
CZWEB: AN AID TO NAVIGATE THE
WORLD WIDE WEB

P u Tan

B.Sc., National University of Defence Technology, Hunan, P.R. China, 1985

M.Sc., Shanghai Jiaotong University, Shanghai, P.R. China, 1991

A THESIS SUBMITTED I N PARTIAL FULFILLMENT

OF T H E REQUIREMENTS FOR T H E DEGREE OF

MASTER OF APPLIED SCIENCE

in the School of Engineering Science

@ Pu Tan 1997

SIMON FRASER UNIVERSITY

June 1997

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Date Approved:

Pu Tan

Master of Applied Science

CZWeb: An Aid to Navigate the World Wide Web

Dr. Shawn Stapleton, Professor

Chair

p r . John C. Dill, Professor

Senior Su~ervisor

Dr. Tomas W. Calvert, Professor

Supervisor

-, - - -
Dr. F. David Fracchia, Assistant Professor

School of Computing Science

External Examiner

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project or extended essay (the title of which is shown below) to users of the
Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed without
my written permission.

Title of Thesis/Project/Extended Essay

"CZWeb: An Aid to Navi~ate the World Wide Web"

Author:
(signature)

(name)

(date)

Abstract

The World Wide Web is currently the largest and fastest changing hypertext informa-

tion system in the world. Modern Web browsers allow users to access this wide range

of services and information easily. But the two fundamental navigational problems

with hypertext still exist, namely, disorientation and cognitive overhead. Disorienta-

tion is the feel of lost in hyperspace. Cognitive overhead is the additional effort needed

to use hypertext system. The goal of this thesis is to develop methods to help users

deal with these problems in the Web. Such methods illustrate and simplify the under-

lying structure of the World Wide Web and provide sophisticated support to users for

understanding, navigating through and manipulating the complex information space.

This thesis proposes CZWeb, an aid to Netscape Navigator users on the Macintosh

platform. It records visited web pages and displays them in a dynamically updated

map while users navigate through the World Wide Web. A new URL-based struc-

turing approach is proposed to organize the collected information. It represents the

Web structure with a network and a hierarchy based on the URL of web documents

and the embedded hyperlink relationships among them. The structure is displayed

on screen with an extended Continuous Zoom algorithm, which is a detail in context

approach. Some extensions are made to the original Continuous Zoom algorithm,

which make it possible to explicitly control the size of individual nodes. Examples

include zooming a node to a specified size and maintaining a constant size while other

nodes are zoomed. Those extensions not only satisfy CZWeb's special requirements

(opening and closing cluster nodes, maintaining folder icons' constant size), but are

also useful for other situations.

CZWel:, also provides some facilities for users to recognize and access any visited

Web pages easily and allows users to tailor the displayed structure to reflect their own

mental models of the information space.

Usability tests suggest that the design model of CZWeb is consistent with users'

mental models of the World Wide Web and that CZWeb does help users.

Dedication

For my family - Karen and David

Acknowledgments

I am deeply gra.teful to my supervisor, Dr. John Dill, for his invaluable advice and

guidance, especially when time is very precious to him. Without his help, this thesis

would not be possible.

I would like to extend my thanks to my supervisory committee member, Dr. Tom

Calvert, and my external examiner Dr. F. David Fracchia, for their insightful advice

and suggestions.

Several other people have played special roles and contributed to the design and

evaluation of CZWeb. They are Dr. Gkrald Collaud, Dr. Chris Jones, Dr. Brian

Fisher, and my classmates in the graduate HCI course, CMPT882(96-1).

I would like also to express my gratitude to all other faculty members of the School

of Engineering Science and the School of Computing Science, for all the courses I have

taken from them. In addition, I would like to thank fellow graduate students for any

help they have given me.

Last but not least, I want to thank the School of Engineering Science at Simon

Fraser University for providing me with financial support throughout my study. My

sincere thanks are given t o Ms. Brigitte Rabold for her great assistance.

Contents

. . Approval 11

Abstract

Dedication v

Acknowledgments vi

1 Introduction 1

1.1 Hypertext . 1

. 1.2 The World Wide Web 3

. 1.3 Navigation Problems 4

1.3.1 Disorientation . 4

1.3.2 Cognitive Overhead . 5

1.4 CZWeb Approach to Aid Navigating the Web 6

2 Literature Studies 8

. 2.1 Designs for Navigation 8

2.1.1 Guided tours . 9

. 2.1.2 Footprints 9

. 2.1.3 Backtrack 9

. 2.1.4 History lists 10

. 2.1.5 Bookmarks 10

. 2.1.6 Sneak preview 11

vii

. 2.1.7 Search engines 11

. 2.2 Overview Diagrams 12

. 2.2.1 Global Overview Diagrams 12

. 2.2.2 Overview Diagrams to Aid Web Browsers 18

. 2.2.3 Overview Diagrams in New Web Browsers 28

. 2.3 Detail-in-Context 30

3 CZWeb Design and Features 3 4

3.1 Design Goal and Challenge . :34

3.2 What Information is the Most Important? 35

. 3.3 Transforming the Web Structure 37

3.3.1 Mental Models of the Web . 37

. 3.3.2 Managing Historical Information 38

3.3.3 Link-basedStructuring . 39

. 3.3.4 Our Approach - URL-based Structuring 40

. 3.3.5 The URL Structure 41

3.4 Visual Representation of the URL-Tree Structure 43

. 3.5 Dynamic Updating of the Overview Diagram 46

. 3.6 Modify the Default Structure 49

. 3.7 Mapping Attributes of Nodes 49

. 3.8 Other User Interface Considerations 50

4 CZWeb . Internal Operation and Algorithms

. 4.1 Communication with Netscape Navigator

. 4.2 Building a URL-tree

. 4.3 Displaying the URL-Tree

. 4.3.1 Background

4.3.2 Review of the Original CZ Algorithm
. 4.3.3 A Simple Case: Exact Size Zoom

. 4.3.4 Case 2: Single Size Constant

. 4.3.5 Case 3: Exact Size Zoom With Size Constant

...
V l l l

. 4.i3.6 Cornplex Cases 64

. 3.3.7 Some Implementation C'onsiderations 65

. 4.4 A Simple Spring Layout Algorithm 66

5 CZWeb Evaluation 70
. 5.1 First Evaluation 70

. 5.2 Second Evaluation 72

. 5.3 Third Evaluation 77

6 Future Work and Conclusion 80
. 6.1 Discussion 80

6.1.1 Link-based Structuring vs . URL-based Structuring 80

. 6.1.2 Hyperlinks vs . Temporal Path 81

. 6.1.3 Distinguish User's Actions 82

. 6.1.4 Using Web Browsers 83
. 6.2 Future Work 83

6.2.1 Algorithm improvement . 83

. 6.2.2 New Features 84

. 6.2.3 Other work 85

. 6.3 Conclusion 86

Bibliography

List of Figures

2.1 Drawing Based on Notecards [Hala871 13

2.2 Drawing Based on gIBIS [Conk881 . 13

2.3 Drawing Based on Intermedia Web View [UttiSS] 15

2.4 Drawing Based on HyperTEXT'S7 Trip Report [NielSO] 15

2.5 Drawing Based on Thoth-I1 [Coll87] 17

2.6 Graphical view generated by Hy+ . Printed with permission 26

3.1 Diagram Used in Interview . 37

3.2 A Typical Overview of Cluster-Page Structure 45

3.3 A Typical Overview of URL-tree Structure 46

. 4.1 The Complete URL Tree 54

4.2 Comparison of the Internal URL-Tree and the External URL-tree . . 55

. 4.3 The Original Continuous Zoom Algorithm 59

4.4 Zoom node 1 to the exact size and node 2 is resizable 60

. 4.5 Single Size Constant 62

. 4.6 Complex Case 64

. 4.7 Spring Layout Algorithm 68

. 5.1 The Structure of Test Web Site 73

5.2 Test Site Structure Created with Standard Cluster-Page Structure Ver-

sion . 74

5.3 Test Site Structure Created with URL-Tree Structure Version 75

Chapter 1

Introduction

Hypertext systems are complex information management systems. These systems

allow people to create, annotate, link together, and share information from a variety

of media such as text, graphics, audio, video, animation, and programs. Hypertext

systems provide a non-sequential and entirely new method of accessing information

unlike traditional information systems which are primarily sequential in nature. This

chapter is an introduction to hypertext, the World Wide Web (a popular hypertext

syste~n), and the two fundamental problems of using hypertext.

1.1 Hypertext

The original idea of hypertext was first put forth by Bush [Bush451 in July 1945.

He described a device called memex, " a future device for individual use, which is a

sort of mechanized private file and library." In which an individual "store his books,

records and communications and which is mechanized so that it may be consulted

with exceeding speed and flexibility. It is an enlarged intimate supplement to his

memory." He described the essential feature of memex as its ability to tie two items

together.

Nelson coined the word hypertext in 1965 [Nels65]. He defined it as "a body of

written or pictorial material interconnected in a complex way that it could not be

conveniently represented on paper. It may contain summaries or maps of its contents

and their interrelations; it may contain annotations, additions and footnotes from

scholars who have examined it."

In his Keynote address at Hypertext '87, van Dam [VanDSS] reviewed the very

early stage of hypertext development, including his own group's efforts [Carw69]. He

also summarized nine areas which are important to hypertext design.

Smith and Weiss [Smit88] defined hypertext as "an approach to information man-

agement in which data is stored in a network of nodes connected by links. Nodes can

contain text, graphics, audio, video as well as source code or other forms of data."

The essential feature of hypertext, as defined in recent years, is the concept of

machine-supported links (both within and between documents) [Bala96]. It is this

linking capability which allows a nonlinear organization of text. Hypertext is a hybrid

that spans across traditional boundaries. It is a database method providing a novel

way of directly accessing and managing data. It is also a representation scheme, a

kind of semantic network, which mixes informal textual material with more formal and

mechanized processes. It is an interface modality that features link icons or markers

that can be arbitrarily embedded with the contents and can be used for navigational

purposes [Conk87]. In short, a hypertext system is a database system, which provides

a unique method of accessing information.

Nodes and links are the fundamental units of hypertext. A node usually represents

a single concept or idea. It can contain text, graphics, animation, audio, video, images

or programs. It can be typed (such as detail, proposition, collection, summary, obser-

vation, issue) thereby carrying semantic information [Rao 901. Nodes are connected

to other nodes by links. The node from which a link originates is called the reference

and the node at which a link ends is called the referent. They are also referred to as

anchors. The contents of a node are displayed by activating the link that references

it.

Links connect related concepts or nodes. They can be hi-directional thus facili-

tating backward traversals. Links can also be typed (such as specification link, elab-

oration link, membership link, opposition link and others) specifying the nature of

relationship [Rao 901. Links can be either referential (for cross-referencing purposes)

or hierarchical (showing parent-child relationships).

Niguma designed and implemented a concept mapping tool in the World Wide

Web. He also conducted a sinall study to evaluate the effectiveness of this tool.[Nigu97]

In his thesis, he claimed "The purpose of the concept map is to identify key concepts

and the relationships between these concepts in an instructional setting under various

levels of abstraction". He used polygons to represent students' concepts and ideas and

labeled lines connected between polygons to represent relationships between concepts

and ideas. He refered to the polygons as "nodes" and the lines as "links".

There are many hypertext systems. The World Wide Web is currently the most

popular one anlong them.

The World Wide Web

The World Wide Web (Web, WWW or W3) is a hypertext-based information retrieval

mechanism providing information access across heterogeneous platforms mainly con-

nected over the Internet [Bern94]. It is based on the philosophy that information

should be freely available to anyone. It uses a client-server architecture where the

information resides on servers and viewers run from clients. Its architecture allows

many existing hypertext systems and information bases to be incorporated as part of

the web by gateway servers. The Web servers provide their data to the clients through

a standard communication protocol called ByperText Transfer Protocol (HTTP). But

hyperlinks can link to other servers that use different protocols (Gopher, FTP, WAIS,

etc.), too.

On the Web, the word document refers to a piece of information that might be

delivered by a web server. Documents are located by their Uniform Resource Loca-

tors (URLs). A URL is a unique address for a document on the Web. The primary

format for documents is called HyperText Markup Language (HTML). HTML docu-

ments contain formatted text and images, as well as hyperlinks to other documents,

which may be anything that is accessible on the Internet: sound, digital video clips,

connections to a library catalog, HTML documents, or CGI programs. Users access

information in the Web through Web browsers.

1.3 Navigation Problems

Hypertext systems are used in many applications because of their flexible structure

and the great browsing freedom they give to users. However, this same flexibility and

freedom also causes some problems.

In his widely cited survey [C:onk87], Conklin pointed out two problems "that may

in fact ultimately limit the usefulness of hypertext". They are disorientation and

cognitiue overhead.

1.3.1 Disorientation

Disorientation is "the tendency to lose one's sense of location and direction in a

nonlinear document'' [Conk87]. Some other researchers refer to this problem as being

"lost in hyperspace." It occurs when readers do not know where they are, how they

got there or where they should go next.

In a book, it is possible to flip pages randomly and read material in any order

you like. It is not easy to get lost, because while you hold the book you can see and

feel the whole book and also approximately where you are. Furthermore, the pages

are numbered, telling you exactly where you are. You can also find topics you are

interested in from the table of contents or index.

However, in a complex hypertext system with thousands of nodes and links, it is

more than likely that the reader will get lost. Reasons for this include:

Large size of the information space

Complicated graph that links different documents

User's lack of knowledge of the overall structure of the information space. In

many hypertext documents, users can only see one node at a time.

The influence of the structure of hypertext documents on the orientation problem

is best illustrated by comparing browsing through a hypertext with exploring a city as

a tourist. People have much less trouble finding their way in a city with a grid pattern

and using numbers to name streets and avenues than in a city with unorganized streets.

C'HA PTER 1 . INTROD UCTIOiV 5

Of course, exploring a city and browsing a hypertext document are not exactly

the same. Getting lost while browsing through hyperspace is more probable because

of the lack of continuity. As Iionstantin [Iions96] states: -'When we walk through a

town, we look around and build a mental map of the place. Since we see everything

that is in between our origin and our destination, we will experience a sense of conti-

nuity. Clicking on an anchor or typing a URL and watching the byte counter as the

destination document loads onto our screen just isn't the same".

1.3.2 Cognitive Overhead

Conklin [Conk871 characterized cognitive ouerhead as '-the additional effort and con-

centration necessary to maintain several tasks or trails at one time". The reason

for cognitive overhead lies in the limited capacity of human information processing

[Iiahn73].

Every effort in addition to reading reduces the mental resources available for com-

prehension. With respect to hyperdocuments, such efforts primarily concern orienta-

tion, navigation and user-interface adjustment [Thur95].

For orientation, readers need knowledge about the overall document structure and

must keep track of their moves through that structure. Even for smaller hypertext

systems this can result in a considerable memory load if no external orientation cues

are given.

Empirical studies summarized in [Dill931 revealed a correlation between compre-

hension and memory for location. One interpretation of this result is that memory for

content and memory for spatial information are different aspects of the same mental

representation, i.e., the reader's mental model. Hence, all factors that facilitate the

construction of such a model by reducing mental effort or increase a model's yual-

ity by improving its completeness and consistency can be expected to affect both

comprehension and orientation.

A node may provide several links to other nodes. When the number of choices

presented to a user at a given time exceeds the optimal "seven plus or minus two", a

search problem arises in which the user must determine the optimal next choice from

CHAPTER 1 . INTROD liCTION

the connection list or "embedded menu" [ShneS'i].

Labels of links embedded in hypertext are typically words or phrases, and provide

little information about their destination. Even worse, some anchors pointing to

different destinations use the same words or phrases, for example, "Click here". The

process of pausing (either to jot down required information or to decide which way to

go) can be very distracting.

Another potential source of cognitive overhead is "user-interface adjustment". Ef-

forts required for this activity may be influenced by various interface features. Exam-

ples include the need to move, resize or manually close windows on the screen, and

the necessity to switch from one presentation format to another (e.g., from the pre-

sentation of contents to the presentation of structure). A number of empirical studies

demonstrate effects of such features on various kinds of user performance. For exam-

ple, several experiments investigating the impact of different window layouts showed

that tiled windows - as opposed to overlapping windows - are easier to use and lead

to higher accuracy and speed in accomplishing certain tasks [Bly 861.

Considerable research has been undertaken to develop better tools and methods

to solve or minimize the problems of disorientation and cognitive overhead. Web

browsers are good examples. They make it very easy for users to access Internet

information by simply clicking on links. Unfortunately, the Web users still suffer from

navigational problems. As the Web becomes increasingly important to business and

entertainment and widely used, effective navigation becomes an issue of fundamental

importance.

CZWeb Approach to Aid Navigating the Web

The work described in this thesis addresses the problems of disorientation and cogni-

tive overhead in navigating the Web. We designed a navigation tool (CZWeb) to help

Netscape users to navigate through the Web. CZkVeb organizes the visited portion

of the Web into a map, which enables the user to identify his current position with

respect to the overall structure and to easily see the way that led to the current po-

sition. The automatically created map may also reduce the user's memory load and

help hinl to minimize cognitive overhead. The map can he customized and saved for

future use. It can also he modified by the user and used to organize infornlation in

his own way.

A new approach, URL-based structuring, is proposed for organizing collected in-

formation and reducing screen clutter. The structure is displayed on screen with a

fisheye-view algorithm which is one of the detail in context approaches used to visual-

ize large hierarchical structures [Di1195]. Extensions to the original algorithm [Dill951

were developed to support both explicit control of node size and maintaining constant

size in some given nodes while zooming others.

The rest of the thesis is organized as follows. Chapter 2 discusses some related

navigation approaches and systems which were proposed to overcome the hypertext

navigation problems. Chapter 3 discusses design goals and gives an overview of fea-

tures implemented in CZWeb. Chapter 4 describes the implementation details of

CZWeb. Chapter 5 summarizes all of the evaluations done so far. Chapter 6 is

discussion and conclusion.

Chapter 2

Literature Studies

Since the two most challenging problems, disorientation and cognitive overhead, of

using hypertext "may ultimately limit the usefulness of hypertextX[Conk87], many

researchers have tried to solve or minimize them. There are a number of research

issues related to this. This chapter reviews existing systems developed to address

research issues related to these problems. In particular, we focus on an overview

diagram approach, which is related to our CZWeb project. Related techniques to

display large hierarchical structures are also discussed.

2.1 Designs for Navigation

In a true hypertext system, users must be able to move freely through the system

according to their needs, without getting lost either spatially or cognitively. The need

for ada.ptive, intelligent assistance in navigation becomes greater as the complexity of

the network increases.

Nielsen [Nie195] describes several possible tools to solve or minimize the navigation

problems: guided tours, footprint, backtrack, history lists, bookmarks, sneak preview,

search facilities, and overview diagrams.

C'H,-2PTER 2. LITERAT [[RE STllDIES

2.1.1 Guided tours

A guided tour is a sequence of links designed by the hypertext author that is relevant

to a certain topic. Guided tours are most useful for learning systems that provide

information on different subjects. But they are difficult to maintain in a changing

hypertext like the World Wide Web. Such tours also seem to move us back toward

linear text.

2.1.2 Footprints

Footprints provide a visual indicator that a particular node has been visited, an anchor

has been activated, or a link has been traversed. Nielsen's system marks anchors with

a check mark if they have been activated. Netscape and other web Browsers highlight

the labels of visited links.

2.1.3 Backtrack

When you explore a cave, you mark your trail with a thread that can help you find

your way back. Backtrack is the thread hypertext systems provide for you. It is

an important navigation facility, which simply stores the path taken through the

hypertext, allowing the user to go back to previously visited pages at any time.

The great advantage of Backtrack is that it reduces the cost of making a wrong

decision in choosing a path, and encourages greater exploration.

Nielsen suggests that backtracking mechanisms must fulfill two requirements: "it

should always be available, and it should always be activated in the same way."

[NielYti]

There are many ways to do backtracking [Nie195]. Netscape's backtrack scheme

retains only those pages on the path from the starting page to the current page and

all of the other branches are pruned. As a result, users often cannot get back to pages

visited just minutes ago, and so get lost during the middle of a navigation session.

For example, if the user started at page A and visited page B, C, D in this order,

he is at page D now and he can go back to any of these four pages by using 'Back' or

C'H'APTER 2. LITERAT LIRE STI;DIES

'Forwarcl' button. If he goes back to B then follows another link to E, all pages a.fter

C are discarded and he cannot go to C or D by "Backtrack".

2.1.4 History lists

Textual history is a complete list that shows all nodes (URLs or titles) the user has

visited so far, and allows the user to go back to any of them directly. But it is an

"unorganized" list of URLs or titles and does not greatly help in locating specific

information, because the number of visited nodes becomes very large quickly.

Hypercard [KaehSS] has a graphical history list called the Recent list which has

miniature snap-shots of the last forty-two nodes visited. Clicking on a miniature

brings that card to the display. This method makes the assumption that a user may

not be able to remember the name of the node but may remernber the "look" of the

node. The Electronic Document system [Feint381 implemented a more sophisticated

graphical history display. Each miniature is named and time stamped and maintained

in exact order. A node visited more than once is repeated on the "Timeline".

Nielsen [Nie195] also referenced two other systems which used miniatures as graph-

ical history list. But some usability studies have shown that it is very difficult for

users to distinguish these miniatures from one another [NielSO].

2.1.5 Bookmarks

Tourists take photos of beautiful views and show people where they have been. Book-

marks are like the photos you take in your "hyperspace journey". They provide users

with a. way of marking key pages so that they can subsequently be quickly retrieved

from a list. They are typically used to store useful indices, home pages, and favorite

or relevant information pages.

Bookmarks reflect an idiosyncratic and somewhat arbitrary view of the Web, al-

lowing easy access to a small subset of previously visited pages, but not providing

any navigational or structural information that can be used to guide searching and

browsing strategies to find new and relevant information.

The user has often very little knowledge or remembrance of what the bookmark

is about, and how URLs are related to each other. Netscape Navigator 2.0 and later

version have added support for tree-like directory (or folder) structure for organizing

bookmarks. But the tree has to be managed manually by the users themselves.

hlaarek [Max961 provides a method to automatically manage bookmarks, but it

organizes Bookmarks into a binary tree.

2.1.6 Sneak preview

The labels of anchors in hypertext provide little information about their destinations.

Some systems, like Hyperties [Shne87], provide a little more information before ac-

tually following a link. Search engines also provide "Review" for each of the search

results to describe what the destination talks about. This tool helps users to make

their decisions.

2.1.7 Search engines

Searching finds information, but sometimes without the thrill and benefits of the

browsing-type journey. Various current search tools focus on key words or words

embedded in the documents or in the meta-data (associated information). Search en-

gines use "crawler" programs to collect new documents or updated old documents and

information retrieval techniques for indexing and storing information to enable fast

and accurate retrieval of these documents. They are essentially huge URL databases

that hold characteristic information on each URL to determine its relevance to a given

query.

Many search engines are available on the Web, such as Excite, Yahoo, Infoseek,

Lycos, and Magellan. They are helpful for finding information, but are not robust for

use. Thousands of hits with dozens of duplications are returned for a single search,

and users have to check all of them to find what they really need.

Nielsen [Nie195] use the term overview diagram to refer to a large class of naviga-

tional tools which provide visual representations of hypertext structure, such as graph-

ical browsers in Notecards [Hala871 and map in Intermedia [Meyr86]. An overview

cliagranl displays some or all of the hypertext as a graph, providing an important mea-

sure of contextual and spatial cues to supplement the user's model of which nodes he

is viewing and how they are related to each other and their neighbors in the graph.

2.2 Overview Diagrams

Every hypertext system forms a network of nodes and links, but in many systems

that network is only represented inside the computer. At any given tirne, the user

sees only the current node and the links leading out from that node; it is up to the

user's imagination to picture how the entire network is structured.

Frank Halasz from Xerox [Hala871 had put forward the view that a true hypertext

system should include an explicit representation (a dynamic overview diagram) of the

network structure in its user interface. Some hypertext systems did implement this

idea.

2.2.1 Global Overview Diagrams

Some systems use one overview diagram to show the entire network, for example

Notecards [Hala871 and gIBIS [ConkS8]. This kind of overview diagram is called a

global overview diagram. See Figure 2.1 and Figure 2.2.

Users are able to scroll these overview diagrams as well as rearrange the placement

of nodes. Particularly in the gIBIS system, users are encouraged to move new nodes

from their default position to make the browser representation more meaningful. Both

systems provide a feature for viewing the contents of the browser at multiple levels of

detail. If the network is large, the highest level of detail shows the structure of the

information, but no semantic information. The user can zoom in to see any portion of

the browser in detail, but owing to space limitations, can never see the entire network

in detail or in any compacted format that retains semantic information. One useful

aspect of these global overview diagrams is that they give the user, at a glance, an

idea of the size of the network. Users can tell roughly how many documents they are

working with and how interconnected they are.

CHAPTER 2. LITERATURE STCTD1ES

I Capabll~t~zs of New MI I

Trevenon. Nuclear W

I Create Card I
I Create Link I
I Delete Card I
I Delete Link I

I Pershing I1 /

Figure 2.1: Drawing Based on Notecards [Hala871

59. 1.0 Lmk ~nspzct~odadme

641: 19 What about h e lndex wndok?

Date: ??? Mar 30 I4:M.M) 1907

Subject: L~nk ~nspect~orded~t~ng

Author: beeeman

The SIBIS tool currently does not alloa users to select

Figure 2.2: Drawing Based on gIBIS [ConkSS]

CHAPTER 2. LITERAT [[RE ST(/DIES

Intermedia [MeyrSG] is a hypertext system developed at Brown University. In

this system, a loeb is defined as a network of documents or portions of docunlents

linked together. Initially, the designers provided users with three kinds of Web V z e u s

The global map portrayed every document in the web and the links between the~n .

The local map showed a particular "focus" document specified by the user, and the

documents to which it was linked. The local tracking rnap was exactly the same as

a local map, except that it updated its focus dynamically as the user opened and

activated documents.

In a later paper [UttiSg], the Intermedia developers found that the global map was

not helpful. "The large amount of space required for a complete view of such a web

pose a problem for two reasons. First, it is hard for the user to move through such a

large space; it requires much mouse movement, there are many patterns and clusters

to remember, and so forth. Second, it becomes harder to get all relevant information

into the view." They modified the three Web Views into one. The new Web View

cont4ns three major components: a path, a map, and a scope line, as illustrated in

Figure 2.3.

The new version of Intermedia's rnap is one way to deal with the sheer quantity

of the information in the hypertext. Another solution is using multi-level overview

diagrams to show various levels of detail. Jacob Nielsen's system - HyperTEXT'87

Trip Report - [NielSO] uses two layers of overview diagrams and displays both of them

on the screen at the same time. See Figure 2.4. The global overview diagram provides

an overall picture and can also serve as anchors for local overview diagrams. Local

overview diagrams provide a fine-grained picture of the local neighborhood of a node.

Both overview diagrams have constant size and the layout of the items in them was

hard coded by the author.

For very large hypertext structures, it is an open question whether two levels of

overview diagrams will be sufficient. Some approaches to address this problem are

discussed below (see section 2.4).

The Electronic Document Sys tem (EDS) [Fein88] organized "pages" into a hier-

archy of "chapters." It consists of two separate components: an authoring system,

Scope Line I? documrnts ~n Web I8 links ln web

0

Follow Marker

Health (Prem~urn Costs) 1

Insurance Web V ~ e w

Tue Srp 13 10.43.07 1988
Acuvate Docurnen

bus~ness lnterrupt~on

Tue Sep 13 10.44 07 1988 Marker fi
Open Document

Marker

Figure 2.3: Drawing Based on Intermedia Web View [UttiSS]

Figure 2.4: Drawing Based on HyperTEXT'87 Trip Report [NielSO]

called Docurnerzt Lnyout System, and a browsing system. called the Doctlment Pre-

sentntiorz Systern. Authors can open multiple windows t o view different "chapters" in

Document Layout System. It provides a semi-global view of the link wtwork, which

means that subsets of the data are compacted and represented as a set rather than

as individuals. Link can be drawn to or form a chapter rather than the page. Ab-

stracting data in this way makes it more feasible to show connections at the global

level.

EDS's Document Presentation System used "Neighbors" to show the network.

The Neighbors display is similar to Intermedia's local maps. Because EDS's links are

unidirectional, the Neighbors indicate this relationship by displaying the focused node

in the center and preceding pages on the left and following pages on the right.

Thoth-I1 [CollS7] uses a different mapping approach. Rather than building a

static overview diagram, it creates an overview diagram dynamically as a user browses

through linked nodes. Its "Spider" diagram technique, as shown in Figure 2.5, has a

central node and all the other nodes are attached to it directly or indirectly. Each link

line is labeled. When the user clicks on an unexpanded node, the diagram expands

that node to show all of the nodes that are accessible from it. The expansion creates

new instantiations of all the connected nodes, rather than reusing those already exist

in the diagrams. Consequently, link lines do not cross each other. However, as the user

browses, the diagram quickly gets larger and larger. Tools are provided for scrolling,

but this approach is tremendously space intensive.

Foss [Foss88] developed a set of extensions to Notecards. In her "History List"

extension, Foss maintained an ordered list for each NoteCard user. Users can select

an item in the list and spawn a "minibrowser". This minibrowser is almost the same

as EDS's Neighbors except that footprint were used.

Foss also implemented a "History Tree", which was hierarchical rather than linear.

The purpose of this display was to try to give users a sense of how they traversed a

set of linked nodes.

Hyper-G [Andr94] is a general purpose, large-scale, distributed hypermedia infor-

mation system developed at Graz University of Technology. It has a much richer data

CHAPTER 2. LITERATllRE S'TtIDIES

Mn~w rlrar 1 nad fik <tan

Thoth Sp~ders

Figure 2.5: Drawing Based on Thoth-I1 [Co1187]

model on which to base visualizations: a combination of hierarchical structure, (bidi-

rectional) hyperlinks, and fully integrated search and retrieval facilities. Information

in Hyper-G may be structured both hierarchically into so-called collections, and by

means of associative hyperlinks. A special kind of collection called a cluster groups

logically related or multi-lingual versions of documents. Links in hyper-G are stored

in a separate link database and are bi-directional: both the incoming and outgoing

hyperlinks of a document are always known and available for visualization.

Harmony is the native Hyper-G client for X Windows on Unix platforms. It takes

advantage of Hyper-G's structuring and retrieval features to provide bother intuitive

navigation facilities and informative feedback about the location of information. It

includes several kinds of dynamic overview and hierarchy maps, a three-dimensional

scene viewer, and three-dimensional navigation aids.

The Harmony Session Manager provides navigation through the collection struc-

ture, search facilities and various general functions. Central to the design of Harmony

is the concept of location feedback. The Harmony Local Map facility provides a map of

CHAPTER 2. LlTERATllRE STI [DIES

the hyperlink neighborhood of a chosen document, similar to the local map of Inter-

media. However, it can also show other relationships, such as collection mm~bership,

annotations, in line images, and the textures applied to a 3D model.

A fundamental problem with built in overview diagrams is that users are con-

demned to the hypertext system designer's view of the world. If the designer's view

does not concur with the users', the overview diagrams the designer created will be

of no use to users.

Some hypertext systems, like the World Wide Web, do not provide built-in overview

diagrams, but many researchers attempted to build some external overview diagrams

to help users to navigate in them.

2.2.2 Overview Diagrams to Aid Web Browsers

The effort of building external overview diagrams to aid Web browsers is focused on

transforming the complex underlying Web structure into an appropriate and compre-

hensible structure. Most approaches try t,o simplify it into a hierarchy or something

similar to a hierarchy.

Basically, there are three kinds of approaches to analyze the hypertext structure:

content-based, structure-based, and navigation-based.

Content-based Approaches

In this type of approach, nodes in the hypertext are considered individually and their

attributes are examined to determine the structure.

Zizi's SHADOCS document retrieval system [Zizi94] is an example. Zizi defined

Interactive Dynamic Map (IDM) as a document that provides a global view of either

a set of documents or the semantic contents of a large collection of documents. Two

types of IDMs are computed from the documents: Topic IDMs represent the semantic

contents of a set of documents and provide an overview of the topics represented in

a collection, their importance, and similarities or correlation among them. It is the

counterpart of the global overview diagram in Nielsen's system. The difference is

that the semantic information is computed from a web of documents according to

some rule instead of hard coded by the system designer. Docurn e n t IDMs represent

collections of documents either generated autonlatically from a user query or gathered

manually by a user or designer. It is the counterpart of local overview diagram in

Nielsen's system. SHADOCS implemented three levels of browsing facilities: The

wide browsing level uses semantic fisheye views, which is intended for fast scanning

over the web of documents; The medium level uses a semantic zoom. The narrow

level uses multiple windows, which provide fine-grained views of individual items.

The Document Explorer system [Fowl961 designed at University of Texas analyzes

Web documents based on semantic content. It operates on keyword lists to deter-

mine associations among documents using a co-occurrence metric to derive similarity

measures among documents. Both global structure overview and detailed view are

provided.

One problem with this approach is that most of the existing web documents do

not contain the required semantic content information. Researchers sometimes have

to build test Web sites by inserting some useful information into Web documents.

Structure-based Approaches

Structure-based approaches analyze the system structure based on the link relation-

ship among nodes. They might be described as "exploratory" approaches. They

provide the user a condensed visual representation of the structure and content of an

information space after analyzing it. The user can evaluate the entire information

space at a glance, then focus on individual elements by clicking on objects within the

map. Examples of information spaces include Web sites, a collection of Web pages

that are unified by a common topic or theme, a whole hypertext system, or a file sys-

tem. These approaches allow the user to visualize the space without having to visit

any documents in the space, but they spend much time on analysis of the structure

of the space.

The documents in the information space must be queried as a batch job to deter-

mine the structure of documents in the analysis stage. If they are used to analysis the

Web, these batch jobs must be re-run frequently to maintain an accurate representa-

tion of the document space because users can continually adding new documents to

the server, and the contents of the clocurnents themselves tend to be volatile. This is

expensive for both clients and servers.

Rivlin [RivlW] designed a toolbox which takes a whole hypertext system as input

and transfers it into a hierarchical structure. Its hierarchization process solves two

problems: identifying a root and distinguishing hierarchical and cross-reference links.

The fundamental property of a root is that every node in the hypertext must be

reachable from the root, also, the distance from the root to any other node should not

be too large. The author defined and used several metrics to find the root. Once the

root is identified. The differentiation between hierarchical and cross-reference links is

clone with a variation of breadth-first searching to maintain node as close to the root

as possible. ,After forming hierarchical structure, some algorithms are used to break

the hypertext into semantic clusters.

NetCarta Corp. [Netc96] has two products: WebRiIapper which focuses on struc-

ture analysis and web site management, and CyberPilot Pro, a navigation tool which

helps users find and visualize information. Both are based on the WebMap created

after analysis of a web sites.

The WebMap contains two views: Tree View and Cyberbolic View. The Tree

View displays the site's hierarchy, much like Windows' File Manager or Explorer.

The Cyberbolic view gives a dynamic look at the web site. It shows relationships

between pages and other site resources. Both of the views show simplified hierarchical

structure to the user and hide the underlying network structure.

The Cyberbolic view always fully expands the whole structure. The view is focused

on nodes located near the center. Only those nodes have enough space to be shown

in detail. Around the center, nodes may overlap each other but the user can click on

a node to bring it to the center and show the details of its neighborhood. The labels

of nodes are shown as long and narrow boxes and truncated when there is not enough

space. A pop up box with the complete label is shown and remains for a few seconds

when the cursor is stationary over an object.

Every object in the map has a picture, or icon, associated with it that gives the

C'HAPTER 2. LITERATURE STUDIES

user some hints about what type of object it is. The two views are not duplicates.

The user can choose to display different types of objects in each of them. Broken links

are highlighted and are very easy to fix with some help applications.

There are some other features such as publishing the Webhlap over the Inter-

net, attaching public ancl private notes to any object, creating reports to show some

statistical data about web sites, ancl a searching facility.

Incontext's WebAnalyzer [WebAgG] is another commercial available tool for web

site management. It has similar features to WebMapper, but the screen is organized

differently. WebAnalyzer's screen is divided into three main parts: the Link View on

the left, the Wavefront View on the right, and the File View along the bottom. The

Wavefront View is the global overview diagram that displays each level of a Web site

for a complete birds-eye view. Nodes are organized into rings. The starting node is

at the center and nodes of the first level (accessible directly from the starting node)

form a ring around it; nodes of the second level form a larger ring around the first

ring, and so on. It provides the user with a more real structure than WebMapper.

But it is very hard to a view large web space with this view.

The Link View is a local overview diagram that displays a selected node at the

center and its neighbors around it. This Link View is similar to EDS's Neighbors

[FeinSS] and Foss' minibrowser [FossSS] except that node are represented by icons

rather than rectangles with names inside and in-links and out-links are drawn with

different colors.

The File View displays a complete list of attributes of all the files or nodes in the

selected Web site. One of the main problenls of displaying this kind of structure is

that there is no enough space to show labels for each node in the view. Displaying

the attributes of nodes (such as nodes' labels) on a separate window makes the two

other views which show the structure neatly. But users can not identity an icon in

those two views by a glance. They have to select it and check its attributes in the

File View.

CHAPTER 2. LlTERATllRE STliDIES

Navigation-based Approaches

Navigation-based structuring approaches might be described as "reflective" approaches,

in that representations are built passively as the user browses the document collec-

tions. The application makes no prior assumptions about the structure of the infor-

mation space and builds the visualization only as new documents are encountered.

Thus. the resulting visualization is customized to each session and is built to represent

the way the user explores the hypertext.

MosaicG [,4yue95], WebMap [Dome94], and WebJournal [Desa94] are examples in

this category. They enhance the history keeping facility of Web browsers by providing

a two-dimensional view of the documents a user has visited in a session. By presenting

titles, LJRLs and other attributes of the documents a user has visited, they allow

the user to easily recognize previously visited documents and provide easy ways for

the user to re-visit those documents and analyze the structure of a set of hypertext

documents. Actually, those ideas are similar to Foss' History Tree[Foss88].

MosaicG and WebJournal build their trees based on the hyperlinks embedded in

web pages. Documents accessed by following anchors are added as child nodes to the

node that represents the document where the source anchor is located. This approach.

cannot solve the problem of a child node containing a link pointing back to one of its

ancestors. In this case, the tree may have an infinite number of levels.

WebMap treats the newly visited documents as child nodes to the current node,

which represents the document that is displayed in the Mosaic's top window. This

approach does not show the link relationship among the nodes and it depends on

users' navigation process only.

MosaicG and WebJournal display their trees horizontally and letting them grow

from left to right. WebMap displays its tree vertically and lets it grow from top to

bottom. All of the overview diagrams are scrollable.

MosaicG shows users a "perfect" tree where all the cross-reference links are hidden

and shown only on request. If a page is the destination of more than one link, a short

arrow appears to the left of the node. By positioning the mouse over this arrowhead,

the other nodes in the hypertext that contain links to this document are highlighted.

CHAPTER 2. LITERATlrR E STI;DIES

WebJournal uses four different types of links denoted by dashed lines that link nodes

outside of the regular tree structure. They represent different actions user actually

invoked to get the document, such as clicking on an anchor embedded in the current

document, typing in a URL manually (using either the "Open URL" or "Open Local"

buttons in Mosaic), selecting a URL from Mosaic's hot-list, ancl opening a new Mosaic

window. The user can prune or espand part of the tree if the size of tree is very large.

WebMap defines a new data structure - "spanning tree". Edges in spanning tree

are classified into two categories: Tree-edges, ancl Non-tree-edges. Different edges are

represented by different colors and line patterns.

Nodes have attributes such as URL and title. Besides those, MosaicC: also uses

thumbnail images to represent nodes, which are similar to miniatures in Hypercard.

WebJournal assigns each node a number according to the order of its visit. Numbers

are easy to display, because they take less screen space than long strings. But users

may not be able to remernber which page a number represents.

In addition to the common graphic history keeping facility, WebMap provides a

playback feature, which makes it easier to find a previously visited document, and

a feature for collection ancl ordering pages. The author also describes a "domain"

concept, which provides a general mean for grouping and structuring HTML pages.

A domain is defined as a set of related HTML documents, which together form one

document. Traversal strategies are defined for a certain domain structure type. They
1

describe the semantics of several navigation operations that move between the pages

of a domain.
I
I

The above three approaches have two main disadvantages. The first one is that
I 1

they modify NCSA's Mosaic browser in order to let it communicate with their ap-

plications. Users have to compile and keep a private version of Mosaic. That is not

convenient. The other disadvantage is that they make inefficient use of screen space,

because they display a visual tree on the screen.

WebViz [Pitk94] is another project based on the users' navigation. It provides

Web database maintainers and designers with a graphical view for local databases and

accessing patterns. The user can see not only the documents (represented visually as

nodes) in his database but also the hyperlinks traveled (represented visually as links)

CHAPTER 2. LITERAT (:RE ST ITDIES

by other users requesting documents form the clatabase. FVebViz further enables user

to selectively filter the access log, control bindings to graph attributes, play back the

events in the access log, select a layout of nodes and links that best presents the

database's structure, and exanline the graph at any instant in time.

Hybrid approaches

Each type of the above three approaches has its advantages. Structure-based ap-

proaches analyze static data and provide users with an overview of the whole infor-

mation space. They are often used to design JVeb site management tools. Navigation-

based approaches focus on the part of the information space of interest to the user

and provide the user a fine-gained dynamic map. They are used to design navigation

tools. Content-based approaches help users find related information from the infor-

mation space and can be used in both management and navigation tools. Actually,

many projects combine these approaches or construct different overview diagrams

based on different approaches. Neuwirth et al. [Neuw87] observed that the ability to

view knowledge from different perspectives is important to help better comprehend

the information. The following are some of the hybrid approaches.

Hyperspace [Hend95] has two components, one is structure-based while the other

is navigation-based. The structure-based component reads in a list of web pages and

presents the user with a three-dimensional structure representing the relationships

among them. Instead of enforcing a predetermined arrangement on the display of

the graph as other visualization tools attempt to do, Hyperspace allows the set of

nodes and arcs to evolve its own form. This self-organization is done by randomly

placing the nodes in three-dimensional space and allowing a set of forces to act on

them until equilibrium is reached. Two types of forces are used: a repulsive force

between all objects and an attractive one between objects that are related (connected

by a hypertext link). The system of forces pushes all completely unrelated objects

apart, but keeps linked pages nearby, creating an emergent structure where pages

linked t o similar things are brought close together. HyperSpace provides several useful

features to help manage large structure. Arcs between nodes may be removed and

CHAPTER 2. LITERArrrrRE ST l1DIES 2 5

only shown on selected objects when needed, in case they will obscure useful structural

information. Virtual reality techniques are used and allow the user to move around

in the three-dimensional space to view the details of any parts of the space.

The navigation-based component is similar to MosaicG, but it builds a 3D map and

supports collaborative browsing. Rather than just observing a single user's navigation,

the system would watch several users' progress through the web and dynamically

collate the information into a database representing the group's experience of the

web. Each individual would have a separate view of this database in Hyperspace, and

would be able to custon~ize it to his own particular preferences and needs, allowing

him to independently examine and explore any part of the web. However, the data

collected and represented would reflect the group's overall progress and concerns.

This technique can introduce users to parts of the web that they have not themselves

explored but that have been mapped by others. In the collaborative system, new areas

are presented to the user with a ready built framework to navigate through, instead

of the blank unknown of completely unexplored links. This is the only project, I am

aware of, that supports collaborative browsing.

Hy+ [Hasa95] integrates structure-based and navigation-based techniques together.

Basically, it is based on navigation. When the user visits a web page, all of the web

documents that are accessible from this page are displayed on the right to this page

and linked with "ntr" edges. Web documents are represented by icons with their

URLs displayed to their right. Followed links are represented as "tr" edges, which

shows the user's navigation path. See Figure 2.6 for details. It is similar to Thoth-

11. But Hy+ reuses existing icons instead of creating a new one each time and also

provides filter facilities.

The GraphLog query language can be used to restrict the set of documents dis-

played in the view, using flexible criteria, including structural properties and regular

expression matching on URLs, anchor labels, and document titles. Another advantage

of this view is that the user has easy access to any documents which are referenced

within some visited documents without having to fetch these documents again. Its

main disadvantage is the inefficient use of screen space.

Mukherjea's Naviga t iona l View Builder. [Muk195, hIuk2951 provides the user with

CHAPTER 2. LITER.4TURE STCrDIES

Figure 2.6: Graphical view generated by Hy+. Printed with permission.

different hierarchies, each giving a different perspective to the underlying information

space and claims that it would help users to comprehend the information space bet-

ter. The hierarchies are formed automatically from hypermedia networks based on

content and structural analysis. The structure they get is called pre-tree, which is an

intermediate between a graph and a tree. A pre-tree has a root but its descendants

may be graphs, which are called branches.

The structural analysis looks at the structure of the graph and forms pre-trees. The

branches of a pre-tree are formed with content analysis based on the attribute values

of nodes. The user can guide the process to form different pre-trees that give different

perspectives to the underlying information. These hierarchies can be visualized in

different ways. Once a hierarchy is formed from the original graph structure, the

hierarchy can be transformed to other data .organization as well. Visualizations can

be formed for these data organizations also.

After transferring the information space into a pre-tree structure with many layers

CHAPTER 2. LITERATURE STUDIES 27

of abstractions, Nauigatiorml View Builder builds a three dimensional space to visu-

alize it , which combines global and local overview diagrams together. Different layers

are located at different distances from the viewer, while the most detailed layer at the

near and the most abstract layer at the far end.

One of the disadvantages is that information is lost. Some cross-reference links

have to be removed in the formation of pre-tree. The other one is that the web

documents do not contain much useful information for content-based structuring.

The authors have to insert some information manually to their test Web site. If it

is used to visualize other real Web sites, it may not be able to achieve the expected

results.

The Enhanced Mosaic designed by Gershon [Gers95] implemented three functions.

Its Hyperspace V iew uses structure-based approach to analyze hyperspace structure

and depicts the result as a visual "tree". This is similar to Hy+, but its tree can grow

automatically up to a specified number of levels instead of one level.

The second function attempts to overcome the rigidity of the Web by allowing

the user to construct interactively and visually a personal hyperspace of information

which links the documents according to the application or problem domain, or to the

user's own perception, experience, culture, or way of thinking. The smallest unit of

information on the Web is a document (or HTML "page"). But Gershon's Mosaic

allows users to define new documents that contain fragments of existing documents

and link them to other documents as they wish.

The third function includes discovery and analysis of new information and rela-

tionships in retrieved documents by aggregating relevant information and representing

it visually. It is a content-based approach.

In this sub section, we focused on approaches helping navigation in the Web based

on exist web browsers. This type of overview diagrams is used to show the Web struc-

ture only. Web pages are represented as nodes in overview diagrams. The contents of

Web pages are still shown in Web browser's window. One of the disadvantages of this

type of approaches is that two applications are running at the same time, the web

browser and the application providing the overview diagram. These two applications

compete for screen space and users have to switch focus between them. There are

some other approaches which explore mechanisnls of combining them together into

one application.

2.2.3 Overview Diagrams in New Web Browsers

One of the limitations of currently popular Web browsers is that only one Web page

can be shown at a time. Some researchers have explored the possibility of building

new Web browsers showing multiple web pages at the same time [Brow951 [Card961

[Bede97] [Lamp95]. Each web page can be scaled to a readable size and links on it can

be activated to retrieve other web pages. There are also overview diagrams to show

the structure of these displayed web pages. In this way, functions of Web browsers

and overview diagrams are seamlessly combined into one application. Following are

a few examples.

DeckScape [Brow951 is one of the new browsers that changes what is currently

a "standard" depth-first paradigm into a multi-level one. DeckScape uses a deck, a

collection of Web pages of which only the top one is visible at any time, to organize

Web pages. Each "deck" is traversed linearly, but separate decks may be maintained

in parallel, and documents may be moved between decks. With this approach users

have more control over navigating a set of disjoint pages that are either unrelated

or branch out from a common ancestor. Users can switch back and forth among

unrelated pages easily. They can use decks to help find pages that they have visited

before. Decks can also be used to organize hotlists or used to contain returns of

results of certain operations. More importantly, unlike the common browsers, state

(the contents of a deck) is preserved across invocations, so users can retain context

over time.

Books have been the most prevalent sources of information for hundreds of years.

They are common media to convey information. Using books to organize pages is more

acceptable than using decks. WebBook [Card961 implements this idea. It arranges

related single Web pages as a higher aggregate entity with the physical book metaphor

and allows rapid local interaction with it. This lets users do the most elementary

operation of sense-making: grouping. Instead of waiting for each page on a bookmark

CHAPTER 2. LITERATURE STliDIES

t o he accessed, users can access pages immediately, even fan them for rapid scanning.

The embedded Document Lens [Robe931 can be used to inspect portions of interest.

The user is able to pan and zoom over the entire set of pages, while retaining a focus

plus contest display of the book.

Given a collection of web pages, WebBook pre-loads those pages and displays them

as a collection using an augmented simulation of a physical book. 3D graphics and

interactive animation are used to give the user a clear indication of the relationship

between the pages of the book. Links are color coded so the user can easily tell the

difference between a reference to another page in the book and a reference outside the

boob. The WebBook takes advantage of advances in graphics and processor power to

get much closer to a realistic simulation of a book. At the same time, it goes beyond

what is possible with a physical book.

DeckScape and WebBook focus on organizing Web pages based on the content of

web pages. At a given time, only the page on top of a "book" or "deck" is visible.

On the other hand, the pad++ zooming browser [Bede97] and Lamping's hyperbolic

browser [Lamp951 focus on showing the link structure among Web pages. They show

Web pages with different scale and show links among them.

The pad++ zooming browser depicts Web pages on a large "zoomable" inforrna-

tion surface using Pad++ [Bede94], a substrate for building "multiscale" dynamic

user interfaces. Pad++ provides an extensive graphical workspace where dynamic

objects can be placed at any position and at any scale. In the pad++ browser, only

the Web page in focus is scaled to readable size and other Web pages are shown at

smaller scales to provide context. As a link is followed, a new page becomes the fo-

cus and existing pages are dynamically repositioned and scaled. Layout changes are

animated so that the focus page moves smoothly to the center of the display surface

while contextual information provided by linked pages scales down.

The hyperbolic browser [Lamp951 uses a hyperbolic geometry to display the struc-

ture and control size and location of nodes in the view. It displays a tree with its root

at the center, but the display can be smoothly transformed to bring other nodes into

focus. In all case, the amount of space available to a node falls off as a continuous

function of its distance in the tree from the point in the center.

CHAPTER 2. L I T E R A T I f R E S T ['DIES :3 0

This section has reviewed different overview diagrams used to help navigation

in hypertext. The next section discusses approaches to displaying large information

spaces on screen.

Detail-in- Context

Viewing very large information spaces is a challenging task. The conventional display

approach maps all of the information into a region that is larger than the display

and then uses scrolling to move around the region. This approach has the problem

that the user cannot see the relationship of the visible portion to the entire structure

(without auxiliary views).

It would be useful to be able to see the entire hierarchy while focusing on any

particular part so that the relationship of parts to the whole can be seen and the

focus can be moved to other parts in a smooth and continuous way.

Approaches that display some portion of the information at a greater level of detail

while still displaying all or much of the context (the overall structure) are known as

detail in context techniques. Several such techniques have been developed to address

the needs of many types of information structures. Many of these techniques could

be applied to browsing trees laid out using conventional 2D layout techniques.

Fisheye views [Fur11861 show the entire information space in a single view using

varying levels of detail. It is based on the fisheye lens metaphor where objects in the

center of the view are magnified and shown with great detail. Objects farther away

from the center are gradually reduced in size and detail. Furnas also suggested a

"degree of interest" (DOI) function which assigns a value to each node in accordance

with the degree to which the user is interested in seeing that node.

The use of fisheye views requires two properties of the information space: it should

be possible to estimate the distance between a given location and the user's current

focus of interest, and it should be possible to display the information at several levels

of detail. Both conditions are met for hierarchical structures.

The Continuous Zoom algorithm [Dill951 is a fisheye view technique suitable for

interactively displaying hierarchically organized, two-dimensional networks. Nodes

CHAPTER 2. LITERATliRE ST IiDIES 3 1

are displayed as rectangles. A parent-child relationship among nodes is shown with

a containment relationship, where the container is the parent. Links between nodes

can be used to represent other relationships among nodes, such as a network. Nodes

can be displayed with different levels of details. Users can control detail displayed by

expanding and shrinking nodes.

The Sh1-i1W (Simple Hierarchical Multi-Perspective) layout adjustment algorithm

[Stor951 is modified from the Continuous Zoom algorithm. It uniformly resizes nodes

when requests for more screen space are made and preserves straightness of lines and

graph topology in the adjusted views. The algorithm is flexible in its distortion tech-

nique and can be changed to suit different graph layouts. It has been used in the Rigi

system [Stor97], a reverse engineering system designed to analyze, summarize, and

document the structure of large software syste~ns. It helps visualizing and navigating

software structure modeled as nested graphs. The fisheye view in ShriMP provides

a mechanism to zoom into source code while retaining the context of the software

architecture.

3 0 Pliable Surface [Carp951 is a technique for displaying some large information

space, such as graphs or maps, by providing distorted views. It can select arbitrarily-

shaped regions (foci) on the surface and control the level of detail of display by pulling

them towards or pushing them away from the viewer. Multiple foci are smoothly

blended together such that there is no loss of context. The manipulation and blending

of foci is accomplished using a Gaussian curve-based mathematical model.

Cone Trees [Robegl], developed by researchers at Xerox PARC, is one of the

earliest instances of information visualization of hierarchical structures. A cone tree

is a 3D representation of hierarchical information: any one node of the tree is located

at the apex of a cone and all of its children (the information subordinate to that

represented by the node) are arranged around the circular base of another cone. In

contrast to node and link trees, the cone tree makes the largest amount of information

visible at same time. Any node can be brought to the front by clicking the mouse

on it and smoothly rotating the tree (which also helps the users to keep the larger

structure in mind).

Tree maps [ShneE] is another technique for visualizing hierarchical data. ,4 hier-

archy is drawn as a set of nested boxes in which each node is depicted as a rectangular

region composed of the rectangular regions that represent its children. The main ad-

vantage is its ability to visualize large hierarchies, which it achieves through its linear

top-down space-filling layout algorithm. It can emphasize nodes by "weight". The

disadvantage is that hierarchical structure is not clear.

Lamping's Hyperbolic Geometry method [Lamp951 lays out the hierarchy in a uni-

form way on a hyperbolic plane and maps this plane onto a circular display region.

This supports a smooth blending between focus and context, as well as continuous

redirection of the focus.

The hyperbolic plane is a non-Euclidean geometry in which parallel lines diverge

away from each other. This leads to the convenient property that the circumference

of a circle on the hyperbolic plane grows exponentially with its radius, which means

that exponentially more space is available with increasing distance. Thus hierarchies

- which tend to expand exponentially with depth - can be laid out in hyperbolic space

in a uniform way, so that the distance (as measured in the hyperbolic geometry)

between parents, children, and siblings is approximately the same everywhere in the

hierarchy.

While the hyperbolic plane is a mathematical object, it can be mapped in a natural

way onto the unit disk, which provides a means for displaying it on an ordinary

(Euclidean) display. This mapping displays portions of the plane near the origin using

more space than other portions of the plane. Very remote parts of the hyperbolic plane

get miniscule amounts of space near the edge of the disk. Translating the hierarchy

on the hyperbolic plane provides a mechanism for controlling which portion of the

structure receives the most space without conlpromising the illusion of viewing the

entire hyperbolic plane. The author provides effective procedures for manipulating

the focus by using pointer dragging and for smoothly animating transitions across

such manipulation.

HotSnuce (or Project X) [Proj96] is a 3D browser that accepts MCF (kleta Con-

tent Format) files. It presents content in a view with floating nodes. Users can fly

through the space in 3D with mouse or keypad, quickly navigating through branching

CHAPTER 2 LITERATURE ST lrDIES 3:3

structures. Siblings of nodes are grouped together such that the user can distinguish

each of them when close enough. This technology prototype will allow users to move

forward, backward and laterally within the HotSauce window. The content of the

window is called the X space.

Pad++ [Bede94] provides a 2D Pan/Zoom space which is a powerful visualization

tool for hierarchical data. The Pad++ surface is an infinite "zoomable" space where

objects have an absolute physical location. The metaphor is not one of viewing a

small part of the data through a window, as in MS-Windows. Instead, all of the

data is placed directly on the Pad++ surface, and users navigate through the data

by panning and zooming.

In Pad++ there is a sense of peripheral awareness. When objects are small or off

to one side, the user can still see them, and can still make out a little of their contents,

though they are not shown in all their detail. When the user looks directly at them

and zoom in, all of the detail becomes available. Hence the Pad++ metaphor offers

a new route for tapping into our natural spatial and geographic ways of thinking.

We have reviewed several systems and approaches, designed for orientation and

reducing cognitive overhead. Overview diagrams are widely used to help users to

understand hypertext structure. Detail-in context technique is an appropriate tech-

nique to display large hierarchical structures. The Continuous Zoom algorithm has

been successfully used to visualize large networks and software structures, but it has

not been used to visualize the Web structure. This is what CZWeb actually does.

It uses Continuous Zoom algorithm to display a simple view showing Web structure

built based on navigation and attempts to help users to navigate the Web. In the

next chapter, we shall discuss CZWeb's design goals and its features.

Chapter 3

CZWeb Design and Features

3.1 Design Goal and Challenge

The Web is currently the most popular hypertext system. Though graphical browsers

such as Netscape, Mosaic and Internet Explorer implement many navigation tools

for the user such as Footprints, Backtracking, History List, Bookmarks, and Search

engines, navigation problems are still present. More adaptive, intelligent assistance

in navigation is needed.

Our goal is to provide Netscape users with aids intended to help reduce the prob-

lems of disorientation and cognitive overhead.

Overview diagrams are one of the good tools to provide contextual information,

which is helpful for navigation in hypertext. But Netscape and other web browsers

do not provide overview diagrams, because of the sheer quantity of information and

fast changing nature of information on the Web. The logical choice is to build some

external overview diagrams. However, constructing effective overview diagrams for

the Web is a challenging task. There are four main problems involved:

The size of the Web is so large that it is hard to provide so much information

in one overview diagram. Even if such an overview diagram were implemented,

users may not need it. Each user may have his/her own interest in particular

web sites or information related to a particular topic. Nobody has the time

CfHL4PTER 3. C'ZWEB DESIGN .41YD FEATlrRES :3 5

to view all of the documents on the Web. The problem we must solve is how

to filter the information available on the web and provide only inlportant and

useful information to the user.

The Web is a very complex multidimensional network whereas traditional dis-

play techniques are only two and three dimensional. How to project such mul-

tidimensional data onto a two or three dimensional display without losing in-

formation is also a problem.

After deciding what to present, the next problem is how to show it on the screen.

The size of the screen is limited and it is hard to fit the whole information

structure on it. It would be useful to be able to see the entire information space

while focusing on any particular p a t of the space so that the relation of parts

to the whole can be seen(detai1 in context).

The user interface should allow the user to easily view and manipulate the

information displayed. Web browsers are designed for general web users rather

than computer experts. Anyone who can use a mouse can use a Web browser.

Overview diagrams used to assist Web browser users should have a user interface

consistent with Web browsers.

In this chapter, I will discuss our approach to the above problems and certain

design aspects of their integration into CZWeb.

3.2 What Information is the Most Important?

Because of the size of the Web, it is not a practical idea to build a simple overview

diagram containing all of the information in this hyperspace. All of the approaches

and systems designed to study the Web visualize only part of the hyperspace. The

structure-based approaches and content-based approaches build overview diagrams to

show the structure of local Web sites. The navigation-based approaches organize only

visited part of the Web.

The goal of some Netscape users is to find and assimilate the infornmtion on the

Web. We believe that the historical information is more inlportant than the whole

structure of a Web site for this group of users. This is based on the methods people

use in searching for information on the Web. Historical information is defined as

the temporal sequences of page visits and the internal hyperlinked structure of those

visited pages.

When people search for information on the Web, three possible methods are:

Use search engines available in Netscape. These search engines will return a

long list of items.

Start from a web page that contains links to other web sites or documents. The

URL of the starting page may come from another person, or might be discovered

by accident.

Browse a Web site from the home page of a person or an institution.

For the first two methods, hyperlinks in the starting pages point to different Web

sites located around the world. If we use structure-based approaches to map all of

these web sites, it may take a very long time and create a very complex structure.

For the third method, we can use structure-based approaches to map a local Web

site. But, even if we get a map of the structure of all the web documents, it is still

very hard to find relevant information, because Web does not provide useful semantic

attributes, such as topics, for documents. Actually, a Web site may contain a very

large number of pages, most of which are not related to what is sought.

In all three cases, browsing through hyperspace is necessary. Navigation-based

approaches, which provide maps to show the structure and relationships of all visited

Web pages would seem most useful.

CHAPTER 3. C'ZWEB DESIC:!Y AVD FE,4TlrRES

3.3 Transforming the Web Structure

3.3.1 Mental Models o f the Web

It is generally assumed that users apply n~cntn l models in trying to understand and

predict system behavior, and that their success in using a system depends on how well

their mental models correspond to a model represented in the system design [BaecSS].

The underlying structure of the Web is a network. In order to better understand

users' rnental models of the Web, an informal survey was done as part of the CZWeb

usability study project for an HCI course[Cour96]. We showed our subjects four

diagrams, see Figure 3.1, and asked them to select one that best represents the Web.

Four of the five subjects selected the second diagram.

Figure 3.1: Diagram Used in Interview

Based on our interviews, our subjects thought that the Web consists of many con-

nected sites. separated in space, and that the information was stored in a hierarchical

structure like a file system at each site.

Carroll [CarrSd] pointed out that "People will map a new concept to what they

already know, which may help them to understand the new concept." The Web is

C'H,WTER 3. C'ZWEB DESIGN AND FEATURES 3 S

a new concept to users, though it is more complicated and less organized than a file

system, but people are familiar with file systems, so that it seems natural for them to

think of the Web as a big file system.

3.3.2 Managing Historical Informat ion

We also designed a "treasure hunting" game to help in our CZWeb usability study.

The subjects were given a starting Web site with some clues and were asked to find a

special page containing some required information. In order to finish this task, they

should understand how information was organized in that Web site. Unfortunately,

Netscape does not provide this kind of infornlation automatically. They had to find

it out for themselves by browsing. The design of the game was not successful. Among

the five subjects we had, only one subject found two of the three "treasures", three

subjects found one and one subject found nothing. However I found something inter-

esting by observing the subjects' searching pat terns. Starting from the given page,

they selected a link and followed it. If they could not find the information there, they

might go one more step deeper. If they still could not find what they were search-

ing for, they would, in most cases, use the 'Back' button once or twice and go back

to previous pages and try another path. In other words, they kept their navigation

within three levels most of the time. Actually, some "treasures" in this game were

located deeper than three levels. This was the main reason why the subjects could

not find them.

Catledge and Pitkow [Cat1951 have obtained a similar result from their strategies

studies: "... The example above is very typical in that users rarely traverse more

than two layers in the hypertext structure before returning to an entry point. Initial

evidence suggests that this pattern occurs independent of hyperlink per page ratios."

When users try to find some information about an institute, they usually start

from its home page. The reasons are:

0 All information about a institute are accessible from its home page

0 URLs of home pages are easy to remember

CHAPTER 3. C'ZU'EB DESIGN A N D FEATURES

Many users save home pages in their bookmarks

0 IJRLs of most of the home pages can be coined from the name of institutes

Searching information starting from home pages is much like our "treasure hunt-

ing" game. Web documents of an institute are arranged hierarchically. After visiting

the home page, which is located at the top level in the hierarchy, users traverse down

the hierarchy to read one subject in depth, and then backtrack up to the top level to

find another subject.

The facts we described above suggest that a user may be able to manage a three-

level tree in his mind without external aids. Based on this suggestion, if we can build

a hierarchy similar to the one in the user's mind but with more levels of detail and

show it visually, users may be able to combine these two hierarchies easily. On the

other hand, linear history lists provided by Web browsers are hard to transfer into a

hierarchy.

This suggests that navigational aids to web browsers should display not only the

sequence of web page visits but also the underlying hierarchical structure. The chal-

lenging task of showing Web structure is transferring it into an appropriate structure

which can be displayed on screen. Link-base structuring is used in many approaches.

3.3.3 Link-based Structuring

Many approaches have been developed to organize the historical information into

a visual tree or tree-like structure, such as MosaicG[Ayue95], WebMap[Domeg4],

WebJournal[Desa94], and Hy+ [Hasa95]. Visited documents are represented as nodes

and hyperlinks are represented as edges in these trees.

The tree structures they build are based on the link relationship embedded in web

documents. When they simplify the underlying network structure of hypertext into a

tree or tree-like structure, a node is considered to be a child node of another node if

there is a hyperlink pointing from the latter to the former. I call this type of approach

"link-based structuring" approach.

The main disadvantage of link-based structuring approaches is that some informa-

tion is lost during the structuring process. The World Wide Web is a graph or network,

CHAPTER 3. C'ZII.rEB DESIGN AA'D FEATURES 4 0

which means there can be nlariy cross-connections between web documents. Those

cross-connections are very important for understanding the web structure. But tree

structures cannot contain cross-connections. In order to simplify the web structure

into a tree, two approaches have been discussed in the literature. One is represented

by Thoth-I1 [Co1187] and the Tree View of NetCarta's WebMapper. Here, nodes are

not reused ancl new tree nodes are created when needed so that a node in the hyper-

text may be represented with several nodes in different places in the tree. If node A

contains a link to node B ancl node B contains a link back to node A, the tree will

have infinitely many levels! Another disadvantage with this approach was that the

use of space was inefficient.

The other approach is used more often, and simply removes or hides those cross-

connections. Navigational View Builder [Muk195] removes part of the cross-connections

and builds a "pre-tree". The Cyberbolic view of NetCarta's WebMapper and MosaicG

keep the cross-connections internally but hide this information from the user. From

the structure built in this way, the user may get the mistaken idea that the Web

structure is just a hierarchical structure.

3.3.4 Our Approach - URL-based Structuring

We propose a novel approach to represent the web structure. Our structure preserves

the cross-connections of the Web explicitly and shows the correct network structure

to the user.

Since the Web structure is a network, representing it with a network will not lose

information. Pages are represented as nodes and hyperlinks are represented as links

in the network. As we pointed out in the previous chapter, the main disadvantage

with this approach is that the screen gets cluttered with too much information.

Our solution to the cluttering problem is organizing the nodes into a hierarchical

tree. With this abstraction, it is easy to control the amount of information to display.

Thus there are two structures in the same overview diagram, a network and a tree.

The network is used to represent the hyperlink relationship among nodes and the tree

is used to organize the nodes. Nodes are shared by both the network structure and

CHAPTER 3 . C'ZI/CrEB DESIGN .&VD FEATIIRES

the tree structure.

In our overview diagram, the network structure is shown using arrows to represent

links and the tree structure is represented by containment relationship among the

nodes.

An algorithm I developed to build the tree is based only on the structure of the

URLs of the web docun~ents, so that I call it a CJRL-based structuring approach. The

relationships among web documents (i.e. the hyperlinks embedded in them) form the

links in the network; we note that they have no contribution to building the tree. A

user's actions in accessing web pages (activating anchors, typing in URLs or selecting

items from history list or bookmarks) will affect the network structure, but will not

affect the tree structure. This is the main difference between URL-based structuring

approach and other link-based structuring approaches.

Before discussing the URL-based structuring approach, we briefly review the struc-

ture of URLs.

3.3.5 The URL Structure

A URL (Uniform Resource Locator) is an address for a piece of information on the

Web. It is unique for every item, and every item has a URL. A URL is composed of

three pieces of descriptive informat ion about a document:

The protocol which is used to speak with the server on which the item resides

The Internet name of the server

The file name of the information iten1 on the server

These three pieces of information are put together in a standard to form the URL:

protocol://servername/filename

For example, URL http : //fas.sfu.ca/cs/research/groups/Graphics.html refers

to a document describing our graphics laboratory. This document is available us-

ing the HTTP protocol. The server on which it resides is called fas.sfu.ca, the

CHAPTER 3. C'ZU'EB DESIGN AND FEATC;RES 4 2

server for the School of Applied Science in Simon Fraser University. The file name is

/cs/research/groups/Graphics.html.

The servernames are organized into a hierarchy using a technique called the Do-

main Name System. The Domain Name System is a method of administering names

by giving different groups responsibility for subsets of the names. Each level in this

system is called a domain. The domains are separated by periods [Kro195]. As you

proceed left to right through a servername, each domain you encounter is larger than

the previous one.

Files residing on a server are organized into a hierarchy too. This hierarchy is the

same as a UNIX file system. Each level in the file system is called a directory. The

directories are separated by "/". The container relationship order is reversed from that

of the Domain Name System. In the name /cs/research/groups/Graphics.html,

file Graphics.htm1 resides in directory Groups , which is a subdirectory of research.

Directory research is a subdirectory of cs.

Clus ter -Page S t r u c t u r e

In our first approach [Co1195, Co11961, we automatically organized nodes into a hier-

archy with two levels. Two types of nodes, page nodes and cluster nodes, are used.

Visited web pages are represented as page nodes. When the user visits a new page,

CZWeb creates a new page node to represent it. Page nodes are grouped with cluster

nodes. We retrieve the server names from the URLs of the pages and create a cluster

node for each server. All of the pages from the same server reside initially in the same

cluster node representing that server.

Links are drawn from page node to page node. When the user activates a hyperlink

in the current page displayed in Netscape's window and visits a new page, a link is

created from the current page to the new page. if one does not exist.

This approach helps alleviate the cluttering problem, but does not solve it. If the

user visits many pages located in the same server, the cluster node representing that

web server will be very cluttered.

If the user visits many servers, the top-level window will be cluttered. In both

cases, the user has to manage the screen space manually. C'ZWeb allows the user

to modify the automatically created hierarchical structure by dragging a node and

dropping it into another node.

URL-tree Structure

In order to solve the cluttering problem, a more sophisticated approach is needed. I

propose a new approach called URL-tree structure. With this approach, there is only

one type of node and all of the nodes are organized into a tree, called a URL-tree. The

URL-tree is created based on the structure of URLs of web pages which the nodes

represent and can have any number of levels. Nodes in the URL-tree may represent

Web pages or Web servers. The URL-tree structure is an extension to the Cluster-

page structure; it is a more abstract representation of the information and it provides

an additional stage of information abstraction. A detailed description of creating the

URL-tree will be postponed to the next chapter.

Visual Representation of the URL-Tree Struc-

ture

Some navigation-based approaches draw trees or graphs on the screen to represent

their "tree" structures. These approaches have two disadvantages: first, the screen

space is not used efficiently; second, when adding a new node or deleting an existing

node, all of the nodes and edges in the tree have to be reorganized in order to create

an aesthetic layout of the tree. The user may lose any sense of structural continuity

with this kind of continuous change.

CZWeb provides a single overview diagram to show its internal structure and it

uses the Continuous Zoom technique to manage the display space. With the Contin-

uous Zoom algorithm, the tree structure is represented by containment relationship

among nodes rather than by edges. Nodes are represented as rectangles with their

children inside. The user can interactively and continuously change both the size and

location of any node. When the size of a node is changed, the size of other nodes will

be changed accordingly to use available display area effectively and to avoid nodes

overlapping. The algorithm provides a smooth change in visual state, which gives the

user a sense of visual continuity among states. The topological relationship between

nodes is also retained after the change. When new nodes are added in, the structure

is changed. It may influence the location and size of existing node. We are seeking

algorithm to minimize the influence.

Another key advantage of the Continuous Zoom algorithm is that it supports

multiple focus points - more than one node at different parts of the overview diagram

can be focused on and opened to varying levels of details at the same time.

Nodes managed with the Continuous Zoom algorithm have two states: opened

and closed. Opened nodes show their children while closed nodes hide their children

so that they take less space. The user may close or open nodes to control the space

and visual clutter explicitly. In this way, the user may focus on a part of the overview

diagram to look at any desired level of detail while still retaining the surrounding

context.

In CZWeb's implementation of the Continuous Zoom algorithm, cluster nodes can

be opened and closed. Page nodes only have one state. They cannot be closed but

are resizable. Because page nodes are leaves in the hierarchy and they do not contain

other nodes.

The graphical representation of a page node is a rectangle with its label displayed

inside. The user can choose to display any one of its three labels: URL, title, or

a name assigned by the user. There are two control handles available for the user

to control the size (the rectangular area) of the node. The one at the upper right

corner is the zoom handle. When the zoom handle is dragged, the Continuous Zoom

algorithm is applied and it will adjust the size of all nodes. The handle located a t the

lower right corner is called the resize handle. Dragging the resize handle of a node

only changes the size of the node itself.

An opened cluster node looks like a window. In addition to the zoom and resize

handles, it has a title bar and a close box. The title bar displays the name of the cluster

node. The close box closes the cluster node. A closed cluster node is displayed as a

folder icon with its name underneath (and all of its children hidden)(See Figure 3.2).

CHAPTER 3. CZWEB DESIGN AND FEATURES

Figure 3.2: A Typical Overview of Cluster-Page Structure

Links are represented as arrows between two nodes. An arrow pointing from page

node A and to page node B means that the user followed a hyperlink in the web page

represented by page node A and went to the web page represented by page node B.

Links are visible if both of the linked nodes are visible. If a node is not visible (one

of its ancestors is closed), all of the links that link to or from it are instead linked to

or from its nearest visible ancestor. All of the links inside a closed node are hidden.

With this abstraction, we can reduce the cluttering of links.

The overview diagram not only displays the structure, but also is interactive and

provides a facility to access any visited web pages easily. Nodes in the overview

diagram form patterns. The user can easily recognize visited pages from those patterns

and their locations. Double clicking on any page node brings Netscape back to the

web page associated with that page node. Double clicking on a closed cluster node

opens that cluster node.

The page node representing the current web page displayed on Netscape is always

highlighted and serves as a reference for orientation.

Figure 3.3: A Typica,l Overview of URL-tree Struct,ure

The URL-tree structure approach, on the other hand, uses only one type of nocle

(See Figure 3.3) . Its graphical representation is similar to that of page nodes in the

cluster-page structure approach. All of the nodes are resizable and have two states,

closed and opened. An opened nocle displays its name ancl its children if any are

inside its rectangular area. A closed node is displayed as a folder icon with its name

underneath and is not resizahle.

3.5 Dynamic Updating of the Overview Diagram

As the user navigates through the Web with Netscape, the overview diagram is kept

updated dynamically. New nodes are added to the view as new pages are visited.

Existing nodes can be removed ancl their relationships can he modified according to

request of the user.

With the cluster-page structure, when the user visits a new Web page, a new

page node is added to the overview diagram to represent that page. If there is no

C H A P T E R 3. C'ZWEB DESIGN A N D FEATl iRES

cluster node representing the server the web page resides on, a new cluster node is

created before the new page node is created. A link is created pointing from the

node representing the previous web page to the new node. If the user returns to a

visited web page, no new node is created, but the node associated to that web page

is highlighted and a new link may be created if one does not exist.

The user can delete a node manually, if he is not interested in that node. When

a page node is deleted, all of the arrows linking to or from that node are deleted.

When a cluster node is deleted, all of its children are deleted as well. Other nodes

will not affected. The user can also re-construct the automatically created structure

by dragging and dropping.

One problem which occurs with this kind of dynamic system is that a small change

can cause the whole view to be re-constructed which may affect the visualization be-

cause the user may lose the sense of structural continuity. The location and topological

relationships among nodes serve as cues for the user to recognize visited pages and

should be affected as little as possible when the user adds or deletes nodes. We made

some efforts to achieve this goal.

First, we consider the location of the new node. I designed an algorithm called the

"cowboy algorithm", which can determine the largest empty rectangular area inside

a parent for a new node. The algorithm first divides the parent's rectangular area

into small rectangles, according to its old children' sizes and locations, then unites

adjacent unoccupied small rectangles to form larger ones.

The "cowboy algorithm" works well. When a new node is added in, it never

overlaps with exist nodes. But it is not efficient. When the number of nodes grows,

the speed declines. The other reason we do not use it any more is that the location

it finds may be far away from the current highlighted node. The highlighted node

represents the web page displayed on Netscape's window. When the user navigates

from this page to the new page, there is some relationship between these two pages

so that we hope they stay close.

The current algorithm we are using is much simpler. -.. It works in the following way:

if the new node and the previous highlighted node that represents the page displayed

on Netscape have the same parent node, the new node is placed on the right side of

CHIZPTER :3. CZb\'EB DESIGN AND FEATURES 48

the previous highlighted node. If the new node and the previous highlighted node

have different parents, the new node will be placed somewhere near the center of its

parent.

With this algorithm, the new node may overlap with other nodes when it is added

in. A "spring layout algorithm" is used to separate them later.

In the spring layout algorithm, nodes are linked with invisible springs, which

are created based on the arrows between nodes. The algorithm to create springs is

discussed in the next chapter.

Nodes are forced to move by forces created by springs. When an equilibrium is

achieved, all of the nodes with springs connected to each other will stay together to

form a group and nodes without springs among them will stay relatively far apart.

Those patterns will help the user to recognize nodes. There should be no overlapping

among nodes if enough space is available. If the user moves a node within its parent

cluster node, the current equilibrium is broken. When a new equilibrium is achieved,

the map may show a different pattern. If the user modifies the structure of the nodes,

the structure of the springs will be modified accordingly.

After deciding the location of a new node, the next thing we need to consider is

how to add it to the overview. Simply displaying the node in its location with its

expected size is easy and fast. The problem is that it is too fast for the user to notice

that a new node has been added in. We therefore choose to use a slower method which

works as follows. When a new node is added in, its initial size is very small (about

5x5 pixels) and it grows to its default size with the Continuous Zoom algorithm. As

the new node is small, it minimizes the possibility of overlapping with other existing

nodes. Because we rely on the spring layout algorithm, we do not check whether its

location is occupied or not. Another advantage is that it gives users some preparation

for the appearance of a new node. When they watch it grow, users can easily notice

that a new node has been added in as long as not a lot of other shifting is occurring.

C'H'APTER 3. C'Z'CC'EB DESIGN .A,VD FEATURES

Modify the Default Structure

The structure in the overview diagram automatically created by CZVL'eh is based

on the URL structure and file system structure. Because people may have different

opinions about the shape of a structure to represent the Web, CZWeb allows users to

modify the automatically created structure manually by dragging and resizing. For

example, CZWeb does not build any content based structuring, but lets users do this

manually. Cluster nodes can be created manually to organize Web documents on

some special topic in any way a user wishes.

Arrows links two page nodes when they are created. Users can remove existing

arrows but they can not add new links manually. They are also not allowed to modify

the direction an arrow.

3.7 Mapping Attributes of Nodes

In our Cluster-page structure version, cluster nodes have names automatically assigned

as the server names, but the user is allowed to modify them. Normally, the names of

cluster nodes are not very long and they can be displayed in the title bar for opened

cluster nodes and under the folder icon for closed cluster nodes.

Page nodes have three labels: URL, Title and Name. The URLs and Titles are

from the web pages. The Names are assigned by users and can be any strings, but

users need not assign a name to each page node. The default name of a node is the

same as its title. The user can choose to display any of the three labels.

Both the URL and Title of a web page are long strings and displaying long strings

aesthetically on the screen is a challenging task.

CZWeb represent page nodes with resizable rectangles and display the strings

inside, with long strings divided into a maximum of three lines. The first line holds

characters copied from the beginning of the string until the total width of those

characters is larger that 40 pixels. The second line starts from the next word from the

original string and holds as many characters as possible until the total width exceed 40

pixels, and so is the third line. For example, the title "School of Computing Science7'

may be split into such three lines: "School o", Tomput in" and "Science". A page

node has a maximum and minimurn size. A page node with maximum size, which is

about 30x40 pixels, can display three lines of characters in full. A page node with

minimum size, which is about 10x20 pixels, can only display the first four characters

of the first line.

The characters truncated in this way seem to be readable and make sense. Further,

low aspect ratio rectangles are easier to manage with the Continuous Zoom algorithm

and spring layout algorithm than long and narrow boxes.

In addition to the static text displayed, a pop up window is used to display the

title of a page node and the name of a cluster node. If the mouse is moved on a node

and stays there for a moment, a window with the name or title will be pop up. The

pop up window disappears if the mouse is moved.

3.8 Other User Interface Considerations

CZWeb is implemented on the Macintosh platform. Its user interface is designed to

have the "look and feel" of typical Macintosh applications. The design also follows

Marcus' principles [Marc901 to achieve effective visual communication. For example,

menus and dialogue boxes are designed to take into account both the content to be

displayed and the screen resolution. Only two fonts and two sizes are used for all the

text displayed.

Similar control handles and manipulation methods are provided for both page

nodes and cluster nodes. The 'resize' handle is inconsistent with that of Macintosh

window, however, because the nodes may be very srnall and do not have enough space

for a constant size square handle. We therefore chose to use Open Window's resize

handle, which takes less space. This also follows Marcus's fourth aspect of consistency:

"when not to be consistent."

'Resize' handle and 'zoom' handle have different functions and are distinguished

via different cursor shapes when the mouse is moved onto them. When the mouse is

pressed inside a node, the cursor is changed to show the affordance of movement.

Color is very difficult to use. Taylor [Tay186] comments on color in this way: "Color

can be a powerful tool to improve the usefulness of an information display in a wide

variety of areas if color is used properly. Conversely, the inappropriate use of color

can seriously reduce the functionality of a display system." Marcus's recommendation

is: "Use appropriate highlighting and deemphase techniques to convey meaningful

semantic distinctions." Based on such guidelines, only four colors are used: black, red,

blue, and green. Black is used for normal drawing and red and blue for highlighting.

Red is used for the page shown on Netscape currently. It is the most important node

and should be outstanding. Blue represents 'selected'. The user can select nodes and

edges to manipulate them, such as modify their attributes or delete them. More than

one item can be selected at one time. Normal edges are displayed as green. Marcus

emphases that "The basic idea is to use color to enhance black-and-white information,

that is, design the display to work well first in black-and-white." Our current version

is based on black-and-white and no background color has been added yet.

In earlier versions, sound was used to indicate that no more space is available for

zooming. However feedback showed that it was annoying to the user, so that it was

removed from later versions.

We discussed CZWeb's design goals and features in the chapter. The next chapter

will discuss the important algorithms used in CZWeb in detail.

Chapter 4

CZWeb - Internal Operation and

Algorithms

This chapter discusses detail of algorithms designed to implement CZWeb. First I

shall discuss the scheme used to communicate with Netscape Navigator, then describe

our algorithm to build the URL-tree, a structure used to organize visited web pages.

The structure is displayed on screen with the Continuous Zoom algorithm, which is

extended to meet CZWeb's special requirements. A simple spring layout algorithm is

discussed last which is used to make minor adjustments to the location of nodes.

4.1 Communication with Netscape Navigator

CZWeh is implemented on Macintosh platform with Metrowork's CodeWarrior. It

functions as a "companion" program to Netscape, with communication between Netscape

Navigator and CZWeb occurring through Apple Events. When it starts, CZWeb

checks whether Netscape Navigator is running. If Netscape Navigator is not running,

CZWeb will ask the user to launch it. Netscape Navigator provides an API [Nets941

(application programming interface), which allows other applications to communicate

with it and control its behavior. CZWeb registers itself to Netscape Navigator as

an "echo" application, which asks Netscape Navigator to send the URL with "URL

echo event" whenever it downloads a web document. CZWeb can also send Netscape

CfH.4PTER 4. C'ZM'EB - I N T E R N A L OPERATIOK 'AND ALGORITHMS 5 3

Navigator App1eEwnt.s and ask it to download and display a web page.

4.2 Building a URL-tree

CZWeb uses a hierarchical structure, called a URL-tree, to organize nodes. The URL

tree is built based on the URLs of the web pages the nodes represent. In order to build

the URL-tree, each URL is split into an ordered list of items based on its structure.

Each of these items is inserted as a unit into the URL-tree, which starts as an empty

tree.

Let us use the following set of web pages as an example to show how the URL-tree

is built. It is a subset of web pages in SFU's Web site. A Web site is defined as a

group of related web documents. Those documents may be located in one or more

than one web server.

1. http://www.sfu.ca/

2. http://www.sfu.ca/communication/

3. http://fas.sfu.ca/

4. http://fas.sfu.ca/ensc/

5. http://fas.sfu.~a/ensc/~eople/

6. http://fas.sfu.ca/cs/

For these six pages, the URL-tree built with this algorithm looks like Figure 4.1.

The URL-tree shown in Figure 4.1 is a complete tree to represent the structure of

the above set of pages. We will have a tree like this after page 2, 5 and 6 having been

visited.

But users can only visit pages one by one and may not want to visit all of the

pages. It is not necessary to build the complete URL-tree after users visit only one

page. I designed an algorithm, which will build the URL-tree incrementally as users

CHAPTER 4. CZWEB - Ii"V'TERIVL4L OPERATION A N D ALGORITHJIS 5 4

protocol

I filename

Figure 4.1: The Complete URL Tree

proceed. Different URL-trees may be formed to represent the same Web site according

to different visiting sequences.

If the user visits four pages in the above set of pages in the sequence 4, 5, 6,

and 2, the URL-tree is built in the following way. At the beginning, the URL-tree is

empty. When page 4 is visited, its URL http : / / f a s . s f u . c a / e n s c / is split into the

ordered list: http, ca, sfu, fas, ensc. All of the items in this list are inserted into the

URL-tree, which then looks like diagram 1 in Figure 4.2(a). When page 5 is visited,

the list we get from its URL is http, ca, sfu, fas, ensc, people. When these six items

are inserted into the URL-tree, only the last item, people, is actually added to the

URL-tree, because the first five items are already there. After this, the URL-tree

looks like diagram 2 in Figure 4.2(a). When the user visits more pages, the URL-tree

will grow in this way. See diagram 3 and 4 in Figure 4.2(a) for how it grows after the

user visits page 6 and page 2.

Figure 4.2(a) is the internal representation of the URL-tree. It is possible to

represent each node in the URL-tree with a graphical node on the screen. The prob-

lem is that we may get many unnecessary nodes on the screen. For example, URL

http : //fas.sfu.ca/ensc/people/ could be split into a list with six items. If CZWeb

displays six nodes to represent this single page, the user might get confused. The

URL-based structuring algorithm creates nodes on the screen only when they are

CHAPTER 4. C'Z'CT.'EB - INTERNAL OPERATION A N D ALC:ORITHL\IS 5 r 5

1 stage 1 (4)

2 stage 2 (4 - 5)

3 stage 3 (4 - 5 - 6)

4 stage 4 (4 - 5 - 6 -2)
a

people 5 A

2

ww/communication

ensc

Figure 4.2: Comparison of the Internal URL-Tree and the External URL-tree

needed. Nodes may be used to represent a web page or a server. They may also

be used as a container to organize other nodes. In order to do this, the algorithm

creates another tree to represent nodes clisplayed on screen which is called the exter-

nal URL-tree, see Figure 4.2(b). I shall refer to the tree in Figure 4.2(a) as internal

URL-tree.

When items are inserted into the internal URL-tree, the last item in the list is

marked (it is outlined with a thick line in Figure 4.2(a)), indicating that we need

to add a new node in the external URL-tree to represent this new page. Note that

adding a new node may result in its parent also being marked.

The new node is added in the following way. Starting from the marked node in

the internal URL-tree, we search backward up the tree until an ancestor is met, which

satisfies one of the following three conditions:

1. it is marked

2. it is the root

3. it is not marked but has two children (if a node has more than two child nodes,

it should have been marked.)

For case 1 and 2, a new node is added to the external URL-tree as a child node of

the node in the external tree which corresponds to that ancestor found in the internal

URL-tree. Then we link this new node to the marked node in the internal URL-tree.

The name of the newly created node in the external URL-tree is formed by combining

all of the items in the internal URL-tree we passed by during the backward searching.

For case 3, since there is currently no corresponding node in the external URL-tree

for the ancestor found, we need to create one (let us refer it to the new parent node) in

the external URL-tree before we can add any children to it. It is a recursive process

and the way to create the new parent node is the same as we just described.

The new parent node is inserted into middle of the hierarchy, rather than the leaf

level. This kind of structure modification will affect nodes located below the new

parent node's parent in the hierarchy. All those nodes are pushed down one level in

the hierarchy. But we need only modify the location of one node.

When the nrw parent node is inserted, its parent node has one child node (referred

to as a sibling node). The sibling node is the only one we need to modify. Its parent

should be changed from the new parent node's parent node to the new parent node

and its name should be modified to fit into the new structure.

For example, at the beginning, both the internal and external URL-trees are empty.

When the user visits page 4, five items are inserted into the internal URL-tree. The

last one ensc is marked. Then we search backward up the internal URL-tree, the

root is met. A new node is added to the external URL-tree as a child to the top level

window, which is the root of the external URL-tree and corresponds to the root of

the internal URL-tree. See diagram 1 in Figure 4.2(b). This new node corresponds

to the marked node, ensc, in the internal URL-tree.

The name of this new node, ca/sfu/fas/ensc, is formed by combining all of the

nodes passed by in the internal URL-tree. The nodes passed by are ensc, fas, sfu,

and ca. Because http is the default protocol, it is not added to the name.

When the user then visits page 5, its URL is split into six items. The last one

people is marked and inserted into the internal URL-tree. When we search back from

people, pnsc is met which is marked. Then a new node, people, is added to the

external URL-tree as a child node to node ca/sfu/fas/ensc, which corresponds to

node ensc in the internal URL-tree. See diagram 2 in Figure 4.2(b).

When the user then visits page 6, item cs is marked and inserted into the internal

URL-tree. Node fas is met by searching back from cs. Fas is not marked yet but it

has two children ensc and cs. We have to create a node in the external URL-tree to

represent it before we can handle the cs node. We start from fas and search back

up the internal URL-tree and this time the root is met. A new node is added as

a child node to the root of the external URL-tree to correspond to node fas in the

internal URL-tree; its name, ca/sfu/fas, is formed by combining the names of the

node we passed by, fas, sfu, and ca. Then we modify the root's former child node,

ca/sfu/fas/ensc, to be a child node to the new created node ca/sfu/fas and modify

its name to ensc. Now we can add node cs as a child to node ca/sfu/fas.

Note that node ca/sfu/fas is created for structuring and it does not associate to

any web page at the current stage.

CHAPTER 4. C'ZWEB - INTERNAL 0PER.4TIOAY A N D ALGORITHiLIS .5 8

The situation for visiting page 2 is similar to that of page 6. See Figure 4.2(b) for

each of the steps in creating the external URL-tree.

The result of this stage of processing is a hierarchical tree representing, at any

stage, the nodes visited so far. The tree also indicates a name for each of the nodes

to be displayed. In the following sections, we describe how these nodes are laid out

in the display window.

4.3 Displaying the URL-Tree

The previous section described building a structure to organize nodes. In this section

we describe an algorithm we developed to show this structure visually. The algorithm

is an extension of the Continuous Zoom algorithnl[Dill95].

4.3.1 Background

As we discussed section 2.4, there are many techniques to display hierarchical struc-

tures. The main challenging task is to solve the cluttering problem. The screen size

is limited so that when the number of nodes increase, it is impossible to display all of

them visibly on screen.

The Continuous Zoom algorithm indicates hierarchy by a geometric containment

relationship. It is a detail-in-context algorithm, which displays a particular portion of

a hierarchical structure at a greater level of detail while still displaying all or much

of the context (the overall structure). But it has some shortcomings that affect its

effectiveness in this application:

It can control nodes growing and shrinking, but cannot explicitly control t'he

exact size of each node

When any node grows or shrinks, all of the nodes in the space change size

CZWeb requires the algorithm to have the abilit'y to cont'rol the exact size of any

node, and to let some nodes keep constant size when other nodes are zoomed in or

C H A P T E R 4 . C'ZIVEB - I N T E R N A L OPERATIOLY A N D ALGORITHillS -5 9

Figure 4.3: The Original Continuous Zoom Algorithm

out. In the rest of this section, we first review the original CZ algorithm, then describe

our extension to it which solves the shortcomings mentioned.

4.3.2 Review of the Original CZ Algorithm

The original CZ algorithm [Dill951 works independently in X and Y axes. It first

projects all node boundaries, or edges, onto the X and Y axes. Intervals are the

spaces between the "grid lines" created by these projected edges (the X'; and in

Figure 4.3). A scale factor is assigned to each node to specify its size change. For

example, to expand node A in Figure 4.3, it could be assigned a scale factor S,,

greater than 1, and scale factors of unity would be given to nodes B and C. Then the

algorithm computes a scale factor for each interval. Each interval is either a projection

of one (or more) nodes, or is an 'inter-node" or "gap" interval. The scale factor of

a projection interval is the maximum scale factor of all the nodes that project onto

it. There are several options to set the scale factors for "gap" intervals. The easiest

way is to set them to 1. The total amount of space requested by the cluster (in the

X direction) is X,.,,

C'H,4PTER 4. C'ZWEB - INTERNAL OPERATION .4YD ALGORITHMS 6 0

Figure 4.4: Zoom node 1 to the exact size and node 2 is resizable

Suppose the cluster cannot expand. The resulting scale factors for node -4, B and

C and gap intervals should be their initial scale factors times S,,

where ,Yp is the length of the cluster node in X.

With this algorithm, we can expand and shrink a node, but we cannot control the

exact size of each node. I have extended this algorithm to allow the user to zoom a

node in or out to an exact size (the size and location of other nodes will be adjusted

appropriately to efficiently use the screen space). For example, to close a node, it is

de-magnified (zoomed out) to its default closed size. To open a node, it is zoomed in

to the default opened size. In addition, the new algorithm allows some of the nodes

(closed nodes displayed as folder icons) to keep a constant size as other nodes are

zoomed in or out.

4.3.3 A Simple Case: Exact Size Zoom

We start with a simple case: We want to resize node 1 from size L1; to size L l f ,

assuming all of the nodes are resizable. See Figure 4.4. If we just assign node 1 the

scale factor s = Ll /L1;, it would not work because node 1 will be scaled by a factor

s', which is smaller than s :

C'HA P T E R 4. C'ZIVEB - INTERN,-I 1, OPERATION A;VD ALGORITHhIS 6 1

In order to let node 1 scale by exactly s, we should assign its initial scale factor

to st, where s, satisfies:

where

In Figure 4.4, scale factor of interval x2 is s,, which is equal to s; and all of the

other intervals' scale factors are 1. In this case, we do not consider overlapping nodes,

as this will affect computing the scale factors of intervals. We shall take care of this

in later examples.

By definition, we have X, and X,,,

XTeq = C = Xl + L1i.s; $ 2 3 $ I q + X j
i

(4.4)

By combining Equation 4.1 and Equation 4.2, we can get:

By solving Equat'ion 4.3, we have:

Replacing Equation 4.5 and Equation 4.5 into Equation 4.4. we can get:

CHAPTER 4. C'ZWEB - IiYTERNAL OPERATIO-Y A N D ALC~ORITHiLIS 6 2

Figure 4.5: Single Size Constant

Replacing Equation 4.7 into Equation 4.5, we can get si at last:

4.3.4 Case 2: Single Size Constant

Now, let us consider our second case, we want to zoom node 1 by scale factor sit. We

do not care about its final exact size, but node 2 should remain a constant size. See

Figure 4.5. We assign scale factor sl, to node 1 and s,* to node 2. The initial size in

the X direction of node 1 and node 2 are L1 and L2 respectively. Sz, is unknown and

we are going to solve it.

Now the total amount of space requested should be:

where L, is the length of the "gap" intervals and

L, =-;\a - L, - L,

In order to let node 2 keep its size, we should have sZf = 1, but

We solve Equation 4.9, 4.10 and 4.11 and get .s2,:

4.3.5 Case 3: Exact Size Zoom With Size Constant

This algorithm combines the above two. Node 1's initial size is L1, and it should be

resized to L l f , but node 2 should keep its constant size L2. In order to calculate initial

scale factors sl, and szt, we can write down the similar equations:

Solving the above set of equations, we get:

Figure 4.6: Complex Case

4.3.6 Complex Cases

Now let us consider a more complex case, with overlapping nodes (see Figure 4.6). It

is the real case that we need to handle in CZWeb. We want to zoom node 1 from size

L1, to size Ll f , we do not care about node 2's size, but node 3, 4 and 5 should remain

constant size. Variables we want to solve are still s l z and ~2~ But it is difficult to

calculate the XT,, and E'& now.

Suppose scale factor s l , for node 1 is greater than 1. Node 2 and the "gap"

intervals shrink, with their initial scale factors of 1. For the three remaining nodes,

s2, is assigned to their scale factors and is required to satisfy

1 < ~ 2 , < ~ 1 , (4.14)

This is because if s2, 5 1, they will shrink and if s2, > s l , , they will grow. This

also ensures the scale factor for interval 3 is the same as the scale factor of node 1,

and the scale factor for interval 9 is the same as the scale factor of node 5.

We make an initial estimate of s a t as:

where sl = LI /L1 , .

Initially, the scale factors for all the intervals from 1 to 11 are set to 1. The scale

factor for an interval must be the maximum of the scale factors of the nodes projecting

onto that interval. I n this case, the scale factors for the intervals should be:

Let Lk be the summation of the sizes of intervals 4, 6 and 9, i.e. where s = s2,.

Now we can replace LI, with Lz in Equation 4.12 and 4.13 and solve for sl, and s2,.

After solving for sit and sz,, we assign sit to node 1 and assign sz, to node 3, 4

and 5 and use the original Continuous Zoom algorithm to calculate the size of each

node. The final result will satisfy our requirement.

4.3.7 Some Implementat ion Considerat ions

The algorithm we described in the previous section considers the X direction only.

Although those equations can be applied to the \I' direction, aspect ratios of nodes

can not be kept as constant if we apply the algorithm on both directions at the same

time.

In our implementation, the scale factors of gaps are always assigned to 1. This

has two disadvantages. First, the size of gaps decrease all the time no matter which
A-

node is zoomed. When the gap between two nodes is less than one pixel, those two
,

nodes overlap. Then there is no gap any more and the amount of overlap increases or

decreases with these two nodes. Second, a node may move out of its parent's boundary
- -

when the gap between the node and the boundary disappears. This problem is easier

to solve than the former one, because we can easily control nodes' size and location

and do not allow them moving out of their parents' boundaries. - But this solution will

cause another chance of overlapping if more than one child node moves close to the

same boundary.

In the IGI project's implementation, the scale factor of a gap is assigned to the

largest scale factors of all adjacent nodes. In this way, gaps do not decrease all the

time. If one of its adjacent nodes increases, it grows too. But this algorithm has

a limitation. When a node is the only child node of its parent, it is impossible to

change its size with this algorithm. Because in this case, all intervals have the same

scale factor. The result of Continuous Zoom will not change anything. This special

C'EIAPTER 4. C'ZII'EB - 1;VTERNAL OPERATIOA' AND ,-1LGORlTHAlS 66

situation did not appear in the IGI project, but it does happen very often in CZWeb

(when a web server is accessed at the first time, there is only one page node inside

the cluster node representing that web server) so that we cannot use this algorithm.

One possible solution is checking the number of children when considering the

scale factor for gaps. If there is only one child, assign unit to scale factor of gaps.

Otherwise use the IGI project's algorithm.

Another problem in CZWeb's implementation is that after we zoom in a node, we

cannot go back exactly to its original location and size by zooming it out. This is

because of a number of unnecessary round-offs from float to integer of nodes' sizes

and locations in the implementation. In order to provide a sense of visual continuity

among states, zooming a node from one size to another size is divided into a sequence

of zooms. The problem in our current implementation is that those zooms in the

sequence are independent of each other. Although floats are used inside the Continuous

Zoom algorithm, the size and location of nodes are saved as integers. Each time

the Continuous Zoom algorithm takes integer locations and sizes and calculates new

locations and sizes in float. But the floats are rounded off to integers and saved. Next

time the Continuous Zoom algorithm has to use integers again. After many zooms,

those round-offs will make a large difference.

The spring layout algorithm will not affect the Continuous Zoom algorithm, be-

cause the spring layout algorithm is running at a low priority.

A better way to implement the Continuous Zoom algorithm should keep the loca-

tions and sizes as floats all the time. After each zoom step, round them off to integers

and display the nodes at their new locations, but save floats rather than integers for

the next zoom. I believe this will improve the performance.

4.4 A Simple Spring Layout Algorithm

The (extended) Continuous Zoom algorithm controls the size and location of every

node. But sometimes nodes overlap each other, e.g. a new node may overlap existing

nodes when it is added in. CZWeb uses an additional algorithm, a simple spring

layout algorithm, to adjust locations and movements of nodes.

C'H.4 PTER 4. C'ZII'EB - INTERNAL OPERATIOlY A N D A L C40RITHL\1S 67

Fornlal spring-model algorithms for graph layout are discussed in [Iiamp95]. Our

simple spring layout algorithm is based on a Java applet clenlonstration program[Java96].

This applet consists of a 2D window with about a dozen nocles linked with edges. In

this applet, nodes are displayed as constant size rectangles (about 10x40 pixels), but

are actually treated as points. Nodes have names displayed inside their rectangles.

Iisers can move nocles by dragging and dropping.

We modified this algorithm to allow for variable node size and to support a hier-

archical structure. It runs at a low priority and arranges nocles in a 2D clisplay area

so as to minimize overlapping and also to group nodes together.

The original algorithm is based on the edges between nodes. In order to deal with

the hierarchical structure of our nodes, a new data type, spring, is created and it is

the basis of our spring layout algorithm.

Springs are created based on links between nodes but there is not a one-to-one
- -

relationship. They are internal to the algorithm and are not visible to the user.

Springs are organized into a hierarchy too; each cluster node may contain its own set

of springs and the spring layout algorithm based on this set of springs only affects

movement of this cluster node's children.

For example, in Figure 4.7, there are three cluster nocles, C1, C2 and C3, and seven

page 'la? 'lb> '2a> 'zbl '3,1 '3b'

Four spring layout algorithms are running, one for each cluster and one for the

top level window. The algorithm on the top level window manages the locations and

movements of node C1, C2 and Po,. The algorithm in cluster C1 manages page nodes

PI,, Plb, and so on.

The thin arrows in Figure 4.7 represent the edges between page nodes. Springs

are drawn as thick lines. They are created based on the following rules.

1. For each arrow, find the common ancestor of the two nodes linked by the arrow.

Then add a spring to the spring set of that ancestor. This spring links the two

children of the common ancestor. Those two children nodes may be the two

nodes linked by the arrow or their ancestors. (I use two stacks to implement

this.) For example, arrow L1 links page nodes Pla and P2a. The common

Figure 4.7: Spring Layout Algorithm

ancestor for these two page nodes is the top level window. Spring So, is created

for the top level window to link nodes C1 and Cz, which are two children of the

top level window.

2. No matter how many arrows exist, there is at most one spring between any pair

of nodes. For example, when arrow L5 is processed, no new spring is created

because spring So, exists, but the duplication attribute of spring So, increases

by one.

Each spring has a preferred length, which is determined by a constant and the size

of the two nodes it connects. If the distance between the centers of the two nodes

linked by a spring is longer then the spring's preferred length, there is an attractive

force pulling these two nodes together along the direction of the spring. Otherwise,

there is a repulsive force that pushes these two nodes away. The larger the difference

between the distance and the preferred length, the larger the force.

There are repulsive forces among overlapped nodes too. The direction of these

forces is along the line of the centers of the two overlapped nodes.

The movement of a node is determined by the summation of all of the forces applied

C'HAPTER 4. C'ZIVEB - INTERS '4 L OPERATIOlV A N D A4LGORITH;\/lS 69

on it. PVhen an equilibrium is achieved, all of the nodes with springs connected to

each other will form a group with some special pattern and different groups can be

nioved indepe~ldently. There should be no overlapping among nodes if enough space

is available.

If the user moves a nocle within its parent cluster nocle, the constant part of the

preferred lengths of all springs attached to the moved node will be modified. When

a new equilibrium is achieved, the map may show a different pattern. If the user

modifies the structure of the nodes, the structure of the springs will be modified

accordingly.

The constant part of the preferred length is a different value for each spring, it

depends on the duplzcntion attribute of that spring. The larger the duplication, the

smaller the constant. In this way, two clusters with more arrows between their children

will stay closer than those with fewer arrows.

One problem with this spring layout algorithm is oscillation - some nodes move

forth and back and cannot settle down. There are many forces applied on a node at

one location. If we move the node to a new location, a new set of forces will apply

to it because it may overlap with different nodes. If the resultant force is in the

opposite direction, oscillation may occur. In order to let nodes move smoothly, nodes'

movements are limited with the nlaximum length one step can take. For example, a

node in the current location is required to move eight pixels left, but the maximum

length each step can move is five pixels, so that it moves left five pixels. In its new

location, the node is required to move right ten pixels, but it can only move five pixels

at one step so that it moves right five pixels which moves it back to its original location

- oscillation happens. We do not have a good solution to this problem. Currently

we count the oscillations and if a node has moved back and forth five times, we stop

the spring layout algorithm at that level. According to our observation, five steps

are enough for nodes to settle down if there are no oscillation situations. For later

improvement, we should consider replace this simple algorithm with a formal spring

layout algorithm.

Chapter 5

C Z Web Evaluation

Evaluation is a very import part of software development and we have spent much

effort on it. CZWeb (the cluster-page structure version) has been evaluated three

times by four groups. This chapter summarizes the processes and results of those

evaluations.

5.1 First Evaluation

The first evaluation was done by a group formed by my classn~ates and myself as a

term project for a graduate HCI course offered by Dr. Tom Calvert (Simon Fraser

University, CMPT-882) and Dr. Kelly Booth (University of British Columbia, CPSC-

533) in the 96-1 semester. The result was discussed in project report [Bani96].

The goal of this study was comparing users' mental model about the Web with

CZWeb's design model and testing CZWeb's functionality, usability and acceptability.

We also tried to identify problems encountered by potential end-users and to determine

what proportion of the system's functionality is utilized.

We categorized Web users into two types: casual users and expert users. Casual

users are new to the web and have more chance to be confused and get lost in the Web.

Expert users are adept at using web browsers and understand navigation techniques,

but need an efficient organizational tool to aid them in their navigation. Because it is

the intention of CZWeb to aid all users in their exploration of the Web, it is important

CHAPTER 5. CZ WEB EVAL riATIOIV

to know how users of different types feel ahout web browsers ancl CZWeb.

We designed a "treasure hunting" game to study users' browsing strategy. It

had four small activities. The first one was designed for casual users to familiarize

themselves with the web browser. The other three activities were questions. Each

question contained a starting web page ancl some clues. Subjects were required to find

the answer to the question by browsing the web site within ten minutes. No search

engines were allowed. The URL of the index page to the game is in [Game].

We also had two interviews, one before the "treasure hunting" game and the

other after the game. The first interview was to collect information about the users'

background and their general opinions about web and web browsers.We interviewed

five users. Two of them were casual users and the other three were expert users.

After the first interview, the five users were divided into two groups to perform the

"treasure hunting" game. Group one consisted of two users, one casual user and one

expert user. They were required to use both Netscape and CZWeb to navigate. The

screen was divided into two parts horizontally. The Netscape window located on the

left and CZWeb window on the right. Users were allowed to use facilities provided

by either Netscape or CZWeb to access visited pages. Group two consisted of the

remaining three users. They used Netscape only and were required to draw their own

map on paper to represent the structure of web pages they visited.

The interview after the game for group 1 focused on the users' feedback of using

CZWeb. The questionnaires consisted of ten questions. Users could select any number

between 1 to 7 to represent their satisfaction about one aspect of CZWeb. The

interview for group 2 focused on users' mental model about the Web. Users were

asked to explain the maps they drew during the game.

Because of the small number of users and time limit, we did not do any statis-

tical analysis of the experiment. Only a clualitative analysis was done based on our

observation on users' behavior in the "treasure hunting" game and the interview.

Users thought the Web structure was similar to a big file system, although it is

much more complex and unorganized than a hierarchical structure. They seemed

comfortable navigating to two or three levels using Netscape's BackIForward but-

tons. We speculate that they can remember a three-level tree temporarily. They went

to higher levels occasionally. When this happened, users in group one tended to use

CZiCeb to go back to a familiar territory by clicking on a node linked with many

edges, which was the node they visited often and had access to other nodes. Users in

group 2 tended to use Netscape's Go list rather than the Back button to go back to

a visited web page.

The web sites we used for the 'treasure hunting' game were selected from the real

world. Some pages contained dozen of links, which might be linked to anywhere in

the world. The 'treasures' were located deeper than three levels from the starting

page. The expert user in group 1 found two 'treasures' in the time limit. The casual

user only found one. Two users in group 2 found one 'treasure'. The third user gave

up after failing to find the first 'treasure' in 1,5 minutes.

IJsers in group 1 had not used CZWeb very much because they were not shown

the functions provided by CZWeb before the experiment. Because of the time limit,

they were in a rush in the game and did not have time to learn CZWeb. The casual

user did not even notice that CZWeb had a menu bar. They were not satisfied with

C'Z\ll;eb7s graphics and layout either, ("It is very hard to read the label of a node").

In group 2, only one user wrote a few words to represent web pages he visited at

the beginning. Writing the title of web pages was time consuming, so that he did

not keep doing this in the rest of the game. The other two did not draw anything

on the paper. When asked how he managed visited web pages, one user said "I just

remember them, but I do not know how."

This evaluation suggests that users think the Web is forrned as a hierarchical

structure and they can remember two or three levels of the structure when they are

navigating through it. My URL-tree structure is based on this suggestion.

Second Evaluation

A more formal evaluation was later designed and undertaken and the results were

published in [Fish97]. This experiment used 12 university students. Subjects were

asked a series of questions to assess their experience of using different platforms and

Internet tools, such as web browsers and electronic mail, and their perception on how

CHAPTER 5 . C'ZWEB E l l L IfATIOLV

CZWch Test S m

I

i a h g News Racmg Class w
1 July 22 News I

July 26 Ncws

Laser Results w

470 Class m

Laser Class

Swr Class H

Keel Boat D ~ c l H
Boa1 Manual

Figure 5.1: The Structure of Test Web Site

the web is used, how often and how easily they use the web.

After the questions, the experiment examined how well CZWeb helped them find

information inside a web site designed for the experiment. This test web site contained

information about a 1996 Olympic sailing event, including results of a race and a

glossary of items. It was a very small and simple web site, which contained only 30

web pages. Those web pages were organized as a four level hierarchy. Figure 5.1 shows

the structure of the nodes and links in this test web site. All of the pages were copied

onto local hard disk for the experiment. A special experiment CZWeb version was used

in the experiment, because the standard cluster-page structure version only created

one cluster node for each web server (as mentioned in subsection 3.3.4). In this case

all visited pages would be inside one cluster node representing the root directory in

the local disk. The structure created by the standard cluster-page structure version

is shown in Figure 5.2. The special experiment version created a cluster for each

subdirectory in the second level to organize the 30 test web pages. Figure 5.3 is

the structure created by the URL-tree structure version. It is similar to the structure

CHAPTER 5. CZWEB EVALUATION

Figure 5.2: Test Site Structure Created with Standard Cluster-Page Structure Version

created by the special experiment version. But the URL-tree structure version created

this structure automatically, no special adjustment is needed. The labels of all the

nodes in Figure 5.2 were truncated from web pages' titles. Those in Figure 5.3 were

formed from web pages' URLs. (That is why they look different).

The system was set up for users before the experiment. The screen was divided

into two parts, with the Netscape window located at the top-half and CZWeb window

at the bottom-half and both windows had roughly the same width. As users browsing,

CZWeb created and updated a map of all the pages visited. Users were allowed to

use all of the functions provided either by Netscape or CZWeb to access web pages.

The progress was video taped and think-aloud protocol was used.

The subjects' tasks were to answer 12 questions, such as "Why would you do

two 360 degree turns during a race?" These questions were carefully designed so

that the answers sometimes required combining information from two or more web

pages in the experiment web site. Subjects were shown how to answer questions by a

demonstration, which answered the first two questions.

CHAPTER 5. CZII'EB EVAL IrATIO:V

Figure 5.3: Test Site Structure Created with URL-Tree Structure Version

On finishing the task, subjects completed a post-test questionnaire, which asked

them t o rate various aspects of CZWeh. For example, the first question is "How clo

you rate CZ\iVeb7s overall ease of use'"? (2 = very easy; -2 = very difficult). The data

is as follows:

The null hypothesis that CZWeb is neutral with regarding to overall ease of use

ClHAPTER 5. C Z WEB EVAL UATION

was tested at the significance level of O.OTi. That is to test the null hypothesis: p o = 0

at cr = 0.0.5. Here t-test was used. Let .z denote the answer and s denote the sample

standard deviation. We compute the t-statistic as follows:

where n = 12 and df = n - 1 = 11.

The t table gave the p-value as 0.0463. Since the p-value is less than a , we rejected

the null hypothesis. Because the mean is 0.583 which is more than zero, the result is

positive. It shows that CZWeb does help users navigating the Web.

On the question "Having CZWeb's picture of the web site you have visited helps

you move around the Web?" the result based on t-statistic was (t = 3.079, 11 df,

p < 0.05).

There are other results which show that CZWeb helps users understanding the web

structure, takes less movements to recently visited sites, and helps users localizing the

current position. For example, for the question "Please rank (first second third) how

you would use each of the navigation tools (CZWeb, Backlforward, history) for the

given application:"

a On "Helping you to understand the Web organization better", the result was

positive with p < 0.0001.

a On "Going back more than 5 sites", the result was positive with p < 0.0001

a On "Knowing where I am in the Web and avoiding going to the wrong site",

the result was positive with p < 0.0001.

The experiment also shows that no signification effects were found for questions

such as how CZWeb:

CHAPTER 5. C'ZLVEB EVA L li.4TIOlV

Reflects how you think about the Web

Makes you feel like you are traveling throughout the Web

0 Makes Web organization more clear

It appears that users have a greater need to individuate web pages and isolate relation-

ships among them to reduce disorientation and cognitive overhead. This corresponds

to the survey results of [Pitk96]. As the questions become more explicitly spatial,

agreement falls off. Perhaps users want to generate organizations that reflect how

they think about the relationships between sites, a personal Web space, which may

lack the static metrics of real spaces and maps.

5.3 Third Evaluation

This evaluation was undertaken by two groups of students as term projects in the

HCI course offered by Dr. Tom Calvert, Dr. Kelly Booth, and Dr. John Dill in

97-1 semester (CMPT-873 in SFU and CPSC 533B in UBC). Results are discussed in

project reports [Walk971 and [Cubr97].

These studies were based on analysis of the videotapes shot in Brian Fisher's

evaluation experiment described in the previous sub-section. By observing users'

action carefully and analyzing it with t,he help of MacSHAPA software, both groups

revealed some design problems and suggested some improvements.

Three user modes had been observed. One was the Window-conservative Mode.

Users tended to use the navigational method that has been used last. This mode was

confused with the cause of explicit switching windows in Macintosh. Another one was

the novelty mode. Novice users tended to try features of one application for a while

and then try features of another application. The third was the path-memory mode.

Novice users tended to memorize the path he took to get one particular page unaware

of where he was or CZWeb was of help.

Each group had found some problems. The one both groups identified was the

method used to open a web page. CZWeb uses double click on a page node to open

CHAPTER 5. CZ W E B EVA L IJATION 78

the page represent by that node, but Netscape uses single click on a link to go to the

linked page. Double click to open a page is consistent with the Macintosh windows

operations, but it is not consistent with the single click to activate a link. These two

play the same role of getting to a particular URL page but use different operations.

This led to the situation where the users double clicked to follow a link in Netscape.

The second problem was that using CZWeb could only take users to those pages that

the users have visited. This was not actually a problem but a suggestion. One of

the groups observed that one subject in the experiment did a breadth-first search.

This suggested it was important for CZWeb to be able to do a simple breadth-first

search. Another group also suggested that CZWeb be able to auto-explore a web site

according to a preset level.

Some other problems were trivial comparing to the above two. One was the page

location. When Back or History was used to go to a visited page, the cursor was at

the place where the user left. When back to a visited page using CZWeb, the cursor

was always at the beginning of a page. Another was the problem with the label of page

nodes. When there were a relatively large amount of nodes in the CZWeb window,

page nodes became very tiny. It was hard to read the label. It was also hard to resize

or to "zoom" them. The only way to check out a page node's label was to wait for

the pop-up helps. This was awkward and slow. Another problem was with cluster

nodes. Cluster nodes were used as containers to organize nodes, but users thought

they might represent some web pages as well. This ends up with a scenario that a

user is double clicking on the title bar of a cluster.

From the evaluation, we know that using a hierarchy to represent the web structure

is consistent with users' mental models. The positive results from the evaluations

shows that a representation of web's structure does help users understand the web,

localize their current location, and move around the web. Facilities provided by

CZWeb also helps users go back t o visited web pages quickly. But, there are still

some areas we need to improve, such as making users feel as if they are traveling

through the web, building a clearer structure to represent the web, and improving the

user interface.

All of these evaluations are valuable. The positive results tell us that we are on the

right track and encourage us to keep going. Identifying esisting problems is helpful

for CZWeb's further development.

Chapter 6

Future Work and Conclusion

6.1 Discussion

6.1.1 Link-based Structuring vs. URL-based Structuring

Almost all of the systems and approaches we examined in Chapter 2 build their

structures based on the link relationship between nodes. When they simplify the

underlying network structure of hypertext into a tree or tree-like structure, a node

is considered to be a child node of another node if there is a link pointed from the

latter to the former. We refer to this as "link-based structuring". The advantage

of link-based structuring is that the structure it created is simple and clear. The

disadvantage is that some information is lost during the structuring process.

The URL-based structuring approach, proposed in this thesis, is a new idea to

represent the web structure. With this approach, all of the cross-connections are

preserved to show the correct web structure to the user. The node hierarchy auto-

matically manages the information at an understandable level and it is very easy to

change the level of detail. The node hierarchy created by CZWeb is based on the

structure of files stored on web sites, which are managed by webmasters and web au-

thors. Generally, we can assume that most of the web pages are reasonably managed

which means that the structure automatically created by CZWeb will not get out of

control. In most of the file systems, files inside one subdirectory should have some

C'HA PTER 6. F UT ['RE IC'ORK .41VD CONC'L USION

common attributes and parent directories should have some relationship with their

subdirectories. Normally, people will not place thousands of unrelated files into one

directory.

Of course, there are always different opinions on how to structure information and

CZWeb allows user to modify the default created structure as described in chapter 3.

6.1.2 Hyperlinks vs. Temporal Path

When we create links in order to link nodes in our structure, two kinds of information

should be taken into account: the hyperlinks embedded in the web documents which

are used to link all of the web documents together and the path a user actually took

to visit those web documents. Both kinds of information are important for orientation

in hypertext. The hyperlinks help to understand the underlying structure of the web.

The path records the historical information and is helpful for the user to figure out

where he came from and how he got there.

The Hy+ displays both of them in one overview diagram and distinguishes them

with colors. The whole path is recorded in Hyf and displayed red arrows. The first

travel from one node to another is displayed as a straight arrow. Later travels between

these two nodes (in either direction) are displayed as broken arrows. Hyperlinks

between nodes are displayed with black arrows. In the way, it seems very clear for

both the hyperlinks and the path. But, the problem is that the overview diagram will

be cluttered with arrows very soon.

In CZWeb, both of the hyperlinks between nodes and the path are displayed as

straight arrows. There is at most one arrow between any two nodes. Duplication

of hyperlinks and path are not recorded. But cluttering is still a big problem. For

example, one of the subjects in the second evaluation was an experienced Netscape

user and used Netscape's "Go" list very often. Almost every pair of the nodes in the

view was linked together after he used it for a while. It was hard to trace the path

from the cluttered view.

Our current solution is adding a time stamp on each edge in the path. The user

can choose letting old edges dim out or displaying only the most recent edges. We

can control the number of edges displayed easily this way.

6.1.3 Distinguish User's Actions

With Netscape, the user can view a page by different actions:

Clicking on a hyperlink embedded in the current page pointed to that page

Typing in the URL of the page directly

Selecting the destination from the "Go" list if it is visited recently

Selecting it from the "Bookmarks" if it was saved there

It is good if we can distinguish these four user actions. WebJournal did this at

the cost of modifying NCSA Mosiac.

CZWeb uses Netscape's API to communicate with Netscape. When Netscape

displays a new web page, it sends an AppleEvent to CZWeb to notify the URL of

the page it displays. CZWeb can also send an AppleEvent to Netscape and ask it

to display a special web page. But that is all we can do. We have not been able to

access user actions (mouse clicks and keyboard typing) inside Netscape's window so

that we cannot distinguish the actions the user took to get a new web page.

We can get a set of URLs accessible from the current page by parsing the HTML

file of the current web page. This infornlation can be used to build a structure

displaying all of the pages accessible from the current location in advance, as Hy+

does. But it is still not enough to distinguish the user's action. Even if the IJRL of

the new page is in the URL set we get, it is not certain that the user clicked on one

of anchors in the current page. For example, if the current page contains a link to a

page that has been added to the Netscape's bookmarks. When CZWeb receives an

AppleEvent from Netscape notifying that the page is visited, CZWeb does not know

whether the user clicked on an anchor in the current page or selected an item from

Netscape's Bookmarks.

C'H,4PTER 6. FUTURE UTORI\: AND C'ONC'L lrSIOLY

6.1.4 Using Web Browsers

Web site management tools, such as Webhhpper, allows the user to see the structure

of a web site without viewing a single web page. If the user really wants to see the

content of a particular page, he can do it by double click on the node, which launches

his favorite web browser to display that page. The user can choose any popular web

browsers. The function of web browsers is just as an HTML file viewer.

On the other hand, navigation tools depend on web browsers to access the Internet.

They work only with a particular web browser. Early approaches also modify the

browser for their special uses. This is very inconvenient to users.

CZWeb is in some place between those two extreme ends. CZWeb works with

Netscape Navigator through its remote control API. We do not need to modify

Netscape Navigator, but if Netscape modifies its API, we may have to upgrade our

CZWeb too. It would be better to remove the dependence on a special web browser

and allow the user choose to use his favorite web browser. This can be done by writing

different functions to communicate with different Web browsers.

6.2 Future Work

From the results of evaluations and comparing CZWeb with other approaches and

systems, we find that there are several areas we need to improve. We need to improve

algorithms for better performance and add new features to satisfy users' needs.

6.2.1 Algorithm improvement

Layout

Our spring layout algorithm is too simple and does not work very well. There

are still some overlaps among nodes and oscillation happens sometimes. We also

need a better algorithm to find an appropriate location for new nodes.

Speed

The zoom algorithm and display algorithm work fine for a small number of

nodes. When the number of nodes increases, perfornlance drops down quickly,

especially when color is used for nodes' background, because it takes more time

to update the view. Another algorithm which may affect the performance is the

algorithm used to store and sort the URLs of visited web pages. Currently, the

URLs are managed as a linked list and an inefficient algorithm is used to search

the list when a new URL is received. We can replace the list with a hash table

or use a more efficient searching algorithm.

6.2.2 New Features

Automatically expanding view

One feature we need to implement in CZWeb is automatically expanding a few

levels from a selected node. This feature can help users make their decisions on

where to go next and reduce cognitive overhead. Options should be provided for

ways to expand, such as expand to a certain level and expand inside the current

web site.

Include content-based analysis

CZWeb is a navigation-based approach, but it uses a structure-based approach

to analyze the collected information. A content-based analysis approach is an-

other important feature to organize information and should he implemented in

CZWeb.

Searching and filtering

We need to add data filtering and searching facilities, which are useful to find and

organize data when the number of nodes in the view increases. For example,

displaying all of the web pages visited between one o'clock and two o'clock,

finding and highlighting all of the web pages with "Home" as a sub-string in

their URL.

Annotation

CiH/lPTER 6. F[rTllRE WORK AND C'ONC'LlrSION S 5

The information currently recorded in page nodes is ITRLs and titles. ITRLs are

just addresses to identify web pages. Titles tell us about the content of web pages

briefly. Generally however, titles do not summarize the content appropriately.

It would be better if CZWeb could provide a way to add a user's note to each

node. The notes may be used as reminders about particular issues associated

with web pages for the CZWeb map creator, or as some additional information

t o help people decide in advance exactly which of the documents in the map is

worth visiting if the map is shared with other people.

rn Handling frames

HTML is being developed quickly. With frame tags, window of the browser can

be divided into several regions or frames. Each of the frames in a window can

show a different web page. Actions inside one frame can control web pages (each

of them has a different URL) displayed on another frame. With this feature,

Netscape can present information in a more flexible and useful fashion. But

Netscape has not updated its API for remote control to handle frames. CZWeb

cannot receive the URLs displayed in each of the frames if the URL displayed in

Netscape's URL box does not change. There is no good solution to this problem

right now.

rn Handle more than one browser window

Web browsers allow the user t o use several windows a t the same time. The

current version of CZWeb does not distinguish the pages viewed by different

browser windows. Only one page node is highlighted which represents the web

page displayed on the active browser window.

6.2.3 Other work

rn More Evaluations We have made efforts to evaluate the cluster-page version

of CZWeb. The URL-structure version was developed later and has not been

tested. If possible, we should design an experiment to compare the two versions.

We can have two groups of subjects perform the same task and check the result.

liser interface consistency

Both groups in the third evaluation revealed the same problem about the in-

consistency between the user interface of Netscape and CZWeb. CZWeb uses

double click to access visited pages while single click is used for selection. This

scheme is consistent with the operating system but inconsistent with Netscape.

Netscape uses single click to active links and access web pages. Users were

confused with this, because they thought CZWeb was part of Netscape and

they could use the same technique to access web pages. Although Netscape's

way is inconsistent with the operating system, we cannot do any thing about

that. But we can do something to make CZWeb's user interface consistent with

Netscape's.

The above is not a complete list. The Web and techniques used in the Web are

being developed very quickly. There are many other areas we ought to look at

to keep updated.

6.3 Conclusion

The World Wide Web has become an important and widely used resource and con-

tinues to attract increasing numbers of novice computer users. Because of this, it

is crucially inlportant to address its usability. We have shown one promising tech-

nique based on the Continuous Zoom algorithm to better support Web navigation.

This technique was used to implement a prototype navigation aid, CZWeb, to help

Netscape users.

In the CZWeb approach, the visited portion of the Web information space is

recorded and organized as users navigate through it. The Web structure is represented

with a simple view to help users understand it. The visual representation, a network

with nested graphs, is built based on the physical URL structure so that it is intuitive

and easy to understand. It also provides users with the ability to recognize objects

by their relative positions and by the distinctive shapes that clusters of objects form.

The ability to allow users to restructure the automatically created structure assists

in better understanding of the structure and relationship of the visited portion of the

Web.

The Continuous Zoom algorithm provides a technique for visualizing large hierar-

chical information spaces. It displays parts of the information space in detail while

simultaneously displaying the overall context. The extensions made to the Continuous

Zoom algorithm in CZWeb add new functions to it and improve its performance.

We get some positive results from the evaluations. It shows that using a hierarchy

to represent the web structure is consistent with users' mental model. Displaying a

visual representation on Web's structure does help users understand the Web, localize

their current location, and move around the Web. Facilities provided by CZWeb also

help users go back to visited Web pages quickly. However, there are still areas we

need to improve, such as making users feel as if they are traveling through the Web,

building a clearer structure to represent the web, and continuing to improve the user

interface.

Bibliography

[Andr94] K. Andrews and F. Kappe. "Soaring through hyperspace: A snapshot of

Hyper-G and its Harmony client". Proc. Eurographics Symp. and Workshop

on Multimedia: Multimedia/Hypermedia in Open Distributed Environments,

Graz, Austria, June 1994.

[.4yue95] E.Z. Ayuers and J.T. Stasko. "Using Graphic History in Browsing the World

Wide Web." Technical Report GIT-GVU-95- 12, Georgia Inst. of Technology.

URL: file://ftp.gvu.gatech.edu/puh/gvu/tech-reports/95-l2.ps.Z

[Baec95] R. Baecker, J . Grudin, W. Buxton, and S. Greenberg, "Readings in Human-

Computer Interaction: Towards the Year of 2000", Second Edition, Morgan

Kaufmann Publishers, Inc., San Francisco, 1995, pp. 581.

[Bala96] V. Balasubramanian. "State of the Art Review on Hypermedia Issues and

Applications", 1996

http : //zuzow.in f - toiss.uni - konstanz.de/Res/review/

table-of xontents .htm1

[Bani961 E. Baniassad, I. Caven, H. S. Chin, Y. Sun, and P. Tan, "CZWeb Usability

Study", Course project report for CMPT-882, 96-2, Simon Fraser Univer-

sity, 1996.

http : //~u~~~.en~c.~~fu.ca/GradStl~clents/~ut/~ersonal/re~ort~hci.~s

[Bede94] B. Bederson, J . Hollan, "Pad++: A Zooming Graphical Interface for Ex-

ploring Alternate Interface Physics", Proceedings of ACM UIST '94 ", ACM

Press, 1994.

See also: http : //ruzutu.cs.n~znz.edu/p~~cl+ +/

[Bede97] B. Beclerson, J . Hollan, J . Stewart, D. Rogers, A. Druin, D. Vick, "A Zoom-

ing Web Browser", See also: http : //w~cw.cs.unn~.eclu/pncE + +/

[Bern941 T. Berners-Lee, R. Cailliau, A. Loutonen, H.F. Nielson, and A. Secret. "The

World-Wide Web." Communications of the ACM 37, 8(August), 1994, p76-

82.

[Bly 861 S.A. Bly and J.K. Rosenberg. "A comparison of tiled and overlapping win-

dows." In Proceedings of CH1786, ACM press, New York, 1986, pp. 101-106.

[Brow951 M.H. Brown and R.A. Shillner. "Deckscape: An experimental web browser."

In Proceedings of the Third International WWW Conference, April 10-14

1995, Darmstadt, Germany.

http : //zuww.igd. f h g . d e / w w w / w t u t u 9 5 / p a p e r ~ s c a p e - final - v l

/paper. htnzl

[Bush451 V. Bush. "As We May Think," The Atlantic Monthly, July 1945.

[CardsGI S.K. Card and T.P. Moran, "User Technology: From Pointing to Ponder-

ing." Proc. AC!Vl Conference on History of Personal Workstations, pp. 183-

19s.

[Carp951 M. S. T. Carpendale, D. J . Cowperthwaite, and I?. D. Fracchia, "3-

Dimensional Pliable Surfaces: For the Effective Persentation of Visual In-

formation". In UIST: Proceedings of the ACM Symposium on User Interface

Software and Technology, pp. 217-226, 1995.

[Card961 S.K. Card, G.G. Robertson, and W. York, "The WebBook and the Web

Forager: an Information Workspace for the World Wide Web." In CHI96,

ACM Conf. on Human Factors in Software, ACM Press, New York, 1996

[Carr84] J . M. Carroll and R. L. Mack, "Learning to use a word processor: By doing,

by thinking, and by knowing". In Thomas, J., and Schneider, M. (Eds.),

Hunmn Factors in Conzputer Systems, Ablex, 1'384, 13-51. Or In '.Readings

in Human-Comoputer Interaction: Towards the Year of 2000", Second Edi-

tion, written and edited by R. Baecker, J. Grudin, W. Buxton, S. Greenberg.

Morgan Iiaufnlann, San Francisco, 199.5, pp. 698-717.

[Carw69] S. Carmody, W. Gross, T. Nelson, D. Rice, and A. van Dam, "A Hypertext

Editing System for the 1960." In Pertinent Concepts in Computer Gmphics,

M . Faiman and J . Nievergelt, eds. University of Illinois Press, 1969, pp. 291-

330.

[Cat1951 L. D. Catledge and J. E. Pitkow, "Characterizing Browsing Strategies in

the World-Wide Web", In Proceedings of the Third International WWJV

Conference, April 10-14 1995, Darmstadt, Germany.

http://www.igcl.fhg.de/ww\l;/www95/papers/80/~1serpatterns/~~ser

[Co1187] G. Collier, "Thoth-11: Hypertext with explicit semantics." In Hypertext '87

Papers (Chapel Hill, N.C., Nov. 1987). University of North Carolina, Chapel

Hill, 1987, pp. 269-287.

[Co1195] G . Collaud, J . Dill, C. V. Jones and P. Tan, " A Distorted-View Approach

to Assisting Web Navigation", New Paradigms in Information Visualization

and Manipulation, in conjunction with CII iM'95 Baltimore, December 1995.

[Co1196] G. Collaud, J . Dill, C.V. Jones and P. Tan, "The Continuously Zoomed

Web - A Graphical Navigation Aid for WWW", I E E E Visualization'96 Late

Breaking Hot Topics Papers, Ebert, D.S.(Ed), pp. 1-3, 1996.

[Conk871 J . Conklin, "Hypertext: An Introduction and Survey." IEEE Computer

2(9), (Sept. 1987), 17-41.

[Conk881 J . Conklin and M. Begeman. "gIBIS: A hypertext tool for team design

deliberation." A C M Trans. OFF. Info. Syst. 6, 4 (Oct. 1988), 303-331.

BIBLIOGRAPHY 9 1

[CourSG] Course ChIPT-882, offered hy Dr. Tom Chlvert in School of Computing

Science of SFU and Dr. Kelly Booth in Department of Computing Science

of UBC in spring semester 1996.

[Cubs971 D. Cubranic, R. Hwang, J . Madar, and M. Mizuguchi, "Analyzing CZWeb",

Course project report.for CPSC 533B (UBC) CkIPT 873 (SFU), 97-1, 1997.

[Desa94] B.C. Desai, and S. Swiercz. "WebJournal: Visualization of a Web Journey."

1995

ftp://ftp.cs.concordia.ca/pub/bcd/WebJournal/

[Dill931 A. Dillon, C. McKnight, and J . Richardson. "Space - the final chapter or

why physical representations are not semantic intensions." In C. McKnight,

A. Dillon and J . Richardson, Eds.. Hypertext - a psychological perspective.

Ellis Horwood, New York, 1993, pp. 169-191.

[Dill951 J . Dill, L. Bartram, A. Ho, and F. Henigman, "A Continuously Variable

Zoom for Navigating Large Hierarchical Networks", Proceedings of the IEEE

Conferen,ce on Systems, Man and Cybernetics SMC-94, 1994, pp. 386-390.

[Dome941 P. Domel. "Webmap - a graphical hypertext navigation tool." In Proceed-

ings of the Second International World Wide Web conference'94: Mosaic

and the Web, Chicago, USA, October 1994.

http://www.ncsa.uiuc.edu/SDG/IT94/IT94Info-old.html

[FeinSS] S. Feiner. "Seeing the forest for the trees: Hierarchical display of hypertext

structure." In Proceedings of the Conference on Ofice Information System

(Palo Alto, Calif., Mar. 23-25, 1988). ACM, New York, 1988, pp. 205-212.

[Fish971 B. Fisher, M. Agelidis, J . Dill, P. Tan, G. Collaud, C. Jones, "CZWeb: Fish-

eye Views for Visualizing the World-Wide Web", HCI International 97'.

http://palette.ecn.purclue.edu/ salvendy/hci97

[FossSS] C. Foss. "Effective browsing in hypertext systems." In RIAO.88 C'onfe~xnce

Proceedings (Cambridge, Mass., Mar. 1988). MIT, Cambridge, hlass., 1988,

pp. 82-98.

[Fowl961 R. Fowler, A. Kumar, J. Williams. "Visualizing and Browsing WWW Se-

mantic Content", 1996.

http://bahia.cs.panam.edu/info~vis/doc~explorer/cetac96.html

[Furn86] G. W. Furnas. "Generalized fisheye views." In Proceedings of the CHI'86

Conference, Boston, MA, 1986, pp. 16-23.

[Game] http://www.ensc.sfu.ca/GradStudents/put/personal/THA.html

[Gers95] N Gershon, J. LeVasseur, J Winstead, J. Croall, A. Pernick, and W. Ruh.

"Visualizing Internet Resource." In proceedings of the IEEE Symposiu~n on

Information Visualization '95, 1995.

[Hala871 F.G. Halasz, T.P. Moran, and R.H. Trigg. "Notecards in a nutshell." In

Proc. Human Factors in Computing Systems (CH1787), pages 45-52. ACM

Press, 1987.

[Hasag51 M.Z. Hasan, A.O. Mendelzon, and D. Vista. "Visual Web Surfing with

Hy+." Proc. CASCON'95, Toronto, 1995, pp. 218-227.

See also http://www.db.toronto.edu:8020/webvis.html

[Hend95] R. J. Hendley, N.S. Drew, A.M. Wood, R. Beale. "Narcissus: Visualizing

Information." In Proceedings Information Visua1ization795 (October 30-31,

1995, Atlanta, Georgia, USA. IEEE Computer Society Press. Los Alamitos,

California, 1995. pp. 90-96.

[KaehM] C. Kaehler, "Hypercard Power: Techniques and Scripts". Addison-Wesley,

reading, Mass., 1988, pp. 18-19.

BIBLIOGRAPHY

[Iiahn73] D. Iiahneman. Atteution and Eflort, Prentice-Hall, Englewoocl Cliffs, N J ,

197:3.

[Kamp95] T. Iiamps and J. Kleinz. "Constraint-Based Spring-Model Algorithm for

Graph Layout". In Proceedings of Graph Drawing 1995, Passau, Germany,

September 20-22, 1995. Lecture Notes in Computer Science, Springer Verlag,

1995.

[I<ons96] K. Guericke. "What is VRML?"

http : //livedv.com/Whitepapers/VRn/lL.htm,l

[Kro195] E. Krol, The Whole Internet: User's Guide @ Catalog, Second Edition,

O'Reilly & Assocites, Inc., 199.5. pp. :30-32.

[Lamp951 J. Lamping, R. Rao, and P. Pirolli. "A focus+context technique based on

hyperbolic geometry for visualizing large hierarchies." In Proceedings of the

ACM SIGCHI conference on Human Factors in Computing Systems, (ACM,

May 1995).

[Maar96] Y. Maarek, and I. Shaul, "Automatically Organizing Bookmarks per Con-

tents", In Proceedings of the Fifth International World Wide Web Confer-

ence, Paris, France, May 1996.

[Marc901 A. Marcus, "Principles of Effective Visual Communication for Graphical

User Interface Design." UnixWorld, August 1990, 107-1 11; September 1990,

121-124; and October 1990, 135-138 (revied and reformatted).

[Meyr86] B. J. Meyrowitz, I<.E. Smith, and L.N. Garrett. "Intermedia: Issues, strate-

gies and tactics in the design of a hypermedia document system." In Proc.

ACM Conference on Computer-Supported Cooperative Work (CSCW'atj),

pp. 163-174. ACM, 1986.

BIBLI0C;RAPHY 94

[hlukl95] S. hlukherjea, J .D. Foley, S. Hudson, "Visualizing Complex Hypermedia

Yetworks through Multiple Hierarchical Views." In Proc. of C'HI'95, XCbl

Press, 1995.

[NIuk295] S. Mukherjea, J.D. Foley, "Visualizing the World-Wide Web with the Nav-

igational View Builder." In Proceedings of the Third International World

Wide Web Conference, April 10- 14 1995, Darmstadt, Germany.

http://www.igd.fhg.de/www/www95

[Nels65] T . Nelson. "A File structure for the Complex, The Changing and The Inde-

terminate". ACM 20th National Conference. 1965.

[Neuw87] C. Neuwirth, D. Kauffer, R. Chimera, and G. Terilyn. "The Notes Programs

A hypertext Application for Writing from Source Texts." In Proceedings of

Hypertext'87 Conference", Pages 121-135, Chapel Hill, NC, Novermber 1987.

[NielSO] J. Nielsen. "The art of navigation through hypertext." Communication of

the ACM 33, 3 (March 1990), pp. 296-310.

[Nie195] J. Nielsen. "Multimedia and Hypertext: The internet and beyound". Boston,

Academic Press, 1995.

[Nigu97] G. Niguma.(1997). "Concept Mapping in a Multimedia, World Wide Web

Environment", MSc thesis, Simon Fraser University, Apr. 1997.

[Pesc95] Mark Pesce. VRML: Browsing and Building Cyberspace, New Riders, August

1995.

[Pitk94] J.E. Pitkow, K.A. Bharat. "WebViz: A Tool for W W W Access Log Analy-

sis." Technical Report of Georgia Institute of Technology, 1994.

http://www.cc.gatech.edu/gvu/research/techreports94.html

BIBLIOGRAPHY 95

[Pitk96] .J.E. Pitkow ancl C.M. Iiehoe, '-Emerging Trends in the WWW lJser Popu-

lation". C'omrrzwnicntions of the ACM, 39:6 pp. 108-108. 1996.

[Proj96] http : //prod~nct.i~2~fo.~~pple.com/pr/press.releases/1996/~4/

960918.pr.rel.irzternet.htnal

[Rao 901 U. Rao ancl M. Turoff. "Hypertext Functionality: A Theoretical Frame-

work". International Journal of Human-Computer Interaction, 1990.

[Riv194] Ehud Rivlin, Rodrigo Botafogo, and Ben Shneiderman. "Navigating in Hy-

perspace: Designing a Structure-based Toolbox." Communications of the

ACfW, Vol. 37. No.2, February 1994.

[Robe911 G.G. Robertson and J.D. Mackinlay and S.K. Card. "Cone trees: Animated

3-D visualizations of hierarchical information". In Proceedings of the AChI

SIGCHI conference on Human Factors in Computing Systems, (A C M , April

1991).

[Robe931 G. G. Robertson and J.D. Mackinlay. "The document lens." In Proceedings

of the ACM Symposiurn on User Interface Software and Technology. ACM

Press, November 1993.

[Shne87] B. Shneiderman. "User interface design and Evaluation for an Electronic

Encyclopedia". Proceedings of the 2nd International Conference on Human-

Computer Interaction, North-Holland, 1987.

[Shne87] B. Shneiderman. "User interface design for the Hyperties electronic encyclo-

pedia". Proc. ACM Hypertext '87' Con5 (Chapel Hill, NC, 13-15 Novermber),

189-194.

[Shne92] B. Shneiderman. "Tree visualization with tree-maps: 2-d space-filling ap-

proach." ACM Transactions on Graphics, 11(1):92-99, January 1992.

[Smit88] J . Smith and S. Weiss. "An Overview of Hypertext". CACM July 1988.

[Stor951 M. Storey and H. Muller, "hfanipulating and documenting software struc-

tures using shrimp views". In Procrtdings of the 1995 Inter-national Con-

ference on Soft~uar-e Alfairzttnance (IC'SM '95) Opio (Nice), france, October

16-20, 1995.

http://www.rigi.csc.uvic.ca/rigi/people/mstorey/publications.html

[Stor971 M. Storey Ii. Wong and H. Muller, "Rigi: A Visualization Environment

for Reverse Engineering." In Proceedings of the Interna tional Conference

on Sottware Engineering (IC,SE'97), Boston, USA, pp. 606-607, May 17-23,

1997.

[Tay186] J . M. Taylor and G. M. Murch, "The Effective Use of Color in Visual dis-

plays: Text and Graphics Applications." Color Research and Application,

Vol. 11, Supplement 1986, pp. S3-s10.

[Thur95] M. Thruing, J . Hannemann, and J.M. Haake. "Hypermedia and Cognition:

Designing for Comprehension". Commun. ACM 3838, pp. 57-66, August,

1995.

[Utti89] K. Utting and N. Yankelovich. "Context and Orientation in Hypermedia

Networks". ACM Transactions on Infor'mation Systems, Vol. 7, No. 1, Jan-

uary 1989, pp. 58-84.

[VanD88] A. Van Dam. "Hypertext '87 Keynote Address". Communications of the

ACiZf, 31(7), 1988, pp. 887-895.

[Walk971 R. Walker, X. Hu, and V. Rajamanickam, "CZWeb Patterns of Use by

Novices: CPSC 533B/CMPT 873 Term Project", Course project report,

1997.

http : //rutow.ensc.s f u.ca/GradStudents/xhu/personal/~sl~7eb_hCi.ps

[Wise951 J.A. Wise et al., "Visualizing the Nonvisual: Spatial Analysis and Interac-

tion with Information from Text Documents," Proc. info. Vis. Synzp. 95, N.

Gershorz a n d ,S.G.Etck, tr l . , . , I E E E Conlputer Society Press, Los Alamitos,

Calif., 1995, pp. 51-58.

[Zizi94] Mountaz Zizi, Micllel Beauclouin-Lafon, "Accessing Hyperclocuments

through Interactive Dynamic Maps." ECHT '94 Proceedings, Sept. 1994.

