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Abstract 
 

This paper examines the relationship between monthly US excess stock market return and its 

volatility using several GARCH models including the GJR GARCH-M and the Nelson’s 

EGARCH-M model. We find Nelson’s EGARCH-M model to fit the data the best and to pass 

most of the diagnostic tests. The relationship between risk and return is found to be negative but 

insignificant. Also there is strong evidence in favor of asymmetric respond of variance to 

negative and positive residuals using the EGARCH-M model. The monthly conditional volatility 

is shown to be not as persistence as those found in literature using daily returns. 
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1. Introduction 

Risk in financial markets is often represented by volatility and measured by variance of asset 

returns. It would be reasonable to assume that volatility is a major factor influencing investors’ 

behaviour. High levels of volatility can lead to unstable market conditions, a decline in investors’ 

confidence and outflow of capital from markets. Therefore, the relationship between risk and 

returns is of great importance to regulators and investors.  

For a long time the finance literature focused on the relationship between risk and return 

among different securities within in a specific period of time. The general conclusion was that 

investors require higher expected return (a larger premium) for riskier assets. By late 1970’s, new 

research began to emerge where the focus was to model the relationship between return and 

volatility across time. This line of research examined whether the investors seek greater premium 

for period of times when the security carries more risk. It seems natural to assume that there is a 

positive relationship between the return and volatility. However, as Glosten et al argue, a larger 

risk premium may not be required because periods with high volatility coincide with periods 

when investors are better fit to carry the risk. Also investors may want to save relatively more 

during times when future is perceived to be riskier. If all the assets available are risky, then the 

price of these assets may be bid up, reducing their risk premium. It should be noted that the latter 

argument is not as strong since it assumes a world without risk free investment opportunities 

(Glosten et al 1993, 1). 

The results from previous research regarding the relationship between return and volatility 

have been mixed. French, Schwert, and Stambaugh (1987) find a positive relationship between 

expected excess return and conditional variance whereas Pagan and Hong (1991), Breen, Glosten, 

and Jagannathan (1989), and Nelson (1991) find a negative relation. Chan, Karolyi, and Stulz 

(1992) find no significant relationship for US but find significance for a portfolio of world 

markets.  

Most of the volatility models used in these papers and other such literature are based on 

Autoregressive Conditional Heteroscedasticity (ARCH) model introduced by Engle (1982), 

Generalized ARCH (GARCH) model introduced by Bollerslev (1987), or variations and 

extensions of these. Empirical evidence shows that the distribution of daily stock market returns 

is far away from a normal distribution. More specifically, the distribution of stock returns exhibit 

asymmetry, leptokurtosis, and volatility clustering. The GARCH model accounts for time 

variation of volatility by allowing the current conditional variance to be a function of past 
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variances and past squared errors (Xu 1999, 142). Theoretically, such specification will allow the 

GARCH model to better fit the empirical data.  

Despite its specifications, the GARCH model cannot explain the asymmetry in distribution of 

returns. The asymmetry would allow the unexpected positive return to result in less volatility than 

an unexpected negative return. The Exponential GARCH (EGARCH) model of Nelson and GJR 

GARCH model both allow for such asymmetry. As will be discussed below, several papers find 

these models to be superior in fitting US stock returns time series. 

In this paper, several models are fit to data and diagnostic tests are performed to find the best 

suit for modeling volatility of monthly stock returns excess of risk free rate of return and to 

examine the relationship of variance with returns. We start with the simple GARCH and 

GARCH-M models. GJR GARCH-M is then used to compare our results for recent data to that of 

Glosten et al (1993). The GJR model does not include an ARMA process and thus we will test a 

GJR GARCH model with ARMA process rather than an in-mean process. Given its empirical 

superiority, the EGARCH-M model of Nelson is also tested.  

We find that the EGARCH-M model introduced by Nelson (1991) results in the most 

significant coefficients. In addition, this model does best when subjected to sign tests proposed by 

Engle and Ng (1993). We do not find a significant relationship between return and variance using 

any of the models. Also, the volatility does not seem have any one-period persistence for monthly 

series. 

The rest of the paper is as follows. The next section reviews the literature regarding GARCH 

models and the corresponding empirical investigations. Section three presents data, examines the 

distribution of returns and provides descriptive statistics of monthly US excess stock returns. 

Section four describes the models used in this study and section five presents the results and a 

discussion of them. Finally section six concludes. 

 

2. Literature Review 

Many of the conventional econometric models in 1970’s assumed a constant volatility that did not 

depend on past information. Some of the researches such as Breusch and Pagan (1977) introduced 

tests to find heteroskedastic disturbances in regression models. However, most of these 

researchers were primarily concerned with the assumption of homoscedasticity in Ordinary Least 

Squares (OLS) estimation and the inefficiency that would result if these assumptions were 

violated.  
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Engle (1982) introduced the ARCH process that is serially uncorrelated and has a zero mean. 

ARCH includes non-constant variances conditional on past and constant unconditional variances. 

Engle then introduced a regression model with disturbances following the ARCH process and 

used the Maximum Likelihood (ML hereafter) function to estimate the variances of inflation in 

UK (987).
 1
 Prior to Engle, researchers had used variance measures such as the absolute value of 

the first difference of inflation or a moving variance around a moving mean. These measures 

made simplistic assumptions about the mean of the distribution and did not allow for a stochastic 

variance. Engle found fourth-order linear ARCH process to be highly significant using the ML 

estimation (1002).  

Bollerslev introduced the GARCH model in 1987 to allow for more flexible lag structure. 

While in the ARCH process the conditional variance is a function of past sample variances, the 

GARCH process allows for the lagged conditional variances as well (309). Bollerslev examined 

the US inflation rate for periods 1948-1983 using the GARCH model. He found that a GARCH 

(1, 1) model provides a better fit than an ARCH (8) model and exhibits a more reasonable lag 

structure (322). 

Nelson (1991) introduced an extension to ARCH models that can deal with a number of 

limitations that arise in application of regular GARCH models. GARCH models by assumption 

fail to capture the asymmetric impact of negative versus positive news on stock returns which has 

been a common finding in empirical researches since 1970s. In fact GARCH models structurally 

ignore the sign of the excess return and only capture the impact of its magnitude. In addition, 

non-negativity restrictions that are imposed on the parameters of GARCH models, while result in 

difficulties in estimating the model coefficients, also distort the expected volatility behavior by 

precluding the oscillatory randomness in its process. Lack of capability in interpreting the 

persistency of shocks in future volatility is another drawback of regular GARCH models. This 

has been a major concern in the research about stock volatility and its correlation with stock 

return. The nature of the shocks (transitory or persistent) and the convergence process of shocks 

can have thoroughly different influence on the risk premium structure of a stock. E-GARCH 

(exponential GARCH) method introduced by Nelson to develop a model of risk premium on the 

CRSP Value-Weighted Market Index in 1962-87 (daily) tries to overcome the above limitations. 

Nelson findings provide high evidence for persistency of daily excess return shocks on 

                                                        
1 Engle also estimates the model using OLS but finds Maximum Likelihood to be more efficient 

and to have smaller standard errors. 
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conditional volatility. His results also indicated upward impact of both good and bad news on the 

conditional variance although the impacts caused by negative shocks were greater. 

Glosten et al (1993) approached the above drawbacks by developing a modified version of 

GARCH-M in which different impact of positive and negative returns on conditional volatility 

are incorporated in the model by using a dummy variable. Testing for seasonal patterns and the 

effect of risk-free rate of return were other two major developments in GJR-GARCH model. 

Their results brought more support for negative relation between conditional expected return and 

conditional volatility and they showed that this relationship becomes stronger when monthly data 

are used and the risk-free interest rate is incorporated in the model. On the other hand their 

findings on the persistency of the shocks do not agree with the results of similar research done on 

daily data such as Nelson (1991). 

Xu (1999) conducted a research on Shanghai stock market daily data from 1992 to 1995 to 

compare the explanatory power of GARCH, EGACH, and GJR-GARCH. The results show little 

or no sign of leverage effect which is attributed to the presence of regulatory intervention by 

Chinese government during that period. 

In more recent researches more interest is attracted towards the volatility prediction models 

and many of the papers also focused on evaluating the predictability power of different 

generations of volatility forecasters. Brooks and Persands (2003) did a comprehensive study on 

the historic development of return volatility forecasting models, which provides a valuable 

resource on the related literature. They also examined the power of linear GARCH type 

forecasting models with models that are based on multivariate approaches on a number of UK 

financial statistics. According to their results multivariate techniques do not have significant 

superiority over the standard linear GARCH models 

Awartani and Corradi (2005) compared the out of sample predictive ability of different 

generations of GARCH models in various horizons using daily observations of S&P-500. Their 

results strongly advocated the predictive power of asymmetric GARCH models when compared 

with standard GARCH (1, 1) although the asymmetric models act far better in one-step ahead 

forecasting but not in longer horizon predictions. 

Bluhm (2000) studied the German stock market volatility by using two different approaches 

to forecast market return conditional variance: 1) univariate time series techniques and 2) 

volatility implied option pricing models based on ARCH techniques. The results were mixed 

based on the error measurement methodology and the forecasting horizons. However ARCH-type 

models showed superiority in tests that were based on Value at Risk (VaR) objectives. 
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In another study by Marcucci (2005) GARCH, EGARCH and GJR-GARCH models 

compared with a set of Regime-Switching GARCH models in which parameters are allowed to 

switch between low and high volatility regimes. The evaluation is based on out-of-sample 

performance in forecasting volatility on S&P100 index on a one-day, one-week, two-week and 

one-month horizons. A feature of Marcucci work that makes it unique is attributed to the degree 

of flexibility he injects to the models. Apart from controlling for low and high volatility to 

capture non-normality characteristics, models are estimated based on both Gaussian and fat-tailed 

distributions such as student’s t and GED. Additionally to deal with time-varying conditional 

kurtosis, degree of freedom in student’s t distribution is allowed to change in different setting. 

The results were ambiguous: at short horizons consisting of one-day and one-week forecasting, 

Regime-Switching models demonstrated better performance but as the time horizon gets longer 

the standard GARCH models move to a superior position. 

One of the recent studies, Lee et al. (2009), employed Skewed Generalized Error Distribution 

based GARCH (SGED-GARCH), a version of GARCH that first proposed by Theodossiou 

(2000) to examine volatility process in China stock market. This model adds more adjustments to 

the standard model to allow for capturing skewness and fat-tailed features of volatility 

distribution. The model outperformed standard GARCH (1, 1) in out of sample forecasting in 

different time-horizons. 

 

3. Data  

The data in this analysis includes the continuously compounded monthly returns on CRSP value 

weighted index of equities on the NYSE and risk free rate of return on three months treasuries 

based on the average of bid/ask prices. The excess return is obtained by subtracting the risk free 

rate from the stock returns. Both databases are obtained from Wharton data services. The data 

ranges from January of 1970 to December of 2008, a total of 468 observations. It should be noted 

that all regressions and tests are performed using the Stata software with the exception of the 

EGARCH-M model. Stata algorithm does not converge for this model and thus EViews software 

was used.  

Table I in the appendix provides descriptive statistics including the mean, variance, skewness, 

and kurtosis of the returns. Under assumptions of normality skewness and kurtosis have 

asymptotic distributions of N (0,6/T) and N (3,24/T) where T is the number of observations (Xu 

1999, 143). Both empirical distributions of stock returns and risk free rate differ significantly 

from a normal distribution. The stock return is negatively skewed while the risk free return is 
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positively skewed indicating that neither distribution is symmetric. Also both distributions are 

leptokurtic compared to a normal distribution. Judging from the statistics including the chi-

squared statistic from test of normality of D'Agostino et al. (1990), the risk free rate distribution 

tends to be more normal than the stock return. Figure 1 shows the distribution of stock returns, 

risk free returns, and excess stock returns.  

The Ljung-Box LB (12) statistics for the test of 12
th
 order autocorrelation of times series is 

also presented in Table I. The stock return statistics is 10.853 which is lower than 21.026, the 5% 

critical value from a chi-squared distribution with 12 degrees of freedom. On the other hand, the 

risk free rate statistics is 3986.838 much higher than the critical value. Therefore the stock returns 

exhibit little correlation while the risk free returns are highly correlated. One reason for this could 

be that for monthly stock returns are not as correlated daily stock returns. On the contrary, the 

risk free rate has much less volatility and depends on the Federal funds rate (which does not 

change very often). Therefore the degree of autocorrelation would be large even with monthly 

series. 

Although the stock returns are not correlated no conclusion can be drawn about the 

independence of the data. The Ljung-Box LB
2
 (12) statistics for squared return provides a test of 

inter-temporal dependence in variance. The statistics for stock returns is 11.387 which is lower 

than 26.217, the 1 % critical value from a chi-squared distribution with 12 degrees of freedom. 

The statistics for risk free rate is 3512.250. Once again the stock returns exhibit no dependence 

while the risk free rate shows great dependence across time. The distribution of next squared risk 

free rate of returns depends on past as well as current squared returns (Xu 1999, 144). To 

summarize, the data for excess returns is independent but non-normal and leptokurtic. 

 

4. Volatility Models 

4.1 Model Specifications 

Let pt indicate the stock price at time t, then the return on stock can be defined as  

rt = log (pt) – log (pt-1). Now let’s assume that when investors make decision at time t-1 they are 

aware of the information available at time t-1 which is gathered in the information set It-1. Then 

the realized stock return at time t may be specified as: 

tttr εµ +=  (1) 

Where µt  is expected return at time t  conditional on the information available at time t-1  (i.e. µt 

= E(rt| It-1) and εt is the error term which follows a normal standard distribution. 
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The development of the variance models has been in line with the process of finding 

explanation for stylized facts that were discovered in regard with the behavior of stock return 

volatility. ARCH models are among the first generation of models to explain stock return 

volatility. The ARCH process was first proposed by Engel (1982) in response to the empirical 

finding that large errors today are followed by large errors in future dates. This phenomenon is 

known as volatility clustering and is a major stylized fact that can be seen in many financial 

variables’ time series including stock returns. ARCH (q) models relate current volatility to the 

amount of volatility in the proceeding successive q periods: 

∑ = −+=
q

i itit gb
1

2

0

2 εσ  (2) 

σt
2
 is the conditional variance of the stock return at time t. One must assume b0 > 0, gi ≥ 0 (i = 

1..q)  to ensure the variance would always be positive. A common interpretation of equation (2) is 

that current volatility is the long run average volatility adjusted with the news received in the past 

q periods. It is reasonable to expect that more recent news has greater influence than older one 

and thus we expect that for i > j, gi > gj.  

A major problem with equation (2) from an econometrician’s point of view is that for large 

values of q (which frequently happens in empirical researches) a large number of coefficients 

should be estimated subject to inequality restrictions. However equation (2) is in fact a distributed 

lag model for σk
2
 and therefore the sum of the lagged values of εt

2
 can be replaced by an 

equivalent lagged value of σk
2
. This will lead us to the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) models that were first proposed by Bollerslev (1992). The GARCH 

(p, q) model can be defined as: 

∑∑ = −= − ++=
p

j jtj

q

i itit bgb
1

2

1

2

0

2 σεσ  (3) 

with 00 >b , qig i ,...,1, = , and pjb j ,...,1, = .  

GARCH-M and ARMA GARCH model are alternative models that create more reasonable 

results in some circumstances. GARCH in-mean or GARCH-M model is derived from solving a 

system of equations consisting of equation (3) and equation (4) which is created by adding an 

estimate of the conditional variance to equation (1): 

ttt aar εσ ++= 2

10  (4) 

ARMA GARCH models are another form of extension to GARCH process. The only 

difference is replacing the mean equation (equation (4)) with an ARMA process: 

∑∑ = −= − ++=
q

j jti

p

i itit araar
1 ,31 ,20 ε  (5) 
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Standard ARCH and GARCH models have a number of limitations that result in their failure 

to capture all the features of real patterns of volatility process of stock returns. One of the 

significant stylized facts that has not been explained by early generations of ARCH and GARCH 

models is the asymmetric impact of good and bad news on the behavior of volatility. In fact in 

ARCH and GARCH models it is assumed that only the magnitude and not the sign of the 

unexpected return may determine the future volatility pattern. Such specification is not in line 

with empirical findings. This limitation is addressed in Exponential GARCH (EGARCH) models 

and threshold GARCH models such as GJR-GARCH that employ more flexible approach in 

volatility specification. 

EGARCH first proposed by Nelson (1991) defines the conditional volatility process as 

follows: 

∑∑ = −= − ++=
p

j jtj

q

i itit bFb
1

2

10

2 )log()()log( σηασ  (6) 

Where ηt = εt/ σt and F (ηt) =  θηt + δ( |ηt| - E| ηt |), θ and δ are coefficients, and ηt is a standard 

normal variable. In order to have a stationary process, it is required that the sum of the parameters 

equal to one.  

Replacement of εt
2
 with the function F allows EGARCH to incorporate the feature of 

asymmetry. Also note that using log form for conditional variance guarantees its positivity for all 

choices of parameters and the restriction of non-negativity which was the case in standard 

GARCH is relaxed. Non-negativity constraint on the parameters not only causes problems in 

estimating the model parameters but also rules out the random behavior of volatility through the 

imposed implication that any increase in εt
2
 always leads to increase in volatility in next periods 

(Nelson, 1991). It should be noted that in this analysis, the EGARCH equation is simplified to the 

following: 

∑∑ = −=
+−++=

p

j jtj

q

i ttitit bEb
1

2

10

2 )log(|)]||(|[)log( σηηαηγσ  

in order to clarify presentation of the results.  

Glosten et al. (1993) extended the standard GARCH model to capture the asymmetry feature 

by using dummy variables. Their general model which is named GJR-GARCH specifies 

conditional volatility process as: 

∑∑∑ = −−= −= − +++=
q

i ititi

p

j jtj

q

i itit DGbgb
1

2

1

2

1

2

0

2 εσεσ  (7) 

The dummy variable Dt-1 takes a value of one if the error at t-1 is positive and zero otherwise.  
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4.2 Inference and Diagnostic Tests 

All inference in this analysis is based on robust or quasi-maximum likelihood estimates of 

standard errors. Such estimations are robust to symmetric non-normality in the residuals. The 

procedure used by our software package Stata is based on the full Huber/White/sandwich 

formulation. As opposed to the Bollerslev and Wooldridge (1992) methodology used by Glosten 

et al. (1993) and EViews, the Stata procedure also calculated the second derivative of the log-

likelihood function (StataCorp LP 2009).  

Both Stata and EViews use the Berndt, Hall, Hall, and Hauman (1974) optimization 

algorithm (hereafter referred to as BHHH). This algorithm was introduced to deal with non-

linearity feature in optimization problems. It uses the outer product of score in place of Hessian in 

an iteration process defined as below to estimate the coefficient of the regression model: 

( ) ( ) ( )k
i

N

i

k
i

k
i

kkk

FFF

N
β

β
β

β
β

β
θββ

∂

∂







 ′
∂

∂

∂

∂
−=

−

=
+ ∑

lnlnln1
1

1

1  

where ∑
=

=
N

i

iFF
1

is the objective function (i.e. the negative of likelihood function). 

This algorithm is among the most commonly used methods in MLE estimations. BHHH 

algorithm only requires the computation of the score and also relaxes the requirement of 

calculating the second derivatives for finding out the optimal value. Another major feature of 

BHHH process that has contributed to its popularity in econometric computations relates to its 

flexibility to deal with non-positive definite Hessians which is a usually major problem in ML 

estimations. In fact, since the sum of outer product of the scores is always positive definite or 

positive semi-definite there is no concern about non-positive definiteness of Hessians 

(Wooldridge, 2001).  

Various diagnostic tests are used to assess the specifications of different aspects of our 

models. First, we test the residuals of models for excess skewness and kurtosis. Properly specified 

GARCH-M model should reduce the excess skewness and kurtosis in data. We test for excess 

kurtosis and skewness using the test of normality of D'Agostino et al. (1990).  

Next, we test whether the squared standardized residuals (εt /√vt-1)
2
 are independent and 

identically distributed. We use four test proposed by Engle and Ng (1993): the Sign-Bias test, the 

Negative-Sign-Bias test, the Positive-Sign-Bias test, and a joint test of all three. 

In the Sign-Bias test, the residuals are regressed on a constant and a dummy variable denoted 

Dt
-
 that takes a value of one if the previous error (εt-1) is negative and zero otherwise. The 

statistics for this test is the t-statistic for the coefficient on It
-
. This test focuses on the different 
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impacts that negative and positive innovations have on future volatility which are not predicted 

by the model (Engle and Ng 1993, 10). 

For the Negative-Sign-Bias, the squared standardized residuals are regressed on a constant and 

Dt
-εt-1. The test statistics is the t-statistics for the coefficient on Dt

-εt-1. This test focuses on the 

different impacts of large and small negative innovations on future volatility which are not 

predicted by the model. In other words, it is a test of whether larger negative innovations are 

correlated with larger biases in predicted volatility.  

For the Positive-Sign-Test, the squared standardized residuals are regressed on a constant and 

Dt
+εt-1. Dt

+ 
is a dummy variable that takes a value of one if previous error (εt-1) is positive and zero 

otherwise. The test statistic is the t-statistic for the coefficient of Dt
+εt-1. This test examines 

whether larger positive innovations are correlated with larger biases in predicted volatility 

(Glosten et al. 1993, 15).  

The model can also be subjected to all of these test at once by regressing the squared 

standardized residuals on Dt
-
,  Dt

-εt-1,  and Dt
+εt-1 and testing that all coefficients are equal to zero. 

This would be TR
2
 (T being the number of observations) or the LM statistics for the regression 

(Engle and Ng 1993, 12). The LM statistic follows a chi-squared distribution with three degrees 

of freedom (Xu 1999, 147). 

 We also use Ljung-Box LB (12) and LB
2
 (12) to test for 12

th
 order serial correlation of 

standardized residuals (autocorrelation test) and squared standardized residuals (independence 

test) respectively.
2
 Although there was no autocorrelation or independence in the data, we 

perform these tests to assess whether the GARCH models could reduce correlation and 

dependence of excess returns. 

Finally, we run two additional regressions. One is adopted from Pagan and Sabau (1987). The 

squared residuals are regressed against the conditional variance: 

εt
2
 = a + bσt

2
+ vt 

The R
2
 from this regression is a measure of power of conditional variance to explain the squared 

residuals and can be used to evaluate the adequacy of the models (Xu 1999, 147). In other words, 

the R
2
 parameter computes the correlation between residual and variance. If the correlation is 

low, then the model’s performance would be questionable. The second regression consists of 

                                                        
2
 These tests are used in many studies. For example, Hsieh (1989) used the tests when applying GARCH 

models to daily exchange rates, Engle and Ng (1993) used them when measuring the impact of news on 

volatility, and Kearns and Pagan (1993) applied these to their analysis of monthly Australian stock returns.  
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regressing the conditional variance on its past value to test the persistence in variance across 

models. The slope and the t-statistic of this regression are reported. 

 

5. Empirical Results 

The objective of this paper is to examine the role of different GARCH models in explaining 

volatility of excess return and determining the relationship between risk and return. We include 

the GARCH (2, 1) and ARMA GJR GARCH (2, 1) in our tests in order to compare the fit of 

GARCH-M (2, 1) and GJR GARCH-M (2, 1) models against different specifications. The 

standard model selection criteria introduced by Schwarz (1978) is used to determine the orders 

the GARCH model. This methodology provides consistent order-estimation for linear ARMA 

models and therefore would not necessarily be useful for GARCH-M or EGARCH models (Xu 

1999, 148). Models with p and q less than three are considered. The SBC statistics for the 

GARCH model is presented in Table II. The SBC selects p = 2 and q = 1. For lack of better 

indicator and for sake of comparison, other models are also tested with the same specifications.
3
 

Table III presents the estimates for all the models. A comparison of ARMA GARCH (2, 1) 

and GARCH-M (2, 1) models indicates that the two models provide the same fit for the data. 

Previous conditional volatilities are highly significant while the arch term is significant at 95% 

level for the former and at 99% level for the latter. For both models, the mean variables have no 

significance. Based on results for the GARCH-M model, the relationship between risk and return 

is negative but not significant. It should be noted both positive and negative innovations result in 

the increase in conditional variance (g1 is positive). Also time periods with relatively large 

variances are associated with relatively smaller returns (a1 is negative). This result is in contrast to 

Glosten et al. (1993) finding.  

The GJR-GARCH-M model allows the positive and negative innovations to have different 

effect on the conditional variance. This is done by estimating the parameter G1. With the 

exception of intercept of the mean equation, none of the variables estimated by this model is 

significant. In this analysis, similar to results of Glosten et al., a negative innovation increases the 

conditional variance for the next period, while a positive innovation decreases conditional 

variance. However the result obtained here is of no statistical significance. 

A comparison of GJR-GARCH-M and ARMA-GJR-GARCH models will reveal that once 

again there is not much difference between the two specifications. None of estimates in the 

                                                        
3
 We also tested the models using different order specifications. The conclusions of this paper remain the 

same under different specifications. 
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variance equation is significant. Also the signs and magnitude of variables across models are very 

similar. However, the ARMA model fits the data better with regards to the mean equation and 

results in highly significant coefficients. Once again, the relationship between return and variance 

is found to be negative but not significant. Glosten et al (1993) found the same result when testing 

their simple GJR model. 

Finally, the EGARCH-M model seems to fit data the best. The relationship between variance 

and return is found to be negative but not significant. However, most of coefficients in the 

variance equation are at least significant at 95% level. The second lag of conditional variance is 

highly significant along with the arch and asymmetric term. The alpha term is positive and the 

gamma (asymmetry) term is negative. Given that the absolute value of gamma is greater than the 

alpha, a negative shock would increase variance while a positive shock of the same magnitude 

would decrease variance. This result is in line with that of Glosten et al. (1993).  

Table IV presents the diagnostics tests performed on the models. None of standardized 

residuals seem to follow a normal distribution. However, all models reduce the skewness of 

residuals. Furthermore, GARCH, GARCH-M, and EGARCH-M models show some reduction in 

Kurtosis of the residuals although not significant. Based on the normality test, none of the models 

is able to create residuals that are normally distributed. Nonetheless the best results were obtained 

from GARCH and GARCH-M models. 

The sign test statistics help us to determine whether we can predict the squared standardized 

residuals by some variables observed in previous periods which are not included in the model 

being used. If such variables can predict the residuals, then the model is misspecified. The 

conventional GARCH and GARCH-M models exhibit strong bias for all sign tests. However, 

there is no significant sign bias, negative bias or positive bias in the any of the other models. In 

addition, the joint statistics of the EGARCH-M model estimation is lower than 6.251, the 10% 

critical value from a chi-squared distribution with three degrees of freedom. This is the only 

model that passes this test. 

The Ljung-Box tests statistics of standardized and squared standardized residuals are lower 

than 21.026, the critical value for 95% level from a chi-squared distribution with 12 degrees of 

freedom. The reader should be reminded that the original data did not show any autocorrelation or 

dependency. Nevertheless, the LB (12) and LB
2
 (12) statistics are reduced considerably from the 

values for the excess returns (refer to Table I) indicating that GARCH models do reduce the 1
st
 

and 2
nd

 order dependence of the data. 
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The ARMA GJR-GARCH model has the highest R
2
 value (3.8%) from the Pagan and 

Sabau’s regression. Therefore this model is superior to the rest in explaining squared returns. The 

EGARCH model has the lowest R
2
 value (1.4%). Large variances must be correlated with large 

squared residuals. Since the EGARCH model performs the worse, different specifications of the 

model would be plausible.   

Finally, the estimated persistence of variance for one period is highest for GJR models. Also 

these coefficients are highly significance at 99% level. However, no estimation shows major 

persistence in volatility. The highest coefficient of past conditional variance is for the ARMA 

GJR-GARCH model and it is only 0.312. Regarding this matter, we have come to the same 

conclusion as Glosten et al. (1993).  

Our results were also tested using the EViews software. The EViews estimation and 

diagnostic test results for the GJR GARCH-M model are provided in Table V for comparison. As 

it can be seen, with the exception of g1 (coefficient for the past residual), all coefficients are the 

nearly the same. However, the t-statistics are quite different and the EViews estimation results in 

more significant coefficients than that of Stata. This is due to the fact that Stata uses 

Huber/White/sandwich robust errors while the EViews software uses the Bollerslev and 

Wooldridge (1992) methodology. The results for the diagnostic tests are almost identical with 

negligible variations in sign bias tests. 

 

6. Concluding Remarks 

This paper has followed the previous literature in modeling the volatility and examining the 

relationship between risk and return. We have used Engle’s GARCH-M model, Glosten et al 

GJR-GARCH-M model, and the Nelson’s EGARCH in our analysis. The GJR and the EGARCH 

models have been two of the most successful in empirical studies. The analysis follows GJR and 

extends the discussion to tests of monthly rather than daily series. The results in this paper can be 

summarized as follows: 

 

a) The relationship between mean and conditional variance is negative but not statistically 

significant. 

b) The EGARCH model fits the data the best compared to GARCH and GJR models however 

it fails the Pagan and Sabau R
2
 test. 

c) Negative shocks are associated with an increase in variance and positive shocks are 

associated with a decrease in variance. 
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d) The conditional volatility of monthly excess return is not highly persistent.  

 

Our results differ from those of Glosten et al. (1993) in that they find a significant coefficient for 

their asymmetric dummy variable and thus conclude that negative and positive innovations have 

different impact on variance. More specifically, negative residuals increase conditional variance 

while positive residuals decrease conditional variance. We have come to the same conclusion by 

using the EGARCH-M model.  

Future research could focus on using monthly data for exchanges other than that of US and 

extending this analysis to incorporate other GARCH-M models. In fact following GJR to 

incorporate risk free rate directly into the variance equation and use dummy variables to 

deseasonalize the residuals could result in a significant relationship between mean and variance. 

Also most of similar GARCH analysis done to this date has focused mostly on equity and foreign 

exchange markets. It would be plausible to apply more of these methodologies to other markets 

such as the commodity markets. 



Appendix: Figures and Tables



(a) Monthly Stock Returns

(b) Monthly Risk Free Rate of Return

(c) Monthly Excess Monthly Returns

Figure 1: Return Distributions
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Table I
Descriptive Statistics

Variables Mean Std. Dev. Skewness Kurtosis LB(12) LB2(12) Adj. chi2
Test of normality

Stock returns 0.007 0.047 -0.888 6.205 10.853 11.387 68.34
(0.542) (0.496)

Risk free 0.005 0.002 0.868 4.318 3986.838 3512.25 48.6
rate of return (0) (0)
Excess 0.003 0.047 -0.886 6.087 10.799 12.297 67.2
stock return (0.546) (0.422)

Table II
Comparison of SBC statistics for the GARCH (p, q) model with different p and q

GARCH q
1 2 3

1 -1534.3535 -1528.8372 -1518.2181
p 2 -1539.7982 -1538.4756 -1532.251

3 -1539.3215 -1539.1465 -1530.2427
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Table III
Model Estimates

With r being the excess continuously compounded monthly return on the CRSP value-weighted
index of equities on the NYSE, the models are defined by:

rt = a0 + a1σ
2
t + a2rt−1 + a3εt−1 + εt;

σ2
t = V art−1(εt); conditional variance of yt given information set at t-1

Dt−1 = 1 if εt−1 > 0, 0 otherwise
σ2
t = b0 + b1σ

2
t−1 + b2σ

2
t−2 + g1ε

2
t−1 +G1ε

2
t−1Dt−1

For Nelson’s EGARCH-M Model:
Ht = b0 + b1Ht−1 + b2Ht−2 + α

∣∣∣ εt−1

σ2
t−1

∣∣∣ + γ εt−1

σ2
t−1

, where Ht = log(σ2
t )

The t-statistics are shown in the parenthesis.

GARCH GARCH-M GJR-GARCH-M GJR-GARCH EGARCH-M
r
a0 0.005 0.006 0.009 0.005 0.007

(2.010) (1.109) (2.805) (2.207) (2.559)
ARCHM
a1 -0.977 -2.001 -1.864

(-0.432) (-1.859) (-1.264)
ARMA
a2 -0.749 -0.970

(-1.374) (-50.178)
a3 0.817 0.999

(1.719) (399.019)
ARCH
b0 0.000 0.000 0.001 0.001 -2.038

(2.538) (2.035) (1.027) (1.372) (-2.343)
b1 -0.068 -0.069 0.065 0.087 0.168

(-5.066) (-5.113) (0.729) (0.903) (1.638)
b2 0.859 0.877 0.397 0.397 0.537

(13.433) (16.336) (1.227) (1.735) (4.528)
g1 0.119 0.112 0.509 0.454

(2.215) (3.019) (1.372) (1.563)
G1 -0.575 -0.515

(-1.517) (-1.719)
γ -0.371

(-5.037)
α 0.248

(2.493)
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Table IV
Diagnostic Tests

Skewness and Kurtosis are the estimated kurtosis and skewness of the standardized residuals from
the mean equation.
For the Sign-Bias, Negative-Sign-Bias, and Positive-Sign-Bias tests, the slope coefficient and
t-statistics from the regression of the squared standardized residuals on respectively 1) a dummy
variable that takes the value one if the previous residual is negative and zero otherwise, 2) the
product of this dummy variable and the previous residual, and 3) The product of a dummy
variable that takes the value one if the previous residual is positive and zero otherwise and the
previous residual. The Joint test is the LM-statistics from the regression of squared standardized
residuals on all the above three regressors.
LB(12) and LB2 (12) are the Ljung-Box test statistics for the 12th order serial correlation of
standardized and squared standardized residuals respectively.
The R2 is the coefficient of determination from the regression ε2t = a+ bσ2

t .
AR(1) Coefficient is the slope coefficient in the regression of conditional variance on its value at
time t-1.
The t-statistics are shown in the parenthesis.

GARCH GARCH-M GJR-GARCH-M GJR-GARCH EGARCH-M
Skewness -0.623 -0.677 -0.839 -0.797 -0.771
Kurtosis 4.760 4.718 6.128 5.376 5.542
Normality test 38.725 41.337 64.660 55.158 55.18

Sign-Bias 0.717 0.681 0.447 0.392 0.303
(3.983) (3.806) (2.107) (1.999) (1.520)

Negative-Sign-Bias -6.937 -6.857 0.181 -0.054 .777
(-2.389) (-2.404) (0.053) (-0.017) (0.240)

Positive-Sign-Bias -13.256 -12.279 -6.423 -5.996 -5.235
(-3.460) (-3.253) (-1.464) (-1.429) (-1.270)

Joint test 1 16.944 15.291 7.567 6.449 4.955

LB(12) 4.521 8.415 7.141 6.337 7.159
LB2(12) 6.827 9.013 5.617 4.798 6.623
R2 0.016 0.017 0.017 0.038 0.0139
AR(1) Coefficient -0.048 -0.09 0.160 0.312 .0915

(-1.043) (-1.957) (3.483) (6.993) ( 1.98)

[1] The chi-squared statistics for probability levels 0.1, 0.05, and 0.01 are 6.251, 7.815, and 11.345 respectively.
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Table V*
Comparison of Stata and EViews Outputs for GJR GARCH-M Model

Panel A: Coefficient Estimation
EViews Stata

r
a0 0.009 0.009

(2.905) (2.805)
ARCHM
a1 -2.000 -2.001

(-1.408) (-1.859)
ARCH
b0 0.001 0.001

(2.485) (1.027)
b1 0.065 0.065

(1.337) (0.729)
b2 0.397 0.397

(2.928) (1.227)
g1 -0.065 0.509

(-1.984) (1.372)
G1 -0.574 -0.575

(3.005) (-1.517)

Panel B: Diagnostic Tests
EViews Stata

Sign-Bias .442 0.447
(2.08) (2.107)

Negative-Sign-Bias .178 0.181
(0.050) (0.053)

Positive-Sign-Bias -6.447 -6.423
(-1.470) ((-1.464))

Joint Test 7.800 7.567
LB(12) 7.142 7.141
LB2(12) 5.616 5.617
R2 0.017 0.017
AR(1) Coefficient .160 0.160

(3.49) (3.483)

* Refer to Table III & IV for an explanation of coefficients and diagnostic tests
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