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Abstract 

In recent years, fault detection and isolation (FDI) problem has been receiving a 

great deal of attention in a wide variety of industries. State estimation through 

design of proper observer is at the heart of many proposed FDI approaches and 

poses many theoretical research challenges that exists in model based FDI. Estimation 

and observer design problems are dual of controller design problems, and as such 

they have been a subject of long study by the control community over the years. 

However, just as controller design problem, there are variety of unresolved and research 

problems dealing with state observation problems in a number of dynamical systems. 

On the other hand, observer design for FDI purposes poses additional constraints and 

challenges to this problem. As an example consider the problem of state observation 

in an uncertain linear or nonlinear dynamical system. Generally for control purposes, 

it is desired to design an observer that is robust to all uncertainties in the system- 

already a difficult problem depending on the system and the nature of uncertainties. 

Now imagine that it is also desired to accomplish FDI using this observer. A robust 

observer that is simply insensitive to all uncertainties will no longer be adequate 

to accomplish the task. The reason is that such an observer could be robust to 

faults as well, and as a result, FDI would not be possible. Therefore, ideally one 

would like to design an specialized observer for FDI-one that is robust to system 

uncertainties and certain external disturbances but at the same time would be highly 

sensitive to failures. This makes the state estimation problem particularly difficult 

and challenging. The overall area of nonlinear control/estimation is still in its infancy. 

As a result, the FDI problem is even more challenging in such systems. This thesis is 

an attempt to accomplish model based FDI in certain classes of linear and especially 



nonlinear systems using the unknown input observer framework. 

Unknown Input Observer (UIO) is an estimator which is decoupled from the un- 

known inputs (certain disturbances, or faults) that may be acting on the system and 

the measurements. This particular class of observer has been the subject of study 

by researchers in the FDI field, since it is particularly attractive for accomplishing 

certain FDI tasks. However, most of the existing literature on this class of observers 

deals with linear systems. In this thesis, we show how reliable FDI can be accom- 

plished in a number of systems through the use of UIO methodology. One of the main 

contribution of this thesis is generalization of the UIO from linear systems to other 

classes of systems, namely the state retarded (time delay) systems, bilinear systems 

(a special class of nonlinear systems), and affine nonlinear systems. For bilinear as 

well as time-delay systems, we propose a reduced order observer, and illustrate how 

FDI of actuators as well as sensors can be achieved in these systems. Conditions 

for existence of the proposed observer, plus the stability and convergence proof of 

the observer based on the Lyapunov Approach and Razumikhin Theorem are given. 

For affine nonlinear systems, we give conditions under which the system can be dif- 

feomorphically transformed into a particular form which observers with linear error 

dynamics can be designed, and we apply the typical UIO as well as the fault diagnos- 

tic algorithm to this type of nonlinear systems. Finally, the thesis investigates certain 

connections between Unknown Input Observer (UIO) methodology and Sliding Mode 

Observer (SMO) which through the discontinuous switching term in their structure 

can compensate for certain unknown inputs or disturbances so long that they are 

bounded, and the upper bound is known. 

The applicability and effectiveness of our methods in estimation and FDI are 

illustrated by numerical examples through out the thesis. 
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Chapter 1 

Introduction 

System monitoring and timely fault detection capabilities are critical requirements 

of many modern control systems. Traditionally these features have been of utmost 

importance in safety critical systems such as civil and military aviation, or nuclear 

power plants, etc. However, in recent years, other factors have been playing a major 

role in recognizing the need for these capabilities in other technical systems. Broadly 

speaking, by the term fault we mean failures, errors, malfunctions or disturbances in 

the functional units that can lead to undesirable or intolerable behavior of the sys- 

tem. Some of the contributing factors that have made the automatic fault detection, 

isolation and accommodation (FDIA) problem to become an active area for research 

in a wide variety of industries and systems are: 

i. The increased level of sophistication of many industrial and consumer goods 

due to the advances in electronics and computer technology, and at the same 

time decrease in processor's costs. Today's automobiles are a good example 

of this trend. The auto manufacturers have introduced a tremendous amount 
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of electronics in recent models. Many functions such as powertrain control, 

anti-lock brake, chassis control, climate control, traction control, et c. are now 

performed electrically and are available on many vehicles. 

ii. Many manufacturing and process industries are highly interested in FDIA ca- 

pabilities due to the fact that timely detection of early faults can result in 

unexpected and total failure that can lead to plant shutdown and loss of rev- 

enues. Therefore, economics is now an important factor in incorporation of 

FDIA techniques in many industries. 

iii. The environmental concern is now a new driving force for FDIA requirement. 

An example of this is the new California Air Resource Board (CARB), and En- 

vironmental Protection Agency (EPA) legislations which require that by 1998, 

On Board Diagnostics I1 (OBD-11) to be rolled into all light duty vehicles sold 

in North American fleet. Essentially, OBD-I1 requires fault detection capability 

for all vehicle components whose failure can result in emission levels beyond a 

certain level. It would not be surprising if similar tight restriction were to be 

placed on control and fault diagnosis of other internal combustion engines such 

as those of boats or lawn mowers. 

In any of the systems that were discussed above, in order to have the efficient 

operation of the process and to increase the reliability and safety, prompt detection 

of anomalous situations (fault detection) and the fast identification (isolation) of the 

most probable causes (faults) need to be addressed. As was discussed above, there 

have been new incentives for requiring FDIA capabilities, but the fact remains that 
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still the prime reason for it is safety. The 1979 accident in Three Mile Island-2 (TMI- 

2) nuclear site which resulted in nearly total destruction of the reactor core, and the 

1985 explosion of the space shuttle Challenger could have indeed been preventable by 

proper system monitoring, and timely alarm, isolation, and accommodation. 

In the past few years a great deal of effort has gone into providing the operators of 

critical systems or processes with better graphics, user interface and displays, where 

an operator (e.g. pilot of an aircraft) can get information regarding a particular 

part of the plant by typing a few keys on the computer. However, with the increase 

in complexity of systems, it is humanly impossible to carry the entire monitoring 

and diagnosis. This is particularly true for low probability events, since detection 

and diagnosis by human operators require cognitive skills, and efficient retrieval of 

knowledge from long term memory depends on the frequency of use. In those systems 

where a human operator is involved, such as flying an aircraft, automatic monitoring 

could be more reliable than a human operator who is vulnerable to boredom, and 

stress which can cause errors and impaired judgment. It is expected that more and 

more systems will require higher degree of autonomous operation that allow for health 

monitoring and fault tolerance over long periods of time without human intervention. 

The Fault Detection and Isolation (FDI) can be achieved by using a replication 

of hardware (e.g., computers, sensors, actuators, and other components) in what is 

known as a hardware redundant system in which outputs from identical components 

are compared for consistency. This approach may be costly, bulky, and the added 

instruments and periphery hardware adds to the size of the system as well. One 

example of hardware redundancy is multiple sensors measuring the same quantity. 

Faults can simply be detected through a majority vote logic rule. Alternatively, FDI 
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can be carried out using analytical or functional information about the system being 

monitored, i.e., based on a mathematical model of the system. The latter approach 

is known as analytical redundancy, which is also known invariably as model-based 

or quantitative FDI. Model-based FDI is currently the subject of extensive research 

and is being used in highly reliable control systems due to the fact that analytical 

redundancy based techniques are more economical and at times more powerful. These 

methods are also capabIe of detecting soft incipient faults even during the system's 

transient operation. 

Research attention in recent years has been focused on robust methods for FDI, 

which are able to detect incipient (soft or small) faults in a system before they are 

manifested as problems requiring either operator or automatic system intervention 

(accommodation or control reconfiguration). Since model-based FDI use the mat he- 

matical knowledge of the system for their diagnostics purposes, the FDI system would 

register numerous false alarms if the process model is not accurately represented, or 

if some parameters in the system change due to aging, corrosion, etc. It is clear that 

under such conditions robust control and FDI should be used. However, although 

there is a wealth of research in the area of robust control, the problem of robust 

FDI is different, and a lot more difficult. Basically, the problem is that we demand 

precise answers in an imprecise system, that is, high sensitivity to instrument faults, 

but robustness to the process uncertainties. In other words, robustness is the ability 

to isolate the fault in the presence of modeling errors. This clearly is not an easy 

task to accomplish, since there may be only very limited degrees of freedom in the 

design. Another very difficult bottleneck in FDI is that although practically almost 

all physical systems are nonlinear, there is very little work available in the literature 
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on the subject of FDI for nonlinear systems. It should also be pointed out that the 

general area of nonlinear control is still in its infancy, and thus it is not surprising 

that work on FDI for nonlinear system is even more scarce. 

The problem treated in this thesis is the use of analytical redundancy for fault 

detection and isolation, i.e., the model-based FDI approach. The work here is mainly 

on the problem of FDI in certain classes of nonlinear and time delay systems. In this 

thesis a fault is considered as a defect in actuator, or sensor, or system structure, 

which may cause problems or unwanted changes in system dynamics. 

Application of analytical redundancy based FDI generally require a mathematical 

model of the process under consideration without any faulty signal as well as certain 

amount of information (measurement) from the actual (be it faulty or fault free) plant. 

As long as the deviation (residual) between the system informat ion (measurement) 

and the information supplied from the fault free model is close to zero, then one can 

probably claim that there is no fault in the system, i.e., the system operation is nor- 

mal. The reason that a conclusion with certainty can not be reached in the previous 

scenario is that in theory the faulty signal may be decoupled from the output, i-e., the 

faulty signal may not have an effect on the system output. Based on this discussion 

it is clear that the distinction between the uncertainties and the soft failure effects 

is an important consideration in the process of designing an FDI system. The main 

task here is to design an FDI approach which is robust to model uncertainties and 

sensitive to faults that may occur within the system. 

Model based FDI approach is generally composed of two main tasks: 

i. Residual Generation 
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The residual generation amounts to generating signals or symptoms which reflect 

the faults. The signal comes from the reconstruction of measurements of faulty 

plant based on the mathematical model (which is robust to model uncertain- 

ties). It should be noted that at times transformation of the measurements can 

emphasize particular faults. This is a useful means for detection and isolation 

tasks. 

Generally speaking, there are three basic schemes that accomplish the task of 

residual generation. These are: 

(a) Parity Space Approach 

This approach is based on checking (i.e., the parity check) the consistency 

of the mathematical relations (parity equations-properly modified system 

equation) between the outputs (or a subset of outputs) and inputs. These 

relations may lead a direct redundancy, which gives the static algebraic 

relations between sensor outputs, or temporal redundancy, which gives the 

dynamic relations between inputs and outputs, in other words, from the 

inconsistency of the parity equations we can detect the faults (see [7, 361). 

This approach has also been formulated in frequency domain [ll, 151. Par- 

ity based approaches are commonly considered to be open loop approaches 

since they essentially use the input and output of the system. Parity equa- 

tions do not involve any comparison or feedback of information from the 

plant. It has been shown by Massouminia [33, 341 that for linear systems 

it is possible in theory to filter the residuals generated through the parity 

equations so as to get the same residual dynamics as in the case of observer 

based schemes discussed in the next class of approaches. However, this is 
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in general not practical and the design is not systematic. Furthermore, 

parity equations may represent totally meaningless quantities, and can be 

of use only for FDI purposes. 

(b) Observer Based Approach 

The idea is to reconstruct the outputs of the system from the measurements 

or a subset of measurements by using either (Luenberger, sliding-mode, un- 

known input, etc.) observers in a deterministic setting or Kalman Filters, 

etc. in a stochastic setting. Then the output estimation error or inno- 

vations in the stochastic case are used as a residual. In comparison to 

parity based techniques, this class of residual generators use error feed- 

back and thus can be more useful for robust FDI. In addition, estimators 

provide useful and meaningful quantities, i.e. the state of the dynami- 

cal systems which are often needed for control purposes as well. Finally, 

observer/estimator design is a well established area in the systems and 

control and there exists vast number of studies on the subject. The design 

is systematic and the flexibility in selecting observer gains has been fully 

exploited in the literature, yielding a rich variety of fault detection schemes 

[5, 13, 14, 38, 40, 42, 55, 571. 

(c) Parameter Estimation and Identification Approach 

In this approach, system parameters are estimated and identified on-line 

to  monitor the changes for fault detection and diagnostics purpose. 

Component faults can be considered as deviation of physical parameters, 

this method is simple and direct. Generally, in the approach fault de- 

cision logic can employ the estimates of some physical parameters such 
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as efficiency, fuel consumption, etc., which can effectively be used (see 

[24, 25, 261). 

In this class of techniques, the system's parameters are continuously mon- 

itored as they are generated through some recursive identification scheme. 

The FDI would conclude that there is a fault in the plant or a subsystem 

within the plant when the corresponding identified parameter takes a sud- 

den jump from its nominal value. The detection logic of course should be 

intelligent enough to distinguish between a change in the dynamic model of 

the system due to faults and other normal effects that may lead to changes 

in the dynamics. 

In this thesis, we will confine ourselves to observer based approaches. The 

advantage of using observer over parity space was discussed above and it is the 

author's opinion that the observer based techniques are the most powerful of 

techniques discussed above. 

ii. Residual Evaluation 

The alarm strategy (logical decision-making) is chosen based on the generated 

residual and experiences on the fault occurrences. Generally the residuals are 

further processed in either a deterministic or stochastic decision process for the 

purpose of detection and more commonly isolation of failures. 

From a historical perspective, the first comprehensive work in the area of analytical 

redundancy based FDI appeared in the early 70's. Notably, was the work of Beard 

(1971) [2] and Jones (1973) [27] who reported an observer-based fault diagnosis in 

linear systems. A survey and summary of various works in the field including those 
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of the Beard and Jones was given by Willsky (1976) [54]. Many of the early works 

were performed based on the basic assumption that the dynamics of the system under 

consideration was precisely known. That is, no consideration was given to the effect 

of always present uncertainties, dist~urbances, as well as the nonlinearities which were 

ignored in the development of linear models. Later on, Clark (1978) 183 showed the 

possibility of using inherent analytical redundancy of multiple observers to diagnose 

instrument faults. The main questio~i that was being addressed in that paper and 

many subsequent studies was how to isolate faulty instrument(s) once a fault was 

detected via the observer based approach. This requirement of the isolability of faults 

led Clark and a number of other researchers to look at FDI using a bank of observers 

driven by different and at times somewhat overlapping set of measurements. Again 

the basic assumption of these works was that a sufficiently accurate model of the 

system as well as independent number of measurements was available [13, 14,49,55]. 

Later results on perfect decoupling between the residuals and the unknown inputs 

were given by many authors (Watanabe and Himmelblau [52], Ge and Fang [16], Guan 

and Saif [18], White and Speyer [53]) under different conditions. For linear systems, 

Massounmia [33, 341 gave a clear treatment of the FDI via geometric approach. His 

results covered most of the existing works in linear systems. In addition, the connec- 

tion between the parity based and observer based techniques were brought forward in 

his work for the first time. 

Other researchers such as Ding [ll] and Kinnaert et a1 [30] gave some insight 

and relationship between the observer based schemes and certain optimization based 

techniques in frequency domain. 

The contents of this thesis is organized as follows: 
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In Chapter 2, we will give a problem formulation and a brief outline of the Fault 

Detection and Isolation in linear systems by using Unknown Input Observer (UIO). 

In Chapter 3, the FDI results in linear systems are generalized to  bilinear systems 

[57]. From practical point of view, for the bilinear systems considered, we assume 

that the input is bounded. With some additional conditions, we present sufficient 

conditions for the design of proper UIO suitable for FDI purpose. The main idea 

there is to treat the faults as unknown inputs and design observer for state estimation 

which is decoupled from the fault. Next an inverse transformation is performed to 

calculate the estimates of the faults. The advantage of this method is that not only it 

enables us to detect the fault, but it also provides an immediate means for isolation of 

the fault. Furthermore, another by product of this approach is the exact knowledge 

of the shape of the fault. This feature is an important piece of information that 

many of the existing techniques do not provide, and it can be effectively used in the 

accommodation phase, if necessary. Of course accommodation of the fault may not 

be a requirement in certain applications, but where such requirement is present either 

due to safety or other practical reasons, accommodation task can insure that the 

system can function suboptimally until such times that repairs can be made. 

Time delay is also a common phenomenon in many complicated industrial systems. 

As a result, in Chapter 4 we apply the UIO theory to time-delay systems, which, to 

our knowledge, has not been considered by other researchers to date. The results here 

are generalization of the ones in bilinear systems. In the process of the proof of the 

observer's stability and convergence, we use the result of Razumikhin's theorem - a 

generalization of Lyapunov result in retarded differential equations. The remainder 

of the FDI design procedure for this class of systems is similar to that in the case of 
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the bilinear systems [59, 611. 

In Chapter 5, we tackle the fault diagnosis in the systems with perhaps more 

general forms of nonlinearities. We give an analysis on observer design and FDI for the 

class of nonlinear systems discussed in that Chapter which uses state transformation 

that can transform the nonlinear system into a special form. Once the system is 

transformed into the desired canonical form, we apply some of the results for observer 

design and FDI in linear systems. Also, certain types of uncertainties are dealt with 

by using an adaptive observer that can not only estimate the relevant states but also 

the unknown system's parameters [58, 601. 

In Chapter 6, an approach that perhaps could be applicable t o  a wider class of 

nonlinear systems is presented. This approach uses ideas that come from the area of 

Sliding Mode Observer (SMO) plus the UIO domain and combines them to arrive at 

a more powerful means for FDI. Fault Diagnosis in both linear and nonlinear systems 

through the use of this hybrid observer is discussed in this chapter. 

Finally, the contribution of this thesis are summarized, conclusions are drawn and 

future developments are discussed in Chapter 7. 



Chapter 2 

Fault Detection and Isolation in 

Linear Systems 

In this chapter, we will deal with the Fault Detection and Isolation problem in linear 

systems. From historical point of view, fault diagnosis was first tried in linear systems. 

This is logical due to the fact that the theory of control system design and estimation 

are more mature for the class of linear systems than those of nonlinear systems. 

Observer based approach was one of the several methods which have been popu- 

larly used since seventies. Saif & Guan [41] applied Unknown Input Observer (UIO) 

in fault diagnosis process. The advantage of doing so is that UIO is insensitive to (or 

decoupled from) unknown inputs, so that more accurate, robust (to disturbances, or 

unknown inputs) estimation on state, or even on faulty signals, can be achieved [41]. 

As a matter of fact, the subject of designing Unknown Input Observer has attracted a 

lot of attention from many different authors for many years [5,4,18,22, 23,39,45,49]. 

Due to the fact that the FDI requirements are becoming more and more stringent in 

variety of systems, there is perhaps a stronger argument for proposing to use observer 
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based fault diagnosis in complex systems. 

In this chapter, we will give the Unknown Input Observer design for linear time 

invariant systems and also discuss the fault diagnosis approach based on UIO. As far 

as the design and analysis of the UIO is concerned, we believe that all the existing 

design methods in the literature are basically equivalent. They are only expressed 

in different ways, or emphasized under different conditions. However, in general it 

can be shown that mathematically one can be induced from one the other. Based on 

the unifying idea, we explain UIO in a simple and clear way, and also compare some 

different results in the next sections. 

2.1 Problem Formulation 

Consider a linear time invariant system of the following form, 

where state x E Rn, output y E IRP, input u E Rm, actuator fault fa E Rma ,  

sensor fault fs E Rm\ dl, d2 are disturbinces or uncertainties with dimensions rl and 

r2 respectively, and A, B, C, D, El, E2,  Fl, FZ are the corresponding matrices with 

proper dimensions. 

In order to detect faults in linear system (2.1), we propose to  design a residual 

generator of following form 
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where r is the residual signal such that 

Through exploitation of certain redundancies in linear systems more information 

could be extracted in the above system. This can then assist us in isolating the faulty 

component(s). This is done by making certain elements of the residual 

vector r sensative to a certain group of faults and others decoupled from them. 

Given the fact that in this work we propose to adopt the observer based approach 

for FDI, the first equation in (2.2) can be designed as Luenberger Observer for the 

linear system (2.1). The second equation in (2.2) can be set as the difference between 

the output and its estimation, or just the estimate of the unknown input, by using 

the estimate of the observer. Generally in observer based FDI approach, the diagnosis 

procedure consists of two steps: (1) observer design; (2) residual design. 

2.2 Unknown Input Observer 

In this section, we discuss Unknown Input Observer. By UIO, we mean that the 

observer is designed in such a way that its estimate of the state is completely decoupled 

from the unknown exogenous inputs. The results in Subsection 2.2.1 directly come 

from [18]. Results in Subsections 2.2.2 and 2.2.3 are also based on the similar idea in 

[18], but they are derived for general cases. 
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2.2.1 UIO for Linear Systems-Case 1 

In this subsection, we consider a simplified form of system (2.1) with the following 

two conditions: 

1. No fault; 

2. No disturbance acting on measurement. - 

In this situation, the original system (2.1) becomes, 

5 = AX + BU + Eldl 

y=Cx+Du 

Without any loss of generality, we assume C = [I, 01. In this case, we can 

partition the system (2.3) into the following form, 

Ell 

El2 

El3 

where the matrices Al E RrIXn, A~ E R ( P - T I ) X ~ ,  A~ E ] ~ ( n - p ) x n  B~ E 1 ~ 1 x 9 ,  B~ E 

R(P-TI)XQ B~ E R ( ~ - P ) X P  E~~ E R ~ I  xTl  , E~~ x R ( P - ~ I ) X ~ I  , E13 E , IP is the 

identity matrix with dimension p x p, and the state vector x is partitioned as 
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so that the estimation of state vector is reduced to be the estimation of certain part 

of the state, i.e., x3, that means we need to  design a reduced order observer for 23. 

Assumption 2.2.1 Rank CEl  = Rank El = r l  and rl  I p. 

Lemma 2.2.1 The rank condition, 

Rank C El = Rank-El 

is equivalent to 

Ker C n Im El = (0). 

Proof. For any vector v E Ker C n Im El, then v E Ker C and v E Im El. So that we 

know there exists rl dimensional vector a,  such that 

We have 

We know cr has unique solution 0 is equivalent to  CE1 has full rank, i.e., Rank CE1 = 

Rank El. This completes the proof. I 

Equivalently, we have 
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Since Ell E R'lXT1, without loss of generality, can be assumed nonsingular, there- 

fore the following transformation matrix can be defined 

Premultiplying (2.4) with (2.6) results in 

Based on the above, it is clear that only the estimate of the 23 is required. The 

reason being that xl and x2 are the same as measurements yl and y2 respectively. 

Before designing an observer for x3, we shall introduce the following simpler notation 

As a result, the dynamics of 23 and the dynamics of y2 which are not directly affected 

by uncertainty dl, are described by the following equations, 

Partitioning A, as 

and substituting it into (2.9) yields, 
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and 

where 

Note that y and z are known because they are expressed by input and output 

measurements (though the derivative of output is needed in (2.14)' certain transfor- 

mation (2.17) can eliminate the explicit expression of output's derivatives). To design 

an estimator for 53, consider taking (2.11) as the state equation, and (2.12) as the 

output equation. Based on this system, then we propose a Luenberger observer of the 

form 

where I< is the observer's gain matrix. Substituting (2.13) and (2.14) into (2.15)' we 

get 

As was pointed out above, there are certain terms in the above involving the 

derivative of the system's output. Since these derivatives are not available and differ- 

entiation can lead to noise problems, we shall introduce a coordinate transformation 

which would lead to cancellation of the terms involving the output's derivatives. 
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Define 

A 
w = 53 - [(El3 - I { E ~ ~ ) E G ~ Y I  - K Y ~ ] ,  

then we have 

Note now that besides the variable w, every terms in (2.18) are known or measurable. 

Therefore equation (2.18) can be solved. 

The following theorem will summarize the design of the Unknown Input Observer 

(UIO) proposed in the above. 

-- 
Theorem 2.1 [18] If the pair {A33, is observable, then the state of the dynamical 

system given in (2.4) can be estimated b y  using the UIO proposed in (2.18). The 

estimation of the state is given b y  

- - 
also the eigenvalues of AQ3 - KA23 (i.e., the convergent rate of error dynamics) can 

be arbitrarily designed b y  choosing proper gain matrix K .  

The proof is clear from the above discussion. 

Proposition 2.2.2 

Rank 

For system (2.3), we have 
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Proof. According to the transformation 

Rank 

= Rank 

(2.6), we know 

And this completes the proof. 

-- 
Remark 2.2.1 The observability of the pair (A33, A23) is equivalent to 

Rank [ ' I ,  A f ] = + 

Remark 2.2.2 Based on the rank condition, we know that the derivative of y con- I 

tains all the information regarding E. Thus, we only need to estimate the part of x 

whose derivative is not directly affected by the unknown input. From the proof of 

Proposition 2.2.2, we notice that the number of the transmission zeros are same as 
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-- 
the dimensions of the unobservable space of (A33, A23). Based on the above discus- 

sion, Theorem 2.1 and Proposition 2.2.2, we know that the number of non-assignable 

eigenvalues consist of rl,  i.e. the dimension of E and the number of transmission 

zeros. By considering the number of transmission zeros, we have an alternative way 

to verify the condition described in Theorem 2.1. This is basically the same result as 

that stated in Theorem 1 of [45]. o 

2.2.2 UIO for Linear Systems-Case 2 

In Subsection 2.2.1, we considered the case that there was no disturbance or un- 

certainty in the output. In this subsection, we will consider system (2.1) with the 

presence of d2 under the following two conditions: 

1. No fault. 

2. Disturbances (uncertainties) dl and d2 are independent. 

Besides Condition 2, there is no special restriction on d2, that means d2 may appear 

in the measurable output. In this situation, system (2.1) becomes, 

The only difference between systems (2.22) and (2.3) is the presence of certain dis- 

turbance on measurement. So in system (2.22), part of the output has been corrupted 

by the disturbance (unknown input) signals, this may prevent us from using certain 

part of the output to design a correct unknown input observer as long as the dynamic 

disturbance (uncertainties) dl and measurement disturbance d2 are independent. If dl 
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and d2 are not completely independent, i.e., there exist none zero matrices Dl, V2 with 

proper dimensions, such that Vldl = V2d2, then we can still use certain "corrupted" 

part of the output to design unknown input observer as long as the corrupted term in 

measurement is cancelled out by the corresponding part of the dynamic disturbance 

dl in the observer dynamics, and this will be discussed in the next subsection. 

Theorem 2.2 The unknown input observer can be designed for system (2.22) if the 

following conditions are satisfied, 

Ker ( ( ~ e r  (E:))~c) n Im (El) = (0); 

has no transmission zeros. 

Proof. From dimension and rank of E2, we know there exists a full rank matrix To E 

R ( ~ - ~ ~ ) ~ ~ ,  such that TOE2 = 0 and T: E Ker (E:). Based on Condition 1, it is easy 

to see that no vector in the span-space of El that can be selected from kernal space 

of ToC, so that 

Rank ToCEl = Rank El, 

and also Condition 1 implies that rl 5 p - r2, i.e., 
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Taking 

left-multiplying y by T ,  we get, 

correspondingly we have 

Now the output y2 can be used for the design of UIO. However, in order to apply 

Theorem 2.1, we need Rank C2E1 = Rank El, but this turns out to be Rank ToCEl = 

Rank El which is guaranteed from Condition 1. Also, 

X I - A  El 0 
Rank[  = Rank 

= Rank 

= Rank 

. From Condition 2 ,  we know 

X I - A  El 0 

[ :ij 
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Then by combination of Theorem 2.1 and Proposition 2.1, the UIO can be de- 

signed. This ends the proof. 

I 

Remark 2.2.3 If E2 = 0, that means there is no uncertainty in the output, i.e., 

system (2.22) reduces to Case 1 described in Subsection 2.2.1. In such situation, 

Condition 1 (equation (2.23)) becomes Ker (C) n Im (El) = (0) which is equivalent 

to Rank CEl = Rank El. Theorem 2.2 is generalization of Theorem 2.1. 

2.2.3 UIO for Linear Systems-Case 3 

In this subsection, we consider the same kind of system as before, but without any 

restriction on the independence of dl and d2. We have the following conditions, 

1. no fault; 

2. disturbance dl and d2 are dependent in such a way that there exists do E RTO, 

dl E IRT'-TO, d2 E IRr2-T0, such that - - 

System (2.1) becomes of the following form, ! 

do 
where Eio, E,, are the partition of E; according to  the dimension of 
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By premultiplying by a nonsingular matrix, y can be transformed into 

where yl is corrupted by independent signal d2, so for observer design we can only - 

use y2. 

Theorem 2.3 Unknown Input Observer can be designed for system (2.25), if the 

following conditions hold, 

Proof. Set X = ] , 6 = do, then (2.25) combining with (2.26) becomes 
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Applying Theorem 2.2 to the above system, UIO for (2.29) exists if the following 

two equations hold, 

Rank [ [G E&l 

Rank 

Clearly 

Rank 

Rank 

XI - A  El0 El 
ro + Rank 

so that we know equation (2.31) is same as Condition 2 described by equation (2.28). 

Also 

Rank (1.2 [: ; o ] )  = T I  

is equivalent to 

Rank [C2 - El E&] = rl 
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which is the Condition 1, i.e., the equation (2.27). This completes the proof. 

I 

2.3 Fault Diagnosis 

We assume that the actuator fault term Fl fa in system (2.1) can be modeled in such 

a way that it can be taken as part of the unknown input. So for system (2.1), as long 

as the existence conditions of unknown input observer (UIO) are guaranteed, then 

by using the Theorems 2.1-2.3 the actuator fault as well as the disturbance can be 

estimated by using other information such as outputs and estimated states. This is 

described in more details in the following. 

From system (2.1), we have 

so estimate of the unknown inputs/faults can be outlined through 

the estimate of i comes from UIO, and the derivative of i can be eliminated by 

introducing a state transformation. 

Similarly, under the presence of sensor fault term F2 f, in system (2.1), we can also 

estimate the sensor fault as long as UIO exists taking fa, f, as unknown input. The 

sensor fault can be approximated by the following information, 
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In our case, the residual signal r (defined in equation (2.2)) is fa or 1, itself. Due 

to the unstructured disturbances, approximation during the calculations, the estimate 

of sensor or actuator faults may not be very accurate. Therefore certain threshold 

value 6 should be set in order to give reliable alarms. We claim that there exists 

actuator fault if l l f a l l  2 6; sensor fault presents if l l f s l l  > 6. 

The advantages of the above fault diagnosis are, 

Simple and easy to implement; 

Accurate estimation of disturbance; 

Accurate estimation of actuator faults, so that the isolation is also achieved. 

The disadvantage of the above discussed fault diagnosis is, that the unknown input 

observer has to exist. If a single UIO that can account for all the sensor, and actu- 

ator faults plus the disturbances does not exist, the situation may be remedied by 

considering to use a bank of observers in order to  give the diagnosis as well as certain 

degree of isolation for the faults in the systems. This idea is illustrated in Figure 2.1. 
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ACTUATOR FAULT fa SENSOR FAULT fs 

+ MEASUREMENT y 

-i UNKNOWN INPUT OBSERVER 1 +A- - 
I J - 

RESIDUE rl 

-1 UNKNOWN INPUT OBSERVER sl 
I 

RESIDUE r,  

Figure 2.1: FDI Using a Bank of Observers 



Chapter 3 

UIO Design and FDI in Bilinear 

Systems 

This chapter explores the design of a reduced order observer with unknown inputs 

for the purpose of fault detection and isolation (FDI) in a class of bilinear systems. 

An approach for sensor and actuator failure detection and isolation (FDI), based on 

the proposed observer is presented. Finally, the applicability and effectiveness of the 

proposed FDI scheme is illustrated on an electrohydraulic servovalve system. The 

main results are also reported in [57]. 

Model based approach to failure detection, isolation, and accommodation (FDIA) is 

now recognized as an important area of research in system and controls. However, the 

current state of the art mainly deals with FDIA problem in linear systems, although 

a trend in extending these methodologies to nonlinear systems is currently under way 
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Here we deal with the problem of FDI in a class of nonlinear systems, namely 

bilinear systems. Bilinear systems are a special class of nonlinear systems in which 

the control appears in both additive and multiplicative terms. The bilinearity is an 

important phenomenon which arises in a variety of physical systems and even offer 

advantages to linear systems [3]. As estimation plays a crucial role in many FDI 

studies, it is not surprising that it is an important part of the development presented 

in this chapter as well. 

The minimal order observer designs for bilinear systems has been discussed by 

Hara & Furuta [21], and Derese, Stevens & Noldus [lo] and others. 

In this chapter, we develop a minimal order observer with unknown inputs for the 

bilinear systems. Later, the unknown input formulation is used to model the effects 

of failures into the system. This work is a further extension of the work by Guan and 

Saif [18] to bilinear case, and an alternative approach to the design of Saif [40]. The 

observer design proposed here is more powerful than that of Hara & Furuta [21] since 

it can cope with the presence of additional unknown disturbances. In addition, as 

opposed to the observers proposed in [21], [40], [18], and [62], the estimator proposed 

here is applicable to a wider class of bilinear systems. As a result, unlike those works, 

the estimation error of the observer disussed here depends on the control input to the 

system, i.e., we don't need the complete cancellation of the input in error dynamics. 

Thus we claim that the proposed observer is suitable for a wider class of bilinear 

systems. The proposed approach provides a transparent means for verification of the 

existence conditions for the estimator as well. 

In the second part of this chapter, the proposed observer is used for the purpose 
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of sensor and actuator failure detection and isolation in bilinear systems, also the 

relations between the faulty input and faulty output channels is discussed. Fault 

detection in bilinear systems was also considered in 1621, however, as was mentioned 

before the proposed approach in this chapter is applicable to a wider class of problems, 

and also fault detection as well as isolation of both sensor and actuators are discussed 

in this chapter. Finally, the proposed bilinear observer and the FDI strategy, are 

tested in simulation on a bilinear model of an electrohydraulic drive which is of use 

in applications where large forces with high force to weight ratio are required. 

3.2 Reduced Order Observer for Bilinear Systems 

In this section, we will study the observer design problem for bilinear systems. Hara 

and Furuta [21], were the first to design a minimal order state observer for the bi- 

linear systems with observation error dynamics independent of the control input. As 

an extension, we outline an observer design for bilinear systems driven by completely 

unknown disturbances or faults. In addition, unlike the observer of [21] the proposed 

observer error convergence is dependent upon the control input. This will allow ob- 

server design for a wider class of bilinear systems than considered in [21]. 

The idea of this observer design is similar as the one mentioned in Guan and Saif 

[18], and Saif [40]. The underlying idea to the design of such an estimator is to  separate 

the state manifold as the output manifold and another decoupled manifold on which 

the tangent vector fields will not be affected by the faulty signals, i.e. the dynamics 

of the variable on that manifold will not be directly influenced by the faults. With 

certain matching conditions, the states on that manifold can be observed by using the 

information of output y and the input u. 
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3.2.1 Single Input Case 

Consider the single input bilinear system described as 

where C, E have full rank p, m respectively, and p 2 m, also Rank E = Rank C E  = m. 

Input u E R, states x E Rn, actuator faults fa E lRm, output y E RP. 

Since the rank of E is preserved under left multiplication by C,  one can always 

use row permutation for C in the form C = [::I, such that C E  = E = 

r 1 

matrix. 

Now let us consider the derivative of yl and y2, 

jl2 = C ~ X  = C2Ax + C2Dxu + C2Bu + C2Efa. 

If we assume that y,* = y2 - C2E(C1 E)-I Y1, then the derivative of y,* is not affected 

by the faults fa ,  i.e., 

Based on the above analysis, one can easily construct a coordinate transformation 

T.  
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where N is selected such that N N ~  = I ,  NT belongs to the null space of 
r 7 

I J 

NT E Ker C and dim N = n - p(This is guaranteed by state transformation). 

c1 
C2 - C2E(ClE)-'Cl 

Through the use of the transformation 

and also make the matrix T nonsingular, i.e., choose 

the original system can be written as following, 

where A = TAT-', B = TB,  D = TDT-'. 

Remark 3.2.1 Note from the above that if D~~ = 0, then A 2 3 ~  can be expressed by 

y, U, and G. 

Express T-I as [TI T2 T3] such that TITl T2 T3] = diag(1, I, I) (as a matter of fact 

T3 = N ~ ) ,  SO we know that 

= [C2 - C ~ E ( C I E ) - ' C ~ ] D T ~ ,  

in order t o  have a3 = 0, we need [C2 - C2E(ClE)-'C1]DT3 = 0. 
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From TT-I = I, we know that NT3 = I, CT3 = 0, and also Rank C+Rank T3 = n. 

So 8 2 3  = [C2 - C2E(Cl E)-lC1] DT3 = 0 is equivalent to [C2 - C2 E(CIE)-lC1] D E 

spanC, where spanC means the span space of rows of C, i.e. 

8 2 3  = 0 - [C2 - CZE(C1 E)-I Cl] D E spanC. 

Assumption 3.2.1 [C2 - C2E(ClE)-1C1]D E spanC. 

Remark 3.2.2 [C2 - C2E(ClE)-1C1]D E spanC is less restrictive than D E spanC. 

If D E spanC, then there would exist matrix n, such that Dxu can be expressed as 
- 
DCxu = Qu which gives not only i)23 = 0, but also 813 = 0, 833 = 0. 

Assumption 3.2.2 (As, AZ3) is detectable. 

Given the above, we can design the reduced order observer for z as, 

2 = A33i + A3lyl + A32Y; + D ~ ~ T J ~ U  + 832y;u + 8B;u + B ~ U  + K ( A ~ J Z  - A&). (3.4) 

Then the dynamics of the error is governed by 

h = (As3 + &u).z, (3-5) 

where i = z - i and = (A33 - ~ A 2 3 ) .  

Consider now the following Lemma which would prove useful in establishing the 

stability of the error dynamics and hence guaranteed convergence of the observer's 

estimates. 

Lemma 3.2.3 [28] Assume A  is Hurwitz, then for any positive definite matrix Q, 

there exists a unique solution P > 0 for 

P A  + A ~ P  = -Q. 



3.2. Reduced Order 0 bserver for Bilinear Systems 

Lemma 3.2.4 1291 Assume that the matrix A is Hurwitz, there exists Q > 0 such 

that H (which may be time variant) satisfies 

where P is the solution of P A  + ATP = -Q, then the system 

is asymptotically stable. 13 

Proof. Consider a Lyapunov candidate V = xTPx, v = xT(pA+ ATP)x + 2 x T P ~ x  = 

-xTQx + ~ X ~ P H X  5 (-X,,(Q) + 211Pll . llH11)11~11~. In order to make v < 0, we 

need 

That completes the proof. I 

A . (4) Remark 3.2.5 If Q is set as I (or even a matrix with same eigenvalues), then 2Az:x(p) 
becomes maximum. This will give a more relaxed (better) bound for perturbation 

matrix H. 0 

A Definition 3.2.6 For any vector x E Rn, IIxII = (C:=l x:);, i.e., Euclidean norm; 

A 
and for any vector A E RnXm, IlAll = A&ax(ATA)- 

Theorem 3.1 If the Assumptions 3.2.1 and 3.2.2 are satisfied, and there is a sta- 

blizing matrix K such that 

1 

t > O  max 
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then the system (3.4) is a reduced order asymptotical observer. 

Proof. From Assumption 3.2.2, we know that we can select matrix K to place the 

eigenvalues of (A33 - K A ~ ~ )  in the left-hand side of the complex plane. So that the 

equation pOA33 + AZ3pO = -I has a unique solution Po. 

By using Lemma 3.2.2, we know that as long as V t ,  

1 

max 

then (3.5) is asymptotically stable. But as a matter of fact, 

I I = IINDT311 - Mt)I 5 IINII - IITaII - IIDIl - Mt)I 

= /ID11 . lu(t)l (sinceNT3 = N N ~  = I ,  IINII = IIT311 = 1 ) .  

So we conclude that the system i = (A33 + b33u( t ) ) i  is asymptotically stable. I 

In the reduced order observer (3.4), we need information k i23Z while r is not 

measurable. But note that from (3.3) we get, 

A 2 3 Z  = e; - A21y1 - A 2 2 ~ ;  - B 2 1 ~ 1 ~  - B22y;u - B2u 

this requires differentiation of y," since jl; is not directly measurable. To alleviate this 

problem a transformation should be introduced, 

w = ,? - Ky; = 2 -  K(y2 - C2E(C1E)-lyl) 

in which case the reduced order observer (3.4) is transformed to 

w = (A33 - ~ A 2 3  + D ~ ~ U ) W  + 
- 1 1 ~ ~ ~  + B ~ U  + (A1 + 4 1 2 1  - ~ A 2 1 -  K D ~ I U ) Y I +  
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The above equation can be solved on line (the underlined terms are contributed from 

the output yl, 92 and input u ) .  From the solution of w and output yl, y2, we get 

i = w+ K(y2 - C ~ E ( C I E ) - ' ~ ~ ) ,  (3.6) 

thus the estimate i for states z is constructed, and the estimates are asymptotically 

convergent even under the presence of failure or disturbance fa. 

3.2.2 Multiple Input Case 

Assume the dimension of input u is mu, then the original system (3.1) is modified as 

After using the same transformation T mentioned previously, we get the following 

system 

I Y1 

Y ; 
z 
r 
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From Assumption 3.2.3, we know that = 0 and also A232 can be expressed by 

using the output y, y as well as u. Based on this, we build the observer, 

mu 
A (i) * E = &i+A31yl  +A3Zy; + C ( B $ ) y l  + Da2 y2 + B t i i ) ~ i  + B ~ U  + K ( A ~ ~ z - A ~ ~ z )  (3.9) 

Then the error dynamics becomes 

Theorem 3.2 If Assumptions 3.2.2 and 3.2.3 hold, and there exists a stablizing ma- 

trix K such that 

where Po is the solution of 

pOAs3 + A:3pO = - I ,  

then the observer (3.9) is an asymptotically stable one. 

Proof. Similar to the proof of Theorem 3.1, as long as 

then the error dynamics (3.10) is asymptotically stable. 

On the other hand, 
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1 

therefore (3.9) is an asymptotically stable observer under the given condition. I 

1 

While A23Z can be expressed as, 

- 
2 

= i=l,-.,mu max (JT;;i) 

with transformation (3.6), the observer of z can be reformulated as 

mu 
A (i)T A (i) 

Clui lD33 0 3 3  

i=l 

- 
2 1 

~ L ( P O )  
(by (3.11)) max ( m )  . i=l,-.,mu 

mu mu mu 

[(A,- ~ A 2 3  + C B Z u i ) ~  + (A32 + x D$iui - K ~ Z Z  - K D F ~  u ~ ) ]  y; 
i=l i=l i=l 

where the underlined terms are contributed from the output yl, y2 and input u. The 

mu C I U ~ ~ D ( ' ) ~ D " )  

i=l 

solution w can be calculated from the above equation, so i can be estimated again 

from (3.6). 

To summarize the steps involved in designing the unknown input bilinear observer, 

we shall state the following algorithm. 

The Algorithm for Reduced Order Observer's Construction: 
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1. Find the null space of C, and construct N with full rank n - p. 

2. Construct the matrix T as described in (3.2). 

4. Verify that Assumptions 3.2.1-3.2.3 and the conditions stated in Theorems 3.1- 

3.2 hold. 

5 .  If the assumptions and conditions are satisfied, then construct the reduced order 

observer as (3.9) via introducing the variable w and using the transformation 

(3.6). Then the state z can be asymptotically estimated as 2 even with the 

presence of faulty signal fa. If the assumptions and conditions are not satisfied, 

such an observer can not be constructed. 

3.3 Fault Diagnosis via UIO for Bilinear Systems 

3.3.1 Actuator Faults Diagnosis 

In order to consider the actuator fault detection problem, we assume that the actuator 

failures can be modeled by the term Ef, in (3.1). It can be shown that variety of 

actuator failure models can be realized with this type of formulation, see Saif and 

Guan [41]. Therefore, given actuator failure as described in (3.1), a simple approach 

to detect and isolate the actuator faults would be to try to estimate the magnitude of 

the actuator failure vector fa. If an actuator failure is present, then this vector would 

have a nonzero norm, otherwise, its estimate should have a zero (or very small) norm. 

Additionally, the failure can be isolated by checking the orientation of the actuator 
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fault vector estimate. An estimate of the actuator fault can easily be obtained after 

discretization of system (3.8), 

where k represents the kth time step, and S is the sampling period. 

Assuming that no failure takes place during the initial short transient of the ob- 

server, and using the estimate i(k) for z(k), actuator fault can be approximately 

estimated as 

As a result, actuator fault detection and isolation is easily accomplished. 

3.3.2 Actuator and Sensor Fault Diagnosis 

Consider the bilinear system with the effect of both sensor and actuator failures 

modeled as 

where the sensor fault f, E lRms, and Rank CE = Rank E = m, E~ is a matrix with 

only ms nonzero rows and also Rank E, = m,. 
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Without loss of generality, we may renumber the outputs such that y = Cz + E, fs, 

and 

C= 

and E: is an m, x m, nonsingular matrix. CI : m x n, Cz : (p-m-m,) x n, C3 : m, x n. 

Remark 3.3.1 Note that through appropriate selection of a, faults in different sen- 

sors can be modeled. If the sensor faults are independent then generally E,3 can be 

set as an identity matrix. This allows the isolation of the sensor faults in the last m, 

outputs. 0 

As long as the following relation holds, 

then we can design a diagnostic strategy so that m actuator, and m, sensor faults can 

be detected and isolated. 

Remark 3.3.2 Notice that the total number of instruments (sensor and actuators) 

that can be detected with the proposed approach is closely related. Under the pro- 

posed scheme with a single observer, the lower the number of actuators m, the larger 

the number of sensor faults m, that could be detected and visa versa. 

Theorem 3.3 If Rank E = Rank E = m, then the system in (3.14) can be 
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transformed to the following form, 

(3.16) 

where E: is m, x m, nonsingular matrix, I r ]  = Tz, with T giuen in (3.2). 

Proof. Since Rank E = Rank E = ms, without loss of generality, we assume 

Rank Cl E = Rank proof is obvious by using the transformation T defined in 

Assuming C = A I I , and as long as Assumptions 3.2.1-3.2.3 and conditions in 

1 c2 1 
Theorem 3.1-3.2 are still valid, then the  actuator faults can be diagnosed by (3.13). 

Note that as in actuator FDI, sensor FDI would easily be possible if we could 

obtain an estimate of the sensor fault vector f,. In the above case this is simply 
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achieved by using (3.16) to get 

which as in the actuator FDI case, provides a simple means for sensor FDI. When the 

norm of f,(t) is greater than certain threshold value, the alarm will be switched on, 

and isolation is accomplished by using the orientation of the fault vector. 

Assume now that the condition in (3.15) does not hold. In such a case, it would 

not be possible to detect and isolate sensor failures using a single unknown input 

bilinear observer as described previously. However, when p - m - m, = 0, sensor 

faults can be detected if we assume that simultaneous failure of sensors and actuators 

is an unlikely event. 

Different from the output described in (3.16), we may have the output equation 

in the followinn form 

where C1, C2 are assumed to satisfy the Assumptions 3.2.1-3.2.3, and [ z] is an 

m, x m, matrix. The implication of the above case is that there would be a steady 

state error in the estimate of the observer due to the presence of the sensor faults. It 

is possible to distinguish the sensor faults from actuator faults by using the 2 instead 

of z in (3.16) to get an estimate of the yi, as follows 
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After discretization of (3. lg), we get 

Next, a residual can be generated for the purpose of sensor fault detection as 

If the residue r,(k) is greater than a certain threshold value d, then it would be 

indication of a sensor fault and an alarm can be issued. 

The following will summarize the FDI approach. 

The Actuator and Sensor FDI ~ l ~ o r i t h m :  

1. Check if (3.14) can be written as the form of (3.16), 

If yes, go to 2; If not, go to 6. 

2. Use yl, y2 to construct observer (3.9), 

If output equation is in form of (3.16), then calculate f, via (3.17), and go to 5 .  

If output equation is in form of (3.18), then go to 3. 

3. Construct (3.20) to estimate $;(k). Go to 4. 

4. Use (3.21) to generate residue r,(k). 

If r,(k) 2 d, then there is a sensor failure. GO to 6. 

If r,(k) < d, then no sensor fault in y;. Go to 5 .  
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5. Verify (3.13) to find f,(k). 

6. Stop. 

3.4 Illustrative Examples 

To illustrate the bilinear observer and FDI capability of our proposed approach, we 

consider the following two examples. 

Example 3.4.1 Consider the bilinear model of an electrohydraulic drive given in 

[43]. For this bilinear system, the matrices in (3.1) are given by 

where it is assumed that two of the sensors are highly reliable, whereas one of them 

is subject to failures. Also in this system, the actuator is subject to failures. Using 
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the transformation 

the above system can be transformed to the following form, 

In this system, we need to diagnosis the actuator fault fa and sensor fault f,. 

Note that all the assumptions in the proposed observer design are satisfied. Thus, 

we can construct the following observer 

where the estimate of z = [x3, x4IT is i = w + [Kl ~ ~ ] ~ x ~ ~  and the estimation error 

is z" = i - z.  Thus, the error dynamics is given by 
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where 5 is independent of the actuator fault f a ,  i.e., the estimate of z will be always 

accurate, even in presence of actuator faults fa. The parameters IG, K2 have to be 

chosen such that the error dynamics is asymptotically stable. For simulation, we 

assume that the output measurement is corrupted by white noise. 

Figure 3.1 shows the response of the  system along with that of the observer when 

there are no faults in the system. In this case, the control input was selected to be 0.5, 

and the estimator's gain was set at Kl = 1, K2 = 0.5. The first two sub-plots in Figure 

3.1 show the outputs of the valve, and the noise is noticable in both outputs- The next 

two subplots show the estimates (dotted) and actual (solid) values of the third and 

fourth states which are assumed to be not available for measurements. Clearly, the 

observer estimates these two states with good accuracy and the estimates converge to 

their actual values in a very short time. Finally, the last two sub-plots illustrate the 

estimation's errors which again are shown to  converge to zero in a very short amount 

of time. 

Next, we investigated the capability of the algorithm to detect simuhaneous sensor 

and actuator failures. 

Figure 3.2, illustrates the simulation result where soft actuator and sensor failures 

were introduced into the system described by the following (where Es = [o, 0, 1IT), 

fa = 

/ 

0 for 0 5 t 5 20; 

0.3 + O.lrand for 20 < t 5 30; 

-0.4 + O.lrand for 30 < t 5 40; 

0 for 40 < t 5 45; 

0.45 + O.lrand for 45 < t 5 60. 
\ 
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Figure 3.1: Hydraulic Drive Observer Design without any Faults 
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for 0 < t 5 40; 
f s =  ( 0  

1 + 0.2rand + 0.1 sin(t) for 40 < t < 60. 

The first six sub-plots in Figure 3.2 correspond to the same plots in Figure 3.1. 

Again it is clear that the bilinear observer successfully estimates the correct value of 

the states that are not measurable, even when there are faults in the system. The last 

two additional sub-plots in Figure 3.2 show the estimates of the actuator and sensor 

faults. Examining the plot that is labeled as "actuator faultn clearly illustrates how 

and when the actuator fault is detected. Ordinarily, the value of this estimate would 

be monitored against a threshold and once it passes the threshold, actuator fault is 

decalred. Based on this, it is clear that  the actuator fault first occurs at t = 20 

seconds. Similarly, the figure labeled "sensor fault" reveals that the sensor failure 

occurs at  t = 40 seconds. 

Figure 3.3 shows the result of simulation when the faults occur at different times 

and are described as (where Es = [O, 1, 1IT), 

1 o 
for 0 5 t 5 20; 

0.3 + O.lrand for 20 < t 5 30; 
f a =  { 

-0.4 + 0.lrand for 30 < t < 40; 

1 0  for 40 < t < 80. 

for 0 5 t 5 50; 

1 + O.5rand + 0.1 sin(t) for 50 < t < 80. 

Again, Figure 3.3 indicates that the observer is successfully estimating the states 

and the faults can be detected based on monitoring their estimates. In summary then, 

it can be seen from Figures 3.2 and 3.3, that the algorithm successfully detects and 

identifies the failures and their shapes. 
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Figure 3.2: Hydraulic Drive Observer Design with Actuator and Sensor Faults (3rd 
output) 

Example 3.4.2 Consider a bilinear system as described in (3.1) with the numerical 

value of the matrices given in the following, 
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0.5 1 

f 
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1 

4.51 
0 1 0 2 0 3 0 4 0 5 0 w 7 0 8 0  '0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0  

actuator fault residue for sensor fault (2nd output) 

Figure 3.3: Hydraulic Drive Observer Design with Actuator and Sensor Faults (2nd 

I t  is easy to verify that the Assumptions 3.2.2-3.2.3 are satisfied. Also, it can 

be verified that with the observer gain given as K = [6,13, 10IT, the solution Po 

of Lyapunov equation A&po + = -I has maximum eigenvalue 2.9123, i.e., 
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X,,,(Po) = 2.9123. Furthermore, given the inputs 

it can be verified that condition (3.11) is also satisfied. It is therefore possible to 

detect and isolate both actuators as well as some sensor faults in this system. 

Following the procedures introduced before, we can estimate states xq, X ~ , X G ,  and 

the faults as well. 

Figure 3.4 illustrates the state variables along with their estimates as well as the 

estimation errors. It can also be seen that the estimation errors converge to zero in a 

fairly short time. 

Figure 3.5 illustrates the results for the case where the actuators as well as the 

fourth sensor fail. Although uncommon in practice, for the purpose of illustration 

in this case, the actuator and sensor failures happen simultaneously. The faults that 

were simulated for the purpose of this test are given as 

0 for 0 < t < 3; 

14 + 0.lrand for 3 < t < 4; 
fa2 = 

0 for 4 < t < 5; 

13 + 0.lrand for 5 < t < 6 .  

0 for O I t 5 3 . 5 ;  

-13 + 0.lrand for 3.5 < t < 4.5; 

0 for 4.5 < t < 5; 

14 + 0.lrand for 5 < t < 6. 

for 0 < t < 4.2; 

Next we considered the possibility of both actuator as well as the third sensor 

failure. As opposed to the previous case, here fault detection and isolation is possible 

as long as the actuator and sensor faults do not happen simultaneously. In Figure 3.6, 
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Figure 3.4: Bilinear System Observer Design without any Faults 
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Figure 3.5: Bilinear System Observer Design with Actuator and Sensor (4th output) 
Faults 

fault detection and isolation result is illustrated. It can be seen that we can detect 

this sensor fault as well as other actuator faults. 

Once again the faults that were used in the simulation are given by, 

0 for 0 5 t 5 3;  

14 + 0.lrand for 3 < t 5 4 ;  fa2 = 

0 for 4 < t 5 6.  

0 for O I t I 3 . 5 ;  

-13 + 0.lrand for 3.5 < t 5 4.5; 

0 for 4.5 < t 5 6. 

0 for 0 5 t 5 4.5; 

12 + 0.5rand + sin(l0t x rand)  for 4.5 < t 5 5.5; 

0 for 5.5 < t 5 6. 
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estimation of the actuator fault residue for sensor fault (at y(3)) 

Figure 3.6: Bilinear System Observer Design with Actuator and Sensor (3rd output) 
Faults 

3.5 Summary 

A simple approach for designing unknown input bilinear observers was presented in 

this chapter. The observer design was then extended for fault diagnostic purposes 

in bilinear systems. The fault diagnostic approach that was proposed in this chapter 

uses a single observer to detect and identify sensor and actuator faults. As a result, 

some rather stringent conditions need to be satisfied for the possible use of single 

observer in FDI. However, generally detection and isolation of all instrument faults 

with a single estimator is not possible. In such cases, the requirements could perhaps 

be relaxed if multiple observers were to be used rather than a single observer that is 

used in the current scheme. 



Chapter 4 

Robust Estimation and Fault 

Diagnostics in Time Delay Systems 

In this chapter, we propose a reduced order observer, for state estimation in a class 

of state delayed dynamical systems driven by known as well as unknown inputs. 

Conditions for the existence of the proposed observer, along with the stability and 

convergence proof for the observer based on the Razumikhin Theorem are given. 

Additionally, the proposed observer is utilized in an analytical redundancy based 

approach for sensor and actuator failure detection problem. Finally, the applicability 

and effectiveness of the proposed FDI scheme is illustrated by numerical examples. 

4.1 Introduction 

Time delay is an inherent property of many physical systems-rolling mills, chemical 

processes, water resources, biological, economic and traffic control systems to name a 

few. Time delays whether inherently present or as a result of feedback are troublesome 

62 
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in that they could cause oscillations or instability in the system. As a result, a great 

deal of studies have been performed on the subject of stability, control, and state 

estimation for time delay systems over the years. 

In recent years, due to the increased complexity of the industrial systems, as well 

as the need for reliability, safety, and efficient operation of industrial systems, a great 

deal of attentions have been focused on the subject of fault detection and isolation 

(FDI) in dynamical systems. In general, most of these studies have concentrated on 

linear systems [14], [41], some considering bilinear and nonlinear systems [57,62]. One 

of the objectives of this chapter is to  address the FDI problem in time delay systems 

which to our knowledge has not been considered before. 

The proposed FDI approach belongs to the class of analytical redundancy based 

schemes, where the mathematical model of the system along with the input and output 

information are used to generate redundant information about the system. This 

redundant information is then used for FDI purposes. Under the general umbrella 

of analytical redundancy based schemes there are two main approaches to FDI: 1) 

parity based schemes, and 2) observer based schemes [14]. The proposed approach 

of this chapter belongs to the second class. As a result, in this chapter we design an 

observer for time delay system driven by known as well as unknown inputs. Next, 

we will present an approach that utilizes the input, output, and the state estimate to 

detect and isolate sensor and actuator faults. 

There exist limited results on designing observers for time delay systems, and 

almost no results for time delay systems with unknown inputs [35], [46], and [20]. Some 

of the existing results require certain conditions which may not be easily satisfied [35]. 

In this chapter, we have taken a similar approach as in [18], [40], [57] for designing an 
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unknown input observer (UIO) for the retarded system. The observer will provide an 

asymptotically converging estimate of the state of the time delay system under the 

presence of completely unknown inputs, which can include actuator faults as well as 

other effects such as disturbances and higher order nonlinearities. 

This chapter is arranged as follows: Section 4.2 gives the preliminary assumptions 

and unknown input observer design. Section 4.3 presents the observer-based fault 

detection and isolation approach. In section 4.4, illustrative examples are given and 

finally, the conclusion is included in section 4.5. 

4.2 Mat hernat ical Preliminaries 

In this section we shall present a brief overview of the stability analysis of re- 

tarded functional differential equations (RFDE). The treatment is based upon the 

Razumikhin- type theorems [19]. 

Consider the RFDE described by 

with the initial condition 

and 

where f : R x C + Rn is continuous, and (i: = C([-r,O], lRn) is the Banach space 
A 

of all the continuous functions mapping from [-T, 0] + Rn. For C$ € a, Ilq511 = 
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 SUP-^^^<^ Il4(8)ll, 4 (8)  E Rn, where 1 1  - 1 1  on the right hand side of the definition 

equation is the norm 1 1  . in IRn. 

If V : R x Rn + R is a continuous function, then ~ ( t ,  4 (0 ) ) ,  the derivative of V 

along the solution of a RFDE is defined to be 

where x ( t ,  4)(.)  is the solution of the RFDE(f )  through ( t ,  $). 

Razumikhin Theorem [lg]: Suppose that f takes R x (bounded sets of C )  into 

bounded sets of Rn and consider the RFDE(f). Suppose u ,  v ,  w ,p  : R+ + IR' are 

continuous, nondecreasing functions with u ( s ) ,  v ( s ) ,  w ( s )  > 0, and p(s)  > s for s > 0, 

additionally, u (0)  = v(0)  = 0. If there is a continuous function V : R x Rn + R 

such that 

~ ( 1 1 ~ 1 1 )  < V ( t , x )  L v(llxll), t E R7x  E Rn (4.3) 

and 

then the solution x = 0 of the RFDE(f)  is uniformly asymptotically stable. If u ( s )  -t 

oo as s + oo, then the solution x = 0 is also a global attractor for the RFDE(f) .  

Remark 4.2.1 If u,  v are monotonous increasing, then the condition in (4.4) can be 

changed. Assume there is a constant f > 1, and Ilx(t + 8)11 < fIIx(t)ll. Using (4.3), 

we obtain v- '(V(t  + 8, x ( t  + 8 ) ) )  < Ilx(t + 8)11 < f 11x(t)ll < ~ - ' ( V ( t r x ( t ) ) ) 7  and 

V ( t  + 8, x ( t  + 8 ) )  < ( u p - '  ( V ( t ,  ~ ( t ) ) ) .  Taking p = v(j?u-') (-) (from the definitions 

of u ,  v 7 f 7  p(s)  > s for s > 0) .  So we have V ( t  + 9 ,4(8) )  < p(V( t ,  4(O))). 

Similarly, from V ( t  + 8, d (8) )  < p(V( t ,  4(O))) and (3 ) ,  we get llx(t + 8)  1 1  < 
4 

u-' (p(v( l lx( t )  I [ ) ) ) ,  since u ,  v ,  p are nondecreasing, p(s)  > s ,  so u- ' (p(v(s)) )  > 
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u-'(v(s)) 2 s. Then 3?3 > 1, such that Ilx(t + 8)11 < j?llx(t)ll. The condition in 

(3.4), can be changed to 3?5 > 1, Ilx(t + 8) 1 1  < jjllx(t) 1 1 ,  and the Razumikhin Theorem 

will still hold. 0 

In the remainder of this section, we will present necessary state transformation 

required for the design of the estimator. Additionally, we shall present existence 

conditions that need to  be satisfied for the observer design. 

Consider a linear time delay system described 

where input u E Rq, state x E Rn, unknown input f E IRm, output y E IRP,p > 

rn, 8; E [-r, 01, r is a certain positive number, E and 6 are of full rank (i.e., 

Rank (6) = p and Rank (E) = m). Also, it is assumed that Rank ( 6 ~ )  = Rank (E). 

Lemma 4.2.2 There exist an equivalence transformation x = T5, where T is a 

nonsingular matrix that transforms the system (4.5) into 

5 = AX + zB1 Aix(t + 8;) + BU + E f 
(4.6) 

y = Cx 

given that Rank (CE)  = Rank (E). In this case, the transformed system matrices can 

be written in the following forms. 

A is in the form of 

I All A12 A13 

A21 A22 A23 

A31 A32 A33 

r 

All A12 

A21 A22 

A31 A32 

- 
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where All E lRmXm,A21 E ~ ( p - ~ ) ~ ~  , E R ( ~ - ~ )  xm , A12 E lRmX(p-m), A13 E 

] R ~ x ( " - P ) ,  E ~ ( p - m )  x (P-m) , E ~ ( n - p )  x (p-m) , AI ] R ( P - ~ )  x r  
23 7 E 

W x r  A21 ~ ( n - p - r ) x r  ~ 2 2  ~ ( n - p - r ) x ( n - p - T )  
7 33 7 33 and also (A::, A;,) is complete 

observable, and r is dimension of the observable space. 

E is of the form 

where Ei E lRmXm is nonsingular. 

C is of the form C = [C1 01, C1 is a p x p orthogonal matrix. 

Proof. Without loss of generality, we assume C = [IpXp 01, and partition 8 = 
r -4 1 :: 1 , where E lRpxm7 & E &n-p)xm . From Rank (CE) = Rank (E), we know 

Rank ( E ~ )  = m. So the generalized pseudo-inverse of $ given by E: exist, and 

E: 2 (q&)-'G. Furthermore, there exists an orthogonal p x p matrix Cl, such 

that c:& = [ ] , where El is n, r m nonsingular matrix. 
O(p-m) xm 

Then through the use of the following transformation, 

the last two conditions are satisfied, i.e., E is of the form 
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form [C1 01. Additionally, A = TJT;~ can be partitioned as 

If (A33, A23) is partially observable and the observable space is of dimension r, 

then it can be partitioned by (n. - p) x (n - p) coordinate transformation matrix T2 

to the following Kalman Decomposition form, 

i.e., T2A33T;1 = , A ~ ~ T ~ ~  = [At3, 01 , where (A::, A:,) is completely 
A;; A;; 0 1  

observable, with dimension r .  - -I 

L J 

in system (4.6) to the form described in the Lemma. This completes the proof. I 

By taking transformation T = 

Based on the Lemma 4.2.2, we may assume that the time-delay system (4.7) has 

the following structure, 

IPXP (I 

0 T2 

TI, we change the matrices A, E, 6 
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where 

where the dimensions of the sub-blocks of A; are same as the corresponding ones of 

A, B1 E R , m x q 7 &  E ~ ( p - m ) x q , ~ ~  E R ( ~ - P ) x ~  E~ E ~ m x m  is nonsingular, C1 is a 

p x p orthogonal matrix, x l ,  x2 and x3 are the corresponding dimensional vectors. 

Since y = C x  = Cl [ 1: ] , and Cl is a p x p nonsingular orthogonal matrix, 

so that the states can be calculated as Ccl y. In order to  observe the states 

of the system (4.7), we only need to design observer for estimating 23. Generally 

speaking x3 may not be completely observable, assume x3 = 

Rn-P-r, X I  is completely observable, x; is unobservable. Correspondingly, we de- 

fine A31 = [;:I ; [z ] = [ A " ]  

= 

[A" 1 = 
A g u  

Before we propose an approach for designing an estimator for the time delay 
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system, consider the following results which give some insight into the observability 

of the time delay system, as well as conditions for existence of the observer. 

Theorem 4.1 Consider system (4.7),, assume O(A, C )  = 

lowing are true: 

1. Rank (O(A, C ) )  = Rank 

X I - A  E 
2. Rank 1 1 decreases at X E eig(A,). 

Proof. 1 )  We know 

Rank (O(A, C ) )  = Rank 

as we know Cl is p x p and nonsingular, by using row transformation which preserves 
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rank we have the following (details are 

Rank (O(A, C))  = Rank 

so the first result is proved. 

skipped 

2) Refer to the system matrices in (8), we have, 

for brevity), 
- 

0 

[:::I 
[:::I 

* - 

by using fundamental transformation, we calculate that the above rank is 

Rank A :] = Rank 

so that Rank decreases at  X E eig(A2). The proof is complete. B 

As a matter of fact, this is a generalization of Proposition 2.2.1. 

-A2i X I  - A22 4 3  0 0 

* XI-A;; 0 0 

* -A;; XI-A;: 0 
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Remark 4.2.3 As long as eig(Aig) E C-, then the pair (A, C) is detectable. 

Corollary 4.2.4 For time-delay system (4.6), the following conditions are equivalent, 

2. For system (4.7), dim O(Ai!j, A:,) = r = n - p, i.e., (A3, A23) is completely 

observable. 

Proof. From claim 1, Rank 

as well as system (4.5), 

= n + m for a, c, E in system (4.5). Since 

X I - A  E 
has constant rank n + m, i.e., the dimension 

C 0 

claim 2 is valid. 

Similarly, from claim 2 we can prove that claim 1 valid. 

4.3 Reduced Order Unknown Input Observer De- 

sign 

In this section, we will study the design of an unknown input observer for a class of 

time delay systems. The fact that the proposed observer can provide correct estimate 

of the state of the time delay system in spite of the presence of totally unknown 
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inputs, makes it of general interests in variety of applications. However as mentioned 

before, the observer will be used here for fault detection and diagnosis purposes. 

In order to construct an observer for the above system, we shall require the fol- 

lowing assumptions to be valid. 

%)I2 Assumption 4.3.1 AS, = 0, i = 1, - - .  , d. 

Assumption 4.3.2 A ~ J  = 0, i = 1,. , d. 

Remark 4.3.1 It should be noted that in practice there may be only few state vari- 

ables which may be delayed. Therefore in general, matrices Ai may be very sparse. 

As a result, the above assumptions are not too restrictive. 0 

In this case, the dynamics of XQ is described by the following equations, 

For the system (4.8), we can design observer for xg as follows, 

Notice that the above observer uses the information of Ai3x5 which can not be 

measured directly. As a result, by introducing 
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we may have (4.10) expressed in the following form, 

A In which case, the error dynamics of eg = 2; - x: is 

The following theorem will establish conditions under which the observer's error 

dynamics would converge to zero asymptotically. 

Theorem 4.2 The estimator in (4.11) is an asymptotical observer for the partial 

state xg of system (4.7) given that Assumptions 4.3.1 and 4.3.2, and the following 

condition hold 
d 

i=l max 

where Xm,(P) is the maximum eigenvalue of P, Xmi,(Q) is the minimum eigenvalue 

of Q,  and Q > 0, P is the positive definite matrix solution of 

Proof. Given that the pair (A:;, A;,) is observable, there exists matrix K ,  such that 

A;: - KA;, is Hurwitz. Assuming that one such K is used, consider the estimator's 

error dynamics given by ( 4 . 12 ) ,  and choose a Lyapunov function given by 
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By using (4.14), we have 

As long as 

we can choose 1 < jj < L i n ( Q )  so that the condition v 5 0 is satisfied. 
~ m a x ( p ) ( E L  l l ~ & ) ~ ~ l l )  ' 

Furthermore, equation (4.13) will also guarantee nonincreasing behavior of V. Fi- 

nally, based upon the Razumikhin Theorem it is concluded that the system (4.12) is 

asymptotically st able. 

imate the partial states x;, so that state can be estimated and is given by 

This completes the proof. 

The following result will relax the condition (4.13) in the above theorem. 
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Proposition 4.3.2 [29] The ratio reaches its best upper bound, if the matrix 

Q is an identity. 

To show this, assume Q > 0, A is Hurwitz, PI and P2 are the positive definite 

matrix solutions for the following two Lyapunov equations, 

where E is a small enough positive number which allows the right term of (4.15) remain 

positive definite. Subtracting (4.16) from (4.15), we get 

The solution to the above is given by PI - P2 = Jr eATt ( Q  - h _ i n ( ~ )  l+d )eA td t  > 0 

which would imply that Xmax(Pl) > Xmax(P2). So as E + 0, we conclude that 

where P is the unique solution of the Lyapunov equation P A  + ATP = -21. 

4.4 Robust Unknown Input Observer for Time De- 

lay Systems 

Consider the system of the following form, 
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where input u E IRq, state x E Rn, output y E IRp, ej E [-r, 01, i = 1, - - - , d is time- 

delay, H is unknown term composed of model uncertainties, high order nonlinearities, 

and disturbances. 

Before we design robust observer, we need the following assumptions. 

Assumption 4.4.1 (A, C) is observable. 

Theorem 4.3 Let the Assumptions 4.4.1-4.4.2 be true, and 

then we can design the following practical stable observer, 

such that 

A 
where 5 = x - ii and A,,(&,)(-) is masimum (minimum) eigenvalue of the matrix. 

Q > 0, P is the positive definite matrix solution of 

P(A - KC)  + ( A -  K C ) ~ P  = -Q 

Proof, We only give a brief outline of the proof. 

From equation (4.17) and observer (4.19), we have error dynamics described by, 

d 
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Consider Lyapunov candidate function, I/ a ~ T p i . ,  where P is positive definite, 

a solution of (4.21). 

By using combination of Razumikhin Theorem, and some algebra, we can get t,he 

result (4.20) and complete the proof. I 

Similar to (4.6), we consider a time delay system described by 

all the conditions are same as those in (4.6). And Lemma 4.2.2 as well as Assumptions 

4.3.1-4.3.2 hold. Also we assume the H satisfies the following Assumption. 

Assumption 4.4.3 IIHIII 5 all H2 = 0, IIH311 5 a2, 0 ~ ~ ~ x 2  are constants. 0 

Assumption 4.4.4 Rank 0 

From Theorem 4.1 and 4.4.1 and 4.4.4 

observable, i.e., r = n - p. 

In the case subject to Assumptions 4.4.3 and 4.3.2, the dynamics of 2 3  is described 
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For the system (4.24), we can design observer for x3 similar to (4.11), 

Notice that the above observer uses the information of A23x3 which is not directly 

available from output. As a result, by introducing 

we may have (4.25) expressed in the following form, 

A 
In which case, the error dynamics of Z3 = 53 - x3 is 

The following theorem will establish conditions under which the observer's error 

dynamics would converge to a bounded set asymptotically. 

Theorem 4.4 If the Assumptions 4.4.1, 4.3.2, 4.4.3-4.4.4 and the following condi- 

tion hold 
d 
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where Xm,,(P) is the maximum eigenvalue of P, X~,(Q) is the minimum eigenvalue 

of Q ,  and Q > 0, P is the positive definite matrix solution of 

then the system (4.23) can be estimated under the presence of unknown input f ,  and 

also the error of estimation for x3 is bounded, 

The proof of this theorem is same as that of Theorem 4.1 with only additional 

consideration of system matrices transformation and assumptions. 

We know that the difference of w + KIO(p-m)xm 4 p - m ) x ( p - m ) ] C T y  and 1 3  will 

converge into a bounded set (see (4.30)), so that state 1: 1 can be estimated and 

4.5 Fault Detection and Isolation Approach 

We assume that the actuator faults can be modeled by the term E f in system (4.5) 

(from here on, we use f a  instead of f to refer to the actuator fault vector). It can 

be shown that variety of actuator faults can be realized with this type of formulation 

[41]. Therefore, given the actuator faults as described in (4.5), a simple approach 
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of detecting and isolating the actuator faults would be to try to estimate the mag- 

nitude of the actuator fault fa. This is a kind of an inverse problem, fa is directly 

reconstructed by other information. It is felt that this approach is more accurate 

and reliable than other fault diagnosis methods used in linear, bilinear and nonlinear 

systems which are more indirect. 

Proposit ion 4.5.1 -4ctuator faults can be detected and isolated as long as Theo- 

rem 4.2 and Corollary 4.2.4 are satisfied. 

The proof of the above result is obvious from the following discussion. 

Based on the conditions in the above Proposition, vile know that the system (4.7) 

is observable by combination of Theorem 4.2 and Corollary 4.2.4. If an actuator fault 

is present, then the actuator fault estimate ja would have a nonzero norm, otherwise, 

it should have a zero (or near zero) norm. Additionally, the fault can be isolated 

clearly by checking the nonzero entry, or the orientation of fa. An estimate of the 

actuator fault can easily be obtained after discretization of the system (4.7), 

where k represents the k-th time step, and S is the sampling period satisfying Bi = 

-OiS, O; is positive integer, i = 1,.  . - , d. 

Based on the observer design approach described in the last section, we know that 

the observer (4.1 1) considers the fault fa as an unknown input. So that even under the 

presence of fault, 23 is still going to approach x3 asymptotically. Then the actuator 

fault can be isolated from the dynamics of XI. Assuming that no fault takes place 
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during the initial short transient of the observer, and using the estimation i3(k)  for 

x3(k), the actuator fault can be approximately estimated as 

where XI, x2 are linear combination of y, so it is known. As a result, actuator fault 

detection and isolation is easily accomplished. 

A similar approach as above can be employed for detection and isolation of sensor 

faults. To account for the effect of sensor failures, consider writing the output equation 

in system (4.5) as 

y = 65 + ~ , f s -  (4.33) 

where matrix E, E IRmsXms is nonsingular, and f ,  E WS represents the vector of 

sensor failures which is completely unknown. 

Consider now representing the sensor fault vector f ,  as the output of the following 

dynamical system [41] 

where v is unknown and A, is Hurwitz. 

Augmenting (4.5) with (4.34), we get 
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Note now that the above system is again in the form of (4.5). For the above com- 

posite system, from system (4.5) Rank (CE) = Rank (E), we know that Rank (a) = 

Rank (a is equivalent to Rank [C E $1 = m, + m. If Rank [CE E,] # m, + m, 

then we can not design UIO. 

Proposition 4.5.2 Consider system (4.35) with full rank E,, as long as, 

1. Rank [Ck E,] = m, + rn, 

2. Rank = n + m + m , ,  VX. 

Then system (4.35) can be transformed to the form of (4.7). In addition, for the newly 

transformed system, if Assumptions 4.3.1-4.3.2 and condition (4.13) are satisfied, then 

we can design UIO observer for system (35) to  detect and isolate both the actuator 

and sensor faults. 

Proof. Consider system (4.35), condition 1 is to guarantee that Lemma 4.2.2 can be 

applied to system (4.35), so that it can be transformed to the form of (4.7). From 

Corollary 4.2.4, we know that condition 2 is used to guarantee the observability of 

(A,C). Assumptions 4.3.1-4.3.2 and (4.13) will allow UIO design for the time delay 

system (4.35), from the approach described in (4.33), so the actuator and sensor faults 

detection and isolation can be done simultaneously. I 
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4.6 Illustrative Examples and Simulation Results 

Example 4.6.1 Consider a time delay system described by, 

We can use the approach in Lemma 4.2.2 to transform the above system into the 

form of (4.7) and we find that Assumptions 4.3.1 and 4.3.2 are hold. Therefore the 

observer can be designed, and also both actuator faults can be detected and isolated. 

Figures 4.1-4.3 give the simulation results without (Figure 4.1) and with actuator 

faults (Figures 4.2 and 4.3). In the simulation study, we choose discretization time step 

of 0.01, 8 = -0.2, initial conditions xl (t) = - sin t, xz(t) = cos t, x3(t) = 0; x4(t) = 

-2.5, 24(t) = 0, -0.2 5 t 5 0; And u = 12 sin t, 2 cos tIT. Note from the second and 

the third sub-plots in Figure 4.1 that the fault estimates are essentially zero during 

the system's operation and this indicates that there are no failures. On the other 

hand, the fault estimates of the first and the second actuator faults in Figure 4.2, 



4.5. Simulation Results 85 

clearly indicate the onset of the faults at  t = 3 seconds. The same is true in Figure 

4.3. In practice, at the beginning of the FDI algorithm operation, the estimation of 

the faults may not be correct due to the transients of the observer. That is, in the first 

few moments of the operation, the algorithm may indicate a fault where in fact there 

are no failures in the system. This of course is due to the fact that the estimation 

errors are generally nonzero during this period. As a result, the FDI system alarms 

have to be disabled during this period, after which the alarm can be enabled. This in 

reality is not a restriction or a major problem since it is highly unlikely that failures 

can take place during such a short interval, and even if they did they certainly need 

not be detected immediately. 

n 

Example 4.6.2 We consider the time-delay system with actuator as well as sensor 

faults of the following form, 

I : 1 0 0 0  

(u(t) + fa)  y(t) = 0 1 0 0 x(t) + 
0 0 1 0  

where x is the state variable, y is output, u is input, 0 = -0.2 is time delay and 

fa is the actuator fault, fs sensor fault. For the form in (4.34), we take A, = 0 for 

simulation. And the single input u is taken as 2sin(t) for simulation. 
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Figure 4.1: No Fault Signals and the Estimation 
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Figure 4.2: Fault Isolation and the Estimation 
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real value of the 1 st actuator fault 

estimation of the 1st actuator fault 

real value of the 2nd actuator fault 

Figure 4.3: Fault Isolation and the Estimation 
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Using the approach described through (4.33)-(4.35), we have the following overall 

dynamics, 

by using the following transformation, 
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the above equation (4.38) can be writ ten as the form of (4.7), 

By using the FDI approach (4.32) for the composed system, sensor as welt as 

actuator faults are detected and estimated. Simulation results for two cases are given 

in Figures 4.4 and 4.5, which show the close and accurate detection and isolation 

(estimation) of the sensor and actuator faults. 



4.5. Simulation Results 

-2 I I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 10 

real actuator fault 

-2 I I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 10 

estimation of actuator fault 

0 1 2 3 4 5 6 7 8 9 10 
real sensor fault 
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Figure 4.4: Actuator & Sensor Faults Isolation, Case 1 
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Figure 4.5: Actuator & Sensor Faults Isolation, Case 2 
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Example 4.6.3 Consider a time delay system of the form (4.17) with E = B ,  

0 1 2 3 4 5 6 7 8 9 10 
4th state vs. its estimation 

I I I I I I I I I 

0 1 2 3 4 5 6 7 8 9 10 
error dynamics (4th state - its estimation) 

Figure 4.6: State Estimation under Fault Occurrence 

Similar to Examples 4.6.1 and 4.6.1, this example is simulated based on the results 

in section 4.4. 
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Figure 4.7: Fault Isolation and Estimation 
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In this example, as can be seen from Figure 4.6, the estimate of the state is 

not approaching the true vale of the state asymptotically. This is caused by the 

disturbance term H. However, increasing the variable P as described in Section 4.4, 

can reduce the error, and the FDI may then be performed satisfactorily. This is 

illustrated in Figure 4.7, where although the disturbance is present, and the state 

estimate is not exact, still the estimate of the actuator faults are accurate enough 

that the actuator fault detection and identification can be accomplished with no 

difficulties. 

Conclusions 

The unknown input observer design philosophy, developed in previous chapters was 

extended to cover time delay systems where the state of the system is retarded. The 

observer design approach was extended for fault diagnostic purposes. Again, the fault 

diagnostic approach that was proposed in this chapter uses a single observer to detect 

and identify actuator and sensor faults. As described in the case of linear and bilinear 

systems, for more complex time delay systems, multiple observers (observer bank) 

may be required for FDI. 



Chapter 5 

FDI in a Class of Nonlinear 

Systems Using Observer Approach 

In this chapter, we study a class of nonlinear systems with unknown inputs for which 

nonlinear observers with linearizable error dynamics in appropriate coordinates can be 

designed. Various conditions for accomplishing this task is stated. Furthermore, our 

findings evidently encompass some results on the Unknown Input Observers (UIO) 

for linear and bilinear systems. 

The observation scheme is next utilized as a mean for model based monitoring 

and failure diagnosis within the system. More specifically, a simple approach for fault 

detection and isolation (FDI) of actuator faults is presented. Selection of threshold 

value with reliability is discussed. Finally, the chapter concludes with examples, 

illustrating applicability of the reported results in linear and nonlinear systems. 



5.1. Introduction 

5.1 Introduction 

Apart from the traditional areas such as aerospace and nuclear industries [37], the 

FDI research has been gaining momentum in other technical fields such as automo- 

tive, manufacturing, autonomous vehicles and robots, etc [6], [25], [42]. Among the 

approaches to the FDI problem, model based FDI has been the main subject of re- 

search due to the fact that it requires no redundant hardware. In addition, this 

approach has the potential for systematically detecting variety of failures. Although 

by no means a mature subject, FDI in linear systems has received a great deal more 

attention in the past than its nonlinear counterpart. As a result, there are still a great 

deal more work available in the linear FDI field [13]. 

In this chapter, we consider a special class of nonlinear systems for FDI purposes. 

The approach taken toward the monitoring and diagnostics is similar to that of [41] 

in which an unknown input observer was utilized for FDI. Essentially, for the class of 

nonlinear system considered, we shall decompose the state and outputs in two parts. 

One part is affected by the actuator faults, whereas the other is decoupled from them. 

Next, the subsystem that is decoupled from faults is used to  design the nonlinear 

unknown input observer (NUIO) for the nonlinear system. The estimates are then 

used for FDI purposes. Generally speaking, the observer design approach for FDI is 

a continuation of the UIO design for linear, bilinear and time-delay systems, and its 

utilization for FDI as we discussed in the previous chapters [40], [41]. As a matter of 

fact, it will be shown that this similarity is not coincidental, and the present results 

will encompass the UIO design in linear and bilinear systems as well. 

In the next section, we will give conditions for the existence of the transformation 

which will transform the original nonlinear system into the desired form. Also an 
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approach for the design of the unknown input observer and some discussions on the 

comparison with linear systems will be made. In section 5.3, an adaptive system's 

observer is designed. Afterwards we will present an approach for actuator FDI. Finally, 

the last section will provide numerical examples illustrating the practical application 

of the proposed FDI approach. 

5.2 Transformation and Observer Design 

Consider the following nonlinear time invaria,nt system, 

where states z E Rn, input u E Rm, output y E IR', actuator faults fa = 

[f:'. - - , f;IT E Rpl Q ( x )  = [ql(x), - . - , $(x)]. f ,  gi, h are smooth vector fields with 

f (0) = 0, g(0) # 0, h(0) = 0. 1 2 p may be required. 

Given the system (5. I), assume that there exists a transformation E = F(x),  (x = 

F-'(() = W(()), such that (5.1) can be transformed to 

&' = [* - . . * 0 .  . .0] ( i.e., last n - d elements are zero ) 
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Consider the transformation x = W ( 0 ,  by differentiating we get 

Comparing the above with equation (5. I ) ,  we conclude that such transformation 

x = W ( [ )  exists as long as the following conditions are satisfied, 

(iv) h(W([)) = Cot. 

By using the concepts of partial differentiation and Lie bracket with some deriva- 

tion (for brevity, more details are deleted), it can be shown that condition (i) is 
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equivalent to 

Similarly we can prove that condition (ii) is equivalent to 

j = 2,...,r;; 

awaasO j = 1 ;  k = l , . - - , m .  -- 
at: at!" 

Before we analyze condition (iii), we study condition (iv). 

Consider h(W(5)) = Cot, i.e., hk(W(t))  = Cok(,k = 1 , - - -  ,I. By differentiating 

both sides of the output equation, we have 

With equation (5.11) and Leibnitz rule, we can prove the following, 
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where 0 ( x )  is defined as 

A 
O(x) = 

If equation (5.12) is valid, then we know condition (iii) is same as 

From (5.14), it can be shown that a necessary and sufficient condition for (5.3) to 

hold is that 

In other words, the faults will not directly effect the outputs hi, i = d + 1, - - - , I ,  if the 

following condition is satisfied, 

Assume 
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then from (5.9), we get 

Set 

From the above definition and (5.18), it's easy to rewrite (5.12) as 

O(x) - S(x) = 

To recapitulate: 

Theorem 5.1 The transformation which transforms (5.1) to (5.2) exists if and only 

if W ,  mo, @ and 4 satisfy the equations (5.7), (5.9)-(5.11) and (5.1 6).  

Equivalently to Theorem 5.1, we have Theorem 5.2. 
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Theorem 5.2 There exists a global state-space di'eomorphism ( = F ( x )  with 

F ( x o )  = 0, transforming system (5.1) into (5.2) if, and only if the following con- 

ditions are satisfied, 

3. the vector fields adjs,, 0 5 i 5 r,  - 1, are complete, where s, is the vector field 

4. qk = dki(C)sj k = 1, - , p .  (where hi is the i-th element of 4a). 

Proof. From the observability of (f, h) ,  we know that (h i ,  - - . , hd, hd+~ 

a diffeomorphism. Also from condition 3, we have 

( 
and therefore the vectors s,, - - , ad;-'s, are linearly independent, also we have 

The 1st condition is shown to be necessary and sufficient to make the transformed 

linear dynamics represented in the form of (5.2) without the input u and faults fa .  
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The 2nd condition [g;, ad;s,] = 0, i = 0, . . . , p, j = 0, . - . , r,  - 2 guarantees 

. aw . that gi(x) is independent from i.e., at most g;(x) is a function of 

aw aw aw aw . T ,  . - a ,  -, iT.a,- - - ,  ,, I.,., gi(x) can be transformed to a function of output 
1 ( d  

Condition 4 is necessary and sufficient to transform q; into #; which its last n - d 

elements are zero in <-coordinates. Also equation (5.16) is equivalent to this condition. 

So after the diffeomorphism transformation F ,  g;(x), q;(x) become ,B;(y), #;((). 

Then system (5.1) can be transformed into (5.2). That completes the proof. I 

As a matter of fact, from the form of 4 described in (5.3), we know that the 

output hd+l (x), . . - , hr(x) and states &, - - . ,dT1) are free from the faults, and those 

information will be used to construct the NU10 for the purpose of FDI. 

Remark 5.2.1 Consider the unknown input observer (UIO) in linear and bilinear 

systems (see [4], [4O]). The familiar condition Rank CE = Rank E (i-e., h(x) = 

Cx, Q(x) = E) implies that all the information with regard to the unknown inputs 

(faults) are contained in the output y, and not necessarily in ?j etc. Similarly, in the 

nonlinear case we have the faults only affecting the first d elements of the output. 

So that the faults information will still be remained in the dynamics stored in the 

output. This will help us to recover and isolate those faulty signals. As a matter of 

fact, just as in the case of linear and bilinear systems it is necessary that the number 
I 

of the outputs for recovering and isolating the faulty signals must be greater than the 

number of unknown inputs. 0 

Remark 5.2.2 Rank {dhl(x), - - .  , dhd(x), dhd+L(x), - - - , dil?-'hr(x)} = n. (I) Obser- 
\ / \ " Y / 

(1) (11) 

vation does not need any dynamics of these outputs, instead a transformation will 
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generate the estimation of the partial states. This is the reason that no dynamic 

observer is needed for this part. 

(11) This illustrates that dynamical equations of order (n - d) are needed to recover 

the states which are affected by the faults. o 

Remark 5.2.3 If there is no faulty this transformation is identical to the 

case described in [56] with r; = 1, i = 1,.  . . , d. o 

Design of the NU10 

Note that for those r; = 1, the state variable is directly measured. Given that and 

the assumption that the nonlinear system can be transformed into the form described 

by (5.2), the NU10 can be designed by using the canonical normal observer approach. 

Set 

then we have the following dynamics, 

where @(d+l+n) represents the rows of @ from (d + 1)-th to the n-th, similarly is 

60(d+l -+n) .  

For the above system, we can design observer as following, 

It is clear that the error dynamics can be made asymptotically stable by choosing 

a proper K. 
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With the estimation [d+l,n of Sdtl-rn as well as the output, we can find the esti- 

mation i for states x by using the diffeomorphism transformation F. Subsequently, 

this information can be used for FDI purposes. However, before we do that a compu- 

tational design procedure which is a modification to that of [56] is presented. 

Algorithm for Observer Design: 

(i) Compute 0 ( x )  in (5.13) (with possible reordering of hi). 

(ii) Find solution s; of (5.11) and (5.17), compute S as defined in (5.19). 

(iii) From (5.9) and (5.10), find 

and as long as the left hand side is a function of output, then solve for qio(y) and 

MY > -  
(iv) Compute 

(v) Verify condition (5.16); if it is satisfied, then we can transform system (5.1) 

into (5.2), and observer can be designed according to (5.23). Otherwise stop. 

5.3 Further Discussion: Adaptive Observer Design 

Consider the following nonlinear time invariant system, 
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where states x E IRn, input u E Rm, output y E R', uncertain parameters 6 = 

[8l7...,BTJT E RT, E ( 5 )  = [e l (x) , - - -  ,e,(z)], actuator faults fa = [f,",..., f;JT E 

IRP, Q(x) = [ql (x), - - . , qp(x)]. f ,  g;, h are smooth vector fields with f (0) = 0, g(0) # 

0, h(0) = 0. I 2 p may be required. Also we assume the local observability of (f, h), 

i.e., 

Given the system (5.24), assume that there exists a parameter independent, global 

state-space change of coordinates in R n ,  i.e., transformation J = F(x),  F(0) = 0, (x = 

F-'(J)), such that (5.24) can be transformed to 

where 1-tuple of integers (rl , . - - , rl) satisfying r; = 1, i = 1, - - , d; rl + - - . + rd + rd+l + 

4; is of the following forms, 

4; = [* - - * 0 - - - 01, ( i.e., last n - d elements are zero ) i = 1, - . - , p. (5.26) 
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When the output is single, d = 0 and there is no faults, then there is asymptotic 

adaptive observer design available for system (5.24) [32]. Following [32], the global 

version of the transformation for (5.24) can be stated as follows. 

Theorem 5.3 There exists a global state-space difleomorphism = F ( x )  with 

F ( x o )  = 0, transforming system (5.24) into (5.24) if, and only if the following condi- 

tions are satisfied, 

4. the vector fields adis,, 0 < i < r, - 1,  are complete, where s, is the vector field 
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satisfying, 

5.  qk = B k i ( [ ) ~ i  k = 1,. - , p .  (where dki is the i-th element of qbk). 

0 

Proof. Condition 1  is shown in [31] to be necessary and sufficient for ( 1 )  with u = 

0,8 = 0, fa = 0 to be transformable via a local diffeomorphism in the neighborhood 

of x  = 0 into system 

The needed local coordinates 5 = F ( x )  are defined, by virtue of condition 1 ,  as 

those in which 

that is, the vector fields asfsq,O < i < r, - 1 , l  5 q < I ,  are simultaneously rec- 

tified. Consequently, condition 2 guarantees that the vector fields g; depend, in the 

E-coordinates, on the output y only. Similarly condition 3 is considered as a guar- 

antee that e;(z) only depends on y in the new coordinates. Condition 4 is necessary 

and sufficient, according to [9], for the above change of coordinates to be a global one. 

When condition 4 fails, we only have a local change of coordinates. Condition 5 is 

necessary and sufficient to transform q;  into 4; which its last n - d elements are zero 
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Then system (5.24) can be transformed into (5.25) under the conditions 1-5 in 

Theorem 5.8. That completes the proof. I 

Remark 5.3.1 As long as the following condition is satisfied, 

ek = $:i(Y)a$fsn k = 1. . . , r. (where $2, is an element of &), 
q=d+l i=O 

then +;(ZJ) will be of the following form 

+ ? = [ 0 - . - 0 * - . - * ]  (i.e.,first delementsarezero), i = l , . - -  , r. (5.28) 

i.e., the uncertain parameter will not directly affect the output dynamics. CI 

As a matter of fact, from the form of 4 described in (5.26), we know that the 

actuator fault fa will not directly affect the derivatives of the output hd+l(x), - , hl(x) 

(1) and states [d+l, - - .  , [ j T L ) ,  and those information will be used to construct the adaptive 

observer for the purpose of FDI. 

Design of the adaptive observer 

Note that for those r; = 1, the state variable is directly measured. Given that and 

the assumption that the nonlinear system can be transformed into the form described 

by (5.25), the nonlinear adaptive observer can be designed by using the canonical 

normal observer approach. 

Set 

then we have the following dynamics, 
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where ,13(d+l+n) represents the rows of ,l3 from ( d  + 1)-th to the n-th, similarly are 

40(d+l+n) 7 $ i (d+l+n)-  

For brevity, we define, !Pd+l,n as the last n - d rows of $, and FO as a matrix 

composed by last 1 - d rows and n - d columns of Co. 

Assumption 5.3.1 @d+l+n(g) can be expressed as ~ G d + l - ( y )  where B is a constant 

matrix. 0 

Assumption 5.3.2 There exists Q E R ( ~ - ~ ) ~ ( ~ - ~ )  , symmetric and positive definite, 

such that for some matrix F, 

where P is the unique positive-definite solution to the Lyapunov equation 

Remark 5.3.2 Another interpretation of the Assumption 5.3.2 can be obtained from 

[44, 503. If the triple (Ao -  KC^, B, F C ~ )  is controllable and observable, and a matrix 

F exists such that FC[sI - (Ao - K ~ ~ ) ] - ~ B  is strictly positive real, then Q exists 

such that Assumption 5.3.2 is valid. 

Theorem 5.4 If all the conditions in Theorem 5.3 and Assumptions 5.3.1-5.3.2 are 

satisfied, we can transform system (5.24) into (5.25) and design the following adaptive 

observer for (5.29), 
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with adaptive law as follows, 

- - 8 = - G ~ ; ~ , ~ ( Y ) F C O ~ ~ + I + ~  

then the above adaptive observer is asymptotically stable. 

Proof. Take Lyapunov candidate function V = ir+l+n~&+l,n + BTC18, where G is 

a positive definite matrix. 

Using (5.29), (5.31) and Assumption 5.3.1, we get the error dynamics of (d+l,, 

as follows, 

By calculating the time derivative of V with Assumption 5.3.2 and adaptive law, 

we can obtain that 

So that we claim that the observer (5.31) is an asymptotically stable one. I 

With the estimation of (d+l+n as well as the output, we can find the 

estimation i for states x by using the diffeomorphism transformation F. 

Remark 5.3.3 Assume that d = 0,l = 1, fa = 0 for system (5.24), i.e., the single 

output system without actuator fault, then adaptive observer design here is same as 

the approach in [32]. If fa = 0,O = 0, then theorem 1 is equivalent to the result in 

[561- 0 
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Remark 5.3.4 Basically speaking, for system (5.24), we first decouple (5.24) into 

two parts, one part the states are same as outputs, in the other part states are not 

outputs, and then we estimate the states as well as uncertain parameters. 0 

5.4 Fault Detection and Isolation for Nonlinear 

Systems 

For the sake of convenience, we only consider Fault Detection and Isolation for system 

(5.1), not (5.24). The FDI procedure for (5.24) should be same as the one of (5.1). 

For linear and bilinear cases, this assumption is equivalent to Rank CE = Rank E, 

where Q(x) = E, h(x) = C x .  

Theorem 5.5 With all the conditions satisfied in Theorem 5.1 remaining valid, and 

the above Assumption, then the actuator faults in system (5.1) can be detected and 

isolated as well. 

Proof. Consider the dynamics of the fault-affected output described in system (2), 
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Discretize the above dynamic equation, we have 

When Assumption hold, then we can estimate the faulty signal fa as fa ,  

So that the fault detection as well as isolation is done. As soon as any of the com- 

ponents of A is greater than that of threshold value vector, then the alarm for the 

corresponding fault component will be on. I 

Convergence of the fault estimate: 

Now we consider the efficiency of this fault detection and isolation scheme, i-e., 

the upper bound and lower bound of the estimation for faults. With this information, 

we know how accurate the fault estimation will be and how reliable the alarm will be 

in some sense. 

Assume that &+d(k) represent the real derivative of at time step k, so from 

(5.36), we have 

and for estimation of faults, we use the following equation, 

[14d(k -k 1) - (l-+d(k) 
6 = $IJ(I-+~)(Y (k)) + 8 (1 -+d ) (~  (k))u(k) + 41-d(k).fa(k)- (5.40) 
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Subtract (5.39) from (5.40), we have 
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where X~,(X,,,) represents the minimum (maximum) eigenvalue of the corresponding 

matrix. 

From the above analysis, we know that the (adaptive) threshold value TT(k) can not 

be chosen smaller than Mn6-2c , otherwise the alarm would be too sensitive 
2 d & n a ~ ( & T , ~ h - d )  

to give the correct signal; the alarm for fault detection would be reliable if TT(k) 

chosen greater than MI 6+2c . When llL(k)ll > TT(k), then the alarm for 
2d~min(&T,~Q1-c i )  

faults is on. 

5.5 Illustrative Examples and Simulation Results 

Example 5.5.1 Consider the following linear system 

where x E R5, u E R2, fa E R2 and 

Following the procedures introduced before, we can find suitable transformation 

which transforms the system (5.44) into the form of (5.2). After designing the observer 
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for the fault-unaffected states, we can estimate the actuator fault. 

For brevity, the details of calculation are deleted. The results on the estimation of 

states and actuator fault are shown in Figures 5.1-5.2. In Figure 5.1, it is shown that 

the estimate of the fault is essentially zero during the entire length of the simulation 

study, and thus the conclusion is that the system is healthy. However, the estimate 

of the actuator fault shown in Figure 5.2 indicates that the actuator is faulty. 

Note again that the actual shape of the failure is also detected in our algorithm. 

This is not necessarily the case in many other studies. The fact that we can identify 

the shape of the failure is the by product of our algorithm which can prove useful 

perhaps in failure accommodation. 

, - -,: . . . . . .  """ 
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Figure 5.1: No Fault Signals and the Estimation 
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Example 5.5.2 : We consider a nonlinear system of the following form, 

where 9 is an uncertain parameter and fa is actuator faulty signal. 

By using the coordinate transformation t1 = X I +  2x2 + x3, [2 = 2 2  + 2x3, t3 = x3, 

we can transform (5.45) to 

As a matter of fact, q = [exlf2xz+23 + 1 , O ,  0IT. 

For this form (5.46), since the dynamics of E2, t3 are not affected by faulty signal fa, 

we can design the reduced-order adaptive observer as follows, by using Theorem 5.4, 
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where &, (3 are the estimation of &, and & correspondingly. Assume the error dy- 
e 

namics are C2 = & - &, & = & - &, then we have the following equation, 

by properly choosing K = [ k l ,  k2IT (here we choose Icl = k2 = 2), the error dynamics 

can be stabilized together with the adaptive law, so that the observer is asymptotical. 

From equation (5.38), the fault fa can be isolated from the discretization of the 

dynamics of C 1 .  Also for simulation, we assume that 8 = 0.5, we can see that esti- 

mation of the parameter is approaching this value. Figure 5.3 shows the performance 

of the FDI algorithm under a no failure situation. The unknown parameter is adap- 

tively estimated and converges to its true value of 0.5 and the fault estimate is zero 

after a short observer transient. Figure 5.4 and 5.5 illustrate the same things for two 

different shapes of failures. Clearly, in both cases, the uncertain system parameter is 

correctly identified and the estimate of the fault indicates that indeed a fault exists. 

Furthermore the actual shape and magnitude of the fault is detected. 

0 

Example 5.5.3 We consider a dc motor system with load (see Figure 5.6). The 

model is described by the following equation, 

Set x1 = i,, x2 = 8, x3 = W, u = i,, v = va + f ,  ie and va are ideal inputs and f is 
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Figure 5.6: DC Motor System with Load 

actuator fault, then (5.50) becomes 

For simulation, we assume that R, = 

And we transform coordinate by t1 = XI ,  (2 = 22, t3 = x3 + 0.5x2, so the system 

becomes 

and output equation (5.52) remains the same, i.e., y; = ti, i = 1,2. 

To observe t2, t3, we construct the following observer 
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The faulty signal f can be detected and isolated based on the following equation, 

- 1 Y I ( ~ +  1) - y 1 ( k )  f = - (  20 6 + 2011 (1) + 2 0 0 & ( k ) ~ ( k ) )  - ~ O V ,  (5.55) 

Figures 5.7-5.8 represent the simulation results. Again, these figures illustrate that 

the observer is successful in estimating the unavailable state of the system as well as 

the fault. When the estimate of the fault is anything other than zero, the fault is 

easily detected and declared. 

-1 I I I 1 I I I I I I I 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

partial states estimation without actuator fault 

estimation for actuator fault 

Figure 5.7: No Fault Signals and the Estimation 
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Figure 5.8: Fault Identification and the Estimation 



Chapter 6 

Practical Estimation for Fault 

Diagnosis 

The last five chapters of this thesis concentrated on the application of observer based 

methodology for FDI. The main thread in all of those chapters was the notion of 

decoupling the faults and certain disturbances from parts of the system's dynamics, 

so that an unknown input decoupled observer could be designed. The resulting UIO 

was then used for both estimation as well as FDI. Clearly, at the heart of the FDI 

approach discussed in each of the last chapters then is the UIO. Recall to design 

UIO for linear systems, the condition Rank CE = Rank E is needed. For nonlinear 

systems, strong conditions on linearization are also needed in our previous analysis. 

It is then fair t o  say that the estimation and diagnosis approaches, especially for 

nonlinear systems, are applicable to a limited class of control systems. The issue of 

designing FDI scheme, applicable to a wider classes of systems has been and will be 

the subject of many research studies in the past and in the years to come. The chapter 

is an attempt in this direction. It is the goal of this chapter to examine whether the 

127 
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diagnostic schemes that were discussed in the previous chapters can be broadened so 

that they encompass perhaps some larger class of dynamical systems. 

In this chapter, we will first introduce the notion of Sliding Mode Observer (SMO). 

We will then attempt to show that for the linear and nonlinear systems which do not 

satisfy the condition Rank C E  = Rank E, it may be possible to combine SMO and 

UIO approaches and apply t,hem to those systems. In this way, the UIO is generalized 

to a wider class of control systems. This is the subject of discussion in Section 6.2. 

In Section 6.3, a brief diagnostics approach is outlined. 

6.1 Introduction to Sliding Mode Observer 

Observers based on sliding mode concept [47] were first developed for linear systems 

[12,50, 511. The variable structure observer design approach or the SMO, has proved 

to be an effective estimator for certain nonlinear systems. Many applications of the 

SMO have been reported with success in the literature. The SMO approach has some 

advantages such as: cancelling certain nonlinearities, uncertainties or disturbances; 

estimating states without using exact linearization for nonlinear systems, et c. The 

basics of the SMO approach is outlined in the following. 

Consider the following linear system in state space formulation, 

where x E Rn, u E Rm, y E lRp, d E RT may be time-varying uncertainty. 

The idea of classical SMO is: under certain assumptions (matching conditions), 

we can design an observer with one more nonlinear term in comparison to Luenberger 
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observer, such that the uncertainty d is cancelled by the extra term. As a result, 

the error dynamics are forced to an attracting region which is often referred to as 

the "sliding manifold". Once the error trajectory is confined to the manifold, it will 

then asymptotically slides to the origin, and thus the estimation goal is achieved (see 

Figure 6.1). 

Error (States vs. Estimations) 
Dynamics 

Figure 6.1: Idea of Sliding Mode Observer 

In order to design such a SMO, the following certain requirements need to be 

satisfied. These are: Assumption 6.1.1 (A ,  C )  is observable. 

From the Assumption 6.1.1, we know that for certain matrix K and Q > 0, there 

exists positive definite matrix P as a solution, 

P ( A -  K C )  + ( A -  K C ) ~ P  = -Q ( 6 - 2 )  

holds. 
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Assumption 6.1.2 ("Matching Condition") Assume there exists L, such that 

where positive definite matrix P is the solution of (6.2). 

Under the Assumption 6.1.2, we can design an asymptotic SMO, 

where y is just a scaling gain. This results in the error dynamics, 

A 
where 5 = x - 2. 

Based on the result in [51], we know that when the Lyapunov function is set as 

V = iTP5, then 

= & T p i  +iTp5 

= Z ~ ( P ( A  - KC) + (A - K C ) ~ P ) Z  + 2 z T p ~ d  - ~ Z ~ P E ~ S ~ ~ ~ ( L G )  

= -zT&5 + 2 z T p ~ d  - 2 z T ~ ~ y s i g n ( ~ ~ )  

= -iT&i + 2 ( ~ j j ) ~ d  - 211LG111y 

5 -Lin(Q)llzl12 + 2lldll IILGII - 2AIGlIi- 

A 
where 112 [ I 1  = C:=l ]xi 1. We conclude from the above discussion that since 1 1  - 1 1  5 () . / I1 ,  
and as long as y is chosen such that y 2 Ildll, then the error dynamics approaches to 

zero asymptotically. 

The above essentially sketched the SMO design approach for linear systems. 
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6.2 Practical Observat ions-Combined Sliding Mode, 

Unknown Input Observers (SM-UIO) 

In this section, we shall treat linear and nonlinear systems separately. 

6.2.1 Case 1: Linear System 

Consider the following linear system, 

where x E Rn, u E lRm, y E IRp, dl E lRT1, t E lW, dl and t are uncertainties or 

unknown disturbances. 

Similar to our discussions in Chapter 2, we can state the following result: 

Lemma 6.2.1 If the following conditions, 

1. 

Rank CE1 = Rank El (Equivalently Ker (C) n Im (El) = (0)) (6.7) 

2. 

Im (D) c Ker (C) 

then the system (6.6) can be transformed to 

All A12 A13 A14 
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where yl E RT1, y;! E Rp-", 21 E Rn-p-s7 zz E RS7 Ell E W"" is nonsingular matrix 

and so is D4 E IRSXS. The remaining matrices are of corresponding appropriate 

dimensions. 

0 

Proof. From condition ii, Im (D) C Ker (C),  we know 

Differentiate the output equation in system (6.6) to get 

Under condition i, we can apply the same partition process described in sec- 

tion 2.2.1 or Lemma 4.2.2 together with Rank D = s and condition ii to system (6.6). 

Condition i guarantees the structure of parameter matrix in front of dl in (6.9)' sim- 

ilarly condition ii will guarantee the form of parameter matrix in front of <. So that 

the system (6.6) can be transformed into (6.9) under conditions i and ii. 

I 

Basically, all the published literature of the design of the UIO, implicitly, or ex- 

plicitly require that Rank CE = Rank E. The question is then what happen if this 

condition doesn't hold? This is addressed in the following: 

Consider the following system, 

where d E W, p 2 r, and the remaining matrices are the same as those in (6.6). 
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Lemma 6.2.2 If the rank condition discussed above is not satisfied, that is if, 

Rank C E # Rank E, (Equivalently dim(Ker (C)  n Im (E) )  = s,  s # 0), 

A 
where s = Rank E - Rank CE,  then the system (6.10) can be transformed into (6.9). 

17 

Proof. Find linear independent and orthonormal vectors ti, such that ti E Ker (C), i = 

A 
1;-.,n - p; and T = [tl, .--,tn-,]; [:I is an n x n nonsingular matrix. It is 

easily verified that 
- 1 

= [cT (CCT)-' TI. 

We know 

A A 
where Ec = CT(cCT)-ICE, ET = TTTE. Furthermore, we have E = Ec + ET, also 

C E  = CEc, CET = 0, EsET = 0, i.e., EC and ET are orthogonal. By Sylvester 

Inequality, 

R a n k C E > R a n k C + R a n k E - n = p + r - n  

so that 

s = R a n k E - R a n k C E ~ r - ( ~ + r - ~ ) = n - p .  

Therefore, we can find a column transformation (r x r matrix) Eo, such that EcEo = 

[& On,,], ETEo = [On,(,-,) ET] where - Ec is n x ( r  - s)  with rank r - s ,  - ET is 

n x s with rank s. 
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If we replace - dl with dl in (6.6) and - d2 with [ in (6.6), then the conditions in 

Lemma 6.2.1 hold for 

So, according to Lemma 6.2.1, the system (6.11) as well as (6.10) tail be trans- 

formed to the form in (6.9). This completes the proof. 

I 

Theorem 6.1 For system (6.10), if 

then UIO can be designed as long as Rank C E  = Rank E. 

Based on this theorem the following can be stated. 

Corollary 6.2.1 When s # .O for transformed equation (6.9), besides 

condition (6.12), if there exists matrix L, such that the matching condition 

holds, where the positive definite matrix P is the solution of 
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then the sliding mode observer for the transformed system (6.9) can be 

designed as following, 

Proof. The proof of the theorem and the corollary is provided here at once. If equa- 

tion (6.12) holds, and Rank CE = Rank E, then from Lemma 6.2.2, we know that 

in the transformed system (6.9), D4 = 0. Under such situation, we can use Proposi- 

tion 2.2.2 and Theorem 2.1 to design a proper UIO. 

The UIO is similar as the one described in subsection 2.2.1, the design process is 

same as in subsection 2.2.1, 
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If Rank CE # Rank E, that means we can have system (6.10) transformed to 

(6 .9 )  with D4 # 0 .  Combine the UIO design together with sliding mode observer 

design in section 6.1.  In this case, we know under conditions (6.13)-(6.14),  we have 

sliding observer in form of (6.15)-(6.16),  and the error dynamics approach to zero 

asymptotically. I 

Note that in the dynamics of the SMO described by (6 .15)  there appear y2 in the 

discontinuous part of the observer's dynamics. If the output y2 is slow varying, then 

the approximation for y2 can be derived and utilized in the implementation of the 

SMO. Also in discrete systems, y2 becomes y2(k  + 1 )  which is easy to implement. 

Lemma 6.2.3 If (6 .13)  holds, the following 

Rank [A2 .  A241 [ i4 ] = h n k  

is valid. 

Proof. Since L[Az3  Az4]  = [O  Dz]P, then 

is valid. 

On the other hand, 
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and from the property of positive definite matrix P we know Pz2 > 0, thus 

Rank DT P22 D4 = S .  

Hence, 

Rank .[A2. A241 [ ] = s. 

Also, 

Rank .[A23 A241 [ ;4 ] 5 Rank [A23 A 2 4  [ :4 ] 5 Rank [ ;4 ] = s. 

Therefore we have, 

This completes the proof. 

As in the above lemma and its proof, we know that condition (6.3) infers the rank 

condition, Rank CE = Rank E. 

To summarize the SM-UIO design consider the following step by step procedure. 

SM-UIO Design Algorithm: (Assuming s # 0 and (6.12) holds) 

1. For system (6.10), using Lemmas 6.2.1-6.2.2, we can transform (6.10) into the 

form of (6.9). 

2. If equation (6.13) holds for (6.9), then sliding mode observer for unknown input 

can be designed by (6.15) and (6.16); STOP. 

Otherwise, CONTINUE. 
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3. The dynamics of z is taken as the first equation in system (6.10), output (this 

output is generated from the original output and its derivative, y2 - A21y1 - 

A22y2 - B2u) equation is substituted with y = [A23 A24]z. 

then UIO of the form (6.17)-(6.18) can be designed when Rank [A23 A24] > 

Rank D4 and (6.12) holds for the new system; only bounded estimation can be 

achieved when Rank [A23 A24] = Rank D4; STOP. 

then REPEAT 1; 

then only bounded estimation can be achieved according to the bounds of certain 

elements of d corresponding with D4. STOP. 

Remark 6.2.4 If the above algorithm is terminated after a-flops, then the discon- 

tinuous term in SMO involves a-order differentiate of output as described in (6.15). 

If y and its derivatives of y introduce excessive noise during the implementation of 

the last algorithm, we have to resort to noise filtering to get better estimates. In fact, 

the higher the degree of the derivatives of output, the worse the estimation might be. 

0 
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Remark 6.2.5 Since the matching condition for SMO can lead to the rank condition 

for UIO, one may ask: does that mean the existence of SMO will lead to the existence 

of UIO? As a matter of fact, in the UIO design the necessary condition for existence of 

observer with arbitrarily assignable rate of convergence is that the number of outputs 

has to be greater than the unknown inputs. This is necessary since the extra outputs 

are used for the design of decoupled reduced order observer. In SMO, there is no such 

restriction, instead there is requirements in terms of the boundedness of the unknown 

inputs. So if the number of outputs are greater than the number of unknown inputs, as 

long as we can design SMO, it is likely that we can also design UIO. In this case, UIO 

is even better, since we don't need to know the bound information for the unknown 

inputs. The only point is that for UIO, we need to do the transformation in order to 

design the observer. For SMO, the design is easier and no transformation is needed. 

However, if the number of outputs is same as the number of the unknown inputs, 

then UIO may or may not exist [41]. In such case, even if the UIO exist, its rate of 

convergence may not be controlled by the designer. SMO is more suitable in such 

case. 

Remark 6.2.6 From Lemma 6.2.3, we know if the Assumptions 6.1.1-6.1.2 hold, 

then we get Rank CE = Rank E. For UIO, we need Rank C > Rank CE = Rank E, 

but for SMO, we may have RankC = RankE. The reason is that for SMO the 

uncertainty term is considered as bounded; and for UIO the uncertainty term (un- 

known input) is assumed completely unknown, so that extra information on output 

(Rank C - Rank E elements) may be needed for observer design. 13 
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6.2.2 Case 2: Nonlinear System 

In practice, many of nonlinear systems involve various discontinuous terms which are 

not as smooth as the systems we discussed in Chapter 5 .  Different observer design 

is therefore needed [I]. The SMO is one alternative for nonlinear dynamical systems. 

In the following, we shall briefly discuss the SMO design for nonlinear systems. 

Consider the following state space representation of a nonlinear system 

where x E IRn,u E IRm, y E IRp, where p 2 m. Function f(x,  u , t )  represents nonlin- 

earity, uncertainty, disturbance, etc.. 

Assumption 6.2.1 There exists matrix E, such that f can be written as the form 

f (x, 21, t )  = Et. 0 

Under Assumption 6.2.1, the system (6.19) becomes 

which is same as the system described by (6.10). 

If we know the bound of 5, we can follow the procedures introduced in last section. 

If condition (6.12) is satisfied for equation (6.20), then at least bounded estimation 

can be achieved by using the SM-UIO Design Algorithm in the above section. 

The approach used here may not give a very accurate state (asymptotic) estima- 

tion, but it gives us a simple and practical design for a large class of nonlinear systems 

as compared to the diffeomorphism linearization UIO discussed in the last chapter. 
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6.3 Fault Diagnosis 

From the above discussion, we know that SMO is more suitable for those systems 

with bounded unknown inputs, and UIO is suitable for the systems with completely 

unknown information. So in such case, if the faulty signals are bounded, then we may 

try to use SMO, with regard to the detection approach we may use similar methods 

we used in previous chapters. If the faulty signals are unbounded, then we may try 

to use UIO. 

For the systems whose outputs are slow varying, then the approximation of out- 

put's derivative is acceptable, so that the SM-UIO Design Algorithm can be utilized. 

For discrete systems, SM-UIO Design Algorithm can be easily implemented. Other- 

wise, different approach should be introduced for the fault diagnosis. 

6.4 Summary 

In conclusion, the previous chapters of this dissertation used the common thread of 

the unknown input observer methodology for designing observers for linear, bilinear, 

time delay, and nonlinear systems. In each case appropriate observers for the class 

of system under consideration was proposed. In each chapter, once the appropriate 

observer was designed, it was then used for the purpose of sensor and actuator FDI, 

and proper fault detection and isolation schemes were discussed. However, as we 

progressively moved from a simpler class of systems (i.e. linear systems) to a more 

difficult classes of systems (i.e. nonlinear and time delay) systems, it was realized that 

additional conditions needed to be satisfied for the UIO based FDI to be feasible. At 

this point It. should be emphasized that at the moment, for the type of FDI problems 
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that we studied in this work, all the available existing approaches in the literature 

have similar restrictions and requirements. This is being pointed out so that the 

reader is not led to believe that it is the approach undertaken in this work that poses 

such limitations and restrictions. Nevertheless, these restrictions are there, and the 

classes of systems for which FDI using the proposed approaches discussed in this 

thesis are limited. Currently, much of the work in the research community deals 

with enlarging the class of systems for which model based FDI can be feasible. This 

chapter dealt with an attempt in this direction, based on the work presented in the 

previous chapters. In essence, it was shown that by combining the sliding mode and 

UIO methodologies, perhaps some of the restrictions that could arise in the previous 

chapters could be relaxed and the FDI may still be possible. 



Chapter 7 

Conclusions 

The unknown input observer design and its application for fault detection and isolation 

of dynamical systems was considered in this thesis work. The main contribution of 

this thesis was the extension of the UIO theory for FDI in purposes in linear systems 

to time delay, bilinear, and a more general class of nonlinear systems. 

The unknown input observer is designed in such a way that the estimation is 

decoupled from the unknown input. For UIO, we normally require that the number 

of outputs p, to be greater than the number of unknown inputs m, i.e. p > m, in 

order to guarantee the existence of UIO. One important conclusion that was drawn 

from the work that was developed here is that even with the use of an sliding mode 

observer (SMO) this condition can not be relaxed much further. In Chapter 6, we 

showed that with an SMO, still the requirement for the design of the fault detection 

observer would be p 2 m. This is a very important result in that it underscores 

the fundamental importance of this requirement. That the condition p 2 m needs 

to be satisfied, and is not only a limitation in the UIO approach to FDI. Another 

interpretation of this requirement may be that in fact, the observer design is a kind of 

143 
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inverse problem, so the largest number of independent unknown recoverable signals 

must be less than (or equal) the number of independent inputs to the observer. 

From a practical point of view, it is very likely that in a complex dynamical 

system with many sensor and actuators, a single UIO may not possibly diagnose all 

the faults in the system. In such systems, it is likely that a bank of observers using 

different sets of information need to be used for a more complete FDI. By re-grouping 

different elements of output, and using them to design inherently different (unknown 

input) observers, we can detect and isolate actuator and sensor faults via some logic 

operation on residuals coming from different observers and the measurements. 

At present, SMO is very popularly applied in nonlinear systems, and at a first 

glance may seem to be more powerful than UIO. This is the reason that in this thesis 

' the possibility of using the SMO for FDI was investigated in the first place. However, 

from the results presented in Chapter 6 a conclusion can be drawn that UIO theory 

is just as powerful as that of the SMO. If the bounds on the unknown inputs are 

not known, then UIO is even more powerful than the SMO. For further development 

on observer-based fault diagnosis, more thorough investigation on the relationship 

between UIO and SMO will be needed. Additional results on the unifying design 

approaches may be achieved in the near future. For nonlinear systems, as long as the 

theory of observer design can be developed, then the observer-based fault detection 

and isolation techniques may also be improved. However, the fact remains that a 

major stumbling block in the FDI for general nonlinear system is the design of stable 

observers. This of course points to a more fundamental point that the control and 

system theory for nonlinear systems in general requires a great deal of maturing in 

the years to come. 
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In order to apply the FDI concepts in grand scale applications, such as at a factory 

wide level, it is necessary to broaden the approach by a great deal. 

It is obvious to us that the analytical redundancy (AR) based techniques described 

in this thesis, although powerful will not be adequate to deal with diagnosing a large 

variety of faults (specifically those that can not be mathematically modeled). In 

addition, since the effect of certain fault,s may propagate through the system, this 

kind of diagnosis, and post fault analysis for determining possible compensation would 

require greater knowledge of the system and intelligent reasoning capabilities. The 

goal here is to expand the space of the possible faults from only controller faults 

i.e., sensors and actuators (as would be the case in our initial phase of the study), 
- 

to a larger one consisting of plant components as well as controller failures. We 

feel that it may be still possible to detect such failures by using AR based schemes. 

However, the identification of the faulty device(s), effect of the failure on the system, 

and accommodation by issuing command for restructuring the control system, would 

most likely be not possible by AR means. Therefore, if a fault has been detected in 

the lowest level of the hierarchy, and it can not be identified, (e.g. if we arrive at  the 

conclusion that all the sensor readings are abnormal and that no actuator has failed), 

the measurements and the estimates are to be supplied through the interface to  the 

higher level where the inference engine would initiate a search (either depth first or 

breadth first) through the knowledge base for determining the cause of the failure. 

The knowledge about the system will be represented through the use of fault trees or 

cause and consequence diagrams [48]. These trees not only are of use in the search 

process but also provide valuable information as to the weak areas of the system that 

can cause frequent failures, and therefore are of use in the design stages as well. Once 
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the faulty instrument is detected a command may trigger the system reconfiguration 

subsystem to assess the impact of the fault and a command from this level would be 

issued to the lowest level for restructuring the control system, if necessary, to  bring 

the plant into a safe state. 

There are variety of other tasks that need to  be considered at this level. These 

include issues such as interfacing with an operator, scheduling, overall optimization, 

global planning, and conflict resolution. These issues are all topics for future research. 

In summary, it is felt that for complicated industrial systems, many tools and 

theories from model-based, knowledge or data-based methods, such as expert systems, 

fuzzy logic, neural networks, statistical techniques and their combinations need to be 

employed in order to arrive at a truly powerful and intelligent FDI architecture. Figure 

7.1 illustrates one such possible architecture. 

DECISION 
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Figure 7.1: An Intelligent Monitoring and Diagnostic Architecture 

I I t  

Model-based Residual 
Generator:observer Bank, 

Parity Space, Identification etc. 
L 

- Command & Diagnosis Unit 
rule-based.analytica1 model-based diagnosis 



Chapter 7. Conclusions 147 

At present, further investigation and theoretical foundations are needed for those 

knowledge-based fault diagnosis schemes. The inclusions of learning algorithms, and 

connections between model-based and knowledge-based techniques are also important 

topics in both research and applications. 
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