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Abstract 

The focus of this thesis is on fault detectidn and identification of constrained mechanical 

svsterns ~his 'kind of s\.stem can not be e,~clusively described b! dynamic equations because 

the conhtraiqts represent algebraic relations among certain svstenl variables Such systems 

i\hich are partially d>namic and partially algebraic are called generalized state-space systems. 

descriptor si.stems or singular systems Constrained mechanical systems are a special class of 

descriptor si.stCms because t h e  lack infinite observabilitv and complete controllability, which 

are desirable ,\stern prop&ties f b r  state estimator based fault detection methods This thesis 

deals ~ t i t h  the unique characteristics of constrained mechanical systems and presents a 

s\.sternatic approach for fault detection and control of such s!.stzms under uncertainties In  

this thesis. actuator faults are modeled as unknown inputs to the dynamic equations of 

t\.p~calli nonlinear constrained mechanical si.stem. Sensor faulrb are added to the output 

equation, of the s!.stem The nonlinear system model is first linearized about an operating 

poltit Then a coordinate transformation technique is used to soni,ert the resultant linear 

dexnptor t;)rni representation ofthe system into tiso sub-sptenii a dynamic sybsvstem plus 

an nlgtjbraic wbsi.~tern Based on the dynamic subsystem representation. an unknown input 

obsentir I >  desicned - to proiide estimates of displacements. \.elocities. constraint forces, and 

sensor hulis s~rniiItaneousI>~ The estimates of sensor faults probide immediate means for 



2 

sensor fault detection and.identification. The estimates of displacem~nts. velocities. and 

constraint forces can be used in state feedback control of the system Actuator fault detection 

. , 
and identitication is accomplished by estimating actuator faults id sing a least square solu~ion 

technique ~khich uses the estimation of the state vector of the system This model-based 

analyfical redundancy apptoach offers many advantages It  can detect a hide variety of faults 

I t  generates not only the magnitude but also the shape of the faults and thus possesses the 

1; 

capability of distinguishing between momentary faults and perststent ones = Moreover. Its 

6 - niathematical siniplicity and computational efficiency makes i t  a better candidate for 

computer simulation and/or real-time implementation Simulation perfbrnied using a practical 

sy$eni (an I-MS-2 robot) model indicates that the proposed approach is capable of detecting 

and identieing n~ultiple and/or simultaneous actuator faults and sensor faults almost 

immediately 
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Chapter I 

Introduction to Fault Detecti-on and Identification 

Automatic systems have be-en widely eniployed in commerce a:~d industry for manv . vears - 

Technological progress has made many of these systems more complex and ~o~histi'cateci 
- 

d 

Esarnples of these dynamic systerns include conlmercial and militan. aircraft, navigation 

systems, space shuttle. nuclear reactors, chelnical reactors, robcrs. and manv others These 

systems can consist of many working parts which ma" rnalfiinction or fail at any time 

Complete failure of these systems, especiallv those mission-critical ones, can result in  

unacceptable econonical loss andlor human caspalty The necd for reliability and fault- 

tolerance in these svstenis at reasonable cdst prompted and in some cases fieled research in 
S 

fault detection, isolation, and accommodation New developrnents i n  fault diagnosis ,of 
3, 

"2 dynamic svstems started to appear in the 1970's Some basic theoretical and application 
8 

c. results were achieved in,the 1980's and earlv 1990's Research i t 1  this complex, diverse. and 

elv new field continues todav and ismexpected to t o n t i h e  ~vell into the distant future 
""re - For example, several niaior aircrati nianufacturers and car maker. currentlv have sgme kinds 

of their  own'%^ acti~ities in this area On-board fault detection or registration ma" become 

a design criterion in some models of airplanes and automobiles 

.A dynamic system, or a plant as i t  is commonly referred to. can b e :  d i~ided into three types of - 
r. 

subsystems actuators, main structure or process (which may consist of components), and 

instrunientation/sensors Let's take an aircraft flight control s\ctem as an example. The 
h actuators are the sen.oniechanisni- that drive the control s~~r face -  and engines whichprovide 

the driving thrust The autopilot controller ~~rovides the actuators with the input or control 

signals The main structure is the- airframe ~ ~ i t h  its cargo and nppendages, along with the 

aerodynamic forces eserted on the control surfaces The 'instrurnt.ntatn consists of se~er-al 
i 

sens& or transducers attached to the airtimie The wnsors pi-, ~ i d e  s~gnals proportional to 
- a  

the vital motions of the airframe These ciynals include  issp speed, altitude. liending. 

acceleration, attitude, rate of change of att~tude. control surfaie deflection. engine thrust, 
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f etc. Sensor signals are fed back to the autopilot which uses the feedback information and 

reference/command inputs in its dynamic determination of new control signals. The actuators 

execute the new control signals dynamically and possibly affect the state of the system and 

sensor measurements again Such a system is called a closed-loop control system 

feedback c o n t r ~ l  system in control system .engineering 

Research in the field of fault diagnosis haS led to the invention of. some jargons. Three of the ,' 

9' 

most comnlonly used ones are FDI (Fault Detection and Isolatiodl tification). FDIA+;"'4 - - 
-1 - 

(Fault detection, Isolationlldentification, and .4ccommodation). arid I Instru~nent *Fault 

Detection) Fault detect/on and identitication means declaring thP occu i rence of faults and j 

indicating which sensors, actuators. or components are hulty Fault accomkodaticy refers to % - 
the reconfiguration of system signals or component actions in order to permit continued 

operation of the system - Fault accommodation is an application-specific task and is not 
\ 

addressed by most researchers Another thing that has not been addressed by 'most 
* researchers .in FDIA is the reliability of typically digital <emputel h. nhich are usually used in 

r 

t 
the implementation of FDI a e  Research in fault diagnosis have been focused on 

sensor fault detection and to a lesser extent on actuator fault detection, although one research 

work using least square parameter estimation methods has s h o ~ \ n  its capability of detecting " 

and localizing process faults or<oniponent failures A typical fault monitoring scheme is 

usually designed to detect and correct faults in one or t u o  of the three subsystems Early 

proposed schemes uere primarily concerned \ k i t h  sen5or fault detection Once detected. 

sensor faults could usually be corrected by electronic s\+itching twhniques and do not require 

the reconfiguration of mechanical parts On the other hand, actuator F ~ l t  accommodation is 

usually more ditticult than re-directing electrical signals The compensation of faults in the 

main structure is even less feasible and usuallv requires expert I\noivletlge of the underlying 

system This is probably one of the most cha16nging aspects of an\ practical FDIA scheme 

The traditional approach to fault tolerance in dynamic systems is hardware redundancy 

Typically three or four identical or similar hardware elernents (actuators, nieasurenient 

sensors, process components, etc ) are distributed spatially around the system to provide 

protection against localized damage ~lul t iple elements art. used to perlorn~ a single task for 
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" * a  
1 

which one element is s ficient if it was completelv reliable For es3mp!eb three or more Y \ eR , 
1 

sensors could be insdlled to measure the same butpilt. The nmwrements from the sensors 

could be compared in a logic circuit for consistencv If the rnensurenJent from 'one sensor 

deviates too much from the average of the. measurements from the other sensors, then this 
I 

sensor is declared faulty The underlying reasonable assumption is that the &er sensors 
, . 

remain within a small diffecence from each other Additionally. the logic circuit gives 5ome 

allowances for electronic poise, manufacturing tolerance, and mor&oring errors inherent-;n 

instruments The. hardware redundancy approach is generallv simple and straightforward to 

apply Itiis therefore widely used I t  is essential in the control of a~rcraflt: space vehicles and in 

certain safety-critical process plants that involve nuclear reactors o r  dangerous chemicals 

The major problen~s associated with hardware redundancy or physical redundancy are the 
, la; 

extra cost and software and, furthermore, the additional space required to accommodate the 
+ 

redundant equipment andlor the extra weight brought on by tlic redundant equipment. In  

aircraft, for example, the additional space could be used !br more mission-oriented 

equipment. The additional weight limits the pay-load for defensive equipment and, most 
-- 

particularly, for fuel Moreover, since redundant sensors tend to have similar life 

espectiincies, it  is likely t l  t when one sensor fails the other \ \ i l l  soon become faulty too 
& - Y 

New developments in FDlA ha\,e been prompted b y  the high cost of excess hardware and the 

space and welght penalties associated with hardibare redundanc! since the earl! 9 ,The 

availability of reliable and powerful computers also contritx~ted ro the developments of new 

approaches which eliminate some or all of the redundant hardware These new approaches to 

FDIA are based on functional redundancy inherent in the systems The fimdamental idea is 

that entirely different measurements from three (or more) dissimiinr sensors are dri&n by the 

same dynamic state of the system and are therefore functionally related These different 

signals can be used in a comparison scheme more sophisticated tlm the simple majority-vote 

logic used in hardware redundancy approaches to detec? and identify sensor faults These 

ne\ier schemes were initially called inberent redundanc! or functional redundancy to 

distinyuish them from ph!.sical or hardware redundancy The!, art, non better or alternati\el!. 

known as analytical redundancy or artificial redundancy Vii-lually all of the published 
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resebrch works in FDIA belong to this newclass of approaches. although it ha5been 

. recognized that both hardware redundancy'and anbl&cal redundancy approachescan be md 
* 

- in many cases should be employed together to advantage 4 I _ 
dp 

~naljqical redundancy can useLand has used knorvledge from seieral academic disciplines 

These include but are'not limited to control theory. statistics, and computer science Specific 

techniques employed iq- analytical redundancy 'FDI approaches include state estimat~on, 
4 -  * ---.  a- * 

parameter estimation, adapt~ve filtemg, vanable threshold logic. p i s t i c a l  decision theory, 
.* . 

and cornbinarorial and logic operations There are plenty books and papers on these ~ 

disciplines and subjects For example, the book of Swisher (lLJ76) and the book of Chen 

( 1  984) contain inform-ation on reduced-order and bll-order obsen el- design techniques which 

can be used for state estimation Other basic concepts theow such as state-space 

modeling, state (variables). state controjlabilit(., observability. state 

feedback, output feedback, and stability are aiso covered in these books The book of Dai 

( 1989) provides singular' control system theosy tvhich is useful in dealing with generalized 

state-space or descriptor systems anlong which are constrained d ~ m r n i c  systems 
9 

All of the aforementioned techniques can be implemented usins high speed digital computers 

or electrical circuits High level system sinldation or modeling l&guages sukh as M.4TL.AB. 

Simulink, or Matrix>( can be used in simulation of FDI schemes on dynamic systems Lo\ver 

level languages such as Assembly or C can be used i n  experimentation or real-time 

application 

a " 'J 
Knalytical redundancy FDI approaches are essentially based on modeling dvnamic systems in 

one way or another. Either the dynanlic nature of the  stem is Ktlot~n to a reasonable degree 

of precision or the physical parameters of the system can be deter-mined by same kinds of on- 

line identification techniques Normally the FDI subsystem is constructed in.parallel to the 

monitored system I t  can use both the input signals and the output signals of the monitored 

system to generate signals within itself These generate; signal3 serve the same purpose as 

the majority-vote signals used in hardware reduodnncv. i they can be used in logic 
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- ,  proc6sing or other kinds of sophisticated algorithm to detect faults and identi& faulty 

elements. 
d. 

9 
To illustrate the basic notion of IFD scheme, assume that there are p sensors and one of the 

" 

them is. known to be reliable Also assume that an observkr or state estimatof can be 
. . e 

constructed using the measurement signal from thk reliable sensor a d  the inputs to the 

monitored plant. In  this case the FDI subsystem can generate estimates of the measurement 

signals of all the other sensors These estimates can then be compared with their actual 

counterpatts Simple threshold logic can be applied to the difference signals to detect and 
If 

identify sensor faults In view of the noise in sensor signals and the inaccuracy in system 

modeling and estimation, the thresholds shall be non-zero to prwent hlse alarms and yet 

small enough to allow the FDI scheme remain sensitive to moderate faults Obviously, there 

is a compromise or balance between sensitivity to incipient (slonlf developing or small) faults 

and false alarm rate in this case as in many other cases Incidentallv. thisexample is known as 

dedicated observer scheme (DOS), which was presented by Clark (1979) Many variations 

and alterations of this simple idea are possible 
, 

4 

Functionally-redundant FDI schemes may be further ,classified into at least three sub-classes 

according to the techniques used in the schemes The first sub-class of schemes uses state 
C 

- estimation technique which is believed to be the most widel\, employed technique in all 

analytical redundancc FDI schemes This technique is suitable for. svstems for which a set of 

differential equations (plus a few algebraic equations in the case of constrained dynamic 

systems) can be fairly easily obtained by appl~rinp the physical or engineering laws overning 

the motions of the svsteni Examples of such svstems can include aircraf and robots The 

approach presented in this thesis falls into this sub-class T\rpicall! the nonlinear mathematical 

model of the dynamic system in this sub-class is linearized and-also converted into a stale- 

space representation fornia The anall.sis of the system and the desiyn of state estimator or 

observer based FDI subsvsteni . . is carried out in the realn~ of li&r systenl iheory, or linear 

sinylar system theory in the case of constrained dh.nL~rnic s\.stems The second sub-class of 

analytical redundancy approaches uses pafameter estimation ttxhniques A survey uf the 
I 

schemes in this sub-class is presented in the paper of lserniann ( IC)S4) A thoroughly studied 
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d 
method in this sub-class is the so called least-squares parameter estimation technique.   his 

8 .  

approach can provide on-line estimates of physica.l system parameters Estimated parameters 

associated. with specific subsystems sf the, plant or process can bc used to detect and identie 

faults in these subsystenis or components. This method is ccnsidered to be particularly 

important for process plants such as chemical processes and nuclear reactors. In  these 

process plants, parameter variations result from process f a d s  can cause rapid parameter 

estimate changes, even though the process itself typically has a ilow dlnamic behavior. This 

a. approach can detect and identify both component faults and sensor faults. The third sub-class 

of analytical redundancy based approaches uses the so called parametric modeling technique 

A parametric model is essentially an estimator of a process variable using other process 

variables as inputs Some simulaiion and actual esperiments using this approach have been 

performed at several nuclear power stations Readers who are interested in this technique are 

referred to the worksi:of Kitamura (1980), Kitamura, et al ( 1979). and Kitamura, et a1 

Still another major class of FDIA schemes use the kno~bledgc-based methodology These 

knowledge-based erpen systems a& designed using artificial intelligence (AI) techniques 

Expert systems are currently finding application to an increas~nrr repertory .m of human life 
-> 
domains, in the center of which lies the fault diagnosis and repair domain of technological 

processes Interested readers- are referred to the sun ey paper o f  Pal! ( 1986). the paper df 

Tzafestas ( l987), and the book of Tzafestas. et a1 ( 1989) ;. g 

Some of the criteria for evaluating the performance,of an FDI scheme are a) promptness of 

detection, b) sensitivity to incipient faults, c) false alarm rate, d)  missed fault detections: ard 

e) incorrect fault identitication A discussion of each of these criteria is now given a ' 

, 

The basic function of a FDI scheme is to register an alarm \\hen an abnormal condition 

- k 

develops in the sptem and to identify the abnormal component Assuming that a fault is 

detected successfullv. the issue $f promptness may be of ~ i t a l  importance In ceita~rl 

applications such as aerospace, a fault that persists for a second may destroy the mission of 

the operating system, if not the operating system itself 
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I 

In certain applications it  mav be more desirable to hate reliable detection of yinor faults at 

the sacrifice of speed in detection time or promptness In some systems a fault detectibn -., - 
$4 

scheme is intended to enhance maintenance operation by early detection of worn equipment 

, In this case promptness of detection may be of secondary importance to sensitivity. In  other 

systems sensitivity and promptness may both be required This leads to more conlplex 

detection schemes, possibly require both hardware and analytical redundancy 

False alarms are generally indications of poor perfdrmance of FDI schemes Even a low false 

alarm rate during normal operation of the monitored plant may not be acceptable because it  

can quickly lead to lack of confidence in the detection scheme flowever, a FDI scheme that 

has an acceptable false alarm rate might resister a false alarm lvhen a plant undergoes an 

unusual excursion, and this may be acceptable in some applicaiions 

I 

I n  other applications sniall faults may be so serious that i t  is preferable to react to false 
\ 

alarms, replacing unhiled components with spare part;, than to suffer deteriorated 

performance from an undetected, though small, fault In  these cases i t  is preferable to 

minimize the number of missed detections at the expense of the creditability of detections 

Incorrect fault identification means that the systenl con-ectl! registers that a fault has 

occurred but incorrectlv identifies the component that has failed It' the reconfiguration 

system proceeds to compensate for the Lbrong fault. i t  could produce a consequence as 

serious as a missed detection in some applications 

The compromises in detection svsteni design among hlse alarm rate, sensitivity to incipient 

faults, and promptness of detection are dit'ficult to make beciiuse they require es tens i~e  - 
knowledge of the uorking environment and an e~plicit undcrstandiny of the important 

performance criteria of the monitored system 

S k  

In  dealing with nialfunctions of tault detection sihenles, especially the problem of false 

alarms, some researchers have developed FDI schemes that i1.w variable or adapting fault 
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detection thresholds Some of these techniques have demonstrated capability of reducing or 

minimirin~faise alarms. Other researchers have focused their attention on the problem of 

robust fault detection by design. Most of these robust fault detection schemes were designed 

with the goal of,maximizing the sensitivity of the detector to nctual sensor malfilnctions,. 

while discriminatiny between these faults and disturbance effect. due to noise and uncertain 
a 

' dynamics- - 

Robustness of 2 fault detection and identification scheme can be defined as the degree to 

which its perf6rmance is unaffected by conditions in the bperatirig system which turns out to 

be different from what they were assumed to be in the design of the scheme. Robustness 

problems occur with respect to four features of' the ope~ating plant a)  parameter 

uncertainties, b) unmodelled non-linearities or i~ncertain d ~ n a m ~ ~ . s ,  c )  disturbance and noise. 

and d) fault types A brief discussion of'each of these issues is nol\ gi\.en 

Parameters refer to physical characteristics such as properties 01 '  mass. moments of inertia, 

electrical circuit parameters, heat transfer properties. etc hla;~!; FDI schemes use state 

estimation techniques which are based on mathematical modelins of the monitored system 

The models are often linearized and simplified and result in linear and time-invariant (the 
r(. 

simplest class oT dynamic systems) system representations Tlii. inaccuracy of the model 

depends on the uncertaintv of the valua of tv paranleters If all the parameters are known 

with precision, then state estimates can be Ley  accurate and the FDI scheme ma!, be 

remarkably sensitive to incipient faults and imnlune to false a!arms However, parameter 

values are only knob-n approsimately in most applications. especially in systems that in\,olte 

fluid flows or heat transfers Therefore, state 0bsen.er.s or estima!ors have to be constnlcted 

using only nominal values for uncertain parameters This ~r'ill r d u l t  in erroneous estimates 

The severity of the error depends on maneuvers of the system khich can not  easily be 

%--- determined The algorithm or logic devices used for processing the redundant signals ( e  3 

tate estimates) mav generate false ah-nis, or if they are protectcd against this, they may fail 

to detect faults This is*the robust problem ~vith respect to parameter uncertainty 
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b 
Nonlinearity is a natural characteristic of all practical svstenls Strictly speaking, linear ' 

dynamic systems don't exist in the real world One of the two r:ia-jor reasons that we study 

linear systems and use linear system theory in'analysis and design is that many of these 

nonlinear systems behave almost linearly within a narrom range of a nominal operating point 

The other reason is that linear system theory is more established and easier to apply than 

nonlinear system theory A FDI scheme based on linear (linearized) models could be quite 

satisfactory as long as the plant does not operate outside the range used for linearization 

, However, outside of this range nonlinearity may produce signals which are not modeled 
1 

accurately by the FDI scheme These signals may then be interpreted as faults This is the 

robust problem with respect to unrnodeled nonlinearitv or uncertain dynamics. 
- . 

keal world dynamic plants are always subject to disturbances. Disturbances are unintended 

system inputs originating from the operating env:ronment. For example, wind fluctuation is a 

disturbance for certain systems Disturbances are usuallv random signals Furthermore, 

sensors are usually subject to the influence of randon[siynals which typically originate from a 

different source These random signals are called noises Most ~iynal processing techniques 

used in FDI schemes are based on the assumption that the disturbaoces and noises are 

stationary Gaussian processes and uncorrelated. If the raidom signals are non-stationary, 

non-Gaussian, or correlated in some way, then the performance of the FDI scheme will be 

worse than expected or even unsatisfactory This is the r0bu.t problenl with respect to 

disturbances and noises 

~ q u l t s  can take many forms such as a nonlinearity due to wear or- friction, excess noise. or a 
\ t 

stuck value at any level within its dynamic range Sope  FDI schemes are des6gned to detect 

only specific types of failures. If a malfunction or fault occurs and it is not in the repertoire, 
a 

then the FDI scheme can not detect i t .  This is the robust problem \c.ith respect to fault types 

Some techniques have been developed by some researchers in the field of fault diagnosis to 

deal with some of the aforementioned robustness pro61enls /-or. example. unmodeled or 

uncertain dynamics ha~ .e  been shown to act like a disturbance on a linear system in obsener 

or state estimator based FDI schemes The robust fault detectia~i problen~ becomes one of 

'7 
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disturbance-dedoupling by design. This type oy approach is knc1u.n as the Unknown Inpit 

Observer scheme (UIOS) Techniques used to deal with robustness problems with respect to 

fault types include hypothesis-generation and hvpothesis-testing The hy ot hesis-gemeration 

procedure is-to build up a repertoire of known or hypothes i~~d possible malfunctions or 

faults in system components or. instruments (sensors) Interested readers are referred to 

chapter 10 and chapter I 1 of the book of Patton, Frank, and Clark ( 1989) 

4 

The most challenging and usually missing part of research work5 in fault diagnosis is festing 

-or  using the FDI scheme on a real system or operating plant. Norrnally the application of new 

and developing FDI schemes to actual operating s>rstems are prohibited because of expense 

or safety. If and when one does get an opportunity or authorization to test hislher FDI 

scheme on a real world system, numerous practical and unfore.;een difficulties will present 

themselves To overcome these challenges the designer- of the FDI scheme must learn to 
, 

understand the nature of the practical problems This usually rcquires that 'helshe follows 

hislher work into a specific engineering field u hich niay or ma! not be familiar to hirnlher 

Helshe has to either perform the implementation hiniselflherself o r  work very closely with the 

one who does the implementation I t  is for this reason that most research works such as this 

thesis end at the simulation stage 

ep 
The large scope and great diversity of unconstrained and constrained dynamic systems 

1 

prohibits a single research work to generate a general-purpose fault detectton and 

identifi~ation approach that is applicable to all systems In  this thesis we focus our effort on a , . * 
. - 

, .. 
special yet major sub-class of such systems - constrained niechanical systems. The ' . 

significance of studying this kind of system is threefold a) There are many constrained 

mechanical systems in the real world some of them are used in industrial applications b) 

r These systems are less studied than regular (unconstrained) dynamic systems, especially in the 

area of fault diagnosis c)  A systematic approach to detect and identify faults in these systems 

has not been found but should be developed The FDI scheme in this thesis relies purely on 

analytical redundancy I t  is model-based and uses onlv quantitati1.e reasoning Furthermore. I t  

falls into the sub-class of state estimator based approaches 
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This thesis consists of five chapters. Chapter 2 focuses on the description, modeling, and 

analysis of constrained mechanical systems. I t  shows that constrained mechanical systems are 
9 

a special class of generalized state-space systems, which are also known as descriptor systems' 

or singular system. -+ Some properties which are special to constrained mechanical systems are 

discussed in this chapter. Linearization and nonsingular transformations are performed in this 

chapter to yield a purely dynamic subsystem which becomes the foundation for fkrther 

- analysis. The result is that all subsequent analytical work can be carried out in the domain of 
c'__ r" 

(regular) linear system theory rather than the domain of linear singular system theory 

Chapter 3 presents a design of an Unknown Input observer (U10)  and shows how such an 

UIO can be used for fault detection and identification in linear or linearized dynamic sys!ems: 

Similarity transformations and a nonsingular transformation are used in this chapter to help us 

to divide and conquer the problem. Chapter 4 uses a practical constrained mechanical system 

in demonstrating the aTplicability of the proposed unknown/input observer based faul't 

detection and identification approach. Two actuators and one sensor faults are detected and 

identitied in the simulations of a UMS-2 robot Finally, chapter 5 summarizes the 

advantages/contributions of the thesis and lists the limitations of the proposed scheme and the 

opportunities for Further research on this subject by an" interested the future 



Chapter 2 

Constrained Mechanical Systems 

2.1 Introduction 

Dynamic systems can be classified into unconstrained system5 and constrained systems 

Unconstrained continuous dvnamic systems can be described by ordinary- difterential 

equations of motiori, which are easy to simulate All forces that do not work virtually are 

eliminated from the formulation of unconstrained systems Eurnples of workless forces 

t include contact orces in sliding-without-friction, rolling-without-slipping and the internal 

forces maintaining rigidity of a body. On the other hand, constrained dynamic systems pose 

some special problems First of all, they can no longer be described exclusively by ordipary 

dif-t'erential equations Presence of constraint equations niakes this type of system more 

dit'ficult to analyze and simulate Additionally. beca'use kno\vleil~e of constrained forces is 

crucial in some applications and such forces may not be mea\uredJirectly or indirectly, 
C 

estimation of constrained forces poses another issue and challenge Let Os.consider a robotic 

nlanipulator (Mills R: Goldenberg, 1989) performing ;I task on a rigid surface as an example 

of constrained dvnarnic hvstems In  the absence ot' a !'or-ce sensor, the constrained forces 

applied by the n~anipulator end-ef'fector on the en\ironrnent m~! \ t  be estimated for control 

purposes so that i )  neither the manipulator nXr the rigid ciirfiice I, damaged due to contact. i i )  

contact is maintained during the task. and i i i )  the required force.; are applied to successfully 

complete the task The studv of constrained dynamic systems l;:~:., been going on since the 

foundation of analytical dvnamics tinderstanding ot' anal~tical dbnaniics can be obta~ned 

from the books of hleiro\.itch( 1970). (;oldqein( l980). Green\\ ood( I965 1. Neimark( 1972 1, 

and Kane R: Levinson(198) The reader isvreferred to the last t \ \o  of the above five books 

for methods of deri\.ing equations of motion for constrained d\ namic sytems. Basicallv. a 

constrained dynaniic or mechanical system in\.oli.es positions 01- ciisplacenients. ~,elocities. 

forces, and constraints Constraints in\,ol\.ing onl!. displacen~entz or positions are called 
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geometric constraints Constraints involving velocities and possibly displacements as well are 

called velocity constraints Geometric constraints and velocity constraints that can be 

integrated into geometric constraints are called holonomic constraints Velocity constraints 

that can not be integrated into geometric constra,ints are called nonholonomic constraints 

One of the major findings of past studies is thal dynamic. or mechanical systems with 

constraints result in a description of differential-algebraic equations, i.e., the natural or 
\ 

original repiesentation of constrained mechanical systems in terms of a number of dyigarnic 

equations plus another number of constraint equations can be reu ritten into a descriptor fohy 

($in and  Kabamba. 1988) Descriptor systems are also called singular systems or generalized 

state-sp&e systems For information on singular systems. the readers are referred to the book 

of Dai(1988), the early work of Luenberger(l97-l R: 1978$, the paper of Yip & 
6 

a 
Sincovec(l98 I ) ,  and the survey of Lewis( 1986) The application of singular system theory to 

constrained mechanical systems has recently appeared as a ne\L research topic. Generally, 

linear time-invariant descriptor systems can be described by the fc~llo~viny - 

E .i- ( t )  = Ax(t) + Bu(t) 

y(t)=Cs(t) 

where 

-. We shall now present some definitions that will be useful in the remainder of this thesis 
.- 

Definition 2.1 - Matrix Pencil 

Let E and A be two matrices of appropriate dimensions with red values. A matrix pencil is 

then a polynomial matrix given by (sE-A). This pencil is regular if .\I< - A/  # 0 for a square 

pencil, otherwise the pencil is singular 
e 

Definition 2.2 - Normal Svstems 

Dynamic systems that can be described by only dift'erential equations are called normal 

systems An example of such a system described in state-space formulation isgiven by t 



where 

i (t) = Ax(t) + Bu(t) 
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Definition 2.3 Normal Forms for Constrained Linear Mechanical Svstems 

A normal form for a constrained linearmechanical system refers to the representation of the 

system in the form of a normal(dynamic) subsystem plus a set -nf algebraic constraints. For 

example, a normal fbrm of the system defined in the last detinition can be ~ i v e n  by the 

following: 

where 

9 .  
Definition 2.4 R~ular~ty/Solvabili ty 

A descriptor system described by equations (2  1 . 1  ) and (2.1 2) is regular or in other words 

has a guaranteed existence and uniqueness of a solution if and only if the following matrix 

pencil is regular, i e . % 

Note a computationally attractive method for verifiiing the system's regularity is provided by 

l,uenbergerls shuffle algorithm, which can be found in the book of'Dai ( 1  989) 

Definition 2.5 Infinite/Impulse Observability 

A descriptor system described by equations (2  1 1 )  and (2  1 2 )  is infinitely observable or 

possess impulse obsenabilitv if and only if 
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L J 
b~ 

A more direct and more understandable definition of infinite irnpulst? observability is as 

follows: 
& 

System (2.1.1)-(2.1.2) is infinitelimpulse observable if the impulsive behavior-of x(t) at t=O- 
SF- 

can be uniquely determined from y(t), t r 0 in the absence of input u(t) -4 

Definition 2.6 Finite/Reachable Obsemability 

A descriptor system described by equations ( 2  1 1 )  and (2. 1 3 )  is finitely observable or 

possess reachable observability if and only if 

A more direct and more understandable definition of finite/rcachable4,%bservability is as 

follows: 

System ( 2  11)-(2 1 1) has finitelreachable observabilit$ if.gicen any descriptor vector x(t), 

t>O in the reachable set, it  can be uniquely determined through knowledge of the output y(r),  4 

r ~ ( 0 ,  t] in the absence of input u(t) 

Definition 2.7 Complete Controllability (C-controllability) - 

A descr ip i~r  system described by equations ( 2  1 I ) and ( 2  1 2 )  is C-controllable if and only if 
. . 

'l rank[&-A B] = n t. .s c_ (;" . (2 1 . 1  1 )  

A more direct and more understandable definition of ('-controllability is as follows 

System (2.1.  ] ) -(? ' I  .2 )  is completely controllable (C-cont.rollable) if there exists a control 

input that can make one r,each any state from any initial state in a finite time period. 
. . 

Definition 2.8 Reachable Controllability (R-controllability) 

A descriptor system described by eq~uations ( 2  1 1 ) and ( 2  1 2 )  is R-contrpllable if and only if 
- < 
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rank[sE-A B] = n \ .s E (p (2.1.13) 

A more direct and more understandable definition of R-controllability is as follows: 
f 

System (2.1.1)-(2.1 2)  is R-controllable if there exists an admissible control that can make the 

state of the system to go from any initial state to a point in the set of reachable states ( a 
3 

subspace of %" ) 

The above definitions are of value and will be used in the rest of the thesis I n  section 2 2. a 
! 

natural mathematical description of constrained non-linear mechanical systems is initially 

given in the form bf dynamic equations plus constraint equations The non-linear 

representation is then linearized. In section 2 3,  any possible redundancy in the constraints is 

eliminated and the linearized niatheniatical model is re\\.-ritten into a special form as well as a 

descriptor form. The special form is needed fo- deriving a normal form of the representation.. 

In section 2 4. a normal form of the linear mechanical descriptor qvstem is derived In section 
N- 

2 5 and 6. properties of linear mechanical descriptor systems a i~d  their impacts 'ha o bserver 

design for such systems are discussed Finally. section 2 7 siimmarizes this chapter and 

explains the link between this chapter and subsequent chapters 

2.2 Description of Constrained Dynamic Systems 

Constraints in dynamic systems can be classified as sclerononiic constraints or rheonomic 
* 

constraints depending on whether the time variable t is explicitly I.ontained in the constraints 

Systems with time-invariant constraints are called sclerononiic h~.stenls Systems with time- 

varying constraints are called rheononiic systems The nio.,t common model for dynamic 

systems with constraints is that of Lagrange's equations hlodeling of constrained dynamic 

systems u4ng Layrange's equations can be found in the book of Cioldstein ( 1980) According 

to Shin and Kabamba ( 1988). Constraiwd dynamic systenis can ht. modeled as 
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where 

(I(() E '91" is the generalized coordinates vector * 

i ( t )  E l)Zn is the velocity vector 

and 

ii(/) E '3" is the acceleiations vector 

M ( q )  E '31 " " i s  the symmetric positive definite inertia matrix 

H(q,cj) E '3" is the force vector //-/ 

8 : represents a set of holonomic constraints 

p . represents a set of :~onholonomic constraints 

A E S f  is the Lagrange multiplier vector 

7' E 91" represents input forces acting as controls 

r E (3Zn '  is an output vector 

/' 

./' (q.(j) is called the Jacobian of constraint equations which is dHned as 

(a) In the case of only holonomic constraints represented by (2.2.2) 

.F. 

(b) In  the case of only nonholonomic constraints rcpresented by (2 2 3 )  

(c) In the case of both holonomic and nonhol4nomic constraints 
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Note that since q(t) represents generalized coordinates, its components are independent and 
I 

the constraint equations in (2 2 2) and (2 2 3)  arc linearly independent 

The process of linearizing the system represented by (2 2 I - ( ?  2 4) requires multivariable 

Taylor series expansions involving only the first order terms Given a nominal *state 
I .  

' ( ( I , ,  , ( j , ,  ,(l,, , A , ,  , 7,; ). let us first define the fdlowing notations 

Then we have the follon in2 first order Taylor series ekpansions 
4+ 

7 '  = I , ' ,  - , f 
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* 
and the Jacobian takes one o f  the following forms depending on the types of  constraints. 

Substituting (2 2 5 ) - ( 2  2 1 1 )  into (2  2 1)-(2 2 4 )  and simpli&~n% the resultant equations - e 
results in- 



e holonomic 
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constraints in equation (2.2 16) and the nonholonomic constraints in equation - 
(2.2.17) can be represented in the following generalized form: 

- - 
(; t + H  z = o  (2 2 19) 

where 

(i = 0 and R = L in the case of only holonomic constraint 

(; = G and H = H in the case of only nonholonomic constraint 

i (; -; 
. (;'= / 1 and H = in the case of both types of constraints 

L 

Therefore linear or linearized constrained mechanical systems ha\.e the tbllowing form 

The above representation can be rewritten in a linear descriptor forni. 
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- -+ 2.3 Special Form of Constrained Linear Slechanical Systems 

In this section we mill perform a nonsingular transformation oil the generalized constraint 

equation (2 2 19). The motivation of this transformation is best understood in the nest . .* 
% 

section(2.4) The process of !,his transformation yields a nonsingular(orthogonal) 

transformation matris T and a special form of the linear descriptor svstem representation 

Both will be used in deriving the normal form of the descriptor s!.stem in the section 2 4 

We start with a matrix pencil ( 2  T; '+R) 

i. is a complex variable in the complex plaiie or Laplace operator 

(/ is the number of holonomic plus nonholonomic constraints 

First. let us define ro\\ compression matrii; and column comprc,.;ion matiix for an arbitrary 

singular matrix denoted bv H According to singular value dec,omposition theor\l in linear 

algebra, Orthogonal matrices R and Q exist such that 

17 is a diagonal matrix filled ~ v i t h  singular I. dues of H 

Then the follo~iing equaiions can be established 

Thus /?' can be'used as a ro\i compr-ession matriv and Q can be used as a column 

compression matrix 
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Now perform the row compression of (i using an orthogonal matrix P such that 
1 

then, we have 

Perform hrther colunln and ron compression of H, using orthogonal matrices P .  and T 
J - 

such that 

where 

H , is a nonsingular matrix 

Thus. we have 

where ' ' indicates a usually, nonzero niatris pencil Then, perfi)rm the same operations on 
- - - 

subpencil 2. (; + as on A (; H Repeat the process until , in the resulting 

subpencil i. (; + : is of full ronJ rank Hence. we have 

Finally. perform the colun~n compression of (; , to get 

where 
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and therefore the above equation can be re~vritten as 

where 

and 

T = T  T ,  is orthogonal 
- 

Now let us take Laplacr transform on the constraints equation I ;  1 + H z = o 

Let us hrther define a new generalized state vector 

i = T  z = T !  z 
L 

then t 
z = T  5 

Taking Laplace transform on ( 2  -3 6)  yields 

Premultiply equation ( 2  -7 I ) by P and substituting ( 2  3 7 )  into i t  results 
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- 
tSubstituting ( 2  3.  I )  into ( 2  3 8 )  and partitioning c ( iL ) results in 

Equation (2 .3  9) further results in the tblloiving two equations 

Taking inverse Laplace transformation of ( 2  -3 12) results in 
- 

Hi ; ( )  ) 7, ) 0 

Equation ( 2  3 1-3) can be re~kriten as 

Substituting (2  -3 5 )  into (2  3 13) \.ields 

[o I o] T 1 )  - [ N;: 01 T z ( t ) O  
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Define 

and 
- 

S = [ H , ,  H " .  o ] T ; = [ . s ,  S: O ] T i  
3 

(2 3 17) 

Then we obtain the follouing results 

N  ,(I) -+ S z(t) - 0 

N T = [ 0  1 0 1  . 

S T = [ "  ". 01 

The above results can be summarized and stated as the follouing theorem. 

Theorem 2.3.1 - Through the nonsingular transformation of matris pencils, constraint 

equations (2.2 16) and ( 2  2 17) can be transformed into one of the following equivalent 

forms 

(a) holonomic constraints 

F z - 0 ,  F l)lci " (2 3 21) 

(b) nonholonomic constraints B 

, I  N , + S z - 0 ,  N,Si.!lZ" (2.3 22) 

(c)  holonomic and nonholononlic constraints 

% , I - S z - O  and F z - 0  ( 2 . 3  23) 

where 

\. S E ! ~ ? ' ~  ' j  . .- F c Y 1"' '' . q, - q - q 

q is the number of independent constraint\ 

q,  is the number of' independent holonomic constraints 

(1, is the number of independent nonholonomic constraints 

The Jacobian J will be one of the following forms 

( a )  For constraint equation ( 2  2 7 )  J-F 

(b)  For constraint equation (2  2 S )  J - N 



(c) For constraint equation (2 2 15) 
rlc 

J =  1 /: 1 (2.3.26) 
L 

Moreover, from the transformation which brings equation (2 2 7 )  and (2.2.8) into one of its 

special forms (2.3.21). ( 2 . 3  22) or (2.3.23). an orthogonal rnatris T, i.e . T ' = T T  , can be 

obtained such that 

(a) for constraint equation ( 2  2.7) F T = [ 0  I , ]  (2.3 27) 

.\ 

(b) for constraint equati'on ( 2  2 8)  \ NT- [O I , : ] .  ST= [.S .Y:] (2 .3  28) 

(c) for constraint equation ( 2  2 15) 

UT=* [ o , .!. 0 ,  ST= Si S. 01. FT= 0 0 I ,  I [ -  1 .: F 1 (2.3.29) 

The above constraints can be denoted in a generalized form 

where 
- - 
1 O . S = F in the case of only holononiic constraints -- - 
1 = 5 , . = S in the case of only nonholonomic constraints 

Thus, the special form representation of linear mechanical system can be written as 

The above results \ \ i l l  be used in deri~ing a dlmamic subsysteni(norrnal form) for the linear 

mechanical system in the follo\\ing section 

Esample 
8 
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We now use an example to illustrate how the special form transformation is performed, i.e., 

we will apply theorem 2 -3 1 to a specific system. The esample used here is a rolling ring drive 

which has one holonornic constraint and one n o n - h o ~ o n ~ c  constraint. This &stem was 

found in the paper, of Hou et.al. (1993). The linearized system representation has the 

following form 

which corresponds to the form in equations (2.2.15) - ( 2  2 18) 

The matrix pencil ( 2 (; + H ) for this particular system would be 

Since the above matrix pencil is already in row compressed forni. there is no need to perform 

row compression Therefore we have the following 



Chapter 2 Constr.nlned Mechanical Systems 28 

(2.3 41) 

The last equation (2  -3 43) means that 

Now we need to find orthogonal matrices P .  and T ; such that 

P .  - H . T  - -[0 0 0 H I ]  

I t  can be verified that the following orthogonal matrices satisfi ( 2  3 1i) . 

Then, u e  have 
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Therefore we have 

The transformation matris T is determined as 

Then we can calculate the followiny matrices 
r . . 
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Finally we obtain the special form representation of the linearized system as follows 

& 

The numerical representation of equations ( 2  3 8 )  and ( 2  3 I \  $\en in the followiny 
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This concludes our illustration of transforming a linear descriptc\r system to its special form 
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2.4 Normal Forms for Constrained Linear Mechanical Systems 

In  this section we will derive normal forms for linear mechanical systems with various 

constraints. First let us consider the most seneral case which involves both holonomic and 

nonholomonic constraints Let n be the number of descriptor variables, q be the total number 

of independent holonomic and nonholonomic constraints. 0, be the number of independent * 

nonholonomic constraints, and (I,, be the nun~ber of independent holonomic constraints 

Using the orthogonal transformation matris T ( T T - T ' 7' - I ) developed in the last 

section enables us to do the following 

Partition the transformed generalized state vectol defined in equation ( 2  i 5 )  as 

Partition the transformed input vector as 

where 

Partition the transformed mass matrix hl. the stifness ma t r i~  K. a : ~ d  the damping matrix D as 



- 
I ) , ,  11,- . - 1)); 7 i 

T DT= - .  I)?.  - -  I),: 

o;; - 11:; 11;J 

Let A denotes M, K. or D and the dimensions of the above partitions be as follows 

Pre-multiply in^ both sides of the descriptor form representation of the last section by a 

nonsingular matrix Q = d i a g ( T  . T . I ,; ) and noting that z = T < results in  

Substituting ( 2  4 I ) through ( 2  1 5 )  and the follouing results from the last section 
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into (2.4.7)  results in 

Note that ( 2  4 8) can be expanded into as many equations as its number of rous The seventh 
9 

and eighth roms of ( 2  -1 8)  offer the following equations 

-4" 
These t ~ v o  equations result in the follo~viny 
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(2.4. I I )  

(2.4.12) 

(2.4 13) 

The fourth row of (2 4 8)  offers the following equation 
* 

Substituting (2  4 1 1 )- ( 2  4 15) into (2  4 16) and rearranging terms results in the follo\viny 

The fifth and siuthrous of (2 .4  8) offer the follo\~ing equations 

~ \ 1 .  . 2 . - .\!.- . . <: +.I!.; i. = - K .  . c. - K . -  . . 5 : -h. , <; 

and 

- / I ; ,  ;:-/I:: < : - / I : ,  t: + , f 2  ( 2 4  19) 

Subst~tutins ( 2  4 12)- ( 2  4 1 i) into (2  4 18)-(2 1 19) and \\fitins the t i ~ o  equations in a 

matrix form result in the follo\\ing 
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Substituting (2.4. l I )  into (2.4.20) and re-arranging terms result in the followi~ig equation: 

and 

In view of equations ( 2  4 1 I ) ,  ( 2  4.17), and (2 4.2 1 ), equatiorj ( 2  4 8) can be rewritten as 
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Equation (2.4.22) can be rewritten in- the following form by r-e-arranging or re-grouping 

variables in the generalized state vector 

0  0  0 0 0 0  

1 0  
i 

1 
.i. 

0 0 0 0 0  1 -1;s ' 1  - 5 '  - i l l  0 0  0  0  

0  0  0 0 0 0  

0  0  0  0 0 0 0  

0  0  0 0 0 0  

!-MA, - - M A .  - -  - , _ I o o o 0- 

Premultiplying both sides of (2.4 23) by the following nonsingular matrix 

results in 



0 
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i t here 

Then the first three rows of (2.4 2 5 )  offer the dynamic part of the normal form representation 

as expressed bv the follo\ving. 

Q Expanding the last t \ w  rows of ( 2  4 23) results in 

Simplification of equation ( 2  4 -30) yields the algebraic part of the normal form representation 
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where 

Moreover, the output equation from (2.3.33) of the last section 
7 7 

can be rewritten as 

y = ( C ,  T ) ( T ' z ) + ( c ,  T ) ( T '  I) 

Substituting 5; = 0 from equation (2  4 13) into the above equation results in 

- - - - 
t. 

Further subs t~ tu t~ng i  = [ S :  01 i 5; 1 from ( 2  4 1 I )  lntu the above equation ( 2  4 35) 

results in the output equation of the normal form representation a the following 
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The above development generated a normal form for a system with both holonomic and 

nonholonomic constraints. This coordinate transformation proccdure can be performed on 

systems with only holonomic constraints to derive normal form representations for this kind 

of system. It  can also be used to derive normal forms for systems with only nonholonomic 

constraints. The results of the derivation of normal forms for the aforementioned three kinds 

of constrained linear mechanical systems can be summarized as follo\vs. 

Theorem 2.4.1 - The constrained mechanical systems of form ( 2  -3 32)-(2 3 33) can always 

be transformed into one of the following forms 

(a) in the case of only holonomic constraints 

(b)  in the case of only nonholononiic constraints 

( c )  in the case of both holonomic and nonholonornic constraints 
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1 o i f ,  ( 2  4.44) 

where 4, s are defined in equation (2  4.1 ) and other matrices in the above normal forms are I. 

defined as follows 

1 ) for case (a)  and ( b )  'W 

- - 
T '  f -  

f 
, C p T  = [(', ( ' : I .  C ,  T ( ' , I  

f :  J 

2 )  for case (c )  

3 )  for cases ( b )  and ( c )  

.A:  = 51 . ' ( D , ,  S l  -K! - h l . . S -  S !  ) 
1. _ 

.A. = 51 , ' ( D . .  S ,  - K , .  -M . S .  S .  ) 
, -  - . . - - -  

A I ( ) I . .  S .  - D . . )  - I 

4 )  for case f b )  

E = \.I. .A +XI.. S ,  S  *K. -D.. S ,  - -  - . . 
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E ;  = M , , . A ;  - M,, S ,  +D,, 

5) for case (c): 
- - 

E i  = h l . !  A ,  +hl.. - - S ,  S !  +K : , - D  ? , S !  

.) 
- 

2.5 Regularity of Constrained Linear Mechanical Systems 

As defined in definition 3 4 of section 2 1. regularity refers to the existence and uniqueness of 

a solution Obviously regularity is an important property of the s!.sterns being studied in this 

thesis Workiny with the following special form representatioll of linearized constrained 

mechnical systems 

b e  can come up ~ v i t h  a theorem as follons 

Theorem 2.5.1 Constrained linear mechanical systems as described by equations ( 2  5 1 )  and 

( 2  5 2)  are always regular. i e 

Proof A proof using the shuflle algorithm (Luenberger. 1978) is pro~ided in Appendix A of 

this thesis 
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2.6 Controllability of Constrained Linear Mechanical Sysfems 

As defined in section 2 1, the necessary and suficient condition for reachable controllability is 

one of the two conditions for complete controllability. Consequently, complete controllability 

is definitely a stronger condition-than reachable controllability. .A system that has reachable 

controllability does not necessarily have complete controllability. A system that have 

complete controllability must have reachable controllability. I t  can be shown that the stronger 

controllability property is not possessed by constrained linear mechanical systems. Being a 

special class of linear descriptor systems, constrained linear mechanical systems or linear 

mechanical descriptor systems can have reachable controllability a t  best 
-Z 

.a 

Theorem 2.6.1 Linear mechanical descriptor systems as described by equat~ons ( 2  5 I )  and 

(2  5 2) are always not completely controllable or do not have C-controllability 
< 

Proof. The proof is easily obtained by showing that the second rank condition in the 

definition of complete controllability is not satisfied, i.e.. [E B] is not of hll row rank 

First we need to rewrite (2  5 I )  to show what R and E are 

E =  0 \ I  0 1  and B =  1 1  
I 

0 0 0, 
I 

- * -01 

Now ~t 1s ob t~ous  that 
4 

I ,  0 o 0; 

rank [E B] = rank I 0 A1 0 1 i 2 number of rows in E or B 
I 

The second rank condition is not satisfied and this completes the'proof 
C1 
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2.7 Observability of and Observer Existence Conditions for 

Constrained Linear Mechanical Systems 

Any observer-based fault detection and identification schemes inevitably relies on system 

observability conditions of one kind o r  another I now present the following theorem 

regarding the infinite observability of linearized constrained meclianical systenls 

Theorem 2.7.1 Linear mechanical descriptor systems as described by equations (2.5.1 ) and 

(2  5 2) are always infinitely unobservable or do not possess impulse observability. 

Proof see Appendis B of this thesis 

Shin and Kabamba( 1988) noticed that when constrained forces are not directly or indirectly 

measurable, a constrained mechanical system is not infinitely obsentable. The mathematical 

proof in Appendix B confirms this physical evplanatinn 
9 

Infinite observabilitv is a desirable feature as far as unknoun-input decoupled observer design 

is concerned. Some general results of conventional obseners tor descriptor systems wit11 

unknown inputs are pro\.ided by Hou and Muller( 199Za) The existence conditions of the 

unknown-input obsen.er has the nature of the infinite ohsenability and therefore can not be 

met in constrained mechanical systems considered here The design of unknoim-input 

observer must be based on weaker or alternative obsenA~11ity conditions Designiny 

unknown-input obsenws is an essential part of any obsener-based FDI schemes An 

unknobn input obsener (LIO) design method is presented in the neut chapter 

Incidentally. the obsen-er esistence condition for constrained linear mechanical systems 

driven by totally knoun inputs is \,en: simple Hou and et al (HOLI and et a1 ,1993) pointed 

out that finite obsen.abilit~ of the svstern is a necessarl, and suiticient condition They also 

proved that finite obsen.ability.of the descriptor system is equi\.alent to the observability of 

the corresponding con~entional system in the minimal coordinates Since this thesis is most 
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concerned with unknown input observer based FDI, their condition is not really usefill. 

Necessary and sufficient conditions for the existence of unknowx-input observers remain to 

be found in a subsequent chapter. 

2.8 Summary 

In this chapter, we enriched and estended the discussion and anal! sis of constrained dynamic 
19 

systems and constrained mechanical systems by some previous researchers such as Hou, et al 

( 1  993). We recognized and classified constrained mechanical systems as a special kind of 

singular or descriptor svstems Starting with the standard nonlinear Lagrange equations 

model of constrained mechanical systems, we first obtained a linearized model of the system 

by using the standard Taylor series expansion technique We were able to rewrite the linear 

model in a generalized state-space format Then we performed a nonsingular transformation 

on the constraint equations and obtained a special descriptor form representation This 

transformation process generated a nonsingular (orthogonal) matrix which we subsequently 

used in performing a coordinate transformation and deriving normal forms for mechanical 

systems with holonomic and/or nonholonomic constraints U'e used a nurner-ical example in 

demonstrating how one can perform the important transformation The resultant dynamic 

subsystem in the normal form of a constrained mechanical system leads our subsequent 

studies in the following chapter to the domain of linear s1,stem theon. In  the last few sections 

of this chapter, we identified and discussed some rather special properties of constrained 

mechanical systems such as their lack of infinite obsen.ability and complete controllability 

We pointed out that iach of infinite obsenability restricted our choices of approaches to 

observer design and fault detection and identification By doing so \ \e  built a bri 

this chapter and the next one, which presents the design of an obbener that is capable of 

estimating the state.of a svstern driven by both knoun and unkno\m inputs 
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Chapter 3 

An Unknown Input Observer Based Fault Detection and 

e Identification Method 

3.1 Introduction 

As discussed in chapter one, the need for safe and reliable operation of complex engineering 

processes at reasonable cost has been promoting research and in\.estigation into the problem 

of fault detection, identification, and accommodation (FDIA) .Among the various FDI.4 

techniques, there is a class of model-based approaches that are commonly referred to as the 

analytical redundancv techniques Detailed survey of these methods could be found in Willsky 

( 1  976), Isermann ( 198.1). Merrill ( l985), and Frank ( 1990) Since the introduction of 

dedicated observer scheme (DOS) by Clark ( I !US), more sophist~cated approaches based on 

it utilizing some detection function or statistical tests have been proposed. 

One of the major difficulties in the application of rnodel-based techniques to practical FDIA 

cases is the problem of plant uncertainties or parameter variations In such situations there 

usually exists a need for a robust FDIA methodclogy A number- of different approaches to 

robust FDIA problems have been proposed One s u ~ h  approach it; a sensitivity discriminating 

obsemer scheme proposed by Frank and Keller (1980). Another approach dealing ~ i t h  

uncertainties is the threshold selector method proposed bv Ernarni-Naeini, et a1 (1988) 

% 9 

Recentlv, there ha\.e been some studies in the area of FDI.4 baseL! on the theory of unknown 

input obsen.ers (UIO) .A survey of the L'IO-based approaches can be found in Frank ( 1990) - 

Several somewhat different CIO design methods hive keen pi-oposed by Kudva (b980), 

Kurek ( 1983). U'ang et a1 ( 1975). k'ang and \Yilde ( I988). Guan and S ( 199 1 ). and Hou * 
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and Muller (1992). The UIO theory has been utilized for actuator fault detection and isolation 

by Viswanadham and Srichander (1 987). and Park and' Stein ( 1988) 

UIO design has been an active area of research in the past several years due to its widespread 

applications UIO's are primarily designed to accommodate unknown exogenous 

disturbances in the dynamics of the plant Conventional obsener-i that reconstructs the state 

vector under the assumption that all inputs are k n o ~ n  have been used in state feedback 

controk of various systems This traditional approach of contro! neglected the presence of 

certain uncertainties (such as inaccessible inputs and plant disrurbances) and often is not 

sufficiently usehl for fault detection and identification purpose Becayse most uncertainties 
i and plant faults can be modeled as unknouil inputs to the system. desiyn~ng unknonm input 

obseners (UIO) is of tremendous use for robust control, h u l t  detection, identification. and 

- accommodation (FDIA) 

Basically, there are two types of UIO design methods The first category of approaches 

includes a number of attempts that assumed some tr p r ~ o r ~  information about the 

unmeasurable inputs to the system. Specifically, Johnson (1'175) assumes a polynomial 

approximation to these inputs, and in Meditch &( Hostetter (1974). it is assumed that the 

unknown inputs can be modeled as the response of a known dynamic system represented by a 

constant coefficient differential equation. The other category of UIO studies assumes no 

knowledge of the inaccessible inputs Among the more recent Liorks are those of Yang & 

M'ilde ( 1988), Guan and Saif ( 199 1 ). and Hou gi Muller ( 1992 ) Y ang &r Wilde proposes a 

full-order 0bsen .e~  that is claimed to have somewhat better rate of convergence than a 

reduced-order obsen,er Although they claim that they use straightforward matrix 

calculations, their procedure involves singular value decomposition or Jordan form 

transformation Their method also requires solving a svsteni of linear equatipns that has more 
/ 

f 

, unknowns than equations I n  the work of Hou and Muller ( 1992). a reduced-order observer 

and a minimal-order obsen,er are derived via a technique of coordinate transformation The 

derivation is rather mathematically invol~,ed and hard to understand. In this chapter. h e  

propose a rnathematicaliv simple and computationally efficient unknown input observer 
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(UIO) design method. This m ~ t h o d  is inspired by and owes its merits to the early work of 

Guan and Saif (1991). In the following few sections of this chapter, the UIO design is 

discussed and some modification of the approach of Guan and Saif (1991) is made to make 
Y 

the UIO design more systematic. The first step of the procedure is formulating the problem as 

a linear time-invariant system with unknown inputs. The second step is specifiing the 

assumptions used in UIO design The third step involves performing a nonsingular 

transformation on the partitioned system and actually deriving an obsemer for one of the 

three reduced order subsystems It  turns out that states of the other two subsystems have 

direct algebraic relationships with the output of the system u hicli is assumed to be available 

(measurable) for observer design purpose. Thus the combined state of the whole system can 

be estimated using a single conventional observer Furthermsre. a necessary and sufficient 

condition for the existence of an UIO is presented and proved in this chapter. This condition 

can be expressed in terms of the matrices in the linear time-imariant representation of the 

system for the convenience of checking if the condition is met Finally. methods for detecting 

and identifying actuator faults and sensor faults are presented in [he last part of this chapter 

The methods are based on modeling actuator faults as unkncwn inputs to the dynjmic 

equations of the system and modeling sensdr faults as unknol~n inputs to an auymented 

system of which sensor faults are part of the state Both actuator fault detection method and 

sensor fault detection method rely on state estimation which is accomplished \ria the unkno~m 

input obsenfer 
0 

. 3.2 System Representation and its Observable Canonical Form 

System description and modeling has been discussed in the pi-e~ious chapter and will be 

discussed hrther in the last part of this chapter I n  the next few sections we are only 

concerned with deriving an UIO. For this purpose we assume that all the necessary 
9 

linearization and transformations ha\,e been performed and 0111- system representation has 

resulted in the simplest form of all dynamic sJrsteni representations. namely linear time- 

/'-- in~~ariant systems These systems can be assumed to be driven by partially unknown inputs 
iC 
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which may be used to represent plant faults and parameter uncertainties. The state-space 

formulation can be given as follows: 

Without loss of generality, the concerned system can be written in the following observable 

canonical form- 

C 

where 

YE:)?" ! .  n. number of state variable. 

u c ~ l . j  I ,  q number of kno~vn inputs 

yc_9ZJ' ' ,  p number of outputs 

1 is an identity matrix of order p p 

Remark If C is of hll row rank, there always exists a similarity transformation that can bring 

the representation in ( 3  2 1 )  Rr (3 2.2) into its obsemable canonical form in (3 2 3) Rr (3 2 4). 

Details of this procedure and the proof of this claim can be found in the book of Chen( 1984) 

3.3 Assumptions for the Design of LiIO's 

Three assumptions are made in the rest of this work These assumptions have been used 

implicitly or explicitly in all the works on UIO theory and design As can be explained later, 

they are not restrictive assumptions 
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Assun~ption 1 

The measurement matrix 7 in (3.2.2) is assumed to be of full ro\\. rank, i.e 

rank c= 
J 

If the measurement matrix (' is not of full rank. then there e\ists at least one redundant 

output This redundancy can be eliminated by redefiningd the output vector y and the 

meaurement matrix 7 such that the new outputs are linearly independent Therefore, this is 

not a restrictive assumption 

Assumption 2 

The D matrix in (3 2 3 )  is assumed to be of hll column rank. i e 

rank D = m (3  3 2 )  

If D is not of full rank. it can always be decomposed as a product of two full rank matrices 

via the following proposition 

Proposition 3.3.1 Any p . q matrix A. whose rank is r can be decomposed as follows 

B is a p * r full rank matrix 

C is an r * q full rank matrix 

Proof See the proof of proposition 2 in Saif and Guan ( 1993) 

Thus. D can be decomposed as 
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where 
- 
/_, has full column rank 
- 
,Y has full row rank 

9 
and a full rank new D and a i e w  d for (3.2.3) can be defined as 

In the early work of Kudva et al. (1980), a necessary condition for the existence of any 
e 

unknown input observers for the system described by (3.2.3) and (3.2 3 )  is proposed and is 

subsequently used explicitly or implicitly by many others It can be stated as follows: 

Assumption 3 

A necessary condition for the existence of a stable unknown input observer for the linear 

dynamic system described by (3.2.3) and (3 2.4) is that the number of linearly independent 
i 

outputs is greater than or equal to the number of u n k n o ~ n  inputs. i e . 

rank(CD) = rank(D) = m , ~ i t h  ni 5 1) 

Proof See theorern 1 in Saif and Guan( 1993) 

3.4 Unknown Input Observer(tJ10) Design 

First, \be apply the partition technique developed by ~ a i f  and Guan (1993) to divide the 

dynamic system in (3  2 -3)-(3 2 4) into three subsystems 
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As shown in the later part of this section, the UIO design procedure involves using a 

nonsingular transformation matrix which contains the inverse of D ,  . In general, a simple 

straightforward partition of the observable canonical form represented by (3.2.3) and (3.2.4)  

does not necessarily result in an invertible D ,  . A procedure is needed to deal with the lack of 

invertibility of D ;  I t  turns out that this can easily be accomplished by reordering state 

variables in the observable canonical form representation 

Since r ": -1 is of full column rank by assumption 3 in the last section, it  must have a 1 "; 1 " "' 

m m submatrix whose determinant is nonzero This submatrix i >  therefore invertible and can 

p 1 
be defined as the neu D The new D: just contains dif'erent ro\is o f ,  - than the old I., J 

[ I ) .  : 
D ;  does I t  can be obtained by switching the rows of - . Switching the rows of 

1 1); ; ''I 

L 

I S  equivalent to reorderi last p state cariables in ( 3  4 1 )  The first (n-p) state 
L 

\.ariables are contained in D , and therefore does not need reordering Thus a nonsingular or 

invertible D ;  can always be obtained by reordering state variables What must be pointed 

out is that reordering - state variables also affects the output equation and thus the 

measurement matrix C .As a matter of fact. reorderins state ~ariables result in column 

exchanges in C Since only the last p state variables are reordered. colunin switchings in C ,, ,, 
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are limited to the last p columns. Because the last p columns of Ci, ,, in the canonical forn) 

(3.2.4) is an identity submatrix I,, which is absolutely nonsingular, the new submatrix 

resulting from switching columns in I ,, has to remain nonsingular. This invertible submatrix 

can be denoted as C Then D ,  can be assumed nonsingular while C is of the form 

It is worth noting that reordering state variables is equivalent to performing a similarity \ 
transformation on the observable form representation The obsmable form representation 

itself can also be obtained by performing a similaritv transforn~ation on the original state- 

space model. f--=" 

Therefore, without loss of generality, the system may be assumed to b~ of the following form: - 

where 

.A I? ' I ,  B E  91" ". C E 91'' ", D E 91 I' "I 

\=91"  . n number of state variable\ 

u ~ 9 1 "  , q number of known input3 

d E '3"' I ,  m number of unknown inputs 

y d Z j J  ' ,  p number ofoutputs 

C is an invertible matrix of order p p 

The output equation ( 3  4 2 )  can be partitioned as. 
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The inverse of C , can be defined as. 
I 

Then equation (3 4 3)  can be rewritten as. 

b 

The following matrix operator can be detined 

[ J  0 - J ) , / ) ,  ' 1  
T = '  0 J  - l ) J ) ,  1 ( 3  4 10) 

0 0 J  
L - 

Post-multiply~ng both s~des  of equatlon ( 3  4 1 ) \ \ ~ t h  the a b o ~ e  qc ra to r  results In 

Substituting (3 3 8)  and ( 3  4 9)  Into the tirst t n o  "ro\isH of (-3 4 1 I )  yields 
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b( and 

where 

Partitioning XI as 

where 

k 
and A,) 's are elements of partioned A matrix of the following for-111 

A - A .  - I s p  r n '  . "  p ,  A,,  A, .  1 
- - ' p  mi , p  ml - " p  m l  m 1 

Now using the partioned matrices in (3 4 1 2 )  and (3  4 13) mil; result in 

and 

where 

and 
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According to observer theory(Chen, l984), the state of the djrnarnic system represented by 

(3.4 16) and (3.4.17) can be estimated by a tuenberger observer. The dynamics of this 

reduced-order observer is given by: 

where M is the observer's gain. Substituting for r and z into (3 .4  3 0 )  

Equation (3.4.21) contains the derivative of the output ~c-hich is not a\.ailable for direct 
d 

measurement. This problem can be dealt with by defining a new \ ariable w as follows- 

Reibriting (3 4 2 I ) in terms of the new variable u \ \ i l l  result in 

it = F\\ - E\. - Lu 

- 
F = ( . ?  - \ I d -  ) 

where 
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L = ( B ' - ~ i i , )  (3  4 26) 

The following theorem will conclude and summarize UIO design 

Theorem 3.4.1 If the pair { ill } is observable, the state of the dynamic system 

described by (3.4.1) and (3.4.2) can be estimated b) using the I l l 0  proposed in ( 1 4  23)- 

(3.326) The estimate of the state is given by: 

where 

In addition, all the eigen\falues of F can be placed at any desired location The proof of the 

I above theorem has been implicitly given in the foregoing discussion 

3.5 Necessary and Sufficient Conditions for the ~xi'stence of LiIO's 

Gi\,en the linear time-in\.ariant dhmaniic sl.stern with partially imknoi\n inputs as described in 

the previous sections 

.t= A s -  B u + D d  , ( 3  5 1 )  
L 

y = C.i (3 5 2) 

\c9Z1' , n number of state \ariable\ 

U: :)z" . q number of known input> 

\ -z91'  . p number of outputs 
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there exists a necessary and sufficient condition for the existence of unknown input observers. 

Since different researchers in this area use different methods to design different UIO's, there 

exist quite a few seemingly different necessary and sufficient conditions. After close 

examination of these competing conditions it is found that these conditions are virtually 

equivalent to each other. The generally accepted format of the condition can be stated in the 

following theorem: 

Theorem 3.5.1 --- A Necessary and Sufficient Condition for the Existence of UIO's 

A necessary and sufficient condition for the existence of an UIO for the system described by 
/ C 

(3.5.1) and (3.5.2) is that 't 

It has to be pointed out that the concerned system such as ( 3  5 I )-(3 5 2) has been assumed 

to sdlisfy the minimum necessary conditions expressed in Assumption I ,  Assumption 2, and 

Assumption 3 of section 3 3 

Proof: The above theorem can be proved indirectly by showing its equivalence to Theorems 

3.4.1 which states that the necessary and sufficient condition as the obsemability of the pair 
- - 

{ , q i I ,  A., - ,  }. i e .  

Define tbe following nonsinguiar matrix. 
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and 

Note that C can be assumed to be of the form [O /,,]without loss of generality. The 

matrices A, C and D can be partitioned as the following as they Mere partioned in section 3 4 .  

I t  is a known fact and a theorem in matrix theory that pre-niultiplying a matrix with a 

nonsingular matrix presewes its rank Now we can perform the following multiplication 
i 
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Now let us evaluate the upper two submatrices by definins 

Then 

Recall that in equation (3  4.13) of section 3 4 we have defined 

Thus equation ( 3  5 17) can simplified as 

Now 
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Then we have 
-- 

[ ' I .  ,, - 4" 01 
- 

Y = W + X = I  - ,A2 ]  

Furthermore 
i 

Therefore equation (-3 5 12) can be renritten as 

- 1  .I 11- 1 -  z; 
rank = rank 

( ' 0 ' 0 ' 
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Thus 

. I ~ - , ~  0 0  0 -  

This shows the equivalency between the two conditions and concludes the proof. This also 

concludes our discussion of unknown input observers. 

= rank 

3.6 Problem Formulation for Fault Detection and Identification 

4, 0 0 0  

0  f nj o 0  

0  0 f P " ,  0  

In the previous sections, we outlined the design of an unknown input observer that can be 

used to estimate the state of a dyramic system driven by partinllv unknown inputs In  the 

following sections we will essentially re-present Saif and Guan's (1993) approach to fault 

detection and identification using our modified UIO as the state estimator. First we need to 

establish a link between unknown input obseners (UIO) and fault detection and identification. 

(FDI) The design of the UIO in the previous sections was based on the assumption that a 

system model is known with precision In reality, however, parameter iralues may be known 

only approximately or time-varying 'There may be actuator failures and/or sensor failures 

which affect the behavior of the system Let us now consider the effects of actuator faults, 

semor~faults, and parameter uncertainties on system dynamics and outputs one at a time. 

The only information commonly available about the faults is the location of their possible 

appearance No assumption can be made about their mode, i e. ,  their time evolution and size 

Suppose the nominal values of the parameters are knoum and our system can be linearized 

The representation of the system can be written as 

L O 0 0  f m  d 
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3 

where 

x ,  - , 4 , x ,  + B , u , ,  

- 
Y,, - C" x<, 

subscript means nominal system model parameters 

A,] F 3" 'I , B,, E!JZfl '! 

C (, G '3i ' '  " is the measurement matrix 

s E ~ j y '  is the state vector 
1 

UE!JZ'{ is the known or  control input vector 
& 

y E s i '  ! * is the output vector 

Actuator faults act directly'on system dynamics. They affect the dynamic equations o f  the 

system model and these effects can be modeled using an actuator fault distribution matrix and 

an actuator fault vector in the following format - 

where 

D ,  E % "  "' is actuator fault distribution matrix 

d ( ,  ~ 9 1 " '  is actuator fault vector 

Sensor faults can be modeled as  additive bias components in the output equation through a 

sensor fault distribution matrix 

y , ,  = C , ) X , , + E , ~ ~  (3 6.4) 

where 

E , )  E 9Zr" is sensor fault distribution niatriu 

e E ~ Z '  ' is sensor fault vector 

Parameter uncertainties mav be initially modeled as de\,iations from their nominal values 
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A = A o  + AA (3 .6 .5)  

B = B ,  + M  (3 .6 .6)  

- 
The uncertainty matrices M and AB can be rewritten as 

by giving the following definitions: 

Definition 3.6.1 The n by k uncertainty indicator matrix I,, of any n by ni matris R is 

defined as I, ( I ; ,  . . , rk ) , where k is the number of rou s of R that contain unknown elements 

The /th column of this matrix has zero entries except for the n ;  tli entry which has a value of 

one 

As an example, if A is a 4 by 4 matrix and there are uncertain elements in the first and third 

row, then 

[ I  01 

k ' 3  o 01 
-. (I!  = I .  ( 1 .  = - 3 .  and 1 ~ ( ~ 1 , . ~ 1 . ) = 1 ~ ( 1 . ~ ~ ~  = I  

10 1 1  
l o  o i  
L 2 

Definition 3.6.2 The k by rn uncertainty matrix A/<, of any n h y  m matrix R is defined as 

. 
I ,  = : ) a here M, is the r, t h  ron .,I. .V( 

For example. in the abo\.e e~ample  of a 3 bv 3 matrix .A w i t h  uncertain elements in the first 

and third rows 
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Now the dynamic equations (3.6.1) can be rewritten to incorporate parameter uncertainties. 

This can be hrther rewritten as 

By defining 

and 

Parameter uncertainties can also be modeled as unknown inputs to a known system: 

.i- = A , ,  s + B, u , ,  + V v ( 3  6 1 3 )  

So far in this section b e  just considered the individual effects of actuator faults, sensor faults, 

and parameter uncertainties one at a time If any two or all of the three factors are present, 

then we can jv-st stick the relevant terms into the dynamic equations and/or output equations. 

For esample, in the simulation chapter we choose not to concern our selves with parameter 

variation of an UMS-2 robot and detect only two actuator faults and one sensor fault rather 

than component faults In this case the model of the systeni is of the following form: 

. i - ,  = . A ; i , ,  + B , , u , ,  + D , ,  d 

y = C ,  s,, +- E,,  e 
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3.7 Actuator Fault Detection and Identification 1 

As discussed in the previous section, actuator faults can be modeled as unknown inputs to a 

known system with known or nominal parameter values- 

where 

subscript denotes original or open-loop systems 

matrices and vectors are of appropriate orders as defined in section 3 6 

Actuator fault vector d,, can be estimated by using the following theorern- 

Theorem 3.7.1 The unknown input in system ( 3  7 i)-(3 7 3) can be estimated 'by an 

estimation technique of the following form if D o  is of full rank and T is a small enough 

sampling interval 

where 
4 

S )  = 4 ,  ( ' I )  (s(k-~I )- t1 ' 
A 7 s(k), 

and 

d , (k)= d, ,  (kT). S(k)= S(kT), s(k)= s(kT),  u , >  (k)= uo  (kT) 

Proof Applying the formula(Rugh, 1993) of the complete solution to a forced linear and 

continuous-time system in discrete form, the value of the state vector x(t) at time ( k +  1 )T is 

-+r 



where T is the sampling period in the time domain 

Defining S(k) as in ( 3  7 4) results in 

t 
then 

It  must be pointed out that the estimated state i ( k T )  rather than the real state x(kT) is to be 

used in evaluating S(k) in computer simulations This is because the true state x(kT) is 

usually not Bvailable for measurement I t  can only be a ~ ~ m ~ t o t i c a l l ~  estimated by an estimator 

- such as the UIO designed in the early sections of this chapter 

. 
Plotting each component of d , ,  ( k )  against time index k would show if the corresponding 

actuator has failed This technique identifies not onlv the magnitude but also the shape of 

actuator faults 

3.8 Sensor Fault  Detection and Identification 

Since no knowledge can be assumed about the time histories c.f sensor fault signals, it is 

reasonable to model them by a dynamic system driven by an unknoivn input signal To do this 

we first present the folloying proposition 

I Proposition 3.8.1 For any piecewise continuous vector function f~ 9Z1 . and a stable r r 

matrix .4 , . there will alnavs exist an input vector 5 such that 
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f = A , . f + &  (3.8.1) 
'P 

Proof the proof is immediate simply by taking 6 = ,f - A,, f 

Now we can assume that sensor faults have the f'ollowing dynamics 

where 

A* is a stable r s  rmatrix 

u ,, is a r x 1 ,unknown input vector 

e is a r 1 sensor fault vector 

_Augmenting (3 6.14)-(3 6 15) with (3 8 2 )  results in the follo\\iny (n-kr)th o der dynariiic \ 
system' / 

Define 
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then (3.8.3)-(3.8.4) is in the standard form of (3.2.1 )-(3 2.2) of section 3.2: 

Therefore the state of the system in ( 3 . 8  5)-(3*8 6) can be estimated by using the UIO 

designed in section 3 4 provided that all the necessary and sufficient conditions related to the 

existence of an U10 are satisfied. 

I t  is now clear that sensor faults are part of the state of the augmented system ~ h e r e f o d  

i;,. 1 - 
monitoring the state estimates ( ) )vould provide an immediate means of the detection of I.] 
sensor failures. The failure detection logic is very simple. An!. nonzero component of 

would indicate a sensor failure. I t  is also estremely easy to identit) or isolate sensor failure(s) 

by checking which component of is nonzero. For example, if only the second component 

of 2 is nonzero, then only sensor 2 has failed, if the first two components of 2 are nonzero, 

then both sensor 1 and sensor 2 have failed 

9 

Plotting each component of C would indicate if the corresponding sensor has failed This 

technique could identie not only the magnitude but also the shape of sensor faults. 

3.9 Summary 

In the first five sections of this chapter we presented a modified unknown input observer 

(UIO) capable of estimating the state of a linear dynamic system driven by both known and 

unknown inputs By performing-a couple of similarity transformations and a nonsingular 
- 
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a h  

\ transformation, we wereable to partition the system inti, three subsystems One of these 

subsystems was a dynarnid system driven by known inputs bnly The other two subsystems 
?- 

are nothing but explicit algebraic relationships between the states of the subsystems and the 

measurable outputs. This made it possible to use a conventional Luenberger obsewer with 

slight modifications to estimate the state of the transformed system. The estimate of the state 

of the original system can be obtained by performing inverse transformations. It  was possible 

to state a similar necessary and sufficient condition to that of a conventional observer for the 

existence of a stable estimator and arbitrary pole placement capability It  wasalso shown and 

proven that this necessary and sufficient condition can be expressed in terms of original 

system matrices. This alternative expression of the necessary and wfficient condition provides 

a much easier way for checking whether the condition is satisfied before any transformations 
I 

are undertaken. In view of a couple of competing UIO design methods, it is felt that the 
; * . 

design and computatienal complexities involved in designing UlO's is greatly reduced in our . 

proposed approach Our simulation program .in .Appendis C also shows that our U 1 0  

algorithm is quite easy to code 

In the last few sections of this chapter we used our modified UIO in fault detection and 

identification of uncertain dynamic systems. We were able to model parameter uncertainties 

as unknown inputs to a known system with nominal or assumed parameter values We also 

modeled actuator faults as unknown inputs to the dynamic equations of a known system 

because thev act directlh onto system dynamics We dealt with sensor faults by modeling 

them as additive biases to the output equations We used a seneralized inverse solution 

technique in estimating the actuator fault vector for the purpose of actuator fault detection 

and identification This technique can also be used to estimate one or more parameter 

variations in some systems By modeling sensor faults as the state of a dynamic system driven 

by unknown input, we were able to obtain an augmented system whose state vector contains 

not only the original state var;,ables but also sensor fault signals We could thus obtain the 

estimates of sensor faults by extracting a sub-vector from the estimate of the state vector of 

the augmented system The estimates of sensor faults provides an immediate means of sensor 

fault detection and identification (FDI) In both actuator FDI and sensor FDI, h e  were able' 
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to obtain not only the shape but also the magnitude of the faults This enables us to 

distinguish between a momentary fault that clears its self and a persistent one. It is recognized 

that this UIO based FDI approach allows us to detect aid identify multiple andlor even 

simultaneous actuator and sensor faults as well as parameter variations so long as the total 

number of faults and uncertainties to be detected and identified is less than the number of 

available outputs. 
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Chapter J FDI Study o f a  Constrained Mechanical System - 

Approach and Simulation 

4.1 Introduction 
f i  

I n  chapter 2. constrained mechanical systems were imtially mathematically described bv 

nonlinear equations with Lagranye multipliers. Linearization was performed using standard 

Taylor series expansion The peculiar structure and important properties of linearized 

constrained niectianical systems were analyzed and normal (d!.narnic) fornis of the system 

sepresentations were derived -The resultant purely' dynamic subsvstem of the linear 

mechanical descriptor system representation is in the form of linear time-invariant dynamic 

equations This allows us to shift our analysis from the domain of linear singular system 

theon. to the domain of' linear system theory ' I n  chapter- 3, an obsen.er design method \cab 

proposed for linear time-invariant dynamic systems driven by both known and unkno\~n 

inputs and a FDI approach based on UIO theory \bas presented We were able to niodel 

actuator- faults as unkno\vn inputs and sensor- faults as additive biases to the outputs In this 

chapter. Lie combine the results of chapters 2 and 3 and use them in fault detection and 

control ot 'a  1'JlS-2 robot manipulator system The fbllo\ving is a drawing of this robot 

I l l s - 2  robot 

1'1ii\ rohot has three degree5 of freedom during unconstrained motion Hov,e\-er. Lve stud\. ~t 

in  the c o n t t ~ t  of motion n i t h  a holononiic constraint A sketch of the robot manipulator 
. . 

geometric &orlispace 1s g\ .en in the follo\\iny 
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UMS-2 Robot Manipulator Task Geometry 

This robot iras found in the paper of Mills 8: Goldenberg ( 1  9891 ?his paper used this robot 

as a numerical example in force and position control of n~anipulators during constrained 

motion tasks I t  gave little information on the nature of the specific tasks performed by this 

robot n~anipulator For the purpose of simulation it is sufficient to know thai the UMS-2 

robot is assumed to be in contact with a rigid frictionless surface Robots which are similar tb  

but not identical with a UbIS-2 robot can be found in the book ot'\'ukobratovic R: Potkoniak 

( 1982) Some of these robot manipulators can perform tasks such as spraying pdwder along a 

\ 
prescribed traiectory 

* 

4.2 .Approach and Simulation 

Ii'e deplg.  a s!.sternatic approach to fault detection and identification of the'UMS-2 robot 

manipulatqr system This approach may be outlined as,follows 

1 ) ii'nte original nonlinear mathematical description ot'the system v i t h  actuator faults 

appended to dynamic equations and sensor faults appended to output equations 

2 )  Linearize the nonlinear model and re~vrite it  in a generalized state space format 

3 )  Perform a nonsinyular coordinate transformation and derive thc normal form 

4 I Perforni 3imilarity transformations to briny the d!mniic subs>.srem into its-canonical form 
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4 )  Design an unknol\n input observer and a state-feedback controller for the d r a m i c  

subsvstenl 

5 )  Obtain necessary results and convert+the results back into rile original coordinates bv 

rebersiny transformations - 

I n  the sirnulat~ons ue  will detect and identi6 two actuator fault\ and one sensor fault The 

d\.narilic eqi~ations of motion of this manipulator in unconstrained form are given bv 
- 

/l.('/.(i) - t ? l ; ( q :  + / : k f : -  

1,' . I = 1,  3. 3 are kncmn~inputs that represent control signals 

1. . I 1 .  2 ,  3 are unkno~cn inputs that represent actuator taults or failures 

The o i~tp i~t  eqirations chosen for the simulations are as follcn~s 

here 
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E = ( O 1 is sensor fault distribution vector 
101 

e is an unknown signal representing a sensor fault or failure 

I . ,  is output vector with appended sensor fault 

The position \,ector p is given by 

The constraint function representing the robot end-efTector being in contact with a rigid flat 

surface is the fo l lo~ing 

Q ) ( / 7 ) = Y A \ I ' i z  - c = o  

This holonomic constraint equation can be rewritten as 

. 
1i.e linearize this constrained mechanical svstem about a point at ~\.hich the robot manipulator 

is stationan. but being in contact with a flat surface The nominal dynamic parameters and the 

nominal \dues  of the generalized srate Lfariables are gikren in the fcllowjng table. 
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NOMINAL DYNAMIC AND KINEMATIC PARAMETERS 

Nominal 

State 

Nominal Dlmamic 

Parameters 

-- -- 

'(1, , = 0 4363 radian I; = 0 2 m  

B 

The a b o ~ e  dtnarnic svstem with constraint but without sensor fault can be described bv the 

fi)llo\i inc equation: 

,' ' 
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The Jac'obian in this single holonomic constraint system may be defined as 

No\\. applying the linearization approach outlined in Section 2.2  of Chapter 2 results in: 



t 
... 
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L I  o OJ * 
The Jacobian J o f  the system is o f  the form: J = L = [0?4l8 1 1.32891 

The linearized descriptor form {epresentation o f  the system is 

); = C',, z + ( ', i (4 2 7 )  
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where 
, * 

0 
t - - q - is the generalized coordinates in linearized form 

= j - j is the derivative of generalized coordinates in linearized form 

= A - A ,  is the constrained force in linearized form 
f 

f = 7 ' -  7. ,, is the known input signal in linearized 

d = 1 - , is h e  actuator fault,or failure signal in linearized form 

, ,  is the output vector in linearized form \ '  = r .  - 1 -  

_ - I _  . - - - : I  is the partition of the displacement ;.ector 

i f !  -! 
f - i f -  is the partition of the known input \-ector 

, .  - i 
t 

' y: j 
Td, 1 
I t l  - L / .  is the partition of the unknown input vector 
' - !  
p i ;  1 

\o\t \\c can apply the nonsingular transformation technique presented in section 2 3 of 

chapter 2 to deri\,e the normal form of the linearized descriptor form representation 
L 

I t  can he \,erified that the following n~nsin~ular'transformation matrix 

a; 0 43356 01 

satisfies L T = [ o  0 I ]  
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where 

7'' 

Pre-multiplying both sides of ( 4 2  6) by 0 and performing lengthy simplification 
.s L o  0 I 

Y 

will yield the following normal form representation 

I 

M here 
I 

I _ 
1 x 1  I hl, = M I  - hi' 7 - 
I,, . 



d 
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The algebraic part of the system is described by the fdlowiny 

E~dua t ion  ot'equa!ions (4 2 12)-(4 2 13) results in the following numerical form 
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Evaluation of equations (4.2 12)-(4 2.13) results in the following numerical form: 

The a h \ e  repr-esentatinn can be re~vritten in the follo\ving unaugmented open-loop form 
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The open-loop system is not stable because A,, has eigenvalues : 0 5235 and i 0.66751 

Hence state feedback is used to stabilize the open-loop system The closed-loop system takes 

the form 

14 here 
Z 

subscript denotes closed-loop and .tC is an estimate of x 

BJ. placins the poles of the closed-loop matrix 

at arbitraril!. chosen locations -5 i 4 i and - 6 2  2 i ,  the state feedback gain matrix K and the 

niatri\ .+\ arc coniputed by h1.ATL.4B as 
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4Wf 
As discussed in chapter 5,  y s o r  fault estimation is accommodated by adding a' term Ee in 

the output equations of all previous representations, i e , 

The augmented open-loop system is of the following form 

where 

A' is a stability matris(a negative constant in one dimensional case) 

r r  is a sensor fault input vecto:(a scalar fimction in the above case) 

Define 

I - l l L  

Then last representation ( 3  2 31)-(3 2 42)  can be written as 
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Once again state feedback is used to stabilize the above sistem The augmented closed-loop 

dynamic system representation is 

where 

Let us now determine K J L  and A,,c by performing the following analysis 

Assuming KCIL  is of the form [ K K,,, ] where K c  is the state feedback gain matrix used in 

the unaugmented case and K ,,, is an unknown submatrix to be determined 

.4 is the unaugmented closed-loop matrix defined previouslv 
-- 

Xote that 

poles of .AJL are poles of A plus pole(s) of A t  
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Therefore no matter what value Kc,, takes the eigenvalues of A.,' remain the same In this a 

simulation we use the following arbitrary values 

then the resultant A ,,L computed by MATLAB using the aforementioned expression is 

with poles or eigenvalues at 

The estimation of the state vector of a system that has actuator faults and/or sensor faults 

relies on the e\faluation of an unknoun Input obsener(UI0) outl~ned in chapter 3 In  the 

hl.ATLAB simulat~on program. the following uere done or obta~ned 

1 .  Necessary and sufficient conditions for the existence of an UIO are verified numerically 

2 ,  T ~ v o  similarity transformations are performed in bring the augmented closed-loop linear 
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dynamic system to its special canonical form and partitioning it into three subsystems 

3,  The output vector I-: of the unaugmented tlosed-loop system is obtained by doing a 

linear dynamic system simulation using the lsrm command in M,4TLAB 

4, The output vector 11' of the augmented closed-loop system is calculated using equation . 

Y L ~ L  = I: + E e  

where 

0 ( 
I is sensor fault distribution matrix (L-ector) 

o I 
e = r r c  = 0 5*u(t-3) is the assumed form of sensor 1 failure 

I 

5, The observer equation is \i = -6 w + [0 - 1 0053 00330 0 00501 I:,' + [0 0] u ,  

6, The state vector of the augmented closed-loop system is estimated using the equation. 

7. The estimate of the state vector of the unaugmented closed-loop system .fL is extracted 

1 .iC 1 from idL using equation .tilt = 1 ; ;  

- I X '  j 8. The estimate of sensor fault t; is also extracted from i,,< usiny equation .?',' - 

1 4  

Once the estimate of the state vector of the unaugmented closed-loop system ic is available, 

r'7 
transformed actuator fault Lector d = -' can be estimated uslng the least square solution 

Ld: j 
1 

technique presented In chapter 3 ,  I e . 
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S(k) = A; (c"~.' - I )  ' (.ti ( k t ] ) -  ei'.' ( k ) )  

and x 

4 is the estimate of transformed actuator fault 'TI 
'i 

& is the estimate oftransformed actuator fault ~7: 
b L 

.; is the estimate of the state \,ector of the unaugmented closed- 

1 > loop system - 

Th'en estimates of the original actuator faults can be obtained by I-e~eersing the transformation 

defined by equation (4  2 24), i e , 

Late that the algebraic equation (4  2 26) can nor be uTkd to estimate tiansformed actuator . - 
v 

fault 2: because the constrained force ?. i n  this equation is also unknown This means that 
I 

d, in equation (4 1 5 I )  can not be determined or evaluated The \.ariables that we do have 

estimates for are just d and 8 To obtain the estimates of d , .  4 ,  and d3  from the 

estimates of d and 6 is equivalent to solving a system of two linear equations with three 

unknouns.as specified by (4  2 5 I )  A solution can only be obtained by assuming one of the 
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estimates of d , ,  J,, and d ,  is zero'or known This essentiall~ requires that one of the 

actuators is faultless. In this particular system it does not matter which actuator is assumed to 

be healthy. As long as one of the three actuators can be assumed faulaess, the other two 

actuator faults can be uniquely detected and identified by solving a system of two linear. 

equations with two unknowns. For example, suppose the 3-rd actuator is faultless, i.e., d ,  = 

0 = j,, then 2, and 2, can be determined by solving two equations & can be obtained via 

the transformation and used in (4 2.26) to generate an estimate of the constraint force R 

I n  this thesis we performed two siwlations to estimate all three actuator faults. The first 

simulation estimates actuator 1 and actuator 2 faults based on the assumption that actuator 3 
t 

is higKly reliable and faultless The second simulation estimates actuator 1 and actuator 3 

faults based on the assumption thai actuator 2 is highly reliable and faultless 

Although the unknown inputs representing two actuator failures in the simulations can be of 
t 

any form, we have to speci@ a specific hnction for each one of them for the purpose of 

estimation In this simulation we just happen to use step hnction as a form of possi5le 
I 

failures The soft actuator failures are assumed to be of the follouing form- 
211 
e" 

(a) For simulation number 1 

dl = 0 5*u(t-3) 

(b) For simulation number 2 

t i i  = 0 * u ( t - 3 )  

J. = 0 O*u(t-3) 

J;  = 0 4*u(t-3) 

I 

The known control inputsare assumed.to be of the following formefor both simulat/ons: 
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fi = 14; = 9* u(t) 

Given the above control inputs f! , f,, & f 3  and actuator fault inputs d , ,  d , ,  & J , ,  we can 

use equations (4.2.23)-(4.2.24) and equations (4 2 32)-(4.2.33) to obtain the known inputs 

and unknown inputs used for simulating the normal form (4.2 37) 

(a) for simulation number 1 

where 

(b) for simulation numbers # 

Then the-briginal actuator fault estimates are obtained by performing reverse transformation 

on the estimates generated by the simulations The reverse transformation equation (4 2 5 1 b) 

reduces to the follow in^ forms for the following cases 
- 

(a) for simulation number 1 I 
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(b) for simulation number 2 

where 

w 1 ti 1 was obtained in the simulations using equation (4 2 50) 

Once the estimates of the original actuator faults are obtained, the estimates and their 

corresponding fault signals, are plotted for ;asy fault detection and identification In  

simulation number I ,  2,. (the estimate of di ) and J, itself are plotted against time to show the 

transient and asymptotic behavior of actuator 1 fault. ~i (the estimate of rl, ) and 'd, itself 

are plotted against time to . show - the transient and asymptotic behavior of actuator 2 fault 

Each of the two plots shows that the estimate has a big spike initially. another spike at the i- 

rd second, and then quickly settles down to the asymptotic value The first spike is due to the 

transient behavior The second spike indicates that the actuator had a fault at time t = 3 

seconds. The asymptotic behavior confirms the stability of the observer and the correctness 

of the theoretical work Similarly in simulation number 2, actuator 1 and actuator 3 faults are 

detected andSidentified using two simila~ plots The combination of simulation number 1 and. 

simulation number 2 detects and identifies all three(3) actuator faults . 

I t  can be seen from equation (4.2 57) that sensor fault is part of the state of the augmented 

system. Sensor fault estimate can be obtained from the estimate of the state vector of the 

augmented system Sensor fault estimate provides an immediate means for sensor fault 

detection and identification 

I 

The plot of sensor fault estimate 2 and the original assumed sensor fault function 

sensor fault at time t = 3 seconds  h he objective of sensor fault detection is achieved. 

shows a 
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In this particular simulation case, we performed two simulations each of which is based on 

the assumption that one of the three actuators is highly reliable(faultless). The observer 

equations for these two simulations are essentially the same. Consequently, we could say that 

we used only one observer (but two simulations). In fact, it can be seen from Appendix C 
d that the first part of the source codes of the two simulations areidentical. The difference only 

t' 
exists in the last part of the program This is the reason that tw& simulations were written in 

one source code program. 

The plots of actuator and sensor faults and their correspondins estimates against time are 

shown in the figures of this thesis 

4.3 Summary 
, . 

In conclusion, this chapter has illustrated a systematic or at least a procedural approach to 

fault detection and identification o f a  major subclass of generalized state-space systems By 

p&forrning several nonsingular and similarity transformations and using an unknown input 

obsewer we were able to convert a problem of fault detection and control of a linearized 

constrained me~hanical systems to a problem of fault detection and control of a linear time- 

invariant dynamic system with partially unknown inputs The m4hodology appears to be 

mathemtically elegant yet simple The procedure or algorithm is ouite ~traightfo~ward and 

fairly easv to code or implement As long as the necessary and sufficient conditions of the 
\ 

existence of an unknown input o b s e ~ e r  is met and the system is stabilizable, our proposed 

approach can detect and identifj multiple and/or simultaneous actuator-faults and sensor 

fault(s) almost immediately 
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Chapter 5 

Conclusions 

- In this thesis an approach for the control, fault detection and identification of constrained 

mechanical systems is presented. The major advantages of this state estimator or observer 

based analytical redundancy approach and the major contributions of this thesis can be 

summarized as the following. 

( 1 )  I t  is a systematic approach for fault detection and identification of a special class of 
f 

descriptor systems that is neither infinitely observable nor completely controllable. 

( 2 )  I t  can detect and isolate multiple and/or simultaneous actuator and sensor faults 

almost immediately. The promptness of detection can be adjusted through changing 

the eiyenvalues of the closed-loop A matrix and the eigenvalues of the observer. p '. 
6 . 

(3) I t  is capable of distinguishing momentary failures from persistent failures This z ,P 

capability exists because the FDI scheme can estimate not only the magnitude but also 

the shape of the faults during the entire time period in which the faults last. 

(4) I t  can detect almost all kinds of faults This is because that the scheme assumes no 

npriori knowledge about the nature or the mode of the failures 

(5)  I t  uses only a single observer instead of a bank of estimators 

(6 )  It is mathematically simple yet elegant. computationally straightforward and efficient, 

apd relatively easy for computer simulation andlor real time implementation. 
. , 

(7)  A technique for numerically testing the necessary and sufficient condition under which 

an unknown input obsener exists is found and used Note that the following condition 

can not be possibly numerically tested because s takes an infinite number of values My 

experiencelhypothesis is that testing .v at all the eigenvalues of A and zero is sufficient 

(8)  A modified unknown input observer whose equations are different from those contained 



in a previouqresearch work is derived. 

(9) Simulations are performed using the model of a practical system - a UMS-2 robot. 

( 1  O)A modified coordinate transformation technique using a nonsingular but not orthogonal 

transformation matrix is developed for any mechanical system that has only one 

holonomic constraint. The coordinate transformation technique using an orhogonal 

transformation matrix which was pre&ed in a previous research work is not applicable 
(L 

to the special case of a single constraint. Normal form of the linearized descriptor system 
B 

model of a single constraint system (such as a UMS-2 robot) is derived in this thesis and 

can be shown to be different from normal forms of systems kith multiple constraints. 

* 
The limitations of the proposed approash and the aspects of the topic that could be hrther 

researched by somebody else in the hture can be summarized as follows 
I 

( 1  ) The maximum number of actuator failures and sensor failures that can be detected and 

identified by the approach is limited to the number of measurable outputs 

(2)  Not all actuator failures can be detected and identified if they all fail at the same time. 

(3)  The approach requires that the considered sysjem behaves almost linearly within an 
i operating range, i .e. ,  linearization of the system can be justified 

(4) A mathematical proof is not available for the experimentally correci numerical testing 

technique (hypothesis) with respect to the necessary and sufficient condition for the 

existence of an unknopn input obsercer 

On one hand, our proposed approach does not need infinite observability or complete 

controllability On the other hand, for an unknbwn input obsewer to exist, at least one fairly 

strong (necessary and sufficient) condition has to be met. The capability of our observer 

based analytical redundancy apprkach primarily depends on the number'of available outputs 

The larger the number of independent outputs, the more faults u e  can potentially detect and 

identify In the situations where a stable unknown input observer with pole placement 

capability does exist. our proposed approach can be very simple yet powefi l  



Appendix A 

Proof of Regularity of Constrained Linear Mechanical Systems ' 

The proof uses Luenberger's shuffle algorithm (Luenberger 1978) A presentatioo of this 

algorithm and a numerical example can be found in the.book of Dai (1989) Basically the 
d 

algorithm involves a serigs of shuffling and row operations of. the" matrix combination 

[I< A ] .  Shuffling means the interchanging of a ro; of the left half of the combined matrix 

with that of the right half of the combined matrix A row operation involves multiplying one 

row of the combined matrix with another matrix and addhubtract the product tolfrom 

another row If the left half of the combined matrix can be made nonsinyular by performing a 

series of alternating shuffling and row operations, then the system is said to be regular by . 

Luenberger Here, we present only the proof for the case of holonomic constraints because 
I 

the simulation system used in chapter 4 has only one holonomic constraint. Our proof here is 

similar to the proof of the more general case of combined holonomic and nonholonomic 

constraints, which can be found in Schimidt and ~ u f l e r  ( 1991). 
# 

The linear mechanical descriptor system described by equations (2 2 23) reduces to the 

foMpwing form in the case of holonomic constraints. 

where P 

Then 



4 

Multiplying row I by F and subtracting the product from row &sults in 

row operation I 3 

. I ,  0 0 0 I" 
- 

0 
2 

shuffle 2 3  1 0 .I! 0 K -11 1.- 

Multiplying row 2 by F:44 ' and add the product to row 3 results in 
7, 

., +" 
2s 

' . -w pn 0 0 .  0 a 0 
1 - '  4. 

* 
row operation 2 2 0 A4 0 - K  - 1 )  

L O  0 0 - l . M ' , y  - / . ; i / ' D  r.nfif.-T 

Adding /.;\I J * o I and I ' * row 2 * A/ ' K  to row 3 results in 

r1 0 
1 " 

0 -O 1, 

rou operation 3 3 / 0 21 0 K - 1)  / . 'T 

1 0  0 : A -1 A , -  
L O! :- 

= [I<; . A ; ]  

Since the mass matrix M is positive definite, so is A 4  Then g i ~ e n  anv non-zero arbitrary 

vector u and its transpose 1' Lse ha\.e + , 

Therefore f . 2 1  1 .  is positive definite,by definition and E ,  is nonsingular The system is 

hence regular b!. Luenberger's thwrem 
I 



Appendix B 

Proef of Infinite linobservability of the Augmented System 
2 

The augmented system described in chapter 2 

is in the descriptor form 

I t  is infinitely obsen.able if and onlv if . - 

rank 0 1: = number of r o ~ i s  or columns of A +'rank(€) * (b  1 )  

' 0  - 

In  order to e~aluate the leR hand s~de(L 14's ) of equatlon ( I  1. we ppkent the following 
0 . a 

* ..-. a theorem 

Theorem I The rank of a matr i~  iiill not change aAer the pre- 01 post- multiplication o f  a 

ii 
non-singular matrix 

6 + 



Proof Let . M be an arbitrary nonsingular matrix of order m by m 

N be an arbitrary matrix of order m by p and is of rank n 

P be an arbitrary nonsingular matrix of order p bv p 

and assuming n m I p without loss of generality 

then using a theorem in matrix theory, we have 

rank(M)+rank(N)-m < rank(MN)< min.7 rank(h1). rank(N) } 

o r m+n-m r rank(MN) < min. { m,n 

thus r'ank(MN) = n = rank(N) 

This proves'that the rank of a matrix is not changed by the premultiplication of a nonsingular, 

matrix Applying - .  the same theorem in a similar manner wili prove that 

. and 

k(hlNP)=rank {(MN)P) =ran)(MN j = rank@) , 

9 

Therefore the t h e o r q  is valid , 
' & 

P 
Since the mess matrix hl in the thesis is positive definite( seebHou et a1 , 1993, ,second line . 

from the top right corner on page 6 12), it has an. inverse A 1  ' Post-multiplying the matrix 

0 L ' b v  a nonsingular dlayonal matrk containing ' in the following form pr&erves the 
I - 

rank 



= rank I 

I , ' O  0 0  0 I ,  0  d 
0  M ,  0  0  - K  - I )  J ;  0  

- - 

O O O q O S  N O 0  

O O O I O  O O A ,  

0  0  0 0 1 ,  0 0 0  

0 . 0  0 0  0  M ,  0  0  

0 0 0 0 0  0 0 , ; o  

0 0 0 0 0 ' 0  O i c  

0 0  0 0  ( ' p  c:, 0 I e  

Performing elementary row operations on the above matrix yields 

.? 
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. . 2  

The richt hand side(R I-l S ) of equation ( 1 )  is evaluated as 

. 
Ob\lously L H S of equation b 1 1- R H S of equation b 1 ,  the necessarj and sufficient 

condition for infinite obsen,ability as expressed by equation b 1 does not hold Therefore the 

si.steni is infinitely unobsewable 
% .  



Appendix C 

Simulation Program Source Code 

Yo APPENDIX C-  

9'0 SIMULATION PROGR O U I ~ ~ ~ E ~ C O D E  A 
% 

O/O Simulation of a U M S 3  Robot in MATLAB 
I 

0/0*******************$****************************** 

P-' ..", 
O/b this simulation detects and identifies 2 actuator failures 
% and 1 sensor failure 

4 

Na = 2 Or6 Na number of actuator failures 
Ne = 1 O/b Ne. number of sensor failure 

96 specify matrices used in linearized descriptor system model 

J = [0 24 18 1 1 32891 O6 Jacobian J = L in the holonomic case 

Ozb nonsingular coordinate transformation begins8 

-0 7525 (3 01 O o transformation matrix 



TtDT = T1*D*intfT,') 

- * . ?/o verify that LT = [ O  0 I ]  

,> 

TtKT - ~ ' * K * i n v ( ~ ' )  

.i1 I l =TthlT( 1 n-q, l n-q) 

K 1 I -TtKT( I n-q. I n-q) 

Dl I -TtDT( I n-q. 1 n-q) 

o o nonsinsular coordinate transfomiation ends 

o o perform controllability test on the normal form representation. 
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?bspeci& measurement matr is  used in original system representation 
1? 

Cm--  [ I  0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 1  1 
0 0 0  1001  

?,b obtain output  matrices used in normal form representation 

0 speci@ actuator  fault' distribution matr is  

" o perfbrrn obsen abilltb, test 

Obsen LlatrixRank = rank( O b s e n M a t r i u )  

O o test o b s e n  er  existence conditions I 

Rank - C - r ank (C)  



Rank - CD = rank(C*D) 

Rank-D-Rank - CD 

O/b Redefine the above matrices as open-loop matrices 
% use subscript o to denote open-loop 

Ao- A 
Bo=B 
c o x  
Do-D 

CoDo = C'o*Do 

O.6 Stabilize the open-loop sys ,tern using state feedback technique 

9'0 choose closed-loop poles 

9 
Kc = place(Ao,Bo,Pc)?/~ state feedback gain matrix 

eigenvalue = zeros(n, 1 ), 

Eiz - \'a1 - Ac = eig(Ac) 

O 0 Augment the system to accomodate sensor failure 

O O  define open-loop system matrices Aao, Bao. Cao, Dao, Kao 

Aao = [ Ao zeros(4.;Ce).zeros(Ne,4) -51 
O O  set add~t~onal eigencalue at -5 

/' Bao = [Bo. zeros(\e,(n q))] 

q 
O o spec~fi sensor fallure $stnbut~on tectdr : B, 

t 



Cao = [Co Efl 

Dao - [Do zeros(4. I ), zeros(] ,2) eye( 1 )] 

CaoDao = Cao*Dao 

9,; check obsenability of augmented open-loop system 

0bsen.ability - Augm = obsv(Aao.Cao) 

Obsen Augm Rank = rank(Obsen,ability-,4ugn) 

9.6 check rank conditions - 
Rank - Dao - rank(Dao) 

Rank - CaoDao - rank(Cao*Dao) * 
9.0 Obtain augmented closed-loop dynamic model 

Karb = ones(:. 1 ) 
9 0  feedback gain rnatrlv used to stabilize augmented sqstenl 
O o I t  can be probed that this matrix can be chosen arbitrarily 

Kao = [Kc Karb] 

? 

O  redefine s\,steni order using closed-loop augmented representation 

n = 5 O o number of state variables 

m -= 3 o number of combined actuator failures and sensor failure 

0 0 Check augnitrnted closed-loop :\.stem observer evistence condition 



Ranks - ~vrt  .- Eiu -- Val = zerostn, 1 ); 

Obsenrability . - Test = [-Aac.Dao,Cao,zeros(p,m)] 
. .. 

f o r i =  I n 

Ranks - - -  wrt Eig \'al(i) = rank(1Eig - Val-Aac(i)*eye(n)-.4ac,Dao.Cao,zeros(p,m)]); 

end 

Rank - u.rt - Zero - Eig - Val = rank([-Aac,Dao,Cao,zeros(p,m)]) 

Ranks - ~vrt  - Eig-Val 

O , b  check rank conditions 

Rank - Dao = rank(Dao) 

Rank - CaoDao - rank(Cao*Dao) 

4.b check observability of augmented closed-loop system 

O o Observ - Augm - Rank = rank(0bservability - Augm) 

O o [-Aac.Dao.Cao,zeros(p,m)] /--. 

o proceed to o b t a m n ~  reduced order obsener 

P=[Q.Cao] O O  transformation matris to briny C to [0.1] form 

Pin\.=in\.(P) 

O O  First transformation is nov. taking place 

.4s=P".'\ac*Pin\. 

Rs=P*Bao 



'?'o Convert Cs=[O Ip] to Cn=[O Cp] to deal with the invertibility of Ds3 

% The new transformation matrix Pn is chosen such that Dn3 is 
O /  10 ~nvertible ' This is accomplished by switching row 2 and 
% row 3 in Ds 

P n = [ I  0 0 0 0  
0 0  1 0 0  
0 1 0 0 0  
0 0 0  1 9  
o n o o  I ]  

YO the new representation are defined by An, Bn, Cn, R: Dn 
Oio  n denotes new 

Dn = Pn*Ds 

Ofb Obtain the Cp in Cn=[O Cp] and Cpl Rr Cp2 in u2=Cpl *y Rr .;.;=Cp2*y 

.A I =.An( I n-p. ) 

A?-An(n-p- 1 n-m. 1 

43=.An(n-n1- I n. ) 

Bl=Bn( 1 n-p. ) 



B2=Bn(n-p-I n-m. ) 
& 

D2=Dn(n-p-t 1 n-m, - )  

.4 1 l bar-A l bar( . I  n-p) 

A 12barz.A l bar( .n-pA I n-rn) 

AI3bar=AIbar( ,n-mcl n) 

A2 1 b a ~ A 2 b a r (  . I  n-p) 

.A22bar=.A2bar( . n - p t  l n-m) 

. A 3 . ? b a ~ . C b a r (  .n-mi 1 n) 

O O  obtain obsen,er in the form of (3 5 I 9 )  5 1 24) of thesis 

Pole - o b s e n w  - -6 9 4  choose observer pole at -6 

\'I - place(:\I I bar..A2 l bar,Pole - obsewer) 9'0 obsercer gain matrix 

F - .A l 1 bar-ZI".43 I bar 

E I = (.A ! I bar- \1*X 1 bar)*(D 1 *D3inv*Cp2-M*(Cp l -D2*D3in\.*Cp2)). 

E2 = ( ( .A I7bar*Cp l -A 13bar*Cp2)-%I*((A22bar*Cp I +A23bar*Cp2)), 

E = E 1 -E3 O 0 E is too long to  be typed in one row 

' 
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O/bcontinuing expression in 2nd row would havbresulted in E=E 1 

L = B l bar-M*B2bar 

N = D 1 *D3inc*Cp2-M*(Cpl i -D2*D3inv*Cp2) 

'10 PREPARE FOR LINEAR DYNAMIC SYSTEM SIMULATION 

9/0 DEFINE SAMPLIKG PERIOD 

Ts = [0 0 1 19 9]', D/b sample taken at 0 I sec intenal 
% for 20 seconds 

O b specifi. applied generalized forces or known inputs 
k. 

u l .= 7%nes( :OO,I ), 

Tt = T' O o transpose of nonsinyular transformation matrix 

U = (Tt( 1 2. )*[ul ' ,u2' ,~3']) ' ,  90 knoun input ~ e c t o r  

O o STARTIYG SILlULATION # 1 

0 spec~f\ arbltran actuator fallures and sensor failure 
O o for the sake of s~rnulatlon' 

d l  = [zeros( TO 1 ), 0 S*ones(l70,1 )I .  O o actuator # 1  fallure 
P 

d2  - [zero$(-?O 1 ). 0 .Ikones( 170.1 )], O o actuator k 2  fa~lure 

d3 = [zeros(.?O. I ). 0 O*ones( 1 70.1 )I. O o actuator k 3  faultless 

d = (Tsub*[d 11.d2'])'. 9.0 unknown input matrix 

F 
fl - [zeros( .;(I. 1 ). 0 -$*ones( 1 70,l )I, O o senior ti 1 failure 
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B 

I 

O/b start simulation of continuous time state-space model of 
46 the unaugmented closed-loop system 

XcO =[0;0;0,0]9+~ arbitrary initial condition of the state vector 

% Get output vector for the augmented closed-loop system 

Yac = Yc t (EPf ) ' ,  

O/O Start simulation of reduced order observer 

U ' O - 0  O.6 arbitrary initial condition of reduced order obsen,er 

W = zeros( 1.200), 

[Yobsen~er,M'],=lsim(F,[E,L],O,zeros( l,b),[Yac, U],Ts,WO), 

O b  Estimate state vector of twice transformed representation Xn 

Yn = Yac. 9 6  output doesn't change during transformation 

O o estimate state' vector of once transformed representation Ns 

O o estimate state vector of augmented closed-loop system Xac 

Xac = (in\(P)*(Ns)') '  

aZ, estimate state vector of un-augmented closed-loop system Xc 

Nc = Nac( . I  n-  I ). 

O o estimate sensor fault failure 



f l  - estimate = Sac(.,n), 

4 plotting sensor fault and its estimate against time 

title('Fiyure 1 - simulation #1 .  sensor 1 failure and its estimate') 
l* 

slakl('time(s)') \ 
i 

print figure l -dps 
4 

O/O obtain actuator failure estimates using least-square approach 
11, 

L. = zeros(Na, 199), ?6 specify the dimension for 
% unknown inputs estimates 

fork - I 199 

end 

d l  - bar - estimate = L.( 1, )I, 

d2 - bar - estimate = v(2. )', 

Tt - sub = Tt( 1 2,l  2) O O  upper left sub matrix of Tt 

d l  -estimate - d - estimate(& )', 9% estimate of actuator 1 fault 

d2 - estimate = d - estimate(?, )', '10 estimate of actuator 2 fault 



dl - differential = d 1 (1 : 199) - d 1 -estimate; r 
I 

d2 - differential = d2(1: 199) - d2 - estimate;\, 

96 Plotting actuator failures and their estimates against time 

d l t  = d l ( ]  199,l), . 3 '  F 

title('Figure 2 - simulation # I .  actuator 1 failure and its estimate') 

b 

print figure2 -dps -3 

title('Fi3ure 3 - simulation # I  actuator 2 failure and its estirr2te') 

pnnt figure3 -dps 

2+ 

40 ST.ARTI\G SIMULATION #2 

O o specifil arbitrary actuator failures and sensor failure 
' 

O o for the sake of simulation 

d 1 = [zeros(30. I ), 0 5*ones( 170, I)], O/b actuator #I failure 

d2 = [zeros(-30.1). 0 O*ones(l70, I)], YO actuator #2 faultless 

d3 = [zeros(30.1). 0 -I*ones( 170, I ) ] ,  O/O actuator #3 failure 

Tsub = [ O  -0 7 5 2  
4 13C6 ,O] 
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d = (Tsub*[d l '.d3'])', O/b unknow~input matrix 

fl = [zeros(30.1). 0 5*ones(170,1)], 94 sensor # l failure 

start sirnulation of continuous time state-space model of -, 

O.0 the unaqmented closed-loop system 
. .. 

XcC) -[CJ.O.O.OJ0~ arbitrary initial condition of the state vector - 

O o Get output \,ector for the augmented closed-loop system 

J t 

'0 Start simulation of reduced order observer 

W O  = CJ O o arbitrary initial condition of reduced order obsen.er 
f 

W = zeros( 1.200). 

O O  Estimate state \,ector of tisice transformed representation Xn 

n )'ac. O o output doesn't change during transforrnat~on 

O 0 estimate state Lector of once transformed representation Xs 

O O  estimate state of augmented closed-loop system Nac 

%% 

O o estimate state Lector of un-augmented closed-loop system Xc 



O.0 estimate sensor fault failure 

fl _estimate - Xac( .n). 

+, + 

96 plotting sensor fault and its-estimate against time 

figurell) 

plot(Ts.f7 .'g-'.l's,fl - estimatq'r--',Ts,fl ,'g-',Ts,fl - estmate,'y ') 

title('Fiyure 4 - simulation 82 sensor 1 failure and its estimate') 

slabel('time(s)') 

print figure4 -dps 

O obtain actuator failure estim?.tes usirl:: least-square approach 

v = zeros(Na. 199). ? b  specify the dimension for 
96 unknown inputs estimates 

fork - 1 199 

S1 .-\c"in\(e~pn~(.Ac*O 1)-eye(n-I)). 

S( .k - S  I * (  Xc(k- I. 1'-e~pm(Ac*O I )'Xc(k. 1'). 

\.( . k )  = in\(Dol*Do)*Do'*(S( ,k)-Bo*L:(k. )'). 

end 

d?  .- bar - estimate = ~ ( 2 .  )'. 

Tt - sub -- Tt( 1 2 , l  3 )  O b upper lee sub matrix of Tt 

d - ejtirnate - ~ n ~ ( T s u b ) * [ d l  - bar - estimats',d2 - bar - estimate'], 
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d 1 -estimate = d-estimate(1 ,:)I; O/O estimate of actuator 1 fault 

d3-estimate = d_estimate(2,.)'; % estimate of ac4uator 3 f a ~ ~ l t  

d 1-differential = d l(1.199) - d l  - estimate; 

d3-differential = d3( l .  199) - d3 - estimate; 

O/O Plotting actuator failures and their estimates against time 

TI = [ 0 0  1 198]', 
I 

dlt  = d l ( l  199.I), # 

title('Figure 5 - simulation-#2. actuator 1 failure and its estimate') 

print figurei --dps 

title('Figure 0 - simulation 82  actuator 3 failure and its estimate') 

slabel('tirne( s)' ) 

print figure6 -dps  

O o END OF h.I.ATLAB SOCIRCE CODE 



Figure 1 - simulation #1: sensor T failure and its estimate 
0.6 --- I I 71- I - -  F 

I 



~ i g u r e  2 - simulation # A :  actuator 1 failure and its estimate 



. \ -  Figure 3 - simulation #I : actuator 2 failure and its estimate 
i -  . jr 
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Figure 5 - simulation #2. actuator 1 failure and its estimate 
1 ,  I 1 I I I 7.' I 



Figure 6 - simulation #2: actuator 3 failure and its estimate 
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