
FRACTAL CODING OF DISPLACED FRAME
DIFFERENCE SIGNALS

Nino Ferrario

B.A.Sc. Simon Fraser University, 1993

A THESIS SUBMITTED I N PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the School

of

Engineering Science

@ Nino Ferrario 1997

SIMON FRASER UNIVERSITY

July 1997

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

National Library 1+1 of Canada
BiMiottGque nationale
du Canada

*
.Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Weltington Street 395, rue Welltngton
W O N K I A O N 4 Ottawa,ON K I A ON4
cam& Canada

Your h k Vorre reierenca

Our he Norre ~eterence

. The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, dstnbute or sell
copies of h s thesis in rnicrofom,
paper or electronic formats.

The author retains ownershp of the
copyright in h s thesis. Neither &e
thesis nor substantial extracts from it
may be p ~ t e d or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque nationale du Canada dt ,

reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de ~crofiche/film, de
reproduction sur papier ou sur format
electronique.

L7auteur conserve la propriete du
droit d7auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent Etre imprimes
ou autrement reproduits sans son
autorisation.

APPROVAL,

Name: Xino Ferrario

Degree: .\laster of .-lpplicd Scicncc

r
Examining Committee: Dr. C'olornho Iblogr~rxsi. ('hairrlia11

Date Approved: / ? / /'.fly / 47

Abstract

Much of the work on fractal video coding has focused on 3-D fractal block coding and

coding of original frames using previously reconstructed frames and variations thereof.

This thesis investigates the possibility of using fractal image coding techniques for

direct coding of displaced frame difference signals. Both standard affine transform

and orthogonal basis iterated function system (OBIFS) coders are considered. These

coders are generalized for video coding by introduction of alternative domain pool

sources. It is shown that the use of these alternative domain pool sources provides

much better performance than classical fractal coding of the displaced frame difference

signals alone. Extensive simulations are also performed to quantify the effects that

various transformation parameters have on coding performance. Finally, the objective

and subjective coding performance of the best affine transform and orthogonal basis

IFS coders are compared to that of a reference discrete cosine transform (DCT) coder

for two standard video sequences.

The simulation results indicate that affine-transform-based fractal coders are fea-

sible for direct fractal coding of displaced frame difference signals. The peak signal-

to-noise ratio (PSNR) performance of these coders was as good or better than the

reference DCT-based coder for the two sequences tested. The OBIFS coders, how-

ever, are not feasible for direct fractal coding of displaced frame difference signals.

The reference DCT-based coder provided much better performance for all sequences

tested.

Acknowledgements

I would like to thank my senior supervisor, Dr. Jacques Vaisey, for his helpful sugges-

tions, guidance and financial support throughout my research. In addition, I would

like to thank Dr. Paul Ho and Dr. John Jones for serving on my supervisory com-

mittee. I am also indebted to the Natural Sciences and Engineering Research Council

of Canada and Simon Fraser University for the financial support they have provided

me during the course of my thesis work.

Contents

. Approval

. Abstract

. Acknowledgements

. List of Figures

. List of Abbreviations

. 1 Introduction

. 1.1 Thesis Objective

. 1.2 Thesis Motivation

. 1.3 Thesis Contributions

. 1.4 Thesis Outline

............................. 2 Image and Video Coding Fundamentals

. 2.1 Redundancy

. 2.2 Common Compression Techniques

. 2.2.1 Predictive Coding

. 2.2.2 Transform Coding

. 2.2.3 Subband Coding

. 2.3 Quantization

. 2.3.1 Scalar Quantization 11

. 2.3.2 Vector Quantization 12

. 2.4 Entropy Coding 13

. 2.4.1 Data Modeling 15

. 2.5 Bit Allocation 17

. 2.6 Motion Compensation (MC) 19

. 2.6.1 Standard Block Motion Compensation 19

2.6.2 Overlapped Windowed Block Motion Compensation 21

. 2.7 Performance Measures 27

. 3 Fractal Image Coding 28

. 3.1 Mathematical Background 29

. 3.2 Fractal Coding Algorithms 35

. 3.2.1 Still Image Coding 35

. 3.2.2 Fractal Video Coding 37

. 4 Fractal Coding of DFD Signals 40

. 4.1 Proposed Fractal Video Coding Model 40

. 4.2 Affine-Transform-Based Fractal Coders 41

. 4.2.1 Domain Pool Construction 41

. 4.2.2 Partitioning Algorithms 44

. 4.2.3 Encoding Transformations 46

. 4.2.4 Encoding Procedure 54

. 4.2.5 Decoding Procedure 56

. 4.3 Orthogonal Basis IFS Coders 58

. 4.3.1 Overview 58

. 4.3.2 Basis Generation Methods 59

. 4.3.3 Quantization and Entropy Coding 62

. 4.3.4 Encoding Procedure 66

. 4.3.5 Decoding Procedure 67

5 Simulation Results and Analysis . 69

. 5.1 Source Descriptions 69

. 5.2 Affine-Transform-Based Coders 71

. 5.2.1 Domain Pool Source Related Results 72

5.2.2 Parameter Distribution Results . 79

5.2.3 Motion Compensation Results . 94

. 5.2.4 Partitioning Algorithm Results 97

5.2.5 Summary . 99

. 5.3 OBIFS Coders 100

. 5.3.1 Basis Generation Method Related Results 101

. 5.3.2 Motion Compensation Results 103

. 5.3.3 Spatial Contraction Operator Results 105

. 5.3.4 Summary 106

. 6 Final Results 107

. 6.1 Source Descriptions 107

6.2 Results . 109

. 7 Conclusion 117

. References 119

vii

List of Figures

2.1 Generalized Gaussian PDF . 16

2.2 Standard Block Motion Compensation . 20

2.3 Example of Enlarged Optimal Matching Block . 23

. 2.4 Sin2 Window 24

2.5 DFD Signal: Standard Block Motion Compensation 25

2.6 DFD Signal: Overlapped Windowed Block Motion Compensation 26

3.1 Sierpinski Gasket Image . 34

3.2 Fractal Coder Block Diagram . 36

4.1 Fractal Video Coding Model . 41

. 5.1 Pongi Sequence 70

. 5.2 Foreman Sequence 71

5.3 Pongi: Spatial Contraction Operator Comparison, RBC 73

5.4 Pongi: Spatial Contraction Operator Comparison. PCR 73

5.5 Pongi: Spatial Contraction Operator Comparison. P C 0 74

5.6 Pongi: Domain Pool Source Comparison . 76

5.7 Pongi: Domain Pool Density Comparison. RBC . 77

5.8 Pongi: Domain Pool Density Comparison. PCR . 77

5.9 Pongi: Domain Pool Density Comparison. P C 0 78

5.10 Pongi: Histogram of Alpha Values. RBC. 64 Bins 80

5.11 Pongi: Histogram of Beta Values. RBC. 128 Bins 80

...
Vl l l

5.12 Pongi: Histogram of Absorb Values. RBC. 64 Bins 81

5.13 Pongi: Histogram of Alpha Values. PCR. 128 Bins 82

5.14 Pongi: Histogram of Alpha Values. PCO. 128 Bins 83

5.15 Pongi: Histogram of Beta Values. PCO. 128 Bins 83

5.16 Pongi: Histogram of Beta Values. PCO. a0 = 0.5. 128 Bins 84

5.17 Pongi: Histogram of Beta Values. PCO. a0 = 0.2. 128 Bins 85

5.18 Pongi: Histogram of Beta Values. PCO. a0 = 0.0. 128 Bins 85

5.19 Pongi: Histogram of Beta Values. PCR. a0 = 0.0. 128 Bins 86

5.20 Rate Distortion Function For Alpha Parameter . 88

5.21 Rate Distortion Function For Beta Parameter . 88

5.22 Rate Distortion Function For Absorb Parameter 89

5.23 Redundancy Comparison For Alpha. N = 512 . 90

5.24 Redundancy Comparison For Beta. N = 512 . 91

5.25 Redundancy Comparison For Absorb Parameter. N = 128 91

5.26 Pongi: Distribution of Isometries. RBC . 94

5.27 Pongi: Motion Compensation Type Comparison. RBC 95

5.28 Pongi: Motion Compensation Type Comparison. PCR 95

5.29 Pongi: Motion Compensation Type Comparison. P C 0 96

5.30 Pongi: Basis Generation Method Comparison. P C 0 102

5.31 Pongi: Basis Generation Method Comparison. PCR 102

5.32 Pongi: Domain Pool Source Comparison . 103

. 5.33 Pongi: Motion Compensation Type Comparison. P C 0 104

5.34 Pongi: Motion Compensation Type Comparison. PCR 104

. 5.35 Pongi: Spatial Contraction Operator Comparison 105

5.36 Foreman: Spatial Contraction Operator Comparison 106

. 6.1 Carphone Sequence 108

. 6.2 Salesman Sequence 109

. 6.3 Carphone, Affine. 0.26 bpp Average Rate 112

. 6.4 Carphone. Affine. 0.13 bpp Average Rate 112

. 6.5 Salesman. Affine. 0.15 bpp Average Rate 113

. 6.6 Salesman. Affine. 0.09 bpp Average Rate 113

. 6.7 Carphone. OBIFS. 0.26 bpp Average Rate 115

. 6.8 Salesman. OBIFS. 0.16 bpp Average Rate 115

. 6.9 Salesman. OBIFS. 0.11 bpp Average Rate 116

List of Abbreviations

BFOS

DCT

DECIMBY AVG

DFD

HV

IFS

JPEG

KLT

LIFS

MC

MPEG

NOXONTRACTION

OBIFS

PCM

P C 0

PCR

PSNR

RBC

SUBSAMP

Breiman, Friedman Olshen and Stone

discrete cosine transform

decimation by averaging

displaced frame difference

horizontal-vertical

iterated function system

Joint Photographic Experts Group

Karhunen-Loeve transform

local iterated function system

motion compensation

Moving Pictures Experts Group

no contraction

orthogonal basis iterated function system

pulse code modulation

previously coded original frame

previously coded residual image

peak signal-to-noise ratio

residual image being coded

subsampling

Chapter 1

Introduction

New digital applications and services are emerging all the time. These include high

definition television (HDTV), videoconferencing, videotelephony, multimedia and im-

proved and enhanced cable services. Acconlodating these applications and services

using digital information in its raw form would require the use of an extremely high

bandwidth channel; especially in the case of images and video. Consequently, effi-

ciently utilizing the communication channel bandwidth requires that the digital in-

formation be significantly compressed.

To this end, research in the areas of image and video compression has been on-

going and widespread. Currently, all the major image coding standards: the Joint

Photographic Experts Group (JPEG) standard (Pennebaker and Mitchell 1993) for

still images and the Moving Pictures Experts Group (MPEG) (LeGall 1991), H.261

(Liou 1991) and H.263 (Rijkse 1995) standards for full-motion video are based on

the use of the discrete cosine transform (DCT). Nevertheless, new algorithms and

improvements to existing algorithms are appearing all the time.

A particular coding technique which has now reached a certain level of maturity is

fractal image coding. Work in this area was originally stimulated by Barnsley (1988).

Fractal image coders differ from traditional coding techniques in the manner in

which they exploit redundancies in still images and video sequences. Classical fractal

CHAPTER 1. INTRODUCTION 2

image coders approximate an original image as the fixed point of a contractive trans-

formation. Images are decoded by iterating the encoding transformation on any arbi-

trary initial image. Generalized fractal coders have also been developed which relax

the contractivity constraint thus making higher fidelity encodings possible. Fractal

image coders have shown good performance for coding of still images. This thesis

investigates their use for video coding.

Thesis Objective

The objective of this work was to investigate the feasibility of using fractal image

coding techniques for direct coding of displaced frame difference (DFD) signals. The

work was probing and experimental in nature. The ultimate goal was to provide both

quantitative and qualitative results on the ability of fractal image coders to directly

code displaced frame difference signals. To this end, we focused on image sequences

with moderate to relatively high motion so that the DFD signals contained enough

energy to make the analysis useful and enlightening; the video coders implemented

were designed with these moderate to high energy DFD signals in mind. The targeted

bit rates were approximately 100 kbps (kilobits per second) and below; the actual bit

rates obtained varied from approximately 20 kbps to 120 kbps depending on the video

sequence.

Two classes of fractal coders were considered in the investigation: standard affine

and orthogonal basis iterated function system (OBIFS) coders. The investigation

was done without regard to encoder complexity but only in terms of objective and

subjective performance measurements. The performance of the best affine transform

and OBIFS coders was compared to that of a reference DCT-based coder using two

standard video sequences.

C H A P T E R 1. INTRODUCTION

1.2 Thesis Motivation

The two main reasons for undertaking this work were:

Current video compression standards, MPEG, H.261 and H.263, employ hybrid

coding techniques consisting of motion compensated prediction followed by dis-

crete cosine transform coding of the resulting displaced frame difference signals.

It is well known that the rate-distortion performance of the DCT is excellent

for sources with high correlation coefficients. The DCT is used in the JPEG

standard for this very reason; the inter-pixel correlation in a block of contiguous

samples is generally high for still images. On the other hand, displaced frame

difference signals typically have low correlation coefficients, but the DCT is still

used to encode them.

Fractal image coders have shown good rate-distortion performance for compres-

sion of still images. Some authors (Barthel et al. 1994) (Barthel and Voy6

1994) have reported results superior to JPEG over a wide range of bit rates for

compression of the standard Lena image.

Because of the good performance shown by fractal coders for coding of still

images, we thought it both meaningful and instructive to investigate the per-

formance of fractal coders when used for direct coding of DFD signals.

All of the work to date on fractal video coding has focused on either 3-D fractal

block coding or fractal coding of original frames using the previously recon-

structed frame as a domain pool source and variations thereof. There have

been, to the author's knowledge, no published results on direct fractal coding

of displaced frame difference signals. This work thus contributes to the study

of digital video coding using fractal techniques.

CHAPTER 1. INTRODUCTION

1.3 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

0 An empirical study on direct fractal coding of displaced frame difference signals

is presented.

Thorough descriptions and analysis of all transformation parameters are pro-

vided; the effects of all transformation parameters on coding performance are

quantified.

Both classes of coders considered are generalized for video coding by introduc-

tion of alternative domain pool sources. A scheme for efficient quantization and

entropy coding of the resulting transformation parameters is presented. The

resulting coders provide much better performance than classical fractal coding

of the DFD signals alone.

Objective and subjective performance results comparing the best affine trans-

form and OBIFS coders to a reference DCT-based coder are presented.

Thesis Outline

Chapter 2 provides an overview of image and video coding fundamentals. The con-

cept of redundancy is introduced and several common image compression techniques

are described. Overviews of quantization, bit allocation and entropy coding are also

presented along with detailed descriptions of their use in this work. The chapter

concludes with a detailed discussion of motion compensation, a key component of all

video coding systems implemented.

Chapter 3 outlines the mathematical theory underlying all classical fractal im-

age coding algorithms. The fractal image model is detailed and relevant mathematics

describing the image encoding and decoding procedure are provided. Finally, a dis-

cussion of practical fractal image coding algorithms for encoding and decoding real

CHAPTER 1. INTRODUCTION 5

world images is presented; current applications of these algorithms to video coding

are described.

Chapter 4 presents a detailed description and analysis of all fractal video coding

algorithms implemented in this work. All aspects of the coding algorithms are de-

scribed. This includes encoder and decoder specifications, parameter specifications,

quantization considerations, and descriptions of the output bit streams.

Chapter 5 presents extensive simulation results obtained by quantifying the ef-

fects of all transformation parameters (for both classes of coders) on coding perfor-

mance; the pongi and foreman video sequences were used for these simulations.

The best affine transform and OBIFS coders are selected for final comparison to a

reference DCT-based video coding system.

Chapter 6 presents and discusses the simulation results obtained by comparing

the performance of the affine transform and OBIFS coders selected from Chapter 5 to a

reference DCT-based coder. The standard carphone and salesman video sequences

are used for this comparison. A conclusion is drawn on the feasibility of using fractal

image coding techniques for direct coding of DFD signals.

Chapter 7 summarizes the main contributions of this thesis and suggests possi-

bilities for future work.

Chapter 2

Image and Video Coding

Fundamentals

This chapter provides an overview of image and video coding fundamentals. The aim

of the chapter is to acquaint the reader with many of the basic techniques used in

image and video compression, many of which were used during the course of this work.

As a secondary objective, the chapter provides a framework against which the fractal

coding methods described later can be compared.

2.1 Redundancy

The goal of any data compression system is to find an efficient representation of a

source signal, while at the same time maintaining the signal quality. To achieve such

a goal, source coders attempt to eliminate or reduce source redundancy. This re-

dundancy manifests itself in two distinct forms, statistical redundancy and subjective

redundancy or irrelevancy (Netravali and Haskell 1988).

Statistical redundancy refers to information that can be removed from the source

signal without introducing any loss of information. The original signal can be re-

constructed exactly from the encoded bit stream. Source coders that remove only

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS

statistical redundancy are called lossless coders.

Subjective redundancy or irrelevancy, deals with information that can be removed

from the source signal without introducing any perceived distortion. Such informa-

tion is deemed irrelevant since it is not perceivable by a human and therefore not

needed to convey the signal information. In practical systems, source coders do intro-

duce perceptable distortion; the objective being to minimize the amount of perceived

distortion added for a given bit rate constraint.

The removal of subjective redundancy is a lossy process; information is lost and

the original signal can no longer be reconstructed exactly. Source coders that remove

subjective redundancy are called lossy coders.

The next section describes three common techniques for exploiting image redun-

dancies.

2.2 Common Compression Techniques

2.2.1 Predictive Coding

Pulse code modulation (PCM) (Jayant and No11 1984) is a very simple and basic

compression technique. In a PCM system, each image sample is coded (quantized)

independently of all other samples. Such a coding system is memoryless and does

not exploit any correlations that exist between samples. Better performance can

be achieved if the correlation between image samples is exploited during the coding

process. Predictive coding (Gersho and Gray 1992) is a technique that exploits these

inter-sample correlations.

Predictive coders at tempt to minimize the amount of additional information re-

quired to specify each new image sample. This is done by coding (quantizing) only the

difference between the current image sample and a prediction of the current sample

based on past reconstructed samples. The prediction is usually formed as a weighted

linear combination of image samples in the immediate vicinity of the current sample

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 8

being processed. The difference or prediction error represents the additional infor-

mation needed to specify the new image sample. Because images are locally highly

correlated, the sequence of prediction errors will generally have a lower variance than

the original image samples. This implies that at the same rate, a lower distortion can

be achieved, or conversely, for the same level of distortion, a lower rate is required.

2.2.2 Transform Coding

Transform coders (Clarke 1985), like predictive coders, exploit the inter-pixel corre-

lation that exists between image samples. In a typical transform coding system, the

input image is partitioned into rectangular blocks of dimension M x N where usually

M = N = 8. Each block is then transformed via a unitary transform to produce a

set of M x N transform coefficients. The i'th coefficients from each block are then

grouped to form a set of M x N sources. Some type of bit allocation algorithm is then

used to allocate a fixed quota of bits amongst the M x N sources. Quantizers are then

designed at the corresponding rates and the coefficients are quantized to produce an

encoded bit stream. At the decoder, the inverse transform is applied to the quantized

coefficients to produce a reconstruction of the original image.

The objective of transform coding is two-fold. First, it is desired to concentrate

most of the block energy in as few transform coefficients as possible, thereby min-

imizing the number of coefficients that have to be quantized. Compaction of the

block energy also allows the coefficients to be ordered according to the contribution

each makes to the total block energy. During the bit allocation process, more bits

can be allocated to those coefficients that contribute most to the total energy while

fewer bits are allocated to the less energetic coefficients; allocating more bits to the

quantization of more energetic coefficients yields a lower overall average distortion.

The second goal of transform coding is the decorrelation of block image samples. It

is desirable to remove all of the correlation that exists between image samples in a

block and produce a set of uncorrelated transform coefficients. A transform achieving

C H A P T E R 2. IMAGE AND VIDEO CODING FUNDAMENTALS 9

these two objectives will produce a set of transform coefficients that if quantized at

a given rate, R, will yield a lower overall average distortion than the original image

samples quantized at the same rate.

For stationary sources, the Karhunen-Lokve transform (KLT) is the unique, op-

timal transform that achieves both of the above objectives; the basis vectors of the

KLT are the eigenvectors of the source covariance matrix. The KLT is not, however,

a practical transform for image coding because it is image-dependent and must be

re-computed for every image due to variations in image statistics. This source depen-

dency also implies that the eigenvectors must be stored or transmitted to the decoder.

The KLT is not widely used for image coding applications; the discrete-cosine trans-

form (DCT) is used extensively instead.

The DCT is a data-independent transform whose performance approaches that of

the KLT for first-order autoregressive sources with correlation coefficients approaching

one (Jayant and No11 1984). The DCT performs very well in still image coding appli-

cations because still images1 can be locally modeled by such sources. For this reason,

as well as the existence of many fast algorithms for its computation, the DCT has

been made an integral part of all the current still image and video coding standards.

For an image block, j (i , j), with dimensions N x N, the two-dimensional DCT,

F (u ,v) , u ,v = 0,1, . . . , N - 1 is given by:

where

- i f m = O
C (m) =

1 otherwise

'This is not the case for the displaced frame difference signals that are produced by motion
compensation.

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS

2.2.3 Subband Coding

Subband coding (Jayant and No11 1984) (Gersho and Gray 1992) is a more general

form of transform coding. However, subband coders differ from transform coders in

that subband coders filter the entire image being coded rather than simply filtering

N x N image blocks. This is advantageous in that the reconstructed images are smooth

without any blocking artifacts. In general, both coding methods can be classified as

signal decomposition techniques as they both decompose the source signal into a set

of individual components each of which is coded separately.

Subband coders split the two-dimensional image frequency spectrum into separate

frequency bands. They do this by passing the original image through a bank of linear

filters to produce a set of subimages. Like transform coding, it is desired to have

energy compaction and the ability to code the subbands separately; the number of

bits allocated to quantizing each subimage can then be adapted according to the

perceptual importance of the subimage.

Still images have most of their total energy concentrated in the low-pass subimages.

The remaining subimages contain additional high-frequency information needed to

reproduce the original image exactly. The unequal distribution of subimage energies

allows the subimages to be prioritized so that more bits are allocated to the coding of

high energy subimages while fewer bits are allocated to the lower energy subimages.

This prioritization is useful since it is generally the case that the highest energy

subimages are the most perceptually important and therefore should be coded at the

highest rate; in some cases, the low energy subimages need not be coded at all.

The current state-of-the-art still-image coding algorithm is an algorithm based

on subband coding techniques (Said and Pearlman 1996). This algorithm is based

on embedded zero-trees of wavelet coefficients (Sha~i ro 1993). It has shown rate-

distortion performance far superior to JPEG at lower rates.

C H A P T E R 2. IMAGE A N D VIDEO CODING FUNDAMENTALS

2.3 Quantization

The previous section described three common image compression techniques. The

outputs of all these algorithms are sets of real numbers that must be discretized if

they are to be transmitted or stored digitally. The process of discretizing a set of real

numbers is called quantization.

2.3.1 Scalar Quantization

A scalar quantizer (Gersho and Gray 1992), Q, is a many-to-one mapping from

3 + C = {yl, y2, . . . , yN), the y;'s are called output points. A scalar quantizer, Q,

assigns to each x E % an element y; from the set C. The index i of the selected output

point is transmitted or stored. For a quantizer, Q, to be optimal, it must satisfy both

the nearest neighbor condition and the centroid condition.

Given the set C of output points, the nearest neighbor condition governs the

assignment of an output point y; to an input point x. It states that:

Here d(x, y;) is the distortion incurred by representing the input point x by the output

point y;. The nearest neighbor condition defines an optimal partitioning of the real

line for the given set C in the sense of minimizing the overall average distortion.

The centroid condition governs how the output points are selected given a partition

of the real line. Let X be a continuous random variable that we wish to quantize.

Given a partition of the real line into intervals R; = x;], i = 1 , . . . , N, the

output points, y; are given by:

y; = centroid(R;) = min, E [d (X , y) lX E Ri]

This equation states that the optimal output point y; is that value of y E SIZ that

minimizes the average distortion, E[d(X, y)], for X E R;. For the special case where

d(., .) is the mean-squared error distortion measure, the output points are given by:

C H A P T E R 2. IMAGE A N D VIDEO CODING FUNDAMENTALS

Yi =E[XI X E R;]

The centroid condition defines an optimal set C of output points for a given

partition of the real line in the sense of minimizing the overall average distortion.

The intervals (xi-1, x;] are called decision regions or nearest neighbor cells.

There are two basic types of scalar quantizers, uniform and non-uniform. Uni-

form quantizers are characterized by decision regions of constant width, A. Uniform

quantizers can further be classified as midtread or midrise. Midtread quantizers have

a zero output level while midrise quantizers do not. Non-uniform quantizers have

decision regions of varying widths with regions of high probability mass consisting of

many short cells and regions of low probability mass consisting of a few wider cells.

In designing a scalar quantizer to discretize a continuous random variable X, we

have to find the output points y; and the decision regions (xi-1, xi] so that the overall

average distortion, D = E [d(X, Q(X))] , is minimized subject to a constraint on the

number of output levels N or the entropy of the output indices i. A quantizer, Q,

that minimizes the overall average distortion subject to a constraint on the number

of output levels, N, is called a Lloyd-Max quantizer. Such a quantizer is optimal

in the sense that no other quantizer, Q, with N levels or fewer can yield a lower

overall average distortion. However, there may be another quantizer with lower output

entropy that can yield a lower average distortion. For this to be possible, the entropy of

the output indices from the Lloyd-Max quantizer must be greater than the maximum

entropy as specified by the entropy constraint. It has been shown that if a constraint

is placed on the output entropy of the quantization indices, a uniform quantizer with

a large number of output levels is nearly optimal (Farvardin and Modestino 1984).

2.3.2 Vector Quantization

Unlike scalar quantizers which quantize individual samples, vector quantizers (VQ's)

(Gersho and Gray 1992) quantize a vector of samples. A vector quantizer, Q, is a

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 13

many-to-one mapping from Xk + C = {yl, . . . , y ~) , y; E !Rk. The set, C, is called a

codebook and the yi7s are called code vectors. A vector quantizer, Q, assigns to each

input vector, z E Xk, an element yi from the set C. The index i of the selected code

vector is transmitted or stored.

As is the case for scalar quantizers, necessary conditions for the optimality of a

vector quantizer, Q, are the nearest neighbor condition and the centroid condition.

These conditions are just straightforward generalizations of the one-dimensional case

and will not be stated here.

Vector quantizers, like scalar quantizers, are designed in practice using a vector

generalization of Lloyd's iterative design algorithm (Gersho and Gray 1992).

2.4 Entropy Coding

The goal of entropy coding (Gersho and Gray 1992)(Jayant and Noll 1984) is to

minimize the amount of information required to represent a discrete data source such

as quantizer output indices. The process of entropy coding is lossless so the original

data set can be reconstructed exactly.

Let X be a discrete random variable that can assume any value from the set

S = {0,1, . . . , N - 1) where N is finite. Furthemore, let pi = P[X=X;], Xi E S. The

zero'th order entropy of X, denoted by H (X) , is defined as:

H (X) is a measure of the average amount of information contained in X. More

precisely, H (X) represents the minimum number of bits required to losslessly encode

X, if each symbol is coded independently. Huffman coding (Gersho and Gray 1992)

is the most widely used lossless coding technique.

The basic idea behind Huffman coding is to assign symbols that occur with high

probability to short codewords and symbols that occur with low probability to long

CHAPTER 2. IMAGE A N D VIDEO CODING FUNDAMENTALS 14

codewords in such a way that the average codeword length in bits/symbol is mini-

mized. The codewords are selected in such a way that no codeword is the prefix of any

other codeword; this ensures that the code is uniquely decodable. It can be shown

that using Huffman coding on individual symbols, the average codeword length will

lie within 1 bit of the zero'th order entropy of the source. The average codeword

length (in a binary code) will be equal to H (X) only if all the p; are powers of 112.

In any practical implementation of a Huffman coder, the encoder and decoder

must be synchronized. This means that both the encoder and decoder must have a

copy of the same Huffman table. Synchronization can be achieved in several ways.

First, a fixed Huffman table can be used for all source signals so that a Huffman table

need only be generated once and stored at the decoder. This method will work fine as

long as the statistics of the data being coded do not change very much. Secondly, if

the number of symbols is not too large, frequency information specifying the number

of times each symbol occurs can be sent to the decoder. Finally, the probabilities

of occurrence of each symbol can be approximated using a model of the source data

and a Huffman code designed based on this model. The parameters of the model

can be sent to the decoder with minimal overhead information, and the decoder can

reconstruct the same Huffman table as was used at the encoder. Of course, for this

method to work, accurate models of the source data are required. This latter approach

was adopted in this work, and thus its use will be detailed in Section 2.4.1.

A second technique used to minimize the amount of information required to rep-

resent a discrete data set is run-length coding (Jayant and No11 1984). Run-length

coding exploits the inter-sample correlation that exists between elements of a sequence

of discrete data samples. For example, denote by { x ;) ~ , a sequence of discrete data

samples. Instead of coding each X; independently, run-length coders exploit consecu-

tive repetitions (runs) of the same symbol by specifying the length of the run followed

by the symbol in the run. Run-length coding is used in transform coding systems to

exploit runs of 0's that occur after quantization of the transform coefficients.

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 15

2.4.1 Data Modeling

It was stated in Section 2.4 that a model of the source data could be used to syn-

chronize the encoder and decoder with minimal overhead information in practical

applications of Huffman coding. The model models the probability distribution of the

real-valued data to be quantized and entropy coded; it allows the probabilities needed

by the Huffman coding algorithm to be estimated and a Huffman code designed based

on these probabilities. We now describe in detail the use of this model.

The following notation will be used in this discussion:

{Xi)E, will denote a set of real numbers corresponding to a set of data that

must be quantized and entropy coded using a Huffman code; without loss of

generality, it is assumed that the mean, p, of the original data set has already

been removed so that c;, $$ = 0.

M IXil
0 p~,, = will denote the mean-absolute-value of the data set.

0 a, will denote the standard deviation of the data set.

(xi-1, xi], i = 1 , . . . , N will denote the decision regions of a quantizer, Q, to be

used for quantizing the data set.

Consider the probability density function (pdf) of a continuous random variable

X with zero mean and standard deviation a defined by:

where

and

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 16

p(x) is called a generalized Gaussian pdf. It is completely ~arameterized by v and

a. Figure 2.1 displays p(x) for different values of v (a = 1.0).

Figure 2.1: Generalized Gaussian PDF

It can be seen from the figure that as v gets larger the pdf becomes broader;

as v gets smaller the pdf becomes peakier. Two special cases occur when v = 1.0

(Laplacian density) and v = 2.0 (Gaussian density). Because the pdf shape can be

controlled by changing v, the pdf can be used to model the distributions of source

data that have the general shapes shown in Figure 2.1. Published work (Birney

and Fischer 1995) describes the use of the generalized Gaussian pdf for modeling of

DCT and subband image data for the purposes of quantization and entropy coding.

Given a data set {x;)E,, p (x) will model the data set in the sense that the mean-

absolute-value and variance computed using p(x) will equal the mean-absolute-value

and variance of the actual data set.

For a given set of data {x;)F,, the corresponding p(x) is found by solving (Birney

and Fischer 1995)

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS

where

Solving Eq. 2.4 directly is very difficult; in practice, we can use a lookup table of v

values, {vi)f=l, and find v; such that

is minimized. A 216-point lookup table of v values spanning 0.1 to 5.0 was used in

this work.

We now have a function p(x) modeling the probability distribution of our data set.

However, we want to design a Huffman code for the output indices of the quantizer, Q,

used to quantize our data set; therefore, we need to know the probability of occurrence

of each quantizer output index. These probabilities can be estimated using the model

by numerically integrating p(x) over the decision regions x;], i = 1,. . . , N of

the quantizer. It will be shown later in this thesis that the resulting Huffman code

designed using these estimated probabilities is nearly optimal; the difference in the

output rate compared to a Huffman code designed using the actual quantizer output

index probabilities is negligible. Also, the only information needed by the decoder to

reconstruct the same Huffman code is the index i of the optimal v; and the standard

deviation of the data set.

2.5 Bit Allocation

The bit allocation problem is one of allocating a fixed quota of bits amongst a set

of N sources. Many different algorithms are available to perform this bit assignment

C H A P T E R 2. IMAGE AND VIDEO CODING FUNDAMENTALS 18

including the Breiman, Friedman, Olshen, and Stone (BFOS) (Riskin 1991) bit al-

location algorithm, the Greedy algorithm (Gersho and Gray 1992) and allocations

based on high rate assumptions (Gersho and Gray 1992). Here we describe the BFOS

bit allocation algorithm as it was used in this work.

The basic bit allocation problem can be formulated as follows:

0 Let the N sources be represented by Xi, i = 1, . . . , N and let [Xi 1 denote the

number of data points in the set Xi.

0 Let R be the.target rate (bitsldata point) specified for quantization of the X i .

Let Qj be the set of quantizers used to quantize X;, i = 1, . . . , N , j = 1, . . . , Mi.

Let B = ~ f = , pkbk where pk = l X k ' and bi is the average rate in bits/data
C,"= 1-n

point required to quantize the set Xk. B depends on the quantizers selected to

quantize each Xk.

Let D = ~ f = , pkdk where pk is defined as above and dk is the average distortion

incurred in quantizing data points in the set Xk using a given quantizer. D also

depends on the quantizers selected to quantize each X k .

The bit allocation problem is to minimize D subject to the constraint that B 5 R.

The solution provided by the BFOS algorithm is as follows:

The BFOS algorithm is given as input a rate-distortion table for each of the

N sources. For source X;, this table contains Mi entries and specifies the average

rate and distortion incurred in quantizing X; using Qj, j = 1, . . . ,Mi. With N

sources and Mi quantizers per source, there are a total of Mi different quantizer

assignments each yielding a different overall average distortion, Dj , and average rate,

Rj, j = 1, . . . , JJz, Mi. These points (R j , Dj) comprise the operational distortion

rate function of the N sources. The BFOS algorithm traces out the convex hull of the

operational distortion rate function. For a given target rate, R, it assigns quantizers

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 19

to each source such that B 5 R, and this allocation is such that no other allowable

quantizer assignments with B 5 R will yield a lower overall average distortion.

Motion Cornpensat ion

A digital video signal can be viewed as a sequence of still images called frames. Be-

cause successive frames typically exhibit high temporal correlation, instead of coding

each frame independently (intraframe coding), only the difference between the current

frame and a prediction of the current frame formed from the previous frame needs

to be coded (interframe coding). The underlying assumption is that the difference

(residual) image will have a lower information content and thus can be coded with

fewer bits. The problem then becomes one of identifying those regions in the pre-

vious frame (or frames) that most closely resemble the regions in the current frame

which are to be coded. Motion compensation is a procedure that accomplishes this

objective.

2.6.1 Standard Block Motion Compensation

Standard block motion compensation computes both motion vectors and residual

images. Block motion compensation is basically a block-matching process. It is based

on the assumption that all pixels within a block move with the same translational

motion so that each block in the current frame is just a translated version of some

block in the previous frame. This assumption is generally not valid, and hence there

will often be a significant difference between a block in the current frame and its

optimal prediction based on a block from the previous frame. These differences or

prediction errors comprise the additional information required to specify the current

block.

The standard block motion compensation procedure is as follows. The n'th frame

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 20

in a digital video sequence is partitioned into non-overlapping square blocks of di-

mension N x N2. Refering to Figure 2.23, let R, and RnF1 be the n'th and (n - 1)'th

frames in the digital video sequence. Furthermore, let the block labelled a in the n'th

frame be the block currently being processed. Assume this block is centered at pixel

coordinates (i , j) . The previous frame, is searched for the N x N block that

matches block a most closely. The quality of the match is usually measured using

either the mean squared error or the mean absolute error distortion measure. Once

the optimal matching block has been found, block b in the figure, the residual block

and motion vector corresponding to block a can be computed.

Figure 2.2: Standard Block Motion Compensation

If we assume that block b is centered at pixel coordinates (m,n), the motion vector

is computed as:

This vector represents the displacement from the block being processed to the

optimal matching block in the previous frame. The residual or displaced frame differ-

ence (DFD) is then computed as the pixel to pixel difference between the block being

' N will be called the MC block size
3Figure courtesy of Jacques Vaisey.

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 2 1

processed (block a) and the optimal matching block (block b). These motion vectors

and residual blocks are computed for each N x N block in the partitioned frame.

The set of all motion vectors for blocks in R, is called the motion field for frame n.

The image consisting of all the optimal matching blocks for On is called the prediction

image.

In practice, the search region over which a matching block in the previous frame

is sought is limited to a windowed region surrounding the block being processed. In

the case of the above example, an optimal matching block might be sought for all

offset vectors (x, y) such that - N < y < N and - N 5 x < N;i.e., for each (x, y) , the

difference between O,(i, j) and On-l (i + x, j + y) would be computed. This type of

search strategy is known as full search; it was the search strategy used throughout this

work. Other search strategies exist in the literature that provide tradeoffs between

search time and the quality of matching blocks found (Liu and Zaccarin 1993).

2.6.2 Overlapped Windowed Block Motion Compensation

The previous section described standard block motion compensation. It was seen that

standard block motion compensation is a form of memoryless predictor in which each

block in the current partitioned frame, R,, is predicted by a block in the previous

frame. The prediction of each block is memoryless; it is done independently without

regard to neighboring blocks. Consequently, if two neighboring blocks have differing

motion vectors, there will be a discontinuity in the pixel intensities at the boundary

of these two blocks in the prediction image. These discontinuities also appear in the

DFD signal which is to be coded. If block coding algorithms are used to code the DFD

signal, the discontinuities will not present a problem so long as the block size used is

the same as the MC block size. If these block sizes are different, the discontinuities will

appear within the block to be coded. Such discontinuities introduce high-frequency

energy into the block and can result in decreased coding performance (Ohta and

Nogaki 1993). This is particularly relevant to fractal coding as fractal coders make

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 22

use of spatially contracted domain blocks when coding an image in order to exploit the

inter-pixel correlation that exists between blocks of image samples at different scales.

These domain blocks are usually larger than the MC block size and will therefore

contain the discontinuities. Since fractal coders approximate blocks of contiguous

image pixels using suitably transformed domain blocks, a discontinuity in the middle

of a domain block will certainly adversely affect the quality of the approximation.

A new technique called overlapped windowed motion compensation (Auyeung et

al. 1992) (Orchard and Sullivan 1994) (Watanabe and Singhal 1991) has been in-

troduced to try and improve coding performance when there is such a motion edge

inside of a block. This process is similar to the standard block motion compensation

procedure with the exception that enlarged optimal matching blocks are windowed

and overlapped in forming the prediction image. Overlapped windowed motion com-

pensation, as implemented in this thesis, can be fo r~~u l a t ed as follows: As in standard

block motion compensation, the current frame, R,, is partitioned into non-overlapping

square blocks of dimension N x N . The optimal matching blocks for each of the N x N

blocks are found in exactly the same manner as for the standard block motion com-

pensation case, and the motion vectors are computed in the same way. The difference

lies in the formation of the prediction image. Consider once again Figure 2.2 and

suppose that block b is the optimal N x N matching block for block a. Let block c

be the 2N x 2N block consisting of block b and all pixels within f samples of block

b. Block c is represented in Figure 2.3 by the dotted line; block b is represented by

the solid line.

Note that if there are not $ image samples around block b, i.e., if block b is

located near an image border, the corresponding pixels in block c are set to zero.

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS

Figure 2.3: Example of Enlarged Optimal Matching Block

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS

Block c is then windowed using a window function w(x, y) and placed in the

prediction image so that block b overlays block a. A typical window function is the

sin2 window given below and shown graphically in Figure 2.4.

w(x, y) = sin
T(X + 0.5) , ~ (y + 0.5)

N
sin

N
, x , y = O ,..., N - 1

The sin2 window satisfies the perfect reconstruction condition. This means that if

blocks of constant pixel intensity are windowed and summed as to be described shortly,

the resulting block of pixels will remain at the same intensity.

Figure 2.4: Sin2 Window

Because the enlarged windowed optimal matching blocks are used in forming the

prediction image, the blocks will be overlapping when placed in the prediction image

in the manner described above. Pixels in the overlapped regions are summed pro-

ducing an averaging effect and thereby reducing discontinuities at the N x N block

boundaries. With the exception of N x N blocks on the borders of the image, all

pixels in the prediction image are generated by summing the weighted contributions of

four pixels. These pixels come from the enlarged windowed optimal matching block of

the N x N block in which the pixel lies and the enlarged windowed optimal matching

blocks of three neighboring N x N blocks.

C H A P T E R 2. IMAGE A N D VIDEO CODING FUNDAMENTALS

As an implementation issue, portions of the enlarged windowed optimal matching

blocks corresponding to pixels 5 samples or less from the image borders of the predic-

tion image are not windowed because these pixels do not possess enough neighboring

blocks to form a proper pixel average.

Published results (Auyeung et al. 1992) indicate that overlapped windowed block

motion compensation not only computes smoother prediction images than the stan-

dard block motion compensation technique, but the resulting DFD signals also gener-

ally have lower energies. Figures 2.5 and 2.6 depict two DFD signals, one computed

using overlapped windows and the other computed using the standard block motion

compensation technique. It is evident that the overlapped windowed block motion

compensation technique produces a much smoother DFD signal with lower average

energy per pixel (57.2 versus 66.9).

Figure 2.5: DFD Signal: Standard Block Motion Compensation

C H A P T E R 2. IMAGE A N D VIDEO CODING FUNDAMENTALS 2 6

Figure 2.6: DFD Signal: Overlapped Windowed Block Motion Compensation

CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 2 7

2.7 Performance Measures

The two most commonly used objective performance measures are the mean squared

error (MSE) and the mean absolute error (ABS). The mean squared error between

two images R1 and R2 is defined as

where Rl(x, y) and R2(x, y) are the pixel intensities at spatial coordinates (x, y) in

images R1 and R2 respectively and both images are of dimension M x N.

The peak signal-to-noise ratio (PSNR) is often used to express the mean squared

error logarithmically. The PSNR is defined as

(2. -
PSNR = 10log

~ M S E

where r is the image pixel resolution. The PSNR is used because it is independent of

the energy in the original image and thus provides a normalized measure that makes

comparison of PSNR measurements across images meaningful. Such a measure is

desirable because different images have different associated energies.

The mean absolute error is defined as

where R1, Rz, M and N are defined as above.

Objective performance measures such as the ones described above do not always

correlate well with perceived image quality. Subjective tests should also be performed

when comparing compression algorithms as the perceived effects of PSNR differences

are in general image-dependent. Typically, a 1 dB PSNR difference is perceivable by

a human viewer.

Chapter 3

Fractal Image Coding

The previous chapter described several popular image compression techniques and

the manner in which they exploit image redundancies. This chapter presents the

theoretical foundation upon which classical fractal image coding techniques are based.

Classical fractal image coders exploit correlations that exist between blocks of im-

age samples at different scales. Fractal coders assume that images belong to a special

class of images characterized by a fractal model. The images in this class all possess

the property of self-similarity or more generally, piecewise self-transformability. This

class of images is uniquely associated with a class of non-linear contractive trans-

formations in the sense that each transformation uniquely specifies an image in the

class.

Under the assumption that images to be encoded can be satisfactorily described

by a fractal model, the fractal image coding problem is one of finding that image in

the class that most closely resembles the image to be encoded. The transformation

associated with the best class image is stored as a representation of the original image.

If the information required to completely specify the encoding transformation is less

than the raw information content of the original image, the image has been effectively

compressed. The encoding transformation is called a fractal code.

Fractal source coders are lossy. The reconstructed image is only an approximation

C H A P T E R 3. FRACTAL IMAGE CODING 29

of the original image. The quality of the approximation is dependent on how well the

original image is characterized by the fractal model.

We begin this chapter by describing the mathematics of classical fractal source

coding. The chapter concludes with an overview of practical fractal image coding

algorithms.

3.1 Mathematical Background

This section defines concepts and notation that are required for a logical and thorough

treatment of classical fractal image compression. Excellent treatments of this material

can be found in (Fisher 1995a) (Barnsley 1988) (Barnsley and Hurd 1993) (Lundheim

1995).

The first concept needed is the notion of a metric space. Metric spaces are impor-

tant because real world images are elements of such a space.

Definition 1 (Metric Space) A metric space, (X, d) consists of a set X and a real-

valued function d called a metric1 that defines the distance between any two points

x, y E X.

The points x and y refered to in this definition depend on the nature of the space

X. For example, if X = {x I 0 5 x 5 l), then points in X can be individual real

numbers in [0, 11 or they may be subsets of X (i.e., intervals of the form [a, b] or (a, b)

where a 2 0, b 5 1, and a 5 b). As an example, if the function d : X x X + 3 is

defined by d(x, y) = lx - yl, then the pair (X, d) is a metric space.

Transformations defined on a metric space need to be constructed to encode real

world images.

Definition 2 (Contractive Transformation) Let (X, d) be a metric space. Let T

be a transformation defined on X. T is called a contractive transformation if there

exists a positive constant, s < 1 such that

lTechnically, to be a metric, d must satisfy certain axioms (Barnsley 1988).

CHAPTER 3. FRACTAL IMAGE CODING

s is called the contraction factor of T .

In a more general sense, the smallest s > 0 satisfying Eq. 3.1 is called the Lipschitz

constant of T .

If a transformation T is expressed as the composition of two or more transforma-

tions, the contractivity of T is just the product of the contractivities of each of the

transformations in the composition. For example, if T = w1 o w2 and sl and s2 are the

contractivites of wl and w 2 respectively, the contractivity of T is sls2. This property

is important in that even though individual transformations in the composition may

not be contractive, the overall transformation will be contractive if the product of the

individual Lipschitz constants is less than one.

Intuitively, contractive transformations reduce the distance between points in a

metric space X. For example, if a metric space (X, d) is defined by

and

then

In this example, T is a contractive transformation with contractivity 0.5.

The transformation T defined above is an example of an affine transformation in

%2. In general, affine transformations can be defined in any n-dimensional space.

CHAPTER 3. FRACTAL IMAGE CODING 3 1

Definition 3 (Affine Transformation) A n aJgine transformation, w, is a function

that consists of a linear term A and a translational term b. Mathematically,

w(x) = A x + b

where x is a point in the domain of w.

For example, if w : 313 - - 313, then A would be a 3 x 3 matrix and b would be a

3 x 1 column vector. Affine transformations can be used to rotate, reflect, scale, skew,

or move a set of points within a space X . Affine transformations are very common in

fractal image compression.

For the purposes of image compression, transformations formed from the union

of individual contractive transformations are required. This union of transformations

forms an iterated function system.

Definition 4 (Iterated Function System) Let (X, d) be a complete2 metric space.

Let w; : i = 1 , . . . , N be a set of contractive transformations defined on X . Let

s; : i = 1,. . . , N be the contractivities of wl, w2, . . . , WN respectively. Then, the metric

space X along with the w; : i = 1, . . . , N form an iterated function system (IFS).

A transformation W which maps subsets of X into subsets of X can be associated

with any IFS. This transformation W is given by:

The contractivity of W is max{s;li = 1,. . . , N). Eq. 3.3 states that if A E X, then

W(A) = wl(A) U w2(A) U . . . U wN(A). In other words, applying wl to A produces a

set All applying w2 to A produces a set A2, and so on for each w;. W(A) is then just

the union of the sets A1,A2,. . .,AN. The order in which the w; are applied to the set

'This is a technicality. In the context of image coding, the space of images is complete. For a
definition of completeness, see Barnsley (1988).

CHAPTER 3. FRACTAL IMAGE CODING 32

A does not matter because each w; is acting independently on the set A; each w; is

applied to the entire set A.

The following two theorems form the basis of classical fractal image compression

algorithms. They suggest how contractive transformations of the general form Eq. 3.3

can be used to encode and decode images.

Theorem 1 (Contraction Mapping Fixed Point Theorem) (Barnsley 1988)

Let (X, d) be a complete metric space. Let T be a contractive transformation defined on

X . Then, for any arbitrary initial point x , E X , there exists a unique point x , E X

(called the fixed point or attractor of T) to which the sequence

converges. Stated mathematically,

lim r n (x 0) = x , .
n',

Furthermore, x , is left unchanged when operated on b y T : i.e.,

This theorem is fundamental to fractal image compression. It states that every

contractive transformation T on a complete metric space X uniquely determines some

unique point x , E X regardless of the choice of x,. This means that given r , x ,

can be determined, and r can be said to encode x,. However, in the context of image

coding, the inverse problem is what is of interest.

Definition 5 (Inverse Problem) Given x , (the image to be encoded), find a con-

tractive transformation T such that x , is the attractor of r.

If such a T can be found, the Contraction Mapping Fixed Point Theorem guar-

antees that x , can be regenerated by iterating T on any arbitrary initial point x,.

CHAPTER 3. FRACTAL IMAGE CODING 3 3

Furthermore, if the information necessary to completely specify T is less than the in-

formation required to specify X,,T can be used to compress images. The only problem

that remains is finding the transformation 7- corresponding to the given image x, that

is to be encoded.

Barnsley's Collage Theorem (Barnsley 1988), a derivative of the Contraction Map-

ping Fixed Point Theorem, suggests how to go about solving this problem.

Theorem 2 (Collage Theorem) (Barnsley 1988)

Let (X,d) be a complete metric space. Let $ E X and E > 0

transformation W = uZ1 w; can be found, such that

N

d ($ 7 UW($)) 5 & 7

i=l

then,

d ($ 7 xm) 5 4 - 4 - I ,

where s is the contractivity of W and x, is the attractor of W.

If a contractive

The Collage theorem states that if a sequence of contractive transformations

w; : i = 1 , . . . , N can be found such that the distance between $ (the image to be

encoded) and W($) (called the collage of $) is less than some threshold, e , then there

is a guarantee that the distance between and the attractor of the IFS W will be no

greater than ~ (1 - s)-l . The attractor of W is an approximation of the original image

$. Theoretically, this approximation can be made as accurate as desired by finding

an appropriate IF'S W. If W($) = $, the original image ($) can be reconstructed

exactly.

Although designing an IFS such that W($) = $ for any image $ is always

possible3, the resulting IFS W will consist of a very large number of transforma-

tions, thereby resulting in little or no compression of the image. For this reason,

in ~ract ica l image compression applications, the goal is to find an IFS W such that

3 ~ u s t define mappings wi each of which maps the entire image onto a different pixel.

CHAPTER 3. FRACTAL IMAGE CODING 34

Figure 3.1: Sierpinski Gasket Image

W(+) % $. In this way, x, % 4, which means that the attractor of the IFS W will

only be an approximation of the original image.

Images that can be encoded perfectly using an IF'S W all possess, to varying de-

grees, the property of self-similarity. The image of the Sierpinski Gasket in Figure 3.1

illustrates this property.

The entire image consists of copies of itself, but at different scales. This means,

for example, that if the Gasket image were to be contracted both horizontally and

vertically by a factor of 2, the resulting image would once again be a Sierpinski Gasket.

This is the property of self-similarity that allows for the extremely efficient encoding

of images using an IFS.

The Sierpinski Gasket image can be encoded ~erfect ly using only three contractive,

affine transformations (Barnsley 1988). When these transformations are applied to the

Sierpinski Gasket image, the union of the resulting images is once again a Sierpinski

CHAPTER 3. FRACTAL IMAGE CODING

Gasket. From the earlier discussion, d [Sierpinski Gasket, W(Sierpinski Gasket)]= 0

which implies that the attractor of the IFS W is the Sierpinski Gasket.

Real-world images do not exhibit the type of global self-similarity evident in the

Sierpinski Gasket image. Furthermore, the transformations w; in an IFS must be

applied to the entire image. These two factors make designing an IFS that can encode

a general real-world image sufficiently well, while at the same time compressing the

image, almost impossible. As a result, local iterated function systems4 (Barnsley and

Hurd 1993) (Fisher 1995a) were introduced, an extension of the general IFS idea.

Local iterated function systems differ from the general IFS in that the w; are not

restricted to operating on an entire image; they can be applied to only parts of the

image. To encode an image using an LIFS, parts of the image are approximated by

transformations applied to other sections of the image with the condition that after all

transformations have been applied, the entire image has been covered (approximated).

Local iterated function systems exploit image redundancy through this property of

piecewise self-transformability. All ~ract ica l fractal image coding algorithms known

to the author are based on LIFS and generalizations thereof.

Fractal Coding Algorithms

3.2.1 Still Image Coding

All practical fractal coding algorithms known to the author used for the purposes of

encoding and decoding real world images can be described using the block diagram

shown in Figure 3.2.

Given an input image R, the first step in the encoding process is to partition R

into N disjoint blocks R; called range blocks; i.e., R = u ~ ~ R ; . Generally the range

blocks are square although any shape can be used. For each R;, a domain block

4The definitions and theorems provided in this section can also be applied to an LIFS (also called
partitioned iterated function system).

CHAPTER 3. FRACTAL IMAGE CODING

FRACTAL IMAGE ENCODER

FRACTAL IMAGE DECODER

Form encodmg
Apply transformations Uansformtlon. , Output

for each range block lnuge

Figure 3.2: Fractal Coder Block Diagram

D; (all of whose dimensions are larger than R;) and a contractive transformation w;

must be found such that the distortion incurred in aproximating R; by w;(D;) is as

small as possible. The forms of the transformations w; are defined a priori so that

minimization of the distortion simply involves computing the optimal transformation

parameters.

Adaptive partitioning algorithms are often used so that if the distortion is larger

than a pre-defined threshold, the Ri are further divided and transformations are

sought for the smaller range blocks. This partitioning continues until either a satisfac-

tory transformation is found or the smallest allowable range block size is reached. The

compression rate achievable is inversely proportional to the number of range blocks

coded.

Because of their simple structure, the most common transformations, w;, are affine

transformations that approximate a range block as the linear combination of a trans-

formed domain block and a constant offset term. A key component of the domain

block transformation is a spatial contraction operation that shrinks the domain block

D; to the same dimensions as R;. Spatially contracted domain blocks are required

to ensure that the w; are spatially contractive. The set of all spatially contracted

domain blocks for range blocks of a given size will be refered to in this thesis as a

domain pool for the range block; the source of the domain blocks (in this case, the

CHAPTER 3. FRACTAL IMAGE CODING

still image being coded) will be called a domain pool source. Using this terminology,

we can think of a range block R; being approximated by a transformation w;(D;),

where here D; is a spatially contracted domain block taken from the domain pool; the

spatial contraction operation has been removed from w; and is implicit in the domain

pool construction.

Transformations of this type have been generalized to relax the contractivity con-

straint by introducing fixed or image independent blocks in the encoding tansforma-

tion. Fractal coders of this type are called generalized fractal coders in the literature

(Gharavi-Alkkansari and Huang 1994).

The final step in the encoding process involves quantization and entropy coding of

the parameters needed to describe each w;. The type of quantizer and entropy code

used (if any) depends on the distribution of the transformation parameters. Efficient

representations are required if good rate-distortion performance is to be achieved.

The basic core of all fractal still image coding algorithms has been described.

Specific algorithms are available in the literature (Fisher 1995b) (Fisher and Menlove

1995) (Barthel et al. 1994) (Gharavi-Alkkansari and Huang 1994).

3.2.2 Fractal Video Coding

As mentioned earlier, much of the work on fractal video coding has focused on

3-D fractal block coding

fractal coding of original frames using the previously reconstructed frame as a

domain pool source and variations thereof

There have been numerous papers published on the 3-D fractal block coding ap-

proach (Barakat and Dugelay 1996) (Barthel, Ruhl and Voyk 1996) (Lazar and Burton

1994) (Li, Novak and Forchheimer 1993). The method is a straightforward extension

of the 2-D case. Instead of partitioning an image into range blocks, a slab of frames

CHAPTER 3. FRACTAL IMAGE CODING 38

(time dimension) is into range cubes and suitable transformations are

sought for these cubes in the same manner as described in the previous section.

The second method is again a generalization of the 2-D still image coding approach.

The algorithm is more flexible because there is no requirement that the encoding

transformation be contractive, since domain blocks are obtained from the previously

reconstructed frame; i.e., the domain blocks are available a priori and do not have to

generated iteratively at the decoder as in the classical 2-D still image coding approach.

In addition, decoding is non-iterative and requires only a single iteration. This method

can also be used in conjunction with motion compensation to encode only those range

blocks in the current frame for which a suitable matching block has not been found.

Implementations of this approach (and variations) are described in (Fisher, Rogovin

and Shen 1994) (Gharavi-Alkkansari and Huang 1996) (Hiirtgen and Biittgen 1993)

(Paul and Hayes 1994).

A variation of the second method is described in (Wilson, Nicholls and Monro

1994). In this method original frames are coded independently using a higher-order

affine-like transformation but no domain block searching. This general algorithm and

its variants have been used for real-time video coding.

We conclude by noting that video sequences, unlike still images, allow for the

use of more generalized fractal coders. This is due to the fact that in encoding a

given frame the encoding algorithm has access to all previously reconstructed frames

as well as any frames that can be derived from them. Consequently, there is no

contractivity constraint on the encoding transformation as the domain blocks used

in the transformation are available a priori at the decoder. Removing all constraints

from the encoding transformation makes higher fidelity encodings possible. Coders of

this type are not fractal in the classical sense; however, they do exploit the property

of piecewise self-transformability among video sequence frames and thus they are still

called fractal coders.

CHAPTER 3. FRACTAL IMAGE CODING 39

The remainder of this thesis investigates another possible approach to fractal video

coding exploiting both classical and generalized fractal coding methods. Specifically,

we investigate direct fractal coding of displaced frame difference signals.

Chapter 4

Fractal Coding of DFD Signals

This chapter presents a detailed description and analysis of all fractal video coding

algorithms implemented in this work. The two classes of coders considered are the

affine transform and OBIFS coders. Simulation results quantifying the performance of

these coders for direct fractal coding of displaced frame difference signals are presented

in Chapter 5 . The chapter begins by presenting the proposed fractal video coding

model.

4.1 Proposed Fractal Video Coding Model

Figure 4.1 illustrates the fractal video coding model proposed for this work. The basic

features of the model are a motion compensation block, a fractal image encoder block

and a switch that allows one of three possible images to be selected as a domain pool

source. All fractal video coders implemented in this work comprise the fractal image

encoder block.

The fractal image encoder block has two inputs, the DFD signal to be encoded

and the image to be used as a domain pool source, and one output, the reconstructed

DFD signal. For a given video sequence, the DFD signal generated depends on the

motion compensation algorithm used. For a given DFD signal, the quality of the

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS

I motion vectors

Motion Fractal
frame (n) Compensation Image

previously reconstructed frame(n-1) I

previously reconstructed DFD(n-I)

Domain Pool Source

Figure 4.1: Fractal Video Coding Model

reconstructed DFD signal depends on the domain pool source selected. Furthermore,

the domain pool source selected has consequences for the encoding transformation

and resulting parameter distributions. In general, for a given video sequence, the

quality of the reconstructed DFD signal depends on both the motion compensation

algorithm and the domain pool source selected. All of these issues will be discussed

and analyzed later.

It should also be noted at this time that the mean-squared-error was used as the

distortion measure throughout this work.

4.2 Affine-Transform-Based Fractal Coders

This section presents a detailed description and analysis of the affine-transform-based

fractal coders implemented in this work. All descriptions are made with respect to

the proposed fractal video coding model and are an extension of the general overview

presented in Section 3.2.

4.2.1 Domain Pool Construction

Affine-transform-based fractal coders approximate a range block R; as the linear com-

bination of a transformed spatially contracted domain block taken from the domain

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 42

pool of R; and a constant offset term'. With reference to Figure 4.1, we note that

there are three possible domain pool sources: the residual2 image being coded (RBC),

the previously coded residual image (PCR) and the previously coded original frame

(PCO). The RBC domain pool source corresponds to classical fractal coding of the

DFD signal. The PCR and P C 0 domain pool sources are alternative domain pool

sources that place no constraints on the encoding transformation and therefore make

higher fidelity encodings possible.

The spatial contraction operators that can be used in forming a domain pool

depend on the domain pool source. Specifically, if the domain pool source is the

RBC, the spatial contraction operator must be spatially contractive. The PCR and

P C 0 domain pool sources lace no constraints on the spatial contraction operator as

the domain blocks are available a priori at the decoder. These concepts will be made

clearer shortly.

The three spatial contraction operators considered in this work were decimation

by a factor of two in each dimension3 Furthermore, a factor of two is most often used

in published work. by averaging (DECIM-BYAVG) (Lundheim 1995), subsampling

(SUBSAMP) (Lundheim 1995) and no contraction (NO-CONTRACTION); these op-

erators were used because they are the most often used in published work. These

operators (as implemented) can be described mathematically using the following no-

tation. Let

0 OD, denote a 2N x 2M domain block with upper left corner at coordinates (1,l).

0 Di denote the N x M domain block resulting from applying the indicated spatial

contraction operator to OD,

0 l < x < N a n d l < y < M

'The domain pool can be made adaptive (Jacquin 1992), but to ensure the best coding results,
the entire domain pool was used in this work for coding each R;

2Displaced frame difference signals are also called residual images.
3Any factor could be used, but there is no reason why any other factor should give better results.

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS 43

The DECIMBYAVG operator generates each pixel in D; by averaging over four

neighboring pixels in OD,. Mathematically,

The SUBSAMP operator generates each pixel in D; by simply taking every second

pixel both horizontally and vertically from OD,,

The NO-CONTRACTION operator is the identity operator. No spatial contrac-

tion is performed. The N x M domain pool block D; is obtained by directly extracting

an N x M block from the domain pool source.

Of the three spatial contraction operators implemented, only the DECIMBYAVG

and SUBSAMP operators are spatially contractive; therefore, if the domain pool

source is the RBC, only these operators can be used in forming the domain pool.

Given a domain pool source and an appropriate spatial contraction operator, the

domain pool construction procedure can now be described. Without loss of generality,

we assume that we are constructing a domain pool for range blocks of dimension

N x M . Furthermore, it is assumed that the spatial contraction operator being used

is DECIMBYAVG or SUBSAMP.

The construction begins by positioning a window of dimension 2N x 2M4 in the

upper left corner of the domain pool source (coordinates (1 , l)) . The spatial contrac-

tion operator is then applied to that section of the domain pool source covered by the

window and the resulting block (provided it is not a zero-intensity block) is placed in

the domain pool . The window is then moved horizontally by a displacement Ax and

the above procedure is repeated. When the window can no longer be moved horizon-

tally without extending outside the domain pool source boundaries, it is repositioned

at coordinates (current-row + Ay, 1) where Ay is the vertical window displacement.

41f the spatial contraction operator was NO-CONTRACTION, the window size would be N x M.

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS 44

When the window can no longer be moved horizontally or vertically without extend-

ing outside the domain pool source boundaries, the construction is complete. This

procedure is repeated for all allowable range block sizes.

In this work, as is the case in most published work, only one spatial contraction

operator was used per coder in forming the domain pool5. Therefore, given an N x M

domain pool source, an L x R window (whose dimensions will depend on the range

block size and spatial contraction operator used) and horizontal and vertical grid

displacements Ax and Ay, the maximum number of domain blocks in the domain

pool, Nd, can be computed as

M - R N - L
Nd = [Ax + + 11

This implies that [logq(Nd)l bits are required to specify which domain block was

used in the encoding of a given range block (assuming no entropy coding).

4.2.2 Part it ioning Algorithms

Adaptive partitioning algorithms are used to try and improve image fidelity by allow-

ing larger range blocks for which a satisfactory transformation has not been found to

be split into smaller blocks and transformations sought for these smaller blocks. It

is desired to find a partitioning algorithm that maximizes the number of large range

blocks coded while at the same time maintaining image fidelity.

The three partitioning algorithms considered in this work were standard quadtree

(Fisher 1995b), horizontal-vertical (HV) (Fisher and Menlove 1995) and partial quadtree

(Barthel and Voyk 1994). Each of these algorithms (as implemented) will be described

assuming that an N x N range block R; is being encoded. Specifically, we consider

N = 8, as 8 x 8 range blocks (parent blocks) were the largest range blocks allowed;

the smallest range blocks allowed were 4 x 4 range blocks (child blocks). Larger range

5There is no reason why the use of more than one spatial contraction operator should yield better
results at the same rate.

1x1 denotes the smallest integer greater than x.

CHAPTER 4. F R A C T A L CODING OF DFD SIGNALS 45

blocks were not considered a,s it is very difficult to find good matches for such range

blocks even when coding still images.

The following notation will be used in the algorithm descriptions. Let

Tsplit denote the splitting-threshold

w;(D;) denote the minimum-distortion approximation of R;

d(R;, w;(D;)) denote the distortion incurred in approximating Ri by w;(D;)

The quadtree algorithm simply splits R; into 4 disjoint 4 x 4 range blocks if

d(R;, w;(D;)) > Tsprit. Each of these 4 x 4 range blocks is then encoded separately as

no further splitting is allowed.

If d(R;, w;(D;)) > Tsplit, the HV partitioning algorithm proceeds in the following

manner. R; is temporarily split vertically into 2 disjoint 8 x 4 blocks and the variance

of these blocks is computed. Let these variances be denoted by 012 and a;. Next, R;

is temporarily split horizontally into 2 disjoint 4 x 8 blocks and the variance of these

blocks is also computed. Denote these variances by a: and 02. The final decision

on how to split R; is made by comparing the sum of the computed variances. R; is

split vertically if a: + 022 < 632 + a:; otherwise it is split horizontally. Each 4 x 8 or

8 x 4 block can be split further if the distortion incurred in approximating the block

is greater than TSplit. However, the manner in which these blocks are split is known

a priori because the smallest allowable range block side dimension is 4. This implies

that if the blocks are split they will be split into 2 disjoint 4 x 4 blocks; no further

splitting is allowed.

In the partial quadtree algorithm, the distortion incurred in approximating R;

by w;(Di) is computed over each quadrant (4 x 4 blocks). If 2 or more quadrants

have distortions less than TSplit, the transformation w; is stored and the remaining

quadrants for which the distortion is greater than TSplit are coded separately. If fewer

than 2 quadrants have distortions less than TSplit, the transformation w; is abandoned

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 46

and R; is split into 4 disjoint 4 x 4 blocks each of which is coded separately; no further

splitting is allowed.

The overhead required to specify how a range is split depends on the particular

partitioning algorithm used. The quadtree algorithm has the least amount of overhead

requiring only one bit to indicate whether or not the 8 x 8 range block was split. The

HV algorithm is slightly more complex and requires two bits of overhead; one bit to

indicate whether or not the 8 x 8 range block was split, and if the block was split,

one bit to indicate whether the split was horizontal or vertical. The partial quadtree

algorithm requires the most overhead; one bit is required to indicate whether or not

the 8 x 8 range block was split, and if the block was split, 4 bits are required to indicate

the nature of the split. To see where this 4-bit overhead comes from, consider that

with 4 quadrants, there is one way of selecting four 4 x 4 blocks; there are 4 ways of

selecting three 4 x 4 blocks; there are 6 ways of selecting two 4 x 4 blocks. Therefore,

bits.

4.2.3 Encoding Transformations

In all of the affine-transform-based fractal coders implemented, range blocks were

classified into one of three classes with the encoding transformation dependent on the

block class. In this section, the encoding transformations and quantization consid-

erations for the uniform and non-uniform block classes will be described. The third

range block class is trivial and will be defined in Section 4.2.4 when the complete

encoding procedure is outlined.

To simplify this discussion, we introduce the following vector notation. Let

0 r denote the range block R; to be encoded

0 i. denote an approximation of r

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS

{dj}f=l denote the domain pool for the range block r

o denote a constant vector of all ones

0 T,,, denote the pre-defined mean-squared-error threshold

The vector dimensions are equal to the number of pixels in the block they represent.

Throughout this section, we will assume that the range block R; being encoded has

dimensions N x M. Furthermore, we define K = MN; this implies that r E gK. The

dimensions of all other vectors can be deduced from the dimension of r.

Uniform

A range block r is classified as a uniform block if its variance is less than or equal

to T,,,. Uniform blocks were approximated by their mean, pT, i.e.,

By approximating a uniform block by its mean, we are assured that the resulting

mean-squared-error will be less than T,,,.

After encoding all uniform range blocks r in the DFD signal, we are left with a set of

real numbers (the range block means) that have to be quantized. Therefore, consider

what happens when we quantize y = p, using a quantizer Q. Let Q(y) = y - Ay

where Ay is the quantization error incurred in quantizing y using the quantizer Q.

The quantized approximation of r, F,, can be written as

f, = Q(y)o = (y - Ay)o.

Let e be the error vector resulting by approximating r by f,. Mathematically,

A e = r - r,.

Substituting for f, using Eq. 4.2, we get

e = (r - yo) + Ayo.

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 48

The bracketed term in this equation is the collage error, e,, for uniform range blocks

r; the second term is the error due to quantization of the range block mean. The

squared error, eTe, can thus be expressed mathematically as

Dividing by K , we obtain the final expression for the mean-squared-error incurred in

approximating a uniform range block r

Let D, = (Ay)2 represent that part of the mean-squared-error attributed to quan-

tization; D, will be used later when the quantization and entropy coding strategies

implemented in this work are described.

Non-uniform

A range block r is classified as a non-uniform block if its variance is greater than

T,,,. Each non-uniform block is approximated as a linear combination of a trans-

formed spatially contracted domain block and a constant offset term. The transfor-

mations applied to the spatially contracted domain blocks are called isometries; these

transformations do not alter the pixel intensities of the block; rather they simply

shuffle the pixels within a block. There are eight possible ways of mapping an N x N

block R onto itself without scrambling the pixels. These are described below using

the terminology adopted by Jacquin (1992). In each case, 1 5 x < N , 1 5 y 5 N .

2. Orthogonal Reflection About Mid-Vertical Axis:

3. Orthogonal Reflection About Mid-Horizontal Axis:

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS

4. Orthogonal Reflection About First Diagonal (y = x) :

R (X , Y) = R (Y , X)

5 . Orthogonal Reflection About Second Diagonal (y = N - x + 1):

R (x , y) = R (N - y + l , N - x + 1)

6. Rotation Around Center of Block (+90•‹counter - clockwise):

R (x , Y) = R(y , N - x + 1)

7. Rotation Around Center of Block (+180•‹counter - clockwise):

8. Rotation Around Center of Block (+90•‹clockwise):

R (x , y) = R (N - y + 1 , ~)

If the spatially contracted domain block is rectangular, only isometries 1, 2, 3,

and 7 can be used as only these isometries map rectangular blocks onto rectangular

blocks of the same dimensions. Therefore, for a square range block 3 bits are needed

to specify which of the 8 isometries was used; for a rectangular range block only 2

bits are required.

The two encoding transformations considered for encoding non-uniform blocks can

be expressed mathematically as

and

where d is a transformed spatially contracted domain block from the domain pool of

r, pd is the mean of d and a l l a2, pl, P2, and a , E 92. a , is a constant specified by

the encoding algorithm.

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 5 0

Eq. 4.7 is the standard affine transformation used in fractal image coding; it will be

refered to as the standard affine transformation throughout the remainder of this the-

sis. A sufficient condition for this transformation to be contractive is that Icrll < 1.0.

However, in practice (Fisher 1995b), slightly larger values are used and the overall

image transformation still converges (see Section 3.1). Values of crl in the range

[-1.1, 1.11 were used in this work. Note that this contractivity condition only applies

if the domain pool source is the RBC. a1 is unconstrained if the domain pool source

is the PCR or the PCO.

Eq. 4.8 was introduced by (Barthel et al. 1994) as a means of decorrelating the

a 2 and P2 parameters (this will be explained later). It is called a modified luminance

transformation in the literature, and it will be refered to as such throughout the

remainder of this thesis. This transformation is used for a very specific purpose in

this work. Its use is restricted to the PCR and P C 0 domain pool sources, and thus,

there are no constraints on any of the transformation parameters. It is not used for

the RBC domain pool source because the distributions of the resulting transformation

parameters are such that its use is not required (this will be explained later).

Both transformations span the same space and therefore produce the same dis-

tortion in the absence of quantization. However, the two transformations differ in

the parameter distributions they generate; the importance of this observation to this

work will be made clear in Section 5.2.2.

Given a non-uniform range block r and a transformed spatially contracted domain

block d, we want to find cr and ,B such that

is minimized.

Using the orthogonality principle of optimal least squares estimation, the a, P pair

minimizing Eq. 4.9 can be found by solving the following two equations for a and ,8

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS

and

where 0 is the zero-vector.

Substituting Eq. 4.7 into Eqs. 4.10 and 4.11 and solving for al and P1 we find that

the optimal all pl pair for the standard affine transformation is given by

and

where K is the dimension of r, pd is the mean of d and p, is the mean of r.

Substituting Eq. 4.8 into Eqs. 4.10 and 4.11 and solving for a2 and P2 we find that

the optimal a 2 , ,B2 pair for the modified luminance transformation is given by

and

where I(, a,, pd and p, are as described previously.

It can be seen that a1 = a 2 . However, ,Bl and ,B2 differ; the optimal P1 for the

standard affine transformation depends on al whereas the optimal p2 for the modified

luminance transformation has no dependance on az. Both optimal /3 values depend

on the range block and spatially contracted domain block means.

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 52

Given an encoding transformation and a non-uniform range block r to encode,

Eq. 4.9 is minimized for all possible transformed spatially contracted domain blocks

in the domain pool of r . The domain block d with associated isometry, and the

corresponding a, P pair yielding the minimum distortion form the optimal encoding

transformation for r.

The resulting a and /3 values for each non-uniform range block r must next be

quantized. Consider what happens when a and P are quantized using quantizers,

Qa and Qp. Let Q,(a) = a - A a and Qp(P) = P - A p where A a and A p are

the quantization errors incurred in quantizing a and P respectively. The quantized

approximation of r, fq , for the standard affine transformation can be written as

and for the modified luminance transformation.

Let e be as defined in Eq. 4.3. Substituting for fq using Eqs. 4.16 and 4.17, we

get that

e = (r - a l d - Plo) + (Aald +APlo)

for the standard affine transformation, and

for the modified luminance transformation.

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS

The first term in each of the above expressions is the collage error, e,, result-

ing from encoding the non-uniform range block r with the corresponding encoding

transformation. The second term is the error due to quantization of the a and P
parameters.

Using the fact that the optimal a, /3 pair satisfy Eqs. 4.10 and 4.11, the final

mean-squared-error incurred in aproximating a non-uniform range block r by i, can

be expressed mathematically as

for the standard affine transformation and as

for the modified luminance transformation where a: is the variance of d and all other

parameters are as previously defined.

Let D, = (Aa2)2aj and Dp = (A/32)2 represent that part of the mean-squared-

error due solely to quantization of the a 2 and P2 parameters when the modified lu-

minance transformation is used as the encoding transformation; D, and Dp will be

used later when the quantization and entropy coding strategies implemented in this

work are described.

This section can be summarized by noting that the final distortion incurred in

quantizing a range block r is made up of the sum of two separate components. The

first component, the collage error, is due to mismatches between the assumed fractal

model and the actual DFD signal being coded. Even in the absense of quantization,

the collage error will never be zero unless the DFD signal being coded can be exactly

described by our proposed fractal model. This is a characteristic feature of most

fractal coding agorithms; there is a lower limit to the minimum distortion that can

be achieved even in the absence of quantization. The second component of the final

distortion is due to quantization of the transformation parameters. This component

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS

can be minimized (at a given rate) by the use of efficient quantization strategies.

These strategies depend on the distributions of the encoding parameters; the strate-

gies implemented in this work will be described in Section 5.2.2 when the parameter

distributions are analyzed.

4.2.4 Encoding Procedure

This section outlines the complete encoding procedure for all affine-transform-based

fractal coders implemented in this work. The proposed fractal video coding model

shown in Figure 4.1 will once again be used as our reference.

Let the video sequence to be encoded be represented by {RO, R1,. . . , Q N) where

R; is the i'th frame in the video sequence, and N + 1 is the total number of frames.

For all affine-transform-based fractal coders implemented, the following encoder

parameters were specified a priori:

the motion compensation algorithm, including MC block size and search size

the domain pool source with associated spatial contraction operator and hori-

zontal and vertical grid displacements Ax, Ay

the partitioning algorithm

the encoding transformation to be used for encoding non-uniform blocks

the mean-squared-error threshold, T,,,

Given that the above parameters have been specified, the encoding procedure can

be described. The encoding procedure can be divided into two parts: DFD signal

generation and fractal encoding of the resulting DFD signal.

DFD signal generation pertains to the motion compensation block of the proposed

fractal video coding model. At start-up, the motion compensation block takes as input

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS 55

Ro and RI7 and produces at its output a DFD signal and a set of motion vectors.

Subsequent actions depend on the domain pool source. If the domain pool source is

the RBC or the PCO, the output DFD signal is encoded. However, if the domain

pool source is the PCR, the output DFD signal, which is the first one generated, is

not coded; rather it is used as a domain pool source for the next DFD signal output

by the motion compensation block. This issue only occurs on start-up as it is required

to produce a first residual image if the PCR is the domain pool source. Under steady

state conditions, the motion compensation block will take as input the current original

frame and the previously reconstructed original frame and it will produce at its output

a DFD signal to be encoded and a set of motion vectors.

The second part of the encoding procedure is fractal encoding of the output DFD

signal. Independent of the partitioning algorithm, the largest allowable range block

size (as noted earlier) was 8 x 8, and the smallest allowable range block size was

4 x 4. The first step in the encoding process is to produce a domain pool for each

of the allowable range block sizes using the specified domain pool source and spatial

contraction operator. The DFD signal is then partitioned into disjoint 8 x 8 range

blocks R; and for each R; the following actions are taken:

If the average energy-per-pixel is less than T,,,, R; is considered coded as the

motion compensation algorithm has found a good match. In this case, simply

approximating R; by a block of zero-intensity yields a mean-squared-error less

than T,,,. It should be noted that this step was only performed for the largest

allowable range blocks (8 x 8 blocks).

If a good match has not been found by the motion compensation algorithm, R;

is classified as uniform or non-uniform and coded accordingly. R; is classified

as uniform if its variance is less than T,,,; otherwise, it is classified as non-

uniform. If R; is classified as uniform, it is simply approximated by its mean. If

7For all initial simulations, original frames were used. When final comparisons were made to a
reference DCT-based coder (later), coded frames were used at start-up.

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 56

it is classified as non-uniform, Eq. 4.9 is minimized for all possible combinations

of isometries and spatially contracted domain blocks from the domain pool of

R;. If the resulting minimum distortion is less than T,,,, Ri is considered coded;

otherwise, Ri is split according to the specified partitioning algorithm and the

entire process is repeated.

After all range blocks Ri have been encoded, there are three sets of parameters

that must be quantized before an output bit stream can be produced; namely, the

set of all y values called absorb8 parameters, the set of all CY values called alpha

parameters and the set of all p values called beta parameters. The quantization and

entropy coding strategies for these parameters will be described in Section 5.2.2.

4.2.5 Decoding Procedure

The previous section discussed the encoding procedure for affine-transform-based frac-

tal coders. This section outlines the decoding procedure.

The decoder has the following information available a priori:

0 the motion compensation algorithm and MC block size

0 the domain pool source and associated spatial contraction operator

0 the horizontal and vertical grid displacements Ax, Ay

0 the order in which the R; were encoded; this ordering never changes and is

defined a priori

0 the partitioning algorithm

0 the form of all encoding transformations

all allowable isometries

'Adopting the terminology of Jacquin (1992) who called them absorption parameters.

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS

Furthermore, if the transformation parameters are quantized and entropy coded,

the decoder will have knowledge of the quantization and entropy coding strategies

used. If the transformation parameters are not quantized, knowledge of the above

information is sufficient to reconstruct the coded DFD signal.

The exact decoding procedure depends on the domain pool source. If the domain

pool source is the RBC, decoding is governed by the contraction mapping fixed point

theorem. Specifically, we start with an initial zero-intensity image R,, and iterate

the encoding transformation W = uE1 w; on R,. Since the decoder knows the gen-

eral form of each range block transformation, w;, reformulating the transformations

is trivial. The ~rocedure simply consists of acquiring the necessary transformation

parameters from the encoded output file or bit stream (if quantized coders are used).

The transformations, w;, are then applied to 0, just as in the encoding procedure.

20 iterations were used to reconstruct encoded DFD signals when the domain pool

source was the RBC.

If the domain pool source is the PCR or PCO, decoding is non-iterative and

requires only a single iteration as all domain blocks are available a priori.

The resulting reconstructed DFD signal is then added to the previously recon-

structed original frame (using the motion vectors) to form an approximation of the

current frame. This procedure is repeated until the entire video sequence has been

decoded.

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS

Orthogonal Basis IFS Coders

The previous section considered the use of affine-transform-based fractal coders for

direct fractal coding of DFD signals. Range blocks, r, were approximated as a linear

combination of a transformed spatially contracted domain block, d, and a fixed block,

o. It was mentioned that using such coders the collage error could not be reduced to

zero (even in the absence of quantization) unless the DFD signal being encoded could

be exactly described by the corresponding fractal model.

In this section, a higher-dimensional encoding transformation is presented for di-

rect fractal coding of DFD signals. This transformation has the property that in the

absence of quantization, the collage error is zero. These coders thus have the potential

for higher fidelity encodings as in the absence of quantization perfect reconstruction

is achieved. The resulting class of coders are called orthogonal basis IFS (OBIFS)

coders; they were first introduced by Vines (1995).

To simplify the discussions in this section, the following notation will be used

throughout:

R will denote the DFD signal being encoded

an N x N range block R; being encoded will be denoted by the column vector

r; where li' = N x N and ri E XK

4.3.1 Overview

Orthogonal basis IFS coders are essentially transform coders in which most of the

basis vectors are generated from the image being encoded. With reference to our

proposed fractal video coding model, there are three possible sources for these basis

vectors: the RBC, the PCR and the PCO.

Orthogonal basis IFS coders approximate a range block, r;, as linear combination

of Ii' basis vectors.

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS

The basis vectors comprise two distinct sets: a set of Nd image-dependent basis

vectors {bi)zl and a set of Nt fixed (image-independent) basis vectors { f j) z l where

Ii' = Nd + N j . The image dependent basis vectors are generated from the specified

domain pool source (to be explained later). Furthermore, the basis vectors are made

orthonormal so that computation of the a; and ,Bj is simplified. It is important to

note that if the RBC is being used as the domain pool source at least one fixed

basis vector is required to ensure that the encoding transformation is non-linear and

therefore possesses a non-zero fixed point (if contractive).

As in transform coding, the main goal of the orthogonal basis IF'S idea is to find

a set of basis vectors that result in maximum energy compaction so that each range

block can be approximated by as few basis vectors as possible.

In implementing orthogonal basis IFS coders, the following issues arise:

selecting the fixed basis vectors f j

generating a set of desirable image dependent basis vectors b;

allocating bits, quantizing, and entropy coding the transform coefficients

These issues, as they pertain to this work, are addressed in subsequent sections.

4.3.2 Basis Generation Methods

In this work, only one fixed basis vector, f l , was used. This vector was the dc-vector

given by

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 6 0

where 1 1 fl I [= 1. It is used to represent the dc component of a block. Generally,

any vectors can be used as fixed basis vectors; it was decided to use only fl so that a

direct comparison could be made to a reference DCT-based coder.

To generate the remaining Ii'- 1 image-dependent basis vectors, b;, two algorithms

(basis generation methods) were considered. The first algorithm known as the covari-

ance method was introduced by Vines (1995). The second algorithm, introduced by

the author for comparative purposes, will be called the centroid method. This algo-

rithm is a variant of an algorithm proposed by Vines (1995). Both algorithms attempt

to generate, from a specified domain pool source, a set of Ii' - 1 basis vectors b; that

will most efficiently represent the set of range blocks to be encoded.

Let {ri}zl be the set of range blocks obtained by partitioning the DFD signal, 0,

to be encoded. Independent of the basis generation method used, the first step is to

(1) M remove from each r; their projection onto fl . Thus, a new set of vectors {r; are

produced where

At this point, the covariance and centroid algorithms proceed in different manners.

The covariance algorithm proceeds as follows:

1. For each rll), compute the following

and select as the optimal basis vector direction for bl that rll) for which the

above quantity is maximized; store this vector as t l .

(1) M (2) M 2. Remove from {r;);=, their projection onto t l ; a new set of vectors {ri);=, is

produced.

(K-1) M 3. Repeat the above steps with { r j 2) } ~ , and so on until a final set {ri

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 61

of vector is produced; at this time, the optimal basis vector directions for

bl, b2, . . . , bK-1 will all be determined.

Based on the above algorithm description, we note that the covariance method

selects at each stage that vector in the set which has the maximum correlation with

all other vectors. The output of the above algorithm is a set of Ir' - 1 orthogonal

direction vectors ti, j = 1, . . . , I< - 1. The way these direction vectors are used to

form a set of basis vectors will be described shortly after the centroid algorithm is

outlined.

The centroid algorithm proceeds as follows:

(1) M 1. For a set of vectors {ri the corresponding optimal basis vector direction,

tl is computed as

tl is simply that vector, c , that minimizes xK1 (1 ril) - c / I 2 .

(2) M 2. Remove from {rjl))zl their projection onto tl ; a new set of vectors {ri Ii=, is

produced.

3. Repeat the above steps with { r 2 } and so on until a final set {r!"-')}~,

of vector is produced; at this time, the optimal basis vector directions for

bl, b2, . . . , bK-l will a11 be determined.

The centroid algorithm selects at each stage the mean of the vectors in the set. The

output of the centroid algorithm is also a set of direction vectors tj, j = 1,. . . , Ii' - 1.

Independent of the basis generation method used, we are left with a set of K - 1

direction vectors tj. Representing these direction vectors directly would require a

very large number of bits (K2 times the number of bits required to represent each

component); therefore, to efficiently represent the direction vectors ti, domain blocks

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS 6 2

(from the domain pool) are sought which most closely resemble (to be explained

shortly) ea,ch tj. The overhead required to specify this encoding transformation is

thus (I< - l)Nd bits where Nd was defined in Section 4.2.1. The overhead simply

consists of specifying which domain blocks best approximate the direction vectors.

Continuing on, the next step involved in generating the basis is the formation of

a domain pool. The domain pool is constructed as described in Section 4.2.1.

Given a domain pool consisting of domain blocks, d , generated from the specified

domain pool source, the basis generation procedure continues as follows:

1. Starting with t l , find that vector, d, in the domain pool which has the largest

component in the direction of tl; i.e., find d such that

is maximized. The corresponding optimal vector d is the basis vector bl . d is

removed from the domain pool so that it will not be selected again.

2. Repeat step 1 for t2, t3, . . . , th.-1.

After this stage of the basis generation procedure, we are left with a fixed basis

vector, f l , and li' - 1 image dependent basis vectors bj, j = 1 , . . . , K - 1. The

standard Gram-Schmidt orthogonalization algorithm was then applied to the ordered

set of vectors [fi, bl, . . . , bKdl] to produce a complete set of orthonormal basis vectors.

Let A denote the matrix whose columns are the resulting set of orthonormal basis

vectors.

4.3.3 Quantization and Entropy Coding

Given that R has been partitioned into disjoint range block r; E XK and given the

matrix A, the quantization and entropy coding strategy utilized will now be described.

The method implemented was based on the JPEG standard (Pennebaker and Mitchell

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS

1993) for quantizing and entropy coding the DCT transform coefficients. This method

was selected because it is a very efficient method for quantizing and entropy coding

transform coefficients, and it allows a direct comparison to a reference DCT-based

coder to be made.

The quantization process begins by computing the transform coefficients, xi, for

each r;. Since A is orthonormal, the x; are easily computed as

The i'th coefficients from each xi are then grouped into a set of K sources. For

each of the K sources, the following actions are taken:

Let A,;, = 1 and A,,, = 128. For each A in the range A,;, to A,,, in

increments of 1, quantize the source coefficients with a uniform quantizer of

step size A. For an input point x, the quantized output point, Q (x) , is the

integer part of

For each quantizer designed, compute the rate as the entropy of the output

quantization indicies and the distortion as the average distortion incurred in

quantizing the source coefficients. Form a corresponding rate-distortion table.

After performing the above steps on all K sources, the BFOS algorithm is per-

formed to determine the optimal quantizer step sizes for each of the K sources based

on a specified target rate; this is not quite optimal as the run-length coding proce-

dure (to be described shortly) was not included here. Note that all the step sizes are

constrained to be integers as in the JPEG standard; furthermore, all the quantized

coefficients are integers. The values specified for A,;, and A,,, are not part of the

JPEG standard; they were used in all simulations to allow a wide range of rates to

be achieved.

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS 64

At this point we have a set of quantized transform coefficients corresponding to

each r;; denote these quantized transform coefficient vectors by x;P where all the

components of these vectors are integers. The entropy coding method adopted is that

proposed in the JPEG standard; all coefficients are treated as AC coefficients and

entropy coded accordingly.

Adopting the same terminology used in the JPEG standard, we define the following

terms:

RRRR represents the length of a run of zeros before a non-zero coefficient is

reached; the maximum run length is 15.

SSSS represents the number of additional bits required to represent a non-zero

coefficient; SSSS values ranging from 1 to 9 were used in this implementation.

EOB denotes end-of-block; it is used to specify that all remaining coefficients in

the block are zero

The SSSS values also represent categories of transform coefficients where the n'th

category, n = 1 , . . . ,9 , consists of the ordered set of integers

and n is the number of bits required to specify an integer in the set (the n'th category

contains 2" integers). For example, for n = 3 the n'th category consists of the ordered

set of integers

There are 8 elements in the above set; therefore, to specify any particular element,

3 bits are required.

Using the terminology defined above, the basic features of the entropy coding

procedure will now be described. The goal of the algorithm is to produce an entropy

CHAPTER 4. FRACTAL CODING O F DFD SIGNALS 65

code for so-called RUN-SIZE symbols where a RUN-SIZE symbol is obtained from

RRRR and SSSS. A RUN-SIZE symbol can be thought of as an eight-bit number with

the upper four bits comprising RRRR, and the lower four bits comprising SSSS. These

RUN-SIZE symbols are generated for each block of quantized transform coefficients

x;9, and a Huffman code designed using the actual frequency of occurrence of each

symbol.

Suppose we are processing a particular vector x;9 of quantized transform coeffi-

cients. The basic algorithm for constructing RUN-SIZE symbols for such a vector

proceeds as follows. Start from the first coefficient and move through the vector un-

til a non-zero coefficient is reached. The number of zero coefficients before reaching

the non-zero coefficient is RRRR. SSSS is obtained by determining in which of the

nine categories the non-zero coefficient belongs. The values of RRRR and SSSS thus

define the RUN-SIZE symbol; following the RUN-SIZE symbol, SSSS additional bits

are required to specify exactly which coefficient in the selected category the non-zero

coefficient corresponds to. The algorithm proceeds in this manner until the end of

the vector is reached.

There are two special cases in the above procedure that must be described. First,

the maximum run length allowed is 15; therefore, if a run of more than 15 zeros occurs,

the zeros are processed as runs of length 15 followed by a zero. This implies RRRR

equals 15, SSSS equals 0, and no additional bits are required after the RUN-SIZE

symbol. The second special case occurs when all the remaining coefficients in the

vector are zero. In this case, RRRR equals 0, SSSS equals 0 and no additonal bits

are required after the RUN-SIZE symbol. This RUN-SIZE symbol is denoted EOB

as described earlier.

The above procedure is repeated for all vectors x;9 of quantized transform coef-

ficients. A histogram of all the generated RUN-SIZE symbols is then formed and a

Huffman code is designed for these symbols. The output bit stream thus consists

(for each RUN-SIZE symbol in the block) of the codeword for the RUN-SIZE symbol

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS 66

followed by any additional bits required to exactly specify the non-zero coefficient

terminating the run of zeros.

The following overhead was required to implement this algorithm:

a [log,(A,,, - A,,, + 111 bits to specify the optimal step size for each of the Ii'

sources

a the frequency of occurrence of each of the RUN-SIZE symbols

The frequency information was output in the following way. If the frequency of

occurance of a RUN-SIZE symbol was non-zero a 1 was output followed by a 13 bit

number representing the frequency information; otherwise, a 0 was output.

4.3.4 Encoding Procedure

This section outlines the complete encoding procedure for all OBIFS coders imple-

mented in this work. The proposed fractal video coding model shown in Figure 4.1

will once again be used as our reference.

For all OBIFS coders implemented, the following encoder parameters were speci-

fied a priori:

a the motion compensation algorithm, including MC block size and search size

a the domain pool source with associated spatial contraction operator and hori-

zontal and vertical grid displacements Ax, Ay

a the fixed-basis vectors (only one was used)

a the basis generation method

a the mean-squared-error threshold, T,,,

Given that the above parameters have been specified, the encoding procedure can

be described. The encoding procedure can be divided into two parts: DFD signal

generation and fractal encoding of the resulting DFD signal.

C H A P T E R 4. FRACTAL CODING OF DFD SIGNALS 6 7

The DFD signal generation part was already described in Section 4.2.4. The

second part of the encoding procedure is fractal encoding of the output DFD signal.

The first step in the encoding process is to generate the set of orthonormal basis

vectors (matrix A) as described in Section 4.3.2; 8 x 8 range blocks R; were used

throughout. For each Ri, the average energy-per-pixel is computed; if it is less than

T,,,, R; is set to a block of zero-intensity (such a block will be coded by the EOB

symbol). These are blocks for which the motion compensation algorithm has found a

good match. All blocks R; are then transformed using the matrix A to form a set of

transform coefficients. Finally, the coefficients are quantized and entropy coded using

the method described in Section 4.3.3.

At this time it should be noted that if the domain pool source is the RBC, decod-

ing is governed by the contraction mapping fixed point theorem. This implies that

the domain pool from which the final set of orthonormal basis vectors are formed

must be generated iteratively at the decoder. For this to occur, it is required that the

encoding transformation be contractive. Preliminary simulations run on two DFD

signals showed the encoding transformations were not contractive; i.e., the decoded

image did not possess a true fixed point. In general, there is no guarantee that the

encoding transformations will be contractive (Vines 1995) and, the contractivity con-

dition is very difficult to check during the encoding as it depends on the orthonormal

basis vectors generated. For these reasons, the RBC was not considered as a possible

domain pool source for the OBIFS class of coders.

4.3.5 Decoding Procedure

The previous section discussed the encoding procedure for OBIFS coders. This section

outlines the decoding procedure.

The decoder has the following information available a priori:

the motion compensation algorithm and MC block size

CHAPTER 4. FRACTAL CODING OF DFD SIGNALS

the domain pool source and associated spatial contraction operator

the horizontal and vertical grid displacements Ax, Ay

the order in which the R; were encoded; this ordering never changes and is

defined a priori

the basis generation method

the fixed-basis vectors (only one was used)

From the encoded output files (bit streams), the optimal step sizes for each source,

the frequency information needed to reconstruct the RUN-SIZE symbols Huffman

table and the indices of the domain blocks needed to reconstruct the basis vectors can

be determined. Using this information the orthonormal basis is generated and the

Huffman table constructed.

As mentioned earlier, we considered only the PCR and P C 0 domain pool sources

with this class of coders; using these domain pool sources, decoding is non-iterative

and requires only a single iteration as all domain blocks used in generating the basis

are available a priori.

Once the basis is generated, decoding simply involves decoding each of the RUN-

SIZE symbols and reconstructing the quantized transform coefficients. The range

blocks, r; are then reconstructed as r; = Ax; where A is the matrix whose columns

are the orthonormal basis vectors, and x; is the vector of reconstructed transform

coefficients.

The resulting reconstructed DFD signal is then added to the previously recon-

structed original frame (using the motion vectors) to form an approximation of the

current frame. This procedure is repeated until the entire video sequence has been

decoded.

Chapter 5

Simulation Results and Analysis

This chapter presents the results of extensive simulations that were performed to

quantify the effects that various parameters of the affine and OBIFS class of coders

have on coding performance. Based on these results, the best coders in each class are

selected for comparison to a reference DCT-based coder. The two video sequences

used to perform these simulations were the pongi and foreman video sequences.

5.1 Source Descriptions

Pongi is a relatively high motion sequence of two men playing ping-pong. There

is considerable motion as the camera pans horizontally back and forth following the

ball. The background consists of a stationary region, a detailed poster on the back

wall and a few spectators watching the game. The first eleven original frames (frames

0 - 10) were used; each frame had dimensions 240 x 360, and the frame rate was 30

frames per second.

Foreman is a low to moderate motion sequence of a construction worker standing

in front of a building and talking. The motion is concentrated around the man's head,

shoulders and mouth as he talks. To increase the amount of motion in this sequence,

the first 50 original frames were decimated temporally by 5. The resulting frames

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS 70

were then enumerated 0 - 10. Each frame had dimensions 144 x 176 and the resulting

frame rate after decimation was 6 frames per second.

Typical frames from each of these sequences are shown in Figures 5.1 and 5.2.

Figure 5.1 : Pongi Sequence

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS

Figwc 5.2: Forem;~n Sequencc

To a,void bombarding the rea,der with many duplicate results, results are only

provided for the pongi sequence. Results a.re provided for the foreman sequence only

if they provide additional insights beyond what can be deduced from the pongi results.

In d d i t i o n , PSNR results arc only provided for the last G frames (fra,mes 5 - 10) of

the video sequences. This is clone to ensure that the results displa.yed are steady-shte

results truly indicative of the parameter being investigated; i.e., any effects due to

the use of original fra,mes a.t start-up are eliminated. The PSNR results represent the

PSNR calculated between the original video sequence frame and a reconstruction of

t,llat, Tramc using thc cncoclccl DFD signa.1.

Affine-Transform-Based Coders

This section quantifies through simulation thc cflects that various parameters of thc

affine-transform-based fractal coders have on coding performance. The pongi and

foreman video scclucnccs introduced in Scction 5.1 were used for this investigation.

Based on the simulation results, quantization and entropy coding strategies were

clefiliecl, and a representative best set of complctcly quantized codcrs was selected for

comparison to a reference DCT-based codcr.

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS

Unless otherwise stated, the following is assumed:

the standard block-based motion compensation algorithm is used; the MC block

size is 8 and the search window over which an optimal matching blocks is sought

is f 15 (as is standard in MPEG, H.261)

the standard affine transformation is used for encoding non-uniform range blocks

the standard quadtree partitioning algorithm is used (any partitioning algorithm

could have been chosen while investigating other parameters)

all parameters are unquantized as initially their distributions are unknown

the mean-squared-error threshold, T,,,, is equal to 40; this value was chosen so

that there would be a large fraction of blocks that would have to be coded; i.e.,

we did not want the motion compensation algorithm to find good matches for

all the blocks

5.2.1 Domain Pool Source Related Results

We begin this empirical investigation by quantifying the effect that the spatial contrac-

tion operator has on coding performance. The results are illustrated in Figures 5.3,5.4

and 5.5 for the RBC, PCR and P C 0 domain pool sources.

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS

24
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Frame Number

Spatla1 Contraction Operators, RBC. Pongl Sequence

Figure 5.3: Pongi: Spatial Contraction Operator Comparison, RBC

36

34

32

Spatial Contraction Operators. PCR, Pongi Sequence
36 I t I I I I

1 I

- DECIM-BY-AVG

-

-

- DECIM-BY-AVG

35

- " " -
z V)

a

28 -

- ., - -

305 5.5 6 6.5 7 7.5 8 8.5 9 9.5
Frame Number

Figure 5.4: Pongi: Spatial Contraction Operator Comparison, PCR

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

Spat~al Contract~on Operators. PCO. Pongl Sequence
36 I 1 I I , t 1

Figure 5.5: Pongi: Spatial Contraction Operator Comparison, P C 0

35

I q 33
ffl
a

32

31

30

-

--- -

-

-

5 55 6 6.5 7 75 8 8.5 9 9.5
Frame Number

CHAPTER 5. SIMULATION RESULTS A N D ANALYSIS

These results indicate that the DECIMBYAVG spatial contraction operator pro-

vides much better performance than the SUBSAMP operator for the RBC domain

pool source. This result is not surprising as the DECIM-BYAVG operator acts as a

low-pass filter and combines more block information when forming the spatially con-

tracted domain block; each pixel in the spatially contracted domain block is obtained

using a four pixel average. The SUBSAMP operator performs straight decimation,

and thus results in aliasing. The DECIM-BYAVG spatial contraction operator is

most often used in practice for coding of still images; the SUBSAMP operator is

rarely used. The SUBSAMP operator was not investigated any further for either of

the PCR and P C 0 domain pool sources.

The results in Figure 5.4 indicate that for the PCR domain pool source, the

DECIMBYAVG spatial contraction operator provides marginally better performance

than the NO-CONTRACTION operator. For the P C 0 domain pool source, the

DECIMBYAVG and NO-CONTRACTION operators both provide equivalent per-

formance.

Combining these results, Figure 5.6 illustrates the effect of the selected domain

pool source on the coding performance for the DECIM-BYAVG spatial contraction

operator.

It is very clear from these results that the PCR and P C 0 domain pool sources

~rovide much better performance; this is due to the fact that there are no constraints

on the encoding transformations. The performance of the P C 0 domain pool source

is marginally better than that of the PCR. This is probably due to the fact that

the PCR domain pool source generally has fewer domain blocks in its domain pool

as zero-intensity blocks are not included. These zero-intensity blocks can be quite

common as they are produced whenever a good match has been found by the motion

compensation algorithm (see Section 4.2.4). Subjectively, the 3 dB PSNR difference

is noticeable (slightly) in the reconstructed image frames.

We investigate next the effect that the horizontal and vertical grid displacements,

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS

Domam Pool Sources. Pongl Sequence

5 55 6 6.5 7 75 8 8.5 9 9.5 10
Frame Number

Figure 5.6: Pongi: Domain Pool Source Comparison

Ax and Ay, used in the domain pool construction procedure have on coding perfor-

mance. Intuitively, it was expected that for smaller values of (Ax, Ay) the perfor-

mance would be much better as smaller values of (Ax, Ay) result in a larger number

of domain blocks in the domain pool thus increasing the likelihood of finding a satis-

factory encoding transformation. Nevertheless, quantifying the performance loss due

to the use of a smaller sized domain pool is important since specifying the domain

block used for encoding a given non-uniform range block requires a large number of

bits, approximately half of the total number of bits used to represent the encoding

transformation.

Figures 5.7, 5.8 and 5.9 display the results obtained for horizontal and vertical

grid displacements (Ax, Ay) of (4,4), (8,8) and (16,16). The results are displayed

for the RBC, PCR and PC0 domain pool sources.

C H A P T E R 5. SIMULATION RESULTS AND ANALYSIS

Domain Pool Density, RBC, Ponqi Sequence

27
5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

Frame Number

Figure 5.7: Pongi: Domain Pool Density Comparison, RBC

Domam Pool Dens~ty, PCR, Pongl Sequence

35
- 16x16

Frame Number

Figure 5.8: Pongi: Domain Pool Density Comparison, PCR

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

Domaln Pool Denslty, PCO, Pongl Sequence
36 I t I T I I I

U"

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Frame Number

Figure 5.9: Pongi: Domain Pool Density Comparison, PC0

CHAPTER 5. SIMULATION RESULTS A N D ANALYSIS 79

As expected, the PSNR decreases as the horizontal and vertical grid displacements

increase. The actual PSNR loss will in general depend on the DFD signal being coded;

for the pongi sequence displayed, the PSNR loss was approximately 1 dB for each

doubling of (Ax, Ay). The PSNR loss was less than 0.5 dB for the foreman sequence.

Based on the results presented thus far, the following general conclusions can be

made:

the DECIM-BYAVG spatial contraction operator yields the best PSNR perfor-

mance for all domain pool sources

the PCR and P C 0 domain pool sources widely outperform the RBC domain

pool source in PSNR terms

reducing the domain pool size reduces the PSNR

5.2.2 Parameter Distribution Results

We now turn our attention to the parameter distributions; namely, we investigate the

distributions of the alpha, beta and absorb parameters and describe the quantization

and entropy coding strategies that were used to represent them. The parameter

distributions are dependent on the domain pool source, thus we consider all three

domain pool sources in turn.

Figures 5.10, 5.11 and 5.12 display the distributions of the alpha, beta and absorb

parameters for the RBC domain pool source.

CHAPTER 5. SIM ULATION RESULTS A N D ANALYSIS

Histogram of Alpha Values For Pongi Sequence, RBC, 64 Bins
3000 I I I I

"
-1.5 -1 -0.5 0 0.5 1

mean = -0.0013, std = 0.8793

Figure 5.10: Pongi: Histogram of Alpha Values, RBC, 64 Bins

Histogram of Beta Values For Pongi Sequence, RBC, 128 Bins
2000 I I 1 1 I 1 I

Figure 5.11: Pongi: Histogram of Beta Values, RBC, 128 Bins

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

Histogram of Absorption Values For Pongi Sequence, RBC, 64 Bins

7

-30 -20 -1 0 0 10 20 30
mean = 0.5838, std = 2.6956

Figure 5.12: Pongi: Histogram of Absorb Values, RBC, 64 Bins

Very noticeable from Figure 5.10 is the large number of a values concentrated at

f 1.1, the maximum and minimum allowable a values. The form of this distribution

indicates that larger a values would improve the PSNR performance for the RBC

domain pool source, but the contractivity requirement prevents larger a values from

being used. The same type of distribution was observed for foreman. Due to the fixed

nature of this distribution (the distribution shape remained constant with most of the

a values concentrated at the minimum and maximum allowable values), fixed Lloyd-

max quantizers were used to quantize the a values, and fixed Huffman tables were

used for entropy coding of the resulting output quantization indicies. The quantizers

were designed using Lloyd's iterative design algorithm; all the a values generated from

coding frames 0 - 10 of pongi and foreman were used as a training set. Both 16

and 32 output level quantizers were designed with corresponding Huffman tables; two

quantizers were designed so that different target rates could be used for representing

the a values (needed later on).

Quantization of the absorb and beta parameters will be described shortly as their

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS 82

distributions are very similar to those observed for the PCR and P C 0 domain pool

sources.

Figures 5.13 and 5.14 display the alpha parameter distributions for the PCR and

P C 0 domain pool sources. Figure 5.15 displays the beta parameter distribution

for the P C 0 domain pool source. The absorb parameters for the PCR and P C 0

domain pool sources, and the beta parameter of the PCR domain domain pool source

are not shown as these distributions are very similar in shape to the corresponding

distributions for the RBC domain pool source.

Histogram of Alpha Values For Pongi Sequence. PCR, 128 Bins
2000, , I I I I I I I

-'SO -60 -40 -20 0 20 40 60 80 100
mean = 0.0877, std = 7.3021

Figure 5.13: Pongi: Histogram of Alpha Values, PCR, 128 Bins

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

Histogram of Alpha Values For Pongi Sequence, PCO, 128 Bins
2500 1-

0
-40 -30 -20 -10

mean = -0.OC

Figure 5.14: Pongi: Histogram of Alpha Values, PCO, 128 Bins

Histogram of Beta Values For Pongi Sequence, PCO, 128 Bins
800 I I I I I I I

mean = 0.699. std = 309.3437

Figure 5.15: Pongi: Histogram of Beta Values, PCO, 128 Bins

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS 84

The alpha parameter distributions are very similar in shape to the absorb and beta

parameter distributions observed thus far. The beta parameter distribution for the

P C 0 domain pool has a very wide range; the standard deviation of this distribution is

over 300. This same characteristic was observed for the foreman sequence. Efficiently

quantizing a set of data with such a distribution would be very difficult as the standard

deviation is so large. Therefore, to alter the distribution of the beta parameters

while leaving the approximation error of the encoding transformation unchanged, the

modified luminance transformation was used. Figures 5.16, 5.17 and 5.18 display

the resulting beta parameter distributions for values of a, equal to 0.5, 0.2 and 0.0.

The alpha parameter distributions are left unchanged when the modified luminance

transformation is used.

Histogram of Beta Values For Pongi Sequence, PCO, a0=0.5, 128 Bins
600 I I I I I 1 I I

mean = -70.4842, std = 24.7108

Figure 5.16: Pongi: Histogram of Beta Values, PCO, a0 = 0.5, 128 Bins

C H A P T E R 5. SIM ULATION RESULTS A N D ANALYSIS

Histogram of Beta Values For Pongi Sequence, PCO, a0=0.2, 128 Bins
800 I n I

mean = -28.0114, std = 12.2347

Figure 5.17: Pongi: Histogram of Beta Values, PCO, a0 = 0.2, 128 Bins

Histoaram of Beta Values For Pond Sequence. PCO, aO=O.O. 128 Bins

mean = 0.3041, std = 7.8752

Figure 5.18: Pongi: Histogram of Beta Values, PCO, a0 = 0.0, 128 Bins

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS 86

It is very clear from these figures that reducing the value of a , reduces the standard

deviation of the beta parameter distribution; a , = 0.0 providing the best result. Using

the modified luminance transformation with the PCR domain pool source leaves the

beta parameter distribution relatively unchanged; therefore, it was decided to use this

transformation with the PCR domain pool source also. The resulting distribution is

illustrated in Figure 5.19.

Histogram of Beta Values For Pongi Sequence, PCR, aO=O.O, 128 Bins

1200

1000

800

600

400

200

0
-80 -60 -40 -20 0 20 40 60 80

mean = 0.1 999, std = 7.9304

Figure 5.19: Pongi: Histogram of Beta Values, PCR, a0 = 0.0, 128 Bins

Based on the observed parameter distributions, the following conclusions were

made:

0 the modified luminance transformation should be used for the P C 0 domain pool

source; it will also be used with the PCR domain pool source

the resulting alpha, beta and absorb parameter distributions for the P C 0 and

PCR domain pool sources and the beta and absorb parameter distributions for

the RBC domain pool source all have distribution shapes that can be modeled

using a generalized Gaussian pdf

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS 87

Based on the latter conclusion, it was decided to quantize the above sources using

an entropy constrained scalar quantizer and then efficiently design a Huffman code

using the generalized Gaussian pdf model of the data. The entropy constrained scalar

quantizer would simply be a uniform quantizer with a large number of output levels,

N.

To investigate the above method, a large training set of alpha, beta and absorb

parameters was obtained by encoding frames 0 - 10 of pongi and foreman for both

the PCR and PC0 domain pool sources.

The following experiment was then ~erformed. For each parameter and for a

given number of quantizer output levels, N , a rate-distortion function was generated

for that parameter. The computed rate was the average number of bits (average code-

word length) required to represent that parameter using a Huffman code designed as

described in Section 2.4.1; the parameter distribution is modeled using a general-

ized Gaussian pdf and the quantizer output index probabilities required to design the

Huffman code are obtained by numerically integrating the model over the bins spec-

ified by the quantizer. The average distortion is just the average distortion incurred

in quantizing the parameters. The rate-distortion functions for all three parameter

distributions are shown in Figures 5.20 to 5.22. Note that for a given N, the part

of the rate-distortion function we are interested in is that portion starting where the

distortion is minimum and extending downwards (increasing distortion).

A characteristic feature of these rate distortion functions is that for a given average

rate, a quantizer, Q1, with Nl output levels will always ~ i e l d a lower average distortion

than a quantizer, Q2, with N2 output levels, if Nl is greater than N2.

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS
e

Rate-Distortion Cuwe For Alpha Using Model

Average Distortion

Figure 5.20: Rate Distortion Function For Alpha Parameter

Rate-Distortion Cuwe For Beta Usmg Model

99

3 I I 1 1 I I 1

0 0.5 1 1.5 2 2.5 3 3.5 4
Average Distortion

Figure 5.21: Rate Distortion Function For Beta Parameter

r

C H A P T E R 5. SIMULATION RESULTS AND ANALYSIS

Rate-D~stort~on C u ~ e For Absorption Usmg Model
1 I I I I I I

I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Average Distortion

Figure 5.22: Rate Distortion Function For Absorb Parameter

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS 90

The rate was also computed using frequency information obtained directly from the

actual parameter distributions. Both of the computed rates were then compared to the
.r

true source entropy. The difference between the computed rates and the true source

entropy is called the redundancy; ideally, we would like the redundancy to be zero.

The redundancies are displayed in Figures 5.23 through 5.25 for a particular value of

N over that portion of the rate-distortion curve where the distortion is minimum and

extends downwards (increasing distortion).

Redundancy Comparison For Alpha, N=512
I I I I 1 I

I I

0.05 0.1 0.15 0.2 0.25 0.3
Average Distortion

Figure 5.23: Redundancy Comparison For Alpha, N = 512

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

Redundancy Comparison For Beta, N=512

I I

0.05 0.1 0.1 5 0.2 0.25 0.3
Average Distortion

Figure 5.24: Redundancy Comparison For Beta, N = 512

Redundancy Comparison For Absorption, N=128

Model 1 - Data

0.05 0.1 0.15 0.2 0.25 0.3
Average Distortion

Figure 5.25: Redundancy Comparison For Absorb Parameter, N = 128

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS 92

From these figures, it can be concluded that by using N = 512 for alpha, N =

512 for beta and N = 128 for absorb, the redundancy is no more than 0.2 bits

per parameter value; therefore, the use of entropy constrained scalar quantizers and

Huffman codes designed using a model of the data sets is justified. Based on the

observed parameter distributions, it was decided to constrain the a values to f 20

and the ,B values to rt60 in the quantized coders; the absorb parameters were ngt

constrained as the spread of the parameters was much narrower.

The actual implemented quantization and entropy coding strategy for the alpha,

beta and absorb parameters of the PCR and P C 0 domain pool sources and the beta

and absorb parameters of the RBC domain pool source can now be described. For

each parameter distribution (data set), the following steps were performed:

1. Compute and remove the mean from the data set; find that value in the resulting

data set farthest from zero, denote this value by x,,,.

2. Following the procedure described in Section 2.4.1 determine the model param-

eters for the data set with mean removed.

3. Set the minimum step size to Amin = 2Z;jax where N is the number of quantizer

output levels used in quantizing the particular data set. This minimum step size

ensures that the quantizer completely spans the data, thereby ensuring that the

rate-distortion function generated later will be relatively well behaved; i.e., the

BFOS algorithm will start at a point on the rate-distortion curve where the rate

is maximum and the distortion is minimum. This is also the reason that the a

and ,B parameters were constrained to &20 and 330 respectively.

A 4. Set the step size increment to A;,, = T.

5. Construct a rate-distortion table to be used by the BFOS algorithm.

6. Run the BFOS algorithm to optimally quantize the three data set parameters

at a given specified rate.

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS 9 3

We now elaborate on the last two steps. Starting from A,;, with step size in-

crement A;,, and given a data set with an associated uniform quantizer of N output

levels, the rate and distortion are computed for a specified fixed number of quantizers

to be designed for that data set. For example, for the a and P parameter distri-

butions 250 quantizers were designed while for the absorb parameter distribution 50

quantizers were designed. The rate was calculated as the entropy of the quantizer

output indices where the probabilities of occurrence of each quantizer output index

are obtained by numerically integrating the data set model over the bins specified by

the quantizer. The distortion function used for a given data set was the average of the
t

actual distortions due to quantization of the particular data set parameter incurred

in approximating a range block. These are the D,, Dp and D, expressions derived

in Section 4.2.3. The Do and D, distortion functions are simply the quantization

errors. The D, distortion function weights the quantization errors by the variance

of the domain blocks used in the particular encoding transformation. Use of these

distortion functions minimizes the actual distortion incurred in approximating a given

range block rather than simply minimizing the quantization errors.

Given the complete set of rate-distortion functions for each parameter and a spec-

ified target rate, the BFOS algorithm is run to determine the optimal quantizer as-

signments.

It is important to keep in mind that the data sets are quantized with mean re-

moved; therefore, during the decoding process, the mean must be added back to the

quantized value to reconstruct an estimate of the orignal parameter value.

The quantization and entropy coding strategy implemented has the following over-

head:

the mean and standard deviation of each data set were quantized using a step

size of 0.005 and output using 15 bits (fewer bits could have been used)

the optimal step size for each data set was quantized using a step size of 0.001

and output using 15 bits (fewer bits could have been used)

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

the v model parameter for each data set was output using 16 bits

Using this information, the decoder can reconstruct the exact same Huffman tables

that were used at the encoder.

Also pertaining to encoding transformation parameter distributions are the dis-

tributions of the isometry indices. A typical distribution is shown in Figure 5.26 for

the RBC domain pool source. Similar distributions were observed for all domain pool

sources.

Histogram of Isometry Values For Pongi Sequence, RBC
2000 I I I

isometry Index

Figure 5.26: Pongi: Distribution of Isometries, RBC

Due to the uniform nature of the isometry index distributions, no entropy coding

was performed.

5.2.3 Motion Compensation Results

The next parameter to be examined is the motion compensation algorithm used to

generate the DFD signals. Both the standard and overlapped windowed block-based

motion compensation methods were examined for the RBC, PCR and PC0 domain

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS 95

pool sources. Figures 5.27, 5.28 and 5.29 illustrate the comparative results for all

three domain pool sources.

Motion Compensation Type. RBC. Pongi Sequence

lapped El

0
6 5 7 7 5 8

Frame Number

Figure 5.27: Pongi: Motion Compensation Type Comparison, RBC

Motlon Compensation Type. PCR. Pongl Sequewe

- Standard

L

8
Frame Number

Figure 5.28: Pongi: Motion Compensation Type Comparison, PCR

CHAPTER 5. SIMULATION RESULTS A N D ANALYSIS

Mot~on Compensat~on Type, PCO. Pong~ Sequence

Figure 5.29: Pongi: Motion Compensation Type Comparison, PC 0

36

35

34"

32

31

30

In all three cases, the use of overlapped windowed block motion compensation,

which produces smoother, lower energy DFD signals, provided better performance;

similar results were observed for foreman. It should be noted that the shape of the

resulting parameter distributions is not altered by use of the overlapped windowed
C

motion compensation algorithm.

Table 5.1 lists the standard deviations of all parameter distributions for both stan-

dard block-based and overlapped windowed block motion compensation algorithms for

each of the domain pool sources. The parameter distributions were obtained by encod-

ing frames 0 - 10 of the pongi and foreman video sequences using the corresponding

domain pool source.

The results indicate that, in general, the standard deviation of the alpha parameter

distributions is lower when the overlapped windowed motion compensation algorithm

is used. The standard deviations of the beta and absorb parameter distributions are

left relatively unchanged.

r 1 I 4

-

., - - - - ., -

-

-

5 5.5 6 6.5 7 75 8 85 9 9.5
Frame Number

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

Table 5.1: Effect of MC T v ~ e on Parameter Distributions

Pongi 11 P C 0 11 Standard 1 1 4.73 1 7.88 1 2.71

-
Pongi

Foreman

5.2.4 Partitioning Algorithm Results

3.92
7.31

Pongi

Pongi
7.50
7.93

The next parameter investigated was the partitioning algorithm. Complete quantized

2.89
2.69

PCR

P C 0
Foreman

Foreman
Foreman

coders using overlapped windowed block motion compensation were used for this

investigation. It was desired to investigate the PSNR versus bit rate tradeoff with

P C 0

PCR

P C 0

PCR
PCR

all other parameters apart from the partitioning algorithm being equal. To this end,

Windowed

Standard
Windowed

Standard
Windowed

Standard
Windowed

the target rate specified for quantization of the alpha, beta and absorb parameters

3.90
4.62
4.17

7.55
6.83
7.21

was set at 4.5 for the standard quadtree and HV partitioning algorithms; a target

4.72
7.98

3.14

3.23
3.10

rate of 3.5 was used for the partial quadtree algorithm as the overhead required to

specify the partitioning was observed (through simulation) to be approximately 1 bit

7.56
6.91

more than that required for the standard quadtree and HV algorithms when the split

2.69
3.18

information was entropy coded.

Simulations were run over frames 0 - 10 of pongi and foreman for all three

domain pool sources. The average PSNR and the average bits-per-pixel (bpp) were

obtained by averaging the PSNR's and bit rates over frames 5 - 10 (steady-state) in

each simulation. Tables 5.2 and 5.3 summarize the results obtained.

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS

Table 5.2: Partitioning Algorithm Com~arison For Ponai "
DPS Partitioning Type " Avg. PSNR (dB) Avg. ~g~
RBC
RBC
RBC

I PCR ii Partial Quadtree ii I

33.34 0.46 1
1 I t I, 1 I

v I1 I
~ ~

I I 1 PCR 11 HV 33.36 0.44

Quadtree "

Partial Quadtree
HV

I PCR 11 Quadtree

31.17
31.10
31 .05
33.44

P C 0
P C 0

The results indicate that all partitioning algorithms yield essentially equivalent

results; for the same average bit rate, the average PSNR is the same and vice-versa.

Based on this observation, the standard quadtree partitioning algorithm, with its

minimal overhead, was selected as the prefered partitioning algorithm.

Finally, we investigated the PSNR loss that results as the target rate specified for

quantization of the alpha, beta and absorb parameters is varied. Two DFD signals

obtained from the pongi sequence were used for this investigation. The results are

displayed in Tables 5.4 and 5.5 for the PCR and P C 0 domain pool sources respectively.

0.50
0.51
0.50
0.45

Table 5.3: Partitioning Algorithm Comparison For Foreman

Quadtree
Partial Quadtree

Avg. Bpp
0.29
0.33
0.28
0.27
0.30
0.26
0.27
0.31

DPS

RBC
RBC
RBC

PCR
PCR
PCR

P C 0
P C 0

33.82
33.55

0.44
0.46

Partitioning Type

Quadtree
Partial Quadtree
HV

Quadtree
Partial Quadtree
HV

Quadtree
Partial Ouadtree

Avg. PSNR (dB)

33.38
33.40
33.33
34.49
34.53
34.39
34.58
34.36

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS 99

The results are normalized such that zero PSNR loss corresponds to a target rate of

5.0; all PSNR changes are quoted with respect to the PSNR at the target rate of 5.0.

The end rate is the actual rate obtained using the quantization and entropy coding

strategy implemented. Futhermore, there were approximately 600 a , ,d values and

140 y (absorb) values in each of the DFD signals.

"
I Target Rate I End Rate I PSNR change

Table 5.4: PSNR Change as a Function of Target Rate, PCR

3
-
-

-
-
-
-

The results indicate that a target rate of 3.5 is sufficient for quantization of the

alpha, beta and absorb parameters.

Table 5.5: PSNR Change as a Function of Target Rate, P C 0

5.2.5 Summary

Based on all the results presented in this section, affine-transform-based fractal coders

with the following parameters were selected for comparison to a reference DCT-based

PSNR Change
0.0

-0.07
-0.13
-0.30
-1.05

Target Rate
5.0
4.5
4.0
3.5
3.0

coder:

End Rate
4.98
4.39
4.04
3.50
2.84

0 standard quadtree partitioning algorithm

0 PCR and P C 0 domain pool sources

0 DECIMBYAVG spatial contraction operator

modified luminance transformation for encodin non-u niform ra

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

0 overlapped windowed motion compensation algorithm

,nge blocks

0 entropy constrained scalar quantizers for quantizing the cu (N = 512), ,B (N =

512) and y (N = 128) values; BFOS algorithm for optimal quantizer assign-

ments; generalized Gaussian pdf modeling of the parameter distributions for

Huffman code design

In summary, it should be understood by the reader that fractal coders are heuristic

in nature; their ability to encode a particular type of signal can only be determined

through extensive simulation. The simulations in this section were performed in order

to obtain some general insight on the effects that various parameters of the affine-

transform-based coders have on the coding performance so that logical decisions could

be made on what parameters were more likely to produce superior PSNR results.

5.3 OBIFS Coders

This section quantifies through simulation the effects that various parameters of the

OBIFS coders have on coding performance. The pongi and foreman video sequences

introduced in Section 5.1 were used for this investigation. Based on the simulation

results, a set of coders was selected for comparison to a reference DCT-based coder.

Unless otherwise stated, the following is assumed:

0 the standard block-based motion compensation algorithm is used; the MC block

size is 8 and the search window over which an optimal matching block is sought

is f 15 (as is standard in MPEG, H.261)

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS

0 the target rate specified for ~ o n g i is 0.4; the target rate specified for foreman

is 0.25

0 the spatial contraction operator is NO-CONTRACTION (either could have been

used as shown later)

0 the mean-squared-error threshold, T,,,, is equal to 40 (for the same reasons as

described earlier for the affine transform case)

Fully quantized coders have to be considered because using the PCR and P C 0

domain pool sources in the absence of quantization will result in perfect signal recon-

struction; recall that the RBC domain pool source was not considered for the OBIFS

class of coders because preliminary simulations showed the encoding transformation

to be non-contractive.

5.3.1 Basis Generation Met hod Related Results

The first parameter investigated was the basis generation method. Figures 5.30 and

5.31 display the results obtained for the PCR and P C 0 domain pool sources.

The results indicate that the covariance method provides marginally better perfor-

mance for both domain pool sources. Similar results were observed for foreman. The

centroid method was used in all subsequent simulations because the encoding time

is much shorter, and its performance is nearly equivalent to that of the covariance

method.

Combining these results Figure 5.32 compares the PCR and P C 0 domain pool

sources using the centroid basis generation method.

It can be seen that the P C 0 domain pool source provides slightly better perfor-

mance over most of the sequence.

CHAPTER 5. SIMULATION RESULTS A N D ANALYSIS

Pongi: Comparison of Basis Generation Methods, PC0
I , I I I I I

X - COVARIANCE
10 - CENTROID

I 1 , I I I I

5.5 6 6.5 7 7.5 8 8.5 9 9.5
Frame Number

Figure 5.30: Pongi: Basis Generation Method Comparison, P C 0

29 I I I I I t 1 I

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
Frame Number

Pong~: Cornparson of Bass Generat~on Methods, PCR

Figure 5.31 : Pongi: Basis Generation Method Comparison, PCR

35

34

33

I I 1 I I , , I I

- COVARIANCE

-

-

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

Pongi Compar~son of Domam Pool Sources

Frame Number

Figure 5.32: Pongi: Domain Pool Source Comparison

5.3.2 Motion Compensation Results

Figures 5.33 and 5.34 summarize the effect that the motion compensation algorithm

has on the coding performance for the PCR and P C 0 domain pool sources.

It is very clear that use of the overlapped windowed block motion compensation

algorithm provides superior performance; similar results were observed for the fore-

man sequence. This is again due to the smoother, lower energy DFD signal Produced

by the overlapped windowed block motion compensation algorithm.

rL

CHAPTER 5. SIMULATION RESULTS A N D ANALYSIS

Pongi: Comparison of Motion Compensation Types, PC0
35 , I I I I I , I I

x - Standard

8 I I I I I

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
Frame Number

34

33

Figure 5.33: Pongi: Motion Compensation Type Comparison, P C 0

Pongi: Comparison of Motion Compensation Types, PCR

-

Overlapped

0 - Overlapped

29? 5:5 b 6:s t 7:5 8:5 h 9:5 A
Frame Number

-

Figure 5.34: Pongi: Motion compensa?ion Type Comparison, PCR

CHAPTER 5. SIMULATION RESULTS AND ANALYSIS

5.3.3 Spatial Contraction Operator Results

Finally, the effect of the spatial contraction operator on coding performance was in-

vestigated. There is no reason to believe that either of the operators considered,

DECIMBYAVG and NO-CONTRACTION, should yield different results. The re-

sults are presented in Figures 5.35 and 5.36 for the pongi and foreman sequence

respectively.

Pongi: Comparison of Spatlal Contraction Operators
I 4 I I I I I I I

- DECIM-BY-AVG

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Frame Number

Figure 5.35: Pongi: Spatial Contraction Operator Comparison

C H A P T E R 5. SIMULATION RESULTS A N D ANALYSIS

5 5.5 6 6.5 7 7 5 8 8.5 9 9.5 10
Frame Number

Foreman: Compar~son of Spatlal Contraction Operators
35 r 1 I 1 I I I

Figure 5.36: Foreman: Spatial Contraction Operator Comparison

34

As expected, both operators yield essentially the same performance.

X - NO-CONTRACTION
0 - DECIM-BY-AVG

-

5.3.4 Summary

Based on the results presented in this section, OBIFS coders with the following pa-

rameters were selected for comparison to a reference DCT-based coder:

overlapped windowed motion compensation algorithm

covariance basis generation method

PCR and P C 0 domain pool sources

DECIMBYAVG spatial contraction operator

quantization and entropy coding as per JPEG

Either spatial contraction operatorncould have been used as both produced equiv-

alent results. The DECIM-BYAVG spatial contraction operator was selected to be

consistent with the affine-transform-based fractal coders.

Chapter 6

Final Results

This section presents and discusses the simulation results obtained by comparing the

performance of the affine transform and OBIFS coders selected from Chapter 5 to a

reference DCT-based coder.

6.1 Source Descriptions

The carphone and salesman video sequences were used for comparing the objective

and subjective performance of the various coders.

Carphone is a low to moderate motion sequence of a man sitting in a moving

car. To increase the amount of motion in this sequence, the first 100 frames were

decimated temporally by 5; the resulting frames were enumerated 0 - 19. Each frame

had dimensions 144 x 176, and the resulting frame rate after decimation was 6 frames

per second.

Salesmen is a moderate motion sequence of a man sitting at a desk holding an

object in his right hand. The background is somewhat detailed and the motion is

concentrated in the man's right arm and head as he moves the obTect up and down.

The amount of motion in this sequence was also increased by decimating the first 60

frames temporally by 4; the resulting frames were enumerated 0 - 15. Each frame had

CHAPTER 6. FINAL RESULTS 108

dimensions 288 x 352, and the resulting frame rate a.fter decinmtion wa.s 7.5 frames

per second.

Typical frames from each of these two sequences are shown in Figures 6.1 a.nd 6.2

Figure 6.1: Carphone Sequence

CHAPTER 6. FINAL RESULTS 109

Figure 6.2: Salesman Sequence

6.2 Results

The reference DCT-based coder implemented for comparison utilizes the exact same

quantization and entropy coding strategy described in Section 4.3.3 for OBIFS coders.

The only difference is that the DCT coefficients are zig-zag scanned in the standard

DCT zig-zag scan order. The functionality of the DCT coder was verified by imple-

menting a still image version of the coder and comparing the results to a JPEG cod&

for coding of the standard Lena image (approximately 0.5 dB better than JPEG at

0.6 bpp). Finally, the overlapped windowed block motion compensation algorithm

was used for the DCT coder as it was used for all other coders as well.

We now summarize the fractal coders that were selected in the previous chapter

CHAPTER 6. FINAL RESULTS 110

as being the best representative coders in their corresponding classes. For the affine

transform class of coders, we used the overlapped windowed block motion compen-

sation algorithm, the DECIMBYAVG spatial contraction operator, the standard

quadtree partitioning algorithm and both the PCR and P C 0 domain pool sources.

For the OBIFS class of coders, we used the overlapped windowed block motion com-

pensation algorithm, the covariance basis generation method, the DECIMBYAVG

spatial contraction operator and the PCR and P C 0 domain pool sources. The coders

were quantized and entropy coded as described in the previous chapter.

The mean-squared-error threshold, T,,, was kept constant at 50.0 to eliminate

this variable from the comparison and to allow our target bit rates to be achieved.

Similarly, 3.5 bits was used as the target rate for quantization of the a, P and y values

as this was shown previously to be sufficient. Furthermore, 16 x 16 blocks were used

for performing motion compensation and the search size was fixed at f 15. The use

of 16 x 16 blocks increases the amount of energy in the DFD signals.

All PSNR measurements were calculated between the original frames and the

reconstruction of those frames using the encoded DFD signals. All bit rate measure-

ments exclude the bits required to code the motion vectors.

In addition, it was ensured that the first DFD signal coded was the same for both

the PCR and P C 0 domain pool sources. For this reason, all results are presented
t

from frame 1 to the sequence end. Also, the first 2 frames from each sequence were

coded at approximately 32 dB using JPEG.

The aim of this final set of simulations was to encode the selected video sequences

at two different rates so that some general conclusions could be made on the feasibility

of using fractal video coding techniques for direct coding of DFD signals.

The affine transform and OBIFS fractal coders were each compared individually

to the reference DCT-based coder at two separate rates. We begin by presenting the

results obtained when comparing the affine-transform-based fractal coders with the

DCT-based coder; it should be noted that to make the comparison fair, zero intensity

C H A P T E R 6. FINAL RESULTS 111

blocks were coded using a single bit as was done for the affine transform coders.

Since the bit rate of the affine transform coders can not be finely controlled (the

algorithm is adaptive in nature and therefore the rate is sequence dependent), the

carphone and salesman sequences were first coded using the affine transform coders.

The average rates were then computed in each case, and the DCT coder was used

to code the same sequences at those average rates. In this way, we compare the two

coding methods at the same average rate.

To generate a higher rate coding, a horizontal and vertical grid displacement of

4 was used for carphone and 8 was used for salesman. A larger value was used

for salesman because the image is twice the size; using a value of 8 implies that the

number of domain blocks in the domain pool is the same for both sequences.

To produce a lower rate coding, no adaptive partitioning was performed; i.e., all

range blocks were coded at the 8 x 8 block size.

The carphone sequence was coded at average rates of approximately 0.26 and

0.13 bpp; the salesman sequence was coded at approximate average rates of 0.15 and

0.09 bpp. The results obtained are presented in Figures 6.3 to 6.6.

CHAPTER 6. FINAL RESULTS

Carphone, Affme vs. DCT, Rate 1

Frame Number

Figure 6.3: Carphone, Affine, 0.26 bpp Average Rate

Carohone. Affine vs. DCT. Rate 2

29 I I I I I I 4 I

2 4 6 8 10 12 14 16 18
Frame Number

Figure 6.4: Carphone, Affine, 0.13 bpp Average Rate

C H A P T E R 6. FINAL RESULTS

Salesman. Affine vs. DCT. Rate 1

30 I I I 6 , I

2 4 6 8 10 12 14
Frame Number

Figure 6.5: Salesman, Affine, 0.15 bpp Average Rate

Salesman, Affine vs. DCT, Rate 2
36 I I I I I

o Affme, PCR

X DCT

30 I I I

2 4 6 8 10 12 14
Frame Number

Figure 6.6: Salesman, Affine, 0.09 bpp Average Rate

CHAPTER 6. FINAL RESULTS

Based on these results, the following general conclusions can be made:

rn For carphone at 0.26 bpp average rate and salesman at 0.15 bpp average

rate, the affine transform coders perform as well or better than the DCT coder

over all frames. Subjectively, both coders exhibit blocking artifacts, contouring

(noisy type regions of different intensity), and blurring of regions of motion.

rn At the lower rates of 0.13 bpp for carphone and 0.09 bpp for salesman, the

best affine transform coder performs up to 1 dB better than the DCT coder

over all frames. Subjectively, the DCT coder exhibits much more contouring

and granular type noise than does the affine transform coder. Blocking artifacts

are more noticeable for both coders.

rn The P C 0 domain pool source always yields results as good or better than the

PCR domain pool source; the PSNR gain being more noticeable at the lower

rates.

The OBIFS coders were next compared to the reference DCT-based coder. In

comparing these two coders, the quantization and entropy coding strategies were

identical; the only difference being the basis vectors. Again the coders were compared

at the same average rates.

Horizontal and vertical grid displacements of 2 were used for ca rphone while 4

was used for salesman for the same reasons described earlier.

The carphone sequence was coded at an average rate of approximately 0.26 bpp.

The sa lesman sequence was coded at average rates of approximately 0.16 bpp and

0.11 bpp. The results are presented in Figures 6.7 to 6.9.

CHAPTER 6. FINAL RESULTS

Carphone. OBIFS vs. DCT, Rate 1

I , I I I I 1

2 4 6 8 10 12 14 16 18
Frame Number

""

35

Figure 6.7: Carphone, OBIFS, 0.26 bpp Average Rate

I k

-
DCT

Salesman, OBIFS vs. DCT, Rate 1

361

Figure 6.8: Salesman, OBIFS, 0.16 bpp Average Rate

31 -

302
I I I , ,
4 6 8 10 12 14

Frame Number

C H A P T E R 6. FINAL RESULTS

Salesman, OBIFS vs. DCT, Rate 2
36 I I I I I I I

30 I I 4 I I

2 4 6 8 10 12 14
Frame Number

Figure 6.9: Salesman, OBIFS, 0.11 bpp Average Rate

Based on these results, the following general conclusions can be made:

The DCT coder performs between 0.5-2 dB better than the best OBIFS coders

over all frames for both sequences. Subjectively, the OBIFS coders exhibit a

mosquito-type noise spread all over the regions of motion; the DCT coders

exhibit more blocking and contouring.

The P C 0 domain pool source provides on average approximately 0.5 dB im-

provement over the PCR domain pool source over all frames for both sequences.

Chapter 7

Conclusion

This thesis investigated the feasibility of using fractal image coding techniques for

direct fractal coding of displaced difference signals.

The contributions of the thesis are three-fold:

An empirical study on direct fractal coding of displaced frame difference signals

was presented. Both standard affine and OBIFS coders were considered in the

investigation. Quantitative and qualitative results were provided for coding of

moderate to high energy DFD signals.

Thorough descriptions and analysis of all transformation parameters were pro-

vided; the effects of all transformation parameters on coding performance were

quantified.

Both classes of coders considered were generalized for video coding by introduc-

tion of alternative domain pool sources. A scheme for efficient quantization and

entropy coding of the resulting transformation parameters was presented. The

resulting coders provided much better performance than classical fractal coding

of the DFD signals alone.

Based on the results of this investigation, it can be concluded that affine-transform-

based fractal coders are feasible for direct fractal coding of moderate to high energy

CHAPTER 7. CONCLUSION 118

DFD signals. For the two video sequences considered, the objective performance of the

affine-transform-based fractal coders was as good or better than the reference DCT-

based coder for the two sequences tested. It was observed that the PSNR difference

increased at lower rates. The OBIFS coders produced objective results 0.5 - 2 dB

worse than the reference DCT-based coder for both sequences tested.

Further work should be done to verify the above conclusions using a larger set

of video sequences. Furthermore, the methods considered in this thesis should be

compared against other fractal video coding methods.

References

Auyeung, C., James Kosmach, Michael Orchard and Tino Kalafatis. (1992). Over-

lapped Block Motion compensation. Proc. of SPIE Conf. on Visual Communications

and Image Processing. Vol. 1818, 561-571.

Barakat, M. and J.L. Dugelay. (1996). Image Sequence Coding Using 3-D I.F.S. Proc.

of IEEE International Conference on Image Processing. Vol. I, 141-144.

Barnsley, Michael F. (1988). Fractals Everywhere. Toronto: Harcourt Brace Jo-

vanovich.

Barnsley, Michael F. and Lyman P. Hurd. (1993). Fractal Image Compression. Welles-

ley, Massachusetts: AK Peters Ltd.

Barthel, K.U., J . Schiittemeyer, T. Voyk and P. Noll. (1994). A New Image Cod-

ing Technique Unifying Fractal and Transform Coding. IEEE Int. Conf. on Image

Processing.

Barthel, K.U. and T. Voyk. (June). Adaptive Fractal Coding in the Frequency Do-

main. Proceedings of International Workshop on Image Processing: Theory, Method-

ology, Systems, and Applications. Budapest.

Barthel, K.U., Gerhard Ruhl and Thomas Voy& (1996). Combining Wavelet and

Fractal Coding For 3-D Video Coding. Proc. of IEEE International Conference on

Image Processing. Vol. I, 181-184.

REFERENCES 120

Birney, K. A. and T. R. Fischer. (1995). On the modelling of DCT and subband image

data for Compression. IEEE Trans. on Image Processing. Vol. 4, No. 2, 186-193.

Bochez, K., M. Kaneko and H. Harashima. (1996). Fractal-like Video Coding with

Weighted Summation. Proc. of SPIE Conf. on Visual Communications and Image

Processing. Vol. 2727, 1377-1384 .

Clarke, R. (1985). Transform Coding of Images. New York: Academic Press.

Farvardin, N. and James W. Modestino. (1984). Optimum Quantizer Performance

for a Class of Non-Gaussian Memoryless Sources. IEEE Transactions on Information

Theory. Vol. IT-30, No. 3, 485-497.

Fisher, Y., D. Rogovin, and T. P. Shen. (1994). Fractal (Self-VQ) Encoding of Video

Sequences. Proc. of SPIE Conf. on Visual Communications and Image Processing.

Fisher, Y. (1995). Mathematical Background. Chapter 2 in Fractal Image Compres-

sion: Theory and Application. Editor: Yuval Fisher. New York: Springer Verlag.

Fisher, Y. (1995). Fractal Image Compression with Quadtrees. Chapter 3 in Fractal

Image Compression: Theory and Application. Editor: Yuval Fisher. New York:

Springer Verlag.

Fisher, Y. and S. Menlove (1995). Fractal Encoding with HV Partitions. Chapter 6

in Fractal Image Compression: Theory and Application. Editor: Yuval Fisher. New

York: Springer Verlag.

Gersho, A. and R. M. Gray (1992). Vector Quantization and Signal Compression.

Series in Communications and Information Theory. Kluwer Academic Publishers.

Gharavi-Alkansari, M. and Thomas S. Huang (1994). Fractal-Based Techniques for

a Generalized Image Coding Method. Proc. of IEEE International Conference on

Image Processing. Vol. 111, 122- 126.

REFERENCES 121

Gharavi-Alkansari, M. and Thomas S. Huang (1996). Fractal Video Coding By Match-

ing Pursuit. Proc. of IEEE International Conference on Image Processing. Vol. I ,

157-159.

Hiirtgen, B. and P. Biittgen (1993). Fractal approach to low rate video coding. SPIE

Visual Communications and Image Processing. Vol. 2094, 120-131.

Jacquin, Arnaud E. (1992). Image Coding Based on a Fractal Theory of Iterated

Contractive Image Transformations. IEEE Trans. Image Processing. Vol. 1, 18-30.

Jayant, N. and P. No11 (1984). Digital Coding of Waveforms, Principles and Applica-

tions to Speech and Audio. Prentice Hall.

Lazar, M.S., and L. T. Burton (1994). Fractal Block Coding of Digital Video. IEEE

Transactions on Circuits and Systems for Video Technology. Vol. 4, No. 3, 297-308.

LeGall, D. (1991, April). MPEG: A video compression standard for multimedia ap-

plications. Communications of the ACM. Vol. 34, No. 4, 47-58.

Li, H., M. Novak and R. Forchheimer (1993). Fractal-based image sequence compres-

sion scheme. Optical Engineering. Vol. 32, No. 7, 1588-1595.

Liou, M. (1991, April). Overview of the p x 64 video coding standard. Communications

of the ACM. Vol. 34, No. 4, 60-63.

Liu, B. and And& Zaccarin (1993). New Fast Algorithms for the Estimation of Block

Motion Vectors. IEEE Trans. on Circuits and Systems for Video Technology. Vol. 3,

No. 2, 148-157.

Lundheim, L. (1995). A Discrete Framework for Fractal Signal Modeling. Chapter 7

in Fractal Image Compression: Theory and Application. Editor: Yuval Fisher. New

York: Springer Verlag.

Netravali, A. and B. Haskell (1988). Digital Pictures, Representation and Compres-

sion. Applications of Communication Theory. Plenum.

REFERENCES 122

Ohta, M. and Satoshi Nogaki (1993). Hybrid Picture Coding with Wavelet Transform

and Overlapped Motion-Compensated Interframe Prediction Coding. IEEE Trans.

on Signal Processing. Vol. 41, No. 12, 3416-3424.

Orchard, M. T. and G. J. Sullivan. (1994). Overlapped Block Motion Compensation:

An Estimation-Theoretic Approach. IEEE Trans. on Image Processing. Vol. 3, No.

5 , 693-699.

Paul, B. and M. H. Hayes (1994). Fractal-Based Compression of Motion Video Se-

quences. IEEE Int. Conf. on Image Processing. Vol. I, 755-759.

Pennebaker, W. B. and J. L. Mitchell (1993). JPEG Still Image Compression Stan-

dard. New York: Van Nostrand Reinhold.

Rijkse, K. (1995). ITU Standardization of Very Low Bit-Rate Video Coding Algo-

rithms. Signal Processing: Image Communication. Vol. 7, No. 4-6, 553-565.

Riskin, E. A. (1991). Optimal bit allocation via the generalized BFOS algorithm.

IEEE Transactions on Information Theory. Vol. 37, No. 2, 400-402.

Said, A. and W. A. Pearlman (1996). A New, Fast and Efficient Image Codec Based

on Set Partitioning in Hierarchical Trees. IEEE Trans. on Circuits and Systems for

Video Technology. Vol. 6 , No. 3, 243-250.

Shapiro, J. (1993). Embedded Image Coding Using Zerotrees of Wavelet Coefficients.

IEEE Transactions on Signal Processing. Vol, 41, No. 12, 3445-3462.

Vines, G. (1995). Orthogonal Basis IFS. Chapter 10 in Fractal Image Compression:

Theory and Application. Editor: Yuval Fisher. New York: Springer Verlag.

Watanabe, H. and Sharad Singhal (1991). Windowed Motion Compensation. Proc.

of SPIE Conf. on Visual Communications and Image Processing. Vol. 1605, 582-589.

Wilson, D.L., J. A. Nicholls and D. M. Monro (1994). Rate Buffered Fractal Video.

IEEE Int. Conf. on Acoustics, Speech and Signal Processing.

