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A b§tract

The focus of this thesis is on fault detectién and identification of constrained mechanical
s_vstenﬂs This kind of svstem can not be exclusively describeq bv dvnamic équatio’ns because s
the constraints represent algebraic relations among certain system variables Such systems
which are partially dvnamic and partially algebraic are callf.;d generalized state-space system;.
descriptor svstems or singﬁlar systéms Constrained mechanical svstems are a special class of
descriptor svstems because theyv lack infinite observability and complete contrfollability, which
are desirable svstem propénies for state estimator based fault detection methods This thesis
deals with the unique characteristics of constrained mechanical svstems and presents a
svstematic approach for tault detection and control of such svstems under uncertainties In
this thesis. actuator faults are modeled as unknown inputs to the dynamic equations of
tvpicallv nonlinear constrained mecﬁanical svstem. Sensor faults are added to the output
equations of the system The nonlinear system model is first Iinearized about an operating
poifit Then a coordinate transtormation technique is used to convert the resultant linear
descriptor form representation of the system into two sub-systems a dynamic subsystem plus
an algebraic subsvstem Biased on the dvnamic subsystem representation, an unknown input
observer ix designed to provide estimates of displnacements. velocities. constraint forces, and

sensor faults simultaneously The estimates of sensor taults provide immediate means for




v
sensor fault detectioh and” identification. fhe estimates of displaéeménts, velocities, and
constraint fc;rges can be used in state feedback control of the system. Actuator fault detection
and iden‘tiﬁcation is accomp-lish:ed by estimating actuator faults using a least square solufion
téchnique which Use; the estimation of the state vector of the system. This model-based
analytical redundancy apptoach offers many adv~antages. [t can deyect é wide variety of faults.

L3

[t generates not only the magnitude but also the shape of the faults and thus possesses the

3

éapability of distinguishing between momentary faults and persistent ones - Moréi?@er, Its
‘mathematical simplicity and compLJtational efficiency makes it a better candidate for
computer simulation and/or real-time implementation. Simulation performed using a practical
system (an L'MS-2 robot) model indicates that the proposed approach is capable of detecting
and identifving multiple and/or simultaneous actuator faults and sénsor faults aimost

immediately
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Chapter 1 Introduction to Fault Detection and ldcmiﬁca‘tiou 1

Chapter 1 . :

Introduction to Fault Detection and Identification

Automatic systems have besn widely emploved in commerce and industry for many vears.
Technological progress has made many of these systems more complex and sophisticated.
Examples of Ihe;e dynamic systems include commercial and nilitary aircraft, navigation
systems, space shuttle, nuclear reactors, chemical reactors, robets. and many others. These
systeams can consist of many working parts which may maltunction or fail at any time

Complete failure of these systems, especially those mission-critical ones, can result n

unacceptable economical loss and/or human casyaltv. The necd for reliability and fault-

tolerance in these systems at réasonable cdst prompted and in some cases fueled research in
fault detectiém 1solation, and accommodation. New‘ developments in fault diagnesis of
dynamic systems started to appear in the 1970°s. Some basic theoretical and application
results were achieved in‘the 1980°s and early 1990°s Research in this complex, diverse. and
ﬁyely new field continues today and is.expected to contiftie well into the distant future.
| F?r example, several major aircratt manufacturers and car maker s currently have spme kinds
of their own R&D activities in this area On-board fault detection or registration may become
a design criterion in some models ot airplanes and automobiles.
A dynamic system, or a plant as it i1s commonly referred to. can be divided into three types of
subsystems: actuators, main structure or process (which may consist of components), and
instrumentation/sensors. Let's take an aircraft flight control system as an example. The
actuators are the servomechanisnr that drive the control surfaces and engines which.provide
the driving thrust. The autopilot controller provides the actuators with the input or control
signals. The main structure is the airframe with its cargo and appendages, along with the
aerodynamic forces exerted on the control surfa'ces The ‘instrumentation consists of several
sensors or transducers attached to the airframe The sensors provide signals proportional to
N é

the vital motions of the airframe These signals include awspeed, altitude. heading.

acceleration, attitude, rate of change of attitude. control surface deflection, engine thrust,

3

&
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etc.. Sensor signals are fed back to the autopilot which uses the feedback information®and

reference/command inputs in its dynamic determination of new control signals. The actuators
execute the new control signals dynamically and possibly affect the state of the system and
sensor measurements again. Such a system is called a closed-loop control systemgor a

feedback contrel system in control system engineering

Research in the field of fault diagnosis has led to the invention o some jargons. Three of the

most commonly used ones are FDI (Fault Detection and Isolation/lIdéntification). FDllAf”‘a_,

(Fault detection, lsolation/ldentification, and Accommodation). and 1FD}(Instrument Fault
Detection) Fault detection and identification means declaring the occurrence of faults and
indicating which sensors, actuators, or components are faulty Fault accgmmodatiqh refers to
the reconfiguration of system signals or complone}n actions in order to permit continued
operation of the system.- Fault accommodati;m is an application-specific task and is not
addressed by most researchers. Another thing that has not been addressed by ‘most
researchers in FDIA is the reliability of typically digitz;]-c?@mputers, which are usually used in
the implementation of FDI alged Hfns ~ Research in fault diagnosis have been focused on
sensor fault detection and to a lesser e.\'tent;on actuator ftault detection, although one research
work using least square parameter estimation methods has shosn its capability of detecting
and localizing process faults or‘éomponent failures. A t_vpicél tault monitoring scheme is
usually designed to detect (;md correct faults in one or two of the three subsystems. Early
proposed schemes were primarily concerned with sensor fault detection Once detected.

.

sensor faults could usually be corrected By electronic switching techniques and do not require
the reconfiguration ot mechanical parts. On the other ha;1d, actuator fault accom‘modation s
usually more difficult than re-directing electrical signals. The compensation of faults in the
main structure 1s even less feasible and usually requires expert knowledge of the underlying

system. This is probably one of the most chalfenging aspects of anv practical FDIA scheme.

The traditional approach to fault tolerance in dynamic systems 1s hardware redundancy.
Typically three or four identical or similar hardware elements (actuators, measurement
sensors, process components, etc.) are distributed: spatially around the system to provide

rotection against localized damage Multiple elements are used to perform a single task for
g ¢ g ,
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which one element 1s's§ETc1ent if it was completeh reltable For e\‘ample three or more
sensors cou]d be installed to measure the same output The measurements from the sensors
“could be compared in a logic circuit for consistency. If the measurement from one sensor
deviates too much from the average of the. measurements from the other sensors then this
sensor is declared faulty. The underlying reasOnable assumption 1s that the evt.her Sensors
remain within a small diffetence from each other. Additionally. the logic circuit gives some
allowances for electronic noise, manufacturing tolerance, and monuitoring errors inherent';tn'
instruments. The,hardware redundancy approach is generally simple and straightforward to
apply. Itis therefore widely used. lt)is essential in the control of aircraft, space vehicles and in
certain safety-critical process plants that involve nuclear reactors or dangerous chemicals.

The major problems assoc1ated with hardware redundancy or physical redundancy are the
extra cost and software and fu:ithermore the additional space required to accommodate the
redundant equnpment and/or the extra weight brought on by the redundant equipment. In
aircraft, for example, the additional space could be used tor more mission-oriented
equipment. The additional weight limits the pay-load for defensive equipment and, most
particularly, for fuel Moreover, since redundant sensors tend to have similar ife
expectancies, it 1s likely th)a't when one sensor fails the other will soon become faulty too. |

NS
-r

New developments in FDIA have been prompted by the high cost of excess hardware and the
space and weight penalties associated with hardware redundancy since the early 1970°s The
availability of reliable and powerful computers also contributed to the developments of new
approaches which eliminate some or all of the redundant hardware These new approaches to
FDIA are based on functional redundancy inherent in the systems The fundamental idea 1s
that entirely different measurements from three (or more) dissimilar Sensors are dti\fen by the
same dynamic state of the system and are therefore functionally related. These different
signals can be used in a comparison scheme more sophisticated than the simple majority-vote
logic used in hardware redundancy approaches to detect and identify sensor faults These
newer schemes were initially called inherent redundancy or functional redundancy to
distinguish them from physical or hardware redundanc_\' They arc now better or alternatively

known as analytical redundancy or artificial redundancy Virtually all ot the published
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research works in FDIA belong to this new class of approaches, allhough it ha”s"been
recognized that both hardware redundancy and analvtlcal redundancv approaches can be and

4

in many cases should be employed 105ether to adv antaoe

Anal';ftical redundancy can use*and has used knowledge from scveral academie disciplines.
These include but are'not limited to control theory, statistics, and computer scxence Specific
techniques employed in. analytleal redundancy "FDI approaches include state estimation,
parameter estimation, adaptlg‘e ﬁltefmg) ‘variable threshold logic. statistical decision theory,
and combinatorial and loglc operatlons There are plenty books and papers on these
disciplines and subjects For example, the book of Swisher (1976) and the book of Chen
'(1984) contain information on reduced-order and full-order observer?design techniques which
can be used for state estimation. Other l;asic concepts inLontro! theory such as state-space
modeling, state (variables), state controllability. output controllability, observability, state
feedback, output feedback. and stability aré also covered in these books. The book of Daj
(1989) provides singular’ control system theory which is useful in dealing with generalized
state-space or descriptor systems among which are constrained dvnamic systems.
&

All of the atorementioned techniques can be implemented using high speed digital computers
or electrical circuits. High level system simulation or modeling lgl}riguages su‘ch as MATLAB,
* Simulink, or MatrixX can be used in simulation of FDI schemes on dynamic systems. Lower
level languages such as Assembly or C ca‘n. be used in experimentatton or real-time
application. N ‘

%
P A C—
Analytical redundancy FDI approaches are essentially based on modeling dynamic systems in
one way or another. Either the dynamic nature ot the system is known to a reasonable degree
of precision or the physical parameters of the system can be determined by some kinds of on-
line identification techniques. Normally the FDI subsystem is constructed in parallel to the
monitored system. It can use both the input signals and the output signals of the monitored

system to generate signals within itself These generated signals serve the same purpose as

the majority-vote signals used in hardware redundancv. 13# they can be used in logic




Chapter | {ntroduction to Fauli Detection and Identification S

’

p .
processing or other kinds of sophisticated algorithm to detect faults and identifv faulty

elements. - ' ' :

To illustrate the basic notion of IFD schémg:, assume that there are p sensors and one of the.
them is. known to be reliable. Also assume that an (;bservEr or stat; estimator can be
'constructed using the measurement sig‘nal@ from this reliable :sensor ard the inputs to the
monitored plant. In this case the FDI subsystem can generate estimates of the measurement
signals of all the other sensors. These egtimates can then be compared with their actual
counterparts. Simple threshold logic can be applied to the difference signals to detect and
identify sensor faults. In view of the noise in sensor signals and the inaccuracy in system
modeling and estimation, the thresholds shall be ndn-zero to prevent f‘alse' alarms and vet
small enough to allow the FDI scheme remain sensitive to moderate faults. Obviously, there
is a compromise or balance between'sensitivity to incipient (slowlv developing or small) faults
and false alarm rate in this case as in many other cases Incidentallv. thisexample is known as
dedicated observer scheme (DOS), which was presented by Clark (1979). Many variations

2l

and alterations of this simple 1dea are poss_'ible .
Functionally“redunda.nt FDI schemes may be further classitied into at least three sub-classes
according to the techniques used in the schemes. The first sub-class of schemes uses state
estim;tion technique which is believed to be the most widelv employed technique in all
analytical redundancy FDI schemes. This technique is suita‘ble tor systems for which a set of
differential equations (plus a few algebraic equations in the case of constrained dynamic
systems) can be fairly casilv obtained by applving the physical or engineering laws kgoverning
the motions of the system. Examplés of such systems can include aircraft and robots The
approach presented in this thesis falls into this sub-class Typically the nonlinear mathematical
model of the dynamic system in this sub-class is linearized and-also converted into a state-
space representation formd? The analysis of the svstem and the design of state estimator or
observer based FDI subsystem is carried out in the realm of linear system theory, or linear
singular system theory in the case of constrained dvnamic systems The second sub-class of
analytical redundan,cy approaches uses pafameter estimation techniques. A survev of the

schemes in this sub-class is presented in the paper of Isermann (1984) A thoroughly studied




7 . Chapter | Introduction to Fauli Detection and Identification 6

method in this sub-class 1s tﬁe so called least-squares parameter -estimation technique. This
approach carll pfovide on-line estimates of physical system parameters. Eétimated parameters
associated with specific subéystems of the, plant or process can be used to' detect and identify
faults in these subsystems or components. This method is ccnsidered to be particularly
important for process plants such as chemical processes and nuclear reactors. In these
process plants, parameter variations result from process faudts can cause rapid parameter
estimate changes, even though the process itself typically has a slow dynamic behavior. This
approach can detect and identify both component faults and sensor faults. The third sub-class
of analytical redundancy based approaches uses the so called parametric modeling technique.
. A parametric model is essentially an estimator of a process variable using other process
variables as inputs. Some simulation and actual experiments using this approach have been
performed at several nuclear power stations. Readers who are interested in this technique are

referred to the worksﬁ;ﬁof Kitamura (1980), Kitamura. et al (1979), and Kitamura, et al.

(1985) / : .

o

Still another major class of EDIA schemes use the knowledge-based methodology These
knowledge-based expert systems are deéigneq using artificial intelligence (Al) techniques.
Expert systems are currently finding ?'z;pplication to an increasing repertory of human life
Eomains, in the center of which lies the fault diagnosis and repair domain of technological
processes. Interested readers.are referred to the siﬂr\‘ey paper of Pau (1986), the paper of

Tzafestas (1987). and the book of Tzafestas. et al (1989) vk

Some of the criteria for evaluating the performance,of an FDI scheme are: a) promptness of -
detection, b) sensitivity to incipient faults, c) false alarm rate, d) missed fault detections, and

e) incorrect fault identification. A discussion of each of these criteria is now given. =

-

'3

The basic ﬁmctign of a FDI scheme is to register an alarm when an abnormal condition
develops in the system and to ‘identify the abnormal component. Assuming that a fault is
detected successtully. the issue of promptness may be of vital importance In certain
applications such as aerospace, a faul”t that persists for a second may destroy the mission of

the operating system, 1t not the operating system itself
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In certain applications it may be more desirable to have reliable detection of minor faults at
the sacrifice of speed i‘n detection time or promptness. In some systems a fault detection
scheme is intended to enhance maintenance operation by early detection of worn equipment
In this case promptness of detection may be of secondéry importance to sensitivity. In other
systems sensitivitytand promptness may both be required This leads to more complex

detection schemes, possibly require both hardware and analytical redundancy.

«

False alarms are generally indications of poor perfcfrmance of FDI schemes. Even a low false
alarm rate during normal operation of the monitored plant may not be acceptable because it
can quickly lead to lack of confidence in the detection scheme However, a FDI scheme that
has an acceptable false alarm rate might register a false alarm when a plant undergoes an
unusual excursion, and this may be acceptable in some applications,

In other applications small faults may be 50 serious -that it is preferable to react to false

alarms, replacing unfailed components with spare partg, than to sufter deteriorated

performance from an undetected, though small, fault. In these cases it is preferable to-

minimize the number of missed detections at the expense of the creditability of detections.-

Incorrect fault identification means that the system correctly registers that a fault has
occurred but incorrectly identifies the component that has failed If the reconfiguration
system proceeds to compensate tor the wrong fault, it could produce a consequence as

sertous as a missed detection in some applications.

Th’e compromises In detection system design among talse alarm rate, sensitivity to incipient
faults, énd promptness of detection are difficult to make because they require extensive
knowledge of the working environment and an explicit understanding of the important
pertormance criteria of the monitored system

In dealing with malfunctions ff:‘t‘ault detection schemes, especially the problem of false

alarms, some researchers have developed FDI schemes that use variable or adapting fault

AT

20
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detection thresholds. Some of these techniques héiv‘e demonstrated capability of reducing or
minimizing’ false alarms. Other researchers have focused their attention on the problem of
robust fault detection by design. Most of these robust fault detection schemes were designed
with the goal of maximizing the sensitivity of the detector to actual sensor malfunctions.-
while discriminating between these faults and disturbance effect~ due to noise and uncertain

a

dynamics- : -

Robustness of a fault detection and identification scheme can be defined as the degree to
which its performance is unaffected by condmons in the operating system which turns out to
be different from what they were assumed to be in the design of the scheme. Robustness
problems occur with respect to four features of the operating plant: .a) parameter
uncertainties, b) unmodelled non-linearities or uncertain dynamics, ¢) disturbance and noise.

and d) fault types. A brief discussion of each of these issues is now given.

Parameters refer to physical characteristics such as properties o’ mass, moments of inertia,
electrical circuit parameters, heat transfer properties. etc - Many FDI schemes use state
estimation techniques which are ba.sed on mathematical modeliny of the monitored system.
The models are often linearized and simplitied and lesult in linear and trme invariant (the
simplest class of dynamic systems) system reprecentatlons The maccuracy of the model
“depends on the uncertainty of the valucs of th)e parameters. If all the parameters are known
with precision, then state estimates can be very accurate and the FDI scheme may be
remarkably sensitive to incipient faults and immune to false alarms. However, parameter
values are only known approximately in most applications. especially in systems that involve
fluid flows or heat transfers. Thercfore, state observers or estimators have to be constructed
using only nominal values for uncertain parameters This will 'res*ulf tn erroneous estimates
The severity of the error depends on maneuvers of the system which can not. easiiy be
determined The algorithm or logic devices used for processing the redundant signals (e.g
Itate estimates) may generate false alarms, or if they are p\rotectcd against this, they may fail

to detect faults. This is'the robust problem with respect to parameter uncertainty
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Nonlinearity is a natural characteristic of all practical svstems Strictly speaking. linear
dynamic systems don’t exist in the real world. One of the two major reasons that we study
linear systems and use linear system theory in'analvsis and design is that many of these
nonlinear systems behave almost linearly within a narrow range of a nominal operating point.
The other reason is that linear system theory is more established and easief to apply than
nonlinear systenﬂ theory. A FDI scheme based on linear (linearized) models could be quite
satistactory as long as the plant does not operate outside the range used for linearization.
However, outside of this range nonlinearity may produce signals which are not modeled
accurately by the FDI scheme. These signals may then be interpreted as faults. This is the
~ robust problem with respect to unmodeled nonlinearity or uncertain dynamics.

"Real world dynamic plants are always subject to disturbances. Disturbances are unintended
| L'éy‘éfem inputs originating from the operating environment. For example, wind fluctuation is a
dis_turbance for certain systems. Disturbances are usually random signals. Furthermore,
sénsors are usually subject to the influence of randoni signals which typically originate from a
different source. These random signals are called noises. Most signal processing techniques
used in FDI schemés are.based on the assumption that the disturbapces and noises are
stationary Gaussian processes and uncorrelated. If the raadom signals are non-stationary,
non-Gaussian, or correlated in some way, then the performance of the FDI scheme will be
worse than expected or even unsatisfactory This 1s the robust problem with respect to

disturbances and noises.

»

Faults can take many forms such as a nonlinearity due to wear or friction, excess noise, or a
AN

stuck value at any level within its dynamic range Some FDI schemes are designed to detect

only specific types of failures. If a malfunction or fault occurs and it is not in the repertoire,

3

then the FDI scheme can not detect it. This 1s the robust problem with respect to fault types.

Some techniques have been developed by some researchers in the field of fault diagnosis to
deal with some of the aforementioned robustness problems or example, unmodeled or
uncertain dynamics have been shown to act like a disturbance on a linear system in observer

or state estimator based FDI schemes. The robust fault detection problem becomes one of

Y
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disturbance-decoupling by design. This type of approach is known as the Unknown Input
Observer Scheme (U10S). Techniques used to deal with robustness problems with respect to
fault types include hypothesis-generation and hypothesis-testing _The- hypothesis-generation
proced’ure is"to build up a repertoire of known or hvpothesized possible malfunctions or
faults in system components or-instruments (sensors). Interested readers are referred to
chapter 10 and chapter 11 of the book of Patton, Frank, and Clark (1989).

The most challenging and usually missing part of research works in fault diagnosis is testing
“or using the FDI scheme on a real system or operating plant. Normally the application of new
and developing FDI schemes to actual operating svstems are prohibited because of expense
or safety. If and when one does get an opportunitv or authorization to test his/her FDI
scheme on a real world system. numerous practical and unforeseen difficulties will present
themselves. To overcome these challenges the designer of the FDI scheme must learn to
understand the nature of the practical problems. This usually requires that "he/she follows
his/her work into a specific engineering field which fnay or mayv not be familiar to him/her.
He/she has to either perform the implementation himselt/herself or work very closely with the
one who does the implementation. It is for this reason that most research works such as this

thesis end at the simulation stage.

<

&
The large scope and great diversity of unconstrained and constrained dynamic systems

prohibits a single research work to generate a general-purpose fault detection and
identification approach that is applicable to all systems. In this thesis we focus our’effort ona -«
special yet major sub-class of such systems - constrained mechanical systems. Thé
significance of studying this kind of system is threctold  a) There are many constrained
mechanical systems in the real world. Some of them are used in industrial applications b)
These systems are less studied than regular (unconstrained) dynamic systems, especially in the
area of fault diagnosis c) A systematic approach to detect and identify faults in these systems
has not been found but should be developed The FDI scheme in this thesis relies purely on
analytical redundancy [t is model-based and uses only quantitative reasoning Furthermore, It

falls into the sub-class of state estimator based approaches
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This thesis consists of five }chapters Chapter 2 focuses on the description, modeling, and
analysis of constrained mechanical systems. It shows that constrained mechanical systems are
a special class of generali"zed state-space systems, which are also known as descriptor systems’
or singular system. Some properties which are special to constrained mechanical systems are
discussed in this chapter. Linearization and nonsingular transformations are performed in this
chapter to yield a purely dynamic subsystem which becomes the foundation for further
analysis. The result is that all subsequent analytical work can be Cérried out in the domain of
(regular) linear system theory rather t’hafldthe domain of linear singular system theory.
Chapter 3 presents a design of an Unknown Input Observer (U10) and shows how such an
UIO can be used for fault detection and identification in linear or linearized dynamic systems.\
Similarity transformations and a nonsingular transformation are used in this chapter to help us
to divide and conql'Jer the problem. Chapter 4 uses a practical constrained mechanical system
in demonstrating the applicability of the proposed unknown/input observer based faul~t
detection and identification approach. Two actuators and one sensor faults are detected and
identitied in the simulations of a UMS-2 robot. Finally, chapter 5 summarizes the
advantages/contributions of the thesis and lists the limitations of the proposed scheme and the

opportunities for further research on this subject by any interested persons Tn the future.
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Chapter 2 .

Constrained Mechanical Systems

2.1 Introduction

Dynamic systems can be classified into unconstrained systems and constrained systems.
Unconstrained continuous dynamic systems can be described by ordinary" differential
equations of motion, which are easy to simulate Al} forces that do not work virtually are
eliminated from the formulation of unconstrained systéms Examples of workless forces
include contact\orces in shding-without-friction, rolling-without-slipping, and :he internal
forces maintaining rigidity of a body. On the other hand. constrained dynamic systems pose
some special problems. First of‘ all, they can no longer be described exclusively by ordinary
differential equations. Presence of constraint equations makes this type of system more
difficult to analyze and simulate Additionally. becduse knowledge of constrained forces is
crucial in some applications and such forces.may not be mea\’ure’c_ip,dire_ctly or indirectly,
estimation of constrained forces poses another issue and éhallehge. Let tls'(;onsider a robotic
manipulator (Mills & Goldenberg, 1989) pertforming a task on a ngid surface as an example
of constrained dvnamic svstems In the absence of a force sensor, the constrained forces
applied by the manipulator end-effector on the environment must be estimated for control
purposes so that 1) neither the manipulator ndr the rigid surface is damaged due to contact, i1)
contact is maintained during the task. and iii) the required forces are applied to successtully
complete the task  The study of constrained dynamic systems has been going on since the
foundation of analvtical dvnamics U/nderstanding ot analvtical dvnamics can be obtained
from the books of Meirovitch(1970). Gold§tein(l<)8(l). Greenwood(1965). Neimark(1972),
and Kane & Levinson(l@SS) The reader is - referred to the last two of the above five books
for methods of deriving ecquations of‘ motion for constrained dynamic systems. Basically. a
constrained dynamic or mechanical system involves positions or displacements, velocities,

-

forces, and constraints. Constraints involving only displacements or positions are called
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geometric constraints. Constraints involving velocities and possibly displacements as well are
called velocity constraints. Geometric tonstraints and velocity constraints that can be
integrated into geometric constraints are called holonomic constraints. Velocity constraints
that can not be integrated into geomefriq constraints are called nonholonomic ‘constraints.
One of the‘major ﬁnding§ of past studies is that dynamic' or mechanical sysfems with
constraints result in a description of differential-algebraic equations, i.e., the nﬁtural or
original repFesentation of constrained mechar;ical systems in terms of a number of d;jnamic

equatiéns plus another number of constraint equations can be rewritten into a descriptor fdi‘m

(Shin and Kabamba, 1988). Descriptor systems are also called singular systems or generalized

state- spz}ge systems. For mformatlon on singular systems. the readers are referred to the book
of Dai(1988), the early work of Luenberger(1974 & 1978), the paper of Yip &
Sincovec(1981), and the survey of Lewis(1986). The application of singular system tieory to
constrained mechanical systems has recently appeared as a new research topic. Generally,

linear time-invariant descriptor systems can be described by the following:

E ¥ (1) = Ax(t) + Bu(t) ' 2.11)
y(£)=Cx(t) ‘ (212)
where

E.Ae®R” ”, Be®R” l, Ce'R” "_rankE < n

>

We shall now present some definitions that will be useful in the remainder of this thesis.

i NI S

Definition 2.1 - Matrix Pencil
Let E and A be two matrices of appropriate dimensions with real values. A matrix pencil is

then a polynomial matrix given by (sE-A). This pencil is regular if [s/- — 4] =0 for a square’

pencil, otherwise the pencil is singular.

Definition 2.2 - Normal Systems

Dynamic systems that can be described by only difterential equations are called normal

[

systems. An example of such a system described in state-space formulation is*given by:

s
FIAE
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¥ (1) = Ax(t) + Bu(t) | (2.13)
y(t)=Cx(t) o (2.1.4) {
where

AER" " BERT . Cew "

Definition 2.3 Normal Forms for Constrained Linear Mechanical Systems
A normal form for a constrained linear-mechanical system refers to the representation of the
system in the form of a normal(dynamic) subsystem plus a set -of algebraic constraints. For

example, a normal form of the system defined in the last detfinition can be given by the

following:
¥, ()= A4 x (t)+ Bu(t) (2.1.5)
J— ) t
y(t) = C x, (1) (2.1.06)
v, (1) = x,(t) + Bu(t) : (2.1.7)
where |

Aenr . Benwt' Centr,Den:n

Aenm B ew: ' X, ER" X, €ER™ n +n, =n

Definition 2.4 Re{ularity/Solvability
A descriptor system described by equations (2 1.1) and (2.1.2) 1s regulﬁar or in other words
has a guaranteed existence and uniqueness of a solution if and only if the fdllowwing matrix
‘ pencil is regular, i.e , .
st~ Al £ 0.5 0 . (2.18)
Note a computationally attractive method for venifying the system's regularity 1s provided by

Luenberger's shuftle algorithm, which can be found in the book of Dai (1989).

Definition 2.5 Infinite/Impulse Observability

A descriptor system described by equations (2.1.1) and (2.1 2) is infinitely observable or

possess impulse observability if and only if
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I(/i A , .
P ' rank| O /| =n+rank E (2.1 9)
L_O (V

.

A more direct and more understandable definition of infinite impuls'efa observability is as

follows: p

System (2.1.1)-(2.1.2) is infinite/impulse observable if the impUlsilve behavior of x(t) at t=0-
¥

can be uniquely determined from y(t), t > O in the absence of input u(t) 3

Definition 2.6 Finite/Reachable Observability
A descriptor system described by equations (2.1 1) and (2.1 2) 1s finitely observable or

possess reachable observability if and only if

rankl' =n Vosel (2.1.10)

A more direct and more understandable definition of finite/rcachableobservability is as

follows:

System (2.1.1)-(2.1.2) has finite/reachable observability if ‘given any descriptor vector x(t),
t>0 in the reachable set, it can be uniquely determined through knowledge of the output y(1),
1€(0, t] in the absence of input u(t).
’ -
Definition 2.7 Complete Controllability (C-controllabilitv)
A descriptor system described by equations (2.1 1) and (21 v2)‘is C-controllable if and only if

N rank[sE-A B] =n Vel - Q211
and '

rank[E B} =n ' (2.1.12)

A more direct and more understandable definition of C-controllahility.is as follows:
System (2.1.1)-(2°1.2) is completely controllable (C-controllable) if there exists a control

input that can make one reach any state from any initial state in a finite time period.

Definition 2.8 Reachable Controllability (R-controllability)

A descriptor system described by equations (2.1 1) and (2 1 2) is R-contrpllable it and only if

¢
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rank[sE-A B]=n Vel (2.1.13)
A more direct and more understandable definition of R-controllability is as follows: \
System (2.1 1)-(2.1 2) is R-controllable ift’here exists an admissible control that can make the

state of the system to go from any initial state to a point in the set of reachable states ( a

9

subspace of R") ‘

The above deﬁ.nitions are of value and will be used in the rest of the thesis. In section 2_2.’3
natural mathematical descri'ption of constrained non-linear mechanical systems is initially
given in the form bf dynamic equations plus constraint equations. The non-linear
representation is then linearized. In section 2.3, any possible redundancy in the constraints 1s
eliminated and the linearized mathematical model is rewritten into a special form as well asya
descriptor form. The special torm is needed fo- deriving a normal form of the representation..
In sectio_n 2.4, a normal form of the linear mechanical descriptor ;ystem 1s derived. In section
25and 2.6, properties ot linear mechanical descriptor s_vsterﬁs and their impacts ormobserver

design for such systems are discussed. Finally. section 2.7 summarizes this chapter and

explains the link between this chapter and subsequent chapters.

2.2 Descrip;ion of Constrained Dynamic Systems

Constraints in dynamic systems can be classified as scleronomic constrainfs or rheonomic
constraints depending on whether the time variable t 1s explicitly contained in the constraints.
Systems with time-invariant constraints are called scleronomic svsteéms. Systemswwith time-
varying constraints are called rheonomic systems The most common model for dynamic
systems with constraints is that of Lagrange's equations. Modeling of constrained dynamic
systems uding Lagrange’s equations can be found in the book of Goldstein (1980). According
to Shin and Kabamba (1988), Constraiﬁ?d dynamic systems can be modeled as:

4

Mg)g + Hig.q)= J (q.g) N+ F , (2

to
=

t9
1o
~

8(q) =0 (2




where

and

—
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0(q,4)=0 (223)
r=w(q.q) . (2.2 4)
g(1) € N 1s the generalized coordinates vector
q(r) € B is the velocity vector
G(1) € R"is the accelerations vector

M(qg) € M" "is the symmetric positive definite inertia matrix

e

H(q.q) € R"1s the force vector —
6 - represents a set of holonomic constraints

@ - represents a set of nonholonomic constraints
A €R”7 1s the Lagrange multiplier vector

I € M" represents input forces acting as controls

r € R™ is an output vector : ;

. e
J"(q.q)1s called the Jacobian of constraint equations which is deffhed as

L

(a) In the case of only holonomic constraints represented by (2.2.2)

7O(q)

o

J(q) =

(b) In the case of only nonholonomic constraints represented by (2.2.3)

co(q.q)

./7\(,(' =
(4.9) Fa

-

(¢) In the case of both holonomic and nonholénomic constraints
represented by (2.2.2) and (2.2.3)
 Cp(q.9)

; . a
I = (?9(’(1)

L Yy

. pe
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Note that since gft) represents generalized coordinates, its components are independent and

the constraint equations in (2.2.2) and (2.2 3) are linearly independent.

The process of linearizing the system represented by (2.2.1-(2 2.4) requires multivariable
Taylor series expansions involving only the first order terms. Given a nominal “state

(q.,.4.,.4,.A.. 1)), let us first define the following notations:

. 2

i =449,
Z=4q-4,
=g,
A= \ e /\
f=1r-1
Vo= -k -
]
Then we have the following first order Taylor serres expansions.
f@’
M ‘
Mig) - Mg )+ T (225)
G=q, +* , (2.2.6)
“ - H ‘ H(q. '
H{q.q) - H((/ )~ (__((Ifl); Gl Tt (”(fl.’_q) L (2.27)
ay o q
A=A+ A | (2.2.8)
I'=1 +f i (22.9)
‘\‘\\ . _y -
0q)=0lg )+ ° (q)‘,\,ﬂ,w‘ : (2.2.10)
ay }
. A (q.q) Coq.q) _
olg.q)=9lq,.q,)* i u*,h,,_&,“ oo ?—/i - (Z2.11)
Yy Yy
) - Vo, Sy ( _ A s
wiqg.q)=wlq.q.)" ifl—l)ll A V. f/ 9) -V (el B
y y
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" :

and the Jacobian takes one of the following forms depending on the types of constraints:

o/ (q):

Jgyz S (g )+ (== ' » (2.2.13)
(c/)\ ! ( q ) .
or
_—_ } 4 G (g.q)) : <l (q.q) Y
Jq.q) = T g g0+ vz—‘—fu]w: ) - ( = ’1 W) @214
‘ (] 41}

Substituting (2.2 5)-2.2 11) into (22 1)-(224) and simplifying the resultant equations

results in:

where

Y

M?+Dz+Kz =f+]" 2 (22.15)
Lz =0 , (22.16)
2+ Hz=0 (2.2.17)
v=C, z+C, 2 (22.18)
M=2A(q.)
D - .@gﬁ) |
oy
k- Mad My .
g oy
L - ﬁ’ffi)}
(ll 1 1
o
- olg)
oy

S
Jooga

_ W 4.9)
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The holonomic constraints in equation (2.2.16) and the nonholonomic constraints tn equation

(2.2. 17) can be represented in the following generalized form:

where

G 2+Hz=0 (2.2.19)

(; =0 and H =L in the case of only holonomic constraint

( = G and H = H in the case of only nonholonomic constraint

NeR e
and H =
0 N

L -

-3
G = in the case of both types ot constraints

Therefore linear or linearized constrained mechanical systems have the following form:

M:+Dz+Kz=f+J1" (2.2.20)
G 7+H z=0 (2.221)
y=(, z+(C 2 (2.2.22)

]

Lo 02 To 0l s o
i | oo !

oo ollElei kg ey (2223)
) [ [ . i ‘ |
o o oll2l VH G -olli |0

M-

|
y=1[c, « qzi (2.2 24)

: L* ]
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2.3 Special Form of Constrained Linear Mechanical Systems

In this se?tion we will perform a nonsingular transtormation on the generalized constraint
equation (2.2.19). The motivation of this tfgnsf”or111ation 1s best understood in the next
section(2.4). The process of :t,his tran‘éformation yields a nonsingular(orthogonal)
transformation matrix T and a special form of the linear deécriptor system representation.
Both will be used in deriving the norrﬁal form of the descriptor svstem in the section 2.4

We start with a matrix pencil (/2 G+H)

where

/ 1s a complex variable in the complex plane or Laplace operator
GoHeWw "

¢ 1s the number of holonomic plus nonholonomic constraints

First. let us define row compression matrix and column compression matrix for an arbitrary
singular matrix denoted bv H According to singular value decomposition theory in linear

algebra, Orthogonal matrices R and Q exist such that

{4

pno- 0 >
0 0

where

Y 1s a diagonal matrix tilled with singular alues ot H

Then the following equations can be established

oY 0 0 Yoo R
R H= K R O = e
0 0 - 0 0 Q 0
< B Y ¢
HQ=R ~ O Q=[r RrR]1 - =[RS 0
Q=R S S ]

Thus R’ can be used as a row compression matrix and Q can be used as a column

compression matrix
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Now perform the row compression of G using an orthogonal matrix P, such that
\A .

— 1G -
P (}=J(;’Lmd P H =
[

!
[

then, we have

Perform further column and row compression o; H. using orthogonal matrices P, and T

such that

where

H . is a nonsingular matrix

Thus, we have
70" e GG+ H . [H
\P\(/b.(l+H)T] ! ' ‘ H\:[
0 o 0 H. |0

L J

e

where * < 7 tndicates a usuallv nonzero matrix pencil. Then, perform the same operations on

subpencil £ (G, +H as on A(r+H Repeat the process until (5, in the resulting

subpencil 2 G . +H | isof full row rank. Hence. we have

AGH - <]
0 H,  ~

0] 7o~ - 00

| P P(AG-H)T T, =

NO /);_1J ‘_O /, } O O O X AN
0 0 R
0 0 0 0 H,|

Finally. perform the column compression of (1 , to get

(/(_I-‘H)T. :[/_\/;J /t(\". _LHL:] |

where
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(;°, 1s nonsingular

and therefore the above equation can be rewritten as

P‘H_‘MI /“:./4’]_—{-1\, x -(—*
0 0 I, -
= = 0 0 .0
P(AG+H)T =
. 0 0 0.
0 0 0 ‘
0 0 0 >
where
-
=
0
70 ] o] | A -
= P, ! P, 1s nonsingular
0 I 0 1
and .
T=T. T, is orthogonal

S

Now let us take Laplace transform on the constraints equation (i 2+H z=0

Let us further define a new generalized state vector
EF=T z=T 2z

then v

N
it
_q
I

Taking Laplace transtorm on (2 3 6) vields

Z(A)=T =(2)

D

Premultiplv equation (2 3 4) bv P and substituting (2.3 7) into it results

P(AG+H)TZ(4)=0

(2.3.1)

—_
o
(95
Q9]

S

—
to
‘oo
o)
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"« Substituting (2.3.1) into (2 3 8) and partitioning =Z( /A ) results in

H., A< H o <]

0 0 / - .

| ) ) _g‘r:l(/h) ‘

0 0 0 I

| ; CZ =0 (2.3.9)
o0 0 0 A

| : HEUA)

0 0 0 0 . .lF .

L0 0 0 0 0 [/ =

Simplifying the above two equations vields

Ho Z(A) < (A1 H )E(4) -0 (

b2
“
1o
=

Taking inverse Laplace transtormation of (2 3 12) results in

0w

O8]
(]
(]
~

H; S () 2 H;: <.(1) =0 (

AL

Equation (2 3 13) can be rewriten as

2 NG
[0 7 ol sy ~[H H. 0] =0 (23 14)
N0 5]
Substituting (2 3.5) into (2 3 14) vields
[0 7 0T 200 [H H. o] T z)- 0 (2315)

N
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Define
N=[o 7 0T : (2.3.16)
and }
S=[A., H. ofTi=[s s 0T’ , (2317)
Then we obtain the following resﬁlts
N (1) +Sz(t) =0 (2.3.18)
NT=[0o / o - (23.19)
ST=[s, 5. 0] (2.3.20)

The above results can be summarized and stated as the following theorem:

Theorem 2.3.1 - Through the nonsingular transformation of matrix pencils, constraint
equations (2.2.16) and (2.2.17) can be transtormed into one of the following equivalent
forms:

(a) holonomic constraints

Fz=0. Few'” (2.3 21)
(b) nonholonomic constraints s
N2+Sz=0, NSew'" _ (2.3.22)

(c) holonomic and nonholonomic constraints

Nz~-Sz=0 and Fz=0 (2.3.23)
where

N.S=Wmt FeR™'" g -q =y

¢ 1s the number ot independent constraints

¢, 1S the number of independent holonomic constraints

¢. 1s the number of independent nonholonomic constraints

The Jacobian J will be one ot the following torms

9
‘»J
to
FEN

~—

(a) For constraint equation (2 2 7) J=F (2.:

(b) For constraint equation (2 2 8) J=N (2.3.25)
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(c) For constraint equation (2.2.15) IJ= }

(2.3.26)

Moreover, from the transformation which brings equation (2 2 7) and (2.2.8) into one of its

special forms (2.3.21), (2.3.22) or (2.3.23). an orthogonal matrix T, i.e. T '=T" . can be

obtained such that

(a) for constraint equation (22.7) FT = [o /] (2327)
(b) for constraint equation (2 2.8). NT= [O /] ST=1[5 8] (2.3 28)
(c) for constraint equation (2 2 15).
NT=[o 7, 0] ST=[s s 0], FT= [o 0 1, ] (2.3.29)

The above constraints can be denoted in a generalized form

Nz +§5z2=0 (2.3.30)
where

N =0.5 =Finthe case ofion]y holonomic constraints

N =N, S =Sinthe case of only nonholonomic constraints

_ENT I8 _ |

N o= 0 LS = } jin the case of both kinds of constraints

L -

Thus, the special form representation of linear mechanical system can be written as

0 oifzt To o7, 0l 0]
0 A 0 = oK D Sz -
-0 0 OJ_/A ; SN 0 ;g/# 0

(2.3.33)

The above results will be used in deriving a dynamic subsystem(normal form) for the linear

mechanical system in the following section

Example

.3
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We now use an example to illustrate how the special form transtormation is performed, i.e.,
we will apply theorem 2.3 1 toa specific system. The exarﬁple used here is a rolling ring drive
which has one holonomic constraint and one non-holonomic constraint. This éystem was
found in the paper. of Hou et.al. (1993). The linearized »system representation has the

R

following form:

oo0o0] o0 0o 0] oo q o [a \
0100 .10 1 -1 0, ‘o I -1 0 0l

Fad Z 4+ z=0 |+J A (2.3.34)
| 1o~ 0 -1 2 -1 Jo -1 2 1" |

| | |
o001 00 -1 1] 00 -1 1 |0
[0 0 0 1]z~-[-1 00 0]z=0 (2.33%)
[0 1 - 0]z =0 (2.3 36)

001 0 (000 0

y = 2T I <
o001 o0 0 0

which corresponds to the form in equations (2. 2.15) - (2.2 18)

The matnx pencil ( £ (; + H ) for this particular system would be

= = G IHI A H] 1000 1l 10 0 0]
AG+H=, —+ = =4 R | (2338)

0. L, L0 LI 0000 0 1 -1 0|
=  AG+H=] 23.39
01 -1 0 , ( )

Since the above matrix pencil is already in row compressed torm. there is no need to perform

row compression Therefore we have the following

P = | (2.3.40y
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G,=G (2.3.41)
H =H (2.3.42)
o= = G+ H T 10 0 A
P(AG+H)= = ‘ (2.3.43)
. oH. ] {0 1 -1 0
The last equation (2.5 43) means that
H.o=[0 1 -1 0] (23.44)
Now we need to find orthogonal matrices P, and T, such that
P.HT =[0 0 0 H] (2345)
It can be verified that the following orthogonal matrices satisfy (2 3 45)
, P, =1 (2.3.46)
10 0 i
o0 L o L
T, = i ‘ﬁl | (2347)
0 = 0 -=
W2 V2
0 0 1 9
'm0 0 o0 ;
] |
0 —— 0 -—=
' o] 8] ' —
1o 1 -1 0 Vl“ ‘G ::[0 0 0 J:] (23 48)
0 = 0 ——
W2 V2
0 0 1 0
L
Then, we have
10 0 ]
rO 1 1
70 S T o1 010 0 i+l /o 2
| P (AGHH)YT. = i | ‘ | ‘F ‘le
0o P 0O 1.0 1.0 1 =1 0 ' L o __L°
_ 3 U - -
V2 V2
o0 1 0
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-1 0 A+1
0 0 0 |
[H, 2+H,
) 0o i
Therefore we have
H, =[-1 0] (2.3.49)
H . =1 (2.3.50)
The transformation matrix T is determined as
~—~
N
% i
‘T 0 0 0 |
0 L o
5 oY
T=T = V2 Ve (2.3.51)
o L oL
2 V2
0 0 1 0 |
Then we can calculate the following matrices: .
10 0 1!
| ]
0 -0 —
7 77 N2 \’/2 |
S=[H. H. ofT =[1 01 1 |
() I O _"‘T‘
B J2
o0 o 10|
= S=[-1 00 1] (23 52)
<« 10 o o 1
!o Loy L
i ) o)
N=[o. 7 oT =[0 010 Y “]f
0 7= 0 ——=
| V2 \/Qi
0 0 1 0

#")
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= N=[0 0 0 1] (2.3.53)
10 o 1'
1 1
F=[0. 0.7/]T"=[0 0 0 1] o i
0 — 0 ——
2 22
0 0 1 0 | ,
- Foo L1 g (23 54)
- ! — — P
2 2]
- N 00 0 1 '
N=i 1=] | (2.3.55)
0 0 0 0 0]
_ g [21 0 0 1
¢ == | | i (2.3 56)
0 ——= ——= 0| Lo
A NERNC
“y 0 0 0 1]
J = | NG (2.3.57)
/ ]O = T = 0, oo
- 2 2
, T

f, 0 0zl 70 4 01z 0
0N 0= =K =D VNIEENa (2358
0 0 02 S N 0] i |0
velo o o]s T (2359
A

The numerical representation of equations (2 3 58) and (2 3 59) 1 given in the following



21

Chapter 2 Constrained Mechanical Systems

(2.3.60)

“3
“4
5
“1
Za
-
“3

2

5
Al

0

0O 00 00 O0O0O0O00©O0

0 0 O
0O 00 00 O0O0OO0O0O0

0 0 0 O
1
1

1

0 00 0 O
0O 00 0 0 O

0 0 00 0O

1

0 00 0 0 0O

1

00000000

1

000 0 0O0O0O0O0

1

0
000 0 0 0 O

1

0 0 O

0 0 0 O
0 0 0 0 0

0

0 0

-1

0

(2.361)

000000 03

0001000000

0 0

I

y

L

!
|

This concludes our illustration of transforming a linear descri

ptor system to its special form.

=
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2.4 Normal Forms for Constrained Linear Mechanical Systems

In this section we will derive normal forms for linear mechanical systems with various
constraints. First let us consider the most general case which involves both holonomic and
nonholomonic constraints. Let n be the number of descriptor variables, q be the total number

of independent holonomic and nonholonomic constraints. ¢, be the number of independent *

nonholonomic constraints, and ¢, be the number of independent holonomic constraints.

Using the orthogonal transformation matrix T ( T T' = T° T = [ ) developed in the last

section enables us to do the following:
N

~

Partition the transformed generalized state vector detined in equation (2.3 5) as

e
4 5‘.1} .
sz:f:;::! (24.1)
4 - ’
| 5
where
S eWRTY,E e R E e Y
Partition the transformed input vector as
N
T f=1}f (2.4.2)
i |
o

where

SEMTT O fe MY f e WY

Partition the transformed mass matrix M. the stiffness matrix K. and the damping matrix D as

MM M
T MT= M. AL AL (243)
MM M
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‘g_KH }{IZ KH—
T'KT= K., K. K, | | (2.4.4)
'K, K. K

jf/):‘. /)1: /)nﬁ
T'DT= 1D, D. D, (24.5)
: /)1; /):: /)“\‘\ {

)

Let A denotes M. K. or D and the dimensions of the above partitions be as follows:

»

AL eR™ T A eRT e A, T
Ae | "7 AL ent AL W
Ay eRr™ "7 Ay e Ay =M

Pre-multiplying both sides of the descriptor form representation of the last section by a

«

nonsingular matrix Q = diag(T" . T . I,)and noting that z = T results in

T 0 0 7, 0 o 7E (77 0 00 0 7]
[ o 1T 0.0 M 01;‘7'&}&:} 07T 0K =D ’i'/';r'
0 0 .0 0 0li; 0 0 [, S N oJ.L;L#
}f/ 0 O?P()ﬁ
J - !
=0 10 (246)
00 ] i
70 o0 : oo, /. 0 e T o]
i . . - R
O ITMI 0 F o= STTKT STDT TS e T (247)
00 0 i ST NT 0 s L0

Substituting (2 4 1) through (2 4 5) and the following results fron: the last section
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F{“ﬂ,- N:[N] =M
F| 05 " L#]
into (2.4.7) results in .
1, 0 0 0} é&

o I, 0 0]&

0o 0 I 0 0] &,
00 0 M, M, M, 0 0 &
00 0 M, M, M, 0 0/l&

0 0 0 M, M. M, 0 0 &

0 0 0 0 0|4
L0 0 0 0 04,

"0 I, 0 0 077¢
-0 0 0o, 0 0 . ¢
} o o 0o 0 0 [ 0 0 ¢
K, K. K. D, -D. -D, 0 0| &

K, K. K. D, D, D, I 0 E
~K,, =K, =K. =D, -D. -Dy 0 [ | &

S S, 0 0 l,, 0 0 0] 4
0 N rg) 0 0 0
where /

;-

Note that (2.4 8) can be expanded into as many equations as its number of rows. The seventh

and eighth rows ot (2 4 8) offer the following equations:

0=85 - 8.8 - &
//
A

These two equations result in the following:

oo dsps s oo 1)

(2438)

(2.4.9)

(2410)



. , s Chapter 2 Constrained Mcchanical Systems 33
.3
Eoeosg a5 o 2.411)
R (2.4.12)
£, =0 (2.4.13)
E.=0 : (2.4.14)
<, =0 (24.15)
The fourth row of (2 4 8) offers the following equation:

‘)\//H‘E!JFA’/DE:+A'/1:E::'/\H‘—l'Kz: ;:"/\ <

- ])Il ‘_j‘:‘ - ]):’;:: - /);: ;:: (24 l())

Substituting (24 11)-(2.4.15) into (2 4. 16) and rearranging terms results in the following:
B A'/;: S:".;:s - ;\/‘:: S: E N A'lit ’-: - ('K:: +/):: SE

(2417)

fee

(KDL NS -D

I

The fifth and sixth-rows of (2.4 8) offer the following equations

U ETH

MOE SMLUE M

and

DL ESDLESD L A f (2419)
Substituting (24 12)- (24 15) into (24 18)-(2419) and writing the two equations in a

matrix form result in the tollowing




[
Chapter 2 Constraincd Mechanical Systems 36

o 1.7 - K, )N 5 N R ] .
(Zhﬂ!flﬁL(/wn EE: :'1 AHJ;'[AWWE}E:'I’/J:}:EJl)“ "f:ylifl J+{f-} (2420)
LM, ] (M | Ky | A 1

Substituting (2.4.11) into (2.4.20) and re-arranging terms result in the following equation:

_MZZSI 5}:1 - A/I::S: E, * A73| “f, - (_,KZI +l")31‘\v!) (- I\_ - /‘)::S:) S

( DL E 2 ] (2.4.21)
where
oMy My o TR o TR Dy s Ty
M, =AML= K., = K.= = 1.D.= D=1
COML T MG T LK AL LDXJ
and
”;‘/

In view of equations (2 4 11), (24.17), and (2.4.21), equation (2 4 8) can be rewritten as

o, o 0o 0 00 0]fs]
0 /I, 0 00 0]]¢&,
0 0 0 00 0f¢,
-M,.S, -M.S. 0 M, 00 0| &=
~M.S, -M.S. 0 M. 0 0 0| F
0 0 0 000 5
] 0o 0 00 0| i
] 0 o 0/, O 07" "0
-8 -3 0O 0 0 0 s o
0 N 0 0 0 7, 0“51 0
=K, +D.S, -K.-D.S. 0 -D, 0 0 0l g - fI (2.422)
K,«D.S, -K.-D.S. 0 <D0 0 Il f
Y, S0 0 I, 0 0l :F 0o
0 0 0 7, 0 0 0ll; o
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Equation (2.4.22) can be rewritten in_the following form by re-arranging or re-grouping

variables in the generalized state vector:

T 0 000 0|
0 I, 0 000 0k
-M.S, =MLS. M, 0 0 0 0fF
0 0 0 000 0 &=
0 0 0 0 0 0 0[]
0 0 0 0 00 0]
M8, -MS. M, 0 0 0 0] 4]
o 0 ., 0 0 0 [0
j S -S, 0 0 0 0 0 & 0
K, v DS KL DS, -Dy 0 0 ojf;.;ﬁ
| 0 0 0 4, 0 0 0]z «o0
0 0 o 0 /0 0 & 0
S, s, 0 0 0 /[ 0 £, 0
-K.+D.S, -Ko+D.S. =Dy 00 0 I 1x [f]

Premultiplying both sides of (2.4 23) by the following nonsingular matrix

T, 0
| 0 /, 0
PV VAR M, MS. M
0 0 0 1.,
results in
.0 0 01l
0o, 0 0k |
0o 0 I, 0o 0 0
0 0 0 0 -0 0 : -
0 0 0 0 o0 0 E
0 0 0 0o o0, o0 &
0 0 0 0 0 0

(2.4.23)

—

(24.24)
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i 0 o - /., 0 0 0 ol [ 0 ]
_ - S, 0 0 0 0|le.
A, A: A, 0 0 0 0 'él ,‘ A//HAIfy )
0 0 o/, 0 0 0 < 0 (2.4.25) .
0 0 0 l, 0 0ll& 0
Y s, 0 0 [, 0|l¢& 0
'/?:t * Drr“\'s ~]\v’:: * /j::S: _531 0 Iq L / _ L j: J
where
A =M, (D.S K, -M.S.S) . (2.4.26)
A, =M, (D.S.-K.-M.S.S.) (2.427)
A, =M, (M. S, -D,) (2.428)

Then the first three rows of (2.4.25) offer the dynamic part of the normal form representation

as expressed by the following:

;;l :} rr O O ln ;]ﬁl'(gl]
L i:j#\i -5 0 fl§~ | 0 | f (2.4.29)
Do [ - | LT
LA A A LE M
Expanding the last two rows of (2.4 23) results in:
0 0 0T
SNILS O SMLs. AL T
B o
- -L ) . “‘F:‘} [T 7
' \ .\‘ O s i - 1 O
e S & ] (2.4.30)
,*/\::J'l)::‘\z ‘*K::*/)::‘\: ‘l):l; ,1 L~ f:
LS )

Simplification of equation (2.4 30) yields the algebraic part of the normal form representation

as the tollowing

-

1
J

| 0 0 f
T , 43
MM - F (2431

[E RTRIR T RN '
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where
E, =M, A +M_S S +K . -D .S, (2.432)
E. =M, A.+M. S.S.+K ..-D..S. (2.4.33)
E, =M,A.-M_.S§ +D_ (2.4.34)
Moreover, the output equation from (2.3 33) of the last section
[z
y=[c o]4 :
K
can be rewritten as
y=(C, T)(T'2)+(C. T)(T' 2)
=(C,T)E+(C, TE )
. ]
P P
. B . v 11 ‘ B B B | .
= (1]‘::& +los (,,]j;:[
[ !
szj L;:J
Substituting &, = 0 from equation (2 4 13) into the above equation results in
CoE] (5]
vl e T s es ot (2.4 35)
L=: K38

(2.4.36)
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The above development generated a normal form for a system with both holonomic and
nonholonomic constraints. This coordinate transformation procedure can be performed on
systems with only holonomic constraints to derive normal form representations for this kind
of system. It can also be used to derive normal forms for systems with only nonholonomic
constraints. The results of the derivation of normal forms for the aforementioned three kinds

of constrained linear mechanical systems can be summarized as follows:

Theorem 2.4.1 - The constrained mechanical systems of form (2.3 32)-(2.3.33) can always
be transformed into one of the following forms:

(a) in the case of only holonomic constraints:

&m0 / eoor o0

D | I AR f (2437)

‘L‘:,} t ‘/\1\1 1\1 "AJH l)l J’L‘E_ !LAI .

. Sk L

V>[(J (:]JE; (2 438)
[

L7 0 (2439)

FEKo ALK )E(DL M AL K )E N AL f -f (2440)

}fll‘ 0 0 /"]“'flw i 0 |
R S L (2441)
| !‘ '; | { J
1 A A s M :
L B - . B . .

i el (S S N GRS G O G (2.4.42)

:

s -soo00 T T 0 C o
P BT ‘ | 24.43
; L. E. FL MM L f (24.43)

(¢) in the case of both holonomic and nonholonomic constraints
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S foo o rs) [0 ]
g:j:fx; -850 & f (2.4.44)
F'J LA1 4. A H_:wJ LW"» :J:
o]
Ll
y=[C -CS C.-CS. ::li (2.4.45)
L5
E=E - (2.4.46)
0 - . Tr;]j oo 5 T 1
S T A S O A B ¢ 6T
Do g \ R (2.4.47)
I S N MM, =1 S
-7 Lo : T

where fl‘s are defined in equation (2.4 1) and other matrices in the above normal forms are F'S

defined as follows:

1) for case (a) and (b). @
TALOAL
T AT="~ o A denotes M, D. or K
AL /\::JV
i Tf\“ v v N
T =" C T=[C, C.].C T=[C, ]
/.| )

2) for case (c¢).

‘fﬁ\‘ Az: \ 7 lﬁf\ﬂ“
TOAT= AL AL AL A=MDK T f= f G
AL AL AL o .
f.= C, T=[C ¢ ] ¢ T=[C, . ]

3) for cases (b) and (¢)
A, =M (D.S -K, -M.S.S,)
A: =M, 1(D::S‘: 'K::'M::S: S:)

A =M (M.S D)

4) for case ¢b).
E =M A +M_.S. S K., -D.S,



Chapter 2 Constrained Mechanical Systems 42
E. =M, A:fM:: S,S.+K..-D..S. 4
E. =M, A, -M.. S +D,
S) for case (¢):
E, =M. A, +M. S.S,+K .,-D .S,
E. =M, A, +M.. S.S.+K ..-D.. S,
E.=M,A,-M_.S +D,

-

L d

2.5 Regularity of Constrained Linear Mechanical Systems

As defined in definition 2 4 of section 2 1, regularity refers to the existence and uniqueness of
a solution. Obviously regularity is an important property of the systems being studied in this
thesis. Working with the following special form representation of linearized constrained

mechanical systems

‘r/n 0 0lfz] [0 /1, O]z [0
| IR .
v 10 A 0| = —K.=D g el (251)
‘ I IR R — oo ‘
000 0lA 5§ 0i
el (RO IS (252)

we can come up with a theorem as follows:

Theorem 2.5.1 Constrained linear mechanical systems as descrited by equations (2.5.1) and

(2.5.2) are always regular. 1 e

sl -1, 0
K Af~D ~J{40se( €2.53)
-5 =N 0

Proof” A proof using the shuffle algornthm (Luenberger 1978) 1s provided in Appendix A of

this thesis
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2.6 Controllability of Constrained Linear Mechanical Sysfems

As defined in section 2.1 the necessary and sufficient condition for reachable controllability is
one of the two conditions for complete controllability. Consequently, complete controllability
is definitely a stronger condition-than reachable controllability. A system that has reachable
controllability does not necessarily have complete controllability. A system that have
complete controllability must have reachable controllability. It can be shown that the strongér
controllability property is not possessed by constrained linear mechanical systems. Being a
special class of linear descriptor systems, constrained linear mechanical systems or linear
mechanical descriptor systems can have reachable controllability at best.
-

Theorem 2.6.1 Linear mechanical descriptor systems as described by equaffons (2.5.1) and

(2.5.2) are always not completely controllable or do not have C-controllability.

Proof. The proof is easily obtained by showing that the second rank condition in the
definition of complete controllability is not satisfied, 1.e.. [E B] 1s not of full row rank

First we need to rewrite (2.5.1) to show what B and E are

E/ 0 0zl o I O“;(:T K3
L 1 ‘ I o
0 M0 E= K =D T e
00 0 A T8 N 0,2 0
/.0 0 .0
E= 0 A/ 0/ and B=,/]
| |
0 0 0 0]
<
Now 1t is obvious that
7, 0 0 0
rank [EB] =rank | 0 A O / ' = number of rows in E or B
0 0 0 0 “

[

The second rank condition is not satisfied and this completes the proof

-—

i
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2.7 Observability of and Observer Existence Conditions for

Constrained Linear Mechanical Systems

Any observer-based fault detection and identification schemes inevitably relies on system
observability conditions of one kind or another. I now present the following theorem

regarding the infinite observability of linearized constrained mechanical systems:

Theorem 2.7.1 Linear mechanical descriptor systems as described by equations (2.5.1) and
(2.5 2) are always infinitely unobservable or do not possess impulse observability.

7

Proof’ see Appendix B of this thesis.

Shin and Kabamba(1988) noticed that when constrained forces are not directly or indirectly
measurable, a constrained mechanical system is not infinitelv observable. The mathematical
proof in Appendix B confirms this physical explanation

Infinite observability is a desirable feéture as far as unknown-input decoupled observer design
is concerned. Some general results of conventional observers for descriptor systems with
unknown inputs are provided by Hou and Muller(1992a) The existence conditions of the
unknown-input observer has the nature of the infinite observability and therefore can not be
met in constrained mechanical systems considered here The design of unknown-input
observer must be based on weaker or alternative observability conditions. Designing
unknown-input observers is an essential part of any obsenver-based FDI schemes An

unknown input observer (L'10) design method is presented in the next chapter.

Incidentally, the observer existence condition for constrained linear mechanical systems
driven by totally known inputs is very simple. Hou and et al (Hou and et al ,1993) pointed
out that finite observability of the system is a necessaryv and sutlicient condition. They also
proved that finite observability-of the descriptor system is equivalent to the observability of

the corresponding conventional system in the minimal coordinates Since this thesis is most
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concerned with unknown input observer based FDI, their condition is not really useful
Necessary and sufficient conditions for the existence of unknown-input observers remain to

be found in a subsequent chapter.
2.8 Summary <

In this chapter, we enriched and extended the discussion and analvsis of constrained dvnamic
systems and constrained mechanical systems by some previous researchers such as Hoi. et al.
(1993). We recognized and classified constrained mechanical systems as a special kind of
singular or descriptor systems. Starting with the standard nonlinear Lagrange equations
model of constrained mechanical systems, we first obtained a linearized model of the system
by using the standard Taylor series expansion technique. We were able to rewnte the linear
model in a generalized state-space format. Then we performed a nonsingular transfémwtion
on the constraint equations and obtained a special descriptor form representation. This
transformation process generated a nonsingular (orthogonal) matrix which we subsequently
used in performing a coordinate transformation and deriving normal forms for mechanical
systems with holonomic and/or nonholonomic constraints. We used a numerical example in
demonstrating how one can perform the important transformation The resultant dynamic
subsystem in the normal form of a constrained mechanical system leads our subsequent
studies in the following chapter to the domain of linear system theory. In the last few sections-
of this chapter, we identified and discussed some rather special properties of -constrained
mechanical systems such as their lack of infinite observability and complete controllability

We pointed out that lack of infinite observability restricted our choices of approaches to
e

observer design and fault detection and identification. By doing so we built a brid
this chapter and the next one, which presents the design of an observer that is capable of

estimating the state ot a svstem driven by both known and unknown inputs.
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Chapter 3

An Unknown Input Observer Based Fault Detection and

Identification Method

3.1 Introduction

As discussed in chapter one. the need for safe and reliable operation of complex engineering

y

processes at reasonable cost has been promoting research and investigation into the problem
of fault detection, identification, and accommodation (FDIA) Among the various FDIA
techniques, there is a class of model-based approaches that are commonly referred to as the
analytical redundancy techniques. Detailed survey ot these methods could be found in Willsky
(1976), Isermann (1984). Merrill (1985), and Frank (1996) Since the introduction of
dedicated‘observer scheme (DOS) by Clark (1978), more sophisticated approaches based on

it utilizing some detection function or statistical tests have been proposed.

One of the major difticulties in the application of model-baseci techniques to practical FDIA
cases is the problem of plant uncertainties or parameter varaticns. In such situations there
usually exists a need for a robust FDIA methodology A number of different approaches to
robust FDIA problems have been proposed. One such approach is a sensitivity discriminating
observer scheme proposed by Frank and Keller (1980), Another approach dealing with

uncertainties is the threshold selector method proposed by Emami-Naeini, et al (1988)

-

3
Recently. there have been some studies in the area of FDIA based on the theory of unknown

input observers (UIO) A survey of the UlO-based approaches can be found in Frank (1990). -
Several somewhat difterent UIO desigﬁ methods have been proposed by Kudva (1980),
Kurek (1983). Wang et al (1975). Yang and Wilde (1988), Guan and S%‘( 1991). and Hou
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and Muller (1992). The UIO theory has been utilized for actuator fault detection and isolation

by Viswanadham and Srichander (1987), and Park and Stein (1983)

UIO design has been an active area of research in the past several vears due to its widespread
applications. UIO’s are primarily designed to accommodate unknown exogenous
disturbances in the dynamics of the plant. Conventional observers that reconstructs the state
vector under the assumption that all inputs are known have been used in state feedback
control of various systems. This traditional approach of control neglected the presence of
certain uncertainties (such as inaccessible inputs and plant disturbances) and often is not
sufficiently useful for fault detection and identification purpose Because most uncertainties
and plant faults can be modeled as unknowil inputs to the system, designing unknown input
observers (UIO) 1s of tremendous use for robust control, fault detection, identification. and

accommodation (FDIA).

Basically, there are two types of UIO design methods The first category of approaches
includes a numser of attempts that assumed some « priorr information about the
unmeasurable inputs to the system. Specifically, Johnson (1975) assumes a polynomial
approximation to these inputs, and in Meditch & Hostetter (1974). 1t is assumed that the
unknown inputs can be modeled as the response of a known dynamic system represented bv a
constant coefficient differential equation. The other category of UIO studies assumes no
knowledge of the inaccessible inputs. Among the more recent works are those of Yang &
Wilde (1988), Guan and Saif (1991). and Hou & Muller (1992) Yang & Wilde proposes a
full-order observer that is claimed to have somewhat better rate of convergence than a
reduced-order observer. Although they claim that they use straightforward matrix
calculations, their procedure involves singular value decomposition or Jordan form
transformation Their method also requires solving a svstem of linear eque)l}ions that has more
unknowns than equations In the work of Hou and Muller (1992). a red/uced-order observer
and a minimal-order observer are derived via a technique of coordinate transformation. The
denvation is rather mathematically involved and hard to understand. In this chapter, we

propose a mathematicallv simple and computationally efticient unknown input observer
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(UIO) design method. This m%thod 1s inspired by and owes its merits to the early work of
Guan and Saif (1991). =?In the following few sections of this chapter, the UIO design is
discussed and some modification of the approach of Guan and Sait (1991) is made to make
the UIO design more systematic. The first step of the procedure is formulating the problen: as
a linear time-invanant system with unknown inputs. The second step is specifying the

assumptions used in UIO design. The third step involves performing a nonsingular

~ transformation on the partitioned system and actually deriving an observer for one of the

three reduced order subsystems. It turns out that states of the other two subsystems have
direct algebraic relationships with the output of the svstem which is assumed to be available
(measurable) for observer design purpose. Thus the combined state of the whole system can
be estimated using a single conventional observer. Furthermere. a necessary and sufficient
condition for the existence of an UIO is presented and proved in this chapter. This condition
can be expressed in terms of the matrices in the linear time-invariant representation of the
system for the convenience of checking if the condition is met Finallv, methods for detecting
and identifying actuator faults and sensor faults are presented in the last part of this chapter.
The methods are based on modeling actuator faults as unknown inputs to the dynamic
equations of the system and mod\e]ing sensor faults as unknown inputs to an augmented
system of which sensor faults are part of the state. Both actuator fault detection method and
sensor fault detection method rely on state estimation which is accomplished via the unknown

input observer

3.2 System Representation and its Observable Canonical Form

System description and modeling has been discussed in the previous chapter and will be
discussed further in the last part of this chapter In the next few sections we are only
concerned with deriving an UIO. For this purpose we assume that all the necessary
linean'zatigon and transtormations have been performed and our system representation has
resulted in the simplest form of all dvnamic system representations, namely linear time-

invariant systems. These systems can be assumed to be driven by partially unknown inputs
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which may be used to represent plant faults and parameter uncertainties. The state-space

formulation can be given as follows:

¥x=AX +Bu+ Dd : (32.1)
y=C¥% (3.22)

Without loss of generality, the concerned system can be written in the following observable

canonical form:

¥= Ax + Bu + Dd , (3.23)

y = Cx :[0 l]x ) (324)
. _
where

T AeW'", BeW''. Cew'’. Dew”

xeWM", n. number of state variables

us W q. number of known inputs

de MW", m: number of unknown inputs

ye R, p. number of outputs

I 1s an identity matrix of order p» p

Remark: If C is of full row rank, there always exists a similarity transformation that can bring
the representation in (3.2 1) & (3.2.2) into its observable canonical form in (3.2.3) & (32 4).

Details of this procedure and the proof of this claim can be found in the book of Chen(1984)

3.3 Assumptions for the Design of UIO’s

Three assumptions are made in the rest of this work These assumptions have been used
implicitly or explicitly in all the works on UIO theory and design As can be explained later,

they are not restrictive assumptions’
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Assumption 1

The measurement matrix (' in (3.2.2) is assumed to be of full row rank, i.e.
rank (= p 3.3.1)

If the measurement matrix ( is not of full rank. then there exists at least one redundant
output. This redundancy can be eliminated by redefining the output vector y and the
measurement matrix (* such that the new outputs are linearly independent. Therefore, this is

not a restrictive assumption.

Assumption 2

The D matrix in (3.2.3) 1s assumed to be of full column rank. i.e

—_—
LI
(OS]
to

~—

rank D =m

If D 1s not of full rank, it can 4always be decomposed as a product of two full rank matrices

via the following proposition:

Proposition 3.3.1 Any p - q matrix A, whose rank is r can be decomposed as follows:
A=BC

where
B is a p x r full rank matrix
Cis anrx q full rank matrix

Proof See the proot of proposition 2 in Saif and Guan (1993)

Thus. D can be decomposed as
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D=DN (333)
where

4/_) has full column rank

N has full row rank

Al ¢
and a full rank new D and a new d for (3.2.3) can be defined as

it

D
N d

D’
d4

i

r

In the early work of Kudva et al. (1980), a necessary condition for the existence of any
unknown input observers for the system described by (3.2.3) and (3.2.4) is proposed and 1s

subsequently used explicitly or implicitly by many others It can be stated as follows:

Assumption 3
A necessary condition for the existence of a stable unknown input observer for the linear
dynamic system described by (3.2.3) and (3.2.4) is that the number of linearly independent
outputs is greater than or equal to the number of unknown inputs. ie..

rank(CD) =rank(D)=m , with m < p (33.4)
Proof See theorem 1 in Saif and Guan{1993)

3.4 Unknown Input Observer(UI0) Design

First, we apply the partition technique developed by Saif and Guan (1993) to divide the

dynamic system in (3 2 3)-{3.2 4) into three subsystems:
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d

1
‘x.‘:wp mi :ﬁ A:rp miin | x:w m ol + F B:‘ - I'l'l + l): . (34])
. P ' j P 9 i- } P omiom
SR A
r,\’]m Pt
y={0, 0 L]l L (3.4.2)
xl

As shown in the later part of this section, the UIO design procedure involves using a

nonsingular transformation matrix which contains the inverse of D, . In general, a simple

straightforward partition of the observable canonical form represented by (3.2.3) and (3.2.4)

does not necessarily result in an invertible D, . A procedure is needed to deal with the lack of
invertibility of D, It turns out that this can easily be accomplished by reordering state

variables in the observable canonical form representation.

Since ( - is of full column rank by assumption 3 in the last section, it must have a

Ll)“‘J pom

m ~ m submatrix whose determinant is nonzero. This submatrix is therefore invertible and can

D. ]
be defined as the new D. . The new D just contains ditferent rows of (/)_ J . » than the old
. L1
_ . D _—
D, does It can be obtained by switching the rows of f/)‘ .- Switching the rows of
! . 1

-

D,

L

D .
4 J .. 1S €quivalent to reorderiru,gwtlw last p state variables in (3 4.1) The first (n-p) state

variables are contained in D and therefore does not need reordering. Thus a nonsingular or
invertible D, can always be obtained by reordering state variables What must be pointed
out is that reordering state vaniables also affects the output equation and thus the
measurement rﬁatn’x C  As a matter of fact. reordering state variables result in column

exchanges in C Since only the last p state variables are reordered. column switchings in C
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are limited to the last p columns. Because the last p columns of C | | in the canonical form
(32.4) is an identity submatrix I~ which is absolutely nonsingular, the new submatrix
resulting from switching columns in I, has to remain nonsingular. This invertible submatrix

can be denoted as C_  Then D, can be assumed nonsingular while C is of the form
o ¢]

It is worth noting that reordering state variables is equivalent to performing a similarity
transformation on the observable form representation. The observable form representation
itself can also be obtained by performing a similaritv transformation on the onginal state-

space model. —~

Therefore, without loss of generality, the system may be assumed to be of the following form:

Al 1 {BI | (/)1 } '

¥ =Ax+Bu+Dd= 4, x+ | B u+f/):’d (343)
Al LBy o

y=Cx =[0 ]« N (3.4.4)

where

AR, Be "7, CeR" ", Dc " "

xeM" n° number of state variables

ueN’ q. number of known inputs

de WM™, m number of unknown inputs

yeR”" ', p. number of outputs

C _ is an invertible matrix of order px p

f

The output equation (3 4 2) can be partitioned as:
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[ e

The inverse of C , can be defined as

C ’:j "‘f (3.46)

H o
or

X =C..y (348)

. =C .y ’ . (349)

The following matrix operator can be defined:

/0 ;/)]/);’Wt
T=0 J -D.D, " (3.4.10)

i

|
oo 1

Post-multiplying both sides of equation (3 4 1) with the above operator results in:

e =D A DDA B -DDUB 0]
X -DDY s A4 DD A ke B.-D.D, "B, iu-10 jd (3411)
X A, L B, D

Substituting (3 4.8) and (3 4 9) into the first two "rows" of (3 4 11) vields:
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%,-D,D, 'C,. #=A x+Bu (3.4.12)
and

', »-D.D, ‘CP:}"=‘K3x+§:u (3.4.13)
where

A=A -DD. A,

| B =B -DD.,"'B,

Partitioning KI as

A=[4, 4, A] i=1.2.3 (3.4.14)
wﬁere

A, = A -DD, 4 j=1.2.3 (3.4.15)
and A4, s are elements of partioned A matrix of the following form

A, A AL
A=A, A A, !
e, A A

Now using the partioned matrices 4, in (3.4.12) and (3.4 13) wili result in’

¥o=A x v (3.4.16)
and ,

z=A4, v, (34.17)
where

r=(4.C. +4,C y+DD, 'C_ y+Bu (3.4.18)
and

z=(C -D.D, 'C,.)y-(4.C, ~A.C,.w-B.U (3419)

y

2
i
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According to observer theory(Chen, 1984), the state of the dynamic system represented by
(34.16) and (3.4.17) can be estimated by a Luenberger observer. The dynamics of this

reduced-order observer is given by:
¥, =A% 1+ M(z-A4,, %)) (3.4.20)
where M is the observer’s gain. Substituting for r and z into (3.4 20):

$,= A, % +(A,C +A4,C.)y+ DD, 'C,. i +BurM{(C,, -D-D; C,.)¥

- (A::C +A:;('[,: )y 'E: u- ‘3:1 \1 j

’*Ah(‘[,: ) _ M(‘ZJZCP; +AZ::(‘

e Y

+(B,-MB,)u+ {D.D, 'C.-M(C,, -D.D, C )} (3.4.21)

1

Equation (3.4.21) contains the derivative of the output which i1s not available for direct
-

measurement. This problem can be dealt with by defining a new variable w as follows:

-

w=3% -{DD, 'C_.-M(C_ -D.D, 'C )iy (

GJ
+
[§9)
(S8

Rewriting (3. 4.21) in terms of the new vanable w will result in

W =Fw~Ev+Lu - (3423)

where

E-(4 -MA){DD, C..-MC_-D.D, C )|

“HAC = A0 -MALC, AL C ) (3425)

P
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L =(B-MB.) (3.4.26)

The following theorem will conclude and summarize UIO design

Theorem 3.4.1 If the pair {A,, 4.} is observable, the state of the dynamic system
described by (3.4 1) and (3 4.2) can be estimated by using the UIO proposed in (3.4.23)-

(3.4.26). The estimate of the state is given by:

X :; v i:]r 0’w+} C, 'ly (3.427)
L% 00 (O
where
N=DD,'C,.-MC, -D.D, 'C..) (3.428)

In addition, all the eigenvalues of F can be placed at any desired location. The proof of the

+ above theorem has been implicitly given in the foregoing discussion

3.5 Necessary and Sufficient Conditions for the Existence of UIO’s

Given the linear time-invariant dynamic system with partiallv unknown inputs as described in

the previous sections:

v=Ax ~ Bu + Dd (35 1)
L vy = Cx (352)
where
AeW" BeW" 7, CeN" 7, D=W""
xeW | n number of state variables
us N q number of known inputs
d=nR™ . m- number of unknown inputs

v p number of outputs
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there exists a necessary and sufficient condition for the existence of unknown input observers.
Since different researchers in this area use different methods to design different UIO’s, there
exist quite a few seemingly different necessary and sufficient conditions. After close
examination of these ¢ompeting conditions it is found that these conditions are virtually
equivalent to each other. The generally accepted format of the condition can be stated in the

following theorem:

Theorem 3.5.1 --- A Necessary and SufTicient Condiﬁon for the Existence of UIO’s
A necessary and sufficient condition for the existence of an UIO for the system described by

v
(3.5.1)and (3.5.2) is that \

s, -4 D N
rank ‘(‘ 0 =n+m Vo ose( (3.53)

It has to be pointed out that the concerned system such as (3 5 1)-(3.5.2) has been assumed
to satisfy the minimum necessary conditions expressed in Assumption 1, Assumption 2, and

Assumption 3 of section 3 3.

Proof: The above theorem can be proved indirectly by showing its equivalence to Theorems

3.4.1 which states that the necessary and sufficient condition as the observability of the pair

(A, A b e,

sf -4 .
rank;( /E Y =n-p Yoved (354)

| (355)

where
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(/n 0 DD

u=l o /,, -D.D" (3.5.6)
Lo 0 D,
and
A, sDD, + A4
v:’adpm+23 sDJL1+ZB! (35.7)
DAL DAL —sD
L - J

Note that C can be assumed to be of the form [O l/,,]without loss of generality. The

matrices A, C and D can be partitioned as the following as they were partioned in section 3 4:

‘[r—AHm pron p 14}:”' Froop o me 14"‘:"' P‘"‘—-‘j
A=Al AL A (3.5.8)
AL A A
D]
D=D. (35.9)
D,
7 Om 1 Om o /m () \ ) *

It is a known fact and a theorem in matrix theory that pre-multiplying a matrix with a

nonsingular matrix preserves its rank. Now we can perform the following multiplication:

Sl-A D sl-dA D)
S ‘ - =rank P| . |
o 0! o C 0]
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' Usl, - A)+1C UD
- rank h . (35.12)

?

Now let us evaluate the upper two submatrices by defining

W= (sl - A) (3.5.13)

X = VC (3.5.14)
Y=W+X (3.5.15)
-Z=UD (3.5.16)
Then
. 5 1
0,0 DD, (s/n A AL A, |
W= 0 /, . -D.D h Ay N S A I:
i iy _ A
o0 D JL Ao Ao o, AWJ
’q /4+DD‘Ai ~AL+ DD, AL ~A-sD D+ DDA
LA+ DDA l%w—A:+QDQA:~A-4DD‘+DD A [(3.5.17)
} <-/)1 A, -D, A, sD, -
Recall that in equation (3 4 13) of section 3.4 we have defined
A = A -DD, A, i=1,273 i=1.2.3 (3.5 18)
Thus equation (3.5 17) can simplified as
sl A =DD A, <AL A -sDD.
W= —A. -D.D A s, -AL A —sDD
o DAL DAL wh =D 4
[ ' - =

Now
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A sDD, '+ A,
Ao sD.D, '+ 71:;
D, Ay, - sD, "

3

.
X=VC=l-s/ _+ |
| D, 'A..

-

0 A, sD, D, ‘+;i;1
=10 As/p Lt E:: sD.D, b 71:3
0 D, A, /);1A11~.d);‘J
Then we have
'sl, ~A, O Oﬁ{'
n [}
Y=W+X=l -4, 0 w
! i
LDy A 0 0
Furthermore
Ao, 0 DD D
Z=UD=- 0 IM,-MDEWD%W
o~ DD
00 0
=t 0 0
00 7,
Therefore equation (3 S 12) can be rewritten as
ol A4 D oy 7
rank . . =rank | 1
s 0 3 0]
jﬁ\lm - El‘
- ! - !
| *‘4::
=rank | -, A,
0 !/, .
0

04
| p iy IY‘ -
Om inop

O
()

O

nomg

Olp mi-m
ponn /m
(3.5 19)
(3.5.20)
(3.521)
0 |
0
I, |
0
|
0]
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F.s‘/n , - A, 0
—_le 0
= rank 0 . . 0
0 o /7,, O
] 0 0 lm_
s/ ,~ZH7‘
= rank f . +tm+(p-m)+m (3.522)
’ Bl .
Thus
sl A4 D sl - A
rank| " 1:n+m o rank |7 H-\n-p
0. Lo

This shows the equivalency between the two conditions and concludes the proof. This also

concludes our discussion of unknown input observers.

3.6 Problem Formulation for Fault Detection and Identification

In the previous sections, we outlined the design of an unknown input observer that can be
used to estimate the state of a dyramic system driven by partially unknown inputs. In the
following sections we will essentially re-present Saif and Guan's (1993) approach to fault
detection and identification using our modified UIO as the state estiKmatorA First we need to
establish a link between unknown input observers (UIO) and tault detection and identification
(FDI) The design of the UIO in the previous sections was based on the assumption that a
system model is known with precision. In reality, however, parameter values may be known
only approximately or time-varying ‘There may be actuator failures and/or sensor failures
which affect the behavior of the system Let us now consider the effects of actuator faults,
sensor -faults, and parameter uncertainties on system dynamics and outputs one at a time.
The only information commonly available about the faults is the location of their possible
appearance. No assumption can be made about their mode, i e., their time evolution and size.
Suppose the nominal values of the parameters are known and our system can be linearized

The representation of the system can be written as’
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X, =A,x, *B, u, (36.1)
y, =C,_ x (362)

where

subscript , means nominal system model parameters

A e B enr"’ -
C. eR"" isthe measurement matrix

xe R is the state vector

ueR’' - isthe known or control input vector

yeR"™ " isthe ou‘tput vector

Actuator faults act directly’on system dynamics. They affect the dynamic equations of the
system model and these effects can be modeled using an actuator fault distribution matrix and

an actuator fault vector in the following format:

¥ =A x +B u +D d (3.6.3)

H 2

where

D <R""™ isactuator fault distribution matrix

I

d eR”' isactuator fault vector

12

Sensor faults can be modeled as additive bias components in the output equation through a

sensor fault distribution matrix.

y =C x +E e (3.6.4)
where

E. WM™  issensor fault distribution matrix

e R 1s sensor fault vector

Parameter uncertainties may be initially modeled as deviations from their nominal values:
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A=A + Ad ; (3.6.5)
B=B, + AB (3.6.6)

-

The uncertainty matrices A4 and AB can be rewritten as

A = 1, Ad (3.6.7)
AB =1, AB, (3.6.8)

by giving the following definitions:

Definition 3.6.1 The n by k uncertainty indicator matrix /, of any n by m matrix R 1s
defined as /,(r,,....r, ), where k is the number of rows of R that contain unknown elements.

The jth column of this matrix has zero entries except for the a, th entry which has a value of

one.

As an example, if A is a 4 by 4 matrix and there are uncertain elements in the first and third

row, then
o)
, 0 0
k=2 a =1 a =3 and [ (a,.a)=1,(13 =
) ‘ ) 0 1
0 0

[

Definition 3.6.2  The k by m uncertainty matrix AKX, of any n by m matrix R is defined as

AR
‘ 1 |
AR =1 where AR isthe r, throw of AR

AR, |

|

For example, in the above example of a 4 bv 4 matrix A with uncertain elements in the first

and third rows.
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A, {Mﬂ_{m], Aa,. Aa,, Aa,

| ~
a LAA": AA, Aa,, Aa,. Aa, Aa.,,

Now the dynamic equations (3.6.1) can be rewritten to incorporate parameter uncertainties:
x=(A, +1,0)x+B, +1,AB,)u, (36.9)

This can be further rewritten as

¥=A, x+B,u, +1, (Al )+ 1,(AB. u,) (3.610)
By defining :
v=1[/, 1,] (36.11)
and ‘
v= !FAAA”YJ (3612)

Parameter uncertainties can also be modeled as unknown inputs to a known system:

x=A x+B, u, +Vv (36.13)

So far in this section we just considered the individual ettects of actuator faults, sensor faults,
and parameter uncertainties one at a time. If any two or all of the three factors are present,
then we can jst stick the relevant terms into the dynamic equations and/or output equations.
For example, in the simulation chapter we choose not to concern our selves with parameter
variation of an UMS-2 robot and detect only two actuator faults and one sensor fault rather

than component faults In this case the model of the system is of the following form:

¥y =A x, +B, u, +D, d. (3.6.14)

v =C.x +E e (3615)
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3.7 Actuator Fault Detection and Identification )

As discussed in the previous section, actuator faults can be modeled as unknown inputs to a

known system with known or nominal parameter values:

0

y, =C x, S (3.7.2)

¥ =Ax, +B,u, +D,d, Y(3.7.1)

where

subscript -~ denotes original or open-loop systems

matrices and vectors are of appropriate orders as defined in section 3.6
Actuator fault vector d can be estimated by using the following theorem:

Theorem 3.7.1 The unknown input in system (3.7 1)-(3.7.2) can be estimated by an

estimation technique of the following form if D is of full rank and T is a small enough

sampling interval

d, (k)=(D'D) "D’ (S(k)-B  u, (k) (373)

where

S(ky=A (e ) (x(k+1)- ¢ x(k)) (3 74)

and

d, (k)=d, (KT). S(k)= S(kT), x(k)= x(kT), u, (k)= u_, (kT)

Proof:  Applying the formula(Rugh, 1993) of the complete solution to a forced linear and
continuous-time system in discrete form, the value of the state vector x(t) at time (k+1)T is:

g

FER Y P kT cho- 1T ;.
xkrhy =™ e T+ [ e B ) D (k)
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_ e-%l"""’”( 0 "{Uf"r"x(k) + (e ,4',(/.7»_6.:”!\AmTI)A” ‘(BW un'(k)JrDo dn (k)))
e x(k)+ (e 4, (B, u (k)+ D, d (k)

i

where T is the sampling period in the time domain
Defining S(k) as in (3.7 4) results in

B,u (k)y+D_d, (k)= S(k)
then

d (K)y=(D' D) D] (S(k)-B, u, (k)

‘It must be pointed out that the estimated state x (kT) rather than the real state x(kT) is to be
used in evaluating S(k) in computer simulations. This is because the true state x(kT) is
usually not available for measurement. It can only be asymptotically estimated by an estimator

such as the UIO designed in the early sections of this chapter.

Plotting each component of d, (k) against time index k would show if the corresponding

actuator has failed. This technique identifies not only the magnitude but also the shape of

actuator faults
3.8 Sensor Fault Detection and Identification

Since no knowledge can be assumed about the time histories of sensor fault signals, it is
reasonable to model them by a dynamic system driven by an unknown input signal. To do this
we first present the following proposition

Proposition 3.8.1 For any piecewise continuous vector function fe " ', and a stable rxr

-

matrix A | there will always exist an input vector & such that
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f=A, f+& ' (3.8.1)

Proof: the proofis immediate simply by taking & = f - AL

Now we can assume that sensor faults have the following dynamics

where

e=A,etu, (3.8.2)
A, isastable r~ rmatrix
u, is ar~ | unknown input vector

e isar < | sensor fault vector

"Augmenting (3.6.14)-(3 6.15) with (3.8 2) results in the following (ntr)th ofder dynamic

system:

Define

DB, L0 d]
L+ u -+ P ' (383)
LOJ 0 u |

y, = [¢ /:‘”x“! (384)
L -
__'x,,\/ | AN .
X = oS
v
A0
A= ‘
LO 4
B .
B=, |
.0
C=[C F]
D0
D:
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then (3.8.3)-(3.8.4) is in the standard form of (3.2.1)-(3 2.2) of section 3.2:

¥= Ax + Bu + Dd | (38.5)
y = Cx (3.8.6)

Therefore the state of the system in (3.8.5)-(3,8.6) can be estimated by using the UIO

designed in section 3 4 provided that all the necessary and sufficient conditions related to the

existence of an UIO are satisfied.

It is now clear that sensor faults are part of the state of the augmented system Therefora

monitoring the state estimates (' . 1{ ) would provide an immediate means of the detection of
& .
[

sensor failures. The failure detection logic is very simple. Anv nonzero component of ¢
would indicate a sensor failure. It is also extremely easy to identit\ or isolate sensor failure(s)
by checking which component of ¢ is nonzero. For example, if only the second component
of ¢ is nonzero, then only sensor 2 has failed; if the first two components of ¢ ‘are nonzero, '

then both sensor 1 and sensor 2 have failed.

Plotting each component of ¢ would indicate if the corresponding sensor has failed. This

technique could identify not only the magnitude but also the shape of sensor faults.

3.9 Summary

In the first five sections of this chapter we presented a modified unknown input observer
(UIO) capable of estimating the state of a linear dynamie system driven by both known and"

unknown inputs. By performing-a couple of similarity transformations and a nonsingular
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transformation, we wergx\able to partitionn the system into three subsystems. One of these
subsystems was a dynamié system driven by knéwn inputs‘only_ The other two subsystems
are nothiné but explicit algebraic relationships between the states of the subsystems and the
measurable outputs. This made it possible to use a conventional Luenberger observer with

slight modifications to estimate the state of the transformed system. The estimate of the state ’
of the original system can be obtained by performing inverse transformations. It was possible
to state a similar necessary and sufficient condition to that of a conventional observer for the
existence of a stable estimator and arbitrary pole placement capability. It was also shown and
proven tﬁat this necessary and sufficient condition can be expressed in terms of original
system matrices. This alternative expression of the necessary and sufficient condition provides
a much easier way for checking whether the condition is satisfied before any transformattons
are undertaken. In view of a couple of competing UIO désign methods, 1t 1s felt that the
design and computational complexities involved in designing UlO's is greatly reduced in our .
proposed approach. Our simulation program in Appendix C also shows that our UIO

algorithm is quite easy to code

In the last few sections of this chapter we used our modified UIO in fault detection and
identification of uncertain dynamic systems. We were able to model parameter uncertainties
as unknown inputs to a known system with nominal or assumed parameter values We also
modeled actuator faults as unknown inputs to the dynamic equétions of a known system
because they act directly onto system dynamics. We dealt with sensor faults by modeling
them as additive biases to the output equations We used a generalized inverse solution
technique in estimating the actuatory fault vector for the purpose of actuator fault detection
and identification. This technique can also be used to estimate one or more parameter
vanations in some systems. By modeling sensor faults as the state of a dynamic system driven
by unknown input, we were able to obtain an augmented system whose state vector contains
not only the original state variables but also sensor fault signals. We could thus obtain the
estimates of sensor faults by extracting a sub-vector from the estimate of the state vector of
the augmented system. The estimates of sensor faults provides an immediate means of sensor

fault detection and identiﬁcation (EDI) In both actuator FDI and sensor FDI, we were able



e

Chapter 3 An Unknown Input Observer Based Fault Detection and Identification Method 71

to obtain not only the shape but also the magnitude of the faults This enables us to
distinguish between a momentary fault that clears its self and a persistent one. It is recognized
that this _UIO based FDI approach allows us to detect and identify multiple and/or even
simultaneous actuator and seﬁsor faults as well as parameter variations so long as the total
number of faults and uncertainties to be detected and identified is less than the number of

available outputs.
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Chapter 4 FDI Study of a Constrained Mechanical System -

Approach and Simulation

4.1 Introduction

In chapter 2. constrained mechanical systems were imtially mathematically described by
nonlinear equations with Lagrange multipliers. Linearization was performed using standard
Taylor serics expansion. The peculiar structure and important properties of linearized
constrained mechanical systems were analyzed and normal (d_\'nmﬁic) forms of the system
representations were derived -The resultant purely dynamic' subsvstem of the linear
mechanical descriptor system representation is in the form of linear time-invariant dynamic
equations This allows us to shift our analysis from the. domain of linear singular system
theorv to the domain of linear svstem theory "In chapter 3, an observer design method was
proposed for linear time-invariant dynamic systems dr‘iven by both known and unknown
inputs and a FDI approach based on UIO theory was presented We were able to model
actuator faults as unknown inputs and sensor faults as additive biases to the outputs In this
" chapter. we combine the results of chapters 2 and 3 and u‘se them in fault detection and

control of a U'MS-2 robot manipulator svstem. The following is a drawing of this robot

q.
-

i

1 .

I,[ ,,,,, T}
- ‘ ‘ 00
Z,
y

el
<

L'MS-2 robot
This robot has three degrees of treedom during unconstrained motion However. we studv it
in the context of motion with a holonomic constraint A sketch ot the robot manipulator

geometric workspace is given in the tollowing
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UMS-2 Robot Manipulator Task Geometry

This robot was found in the paper of Mills & Goldenberg (1989) %‘his paper used this robot
as a numerical example in force and position control of manipulators during constrained
motion tasks It gave little information on the nature of the specific tasks performed by this
robot manipulator For the purpose of simulation it is sufficient to know that the UMS-2
robot is assumed to be in contact with a rigid frictionless surface Robots which are similar t3,
but not identical with a UMS-2 robot can be found in the book of \'ukobratovic & Potkonjak 1
(1982) Some of these robot manipulators can perform tasks such as spraying [i{)wder along a

prescribed trajectory -

4.2 Approéch and Simulation

We deploy a systematic approach to fault detection and identification of the"UMS-2 robot

manipulator system. This approach may be outlined as follows:

1) Write original nonlinear mathematical description of the system with actuator faults
appended to dvnamic equations and sensor faults appended to output equations

2) Lincarize the nonlinear model and rewrite it in a generalized state space format

3) Pertorm a nonsingular coordinate transformation and derive the normal form

4) Perform similarity transformations to bring the dvnamic subsystem into its canonical form
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i

4) Design an unknown input observer and a state-fecdback controller for the dgnamic

subsystem

S) Obtain necessary results and convert the results back into the original coordinates by

reversing transtormations -

In the simulations we will detect and identify two actuator faults and one sensor fault. The

dvnamic equations of motion of this manipulator in unconstrained form are given by

MAG) G+ HAq.qy =1 - 1 (421)

where
: ;\/; ()= J, +J+J +mly, +1)

HAq.q) = 20,0, + 14,4,

M Aq) =m. +m,

H Aq.q)=(m. +m)g

Mgy = m,

Hq.q)=-miq. ~F ).

[~ 1=1,2 3are knowﬁ 1nputs that represent control signals

I~ 1= 1.2, 3 are unknown inputs that represent actuator faults or farlures

-

The output equations chosen for the simulations are as follows

o F ¢,
roowlg.g) = " = : | (4 2 2a)
r q4. ~q4-+{.
. . g
r r-Ee (42.2b)

where
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N

01 .
E= J 0 r is sensor fault distribution vector

io_j

|
|
e is an unknown signal representing a sensor fault or failure

r, is output vector with appended sensor fault

The position vector p is given by

Ly, + 1, )smql |

|

J{\’j} (((/‘ +/,)c05(111
Py =
L7

|

The constraint function representing the robot end-effector being in contact with a rigid flat -

surface is the following:
This holonomic constraint equation can be rewntten as

Oq) = (g, +1,)cosq, +(y, +1)sing, +¢. —c =0 (4.23)

where

-
il

((l:. - /-‘)COS(I;
= */:)Sin(ll
=q-
'.- " - .
We linearize this constrained mechanical system about a point at which the robot manipulator
is stationary but being in contact with a flat surface. The nominal dynamic parameters and the

nominal values of the generalized state variables are given in the following table:
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NOMINAL DYNAMIC AND KINEMATIC PARAMETERS

Nominal Nominal Dynamic
State | Parameters

¢, = 04363 radian /[, =02m

¢q-. =03m m, = 1kg

g. =03 m m, =2Kkg

A = :ﬁl /(gﬁ: ” J., =01 kg —m-
g, =0 J. =02 kg-m™
q. =0. J.. =01 kg-m
g, =0

g, =0 *
j. =0

g, =0

The above dvnamic svstem with constraint but without sensor fault can be described by the

following equations

MG+ H(g.gy=J N+T1T = I (4249
r=w(q.q) , ¢ (425)
where
H([. o ~ T
d= - |

-
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M (q) 0 0 }
M(g)= 0 M. (q) 0
0 0 /\/f;(([)J
HI (4.9)
H(q.q) =1 H,(q.9)
H.(q.q)
v |
=T
L1
1
=] 1 S
L]
.
d
l s
r=
"
L]

The Jacobian in this single holonomic constraint system may be defined as

./((1)5 (\eﬂ(q)

&y

Now applving the linearization approach outlined in Section 2 2 of Chapter 2 results in:

]

S+ emg, + ) 0 0
} 0 m.+m, O
| 0 0 m,

M= Mg, (1) =

T T T T
oo
e

to O O'
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03836 0 37207]

 H(q,q) J'(q)
K - —-'2———"1‘? dy) -A” t('qw-qh’
127 aq
0 0 2m, +( A
oo o {FEE
! VARE
10 0 -m, AN A
[0 0 4} [ 03836 0 -02793]
| |
K=100 0+ 0 0 0 j= 0
00 -2/ |-02793 0 0 J' 02793
—(“H](q,(]) cH (q.q) (’H;(q,(]);
a, . ,
D - fjﬂflﬂ); | H(q.q) HAq.q) H.(q.9)
R/ R . .
Hq.q) Hlq.q) Hdq.q)
L Y. aq,
000
D- 0
0 00
/7(_’-(_9@; :j’ﬂ)(q) B(q) i’()({/)lj
‘ aq Ty qy. a, J

l‘:[02418 1 13289]

_ Cplq.q))

(" o
’ Y bl
10 0
01 0
o= |
T0 I

0
0

i

0
-2
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- {r- _ ﬁﬂf%f))' ‘
v T [T ) .
. .
. [0 00
0 0 O
- C.=
| 0 1 1
10 OJ
[

The Jacobian J of the system 1s of the form: J=L = [0,2418 1 1.3289]

The linearized descriptor form representation of the system is

Tr,0 o‘,Fﬂ~ o4, 0] =] [0 o
0 M o0} :'—K -D ./’J 2l f o+ |d (42.6)
0 0 0 A] [ /L 0 O0fAil [0 |0
<
Y=z 427
1000 oo0o0lf5]7[ 0o o o 100 0 [z
01 0 0.0 0]z 0o 0 0 -010 0 ||z
001 0 00 0]z o 0 0 001 0 ||z
—~ 000 09 0 0 0fz|--03836 0 -37207 0.0 0 01935 2
0 0 0 3.0 05 o 0 0 000 1 ||z
00 0 02 0l 2793 0 2 0 0 0 13289z,
00 0 0 0 0/ A] [ 02418 1 13289 0 0 0 0 ||A
(0 0 0] 0 0 0]
0 0 0 00 0
) 00 0i[f] 00 0|fd
it ool 1 0 ofld| (428
0 1 O|[f] 01 0|d,]
0 1
000/ 000
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r
ool q 000 2]
0 W 0 00 0fl°
)= ot z, (4.2.9)
’ 0 0 1 i 0 1 1 , J
“3 “3
0 0 0 1 0 0]
where
' .
P q-q., ts the generalized coordinates in linearized form
I=q-q, is the derivative of generalized coordinates in linearized form
A=A-A is the constrained force in linearized form

f =1-1, isthe known input signal in linearized fe&@
d=1-F, is the actuator fault or failure signal in linearized form

is the output vector in linearized form

ES
LT
sz is the partition of the displacement vector
} p p
j '
| .
| A |
/= } /o 1s the partition of the known input vector
o ~
L
d, ]
|, : . . '
d =1d. J is the partition of the unknown input vector
n

Now we can apply the nonsingular transformation technique presented in section 2.3 of
chapter 2 to derive the normal form of the linearized descriptor form representation:

It can be verified that the following nonsingular transformation matrix

T0 41356 o}
T:% 1 -1 1{ (42.10)
07525 0 0
satisfies LT:[O 0 1]
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Define :::[{'1::sz “ (4.2.11)
S:
where

4 in g r : (Y _ _
S eN , s, e R, n=3 q=1

[0 0
0 77 0 |and performing lengthy simplification

Pre-multiplying both sides of (4.2 6) by
~ 00

{

will yield the following normal form represent:\ition:

e 3
V—[(I (‘:]L%] ) (42.13)
Sy
where ‘ >
- ‘ /. ‘ |
‘ M =M, - M, _/_i (42.14)
12
L
K=K, =Kt . (42.15)
I ‘
/) — /)H _ /)IZ % (42]6)
‘12
T,\/” Alv‘: ;’:/f/\/(/‘") | (42]7)
M. M.
ﬂKik} KI’—] /TKIY) : (47 18)
’ = TK(IT) . 2.
Ky K.
) 1 e
D /%}:TUXTW: ' (4.2.19)
:_/)21( /)::J
IR (4.2.20)
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M7 “i ,
! noq N\
Co=Co(IT) Y Ly | ot (4221)
L.
1., 7]
Co=CI"y'| L, (42.22)
l‘]l_,
=T (4.223)
S L
w‘:ﬂ‘ Td ]
. =174, (4.2.24)
d. d
The algebraic part of the system 1s described by the following
PR (4.2.25)
=T
-
... ‘ 0 /.
A=l (Do M+ D M. ( g
AP ] /4_[ = "])L--M, KM D
, L. .. e
SO R TN I
lw: LYt
/. 0 Tf_yﬁ\ S
([0 M)A D MW,])( ];!f‘ - f. - d, (4.2.26)
M D T

Evaluation ot equations (4 2 12)-(4 2 13) results in the following numerical form:

-0 0 1 07'
0 0 0 1f&”
03392 -00028 0 0
‘ 83400 00466 0 0



~
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Evaluation of equations (4.2 12)-(4.2.13) results in the following numerical form:

-0 0 I 0]
& h; 0 0 0 W(gﬁ
503392 -00028 0 O£,
183400 00466 0 0]
) 0 | 0 0 '
1 [T = -
0 0 | 0 0 id
* | y-11+ . g’w (4227)
(03851 00085 | /.| 03851 00085 d,
105360 10717 05360 10717
S01512 02468 0 0
06252 00207 0 0 17&] .
I (4228)
~21598 00275 -27850 00482 ||
0 0  -01512 02468

¥ A x +vB u +D d (4 2.29)
v =0 x (4.2.30)
where
N : (4231)
u */ W (4.2.32)
s
o )
C - . A I
o .
0 0 1 0
0 0 0O I
A - | (42 34)
03392 -00028 0O O

83400 00460 O

- )
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0 0
0 0
B, =D, = (4.23%)
. 1 0.3851 0.0085
L65360 10717 |
‘ 01512 02468 O 0
06252 00207 0 0
C, = ! (42 36)
- | -21598 00275 -27850 00482
0 0 -01512 02468
+0.66751.

The open-loop system is not stable because A, has eigenvalues = 0.5235 and

Hence state feedback is used to stabilize the open-loop system The closed-loop system takes

the form

Xx =A x +B,u, +D d -B K «x

“A x *B,ou, +D . d (4.237)

v =Clx (4.2.38)

where
. . . : ~
subscript  denotes closed-loop and x_is an estimate of x_
By placing the poles of the closed-loop matrix
(42 39)

at arbitrarily chosen locations -S+ 4 i and -6 £ 2 1, the state feedback gain matrix K_ and the

matrix A are computed by MATLAB as
1083527 -08201 262529 -02808
-464048 377784 131920 113378

0 0 10000 - 0
« 0 0 0 1.0000
= L4
410000 00062 -100601 00124
]

S -00062 400000 00124 ~11999y
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As discussed in chapter 5, sensor fault estimation 1s accommodated by adding a term Ee in
the output equations of all previeus repfesentations, e,

y,=C,x +Ee ' - - (4.2.40)

The augmented open-loop system is of the following form:

(.m (A o} X, | [B,) D, 0 (dn“g ‘
s |+ ut e (42.41)
fe] Lo Afley [0 L0 [jln]
Ix]
v, [ 2] L | (4242)
¢ |
where
A is a stability matrix(a negative constant in one dimensional case)
i, 1s a sensor fault input vector(a scalar function in the above case)
Define
x
X, =| .
Do
4,0
A, = |
0 At,_[
"B )
B, =1 |
L0
C, =[c K]
D0
D. ==
L0
f‘d”“
d, =
LIIL B

Then last representation (4 2 41)-(4 2 42) can be written as
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il

x, +B,u, +D,d, (4.2.43)

Ad
€, x (4.2.44)

a

X
n
Y.

Once again state feedback is used to stabilize the above system The augmented closed-loop

dynamic system representation is

\‘ e = ‘Am qu + Bf! u. + Dn dn (4245)
y=C, x, ‘ ' (4.2 46)
where
A, =A, -B, K (4.2.47)
e
X = | 14.2.48)
Le ]

Let us now determine K, and A, by performing the following analysis:
Assuming K is of the form [ K, K, ] where K is the state feedback gain matrix used in

the unaugmented case and K, is an unknown submatrix to be determined.

f4 01 B ]
A, A -B K, =] i-! K K ]
| L0 AP0
4 -BK -BK, - ¢
Y 1
A —H,,l\,fi
0 A
where
A is the unaugmented closed-loop matrix defined previously
Note that o

det(A, ) =det(A ) « det( A,)

poles of A are poles of A plus pole(s) of 4
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Therefore no matter what value K, takes the eigenvalues of A, remain the same. In this _

simulation we use the following arbitrary values:

and A =-5

0 0 1.0000 0 o
o 0 0 10000 0 |
A, = 410000 00062 100001 00124 03936
| -00062 400000 00124 ~119999 16077 -
.0 0 0 0 ~50000

with poles or eigenvalues at

25,0000 + 4 0000 i

— -5.0000 - 4.0000 i
-6 0000 + 2 0000 i
-6 0000 - 2 0000 i
450000

The estimation of the state vector of a system that has actuator faults and/or sensor faults
relies on the evaluation of an unknown input observer(UIO) outlined in chapter 3. In the

MATLAB simulation program. the following were done or obtained:

1. Necessary and sufficient conditions for the existence of an UIO are verified numerically

2. Two similarity transformations are performed in bring the augmented closed-loop linear
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dynamic system to its special canonical form and partitioning it into three subsystems
3, The output vector Y. of the unaugmented tlosed-loop system is obtained by doing a
linear dynamic system simulation using the /sim command in MATLAB
4, The output \;ector ¥, ofthe augmented closed-loop system is calculated using equation
Y, = Y +Ee

where

H i N\

is sensor fault distribution matrix (vector)

]
Lo

e = u, = 0.5*u(t-3)is the assumed form of sensor 1 failure

5, The observer equationis: W =-6w + [0 ~10054 00330 00050]Y, +[0 0O]u,

6, The state vector of the augmented closed-loop system is estimated using the equation:

] 1 1483324 0 O
0 0 1 0 0
X, =10lw+ |1 0 0 0}, (42 49)
0 0 0 1 0
0] 0 0 0 1]

7. The estimate of the state vector of the unaugmented closed-loop system x is extracted

- 7
. P
from x, using equation x :’ A

- ‘,’J

rk)

3

8. The estimate of sensor fault ¢ is also extracted from X, using equation x, = { .
e

Once the estimate of the state vector of the unaugmented closed-loop system x, is available,

M

P

transformed actuator fault vectord =, _ E can be estimated using the least square solution
| _

t
[
4

technique presented in chapter 3. 1e .
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B(“)LJ(, (k)= (D)D) D7 (S(k)-B_ 4, (k) (42.50)
.
where ' ,
S(ky=A, (" <) (& (keD)-e™ (k)
S(k)= S(kT), x (k)= x (kT), u, (k)= u, (kT)
and .
j{ is the estimate of transformed actuator fault d/,
j: is the estimate of transformed actuator fault d,
% . N . _ .
o x_ 1s the estimate of the state vector of the unaugmented closed-

loop system .-

Then estimates of the original actuator faults can be obtained by reversing the transformation

defined by equation (4 2 24), 1e,

= o]

» FARNEY

‘ d. ?:'J'Ud:l (4251a)
g d.

- SR .
-~ M ‘ﬁ_lj -
;dl | L d. | ¢
b TR T o :
- Ao =17y d. | 7 {4.251b)

d ‘ d. N :
T - e

Note that the algebraic equation (4.2 26) can not be uSed to estimate transformed actuator

. - . . . : . Y .
fault o, because the constrained force /4 «in this equation is also unkrown. This means that

- '

d. in equation (4 2.51) can not be determined or evaluated The variables that we do have

estimates for are just & and 4. To obtain the estimates of . o,, and d, from the®™

estimates of cA/_b and 47: 1s equivalent to solving a system of two linear equations with three

unknowns as specified by (4 2 51) A solution can only be obtained by assuming one of the
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estimates of d,, d., and d, is zero 'or known This essentially requires that one of the

actuators is faultless. In this particular system it does not matter which actuator is assumed to

be healthy As long as one of the three actuators can be assumed fault]ess, the other two |

actuator faults can be uniquely detected and identified by solving a system of two linear.

equations with two unknowns. For example, suppose the 3-rd actuator is faultless, e, d, =

0= c;'z, then c;" and c;': can be determined by solving two equations. d, can be obtained via

the transformation and used in (4.2.26) to generate an estimate of the constraint force A .

In this thesis we performed two simwlations to estimate all three actuator faults. The first
simulation estimates actuator 1 and actuator 2 faults based on the assumption that actuator 3
is highly reliable and faultless. The second simulation estimates actuator | and actuator 3

faults based on the assumption that actuator 2 is highly reliable and faultless.

Although the unknown inputs repr'esenting two actuator failures in the sirhulations can be of
any form, we have to specify a specific function for each one of them for the purpose of
estimation. I‘n this simulation we just happen to use step function as a form of possidle
failures. The soft actuator failurés are assumed to be of the following form? |

&

(a) For simulation number 1
' d, =0 5*u(t-3)

d. =04*u(83)
d. =0 0*u(t=3)

(b) For simulation number 2 ' ) Y
d, =0.5*%u(t-3)
d. =00*u(t-3)
d, = O.{*u(t—?a)

7

The known control inputs. are assumed .to be of the following form for both simulati‘Qns:
fo= o =T*u(t) :
[ =u. = 8% u(t)

e




-
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S = uy =9% u(t)

Given the above control inputs f,, f., & f, and actuator fault inputs |, d., & d,, we can

use equations (4.2.23)-(4.2.24) and equations (4.2.32)-(4.2.33) to obtain the known inputs

and unknown inputs used for simulating the normal form (4.2.37)

(a) for simulation number |

AT
u, = - | 7] ..
l_fJ 1,/1
d :{'LZJW;:(,/I‘] /|
Tl

where

. . -
Iy ";‘IAF 61 -o7sas)| D] 125
I, '3| [4J356 -1 0 jgl('“' :
Lfo] fol
17d ] [ 0o I {d ]
" 11:L [Fy | (4.2.33)
d. ][ 41356 ~1)id. | ‘ :
( 0 I -07525
141356 -1 0 (4.2.54)
L0 1 -0
-
I ,
‘ ﬁ:}{;l_{ 0 1 ~o75251i?} (4255
Lo tasse <1 0 T )
Lf_J ) Lf}_l
LTd 0 —075250 T4,
BN | (4 2.56)
o dy 141356 0 J|d

Then the original actuator fault estimates are obtained by performing reverse transformation

on the estimates generated by the simulations. The reverse transformation equation (4.2.51b)

reduces to the following forms for the following cases

(a) for stimulation number 1

ar

41 (02418 02418

/ H
d A N A 0

!

i ©(4257)

d. |
=~
L Jod.

-
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(b) for simulation number 2

- . RSN
\ d]‘[:(Yn 711
d;A ’L[I 7‘:1

|»

-~

0 02418
L9 (4.2.58)
~13280 0 i

e

b &

[}

t2

where

|>

was obtained in the simulations using equation (4.2.50)

Q.l)
[

[

Once the estimates of the original actuator faults are obtained. the estimates and their

corresponding fault signals are plotted for éasy fault detection and identification. In

simulation number 1, ‘}1 (the estimate of d,) and d, itself are plotted against time to show the

transient and asymptotic behavior of actuator 1 fault. ‘;': (the estimate of d.) and Qd: itself
are plotted against time to show the transient and asymptotic behavior of actuator 2 fault.
Each of the two. plots show§ that the estimate has a big spike initially, another spike at the 3-
rd second, and then quickly settles down to the asymptotic value The first spike is due to the
transient behavior. The second spike indicates that the :cictuator had a fault at time t = 3
seconds. The asymptotic behavior tonfirms the stability of the observer and the correctness
of the theoretical work. Similarly in simulation numbef 2, actuator | and actuator 3 faults are
detected and identified using two similar plots. The combination of simulation number 1 and ,

stimulation number 2 detects and identifies all three(3) actuator faults .

*
>

It can be seen from equation (4.2.57) that sensor fault is part of the state of the augmented
system. Sensor fault estimate can be obtained from the estimate of the state vector of the
augmented system. Sensor fault estimate provides an immediate means for sensor fault

detection and identification.

7

The plot of sensor fault estimate ¢ and the original assumed sensor fault function shows a

sensor fault at time t = 3 seconds. The objective of sensor fault detection is achieved.



Chapter 4 FDI Study of a Constrained Mechanical System - Approach and Simulation 93

the assumption that one of the three actuators is highly reliable(faultless). The observer
equations for these two simulations are essentially the same. Consequently, we could say that
we used only one observer (but two simulations). In fact, it can be seen from Appendix C
that the first part of the source cod.es of the two simulations are }dentical. The difference only

exists in the last part of the program. This 1s the reason that twd simulations were written in

one source code program.

The plots of actuator and sensor faults and their corresponding estimates against time are

shown in the figures of this thesis.

4.3 Summary

In conclusion, this chapter has 4llustrated a systematic or at least a procedural approach to
fault detection and identification of a major subclass of generalized state-space systems. By
pérforming several nonsingular and similarity transformations and using an unknown input
observer we were able to convert a problem of fault detection and control of a linearized
constrained meghanical systems to a problem of fault detection and control of a linear time-
invariant dynamic system with partially unknown inputs. The methodology appears to be
mathematically elegant yet simple. The procedure or algorithm is cuite straightfo.ward and
fairly easy to code or implement As long as the necessary and sufficient conditions of the
existence of an unknown input observer is met and the system 1s stabilizable, our proposed\

approach can detect and identify multiple and/or simultaneous actuator faults and sensor

fault(s) almost immediately

»

/

In this particular simulation case, we performed two simulations each of which is based on
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Chapter 5

Conclusions

In this thesis an approach for the control, fault detection and identification of constrained
mechanical systems is presented. The major advantages of this state estimator or observer
based analytical redundancy approach and the major contributions of this thesis can be

summarized as the following:

(1) It is a systematic approach for fault detection and identification of a special class of
descriptor systems that is neither infinitely observable nor completely controllable.

(2) It can detect and isolate multiple and/or simultaneous actuator and sensor faults
almost immediately. The promptness of detection can be adjusted through changing

the eigenvalues of the closed-loop A matrix and the eigenvalues of the observer.

'“m(";’s*

(3) It 1s capable of distinguishing momentary failures from persistent failures. This
capability exists because the FDI scheme can estimate not only the magnitude but also
the shap‘e of the faults during the entire time period in which the faults last.

(4) It can detect almost all kinds of faults. T‘his':is because that the scheme assumes no
a priort knowledge about the nature or the mode of the failures

(5) It uses only a single observer instead of a bank of estimators.

(6) It 1s mathematically simple yet elegant, computationally straightforward and efficient,
and relatively easy for computer simulation and/or real time implementation.

(7) A technique for numerically testing the necessary and sufficient condition under which -

an unknown input observer exists is found and used. Note that the following condition

NI, -A D]
rank‘l ¢ O(:ntm v sel

i

.

can not be possibly numerically tested because s takes an infinite number of values. My
experience/hypothesis is that testing s at all the eigenvalues of A and zero is sufficient.

(8) A modified unknown input observer whose equations are different from those contained




» ) ) ) M
Chapter 5 Conclusions 95

in a previous;research work is derived.

(9) Simulations-are performed using the model of a practical system - a UMS-Z robot.

(10)A modified coordinate transformation technique using a nonsingular but not orthogonal
transformation matrix is developed for any mechanical system that has only one
holonomic constraint. The coordinate tr‘ansformation technique using an orthogonal
transformation matrix which was pre\grlged in a previous research work is not applicable
to the special case of a single constraint. Normal form of the linearized descriptor system
model of a single constraint system (such as a UMS-2 robot) is denved in this thesis and

can be shown to be different from normal forms of systems with multiple constraints.

Thé limitatior:s of the proposed approagh and the aspects of the topic that could be further

researched by somebody,else in the future can be summarized as follows:

(1) The maximum number of actuator failures and sensor failures that can be detected and
identified by the approach is limited to the number of meaerable outputs.

(2) Not all actuator failures can be detected and identified if they all fail at the same time.

(3) The approach requires that the considered system behaves almost linearly within an
operating range, i.€., linearization of the systém can be justified.

(4) A mathematical proof is not available for the experimentally correct numerical testing
technique (hypothesis) with respect to the necessary and sufficient condition for the

existence of an unknown input observer

On one hand, our proposed approach does not need infinite observability or complete
controllability. On the other hand, for an unknown input observer to exist, at least one fairly
strong (necessary and sufficient) condition has to be ret. The capability of our observer
based analytical redundancy apprBach primarily depends on the number of available outputs.
The larger the number of independent outputs, the more faults we can potentially detect anfi
identify. In the situations where a stable unknown input observer with pole placement

capability does exist, our proposed approach can be very simple vet powerful.

2
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Appendix A
Proof of Regularity of Constrained Linear Mechanical Systems

The proof uses Luenberger's shuffle algorithm (Luenberger ]978) A presentation of this
algorithm and a numerical example can be found in the book of DaJ (]989) Basically the

algorithm involves a serigs of shuffling and row operations of. the matrix combination

[ A] Shuffling means the interchanging of a row of the left half of the combined matrix

with that of the right half of the combined matrix. A row operation involves multiplying one
row of the combined matrix with another matrix and add/subtract the product to/from
another row. If the left half of the combined matrix can be made nonsingﬁlar by performing a
series of alternating shuffling and row operations, then the system is said to be regular by
Luenberger. Here, we present only the proof for the case of holonomic constraints because
the simulation system used in chapter 4 has only one holonomic constraint. Our proof here is
similar to the proof of the more general case of rcombine'd holonomic and nonholonomic

constraints, which can be found in Schimidt and Muller (1991).

The linear mechanical descriptor system described by equations (2.2.23) reduces to the

folpwing form in the case of holonomic constraints:

“ 0 OT“} o 07[ =1 [o]
|- J—K Do ,_]+"f!
l ! S i [
gO O_‘_/J Q/ L/ -‘_'OJ
where .,
F:L:Cpf(/l?q, =J=H,G=G=0
ay ’
Then .
[, 0 0 0 I 0
[ 4]=10 M 0 -K -D T
0 0 0 I 0 0
: 0 0 0 I 0
shufffe1=>'0 A/ O -K -D [7
0 0 0 0 0
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-

~
Multiplying row 1 by F and subtracting the product from row 3 results in

(/000/0;

n "

row operation IDI O M 0 -K*-D Il

0 0 0 0 -/ 0 ]

,f/,,'o 0 0 1/ 0

n P

shuf’ﬂe2:>i0 M 0 -K =D [’

. L0 -0 0 0 0
ST g -
| Multiplying row 2 by A7 " and add the product to row 3 results in .
i ’ 7, 0 0 0 I S0 ]
) row operation 2 = I 0 M O -K ~D FT
(0 0 0 /M 'K M D FMEFT
v o, 0 0 o [/, 0 .
| ' .
shufffe3=>1 0. - M 0 -K -D F7

4 ,
: L—/‘M ‘Do~ FM K M T 0 a 0

Adding /A "D *row 1 and .FM " row 2% A/ 'K to row 3 results in

7,0 0 0 I 0

‘ n I
row operation 3 :>; 0 M 0 -K -0 7
00 IMIFT A N A

Since the mass matrix M is positive definite, so is Af.". Then given any non-zero arbitrary

vector x and its transpose ¥ we have

M T = (F ) M (Fx)>0

Therefore /'Af "/ is positive definite by definition and £, is nonsingular. The system is

hence regular bv Luenberger's thaorem ' B
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Appendix B
Proef of Infinite Unogservability of the Augmented System

The augmented system described in chapter 2

P,, 0 0 o“ri“:‘l ‘"o /I, 0 o}f;]‘ 0
0 MO 'o;‘;: =K =D I 0 :'§+ fd
]’o o 0ollz 'S N o o2 | o]
0 o1 ller 00 Altel Lou
[z
g
y=[C C,01]
4
o]
is in the descriptor form -
Ex = Ax + Bu
v =Cx : . .
! 4
[t1s infinitely observable if and only if
A
rankv 0 /- = number of rows or columns of A +rank(E) (b.H)
0 o :

&
&

In order to evaluate the left hand side(L H'S ) of equation (1). we pjcféent the following

theorem

-

Theorem 1 The rank of a matrix will not change after the pre- or post- multiplication of a

non-singular matnx
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Proof Let . M be an arbitrary nonsingular matrix of order m by m
N be an arbitrary matrix of order m by p and is of rank n
P be an arbitrary nonsingular matrix of order p bv p |

and ' assuming n< m< p without loss of generality

then using a theorem in matrix theory, we have
rank(M)+rank(N)-m < rank(MN) < min % rank(M). rank(N)}
or m+n-m< rank(MN)<min {m,n}

thus ' rank(MN) = n = rank(N)

This proves that the rank of a matrix is not changed by the premultiplication of a nonsingular .

matrix. Applying the same theorem in a similar manner will prove that

rank(NP)=n=rank(N)

"~ and

ik (MNP)=rank {(MN)P }=rank(MN) = rank(N) .
§a§' .

3
Therefore the theorggl iﬁ valid.

Since the mess matrix M in the thesis is positive definite( seesHou et. al, 1993, second line

from the top right corner on page 612), it has an.inverse Af ' Post-multiplying the matrix

- —

kA :
0 £ 'by a nonsingular diagonal matrix containing M ' in the following form preserves the

0o

— -

rank



100

O O CcC O O O O

©O O 0 O o o o

Appendices
0
0
0

© O o o b

o o 0o o . fo o o

4@ o ’ w L ..w@.%w.
O O O O O O S oo Lo d&o o

a

© 'L 9o oo g0 o © o o 0 o o O
o < . -
IS .o - -
lﬁ_NOOMOO( © O o o o o o©
-
EE c . &
< __\U ©C e o o - T O O o o o o © e - 9
— ) © O C OO O

| al
L0 0 O o 0 O Ll g
] @ O Lo 0o o c SJSC o
OJJ.OOOOOqOO
LY

0
M,
0
0
0
0
0
0
0

Performing elementary row operations on the above matrix yields

. - = -
ey o
~ . ‘ e >~ o o . fo o I
o~ o o P - =2 = ~ =
- S S © © S 32 ]
SO o o0 o o o o w _ ~
(- J =
(@] oy O o O o -
N 4
=< ! —~ ~ o X o . foo o "
& ! ~
_,_1 O O O o o o o o
. O 0O LSO O 0o o O
o8 o O O SO O o o o o
O O SO0 o o Cc C O
L o o -
| e
= S 3 oo o 0o oo o foc oo o o o o
4 =
* S
< " SO 0o o o o0 o o o Lo c o o o o o
L o —_— _ 1 [ — — 4
) - ~d e’
v c =
T &= &=
— !

e




Appendices 1(!1

a

'/, 0 0 0 0 0 0 O]
01, 0 0 0 0 0 0] x
10 0 0, 00 0 0 0]
0 0 0/, 0 0 0 0
LHS =rankl 0 0 0 0 [, 0 0 0
.%o 0o 0 0 0 /. 0 0
%8 0 0 0 0 0 0 0
‘0 0 0 0 0 0 0
00 0 0 0 0 0 0

L

=n+n*e)(n+n-e
%

- PR

=2{(2n - e)

The right hand side(R H S ) of equation (1) is evaluated as -

70 0 0

. 0 M 0 0
RH.S:(n+n+q*e)+rankIO o 0 o
i g \'

o o 0 /|

={2n~q+e)~(n+nte)
=2(2n-¢) * q

Obviously L HS of equation b1 =R HS of equation b 1, the necessary and sufficient
condition tor infinite observability as expressed by equation b 1 does not hold. Therefore the

_ svstem 1s infinitely unobservable
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Appendix C

Simulation Program Source Code

0/6************************************************************

% APPENDIX C-
% SIMULATION PROGRAM.SOURCECODE ‘ ~
% Simulation of a UMS<2 Robot in MATLAB

O/ o oK ok oK KK K ok KKK K K KK R K KKK Kok K KR KK K oK KKk Ok Sk ok R KKk kK

t-#
% this simulation detects and identifies 2 actuator failures

% and 1 sensor failure '

a: number of actuator failures

Na=2%
% Ne: number of sensor failure

N
Ne = | N

% specify matrices used in linearized descriptor system model

M=[0900 i
030
002)

D = zeros(3)

L=[02418113289]

In = eve(3)

J=1[02418113289] % Jacobian J = L in the holondmic case
%% nonsingu]ar coordinate transformation begins?

T= [b 1135600

(S T
07525 0 0] °o transformation matrix

.
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LT=L*T . © = %verify that LT=[00 1]
TEMT = T*M*inv(T')
TtDT = T*D*int(T)

TtKT = T*K*inv(T')

A
q=1
n=3
MIT=TtMT(I n-q.1 n-q)
KT1=TtKT(I n-q.1 n-q) o
I;] 1=TtDT(1] n-q.1 n-q)
MI2 = TtIMT(1 :n—’q,(n-qﬂ)‘n)* <
K12 = TtKT(1 n-q.(n-q~1).n)
D12 =TtDT(I n-q.(n-q+1) n)-
LTtInv = L*inv(T').
L11=LTtlnv( .l'n-q)b g
L12=LTtInv( .n-q+1 n)
AZD = -invMTI-MI2¥LTI/LI2)S(KT1-KI2*L T 1L 12)
AZZ = anvMIT-MI2*LTFLI2)*(D1-DI2*L11/L12) :

A=[zeros(n-q) eve(n-q)
A21 A2 ]

B=[zeros(n-q). inv(M11-M12*L11/L12)]

%o nonsingular coordinate transformation ends

®o perform controllability test on the normal form representation .
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ContrMatrix=ctrb(A,B)

ContrMatrixRank=rank(ContrMatrix)

%%specifv measurement matrix used in original system representation
Cm= [100000

010060

001011

000100]

-Cp=Cm(.1n)

Cv=Cm( .(n+1)(2*n))

LY

%5 obtain output matrices used in normal form representation
Ct = Cp*inv(T)*[eye(n-q).L11/L12]
C3 = Cv*inv(T')*[eye(n-q).L11/L12]

C=[C1 (3] e

‘\‘:’?“\“‘r

%, specify actuator fault distribution matrix
D=B
%o pertorm observability test

-

ObsenvMatrix = obsv(A [C1 C3))

ObservMatnxRank = rank(ObservMatrix)

% test observer existence conditions Ty

C .
D ’ e
CD=C*D

Rank C = rank(C)
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Rank D =rank(D)

Rank CD = rank(C*D)

Rank D-Rank CD

% Redefine the above matrices as open-]oob matrices .
% use subscript o to denote open-loop

Ao=A

Bo=B

Co=C

" Do=D

CobDo = Co*Do

%o Stabilize the open-loop system using state feedback technique
Pc = [-6+2i:-6-2i,-5+4i;-5-41] % choose closed-loop poles
% . .
Kc = place(A0.Bo,Pc)% state feedback gain matrix
Ac = Ao-Bo*Kc g

eigenvalue = zeros(n, 1),

Eig Val Ac = eig(Ac)
s Augment the system to accomodate sensor failure

°, define open-loop system matrices Aao, Bao, Cao, Dao, Kao

Aao = [Ao zeros(4.Ne).zeros(Ne 4) -5]
%o set additional eigenvalue at -5

Bao = [Bo. zeros(;\'e.(né))]

. .. C =%
%o specify sensor failure distnbution vectdt. ©s
S S

E

Ef =[1.0.0.0] - : -
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Cao = [Co Ef]

Dao = [Do zeros(4.1); zeros(1.2) eye(1)] _

CaoDao = Cao*Dao

% check observability of augmented open-loop system
Observability Augm = obsv(Aao,Cao)

Observ Augm Rank = rank(Observability Augm)

%6 check rank conditions
Rank Dao :- rank(Dao)

Rank CaoDao = rank(Cao*Dao) i .

%o Obtain augmented closed-loop dynamic model
Karb = ones(2.1)

%o teedback gain matrix used to stabilize augmented system
°o It can be proved that this matrix can be chosen arbitrarily .

Kao = [Kc Karb] E -
Aac = Aao - Bao*Kao

Eig Val Aac = zeros(5.1);

Eig Val Aac = eig(Aac)

°oRedetine svstem order using‘closed-loop augmented representation

n=35 % number of state variables

=4 %o number of outputs

el
I

m = 3 %, number of combined actuator failures and sensor failure

®o Check augmented closed-loop system observer existence condition
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Ranks wrt_Eig Val = zeros(n.1).

Observability Test = '[-Aac.Dao;Cao,zeros(p,m)]

fori=ln

Ranks wrt Eig Val(1) = rank([Eig,V'al;Aac(i)*eye(n)-Aac,Dao;Cao,zeros(p,m)]);
end

Rank wrt Zero Eig Val = rank([-Aac.Dao.Cao,zeros(p.m)])

Ranks wrt Eig Val

%% check rank conditions ~
Rank Dao = rank(Dao)

Rank CaoDao = rank(Cao*Dao)

% check observability of augmented closed-loop system
% QObservability Augm = obsv(Aac,Cad)

%o Observ_Augm Rank = rank(Observability Augm)
%0 [-Aac,Dao;(‘ao,zeros(p,r;l)] T

%o rank([-Aac.Dao.Cao,zeros(p,m)])

%o proceed to obtaining reduced order observer

Q=[zeros(n-p.p).eve(n-p)]

P=[Q.Cao]  °o transformation matrix to bring C to [O.I] form
Pinv=inv(P) ‘

%o First transformation ié now taking place

As=P*Aac*Pinv 4 P

Bs=P*Bao
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Cs=Cao*Pinv

Ds=P*Dao

% Convert Cs=[0 Ip] to Cn=[0 Cp] to deal with the invertibility of Ds3
% The new transformation matrix Pn is chosen such that Dn3 is

% invertible This is accomplished by switching row 2 and
% row 3 in Ds

Pn=[10000
00100
01000
00010
0000 1]
% the new representation are defined by An, Bn, Cn, & Dn. N

% n denotes new

An = Pn*As*inv(Pn) ‘

Bn = Pn*B

Cn= Cs*in%n) .

Dn = Pn*Ds

%4 Obtain the Cp in Cn=[0 Cp] and Cpl & Cp2in x2=Cpl*y & x3=Cp2*y
Cp=Cn((n-p~1)n)

Cpinv = imv(Cp)

Cpl = Cpinv(] (p-m),:)

Cp2 = Cpinv((p-m+1)p.:)

Al=An(1 n-p. )
A2=An(n-p~1 n-m.")

A3=Anin-m-1 n. )

R

B1=Bn(l n-p.")
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B2=Bn(n-p+1n-m..)
3
B3:Bn(n-ﬁmf1 m)
D1=Dn(l :n—p,ﬁ ) RV T
D2=Dn(n-p+1 n-m.:)
D3=Dn(n-m+1:n,;)
D3inv=inv(D3)
Albar=Al1-D1*D3inv*A3
A?_bartAZ-DZ*D_?i-nv*AZs
Blbar=B1-D1*D3inv*B3
B2bar=B2-D2*D3inv*B3
Allbar=Albar(.1 n-p)
Al2bar=Albar( .n-p+1.n-m)
Al3bar=Albar( .n-m+1:n)
A21barf—.;\.2bar( .I'n-p)
A22bar=A2bar(: .n-p+1:n-m)
A23bar=A2bar( .n-m+1:n)
% obtain‘obser\'er in the form of (3 5.1.19)-(3.5.1.24) of thesis
Pole observer = -6 % choose observer pole at -6
M = place(Allbar . A21bar,Pole observer) %6 observer gain matnx
F = Allbar-M*A21bar
E1 = (Allbar-M*A21bar)*(D1*D3inv*Cp2-M*(Cpl1-D2*D3inv*Cp2)).
E2 = ((A12bar*Cpl+Al3bar*Cp2)-M*(A22bar*Cpl+A23bar*Cp2)),
E =EI-E2 % E is too long to be typed in one row

]
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%continuing expression in 2nd row would havéresulted in E=E1
L = Blbar-M*B2bar

N = DI1*D3imv*Cp2-M*(Cp1-D2*D3inv*Cp2)
% PREPARE FOR LINEAR DYNAMIC SYSTEM SIMULATION

% DEFINE SAMPLING PERIOD : o . -

Ts=[0:0.1:199]. % sample taken at 0.1 sec. interval
% for 20 seconds

°5 specifv applied generalized forces or known inputs

ul = 7*ones(200.1),

u2 = 8*ones(200.1);

u3 = 9*ones(200.1).

Tt=T %9 transpose of nonsingular transformation matrix
U= (Te(1:2,)*[ulu2"u3'}), %5 known input vector
% STARTING SIMULATION #1 &

%o specifv arbitrarv actuator failures and sensor failure
%o for the sake of simulation’

dl = [zgros(RO_l ). 0 S*ones(170.1)]. % actuator #1 failure -
d2 = [zeros(30.1). 0 4*ones(170.1)]: %o actuator #2 failure

d3 = [zeros(30.1). 0.0*ones(170,1)]. %o actuator #3 faultless

d = (Tsub*[d1'.d2'])". % unknown input matrix

s
f1 = [zeros(30.1). 0 S*ones(170,1)). ®o sengor #1 failure



t=fl,

% start simulation of continuous time state-space model of
% the unaugmented closed-loop system

Xc0 =[0:0:0.0]% arbitrary initial condition of the state vector

[Yc. Xc] = Isim(Ac,[Bo.Do],Co.zeros(p.Na+Na),[U,d], Ts,Xc0):

% Get output vector for the augmented closed-loop system

Yac = Yc + (Ef*f)";

% Start simulation of reduced order observer

W0 =0 %o arbitrary initial condition of reduced order observer

W = zeros(1.200);

[Yobserver W]=lsim(F [E.L].0,zeros(1.6).[Yac, U], Ts W0);

%o Estimate state vector of twice transformed representation Xn
Yn = Yac; %% output doesn't change during transformation

Xn = ([1.0.0:0.0]*W' « [N:Cp1:Cp2]*Yn'y

%o estimate staté vector of once transformed representation Xs

Xs = (inv(Pn)*(Xn)'),

%o estimate state vector of augmented closed-loop system Xac
Xac = (inv(P)*(Xs)')":
4 estimate state vector of un-augmented closed-loop system Xc

Xc = Xac( .1n-1).

o estimate sensor fault failure

¢ Appendices
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f1_estimate = Xac(:,n),

% plotting sensor fault and its estimate against time
tigure(1)
plot(Ts.f1.'g-" Ts.f1_estimate 'r--' Ts,f1,'g-"Ts f1_estimate.'y.')

title('Figure 1 - simulation #1: sensor 1 failure and its estimate’)
}

Y

xlabel('time(s)’) !
. 7

print figurel -dps

% obtain actuator failure estimates using least-square approach

'S = zeros(n-1,199);

v = zeros(Na,199). % specify the dimension for
% unknown inputs estimates

fork = 1199

ST = Ac*inv(expm(Ac*0 1)-eye(n-1)); -
SC.K)=ST*(Xc(k+1,)-expm(Ac*0. 1)*Xc(k,)'):

v k) = 1mmv(Do*Do)*Do*(S(:.k)-Bo*U(k,:)'):

end

. dl bar estimate = v(1,')",

d2_bar¥estimate =v(2.),

Tt sub =Tu12.12) % upper left sub matrix of Tt

d_estimate = inv(Tsub)*[d1 _bar estimate'.d2 bar estimate'],

d!_estimate = d_estimate(], )" % estimate of actuator 1 fault

d2 estimate = d_estimate(2, )", % estimate of actuator 2 fault




d1 differential = d1(1:199) - d1_estimate;
d2 differential = d2(1:199) - d2_estimatex, -

% Plotting actuator failures and their estimates against time
Ti=[00.11938].

- dlt=dI(1:199.1), r

d2t = d2(1:199.1),

figure(2) | r
plot(T1.d1t\'g-’,Tl,dl~estimate,'r—-',T‘l,dlt\L%-',Tl,dlﬁesFimate,'y g
title('Figure 2 - simulation #1: actuator 1 failure and its estimate')
xlabel('ti;ne(s)')

print figure2 -bdps ‘ >
figure(3)

plot(T1.d2t,'g-"T1.d2_estimate,'r--'T1,d2t,'g-" T1,d2_estimate,'y ')
title('Figure 3 - simulation #1 actuator 2 failure and its estimate’)
xlabel('time(s)')

print figure3 -dps

% STARTING SIMULATION #2

%o specity arbitrary actuator failures and sensor failure
%o for the sake of simulation

dl = [zeros(30.1), 0 5*ones(170,1)]; % actuator #1 failure
d2 = [zeros(SO‘ﬁl ). 0.0*ones(170,1)], % actuator #2 faultless
d> = [zeros(30.1). 0 4*ones(170,1)]; %o actuator #3 failure

Tsub=[0 -0 7525
41356 0]

\
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d = (Tsub*[d1d3"]); % unknown input matrix

f1 = [zeros(30.1): 0 S*ones(170,1)]; % sensor #1 failure
f=fT1. |

%% start simulation of continuous time state-space model of
%o the unaugmented closed-loop system

Xc0 =[0:0.0.0]°%0 arbitrary initial condition of the state vector

[Yc, Xc] = Issm{Ac.[Bo,Do},Co,zeros(p,Na+Na).[U.d],Ts;Xc0);

%o Get output vector for the augmented closed-loop system
Yac = Yc - (Ef*f)".

3 L4

°o Start stmulation of reduced order observer

W0 =0 %o arbitrary initial condition of reduced order observer
; _

W = zeros{1.200):

[Yobserver W]=Isinf(F.[E.L].0.zeros(1.6).[Yac. U].Ts.WO),
4

%o Estimate state vector of twice transformed represéntation Xn
Yn - Yac.  °o output doesn't change during transformation

Xn = ([1.0.0.00*W" =~ [N.Cpl.Cp2]*Yn').

o estimate state vector of once transtormed representation Xs
Xs = (inv(Pn)*(Xn)');

%o estimate State%ector of augmented closed-loop system Xac
’ B ) t*\
Xac = (inviPY*(Xs)').

°o estimate state vector of un-augmented closed-loop system Xc

N
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Xc = Xac( .1'n-1);

%, estimate sensor fault failure

f1_estimate - Xac(:.n):

=

% plotting sensor fault and its estimate against time

figure()

plot(Ts.f1.'¢-' Ts.f1_estimate,'t--" Ts.f1,'g-" Ts.f1_estimate,'y.")
title('Figure 4 - simulation #2: sensor | fatlure and its estimate’)

xlabel('time(s)')

print figured -dps

%, obtain actuator failure estimetes using least-square approach
S = zeros(n-1.199);

v =zeros(Na.199), % specify the dimension for
% unknown inputs es‘tmates

fork = 1199
ST = Ackimv(expm(Ac*0 1)-eve(n-1)).
S k)-ST*(Xe(k~1. )y-expm(Ac*0 1)*Xc(k. )').

v .k) = 1imv(Do™Do)*Do™*(S(. k)-Bo*U(k. ).

end
dl bar estimate = v(1.")" ~
% ,
d2 bar esumate = v(2.').
Tt sub =~ Tt(l 2.1 2) s upper left sub matrix of Tt

d estimate — inv(Tsub)*[d] _bar_estimate'.d2 bar estimate'];




.%pfﬂ fﬂ‘

%

s

d] estimate = d_estimate(l,:)", % estimate of actuator 1 fault
d3 estimate = d_estimate(2,:)". % estimate of actuator 3 fault
d1 differential = d1(1:199) - d1_estimate, |
d3Adiﬁ‘ere’ntial =d3(1:199) - d3_estimate;

% Plotting actuator failures and their estimates against time
T1=[0.01198],
dit =dI(1:199.1);
d3t =d3(1.199.1):
figure(S)
plot(T1.dIt'g-' T1.dl estimate,'r--, T1,d1t,'g- T1.dl estimate.'y ")
title('Figure S - simulation #2: actuator | failure and its estimate’)
xlabel('time(s)")

print figureS -dps

figure(6)
plot(TI.d3t,'g-',Tl,d‘3_estimate,’r--',T],d3t,'g-',Tl,d3_estimate,'y )
title('Figure 0 - simulation #2 actuato; 3 failure and its estimate')
xlabel('time(s)’) !

7
/
/'

print figure6 -dps

% END OF MATLAB SOURCE CODE
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Figure 2 - simulation #1: actuator 1 failure and its estimate
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Figure 4 - simulation #2: sensor 1 failure and its estimate
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Figuré 5 - simulation #2: actuator 1 failure and its estimate

1h I T T T T T T T T T

h

] |
~ ! I
{

. K ;[

§ | )

7+ | :

| J

-8 i I b ] S i L
0 2 4 6 8 10 12 14 16 18 20
time(s)




3.5

25

“ Figures

+

Figure 6 - simulation #2: actuator 3 failure and its estimate
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