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Abstract

The human erythrocyte cytoskeleton, a scaffolding of proteins
attached to the cytoplasmic side of the bilayer, is modeled as a
triangulated network of polymer chains, in which the coupling to the
bilayer can be either at the polymer chains' midpoints, the network
sixfold junction complexes or both. The geometrical and elastic response
of the model network is determined through computer simulation by
applying both isotropic and anisotropic stresses. Near zero stress, the
model cytoskeleton behaves much like a two-dimensional network of
springs, while at large tensions it can be described as a network of

equilateral triangles with square-well interactions between the nodes.

Elastically, the model cytoskeleton which has membrane linkages
at both the chains' midpoints and sixfold junction complexes is the
stiffest. This difference, in comparison to cases where the membrane
linkage is either at the chains' midpoints or at the sixfold junction
complexes, is as much as a factor of 2.5 for the out-of-plane elastic
moduli, namely the volume compression modulus and the transverse
Young's modulus. The effect of a precompression built into the rest-
state of the cytoskeleton has also been investigated and found not to

significantly affect the predicted elastic properties of the cytoskeleton.
The model has also been used to probe the effect of the

cytoskeleton in constraining the membrane proteins to localised regions.

The simulation method used to probe this effect is similar to the protein

111



dragging techniques used in single-particle tracking experiments. Large
proteins are found to be mostly confined in a local region (or corral) due
to steric interactions, a typical corral radius being about 20 nm. Small
proteins on the other hand, are able to slip past polymer chains and are
stopped mostly by the membrane attachment sites of the cytoskeleton.
We interpret the mean-free path of directed protein motion as a two-
dimensional scattering problem and the extracted in-plane diameters of
the attachment sites are found to range from 12 nm to 32 nm,
depending on the type of membrane linkage mechanism present in the

model.

iv



I would like to dedicate this work to
my wife Shirley
and

my son Nathan



Acknowledgements

I would like to thank my supervisor Professor David Boal for his
invaluable insight into my research, for his open door approach which
made learning much more accessible, and also for the many times he
has help me out of difficult situations (especially those involving use of
campus computers). I would also like to thank him for his assistance in
my job search: writing of reference letters and bringing to my attention

any potential research position openings.

Dennis Discher, Professor Boal's former postdoctoral fellow, has
been an invaluable part of my research. I deeply appreciate those many
stimulating discussions we had and the many suggestions he made
during my research time at SFU. [ also thank him for making time

available for me to answer the questions I had in my research.

I would like to next thank Professor Plischke for helping me in
understanding the approach to solving some of the questions I had. He
has also provided valuable suggestions to my research during our soft
condensed matter meetings. I also thank Professor Wortis for a mind-
boggling time on our road trip to the Biophysics conference at the
University of Washington, which helped me to look into certain aspects

of my research more carefully.

I would like to thank my friend Julian Shillcock for the many
stimulating research discussions we had in our computer lab and also

over coffee breaks.

vi



Much thanks also goes to Sharon Beever and Audrey Reid for their

excellent administrative support and for just being my friends.

I thank my wife, most of all, for being so supportive and patient,

during these four and a half years.
This work 1s supported in part through postgraduate fellowships

provided by the Natural Sciences and Engineering Research Council of

Canada and by Simon Fraser University.

vii



Contents

ApProval......... i1
ADSEFACT. ...t raa e ane s il
DediCation. .. .....occooiiiiiiiii e e \Y
Acknowledgements. ..o Vi
COMTEITS. ..ottt et ettt e e st e et e ee st eesaraeeenneens viil
List of tables..........ooooi e xi
List of figUres. ... Xl
Chapter 1 INTRODUCTION
1.1 The human erythroCcyte.........cccccccniiiiiiiiiiines 1
1.2 Membrane skeleton........ccooriiiiiiiiiiiiiiiii e 6
1.3 Elasticity of the red cell membrane..................cc..coooi. 7
1.4 Lateral motion of integral membrane
PIOLEIIIS. ..ottt e s 10
1.5 Overview of thesiS......cocciiii 14
Chapter 2 THE CYTOSKELETON MODEL
2.1 INrodUCHON....ceiiii et 16
2.2 Thereference model........ccoooiiiiiiiiiiiiii 18
2.3 Network ZEOMELIIY....cooiiiiiiiiiiiiiiiiie i 29
2.4 Network elastiCity.....cooviiiiiiiiieiiiircciii e 34
2.5 SUIMIMAIY . c.etiiiiiiiiieit et e e e ne e nes 42

viii



Chapter 3 MODEL NETWORK SIMULATIONS AT
FINITE DEFORMATIONS

P T U5 00 16 10 (o1 [0 o DURUUURE O ST OS T U 44

3.2 Cytoskeleton network under isotropic
STIESS = ZEOMELIY . ..oiiiiiiiiiiiitiii ettt 46

3.3 Effect of stress on network elastic

INOAUI ..ot 52
3.4 Anisotropy of the cytoskeletal network.......................... 62
3.5 Prestress in the cytoskeletal network........................ 63
3.0 SUMIMATY..coiiitiiiiiiiiiieiiis i st sse e 76
Chapter 4 BARRIER-FREE PATH SIMULATIONS
4.1 INOAUCHOMN. .c.uiieiiit ittt ea et aree st 79
4.2 The simulation technique...........c.coooiiiiiiiiiiii 38
4.3 Extraction of barrier-free path lengths........................... 92
4.4 Barrier-free paths of large proteins......................cccveinn 99
4.5 Barrier-free paths of small proteins.......................os 102
4.6 SUMIMIAIY .. ceeeretiiterteiie et e e b e 105
Chapter 35 TESTS OF CYTOSKELETON/BILAYER
ASSOCIATION MECHANISMS
5.1 INrOdUCHON. ...cviieiieiic ettt 107

5.2 Effects of alternate attachment points
0N NetWOrk ZEOMELIY....ccooiviiiiiiiiii i 110

5.3 Effects of attachment on network

ELASTICILY ..ottt 117
5.4 Effects on barrier-free paths of proteins........................... 122
LI T 11 1111421 O PP PP UPORPOPRPPPOIRPPPRIOS 131

ix



Chapter 6 CONCLUSION
6.1 Elasticity and geometry of the erythrocyte
CYLOSKEIBTOM. ... s 133
6.2 Barrier-free paths.......coocoooiiiiiii e 138
Appendix A Effective spring constant of an ideal polymer
ChAINL.c.coiii 140
Appendix B Normalised shear modulus for an ideal polymer
ChAIN. .o 142
Appendix C Derivation of Eq. (3.5) ..o 144
Appendix D Fluctuation formulae for elastic
MOAULL e 146
Bibliography...........ccoooiiiii 148



List of tables

2A. Comparison of simulation value for the normalised shear
modulus with that taken from an ideal network model and with

the micropipette aspiration €XPerimentS..........ccoueirrrmiuiununiaieeeaireaiininnnnnns 37

5A. Comparison of the in-plane elastic moduli for the different
membrane linkage mechanisms investigated............ccccoooiiiiiiiii, 119

5B. Comparison of the out-of-plane elastic moduli for the different
membrane linkage mechanisms investigated....................oooi 122

6A. The different membrane attachment mechanisms
INVESTIZALEA. ...t s 133

X1




List of figures
1.1 Micrograph of human erythrocytes moving through
small blood VESSEIS.......c..ooiiiiii i 1

1.2 Micrograph showing the different possible shapes of
EIYHNIOCYTES .o 2

1.3 Schematic diagram of the cross-section of the red cell plasma

1S3 010 21 1 LSOO SO O O EPUSEP TSROV POTOTOP 4
1.4 Schematic diagram of the red cell cytoskeleton........................... 6

1.5 Schematic diagram of the aspiration of a red cell into a

IIECTOPIPEL .ottt cetenie ettt et st st re s 9

1.6 Schematic diagram showing the principle of a typical FRAP
EXPETIIMICIIL. ... vttt ettt b bbb Sttt 11

2.1 Diagram showing the two different configurational states
of a polymer ChaiN..........ocooiiiiiii 21

2.2 Plot showing the relaxation of the simulation box lengths as
a function of the Monte Carlo SWeepS.......ccoovviiiniiiiiii 26

2.3 Picture of an equilibrated configuration of the reference
DIEEWOTK . ..ottt ettt ettt ettt e et e e ee s bt e sttt e et e e e e st e e a e s ta e b e e e ae e aae e 28

2.4 Mean network area per junction vertex as a function of
Ageg 1N @ ChAINL. oo 29

2.5 The stretch area per junction vertex is compared to the mean

area Per JUNCHOMN VETIEX.....c.ucioiiiiriiiiiireaite ettt 30

2.6 The mean displacement of the network as a function of nseg
OF SEZIMEINITS. ... cvvitiitiitiit et e 31

2.7 Scatter plot of the network area and the displacement for

X11




2.8 Area compression modulus as a function of 72seg...cccoovvveeiiiiiiins 35

2.9 Shear modulus as a function of fgeg.......cocvinin 36
2.10 Volume compression modulus as a function of ngeg....cc.c..... 38
2.11 Transverse Young's modulus as a function of ngeg......ccooovenn 39
3.1 Pictures of a network under tension and compression............ 47

3.2 The normalised mean network area as a function of the

IN-Plane Pressure —P. ... 48
3.3 The mean network displacement as a function of —FP................ 50
3.4 The network volume as a function of —P................ccoooiiin. 51
3.5 The network in-plane elastic moduli as a function of —FP........ 52

3.6 The ratio of the area compressibility to the shear modulus
as a function of —P (mean field model).......cccooooviriiii 54

3.7 The same plot as in Fig. 3.6, but using the results derived

LM ThE STMULALI OIS . oot ette ettt e et e e et e e et e e e e e am e e e ae e e e e e ans 56

3.8 Plot of <A>=17/2 as a fUNction of —P......ocveeeeee oo 57

3.9 Behavior of the in-plane elastic moduli at small stresses.....58

3.10 Picture of a highly stretched network..................o, 59
3.11 Plot of the product PA versus —F.........ccccccoociiiiiiiiiiiiiiiiii 60
3.12 Out-of-plane elastic moduli as a function of —P...................... 61

3.13 Pictures of the network under uniaxial tensions applied in

the x and y dIrECHONS. c..eeiiiiiiciie ettt 63

3.14 The stretch ratio as a function of the uniaxial stress........... 64

xii1




3.15 The strain as a function of the uniaxial stress (in x and y

GITECTIOTIS }. ettt ettt et te ettt e ettt et e ettt e st e e s ans s s e str e e et e e e e neeesetaessesneeeeeenee s 66
3.16 The Poisson ratio as a function of the uniaxial stress.......... 67
3.17 <Aj> as a function of —P with prestress.........ccocooiviiiiiiiin. 69

3.18 Same as in Fig. 3.17, with comparison to the stress-free

3.20 Comparison of the <r> data between the prestress and

SEIESS-TTEE CASES.. ..t uitiiiiitiiie ettt ettt sn ettt e 72
3.21 In-plane elastic moduli for the prestress case......c.........c...... 73
3.22 Out-of-plane elastic moduli for the prestress case............... 74
4.1 Schematic drawing of the Halobacterium halobium................ 79

4.2 Diagram showing the localisation of membrane proteins in the

plasma membrane of an epithelial cell...................... 80
4.3 Diagram showing the association of band 3 to ankyrin......... 81
4.4 Schematic diagram of the transient interaction model.......... 84
4.5 Micrograph of an unexpanded human red cell skeleton....... 86

4.6 Picture showing the various stopping points of the
computational protein in the protein dragging simulations........ 90

4.7 Diagram showing the different ways the computational protein
might be affected by the network skeleton in the simulation...91

4.8 Histogram of the protein displacements...................ccciiininnn. 93
4.9 Log-linear plot of the data in Fig. 4.8, 94

4.10 Diagram illustrating the scattering of a particle traversing

Xiv




in a medium containing a density of scattering centers................ 95

4.11 Plot of the mean path length A versus the dragging force

4,13 L+REg as a function of the effective radius RE...........oocoeiiininnin. 100

4.14 Diagram showing the corral region in an equilateral

ETANEIC ..ttt 101
4.15 Relationship between 1/L and RE.......cccoooiiiiiiiiniiini, 103

4.16 Diagram illustrating how the diameter of an attachment
site is enlarged by steric effects........ccocoviiiiiiiiiiii 104

5.1 Association of the cytoskeleton with the bilayer through the
proteins band 3 and ankyrin...........ccooo 107

5.2 Association of the cytoskeleton with the bilayer through the
proteins band 4.1 and glycophorin C..........coooooii 108

5.3 <Aj> as a function of ngeg for the three membrane coupling

S ETIATIOS et veeeee e eeesees e esseeeaasa e e e e e e e e e e em e aaae e e e e e rereeaa e ar e teesarar s eraeanis 111

54 A¢/<Aj> as a function of ngeg for the three membrane coupling

GO TLATIOS .+ vveeerenereeeseeeesees e ns e saeasetansnennes e s sers i s e st e ansn s eenssansaran e ranserneserneannsans 113

5.5 <r> as a function of ngeg for the three membrane coupling

SO ETIATIOS - e vvemeeeee e e e eessseaseaeaaaae s e e aeeaeeaa e e e aen e eaeeaenerea e et esten s e e ern e es e arnnas 115

5.6 Diagram illustrating the effect of additional attachment sites on

the mean height of the network................... 116
5.7 The in-plane elastic moduli as a function of ngeg for the three
membrane COUPLING SCENATIOS........c..vuiiiiiiiiiiiieiiiii e 118

5.8 The out-of-plane elastic moduli as a function of ngeg for the three
membrane COUPliNg SCENATIOS.........ciriiiriiriiiiiiiiiie e 121

XV




5.9 Plot of A versus Fo for case I ..o ooioiooeee oo 123
5.10 Plot of A versus Fo for ¢ase T .....oooiooeooe oo 124

5.11 The plot of L versus § for the three membrane coupling

SCETIATIOS 1. vvveeeeeteeeeeeteeeeeetteeseetreeeeteseetreeeeaseseesseeeasaseeeassaeessaeeeassseaabaesennsseesnsaeeeenens 126
5.12 L+Rg versus Rg for cases Il and IIl.............c.cooeiiiiiin i, 127
5.13 1/L versus Rg for cases II and IIl................coooeeiiiiinn i 129

XVl




Chapter 1
INTRODUCTION

1.1 The human erythrocyte

The human erythrocyte has long intrigued biophysicists, cell
biologists and biochemists by its relatively simple geometry and its
fascinating mechanical and physiological properties. There is still
much to be understood about the pronounced resilience of the
erythrocyte as it undergoes marked deformation in the circulatory

system (see Fig. 1.1) and rapidly recovers its resting shape once the

Fig. 1.1 Micrograph of human erythrocytes moving through
small blood vessels. Notice the deformations that each red cell
undergoes. Arrows show direction of blood flow. The cells in
the image have a diameter of approximately 10 microns. (Steck
1989)




shear stress 1s removed. These large deformations have been
observed by many investigators. Krogh (Krogh, 1959) observes that
mammalian red cells in 4-5 Um capillaries can achieve lengths more
than double the normal, undeformed diameter of the cell of 8 fUm.
The life span of a normal human red cell 1s approximately 120 days
during which time it passes through the heart roughly 200,000 times
(Steck, 1989). The human erythrocytes arise from stem cells located
in the bone marrow and are missing the nucleus which is pinched off
enroute in the erythrocyte's journey from the stem cells into the
bloodstream. The shape of a normal red cell is biconcave (see Fig.
1.2) and about one third of its interior volume 1is occupied by

hemoglobin.

Fig. 1.2 (A) Normal red cells. (B) Echinocytes. (C) Cells depleted
of 37% of their cholesterol, leading to invaginations
(stomatocytes). (D) Restoration of biconcave shape of cells in
(C) treated with lysolecithin. Calibration bar in (¢) is 10 um.
(Steck, 1989)




The red cell has an average membrane area of = 135 Um?2 and a
cytoplasmic volume of approximately 94 tm3; it can swell to a

volume of about 160 {m3.

The plasma membrane of a red cell can be described as a lipid
bilayer in which is associated with a diverse number of different
proteins. The bilayer provides solute impermeability to the
membrane. The lipids that make up the bilayer are amphiphilic
structures, that is, a lipid has both a hydrophobic (water insoluble)
tail and a hydrophilic (water soluble) head. The lipids are
asymmetrically distributed in the two monolayers that make up the
bilayer. The outer monolayer is made up mostly of lipids which are
zwitterions, principally phosphatidylcholine (PC) and sphingomyelin
(SM); while the cytoplasmic surface is rich in anionic lipids such as
phosphatidylserine (PS) and phosphatidylethanolamine (PE). The PC,
PS and PE lipids consist of two hydrocarbon chains (hydrophobic
tails) linked through a glycerol to a polar head group (hydrophilic
head). The SM lipid, on the other hand, has a serine link instead of
glycerol. The red cell structure is highly stable, due to the fact that
lipids may spontaneously form closed structures in an aqueous

environment.

Analysis of the red cell membrane by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE, for an explanation of
this technique, see Gennis, 1989) has shown that the red cell
membrane contains a number of species of proteins, most of which

have been characterized (Fairbanks, Steck and Wallach, 1971).
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Fig. 1.3 (A) A schematic diagram of the red cell plasma
membrane. (B) A section of the bilayer consisting of dual
chain lipid molecules, whose head groups are short chains.




These proteins are divided into two general groups: integral and
peripheral proteins. The integral proteins, such as band 3 and
glycophorin A, pass through the membrane and are tightly bound to
the membrane through hydrophobic interactions with lipids in the
bilayer. In a typical red cell, there are approximately 106 copies of
band 3. Peripheral proteins, on the other hand, are bound to one face
of the membrane by noncovalent interactions with other proteins.
Spectrin, actin and band 4.1 are typical examples of peripheral
proteins and they form most of the membrane skeleton. There are
approximately 2 x 10° copies of spectrin monomers, 2 x 105 copies
of actin and 2 x 103 copies of band 4.1 in a typical red cell. (See Fig.
1.3). The durability of the red cell is attributed to the extensive
reinforcement provided by a scaffolding network of these peripheral

proteins (Steck, 1989).

The mechanical behavior of the erythrocyte membrane has
been studied extensively (Evans, 1973; Waugh and Evans, 1979;
Zilker et al., 1992), vyielding elastic parameters that are
manifestations of the molecular composition and organization of the
plasma membrane. Numerous studies have shown that the protein
spectrin plays a crucial role in determining the mechanical properties
of the membrane (Branton et al., 1981) and also in controlling the
lateral mobility of integral membrane proteins (Sheetz, 1983) by
forming a meshwork at the cytoplasmic (or interior) side of the
membrane lipid bilayer. The diffusion of proteins within the
membrane (Kusumi et al., 1993; Saxton, 1995) is thought to be

affected by the cytoskeleton through the formation of domains



where some proteins are corralled for a significant amount of time.

1.2 Membrane cytoskeleton

It has been well established that the proteins, spectrin, actin
and band 4.1, are the major components of the human erythrocyte

membrane skeleton (Steck, 1989; see Fig. 1.4). The two spectrin

Spectrin Actin
(tetrw (Oligomer) ‘

Ankyrin Band 4.1 )

Fig. 1.4 A schematic diagram of the red cell cytoskeleton.
Ankyrin and band 4.1 are proteins that are directly or loosely
attached to the cytoskeleton and the bilayer.



chains o and B are = 250000 and 220000 daltons in molecular weight,
respectively, associated side by side, forming a dimer. Experimental
evidence (Speicher, 1986) seems to suggest that each o and B chain is
organized into 18 to 20 independently folded domains, each
containing 106 residues (amino acids). The dimers associate head-to-
head to form (of3)2 tetramers, with a contour length of approximately
200 nm (~ 3 nm in diameter). In its native conformation, the spectrin
tetramer has an end-to-end displacement of 76 nm, which is about
one-third of its contour length. The two tail-ends of these tetramers
are associated with actin filaments to form a junction complex
(stabilized by the protein band 4.1). On the average, there are six
spectrin tetramers joining at the junction complexes, giving rise to
the mean sixfold connectivity observed in red cells (see Fig. 1.4;
Byers and Branton, 1985; Liu er al., 1987). Experimental evidence
suggests that the protein ankyrin links the membrane skeleton
through specific transbilayer proteins like band 3. The complete
picture of how the skeleton attaches itself to the bilayer, both

statically and dynamically, remains to be fully understood.

1.3 Elasticity of the red cell
membrane

In recent years, the elasticity of the erythrocyte has been
analyzed extensively, and it has been suggested that the resistance to
both area dilation and bending of the plasma membrane is borne by

the lipid bilayer (Evans and Skalak, 1980). However, the bilayer is




basically a surface fluid and, thus, contributes very little to the
extensional elasticity of unswollen (flaccid biconcave shape) red cells.
The spectrin network attached to the bilayer is suggested to be
primarily responsible for bearing this extensional rigidity of the red
cell membrane (Mohandas and Evans, 1994), and this extensional
elasticity is the major restoring force for a red cell after it undergoes
a large deformation during its route through the blood system
(Evans, 1973; Evans and Hochmuth, 1978). This suggestion follows
from experimental evidence that: (1) Spectrin has been shown to
behave like a highly flexible filament which can be drawn linear or
collapsed into a compact form (Bennett, 1985; Elgsaeter et. al., 1986).
The intact cytoskeleton was also shown to be capable of sustaining
numerous cycles of extensions and contractions of the erythrocyte by
varying the pH of the buffer in which it was suspended (Johnson et
al., 1980; Lange et al., 1982). (2) Murine (mouse) cells congenitally
devoid of spectrin have been found to be rather inelastic (Schmid-
Schonbein et al., 1986). (3) There is direct correlation between the
modulus of extensional elasticity and the spectrin content of red cells
from patients with hereditary hemolytic anemias (Waugh and Agre,
1988). In these experiments, the erythrocyte shear modulus
decreases by 30-40% when the ratio of the density of spectrin
molecules taken with respect to the density of band 3 molecules

present in the red cell plasma membrane decreases by a factor of 2.

Numerous experiments have been carried out to probe the
elastic properties of the red cell plasma membrane. Micropipette

aspiration of red cells (Waugh & Evans, 1979) can be used to



measure elastic parameters such as bending, area compression and
shear moduli. Typically, the red cells are sucked into a micropipette
via a suction pressure applied externally (see Fig. 1.5). The length of
the red cell inside the micropipette is measured as a function of the
suction pressure. The density profile of a spectrin network can also
be studied in these experiments via fluorescent microscopy. In these
particular microscopy experiments, the cytoskeleton network is
subject to a variety of stresses, including simple shear, pure shear

and isotropic dilation (Discher et al., 1994).

Micropipette

/ tube

Aspirated
Red length of
red cell

cell

Fig. 1.5 A schematic diagram showing the aspiration of a red
cell into a micropipette through the application of a suction
pressure P. The micropipettes typically have a diameter of 1/2
to 1 ym.

It has been argued that spectrin filaments behave like entropic
springs (Elgsaeter er al., 1986), by which we mean random coils

which become more ordered when stretched and regain their
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disorder when relaxed. The energy used to deform an entropic spring
by stretching 1is stored as an unfavorable decrease in its
configuration entropy. It is easy to show that the elastic moduli of a
cross-linked network of ideal polymer chains are proportional to
pkpT, where p is the density of cross-links, kg is the Boltzmann
constant and 7 is the temperature. Assuming that, on the average,
the red cell cytoskeleton is a hexagonal network of spectrin chains,

there are approximately 32,000 sixfold junction complexes in an

average membrane area of 135 gm?2. The compression modulus, Ka
thus calculated is of the order = 10-2 dyn/cm (see also Evans, 1979),
which is much smaller than that of a liquid and in the range

measured experimentally.

1.4 Lateral motion of integral
membrane proteins

Integral proteins, such as band 3, are proteins that cross the
lipid bilayer. Approximately 40% of the band 3 molecules are bound
to the spectrin network, and these molecules show no rotational
diffusion (rotating about an axis perpendicular to the plane of the
bilayer; Nigg and Cherry, 1980) or lateral diffusion (moving laterally
within the membrane). The remaining 60% of the band 3 molecules
are not attached to the network and are free to diffuse through the
membrane. The rate of diffusion of membrane components is
relevant to the transport of membrane-bound enzymes (a number of
which are proteins) to various parts of the membrane serving as

catalysts to processes essential to the survival of the cell.
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Over the past decade, there has been increased research on the
subject of lateral motion of membrane proteins (Sheetz er al., 1980;
Jacobson et al., 1982; Jacobson et al., 1987, Edidin at al., 1991; Saxton,
1994). The focus has been on what the measured diffusion rates of
the proteins within the membrane might imply about the membrane
structure and dynamics and also on the development of techniques

for lateral mobility measurement.

L]
®
-7 -
., o @ 0. —p
o o
L]
°
bleaching redistribution

4

F(0)

time

Fig. 1.6 Schematic diagram describing the principle of a
typical FRAP experiment. The initial fluorescence intensity
F(i) arising from fluorophores within a small area of the
membrane surface is measured. The next step involves an
irreversible photobleaching of a fraction of the fluorophores
(withing dotted circle) by an intensified laser beam. This is
followed by monitoring the postbleach fluoroscence intensity
as a function of time, F(t).

The main technique that has been used to extract the diffusion

rates of proteins is fluorescence recovery after photobleaching or
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FRAP (Sheetz et al., 1980). Basically, a laser beam is used to bleach a
spot (diameter = 1 Um) in a uniformly labelled membrane. The
increasing flourescence from that spot is monitored as a function of
time after bleaching, and the rate of recovery is a direct measure of
the lateral diffusion of the flourescent species from the surrrounding
medium into the previously bleached spot. The FRAP technique is
illustrated in Fig. 1.6, FRAP measurements show that proteins
typically diffuse approximately 50 times slower in normal mouse
erythrocytes than in spherocytic erythrocytes, which are deficient in
the membrane skeleton matrix (Sheetz, 1983). There is also evidence
from FRAP measurements that proteins diffuse much more quickly
in a pure lipid bilayer than in a membrane with an associated

skeleton network (Poo and Cone, 1974).

Recently, restricted motion of proteins has been observed via
single particle tracking (SPT) experiments (Gross and Webb, 1986;
Kusumi er al., 1993, Sako and Kusumi, 1994) which may involve
diffusion of proteins or directed motion with optical tweezers. In the
optical tweezer experimeﬁts, a membrane protein with a gold
particle attached is moved across the plasma membrane in a straight
line by optical tweezers (Edidin er al., 1991; Sako and Kusumi, 1995).
The optically guided protein is observed to escape from its optical
trap at some point in its directed motion. The optical tweezer
experiments show that proteins tend to be corraled in specific
regions of the membrane. These corrals are presumed to arise from
the steric 1interactions between the guided proteins and the

membrane cytoskeleton. Restricted motion of membrane proteins




13

play’s an important role in the life span of a cell. In some cases, the
membrane localizes enzymes in regions where soluble substrates can
be highly concentrated and subsequently absorbed. An example of
this occurs in the intestinal microvillar membrane, which contains

numerous enzymes serving to digest starch and proteins.

SPT experiments also allow characteristic length scales of
protein motion to be extracted. The tagged protein, at some point of
its dragged motion, encounters a barrier (interaction with
components of the membrane skeleton) which overcomes the optical
trapping force and forces the protein out of the trap. A characteristic
length scale, the barrier-free path (BFP), can be obtained from the
path length distribution of an optically guided protein motion. For
example, Edidin er al. (1991) find that the BFPs of two different
proteins in the plasma membrane of murine HEPA-OVA cells
(hepatoma cells from the lining of the liver of mice, not erythrocytes)
are in the micron range. On the other hand, BFPs of tagged
transferrin receptors in rat kidney fibroblastic cells are hundreds of

nanometers in length (Sako and Kusumi, 1995).

Quantitative analysis of the data taken from FRAP and SPT
experiments has proven to be a non-trivial task. This is due to the
viscous and hydrodynamic effects which are not easily incorporated
into the analysis. Theoretically speaking, BFPs are much easier to
analyze than diffusion constants, being less affected by many

dynamical attributes of the cytoskeleton. To this end, many
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theoretical models have examined the general properties of particle
diffusion through barriers, rather than specific cell/protein systems

(Saxton, 1982, 1994a,b; Pink, 1985).

1.5 Overview of thesis

This research is focused on the use of computer simulations to
examine the geometry and elasticity of the human erythrocyte. The
investigation is based on large-scale simulations, involving systems
of up to 6500 particles, and took up to 2 years of CPU (central
processing unit) time to complete. The simulations were carried out
on a combination of 80MHz, 132MHz and 200MHz MIPS processors

incorporated into Silicon Graphics machines.

In Chapter 2, the model that is used to represent the
erythrocyte membrane cytoskeleton as a network of connected
polymer chains is described in detail. The numerical algorithm used
to obtain the equilibrated (zero-stress) model network in the stress

ensemble is also described.

Chapter 3 uses the cytoskeleton model developed in Chapter 2
to determine the response of the model network to extensional and
compressional stresses applied both isotropically and anisotropically.
Simple mean field (MF) models of Hooke's-law springs are presented
to interpret the simulation results for the membrane cytoskeleton's

elastic properties under both small and large deformations. Through
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this comparison with the MF models, an effective spring constant of
the chains in the model cytoskeleton network is extracted. The
effects of a precompression in the rest-state of the cytoskeleton on

the geometrical and elastic properties are also investigated.

In Chapter 4, the simulation that is used to probe the barrier-
free paths of proteins guided through the membrane skeleton is
described. This chapter looks into the constraining effects of the
cytoskeleton and also the method of extracting some geometrical
parameters of the model network, such as the effective diameter of
the network elements attached to the bilayer. A simple scattering
theory is proposed to interpret the data obtained in these directed-

protein-motion simulations.

There is still debate as to how the cytoskeleton network
attaches itself to the lipid bilayer. The dependence of the
cytoskeleton's geometry and elasticity on the nature of its
attachment to the bilayer is explored by simulation in Chapter 5. The
simulations contrast the use of the sixfold junctions as attachment

sites to that of the chain midpoints.

A summary of the thesis research is given in Chapter 6 and
then followed by three appendices that outline the simple models

that are used to fit the simulation results.
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Chapter 2
THE CYTOSKELETON MODEL

2.1 Introduction

For the past few decades, numerous experiments and (more
recently) computer simulations have been carried out to study the
mechanical and in-plane diffusion properties of the red cell plasma
membrane. Experimental techniques such as micropipette aspiration
(Waugh and Evans, 1979; Discher ef al., 1994) and flicker microscopy
(Strey et. al., 1995) have been used to measure the shear modulus of
the erythrocyte cytoskeleton and the bending modulus of lipid
bilayers and plasma membranes. Other viscoelastic properties of the
plasma membrane have been explored using the FRAP and SPT
techniques described in Chapter 1. Studies of in-plane motion of
labelled proteins and lipids also have yielded information on the
steric interaction between the cytoskeleton and in-plane membrane
components (Kusumi et al., 1993; Sheetz et al., 1980). While the
experimental results cannot be interpreted unambiguously with a
microscopic model of the cytoskeleton, nevertheless they provide

stringent tests for the components of such models.

In this chapter, we present a computational model of the
erythrocyte cytoskeleton attached to the bilayer. This reference
model will be used to investigate the geometry and elasticity of the

cytoskeleton, as well as the in-plane protein-diffusion properties of
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the plasma membrane. Geometrical properties of the cytoskeleton
that can be obtained from the model include the transverse
thickness, the equilibrium separation of the junction complexes and
the magnitude of the steric interaction between different spectrin
elements. The latter property affects the motion of large proteins in
the bilayer and will be described in Chapter 3. The model predicts
elastic properties including the shear modulus as well as the area
and volumetric compression moduli. The model also is used to probe
the effect of externally applied stresses on the elastic moduli (as will
be discussed in detail in Chapter 5). In addition, the reference model
described in this chapter can be modified to examine the dependence
of the cytoskeleton elasticity and geometry on the attachment points

of the membrane skeleton to the bilayer.

The model cytoskeleton in this thesis is viewed on the scale of
ten nanometers, but is computationally restricted to 1nvestigate
systems on length scales of half a micron at the most. Although this
is not sufficiently large to allow direct comparison with some of the
experimental data, such as micropipette aspiration (Discher et al.,
1994) or flicker eigenmode decomposition (Strey et al., 1995), the
microscopic model can be used as a basis to develop effective two-
dimensional models applicable on length scales of 0.1 to 10 um. In an
effective model of the cytoskeleton, a spectrin tetramer is viewed as
a single component, such as a harmonic spring, rather than as an
object with many subcomponents, such as a polymer chain. While an
effective network may not possess all of the characteristics of a

microscopic computational model, it does allow one to investigate
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systems on larger length scales and to compare the microscopic
model with the known properties of two-dimensional networks. For
example, the elastic properties of triangular networks confined to a
plane have been determined as a function of stress (Boal, Seifert and
Shillcock, 1993), while the elastic and geometrical properties of two-
dimensional triangulated networks fluctuating in three dimensions
have been computed at zero stress (Le Doussal & Radzihovsky, 1992;

Gompper and Kroll, 1991).

The chapter is organised as follows. In Sec. 2.2, we describe the
microscopic model of the cytoskeleton/bilayer system as a
triangulated network of polymer chains and the Monte Carlo
technique wused to generate a set of configurations that properly
samples the fixed-stress ensemble. Next, the behaviour of the
geometrical properties of the model cytoskeleton is studied in Sec.
2.3. This is then followed by Sec. 2.4, in which physical values are
assigned to the model parameters such as the number of segments
on each chain and also the polymer potential parameters. A

summary of Chapter 2 is found in Sec. 2.5.

2.2 The reference model

The computational reference model that we use in probing the
structural characteristics of the erythrocyte cytoskeleton under
stress is similar to one that has been used to predict cytoskeleton

properties at zero stress (Boal, 1994). The two main components of
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the plasma membrane that make up our computational reference
model are the bilayer and the attached network of spectrin

tetramers.

In our computational model, the bilayer is flat and lies in the
computational xy plane. The rationale for the flatness assumption is
as follows. In the treatment of the elasticity of bilayers, it was
conjectured by Canham (Canham, 1970) and others, that the
statistical behavior of a fluid membrane, freely fluctuating in a
solvent, can be studied within a continuum model based on the

following Hamiltonian:

Hel = JdA [(Kp/2)(C1+C2-C0)? + KsC1Cal, (2.1)

where C] and C, are the principal curvatures at a given point in the

membrane surface and Cg 1is the spontaneous curvature. In the

continuum model, Cgp, Ky, (the bending rigidity) and K; (the Gaussian
bending coefficient) are intrinsic characteristics of the membrane

arising from 1its chemical composition. The ground state of the

continuum model, for fixed values of Cg, Kp and Kg, is found by

varying C1 and C7 across the membrane surface to minimize He.

Experimental evidence shows that the bending modulus Kp of a

pure (DMPC) phospholipid bilayer is of the order of 10-25 kg7 (Evans

and Rawicz, 1990). The persistence length & of a membrane governed

by Eq. 2.1 has been estimated by de Gennes & Taupin (1982), to be
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approximately

E = agexp (2MKyp /kpT) (2.2)

where d, is a molecular lengthscale (~ 1 nm). For Ky ~ 10 kg7, this
yields an astronomically large value of 1015 km for é This value for
é may seem unphysically large; but 1t does tell us that the
persistence lengths of bilayers are not small and that the bilayer
does resist (if not strongly) bending 1in the transverse direction.
Based on this observation, it is not inappropriate to make our
computational bilayer flat on the simulation length scale of

approximately one micron.

With respect to the RBC membrane cytoskeleton, studies (see

Steck, 1989) have shown (in situ) that the cytoskeleton has a high

degree of extensibility. The span of the spectrin tetramers on the

intact RBC membrane is ~ 76 nm, which is approximately 37% of the
contour length of the 200 nm tetramer, a ratio of 1:2.6 (see also Liu
et al., 1987). On the other hand, photographs (taken via transmission
electron microscopy) of the RBC cytoskeleton (Heuser, 1983), have
also shown that spectrin tetramers are highly convoluted filaments
connecting short, linear actin filaments. Recall (from Chapter 1) that
isolated spectrin behaves much like a highly flexible filament;
besides being able to be collapsed into a compact form, it can also be
drawn linear. As pointed out by Stokke er al., (1986a,b), this

behavior of the spectrin filament is similar to what 1s expected from
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a polymer chain in a solvent, in which the elasticity of the chain is

governed by the entropy of the chain configurations.

ree

(b)

Fig. 2.1 Diagram shows two different configurational states of
a polymer chain. (a) Chain fully extended and its end-to-end
distance [; is defined as the contour length. (b) Chain in its
natural relaxed state; its mean end-to-end distance <rge> 15

much smaller than its contour length /.

From the behavior of random walks (for a review, see Doi and
Edwards, 1986), entropic considerations result in the average end-to-
end distance <ree> of a polymer chain being shorter than its contour
length [.. This is seen as follows. Consider an ideal chain (no self-
avoidance) with ngeg segments each of length a: <ree/a > grows like

Nseg!/2, while [c/a is equal to ngeg!. Thus, <ree>/lc scales like
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nseg /2, showing that <ree> is shorter than [c. Thus, the polymer

chain, in its natural resting state, is convoluted (see Fig. 2.1)

Stretching a freely-jointed chain from its equilibrium
configuration decreases 1its entropy and hence increases its free
energy. This means that, if we were to constrain a polymer chain by
having its ends fixed at specified points, the chain will be acted on by
a tensile force (in the direction of the line joining its ends) which is
proportional to the end-to-end distance of the chain. The effective
spring constant of an ideal chain (ns5eg segments) at modest
deformations is given by ksp = dkgT/ree?, where kg is Boltzmann's
constant, 7 is the temperature, ree 1s the average end-end distance of
the chain and d is the embedding dimension. We refer to the
polymer chain, therefore, as an entropic spring. (For a more detailed

development of this, please see Appendix A).

The shear modulus of the RBC cytoskeleton network has been
observed experimentally to be approximately BU<A > = T7-11,
where [ is the inverse temperature (kgT)-! and Ay is the mean area
per junction vertex if the cytoskeleton network 1s taken to be a
uniform triangular network (Ay = 5x103 nm?2). If one were to treat
the spectrin tetramers as ideal polymer chains with an effective
spring constant kgp = 3kBT/<ree?> (see above) and <ree?> = a2ngeg,
then a network of such chains has Bu<A,>= 1.1 (see Appendix B for
review of the calculation). Of course, a network of truly ideal chains
collapses (Kantor, Kardar and Nelson, 1986), and self-avoidance of

the chains must be included to describe physical systems. However,
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the above order-of-magnitude description of the erythrocyte
cytoskeleton elasticity shows that the use of polymer chains with
excluded volume effects would be a reasonable model for the actual

RBC cytoskeleton.

In our reference model, then, each spectrin tetramer is
modeled by a single polymer chain with ngey segments, and the ends
of the chains are linked together at sixfold-coordinated junction
complexes. The vertices defined by the segment endpoints can be
either 2-fold coordinated (along the chain) or 6-fold coordinated (at
the junction complexes). To mimic the way the cytoskeleton appears
to be attached to the bilayer of the red blood cell, the midpoint of
each chain is constrained to move exclusively in the computational
xy plane representing the bilayer. All other chain elements are

restricted to move in the positive z direction (that represents the

cytoplasmic side of the bilayer) through elastic collisions with the
bilayer. Since the way the cytoskeleton actually attaches itself to the
bilayer 1s not known unambiguously, two alternate attachment
models are described in Chapter 5: (1) attachment of the
cytoskeleton to the bilayer at the junction complexes and (2)
attachment at both the midpoints of the chains and the junction
complexes. The reference model as described in this chapter (and
also in Chapters 3 and 4) has the attachment point only at the

midpoints of the chains.

In a previous study of the elastic properties of the erythrocyte

cytoskeleton (Boal, 1994), the chains were modeled by bead-and-
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tether potentials, which is efficient for Monte Carlo (MC hereafter)
type simulations. But, we would like eventually to extend our study
to dynamical phenomena such as diffusion. To incorporate explicit
time evolution of the system, the simulations in this thesis are based
on molecular dynamics (MD hereafter) techniques, which require a
smoother interparticle potential than the step-functions used in the
bead-and-tether models. We use a potential developed by Bishop,
Kalos and Frisch (BKF hereafter; Bishop, Kalos and Frisch, 1979) and
well documented in other recent simulation work on polymers (Grest
and Kramer, 1986). In the BKF potential, any two vertices are subject

to a short-range repulsive potential,

Viep (r) = 4€ {(0/n)12 - (0/r)°+ 1/4)  0<r<2V/60
(2.3)
= 0 r>2logo

where € and O are the fundamental energy and length scales of the
simulation and r is the inter-vertex distance. In general, modelling
the complete bond potential of a polymer chain involves a length and
energy scale as determined by Eqgs. (2.3) and (2.4). Each individual
spectrin chain (in our reference model) 1s being modelled as a freely-
jointed chain, whose segment lengths are determined from the
known geometry of the RBC cytoskeleton. Thus, no direct mapping of
the simulation potential parameter € onto experiment is necessary.
To facilitate the implementation of the simulation, the energy scale &€

is then set equal to kg7 and the force is measured in units of €/0.




25

Each vertex along the chain is connected either to two (along
the chain) or six (at the junction points) nearest-neighbour vertices

through the potential

Vaur(r) = =0.5T'R2In[1-(r/R ¢)2] (2.4)

where I and R. are parameters. Choosing the parameter set K. /0 =
1.5 and I'c2/¢ = 30 (Grest and Kramer, 1986), the combined
potential Eq. (2.3) and (2.4) has a minimum at /0 = 0.97. A leapfrog
algorithm (Allen & Tildesley, 1981) is used to integrate the equations
of motion with time step Ar= 0.005(m 02/€)1/2 where m is the
vertex mass. Fixing values for O and the temperature allows the
presentation of simulation results in physical units. The investigation
of time-dependent phenomena, such as diffusion, would necessitate
the incorporation of viscous (hydrodynamic) effects to determine the

parameters such as m, which is beyond the scope of this thesis.

In the simulations, 16 (4 rows of 4 vertices each) junction
vertices are used; and ngeg, the number of segments along a given
chain, is varied over the range from 10 to 26. The simulation to
determine the geometrical and elastic properties of the model
network 1is carried out at constant temperature and pressure via a
combined MC and MD algorithm with periodic boundary conditions
(PBC hereafter) in both x and y directions. The MD algorithm is used
to speed up the relaxation of the network, as it allows the system to

probe configuration space more efficiently. The lengths Lx and Ly of
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the periodic rectangular boundaries are allowed to fluctuate
independently following a MC algorithm developed by Wood (Wood,
1968). A set of configurations with varying Lx and Ly selected with
the appropriate Boltzmann weights are generated for each pressure
and chain segmentation of interest. Testing of the accuracy of the
simulation program described above is done through comparison of
selected simulation results with that obtained using a independently

written simulation code (private communications with Boal, 1993).
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Fig. 2.2 Plot showing the relaxation of the simulation box
lengths Ly and Ly, as a function of the number of MC sweeps.

Here, the plot is for ngeg = 20.
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For the purpose of analysing ensemble averages of observables,
between 300 to 600 configurations are stored for each parameter set,

with each configuration separated by 7 = 2.5 x 104 MC sweeps to

reduce the correlation between successive configurations. The choice
for T above is based on the following observation. The longest
relaxation (Rouse model) time of an ideal polymer chain in a solvent
grows like nsegz (De Gennes, 1979) MC steps, so the relaxation time
for our polymer network is expected to be large. Though systematic
relaxation studies were not done, we observed that, for example (see
Fig. 2.2), it takes approximately 5 x 103 MC sweeps (coupled with
5000 interleaved MD steps, with 1 MD step per MC step) for the
network (ngeg = 20) to relax from a cold start (perfect hexagonal

network) to its equilibrium state.

The primary assumptions that go into setting up the
microscopic reference model of the RBC membrane cytoskeleton are:
(1) the natural resting state of the cytoskeleton network is its zero
stress equilibrium state, P = 0. (2) The ratio of the contour area to the
resting state area 1s equal to seven (Steck, 1989). Here, in the
reference model, the contour area is obtained by having the network
lie flat in the computational xy plane, with all the links in the chains
straightened out and the length of each segment equal to its zero

temperature value of 0.970. Hence, the contour area per junction

complex A. is given by

Ac = (31/2/2)(0.97nseg0')7—. (2.5)
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A snapshot of an equilibrated network (with ngeqy = 20) of the
reference model at zero stress is shown in Fig. 2.3, which shows a
face-view of the network, looking down the positive z-axis towards
the computational xy plane representing the bilayer. Note that the
chains are highly convoluted as one might expect from a network of
polymer chains. The out-of-plane thickness is a couple of segment

lengths.

Fig. 2.3 (a) Diagram showing (+z axis view) an equilibrated
configuration of the reference model network of the RBC
cytoskskeleton. The chains with the darker shade lie further
back into the background. Here ng., = 20. The crosses
represent the locations of the sixfold junctions.
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2.3 Network geometry

In order to determine the value of Nseg which would allow us
to model the geometrical and elastic properties of the RBC
cytoskeleton, we would need to know how the mean area of the
network scales with ngeg. As discussed previously in Sec. 2.2, the
end-to-end distance of an ideal chain is smaller than its contour
length /.. The same general type of behaviour is also expected for a
network of polymer chains (the reference model) described in Sec.
2.2. From the simulations, we find the equilibrium network area per

junction <A;>as a function of the ngeg to be given by (see Fig. 2.4),

<Ajl02 > = 2014, 12, (2.6)
2
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Fig. 2.4 Behavior of the mean network area per junction
complex <Aj> as a function of the number of segments ng., in
each chain. The solid line through the data points is the

equation 2.0nseg] 2,
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which shows that the mean area per junction complex of the network
does indeed increase with ngeo. Even though the network area
increases with ngeg, the network area shrinks relative to its contour

area. This can be seen as follows. The contour length of an ideal chain

is approximately ngegO, so that the contour area per junction
complex Acis (31/2/2)(ngeg0)? (see Eq. (2.5)). The end-to-end
distance <ree> of an ideal chain is approximately equal to ngegl/20
and, hence, the equilibrium area per junction complex Ajideal scales
like ngeg!. The ratio Ajideal/A then scales as nseg~!, which clearly
shows that the area of a network of ideal chains does shrink relative

to its contour area as fgeg Zrows.
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Fig. 2.5 The contour area per junction A 1s compared with the
mean area per junction vertex <Aj>. The solid line through the

data points is the equation A¢/<Aj> = 0,4nseg0-8.
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Now, consider the case with self-avoidance of the chains
included. In this case, the end-to-end distance <rge> of an isolated
chain scales approximately as nseg?-¢ (see de Gennes, 1979) so that
the equilibrium network area <Aj> should scale like ngeg!-2 (which
agrees well with the simulation result in Eq. (2.6)). The ratio <Aj>/A
scales like ngeg=0-8, showing again that <Aj> decreases relative to A
as ngeg increases, much like the former case of the ideal polymer
chain network. Fig. 2.5 shows the ratio of A./<Aj> for the reference
model network as a function of ngeg at zero pressure. We find that

Ac/<Aj> can be fitted by ().411532(:,30-8 (solid line in figure).
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Fig. 2.6 The mean height <t> of the network as a function of
the number of segments ngeg along the chain. The straight

line shows the fit <t>/0 = 0-11”seg0'9-
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Since the mean in-plane area per junction vertex <Aj> of the
network is significantly less than its contour area per junction vertex
A, it is no surprise that the network has, on the average, a finite
displacement from the computational xy plane. The average

displacement <t> of the network from the xy plane (bilayer) may be

estimated as follows. For a single network configuration, the

displacement ¢ is defined as the average displacement in the +z
direction of all the vertices in the network, including the ones that
are tacked to the xy plane. Note that, hereafter, the thickness of the

network is defined as 2<¢>. The ensemble average <¢> is found to

scale with ngeg as (see Fig. 2.5),

It should be noted that the scaling behavior of both <Aj>and <¢> as a
function of ngeg is similar to what was observed in a previous study

of the network using square-well potentials (Boal, 1994).

As mentioned in Sec. 2.2, one of the requirements used to

set the parameter of the reference model is that the ratio Ac/<Aj>
should be equal to seven. This allows us to fix ngeg at 32 (see Fig.
2.5). The physical value of O, on the other hand, is fixed by the
contour length of the spectrin tetramers, taken to be approximately
equal to 200 nm (see Steck, 1989). The contour length, together with
Nseg = 32, gives 0 = 6.4 nm. Using the values of ngeg and O obtained

above, we find that the mean displacement of the erythrocyte
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cytoskeleton from the bilayer is predicted to be approximately 16

nm (see Eq. 2.5). With the bead-and-tether model (Boal, 1994), <> =
I5 nm. Thus far, the mean displacement of the RBC cytoskeleton has

not been measured.
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Fig. 2.7  Scatter plot of the area per junction vertex Aj and
displacement ¢ for ngeg = 20 for 600 configurations. Each point
represents a pair of values (Aj/<Aj>)-1 and (t/<t>)-1. Note that
the dispersion of the network area Aj and displacment ¢ is less
15%.

We also find that the fluctuations of Aj and ¢ around their
mean values are not large. In Fig. 2.7, we show a scatter plot of the
values of Aj and ¢ for the particular choice, Nseg = 20. What is shown
are the values of (Aj/<Aj>)-1 and (1/<t>)-1 for each configuration
used in calculating the ensemble average. As expected, the data
points cluster near the origin, and few configurations fluctuate more

than 15% away from the mean. Fig. 2.7 shows that there is no
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observable correlation between Aj and ¢. This tells us that, in our
simulations, the reference model does not maintain an approximately
constant volume per junction vertex; i.e, when the area of the
network 1is larger than average, the displacement ¢ of the network
does not necessarily compensate by becoming smaller than average.
This i1s in contrast to the bead-and-tether network (Boal, 1994),
where there is a reasonably strong correlation between Aj and ¢, thus
providing relations between several of the network elastic constants

(this point will be explored further in Sec. 2.4).

2.4 Network elasticity

The elastic moduli K (area compression modulus), i (shear
modulus), Ky (volume compression modulus)and Y; (Young's
modulus for network thickness) can be obtained from fluctuations in
the PBC box size and network thickness (for a review of the
definitions of the elastic moduli and the method of extraction from
the simulation, see Appendix D). Because the moduli are determined

from fluctuations, there is a greater uncertainty in their values than

there is for <Aj> or <t >. The errors in the moduli quoted

below are approximately 20%.

The elastic moduli plotted in Figs. 2.8, 2.9, 2.10 and 2.11 are

rendered unitless by multiplying each of those quantities by the

appropriate powers of O and by the inverse temperature B. Fits to

the data which go into Figs. 2.8 and 2.9 show that the in-plane



moduli are described approximately as,

BKAC?2 = 192 ngeg=20 (2.8)
Buc? = 81 neee 290, (2.9)
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Fig. 2.8 In-plane area compression modulus K o measured for
the reference model as a function of ngegq. Data are obtained
for a system of 16 sixfold junction vertices. The straight line is

the fit BKAG?Z = 192n5¢72:0.

This gives a ratio of the in-plane compression modulus to the shear
modulus of 2.4. It 1s known (Boal, Seifert and Shillcock, 1993) that
for two-dimensional networks of Hooke's law springs, the ratio
Ka/l, at zero pressure, is exactly equal to 2. Recent work carried out
on a similar type of network (Hansen, Skalak, Chien and Hoger,
1996), which included defects in the network's connectivity, also

found Ka/l = 2, indicating that inclusion of randomness in
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connectivity may not necessarily affect some of the characteristics of

the network.
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Fig. 2.9 In-plane area shear modulus g measured for the
reference model as a function of nseg. Data are obtained for a
system of 16 sixfold junction vertices. The straight line is the

fit Bo? = 8lngeg™20.

A dimensionless quantity that allows comparison of the
simulation results with known experimental data and also with
networks of 1deal chains is ﬁG<Aj>, where G 1s the appropriate in-
plane elastic modulus (namely KA and [) and Aj is the network area
per junction complex. Table 2A shows the values of BU<Aj> and
ﬁKA<Aj> for the three different cases: (1) triangulated network of
ideal chains (see Appendix B), (2) physical RBC cytoskeleton (Waugh

and Evans, 1979) and (3) simulation results of the reference model.
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Triangulated RBC Reference
network of cytoskeleton model
ideal chains (experiments)
Pu<Ap> = ] 7-11 10
,BKA<Aj> = 2 14-22 24

Table 2A  Comparison of simulation results (ngeg = 32) with an

ideal network model and with the micropipette aspiration
experiments. Measurement of RBC flicker at long length scales
gives a vanishing shear modulus.

From Table 2A above, one can see that the normalised in-plane
elastic moduli for a network of ideal chains differ by an order of
magnitude from those of a RBC cytoskeleton and also from those of
the reference model (evaluated for ngeg = 32). Furthermore, there is
no dependence, in the ideal chain case, of the normalised in-plane
elastic moduli on ngeg (see Appendix B), while over the range of ngeg

investigated in the simulation, Egs. (2.6) and (2.9) predict that

This apparent difference in the scaling behaviour between
ideal networks and the simulation is expected, since the simulation
includes steric interaction among the chains and between the chains
and the bilayer, which is absent in the ideal chain case. Table 2A
shows, however, that the normalised in-plane moduli agree well with
the experiments (within the wuncertainties of the simulation and

experiment).
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The other moduli which can be extracted from the simulation

are the volume compression modulus, Ky, and transverse Young's

modulus, Y |, which scale with nseg as (see Appendix D for

defintions):
BKyvo3 = 1583 nseg”‘2~8 (2.11)
BYio3 = 44 nseg_o'é' (2.12)
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Fig. 2.10  Volume compression modulus Ky obtained in the
reference model as a function of ngeg. Data are obtained for a
system of 16 sixfold junction vertices. The straight line is the

fit BKyo3 = 1583nge728.
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The data for these two moduli are shown in Figs. 2.10 and 2.11,

respectively. The uncertainty in the exponents of the elastic moduli

in Eqs. (2.8)=(2.9) and (2.11)-(2.12) is about 10%.
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Fig. 2.11  Transverse Young's modulus Y| measured for the
reference model as a function of nseg. Data are obtained for a
system of 16 sixfold junction vertices. The straight line is the

fit BY | 63 = 44n4eo=0-6.

The decrease in the moduli with Nseg, as observed in the
simulations, is expected. Recalling the analogous case of an ideal
chain, we know from statistical considerations that the elastic spring
constant is inversely proportional to ngeg. That is to say, as Rseg
increases (with the segment length kept constant), it becomes easier

to pull on the chain. Taking this idea a little further, if we have two
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polymer chains of different lengths and consisting of different
numbers of segments (with identical segment lengths on both
chains), the longer chain will be less resistant to tensile stress. This is
due to the longer chain being "floppier", i.e., the available
configuration space for the longer chain in moving from one state to
another is significantly larger than that for the chain with a smaller
number of segments. Consider now applying this analogy to a
triangulated network consisting of such chains. One would expect
that, as nseg increases, the network expands, becomes more open,
and thus offers less resistance to stress. Thus, the moduli are

expected to decrease with increase in Fgeg.

In Sec. 2.3, no observable correlation was found between the
network area Aj and the thickness ¢ for BKF polymer networks. This
is in contrast to the bead-and-tether model (Boal, 1994), where there
was a definite correlation between Aj and 7, a fact that allowed the
connection Y| = Ky to be made (see Appendix D). This equality is
not observed in Egs. (2.11) and (2.12), which is consistent with the
results extracted from the stress dependence of the moduli (in

particular, Kv and Y ) presented in Chapter 3.

Using 0 = 6.4 nm and ngeg = 32, the simulation predicts Ka =
1.8 x 10-5 J/m? and U4 = 7.7 x 10-¢ J/m? at T = 300 °K .
Experimentally, deformation of an RBC induced by micromechanical
manipulation (Waugh and Evans, 1979) gave a measured value of the
shear modulus to be approximately 6-9 x 10-¢ J/m2. A related

experiment (Engelhardt and Sackmann, 1988), using deformations
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induced by high frequency electric fields, yields 6+1 x 10-6 J/m2.
However, recent experiments on RBC flickering (Strey et al., 1995)
give a shear modulus approximately equal to 10-7 J/m?2. We do not
believe that this difference in the value of the shear modulus is an
inconsistency, since the various methods of extracting the shear
modulus were carried out on different lengthscales. In particular, the
lengthscales for measurements 1in our simulations and the
micropipette aspiration experiments are fractions of a micron; while

the flicker experiments measure fluctuations in the micron range.

From Eq. (2.11) and Fig. 2.10, the simulation predicts Ky = 1.4 x
103 J/m3 for the human erythrocyte. A measurement of this
compression modulus is currently being performed (Evans and
Ritchie, private communication). The transverse Young's modulus is
predicted to be Y| = 8.7 x 104 J/m3 (see Eq. (2.12) and Fig. 2.11);
however, there 1is currently no available experimental data to
compare with. While there may not be complete experimental data
available for comparison, the elastic moduli (with exception of the
transverse Young's modulus) agree well with the bead-and-tether
model (Boal, 1994). We believe that the discrepancy in the Young's
modulus is related to the ensemble used in our simulations. The
value of Y | obtained though a pure MC algorithm (private
communications with Boal, 1997) for an identical model network of
the cytoskeleton is found to be not much different from that for Kvy.
The two ensembles, canonical (pure MC) and

microcanonical/canonical (MD/MC) give different distribution of the
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values for ¢, leading to significant differences in the value of <r2> —

<r>2, which is crucial to the calculation of Y.

2.5 Summary

In this chapter, we have presented a reference model designed
to mimic the geometrical and elastic properties of the red blood cell
cytoskeleton. The membrane skeleton i1s modeled by a hexagonal
network of polymer chains with the number of segments rngeg on
each chain fixed by the known geometry of the cytoskeleton. The
network is attached to the computational xy plane (representing the
bilayer) at the midpoints of the chains. Other possible attachment
points will be discussed later, in Chapter 5. Simulations, utilizing the
Monte Carlo algorithm in the stress ensemble, predict that the
number of segments required to properly model the geometrical and
elastic properties of the RBC cytoskeleton is 32 and that the

elementary segment length is ~ 6.4 nm.

Furthermore, the elastic moduli of the network, at zero stress,
have been extracted. The area compression modulus KA is measured
to be approximately 1.8 x 10-3 J/m2, while the shear modulus is
equal to 7.7 x 106 J/mZ. The volume compression modulus Ky is
predicted to be equal to 0.9 x 103 J/m3 and the transverse Young's
modulus is equal to 6.1 x 104 J/m3. The value obtained for the shear
modulus is in agreement with one set of experiments carried out on

the RBC cytoskeleton. All the moduli extracted from the reference



model, with exception of the transverse Young's modulus, compare
well with those obtained with the bead-and-tether model (Boal,

1994).

Thus far, we have established the basic parameters of the
reference model that will be used to describe the RBC cytoskeleton.
In the following chapters, the reference model will be used to
analyze the geometrical and elastic properties of the network under
large deformations (isotropic and anisotropic). Comparisons will be
made between different models of attachment to the bilayer. The
known geometry of the reference model permits it to be used as a
computational laboratory for studying a number of aspects of

directed protein motion.
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Chapter 3
MODEL NETWORK SIMULATIONS AT
FINITE DEFORMATIONS

Sec. 3.1 Introduction

As mentioned in Chapter 1, the red cell undergoes a long
tortuous journey through numerous tiny capillaries, delivering
oxygen and removing carbon dioxide from the cells in the human
body. As the red cell passes through a capillary, it is often put under
a diverse range of shear stresses. The protein scaffolding
(cytoskeleton), which 1is attached to the cytoplasmic side of the
bilayer, bears the full impact of the shear stresses and, thus, helps to

prevent the RBC membrane from rupturing.

Numerous experiments (including micropipette aspiration and
flicker microscopy) have been used to measure the RBC cytoskeletal
network in-plane elastic constants at small (Zilker et al., 1992;
Peterson et al., 1992; Strey et al., 1995) and moderate stress (Waugh
and Evans, 1979; Hochmuth, 1987; Engelhardt and Sackmann, 1988;
Discher et al., 1994). In particular, micropipette aspiration (Discher et
al., 1994), coupled with flourescent labelling techniques, have been
used to visualise the response of the cytoskeletal network to applied
stresses. The experiment, termed flourescence-imaged micropipette
aspiration, was used to map the redistribution of the proteins and
lipids in highly extended human RBC membranes. At the entrance to

the micropipette, the cytoskeleton is condensed above its equilibrium
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density. However, the cytoskeleton density decreases steadily along
the surface of the RBC that is pulled into the tube and is below the
equilibrium density at the end or "cap" of the extended segment. This
variation of the surface density of the spectrin network along the
projection inside the tube indicates that the cytoskeletal network is,
indeed, compressible and also that the response of the network
depends on the kind of stress fields under which it is placed. One can
easily see this response by pushing a finger into a loosely woven
fabric (e.g., a sock). Complementary to the above experiments,
computer simulations of two-dimensional triangulated networks
have shown that the elastic moduli are stress-dependent (Boal et al.,

1993).

Our investigation into the elastic properties of the reference
cytoskeleton network has been based on the assumption that the rest
state (free-flowing biconcave form) of the RBC is not under stress. It
has been observed that a ‘"prestress" exists in the membrane
cytoskeleton of aging human erythrocytes (Mohandas and Groner,
1989). By this we mean that the normal resting state of the
cytoskeleton may be in a predetermined stressed state. This effect
could arise from the loss of membrane area as the erythrocyte ages.
We will present a detailed investigation of the effects on the
geometrical and elastic properties (due to finite deformations) of
networks whose resting state may be either prestressed or stress-

free.

In Sec. 3.2, we analyse the effect of finite stresses (applied
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isotropically) on the geometry of the network with ngeg = 32, while
in Sec. 3.3, the effect on the elastic properties is probed. Sec. 3.4
discusses the response of the network to stresses applied unixially
and Sec. 3.5 looks into the effect of incorporating a precompression
into the cytoskeletal network (changing ngeg from 32 to 14). The

chapter ends with a summary of the results in Sec. 3.6.

3.2 Cytoskeleton network under
isotropic stress - geometry

In this section, we study the effects of applying stresses to our
model network for which ngeg = 32. To put the network under
isotropic stresses in a computer simulation (that is to apply a lateral
tension on the network), the value of the lateral pressure, P, is set to
some non-zero values. Negative and positive values of P lead to
extension and compression of the network, respectively. While under
the applied stress, a simulated network is allowed to relax for
several million Monte Carlo steps before data samples are recorded.
The network observables that are sampled include the simulation
box lengths, Ly and Ly, the average bond length of a segment in a
particular configuration <b>, the mean in-plane area <A >, and also

the mean displacement <r> of the network above the bilayer.

Because a spectrin chain at zero stress has an end-to-end
distance of approximately 70 nm, which is about 1/3 of its contour

length, the cytoskeleton network may undergo considerable



Fig. 3.1 (a) Reference Model network under extension, —-ﬁPoz =
0.2. The chains are clearly stretched out by the tensile forces. (b)
The same network under compression, —ﬁPcr2 = —(.2. Note that the

chains are highly convoluted and the density of vertices is
clearly much higher than in (a). (ngeg = 32).

47
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expansion when subjected to lateral tensions. Fig. (3.1) shows two
configurations drawn from the simulation at values of [BP 0?2 equal to
0.2 (compression) and -0.2 (extension). Both diagrams are drawn to
the same scale, and the difference in network density is obvious: at
BP0C2 = 0.2, the network is approximately 6 times as dense as it is at

pPG?=-0.2.
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Fig. 3.2 Ratio <Aj>/A, of the network area <Aj>to reference area
Ao (at zero stress) as a function of in-plane pressure P. Notice that
the graph flattens out at both large extension (P < -0.5) and high
compression (P > 0.5). (ngeg = 32).

Recent micropipette aspiration experiments on intact red cell
membranes (Discher et al., 1994) have shown that the area of the red
cell network in reversible deformation can range from 0.5 to 4 times

its unstressed area (P = 0), depending on the magnitude of the



49

aspiration pressure. Our simulations (see Fig. 3.2) cover much of this
range. There are several distinctive features to Fig. 3.2. Under
compression, the network area per junction vertex decreases very
slowly, reflecting the importance of steric interactions between
network vertex elements. At large extensions (BP 02 > ~0.7), the ratio

<Aj>/Ao approaches its geometric limit of seven.

These observations can be understood in the following way.
Consider first the case of the network under compression. As the
compressive stress builds up, tending to "squeeze" the network, the
reduction in the area is resisted by the constraint that chains are
sterically forbidden to cross one another. The chains can move in the
transverse direction; but, the network/bilayer attachment limits this
movement (see Fig. 3.3II[b]). On the other hand, when the network 1is
placed under a tension, it expands monotonically, although the rate
of expansion (rate of increase of in-plane area with increase 1in
applied stress) decreases. This effect is due to the individual chains
reaching their contour length, equal to ngeg*(0.970). The small stress

regime (-0.08 < -[BP02< 0.08) is discussed further in Sec. 3.3.

The mean displacement <t> of the network above the bilayer is

shown as a function of pressure in Fig. 3.3(I). As expected, the trends
in <t> are the reverse of those of the mean network area per junction
vertex <Aj> (see Fig. 3.2): <r> is largest under compression and
decreases monotonically with increasing tension. For pressures more
negative than -fP02 = 0.7, <t> approaches the value 0.50, which

corresponds to approximately 3.2 nm, or a network thickness of
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Fig. 3.3 (I) Mean network displacement <¢> as a function of in-
plane pressure P. Notice that the graph tapers off at both large
tensions and at high compressions, consistent with the behavior
of Fig. 3.2. Notice also that the lower bound to <> is approximately
0.50 or 3.2 nm. (ngeg = 32). (II) Diagram showing the effect of
steric interactions among the chain elements on limiting the
mean displacement of the chain above the bilayer. Bold
horizontal line represents the bilayer. (a) When no sterics are
present, the two chains (each of N links) can overlap and the
thickness (equal to 2<t>) can theoretically reach ngego/2. (b)
Circles indicate steric barriers which force the chains apart. Note
that ngego/2 > h, where h is the displacement of the sixfold
junction from the bilayer.

roughly 10 or 6.4 nm. This lower bound on <r> is due to each
individual vertex of the chain, bouncing off the bilayer elastically,
thus preventing them from actually reaching the bilayer (see Chapter
2). The effect of the steric barriers which prevent chains from

crossing each other is illustrated in Fig. 3.3(II[b]).
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Fig. 3.4 Network volume per junction vertex Vjas a function of
in-plane  pressure P. The graph shows that V; increases
monotonically, from the compressed region to the extended
region. It then decreases again at roughly —gP o2 > 0.35. (ngeg =
32).

A measure of the cytoskeleton network volume can be

obtained by taking the product of the area per junction vertex with

the network displacement ¢ for each configuration of the sample. Fig.
3.4 clearly shows that the volume per junction vertex Vj increases as
the network is extended from its equilibrium state at zero stress. The
volume reaches a maximum at —fP02 ~ 0.35 before decreasing at
high tension. This indicates that, as one moves from the compressed
region to the extended region, the in-plane area increases faster than

the thickness 2<t> can decrease.
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Sec. 3.3 Effect of stress on network
elastic moduli

The in-plane elastic moduli KA and {4 are extracted via

fluctuations (see Appendix D) and are shown in Fig. 3.5 for the

pressures that were investigated. The compression modulus Ka has a

minimum around ——,BPO'2 = 0.1, and is significantly larger when the
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Fig. 3.5 Network in-plane elastic moduli as a function of in-
plane pressure P. Note that both Ko and y increase monotonically
as the npetwork is placed under tension. Under compression, only
KA increases significantly but not p. (Network has ngeg = 32).

network is placed under compression or tension. When the network
1s compressed, steric effects become increasingly important, and,
thus, resist the decrease in the in-plane area. This in turn leads to an

increase in KA. One should note that the observed increase in Ka
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during compression is realized only in the simulations as described,
since real membranes would crumple (or at least begin to crease)
under compression. On the other hand, when the network is placed
under a significant tension, the built-in tether constraints resist the
network being stretched beyond <Aj>/Ao, = 7, where A is the zero-
stress network in-plane area per junction vertex. This results in an

increasing Ka at large network extensions.

The shear modulus f shown in Fig. 3.5 shares several
characterstics with K a: (a) The shear modulus 1increases
monotonically when the network is placed under tension. This is due
to the network resisting shear by the triangular tether constraints.
(b) However, U does not increase significantly over the range of
compressive stress we have examined. This is not unexpected, since
tether constraints are only important for in-plane deformations

when the network is under tension and not compression.

Can the simulation results for in-plane geometrical and elastic
properties be described in a simple way? To answer this, we consider
a simple mean-field model of a two-dimensional network of springs
proposed by Boal, Seifert and Shillcock (1993). In this model, the

potential energy of an individual spring is given by

Uygr = (1/2) k (s = s0)2, (3.1)

where k is the spring constant, s is the variable length of the spring

and s, is the equilibrium length of the spring. If all springs have the
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same length, the geometry and in-plane elasticity of a network of

two-dimensional springs is described by:
<Aj>lAq = (1 + PIN3k)-2 (3.2)

Kalk = N3(1 + PN3k)/2 (3.3)

Wik = \N3(1 = N3P/k)/4, (3.4)
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Fig. 3.6 The ratio Ko/ as a function of the applied pressure P for
a two-dimensional triangulated network of springs in the mean
field limit. Ka/u is a strictly decreasing function of —P for the

range of values of P shown. This implies that the Poisson ratio of
such a network eventually becomes negative at large enough
tensions.

where A, = \/3502/2. Egs. (3.2) to (3.4) predict that, when the

network is placed under tension: (a) The network will expand; (b) Ka
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will decrease; (¢) M will increase. At zero pressure, the ratio Kao/U = 2,
as expected for a harmonic network of springs. Fig. 3.6 shows that
Ka/l is a strictly decreasing function of the stress for triangular
networks at low temperaure and eventually becomes smaller than I,
which implies that the Poisson ratio is negative at large tensions.
These predictions are valid only in the small fluctuation limit (i.e., for
a low temperature network), corresponding to the criteria that Bksq?
» 1. Another feature of this model is that it does not describe
networks under moderate compression, since the ideal triangular
spring network undergoes a collapse transition for P > (\/3 ! 8)k

(Discher, Boal and Boey, 1997).

We now return to see if Eqs. (3.2)-(3.4) describe our
cytoskeletal network model. At zero stress, the ratio Ko/ = 2.4 in
the reference model (see Fig. 3.5), which is consistent with that
predicted for the ideal two-dimensional spring network above. Fig.
3.7 (below) shows the behaviour of the ratio Ka/{ with respect to
variation in the applied stress. KA/l is greater than unity for P02 >
0 and then approaches 1 as the network goes from the compressed
state into the extended state. In the region, 0.1 < -BP02 < 04, Ka/lU
stays around the value of (1.00 x 0.13) before it starts increasing
again for —f3P 02 > 0.4. This implies that the Poisson ratio is initially
positive at low tension and decreasing as the tension increases. It
becomes (weakly) negative and then goes back to being positive
again. This behavior of the Poisson ratio is shown in Fig. 3.7(b) and is
expected since the Poisson ratio in two-dimensions is

(Ka/lt — DI(Ka/tt + 1) (see Landau and Lifshitz, 1968).



56

i lfllll! Lol |5 Y L Llid Ll H
3.0 m 1‘0 3“!||] 14 13 - R Lodod )
4w - N
4 1 3 (o] 14 5
] 2 001 Sy
2.0 - - 062 i -
3. - [ 1 N
= oo |
o (o] i a —
b4 7 B'U N g - L
1.0+ % e ® - 9 .04 -
=r o el
‘ 2 oot
O.G \1!(;(|.!i{5|[ff‘ ‘!1( il])(i(ll} _0‘2“"'{' ‘!I i}’lll]f{i‘ “’I}”
-0.10.0 0.1 0.2 0.3 0.40.5 0.6 -0.6-0.4-0.20.00.2 0.4 0.6 0.8
2 2 '
-pPo -BPo
(a) (b)

Fig. 3.7 (a) Ka/p as a function of in-plane pressure P. Note that
K a/u starts off positive and decreases as the network goes from
being compressed to being extended, eventually becomes less
than one and increases again after that. (b) Poisson ratio as a
function of in-plane pressure P. The horizontal bold line shows
clearly that the Poisson ratio does go negative but only weakly.

(flseg = 32)

Fig. 3.8 shows that <Aj>~1/2 is a linear function of the
tension (to a good approximation) in the small deformation regime,
which is a good indication of the harmonic response of the
cytoskeletal network at small stresses. The line through the data
points is a mean field fit (see Eq. (3.2)), in which the slope
(\/3ﬁk 02)-1 is observed to be approximately equal to 3.13 or,
equivalently, ﬁkeffgz = (.20, where kefr is the effective spring
constant of an equivalent ideal triangulated network. Since O = 6.4

nm, this implies that kefr= 2 x 10-5 J/m2.

Fig. 3.9 shows the variation of Ka and U at small stresses. Both
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Fig. 3.8 Plot shows <Aj>”l/2 is a linear function of the applied
pressure. The line through the data points is the mean-field fit
given by Eq. 3.2. (ngeg = 32).

Ka and U are observed to be approximately linear in the pressure P.
The solid line is the linear fit (see Eq. (3.3)) to the Ko data and gives
,BkeffO'z =~ 0.2, while the dashed line (see Eq. (3.4)) is the linear fit to
the [ data which also gives ,Bkeff0'2 = 0.2. These two results provide
a self-consistency check for our simulation results. Furthermore, the
fluctuations of the sixfold junctions around their mean positions can
be compared with those of those of an equivalent two-dimensional
triangulated network of springs and found to be consistent with

lBkeffO'Z = 0.20 (private communications with Boal, 1996).

The mean area per junction at zero stress A, is found to be
120062 corresponding to an interjunction length s, of approximately

11.80. Thus each chain in the network, in terms of the interjunction
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Fig. 3.9 Elastic moduli K5 and u as a function of the pressure P.
The solid and dashed lines are the mean field fits to the Ko and u
data respectively. (ngeg = 32).

,Bkeffsozz 32. This spring constant 1is large and corresponds

to small fluctuations in the interjunction spacings.

At large tensions, the network is observed to be stretched
significantly and the transverse motion of the chains is highly
restricted compared to the small stress regime. Entropic effects are,
thus expected to be less important in comparison to the energetics of
the chains in determining the elasticity of the network. The triangles
(formed by three neighbouring sixfold junctions) are also observed to
have approximately the same shape (equilateral on average; see Fig.
3.10). This observation leads to the proposition that the network at

large deformations can be modeled by a two-dimensional
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Fig. 3.10 Picture of a highly stretched network (-BPc2 = 0.7).
Notice that the triangles are approximately the same equilateral
shape. (ngeg = 32).

triangulated network whose junctions interact with their nearest
neighbours via a square-well potential (for a review on such
networks, see Boal, 1994). In a mean field approach in which all
triangles have the same equilateral shape, the area <Aj> at large
deformations can be shown to vary (see Appendix C) with the

applied stress P in the following way:

<Aj> = 1/P (1 + BPAn], (3.5)
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Fig. 3.11 Plot of BP<Aj> versus -BPo2. Open squares represent the
simulation data and the line running through the data points is
the mean field fit where the network is assumed to be made up of
identical equilateral triangles. (ngeg = 32).

where A, represents the maximum area attainable by any triangle
in the network and P < O represents a tension. Eq. (3.5) can be
applied to the simulation data (Fig. 3.11) and yields a value for Ap of
approximately 7, which 1is consistent with the fact that our

cytoskeletal network model is built on the criterion that the ratio

<Aj>lAc = /7.

The out-of-plane elastic moduli, the volume compression
modulus Ky and the transverse Young's modulus Y, are shown in
Fig. 3.12. The volume compression modulus Ky displays a minimum
near zero stress, while increasing as the network is placed under

either a tension or a compression (the origin of this behaviour is the
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Fig. 3.12 Network out-of-plane elastic moduli as a function of in-
plane pressure P. Ky has a minimum near zero stress and
increases monotonically on both sides of this minimum, while Y

decreases monotonically with increasing -fPog?. (Data for Nseg =
32).

same as that of K under stressy. Fig. 3.12 shows the transverse
Young's modulus Y to be significantly larger than Kv in most part of
the range of P. As was explained earlier in Chapter 2, values of Y|
extracted via a MC method (private communications with Boal,
1997), gave a mean square difference in <f> to be an order of
magnitude larger than that in the MD/MC case. We believe this
difference to be the cause of the significantly large values of Y, in
our simulations. The MD part of the simulation algorithm (see
Chapter 2) seems to quench out the fluctuations in the mean

displacement <f>.
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Sec. 3.4 Anisotropy of the cytoskeletal
network

The anisotropic response of two-dimensional triangulated
networks at large deformations has been demonstrated for square-
well-type interactions between network junctions (Discher et al.,
1997). Under substantial network deformation (when strains are
about 90% of their allowed maximum), the stress/strain relation in
one of the principal directions is found to be different from that in

the orthogonal direction.

We have probed our cytoskeleton network for the same kind of
anisotropic response. In our cytoskeleton simulations, we apply a

non-zero stress in a chosen direction (x or y) and set to zero the

stress in the orthogonal direction. Figs. 3.13(a) and (b) compare the
two states of the network under orthogonally applied stresses (x and
y directions respectively); note that the chains orthogonal to the
direction of the applied stress are crumpled up significantly and
forced to move into the space above the bilayer (indicated by the
light shading). The lengths of the simulation box orthogonal to the
applied stress, as shown in Figs. 3.13(a) and (b), are less than their
respective rest-state values; that is, the network shrinks in the
direction orthogonal to the applied stress. This is analogous to the
scenario when one pulls hard longitudinally on a rectangular piece of
rubber strip, and observes that the rubber shrinks transversely

(corresponding to a positive Poisson ratio).
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(b)

Fig. 3.13 Two states of our cytoskeleton network under
orthogonally applied uniaxial stresses. (a) Stress applied only in
the x-direction. (b) Stress applied only in the y-direction. Notice
the chains orthogonal to the applied stress are crumpled up,
while along the stress direction, the chains are well stretched out.
(Data for ngeg = 32).

Fig. 3.14(a) shows the response of the cytoskeleton network
over a wide range of uniaxial tensions. The strain variable <Li>/<Li>¢
is plotted against the uniaxial stress for two directions in the periodic
system: Lj= Ly or Ly. A difference in the values of <Lyx>/<Lx>o and
<Ly>/<Ly>o would be an indication of an anisotropic response of the
network to the applied uniaxial tension. One can see from Fig. 3.14(a)
that there 1is very little anisotropy present up to factors-of-two
change in the periodic box length. After this point is reached,
<Ly>/<Ly>q rises faster than <Lx>/<Lx>,. This is expected from the

geometry of the network. As seen in Fig. 3.14(a), the chains in the
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Fig. 3.14 (a) The stretch ratio <Lj>/<Li>, (i=x or y) plotted against

the uniaxially applied stress BSjjo2. Note that the stretch ratio is
in the same direction as the applied stress. Anisotropy appears
only at stretch ratios <Li>/<Li>y = 2. (Data for ngeg = 32). (b)
Diagram shows how shrinking the base BC of a triangle to B'C' (by
applying a vertical force F) without changing the sides AB/AC
can increase the height. This is the main reason why the stretch
ratio for y-axis wuniaxial tension rises faster than the
corresponding stress/strain relation 1n the x-direction (in the
region where the anisotropy 1is present).

and thus provide strong resistance to further extension. When

64

direction of the x-axis are close to their maximum tether constraint

the
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uniaxial tension is along the y-axis, the network can extend in two
ways: (1) Stretching the diagonal chains as one would expect. (2)
Shrinking the lateral distance between the junctions forming the
base of the triangles in the network (see Fig. 3.14(b)). Note that, due
to the triangulated geometry of the network, the effect described in

(2) does not cause the stretch ratio <Ly>/<Lx>, to increase when the

uniaxial stress is applied in the x-direction.

For small uniaxial stresses, we find that the strain parameter
(defined as [<Li>/<Li>¢ — 1]) is a linear function of the applied stress

ﬂSiiO'Q. This is shown is Fig. 3.15(a,b). The bold line is the linear fit to

the simulation data at small stress. The slope of that line is the

inverse of the Young's modulus (denoted by ﬂEiO'Q). The slope of the

line in Fig. 3.15(a) (uniaxial tension applied along x-direction) 1is

approximately equal to 4, which implies that BEx0?2 = 0.25. We can

calculate the effective spring constant of the chains keff, according to

Bketfo2 = BE;o2N3/2, (3.6)

which gives a value for ﬂkeffO'2 = 0.22. The linear fit in Fig. 3.15(b)
(for tension applied along the y-direction) yields a value for Bkerpo?
= 0.23. These two results for keff provide a consistency check for the

effective spring constant extracted from the 1isotropic-stress

simulations in Sec. 3.2, for which Bkefr02 = 0.2.

The Poisson ratio p, which provides yet another check on the
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Fig. 3.15 Plot of the stress-strain relation under uniaxial stress:
(a) Measured along x-direction as a function of the stress in x-
direction. (b) Measured along y-direction as a function of the
stress in y-direction. Note that there 1is little difference between
the two principal directions (x and y). Slope of bold lines is the
inverse of the Young's modulus.
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corresponds to a stress is along the x-axis and py denotes the
Poisson ratio for a stress along the y-axis.

consistency of our simulations, can be calculated via the formula (see

Lai, Rubin and Krempl, 1987), pi= (1 = Ac)/(Ae = 1), where A, =

[<Lj>/<Lj>0 — 1] (less than one), le = [<Li>/<Li>o — 1] (greater than
one), i denotes the direction (x or y) in which the uniaxial tension is
applied, and j is the respectively orthogonal direction (y or x). Fig.
3.16 shows that the zero stress limit of the Poisson ratio p, is
approximately the same in both directions of the applied uniaxial
tensions and lies in the range 0.31-0.35. This is again consistent with

the isotropic-stress simulations in which the measured value of the

ratio Ka/ll at zero stress corresponds to P, of approximately 1/3.
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Sec. 3.5 Prestress in the cytoskeletal
network

It has been suggested over the past couple of decades that the
red cell density grows with increasing cell age while in circulation
within the human blood system (Mohandas and Groner, 1989). This
led to the use of density separation of red cells (for example,
ultracentrifugation) in the study of red cell aging. It has been
observed (Mohandas and Groner, 1989) that, as the red cell density
increases, there 1s a loss of membrane surface area and a
corresponding decrease in cell voume (leading to an increase in cell
hemoglobin concentration), which also causes the cells to be more
spherical. This ultimately compromises the red cell's ability to
deform. A loss of cell surface area without a corresponding loss of
spectrin protein implies that the cytoskeleton in aging cells is under
a compressive stress; we call such cytoskeletons "prestressed". The

extent to which normal RBCs are prestressed is not known.

In this section, we explore the consequences of modifying our
model network of the cytoskeleton by placing the rest state of the
network under a prestress (or precompression). As was shown in
Chapter 2, the ratio Ac/<Aj>Tef (<Aj>ref is the reference rest-state
area per junction vertex) increases with ngeg. It was determined in
the stress-free model that ngeg must be 32 in order that AC/<Aj>fef:
7. It is possible to achieve the requirement that A /<Aj>ref = 7 for
Ngeg < 32; but, the reference rest-state area <Aj>ref must be that of a

compressed or prestressed state. Corresponding to each prestress



69

(denoted as ——,[)’HPSO'psz, where Ops 1s the lengthscale in the prestress
model), there is a value of ngeg that satisfies Ac/<Aj>ref: 7. Because
of the increase in statistical error when evaluating ensemble
averages for small ngeg (< 14), we choose ngeg = 14 as a limiting case.
Since the spectrin chain has a contour length of 200 nm, ngeg = 14

corresponds to assigning Ops the value 14.7 nm.
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Fig. 3.17 Mean area per junction <Aj> as a function of in-plane
pressure P for ngeg = 14.

To determine Ilpg, we need to note first that the contour area
per junction A¢ for ngeg = 14 is given by (\/3/2).(0.97nseg0'p3)2 or
approximately 160 Ops?. We then need to determine the mean area
per junction complex of the network in the compressed state
(denoted by <A>ps) such that the ratio A¢/<A>ps has a value of
approximately 7. Fig. 3.17 shows the relationship of the mean area

per junction vertex as a function of the applied stress P for ngeg = 14.
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We determine from Fig. 3.17 that the prestress ~,3Hp50’p52 needs to
be approximately equal to -1 (where the prestress rest-state area
<A>pg = 23 O’p52) to achieve the ratio A¢/<A>ps= 7. By allowing for
this readjustment in the applied stress, we define a new pressure
variable, AP, as the difference between the externally applied

pressure P and the intrinsic stress —Ilpg caused by the in-plane

shrinking of the bilayer
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Fig. 3.18 The area per junction <Aj> as a function of the stress for
nseg = 14 (prestress incorporated) in comparison with the stress-
free model (ngeg = 32). Although the two curves share the same x-
axis, the ngeg = 14 case has a built-in precompression equal to 1.85

x 10-5 J/m2.

where AP = P for ngeg = 32, since there is no precompression in the

stress-free model. We find in Fig. 3.18 (which incorporates the

physical unit conversions, 0 = 6.4 nm and Ops = 14.7 nm), that the
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prestress and stress-free cases have similar qualitative features, but
differ quantitatively. The in-plane area of the prestress case rises
more steeply than the stress-free case for tensions larger than 2 x

10-5 J/m2.

As with the stress-free model, we can extract an effective
spring constant (keff)PS for the prestress model at small applied
stresses (taken with respect to P = 0). This is shown in Fig. 3.19,
where the bold line, which i1s the mean field fit to the simulation
data, gives ﬁ(keff)PSO'psz ~ 0.83. Using the conversion Ops= 14.7 nm,
we get (keff)PS = 1.5 x 109 J/m2, which is approximately 25%

smaller than that extracted from the stress-free model.
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Fig. 3.19 Mean field fit (bold line) to simulation data for ngeg = 14
near ﬁPcrpS2 = (. Slope of line equals 1/(\/3ﬁkeffops),
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The qualitative similarity (in the in-plane area response to

stress) between the stress-free and prestress cases can also be seen
in the response of the mean displacement from the bilayer <t> to
applied stresses, as shown in Fig. 3.20. The <r> data for the nseg:14
case are larger than those of the stress-free case for most of the
range of AP. This is expected, since the prestress reference rest-state
is under a precompression, while the ngeg=32 case rest-state is under
zero stress. At large tensions (=AP > 5 x 105 J/m?2), this difference in
the <t> data between the prestress and stress-free cases is less
apparent. From Fig. 3.13, we recall that the chains in a compressed
state are generally more convoluted and forced away from the
bilayer. Hence, <r> 1is expected to be larger in the prestress

configuration compared to the stress-free configuration.
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Fig. 3.20 <t> as a function of the difference in stress for ngeg = 14
(prestress incorporated) and ngeg = 32 (stress-free model).
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Fig. 3.21 (a) Ka as a function of stress for ngeg = 14 (prestress
incorporated) and ngeg = 32 (stress-free). (b) Shear modulus u as a
function of the stress for ngeg = 14 (prestress incorporated) and
ngeg = 32 (stress-free model).

We now look at the effect of precompression on the elastic
moduli of the network. Fig. 3.21(a) shows that the area compression
modulus K is generally very similar both qualitatively and
quantitatively for the two models. The slightly larger values for the

prestress model, in the regime where the applied stress is
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Fig. 3.22(a) Kv as a function of stress for Nseg = 14 (prestress
incorporated) and ngeg = 32 (stress-free model). (b) Y| as a
function of the stress for ngeg = 14 (prestress incorporated) and

ngeg = 32 (stress-free model).

compressive, are again expected for a network under
precompression. The effect of sterics in producing large Kp values

during compression, is enhanced under the precompression.
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Fig. 3.21b shows that the two models differ little in the
behaviour of the shear modulus U under both compression and
tension. When the networks are placed under tension, the shear
modulus of the stress-free and the prestress models both increase
monotonically in magnitude. This is expected again, since the tether
constraints offer resistance to the stretching of the chains during
shearing under large tensions. Under compression, the shear modulus
of both models increases only very weakly, as now, the tether

constaints no longer play an important role.

The out-of-plane moduli, namely the volume compression
modulus Kvy and transverse Young's modulus Y, for the two models
follow the same trends. Fig. 3.22(a) shows that the behaviour of the
volume compressibility in the prestress model is again very similar
to that found in the stress-free model. Fig. 3.22(b) shows that Y, for
the two models share many of the same qualitative features, namely
it increases under compression and decreases under tension (see

Chapter 2 for a discussion on the magnitudes of Y ).

Comparison with experiments

To build a full-scale model of the red cell cytoskeleton using
the polymer chain model would be too computationally intensive and
beyond our available computational resources. To meet this end,
effective representations have been developed for the polymer chain
model of the cytoskeleton (private communications, Boal and Discher,

1996). In such representations, each spectrin tetramer is replaced by
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a single element (spring) subject to two- and three-body interactions.
The resulting "effective” model is then used for simulating the

micropipette aspiration experiments on red cells.

There is an inherent problem with using pure spring networks
to represent the cytoskeleton under large scale compression and
tension. Beyond some critical compressive stress, a pure spring
network collapses (Discher et al., 1997), while above a critical tension
(where Ka = 0), the network expands without bounds. Neither of
these cataclysmic events are seen in the physical or the model
cytoskeleton. To circumvent this problem, three-body interactions
must be added to the Hooke's law potential to provide lower and

upper bounds to the single-plaquette area of the network.

Sec. 3.6 Summary

Chapter 3 has focused on the effects of stress on the reference
network's geometrical and elastic properties. This study has been
carried out by applying either isotropic or anisotropic
tension/compression to the model network and analysing the

network's response.

In terms of the geometry, the graph of the mean area per
junction vertex <Aj> as a function of the applied stress —P (P < 0 is
tension while P > 0 represents compression) 1s "S"-like is appearance.
That is, at large tensions, <A;j> asymptotes to a value given by

Ac/<Aj> = 7, where A, is the contour area per junction vertex. This
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asymptotic limit corresponds to the resistance to area expansion
arising from the tether constraints built into the network chains.
Under compression, <Aj> also flattens out to some minimum value,
reflecting the fact that the chains are in close proximity and steric
interactions play an important role in preventing the network chains

from crossing one another.

The response of the mean displacement of the network from
the computational bilayer <z> is correlated to the behaviour of <Aj>.
When <Aj> approaches its maximum value, <r> tends towards some
minimum value; and, when <A;> reaches some minimum value, <t>
tends towards a maximum. However, for a fixed small stress, the
values of Aj and t are not particularly correlated within a given
configuration. That is, the product (Ajet) is not well conserved among

configurations.

The area compressibility K increases monotonically under
tension, increases under compression and has a minimum near zero
stress. The shear modulus U behaves in a similar way under tension,
but rises only weakly upon compression. The ratio KA/l is observed
to decrease monotonically with increasing tension to the value of
unity (about which the ratio oscillates for a small range of the
tension) and then increases again. This implies that the network has

a negative Poisson ratio for some small range of the tension.

The volume compression modulus Ky behaves similarly to Ka:

rising under tension, with a minimum at around zero stress, and
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increasing under compression. Contrary to this, the transverse
Young's modulus is observed to decrease monotonically with

increasing tension to some constant value.

Treating the response of the network under stress via a simple
mean field spring model, an effective spring constant keff of the
network is extracted and found to be equal to 2 x 10-> J/m? or,
equivalently, ,Bkeffso2= 32, where s, 1s the mean interjunction
spacing of the network attachment nodes. This 1implies that the
network junctions execute only small oscillations around their mean

position, or, equivalently, the junctions are "cold".

The consequences of a prestress (or precompression) present in
the rest-state of the network have been explored. The geometrical
and elastic properties of the cytoskeleton are qualitatively very
similar in both the precompression model and the stress-free model.
One of the main differences found is that the effective spring
constant in the prestress model (keff)PS has decreased to 1.5 x 10-5

J/m?2 when compared to that of the ngeg = 32 network at zero stress.

The reference network has also been observed to behave
anisotropically under large uniaxial tensions and is isotropic only
under small tensions. This observed anisotropy is expected because
of the hexagonal geometry of the network and corresponds to similar
anisotropies observed for triangulated networks of springs in two

dimensions.
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Chapter 4
BARRIER-FREE PATH SIMULATIONS

4.1 Introduction

Although lateral diffusion of proteins in the plasma membrane
is an important transport mechanism, specific confinement or
restricted motion of specific membrane proteins also plays a role in
the survival of the cell. Examples of membrane proteins whose
motion in the lipid bilayer is restricted include: (1) In the purple
membrane of Halobacterium halobium, the protein bacteriorhodopsin

self-assembles into large aggregates (see Fig. 4.1). As one would

Plasma membrane

bacteriorhodopsin

Fig. 4.1  Schematic drawing of the bacterium Halobacterium
halobium showing the light activated proteins (a proton
pump), namely bacteriorhodopsin, self-assembling into large
aggregates which diffuse very slowly within the plasma
membrane. (Adapted from Alberts, Bray, Lewis, Raff, Roberts
and Watson, "Molecular Biology of the Cell", 1989, page 298)
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glucose
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Fig. 4.2 Schematic diagram of an epithelial cell showing how a
plasma membrane protein is restricted to a particular domain of the
membrane. Tight junctions are thought to confine the transport
proteins to their appropriate membrane domains by acting as
diffusion barriers within the plasma membrane. This segregation
permits nutrient transfer across the epithelial sheet from the gut
lumen to the blood. As shown above, glucose is actively transported
into the cell by glucose pumps (proteins A) at the apical surface and
diffuses out of the cell by facilitated diffusion mediated by passive
glucose carrier proteins (proteins B) in the basal plasma membrane.
(Adapted from Alberts, Bray, Lewis, Raff, Roberts and Watson,
"Molecular Biology of the Cell", 1989, page 298)

expect, these large aggregates diffuse very slowly. (2) In epithelial
cells (lining the gut or tubules of the kidney), certain enzymes and
transport proteins are confined to the apical surface of the cells,

whereas others are confined to the basal and lateral surfaces. This

segregation of different types of proteins is thought to be
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maintained, at least in part, by the barriers set up by a specific type
of intercellular junction called a tight junction (see Fig. 4.2). (3) In
the red blood cell, the lateral motion of the immobile fraction of the
protein band 3 is restricted by its attachment to the membrane
cytoskeleton (see Fig. 4.3). This is an example of a protein whose
motion 1s constrained by attachment to a macromolecular assembly

located inside the cell.

0 Ankyrin

Band 3 associated
with Ankyrin

Band 3 not
associated with
Ankyrin

. Actin
Spectrin

Bilayer

Fig. 4.3 Schematic diagram showing the association of band 3
with ankyrin, anchoring the cytoskeleton to the bilayer.
These band 3 proteins are constrained in their lateral motion,
while other band 3 proteins would be free to diffuse both
laterally and rotationally.
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Numerous FRAP and SPT experiments have been used to probe
the diffusive behaviour of membrane lipids and membrane proteins
(such as rhodopsin). In addition to allowing extraction of diffusion
constants for proteins and lipids in the membrane, these experiments
also show evidence of restricted motion of proteins in plasma
membranes due to steric interaction with the associated cytoskeleton
(Koppel et al., 1981; Tsuji and Ohnishi, 1986; Edidin et al., 1991;
Kusumi and Yamamoto, 1993). SPT experiments, in particular,
provide a method of probing the geometry of the network by
measuring how far a protein can be dragged (by means of an optical
tweezer) before the protein encounters a "barrier" in the network
which causes it to be ejected from the optical trap. This distance
travelled by the protein can be used to construct a barrier-free path
length (BFP), which is observed to span a wide range of values

depending on protein and cell type (see Chapter 1).

There are various ways in which the lateral diffusion of
membrane proteins may be hindered. It has been proposed (O'Shea,
1984) that the concentration of integral membrane proteins plays a
major part in contributing to the low rates of protein lateral
movement. However, a computer simulation study (Pink, 1985) has
shown that increasing the protein concentration (fractional area of
the bilayer that is covered by proteins) from 0% to 50% leads to a
decrease in the lateral diffusion coefficient of less than a factor of 5.
This observation supports the opinion (Kell, 1984) that the
concentration of proteins alone cannot account for the low lateral

diffusion rates of membrane proteins.
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FRAP experiments (Sheetz er al., 1980) have shown that in the
mouse spherocytic erythrocyte, which lacks the major components of
a normal erythrocyte membrane matrix (composed of spectrin, actin,
bands 4.1 and 4.9), membrane proteins diffuse about 50 times faster
than in normal mouse erythrocytes. Thus, the low lateral mobility of
the membrane proteins in normal erythrocytes may arise from the
presence of the associated membrane cytoskeleton, interacting with
the membrane proteins. Fowler and Bennett (1979), using a
procedure designed to weaken the association of spectrin with the
membrane, observed a twofold increase in the lateral mobility of
band 3 compared to normal cells, which further supports the idea
that interactions of membrane proteins with the cytoskeleton do play

an important role in controlling the lateral mobility of proteins.

Several different models have recently been proposed to
explain how the cytoskeleton might affect the diffusive behavior of
membrane proteins. Zhang et al. (1993) proposed a '"transient
interaction model” (shown schematically in Fig. 4.4) to explain the
reduction in the lateral mobility of proteins for which ectodomain
interactions dominate the cytoplasmic interactions. In this model,
there is a class of proteins, termed "post" proteins, which are
tethered to and/or entrapped by the membrane cytoskeleton, much
like the protein band 3 in the RBC. The ectodomains of diffusing
proteins are thought to interact with the post proteins by transiently

sticking to the (relatively) immobile posts.

Tsuji and Ohnishi (1986) studied the relation between band 3
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Extracellular

Matrix

Pericellular
_ Matrix
Cortical

Cytoskeleton

"post" protein

transmembrane
protein

Fig. 4.4  Schematic diagram of the transient interaction model.
Immediately inside the plasma membrane 1is the cytoskeleton
while on the extracellular side of the bilayer, macromolecules in
the pericellular region interact with the ectodomains of the
membrane proteins. Post proteins are attached to or entrapped by
the cytoskeleton. Certain proteins bind briefly to the post
proteins through their ectodomains (circles A and B). (Zhang et
al., 1993)

lateral motion and the state of polymerization of spectrin. Using the
FRAP technique, they found that the movement of the mobile
fraction of band 3 (i.e. the fraction of band 3 not bound to ankyrin)
was restricted by the cytoskeletal network. The restriction was found
to be strongly dependent on the spectrin association state (that is, on
whether the spectrin molecules are in dissociated dimers or
associated tetramers). The above experimental results can be
understood through a so-called membrane cytoskeleton "fence”

model that incorporates the mechanisms for restriction of band 3
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translatiopal diffusion by the cytoskeletal network (Tsuji er al., 1988;
Kusumi et al., 1993).

In the fence model, ankyrin-bound band 3 proteins have no
translational mobility, while unbound band 3 proteins are able to
diffuse throughout the cytoskeletal meshwork. The diffusion beyond
a mesh can only take place if an opening occurs in the cytoskeletal
"fence", an event which can occur in several ways: (1) The spectrin
tetramer dissociates into dimers, (2) The distance between the
membrane and the cytoskeleton fluctuates, opening a "gate" for the
protein, and (3) the membrane skeleton dissociates from the
membrane. Experiments (Sako and Kusumi, 1994) that investigate
the movements of the E-cadherin (a cell-cell recognition-adhesion
receptor) in the plasma membrane of a cultured mouse Kkeratinocyte
cell suggest that the plasma membrane is indeed compartmentalized
into many domains (300-600 nm in diameter). This observed
compartmentalization of the plasma membrane into localised
domains is consistent with the predictions of the membrane-skeleton

fence model.

The "discrete-barrier model" of Saxton (1990) assumes that the
membrane skeleton forms an incomplete triangular lattice, in which
the bonds corresponding to normal tetramers act as barriers to
diffusion and the nodes correspond to actin proteins. Missing bonds
correspond to defective tetramers, including missing tetramers,
isolated dimers, and dimer pairs unable to associate. Changing the

fraction of bonds present in the model alters the diffusive behaviour
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of a protein in the lattice. As the fraction of bonds decreases, the
length of diffusion paths increases, and at the percolation threshold

long-range paths first appear.

Fig. 4.5 An unexpanded human red cell skeleton imaged by
transmission electron microscopy (Heuser, 1983). The spectrin
tetramers are in close proximity to each other and are highly
convoluted, producing a densely packed skeleton network.

Another model (Saxton, 1990) that has been proposed is the
"continuous-barrier model", which assumes that the membrane
protein moves through a region containing a continuous distribution
of barriers. That is to say, the protein is obstructed at every point in
the path. In an unexpanded RBC cytoskeleton, spectrin is observed to
be highly convoluted and spectrin tetramers appear to be in close
proximity to each other (see Fig. 4.5). Saxton (1990) proposed that
the dense-packing of spectrin would signficantly block long-range

diffusion, although short-range diffusion would still be possible (see
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also Saxton, 1982/1989b).

In our study of the directed motion of proteins in the
erythrocyte plasma membrane, we concentrate on the constraining
effects of the cytoskeleton rather than on the steric effects of
unconstrained 1in-plane obstacles (for example, glycoproteins and
mobile fractions of the protein band 3) present in the bilayer. The
rationale behind this choice 1is as follows: (a) Experimental
observations show that diffusion coefficients in spectrin-deficient
erythrocytes are as much as fifty times larger than those in normal
erythrocytes (Sheetz et al., 1980). (b) Simulations show that
increasing the concentration of membrane proteins in the bilayer
from 0%-50% only leads to a factor-of-five decrease in the diffusion
coefficient of proteins (Pink, 1985). Our model also focuses on
extracting BFP's, instead of diffusion coefficients, largely because
BFP's are unaffected by many dynamical attributes of the
cytoskeleton (for example, hydrodynamical effects) and are, thus,
easier to investigate than diffusion coefficients. The system chosen
for our simulations 1is the human erythrocyte. This choice 1is
motivated by the availability of experimental studies on RBC elastic
and geometrical characteristics, which can be used to test the

simulation results (see Chapters 2 and 3).

Sec. 4.2 of this chapter presents a simulation algorithm which,
in conjunction with the reference model of the erythrocyte plasma
membrane discussed in Chapter 2, allows the efficient simulation of

the optical tweezer experiments (Kusumi ef al., 1993). In Sec. 4.3, we
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study how the mean free path lengths of directed protein motion
vary with the dragging force and the size of the protein probe. The
method of extracting a BFP length also is summarized. Sec. 4.4
describes how large protein probes can be used to give a measure of
the size of a cytoskeletal "corral” (a region within which the protein
is confined). In contrast to this, Sec. 4.5 studies how small protein
probes can be used to extract an effective diameter for the
attachment points of the network. The chapter then concludes with a

summary of the results in Sec. 4.6.

4.2 The simulation technique

To simulate fully the protein-drag experiments, dynamical
aspects such as hydrodynamic flow of the cytoplasm around the
spectrin chains would be required. This kind of simulation is very
complex to carry out and is beyond the scope of this research. We
propose, instead, that experimental measurements of BFP's in the
limit of small optical trapping forces are approximately equivalent to
the simulation results obtained from a static cytoskeletal network at
infinitesimally small forces. We need to select a representative
cytoskeletal network from our simulations. We achieve this by
propagating a model network and selecting a configuration whose
value of Aj is within 1% of <Aj>, where Aj is the area per junction
vertex. Rather than generating many realizations (a realization 1is a
sample network configuration), we find it computationally more
efficient to work with a single, large realization. We do not need to

simulate an infinitely large system, given that the BFP's extracted
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from recent SPT experiments (Kusumi et al., 1993) are in the
hundreds-of-nanometers range. Thus, we select a single equilibrated
realization of the cytoskeleton network, which is larger than the
average barrier-free path and which properly represents the

geometrical properties of the network.

To simulate the protein drag experiments, a computational
protein is 1ntroduced into the network realization (prepared as
described above) at a randomly chosen location. The shape of the
computational protein is a sphere whose center is on the xy plane
representing the bilayer. The interaction Vpq between the protein p
and an element of the cytoskeleton q is taken to be similar in form to

Eq. (2.3),

Vpg(r) = 4E {(S/r)12=(S/r)6+1/4) 0<r<2V/6s
(4.1)
-0 r> 21/68,

where § 1is a variable reflecting the length scale of the protein-

spectrin interaction. (An effective protein radius Rg will be defined

in Eq. (4.6)).

The protein is moved through the network along a straight line
in a randomly chosen direction. The positions of the network
elements are held fixed throughout the protein motion. The protein
position is advanced in successive steps of size 0.0010 (where O is

defined in Eq. (2.3)). At each step, the force on the protein arising
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from the cytoskeleton is evaluated through Eq. (4.1). Once this force
from the cytoskeleton exceeds a predetermined thresholci value Fo,
the protein is deemed to have escaped from the trap, and the
displacement d from the start of the trajectory is stored. A total of

109 trajectories is generated for each parameter set, S and F,.

Fig. 4.6 Picture shows a view of a network realization (ngeg =
32) from the +z direction. The white spots indicate the
respective stopping points of the computational protein,
which are mostly located near the attachment points of the

network to the bilayer. (A total of 103 trial runs is shown).

Fig. 4.6 shows a view of the network from the +z direction
(cytoplasmic side of the bilayer). The shaded lines indicate the
position of the cytoskeleton, with elements nearer the viewer
indicated by lighter shading. The stopping points of proteins with

S/C = 0.89 are shown as white disks, of diameter 0.890. One can see
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that a large number of stopping points occur at the chain midpoints,
where the chains are attached to the computational bilayer. Note that
large proteins are stopped by the spectrin chains in our cytoskeleton

model.

6-fold junction compiex

spectrin tetramer

S

SAUAANANAN,

T,

Bilayer Membrane protein

(a)

Ankyrin

AN

(b)

(c)

Fig. 4.7  Schematic diagram showing the different situations
that might occur during a simulation run. (a) Protein slips
through a gap in the network. (b) Protein is obstructed by a
spectrin filament. (c) Protein is obstructed by an attachment
site (ankyrin plus band 3).

The different possible situations that might arise during a
simulation run (see Fig. 4.7) include: (a) A protein slips through the
spectrin network, in particular the gap under the sixfold junction.
The cytoplasmic domain of the protein band 3 in the erythrocyte

extends perhaps 25 nm from the bilayer (Low, 1986) as indicated by
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the radius of the hemisphere in Fig. 4.4 (the attachment site is not
necessarily at the terminus of band 3). The average displacement of
a sixfold junction from the bilayer is approximately 32 nm (see
Chapter 2 for mean height of network) and the mean distance
between attachment points is about 70 nm, which would make the
gap wide enough for the hemispherical protein to slip through. (b) A
protein encounters a spectrin tetramer, which in the picture is at a
displacement above the bilayer at roughly half the radius of the
hemisphere. This is possible because fluctuations in the
conformations of the spectrin chains make it possible for a tetramer
to come close to the bilayer. (c) A protein encounters an ankyrin
attachment site, and the protein motion is blocked, much like a ball

hitting a pin in a pin-ball machine.

4.3 Extraction of barrier-free path
lengths

Distributions of the protein path lengths are constructed from
large samples in which the initial position and direction of motion of
the computational protein is randomly chosen. A distribution P(d) of
the displacements d for 10° trajectories at fixed § and Fy is shown in
Fig. 4.8. The distribution peaks at d/0 = 0 and decreases
monotonically to zero at large d/0. The distribution has most of the

events concentrated at d/0 < 10, which is approximately the distance

between junction vertices.
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Fig. 4.8 suggests that the distribution P(d) is exponential-like
over much of its range and Fig. 4.9 shows this behaviour clearly on a

log-linear plot. For most of the values of § and Fj,, the distribution
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Fig. 4.8 Histogram of protein displacement & (in units of o). A
total of 100,000 data points contained in the plot are shown for
Foo/e = 0.05 and S = 0.890.

P (d) can be fitted over the whole range of ¢ with the exponential

function,

Pd) o< exp(-d/A). (4.2)

From the distribution P(d), we are then able to extract a mean path
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length A, which depends on the size of the threshold force F, and the
protein size S. We find that A obtained from the fit to the data using

Eq. (4.2) is equal to <d>, as expected for an exponential distribution.
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Fig. 49 Log-linear plot of distribution from Fig. 4.4. The linear
behavior of the plot clearly indicates that the distribution is
exponential in A to a good approximation. Bold line is the best-
fit line through the data points.

We might expect P (d) to be exponential in analogy with
classical scattering theory in two dimensions. Consider N, particles of
radius R incident on a medium with a density (number per unit

area) P of randomly distributed scattering centers of radius Kj (see

Fig. 4.10). Then,

—dN(x) IN(x) = (plwD dx)/ly
= PD dx (4.3)
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Incident
particle

Scaitering
center

Fig. 4.10 Particle P (species 1) incident on medium containing
a density p of scattering centers (species 2). Particle A is not
scattered, while particle B is scattered and its direction of
motion is changed. /[y is the width of the medium, and x is the
distance travelled by a particle before it is scattered.

where N(x)dx is the number of particles present in the region x and
x+dx, D = 2(R1+R2) and [y is the width of the sample. Solving this

differential equation gives

N(x) = Neoexp(=x/A), (4.4)

where A4 =1/(pD). The motion of the particle between scattering
collisions is much like the directed motion of the computational
protein. The scattering of a particle off a scattering center in the

medium is analogous to the protein being stopped by a steric barrier
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in the network. Thus, the distribution of path lengths for the directed

motion of the protein through the network is also expected to be

exponential.
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Fig. 4.11 Plot showing the variation of the mean path length
of the dragged protein with the dragging force Fgo. At small
forces, there is little change in the mean path length, while at
large forces, the mean path length increases monotonically.

Fig. 4.11 shows the relationship between the mean free path A

of the protein and the dragging force F for various values of S (see

Eq. (4.1)). The mean path A can increase with F, because the

repulsive potential in Eq. (4.1) does not have a "hardcore" limit. Thus,

at large Fo, the protein is simply forced through the network. The

mean path length increases monotonically with F, when Fo0/€ > 0.1
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for all values of § investigated. The weak dependence of A on Fg in
the small force regime displayed in Fig. 4.11 is due to the fact that

the protein is prohibited from moving the cytoskeleton out of its way

in the simulations. We expect that A is independent of F, for small

Fo, since the guided protein is stopped as soon as it encounters the

cytoskeleton.
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Fig. 4.12 Dependence of the barrier-free path length L on the
protein size parameter S, showing that L decreases with
increasing S. Note that the dependence seen here is only valid
up the point where the protein size exceeds the space
available for insertion in the network.

We define the barrier-free path (BFP hereafter) L as the

asymptotic value of A as F,0/€ — 0. This extraction of L is carried

out for several values of the protein interaction parameter S (see Fig.

4.12 above). We find that L decreases monotonically with increasing
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S, reflecting the fact that proteins with larger S values encounter
network steric barriers earlier than proteins with smaller S wvalues
moving along identical trajectories. We find that the variation of L

with § can be fitted approximately with the following power law,

LIC = 5.0(5/0)-14. (4.5)

Although Eq. (4.5) indicates that L vanishes as S approaches the
geometrical length scale of an average spectrin chain (the average
end-to-end distance of a spectrin tetramer in the cytoskeleton of
about 120), in fact, the functional form of Eq. (4.5) does not apply at
large S. The reason is that the cytoskeleton puts a bound on the
largest protein that can be fitted into the network. That is, the
protein is "corraled" at some finite value of S, and not mobile in the

large S limit as implied in Eq. (4.5).

Since 0 = 6.4 nm, we find that the BFP's displayed in Fig. 4.11
are approximately in the 10-50 nanometer range. At this time, there
is no published data available for the barrier-free paths of directed
protein motion in erythrocytes. However, our predicted BFP's for
human erythrocytes are much smaller than the hundreds of
nanometers observed in experiments on rat kidney fibroblastic cells
(Sako and Kusumi, 1995). While most of this difference probably
arises from the different cytoskeletal structures in erythrocytes and
fibroblasts, there also could be differences in how experiments

extract the BFP's in the zero force limit. This is a difficulty inherent
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in such experiments since the proteins are sometimes "forced"

through the cytoskeletal network by the optical tweezers.

4.4 Barrier-free paths of large
proteins

Before discussing further the implications of the simulation
results, we replace the protein interaction parameter S by a more
geometrically transparent quantity. The repulsive 1nteraction
between the vertices of the cytoskeleton vanishes for r > 21/6¢
according to Eq. (2.1). This means that each vertex has a cutoff radius
of 0/25/6 for the intervertex repulsive interaction. The cutoff
distance for protein-spectrin interaction is 21/6S. Thus, we define the
effective guided protein radius Rg as the difference between the

protein cut-off distance 21/6S and the spectrin-chain radius /2576,

Rp /0 =216(S /0 - 1/2). (4.6)

In the simulation, large proteins (Rg = 11 nm) are found to be
mostly confined in a local region of the network. Due to steric
interactions, such proteins cannot pass out of the corral defined by
the three nearest-neighbour chains which constitutes the basic
triangular cell. In this way, the trajectories of large proteins are
confined to lie within a single corral. Thus, L decreases with
increasing RpE. The largest protein that can be inserted into the

network is limited by the network geometry; that is, there is an
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Fig. 4.13 L+Rg shown as a function of the effective radius RE.
As REg increases, L+Rp decreases and reaches a minimum value

of 23 nm at Rg = 11 ©.

upper bound to Rg. The quantity L+Rg should thus approach a
constant value allowed by the corral geometry. Fig. 4.13 shows that
L+Rg actually reaches a minimum value of 23 nm (defined to be the
mean size of a corral) and starts to increase very slightly for large
proteins (Rg > 2.5 0). This effect can be understood as follows. As
previously pointed out, large proteins have only very limited space
where they can be inserted into the network and hence cannot be
inserted into small corrals. Thus the BFP's of large proteins are not
evaluated with the full configuration space available to small and
medium sized proteins but are biased

towards large corrals.
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Fig. 4.14 Representation of a cytoskeletal corral by an
equilateral triangle, whose sides, each of length &, reflect the
average distance between the sixfold junctions of the RBC
cytoskeleton network. The inscribed circle of radius R
represents the largest protein that can be inserted into the
triangle.

One immediate question that arises is whether this mean value
of 23 nm obtained for the corral size i1s what one would expect from
the geometry of the computational network. Suppose that we
represent the average corral in the network by an equilateral
triangle of side » = 76 nm, approximately equal to the average
separation distance between sixfold junctions 1in the human
erythrocyte (see Fig. 4.14). The maximum radius of an inscribed
circle (representing the largest protein that can be fitted into the
corral) in the triangle is thus 20 nm. This is close to the simulation
value given above, showing that in the limit of large protein sizes,
the effective corral radius of L+Rg = 23 nm, is a reasonable reflection

of the corral geometry.



102

4.5 Barrier-free paths of small
proteins

As seen in Fig. 4.13, small proteins have much larger BFP's than
larger proteins, because they encounter fewer obstacles associated
with the cytoskeleton. In essence, the small proteins are affected
mostly by the set of attachment points representing the ankyrin
junctions. The remainder of the chain network, being further from

the bilayer plane, hardly perturbs the motion of the small protein.

In this respect, the chain midpoints, to a reasonable
approximation, act as a set of scattering centers or, rather, a field of
barriers, to the guided protein, as it 1s dragged along the
computational xy plane. This interpretation of the protein guided
motion via two-dimensional scattering theory 1is consistent with the

exponential distribution of path lengths in the simulation.

In view of this analogy described above, we can compare the
motion of the protein to that of a point particle traversing a planar
array of disks of diameter D randomly distributed with a well-
defined area density p. In classical two-dimensional scattering
theory, the absorption mean free path of the traversing particle is
equal to (pD)-1. With respect to the reference model, P is the area
density of ankyrin attachment points and D is the effective diameter
of ankyrin in the bilayer plane. The point to note is that, for non-zero
REg, D is affected by both the protein and ankyrin interactions. Thus,

in order to make the connection to the scattering problem described
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above, we determine the value of L in the Rg — 0. limit This limiting

value of L can be obtained graphically, as shown in Fig. 4.15. The
behavior of (L-!) is seen to be linear in Rg at small radii, and the zero
radius limit of (L-1) is 8.5 x 10-3 (nm)-! by extrapolation (or L =

118nm).
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Fig. 4.15 Relationship between 1/L and Rg. To approach the
limit of a zero-radius protein, we extrapolate L-! as Rg
approaches zero. In this limit of protein size, one can treat the
protein drag problem much like a two-dimensional scattering
problem.

The area density of ankyrin junctions in our simulation is
2(3)1/2/b2, where b is the average distance between the sixfold
junction vertices of the cytoskeleton. Taking & to be approximately
70 nm, then P = 7.1 x 10-4 nm~2. This gives D =12 nm from the

limiting value of L as Rg goes to zero, which is approximately twice
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Fig. 4.16 (a) A segment of the spectrin chain. X represents the
attachment point, A and B are the nearest neighbours. The
circles represent the maximum extent of the repulsive
interaction around each element along the chain. (b) Due to
the close proximity of A and B to X, the effective steric barrier
around X is increased (Reff> Ry).

the diameter of the chains (equal to 7.2 nm). This seems counter-
intuitive but the rationale behind this is as follows. Consider a
particular attachment point of a chain in the reference model (see
Fig. 4.16; attachment point is labeled X). The radius of the attachment
point X is approximately 3.6 nm. Due to the close proximity of the
two nearest neighbours, denoted by A and B in Fig. 4.16, the
effective steric barrier around the attachment point X created by this

close proximity of nearest neighbours is increased somewhat. Thus,
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the effective mean radii of the attachment points as measured by the
small protein probes is larger than the effective radius of a chain,
consistent with the factor-of-two value for Reff/Rx extracted in the

simulation.

4.6 Summary

The simulation as described in this chapter is used to mimic the
motion of proteins dragged by optical tweezers, as observed in recent
SPT experiments. For most combinations of trapping force and
protein sizes, the distribution of path Ilengths is found to be
exponential. A mean path A is extracted from the exponential
distribution and is found to be relatively constant for small trapping

torces. The barrier-free path L is obtained by extrapolating A to zero

trapping force Fo.

The obstacles to the directed motion of proteins in our
simulations are found to be mainly the membrane/skeleton
attachment sites. Thus, any temperature dependence of L (which is
not investigated in our simulations) would have been weak because
of the fixed concentration of the attachment sites in our cytoskeleton
model. This is in contrast to the experimental results (Edidin ef. al.,
1991) which showed that the barrier-free path of GPI-linked MHC
class 1 proteins in murine HEPA-OVA cells i1s temperature-

dependent.
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The simulation also predicts that L decreases with increasing
protein size as L/0 = 5.0(§/0)-1-4, where 0 and S are length scales
associated with the repulsive potentials within the network chains
and between the protein and the chains, respectively. Large proteins
are observed to be "corraled" in a region with an effective radius of
23 nm, consistent with the value of 20 nm expected from the

geometry of the network.

The motion of small proteins through the network can be
interpreted in terms of two-dimensional scattering. The BFP L then
is equal to (pD)~!, where p is the area density of scattering centers
(ankyrin) and D 1is the average in-plane diameter of the junctions. In
the simulation, D 1is found to be approximately 12 nm, which is
roughly double the diameter of the polymer chain. In essence, the
BFP's of small objects guided through the plasma membrane can be
used to probe the in-plane sizes of some, but not all, cytoskeletal

elements of the membrane.
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Chapter 5
TESTS OF CYTOSKELETON/BILAYER
ASSOCIATION MECHANISMS

5.1 Introduction

In Chapter 1, it was pointed out that the attachment of the RBC
cytoskeleton to the bilayer of the plasma membrane is effected
largely through the protein ankyrin, which binds both to spectrin
and to the cytoplasmic domain of the transmembrane protein band 3

(see Fig. 5.1). Ankyrin has been determined to be a high-affinity

Bilayer

\

ed

Ankyrin Spectrin
(o, B Tetramer)

Fig. 5.1 Association of the cytoskeleton with the bilayer
through the proteins band 3 and ankyrin.
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membrane binding site for spectrin and band 3 (Bennett and
Stenbuck, 1979a). Evidence that ankyrin provides a major membrane
attachment site for spectrin in erythrocytes is based on several
experiments. One such experiment (Bennett and Stenbuck, 1979b)
showed that antibodies that selectively extract ankyrin prevent the

binding of spectrin to membranes.

The cytoskeleton may also be attached to the bilayer through
the protein band 4.1, which promotes the association of spectrin with
actin (Fowler and Taylor, 1980; Ohanian et al., 1985; Ungewickell et
al. 1979), forming the sixfold junction complexes (see Fig. 5.2). Band

4.1 has been found to remain associated with membranes after

Bilayer

" -ag— Glycophorin C

Actin Spectrin
(o, B Tetramer)

Fig. 5.2 Binding of the cytoskeleton to the bilayer effected
through the protein band 4.1 and the glycoprotein
glycophorin C.
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removal of spectrin and actin (Bennett, 1980). This observation
suggests that the protein 4.1 provides a membrane-linkage site for

spectrin-actin complexes.

Several protein candidates for a membrane-binding site for
protein band 4.1 have been proposed. These include the membrane
protein glycophorin A (based on experiments on the binding of band
4.1 to glycophorin A liposomes (Anderson and Lovrien, 1984)) and
also the membrane proteins glycoconnectin or glycophorin C (Mueller
and Morrison, 1981). It has been found that the interaction between
protein 4.1 and glycophorin A is not one of physiological importance,
in that erythrocytes lacking glycophorin C exhibit a reduction in
membrane mechanical stability, while glycophorin-A-deficient cells

remain normal (Reid et al., 1987).

From the experimental observations mentioned above, a
question arises: does the cytoskeleton attach itself primarily through
band 3, or are the attachments through the proteins band 3 and band
4.1 equally important? To address this question, then, we probe the
relationship between the geometrical and elastic properties of the
cytoskeletal network and the different bilayer binding sites that the
network might have. In this chapter, three alternate mechanisms of
cytoskeleton attachment are described within the context of the
reference model developed in Chapter 2. The two mechanisms
investigated in this chapter (in addition to the midpoint attachment
of Chapter 2, referred to as case I) are: (1) Attachment of the sixfold

junction complexes to the computational bilayer (case II). (2)
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Attachment at both the midpoints and the sixfold junctions (case III).
In both mechanisms, the binding sites are free to move in the

bilayer.

In Sec. 5.2, we present the dependence of the geometrical
properties (such as the equilibrium network area and the mean
displacement of network from the bilayer) on the attachment sites.
This is followed in Sec. 5.3 by a discussion of how the elastic
properties (such as compression and shear moduli) are affected by
alternate binding mechanisms. Sec. 5.4 demonstrates the attachment-
dependence of barrier-free paths. Finally, the chapter concludes with

a summary of the results in Sec. 5.5.

5.2 Effects of alternate attachment
points on network geometry

The reference model developed in Chapter 2 has the midpoint
of the network chains tacked to the computational xy plane. Here, we
study two different cases. In the first case, only the sixfold junction
complexes are tacked to the computational xy plane, leaving all other
constituents of the network free to move about in the space above
the xy plane. This is to simulate binding of the network skeleton to
the bilayer only through the protein band 4.1. In the second case, the
network is tacked at both the sixfold junctions (protein 4.1) and the
midpoint of the network chains (protein ankyrin). Except for the

network attachment points, the simulation is carried out in a similar
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fashion as was described in Chapter 2: that is, a mixed MC/MD

simulation of polymer chains.

1 03 - i 1 1 (] 1 L i 1
1 ® midpoint
| X sixfold
o~
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A_10 e R : o midpoint/
5 . . i i sixfold
] D L
i (g |
£
| x -
1 O1 T T T T ! T T T T
10° 10’ 102
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Fig. 5.3 The network area per junction vertex <Aj> as a
function of ngeg for three different ways of binding the
network to the computational bilayer. As expected, simply
changing the binding site from the chain midpoints to the
sixfold junctions has virtually no effect on <Aj>. When the
network is bound at both sites simultaneously, the network
expands (for a given value of ngeg). This is in part due to the
increase in steric interactions among the chains.

The observables measured are the average network area and
displacement from the bilayer plus the in-plane and out-of-plane
elastic moduli. First, we evaluate the effect of having alternate
binding sites on the dependence of the network area per junction

vertex <Ai> on the number of segments per chain ngeo. Fig. 5.3 shows
J scg
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this dependence, in comparison with the result obtained in Chapter 2.

The power-law relations between <Aj> and nseg for the two new

association geometries are as follows:

(a) Membrane skeleton tacked at the sixfold junctions (case II):

<Aj>/02 = 2.0 ngeg!-20. (5.1)

(b) Membrane skeleton tacked at both the midpoints and sixfold

junctions (case III):

Comparison of Egs. (2.6) and (5.1) shows that the scaling behavior of
the network area is not altered by changing the binding site from the
chain midpoints (case I) to the sixfold junctions. On the other hand,
when the network associates with the bilayer at both the midpoints
and sixfold junctions, the exponent of the power law increases
slightly. This difference is also evident in Fig. 5.4, where the ratio of
the contour area per junction vertex A¢ to the average area per
junction vertex <Aj> is plotted as a function of nseg. The power law

dependence of Ac/<Aj> on ngeg is as follows: (a) Sixfold junction

tacking (case II)
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Fig. 5.4 Ratio of areas Ac/<Aj> as a function of ngeg. Note that
when the network is tacked either at the midpoint or at the
sixfold junctions, the scaling behavior is very similar. In the
case where the network is bound to the membrane at both the
sixfold junctions and midpoints, A¢/<Aj> increases more
slowly as a function of ngeg and it is also lower than the other
two cases.

(b) Tacking at both the midpoints and the sixfold junctions (case III):

Eq. (5.3) shows that the number of segments ngeg required for the
network to achieve Ac/<Aj>= 7 (as demanded experimentally) is 32,
in the case of the attachment solely at the sixfold junctions. This is

seen clearly in Fig. 5.4, where the data for cases I and II are very
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similar. In case III, the required ngeg has jumped to the much larger
number 42 (from Eq. 5.4). This increase of approximately 30% in ngeg
indicates that the network chains of case III are generally stiffer
than than those found in case I and II (when the comparison is made
at fixed ngeg). To see why this is so, we compare the three cases
under the condition that ngeg be the same. The greater number of
membrane attachment sites in case III, in contrast to cases I and II,
constitutes a larger number of constraints placed on the network.
This leads to a reduction in the configuration space available to the
chains 1in case III, which correspondingly forces the network to lie
closer to the bilayer (see Figs. 5.5 and 5.6(a,b)). In order for the
network in case III to be able to shrink from its contour area by a
factor 7, the network must become "floppier" and, hence, ngeg must

increase (see discussion in Chapter 2).

Since ngeg is the same for case I and II, the length scales O for
the two cases are equal and take the value 6.4 nm (see Chapter 2).
On the other hand, in case III, ngeg equals 42 and, from the RBC

spectrin contour length of approximately 200 nm, this gives 0 = 4.9

nm.

The mean displacement <z> of the network from the bilayer in
all three cases reflects the behaviour of the average network area.
Fig. 5.5 shows the variation of the mean displacement <z> with ngeg.
The <it> data in cases I and Il are again seen to be very similar, in
contrast to the data for case IIl. The mean displacement <t> for case

III is seen to be markedly lower for the other two cases. This reflects
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the fact that the number of membrane-binding sites is much larger

in case III. The scaling behavior of <t> for case Il is given by

<510 = 012 ngeg"9 (5.5)

and for case IIl, by

101 i i Lol i Lol bdd
: - ® midpoint
] - sixfold
. : x
X 4n0 1 O Do
DA 10 o L e = - midpoint/
v ] s - sixfold
] [:jD i
10“1 T T 11 II% T T T T
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n
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Fig. 5.5 The mean displacement <> as a function of ngeg. The
behaviour seen in cases I and II i1s similar. The data in case III
rise at about the same rate as the other two cases but are lower
in value. From this, we see that the network in case III is
markedly "flatter” than in case I and IL
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Using the values of O and ngeg calculated for cases II and III
respectively, together with Egs. (5.5) and (5.6), we find the mean
displacement <¢> for case Il to be = 17 nm, the same as in case I,

while for case III <¢> is predicted to be approximately 8.5 nm.

Cytoskeleton
protein

Spectrin

Fig. 5.6 (a) and (b) illustrate network attachment for cases 1
and III respectively. Notice that the network height in (b) is
lower than in (a).

Fig. 5.6 above shows schematically what happens when the
network is forced to be tacked down at additional locations along the
chain. In Fig. 5.6(a), network chains are tacked down at proteins X
and Y. Thus, effectively, the two chains XZ and ZY form a single long
chain "XY", of some average length, say /5. On the other hand, in Fig.

5.6(b), we have two distinct chains, each of length [, where [y > [p.
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Clearly, the mean height of the chains in (b) is going to be smaller
than in (a). Notice also that the chains XZ and ZY in Fig. 5.6(a), in
comparison to those in Fig. 5.6(b), have more freedom to move
horizontally and wvertically, which undoubtedly affects the elastic

behaviour of the chains (a point which will be taken up in Sec. 5.3).

5.3 Effects of attachment on network
elasticity

We noted in Chapter 1 that the cytoskeletal network has been
experimentally observed to bear a significant part of the extensional
elasticity of the RBC. In Chapter 2, our investigation into the
geometrical and elastic properties of the RBC cytoskeleton was based
on the reference network being attached to the bilayer through the
midpoint of the chains via ankyrin. As mentioned in Sec. 5.1, it has
been confirmed that ankyrin is the primary binding protein tying the
network to the bilayer; but, binding through other proteins (band
4.1) is also possible. If it is true that the network does attach itself to
the bilayer through band 4.1, then the immediate question that
arises is what effect this would have on the elastic properties of the

network.

Considering the three cases, I, II and III, as described in Sec.
5.1, we first look at the 1in-plane elastic moduli, K (area
compressibility) and U (shear modulus). Fig. 5.7 shows the

dependence of the in-plane moduli on ngeg. In case II, we find that




Ka and U are described approximately as

BKANO?2 = 144 ngeg-20 (5.7)
Buioc? = 24 nseg™ 7 (5.8)

and, in case III, we have approximately

In-plane elastic moduli

BKAMO2 = 156 ngeg !9 (5.9)
BUNc? = 37 ngegl. (5.10)
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Fig. 5.7 The in-plane elastic moduli, Kp and u as a function of
nseg for all cases. In cases II and IIlI, the moduli are seen to
decrease as ngep increases, similar to case L
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The simulation predictions for the in-plane elastic moduli relevant to

the human erythrocyte cytoskeletal network are shown in Table 5A.

Case Kan (J/m2) U (J/m?)
I 1.8 x 10-5 7.7 x 10-6

11 1.6 x 10-5 6.7 x 10-6
111 2.2 x 10°5 9.9 x 10-6

Table 5A  Comparison of the in-plane elastic moduli, Ka (area
compressibility) and u (shear modulus), for cases I, II and III,
where ngeg and o are selected in each individual case to model
the human erythrocyte cytoskeletal network. The
uncertainties in the predicted moduli are approximately 20%.

The first thing to notice from the data presented in Table 5SA above is
that the ratio Ka/M is approximately equal to 2 for both cases II and
IIT (much as in case I; see Chapter 2). This predicted value for the
ratio has been verified experimentally for the human erythrocyte
cytoskeleton (see Chapter 2). Thus, the simulation predicts that
changing the membrane coupling mechanism of the network affects
mostly the absolute magnitudes of the in-plane elastic moduli but
not the ratio Ka/[t. The magnitudes of the moduli Ko and U for both
cases are also in agreement with the values measured 1in

micropipette aspiration experiments (for KA, see Evans and Waugh,

1977; for U, see Evans et. al. , 1984).

The other piece of information that can be extracted from Table
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SA is that the effect of switching the binding site from the midpoint
(case I) to the sixfold junction (case II) is that the elastic moduli
agree within statistical errors. On the other hand, if one were to bind
the network to the bilayer at both the midpoints and sixfold
junctions (case III), the moduli are found to be = 22% larger for K
and about 30% larger for 4 (when compared to case I). This is
consistent with the fact that the network in case IIl is displaced a
lesser amount from the bilayer and, thus, the chains have less
configuration space into which to unwind (due to steric interaction
with the computational bilayer). Thus, the network in case III is

expected to be more rigid than in cases I and IL

We now look at the dependence of the transverse or out-of-
plane elastic moduli, Ky (volume compressibility) and Y, (transverse
Young's modulus), on ngeg, which are shown in Fig. 5.8. In case II, the

volume compression modulus is given approximately by

BKyIO3 = 1431ngeg 285 (5.11)

and, for the transverse Young's modulus,

BY o3 = 96nge. 09 (5.12)

and, for case III, we found that

BKyIO3 = 2566n5e4728 (5.13)
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Fig. 5.8 The out-of-plane elastic moduli, Ky and Y| as a
function of ngeg. The plot shows that the network in case III is
somewhat stiffer in the transverse direction as compared to
cases I and IL

PY O3 = 29n4.,704. (5.14)

As in Table 5A, the transverse elastic properties of the human RBC
cytoskeleton can be extracted from fluctuations and are shown in
Table 5B below. It is clear from Table 5B that the network in case III
is significantly more rigid in the transverse direction, as compared to
cases | and II. We find that Kv!!I is roughly twice the value of Kvy! and
Y 1 is roughly 2.5 times the value of Y,;!. This difference is, again,
attributable to the fact that the chains in case III are close to the

computational bilayer and, hence, resist strongly the stresses applied
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vertically to the network because of sterics. (See Chapter 2 for

discussion on the significance of the large values extracted for Y,).

Case Kv (J/m3) Y, (J/m3)
1 1.4 x 103 8.7 x 104
11 1.2 x 103 6.7 x 104
111 2.6 x 103 2.3 x 105

Table SB  Comparison of the out-of-plane elastic moduli, Kv
(volume compressibility) and Y ;  (transverse Young's
modulus), for cases I, II and HI, where ngeg and o are selected
in each individual case to model the human erythrocyte
cytoskeletal network. The uncertainties in the moduli are
about 20%.

5.4 Effects on barrier-free paths
of proteins

In Secs. 5.2 and 5.3, we looked at how wvarious
cytoskeleton/bilayer coupling mechanisms affect the geometry and
elasticity of the network. In this section, we study how incorporating
different network/bilayer coupling mechanisms would affect the
barrier-free paths of computational "proteins” randomly inserted in

the network.

Except for some changes of the location of the binding sites of
the network, the simulation carried out in this investigation is similar

to the one described in Chapter 4. That is, a hemispherical protein is




123

randomly placed inside a reference network and given a preselected
random direction along which it is to be dragged. The reference
configuration, although spatially fixed, is sufficiently large so that it
provides a representative sample of cytoskeleton configurations. The
protein interacts sterically with elements of the network and is
deemed to be stopped in its track when the total force (arising from
the network) acting on the protein is greater than or equal to the
dragging force Fo. The results for cases 1I and III will be presented

separately and compared.
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Fig. 5.9 Plot showing the variation of the mean path length of
the dragged protein with the dragging force F for case II. At
small forces, there is little change in the mean path length,
while at large forces, the mean path length increases
monotonically.
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First, we look at case II, where the cytoskeleton is coupled to
the bilayer at the sixfold junctions (band 4.1). The variation with F,
of the mean paths of the computational protein is shown in Fig. 5.9.
The mean paths are slightly larger than those observed in case [ but
are still in the 10-50 nm range (given that 0 = 6.4 nm). At small
values of F,, there is little change in the mean path A; but, beyond
some threshold value Fy, = 0.1 O/€, A increases monotonically. These
observed characteristics of directed protein motion are very similar

to those seen in case 1.
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Fig. 5.10 Plot showing the variation of the mean path length
of the dragged protein with the dragging force F for case IIL
There is little difference in the qualitative features but the
mean-free paths are quantitatively smaller than in cases I and
IT when the physical value of o is taken into account.
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Now consider case III in Fig. 5.10. The first thing to notice in
Fig. 5.10 1s that AlO is larger than in cases I and II. However, since O
is smaller in case III (when converted to nanometers), A is actually
smaller than it is in the other two cases. In fact, the range of values
for A is around 9-30 nm. This is reasonable, if we recall that the
network in case IIl has a smaller mean displacement from the
bilayer <r> and, hence, the steric hindrance to the directed motion of
the computational protein 1is increased. In addition, the
computational protein in case III encounters more in-plane obstacles
(attachment sites). Another thing to notice in Fig. 5.10 is that the
threshold force F,, beyond which A increases monotonically, 1s larger
than in case I and is approximately equal to 1.0 O/€. This, again,
reflects the tight coupling of the network to the computational

bilayer and the smaller <t> in case III, which results in a larger

dragging force required to move the protein through the network.

The barrier-free path length L  for the three cases was
extracted and plotted against the parameter S, which is a measure of
the protein size (for a description of the method of extraction for the
barrier-free path L and the simulation parameters used, see Chapter
4). Fig. 5.11 shows this comparison on a log-log plot. The scaling

behavior for case II is given by

Lo = 65(S/0 )13, (5.15)
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Fig. 5.11 Plot showing the variation of the barrier-free path L
with §, which is a measure of the size of the computational
protein. The three cases show similar behavior, that is, as S
increases, L decreases like a power law.

and, for case III,

LIC = 52 (S/0 )13, (5.16)

Fig. 5.11 shows that, in general, the barrier-free path L for case II is
larger than for cases I and III, as expected. This is mainly due to the
smaller number of attachment sites encountered by the protein in
case II. This is consistent with Chapter 4, where we observed that

the stopping points for the protein tend to be at the attachment sites.

The differences in barrier-free paths for the three cases are
further seen in Fig. 5.12, which is a plot of L+Rg versus Rg. The first

thing to notice is that, in both cases II and III, L+Rg decreases as Rg
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Fig. 5.12 Le+Re as a function of Re for cases II and III. Notice
that the two graphs have the same downward sloping trend
for Le+Re. The corral size is clearly smaller in case III than in

case II.

increases, dropping to some minimum value, which occurs when the

protein is corraled (similar to case I, see Chapter 4). The difference
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comes in the minimum value of L+Rg: (a) Case II, (L+RE)min = 23 nm,
which is in agreement with that observed in case I (see Chapter 4).
(b) Case III, (L+RE)min = 18 nm. This slight difference is mainly due
to the smaller <r> in case III (less chance of larger proteins slipping
under the chains) and in a small part due to the larger diameter of

the attachment sites (extracted later on in this section).

The corraling effect in case III is also seen to occur at a much
smaller protein radius as compared to cases I and II. This can be
understood in the following way. Recall Fig. 5.6(a), which was
a schematic representation of the situation in cases I and II, and Fig.
5.6(b) for case III. The fluctuations of the displacement of the chains
above the bilayer is larger in cases I and II than in case III, which is
confirmed by the predicted mean displacement of the network. This
in turn means that the computational protein in cases [ and II, on
average, slips under "fences" or chains more readily and, hence, leads
to a larger BFP (and also to a larger mean corral size), as compared to
case III. The smaller number of in-plane obstacles (attachment
points) in cases | and II also contributes to the observed difference

from case III.

We now turn to look at the effect of different membrane
coupling mechanisms on the predicted size of the in-plane obstacles
(attachment sites). Fig. 5.13 shows a plot of I/L versus Rg for case II
and III. From extrapolating 1/L by having Rg — 0, as described in
Chapter 4, we find for case II that L, = 132 nm and for case III

Lo = 65 nm. The values of Ly allow us to predict the effective
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Fig. 5.13 Plot of 1/L versus REg for cases Il and III. The limiting
value of 1/L is obtained by extrapolating Rg to zero.

diameters of in-plane obstacles.

Case II. The area density of attachment points py = (2/\/3)/192,




130

where b is the average end-end distance of the spectrin chain, taken
to be 70 nm. This yields for the effective diameter of the attachment
site D= 32 nm. This is more than twice the value predicted in case
[. Since we are dealing with proteins with infinitesimal radii, the
mean displacement of the network is not a factor affecting the BFPs
of the protein. It is, rather, the attachment site which is the major
factor here. The much larger diameter of the in-plane junction site
can be understood in the following way. Since there are six nearest
neighbours for each sixfold junction complex, the effective steric
barrier around a sixfold junction complex extends further along the
bilayer plane than in case I for the midpoint attachment site, which

has only two nearest neighbours.

Case III. Here, the density is Py = (8/\/3)/172 and, thus, D =
16 nm. This value for the diameter is intermediate between that of
cases I and II. In case IlII, there are two types of attachment sites
involved in coupling the network to the bilayer; 75% of the total
number of attachment sites are chain midpoints, while the remaining
25% are sixfold junctions. Taking this into account, one can obtain an

estimate of Di; in the following way:

DIII = O75D1 + 025D11
=~ 0.75(12 nm) + 0.25(32 nm)
~ 17 nm (5.17)

This estimate for Diy is in agreement with the value obtained in the
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simulation and 1is, thus, a self-consistency check on the simulations.
What Dy tells us here is that the computational protein sees an
environment of scattering centers (attachment sites) which reflects
the weighted average of the diameters of each type of scattering

center present.

5.5 Summary

In this chapter we looked at the effects on the geometry and
elasticity of the network of having different cytoskeleton/membrane
coupling mechanisms. In Sec. 5.1, we found that the mean network
area per junction vertex <Aj> is unchanged when the attachment site
is simply switched from the chain midpoint (case I) to the sixfold
junction complex (case II). The mean displacement above the bilayer
<t> 1s also unchanged and 1s predicted to be approximately equal to
17 nm. On the other hand, when the network is attached at both the
midpoints and sixfold junctions (case III), <Aj> is larger than in cases

I and II for a fixed value of ngeg and <z> falls to 8.5 nm.

The in-plane elastic moduli K (area compressibility) and U
(shear modulus) for case II are found not to differ significantly from
that of case I; while, in case III, the moduli are found to be
significantly larger than in case [. This effect is confirmed by the
measurement of the out-of-plane moduli, Ky (volume
compressibility) and Y, (transverse Young's modulus). It was found

that Ky is approximately twice that of Kvy! and that Y !l is about 2.5
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times that of Y ! It is proposed that a marked increase in the
number of membrane linkages leads to an increase in membrane

cytoskeletal rigidity.

We also investigated how alternate membrane coupling
mechanisms affect the barrier-free paths of proteins in a directed-
motion simulation. The barrier free paths and the sizes of the corrals
for case I and case Il are found to be in close agreement with each
other. On the other hand, the predicted diameter of the attachment
site for case II is more than twice that of the attachment site in case
I. The predictions for case IIl are as expected: (1) BFPs are smaller,
in the 10-30 nm range. (2) Corral size is also smaller, diameter = 18
nm. (3) The effective diameter of the attachment sites (as "seen" by
the computational protein) lies somewhere between that of cases I
and II, near 16 nm. This is in agreement with estimate (= 17 nm)
obtained through a calculation which uses a weighted average of the
mean diameters of the attachment sites of cases I and II. These
effects as described are due mainly to the different number and

location of the linkages of the membrane to the bilayer.
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Chapter 6
CONCLUSION

6.1 Elasticity and geometry of the
erythrocyte cytoskeleton

This research has been focused on the study of two main
properties of the RBC membrane cytoskeleton, namely, geometry and
elasticity. The cytoskeleton has been modeled as a triangulated
network of polymer chains attached to the computational xy plane
representing the lipid bilayer. Several mechanisms were investigated
for attachment of the cytoskeleton to the bilayer; we placed the
greatest emphasis on a reference model in which the attachment is at
the midpoint of the polymer chains, representing the ankyrin
junctions (referred to as case I). The different attachment
mechanisms that were considered are summarised in Table 6A

below.

Case 1 Attachment through the midpoints of the polymer
chains.

Case II |Attachment through the sixfold junction complexes.

Case III | Attachment through both the chain midpoints and the
sixfold junction complexes.

Table 6A. The three different cytoskeleton/membrane
attachment mechanisms investigated in our simulations.
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Each polymer chain in our model network has Nseg Segments

between the sixfold junctions. The range 14 S ngeg £ 32 was

investigated here.

We consider first the attachment of the network to the bilayer
at the chain midpoint, namely case I. The polymer chains in the rest-
state network are observed to be highly convoluted in the space
above the computational bilayer, as expected from their highly
flexible nature. This is consistent with experimental observations of
spectrin tetramers in intact red cell cytoskeletons. Using the
measured spectrin contour length and the experimental observation
that the ratio of A. (contour area per junction vertex) to <Aj>
(average area per junction vertex) is approximately seven, we are
able to fix ngeg and the length of each segment in the chain. With the
two model parameters fixed, the model then makes absolute
predictions for the elastic constants and geometry of the
cytoskeleton. For example, we predict the mean thickness of the
cytoskeleton to be approximately equal to 32 nm, a prediction for
which there 1s currently no experimental data available for

comparison.

When the model network is placed under both isotropic
compression and tension, <Aj> is "S"-like in appearance as a function
of the applied stress, flattening out at large tensions and
compressions. At large tensions, the response of the model network
is found to be approximated reasonably well by a network of

equilateral triangles with inter-nodal square-well interactions. Near
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zero stress, we observe that the response of the network is analogous
to that of a two-dimensional network of springs with an effective
spring constant ﬁkeffsoz = 32, which is a large value, corresponding
to small fluctuations in the interjunction spacings. This implies that
the model cytoskeleton behaves like a low-temperature network of
nodes near zero stress. Full-scale models, using a triangular two-
dimensional network of nodes with two- and three-body
interactions, will be wused in future studies to simulate the
micropipette aspiration experiments on red cells and, thus, to achieve

a deeper understanding of the RBC elastic response.

Near zero stress, the ratio of the compression modulus KA to
the shear modulus [ in case I is = 2.4 £ 10%, which is in agreement
with known experimental data from micropipette aspirations of red
cells. Furthermore, the normalised in-plane elastic moduli, ﬁKA<Aj>
and ﬁu<AJ~> (Waugh and Evans, 1979) are also in approximate
agreement with one set of experimental measurements. Both K and
U increase under tension, which is expected on the basis of the built-
in tether constraints in the model. The Poisson ratio is found to
decrease monotonically under tension, becomes negative (very
weakly) at modest tension, and then increases again at large
tensions. This phenomenon of a negative Poisson ratio has also been
observed in computer simulations of two-dimensional networks of

springs under tension (Boal er al., 1993).

The out-of-plane response (in all three cases), indicated by the

volume compressibility and transverse Young's modulus, is found to
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be significantly stiffer with the smooth BKF potential of our model
compared to those observed in bead-and-tether model simulations
utilising  square-well potentials. The "quenched" out-of-plane
fluctuations in a mixed microcanonical/canonical ensemble (used in
our simulations) seems to be the cause of the transverse Young's
modulus being one order of magnitude larger than the volume
compressibility; this is not observed in pure MC simulations (private

communications with Boal, 1997).

Attaching the model network to the computational bilayer
through the sixfold junctions (case II), instead of the midpoint of the
chains, did not alter the response of the network signficantly. In fact,
the elastic moduli decreased only slightly, while the geometrical
response was almost unchanged (mean displacement = 16 nm).
When the network was attached at both the chains' midpoints and
the sixfold junctions (case III), the scaling behaviour of the
geometrical observables (for example, <A;> and network
displacment) are very similar to those of cases I and II, while the
elastic moduli are significantly stiffer. The network in case III also
lies closest to the computational bilayer (mean displacement = 8.5

nm).

Under wuniaxial tensions, the network is found to respond
anisotropically (in all three cases). That is, the strain response of the
network 1n the x-direction for a uniaxial stress in the x-direction is
not the same as that for the corresponding situation along the y-

direction. This behavior arises from the inequivalent geometry along




137

perpendicular axes drawn through the network. On the other hand,
the network behaves much like that of a two-dimensional network of
springs at small uniaxial tensions with an effective spring constant
keff which is essentially the same as that extracted from isotropic
stress tests described earlier. The Poisson ratio, in the limit that the
tension goes to zero, has a value of 1/3, consistent with that expected

from a two-dimensional network of springs at zero temperature.

The possibility of a built-in precompression (or prestress) in
the rest-state of the RBC cytoskeleton has also been probed. We
found that geometrical and elastic responses of the network modified
by a prestress is very similar to those without a prestress, once the

results are converted to physical units.

Some of the ingredients that were left out in our model which
might be important to the complete description of the physical
cytoskeleton, include: (1) spectrin-lipid binding at points other than
the ones 1investigated (Everaers et. al., 1996); (2) ionic interactions
between spectrin chains (Stokke er. al., 1986); (3). geometric
irregularities in the coordination number and the possible existence
of spectrin hexamers (Steck, 1989); (4) association-dissociation

equilibrium states between tetramers and dimers (Tsuji er. al., 1988).




6.2 Barrier-free paths

The other part of this research involved studying the effects of
the network on the path lengths for directed motion of objects
embedded 1in the computational bilayer, which is analogous to
experiments in which proteins are dragged through the membrane

via a laser-trapping device.

The simulations showed that small "proteins" have significantly
larger barrier-free path lengths than large proteins, which are
generally corralled (locally restrained) by the polymer chains. This is
true for all of cases I, Il and III; but, the barrier-free paths in case
I1I are the smallest among the three cases. We also found that
knowing the barrier-free paths of small proteins allowed the
extraction of the mean diameter of an attachment point, when the
directed motion of the protein is interpreted as a scattering mean
free path. On the other hand, the directed motion of large proteins
provides information about the size of the corrals (regions in which

the cytoskeleton restricts protein movement).

Overall, the simulations provide a model in the context of
which to probe the geometry and elasticity of biological membrane
systems. Further refinements, such as inclusion of hydrodynamic
effects and dynamic bilayer-cytoskeleton detachment/re-attachment
processes, which are beyond the scope of this current research, can

be added to study the effects of a dynamically fluctuating
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cytoskeletal network on the diffusion properties of membrane

proteins.
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Appendix A: Effective spring constant of an
ideal polymer chain

In three dimensions, the distribution function p(ree) for the end-to-
end distance ree Of an ideal polymer chain (that is, a chain without

self-avoidance) 1s gaussian in shape and is given by

p(ree) ~ exp(=3ree2/(2ngegh?)), (A1)

where ngeg represents the number of segments of the chain and b is
the average bond length of each segment. Note that p(ree) can also be

written as

pl(r.) = : (A.2)

S a()|

where £2(ree) 1s the number of distinct configurations with end-to-
end distance ree. The entropy Sg of the chain associated with this

distribution 1is
SE = kBIn[£2(ree)], (A.3)

which, when combined with Eq. (A.2), gives
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SE = So - 3kBreez/(2(nsegb)2)a (A.4)

where S, is a constant. The free energy F(ree) of the chain, at a fixed

value of ree, is related to Sg by

F(ree) = £E-TSg (A.5)

where E, the chain energy, is assumed to be a constant, independent

of chain conformation. Putting Eq. (A.4) into Eq. (A.5), we get,

F(ree) = Fo+ 3(kBT)rC€2/(2(nSng)2)7 (A.6)

where all constant terms are absorbed into F,. Now, taking the

derivative —dF/dree (with respect to ree) of the free energy in Eq.
(A.6), of the chain gives us the entropic force f that acts on the chain.

That 1is,

(aF/a”ee) = Kkeff*ree, (A7)

where the effective spring constant keff is, according to Eq. (A.6),
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Appendix B: Normalised shear modulus for a
network of ideal polymer chains

Consider an ideal chain with Nngeg segments (or ngeg+l vertices) with
an average bond length b. From the discussion in Appendix A, we
know that such a chain resists stretching with an effective spring

constant kegf of

,Bkeff = 3/(”segb)2 (B.1)

where ,B is the inverse temperature (kg7)~! and kefr is the effective

spring constant of the ideal chain. The end-to-end distance <ree> 1S

related to ngeg by

<ree>2 = bznseg (B.z)

(see Doi and Edwards, 1978), so

ﬂkeff = 3/<re€>2. (B.3)

The shear modulus g for a triangulated network at zero temperature

and stress is related to keff (Boal et. al., 1993) by

w o= (N3/4)kess. (B.4)



Combining Eqgs (B.3) and (B.4), we find

Bu = 3V3/(4<ree>2). (B.5)

The area Aj per junction vertex of a triangulated network is given by

Aj = (V3/2)<ree>?, (B.6)

so that

Pu = 9/(84j). (B.7)

Replacing Aj‘l bY Puensiy, which is the number of network nodes

(sixfold junctions) per unit area, we get

# = pdensirka T (B'S)

We note the similarity between this expression and the volumetric

compression modulus Ky = pkpT of an ideal gas.
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Appendix C: Derivation of Eq. (3.5)

Consider a two-dimensional triangulated network with square-well
interactions between the nodes. In the mean field approach, or at
large applied tension, the network triangles are approximately
equilateral. A plaquette consisting of two adjacent equilateral
triangles with sides s (containing a single vertex) has an area per
junction vertex Aj = (\/3/2)32, and a maximum area per junction
vertex Ap = (\/3/2)sm2 , where 0 < s < §y. The mean area of a

plaquette <A> is given by

The denominator of Eq. (C.1) can be evaluated as

J.OAm e P qa = B_é— O_ﬁPAm e” dx
C.2
poseng b—‘; (e“,BPAm 1) ( )

The numerator of Eq. (C.1) is calculated to be
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A‘n oy 1 ‘ﬁPA“]
J.( Ae PP ga = J. xe* dx

) (BP)2 0
1 ) pon ’ (CB)
- ( )2 [("‘ﬁPAm )e - o+ l] .

Combining the results in Egs. (C.2) and (C.3), we arrive at the general

formula for <A>,

(C.4)

In the limit of large tensions, i.e., when P is large and negative, we

arrive at the approximation,
1
<A> = [1+pBPa,], (C.5)

Bp

which is Eq. (3.5).
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Appendix D: Fluctuation formulae for
elastic moduli

The fluctuation formulae for the extraction of elastic moduli are

as follows:

(a) In-plane area compressibility Ka:

BKa = <A>/(<A2> — <A>2), (D.1)

where <A> is the mean in-plane area of the network.

(b) Shear modulus U :

We define the in-plane Young's moduli along the x-axis and y-

axis, Yx and Yy respectively, as,
BYx = (<A> (<Lyx2>/<Ly>2 - 1))~1 (D.2)
BYy = (<A> (<Ly2>/<Ly>2 - 1))~1. (D.3)
where Lx and Ly are the simulation box lengths along the x and y
directions respectively. We then define the mean in-plane Young's

modulus YM = (Yx + Yy)/2 and the shear modulus is calculated from

Bl = YmeKal(4Ka - YM). (D.4)
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(¢) The volume compressibility Ky:

BKy = <V>/(<V2> — <V23). (D.5)
where V is the volume of the network given by the product Aef, and
t is the configurational mean of the network displacement from the
bilayer.

(d) The transverse Young's modulus Y;:

BY | = (<r>/(<12> — <1>2))/<A>. (D.6)

(For a further review of the fluctuation formulae, see Boal, 1994).
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