frame i; the origin of frame i is located where

the ai perpendicular intersects the axis of rotation of i + 1; the X-axis points along ai

in the direction from joint i to joint i + 1; the Y-axis is selected to complete a right

handed coordinate system.

Figure 2.1: The link parameters

To determine the transformation which defines frame i relative to the frame i - 1,

we can define three intermediate frames P, Q and R for each link. Frame R differs

from frame i by a rotation of a;. Frame Q differs from R by a translation a;. Frame

P differs from Q by a rotation 6; and frame i differs from P by a translation d;. These

transformations can be multiplied together to obtain a transformation matrix from

frame i - 1 to frame i.

CHAPTER 2. HAND KINEMATICS

2.1.2 Forward Kinematics

Forward kinematics involves finding the position and orientation of the end-effector

relative to some coordinate system given a set of joint angles for each joint. Using

the link parameters defined in the previous section, we can define a transformation

matrix f-'T that transforms a vector in frame i - 1 to frame i.

Once the link parameters are found for each link and the corresponding link frames

have been defined, finding the forward kinematic equation is straightforward. The

individual link transformations can be multiplied together to find the single transfor-

mation O,T that relates frame n to frame 0.

i-1 ; T =

The matrix :T represents the last link's position and orientation in the Cartesian

space.

For a planar 3 link kinematic chain, the value of the link parameters a; and cl; are

0, so the transformation matrix :T reduces to

where sl..., and cl.,., are shorthand notations for sin(& +. . . + O n) and cos(O1 +- . $8,)

respectively, and 11, 12, and l3 are the lengths of the links. From (2.3), the planar

coordinates x , y and orientation 6 are clearly

- -
cos 4; - sin 19; 0 a;-1

sin 4; cos cos 8; cos a;-1 - sin a;-1 - sin ~ ; - ~ d ;

- sin 4; sin cos 8; sin a;-1 cos a;-1 cos ~ ; - ~ d ;

0 0 0 1 - -

(2.1)

C H A P T E R 2. HAND KINEMATICS

2.1.3 Inverse Kinematics

The inverse kinematics problem is essentially the reverse of the forward kinematics

problem. Inverse kinematics involves finding the joint angles of each link of a kine-

matic chain given the end-effector location and orientation. This problem has been

extensively studied in both computer graphics and robotics. Since inverse kinematics

is the main focus of this thesis, a detailed description and analysis of the related work

will be presented in the next chapter. The following sections will give a brief overview

of the application areas of inverse kinematics in both computer graphics and robotics.

Inverse Kinematics in Computer Graphics

The area within computer graphics that makes extensive use of inverse kinematics

is computer animation, in particular, the animation of articulated figures. An ar-

ticulated figure is usually represented by a collection of kinematic chains connected

together. Each joint in this articulated structure may have one, two, or three de-

grees of freedom. The degrees of freedom of an articulated structure increases with

its complexity. As an example, a detailed approximation of the human skeleton may

have in excess of two hundred DOF. Although well understood traditional animation

techniques [25] help animators produce expressive motions in their animation, they

require extensive manipulation of the figure to achieve the desired effects. It is obvi-

ously a very difficult task to create animation by manipulating joint angles to set up

key frames that place end-effectors of certain kinematic chains in desired locations.

Multiple iteration of trial and error is generally required to produce the correct result.

This approach is certainly very time consuming and error prone.

It is apparent that inverse kinematics offers an attractive solution to the above

CHAPTER 2. H A N D KIiVEMATICS 9

problem. Instead of letting the animator specify the joint angles that place the end-

effector at a desired location, the computer automatically calculates these joint angles

from the link configuration and the end-effector location specified by the animator.

This technique was used by Girard and Maciejewski [2S] to build the PODA system

which synthesizes the kinematic model of legged locomotion. Zhao and Badler 1471

proposed an algorithm that can incorporate various constraints and solve for simulta-

neous goals. Mielman 1451 has presented two very distinct inverse kinematic algorithms

suitable for real time manipulation and showed their effectiveness in a powerful in-

teractive editor LifeForms. By formulating inverse kinematics into an optimization

problem, Bawa [4] has presented an algorithm which uses an iterative nonlinear con- ,

strained optimization algorithm for solving the inverse kinematics problem.

Inverse Kinematics in Robotics

The inverse kinematics problem was first extensively studied in the field of robotics.

Since computer based robots are usually driven in joint space but the objects to

be manipulated are expressed in the world coordinate system, the inverse kinematic

solution is essential in controlling the position and orientation of the end-effector of

the robot arm to reach its objects.

There are two classes of solution methods for the inverse kinematics problem:

closed form and numerical. In robotics, a closed form solution is usually desired

for the kinematic chain of a robot arm rather than a numerical solution. Numerical

solutions are generally much slower than the corresponding closed form solution. Also,

numerical solutions are not generally guaranteed to converge to the correct solution

if they converge a t all. It is therefore hard to predict the quality of the solution and

the amount of time required to obtain the solution. For these reasons, researchers in

robotics usually restrict their attention to closed form solutions.

The closed form solution of a kinematic chain can be obtained by one or both of

the two solution methods: algebraic and geometric. Various algebraic methods include

the inverse transform method[34], screw algebra[20], dual matrices[lO], and the dual

quaternion method [46]. Lee and Ziegler[26] have presented a geometric method

CHAPTER 2. H A N D IXVEI1lATICS 10

to solve the inverse kinematics problem for the PUMA robot. A more thorough

discussion of closed form solution methods can be found in [14].

Hand Model

Two components of hand model are presented in this thesis: an internal skeletal

model is developed for the inverse kinematic calculations and a polygonal model for

representing the outer skin of the hand. In much of the literatures involving animation

of the hand [36, 44, 71, a simple three link pin joint model is often used internally to

represent the fingers and for the computation of joint angles. It is, however, found to

be insufficient in our application. The reasons will be made clear in Chapter 4. We

have developed an internal skeletal model which generalizes the simple pin joint model

by considering the effects of the finger joints. After the joint angles are calculated, the

hand must be displayed on the screen. This is accomplished using a surface polygonal

model of the hand. The following sections discuss each of the two components in

detail.

2.2.1 Human Hand Anatomy

The hand is one of the most complex mechanisms in the human body as it has more

than 25 degrees of freedoms. There have been numerous studies of the anatomical

structure of the hand [2, 42, 431, anatomical representation of which is given in Figure

2.2.

The hand consists of five fingers and a palm. Each of the index finger, middle

finger, ring finger and little finger has three joints. The joint closest to the palm

is called the metacarpopha langea l joint, or the MCP joint for short. This joint has

two degrees of freedom; an adduction-abduction range of approximately 30 degrees

and a flexion and extension range of about 120 degrees. The remaining two joint

are the p r o x i m a l in terpha langea l (PIP) joint and d i s ta l in terphalangeal (DIP) joint

respectively. They each have one degree of rotational freedom. The PIP joint has a

range of 100 degrees while the DIP joint has a range of 60 degrees.

CHAPTER 2. HAND I<IiVEMATICS

Figure 2.2: Anatomy of the human hand

C H A P T E R 2. H A N D KINEMATICS

The thumb is much more dexterous and therefore much more con~plex than the

other four fingers. The thumb's proximal joint is known as the carpometacarpa l

(CMC) joint. It has two degrees of freedom; an adduction-abduction range of about

120 degrees and flexion and extension range of about 45 degrees. The next joint

is the metacarpopha langea l (MCP) joint which also has two degrees of freedom; an

adduction-abduction range of 30 degrees and a flexion-extension range of 50 degrees.

The last joint is the i n t e rpha langea l (IP) joint which has only one degree of freedom

and has a range of approximately 85 degrees.

Biomechanical Models of the Hand

From a biomechanical standpoint, the human hand can be considered as a linkage

system of intercalated bony segments. The joints between each phalanx are spanned

by ligaments, tendons and muscles. With the contraction of muscles, these joints

can be moved in a characteristic manner constrained by the interposing soft tissues

and the bony articulation [2]. In the hand, most of the tendons span the joint and

continue their course over one or more joints, thus forming a bi-articular or poly-

articular system.

The functional anatomy of the spatial relationships between these tendons and

muscles and their associated joints have been extensively studied by Landsmeer 121,

231. Landsmeer also proposed a series of models to represent the various manners in

which tendons bridge the associated joints. However, these studies show either a lack

of quantitative description or that the information is restricted in only two dimensions.

An et al. [2] established a workable model in a three dimensional manner based on

the direct and careful measurements of 10 normal specimens. Such a model can

easily be utilized in the study of hand motion or force analysis of hand under various

functional activities. Various other studies on the tendon excursion and moment arm

of the finger can be found in [22, 24, 31. Since information about forces acting on

the finger, the tendon excursion, and the moment arm of the finger cannot easily be

obtained using non-intrusive techniques, we have to construct a kinematic model of

the hand using only the information obtainable by our equipments.

CHAPTER 2. HAND I<IArEMATICS

2.2.2 Internal Skeletal Model

In this section we develop an internal skeletal model of the hand based on anatomical

information. The hand can be considered as an articulated structure composed of rigid

segments connected by joints. Even though the palm is not completely planar, for the

sake of simplicity, it can be approximated using a plane whose normal points out from

the back of the hand. Since the joints of ihe fingers are clearly not simple pin joints,

there must be a small but significant distance separating two consecutive links at each

joint. We will call this distance the length of the joint. It is further hypothesized that

the lengths of the joints change as the joints rotate. This hypothesis will be verified

in Chapter 4. Therefore, we use functions F!(@, r!) to represent the length of the ith

joint of the j t h finger. The fingers are numbered from left to right on a right hand.

The 6j is the joint angle vector of the j th finger and ri is the joint radius of the ith

joint on the j t h finger. Clearly, if the functions @ are uniformly 0, this model would

reduce to the simple pin joint model.

MCP

1p t
DIP

PIP

MCP

y Palm
CMC

Figure 2.3: Internal Skeletal Model

Figure 2.3 shows a representation of a skeletal model of the hand. The black dots

on the figure represent the joints. It is evident from the figure that each finger of the

CHAPTER 2. HAND IiINEMATICS

hand is represented a series of joint and rigid links. The functions P! will be derived

in Chapter 4.

2.2.3 Polygonal Hand Model

A polygonal model of the hand is used to represent the surface of the hand. This model

consists of a list of vertices and a list of polygons, the latter forming the surface of

the hand. Each polygon is defined by four vertices in the vertex list.

Figure 2.4: Attachment of vertices onto the bone segments

Figure 2.5: Finger bending

The polygonal data of the hand is obtained by digitizing an actual human hand.

The surface polygons corresponding to each finger segment are initially unknown.

This information is required in order to bend or rotate a specified finger. To obtain

the needed information, a program was developed by Sidi Yu to allow the user to

interactively select vertices and attach them to finger segments. All vertices of the

polygonal hand model were manually attached to finger segments. Offsets from the

distal end of each finger segment to the attached vertices are stored. Figure 2.4 shows

CHAPTER 2. HAND KINEMATICS

the attachment of vertices onto the bones to create the polygonal hand model.

Finger bending is modeled by bending the finger segments and recalculating the

positions of the vertices corresponding to each finger segment. The position of the

distal end of the rotated finger segment is first calculated, then the stored vertex

offsets were added back to the new distal position of the segment to obtain the new

positions of the vertices. This process is shown in Figure 2.5. From the figure, we can

see that the positions of the vertices four to eight have to be updated when segment

B was rotates.

Chapter 3

Inverse Kinematics

Inverse Kinematics has been a practical problem in the field of robotics and computer

graphics. In the past decades, researchers in both robotics and computer science

have developed various algorithms to solve the inverse kinematics problem, but none

seemed to work well in all situations. There are obvious tradeoffs between speed and

accuracy among different classes of algorithms. In this chapter, the inverse kinematic

problem is formally stated and various common approaches are presented along with

their advantages and drawbacks.

3.1 Problem Definition

In Chapter 2, the basic notion of a kinematic chain of rigid segments has been in-

troduced. For simplicity, we will refer to a kinematic chain as a manipulator. Let x

be the position vector of the end-effector of the manipulator and 8 be the joint angle

vector of the manipulator. Then the forward kinematic problem can be formulated as

x = f(6) (3.1)

By inverting the function f , the inverse kinematic problem can be formulated as

CHAPTER 3. INVERSE IiINEMATICS

The inverse kinematic problem is difficult because the function f is usually nonlin-

ear. If the link parameters and the characteristics of the manipulator are well known

in advance, we might be able to find a closed form solution. However, for arbitrary

manipulators, we have to rely on numerical methods for solving systems of nonlinear

equations.

3.1.1 Existence of Solution

The question of whether solutions exist or not is directly related to the manipulator's

workspace. Intuitively, a workspace is a volume of space which the end-effector of the

manipulator can reach. For at least one solution to exist, the specified goal point

must lie within the workspace. There are two definitions of workspaces: dextrous

workspace and reachable workspace. Dextrous workspace is the volume of space which

the end-effector can reach with all orientations while the reachable workspace is the

volume of space which the end-effector can reach in at least one orientation. The

dextrous workspace is clearly a subset of the reachable workspace.

Consider the workspace of a two-link manipulator. If the length l1 and l2 of the

two links are equal then the reachable workspace consists of a disc of radius 211. The

dextrous workspace consists of only a single point, the origin. This example considers

a workspace in which all joints of the two-link manipulator can rotate 360 degrees.

This is rarely the case in actual configurations. When joint limits are a subset of the

full 360 degrees, the workspace is obviously correspondingly reduced.

3.1.2 Redundancy

A manipulator is kinematically redundant if it possesses more degrees of freedom than

are required to specify a goal for the end-effector. A planar arm with three revolute

joints has a large reachable workspace and any position in the interior of its workspace

can be reached with more than one orientation. Therefore, for any goal positions in

the interior of the workspace, the kinematic equations will yield multiple solutions.

The fact that a manipulator has multiple solutions can cause problems because

the system has to be able to choose one. The criteria with which to make a decision

CHAPTER 3. INVERSE KIiVEMATICS

Figure 3.1: Possible solutions to reach point B

vary among different applications. As an example, if the end-effector is at point A as

shown in Figure 3.1, and we wish to move to point B, a good choice for the solution

would be one that minimizes the amount of change of joint angles. Therefore, if there

is a choice and the previous position of the end-effector is known, we can choose

the closest solution in joint space. To generalize this idea, we can assign weights to

different links to generalize the notion of closeness.

3.2 Jacobian Based Methods

From (3.1), it is clear that in order to obtain f -', we need to solve a system of nonlinear

equations. To avoid this time consuming process of solving a nonlinear system, we

can reformulate the problem so that we have a linear relationship. Differentiating

(3.1) with respect to time t , we have

where J(8) is the Jacobian matrix. The Jacobian matrix and its inverse are discussed

in Appendix B. The Jacobian is a multidimensional form of the derivative. At any

particular instant, 8 has a certain value and J(0) is clearly a linear transformation.

At a new instant in time, 8 takes on a new value and so does the linear transformation

J (8) . Therefore, the Jacobian is a time-varying linear transformation.

CHAPTER 3. INVERSE Ir'INEMATICS

3.2.1 Inverse and Pseudoinverse of Jacobian

Intuitively, J maps the incremental changes in the joint variables to incremental

changes in the end-effector position and orientation. If the matrix J is square and

nonsingular, we can compute 0 by

When this is not the case, J-' does not exist and there is no solution for e . For an

arbitrary manipulator, the Jacobian matrix J is not necessarily square and invertible.

Therefore, a generalized form of the inverse J-' is required that yields a "useful"

answer for e in the same form as (3.4):

A commonly used generalized inverse J+ is the Moore-Penrose pseudoinverse[6]. It is

shown in [5] and [6] that the Moore-Penrose pseudoinverse yields the minimum norm

solution for the under determined case and the least squares solution for the over

determined case.

3.2.2 Singularities

Most manipulators have values of 0 for which the Jacobian becomes singular. Such

locations are called singularities. When a manipulator is in a singular configuration,

it has lost one or more degrees of freedom. This means that there is some direction

along which it is impossible to move the end-effector no matter what joint rate is

selected. The two common classes of singularities are

Workspace boundary singularities are those which occur when the manip-

ulator is fully stretched out or folded back on itself such that the end-effector is

near or at the boundary of the workspace.

CHAPTER 3. INVERSE I<INEMATICS

Workspace interior singularities are those which occur away from the workspace

boundary and generally are caused by two or more joint axes lining up.

An in depth study of the classification of singularities can be found in [17]. When

the manipulator is in a singular configuration, the inverse of the Jacobian matrix J is

undefined. The pseudoinverse solution as defined in (3.5) yields unsatisfactory results

since there is an undesirable discontinuity a t the singularity. This often results in

oscillations and unacceptably high joint velocities.

The Singular Value Decomposition

The Singular Value Decomposition (SVD) is a powerful method for the analysis of

the kinematic properties of manipulators. The SVD theorem states that any matrix

can be written as the product of three (non-unique) matrices. Decomposing J, we

have

J = I J D V ~ (3.6)

It is also common to write the SVD of the Jacobian matrix J as vector products. For

an arbitrary Jacobian, it would be

i=l

where m and n are number of rows and columns of

(3.7)

J, and o; are diagonal elements

of D, also known as singular values. The pseudoinverse solution is easily obtained

from the singular value decomposition by taking the reciprocal of all nonzero singular

values. In particular, the pseudoinverse of J is given by

where r is the rank of J. The SVD has been used to detect and correct the numerical

instabilities that arise when the manipulator is near its singularities[45, 30, 29, 131.

CHAPTER 3. INVERSE IGNEMATICS

If one or more of the singular values a; are zero, then the original matrix is itself

singular. The ratio of the largest singular value t o the smallest one is called the

condition number of the matrix. If the condition number is too large, then the matrix

is ill-conditioned. This ill-conditioning is the cause of large joint velocities generated

by the pseudoinverse near a singular configuration [29].

3.2.3 Homogeneous Solution

For a redundant manipulator, a goal can usually be satisfied in a number of ways.

It is often desirable to select a solution that is optimal according to some additional

criteria. Liegeois [27] has shown that the components of the gradient of such a criterion

can be blended with the pseudoinverse solution.

e = J f i + (I , - J f J) V H (B) (3.9)

where H (0) is a potential function to be minimized, I , is the nth order identity matrix.

The first term in (3.9) essentially selects the joint velocity vector which produces the

desired change in the end-effector position, while the component (I , - J + J) in the

second term selects components of the gradient vector V H (8) that lie in the set of

homogeneous solutions to equation (3.4). This has the effect of varying joint velocities

in such a way that H (8) is minimized without changing the end-effector position.

Using this strategy, secondary goals can be created to avoid collisions with obstacles

as well as maintain manipulator dexterity by avoiding kinematic singularities.

3.2.4 The Jacobian Transpose Method

Although Jacobian and pseudoinverse control methods offer generality and provide

numerous ways to exploit redundancy, they suffer from several problems. First, these

methods tend to be numerically unstable near singular configurations. Also, a matrix

inversion is required at each iteration in order to obtain the joint velocity. This tends

to slow down this class of algorithms and may cause problems if the Jacobian matrix

CHL4 P T E R 3. IN V E R S E IiIiVEMATICS

is ill-conditioned. To address these problems, Welman [45] has proposed a Jacobian

transpose method which is based on a simplified dynamic model.

This method applies the principle of virtual work 1331 to obtain a linear relationship

between the external force F applied to the tip of the manipulator and the generalized

force r.

The difference between the desired position of the end-effector and the current position

of the end-effector is then used as the force F pulling on the end-effector toward

the desired trajectory. Since r is equivalent to the vector of joint acceleration e, a

simplifying assumption is made to regard r as the joint displacement dl instead of e.
Therefore, the simple relationship

is obtained. Once dl is obtained, a single integration step yields a new vector B which

moves the end-effector towards the desired trajectory. The procedure repeats until

the end-effector reaches the desired position, or some other stopping criterion is met.

The Jacobian transpose method has many very attractive properties. First, there is

no matrix inversion required. This not only speeds up the computation, it also avoids

dealing with singular matrices. Also, since the computation is very simple at each

step, the algorithm is able to provide real-time feedback to the user. Since the method

is based on a simplified dynamic model, the solutions obtained in successive iterations

are predictable. The end-effector of the manipulator is continuously pulled toward the

desired trajectory by a force generated with the end-effector position error. Therefore,

successive iterations would yield configurations that are close to each other and at the

same time toward the goal. This characteristic makes the algorithm especially suitable

for interactive applications in which intermediate solutions are often needed to refresh

the screen.

CHAPTER 3. INVERSE I i INEMATICS

A major drawback of this algorithm is that it does not address joint limits directly.

Instead, joint limits are enforced by clamping to the upper and lower bounds. This

might cause the algorithm to be trapped at an intermediate configuration and stopped

only when the maximum number of iterations is reached. In addition, the algorithm

is not completely immune to singular configurations since the Jacobian matrix itself

is inherently ill-conditioned. Oscillations and high joint velocities can result near a

singular configuration.

3.3 Optimization Based Methods

A different approach to solving the inverse kinematic problem is to reformulate it

into an optimization problem and then apply the standard algorithms of nonlinear

optimization to solve it. Since a positional goal of the end-effector can be viewed as

a simple positional constraint, we can set up an objective function and minimize it

subject to a set of constraints. This approach allows us to find a solution that satisfies

multiple simultaneous constraints [35, 471. The problem is generally formulated as

minimize P (8)

subject t o I; 5 8; < u; i = 1. . . n

where P (8) is the objective function to minimize, I; and u; are the lower and upper

joint limits respectively.

The flexibility offered by the optimization formulation of the inverse kinematic

problem enables us to specify various kinds of goals. Objective functions can be set

up for each of them. A detailed discussion of different categories of goals and their

corresponding objective functions can be found in [47].

Solving the constraint optimization problem is not a trivial task. It is still a rel-

atively new research area that produces collections of numerical methods for each class

of problem. Rosen's projection method is very effective in treating linear constraints[37].

Goldfarb combined the DFP method (a variable metric method) [12] with Rosen's pro-

jection method [16]. After that, the variable metric method was significantly improved

CHAPTER 3. INVERSE IiINEMATICS

by the BFGS formula [38].

Zhao and Badler have applied nonlinear optimization techniques to their animation

system Jack. Their animation system specifies a configuration of an articulated figure

as spatial constraints. The constrained parts of the articulated figure are the end-

effectors and their counterpart in space are called goals. A goal can be as simple as a

position, an orientation, a weighted combination of position and orientation, a line, a

plane, a direction, and so on, or it could be as complicated as a region in the space.

The optimization algorithm used in Jack is able to adjust the joint angles subject

to joint limits so that the set of end-effectors concurrently attempts to achieve their

respective goals. After the end-effectors and the goals are specified by the users, the

system computes a final configuration. Since it is often impossible to satisfy all the

goals owing to the actual constraints, the system outputs the best possible solution

according to the users' assignment of importance to each goal.

Bawa [4] has proposed another iterative nonlinear constrained optimization algo-

rithm to solve the inverse kinematic problem. This algorithm combines the augmented

Lagrangian method [ls] and the projected Lagrangian method 1151 to achieve super-

linear convergence. An animation system was built by Bawa that allows real-time

manipulation of the end-effectors to demonstrate this technique. Similar to the Jack

animation system, Bawa7s system is also able to handle multiple simultaneous con-

straints. In addition, a trajectory can be associated with each end-effector over a

period of time to create a complete animation sequence. Furthermore, real-time per-

formance of this animation system is ensured by the use of efficient matrix inversion

techniques.

Although the optimization formulation of the inverse kinematic problem has many

advantages, it has some drawbacks as well. Because of the complexity of the problem

and the scale of the search space, there is no guarantee that the optimizer will find

a global minimum (or maximum). As a result, it may not return the best solution

to the problem. Also, because of the iterative nature of the solution methods, it is

hard to estimate how much time the optimizer will spend on a particular problem.

Furthermore, since the optimizer is not constrained to search in any fixed direction,

intermediate solutions may not be suitable for refreshing the screen even if the screen

CHAPTER 3. INVERSE IiINEMATICS 25

needs to be refreshed because the optimizer spends a long time to obtain a particular

solution.

Table Based Method

In the efforts toward representing hand postures using a limited number of sensors,

Amaya et al. [I] have proposed an algorithm that utilizes a lookup table to solve

the inverse kinematic problem. Since this method is the predecessor of the algorithm

proposed in this thesis, it will be discussed in detail. The notation used in Amaya's

paper is discussed in Appendix A.

There are several motivations for the development of Amaya's algorithm. First,

it is well known that optical motion tracking systems cannot effectively deal with

the possibility of the occlusion of markers [32]. If we were to use the direct approach

described in Section 1.2 which places an IRED on each joint and tip of the fingers, then

the space in which the hand can freely move around without having any IREDs going

out of the camera's view would be very small. As a result, only limited movements of

the hand can be measured. This motivates the use of inverse kinematics to estimate

the hand posture, since only one IRED is need at the tip of each finger to obtain the

joint angles of that finger. This effectively enlarges the space in which the hand can

freely move around without causing occlusion of IREDs.

A second motivation for the development of Amaya's algorithm was the need for

speed in real-time computation. The Optotrak system continuously sends positional

data of IREDs to the data collection system. If a significant amount of time is required

for the computation of finger joint angles, then the data collection system would not

be able to keep up with Optotrak system. This means that the data collection system

would have to discard some incoming data and try to keep up with the Optotrak

system by computing and displaying the most recent hand posture. Because the

inverse kinematic equations are very complex and difficult to solve given a small time

frame, Amaya et al. have suggested using a lookup table to speed it up.

Given particular constraints of finger motion, there are few sets of joint angles

that correspond to fingertip positions with respect to the palm. Therefore, if we

C H A P T E R 3. INVERSE KINEMATICS

have a table of fingertip position versus orientation, we can lookup the orientation of

the fingertip given its position. Using this information from the table, only simple

calculations are required to obtain the joint angles. Thus, the basic approach behind

Amaya's algorithm is to build a lookup table of finger tip orientations using additional

IRED information before the start of the actual data collection. Then, this lookup

table is searched during data collection to obtain the current finger tip orientation

which we can use to compute the joint angles with minimum effort. This approach

suggests that the algorithm should proceed in two stages: a preprocessing stage before

data collection to build the lookup table and a run-time stage which uses the lookup

table to compute the joint angles.

The lookup table built by the preprocessing stage uses the location of the finger

tip as an index for the corresponding orientation. Amaya et al. made the assumption

that the position of the finger tip with respect to the root of the finger uniquely

defines the orientation of the fingertip. The validity of this assumption is discussed in

Section 3.4.3. The orientation is then used to determine the joint angles of the finger.

The orientation of the finger tip is obtained in the preprocessing stage by placing

additional IREDs on the finger tip as shown in Figure 3.2. However, during run-time,

only one IRED is needed at the tip to obtain its coordinates with respect to the root

of the finger. The orientation of the finger tip at run time is obtained by using this

finger tip coordinate to index into the lookup table.

3.4.1 Preprocessing Stage

The preprocessing stage consists of several steps:

1. Registration: The positional measurement of the IREDs mounted on the hand

with respect to the Optotrak workspace.

2. Table Building: The recording of position and orientation of the fingertip with

respect to the hand as the finger joints are rotated.

3. Data Filtering: The filtering and regularization of the data recorded in the

Table Building step.

C H A P T E R 3. INVERSE KINEMATICS

Figure 3.2: IRED placement in the preprocessing stage of Amaya's algorithm.

Regist rat ion

In the registration step, the lengths of the segments of the index finger and the thumb

are measured using a caliper. The hand is then placed palm down on top of its scanned

image on a fixed, rigid and flat surface as shown in Figure 3.2. Mounted on the back

of the hand are three IREDs and on the tip of the finger are mounted another three

IREDs. The positions of these IREDs in the Optotrak space (or global space) are d;,;

and di:i. Recall that d,h,; (di:;) represents the position of the ith IRED on the hand

(fingertip) in the global coordinate system. The following measurements are taken in

the global coordinate system:

0 The position of the MCP joint (1 X-Y-Z point). It is done by scanning the

subject's hand and placing an IRED on the MCP joint of the scanned image.

0 The position of the fingertip (1 X-Y-Z ~ o i n t) . It is also done by placing an

IRED on the finger tip of the scanned hand.

0 The position of the IREDs mounted on the back of the subject's hand (3 X-Y-Z

points). The subject's hand is placed on top of the scanned hand.

CHAPTER 3. INVERSE KINEMATICS 28

The position of the IREDs mounted on the tip of the subject's finger (3 X-Y-Z

points). The subject's hand is placed on top of the scanned hand.

Using these initial measurements on the subject's right hand, the following trans-

formations and vectors are defined:

a 0: - The position of the MCP joint in global space.

0 [B;] - The orthonormal orientation of the MCP joint in global space.

0it - The position of the fingertip in global space.

[Bit] - The orthonormal orientation of the fingertip in global space.

x h - The x axis of the hand coordinate system lying along the vector from the

MCP joint to the fingertip in the plane z = 0.

y h - The y axis of the hand coordinate system pointing to the right.

0 z h - The z axis of the hand coordinate system which is pointing out of the back

of the hand.

0 xjt - The x axis of the fingertip coordinate system lying along the vector from

the MCP joint to the fingertip in the plane s = 0.

yj t - The y axis of the fingertip coordinate system pointing to the right.

0 z j t - The z axis of the fingertip coordinate system which is pointing out of the

back of the hand.

The hand and fingertip coordinate systems are shown in Figure 3.3. Since zh, yh and

zh, are unit vectors and they represent a right handed system, the transformation

matrix [B,"] is orthonormal. In particular, [B,"] satisfies

CHAPTER 3. INVERSE KINEMATICS

i '' /Finger Tip Coordinate System

Coordinate System

&-yg
2% Global Coordinate System

Figure 3.3: The hand and fingertip coordinate systems

where I is the identity matrix.

The positions of the IREDs, d& and d::,i, with respect to the hand and fingertip

coordinate frame are computed as

The vectors d;, and d;:, will be used to compute the rotation and translation

of the hand and fingertip coordinate system within the global system. Vectors with

identical superscript and subscript are assumed to be constant through all phases of

the process following their measurement.

Table Building

It is assumed by Amaya et al. that the position of the fingertip in relation to the MCP

joint in the hand coordinate system uniquely defines the orientation of the fingertip.

Thus, a subject is asked to move his finger as extensively as possible to try to fill out

CHAPTER 3. INVERSE KINEMATICS

the complete workspace of the finger. In the table building process, the hand and

finger tip coordinate systems are constructed using the three IREDs on the fingertip

and the three IREDs on the palm. This is done by writing the unit vectors pointing

along each of the three axes into the columns of the transformation matrix. The

origin of these fingertip and hand coordinate systems are translated to the finger tip

position and the MCP joint respectively. Mathematically, this can be expressed as:

The goal is to create a mapping from fingertip position to fingertip orientation

in hand space. Thus, we measure the position and orientation of the fingertip with

respect to the hand.

Recording sufficiently many of these pairs, < O;~,[B:~] >, while the finger joints

rotate creates the table which defines the mapping we need (i.e. given a position

0Lt7 we can look up a transformation to orient the fingertip in the hand coordinate

sys tem) :

Map : 0Lt + [Bit] (3.21)

However, the recorded pairs are scattered and usually sufficiently sparse that for

any particular value of 0Lt there is unlikely to be a particular tuple < OLt, [Bit] >
in Map. Since we are interested in the specific [B;'] for a given OLt, we will use the

CHAPTER 3. INVERSE IXVEMATICS 3 1

notation [Bhft(p)] to represent an idealized l C h p where p is a particular value of 0;

and [Bhft(p)] is the corresponding value of [Bhft] in the map.

Data Filtering

For values of Oit where a corresponding value of [13it] is not available from Map,

Amaya et al. suggest using a 3D Gaussian filter over all of the entries in Map.

where [Bit()] is the fingertip orientation lookup table, dif , is the position of the
- f t fingertip, dh represent the neighbors of d& in [B;~()], and w(a) is a Gaussian with

standard deviation a (in millimeters). It is suggested by Amaya et al. that a value

of 8mm is sufficient for a. The calculation required to compute the 3D Gaussian

convolution is very expensive under the real time experimental system. Instead, this

computation is performed at regularly spaced grid points as a batch process. The grid

used has 28 x 24 x 20 points with a point separation of 5mm. This grid of values,

indexed by Oit, contains filtered values of [Bit] and is called Map'. At run time,

simple linear interpolation is used to obtain the intermediate values. The lookup

table is shown in Figure 3.4. The black dots on the figure represent the table entries.

3.4.2 Run Time Stage

After Map' is created, for any value of 0;' we can quickly perform a simple linear

interpolation of the nearest eight values in Map' for the corresponding value of [Bit].

During run time, there are still three IREDs placed on the back of the hand in

order to determine the orientation of the hand but only one IRED is placed on the tip

CHAPTER 3. INVERSE KINEMATICS

Figure 3.4: The lookup table in Amaya7s Algorithm

Figure 3.5: IRED placement at run time

CHAPTER 3. INVERSE I\IINEMATICS 33

of each finger as shown in Figure 3.5. These IREDs are not required to be placed in

exactly the same position as in the preprocessing stage. The positions of the IREDs

on the back of the hand with respect to the hand and fingertip coordinate system are

determined using equations (3.13) and (3.14). Since there is only one IRED at the

fingertip, it is necessary to transform the indices of the fingertip orientation map from

the position of the fingertip to the position of the IRED. This is accomplished by

where d::,, is the vector from the fingertip position OLt to the IRED mounted on the

finger in the fingertip space. This is illustrated in Figure 3.6. At experiment time, we

know:

0 d{> - The measured position of the finger IRED in the hand coordinate system.

This position changes as the finger joints are rotated.

0 d::,, - The measured position of the fingertip IRED in the fingertip coordinate

system. This position is constant and is established at the registration step.

0 [~hf~(0i~)] - The orientation of the fingertip in the hand coordinate system given

the position of the fingertip. This orientation is constant and is established in

the calibration and filtering step.

Thus the unknown is O i t . In order to use Mapf, we need to build a second index

into it so that we can use the measured value of d&. We can build this index using

Equation (3.25). For each entry in Mapf, given the value of d;ivl, we can compute

the value of dL:, that will be measured at experiment time corresponding to the

appropriate tuple < 0(', [B/'] >. Linear interpolation is used to compute the value

of 0(' and [B/'] for specific values of d&.

After the orientation of the fingertip is obtained, we can use it to find the position

of the DIP joint. This is done by subtracting the length of the segment from the DIP

joint to the fingertip from the current position of the fingertip in the opposite direction

of the current orientation of the fingertip. Using the location of the DIP joint, we

C H A P T E R 3. INVERSE KINEMATICS

Figure 3.6: The known and unknown vectors when estimating the orientation and
position of the fingertip

can solve for the position of the PIP joint by considering the two proximal segments

of the fingers as a two link manipulator with the end-effector fixed at the DIP joint.

Craig [9] discusses various analytical methods for solving two link manipulators.

3.4.3 Discussion

This table lookup based inverse kinematic method has several merits. Since the finger-

tip position to orientation map is built prior to the start of the real time experiment,

the computation required to obtain the joint angles is kept to a minimum. Its superior

computational speed makes it quite suitable for real time applications. Also, calibra-

tion is done for each individual subject and the fingers' workspace is also traced out

by the subject. Doing so will not only avoid interior and boundary singularities, but

also ensure that the computed hand posture closely resembles that of the actual hand

posture of the subject. Furthermore, all the constraints and joint limits are directly

built into the lookup table since it is constructed using only hand postures attain-

able by the subject. Therefore, no constraint violation needs to be checked before

displaying the computed hand posture.

All methods have drawbacks in one way or another and the table based method

is no exception. This particular construction of the lookup table relies heavily on

the assumption that the position of the fingertip in relation to the MCP joint in the

hand coordinate system uniquely defines the orientation of the fingertip. The result

produced by this algorithm may not be valid if this assumption fails. In addition, the

C H A P T E R 3. INVERSE IiINEMATICS

algorithm first calibrates for the length of each finger segment and makes the assump-

tion that the finger segments are rigid so their lengths will be constant throughout.

Although the uniqueness assumption is valid if one assumes the finger joints are

simple pin joints, the measured length of a finger segment may be perturbed by

skin movement during an actual experiment. Further, since the joints of the finger

are clearly not simple pin joints, the previous assumption is invalid even without

the effect of skin movements. The result is that inconsistent measurement of finger

segment lengths will occur during an experiment. The accuracy and even existence of

the computed joint angles rely heavily on the accuracy of the finger segment length

measurements. This is because the internal skeletal model is assumed to be a simple

pin joint model. If the measured segment lengths are longer than the actual lengths,

the set of computed joint angles is surely going to be inaccurate. Even worse, if

the measured segment lengths are shorter than the actual lengths, the goal is simply

beyond the reach of the finger and no solution can be computed.

This drawback of Amaya's algorithm often causes the data collection system to

discard data sent by the Optotrak system simply because the finger segment length

measurements do not match the initial calibration measurements. Therefore, we need

to develop an algorithm which has the desirable properties of Amaya's algorithm and

at the same time addresses its drawback. The algorithm we developed to do just this

is described in Chapter 4.

3.5 Summary

In this chapter, we have reviewed some of the most commonly used techniques for solv-

ing the inverse kinematic problem. Each method consists of distinct advantages and

disadvantages. Problems inherent in one method may not exist in another. Tradeoffs

between generality and speed are apparent. For instance, optimization based methods

tend to be more general in the sense that they can handle problems with an arbitrary

number of links having a set of possible constraints for each link. However, algorithms

for nonlinear optimization tend to be slow due to its complexity. By comparison, the

Jacobian based methods are faster, but they are not very good at handling constraints.

CHAPTER 3. IN VERSE ICINEMATICS

The fastest method presented in this chapter is the table based method. Because of

the number of assumption it made about the configuration of the manipulator and

its workspace, this method can only be applied to a small well known set of simple

manipulators. Since the human finger can be considered to be a simple three link

manipulator with a small number of constraints, the table based method seems to be

appropriate.

Chapter 4

A Table Based Real-time

Algorithm

The table based method presented in Chapter 3 provides a quick way of obtaining

inverse kinematic solutions for simple manipulators. Because of the demand for speed

in real time applications and because the human finger can often be considered as a

simple three link manipulator, the table based method is ideal for our application.

In this chapter, a table based method which addresses the problems discussed in

Chapter 3 and which is specifically designed to model the human finger is presented.

This method is relatively simple to implement and provides good performance for the

intended application.

4.1 Motivation

The method presented by Amaya et al. [I] as discussed in Chapter 3 makes the

assumption that the human finger is a simple three link manipulator with one degree

of rotational freedom at each joint. Because the joint of the finger is much more

complex than a simple pin joint and because the IREDs cannot be placed at the

center of each joint, this assumption becomes invalid.

For any simple three link pin joint manipulator, it is necessary that the dis-

tance from the end-effector to the base is a maximum when the manipulator is fully

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

stretched, or 8 = 0. We can express the distance between the finger tip and the root

of the finger as:

where ptip is the location of the fingertip, p,,, is the location of the MCP joint, and

d z , is the distance between them.

An experiment was conducted to verify whether the maximum of equation (4.1)

occurs when a real finger is fully stretched, i.e. when 8 = 0 . The length of each

segment of the index finger is measured: the length of the segment from the MCP

joint to the PIP joint was 45.8mm, the length of the segment from the PIP joint to the

DIP joint was 20.lmm, and the length of the segment from the DIP joint to the tip was

20.0mm. These measurements were first taken using the Optotrak system and then

confirmed manually using a ruler. An IRED was placed on both the fingertip and the

MCP joint of the index finger. The distance between the fingertip and the NICP joint

was measured as the finger rotates. The result is shown in Figure 4.1. The dotted

line represents the sum of three segment lengths measured when the index finger is

fully extended. The solid line is the distance between the fingertip and the MCP joint

measured by the Optotrak as the index finger rotates. By examining the recorded

joint angles of the index finger, it is clear that the maximum of equation (4.1) did not

occur when the index finger was fully extended. Furthermore, a significant number

of measured distances between the fingertip and the MCP joint are greater than the

sum of the segment lengths. However, the difference between the measured maximum

distance and the length of the finger is surprisingly large (about 10mm). Because

of this unexpected result, the experiment was repeated five times. The results from

these experiments were similar. This shows that the finger joints are clearly not pin

joints. Thus, there must be a small distance separating any two consecutive segments.

Recall that we have called this separating distance the length of the corresponding

joint in Chapter 2. Moreover, we also know that the length of the joints vary as a

function of the corresponding joint angles, for otherwise the maximum of equation

(4.1) would have occurred at 8 = 0. Therefore, our hypothesis in Chapter 2 has been

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

verified.

I I I

Distance -
Length of Finger (85.96) - - - - -

200
Frame

Figure 4.1: Distance between the finger tip and the MCP joint.

The fact that the maximum of equation (4.1) does not occur at 0 = 0 has a very

serious effect on Amaya's algorithm. Because Amaya's algorithm assumes that the

joints are simple pin joints, it is able to subtract the length of the last segment of the

length in the opposite orientation of the fingertip to obtain the position of the DIP

joint. The last step in Amaya's algorithm is to regard the position of the calculated

DIP joint as the end-effector position of the two link simple pin joint manipulator

formed by the first two segments of the finger and solve for their joint angles. Since

there is distance separating any two consecutive segments of the finger, the calculated

position of the DIP joint is clearly outside the workspace of this two link manipulator.

Therefore, the algorithm will not be able to find any solution. It is necessary to

eliminate this undesirable property in Amaya's algorithm for it to function effectively

in a real time setting.

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

4.2 IRED Placements

Before the hand posture can be estimated, IREDs will have to be strategically placed

on the hand to allow the Optotrak system to track their positions. This section

discusses the IRED placements required for calibration as well as for real-time exper-

iments. For the remainder of this chapter, the i th IRED position in the Optotrak

coordinate system is denoted as d; .

4.2.1 IRED positions

In order to track the position and orientation of the hand, IREDs have to be placed

on the dorsal surface of the hand. There are two different IRED placements: one

for calibration and the other for run time. The calibration step is necessary in order

to obtain the auxiliary parameters of the finger; these parameters are the length of

each segment of the finger, the radius r; of the i th joint, and an additional parameter

p which will be discussed in the next section. After these parameters are collected,

unneeded IREDs are removed so that only a minimal number of IREDs are left.

This minimal configuration of remaining IREDs ensures that the occlusion problem

of the Optotrak system is minimized and the movement of the fingers and the palm is

not severely restricted by IRED visibility. Since the hand is not flat, any movement

of the palm or bending of the fingers may block one or more IREDs from the view

of the camera. Figure 4.2 shows some common situations in which one IRED can go

out of the view of the Optotrak camera.

Calibration

During calibration, the thickness of the finger at each joint is measured. the joint

radius r; of the i th joint is simply one half of the thickness measured at the i th joint.

The thickness is easily measured with a caliper.

The length of each of the finger segments is measured using the IRED placements

shown in Figure 4.3. The hand should be placed palm down on a flat table and the

fingers be fully extended.

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

Optotrak
Camera

. .

. .

. .
. Area visible to the
.

. _. Optotrak camera
. :..- ,_.. . .

. .
:A/ . ,..:;, . .

Figure 4.2: Various cases that an IRED could become invisible to the Optotrak camera

The length of each individual segment can be calculated by computing the distance

between IREDs placed at the ends of each segment. IREDs 3 , 4 , and 5 define the

plane of the palm. The final calibration step measures the ratio between the angles

of the DIP and the PIP joints of the index finger. We will call this parameter p.

Rijpkema and Girard [36] suggested that there is a linear relationship between O,;,

and Odip:

We can use this relationship to simplify the table building process as discussed in

Section 4.3 .2 . The parameter p is computed as the slope of the least squared line that

passes through the data points (O,;,,, O d i p ,) in the O p i p O d i p plane.

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHbl

Figure 4.3: IRED placement for measuring segment lengths.

where n is the number of samples taken. As we will see in the description of the actual

algorithm, this parameter is used to build the lookup table for the index finger.

Run Time

At run time, all but those needed would be removed from the hand. IREDs 7 t o 9

will be taken off so that we are only measuring the position of the tips of the index

finger and thumb, the position of the MCP joint of the thumb and the orientation of

the hand. The remaining IREDs are shown in Figure 4.4.

4.3 Hand Posture Estimation

With the position of IREDs 1 to 6 given by the Optotrak system, we can now estimate

the hand posture. In this section, a simple hand model will be given first, following

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

Figure 4.4: IRED placement for real-time experiment

which the algorithm that estimates the hand posture from a limited number of IREDs

will be presented.

4.3.1 The Proposed Hand Model

The hand model presented in Chapter 2 is generic in the sense that the inner workings

of the finger joints are represented by unknown "black box" functions F!(B', p) . Since

accurate biomechanical simulation is not the intent of our application, only a simple

model of the joint is used. This section describes this simple model and discusses

some of its assumptions.

Applying the theory of opposition space [19,31], we can represent the grasping be-

havior of the hand using only two fingers: the index finger and the thumb. Therefore,

our simple hand model consists only of those two fingers and the palm. It is assumed

that the index finger has four degrees of freedom: the MCP joint has two degrees of

freedom while the DIP and PIP joints each have one degree of freedom. The thumb

is assumed to have five degrees of freedom: the CMC and the MCP joints each have

two degrees of freedom while IP has one degree of freedom. For a normal hand, it

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

is easy to see that the fingertip, the PIP joint, the DIP joint, and the MCP joint of

the index finger lie approximately on the same plane. Furthermore, any movement

of the hand (without any external force applied to it) cannot change this property.

Therefore, we can reasonably assume that all segments of the index finger lie on a

single plane. Similarly, the tip of the thumb, the IP joint, and the MCP joint of the

thumb lie approximately on the same plane, so we can again assume that the thumb

segments between these joints lie on the same plane. As a result, a simple 2D model

can be used to represent the fingers. The palm of the hand is simply represented by

a plane and its orientation represents the orientation of the hand.

The hand coordinate system is such that the x axis is pointing in the direction of

the index finger when it is fully extended. The y axis is pointing out of the back of

the hand. The origin of the hand coordinate system is located at the MCP joint of

the index finger. The z axis points to the right to complete a right handed coordinate

system. Let x,, y,, and z, be unit vectors in the global coordinate system pointing

in the direction of the x, y and z axes of the hand coordinate system respectively. Let

P be the plane containing the palm and its normal is just the vector y, pointing out

from the back of the hand.

Figure 4.5: A circular joint

To develop a model for the finger, it is necessary to examine the finger joints

more closely. The joints that control the rotation of the segments of the finger have a

complicated structure of bones, muscles, and tendons. Since the IREDs are placed on

the dorsal surface of the finger, our measurement of joint rotation is also affected by

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM 4 5

skin movements. Therefore, to simplify our model, we are going to assume that the

joints are circular with radius r; for the i th joint. From Figure 4.5, it is clear that as

the finger joint i rotates, the distance between the end of segment i and the start of

segment i + 1 increases. This distance is represented as d;. It is obvious that d; is a

function of the joint angle 8; and the joint radius r;. Using techniques from geometry,

it can be shown that

0 i d; = 2ri sin -
2

where 8; is the i th joint angle ordered from the proximal to distal end of the finger.

Using di we can construct the functions F ' (0 , r;) for the circular joints by considering

each joint as a hidden link of the finger. Since the position of the MCP joint is

measured using an IRED, the first hidden link connecting the palm and the proximal

segment of the finger is not needed. Thus, the finger can be represented using five

links (including the two hidden links). This is shown in Figure 4.6.

Hidden Links

Figure 4.6: The five link representation of a finger

From standard forward kinematics, it is clear that

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM 46

To derive the formula for 4; , we can simply consider the finger as an ordinary five

link manipulator with the special property that the sum of the two joint angles at

each end of each hidden link sum to the value of the corresponding original joint angle

of the joint in which the hidden link represents. From Figure 4.7, it is obvious that

the angles labeled a and b are the same and a + b = 6;. Therefore, we can express 4;
as :

Figure 4.7: Calculation of 4;

Extending the forward kinematic equations presented in Chapter 2, the location

of the tip of the index finger can be expressed explicitly as a function of the modified

joint angles 4;.

a: = 11 cos 41 + dl cos 42 + l2 cos d3 + d2 cos $q + l3 cos $5

Y = 11 sin 41 + dl sin 42 + 12 sin 43 + d2 sin 44 + l3 sin $5 (4.8)

where (I, y) is the coordinate of the fingertip in the plane in which the index finger

lies in. A similar equation can be set up for the thumb. Since both the index finger

and the thumb have more DOF at the base, this simple model can only calculate a

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM 4 7

subset of their joint angles. The following is the convention used for naming the joint

angles:

0 Index Finger:

- O F d e x is the rotation about the y axis at the MCP joint.

- O F d e x is the rotation about the z axis at the MCP joint.

- O F d e x is the rotation about the z axis at the PIP joint.

- O F d e x is the rotation about the 5 axis at the DIP joint.

0 Thumb:

- OAhumb is the rotation about the y axis at the CMC joint.

- BEhumb is the rotation about the z axis at the CMC joint.

- Oihumb is the rotation about the y axis at the MCP joint.

- O ~ h u m b is the rotation about the z axis at the MCP joint.

- 1 9 ~ ~ " " ~ is the rotation about the z axis at the IP joint.

The superscripts index and thumb are used to distinguish the joint angles of the

index finger and the thumb. The values of O p d e x , O F d e x l B;humbl and O ~ h u m b can be

determined using the lookup table a t run time. The values of the remaining joint

angles are calculated separately.

Since Oindex represents the rotation of the MCP joint of the index finger about

the y axis, we can calculate it by taking the dot product of the vector s, with the

projection of the vector going from the position of the MCP joint to the index fingertip

onto the plane P representing the palm. Let t = -*. be the unit vector from the
II 1- 311

MCP joint to the fingertip. This calculation is illustrated in Figure 4.8.

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

Figure 4.8: Calculation of 82dex

Notice that the angle a between t and the plane P is the sum of the joint angle O F d e x

and an angle ,B, where P is the angle between t and the vector (d8 - d3) . The angle

a can be easily obtained by taking the dot product of x, and t . We can obtain ,O by

rotating the vector (d8 - dg) to align with the vector [l, 0,0], and moving it to the

origin. Then, using the value of O p d e x and O F d e x from the lookup table, we can obtain

the position vector t' = [t i , t&, 0] of the fingertip evaluating the forward equation once.

The cosine of the angle ,B is then the dot product of the vector [l, 0,0], and [t i , tk, 01.

Therefore, 8FdeX can be easily obtain by

olndex = a - p

The calculation of O F d e x is illustrated in Figure 4.9.

Since we are measuring the position of the MCP joint of the thumb, OAhumb and
d -d O:humb can be calculated very easily. Let m = -&--& be the unit vector that goes

I I 6 - 411

from the CMC joint of the thumb to the MCP joint. The joint angle Okhumb can be

calculated by projecting the vector m onto the plane P. The dot product of this

vector and 2, gives the cosine of this angle. This is illustrated in Figure 4.10. Then

Okhumb can be expressed as

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

Figure 4.9: Calculation of r3;"dex

MCP
. : . .

Figure 4.10: Calculation of 0LhUmb

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

MCP

Figure 4.1 1: Calculation of 1 9 ~ ~ " ~ ~

- 0Ahumb - cos
-1 xs ' P

IIPII
The cosine of the joint angle B ~ h u m b is the dot product of m and y,. Since y, is

pointing out of the back of the hand, we have to subtract 7r/2 from the resulting

angle. Therefore, we have

The calculation of BEhumb is illustrated in Figure 4.11.

The calculation of B ~ h u m b can be done using a similar method as the calculation

of Okhumb. However, in this case, we are projecting the vector T = d -d .w that goes
2 - 411

from the MCP joint of the thumb to the tip onto the plane Pi defined by the positions

of the MCP joint of the thumb, the CMC joint of the thumb and the MCP joint of

the index finger. Let I) be the unit normal of the plane P'. The angle ohhumb can be

calculated by

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

Figure 4.12: Calculation of 19%~""~

With the above expressions for the joint angles of the index finger and thumb, the

simple hand model is complete. The following section will demonstrate how this model

is used to estimate the hand posture using live data from the Optotrak system.

4.3.2 The Algorithm

Like Amaya's algorithm, this algorithm can also be divided into two stages: the

preprocessing stage and the run time stage. The preprocessing step builds the lookup

table while the run time step simply searches the lookup table for the solution using

an appropriate index.

The algorithm for building the lookup table is very simple. The algorithm Buildln-

dexTable is given in Appendix C.1. As shown in Figure 4.4, we are measuring the

location of the tip and the MCP joint of the index finger, so the entire kinematic chain

of the index finger consists of five links (including the two hidden links). Similarly,

there are three links between the tip and the MCP joint of the thumb. Before we can

build a table, we have to select a way to index it. Instead of using the coordinate

of the tip of the finger as the index as in Amaya's algorithm, we have chosen to use

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

Figure 4.13: The lookup table build using the algorithm described in the thesis

the distance lltll between the fingertip and the MCP joint as the index. Since this

distance is a floating point number, we convert it to an integer before we use it as the

index. The index has a range of Omm to 200mm. By default, the interval between

successive indices is lmm. If denser indices are required, it can be specified using the

parameter p as discussed in Appendix C.1. For any values of p less than 1, we have to

scale lltll up by corresponding factor l l p and use the integer part as the index. The

next step is to evaluate the forward kinematic equation for various values of the joint

angles and insert these joint angle values into the lookup table using the calculated

index for each entry. It is possible that more than one set of joint angles have the

same index. In that case, an array is used to store all of them and the corresponding

entry in the lookup table points to the array. The index finger and the thumb have

different parameters, so a different lookup table is built for each. The lookup table

build using this algorithm is shown in Figure 4.13. The numbers c; in this figure

represent the number of sets of joint angles a; having the same index Ilt,ll.

Since the value of O1 does not affect the value of the index, 0 can simply be

assigned as its value throughout. Since there are only three links between the tip and

the MCP joint of the thumb, we can easily transform the algorithm BuildIndexTable

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM 53

in Appendix C.1 into an algorithm BuildThumbTable by removing the inner FOR loop

and change the five link forward kinematic equations to the three link equations.

As an alternative to BuildIndexTable, we can use the parameter p to decrease the

size of the lookup table. Since we know the ratio between the joint angles O2 and

03, we can remove the inner FOR loop from the BuildIndexTable and set O3 to pOz.

Because only one FOR loop is required, the size of the lookup table only increases

linearly as the precision of the joint angles increases. This significantly increases the

table building process as well.

At run time, the lookup table is searched to obtain a subset of the joint angles

of the finger. The remaining joint angles are computed on the fly. The run-time

algorithm is given in Appendix C.2. The norm of the vector t is computed to obtain

the index. Because of the nature of our data, there might be more than one set of

joint angles that have the same index. An array is used to store all of them. Since this

array is relatively small in size, a linear search algorithm can be employed to find the

set of joint angles according to some criteria. In our application, it is assumed that the

relative angular change from one frame to the next is small. Therefore, the searching

criterion is to minimize the change from the set of joint angles in the previous frame.

It is possible that the table entry corresponding to the computed index is empty. In

this case, the algorithm would then try to find the closest table entry which contains

a t least one set of joint angles.

The algorithm GetIndexJointAngles finds the joint angles of the index finger. Sim-

ple modifications to GetIndexJointAngles can be made to change it into GetThumb-

JointAngles which finds the joint angles of the thumb. The necessary modifications

are:

Change the first line from lltll := /Idl - d311 to := /Id2 - dsll

Replace O F d e x and Opdex with Oihumb and Oihumb

Delete all references of O F d e x

Change the three link forward equations that calculates the value of t: and t',

to the two link equations.

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHhl

0 Replace the calculation of O;;"dex by the equations (4.1 I) , (4.12) and (4.13).

0 Change the last line to RETURN {Ohhumb, O~humb, Oihumb, Oihumb, O ~ h u m b) .

4.4 Implementation

A complete data collection system which integrates data collection, estimation and

display of hand postures has been implemented to allow the experimenters to collect

accurate 3D hand posture data.

4.4.1 The Data Collection System

There are several modules in the data collection system: getlength, getRntio, getDntn,

and ikHand. The first two modules are used for the calibration step while the last

one is used during the run-time step. With the IREDs placed on the subject's hand

as shown in Figure 4.3, the first module getLength sets the Optotrak camera to a

frequency of 60Hz and measures this calibration hand posture for 0.5 seconds for a

total of 30 frames. The lengths of each finger segments are computed a t each frame

and the average lengths are then written to a file length.dat. When the second module

getRatio is invoked, the subject is asked to freely rotate and bend his fingers. The

getRatio module collects this data for six seconds and computes the parameter p used

to build the lookup table using equation (4.3). The value of p is written to ratio.dat.

Before the start of the run-time stage, the thickness of the finger at each joint would

have to be measured using a caliper. The values of the thickness data are stored in

thickness.dat. Now, we have completed the calibration stage.

At the run-time stage, IREDs 7, 8, and 9 can be taken off the hand. After that, the

module ikHand is invoked. It again sets the Optotrak camera to 60Hz and continuously

collects the positional data of the IREDs. The program computes the hand posture

at each frame from these positional data and displays the resulting hand posture onto

the SGI monitor. The collected data is not written to a file since it is very slow to

display and access the file system at the same time. If the data needs to be stored,

the module getData can be used to collect and store the data into a file hand.dat. The

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

stored data can later be viewed using a modified version of the module &Hand which

gets the input from a file instead of getting it from the Optotrak system. A sample

display is shown in Figure 4.14.

Implementation Details

The main data struciure used in this system is the lookup table. It is implemented

as a dynamic array. Each element of the table is another dynamic array. This is used

to store different sets of joint angles having the same index (Iltll). At the run-time

stage, the value of the index is computed from the live 3D data and this value is

used directly to index into the lookup table to obtain the array of sets of joint angles

having this index value. Since size of this array is very small (usually around three

and four), a linear search algorithm is used to determine which set of joint angles has

the minimum deviation from the joint angles of the previous frame.

All modules are implemented in C++ on a Silicon Graphics Indigo2. The Open

Inventor Library is used to do the vector calculations and rendering of the hand.

4.5 Discussion

The table based inverse kinematic algorithm presented in the previous section uses

the lookup table approach introduced by Amaya et al. to solve the inverse kinematic

problem. It addresses some of the weaknesses of Amaya's algorithm by making addi-

tional assumptions about the finger and joint configurations. In particular, it utilizes

the notion of hidden joints to simulate the behavior of the finger joint and account for

the error introduced by skin movement. In addition, this algorithm is stable in the

sense that it will always return a feasible solution. It is easy to see from the algorithm

that it always returns the optimal solution in which the end-effector position error

is minimized. Furthermore, the computational speed is not jeopardized by the accu-

racy and stability of the algorithm. The algorithm is very fast because no coordinate

transformation needs to be explicitly performed. This also means that numerical er-

rors associated with the transformation of coordinate system are eliminated as well.

Figure 4.14: Display of collected dat,a

CHAPTER 4. A TABLE BASED REAL-TIME ALGORITHM

However, unlike Amaya's algorithm in which the lookup table has to be regularized to

obtain uniform table entries, there is no clear way to do regularization on the lookup

table built by this algorithm. Since there can be more than one set of joint angles

stored in a single entry, simple interpolation of the table entries cannot be done to

obtain a regularized table. Furthermore, even if interpolation is applied to two entries

in the table to obtain an entry between them, there can be no guarantee that the

interpolated joint angles will produce the desired index.

Unlike the Jacobian based algorithms presented in Chapter 3, this table based

algorithm does not explicitly address the singularity problem. Instead, this problem

is avoided by finding the closest feasible solution in the workspace. Also, joint limits

are usually hard to enforce using Jacobian based algorithms. It is usually done by

clamping the joint angles to the maximum or the minimum limit. Handling joint

limits this ways may produce unnatural looking joint angles. In our algorithm, joint

limits can be explicitly specified in the table building process, so any solutions that

lie outside the joint limits will not be returned.

One of the major drawbacks of this algorithm is that it cannot be readily extended

to handle other manipulators. The algorithm is specifically designed to simulate the

human finger. Furthermore, it assumes that the relative angular movement between

the previous frame and the current frame is small. However, even in our application,

it is possible for the Optotrak camera to miss some frames as the IREDs became

hidden from its view. As a result, the next valid frame may be drastically different

from the previous valid frame. In this case, the solution returned by the algorithm

will be extremely unpredictable. Fortunately, there are many entries in the lookup

table that contain only a single set of joint angles. The joint angles of the previous

frame are only used to select among different choices. Since there are no choices if

one of those entries is selected by the algorithm, this problem would vanish.

Chapter 5

Experiment and Results

This Chapter describes an experiment which applies the algorithm presented in Chap-

ter 4 in a real-time setting and discusses the results obtained from the experiment.

The main purpose of the experiment is to evaluate the accuracy of the algorithm and

demonstrate that it can be effectively used in a real-time setting.

5.1 The Real-time Experiment

In order to evaluate the accuracy of this table based method, a practical experiment

was performed. After setting up the equipment, the preprocessing stage begins by

placing the subject's hand palm down on a flat table. The IREDs were placed as

shown in Figure 4.3. The equipment setup is shown in Figure 5.1. This calibration

posture of the subject's hand was sampled at 6OHz for 0.5 second. The lengths of

the finger segments were computed at each frame. Then, the average lengths of the

segments from the 30 sampled frames were used as the measured lengths of the finger

segments to build the lookup table. The subject was then asked to freely move and

rotate the index finger and the thumb. This data was sampled at 6OHz for six seconds.

The PIP and DIP joint angles of the index finger were computed at each frame and

used to obtained the parameter p using equation (4.3). The lookup table was built

using an accuracy of p = 0.1 which means value of the joint angles stored in each

entry of the table is accurate to l/lOth of a degree. The hand motion data was again

CHAPTER 5. EXPERIMENT A N D RESULTS

Figure 5.1: Equipment setup

collected a t 6OHz for six seconds for a total of 360 frames.

During the run-time stage, only six IREDs were needed as shown in Figure 4.4.

To determine the accuracy of the methods, the IRED placement was not changed

from the preprocessing stage. Since there is an IRED on every joint of both the index

finger and the thumb, the actual joint angles and the position of the fingertips can be

easily measured. However, the only IRED information given to the inverse kinematic

algorithm was the position of the six IREDs required to compute the joint angles in

run-time. The computed joint angles were compared with the actual joint angles to

determine the accuracy of our method. In addition, the actual position of the fingertip

is compared with the computed fingertip position obtained by evaluating the forward

kinematic calculations using the computed joint angles.

CHAPTER 5. EXPERIiWWT AND RESULTS

5.2

One of

IREDs

Difficulties Encountered

the major difficulties encountered during the experiment was the occlusion of

from the Optotrak camera. It is obvious that the hand is not a flat surface,

so as the hand rotates and the fingers bend, one or more of the IREDs placed on the

hand are inevitably going to be blocked from the view of the camera. As a result,

much of t h e data returned by the Optotrak system was rendered useless. This also

severely restricts the workspace of the hand. Furthermore, the quality of solution

from our algorithm can be severely affected since the table based algorithm requires

the joint angles of the previous frame as initial approximation for the joint angles in

the current frame. If IREDs in several consecutive frames between one valid frame

of data and the next were blocked from the camera, the algorithm would have to

use the last valid frame (not the previous frame) to approximate the joint angles of

the current valid frame. This is usually not a good approximation and the algorithm

will probably return poor results. One possible solution to this problem would be to

surround the subject with Optotrak cameras, so all the IREDs will be in the view of

at least one camera at all times. This solution, however, cannot be implemented at

the time of this writing because of the high cost of the equipment.

Another problem encountered during the experiment was the speed of rendering

the hand in real-time. As discussed in Chapter 2, the graphic hand is composed

of many polygons. A significant amount of time is spent in drawing them. In ad-

dition, deformation calculations are performed in real-time to simulate the bending

and stretching of the finger. With the additional overhead of polling data from the

Optotrak system and computing joint angles using our algorithm, the graphic hand

was not able to be rendered quickly enough to give the illusion of smooth hand move-

ment. However, after hand tuning the matrix computations used in the deformation

and speeding up the calculation ~erformed for the inverse kinematic algorithm, the

graphic hand can now be rendered at approximately 12 frames per second on a Silicon

Graphics Indigo2 Extreme. As suggested by Welman [45], 10 frames per second is the

minimum for interactive applications to maintain the illusion of continuous interactive

control.

CHAPTER 5. EXPERIMENT AND RESULTS

Actual DIP joint angle -
Computed DIP joint anlge - - - - -

100 150 200 250
Frame

Figure 5.2: Comparison of B!Jdex

CHAPTER 5. EXPERIMENT AND RESULTS

Actual PIP joint angle -
Computed PIP joint anlge - - - - -

0 50 100 200 250 300 350 400
Frame

Figure 5.3: Comparison of OFdex

CHAPTER 5. EXPERIMENT AND RESULTS

Actual MCP joint angle -
Computed MCP joint anlge - - - - -

.

0 50 100 150 200 250 300 350 400
Frame

Figure 5.4: Comparison of O;"dex

C H A P T E R 5. EXPERIMENT A N D RESULTS

Measured x -
Computed x - - - - -

0 50 100 150 200 250 300 350 400
Frame

Figure 5.5: Comparison of the x coordinate of the tip of the index finger

CHAPTER 5. EXPERIMENT AND RESULTS

Measured y -
Computed y ---- .

-20
0 50 100 1 50 200 250 300 350 400

Frame

Figure 5.6: Comparison of the y coordinate of the tip of the index finger

CHAPTER 5. EXPERIMENT AND RESULTS

120 I I I I I 1 1

Error -

200
Frame

Figure 5.7: The error between measured tip location and computed tip location of
the index finger

CHAPTER 5. EXPERIMENT A N D RESULTS

5.3 Result and Analysis

The results of the computations are plotted as graphs. The independent variable in

these plots is time which is represented by the frame number. Comparisons between

both joint angles and end-effector positions are made for the index finger and the

thumb.

5.3.1 The Index Finger

Since the DIP, P IP and MCP joints as well as the tip of the index finger all lie on

the same plane and that we know the location of the MCP joint and the tip, we can

calculate the angle OFdex exactly in the run-time stage. Therefore, this joint angle is

not compared. Figures 5.2, 5.3, and 5.4 show the plot of the comparisons between the

measured joint angles OFdex, OFdex, and OFdex of the index finger and the computed

joint angles.

From Figure 5.4, we can see that when the actual joint angle decreases to negative,

the computed joint angle tends to go in the opposite direction. This phenomenon can

be observed at frames 130 to 155 and 320 to 355. Intuitively, if the MCP joint angle is

negative, it means that the finger is bending backwards. This causes the value of lltll

to decrease, similar to the situation when the finger is bending forward. Since only the

value of lltll is used as the index for the lookup table, the algorithm cannot distinguish

between the two different situations. Therefore, the algorithm just assumes that the

finger is bending forward which is the more natural movement. As a result, the value

of the MCP joint angle increases. During typical grasping tasks, it is rarely the case

if at all, that the index finger needs to bend backwards to complete the given task.

Therefore, when the algorithm was designed, it is assumed that the index finger can

only bend forward.

Since the ultimate goal of inverse kinematics is to obtain a set of joint angles to

position the end-effector as close to a desired location as ~ossible, we have plotted

several graphs comparing the desired x and y coordinates and the x' and y' coordinates

returned by our inverse kinematic algorithm.

The negative angular values of frames 130 t o 155 and 320 to 355 in Figure 5.6

CHAPTER 5. EXPERIMENT AND RESULTS

confirmed that the index finger is indeed bending slightly backwards. Figure 5.7

shows the error between the desired coordinate (xi, yi) and the computed coordinate

(x:, Y:). The error e; of the i th frame is computed using the formula

The average error of Figure 5.7 is 6.01mm.

5.3.2 The Thumb

The data collected for the thumb is compared in a similar way. Since we measure the

position of the CMC and the MCP joint of the thumb at run-time, we can calculate

the joint angles OhhUmb and OihUmb exactly. Also, we know that the MCP and the IP

joints as well as the tip of the thumb all lie on the same plane, we can calculate the

joint angle OihUmb exactly using equation (4.13). Therefore, the only two joint angles

obtained using the lookup table are OihUmb and OjhUmb. The comparison results are

shown in Figures 5.8 and 5.9.

CHAPTER 5. EXPERIMENT AND RESULTS

Actual IP joint angle -
Computed IP joint anlge - - - - - I

150 200 250 300 350 400
Frame

Figure 5.8: Comparison of O:h"mb

CHAPTER 5. EXPERIMENT A N D RESULTS

Actual MCP joint angle -
Computed MCP joint anlge - - - - -

0 50 100 150 200 250 300 350 400
Frame

Figure 5.9: Comparison of 0ihumb

C H A P T E R 5. EXPERIMENT AND RESULTS

I I I I I I I

Measured x -
Computed x - - - - -

-20 1 I I 1 I I I I I
0 50 100 150 200 250 300 350 400

Frame

Figure 5.10: Comparison of the x coordinate of the tip of the thumb

Notice that the difference between the measured joint angles and computed joint

angles from frame 200 to 300 in both Figures 5.8 and 5.9 are quite large. The values of

the measured joint angles are large in that interval while the values of the computed

joint angles are relatively small. This error could be caused by any one or a com-

bination of two sources. Since the thumb is extremely dextrous, the skin movement

on the thumb is very significant. An IRED was placed on top of the MCP joint and

on the tip of the thumb to measure their distance. This distance is the value of the

index into the lookup table. If the position of the IRED measuring the position of the

MCP joint is severely affected by skin movement, the value of the index would not be

computed very accurately. This could cause serious error in our computation. Also,

since the radius of the IP joint (including the IRED thickness) is estimated using a

ruler, it might not be very accurate. This introduces additional error into our com-

putation. Placing the IREDs on rigid materials that are tightly fixed to the thumb

CHAPTER 5. EXPERIMENT A N D RESULTS

100 - I I I I I I I

Measured y -
Computed y - - - - -

-

-

Frame

Figure 5.1 1: Comparison of the y coordinate of the tip of the thumb

CHAPTER 5. EXPERIMEiVT AND RESULTS

I

Error -

0 50 100 150 200 250 300 350 400
Frame

Figure 5.12: The error between measured tip location and computed tip location of
the thumb

CHAPTER 5. EXPERIMENT AND RESULTS

helps reducing errors caused by skin movement. However, this will severely restrict

the movement of the thumb. Radius estimation error can be reduced by adjusting this

radius parameter before the experiment until the computed movement of the thumb

is similar to the actual movement.

Not very surprisingly, significant errors from frame 200 to 300 are observed from

the plots of the thumb tip location. The average error of Figure 5.12 is 7.lmm.

5.4 Summary

An experiment was conducted to measure the performance of the proposed table

based inverse kinematic algorithm. From the experimental results, we can see that

the algorithm works extremely well for the index finger. Error between measured tip

location and computed tip location only becomes large when the index finger bends

backwards. Fortunately, this is rarely possible without external force exerted on the

finger. The error for the thumb becomes significant when the value of the joint angle

at the IP joint become large. This error can be reduced by eliminating skin movement

effects on IRED position and careful estimates of the IP joint radius.

Chapter 6

Conclusions

We have examined the solutions to the inverse kinematic problem applied to the

determination of hand posture in real-time. As an alternative to various algebraic

and numerical methods published in robotics and computer graphics journals, a simple

but very fast lookup table based inverse kinematic algorithm has been developed for

the computation of the joint angles of the index finger and the thumb from live 3D

positional data. This algorithm has been integrated into a complete data collection

system which is able to calibrate, collect and display hand postures of test subjects

in experiments.

A similar table based inverse kinematic algorithm was proposed by Amaya et al.

[I]. However, the algorithm presented in this thesis addresses some of its weaknesses.

The major contributions of this thesis include:

developed a more accurate model of the finger using circular joints;

developed a fast table-based algorithm which can be used effectively in real-time;

integrated the polygonal representation of the outer surface of the hand into the

display routines; and

developed a data collection system which integrates data collection, hand pas-

ture estimation and display of the hand.

CHAPTER 6. CONCL USIONS

6.1 Summary

When doing this research, it is apparent that no one single inverse kinematic algo-

rithm is uniformly superior to others and is suitable for all types of applications. For

instance, computer animations systems requires their inverse kinematic algorithms

to be able to produce "useful" intermediate solutions to refresh the screen in order

to maintain the level of interactivity. On the other hand, trajectory control systems

of robots require their inverse kinematic algorithms to produce accurate joint angle

solutions to maintain the trajectory of the end-effector of the robot. So, the ability to

produce intermediate solution is of little interest to these systems. By contrast, the in-

verse kinematic algorithms used in a real-time environment such as the one described

in this thesis, is required to process incoming data (possibly containing noise) and

produce a solution as quickly as possible. The quality of solution, of course, greatly

depends on the correctness of the incoming data as well as any measured calibration

parameters.

In Chapter 4, we have presented an algorithm which estimates a human hand

posture from a limited number of IREDs. The key to this method is lookup tables

built during a calibration step which measure the characteristics of different subjects'

hands. With this information, the run-time system determines the joint angles of both

the index finger and the thumb. The method presented provides the computational

speed required for our real-time application and reasonable approximation of the hand

postures of the subject. The solution returned by this algorithm is a compromise

between accurate end-effector position and "natural" looking joint angles since it

neither requires the end-effector to be accurately place at a particular point with no

regard to the value of the joint angles nor it tries to set the joint angles in a way that

the position of the end-effector is completely ignored. Instead, the algorithm tries to

find a set of reasonably natural joint angles such that the error between the distance of

the measured end-effector position and computed end-effector position is minimized.

In Chapter 5, the method has been confirmed to produce adequate results.

CHAPTER 6. CONCL USIONS

Future Work

Since this thesis is only a part of the efforts in trying to construct a Virtual Hand

Laboratory, there is still considerable work left to be done. First, the inverse kinematic

algorithm presented in Chapter 4 is planned to be integrated into the head tracking

system developed by Valerie Summers. This will provide a stereo view of the virtual

hand for the subject while the experiment is in progress. Also, the calibration of the

hand and the head tracking devices can be done together as one step. This will not

only save time, but will also provide additional viewing information such as location

of the viewer and so on for the display subroutine.

Since a neural network generalizes the notion of a lookup table, we would like to

investigate ways to define a neural network to solve the inverse kinematics problem.

Compared to a lookup table, the neural network has the added advantage that it

can "learn" from past results. Since a neural network is essentially a lookup table,

the processing speed would be comparable to the table based method described in

Chapter 4. Further research is needed to define the structure of the neural network

and its training method.

In order for the virtual hand to be truly useful, the occlusion problem would have

to be solved. One way to solve this problem would be to place more than one Optotrak

camera around the subject. If an IRED is occluded from the view of one camera, the

other cameras will still be able to sense its position. Because of the high cost of the

needed equipment, it is very unlikely that this method can be implemented in the

near future.

In addition, a hierarchical spline representation of the hand can be constructed to

allow for different resolutions of display of the hand. Using this property, experiments

can be done to investigate the appropriate level of realism of the graphic hand needed

to carry out a typical kinesiology experiment.

Furthermore, we plan to investigate ways to construct lookup tables having a

uniform distribution of entries. Doing so, in theory, will speed up the time required

to search the lookup table and resolve collisions present in each entry of the table.

Appendix: A

Notations Used in Amaya's Paper

Three coordinate frames are employed in Amaya's algorithm: the Optotrak "global"

frame, the "hand" frame at the MCP joint created by three IREDs on the back of

the hand, and the "fingertip" frame on the tip of the finger created by three IREDs

on the fingertip.

The matrix [B] is the basis matrix of a coordinate system where the i th basis vector

is placed at the i th column of [B] . The vector 0 is the position vector of the origin

of a coordinate system. The superscripts and subscripts on both [B] and 0 read:

Asource- f rame
destination- f rame

The source frame is the frame of reference in which the input vector is currently

expressed in which the destination frame is the frame of reference in which the output

vector going to be expressed in. The positions of the IREDs are represented by the

vector d . The notation used is:

d I R E D group
coordinate- f rame,IRED number

The subscripts below other vectors represent the coordinate frame of that vector

Appendix: B

Jacobian Matrix and Its Pseudoinverse

The Jacobian is a matrix of first derivatives. To derive it, we can differentiate the

elements of equation (3.1) to get

dx, = a i m a i m a f m
-do1 + -dB2 + . . . + -do,
a01 (302 86,

Dividing by the differential time element dt and writing in matrix notation, we have

; = ~ (e) c i

and clearly J is

I . . .

2.L
asl ae2 .
a 2&
ael ae, . . . J = .

af, L a,, a,, . . U E J
den

If J is not a square matrix or does not have a full rank, J-' does not exist and there

is no solution for t!l. In order to find a useful solution for 9, the generalized inverse

CHAPTER 6. CONCLUSIONS 80

of J is usually used. A commonly used generalized inverse J+ is the Moore-Penrose

pseudoinverse[6]. The pseudoinverse J+ is defined as

+ - J T J j T) - 1
J - (

for the under determined case and

+ - J T J) - 1 J T
J - (

for the over determined case.

Appendix: C

C. l Algorithm to build the lookup table
This section presents an algorithm that builds the lookup table for the index finger.

The lookup table is built by evaluating the forward kinematics equations for $ degree

increments for each of the PIP and DIP joint angles, where p is the precision of the

joint angles. The index used for the lookup table is the distance between the tip of

the finger and the MCP joint. Since the value of O1 (the MCP joint angle) does not

affect the value of the index, it is set to 0.

CHAPTER 6. CONCLUSIONS S2

ALGORITHM: BuildIndexTa ble

Input: The segment length I ; ordered from the MCP joint to the tip. The joint radius

r; of each joint. The joint li,mits for the DIP and PIP joints. The precision, p, of the

joint angle.

Output: A joint angle lookup table having lltll as its index. Each entry in the table

consists of a counter and an array of joint angles.

BEGIN

d l := 0

FOR t z := (pipLowerLimit/p) T O (pipUpperLimit /p) BY 1 DO

FOR t3 := (dipLowerLimit/p) T O (dipUpperLimit lp) BY 1 DO

82 := t2p

03 := t3p

do := 2rl sin d2/2

dl := 2r2 sin d3/2

$0 := d*

41 := 40 + 8212

4 2 := $1 + 0212

$3 := $2 + 6312

$4 := 43 + 0312

x := ll cos $1 + do cos 4 2 + l 2 cos $3 + dl cos $4 + E3 cos 45
Y := 11 sin $1 + do sin $2 + 12 sin $3 + dl sin $4 + l3 sin qh5

index := &G
P

Table[index].angleList[count] := (02, 193)

Table[index].count := Table[index].count + 1

END /* FOR */
END /* FOR */
RETURN Table

END

CHAPTER 6. CONCLUSIONS

C.2 Algorithm to search the lookup table
This section presents an algorithm that searches the lookup table at run-time

to obtain a subset of the needed joint angles. The algorithm first computes the

index value (the distance between fingertip and the MCP joint). Then, it looks for

the corresponding entry in the lookup table. If this entry is empty, the algorithm

searches both forward and backwards to find the closest non-empty entry. After this

entry is found, the algorithm then determines whether there are more than one set

of joint angles stored in this entry. If not, the only set of joint angles stored in this

entry is returned. Otherwise, the algorithm finds the set of joint angles which has the

minimum change from the set of joint angles of the previous frame. This set of joint

angles is then returned. This algorithm also checks to make sure that the angle P is

less than or equal to the angle cr (a and ,B are discussed in Chapter 4).

CHAPTER 6. CONCL USIONS 84

ALGORITHM: GetIndexJointAngles

Input: The lookup table. The IREDs' positional vectors d; in the global frame as in

Figure 4.4. The indez finger joint angles { i 3 ~ d e x 1 , dFder ') of the previ0.u~ frame. The

precision, p, of the joint angles.

Output: The joint angles of index finger for the current frame.

BEGIN

less := FALSE

minErr := maxFloat

position := 0

index := Ilt l l /p

IF Table[index].count = 0 /* i f this entry is empty */
found := FALSE

forward := index

backward := index

WHILE (NOT found) /* find first non-empty entry in either direction

* /
forward := foward + 1

backward := backward - 1

found := ((Table[f orward] .count>O) OR (Table[backward] .count > O))

END /* WHILE */
IF (Table[forward].count > 0) T H E N /* get search direction */

indez := forward

ELSE

index := backward

END /* IF */

CHAPTER 6. CONCLUSIONS

END /* IF */
WHILE (NOT less) /* if angle ,B is not less than a */

FOR i := 0 TO Table[index].count - 1 BY 1 DO

{02, 03) := Table[index] .angleList [i]

t: = 11 + 12 C O S (~ ~) + C O S (~ ~ + 63)

t& = 12 sin(&) + l3 cos(02 + 03)

p := cos- t ;

(J- 1
index1)2 + (OFdex - err := J((a - 8) - + (02 - o2 @dex')2

IF (/3 <= a)

IF (NOT less)

minErr = er r

position = i

less = TRUE

ELSE

IF (err < minEr r) THEN

minErr = er r

position = i

END / * IF */
END /* IF */

END /* IF */
E,ND /* FOR */
IF (NOT less)

position = 0

index := index + 1

END /* IF */
END /* WHILE */
{OFdex, Ogdex) := Table[index] .angleList [position]

P := t - y , (t . Y,)

t i = 11 + 12 cos(O2) + 13 cos(O2 + 03)

tk = 12 sin(02) + cos(02 + 03)

CHAPTER 6. CONCL USIONS

END

Bibliography

[I] Kenji Amaya, Tom Calvert, and Christine L. MacKenzie. Posture estimation of

a human hand from a limited number of markers (unpublished). August 1995.

[2] K. N. An, E. Y. Chao, W. P. Cooney 111, and R. L. Linscheid. Normative model

of human hand for biomechanical analysis. Journal of Biomechanics, 12:775-788,

1979.

[3] K. N. An, Y. Ueba, E. Y. Chao, W. P. Cooney, and R. L. Linscheid. Tendon

excursion and moment arm of index finger muscles. Journal of Biomechanics,

16(6):419-425, 1983.

[4] Sumeet Bawa. Interactive creation of animations: An optimization approach to

real-time inverse kinematics. M.Sc. thesis, Simon Fraser University, April 1995.

[5] A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applica-

tions. Wiley, New York, 1974.

[6] T. L. Boullion and P. L. Odell. Generalized Inverse Matrices. Wiley Interscience,

New York, 1971.

[7] William L. Buford and David E. Thompson. A system for three-dimensional

interactive simulation of hand biomechanics. IEEE Transactions on Biomedical

Engineering, 34(6):444-453, 1987.

[8] E.Y. Chao, J. D. Opgrande, and F. E. Axmear. Three dimensional force analysis

of finger joints in selected isometric hand functions. Journal of Biomechanics,

9:387-396, 1976.

BIBLIOGRAPHY 88

[9] John J . Craig. Introduction to robotics: mechanics and control. Addison-Wesley,

New York, 1989.

[lo] J . Denavit. Description and Displacement Analysis of Mechanisms Based on 2x2

Dual Matrices. Ph.D. thesis, Northwestern University, 1956.

[ll] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms

based on matrices. ASME Journal of Applied Mechanics, 23:215-221, 1955.

[12] R. Fletcher and M. J . D. Powell. A rapidly convergent descent method of mini-

mization. Co,mputer Journal, 63163-163, 1963.

[13] G. Forsythe and C. B. Moler. Computer Solution of Linear Algebraic Syskms.

Prentice-Hall, Englewood Cliffs, N.J., 1967.

[14] K. S. Fu, R. C. Gonzales, and C. S. G. Lee. Robotics: Control, Sensing, Vision,

and Intelligence. McGraw-Hill, Inc., New York, 1987.

[15] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.

Academic Press, New York, 1981.

[16] Donald Goldfarb. Extension of Davidson's variable metric method to maximiza-

tion under linear inequality and equality constraints. SIAM J. Appl. Math.,

17:739-764, 1969.

[17] B. Gorla and M. Renaud. Robots Manipulateurs. Cepadues-Editions, Toulouse,

1984.

[IS] M. R. Hestenes. Augmentability in optimization theory. Journal of Optimization

Theory and Applications, 32427-440, 1980.

[19] Thea Iberall, Carme Torras, and Christie MacKenzie. Parameterizing prehen-

sion: A mathematical model of opposition space. pages 2-12, Proceedings of

COGNITIVA 90.

[20] D. Kohli and A. H. Soni. Kinematic analysis of spatial mechanisms via successive

screw displacements. Journal of Energy for Industry, 2739-747, 1975.

BIBLIOGRAPH k' 89

[21] J. M. F. Landsmeer. Anatomical and f~~nct ional investigations on the articulation

of the human fingers. Acta anatomica, 25:l-69, 1955.

[22] J. M. F. Landsmeer. A report on the co-ordination of the interphalangeal

joints of the human finger and its disturbances. Acta morphologica neerlando-

scandinavica, pages 59-84, 1958.

1231 J. M. F. Landsmeer. Studies in the anatomy of articulation. Acta morphologica

neerlando-scandinavica, 3287-303, 1961.

[24] J. M. F. Landsmeer. The coordination of finger joint motions. The journal of

bone and joint surgery, 45:1654-1662, 1963.

[25] J. Lasseter. Principles of traditional animation applied to 3d computer animation.

Computer Graphics, 21(4):35-44, Proceedings of SIGGRAPHS7.

[26] C. S. G. Lee and M. Ziegler. A geometric approach in solving the inverse kinemat-

ics of puma robots. IEEE Trans. Aerospace and Electronic Systems, 20(6):695-

706, 1984.

[27] A. Liegeois. Automatic supervisory control of the configuration and behavior of

multibody mechanisms. IEEE Trans. System, Man, Cybernetics, 7(12), 1977.

[28] Girard. M. and Maciejewski. A. A. Computational modeling for computer gen-

eration of legged figures. Computer Graphics, 19(3):263-270, 1985.

[29] Anthony A. Maciejewski. Dealing with the ill-conditioned equations of motion

for articulated figures. IEEE Computer Graphics and Applications, pages 63-71,

1990.

[30] Anthony A. Maciejewski and Charles A. Klein. The singular value decomposition:

Computation and applications to robotics. The International Journal of Robotics

Research, 8(6):63-79, 1989.

[31] C. L. Mackenzie and T. Iberall. The grasping hand. Elsevier Science, Amsterdam,

1994.

BIBLIOGRAPHY 90

[32] Axel Mulder. Human movement tracking technology. Technical report, School

of Kinesiology, Simon Fraser University, B.C., July 1994.

[33] R. P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT

Press, Cambridge, MA, 1981.

1341 R. P. Paul, B. E. Shimano, and G. Mayer. Kinematic control equations for simple

manipulators. lEEE Trans. Systems, Allan, Cybern., 11(6):449-455, 1981.

[35] Cary B. Phillips, Jianmin Zhan, and Norman I. Badler. Interactive real-time

articulated figure manipulation using multiple kinematic constraints. Computer

Graphics, pages 245-250, 1990.

[36/ Hans Rijpkema and Michael Girard. Computer animation of knowledge- based

human grasping. Computer Graphics, 25(4):339-348, 1991.

[37] J. B. Rosen. The gradient projection method for nonlinear programming. SIAM

J. Appl. Math., 8:lSl-217, 1960.

[3S] D. F. Shanno. Conditioning of quasi-newton methods for function minimization.

Math. Computation, 24:647-664, 1970.

[39] D. J . Sturman. Whole-hand Input. Ph.D. thesis, MIT, 1989.

[40] David J. Sturman and David Zeltzer. A survey of glove-based input. IEEE

Computer Graphics and Applications, 14(1):30-39, 1994.

[41] S. Augustine Su and Richard Furuta. A logical hand device in virtual envi-

ronments. Technical report, Department of Computer Science, University of

Maryland, College Park, Maryland 20742, April 1993.

[42] C. Taylor and R. Schwartz. The anatomy and mechanics of the human hand.

Artificial Limbs, (2):22-35, 1955.

[43] Chor Quan Teo. A hybrid procedural/knowledge-based approach to the anima-

tion of human hand grasping. M.Sc. thesis, Simon Fraser University, February

1994.

BIBLIOGRAPHY 9 1

[44] David E. Thompson. Biomechanics of the hand. Perspectives in computing,

11(3):12-19, 1981.

[45] Chris Welman. Inverse kinematics and geometric constraints for articulated figure

manipulation. M.Sc. thesis, Simon Fraser University, April 1993.

[46] A. T. Yang and R. Freudenstein. Application of dual number quaternian algebra

to the analysis of spatial mechanisms. Trans. ASME, J. Appli. Mech., 31:152-

157, 1964.

[47] J. Zhao and N. I. Badler. Real time inverse kinematics with joint limits and

spatial constraints. Technical Report MS-CIS-90-09, Department of Computer

and Information Science, University of Pennsylvania, 1989.

[48] T. G. Zimmerman. A hand gesture interface device. In H,uman Factors in Com-

puting Systems and Graphics Interfaces, pages 189-192, April 1957.

