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Abstract 

Much of the work on fractal video coding has focused on 3-D fractal block coding and 

coding of original frames using previously reconstructed frames and variations thereof. 

This thesis investigates the possibility of using fractal image coding techniques for 

direct coding of displaced frame difference signals. Both standard affine transform 

and orthogonal basis iterated function system (OBIFS) coders are considered. These 

coders are generalized for video coding by introduction of alternative domain pool 

sources. It is shown that the use of these alternative domain pool sources provides 

much better performance than classical fractal coding of the displaced frame difference 

signals alone. Extensive simulations are also performed to quantify the effects that 

various transformation parameters have on coding performance. Finally, the objective 

and subjective coding performance of the best affine transform and orthogonal basis 

IFS coders are compared to that of a reference discrete cosine transform (DCT) coder 

for two standard video sequences. 

The simulation results indicate that affine-transform-based fractal coders are fea- 

sible for direct fractal coding of displaced frame difference signals. The peak signal- 

to-noise ratio (PSNR) performance of these coders was as good or better than the 

reference DCT-based coder for the two sequences tested. The OBIFS coders, how- 

ever, are not feasible for direct fractal coding of displaced frame difference signals. 

The reference DCT-based coder provided much better performance for all sequences 

tested. 
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Chapter 1 

Introduction 

New digital applications and services are emerging all the time. These include high 

definition television (HDTV), videoconferencing, videotelephony, multimedia and im- 

proved and enhanced cable services. Acconlodating these applications and services 

using digital information in its raw form would require the use of an extremely high 

bandwidth channel; especially in the case of images and video. Consequently, effi- 

ciently utilizing the communication channel bandwidth requires that the digital in- 

formation be significantly compressed. 

To this end, research in the areas of image and video compression has been on- 

going and widespread. Currently, all the major image coding standards: the Joint 

Photographic Experts Group (JPEG) standard (Pennebaker and Mitchell 1993) for 

still images and the Moving Pictures Experts Group (MPEG) (LeGall 1991), H.261 

(Liou 1991) and H.263 (Rijkse 1995) standards for full-motion video are based on 

the use of the discrete cosine transform (DCT). Nevertheless, new algorithms and 

improvements to existing algorithms are appearing all the time. 

A particular coding technique which has now reached a certain level of maturity is 

fractal image coding. Work in this area was originally stimulated by Barnsley (1988). 

Fractal image coders differ from traditional coding techniques in the manner in 

which they exploit redundancies in still images and video sequences. Classical fractal 
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image coders approximate an original image as the fixed point of a contractive trans- 

formation. Images are decoded by iterating the encoding transformation on any arbi- 

trary initial image. Generalized fractal coders have also been developed which relax 

the contractivity constraint thus making higher fidelity encodings possible. Fractal 

image coders have shown good performance for coding of still images. This thesis 

investigates their use for video coding. 

Thesis Objective 

The objective of this work was to investigate the feasibility of using fractal image 

coding techniques for direct coding of displaced frame difference (DFD) signals. The 

work was probing and experimental in nature. The ultimate goal was to provide both 

quantitative and qualitative results on the ability of fractal image coders to directly 

code displaced frame difference signals. To this end, we focused on image sequences 

with moderate to relatively high motion so that the DFD signals contained enough 

energy to  make the analysis useful and enlightening; the video coders implemented 

were designed with these moderate to high energy DFD signals in mind. The targeted 

bit rates were approximately 100 kbps (kilobits per second) and below; the actual bit 

rates obtained varied from approximately 20 kbps to 120 kbps depending on the video 

sequence. 

Two classes of fractal coders were considered in the investigation: standard affine 

and orthogonal basis iterated function system (OBIFS) coders. The investigation 

was done without regard to encoder complexity but only in terms of objective and 

subjective performance measurements. The performance of the best affine transform 

and OBIFS coders was compared to that of a reference DCT-based coder using two 

standard video sequences. 
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1.2 Thesis Motivation 

The two main reasons for undertaking this work were: 

Current video compression standards, MPEG, H.261 and H.263, employ hybrid 

coding techniques consisting of motion compensated prediction followed by dis- 

crete cosine transform coding of the resulting displaced frame difference signals. 

It is well known that the rate-distortion performance of the DCT is excellent 

for sources with high correlation coefficients. The DCT is used in the JPEG 

standard for this very reason; the inter-pixel correlation in a block of contiguous 

samples is generally high for still images. On the other hand, displaced frame 

difference signals typically have low correlation coefficients, but the DCT is still 

used to encode them. 

Fractal image coders have shown good rate-distortion performance for compres- 

sion of still images. Some authors (Barthel et al. 1994) (Barthel and Voy6 

1994) have reported results superior to JPEG over a wide range of bit rates for 

compression of the standard Lena image. 

Because of the good performance shown by fractal coders for coding of still 

images, we thought it both meaningful and instructive to investigate the per- 

formance of fractal coders when used for direct coding of DFD signals. 

All of the work to date on fractal video coding has focused on either 3-D fractal 

block coding or fractal coding of original frames using the previously recon- 

structed frame as a domain pool source and variations thereof. There have 

been, to the author's knowledge, no published results on direct fractal coding 

of displaced frame difference signals. This work thus contributes to the study 

of digital video coding using fractal techniques. 
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1.3 Thesis Contributions 

The main contributions of this thesis can be summarized as follows: 

0 An empirical study on direct fractal coding of displaced frame difference signals 

is presented. 

Thorough descriptions and analysis of all transformation parameters are pro- 

vided; the effects of all transformation parameters on coding performance are 

quantified. 

Both classes of coders considered are generalized for video coding by introduc- 

tion of alternative domain pool sources. A scheme for efficient quantization and 

entropy coding of the resulting transformation parameters is presented. The 

resulting coders provide much better performance than classical fractal coding 

of the DFD signals alone. 

Objective and subjective performance results comparing the best affine trans- 

form and OBIFS coders to a reference DCT-based coder are presented. 

Thesis Outline 

Chapter 2 provides an overview of image and video coding fundamentals. The con- 

cept of redundancy is introduced and several common image compression techniques 

are described. Overviews of quantization, bit allocation and entropy coding are also 

presented along with detailed descriptions of their use in this work. The chapter 

concludes with a detailed discussion of motion compensation, a key component of all 

video coding systems implemented. 

Chapter 3 outlines the mathematical theory underlying all classical fractal im- 

age coding algorithms. The fractal image model is detailed and relevant mathematics 

describing the image encoding and decoding procedure are provided. Finally, a dis- 

cussion of practical fractal image coding algorithms for encoding and decoding real 
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world images is presented; current applications of these algorithms to video coding 

are described. 

Chapter 4 presents a detailed description and analysis of all fractal video coding 

algorithms implemented in this work. All aspects of the coding algorithms are de- 

scribed. This includes encoder and decoder specifications, parameter specifications, 

quantization considerations, and descriptions of the output bit streams. 

Chapter 5 presents extensive simulation results obtained by quantifying the ef- 

fects of all transformation parameters (for both classes of coders) on coding perfor- 

mance; the pongi and foreman video sequences were used for these simulations. 

The best affine transform and OBIFS coders are selected for final comparison to a 

reference DCT-based video coding system. 

Chapter 6 presents and discusses the simulation results obtained by comparing 

the performance of the affine transform and OBIFS coders selected from Chapter 5 to a 

reference DCT-based coder. The standard carphone and salesman video sequences 

are used for this comparison. A conclusion is drawn on the feasibility of using fractal 

image coding techniques for direct coding of DFD signals. 

Chapter 7 summarizes the main contributions of this thesis and suggests possi- 

bilities for future work. 



Chapter 2 

Image and Video Coding 

Fundamentals 

This chapter provides an overview of image and video coding fundamentals. The aim 

of the chapter is to  acquaint the reader with many of the basic techniques used in 

image and video compression, many of which were used during the course of this work. 

As a secondary objective, the chapter provides a framework against which the fractal 

coding methods described later can be compared. 

2.1 Redundancy 

The goal of any data compression system is to find an efficient representation of a 

source signal, while at the same time maintaining the signal quality. To achieve such 

a goal, source coders attempt to eliminate or reduce source redundancy. This re- 

dundancy manifests itself in two distinct forms, statistical redundancy and subjective 

redundancy or irrelevancy (Netravali and Haskell 1988). 

Statistical redundancy refers to information that can be removed from the source 

signal without introducing any loss of information. The original signal can be re- 

constructed exactly from the encoded bit stream. Source coders that remove only 
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statistical redundancy are called lossless coders. 

Subjective redundancy or irrelevancy, deals with information that can be removed 

from the source signal without introducing any perceived distortion. Such informa- 

tion is deemed irrelevant since it is not perceivable by a human and therefore not 

needed to convey the signal information. In practical systems, source coders do intro- 

duce perceptable distortion; the objective being to minimize the amount of perceived 

distortion added for a given bit rate constraint. 

The removal of subjective redundancy is a lossy process; information is lost and 

the original signal can no longer be reconstructed exactly. Source coders that remove 

subjective redundancy are called lossy coders. 

The next section describes three common techniques for exploiting image redun- 

dancies. 

2.2 Common Compression Techniques 

2.2.1 Predictive Coding 

Pulse code modulation (PCM) (Jayant and No11 1984) is a very simple and basic 

compression technique. In a PCM system, each image sample is coded (quantized) 

independently of all other samples. Such a coding system is memoryless and does 

not exploit any correlations that exist between samples. Better performance can 

be achieved if the correlation between image samples is exploited during the coding 

process. Predictive coding (Gersho and Gray 1992) is a technique that exploits these 

inter-sample correlations. 

Predictive coders at tempt to minimize the amount of additional information re- 

quired to specify each new image sample. This is done by coding (quantizing) only the 

difference between the current image sample and a prediction of the current sample 

based on past reconstructed samples. The prediction is usually formed as a weighted 

linear combination of image samples in the immediate vicinity of the current sample 
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being processed. The difference or prediction error represents the additional infor- 

mation needed to specify the new image sample. Because images are locally highly 

correlated, the sequence of prediction errors will generally have a lower variance than 

the original image samples. This implies that at the same rate, a lower distortion can 

be achieved, or conversely, for the same level of distortion, a lower rate is required. 

2.2.2 Transform Coding 

Transform coders (Clarke 1985), like predictive coders, exploit the inter-pixel corre- 

lation that exists between image samples. In a typical transform coding system, the 

input image is partitioned into rectangular blocks of dimension M x N where usually 

M = N = 8. Each block is then transformed via a unitary transform to produce a 

set of M x N transform coefficients. The i'th coefficients from each block are then 

grouped to form a set of M x N sources. Some type of bit allocation algorithm is then 

used to allocate a fixed quota of bits amongst the M x N sources. Quantizers are then 

designed at the corresponding rates and the coefficients are quantized to produce an 

encoded bit stream. At the decoder, the inverse transform is applied to the quantized 

coefficients to produce a reconstruction of the original image. 

The objective of transform coding is two-fold. First, it is desired to concentrate 

most of the block energy in as few transform coefficients as possible, thereby min- 

imizing the number of coefficients that have to be quantized. Compaction of the 

block energy also allows the coefficients to be ordered according to the contribution 

each makes to the total block energy. During the bit allocation process, more bits 

can be allocated to those coefficients that contribute most to the total energy while 

fewer bits are allocated to the less energetic coefficients; allocating more bits to  the 

quantization of more energetic coefficients yields a lower overall average distortion. 

The second goal of transform coding is the decorrelation of block image samples. It 

is desirable to remove all of the correlation that exists between image samples in a 

block and produce a set of uncorrelated transform coefficients. A transform achieving 
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these two objectives will produce a set of transform coefficients that if quantized at 

a given rate, R, will yield a lower overall average distortion than the original image 

samples quantized at the same rate. 

For stationary sources, the Karhunen-Lokve transform (KLT) is the unique, op- 

timal transform that achieves both of the above objectives; the basis vectors of the 

KLT are the eigenvectors of the source covariance matrix. The KLT is not, however, 

a practical transform for image coding because it is image-dependent and must be 

re-computed for every image due to variations in image statistics. This source depen- 

dency also implies that the eigenvectors must be stored or transmitted to the decoder. 

The KLT is not widely used for image coding applications; the discrete-cosine trans- 

form (DCT) is used extensively instead. 

The DCT is a data-independent transform whose performance approaches that of 

the KLT for first-order autoregressive sources with correlation coefficients approaching 

one (Jayant and No11 1984). The DCT performs very well in still image coding appli- 

cations because still images1 can be locally modeled by such sources. For this reason, 

as well as the existence of many fast algorithms for its computation, the DCT has 

been made an integral part of all the current still image and video coding standards. 

For an image block, j ( i ,  j), with dimensions N x N, the two-dimensional DCT, 

F (u ,v ) ,  u ,v  = 0,1, . . .  , N - 1 is given by: 

where 

- i f m = O  
C ( m )  = 

1 otherwise 

'This is not the case for the displaced frame difference signals that are produced by motion 
compensation. 
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2.2.3 Subband Coding 

Subband coding (Jayant and No11 1984) (Gersho and Gray 1992) is a more general 

form of transform coding. However, subband coders differ from transform coders in 

that subband coders filter the entire image being coded rather than simply filtering 

N x N image blocks. This is advantageous in that the reconstructed images are smooth 

without any blocking artifacts. In general, both coding methods can be classified as 

signal decomposition techniques as they both decompose the source signal into a set 

of individual components each of which is coded separately. 

Subband coders split the two-dimensional image frequency spectrum into separate 

frequency bands. They do this by passing the original image through a bank of linear 

filters to produce a set of subimages. Like transform coding, it is desired to have 

energy compaction and the ability to code the subbands separately; the number of 

bits allocated to quantizing each subimage can then be adapted according to the 

perceptual importance of the subimage. 

Still images have most of their total energy concentrated in the low-pass subimages. 

The remaining subimages contain additional high-frequency information needed to  

reproduce the original image exactly. The unequal distribution of subimage energies 

allows the subimages to be prioritized so that more bits are allocated to the coding of 

high energy subimages while fewer bits are allocated to the lower energy subimages. 

This prioritization is useful since it is generally the case that the highest energy 

subimages are the most perceptually important and therefore should be coded at  the 

highest rate; in some cases, the low energy subimages need not be coded at all. 

The current state-of-the-art still-image coding algorithm is an algorithm based 

on subband coding techniques (Said and Pearlman 1996). This algorithm is based 

on embedded zero-trees of wavelet coefficients (Sha~i ro  1993). It has shown rate- 

distortion performance far superior to JPEG at lower rates. 
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2.3 Quantization 

The previous section described three common image compression techniques. The 

outputs of all these algorithms are sets of real numbers that must be discretized if 

they are to be transmitted or stored digitally. The process of discretizing a set of real 

numbers is called quantization. 

2.3.1 Scalar Quantization 

A scalar quantizer (Gersho and Gray 1992), Q, is a many-to-one mapping from 

3 + C = {yl, y2, . . . , yN), the y;'s are called output points. A scalar quantizer, Q, 

assigns to each x E % an element y; from the set C. The index i of the selected output 

point is transmitted or stored. For a quantizer, Q, to be optimal, it must satisfy both 

the nearest neighbor condition and the centroid condition. 

Given the set C of output points, the nearest neighbor condition governs the 

assignment of an output point y; to an input point x. It states that: 

Here d(x, y;) is the distortion incurred by representing the input point x by the output 

point y;. The nearest neighbor condition defines an optimal partitioning of the real 

line for the given set C in the sense of minimizing the overall average distortion. 

The centroid condition governs how the output points are selected given a partition 

of the real line. Let X be a continuous random variable that we wish to quantize. 

Given a partition of the real line into intervals R; = x;], i = 1 , .  . . , N, the 

output points, y; are given by: 

y; = centroid(R;) = min, E [d (X ,  y )  lX E Ri] 

This equation states that the optimal output point y; is that value of y E SIZ that 

minimizes the average distortion, E[d(X,  y)], for X E R;. For the special case where 

d(., .) is the mean-squared error distortion measure, the output points are given by: 
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Yi =E[XI X E R;] 

The centroid condition defines an optimal set C of output points for a given 

partition of the real line in the sense of minimizing the overall average distortion. 

The intervals (xi-1, x;] are called decision regions or nearest neighbor cells. 

There are two basic types of scalar quantizers, uniform and non-uniform. Uni- 

form quantizers are characterized by decision regions of constant width, A. Uniform 

quantizers can further be classified as midtread or midrise. Midtread quantizers have 

a zero output level while midrise quantizers do not. Non-uniform quantizers have 

decision regions of varying widths with regions of high probability mass consisting of 

many short cells and regions of low probability mass consisting of a few wider cells. 

In designing a scalar quantizer to discretize a continuous random variable X, we 

have to find the output points y; and the decision regions (xi-1, xi] so that the overall 

average distortion, D = E [d( X, Q(X)) ] ,  is minimized subject to a constraint on the 

number of output levels N or the entropy of the output indices i. A quantizer, Q, 

that minimizes the overall average distortion subject to a constraint on the number 

of output levels, N, is called a Lloyd-Max quantizer. Such a quantizer is optimal 

in the sense that no other quantizer, Q, with N levels or fewer can yield a lower 

overall average distortion. However, there may be another quantizer with lower output 

entropy that can yield a lower average distortion. For this to be possible, the entropy of 

the output indices from the Lloyd-Max quantizer must be greater than the maximum 

entropy as specified by the entropy constraint. It has been shown that if a constraint 

is placed on the output entropy of the quantization indices, a uniform quantizer with 

a large number of output levels is nearly optimal (Farvardin and Modestino 1984). 

2.3.2 Vector Quantization 

Unlike scalar quantizers which quantize individual samples, vector quantizers (VQ's) 

(Gersho and Gray 1992) quantize a vector of samples. A vector quantizer, Q,  is a 
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many-to-one mapping from Xk + C = {yl, . . . , y ~ ) ,  y; E !Rk. The set, C,  is called a 

codebook and the yi7s are called code vectors. A vector quantizer, Q, assigns to each 

input vector, z E Xk, an element yi from the set C. The index i of the selected code 

vector is transmitted or stored. 

As is the case for scalar quantizers, necessary conditions for the optimality of a 

vector quantizer, Q, are the nearest neighbor condition and the centroid condition. 

These conditions are just straightforward generalizations of the one-dimensional case 

and will not be stated here. 

Vector quantizers, like scalar quantizers, are designed in practice using a vector 

generalization of Lloyd's iterative design algorithm (Gersho and Gray 1992). 

2.4 Entropy Coding 

The goal of entropy coding (Gersho and Gray 1992)(Jayant and Noll 1984) is to 

minimize the amount of information required to represent a discrete data source such 

as quantizer output indices. The process of entropy coding is lossless so the original 

data set can be reconstructed exactly. 

Let X be a discrete random variable that can assume any value from the set 

S = {0,1, . . . , N - 1) where N is finite. Furthemore, let pi = P[X=X;], Xi E S. The 

zero'th order entropy of X,  denoted by H ( X ) ,  is defined as: 

H ( X )  is a measure of the average amount of information contained in X. More 

precisely, H ( X )  represents the minimum number of bits required to losslessly encode 

X, if each symbol is coded independently. Huffman coding (Gersho and Gray 1992) 

is the most widely used lossless coding technique. 

The basic idea behind Huffman coding is to assign symbols that occur with high 

probability to short codewords and symbols that occur with low probability to long 
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codewords in such a way that the average codeword length in bits/symbol is mini- 

mized. The codewords are selected in such a way that no codeword is the prefix of any 

other codeword; this ensures that the code is uniquely decodable. It can be shown 

that using Huffman coding on individual symbols, the average codeword length will 

lie within 1 bit of the zero'th order entropy of the source. The average codeword 

length (in a binary code) will be equal to H ( X )  only if all the p; are powers of 112. 

In any practical implementation of a Huffman coder, the encoder and decoder 

must be synchronized. This means that both the encoder and decoder must have a 

copy of the same Huffman table. Synchronization can be achieved in several ways. 

First, a fixed Huffman table can be used for all source signals so that a Huffman table 

need only be generated once and stored at the decoder. This method will work fine as 

long as the statistics of the data being coded do not change very much. Secondly, if 

the number of symbols is not too large, frequency information specifying the number 

of times each symbol occurs can be sent to the decoder. Finally, the probabilities 

of occurrence of each symbol can be approximated using a model of the source data 

and a Huffman code designed based on this model. The parameters of the model 

can be sent to the decoder with minimal overhead information, and the decoder can 

reconstruct the same Huffman table as was used at the encoder. Of course, for this 

method to work, accurate models of the source data are required. This latter approach 

was adopted in this work, and thus its use will be detailed in Section 2.4.1. 

A second technique used to minimize the amount of information required to rep- 

resent a discrete data set is run-length coding (Jayant and No11 1984). Run-length 

coding exploits the inter-sample correlation that exists between elements of a sequence 

of discrete data samples. For example, denote by { x ; ) ~ ,  a sequence of discrete data 

samples. Instead of coding each X;  independently, run-length coders exploit consecu- 

tive repetitions (runs) of the same symbol by specifying the length of the run followed 

by the symbol in the run. Run-length coding is used in transform coding systems to  

exploit runs of 0's that occur after quantization of the transform coefficients. 
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2.4.1 Data Modeling 

It was stated in Section 2.4 that a model of the source data could be used to syn- 

chronize the encoder and decoder with minimal overhead information in practical 

applications of Huffman coding. The model models the probability distribution of the 

real-valued data to be quantized and entropy coded; it allows the probabilities needed 

by the Huffman coding algorithm to be estimated and a Huffman code designed based 

on these probabilities. We now describe in detail the use of this model. 

The following notation will be used in this discussion: 

{Xi)E, will denote a set of real numbers corresponding to a set of data that 

must be quantized and entropy coded using a Huffman code; without loss of 

generality, it is assumed that the mean, p,  of the original data set has already 

been removed so that c;, $$ = 0. 

M IXil 
0 p~,, = will denote the mean-absolute-value of the data set. 

0 a, will denote the standard deviation of the data set. 

(xi-1, xi], i = 1 , .  . . , N will denote the decision regions of a quantizer, Q, to be 

used for quantizing the data set. 

Consider the probability density function (pdf) of a continuous random variable 

X with zero mean and standard deviation a defined by: 

where 

and 
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p( x ) is called a generalized Gaussian pdf. It is completely ~arameterized by v and 

a. Figure 2.1 displays p( x ) for different values of v (a = 1.0). 

Figure 2.1: Generalized Gaussian PDF 

It can be seen from the figure that as v gets larger the pdf becomes broader; 

as v gets smaller the pdf becomes peakier. Two special cases occur when v = 1.0 

(Laplacian density) and v = 2.0 (Gaussian density). Because the pdf shape can be 

controlled by changing v, the pdf can be used to model the distributions of source 

data that have the general shapes shown in Figure 2.1. Published work (Birney 

and Fischer 1995) describes the use of the generalized Gaussian pdf for modeling of 

DCT and subband image data for the purposes of quantization and entropy coding. 

Given a data set {x;)E,, p ( x )  will model the data set in the sense that the mean- 

absolute-value and variance computed using p( x ) will equal the mean-absolute-value 

and variance of the actual data set. 

For a given set of data {x;)F,, the corresponding p( x ) is found by solving (Birney 

and Fischer 1995) 
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where 

Solving Eq. 2.4 directly is very difficult; in practice, we can use a lookup table of v 

values, {vi)f=l, and find v; such that 

is minimized. A 216-point lookup table of v values spanning 0.1 to 5.0 was used in 

this work. 

We now have a function p( x ) modeling the probability distribution of our data set. 

However, we want to design a Huffman code for the output indices of the quantizer, Q, 

used to quantize our data set; therefore, we need to know the probability of occurrence 

of each quantizer output index. These probabilities can be estimated using the model 

by numerically integrating p( x ) over the decision regions x;], i = 1,. . . , N of 

the quantizer. It will be shown later in this thesis that the resulting Huffman code 

designed using these estimated probabilities is nearly optimal; the difference in the 

output rate compared to a Huffman code designed using the actual quantizer output 

index probabilities is negligible. Also, the only information needed by the decoder to  

reconstruct the same Huffman code is the index i of the optimal v; and the standard 

deviation of the data set. 

2.5 Bit Allocation 

The bit allocation problem is one of allocating a fixed quota of bits amongst a set 

of N sources. Many different algorithms are available to perform this bit assignment 
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including the Breiman, Friedman, Olshen, and Stone (BFOS) (Riskin 1991) bit al- 

location algorithm, the Greedy algorithm (Gersho and Gray 1992) and allocations 

based on high rate assumptions (Gersho and Gray 1992). Here we describe the BFOS 

bit allocation algorithm as it was used in this work. 

The basic bit allocation problem can be formulated as follows: 

0 Let the N  sources be represented by Xi, i = 1, . . . , N and let [Xi 1 denote the 

number of data points in the set Xi. 

0 Let R be the.target rate (bitsldata point) specified for quantization of the X i .  

Let Qj  be the set of quantizers used to quantize X;, i = 1, . . . , N ,  j = 1, . . . , Mi. 

Let B = ~ f = ,  pkbk where pk = l X k '  and bi is the average rate in bits/data 
C,"= 1-n 

point required to quantize the set Xk. B depends on the quantizers selected to  

quantize each Xk. 

Let D = ~ f = ,  pkdk where pk is defined as above and dk is the average distortion 

incurred in quantizing data points in the set Xk using a given quantizer. D also 

depends on the quantizers selected to quantize each X k .  

The bit allocation problem is to minimize D subject to the constraint that B 5 R. 

The solution provided by the BFOS algorithm is as follows: 

The BFOS algorithm is given as input a rate-distortion table for each of the 

N  sources. For source X;, this table contains Mi entries and specifies the average 

rate and distortion incurred in quantizing X; using Qj, j = 1, . . . ,Mi. With N 

sources and Mi quantizers per source, there are a total of Mi different quantizer 

assignments each yielding a different overall average distortion, Dj , and average rate, 

Rj, j = 1, . . . , JJz, Mi. These points ( R j ,  Dj) comprise the operational distortion 

rate function of the N  sources. The BFOS algorithm traces out the convex hull of the 

operational distortion rate function. For a given target rate, R, it assigns quantizers 
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to each source such that B 5 R, and this allocation is such that no other allowable 

quantizer assignments with B 5 R will yield a lower overall average distortion. 

Motion Cornpensat ion 

A digital video signal can be viewed as a sequence of still images called frames. Be- 

cause successive frames typically exhibit high temporal correlation, instead of coding 

each frame independently (intraframe coding), only the difference between the current 

frame and a prediction of the current frame formed from the previous frame needs 

to be coded (interframe coding). The underlying assumption is that the difference 

(residual) image will have a lower information content and thus can be coded with 

fewer bits. The problem then becomes one of identifying those regions in the pre- 

vious frame (or frames) that most closely resemble the regions in the current frame 

which are to be coded. Motion compensation is a procedure that accomplishes this 

objective. 

2.6.1 Standard Block Motion Compensation 

Standard block motion compensation computes both motion vectors and residual 

images. Block motion compensation is basically a block-matching process. It is based 

on the assumption that all pixels within a block move with the same translational 

motion so that each block in the current frame is just a translated version of some 

block in the previous frame. This assumption is generally not valid, and hence there 

will often be a significant difference between a block in the current frame and its 

optimal prediction based on a block from the previous frame. These differences or 

prediction errors comprise the additional information required to specify the current 

block. 

The standard block motion compensation procedure is as follows. The n'th frame 
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in a digital video sequence is partitioned into non-overlapping square blocks of di- 

mension N x N2. Refering to Figure 2.23, let R, and RnF1 be the n'th and (n - 1)'th 

frames in the digital video sequence. Furthermore, let the block labelled a in the n'th 

frame be the block currently being processed. Assume this block is centered at pixel 

coordinates ( i ,  j ) .  The previous frame, is searched for the N x N block that 

matches block a most closely. The quality of the match is usually measured using 

either the mean squared error or the mean absolute error distortion measure. Once 

the optimal matching block has been found, block b in the figure, the residual block 

and motion vector corresponding to block a can be computed. 

Figure 2.2: Standard Block Motion Compensation 

If we assume that block b is centered at pixel coordinates (m,n), the motion vector 

is computed as: 

This vector represents the displacement from the block being processed to the 

optimal matching block in the previous frame. The residual or displaced frame differ- 

ence (DFD) is then computed as the pixel to pixel difference between the block being 

' N  will be called the MC block size 
3Figure courtesy of Jacques Vaisey. 
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processed (block a) and the optimal matching block (block b). These motion vectors 

and residual blocks are computed for each N  x N  block in the partitioned frame. 

The set of all motion vectors for blocks in R, is called the motion field for frame n. 

The image consisting of all the optimal matching blocks for On is called the prediction 

image. 

In practice, the search region over which a matching block in the previous frame 

is sought is limited to a windowed region surrounding the block being processed. In 

the case of the above example, an optimal matching block might be sought for all 

offset vectors (x, y )  such that - N  < y < N  and - N  5 x < N;i.e., for each (x, y ) ,  the 

difference between O,(i, j )  and On-l (i  + x, j + y )  would be computed. This type of 

search strategy is known as full search; it was the search strategy used throughout this 

work. Other search strategies exist in the literature that provide tradeoffs between 

search time and the quality of matching blocks found (Liu and Zaccarin 1993). 

2.6.2 Overlapped Windowed Block Motion Compensation 

The previous section described standard block motion compensation. It was seen that 

standard block motion compensation is a form of memoryless predictor in which each 

block in the current partitioned frame, R,, is predicted by a block in the previous 

frame. The prediction of each block is memoryless; it is done independently without 

regard to neighboring blocks. Consequently, if two neighboring blocks have differing 

motion vectors, there will be a discontinuity in the pixel intensities at the boundary 

of these two blocks in the prediction image. These discontinuities also appear in the 

DFD signal which is to be coded. If block coding algorithms are used to code the DFD 

signal, the discontinuities will not present a problem so long as the block size used is 

the same as the MC block size. If these block sizes are different, the discontinuities will 

appear within the block to be coded. Such discontinuities introduce high-frequency 

energy into the block and can result in decreased coding performance (Ohta and 

Nogaki 1993). This is particularly relevant to fractal coding as fractal coders make 
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use of spatially contracted domain blocks when coding an image in order to exploit the 

inter-pixel correlation that exists between blocks of image samples at different scales. 

These domain blocks are usually larger than the MC block size and will therefore 

contain the discontinuities. Since fractal coders approximate blocks of contiguous 

image pixels using suitably transformed domain blocks, a discontinuity in the middle 

of a domain block will certainly adversely affect the quality of the approximation. 

A new technique called overlapped windowed motion compensation (Auyeung et 

al. 1992) (Orchard and Sullivan 1994) (Watanabe and Singhal 1991) has been in- 

troduced to try and improve coding performance when there is such a motion edge 

inside of a block. This process is similar to the standard block motion compensation 

procedure with the exception that enlarged optimal matching blocks are windowed 

and overlapped in forming the prediction image. Overlapped windowed motion com- 

pensation, as implemented in this thesis, can be fo r~~u l a t ed  as follows: As in standard 

block motion compensation, the current frame, R,, is partitioned into non-overlapping 

square blocks of dimension N x N .  The optimal matching blocks for each of the N x N 

blocks are found in exactly the same manner as for the standard block motion com- 

pensation case, and the motion vectors are computed in the same way. The difference 

lies in the formation of the prediction image. Consider once again Figure 2.2 and 

suppose that block b is the optimal N x N matching block for block a. Let block c 

be the 2N x 2N block consisting of block b and all pixels within f samples of block 

b. Block c is represented in Figure 2.3 by the dotted line; block b is represented by 

the solid line. 

Note that if there are not $ image samples around block b, i.e., if block b is 

located near an image border, the corresponding pixels in block c are set to zero. 



CHAPTER 2. IMAGE AND VIDEO CODING FUNDAMENTALS 

Figure 2.3: Example of Enlarged Optimal Matching Block 
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Block c is then windowed using a window function w(x, y) and placed in the 

prediction image so that block b overlays block a. A typical window function is the 

sin2 window given below and shown graphically in Figure 2.4. 

w(x, y ) = sin 
T(X + 0.5) , ~ ( y  + 0.5) 

N 
sin 

N 
, x , y = O  ,..., N - 1  

The sin2 window satisfies the perfect reconstruction condition. This means that if 

blocks of constant pixel intensity are windowed and summed as to be described shortly, 

the resulting block of pixels will remain at the same intensity. 

Figure 2.4: Sin2 Window 

Because the enlarged windowed optimal matching blocks are used in forming the 

prediction image, the blocks will be overlapping when placed in the prediction image 

in the manner described above. Pixels in the overlapped regions are summed pro- 

ducing an averaging effect and thereby reducing discontinuities at the N x N block 

boundaries. With the exception of N x N blocks on the borders of the image, all 

pixels in the prediction image are generated by summing the weighted contributions of 

four pixels. These pixels come from the enlarged windowed optimal matching block of 

the N x N block in which the pixel lies and the enlarged windowed optimal matching 

blocks of three neighboring N x N blocks. 
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As an implementation issue, portions of the enlarged windowed optimal matching 

blocks corresponding to pixels 5 samples or less from the image borders of the predic- 

tion image are not windowed because these pixels do not possess enough neighboring 

blocks to form a proper pixel average. 

Published results (Auyeung et al. 1992) indicate that overlapped windowed block 

motion compensation not only computes smoother prediction images than the stan- 

dard block motion compensation technique, but the resulting DFD signals also gener- 

ally have lower energies. Figures 2.5 and 2.6 depict two DFD signals, one computed 

using overlapped windows and the other computed using the standard block motion 

compensation technique. It is evident that the overlapped windowed block motion 

compensation technique produces a much smoother DFD signal with lower average 

energy per pixel (57.2 versus 66.9). 

Figure 2.5: DFD Signal: Standard Block Motion Compensation 
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Figure 2.6: DFD Signal: Overlapped Windowed Block Motion Compensation 
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2.7 Performance Measures 

The two most commonly used objective performance measures are the mean squared 

error (MSE) and the mean absolute error (ABS). The mean squared error between 

two images R1 and R2 is defined as 

where Rl(x, y) and R2(x, y) are the pixel intensities at spatial coordinates (x,  y) in 

images R1 and R2 respectively and both images are of dimension M x N. 

The peak signal-to-noise ratio (PSNR) is often used to express the mean squared 

error logarithmically. The PSNR is defined as 

(2. - 
PSNR = 10log 

~ M S E  

where r is the image pixel resolution. The PSNR is used because it is independent of 

the energy in the original image and thus provides a normalized measure that makes 

comparison of PSNR measurements across images meaningful. Such a measure is 

desirable because different images have different associated energies. 

The mean absolute error is defined as 

where R1, Rz, M and N are defined as above. 

Objective performance measures such as the ones described above do not always 

correlate well with perceived image quality. Subjective tests should also be performed 

when comparing compression algorithms as the perceived effects of PSNR differences 

are in general image-dependent. Typically, a 1 dB PSNR difference is perceivable by 

a human viewer. 



Chapter 3 

Fractal Image Coding 

The previous chapter described several popular image compression techniques and 

the manner in which they exploit image redundancies. This chapter presents the 

theoretical foundation upon which classical fractal image coding techniques are based. 

Classical fractal image coders exploit correlations that exist between blocks of im- 

age samples at different scales. Fractal coders assume that images belong to a special 

class of images characterized by a fractal model. The images in this class all possess 

the property of self-similarity or more generally, piecewise self-transformability. This 

class of images is uniquely associated with a class of non-linear contractive trans- 

formations in the sense that each transformation uniquely specifies an image in the 

class. 

Under the assumption that images to be encoded can be satisfactorily described 

by a fractal model, the fractal image coding problem is one of finding that image in 

the class that most closely resembles the image to be encoded. The transformation 

associated with the best class image is stored as a representation of the original image. 

If the information required to completely specify the encoding transformation is less 

than the raw information content of the original image, the image has been effectively 

compressed. The encoding transformation is called a fractal code. 

Fractal source coders are lossy. The reconstructed image is only an approximation 
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of the original image. The quality of the approximation is dependent on how well the 

original image is characterized by the fractal model. 

We begin this chapter by describing the mathematics of classical fractal source 

coding. The chapter concludes with an overview of practical fractal image coding 

algorithms. 

3.1 Mathematical Background 

This section defines concepts and notation that are required for a logical and thorough 

treatment of classical fractal image compression. Excellent treatments of this material 

can be found in (Fisher 1995a) (Barnsley 1988) (Barnsley and Hurd 1993) (Lundheim 

1995). 

The first concept needed is the notion of a metric space. Metric spaces are impor- 

tant because real world images are elements of such a space. 

Definition 1 (Metric Space) A metric space, (X, d) consists of a set X and a real- 

valued function d called a metric1 that defines the distance between any two points 

x,  y E X. 

The points x and y refered to in this definition depend on the nature of the space 

X. For example, if X = {x I 0 5 x 5 l), then points in X can be individual real 

numbers in [0, 11 or they may be subsets of X (i.e., intervals of the form [a, b] or (a, b) 

where a 2 0, b 5 1, and a 5 b). As an example, if the function d : X x X + 3 is 

defined by d(x, y )  = lx - yl, then the pair (X, d) is a metric space. 

Transformations defined on a metric space need to be constructed to encode real 

world images. 

Definition 2 (Contractive Transformation) Let (X, d) be a metric space. Let T 

be a transformation defined on X. T is called a contractive transformation if there 

exists a positive constant, s < 1 such that 

lTechnically, to  be a metric, d must satisfy certain axioms (Barnsley 1988). 
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s is called the contraction factor of T .  

In a more general sense, the smallest s > 0 satisfying Eq. 3.1 is called the Lipschitz 

constant of T .  

If a transformation T is expressed as the composition of two or more transforma- 

tions, the contractivity of T is just the product of the contractivities of each of the 

transformations in the composition. For example, if T = w1 o w2 and sl and s2 are the 

contractivites of wl and w 2  respectively, the contractivity of T is sls2. This property 

is important in that even though individual transformations in the composition may 

not be contractive, the overall transformation will be contractive if the product of the 

individual Lipschitz constants is less than one. 

Intuitively, contractive transformations reduce the distance between points in a 

metric space X. For example, if a metric space (X, d )  is defined by 

and 

then 

In this example, T is a contractive transformation with contractivity 0.5. 

The transformation T defined above is an example of an affine transformation in 

%2. In general, affine transformations can be defined in any n-dimensional space. 
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Definition 3 (Affine Transformation) A n  aJgine transformation, w, is a function 

that consists of a linear term A and a translational term b. Mathematically, 

w(x) = A x + b  

where x is a point in the domain of w. 

For example, if w : 313 - -  313, then A would be a 3 x 3 matrix and b would be a 

3 x 1 column vector. Affine transformations can be used to rotate, reflect, scale, skew, 

or move a set of points within a space X .  Affine transformations are very common in 

fractal image compression. 

For the purposes of image compression, transformations formed from the union 

of individual contractive transformations are required. This union of transformations 

forms an iterated function system. 

Definition 4 (Iterated Function System) Let (X, d) be a complete2 metric space. 

Let w; : i = 1 , .  . . , N be a set of contractive transformations defined on X .  Let 

s; : i = 1,. . . , N be the contractivities of wl, w2, .  . . , WN respectively. Then, the metric 

space X along with the w; : i = 1, .  . . , N form an iterated function system (IFS). 

A transformation W which maps subsets of X into subsets of X can be associated 

with any IFS. This transformation W is given by: 

The contractivity of W is max{s;li = 1,. . . , N). Eq. 3.3 states that if A E X, then 

W(A) = wl(A) U w2(A) U . . . U wN(A). In other words, applying wl to  A produces a 

set All applying w2 to A produces a set A2, and so on for each w;. W(A) is then just 

the union of the sets A1,A2,. . .,AN. The order in which the w; are applied to  the set 

'This is a technicality. In the context of image coding, the space of images is complete. For a 
definition of completeness, see Barnsley (1988). 
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A does not matter because each w; is acting independently on the set A; each w; is 

applied to the entire set A. 

The following two theorems form the basis of classical fractal image compression 

algorithms. They suggest how contractive transformations of the general form Eq. 3.3 

can be used to encode and decode images. 

Theorem 1 (Contraction Mapping Fixed Point Theorem) (Barnsley 1988) 

Let (X, d )  be a complete metric space. Let T be a contractive transformation defined on 

X .  Then, for any arbitrary initial point x ,  E X ,  there exists a unique point x ,  E X 

(called the fixed point or attractor of T )  to which the sequence 

converges. Stated mathematically, 

lim r n ( x 0 )  = x ,  . 
n', 

Furthermore, x ,  is left unchanged when operated on b y  T :  i.e., 

This theorem is fundamental to fractal image compression. It states that every 

contractive transformation T on a complete metric space X uniquely determines some 

unique point x ,  E X regardless of the choice of x,. This means that given r ,  x ,  

can be determined, and r can be said to encode x,. However, in the context of image 

coding, the inverse problem is what is of interest. 

Definition 5 (Inverse Problem) Given x ,  (the image to be encoded), find a con- 

tractive transformation T such that x ,  is the attractor of r. 

If such a T can be found, the Contraction Mapping Fixed Point Theorem guar- 

antees that x ,  can be regenerated by iterating T on any arbitrary initial point x,. 
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Furthermore, if the information necessary to completely specify T is less than the in- 

formation required to specify X,,T can be used to compress images. The only problem 

that remains is finding the transformation 7- corresponding to the given image x, that 

is to be encoded. 

Barnsley's Collage Theorem (Barnsley 1988), a derivative of the Contraction Map- 

ping Fixed Point Theorem, suggests how to go about solving this problem. 

Theorem 2 (Collage Theorem) (Barnsley 1988) 

Let (X,d)  be a complete metric space. Let $ E X and E > 0 

transformation W = uZ1 w; can be found, such that 

N 

d ( $ 7  UW($)) 5 & 7 

i=l 

then, 

d ( $ 7  xm) 5 4 - 4 - I  , 

where s is the contractivity of W and x, is the attractor of W. 

If a contractive 

The Collage theorem states that if a sequence of contractive transformations 

w; : i = 1 , .  . . , N can be found such that the distance between $ (the image to be 

encoded) and W($) (called the collage of $) is less than some threshold, e ,  then there 

is a guarantee that the distance between and the attractor of the IFS W will be no 

greater than ~ ( 1 -  s)-l . The attractor of W is an approximation of the original image 

$. Theoretically, this approximation can be made as accurate as desired by finding 

an appropriate IF'S W. If W($) = $, the original image ($) can be reconstructed 

exactly. 

Although designing an IFS such that W($) = $ for any image $ is always 

possible3, the resulting IFS W will consist of a very large number of transforma- 

tions, thereby resulting in little or no compression of the image. For this reason, 

in ~ract ica l  image compression applications, the goal is to find an IFS W such that 

3 ~ u s t  define mappings wi each of which maps the entire image onto a different pixel. 
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Figure 3.1: Sierpinski Gasket Image 

W(+) % $. In this way, x, % 4, which means that the attractor of the IFS W will 

only be an approximation of the original image. 

Images that can be encoded perfectly using an IF'S W all possess, to varying de- 

grees, the property of self-similarity. The image of the Sierpinski Gasket in Figure 3.1 

illustrates this property. 

The entire image consists of copies of itself, but at different scales. This means, 

for example, that if the Gasket image were to be contracted both horizontally and 

vertically by a factor of 2, the resulting image would once again be a Sierpinski Gasket. 

This is the property of self-similarity that allows for the extremely efficient encoding 

of images using an IFS. 

The Sierpinski Gasket image can be encoded ~erfect ly  using only three contractive, 

affine transformations (Barnsley 1988). When these transformations are applied to the 

Sierpinski Gasket image, the union of the resulting images is once again a Sierpinski 



CHAPTER 3. FRACTAL IMAGE CODING 

Gasket. From the earlier discussion, d [Sierpinski Gasket, W(Sierpinski Gasket)]= 0 

which implies that the attractor of the IFS W is the Sierpinski Gasket. 

Real-world images do not exhibit the type of global self-similarity evident in the 

Sierpinski Gasket image. Furthermore, the transformations w; in an IFS must be 

applied to the entire image. These two factors make designing an IFS that can encode 

a general real-world image sufficiently well, while at the same time compressing the 

image, almost impossible. As a result, local iterated function systems4 (Barnsley and 

Hurd 1993) (Fisher 1995a) were introduced, an extension of the general IFS idea. 

Local iterated function systems differ from the general IFS in that the w; are not 

restricted to operating on an entire image; they can be applied to only parts of the 

image. To encode an image using an LIFS, parts of the image are approximated by 

transformations applied to other sections of the image with the condition that after all 

transformations have been applied, the entire image has been covered (approximated). 

Local iterated function systems exploit image redundancy through this property of 

piecewise self-transformability. All ~ract ica l  fractal image coding algorithms known 

to the author are based on LIFS and generalizations thereof. 

Fractal Coding Algorithms 

3.2.1 Still Image Coding 

All practical fractal coding algorithms known to the author used for the purposes of 

encoding and decoding real world images can be described using the block diagram 

shown in Figure 3.2. 

Given an input image R, the first step in the encoding process is to partition R 

into N disjoint blocks R; called range blocks; i.e., R = u ~ ~ R ; .  Generally the range 

blocks are square although any shape can be used. For each R;, a domain block 

4The definitions and theorems provided in this section can also be applied to an LIFS (also called 
partitioned iterated function system). 
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FRACTAL IMAGE ENCODER 

FRACTAL IMAGE DECODER 

Form encodmg 
Apply transformations Uansformtlon. , Output 

for each range block lnuge 

Figure 3.2: Fractal Coder Block Diagram 

D; (all of whose dimensions are larger than R;)  and a contractive transformation w; 

must be found such that the distortion incurred in aproximating R; by w;(D;) is as 

small as possible. The forms of the transformations w; are defined a priori so that 

minimization of the distortion simply involves computing the optimal transformation 

parameters. 

Adaptive partitioning algorithms are often used so that if the distortion is larger 

than a pre-defined threshold, the Ri are further divided and transformations are 

sought for the smaller range blocks. This partitioning continues until either a satisfac- 

tory transformation is found or the smallest allowable range block size is reached. The 

compression rate achievable is inversely proportional to the number of range blocks 

coded. 

Because of their simple structure, the most common transformations, w;, are affine 

transformations that approximate a range block as the linear combination of a trans- 

formed domain block and a constant offset term. A key component of the domain 

block transformation is a spatial contraction operation that shrinks the domain block 

D; to the same dimensions as R;. Spatially contracted domain blocks are required 

to ensure that the w; are spatially contractive. The set of all spatially contracted 

domain blocks for range blocks of a given size will be refered to in this thesis as a 

domain pool for the range block; the source of the domain blocks (in this case, the 
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still image being coded) will be called a domain pool source. Using this terminology, 

we can think of a range block R; being approximated by a transformation w;(D;), 

where here D; is a spatially contracted domain block taken from the domain pool; the 

spatial contraction operation has been removed from w; and is implicit in the domain 

pool construction. 

Transformations of this type have been generalized to relax the contractivity con- 

straint by introducing fixed or image independent blocks in the encoding tansforma- 

tion. Fractal coders of this type are called generalized fractal coders in the literature 

(Gharavi-Alkkansari and Huang 1994). 

The final step in the encoding process involves quantization and entropy coding of 

the parameters needed to describe each w;. The type of quantizer and entropy code 

used (if any) depends on the distribution of the transformation parameters. Efficient 

representations are required if good rate-distortion performance is to be achieved. 

The basic core of all fractal still image coding algorithms has been described. 

Specific algorithms are available in the literature (Fisher 1995b) (Fisher and Menlove 

1995) (Barthel et al. 1994) (Gharavi-Alkkansari and Huang 1994). 

3.2.2 Fractal Video Coding 

As mentioned earlier, much of the work on fractal video coding has focused on 

3-D fractal block coding 

fractal coding of original frames using the previously reconstructed frame as a 

domain pool source and variations thereof 

There have been numerous papers published on the 3-D fractal block coding ap- 

proach (Barakat and Dugelay 1996) (Barthel, Ruhl and Voyk 1996) (Lazar and Burton 

1994) (Li, Novak and Forchheimer 1993). The method is a straightforward extension 

of the 2-D case. Instead of partitioning an image into range blocks, a slab of frames 
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(time dimension) is into range cubes and suitable transformations are 

sought for these cubes in the same manner as described in the previous section. 

The second method is again a generalization of the 2-D still image coding approach. 

The algorithm is more flexible because there is no requirement that the encoding 

transformation be contractive, since domain blocks are obtained from the previously 

reconstructed frame; i.e., the domain blocks are available a priori and do not have to 

generated iteratively at the decoder as in the classical 2-D still image coding approach. 

In addition, decoding is non-iterative and requires only a single iteration. This method 

can also be used in conjunction with motion compensation to encode only those range 

blocks in the current frame for which a suitable matching block has not been found. 

Implementations of this approach (and variations) are described in (Fisher, Rogovin 

and Shen 1994) (Gharavi-Alkkansari and Huang 1996) (Hiirtgen and Biittgen 1993) 

(Paul and Hayes 1994). 

A variation of the second method is described in (Wilson, Nicholls and Monro 

1994). In this method original frames are coded independently using a higher-order 

affine-like transformation but no domain block searching. This general algorithm and 

its variants have been used for real-time video coding. 

We conclude by noting that video sequences, unlike still images, allow for the 

use of more generalized fractal coders. This is due to the fact that in encoding a 

given frame the encoding algorithm has access to all previously reconstructed frames 

as well as any frames that can be derived from them. Consequently, there is no 

contractivity constraint on the encoding transformation as the domain blocks used 

in the transformation are available a priori at  the decoder. Removing all constraints 

from the encoding transformation makes higher fidelity encodings possible. Coders of 

this type are not fractal in the classical sense; however, they do exploit the property 

of piecewise self-transformability among video sequence frames and thus they are still 

called fractal coders. 
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The remainder of this thesis investigates another possible approach to fractal video 

coding exploiting both classical and generalized fractal coding methods. Specifically, 

we investigate direct fractal coding of displaced frame difference signals. 



Chapter 4 

Fractal Coding of DFD Signals 

This chapter presents a detailed description and analysis of all fractal video coding 

algorithms implemented in this work. The two classes of coders considered are the 

affine transform and OBIFS coders. Simulation results quantifying the performance of 

these coders for direct fractal coding of displaced frame difference signals are presented 

in Chapter 5 .  The chapter begins by presenting the proposed fractal video coding 

model. 

4.1 Proposed Fractal Video Coding Model 

Figure 4.1 illustrates the fractal video coding model proposed for this work. The basic 

features of the model are a motion compensation block, a fractal image encoder block 

and a switch that allows one of three possible images to be selected as a domain pool 

source. All fractal video coders implemented in this work comprise the fractal image 

encoder block. 

The fractal image encoder block has two inputs, the DFD signal to be encoded 

and the image to be used as a domain pool source, and one output, the reconstructed 

DFD signal. For a given video sequence, the DFD signal generated depends on the 

motion compensation algorithm used. For a given DFD signal, the quality of the 
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I motion vectors 

Motion Fractal 
frame (n) Compensation Image 

previously reconstructed frame(n-1) I 

previously reconstructed DFD(n-I) 

Domain Pool Source 

Figure 4.1: Fractal Video Coding Model 

reconstructed DFD signal depends on the domain pool source selected. Furthermore, 

the domain pool source selected has consequences for the encoding transformation 

and resulting parameter distributions. In general, for a given video sequence, the 

quality of the reconstructed DFD signal depends on both the motion compensation 

algorithm and the domain pool source selected. All of these issues will be discussed 

and analyzed later. 

It should also be noted at this time that the mean-squared-error was used as the 

distortion measure throughout this work. 

4.2 Affine-Transform-Based Fractal Coders 

This section presents a detailed description and analysis of the affine-transform-based 

fractal coders implemented in this work. All descriptions are made with respect to  

the proposed fractal video coding model and are an extension of the general overview 

presented in Section 3.2. 

4.2.1 Domain Pool Construction 

Affine-transform-based fractal coders approximate a range block R; as the linear com- 

bination of a transformed spatially contracted domain block taken from the domain 
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pool of R; and a constant offset term'. With reference to Figure 4.1, we note that 

there are three possible domain pool sources: the residual2 image being coded (RBC), 

the previously coded residual image (PCR) and the previously coded original frame 

(PCO). The RBC domain pool source corresponds to classical fractal coding of the 

DFD signal. The PCR and P C 0  domain pool sources are alternative domain pool 

sources that place no constraints on the encoding transformation and therefore make 

higher fidelity encodings possible. 

The spatial contraction operators that can be used in forming a domain pool 

depend on the domain pool source. Specifically, if the domain pool source is the 

RBC, the spatial contraction operator must be spatially contractive. The PCR and 

P C 0  domain pool sources   lace no constraints on the spatial contraction operator as 

the domain blocks are available a priori at the decoder. These concepts will be made 

clearer shortly. 

The three spatial contraction operators considered in this work were decimation 

by a factor of two in each dimension3 Furthermore, a factor of two is most often used 

in published work. by averaging (DECIM-BYAVG) (Lundheim 1995), subsampling 

(SUBSAMP) (Lundheim 1995) and no contraction (NO-CONTRACTION); these op- 

erators were used because they are the most often used in published work. These 

operators (as implemented) can be described mathematically using the following no- 

tation. Let 

0 OD, denote a 2N x 2M domain block with upper left corner at coordinates (1,l). 

0 Di denote the N x M domain block resulting from applying the indicated spatial 

contraction operator to OD, 

0 l < x < N a n d l < y < M  

'The domain pool can be made adaptive (Jacquin 1992), but to ensure the best coding results, 
the entire domain pool was used in this work for coding each R; 

2Displaced frame difference signals are also called residual images. 
3Any factor could be used, but there is no reason why any other factor should give better results. 
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The DECIMBYAVG operator generates each pixel in D; by averaging over four 

neighboring pixels in OD,. Mathematically, 

The SUBSAMP operator generates each pixel in D; by simply taking every second 

pixel both horizontally and vertically from OD,, 

The NO-CONTRACTION operator is the identity operator. No spatial contrac- 

tion is performed. The N x M domain pool block D; is obtained by directly extracting 

an N x M block from the domain pool source. 

Of the three spatial contraction operators implemented, only the DECIMBYAVG 

and SUBSAMP operators are spatially contractive; therefore, if the domain pool 

source is the RBC, only these operators can be used in forming the domain pool. 

Given a domain pool source and an appropriate spatial contraction operator, the 

domain pool construction procedure can now be described. Without loss of generality, 

we assume that we are constructing a domain pool for range blocks of dimension 

N x M .  Furthermore, it is assumed that the spatial contraction operator being used 

is DECIMBYAVG or SUBSAMP. 

The construction begins by positioning a window of dimension 2N x 2M4 in the 

upper left corner of the domain pool source (coordinates (1 , l ) ) .  The spatial contrac- 

tion operator is then applied to that section of the domain pool source covered by the 

window and the resulting block (provided it is not a zero-intensity block) is placed in 

the domain pool . The window is then moved horizontally by a displacement Ax and 

the above procedure is repeated. When the window can no longer be moved horizon- 

tally without extending outside the domain pool source boundaries, it is repositioned 

at coordinates (current-row + Ay, 1) where Ay is the vertical window displacement. 

41f the spatial contraction operator was NO-CONTRACTION, the window size would be N x M. 
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When the window can no longer be moved horizontally or vertically without extend- 

ing outside the domain pool source boundaries, the construction is complete. This 

procedure is repeated for all allowable range block sizes. 

In this work, as is the case in most published work, only one spatial contraction 

operator was used per coder in forming the domain pool5. Therefore, given an N x M  

domain pool source, an L x R window (whose dimensions will depend on the range 

block size and spatial contraction operator used) and horizontal and vertical grid 

displacements Ax and Ay, the maximum number of domain blocks in the domain 

pool, Nd, can be computed as 

M - R  N - L  
Nd = [ Ax + + 11 

This implies that [logq(Nd)l bits are required to specify which domain block was 

used in the encoding of a given range block (assuming no entropy coding). 

4.2.2 Part it ioning Algorithms 

Adaptive partitioning algorithms are used to try and improve image fidelity by allow- 

ing larger range blocks for which a satisfactory transformation has not been found to 

be split into smaller blocks and transformations sought for these smaller blocks. It 

is desired to find a partitioning algorithm that maximizes the number of large range 

blocks coded while at the same time maintaining image fidelity. 

The three partitioning algorithms considered in this work were standard quadtree 

(Fisher 1995b), horizontal-vertical (HV) (Fisher and Menlove 1995) and partial quadtree 

(Barthel and Voyk 1994). Each of these algorithms (as implemented) will be described 

assuming that an N  x N range block R; is being encoded. Specifically, we consider 

N = 8, as 8 x 8 range blocks (parent blocks) were the largest range blocks allowed; 

the smallest range blocks allowed were 4 x 4 range blocks (child blocks). Larger range 

5There is no reason why the use of more than one spatial contraction operator should yield better 
results at  the same rate. 

1x1 denotes the smallest integer greater than x.  
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blocks were not considered a,s it is very difficult to find good matches for such range 

blocks even when coding still images. 

The following notation will be used in the algorithm descriptions. Let 

Tsplit denote the splitting-threshold 

w;(D;) denote the minimum-distortion approximation of R; 

d(R;, w;(D;)) denote the distortion incurred in approximating Ri by w;(D;) 

The quadtree algorithm simply splits R; into 4 disjoint 4 x 4 range blocks if 

d(R;, w;(D;)) > Tsprit. Each of these 4 x 4 range blocks is then encoded separately as 

no further splitting is allowed. 

If d(R;, w;(D;)) > Tsplit, the HV partitioning algorithm proceeds in the following 

manner. R; is temporarily split vertically into 2 disjoint 8 x 4 blocks and the variance 

of these blocks is computed. Let these variances be denoted by 012 and a;. Next, R; 

is temporarily split horizontally into 2 disjoint 4 x 8 blocks and the variance of these 

blocks is also computed. Denote these variances by a: and 02. The final decision 

on how to split R; is made by comparing the sum of the computed variances. R; is 

split vertically if a: + 022 < 632 + a:; otherwise it is split horizontally. Each 4 x 8 or 

8 x 4 block can be split further if the distortion incurred in approximating the block 

is greater than TSplit. However, the manner in which these blocks are split is known 

a priori because the smallest allowable range block side dimension is 4. This implies 

that if the blocks are split they will be split into 2 disjoint 4 x 4 blocks; no further 

splitting is allowed. 

In the partial quadtree algorithm, the distortion incurred in approximating R; 

by w;(Di) is computed over each quadrant (4 x 4 blocks). If 2 or more quadrants 

have distortions less than TSplit, the transformation w; is stored and the remaining 

quadrants for which the distortion is greater than TSplit are coded separately. If fewer 

than 2 quadrants have distortions less than TSplit, the transformation w; is abandoned 
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and R; is split into 4 disjoint 4 x 4 blocks each of which is coded separately; no further 

splitting is allowed. 

The overhead required to specify how a range is split depends on the particular 

partitioning algorithm used. The quadtree algorithm has the least amount of overhead 

requiring only one bit to indicate whether or not the 8 x 8 range block was split. The 

HV algorithm is slightly more complex and requires two bits of overhead; one bit to  

indicate whether or not the 8 x 8 range block was split, and if the block was split, 

one bit to indicate whether the split was horizontal or vertical. The partial quadtree 

algorithm requires the most overhead; one bit is required to indicate whether or not 

the 8 x 8 range block was split, and if the block was split, 4 bits are required to indicate 

the nature of the split. To see where this 4-bit overhead comes from, consider that 

with 4 quadrants, there is one way of selecting four 4 x 4 blocks; there are 4 ways of 

selecting three 4 x 4 blocks; there are 6 ways of selecting two 4 x 4 blocks. Therefore, 

bits. 

4.2.3 Encoding Transformations 

In all of the affine-transform-based fractal coders implemented, range blocks were 

classified into one of three classes with the encoding transformation dependent on the 

block class. In this section, the encoding transformations and quantization consid- 

erations for the uniform and non-uniform block classes will be described. The third 

range block class is trivial and will be defined in Section 4.2.4 when the complete 

encoding procedure is outlined. 

To simplify this discussion, we introduce the following vector notation. Let 

0 r denote the range block R; to be encoded 

0 i. denote an approximation of r 
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{dj}f=l denote the domain pool for the range block r 

o denote a constant vector of all ones 

0 T,,, denote the pre-defined mean-squared-error threshold 

The vector dimensions are equal to the number of pixels in the block they represent. 

Throughout this section, we will assume that the range block R; being encoded has 

dimensions N x M. Furthermore, we define K = MN; this implies that r E gK.  The 

dimensions of all other vectors can be deduced from the dimension of r. 

Uniform 

A range block r is classified as a uniform block if its variance is less than or equal 

to T,,,. Uniform blocks were approximated by their mean, pT, i.e., 

By approximating a uniform block by its mean, we are assured that the resulting 

mean-squared-error will be less than T,,,. 

After encoding all uniform range blocks r in the DFD signal, we are left with a set of 

real numbers (the range block means) that have to be quantized. Therefore, consider 

what happens when we quantize y = p, using a quantizer Q. Let Q(y) = y - Ay 

where Ay is the quantization error incurred in quantizing y using the quantizer Q. 

The quantized approximation of r, F,, can be written as 

f, = Q(y)o = (y - Ay)o. 

Let e be the error vector resulting by approximating r by f,. Mathematically, 

A e = r - r,. 

Substituting for f, using Eq. 4.2, we get 

e = (r - yo) + Ayo. 
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The bracketed term in this equation is the collage error, e,, for uniform range blocks 

r; the second term is the error due to quantization of the range block mean. The 

squared error, eTe, can thus be expressed mathematically as 

Dividing by K ,  we obtain the final expression for the mean-squared-error incurred in 

approximating a uniform range block r 

Let D, = (Ay)2 represent that part of the mean-squared-error attributed to quan- 

tization; D, will be used later when the quantization and entropy coding strategies 

implemented in this work are described. 

Non-uniform 

A range block r is classified as a non-uniform block if its variance is greater than 

T,,,. Each non-uniform block is approximated as a linear combination of a trans- 

formed spatially contracted domain block and a constant offset term. The transfor- 

mations applied to the spatially contracted domain blocks are called isometries; these 

transformations do not alter the pixel intensities of the block; rather they simply 

shuffle the pixels within a block. There are eight possible ways of mapping an N x N 

block R onto itself without scrambling the pixels. These are described below using 

the terminology adopted by Jacquin (1992). In each case, 1 5 x < N ,  1 5 y 5 N .  

2. Orthogonal Reflection About Mid-Vertical Axis: 

3. Orthogonal Reflection About Mid-Horizontal Axis: 
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4. Orthogonal Reflection About First Diagonal ( y  = x ) :  

R ( X , Y )  = R ( Y , X )  

5 .  Orthogonal Reflection About Second Diagonal ( y  = N - x + 1): 

R ( x , y ) = R ( N - y + l , N - x + 1 )  

6. Rotation Around Center of Block (+90•‹counter - clockwise): 

R ( x ,  Y )  = R(y ,  N - x + 1) 

7. Rotation Around Center of Block (+180•‹counter - clockwise): 

8. Rotation Around Center of Block (+90•‹clockwise): 

R ( x ,  y )  = R ( N  - y + 1 , ~ )  

If the spatially contracted domain block is rectangular, only isometries 1, 2, 3, 

and 7 can be used as only these isometries map rectangular blocks onto rectangular 

blocks of the same dimensions. Therefore, for a square range block 3 bits are needed 

to specify which of the 8 isometries was used; for a rectangular range block only 2 

bits are required. 

The two encoding transformations considered for encoding non-uniform blocks can 

be expressed mathematically as 

and 

where d is a transformed spatially contracted domain block from the domain pool of 

r, pd is the mean of d and a l l  a2, pl, P2, and a ,  E 92. a ,  is a constant specified by 

the encoding algorithm. 
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Eq. 4.7 is the standard affine transformation used in fractal image coding; it will be 

refered to as the standard affine transformation throughout the remainder of this the- 

sis. A sufficient condition for this transformation to be contractive is that Icrll < 1.0. 

However, in practice (Fisher 1995b), slightly larger values are used and the overall 

image transformation still converges (see Section 3.1). Values of crl in the range 

[-1.1, 1.11 were used in this work. Note that this contractivity condition only applies 

if the domain pool source is the RBC. a1 is unconstrained if the domain pool source 

is the PCR or the PCO. 

Eq. 4.8 was introduced by (Barthel et al. 1994) as a means of decorrelating the 

a 2  and P2 parameters (this will be explained later). It is called a modified luminance 

transformation in the literature, and it will be refered to  as such throughout the 

remainder of this thesis. This transformation is used for a very specific purpose in 

this work. Its use is restricted to the PCR and P C 0  domain pool sources, and thus, 

there are no constraints on any of the transformation parameters. It is not used for 

the RBC domain pool source because the distributions of the resulting transformation 

parameters are such that its use is not required (this will be explained later). 

Both transformations span the same space and therefore produce the same dis- 

tortion in the absence of quantization. However, the two transformations differ in 

the parameter distributions they generate; the importance of this observation to this 

work will be made clear in Section 5.2.2. 

Given a non-uniform range block r and a transformed spatially contracted domain 

block d, we want to find cr and ,B such that 

is minimized. 

Using the orthogonality principle of optimal least squares estimation, the a, P pair 

minimizing Eq. 4.9 can be found by solving the following two equations for a and ,8 
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and 

where 0 is the zero-vector. 

Substituting Eq. 4.7 into Eqs. 4.10 and 4.11 and solving for al and P1 we find that 

the optimal all pl pair for the standard affine transformation is given by 

and 

where K is the dimension of r, pd is the mean of d and p, is the mean of r. 

Substituting Eq. 4.8 into Eqs. 4.10 and 4.11 and solving for a2 and P2 we find that 

the optimal a 2 ,  ,B2 pair for the modified luminance transformation is given by 

and 

where I(, a,, pd and p, are as described previously. 

It can be seen that a1 = a 2 .  However, ,Bl and ,B2 differ; the optimal P1 for the 

standard affine transformation depends on al whereas the optimal p2 for the modified 

luminance transformation has no dependance on az. Both optimal /3 values depend 

on the range block and spatially contracted domain block means. 
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Given an encoding transformation and a non-uniform range block r to encode, 

Eq. 4.9 is minimized for all possible transformed spatially contracted domain blocks 

in the domain pool of r .  The domain block d with associated isometry, and the 

corresponding a, P pair yielding the minimum distortion form the optimal encoding 

transformation for r. 

The resulting a and /3 values for each non-uniform range block r must next be 

quantized. Consider what happens when a and P are quantized using quantizers, 

Qa and Qp. Let Q,(a) = a - A a  and Qp(P) = P - A p  where A a  and A p  are 

the quantization errors incurred in quantizing a and P respectively. The quantized 

approximation of r, fq ,  for the standard affine transformation can be written as 

and for the modified luminance transformation. 

Let e be as defined in Eq. 4.3. Substituting for fq  using Eqs. 4.16 and 4.17, we 

get that 

e = (r - a l d  - Plo) + (Aald +APlo) 

for the standard affine transformation, and 

for the modified luminance transformation. 
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The first term in each of the above expressions is the collage error, e,, result- 

ing from encoding the non-uniform range block r with the corresponding encoding 

transformation. The second term is the error due to quantization of the a and P 
parameters. 

Using the fact that the optimal a,  /3 pair satisfy Eqs. 4.10 and 4.11, the final 

mean-squared-error incurred in aproximating a non-uniform range block r by i, can 

be expressed mathematically as 

for the standard affine transformation and as 

for the modified luminance transformation where a: is the variance of d and all other 

parameters are as previously defined. 

Let D, = (Aa2)2aj and Dp = (A/32)2 represent that part of the mean-squared- 

error due solely to quantization of the a 2  and P2 parameters when the modified lu- 

minance transformation is used as the encoding transformation; D, and Dp will be 

used later when the quantization and entropy coding strategies implemented in this 

work are described. 

This section can be summarized by noting that the final distortion incurred in 

quantizing a range block r is made up of the sum of two separate components. The 

first component, the collage error, is due to  mismatches between the assumed fractal 

model and the actual DFD signal being coded. Even in the absense of quantization, 

the collage error will never be zero unless the DFD signal being coded can be exactly 

described by our proposed fractal model. This is a characteristic feature of most 

fractal coding agorithms; there is a lower limit to  the minimum distortion that can 

be achieved even in the absence of quantization. The second component of the final 

distortion is due to quantization of the transformation parameters. This component 



C H A P T E R  4. FRACTAL CODING OF DFD SIGNALS 

can be minimized (at a given rate) by the use of efficient quantization strategies. 

These strategies depend on the distributions of the encoding parameters; the strate- 

gies implemented in this work will be described in Section 5.2.2 when the parameter 

distributions are analyzed. 

4.2.4 Encoding Procedure 

This section outlines the complete encoding procedure for all affine-transform-based 

fractal coders implemented in this work. The proposed fractal video coding model 

shown in Figure 4.1 will once again be used as our reference. 

Let the video sequence to be encoded be represented by {RO, R1,. . . , Q N )  where 

R; is the i'th frame in the video sequence, and N + 1 is the total number of frames. 

For all affine-transform-based fractal coders implemented, the following encoder 

parameters were specified a priori: 

the motion compensation algorithm, including MC block size and search size 

the domain pool source with associated spatial contraction operator and hori- 

zontal and vertical grid displacements Ax, Ay 

the partitioning algorithm 

the encoding transformation to be used for encoding non-uniform blocks 

the mean-squared-error threshold, T,,, 

Given that the above parameters have been specified, the encoding procedure can 

be described. The encoding procedure can be divided into two parts: DFD signal 

generation and fractal encoding of the resulting DFD signal. 

DFD signal generation pertains to the motion compensation block of the proposed 

fractal video coding model. At start-up, the motion compensation block takes as input 
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Ro and RI7 and produces at its output a DFD signal and a set of motion vectors. 

Subsequent actions depend on the domain pool source. If the domain pool source is 

the RBC or the PCO, the output DFD signal is encoded. However, if the domain 

pool source is the PCR, the output DFD signal, which is the first one generated, is 

not coded; rather it is used as a domain pool source for the next DFD signal output 

by the motion compensation block. This issue only occurs on start-up as it is required 

to produce a first residual image if the PCR is the domain pool source. Under steady 

state conditions, the motion compensation block will take as input the current original 

frame and the previously reconstructed original frame and it will produce at its output 

a DFD signal to  be encoded and a set of motion vectors. 

The second part of the encoding procedure is fractal encoding of the output DFD 

signal. Independent of the partitioning algorithm, the largest allowable range block 

size (as noted earlier) was 8 x 8, and the smallest allowable range block size was 

4 x 4. The first step in the encoding process is to produce a domain pool for each 

of the allowable range block sizes using the specified domain pool source and spatial 

contraction operator. The DFD signal is then partitioned into disjoint 8 x 8 range 

blocks R; and for each R; the following actions are taken: 

If the average energy-per-pixel is less than T,,,, R; is considered coded as the 

motion compensation algorithm has found a good match. In this case, simply 

approximating R; by a block of zero-intensity yields a mean-squared-error less 

than T,,,. It should be noted that this step was only performed for the largest 

allowable range blocks (8 x 8 blocks). 

If a good match has not been found by the motion compensation algorithm, R; 

is classified as uniform or non-uniform and coded accordingly. R; is classified 

as uniform if its variance is less than T,,,; otherwise, it is classified as non- 

uniform. If R; is classified as uniform, it is simply approximated by its mean. If 

7For all initial simulations, original frames were used. When final comparisons were made to a 
reference DCT-based coder (later), coded frames were used at start-up. 
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it is classified as non-uniform, Eq. 4.9 is minimized for all possible combinations 

of isometries and spatially contracted domain blocks from the domain pool of 

R;. If the resulting minimum distortion is less than T,,,, Ri is considered coded; 

otherwise, Ri is split according to the specified partitioning algorithm and the 

entire process is repeated. 

After all range blocks Ri have been encoded, there are three sets of parameters 

that must be quantized before an output bit stream can be produced; namely, the 

set of all y values called absorb8 parameters, the set of all CY values called alpha 

parameters and the set of all p values called beta parameters. The quantization and 

entropy coding strategies for these parameters will be described in Section 5.2.2. 

4.2.5 Decoding Procedure 

The previous section discussed the encoding procedure for affine-transform-based frac- 

tal coders. This section outlines the decoding procedure. 

The decoder has the following information available a priori: 

0 the motion compensation algorithm and MC block size 

0 the domain pool source and associated spatial contraction operator 

0 the horizontal and vertical grid displacements Ax, Ay 

0 the order in which the R; were encoded; this ordering never changes and is 

defined a priori 

0 the partitioning algorithm 

0 the form of all encoding transformations 

all allowable isometries 

'Adopting the terminology of Jacquin (1992) who called them absorption parameters. 
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Furthermore, if the transformation parameters are quantized and entropy coded, 

the decoder will have knowledge of the quantization and entropy coding strategies 

used. If the transformation parameters are not quantized, knowledge of the above 

information is sufficient to reconstruct the coded DFD signal. 

The exact decoding procedure depends on the domain pool source. If the domain 

pool source is the RBC, decoding is governed by the contraction mapping fixed point 

theorem. Specifically, we start with an initial zero-intensity image R,, and iterate 

the encoding transformation W = uE1 w; on R,. Since the decoder knows the gen- 

eral form of each range block transformation, w;, reformulating the transformations 

is trivial. The ~rocedure simply consists of acquiring the necessary transformation 

parameters from the encoded output file or bit stream (if quantized coders are used). 

The transformations, w;, are then applied to 0, just as in the encoding procedure. 

20 iterations were used to reconstruct encoded DFD signals when the domain pool 

source was the RBC. 

If the domain pool source is the PCR or PCO, decoding is non-iterative and 

requires only a single iteration as all domain blocks are available a priori. 

The resulting reconstructed DFD signal is then added to the previously recon- 

structed original frame (using the motion vectors) to  form an approximation of the 

current frame. This procedure is repeated until the entire video sequence has been 

decoded. 
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Orthogonal Basis IFS Coders 

The previous section considered the use of affine-transform-based fractal coders for 

direct fractal coding of DFD signals. Range blocks, r, were approximated as a linear 

combination of a transformed spatially contracted domain block, d, and a fixed block, 

o. It was mentioned that using such coders the collage error could not be reduced to 

zero (even in the absence of quantization) unless the DFD signal being encoded could 

be exactly described by the corresponding fractal model. 

In this section, a higher-dimensional encoding transformation is presented for di- 

rect fractal coding of DFD signals. This transformation has the property that in the 

absence of quantization, the collage error is zero. These coders thus have the potential 

for higher fidelity encodings as in the absence of quantization perfect reconstruction 

is achieved. The resulting class of coders are called orthogonal basis IFS (OBIFS) 

coders; they were first introduced by Vines (1995). 

To simplify the discussions in this section, the following notation will be used 

throughout: 

R will denote the DFD signal being encoded 

an N x N range block R; being encoded will be denoted by the column vector 

r; where li' = N x N and ri E XK 

4.3.1 Overview 

Orthogonal basis IFS coders are essentially transform coders in which most of the 

basis vectors are generated from the image being encoded. With reference to our 

proposed fractal video coding model, there are three possible sources for these basis 

vectors: the RBC, the PCR and the PCO. 

Orthogonal basis IFS coders approximate a range block, r;, as linear combination 

of Ii' basis vectors. 
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The basis vectors comprise two distinct sets: a set of Nd image-dependent basis 

vectors {bi)zl and a set of Nt fixed (image-independent) basis vectors { f j ) z l  where 

Ii' = Nd + N j .  The image dependent basis vectors are generated from the specified 

domain pool source (to be explained later). Furthermore, the basis vectors are made 

orthonormal so that computation of the a; and ,Bj is simplified. It is important to 

note that if the RBC is being used as the domain pool source at least one fixed 

basis vector is required to ensure that the encoding transformation is non-linear and 

therefore possesses a non-zero fixed point (if contractive). 

As in transform coding, the main goal of the orthogonal basis IF'S idea is to find 

a set of basis vectors that result in maximum energy compaction so that each range 

block can be approximated by as few basis vectors as possible. 

In implementing orthogonal basis IFS coders, the following issues arise: 

selecting the fixed basis vectors f j  

generating a set of desirable image dependent basis vectors b; 

allocating bits, quantizing, and entropy coding the transform coefficients 

These issues, as they pertain to this work, are addressed in subsequent sections. 

4.3.2 Basis Generation Methods 

In this work, only one fixed basis vector, f l ,  was used. This vector was the dc-vector 

given by 
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where 1 1  fl I [ =  1. It is used to represent the dc component of a block. Generally, 

any vectors can be used as fixed basis vectors; it was decided to use only fl so that a 

direct comparison could be made to a reference DCT-based coder. 

To generate the remaining Ii'- 1 image-dependent basis vectors, b;, two algorithms 

(basis generation methods) were considered. The first algorithm known as the covari- 

ance method was introduced by Vines (1995). The second algorithm, introduced by 

the author for comparative purposes, will be called the centroid method. This algo- 

rithm is a variant of an algorithm proposed by Vines (1995). Both algorithms attempt 

to generate, from a specified domain pool source, a set of Ii' - 1 basis vectors b; that 

will most efficiently represent the set of range blocks to be encoded. 

Let {ri}zl  be the set of range blocks obtained by partitioning the DFD signal, 0, 

to be encoded. Independent of the basis generation method used, the first step is to 

(1 )  M remove from each r; their projection onto fl .  Thus, a new set of vectors {r; are 

produced where 

At this point, the covariance and centroid algorithms proceed in different manners. 

The covariance algorithm proceeds as follows: 

1. For each rll), compute the following 

and select as the optimal basis vector direction for bl that rll) for which the 

above quantity is maximized; store this vector as t l .  

(1) M (2 )  M 2. Remove from {r; );=, their projection onto t l  ; a new set of vectors {ri );=, is 

produced. 

(K-1) M 3. Repeat the above steps with { r j 2 ) } ~ ,  and so on until a final set {ri 
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of vector is produced; at this time, the optimal basis vector directions for 

bl, b2, . . . , bK-1 will all be determined. 

Based on the above algorithm description, we note that the covariance method 

selects at each stage that vector in the set which has the maximum correlation with 

all other vectors. The output of the above algorithm is a set of Ir' - 1 orthogonal 

direction vectors ti, j = 1, . . . , I< - 1. The way these direction vectors are used to 

form a set of basis vectors will be described shortly after the centroid algorithm is 

outlined. 

The centroid algorithm proceeds as follows: 

(1) M 1. For a set of vectors {ri the corresponding optimal basis vector direction, 

tl is computed as 

tl is simply that vector, c ,  that minimizes xK1 ( 1  ril) - c / I 2 .  

(2) M 2. Remove from {rjl))zl their projection onto tl ; a new set of vectors {ri Ii=, is 

produced. 

3. Repeat the above steps with { r 2 }  and so on until a final set {r!"-')}~, 

of vector is produced; at  this time, the optimal basis vector directions for 

bl, b2, . . . , bK-l will a11 be determined. 

The centroid algorithm selects at each stage the mean of the vectors in the set. The 

output of the centroid algorithm is also a set of direction vectors tj, j = 1,. . . , Ii' - 1. 

Independent of the basis generation method used, we are left with a set of K - 1 

direction vectors tj. Representing these direction vectors directly would require a 

very large number of bits (K2 times the number of bits required to represent each 

component); therefore, to efficiently represent the direction vectors ti, domain blocks 
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(from the domain pool) are sought which most closely resemble (to be explained 

shortly) ea,ch tj. The overhead required to specify this encoding transformation is 

thus (I< - l )Nd bits where Nd was defined in Section 4.2.1. The overhead simply 

consists of specifying which domain blocks best approximate the direction vectors. 

Continuing on, the next step involved in generating the basis is the formation of 

a domain pool. The domain pool is constructed as described in Section 4.2.1. 

Given a domain pool consisting of domain blocks, d ,  generated from the specified 

domain pool source, the basis generation procedure continues as follows: 

1. Starting with t l ,  find that vector, d, in the domain pool which has the largest 

component in the direction of tl; i.e., find d such that 

is maximized. The corresponding optimal vector d is the basis vector bl .  d is 

removed from the domain pool so that it will not be selected again. 

2. Repeat step 1 for t2, t3, . . . , th.-1. 

After this stage of the basis generation procedure, we are left with a fixed basis 

vector, f l ,  and li' - 1 image dependent basis vectors bj, j = 1 , .  . . , K - 1. The 

standard Gram-Schmidt orthogonalization algorithm was then applied to the ordered 

set of vectors [fi, bl, . . . , bKdl] to produce a complete set of orthonormal basis vectors. 

Let A denote the matrix whose columns are the resulting set of orthonormal basis 

vectors. 

4.3.3 Quantization and Entropy Coding 

Given that R has been partitioned into disjoint range block r; E XK and given the 

matrix A, the quantization and entropy coding strategy utilized will now be described. 

The method implemented was based on the JPEG standard (Pennebaker and Mitchell 
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1993) for quantizing and entropy coding the DCT transform coefficients. This method 

was selected because it is a very efficient method for quantizing and entropy coding 

transform coefficients, and it allows a direct comparison to a reference DCT-based 

coder to be made. 

The quantization process begins by computing the transform coefficients, xi, for 

each r;. Since A is orthonormal, the x; are easily computed as 

The i'th coefficients from each xi are then grouped into a set of K sources. For 

each of the K sources, the following actions are taken: 

Let A,;, = 1 and A,,, = 128. For each A in the range A,;, to A,,, in 

increments of 1, quantize the source coefficients with a uniform quantizer of 

step size A. For an input point x, the quantized output point, Q ( x ) ,  is the 

integer part of 

For each quantizer designed, compute the rate as the entropy of the output 

quantization indicies and the distortion as the average distortion incurred in 

quantizing the source coefficients. Form a corresponding rate-distortion table. 

After performing the above steps on all K sources, the BFOS algorithm is per- 

formed to determine the optimal quantizer step sizes for each of the K sources based 

on a specified target rate; this is not quite optimal as the run-length coding proce- 

dure (to be described shortly) was not included here. Note that all the step sizes are 

constrained to be integers as in the JPEG standard; furthermore, all the quantized 

coefficients are integers. The values specified for A,;, and A,,, are not part of the 

JPEG standard; they were used in all simulations to allow a wide range of rates to 

be achieved. 
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At this point we have a set of quantized transform coefficients corresponding to 

each r;; denote these quantized transform coefficient vectors by x;P where all the 

components of these vectors are integers. The entropy coding method adopted is that 

proposed in the JPEG standard; all coefficients are treated as AC coefficients and 

entropy coded accordingly. 

Adopting the same terminology used in the JPEG standard, we define the following 

terms: 

RRRR represents the length of a run of zeros before a non-zero coefficient is 

reached; the maximum run length is 15. 

SSSS represents the number of additional bits required to represent a non-zero 

coefficient; SSSS values ranging from 1 to 9 were used in this implementation. 

EOB denotes end-of-block; it is used to specify that all remaining coefficients in 

the block are zero 

The SSSS values also represent categories of transform coefficients where the n'th 

category, n = 1 , .  . . ,9 ,  consists of the ordered set of integers 

and n is the number of bits required to specify an integer in the set (the n'th category 

contains 2" integers). For example, for n = 3 the n'th category consists of the ordered 

set of integers 

There are 8 elements in the above set; therefore, to specify any particular element, 

3 bits are required. 

Using the terminology defined above, the basic features of the entropy coding 

procedure will now be described. The goal of the algorithm is to produce an entropy 
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code for so-called RUN-SIZE symbols where a RUN-SIZE symbol is obtained from 

RRRR and SSSS. A RUN-SIZE symbol can be thought of as an eight-bit number with 

the upper four bits comprising RRRR, and the lower four bits comprising SSSS. These 

RUN-SIZE symbols are generated for each block of quantized transform coefficients 

x;9, and a Huffman code designed using the actual frequency of occurrence of each 

symbol. 

Suppose we are processing a particular vector x;9 of quantized transform coeffi- 

cients. The basic algorithm for constructing RUN-SIZE symbols for such a vector 

proceeds as follows. Start from the first coefficient and move through the vector un- 

til a non-zero coefficient is reached. The number of zero coefficients before reaching 

the non-zero coefficient is RRRR. SSSS is obtained by determining in which of the 

nine categories the non-zero coefficient belongs. The values of RRRR and SSSS thus 

define the RUN-SIZE symbol; following the RUN-SIZE symbol, SSSS additional bits 

are required to specify exactly which coefficient in the selected category the non-zero 

coefficient corresponds to. The algorithm proceeds in this manner until the end of 

the vector is reached. 

There are two special cases in the above procedure that must be described. First, 

the maximum run length allowed is 15; therefore, if a run of more than 15 zeros occurs, 

the zeros are processed as runs of length 15 followed by a zero. This implies RRRR 

equals 15, SSSS equals 0, and no additional bits are required after the RUN-SIZE 

symbol. The second special case occurs when all the remaining coefficients in the 

vector are zero. In this case, RRRR equals 0, SSSS equals 0 and no additonal bits 

are required after the RUN-SIZE symbol. This RUN-SIZE symbol is denoted EOB 

as described earlier. 

The above procedure is repeated for all vectors x;9 of quantized transform coef- 

ficients. A histogram of all the generated RUN-SIZE symbols is then formed and a 

Huffman code is designed for these symbols. The output bit stream thus consists 

(for each RUN-SIZE symbol in the block) of the codeword for the RUN-SIZE symbol 
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followed by any additional bits required to exactly specify the non-zero coefficient 

terminating the run of zeros. 

The following overhead was required to implement this algorithm: 

a [log,(A,,, - A,,, + 111 bits to specify the optimal step size for each of the Ii' 

sources 

a the frequency of occurrence of each of the RUN-SIZE symbols 

The frequency information was output in the following way. If the frequency of 

occurance of a RUN-SIZE symbol was non-zero a 1 was output followed by a 13 bit 

number representing the frequency information; otherwise, a 0 was output. 

4.3.4 Encoding Procedure 

This section outlines the complete encoding procedure for all OBIFS coders imple- 

mented in this work. The proposed fractal video coding model shown in Figure 4.1 

will once again be used as our reference. 

For all OBIFS coders implemented, the following encoder parameters were speci- 

fied a priori: 

a the motion compensation algorithm, including MC block size and search size 

a the domain pool source with associated spatial contraction operator and hori- 

zontal and vertical grid displacements Ax, Ay 

a the fixed-basis vectors (only one was used) 

a the basis generation method 

a the mean-squared-error threshold, T,,, 

Given that the above parameters have been specified, the encoding procedure can 

be described. The encoding procedure can be divided into two parts: DFD signal 

generation and fractal encoding of the resulting DFD signal. 
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The DFD signal generation part was already described in Section 4.2.4. The 

second part of the encoding procedure is fractal encoding of the output DFD signal. 

The first step in the encoding process is to generate the set of orthonormal basis 

vectors (matrix A) as described in Section 4.3.2; 8 x 8 range blocks R; were used 

throughout. For each Ri, the average energy-per-pixel is computed; if it is less than 

T,,,, R; is set to a block of zero-intensity (such a block will be coded by the EOB 

symbol). These are blocks for which the motion compensation algorithm has found a 

good match. All blocks R; are then transformed using the matrix A to form a set of 

transform coefficients. Finally, the coefficients are quantized and entropy coded using 

the method described in Section 4.3.3. 

At this time it should be noted that if the domain pool source is the RBC, decod- 

ing is governed by the contraction mapping fixed point theorem. This implies that 

the domain pool from which the final set of orthonormal basis vectors are formed 

must be generated iteratively at the decoder. For this to occur, it is required that the 

encoding transformation be contractive. Preliminary simulations run on two DFD 

signals showed the encoding transformations were not contractive; i.e., the decoded 

image did not possess a true fixed point. In general, there is no guarantee that the 

encoding transformations will be contractive (Vines 1995) and, the contractivity con- 

dition is very difficult to check during the encoding as it depends on the orthonormal 

basis vectors generated. For these reasons, the RBC was not considered as a possible 

domain pool source for the OBIFS class of coders. 

4.3.5 Decoding Procedure 

The previous section discussed the encoding procedure for OBIFS coders. This section 

outlines the decoding procedure. 

The decoder has the following information available a priori: 

the motion compensation algorithm and MC block size 
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the domain pool source and associated spatial contraction operator 

the horizontal and vertical grid displacements Ax, Ay 

the order in which the R; were encoded; this ordering never changes and is 

defined a priori 

the basis generation method 

the fixed-basis vectors (only one was used) 

From the encoded output files (bit streams), the optimal step sizes for each source, 

the frequency information needed to reconstruct the RUN-SIZE symbols Huffman 

table and the indices of the domain blocks needed to reconstruct the basis vectors can 

be determined. Using this information the orthonormal basis is generated and the 

Huffman table constructed. 

As mentioned earlier, we considered only the PCR and P C 0  domain pool sources 

with this class of coders; using these domain pool sources, decoding is non-iterative 

and requires only a single iteration as all domain blocks used in generating the basis 

are available a priori. 

Once the basis is generated, decoding simply involves decoding each of the RUN- 

SIZE symbols and reconstructing the quantized transform coefficients. The range 

blocks, r; are then reconstructed as r; = Ax; where A is the matrix whose columns 

are the orthonormal basis vectors, and x; is the vector of reconstructed transform 

coefficients. 

The resulting reconstructed DFD signal is then added to the previously recon- 

structed original frame (using the motion vectors) to form an approximation of the 

current frame. This procedure is repeated until the entire video sequence has been 

decoded. 



Chapter 5 

Simulation Results and Analysis 

This chapter presents the results of extensive simulations that were performed to 

quantify the effects that various parameters of the affine and OBIFS class of coders 

have on coding performance. Based on these results, the best coders in each class are 

selected for comparison to a reference DCT-based coder. The two video sequences 

used to perform these simulations were the pongi and foreman video sequences. 

5.1 Source Descriptions 

Pongi is a relatively high motion sequence of two men playing ping-pong. There 

is considerable motion as the camera pans horizontally back and forth following the 

ball. The background consists of a stationary region, a detailed poster on the back 

wall and a few spectators watching the game. The first eleven original frames (frames 

0 - 10) were used; each frame had dimensions 240 x 360, and the frame rate was 30 

frames per second. 

Foreman is a low to moderate motion sequence of a construction worker standing 

in front of a building and talking. The motion is concentrated around the man's head, 

shoulders and mouth as he talks. To increase the amount of motion in this sequence, 

the first 50 original frames were decimated temporally by 5. The resulting frames 
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were then enumerated 0 - 10. Each frame had dimensions 144 x 176 and the resulting 

frame rate after decimation was 6 frames per second. 

Typical frames from each of these sequences are shown in Figures 5.1 and 5.2. 

Figure 5.1 : Pongi Sequence 
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Figwc 5.2: Forem;~n Sequencc 

To a,void bombarding the rea,der with many duplicate results, results are only 

provided for the pongi sequence. Results a.re provided for the foreman sequence only 

if they provide additional insights beyond what can be deduced from the pongi results. 

In d d i t i o n ,  PSNR results arc only provided for the last G frames (fra,mes 5 - 10) of 

the video sequences. This is clone to ensure that the results displa.yed are steady-shte 

results truly indicative of the parameter being investigated; i.e., any effects due to 

the use of original fra,mes a.t start-up are eliminated. The  PSNR results represent the 

PSNR calculated between the original video sequence frame and a reconstruction of 

t,llat, Tramc using thc cncoclccl DFD signa.1. 

Affine-Transform-Based Coders 

This section quantifies through simulation thc cflects that various parameters of thc 

affine-transform-based fractal coders have on coding performance. The  pongi and 

foreman video scclucnccs introduced in Scction 5.1 were used for this investigation. 

Based on the simulation results, quantization and entropy coding strategies were 

clefiliecl, and a representative best set of complctcly quantized codcrs was selected for 

comparison to a reference DCT-based codcr. 
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Unless otherwise stated, the following is assumed: 

the standard block-based motion compensation algorithm is used; the MC block 

size is 8 and the search window over which an optimal matching blocks is sought 

is f 15 (as is standard in MPEG, H.261) 

the standard affine transformation is used for encoding non-uniform range blocks 

the standard quadtree partitioning algorithm is used (any partitioning algorithm 

could have been chosen while investigating other parameters) 

all parameters are unquantized as initially their distributions are unknown 

the mean-squared-error threshold, T,,,, is equal to 40; this value was chosen so 

that there would be a large fraction of blocks that would have to be coded; i.e., 

we did not want the motion compensation algorithm to find good matches for 

all the blocks 

5.2.1 Domain Pool Source Related Results 

We begin this empirical investigation by quantifying the effect that the spatial contrac- 

tion operator has on coding performance. The results are illustrated in Figures 5.3,5.4 

and 5.5 for the RBC, PCR and P C 0  domain pool sources. 
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Figure 5.3:  Pongi: Spatial Contraction Operator Comparison, RBC 
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Figure 5.4: Pongi: Spatial Contraction Operator Comparison, PCR 
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Spat~al Contract~on Operators. PCO. Pongl Sequence 
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Figure 5.5: Pongi: Spatial Contraction Operator Comparison, P C 0  
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These results indicate that the DECIMBYAVG spatial contraction operator pro- 

vides much better performance than the SUBSAMP operator for the RBC domain 

pool source. This result is not surprising as the DECIM-BYAVG operator acts as a 

low-pass filter and combines more block information when forming the spatially con- 

tracted domain block; each pixel in the spatially contracted domain block is obtained 

using a four pixel average. The SUBSAMP operator performs straight decimation, 

and thus results in aliasing. The DECIM-BYAVG spatial contraction operator is 

most often used in practice for coding of still images; the SUBSAMP operator is 

rarely used. The SUBSAMP operator was not investigated any further for either of 

the PCR and P C 0  domain pool sources. 

The results in Figure 5.4 indicate that for the PCR domain pool source, the 

DECIMBYAVG spatial contraction operator provides marginally better performance 

than the NO-CONTRACTION operator. For the P C 0  domain pool source, the 

DECIMBYAVG and NO-CONTRACTION operators both provide equivalent per- 

formance. 

Combining these results, Figure 5.6 illustrates the effect of the selected domain 

pool source on the coding performance for the DECIM-BYAVG spatial contraction 

operator. 

It is very clear from these results that the PCR and P C 0  domain pool sources 

~rovide  much better performance; this is due to the fact that there are no constraints 

on the encoding transformations. The performance of the P C 0  domain pool source 

is marginally better than that of the PCR. This is probably due to the fact that 

the PCR domain pool source generally has fewer domain blocks in its domain pool 

as zero-intensity blocks are not included. These zero-intensity blocks can be quite 

common as they are produced whenever a good match has been found by the motion 

compensation algorithm (see Section 4.2.4). Subjectively, the 3 dB PSNR difference 

is noticeable (slightly) in the reconstructed image frames. 

We investigate next the effect that the horizontal and vertical grid displacements, 
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Domam Pool Sources. Pongl Sequence 
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Figure 5.6: Pongi: Domain Pool Source Comparison 

Ax and Ay, used in the domain pool construction procedure have on coding perfor- 

mance. Intuitively, it was expected that for smaller values of (Ax, Ay) the perfor- 

mance would be much better as smaller values of (Ax, Ay)  result in a larger number 

of domain blocks in the domain pool thus increasing the likelihood of finding a satis- 

factory encoding transformation. Nevertheless, quantifying the performance loss due 

to the use of a smaller sized domain pool is important since specifying the domain 

block used for encoding a given non-uniform range block requires a large number of 

bits, approximately half of the total number of bits used to represent the encoding 

transformation. 

Figures 5.7, 5.8 and 5.9 display the results obtained for horizontal and vertical 

grid displacements (Ax, Ay) of (4,4), (8,8) and (16,16). The results are displayed 

for the RBC, PCR and PC0 domain pool sources. 
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Domain Pool Density, RBC, Ponqi Sequence 
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Figure 5.7: Pongi: Domain Pool Density Comparison, RBC 

Domam Pool Dens~ty, PCR, Pongl Sequence 
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Figure 5.8: Pongi: Domain Pool Density Comparison, PCR 
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Domaln Pool Denslty, PCO, Pongl Sequence 
36 I t I T I I I 

U" 

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 
Frame Number 

Figure 5.9: Pongi: Domain Pool Density Comparison, PC0 
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As expected, the PSNR decreases as the horizontal and vertical grid displacements 

increase. The actual PSNR loss will in general depend on the DFD signal being coded; 

for the pongi sequence displayed, the PSNR loss was approximately 1 dB for each 

doubling of (Ax, Ay). The PSNR loss was less than 0.5 dB for the foreman sequence. 

Based on the results presented thus far, the following general conclusions can be 

made: 

the DECIM-BYAVG spatial contraction operator yields the best PSNR perfor- 

mance for all domain pool sources 

the PCR and P C 0  domain pool sources widely outperform the RBC domain 

pool source in PSNR terms 

reducing the domain pool size reduces the PSNR 

5.2.2 Parameter Distribution Results 

We now turn our attention to the parameter distributions; namely, we investigate the 

distributions of the alpha, beta and absorb parameters and describe the quantization 

and entropy coding strategies that were used to represent them. The parameter 

distributions are dependent on the domain pool source, thus we consider all three 

domain pool sources in turn. 

Figures 5.10, 5.11 and 5.12 display the distributions of the alpha, beta and absorb 

parameters for the RBC domain pool source. 
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Histogram of Alpha Values For Pongi Sequence, RBC, 64 Bins 
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Figure 5.10: Pongi: Histogram of Alpha Values, RBC, 64 Bins 

Histogram of Beta Values For Pongi Sequence, RBC, 128 Bins 
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Figure 5.11: Pongi: Histogram of Beta Values, RBC, 128 Bins 
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Histogram of Absorption Values For Pongi Sequence, RBC, 64 Bins 
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Figure 5.12: Pongi: Histogram of Absorb Values, RBC, 64 Bins 

Very noticeable from Figure 5.10 is the large number of a values concentrated at 

f 1.1, the maximum and minimum allowable a values. The form of this distribution 

indicates that larger a values would improve the PSNR performance for the RBC 

domain pool source, but the contractivity requirement prevents larger a values from 

being used. The same type of distribution was observed for foreman. Due to the fixed 

nature of this distribution (the distribution shape remained constant with most of the 

a values concentrated at the minimum and maximum allowable values), fixed Lloyd- 

max quantizers were used to quantize the a values, and fixed Huffman tables were 

used for entropy coding of the resulting output quantization indicies. The quantizers 

were designed using Lloyd's iterative design algorithm; all the a values generated from 

coding frames 0 - 10 of pongi and foreman were used as a training set. Both 16 

and 32 output level quantizers were designed with corresponding Huffman tables; two 

quantizers were designed so that different target rates could be used for representing 

the a values (needed later on). 

Quantization of the absorb and beta parameters will be described shortly as their 
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distributions are very similar to those observed for the PCR and P C 0  domain pool 

sources. 

Figures 5.13 and 5.14 display the alpha parameter distributions for the PCR and 

P C 0  domain pool sources. Figure 5.15 displays the beta parameter distribution 

for the P C 0  domain pool source. The absorb parameters for the PCR and P C 0  

domain pool sources, and the beta parameter of the PCR domain domain pool source 

are not shown as these distributions are very similar in shape to the corresponding 

distributions for the RBC domain pool source. 

Histogram of Alpha Values For Pongi Sequence. PCR, 128 Bins 
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Figure 5.13: Pongi: Histogram of Alpha Values, PCR, 128 Bins 
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Histogram of Alpha Values For Pongi Sequence, PCO, 128 Bins 
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Figure 5.14: Pongi: Histogram of Alpha Values, PCO, 128 Bins 

Histogram of Beta Values For Pongi Sequence, PCO, 128 Bins 
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Figure 5.15: Pongi: Histogram of Beta Values, PCO, 128 Bins 
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The alpha parameter distributions are very similar in shape to the absorb and beta 

parameter distributions observed thus far. The beta parameter distribution for the 

P C 0  domain pool has a very wide range; the standard deviation of this distribution is 

over 300. This same characteristic was observed for the foreman sequence. Efficiently 

quantizing a set of data with such a distribution would be very difficult as the standard 

deviation is so large. Therefore, to  alter the distribution of the beta parameters 

while leaving the approximation error of the encoding transformation unchanged, the 

modified luminance transformation was used. Figures 5.16, 5.17 and 5.18 display 

the resulting beta parameter distributions for values of a, equal to  0.5, 0.2 and 0.0. 

The alpha parameter distributions are left unchanged when the modified luminance 

transformation is used. 

Histogram of Beta Values For Pongi Sequence, PCO, a0=0.5, 128 Bins 
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Figure 5.16: Pongi: Histogram of Beta Values, PCO, a0 = 0.5, 128 Bins 
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Histogram of Beta Values For Pongi Sequence, PCO, a0=0.2, 128 Bins 
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Figure 5.17: Pongi: Histogram of Beta Values, PCO, a0 = 0.2, 128 Bins 

Histoaram of Beta Values For Pond Sequence. PCO, aO=O.O. 128 Bins 
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Figure 5.18: Pongi: Histogram of Beta Values, PCO, a0 = 0.0, 128 Bins 
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It is very clear from these figures that reducing the value of a ,  reduces the standard 

deviation of the beta parameter distribution; a ,  = 0.0 providing the best result. Using 

the modified luminance transformation with the PCR domain pool source leaves the 

beta parameter distribution relatively unchanged; therefore, it was decided to use this 

transformation with the PCR domain pool source also. The resulting distribution is 

illustrated in Figure 5.19. 

Histogram of Beta Values For Pongi Sequence, PCR, aO=O.O, 128 Bins 
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Figure 5.19: Pongi: Histogram of Beta Values, PCR, a0 = 0.0, 128 Bins 

Based on the observed parameter distributions, the following conclusions were 

made: 

0 the modified luminance transformation should be used for the P C 0  domain pool 

source; it will also be used with the PCR domain pool source 

the resulting alpha, beta and absorb parameter distributions for the P C 0  and 

PCR domain pool sources and the beta and absorb parameter distributions for 

the RBC domain pool source all have distribution shapes that can be modeled 

using a generalized Gaussian pdf 
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Based on the latter conclusion, it was decided to quantize the above sources using 

an entropy constrained scalar quantizer and then efficiently design a Huffman code 

using the generalized Gaussian pdf model of the data. The entropy constrained scalar 

quantizer would simply be a uniform quantizer with a large number of output levels, 

N.  

To investigate the above method, a large training set of alpha, beta and absorb 

parameters was obtained by encoding frames 0 - 10 of pongi and foreman for both 

the PCR and PC0 domain pool sources. 

The following experiment was then ~erformed.  For each parameter and for a 

given number of quantizer output levels, N ,  a rate-distortion function was generated 

for that parameter. The computed rate was the average number of bits (average code- 

word length) required to represent that parameter using a Huffman code designed as 

described in Section 2.4.1; the parameter distribution is modeled using a general- 

ized Gaussian pdf and the quantizer output index probabilities required to  design the 

Huffman code are obtained by numerically integrating the model over the bins spec- 

ified by the quantizer. The average distortion is just the average distortion incurred 

in quantizing the parameters. The rate-distortion functions for all three parameter 

distributions are shown in Figures 5.20 to  5.22. Note that for a given N, the part 

of the rate-distortion function we are interested in is that portion starting where the 

distortion is minimum and extending downwards (increasing distortion). 

A characteristic feature of these rate distortion functions is that for a given average 

rate, a quantizer, Q1, with Nl output levels will always ~ i e l d  a lower average distortion 

than a quantizer, Q2, with N2 output levels, if Nl is greater than N2. 
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Figure 5.20: Rate Distortion Function For Alpha Parameter 

Rate-Distortion Cuwe For Beta Usmg Model 

99 

3 I I 1 1 I I 1 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Average Distortion 

Figure 5.21: Rate Distortion Function For Beta Parameter 
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Rate-D~stort~on C u ~ e  For Absorption Usmg Model 
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Figure 5.22: Rate Distortion Function For Absorb Parameter 
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The rate was also computed using frequency information obtained directly from the 

actual parameter distributions. Both of the computed rates were then compared to the 
.r 

true source entropy. The difference between the computed rates and the true source 

entropy is called the redundancy; ideally, we would like the redundancy to be zero. 

The redundancies are displayed in Figures 5.23 through 5.25 for a particular value of 

N over that portion of the rate-distortion curve where the distortion is minimum and 

extends downwards (increasing distortion). 

Redundancy Comparison For Alpha, N=512 
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Figure 5.23: Redundancy Comparison For Alpha, N = 512 
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Redundancy Comparison For Beta, N=512 
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Figure 5.24: Redundancy Comparison For Beta, N = 512 

Redundancy Comparison For Absorption, N=128 
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Figure 5.25: Redundancy Comparison For Absorb Parameter, N = 128 
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From these figures, it can be concluded that by using N = 512 for alpha, N = 

512 for beta and N = 128 for absorb, the redundancy is no more than 0.2 bits 

per parameter value; therefore, the use of entropy constrained scalar quantizers and 

Huffman codes designed using a model of the data sets is justified. Based on the 

observed parameter distributions, it was decided to constrain the a values to f 20 

and the ,B values to rt60 in the quantized coders; the absorb parameters were ngt 

constrained as the spread of the parameters was much narrower. 

The actual implemented quantization and entropy coding strategy for the alpha, 

beta and absorb parameters of the PCR and P C 0  domain pool sources and the beta 

and absorb parameters of the RBC domain pool source can now be described. For 

each parameter distribution (data set), the following steps were performed: 

1. Compute and remove the mean from the data set; find that value in the resulting 

data set farthest from zero, denote this value by x,,,. 

2. Following the procedure described in Section 2.4.1 determine the model param- 

eters for the data set with mean removed. 

3. Set the minimum step size to Amin = 2Z;jax where N is the number of quantizer 

output levels used in quantizing the particular data set. This minimum step size 

ensures that the quantizer completely spans the data, thereby ensuring that the 

rate-distortion function generated later will be relatively well behaved; i.e., the 

BFOS algorithm will start at a point on the rate-distortion curve where the rate 

is maximum and the distortion is minimum. This is also the reason that the a 

and ,B parameters were constrained to &20 and 330 respectively. 

A 4. Set the step size increment to A;,, = T. 

5. Construct a rate-distortion table to be used by the BFOS algorithm. 

6. Run the BFOS algorithm to optimally quantize the three data set parameters 

at a given specified rate. 
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We now elaborate on the last two steps. Starting from A,;, with step size in- 

crement A;,, and given a data set with an associated uniform quantizer of N output 

levels, the rate and distortion are computed for a specified fixed number of quantizers 

to be designed for that data set. For example, for the a and P parameter distri- 

butions 250 quantizers were designed while for the absorb parameter distribution 50 

quantizers were designed. The rate was calculated as the entropy of the quantizer 

output indices where the probabilities of occurrence of each quantizer output index 

are obtained by numerically integrating the data set model over the bins specified by 

the quantizer. The distortion function used for a given data set was the average of the 
t 

actual distortions due to quantization of the particular data set parameter incurred 

in approximating a range block. These are the D,, Dp and D, expressions derived 

in Section 4.2.3. The Do and D, distortion functions are simply the quantization 

errors. The D, distortion function weights the quantization errors by the variance 

of the domain blocks used in the particular encoding transformation. Use of these 

distortion functions minimizes the actual distortion incurred in approximating a given 

range block rather than simply minimizing the quantization errors. 

Given the complete set of rate-distortion functions for each parameter and a spec- 

ified target rate, the BFOS algorithm is run to determine the optimal quantizer as- 

signments. 

It is important to keep in mind that the data sets are quantized with mean re- 

moved; therefore, during the decoding process, the mean must be added back to the 

quantized value to reconstruct an estimate of the orignal parameter value. 

The quantization and entropy coding strategy implemented has the following over- 

head: 

the mean and standard deviation of each data set were quantized using a step 

size of 0.005 and output using 15 bits (fewer bits could have been used) 

the optimal step size for each data set was quantized using a step size of 0.001 

and output using 15 bits (fewer bits could have been used) 
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the v model parameter for each data set was output using 16 bits 

Using this information, the decoder can reconstruct the exact same Huffman tables 

that were used at the encoder. 

Also pertaining to encoding transformation parameter distributions are the dis- 

tributions of the isometry indices. A typical distribution is shown in Figure 5.26 for 

the RBC domain pool source. Similar distributions were observed for all domain pool 

sources. 

Histogram of Isometry Values For Pongi Sequence, RBC 
2000 I I I 

isometry Index 

Figure 5.26: Pongi: Distribution of Isometries, RBC 

Due to the uniform nature of the isometry index distributions, no entropy coding 

was performed. 

5.2.3 Motion Compensation Results 

The next parameter to be examined is the motion compensation algorithm used to 

generate the DFD signals. Both the standard and overlapped windowed block-based 

motion compensation methods were examined for the RBC, PCR and PC0  domain 
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pool sources. Figures 5.27, 5.28 and 5.29 illustrate the comparative results for all 

three domain pool sources. 

Motion Compensation Type. RBC. Pongi Sequence 

lapped El 

0 
6 5  7 7 5  8 

Frame Number 

Figure 5.27: Pongi: Motion Compensation Type Comparison, RBC 

Motlon Compensation Type. PCR. Pongl Sequewe 

- Standard 

L 

8 
Frame Number 

Figure 5.28: Pongi: Motion Compensation Type Comparison, PCR 
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Mot~on Compensat~on Type, PCO. Pong~ Sequence 

Figure 5.29: Pongi: Motion Compensation Type Comparison, PC 0 

36 

35 

34" 

32 

31 

30 

In all three cases, the use of overlapped windowed block motion compensation, 

which produces smoother, lower energy DFD signals, provided better performance; 

similar results were observed for foreman. It should be noted that the shape of the 

resulting parameter distributions is not altered by use of the overlapped windowed 
C 

motion compensation algorithm. 

Table 5.1 lists the standard deviations of all parameter distributions for both stan- 

dard block-based and overlapped windowed block motion compensation algorithms for 

each of the domain pool sources. The parameter distributions were obtained by encod- 

ing frames 0 - 10 of the pongi and foreman video sequences using the corresponding 

domain pool source. 

The results indicate that, in general, the standard deviation of the alpha parameter 

distributions is lower when the overlapped windowed motion compensation algorithm 

is used. The standard deviations of the beta and absorb parameter distributions are 

left relatively unchanged. 

r 1 I 4 

- 

., - - - - ., - 

- 

- 

5 5.5 6 6.5 7 75 8 85 9 9.5 
Frame Number 
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Table 5.1: Effect of MC T v ~ e  on Parameter Distributions 

Pongi 11 P C 0  11 Standard 1 1  4.73 1 7.88 1 2.71 

- 
Pongi 

Foreman 

5.2.4 Partitioning Algorithm Results 

3.92 
7.31 

Pongi 

Pongi 
7.50 
7.93 

The next parameter investigated was the partitioning algorithm. Complete quantized 

2.89 
2.69 

PCR 

P C 0  
Foreman 

Foreman 
Foreman 

coders using overlapped windowed block motion compensation were used for this 

investigation. It was desired to investigate the PSNR versus bit rate tradeoff with 

P C 0  

PCR 

P C 0  

PCR 
PCR 

all other parameters apart from the partitioning algorithm being equal. To this end, 

Windowed 

Standard 
Windowed 

Standard 
Windowed 

Standard 
Windowed 

the target rate specified for quantization of the alpha, beta and absorb parameters 

3.90 
4.62 
4.17 

7.55 
6.83 
7.21 

was set at 4.5 for the standard quadtree and HV partitioning algorithms; a target 

4.72 
7.98 

3.14 

3.23 
3.10 

rate of 3.5 was used for the partial quadtree algorithm as the overhead required to 

specify the partitioning was observed (through simulation) to be approximately 1 bit 

7.56 
6.91 

more than that required for the standard quadtree and HV algorithms when the split 

2.69 
3.18 

information was entropy coded. 

Simulations were run over frames 0 - 10 of pongi and foreman for all three 

domain pool sources. The average PSNR and the average bits-per-pixel (bpp) were 

obtained by averaging the PSNR's and bit rates over frames 5 - 10 (steady-state) in 

each simulation. Tables 5.2 and 5.3 summarize the results obtained. 
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Table 5.2: Partitioning Algorithm Com~arison For Ponai " 
DPS Partitioning Type " Avg. PSNR (dB) Avg. ~g~ 
RBC 
RBC 
RBC 

I PCR ii Partial Quadtree ii I 

33.34 0.46 1 
1 I t  I, 1 I 

v I1 I 
~ ~ 

I I 1 PCR 11 HV 33.36 0.44 

Quadtree " 

Partial Quadtree 
HV 

I PCR 11 Quadtree 

31.17 
31.10 
31 .05 
33.44 

P C 0  
P C 0  

The results indicate that all partitioning algorithms yield essentially equivalent 

results; for the same average bit rate, the average PSNR is the same and vice-versa. 

Based on this observation, the standard quadtree partitioning algorithm, with its 

minimal overhead, was selected as the prefered partitioning algorithm. 

Finally, we investigated the PSNR loss that results as the target rate specified for 

quantization of the alpha, beta and absorb parameters is varied. Two DFD signals 

obtained from the pongi sequence were used for this investigation. The results are 

displayed in Tables 5.4 and 5.5 for the PCR and P C 0  domain pool sources respectively. 

0.50 
0.51 
0.50 
0.45 

Table 5.3: Partitioning Algorithm Comparison For Foreman 

Quadtree 
Partial Quadtree 

Avg. Bpp 
0.29 
0.33 
0.28 
0.27 
0.30 
0.26 
0.27 
0.31 

DPS 

RBC 
RBC 
RBC 

PCR 
PCR 
PCR 

P C 0  
P C 0  

33.82 
33.55 

0.44 
0.46 

Partitioning Type 

Quadtree 
Partial Quadtree 
HV 

Quadtree 
Partial Quadtree 
HV 

Quadtree 
Partial Ouadtree 

Avg. PSNR (dB) 

33.38 
33.40 
33.33 
34.49 
34.53 
34.39 
34.58 
34.36 
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The results are normalized such that zero PSNR loss corresponds to a target rate of 

5.0; all PSNR changes are quoted with respect to the PSNR at the target rate of 5.0. 

The end rate is the actual rate obtained using the quantization and entropy coding 

strategy implemented. Futhermore, there were approximately 600 a ,  ,d values and 

140 y (absorb) values in each of the DFD signals. 

" 
I Target Rate I End Rate I PSNR change 

Table 5.4: PSNR Change as a Function of Target Rate, PCR 

3 
- 
- 

- 
- 
- 
- 

The results indicate that a target rate of 3.5 is sufficient for quantization of the 

alpha, beta and absorb parameters. 

Table 5.5: PSNR Change as a Function of Target Rate, P C 0  

5.2.5 Summary 

Based on all the results presented in this section, affine-transform-based fractal coders 

with the following parameters were selected for comparison to a reference DCT-based 

PSNR Change 
0.0 

-0.07 
-0.13 
-0.30 
-1.05 

Target Rate 
5.0 
4.5 
4.0 
3.5 
3.0 

coder: 

End Rate 
4.98 
4.39 
4.04 
3.50 
2.84 



0 standard quadtree partitioning algorithm 

0 PCR and P C 0  domain pool sources 

0 DECIMBYAVG spatial contraction operator 

modified luminance transformation for encodin non-u niform ra 
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0 overlapped windowed motion compensation algorithm 

,nge blocks 

0 entropy constrained scalar quantizers for quantizing the cu ( N  = 512), ,B ( N  = 

512) and y (N  = 128) values; BFOS algorithm for optimal quantizer assign- 

ments; generalized Gaussian pdf modeling of the parameter distributions for 

Huffman code design 

In summary, it should be understood by the reader that fractal coders are heuristic 

in nature; their ability to  encode a particular type of signal can only be determined 

through extensive simulation. The simulations in this section were performed in order 

to obtain some general insight on the effects that various parameters of the affine- 

transform-based coders have on the coding performance so that logical decisions could 

be made on what parameters were more likely to produce superior PSNR results. 

5.3 OBIFS Coders 

This section quantifies through simulation the effects that various parameters of the 

OBIFS coders have on coding performance. The pongi and foreman video sequences 

introduced in Section 5.1 were used for this investigation. Based on the simulation 

results, a set of coders was selected for comparison to a reference DCT-based coder. 

Unless otherwise stated, the following is assumed: 

0 the standard block-based motion compensation algorithm is used; the MC block 

size is 8 and the search window over which an optimal matching block is sought 

is f 15 (as is standard in MPEG, H.261) 
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0 the target rate specified for ~ o n g i  is 0.4; the target rate specified for foreman 

is 0.25 

0 the spatial contraction operator is NO-CONTRACTION (either could have been 

used as shown later) 

0 the mean-squared-error threshold, T,,,, is equal to 40 (for the same reasons as 

described earlier for the affine transform case) 

Fully quantized coders have to be considered because using the PCR and P C 0  

domain pool sources in the absence of quantization will result in perfect signal recon- 

struction; recall that the RBC domain pool source was not considered for the OBIFS 

class of coders because preliminary simulations showed the encoding transformation 

to be non-contractive. 

5.3.1 Basis Generation Met hod Related Results 

The first parameter investigated was the basis generation method. Figures 5.30 and 

5.31 display the results obtained for the PCR and P C 0  domain pool sources. 

The results indicate that the covariance method provides marginally better perfor- 

mance for both domain pool sources. Similar results were observed for foreman. The 

centroid method was used in all subsequent simulations because the encoding time 

is much shorter, and its performance is nearly equivalent to that of the covariance 

method. 

Combining these results Figure 5.32 compares the PCR and P C 0  domain pool 

sources using the centroid basis generation method. 

It can be seen that the P C 0  domain pool source provides slightly better perfor- 

mance over most of the sequence. 
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Pongi: Comparison of Basis Generation Methods, PC0 
I , I I I I I 

X - COVARIANCE 
10 - CENTROID 

I 1 , I I I I 

5.5 6 6.5 7 7.5 8 8.5 9 9.5 
Frame Number 

Figure 5.30: Pongi: Basis Generation Method Comparison, P C 0  

29 I I I I I t 1 I 

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 
Frame Number 

Pong~: Cornparson of Bass Generat~on Methods, PCR 

Figure 5.31 : Pongi: Basis Generation Method Comparison, PCR 
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Pongi Compar~son of Domam Pool Sources 

Frame Number 

Figure 5.32: Pongi: Domain Pool Source Comparison 

5.3.2 Motion Compensation Results 

Figures 5.33 and 5.34 summarize the effect that the motion compensation algorithm 

has on the coding performance for the PCR and P C 0  domain pool sources. 

It is very clear that use of the overlapped windowed block motion compensation 

algorithm provides superior performance; similar results were observed for the fore- 

man sequence. This is again due to the smoother, lower energy DFD signal Produced 

by the overlapped windowed block motion compensation algorithm. 

rL 
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Pongi: Comparison of Motion Compensation Types, PC0 
35 , I I I I I , I I 

x - Standard 

8 I I I I I 
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Frame Number 

34 

33 

Figure 5.33: Pongi: Motion Compensation Type Comparison, P C 0  

Pongi: Comparison of Motion Compensation Types, PCR 

- 

Overlapped 

0 - Overlapped 

29? 5:5 b 6:s t 7:5 8:5 h 9:5 A 
Frame Number 

- 

Figure 5.34: Pongi: Motion compensa?ion Type Comparison, PCR 
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5.3.3 Spatial Contraction Operator Results 

Finally, the effect of the spatial contraction operator on coding performance was in- 

vestigated. There is no reason to believe that either of the operators considered, 

DECIMBYAVG and NO-CONTRACTION, should yield different results. The re- 

sults are presented in Figures 5.35 and 5.36 for the pongi and foreman sequence 

respectively. 

Pongi: Comparison of Spatlal Contraction Operators 
I 4 I I I I I I I 

- DECIM-BY-AVG 

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 
Frame Number 

Figure 5.35: Pongi: Spatial Contraction Operator Comparison 
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5 5.5 6 6.5 7 7 5  8 8.5 9 9.5 10 
Frame Number 

Foreman: Compar~son of Spatlal Contraction Operators 
35 r 1 I 1 I I I 

Figure 5.36: Foreman: Spatial Contraction Operator Comparison 

34 

As expected, both operators yield essentially the same performance. 

X - NO-CONTRACTION 
0 - DECIM-BY-AVG 

- 

5.3.4 Summary 

Based on the results presented in this section, OBIFS coders with the following pa- 

rameters were selected for comparison to a reference DCT-based coder: 

overlapped windowed motion compensation algorithm 

covariance basis generation method 

PCR and P C 0  domain pool sources 

DECIMBYAVG spatial contraction operator 

quantization and entropy coding as per JPEG 

Either spatial contraction operatorncould have been used as both produced equiv- 

alent results. The DECIM-BYAVG spatial contraction operator was selected to be 

consistent with the affine-transform-based fractal coders. 
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Final Results 

This section presents and discusses the simulation results obtained by comparing the 

performance of the affine transform and OBIFS coders selected from Chapter 5 to a 

reference DCT-based coder. 

6.1 Source Descriptions 

The carphone and salesman video sequences were used for comparing the objective 

and subjective performance of the various coders. 

Carphone is a low to moderate motion sequence of a man sitting in a moving 

car. To increase the amount of motion in this sequence, the first 100 frames were 

decimated temporally by 5; the resulting frames were enumerated 0 - 19. Each frame 

had dimensions 144 x 176, and the resulting frame rate after decimation was 6 frames 

per second. 

Salesmen is a moderate motion sequence of a man sitting at a desk holding an 

object in his right hand. The background is somewhat detailed and the motion is 

concentrated in the man's right arm and head as he moves the obTect up and down. 

The amount of motion in this sequence was also increased by decimating the first 60 

frames temporally by 4; the resulting frames were enumerated 0 - 15. Each frame had 
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dimensions 288 x 352, and the resulting frame rate a.fter decinmtion wa.s 7.5 frames 

per second. 

Typical frames from each of these two sequences are shown in Figures 6.1 a.nd 6.2 

Figure 6.1: Carphone Sequence 
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Figure 6.2: Salesman Sequence 

6.2 Results 

The reference DCT-based coder implemented for comparison utilizes the exact same 

quantization and entropy coding strategy described in Section 4.3.3 for OBIFS coders. 

The only difference is that the DCT coefficients are zig-zag scanned in the standard 

DCT zig-zag scan order. The functionality of the DCT coder was verified by imple- 

menting a still image version of the coder and comparing the results to a JPEG cod& 

for coding of the standard Lena image (approximately 0.5 dB better than JPEG at 

0.6 bpp). Finally, the overlapped windowed block motion compensation algorithm 

was used for the DCT coder as it was used for all other coders as well. 

We now summarize the fractal coders that were selected in the previous chapter 
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as being the best representative coders in their corresponding classes. For the affine 

transform class of coders, we used the overlapped windowed block motion compen- 

sation algorithm, the DECIMBYAVG spatial contraction operator, the standard 

quadtree partitioning algorithm and both the PCR and P C 0  domain pool sources. 

For the OBIFS class of coders, we used the overlapped windowed block motion com- 

pensation algorithm, the covariance basis generation method, the DECIMBYAVG 

spatial contraction operator and the PCR and P C 0  domain pool sources. The coders 

were quantized and entropy coded as described in the previous chapter. 

The mean-squared-error threshold, T,,, was kept constant at 50.0 to eliminate 

this variable from the comparison and to allow our target bit rates to be achieved. 

Similarly, 3.5 bits was used as the target rate for quantization of the a,  P and y values 

as this was shown previously to be sufficient. Furthermore, 16 x 16 blocks were used 

for performing motion compensation and the search size was fixed at f 15. The use 

of 16 x 16 blocks increases the amount of energy in the DFD signals. 

All PSNR measurements were calculated between the original frames and the 

reconstruction of those frames using the encoded DFD signals. All bit rate measure- 

ments exclude the bits required to code the motion vectors. 

In addition, it was ensured that the first DFD signal coded was the same for both 

the PCR and P C 0  domain pool sources. For this reason, all results are presented 
t 

from frame 1 to the sequence end. Also, the first 2 frames from each sequence were 

coded at approximately 32 dB using JPEG. 

The aim of this final set of simulations was to encode the selected video sequences 

at two different rates so that some general conclusions could be made on the feasibility 

of using fractal video coding techniques for direct coding of DFD signals. 

The affine transform and OBIFS fractal coders were each compared individually 

to the reference DCT-based coder at two separate rates. We begin by presenting the 

results obtained when comparing the affine-transform-based fractal coders with the 

DCT-based coder; it should be noted that to make the comparison fair, zero intensity 
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blocks were coded using a single bit as was done for the affine transform coders. 

Since the bit rate of the affine transform coders can not be finely controlled (the 

algorithm is adaptive in nature and therefore the rate is sequence dependent), the 

carphone and salesman sequences were first coded using the affine transform coders. 

The average rates were then computed in each case, and the DCT coder was used 

to code the same sequences at those average rates. In this way, we compare the two 

coding methods at the same average rate. 

To generate a higher rate coding, a horizontal and vertical grid displacement of 

4 was used for carphone and 8 was used for salesman. A larger value was used 

for salesman because the image is twice the size; using a value of 8 implies that the 

number of domain blocks in the domain pool is the same for both sequences. 

To produce a lower rate coding, no adaptive partitioning was performed; i.e., all 

range blocks were coded at the 8 x 8 block size. 

The carphone sequence was coded at average rates of approximately 0.26 and 

0.13 bpp; the salesman sequence was coded at approximate average rates of 0.15 and 

0.09 bpp. The results obtained are presented in Figures 6.3 to 6.6. 
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Carphone, Affme vs. DCT, Rate 1 

Frame Number 

Figure 6.3: Carphone, Affine, 0.26 bpp Average Rate 

Carohone. Affine vs. DCT. Rate 2 

29 I I I I I I 4 I 

2 4 6 8 10 12 14 16 18 
Frame Number 

Figure 6.4: Carphone, Affine, 0.13 bpp Average Rate 
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Salesman. Affine vs. DCT. Rate 1 

30 I I I 6 , I 

2 4 6 8 10 12 14 
Frame Number 

Figure 6.5: Salesman, Affine, 0.15 bpp Average Rate 

Salesman, Affine vs. DCT, Rate 2 
36 I I I I I 

o Affme, PCR 

X DCT 

30 I I I 

2 4 6 8 10 12 14 
Frame Number 

Figure 6.6: Salesman, Affine, 0.09 bpp Average Rate 
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Based on these results, the following general conclusions can be made: 

rn For carphone at 0.26 bpp average rate and salesman at 0.15 bpp average 

rate, the affine transform coders perform as well or better than the DCT coder 

over all frames. Subjectively, both coders exhibit blocking artifacts, contouring 

(noisy type regions of different intensity), and blurring of regions of motion. 

rn At the lower rates of 0.13 bpp for carphone and 0.09 bpp for salesman, the 

best affine transform coder performs up to 1 dB better than the DCT coder 

over all frames. Subjectively, the DCT coder exhibits much more contouring 

and granular type noise than does the affine transform coder. Blocking artifacts 

are more noticeable for both coders. 

rn The P C 0  domain pool source always yields results as good or better than the 

PCR domain pool source; the PSNR gain being more noticeable at the lower 

rates. 

The OBIFS coders were next compared to the reference DCT-based coder. In 

comparing these two coders, the quantization and entropy coding strategies were 

identical; the only difference being the basis vectors. Again the coders were compared 

at the same average rates. 

Horizontal and vertical grid displacements of 2 were used for ca rphone  while 4 

was used for salesman for the same reasons described earlier. 

The carphone sequence was coded at an average rate of approximately 0.26 bpp. 

The sa lesman sequence was coded at average rates of approximately 0.16 bpp and 

0.11 bpp. The results are presented in Figures 6.7 to 6.9. 
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Carphone. OBIFS vs. DCT, Rate 1 
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Figure 6.7: Carphone, OBIFS, 0.26 bpp Average Rate 
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Salesman, OBIFS vs. DCT, Rate 1 
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Figure 6.8: Salesman, OBIFS, 0.16 bpp Average Rate 
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Salesman, OBIFS vs. DCT, Rate 2 
36 I I I I I I I 
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Figure 6.9: Salesman, OBIFS, 0.11 bpp Average Rate 

Based on these results, the following general conclusions can be made: 

The DCT coder performs between 0.5-2 dB better than the best OBIFS coders 

over all frames for both sequences. Subjectively, the OBIFS coders exhibit a 

mosquito-type noise spread all over the regions of motion; the DCT coders 

exhibit more blocking and contouring. 

The P C 0  domain pool source provides on average approximately 0.5 dB im- 

provement over the PCR domain pool source over all frames for both sequences. 



Chapter 7 

Conclusion 

This thesis investigated the feasibility of using fractal image coding techniques for 

direct fractal coding of displaced difference signals. 

The contributions of the thesis are three-fold: 

An empirical study on direct fractal coding of displaced frame difference signals 

was presented. Both standard affine and OBIFS coders were considered in the 

investigation. Quantitative and qualitative results were provided for coding of 

moderate to high energy DFD signals. 

Thorough descriptions and analysis of all transformation parameters were pro- 

vided; the effects of all transformation parameters on coding performance were 

quantified. 

Both classes of coders considered were generalized for video coding by introduc- 

tion of alternative domain pool sources. A scheme for efficient quantization and 

entropy coding of the resulting transformation parameters was presented. The 

resulting coders provided much better performance than classical fractal coding 

of the DFD signals alone. 

Based on the results of this investigation, it can be concluded that affine-transform- 

based fractal coders are feasible for direct fractal coding of moderate to high energy 
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DFD signals. For the two video sequences considered, the objective performance of the 

affine-transform-based fractal coders was as good or better than the reference DCT- 

based coder for the two sequences tested. It was observed that the PSNR difference 

increased at  lower rates. The OBIFS coders produced objective results 0.5 - 2 dB 

worse than the reference DCT-based coder for both sequences tested. 

Further work should be done to verify the above conclusions using a larger set 

of video sequences. Furthermore, the methods considered in this thesis should be 

compared against other fractal video coding methods. 
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