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Abstrac t  

The human erythrocyte cytoskeleton, a scaffolding of proteins 

attached to the cytoplasmic side of the bilayer, is modeled as a 

triangulated network of polymer chains, in which the coupling to the 

bilayer can be either at the polymer chains' midpoints, the network 

sixfold junction complexes or both. The geometrical and elastic response 

of the model network is determined through computer simulation by 

applying both isotropic and anisotropic stresses. Near zero stress, the 

model cytoskeleton behaves much like a two-dimensional network of 

springs, while at large tensions it can be described as a network of 

equilateral triangles with square-well interactions between the nodes. 

Elastically, the model cytoskeleton which has membrane linkages 

at both the chains' midpoints and sixfold junction complexes is the 

stiffest. This difference, in comparison to cases where the membrane 

linkage is either at the chains' midpoints or at the sixfold junction 

complexes, is as much as a factor of 2.5 for the out-of-plane elastic 

moduli, namely the volume compression modulus and the transverse 

Young's modulus. The effect of a precompression built into the rest- 

state of the cytoskeleton has also been investigated and found not to 

significantly affect the predicted elastic properties of the cytoskeleton. 

The model has also been used to probe the effect of the 

cytoskeleton in constraining the membrane proteins to localised regions. 

The simulation method used to probe this effect is similar to the protein 

iii 



dragging techniques used in single-particle tracking experiments. Large 

proteins are found to be mostly confined in a local region (or corral) due 

to steric interactions, a typical corral radius being about 20 nm. Small 

proteins on the other hand, are able to slip past polymer chains and are 

stopped mostly by the membrane attachment sites of the cytoskeleton. 

We interpret the mean-free path of directed protein motion as a two- 

dimensional scattering problem and the extracted in-plane diameters of 

the attachment sites are found to range from 12 nm to 32 nm, 

depending on the type of membrane linkage mechanism present in the 

model .  
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Chapter 1 
INTIiODUCTION 

1 . 1  The human erythrocyte 

The human erythrocyte has long intrigued biophysicists, cell 

biologists and biochemists by its relatively simple geometry and its 

fascinating mechanical and physiological properties. There is still 

much to be understood about the pronounced resilience of the 

erythrocyte as it undergoes marked deformation in the circulatory 

system (see Fig. 1.1) and rapidly recovers its resting shape once t h e  

Fig. 1.1 Micrograph of human erythrocytes moving through 
small blood vessels. Notice the deformations that each red cell 
undergoes. Arrows show direction of blood flow. The cells in 
the image have a diameter of approximately 10 microns. (Steck 
1989) 



shear stress is removed. These large deformations have been 

observed by many investigators. Krogh (Krogh, 1959) observes that 

mammalian red cells in 4-5 p m  capillaries can achieve lengths more 

than double the normal, undeformed diameter of the cell of 8 p m .  

The life span of a normal human red cell is approximately 120 days 

during which time it passes through the heart roughly 200,000 times 

(Steck, 1989). The human erythrocytes arise from stem cells located 

in the bone marrow and are missing the nucleus which is pinched off 

enroute in the erythrocyte's journey from the stem cells into the 

bloodstream. The shape of a normal red cell is biconcave (see Fig. 

1.2) and about one third of its interior v o l u  m e is occupied b y  

hemoglobin. 

Fig. 1.2 (A) Normal red cells. (B) Echinocytes. (C) Cells depleted 
of 37% of their cholesterol, leading to invaginations 
(stomatocytes). (D) Restoration of biconcave shape of cells in 
(C) treated with lysolecithin. Calibration bar in (c) is 10 p m  . 
(Steck, 1989) 
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The red cell has an average membrane area of = 135 p m 2  and a 

cytoplasmic volume of approximately 94 p m 3 ;  it can swell to a 

volume of about 160 p m 3 .  

The plasma membrane of a red cell can be described as a lipid 

bilayer in which is associated with a diverse number of different 

proteins.  The bilayer provides solute impermeability to the 

membrane. The lipids that make up the bilayer are amphiphilic 

structures, that is, a lipid has both a hydrophobic (water insoluble) 

tail and a hydrophilic (water soluble) head. The lipids are 

asymmetrically distributed in the two monolayers that make up the 

bilayer. The outer monolayer is made up mostly of lipids which are 

zwitterions, principally phosphatidylcholine (PC) and sphingomyelin 

(SM); while the cytoplasmic surface is rich in anionic lipids such as 

phosphatidylserine (PS) and phosphatidylethanolamine (PE). The PC, 

PS and PE lipids consist of two hydrocarbon chains (hydrophobic 

tails) linked through a glycerol to a polar head group (hydrophilic 

head). The SM lipid, on the other hand, has a serine link instead of 

glycerol. The red cell structure is highly stable, due to the fact that 

lipids may spontaneously form closed structures in an aqueous 

env i ronment .  

Analysis of the red cell membrane by sodium dodecyl sulfate- 

polyacrylamide gel electrophoresis (SDS-PAGE, for an explanation of 

this technique, see Gennis, 1989) has shown that the red cell 

membrane contains a number of species of proteins, most of which 

have been characterized (Fairbanks, Steck and Wallach, 1971). 



Glycophor~n A 
Glycophorin C 

Band 3 

14 I Glycocalyx 

Fig. 1.3 

(a$ tetramer) Actin 
(Oligomer) 

tail 

(B 

(A) A schematic diagram of the red cell plasma 
membrane. (B) A section of the bilayer consisting o i  dual 
chain lipid molecules, whose head groups are short chains. 



These proteins are divided into two general groups: integral and 

peripheral proteins. The integral proteins, such as band 3 and 

glycophorin A, pass through the membrane and are tightly bound to 

the membrane through hydrophobic interactions with lipids in the 

bilayer. In a typical red cell, there are approximately 106 copies of 

band 3. Peripheral proteins, on the other hand, are bound to one face 

of the membrane by noncovalent interactions with other proteins. 

Spectrin, actin and band 4.1 are typical examples of peripheral 

proteins and they form most of the membrane skeleton. There are 

approximately 2 x 105 copies of spectrin monomers, 2 x 105 copies 

of actin and 2 x 105 copies of band 4.1 in a typical red cell. (See Fig. 

1.3). The durability of the red cell is attributed to the extensive 

reinforcement provided by a scaffolding network of these peripheral 

proteins (Steck, 1989). 

The mechanical behavior of the erythrocyte membrane has 

been studied extensively (Evans, 1973; Waugh and Evans, 1979; 

Zilker et n l . ,  1992), yielding elastic parameters that are 

manifestations of the molecular composition and organization of the 

plasma membrane. Numerous studies have shown that the protein 

spectrin plays a crucial role in determining the mechanical properties 

of the rnembrane (Branton et al.,  1981) and also in controlling the 

lateral mobility of integral membrane proteins (Sheetz, 1983) by 

forming a meshwork at the cytoplasmic (or interior) side of the 

membrane lipid bilayer. The diffusion of proteins within the 

membrane (Kusumi et al., 1993; Saxton, 1995) is thought to be 

affected by the cytoskeleton through the formation of domains  
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where some proteins are corralled for a significant amount of time. 

. 2  Membrane cytos 

and band 4.1, are the major 

membrane skeleton (Steck, 

components of 

1989; see Fig. 

It has been well established that the proteins, spectrin, actin 

the human erythrocyte 

1.4). The two spect r in  

Ankynn Band 4.7. 

Fig. 1.4 A schematic diagram of the red cell cytoskeleton. 
Ankyrin and band 4.1 are proteins that are directly or loosely 
attached to the cytoskeleton and the bilayer. 



respectively, associated side by side, forming a dimer. Experimental 

evidence (Speicher, 1986) seems to suggest that each a and P chain is 

organized into 18 to 20 independently folded domains, each 

containing 106 residues (amino acids). The dimers associate head-to- 

head to form (ap):! tetramers, with a contour length of approximately 

200 nm (- 3 nm in diameter). In its native conformation, the spectrin 

tetrarner has an end-to-end displacement of 76 nm, which is about 

one-third of its contour length. The two tail-ends of these tetramers 

are associated with actin filaments to form a junction complex 

(stabilized by the protein band 4.1). On the average, there are six 

spectrin tetramers joining at the junction complexes, giving rise to 

the mean sixfold connectivity observed in red cells (see Fig. 1.4; 

Byers and Branton, 1985; Liu et al., 1987). Experimental evidence 

suggests that the protein ankyrin links the membrane skeleton 

through specific transbilayer proteins like band 3. The complete 

picture of how the skeleton attaches itself to the bilayer, both 

statically and dynamically, remains to be fully understood. 

. 3  Elasticity of the red cell 
membrant 

In recent years, the 

analyzed extensively, and it 

both area dilation and bend 

elasticity of the erythrocyte has been 

has been suggested that the resistance to 

ng of the plasma membrane is borne by 

the lipid bilayer (Evans and Skalak, 1980). However, the bilayer is 



basically a surface fluid and, thus, contributes very little to the 

extensional elasticity of unswollen (flaccid biconcave shape) red cells. 

The spectrin network attached to the bilayer is suggested to be 

primarily responsible for bearing this extensional rigidity of the red 

cell membrane (Mohandas and Evans, 1994), and this extensional 

elasticity is the major restoring force for a red cell after it undergoes 

a large deformation during its route through the blood system 

(Evans, 1973; Evans and Hochmuth, 1978). This suggestion follows 

from experimental evidence that: ( I )  Spectrin has been shown to 

behave like a highly flexible filament which can be drawn linear or 

collapsed into a compact form (Bennett, 1985; Elgsaeter e t .  al. ,  1986). 

The intact cytoskeleton was also shown to be capable of sustaining 

numerous cycles of extensions and contractions of the erythrocyte by 

varying the pH of the buffer in which it was suspended (Johnson e t  

a l . ,  1980; Lange et nl., 1982). (2) Murine (mouse) cells congenitally 

devoid of spectrin have been found to be rather inelastic (Schmid- 

Schonbein et al., 1986). (3) There is direct correlation between the 

modulus of extensional elasticity and the spectrin content of red cells 

from patients with hereditary hemolytic anemias (Waugh and Agre, 

1988).  In these experiments, the erythrocyte shear modulus 

decreases by 30-40% when the ratio of the density of spectrin 

molecules taken with respect to the density of band 3 molecules 

present in the red cell plasma membrane decreases by a factor of 2. 

Numerous experiments have been carried out to probe the 

elastic properties of the red cell plasma membrane. Micropipette 

aspiration of red cells (Waugh & Evans, 1979) can be used to 



measure elastic parameters such as bending, area compression and 

shear moduli. Typically, the red cells are sucked into a micropipette 

via a suction pressure applied externally (see Fig. 1.5). The length of 

the red cell inside the micropipette is measured as a function of the 

suction pressure. The density profile of a spectrin network can also 

be studied in these experiments via fluorescent microscopy. In these 

particular microscopy experiments, the cytoskeleton network i s  

subject to a variety of stresses, including simple shear, pure shear 

and isotropic dilation (Discher et al., 1994). 

/ Aspirated 
/ 

Red 
cell 

length of 
red cell 

Fig. 1.5 A schematic diagram showing the aspiration of a red 
cell  into a micropipette through the application of a suction 
pressure P. The micropipettes typically have a diameter of 112 
to 1 y m .  

It has been argued that spectrin filaments behave like entropic 

springs (Elgsaeter et al., 1986), by which we mean random coils 

which become more ordered when stretched and regain their 



disorder when relaxed. The energy used to deform an entropic spring 

by stretching is stored as an unfavorable decrease in i ts 

configuration entropy. It is easy to show that the elastic moduli of a 

cross-linked network of ideal polymer chains are proportional to 

p k s T ,  where P is the density of cross-links, kB is the Boltzmann 

constant and T is the temperature. Assuming that, on the average, 

the red cell cytoskeleton is a hexagonal network of spectrin chains, 

there are approximately 32,000 sixfold junction complexes in an 

average membrane area of 135 p m 2 .  The compression modulus, K A ,  

thus calculated is of the order = 10-2 dynlcm (see also Evans, 19791, 

which is much smaller than that of a liquid and in the range 

measured experimentally. 

1 . 4  Lateral motion of integral 
membrane proteins 

Integral proteins, such as band 3, are proteins that cross the 

lipid bilayer. Approximately 40% of the band 3 molecules are bound 

to the spectrin network, and these molecules show no rotational 

diffusion (rotating about an axis perpendicular to the plane of the 

bilayer; Nigg and Cherry, 1980) or lateral diffusion (moving laterally 

within the membrane). The remaining 60% of the band 3 molecules 

are not attached to the network and are free to diffuse through the 

membrane. The rate of diffusion of membrane components is 

relevant to the transport of membrane-bound enzymes (a number of 

which are proteins) to various parts of the membrane serving as 

catalysts to processes essential to the survival of the cell. 



Over the past decade, there has been increased research on the 

subject of lateral motion of membrane proteins (Sheetz et al., 1980; 

Jacobson et al., 1982; Jacobson et al., 1987, Edidin at al., 1991; Saxton, 

1994). The focus has been on what the measured diffusion rates of 

the proteins within the membrane might imply about the membrane 

structure and dynamics and also on the development of techniques 

for lateral mobility measurement. 

Fig. 

time 

1.6 Schematic diagram describing the principle 
typical FRAP experiment- The initial f luoresdence intensity 
F(i) arising from fluorophores within a small area of the 
membrane surface is measured. The next step involves an 
irreversible photobleaching of a fraction of the fluorophores 
(withing dotted circle) by an intensified laser beam. This is 
followed by monitoring the postbleach fluoroscence intensity 
as a function of time, F(t). 

The main technique that has been used to extract the diffusion 

rates of proteins is fluorescence recovery after photobleaching or 



FRAP (Sheetz et al., 1980). Basically, a laser beam is used to bleach a 

spot (diameter =: 1 p m )  in a uniformly labelled membrane. The 

increasing flourescence from that spot is monitored as a function of 

time after bleaching, and the rate of recovery is a direct measure of 

the lateral diffusion of the flourescent species from the surrrounding 

medium into the previously bleached spot. The FRAP technique is 

illustrated in Fig. 1.6. FRAP measurements show that proteins 

typically diffuse approximately 50 times slower in normal mouse 

erythrocytes than in spherocytic erythrocytes, which are deficient in 

the membrane skeleton matrix (Sheetz, 1983). There is also evidence 

from FRAP measurements that proteins diffuse much more quickly 

in a pure lipid bilayer than in a membrane with an associated 

skeleton network (Poo and Cone, 1974). 

Recently, restricted motion of proteins has been observed via 

single particle tracking (SPT) experiments (Gross and Webb, 1986; 

Kusumi et al., 1993, Sako and Kusumi, 1994) which may involve 

diffusion of proteins or directed motion with optical tweezers. In the 

optical tweezer experiments, a membrane protein with a gold 

particle attached is moved across the plasma membrane in a straight 

line by optical tweezers (Edidin et al., 1991; Sako and Kusumi, 1995). 

The optically guided protein is observed to escape from its optical 

trap at some point in its directed motion. The optical tweezer 

experiments show that proteins tend to be corraled in specific 

regions of the membrane. These corrals are presumed to arise from 

the steric interactions between the guided proteins and the 

membrane cytoskeleton. Restricted motion of membrane proteins 



plays an important role in the life span of a cell. In some cases, the 

membrane localizes enzymes in regions where soluble substrates can 

be highly concentrated and subsequently absorbed. An example of 

this occurs in the intestinal microvillar membrane, which contains 

numerous enzymes serving to digest starch and proteins. 

SPT experiments also allow characteristic length scales of 

protein motion to be extracted. The tagged protein, at some point of 

i ts  dragged motion, encounters a barrier (interaction with 

components of the membrane skeleton) which overcomes the optical 

trapping force and forces the protein out of the trap. A characteristic 

length scale, the barrier-free path (BFP), can be obtained from the 

path length distribution of an optically guided protein motion. For 

example, Edidin et al.  (1991) find that the BFPs of two different 

proteins in the plasma membrane of murine HEPA-OVA cells 

(hepatoma cells from the lining of the liver of mice, not erythrocytes) 

are in the micron range. On the other hand, BFPs of tagged 

transferrin receptors in rat kidney fibroblastic cells are hundreds of 

nanometers in length (Sako and Kusurni, 1995). 

Quantitative analysis of the data taken from FRAP and SPT 

experiments has proven to be a non-trivial task. This is due to the 

viscous and hydrodynamic effects which are not easily incorporated 

into the analysis. Theoretically speaking, BFPs are much easier to 

analyze than diffusion constants, being less affected by many 

dynamical attributes of the cytoskeleton. To this end, many 



theoretical models have examined the general properties of particle 

diffusion through barriers, rather than specific cell/protein systems 

(Saxton, 1982, 1994a,b; Pink, 1985). 

Overview of thesis 

This research is focused on the use of computer simulations to 

examine the geometry and elasticity of the human erythrocyte. The 

investigation is based on large-scale simulations, involving systems 

of up to 6500 particles, and took up to 2 years of CPU (central 

processing unit) time to complete. The simulations were carried out 

on a combination of 80MHz, 132MHz and 200MHz MIPS processors 

incorporated into Silicon Graphics machines. 

In Chapter 2, the model that is used to represent the 

erythrocyte membrane cytoskeleton as a network of connected 

polymer chains is described in detail. The numerical algorithm used 

to obtain the equilibrated (zero-stress) model network in the stress 

ensemble is also described. 

Chapter 3 uses the cytoskeleton model developed in Chapter 2 

to determine the response of the model network to extensional and 

compressional stresses applied both isotropically and anisotropically. 

Simple mean field (MF) models of Hooke's-law springs are presented 

to interpret the simulation results for the membrane cytoskeleton's 

elastic properties under both small and large deformations. Through 



this comparison with the MF models, an effective spring constant of 

the chains in the model cytoskeleton network is extracted. The 

effects of a precompression in the rest-state of the cytoskeleton on 

the geometrical and elastic properties are also investigated. 

In Chapter 4, the simulation that is used to probe the barrier- 

free paths of proteins guided through the membrane skeleton is 

described. This chapter looks into the constraining effects of the 

cytoskeleton and also 

parameters of the modc 

the network elements 

theory is proposed to 

protein-motion simulat 

the method of extracting some geometrical 

$1 network, such as the effective diameter of 

attached to the bilayer. A simple scattering 

interpret the data obtained in these directed- 

ions. 

There is still debate as to how the cytoskeleton network 

attaches itself to the lipid bilayer. The dependence of the 

cytoskeleton's geometry and elasticity on the nature of i ts 

attachment to the bilayer is explored by simulation in Chapter 5 ,  The 

simulations contrast the use of the sixfold junctions as attachment 

sites to that of the chain midpoints. 

A summary of the thesis research is given in Chapter 6 a n d  

then followed by three appendices that outline the simple models 

that are used to fit the simulation results. 



Chapter 2 
THECYTOSKELETONMODEL 

Introduct ion 

For the past few decades, numerous experiments and (more 

recently) computer simulations have been carried out to study the 

mechanical and in-plane diffusion properties of the red cell plasma 

membrane. Experimental techniques such as micropipette aspiration 

(Waugh and Evans, 1979; Discher et al., 1994) and flicker microscopy 

(Strey e t .  a l . ,  1995) have been used to measure the shear modulus of 

the erythrocyte cytoskeleton and the bending modulus of lipid 

bilayers and plasma membranes. Other viscoelastic properties of the 

plasma membrane have been explored using the FRAP and SPT 

techniques described in Chapter 1.  Studies of in-plane motion of 

labelled proteins and lipids also have yielded information on the 

steric interaction between the cytoskeleton and in-plane membrane 

components (Kusumi et al., 1993; Sheetz et al., 1980). While the 

experimental results cannot be interpreted unambiguously with a 

microscopic model of the cytoskeleton, nevertheless they provide 

stringent tests for the components of such models. 

In this chapter, we present a computational model of the 

erythrocyte cytoskeleton attached to the bilayer. This reference 

model will be used to investigate the geometry and elasticity of the 

cytoskeleton, as well as the in-plane protein-diffusion properties of 



the plasma membrane. Geometrical properties of the cytoskeleton 

that can be obtained from the model include the transverse 

thickness, the equilibrium separation of the junction complexes and 

the magnitude of the steric interaction between different spectrin 

elements. The latter property affects the motion of large proteins in 

the bilayer and will be described in Chapter 3. The model predicts 

elastic properties including the shear modulus as well as the area 

and volumetric conlpression moduli. The model also is used to probe 

the effect of externally applied stresses on the elastic moduli (as will 

be discussed in detail in Chapter 5). In addition, the reference model 

described in this chapter can be modified to examine the dependence 

of the cytoskeleton elasticity and geometry on the attachment points 

of the membrane skeleton to the bilayer. 

The model cytoskeleton in this thesis is viewed on the scale of 

ten nanometers, but is computationally restricted to investigate 

systems on length scales of half a micron at the most. Although this 

is not sufficiently large to allow direct comparison with some of the 

experimental data, such as micropipette aspiration (Discher et al . ,  

1994) or flicker eigenmode decomposition (Strey et al., 1995), the 

microscopic model can be used as a basis to develop effective two- 

dimensional models applicable on length scales of 0.1 to 10 pm. In an 

effective model of the cytoskeleton, a spectrin tetramer is viewed as 

a single component, such as a harmonic spring, rather than as an 

object with many subcomponents, such as a polymer chain. While an 

effective network may not possess all of the characteristics of a 

microscopic computational model, it does allow one to investigate 



systems on larger length scales and to compare the microscopic 

model with the known properties of two-dimensional networks. For 

example, the elastic properties of triangular networks confined to a 

plane have been determined as a function of stress (Boal, Seifert and 

Shillcock, 1993), while the elastic and geometrical properties of two- 

dimensional triangulated networks fluctuating in three dimensions 

have been computed at zero stress (Le Doussal & Radzihovsky, 1992; 

Gompper and Kroll, 1991). 

The chapter is organised as follows. In Sec. 2.2, we describe the 

microscopic model of the cytoskeleton/bilayer system as a 

triangulated network of polymer chains and the Monte Carlo 

technique used to generate a set of configurations that properly 

samples the fixed-stress ensemble. Next, the behaviour of the 

geometrical properties of the model cytoskeleton is studied in Sec. 

2.3. This is then followed by Sec. 2.4, in which physical values are 

assigned to the model parameters such as the number of segments 

on each chain and also the polymer potential parameters. A 

summary of Chapter 2 is found in Sec. 2.5. 

The reference model 

The computational reference model that we use in probing the 

structural characteristics of the erythrocyte cytoskeleton under 

stress is similar to one that has been used to predict cytoskeleton 

properties at zero stress (Boal, 1994). The two main components of 



the plasma membrane that make up our computational reference 

model are the bilayer and the attached network of spectrin 

t e t r amers .  

In our computational model, the bilayer is flat and lies in the 

computational xy plane. The rationale for the flatness assumption is 

as follows. In the treatment of the elasticity of bilayers, it was 

conjectured by Canham (Canham, 1970) and others, that the 

statistical behavior of a fluid membrane, freely fluctuating in a 

solvent, can be studied within a continuum model based on the 

following Hamiltonian: 

where C1 and C2 are the principal curvatures at a given point in the 

membrane surface and Co  is the spontaneous curvature. In the 

continuum model, Co, Kb (the bending rigidity) and KG (the Gaussian 

bending coefficient) are intrinsic characteristics of the membrane 

arising from its chemical composition. The ground state of the 

continuum model, for fixed values of C o ,  Kb and K G ,  is found by 

varying C1 and C2 across the membrane surface to minimize Hel .  

Experimental evidence shows that the bending modulus Kb of a 

pure (DMPC) phospholipid bilayer is of the order of 10-25 kBT (Evans 

and Rawicz, 1990). The persistence length 4 of a membrane governed 

by Eq. 2.1 has been estimated by de Gennes & Taupin (19821, to b e  



proximately 

5 = a.exp ( 2 E ~ b i k ~ T )  (2.2)  

where is a molecular lengthscale (-- 1 nm). For Kb - 10 ksT, this 

yields an astronomically large value of 1O15 km for 5. This value for 

5 may seem unphysically large; but it does tell us that the 

persistence lengths of bilayers are not small and that the bilayer 

does resist (if not strongly) bending in the transverse direction. 

ased on this observation, it is not inappropriate to make our 

computational bilayer flat on the simulation length scale of 

approximately one micron. 

With respect to the RBC membrane cytoskeleton, studies (see 

Steck, 1989) have shown ( i n  s i tu)  that the cytoskeleton has a high 

degree of extensibility. The span of the spectrin tetramers on the 

intact RBC membrane is - 76 nm, which is approximately 37% of the 

contour length of the 200 nm tetramer, a ratio of 1:2.6 (see also Liu 

et nl., 1987). On the other hand, photographs (taken via transmission 

electron microscopy) of the RBC cytoskeleton (Heuser, 1983), have 

also shown that spectrin tetramers are highly convoluted filaments 

connecting short, linear actin filaments. Recall (from Chapter 1) that 

isolated spectrin behaves much like a highly flexible filament; 

besides being able to be collapsed into a compact form, it can also be 

drawn linear. As pointed out by Stokke et al. ,  (1986a,b),  this 

behavior of the spectrin filament is similar to what is expected from 



a polymer chain in a solvent, in which the elasticity of the chain is 

governed by the entropy of the chain configurations. 

Fig. 2.1 Diagram shows two different configurational states of 
a polymer chain. (a) Chain fully extended and its end-to-end 
distance 1, is defined as the contour length. (b) Chain i n  its 
natural relaxed state; its mean end-to-end distance <re,> i s  

much smaller than its contour length 1,. 

From the behavior of random walks (for a review, see Doi and 

Edwards, 1986), entropic considerations result in the average end-to- 

end distance <re,> of a polymer chain being shorter than its contour 

length 1,. This is seen as follows. Consider an ideal chain (no self- 

avoidance) with nSeg segments each of length a :  < r e e / a  > grows like 
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nSeg-1/*, showing that <re,> is shorter than 1,. Thus, the polymer 

chain, in its natural resting state, is convoluted (see Fig. 2.1) 

Stretching a freely-jointed chain from its equilibrium 

configuration decreases its entropy and hence increases its free 

energy. This means that, if we were to constrain a polymer chain by 

having its ends fixed at specified points, the chain will be acted on by 

a tensile force (in the direction of the line joining its ends) which is 

proportional to the end-to-end distance of the chain. The effective 

spring constant of an ideal chain ( n s e g  segments) at modest 

deformations is given by kSp = dkBT/ree2,  where kg is Boltzmann's 

constant, T is the temperature, re, is the average end-end distance of 

the chain and d is the embedding dimension. We refer to the 

polymer chain, therefore, as an entropic spring. (For a more detailed 

development of this, please see Appendix A). 

The shear modulus of the RBC cytoskeleton network has been 

observed experimentally to be approximately P p < A , >  =: 7 - 1  1 ,  

where p is the inverse temperature (kgT)-1 and A, is the mean area 

per junction vertex if the cytoskeleton network is taken to be a 

uniform triangular network (Av =: 5x103 nm2). If one were to treat 

the spectrin tetramers as ideal polymer chains with an effective 

spring constant kSp = 3kB Tl<ree2> (see above) and <ree2> = u2nSeg,  

then a network of such chains has P ~ < A , >  = 1.1 (see Appendix B for 

review of the calculation). Of course, a network of truly ideal chains 

collapses (Kantor, Kardar and Nelson, 1986), and self-avoidance of 

the chains must be included to describe physical systems. However, 



the above order-of-magnitude description of the erythrocyte 

cytoskeleton elasticity shows that the use of polymer chains with 

excluded volume effects would be a reasonable model for the actual 

RBC cytoskeleton. 

x y  plane 

restricted 

cytoplasm 

bilayer. S 

bilayer i 

In our reference model, then, each spectrin tetramer i s  

modeled by a single polymer chain with nSeg  segments, and the ends 

of the chains are linked together at sixfold-coordinated junction 

complexes. The vertices defined by the segment endpoints can be 

either 2-fold coordinated (along the chain) or 6-fold coordinated (at 

the junction complexes). To mimic the way the cytoskeleton appears 

to be attached to the bilayer of the red blood cell, the midpoint of 

each chain is constrained to move exclusively in the computational 

representing the bilayer. All other chain elements are 

to move in the positive z direction (that represents the 

ic side of the bilayer) through elastic collisions with the 

ince the way the cytoskeleton actually attaches itself to the 

unambiguously, two alternate attachment 

in Chapter 5 :  (1 )  attachment of the 

layer at the junction complexes and (2) 

midpoints of the chains and the junction 

:e model as described in this chapter (and 

also in Chapters 3 and 4)  has the attachment point only at the 

midpoints of the chains. 

s not known 

models are described 

cytoskeleton to the bi 

attachment at both the 

complexes. The referenc 

In a previous study of the elastic properties of the erythrocyte 

cytoskeleton (Boal, 1994), the chains were modeled by bead-and- 



tether potentials, which is efficient for Monte Carlo (MC hereafter) 

type simulations. But, we would like eventually to extend our study 

to dynamical phenomena such as diffusion. To incorporate explicit 

time evolution of the system, the simulations in this thesis are based 

on molecular dynamics (MD hereafter) techniques, which require a 

smoother interparticle potential than the step-functions used in the 

bead-and-tether models. We use a potential developed by Bishop, 

Kalos and Frisch (BKF hereafter; Bishop, Kalos and Frisch, 1979) and 

well documented in other recent simulation work on polymers (Grest 

and Kramer, 1986). In the BKF potential, any two vertices are subject 

to a short-range repulsive potential, 

V (r)  = 4E {(O/r)12 - ( ~ / r ) ~  + 1/41 0 < r < 21/60 

(2.3)  
= 0 r > 21/60 

where & and O are the fundamental energy and length scales of the 

simulation and r is the inter-vertex distance. In general, modelling 

the complete bond potential of a polymer chain involves a length and 

energy scale as determined by Eqs. (2.3) and (2.4). Each individual 

spectrin chain (in our reference model) is being modelled as a freely- 

jointed chain, whose segment lengths are determined from the 

known geometry of the RBC cytoskeleton. Thus, no direct mapping of 

the simulation potential parameter E onto experiment is necessary. 

To facilitate the implementation of the simulation, the energy scale I 

is then set equal to ~ B T  and the force is measured in units of c / o .  



Each vertex along the chain is connected either to two (along 

the chain) or six (at the junction points) nearest-neighbour vert ices 

through the potential 

where 3- and X, are parameters. Choosing the parameter set &lo = 

1.5 and T o 2 / &  = 30 (Grest and Kramer, 1986), the combined 

potential Eq. (2.3) and (2.4) has a minimum at r / O  = 0.97, A leapfrog 

algorithm (Allen & Tildesley, 1981) is used to integrate the equations 

of motion with time step A t  = 0.005(m 0 2 / ~ ) 1 / 2 ,  where rn is the 

vertex mass. Fixing values for 0 and the temperature allows the 

presentation of simulation results in physical units. The investigation 

of time-dependent phenomena, such as diffusion, would necessitate 

the incorporation of viscous (hydrodynamic) effects to determine the 

parameters such as rn, which is beyond the scope of this thesis. 

In the simulations, 16 (4 rows of 4 vertices each) junction 

vertices are used; and n S e g ,  the number of segments along a given 

c h a i n ,  is varied over the range from 10 to 26. The simulation to 

determine the geometrical and elastic properties of the model 

network is carried out at constant temperature and pressure via a 

combined MC and MD algorithm with periodic boundary conditions 

(PBC hereafter) in both x and y directions. The MD algorithm is used 

to speed up the relaxation of the network, as it allows the system to 

probe configuration space more efficiently. The lengths Lx  and Ly of 
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the periodic rectangular boundaries are allowed to fluctuate 

independently following a MC algorithm developed by Wood (Wood, 

1968). A set of configurations with varying L, and L y  selected with 

the appropriate Boltzmann weights are generated for each pressure 

and chain segmentation of interest. Testing of the accuracy of the 

simulation program described above is done through comparison of 

selected simulation results with that obtained using a independently 

written simulation code (private communications with Boal, 1993). 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70 .0  

MC sweeps (X lo2) 

Fig. 2.2 Plot showing the relaxation of the simulation box 
lengths L ,  and L y  as a function of the number of MC sweeps. 
Here, the plot is for as,, = 20. 



For the purpose of analysing ensemble averages of observables, 

between 300 to 600 configurations are stored for each parameter set, 

with each configuration separated by Z = 2.5 x 104 MC sweeps to 

reduce the correlation between successive configurations. The choice 

for Z above is based on the following observation. The longest 

relaxation (Rouse model) time of an ideal polymer chain in a solvent 

grows like nSeg2 (De Gennes, 1979) MC steps, so the relaxation time 

for our polymer network is expected to be large. Though systematic 

relaxation studies were not done, we observed that, for example (see 

Fig. 2.2), it takes approximately 5 x 103 MC sweeps (coupled with 

5000 interleaved MD steps, with 1 MD step per MC step) for the 

network ( n s e g  = 20) to relax from a cold start (perfect hexagonal 

network) to its equilibrium state. 

The primary assumptions that go into setting up the 

microscopic reference model of the RBC membrane cytoskeleton are: 

( I )  the natural resting state of the cytoslseleton network is its zero 

stress equilibrium state, P = 0. (2) The ratio of the contour area to the 

resting state area is equal to seven (Steck, 1989). Here, in the 

reference model, the contour area is obtained by having the network 

lie flat in the computational xy plane, with all the links in the chains 

straightened out and the length of each segment equal to its zero 

temperature value of 0 . 9 7 0 .  Hence, the contour area per junction 

complex Ac is given by 



A snapshot of an equilibrated network (with nSeg = 20) of the 

reference model at zero stress is shown in Fig. 2.3, which shows a 

face-view of the network, looking down the positive z-axis towards 

the computational xy plane representing the bilayer. Note that the 

chains are highly convoluted as one might expect from a network of 

polynier chains, The out-of-plane thickness is a couple of segment 

lengths .  

Fig. 2.3 (a) Diagram showing (+z axis view) an equilibrated 
configuration of the reference model network of the RBC 
cytoskskeleton, The chains with the darker shade lie further 
back  into the background.  Here iz ,,g = 20. T h e  crosses  
represent the locations of the sixfold junctions. 



Network geometry 

In order to determine the value of nseg  which would allow us 

to model the geometrical and elastic properties of the RBC 

cytoskeleton, we would need to know how the mean area of the 

network scales with n s e g .  As discussed previously in Sec. 2.2, the 

end-to-end distance of an ideal chain is smaller than its contour 

length lc. The same general type of behaviour is also expected for a 

network of polymer chains (the reference model) described in Sec. 

2.2. From the simulations, we find the equilibrium network area per 

junction <A;> as a function of the nseg to be given by (see Fig. 2.4), 

Fig.  2.4 Behavior of the mean network area per junction 
complex < A j >  as a function of the number of segments n S e g  in 
each c h a ~ n .  The  solid line through the data  points is the 
equation 2.0nSegl 2 .  



which shows that the mean area per junction complex of the network 

does indeed increase with n s e g  Even though the network area 

increases with n s e g ,  the network area shrinks relative to its contour 

area. This can be seen as follows. The contour length of an ideal chain 

is approximately n s e g  0 ,  so that the contour area per junction 

complex A is ( 3 1 i 2 / 2 ) ( n  s e g  ~ 7 ) ~  (see Eq. (2.5)). The end-to-end 

distance C r e e >  of an ideal chain is approximately equal to n S e g 1 / 2 0  

and, hence, the equilibrium area per junction complex A j l d e a '  s c a l e s  

like n s e g l .  The ratio A;ldea. ' lAc then scales as n s e g - 1 ,  which clearly 

shows that the area of a network of ideal chains does shrink relative 

to its contour area as nseg grows. 

Fig. 2.5 The contour area per junction A, is compared with the 
mean area per junction vertex <Aj>.  The solid line through the 

data points is the equation A,I<Aj> = 0 . 4 n , , ~ ~ . ~ .  



Now, consider the case with self-avoidance of the chains 

included. In this case, the end-to-end distance <re ,> of an isolated 

chain scales approximately as n ,eg0.6  (see de Gennes, 1979) so that 

the equilibrium network area <A j> should scale like n seg  1 .2  (which 

agrees well with the simulation result in Eq. (2.6)). The ratio <Aj>/Ac  

scales like nseg-0 .8 ,  showing again that <Al>  decreases relative to A c  

as n s e g  increases, much like the former case of the ideal polymer 

chain network. Fig. 2.5 shows the ratio of A c / < A j >  for the reference 

model network as a function of n s e g  at zero pressure. We find that 

Ac/<A,> can be fitted by 0 . 4 n s e g 0 - 8  (solid line in figure). 

Fig. 2.6 The mean height <t> of the network as a function of 
the number of segments n s e g  along the chain. The straight 

line shows the fit < t > / ~  = 0.1 l n s e g 0 . 9 .  



Since the mean in-plane area per junction vertex <Aj> of the 

network is significantly less than its contour area per junction vertex 

A c ,  it is no surprise that the network has, on the average, a finite 

displacement from the computational x y  plane. The average 

displacement <t> of the network from the xy plane (bilayer) may be 

estimated as follows. For a single network configuration, the 

displacement t is defined as the average displacement in the + z  

direction of all the vertices in the network, including the ones that 

are tacked to the xy plane. Note that, hereafter, the thickness of the 

network is defined as 2<t>.  The ensemble average <t> is found to 

scale with nseg as (see Fig. 2.5), 

It should be noted that the scaling behavior of both <Aj> and <t> as a 

function of n S e g  is similar to what was observed in a previous study 

of the network using square-well potentials (Boal, 1994). 

As mentioned in Sec. 2.2, one of the requirements used t o  

set the parameter of the reference model is that the ratio A,/<Aj> 

should be equal to seven. This allows us to fix n S e g  at 32 (see Fig. 

2.5). The physical value of 0, on the other hand, is fixed by the 

contour length of the spectrin tetramers, taken to be approximately 

equal to 200 nm (see Steck, 1989). The contour length, together with 

nSeg = 32, gives 0 = 6.4 nrn. Using the values of nseg  and 0 obtained 

above, we find that the mean displacement of the erythrocyte 



cytoskeleton from the bilayer is predicted to be approximately 16 

nm (see Eq. 2 .5) .  With the bead-and-tether model (Boal, 1994), < t >  .= 

15 nm. Thus far, the mean displacement of the RBC cytoskeleton has 

not been measured. 

Fig. 2.7 Scatter plot of the area per junction vertex A J  and 
displacement t  for n s e g  = 20 for 600 configurations. Each point 
represents a pair of values ( A J / < A J > ) -  1 and ( t i i t > ) -  I .  Note that 
the dispersion of the network area A J  and displacment t is less 
15%. 

We also find that the fluctuations of A j  and t around the i r  

mean values are not large. In Fig. 2.7,  we show a scatter plot of the 

values of A j  and t for the particular choice, nseg = 2 0 .  What is shown 

are the values of ( A j l < A j > ) - 1  and ( t l < t > ) -  1 for each configuration 

used in calculating the ensemble average. As expected, the data 

points cluster near the origin, and few configurations fluctuate more 

than 15% away from the mean. Fig. 2.7 shows that there is no 



observable correlation between AJ and t .  This tells us that, in our 

simulations, the reference model does not maintain an approximately 

constant volume per junction vertex; i.e, when the area of the 

network is larger than average, the displacement t of the network 

does not necessarily compensate by becoming smaller than average. 

This is in contrast to the bead-and-tether network (Boal, 1994), 

where there is a reasonably strong correlation between A ]  and t, thus 

providing relations between several of the network elastic constants 

(this point will be explored further in Sec. 2.4). 

Network elasticity 

The elastic moduli K A  (area compression modulus), p ( s h e a r  

m o d u l u s ) ,  K v  (volume compression modulus) and Y I  (Young's 

modulus for network thickness) can be obtained from fluctuations in 

the PBC box size and network thickness (for a review of the 

definitions of the elastic moduli and the method of extraction from 

the simulation, see Appendix D). Because the moduli are determined 

from fluctuations, there is a greater uncertainty in their values than 

there is for <Aj> or i t  >. The errors in the moduli quoted 

below are approximately 20%. 

The elastic moduli plotted in Figs. 2.8, 2.9, 2.10 and 2.11 are 

rendered unitless by multiplying each of those quantities by the 

appropriate powers of 0 and by the inverse temperature P .  Fits to 

the data which go into Figs. 2.8 and 2.9 show that the in-plane 



moduli are described approximately as, 

Fig. 2.8 In-plane area compression modulus K A  measured for  
the reference model as a function of n h e g .  Data are obtained 
for a system of 16 sixfold junction vertices. The straight line is 
the fit P K A G ~  = 1 ~ ) 2 n , , ~ - ~ . ~ .  

This gives a ratio of the in-plane compression modulus to the shear 

modulus of 2.4. It is known (Boal, Seifert and Shillcock, 1993) that 

for two-dimensional networks of Hooke's law springs, the ratio 

KA/,U,  at zero pressure, is exactly equal to 2. Recent work carried out 

on a similar type of network (Hansen, Skalak, Ghien and Hoger, 

1996), which included defects in the network's connectivity, also 

found K A / ~  - 2, indicating that inclusion of randomness in 



connectivity may not necessarily affect some of the characteristics of 

the network. 

Fig. 2.9 In-plane area shear modulus ,U measured for the 
reference model as a function of n s e g .  Data are obtained for a 
system of 16 sixfold junction vertices. The straight line is the 
fit ~ , u o ~  = 81n,,g-2.0. 

A dimensionless quantity that allows comparison of t h e  

simulation results with known experimental data and also with 

networks of ideal chains is PG<Aj> ,  where G is the appropriate in- 

plane elastic modulus (namely K A  and p )  and A j  is the network area 

per junction complex. Table 2A shows the values of P p < A j >  and 

P K A < A j >  for the three different cases: (1) triangulated network of 

ideal chains (see Appendix B), (2) physical RBC cytoskeleton (Waugh 

and Evans, 1979) and (3) simulation results of the reference model. 



( e x p e r i m e n t s )  

Table 2A Compar~son of simulation results ( n h e g  = 32) with an 
 deal network model  and with the mlcroplpet te  aspirat ion 
exper~ments  Measurement of RBC flicker at long length ccalec 
gives a vani$hing shear modulus 

From Table 2A above, one can see that the normalised in-plane 

elastic moduli for a network of ideal chains differ by an order of 

magnitude from those of a RBC cytoskeleton and also from those of 

the reference model (evaluated for nseg  = 32). Furthermore, there is 

no dependence, in the ideal chain case, of the normalised in-plane 

elastic moduli on nSeg (see Appendix B), while over the range of nseg  

investigated in the simulation, Eqs. (2.6) and (2.9) predict that 

This apparent difference in the scaling behaviour between 

ideal networks and the simulation is expected, since the simulation 

includes steric interaction among the chains and between the chains 

and the bilayer, which is absent in the ideal chain case. Table 2A 

shows, however, that the normalised in-plane moduli agree well with 

the experiments (within the uncertainties of the simulation and 

exper iment) .  



The other moduli which can be extracted from the simulation 

are the volume co~npression modulus, K V  , and transverse Young's 

modulus, Y I ,  which scale with n s e g  as (see Appendix D for 

defintions):  

Fig. 2.10 Volume compression modulus K v  obtained in the 
reference model as a function of n s e g  Data are obtained for a 
system of 16 sixfold junction vertices. The straight line is the 

fit PKV0-? = 158.inLeg-2.8. 



The data for these two moduli are shown in Figs. 2.10 and 2 .1  1, 

respectively. The uncertainty in the exponents of the elastic modu li 

in Eqs. (2.8)-(2.9) and (2.11)-(2.12) is about 10%. 

Fig. 2.1 1 Transverse Young's modulus Y l  measured for the 
reference model as a function of n s e g  Data are obtained for a 
system of 16 sixfold junction vertices. The straight line is the 
fit p Y L d  = 44nSeg-0.6. 

ecr 

simulations, is 

.ease in the moduli with n s e g ,  as observed in t h e  

expected. Recalling the analogous case of an ideal 

chain, we know from statistical considerations that the elastic spring 

constant is inversely proportional to n s e g .  That is to say, as n s e g  

increases (with the segment length kept constant), it becomes easier 

to pull on the chain. Taking this idea a little further, if we have two 



polymer chains of different lengths and consisting of different 

numbers of segments (with identical segment lengths on both 

chains), the longer chain will be less resistant to tensile stress. This is 

due to the longer chain being "floppier", i .e. ,  the available 

configuration space for the longer chain in moving from one state to 

another is significantly larger than that for the chain with a smaller 

number of segments. Consider now applying this analogy to a 

triangulated network consisting of such chains. One would expect 

that, as n S e g  increases, the network expands, becomes more open, 

and thus offers less resistance to stress. Thus, the moduli are 

expected to decrease with increase in n s e g .  

In Sec. 2.3, no observable correlation was found between the 

network area A; and the thickness t for BKF polymer networks. This 

is in contrast to the bead-and-tether model (Boal, 1994), where there 

was a definite correlation between A; and t ,  a fact that allowed the 

connection Y_L = K v  to be made (see Appendix D). This equality is 

not observed in Eqs. (2.11) and (2.12), which is consistent with the 

results extracted from the stress dependence of the moduli (in 

particular, Kv and Y L )  presented in Chapter 3. 

Using 0 = 6.4 nm and n S e g  = 32, the simulation predicts K A  = 

1.8 x 10-5 J/m2 and p = 7.7 x 10-6 J/m2 at 7'= 300 O K .  

Experimentally, deformation of an RBC induced by micromechanical 

manipulation (Waugh and Evans, 1979) gave a measured value of the 

shear modulus to be approximately 6-9 x 10-6 J/m2. A related 

experiment (Engelhardt and Sackmann, 1988), using deformations 



induced by high frequency electric fields, yields 6 i l  x 10-6 J/m2. 

However, recent experiments on RBC flickering (Strey et al., 1995) 

give a shear modulus approximately equal to 10-7 J/m2, We do not 

believe that this difference in the value of the shear nlodulus is an 

inconsistency, since the various methods of extracting the shear 

modulus were carried out on different lengthscales. In particular, the 

lengthscales  for  measurements  in our  s imulat ions and the 

micropipette aspiration experiments are fractions of a micron; while 

the flicker experiments measure fluctuations in the micron range. 

From Eq. (2.1 1) and Fig. 2.10, the simulation predicts Kv = 1.4 x 

1 0 3  J/m3 for the human erythrocyte. A measurement of this 

compression modulus is currently being performed (Evans and 

Ritchie, private communication). The transverse Young's modulus is 

predicted to be Y_i = 8.7 x 104 J/m3 (see Eq. (2.12) and Fig. 2.11); 

however,  there is  currently no available experimental data to  

compare with. While there may not be complete experimental data 

available for comparison, the elastic moduli (with exception of the 

transverse Young's modulus) agree well with the bead-and-tether 

model (Boal, 1994). We believe that the discrepancy in the Young's 

modulus is related to the ensemble used in our simulations. The 

value of Y I  obtained though a pure MC algorithm (private 

communications with Boal, 1997) for an identical model network of 

the cytoskeleton is found to be not much different from that for K v .  

T h e  t w o  e n s e m b l e s ,  c a n o n i c a l  ( p u r e  M C )  a n d  

microcanonical/canonical (MD/MC) give different distribution of the 



values for t, leading to significant differences in the value of <t2> - 

<t>2, which is crucial to the calculation of Y l .  

Summary 

In this chapter, we have presented a reference model designed 

to mimic the geometrical and elastic properties of the red blood cell 

cytoskeleton. The membrane skeleton is modeled by a hexagonal 

network of polymer chains with the number of segments n S e g  on 

each chain fixed by the known geometry of the cytoskeleton. The 

network is attached to the computational xy plane (representing the 

bilayer) at the midpoints of the chains. Other possible attachment 

points will be discussed later, in Chapter 5 .  Simulations, utilizing the 

Monte Carlo algorithm in the stress ensemble, predict that the 

number of segments required to properly model the geometrical and 

elastic properties of the RBC cytoskeleton is 32 and that the 

elementary segment length is - 6.4 nm. 

Furthermore, the elastic moduli of the network, at zero stress, 

have been extracted. The area compression modulus K A  is measured 

to be approximately 1.8 x 10-5 J/m2, while the shear modulus is 

equal to 7.7 x 10-6 Jlm2. The volume compression modulus K v  is 

predicted to be equal to 0.9 x 103 Jim' and the transverse Young's 

niodulus is equal to 6.1 x 104 J/m3. The value obtained for the shear 

modulus is in agreement with one set of experiments carried out on 

the RBC cytoskeleton. All the moduli extracted from the reference 



model, with exception of the transverse Young's modulus, compare 

well with those obtained with the bead-and-tether model (Boal, 

1994).  

Thus far, we have established the basic parameters of the 

reference model that will be used to describe the RBC cytoskeleton. 

In the following chapters, the reference model will be used to 

analyze the geometrical and elastic properties of the network under 

large deformations (isotropic and anisotropic). Comparisons will be 

made between different models of attachment to the bilayer. The 

known geometry of the reference model permits it to be used as a 

computational laboratory for studying a number of aspects of 

directed protein motion. 



apter 3 
ODEL NETWORK SIMULATIONS AT 

INITE DEFORMATIONS 

ec. 3.1 Introduct ion 

As mentioned in Chapter 1, the red cell undergoes a long 

tortuous journey through numerous tiny capillaries, delivering 

oxygen and removing carbon dioxide from the cells in the human 

body. As the red cell passes through a capillary, it is often put under 

a diverse range of shear stresses.  The protein scaffolding 

(cytoskeleton), which is attached to the cytoplasmic side of the 

bilayer, bears the full impact of the shear stresses and, thus, helps to 

prevent the RBC membrane from rupturing. 

Numerous experiments (including micropipette aspiration and 

flicker microscopy) have been used to measure the RBC cytoskeletal 

network in-plane elastic constants at small (Zilker et al . ,  1992; 

Peterson et al., 1992; Strey et al., 1995) and moderate stress (Waugh 

and Evans, 1979; Hochmuth, 1987; Engelhardt and Sackmann, 1988; 

Discher et al., 1994). In particular, micropipette aspiration (Discher e t  

a l , ,  1994), coupled with flourescent labelling techniques, have been 

used to visualise the response of the cytoskeletal network to applied 

stresses. The experiment, termed flourescence-imaged micropipette 

aspiration, was used to map the redistribution of the proteins and 

lipids in highly extended human RBC membranes. At the entrance to 

the micropipette, the cytoskeleton is condensed above its equilibrium 



density. However, the cytoskeleton density decreases steadily along 

the surface of the RBC that is pulled into the tube and is below the 

equilibrium density at the end or "cap" of the extended segment. This 

variation of the surface density of the spectrin network along the 

projection inside the tube indicates that the cytoskeletal network is, 

indeed, compressible and also that the response of the network 

depends on the kind of stress fields under which it is placed. One can 

easily see this response by pushing a finger into a loosely woven 

fabric ( e . g . ,  a sock). Complementary to the above experiments, 

computer simulations of two-dimensional triangulated networks 

have shown that the elastic moduli are stress-dependent (Boa1 et al., 

1993) .  

Our investigation into the elastic properties of the reference 

cytoskeleton network has been based on the assumption that the rest 

state (free-flowing biconcave form) of the RBC is not under stress. It 

has been observed that a "prestress" exists in the membrane 

cytoskeleton of aging human erythrocytes (Mohandas and Groner, 

1989). By this we mean that the normal resting state of the 

cytoskeleton may be in a predetermined stressed state. This effect 

could arise from the loss of membrane area as the erythrocyte ages. 

We will present a detailed investigation of the effects on the 

geometrical and elastic properties (due to finite deformations) of 

networks whose resting state may be either prestressed or stress- 

free.  

In Sec. 3.2, we analyse the effect of finite stresses (applied 



isotropically) on the geometry of the network with n S e g  = 32, while 

in Sec. 3.3, the effect on the elastic properties is probed. Sec. 3.4 

discusses the response of the network to stresses applied unixially 

and Sec. 3.5 looks into the effect of incorporating a precompression 

into the cytoskeletal network (changing n S e g  from 32 to 14). The 

chapter ends with a summary of the results in Sec. 3.6. 

. 2  Cytoskeleton network under 
isotropic stress = geometry 

In this section, we study the effects of applying stresses to our 

model network for which n S e g  = 32. To put the network under 

isotropic stresses in a computer simulation (that is to apply a lateral 

tension on the network), the value of the lateral pressure, P,  is set to 

some non-zero values. Negative and positive values of P lead to 

extension and compression of the network, respectively. While under 

the applied stress, a simulated network is allowed to relax for 

several million Monte Carlo steps before data samples are recorded. 

The network observables that are sampled include the simulation 

box lengths, L, and L y ,  the average bond length of a segment in a 

particular configuration < b>,  the mean in-plane area <A >, and also 

the mean displacement <t> of the network above the bilayer. 

Because a spectrin chain at zero stress has an end-to-end 

distance of approximately 70 nm, which is about 113 of its contour  

length, the cytoskeleton network may undergo considerable 



Fig. 3.1 (a) Reference Model network under extension, - p p o 2  = 
0.2. The chains are clearly stretched out by the tensile forces. (b) 
The same network under compression, - p p o 2  = -0.2. Note that the 
chains are highly convoluted and the density of vertices is  
clearly much higher than in (a). (ns , ,  = 32). 



expansion when subjected to lateral tensions. Fig. (3.1) shows two 

configurations drawn from the simulation at values of P P ( S ~  equal to 

0.2 (compression) and -0.2 (extension). Both diagrams are drawn to 

the same scale, and the difference in network density is obvious: at 

P o 2  = 0.2, the network is approximately 6 times as dense as it is at 

P o 2  = -0.2. 

Fig. 3.2 Ratio <Aj>IA, of the network area <Aj> to reference area 
A, (at zero stress) as a function of in-plane pressure P .  Notice that 
the graph flattens out at both large extension (P < -0.5) and high 
compression (P > 0.5). (ns,,  = 32). 

Recent micropipette aspiration experiments on intact red cell 

membranes (Discher et al., 1994) have shown that the area of the red 

cell network in reversible deformation can range from 0.5 to 4 times 

its unstressed area (P = 0), depending on the magnitude of the 



aspiration pressure. Our simulations (see Fig. 3.2) cover much of this 

range. There are several distinctive features to Fig. 3.2. Under 

compression, the network area per junction vertex decreases very 

slowly, reflecting the importance of steric interactions between 

network vertex elements. At large extensions 2 -0.7), the ratio 

<A j>/Ao approaches its geometric limit of seven. 

These observations can be understood in the following way. 

Consider first the case of the network under compression. As the 

compressive stress builds up, tending to "squeeze" the network, the 

reduction in the area is resisted by the constraint that chains are 

sterically forbidden to cross one another. The chains can move in the 

transverse direction; but, the networklbilayer attachment limits this 

movement (see Fig. 3.3II[b]). On the other hand, when the network is 

placed under a tension, it expands monotonically, although the rate 

of expansion (rate of increase of in-plane area with increase in 

applied stress) decreases. This effect is due to the individual chains 

reaching their contour length, equal to nSeg*(0.97(r). The small stress 

regime (-0.08 I -PP02 < 0.08) is discussed further in Sec. 3.3. 

The mean displacement <t> of the network above the bilayer is 

shown as a function of pressure in Fig. 3.3(1). As expected, the trends 

in <t> are the reverse of those of the mean network area per junction 

vertex < A j >  (see Fig. 3.2): <t> is largest under compression and 

decreases monotonically with increasing tension. For pressures more 

negative than -Po2 = 0.7, <t> approaches the value 0 . 5 0 ,  which 

corresponds to approximately 3.2 nm, or a network thickness of 



Fig. 3.3 (1) Mean network displacement < t >  as a function of in- 
plane pressure P .  Notice that the graph tapers off at both large 
tensions and at high compressions, consistent with the behavior 
of Fig, 3.2. Notice also that the lower bound to <t> is approximately 
0 . 5  0 or 3.2 nm. ( n S e g  = 32) .  (11) Diagram showing the effect of 
steric interactions among the chain elements on limiting the 
mean displacement of the chain above the bilayer. Bold 
horizontal line represents the bilayer. (a) When no sterics are 
present, the two chains (each of N links) can overlap and the 
thickness (equal to 2< t > )  can theoretically reach n  s e g  012. ( b )  
Circles indicate steric barriers which force the chains apart. Note 
that n  s ,g  0 1 2  > h, where h is the displacement of the sixfold 
junction from the bilayer. 

roughly 1 0  or 6.4 nrn. This lower bound on <t> is due to each 

individual vertex of the chain, bouncing off the bilayer elastically, 

thus preventing them from actually reaching the bilayer (see Chapter 

2). The effect of the steric barriers which prevent chains from 

crossing each other is illustrated in Fig. 3.3(II[b]). 



Fig. 3.4 Network volume per junction vertex VJ as a function of 
in-plane  pressure  P .  The graph shows that V J  inc reases  
monotonically, from the compressed region to the extended 
region. It then decreases again at roughly - ~ J P D ~  > 0.35. ( n S e g  = 

3 2). 

A measure of the cytoskeleton network volume can be 

obtained by taking the product of the area per junction vertex with 

the network displacement t for each configuration of the sample. Fig. 

3.4 clearly shows that the volume per junction vertex Vj increases as 

the network is extended from its equilibrium state at zero stress. The 

volume reaches a maximum at - P P @  - 0.35 before decreasing at 

high tension. This indicates that, as one moves from the compressed 

region to the extended region, the in-plane area increases faster than 

the thickness 2<t> can decrease. 



c .  3.3 Effect of stress on network 
elastic moduli 

The in-plane elastic moduli K A  and ,L are extracted via 

fluctuations (see Appendix D) and are shown in Fig. 3.5 for the 

pressures that were investigated. The compression modulus K A  has a 

lnmimum around - p p &  = 0.1, and is significantly larger when the 

Network in-plane elastic moduli as a function of in -  
plane pressure P .  Note that  both K A  and p increase monotonically 
as  the network is placed under tension. Under compression, only 
K A  increases significantly but not p .  (Network has n S e g  = 32). 

network is placed under compression or tension. When the network 

is compressed, steric effects become increasingly important, and, 

thus, res-lst the decrease in the in-plane area. This in turn leads to an 

increase in K A .  One should note that the observed increase in K A  



during compression is realized only in the simulations as described, 

since real membranes would crumple (or at least begin to crease) 

under compression. On the other hand, when the network is placed 

under a significant tension, the built-in tether constraints resist the 

network being stretched beyond <Aj>IAo = 7, where A, is the zero- 

stress network in-plane area per junction vertex. This results in an 

increasing K A  at large network extensions. 

The shear modulus ;U shown in Fig. 3.5 shares several 

characterst ics  with K A  : (a )  The shear modulus increases 

monotonically when the network is placed under tension. This is due 

to the network resisting shear by the triangular tether constraints. 

(b) However, p does not increase significantly over the range of 

compressive stress we have examined. This is not unexpected, since 

tether constraints are only important for in-plane deformations 

when the network is under tension and not compression. 

Can the simulation results for in-plane geometrical and elastic 

properties be described in a simple way? To answer this, we consider 

a simple mean-field model of a two-dimensional network of springs 

proposed by Boal, Seifert and Shillcock (1993). In this model, the 

potential energy of an individual spring is given by 

where k is the spring constant, s is the variable length of the spring 

and so is the equilibrium length of the spring. If all springs have the 



same length, the geometry and in-plane elasticity of a network of 

two-dimensional springs is described by: 

Fig. 3.6 The ratio K ~ I ~  as a function of the applied pressure P for 
a two-dimensional triangulated network of springs in the mean 

field limit.  K ~ I ~  is a strictly decreasing function of - P  for the 
range of values of P shown. This implies that the Poisson ratio of 
such a network eventually becomes negative a t  large enough 
t e n s i o n s .  

where A ,  = 4 3 so212. Eqs. ( 3 . 2 )  to (3.4) predict that, when the 

network is placed under tension: (a) The network will expand; (b) K A  



will decrease; (c) p will increase. At zero pressure, the ratio K ~ i p  = 2, 

as expected for a harmonic network of springs. Fig. 3.6 shows that 

K A / ~  is a strictly decreasing function of the stress for triangular 

networks at low temperaure and eventually becomes smaller than 1, 

which implies that the Poisson ratio is negative at large tensions. 

These predictions are valid only in the small fluctuation limit (i.e., for 

a low temperature network), corresponding to the criteria that pks,2 

>> 1 .  Another feature of this model is that it does not describe 

networks under moderate compression, since the ideal triangular 

spring network undergoes a collapse transition for P > ( 4  3 i 8)k 

(Discher, Boal and Boey, 1997). 

We now return to see if Eqs. (3.2)-(3.4) describe our 

cytoskeletal network model. At zero stress, the ratio K A I ~  == 2.4 in 

the reference model (see Fig. 3.5), which is consistent with that 

predicted for the ideal two-dimensional spring network above. Fig. 

3.7 (below) shows the behaviour of the ratio K A I ~  with respect to 

variation in the applied stress. K A I P  is greater than unity for PP@ > 

0 and then approaches 1 as the network goes from the compressed 

state into the extended state. In the region, 0.1 < - P P U ~  < 0.4, K ~ l p  

stays around the value of (1.00 It 0.13) before it starts increasing 

again for -PPo* 2 0.4. This implies that the Poisson ratio is initially 

positive at low tension and decreasing as the tension increases. It 

becomes (weakly) negative and then goes back to being positive 

again. This behavior of the Poisson ratio is shown in Fig. 3.7(b) and is 

expected  s ince  the Poisson rat io in two-dimensions i s  

( K A / p  - 1 ) / ( K ~ / p  + 1) (see Landau and Lifshitz, 1968). 



Fig. 3.7 (a) K ~ l p  as a function of in-plane pressure P .  Note that 
K ~ l p  starts off positive and decreases as the network goes from 
being compressed to being extended, eventually becomes less 
than one and increases again after that. (b) Poisson ratio as a 
function of in-plane pressure P .  The horizontal bold line shows 
clearly that the Poisson ratio does go negative but only weakly. 
( b e ,  = 32). 

Fig. 3.8 shows that < ~ . > - 1 / 2  3 is a linear function of t h e  

tension (to a good approximation) in the small deformation regime, 

which is a good indication of the harmonic response of the 

cytoskeletal network at small stresses, The line through the data 

points is a mean field fit (see Eq. (3.2)), in which the slope 

( 4 3 p k  02)' is observed to be approximately equal to 3.13 or, 

equivalently,  p k e f f ( T 2  = 0.20, where ke r f  is the effective spring 

constant of an equivalent ideal triangulated network. Since (T = 6.4 

nm, this implies that keff =: 2 x 10-5 J/m2. 

Fig. 3.9 shows the variation of K A  and ,U at small stresses. Both 



Fig. 3.8 Plot shows < A 1 > - l t 2  is a linear function of the applied 
pressure. The line through the data points is the mean-field fit 
given by Eq. 3.2. ( nSeg  = 32). 

K A  and p are observed to be approximately linear in the pressure P.  

The solid line is the linear fit (see Eq. (3.3)) to the K A  data and gives 

p k e r f 6 2  = 0.2, while the dashed line (see Eq. (3.4)) is the linear fit to 

the p data which also gives p k e f f 6 2  = 0.2. These two results provide 

a self-consistency check for our simulation results. Furthermore, the 

tluctuations of the sixfold junctions around their mean positions can 

be compared with those of those of an equivalent two-dimensional 

t r i a n g u l a t e d  network of s p r i n g s  and found to be consistent with 

p k e f f 6 2  = 0.20 (private communications with Boal, 1996). 

The mean area per junction at zero stress A ,  is found to be 

1 2 0 6 2  corresponding to an interjunction length so of approximately 

1 1 . 8 0 .  Thus each chaln in the network, in terms of the interjunction 



p k e r r s o 2  = 32. This spring constant is large and corresponds 

to small fluctuations in the interjunction spacings. 

At large tensions, the network is observed to be stretched 

significantly and the transverse motion of the chains is highly 

restricted compared to the small stress regime. Entropic effects a re ,  

Fig. 3.9 Elastic moduli K A  and p as a function of the pressure P .  
The solid and dashed lines are the mean field fits to the K A  and p 
data respectively. ( n S e g  = 32). 

thus expected to be less important in comparison to the energetics of 

the chains in determining the elasticity of the network. The triangles 

(formed by three neighbouring sixfold junctions) are also observed to 

have approximately the same shape (equilateral on average; see Fig. 

3.10). This observation leads to the proposition that the network at 

large deformations can be modeled by a two-dimensional  



Fig. 3.10 Picture of a highly stretched network ( - P P  o2 = 0.7). 
Notice that the triangles are approximately the same equilateral 
shape. ( n S e g  = 32). 

triangulated network whose junctions interact with their nearest 

neighbours via a square-well potential (for a review on such 

networks, see Boal, 1994). In a mean field approach in which all 

triangles have the same equilateral shape, the area < A j >  at la rge  

deformations can be shown to vary (see Appendix C) with the 

applied stress P in the following way: 



Fig. 3.1 1 Plot of PP<Aj> versus - p p o 2 .  Open squares represent the 
simulation data and the line running through the data points is 
the mean field fit where the network is assumed to be made up of 
identical equilateral triangles. ( n s e g  = 32). 

where A, represents the maximum area attainable by any triangle 

in the network and P < 0 represents a tension. Eq. (3.5) can be 

applied to the simulation data (Fig. 3.1 1) and yields a value for A, of 

approximately 7, which is consistent with the fact that our 

cytoskeletal network model is built on the criterion that the ratio 

<Aj> IAc  = 117. 

The out-of-plane elastic moduli, the volume compression 

rnodulus K v  and the transverse Young's modulus Y I ,  are shown in 

Fig. 3.12. The volume compression modulus K v  displays a minimum 

near zero stress, while increasing as the network is placed under 

either a tension or a compression (the origin of this behaviour is the 



same as that of K A  under stress). Fig. 3.12 shows the transverse 

Young's modulus YL to be significantly larger than K v  in most part of 

the range of P .  As was explained earlier in Chapter 2, values of Y L  

Fig. 3.12 Network out-of-plane elastic moduli as a function of in- 
plane pressure  P .  K v has a minimum near zero stress and 
increases monotonically on both sides of this minimum, while Y l  

decreases monotonically with increasing - / 3 ~  02. (Data for n S e g  = 

32) .  

extracted via a MC method (private communications with Boal, 

1997), gave a mean square difference in < t> to be an order of 

magnitude larger than that in the MD/MC case. We believe this 

difference to be the cause of the significantly large values of Y L  in 

our simulations. The MD part of the simulation algorithm (see 

Chapter 2) seems to quench out the fluctuations in the mean 

displacement < t>. 



c. 3.4 Anisotropy of the cytoskeletal 
network 

The anisotropic response of two-dimensional triangulated 

networks at large deformations has been demonstrated for square- 

well-type interactions between network junctions (Discher et a! . ,  

1997). Under substantial network deformation (when strains are 

about 90% of their allowed maximum), the stresslstrain relation in 

one of the principal directions is found to be different from that in 

the orthogonal direction. 

We have probed our cytoskeleton network for the same kind of 

anisotropic response. In our cytoskeleton simulations, we apply a 

non-zero stress in a chosen direction (x or y )  and set to zero the 

stress in the orthogonal direction. Figs. 3.13(a) and (b) compare the 

two states of the network under orthogonally applied stresses (x and 

y directions respectively); note that the chains orthogonal to the 

direction of the applied stress are crun~pled up significantly a n d  

forced to move into the space above the bilayer (indicated by the 

light shading). The lengths of the simulation box orthogonal to the 

applied stress, as shown in Figs. 3.13(a) and (b), are less than their 

respective rest-state values; that is, the network shrinks in the 

direction orthogonal to the applied stress. This is analogous to the 

scenario when one pulls hard longitudinally on a rectangular piece of 

rubber strip, and observes that the rubber shrinks transversely 

(corresponding to a positive Poisson ratio). 



Fig.  3.13 Two states of our cytoskeleton network under 
orthogonally applied uniaxial stresses. (a) Stress applied only in  
the x-direction. (b) Stress applied only in the y-direction. Notice 
the chains orthogonal to the applied stress are crumpled up, 
while along the stress direction, the chains are well stretched out. 
(Data for n S e g  = 32). 

Fig. 3.14(a) shows the response of the cytoskeleton network 

over a wide range of uniaxial tensions. The strain variable < L i > l < L i > ,  

is plotted against the uniaxial stress for two directions in the periodic 

system: Li = Lx or L y  . A difference in the values of <Lx>I<L,>o and 

< L y > l < L y > o  would be an indication of an anisotropic response of the 

network to the applied uniaxial tension. One can see from Fig. 3.14(a) 

that there is very little anisotropy present up to factors-of-two 

change in the periodic box length. After this point is reached, 

< L y > l < L y > o  rises faster than < L X > I < L x > , .  This is expected from the 

geometry of the network. As seen in Fig. 3.14(a), the chains in the 



Fig. 3.14 (a) The stretch ratio <Li>l<Li>, (i=x or y )  plotted against 

the uniaxially applied stress j3siirr2. Note that the stretch ratio is 
in the same direction as the applied stress. Anisotropy appears 
only at stretch ratios < L i > l < L i > o  ^- 2. (Data for n s e g  = 32). (b) 
Diagram shows how shrinking the base BC of a triangle to B'C'  (by 
applying a vertical force F) without changing the sides ABIAC 
can increase the height. This is the main reason why the stretch 
ratio for y - a x i s  uniaxial tension rises fas ter  than the 
corresponding stresslstrain relation in the x-direction (in the 
region where the anisotropy is present). 

direction of the x-axis are close to their maximum tether constraint 

and thus provide strong resistance to further extension. When the 



uniaxial tension is along the y-axis, the network can extend in two 

ways: (1) Stretching the diagonal chains as one would expect. (2) 

Shrinking the lateral distance between the junctions forming the 

base of the triangles in the network (see Fig. 3.14(b)). Note that, due 

to the triangulated geometry of the network, the effect described in 

(2) does not cause the stretch ratio <L,>/<L,>, to increase when the 

uniaxial stress is applied in the x-direction. 

For small uniaxial stresses, we find that the strain parameter 

(defined as [<Li>/<Li>, - I]) is a linear function of the applied stress 

Psiio2. This is shown is Fig. 3.15(a7b). The bold line is the linear fit to 

the simulation data at small stress. The slope of that line is the 

inverse of the Young's modulus (denoted by P E i 0 2 ) .  The slope of the 

line in Fig. 3.15(a) (uniaxial tension applied along x-direction) is 

approximately equal to 4, which implies that PE,CT~ = 0.25. We can 

calculate the effective spring constant of the chains keff, according to 

which gives a value for P k e f f 0 *  = 0.22. The linear fit in Fig. 3.15(b) 

(for tension applied along the y-direction) yields a value for Pkef f@ 

= 0.23. These two results for keff provide a consistency check for the 

effective spring constant extracted from the isotropic-stress 

simulations in Sec. 3.2, for which Pkeff@ = 0.2. 

The Poisson ratio p, which provides yet another check on the 



Fig. 3.15 Plot of the stress-strain relation under uniaxial stress: 
(a) Measured along x-direction as a function of the stress in x -  
direction. (b) Measured along y-direction as a function of the 
stress in y-direction. Note that there is little difference between 
the two principal directions (x and y) .  Slope of bold lines is the 
lnverse of the Young's modulus. 
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Fig. 3.16 The Poisson ratio p as a function of the uniaxial stress: p, 
corresponds to a stress is along the x-axis and p y  denotes the 
Poisson ratio for a stress along the y -ax i s .  

consistency of our simulations, can be calculated via the formula (see 

Lai, Rubin and Krempl, 1987), Pi = 1 - ( A  - I), where A c  = 

[ < L j > / < L j > o  - 11 (less than one), ke  = [ < L i > / < L i > o  - 11 (greater than 

one), i denotes the direction (x  or y )  in which the uniaxial tension is 

applied, and j is the respectively orthogonal direction ( y  or x ) .  Fig. 

3.16 shows that the zero stress limit of the Poisson ratio P o  is 

approximately the same in both directions of the applied uniaxial 

tensions and lies in the range 0.31-0.35. This is again consistent with 

the isotropic-stress simulations in which the measured value of the 

ratio K A / , L ~  at zero stress corresponds to Po of approximately 1/3. 



c. 3.5 Prestress in the cytoskeletal 
network 

It has been suggested over the past couple of decades that the 

red cell density grows with increasing cell age while in circulation 

within the human blood system (Mohandas and Groner, 1989). This 

led to the use of density separation of red cells (for example, 

ultracentrifugation) in the study of red cell aging. It has been 

observed (Mohandas and Groner, 1989) that, as the red cell density 

increases, there is a loss of membrane surface area and a 

corresponding decrease in cell voume (leading to an increase in cell 

hemoglobin concentration), which also causes the cells to be more 

spherical. This ultimately compromises the red cell's ability to 

deform. A loss of cell surface area without a corresponding loss of 

spectrin protein implies that the cytoskeleton in aging cells is under 

a compressive stress; we call such cytoskeletons "prestressed". The 

extent to which normal RBCs are prestressed is not known. 

In this section, we explore the consequences of modifying o u r  

model network of the cytoskeleton by placing the rest state of the 

network under a prestress (or precompression). As was shown in 

Chapter 2, the ratio A ,/<Aj>'ef (<Aj>'ef is the reference rest-state 

area per junction vertex) increases with nSeg .  It was determined in 

the stress-free model that nSeg must be 32 in order that AC/<Aj>"f = 

7. It is possible to achieve the requirement that A,/<A,>'ef = 7 for 

nSeg < 32; but, the reference rest-state area <A j>'ef must be that of a 

compressed or prestressed state. Corresponding to each prestress 



(denoted as - p n p S ( T p s * ,  where Op, is the lengthscale in the prestress 

model), there is a value of ns rs  that satisfies A ,/<A j>'ef = 7. Because 

of the increase in statistical error when evaluating ensemble 

averages for small n s e g  (< 14), we choose nseg  = 14 as a limiting case. 

Since the spectrin chain has a contour length of 200 nm, n S e g  = 14 

corresponds to assigning (Tps the value 14.7 nm. 

Fig. 3.17 Mean area per junction < A  j>  as a function of in-plane 
pressure P for n S e g  = 14. 

To determine n , , ,  we need to note first that the contour area 

per junction A ,  for n S e g  = 14 is given by ( 1 / 3 / 2 ) . ( 0 . 9 7 n , , ~ ( T ~ ~ ) ~  or 

approximately 160 (TpS2. We then need to determine the mean area 

per junction complex of the network in the compressed state 

(denoted by < A  > p s )  such that the ratio A , / < A  > p ,  has a value of 

approximately 7. Fig. 3.17 shows the relationship of the mean area 

per junction vertex as a function of the applied stress P for nSeg  = 14. 



We determine from Fig. 3.17 that the prestress - P I l p , O p s 2  needs to 

be approximately equal to -1 (where the prestress rest-state area 

<A > p s  = 23 0 p s 2 )  to achieve the ratio A ,/<A > p s  = 7. By allowing for 

this readjustment in the applied stress, we define a new p r e s s u r e  

variable, A P , as the difference between the externally applied 

pressure P and the intrinsic stress -rips caused by the in-plane 

shrinking of the bilayer 

Fig. 3.18 The area per junction <AJ> as a function of the stress for 
n S e g  = 14 (prestress incorporated) in comparison with the stress- 
free model ( n s e g  = 32). Although the two curves share the same x -  
axis, the n S e g  = 14 case has a built-in precompression equal to 1.85 

x ~ / m ~ .  

where A P  = P for nseg = 32, since there is no precornpression in the 

stress-free model. We find in Fig. 3.18 (which incorporates the 

physical unit conversions, 0 = 6.4 nrn and Ops = 14.7 nrn), that the 



prestress and stress-free cases have similar qualitative features, but 

differ quantitatively. The in-plane area of the prestress case rises 

more steeply than the stress-free case for tensions larger than 2 x 

10-5 Jlm2. 

As with the stress-free model, we can extract an effective 

spring constant (keff)Ps for the prestress model at small applied 

stresses (taken with respect to P = 0). This is shown in Fig. 3.19, 

where the bold line, which is the mean field fit to the simulation 

data, gives b ( k e f f ) ~ s O p s 2  = 0.83. Using the conversion Op, = 14.7 nm, 

we get (k,ff)Ps = 1.5 x 10-5 ~ l r n 2 ,  which is approximately 25% 

smaller than that extracted from the stress-free model. 

Fig. 3.19 Mean field fit (bold line) to simulation data for n S e g  = 14 

near ~ ~ o ~ ~ 2  = 0. Slope of line equals 1 / ( d 3 p k , ~ ~ o ~ , ) .  



The qualitative similarity (in the in-plane area response to 

stress) between the stress-free and prestress cases can also be seen 

in the response of the mean displacement from the bilayer <t> to 

applied stresses, as shown in Fig. 3.20, The <t> data for the nseg= 1 4 

case are larger than those of the stress-free case for most of the 

range of A P .  This is expected, since the prestress reference rest-state 

is under a precompression, while the nseg=32 case rest-state is under 

zero stress. At large tensions ( - 4 P  > 5 x 10-5 J/m2), this difference in 

the <t> data between the prestress and stress-free cases is less 

apparent. From Fig. 3.13, we recall that the chains in a compressed 

state are generally more convoluted and forced away from the 

bilayer.  Hence, <t> is expected to be larger in the prestress 

configuration compared to the stress-free configuration. 

Fig. 3.20 <t> as a function of the difference in stress for n S e g  = 14 
(prestress incorporated) and n S e g  = 32 (stress-free model). 



Fig. 3.21 (a) K A  as a function of stress for n s e g  = 14 (prestress 
incorporated) and n S e g  = 32 (stress-free). (b) Shear modulus as a 
function of the stress for n S e g  = 14 (prestress incorporated) and 
n s e g  = 32 (stress-free model). 

We now look at the effect of precompression on the elastic 

moduli of the network. Fig. 3,21(a) shows that the area compression 

modulus K A  is generally very similar both qualitatively and 

quantitatively for the two models. The slightly larger values for the 

prestress model, in the regime where the applied stress i s  
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Fig. 3.22(a) K V  as a function of stress for n S e g  = 14 (prestress 
incorporated) and n s e g  = 32 (stress-free model). (b) Y L  as a 
function of the stress for n s e g  = 14 (prestress incorporated) and 
n S e g  = 32 (stress-free model). 

compress ive ,  a re  aga in  expected  fo r  a ne twork  under  

precompression. The effect of sterics in producing large K A  values 

during compression, is enhanced under the precompression. 



Fig. 3.21b shows that the two models differ little in the 

behaviour of the shear modulus p under both compression and 

tension. When the networks are placed under tension, the shear 

modulus of the stress-free and the prestress models both increase 

monotonically in magnitude. This is expected again, since the tether 

constraints offer resistance to the stretching of the chains during 

shearing under large tensions. Under compression, the shear modulus 

of both models increases only very weakly, as now, the tether 

constaints no longer play an important role. 

The out-of-plane moduli, namely the volume compression 

modulus KV and transverse Young's modulus Yl ,  for the two models 

follow the same trends. Fig. 3.22(a) shows that the behaviour of the 

volume compressibility in the prestress model is again very similar 

to that found in the stress-free model. Fig. 3.22(b) shows that YL for 

the two models share many of the same qualitative features, namely 

it increases under compression and decreases under tension (see 

Chapter 2 for a discussion on the magnitudes of Yl) .  

Comparison with experiments 

To build a full-scale model of the red cell cytoskeleton using 

the polymer chain model would be too computationally intensive and 

beyond our available computational resources. To rneet this end, 

effective representations have been developed for the polymer chain 

model of the cytoskeleton (private communications, Boa1 and Discher, 

1996). In such representations, each spectrin tetramer is replaced by 



a single element (spring) subject to two- and three-body interactions. 

The resulting "effective" model is then used for simulating the 

micropipette aspiration experiments on red cells. 

There is an inherent problem with using pure spring networks 

to represent the cytoskeleton under large scale compression and 

tension. Beyond some critical compressive stress, a pure spring 

network collapses (Discher et al., 1997), while above a critical tension 

(where K A  = 0), the network expands without bounds. Neither of 

these cataclysmic events are seen in the physical or the model 

cytoskeleton. To circumvent this problem, three-body interactions 

must be added to the Hooke's law potential to provide lower and 

upper bounds to the single-plaquette area of the network. 

Sec. 3.6 Summary 

Chapter 3 has focused on the effects of stress on the reference 

network's geometrical and elastic properties. This study has been 

carr ied out  by applying ei ther  isotropic or anisotropic 

tension/compression to the model network and analysing the 

network's response. 

In terms of the geometry, the graph of the mean area per 

junction vertex <Aj> as a function of the applied stress - P (P < O is 

tension while P > O represents compression) is "Sn-like is appearance. 

That is, at large tensions, <Aj>  asymptotes to a value given by 

A ,/<Aj> = 7, where A, is the contour area per junction vertex. This 



asymptotic limit corresponds to the resistance to area expansion 

arising from the tether constraints built into the network chains. 

Under compression, <Aj> also flattens out to some minimum value, 

reflecting the fact that the chains are in close proximity and steric 

interactions play an important role in preventing the network chains 

from crossing one another. 

The response of the mean displacement of the network from 

the computational bilayer <t> is correlated to the behaviour of <Aj>. 

When <Aj> approaches its maximum value, <t> tends towards some 

minimum value; and, when <Aj> reaches some minimum value, < t r  

tends towards a maximum. However, for a fixed small stress, the 

values of A j  and t are not particularly correlated within a given 

configuration. That is, the product (Ajst) is not well conserved among 

configurations. 

The area compressibility K A  increases monotonically under 

tension, increases under compression and has a minimum near zero 

stress. The shear modulus p behaves in a similar way under tension, 

but rises only weakly upon compression. The ratio K A I P  is observed 

to decrease monotonically with increasing tension to the value of 

unity (about which the ratio oscillates for a small range of the 

tension) and then increases again. This implies that the network has 

a negative Poisson ratio for some small range of the tension. 

The volume compression modulus Kv behaves similarly to KA: 

rising under tension, with a minimum at around zero stress, a n d  



increasing under compression. 

Young's modulus is observed 

Contrary to this, the transverse 

to decrease monotonically with 

increasing tension to some constant value, 

Treating the response of the network under stress via a simple 

mean field spring model, an effective spring constant k,ff of the 

network is extracted and found to be equal to 2 x 10-5 J/m2 or, 

equivalently,  pkefrs ,2  = 32, where s, is the mean interjunction 

spacing of the network attachment nodes. This implies that the 

network junctions execute only small oscillations around their mean 

position, or, equivalently, the junctions are "cold". 

The consequences of a prestress (or precompression) present in 

the rest-state of the network have been explored. The geometrical 

and elastic properties of the cytoskeleton are qualitatively very 

similar in both the precompression model and the stress-free model. 

One of the main differences found is that the effective spring 

constant in the prestress model (keff)Ps has decreased to 1.5 x 10-5 

J/m2 when compared to that of the n S e g  = 32 network at zero stress. 

The reference network has also been observed to behave 

anisotropically under large uniaxial tensions and is isotropic only 

under small tensions. This observed anisotropy is expected because 

of the hexagonal geometry of the network and corresponds to similar 

anisotropies observed for triangulated networks of springs in two 

dimensions. 



Chapter 4 
BARRIER-FREIE: PATH SIMULATIONS 

4 . 1  Introduct ion  

Although lateral diffusion of proteins in the plasma membrane 

is an important transport mechanism, specific confinement or 

restricted motion of specific membrane proteins also plays a role in 

the survival of the cell. Examples of membrane proteins whose 

motion in the lipid bilayer is restricted include: ( I )  In the purple 

membrane of Halobacterium halobium, the protein bacteriorhodopsin 

self-assembles into large aggregates (see Fig. 4.1). As one would  

piasha membrane V 
bacteriorhodopsin 

Fig. 4.1 Schematic drawing of the bacterium H u l o b a c t e r i u m  
h a 1 o b  i u  m showing the light activated proteins (a  proton 
pump), namely bacteriorhodopsin, self-assembling into large 
aggregates which diffuse very slowly within the plasma 
membrane. (Adapted from Alberts, Bray, Lewis, Raff, Roberts 
and Watson, "Molecular Biology of the Cell", 1989, page 298) 
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Fig. 4.2 Schematic diagram of an epithelial cell showing how a 
plasma membrane protein is restricted to a particular domain of the 
membrane. Tight junctions are thought to confine the transport 
proteins to their appropriate membrane domains by acting as 
diffusion barriers within the plasma membrane. This segregation 
permits nutrient transfer across the epithelial sheet from the gut 
lumen to the blood. As shown above, glucose is actively transported 
into the cell by glucose pumps (proteins A) at the apical surface and 
diffuses out of the cell by facilitated diffusion mediated by passive 
glucose carrier proteins (proteins B) in the basal plasma membrane. 
(Adapted from Alberts, Bray, Lewis, Raff, Roberts and Watson, 
"Molecular Biology of the Cell", 1989, page 298) 

expect, these large aggregates diffuse very slowly. (2) In epithelial 

cells (lining the gut or tubules of the kidney), certain enzymes and 

transport proteins are confined to the apical surface of the cells, 

whereas others are confined to the basal and lateral surfaces. This 

segregation of different types of proteins is thought to be 



maintained, at least in part, by the barriers set up by a specific type 

of intercellular junction called a tight junction (see Fig. 4.2). (3) In 

the red blood cell, the lateral motion of the immobile fraction of the 

protein band 3 is restricted by its attachment to the membrane 

cytoskeleton (see Fig. 4.3). This is an example of a protein whose 

motion is constrained by attachment to a macromolecular assembly 

located inside the cell. 

Ankyrin 

Band 3 associated 
with Ankyrin 

Band 3 not 
associated with 
Ankyrin 

w 

Bilayer 

Fig. 4.3 Schematic diagram showing the association of band 3 
with ankyr in ,  anchoring the cy toske le ton  to  the b i layer .  
These band 3 proteins are constrained in their lateral motion, 
while other band 3 proteins would be free to diffuse both 
laterally and rotationally. 



Numerous FRAP and SPT experiments have been used to probe 

the diffusive behaviour of membrane lipids and membrane proteins 

(such as rhodopsin). In addition to allowing extraction of diffusion 

constants for proteins and lipids in the membrane, these experiments 

also show evidence of restricted motion of proteins in plasma 

membranes due to steric interaction with the associated cytoskeleton 

(Koppel et al., 1981; Tsuji and Ohnishi, 1986; Edidin et al., 1991; 

Kusumi and Y arnarnoto, 1993). SPT experiments, in particular, 

provide a method of probing the geometry of the network by 

measuring how far a protein can be dragged (by means of an optical 

tweezer) before the protein encounters a "barrier" in the network 

which causes it to be ejected from the optical trap. This distance 

travelled by the protein can be used to construct a barrier-free path 

length (BFP), which is observed to span a wide range of values 

depending on protein and cell type (see Chapter 1). 

There are various ways in which the lateral diffusion of 

membrane proteins may be hindered. It has been proposed (O'Shea, 

1984) that the concentration of integral membrane proteins plays a 

major part in contributing to the low rates of protein lateral 

movement. However, a computer simulation study (Pink, 1985) has 

shown that increasing the protein concentration (fractional area of 

the bilayer that is covered by proteins) from 0% to 50% leads to a 

decrease in the lateral diffusion coefficient of less than a factor of 5 .  

This observation supports the opinion (Kell, 1984) that the 

concentration of proteins alone cannot account for the low lateral 

diffusion rates of membrane proteins. 



mouse spherocytic erythrocyte, which lacks the major components of 

a normal erythrocyte membrane matrix (composed of spectrin, actin, 

bands 4.1 and 4.9), membrane proteins diffuse about 50 times faster 

than in normal mouse erythrocytes. Thus, the low lateral mobility of 

the membrane proteins in normal erythrocytes may arise from the 

presence of the associated membrane cytoskeleton, interacting with 

the membrane proteins. Fowler and Bennett (1979),  using a 

procedure designed to weaken the association of spectrin with the 

membrane, observed a twofold increase in the lateral mobility of 

band 3 compared to normal cells, which further supports the idea 

that interactions of membrane proteins with the cytoskeleton do play 

an important role in controlling the lateral mobility of proteins. 

Several different models have recently been proposed to 

explain how the cytoskeleton might affect the diffusive behavior of 

membrane proteins. Zhang et nl. (1993) proposed a "transient 

interaction model" (shown schematically in Fig. 4.4) to explain the 

reduction in the lateral mobility of proteins for which ectodomain 

interactions dominate the cytoplasmic interactions. In this model, 

there is a class of proteins, termed "post" proteins, which are 

tethered to and/or entrapped by the membrane cytoskeleton, much 

like the protein band 3 in the RBC. The ectodomains of diffusing 

proteins are thought to interact with the post proteins by transiently 

sticking to the (relatively) immobile posts. 

Tsuji and Ohnishi (1986) studied the relation between band 3 
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Fig. 4.4 Schematic diagram of the transient interaction model. 
Immediately inside the plasma membrane is the cytoskeleton 
while on the extracellular side of the bilayer, macromolecules in 
the periceilular region interact with the ectodomains of the 
membrane proteins. Post proteins are attached to or entrapped by 
the cytoskeleton. Certain proteins bind briefly to the post 
proteins through their ectodomains (circles A and B). (Zhang e t  
ul.,  1993) 

lateral motion and the state of polymerization of spectrin. Using the 

FRAP technique, they found that the movement of the mobile 

fraction of band 3 (i.e. the fraction of band 3 not bound to ankyrin) 

was restricted by the cytoskeletal network. The restriction was found 

to be strongly dependent on the spectrin association state (that is, on 

whether the spectrin molecules are in dissociated dirners or  

associated tetramers). The above experimental results can be 

understood through a so-called membrane cytoskeleton "fence" 

model that incorporates the mechanisms for restriction of band 3 



translational diffusion by the cytoskeletal network (Tsuji et al., 1988; 

Kusumi et nl., 1993). 

In the fence model, ankyrin-bound band 3 proteins have no 

translational mobility, while unbound band 3 proteins are able to 

diffuse throughout the cytoskeletal meshwork. The diffusion beyond 

a mesh can only take place if an opening occurs in the cytoskeletal 

"fence", an event which can occur in several ways: (1) The spectrin 

tetramer dissociates into dimers, (2) The distance between the 

membrane and the cytoskeleton fluctuates, opening a "gate" for the 

protein, and (3) the membrane skeleton dissociates from the 

membrane. Experiments (Sako and Kusumi, 1994) that investigate 

the movements of the E-cadherin (a cell-cell recognition-adhesion 

receptor) in the plasma membrane of a cultured mouse keratinocyte 

cell suggest that the plasma membrane is indeed compartmentalized 

into many domains (300-600 nm in diameter). This observed 

compartmentalization of the plasma membrane into localised 

domains is consistent with the predictions of the membrane-skeleton 

fence model. 

The "discrete-barrier model" of Saxton (1990) assumes that the 

membrane skeleton forms an incomplete triangular lattice, in which 

the bonds corresponding to normal tetramers act as barriers to 

diffusion and the nodes correspond to actin proteins. Missing bonds 

correspond to defective tetramers, including missing tetramers, 

isolated dimers, and dimer pairs unable to associate, Changing the 

fraction of bonds present in the model alters the diffusive behaviour 



of a protein in the lattice. As the fraction of bonds decreases, the 

length of diffusion paths increases, and at the percolation threshold 

long-range paths first appear. 

Fig. 4.5 An unexpanded human red cell skeleton imaged by 
transmission electron microscopy (Heuser, 1983). The spectrin 
tetramers are in close proximity to each other and are highly 
convoluted, producing a densely packed skeleton network. 

Another model (Saxton, 1990) that has been proposed is the 

"continuous-barrier model", which assumes that the membrane 

protein moves through a region containing a continuous distribution 

of barriers. That is to say, the protein is obstructed at every point in 

the path. In an unexpanded RBC cytoskeleton, spectrin is observed to 

be highly convoluted and spectrin tetramers appear to be in close 

proximity to each other (see Fig. 4.5). Saxton (1990) proposed that 

the dense-packing of spectrin would signficantly block long-range 

diffusion, although short-range diffusion would still be possible (see 



also Saxton, 1982/1989b) 

In our study of the directed motion of proteins in the 

erythrocyte plasma membrane, we concentrate on the constraining 

effects of the cytoskeleton rather than on the steric effects of 

unconstrained in-plane obstacles (for example, glycoproteins and 

mobile fractions of the protein band 3) present in the bilayer. The 

rationale behind this choice is as follows: (a)  Experimental 

observations show that diffusion coefficients in spectrin-deficient 

erythrocytes are as much as fifty times larger than those in normal 

erythrocytes (Sheetz et a l . ,  1980). (b)  Simulations show that 

increasing the concentration of membrane proteins in the bilayer 

from 0% -50% only leads to a factor-of-five decrease in the diffusion 

coefficient of proteins (Pink, 1985). Our model also focuses on 

extracting BFP's, instead of diffusion coefficients, largely because 

BFP's are unaffected by many dynamical attributes of the 

cytoskeleton (for example, hydrodynamical effects) and are, thus, 

easier to investigate than diffusion coefficients. The system chosen 

for our simulations is the human erythrocyte. This choice is 

motivated by the availability of experimental studies on RBC elastic 

and geometrical characteristics, which can be used to test the 

simulation results (see Chapters 2 and 3). 

Sec. 4.2 of this chapter presents a simulation algorithm which, 

in conjunction with the reference model of the erythrocyte plasma 

membrane discussed in Chapter 2, allows the efficient simulation of 

the optical tweezer experiments (Kusumi et al., 1993). In Sec. 4.3, we 



study how the mean free path lengths of directed protein motion 

vary with the dragging force and the size of the protein probe. The 

method of extracting a BFP length also is summarized. Sec. 4.4 

describes how large protein probes can be used to give a measure of 

the size of a cytoskeletal "corral" (a region within which the protein 

is confined). In contrast to this, Sec. 4.5 studies how small protein 

probes can be used to extract an effective diameter for the 

attachment points of the network, The chapter then concludes with a 

summary of the results in Sec. 4.6. 

4 . 2  The simulation technique 

To simulate fully the protein-drag experiments, dynarnical 

aspects such as hydrodynamic flow of the cytoplasm around the 

spectrin chains would be required. This kind of simulation is very 

complex to carry out and is beyond the scope of this research. We 

propose, instead, that experimental measurements of BFP's in the 

limit of small optical trapping forces are approximately equivalent to 

the simulation results obtained from a static cytoskeletal network at 

infinitesimally small forces. We need to select a representative 

cytoskeletal network from our simulations. We achieve this by 

ropagating a model network and selecting a configuration whose 

value of A j  is within 1% of < A j > ,  where A j is the area per junction 

vertex. Rather than generating many realizations (a realization is a 

sample network configuration), we find it computationally more 

efficient to work with a single, large realization. We do not need to 

simulate an infinitely large system, given that the BFP's extracted 



from recent SPT experiments (Kusumi et nl., 1993) are in the 

hundreds-of-nanometers range. Thus, we select a single equilibrated 

realization of the cytoskeleton network, which is larger than the 

average barrier-free path and which properly represents the 

geometrical properties of the network. 

To simulate the protein drag experiments, a computational 

protein is introduced into the network realization (prepared as 

described above) at a randomly chosen location. The shape of the 

computational protein is a sphere whose center is on the xy  plane 

representing the bilayer. The interaction Vpq between the protein p 

and an element of the cytoskeleton q is taken to be similar in form to 

Eq. (2.31, 

where S is a variable reflecting the length scale of the protein- 

spectrin interaction. (An effective protein radius R E  will be defined 

in Eq. (4.6)). 

The protein is moved through the network along a straight line 

in a randomly chosen direction. The positions of the network 

elements are held fixed throughout the protein motion. The protein 

position is advanced in successive steps of size 0 .0010  (where 0 is 

defined in Eq. (2.3)). At each step, the force on the protein arising 



from the cytoskeleton is evaluated through Eq. (4.1). Once this force 

from the cytoskeleton exceeds a predetermined threshold value Fo, 

the protein is deemed to have escaped from the trap, and the 

displacement d from the start of the trajectory is stored. A total of 

105 trajectories is generated for each parameter set, S and Fo. 

Fig. 4.6 Picture shows a view of a network realization ( n S e g  = 
32) from the +z direction. The white spots indicate the 
respective stopping points of the computational protein, 
which are mostly located near the attachment points of the 
network to the bilayer. (A total of lo3 trial runs is shown). 

Fig. 4.6 shows a view of the network from the + z  direction 

(cytoplasmic side of the bilayer). The shaded lines indicate the 

position of the cytoskeleton, with elements nearer the viewer 

indicated by lighter shading. The stopping points of proteins with 

S/Ci = 0.89 are shown as white disks, of diameter 0.890.  One can see 



that a large number of stopping points occur at the chain midpoints, 

where the chains are attached to the computational bilayer. Note that 

large proteins are stopped by the spectrin chains in our cytoskeleton 

model .  

/6-fold junction complex 

Bilayer Membrane protein 
Ankyrin 

Fig. 4.7 Schematic diagram showing the different situations 
that might occur during a simulation run. (a) Protein slips 
through a gap in the network. (b) Protein is obstructed by a 
spectrin filament. (c) Protein is obstructed by an attachment 
site (ankyrin plus band 3). 

The different possible situations that might arise during a 

simulation run (see Fig. 4.7) include: (a) A protein slips through the 

spectrin network, in particular the gap under the sixfold junction. 

The cytoplasmic domain of the protein band 3 in the erythrocyte 

extends perhaps 25 nm from the bilayer (Low, 1986) as indicated by 



the radius of the hemisphere in Fig. 4.4 (the attachment site is not 

necessarily at the terminus of band 3). The average displacement of 

a sixfold junction from the bilayer is approximately 32 nm (see 

Chapter 2 for mean height of network) and the mean distance 

between attachment points is about 70 nm, which would make the 

gap wide enough for the hemispherical protein to slip through. (b) A 

protein encounters a spectrin tetramer, which in the picture is at a 

displacement above the bilayer at roughly half the radius of the 

hemisphere.  This  is possible because f luctuat ions in the 

conformations of the spectrin chains make it possible for a tetramer 

to come close to the bilayer. (c) A protein encounters an ankyrin 

attachment site, and the protein motion is blocked, much like a ball 

hitting a pin in a pin-ball machine. 

4 . 3  Extraction of barrier-free path 
l engths  

Distributions of the protein path lengths are constructed from 

large samples in which the initial position and direction of motion of 

the computational protein is randomly chosen. A distribution P ( d )  of 

the displacements d for 105 trajectories at fixed S and F ,  is shown in 

Fig. 4.8. The distribution peaks at d l 0  = 0 and decreases 

monotonically to zero at large d I 0 .  The distribution has most of the 

events concentrated at d l 0  < 10, which is approximately the distance 

between junction vertices. 



Fig. 4.8 suggests that the distribution P ( d j  is exponential-like 

over much of its range and Fig. 4.9 shows this behaviour clearly on a 

log-linear plot. For most of the values of S and Fo, the dis tr ibut ion 

Fig. 4.8 Histogram of protein displacement d (in units of o). A 
total of 100,000 data points contained in the plot are shown for 
FO(T/E = 0.05 and S = 0 . 8 9 ~ .  

P ( d )  can be fitted over the whole range of d with the exponential 

function, 

P ( d j  oc exp(-d/k). (4.2)  

From the distribution P ( d ) ,  we are then able to extract a mean path 



length A ,  which depends on the size of the threshold force F, and the 

protein size S .  We find that A obtained from the fit to the data using 

Eq. (4.2) is equal to <d>,  as expected for an exponential distribution. 

Fig. 4.9 Log-linear plot of distribution from Fig. 4.4. The linear 
behavior of the plot clearly indicates that the distribution is 
exponential in A to a good approximation, Bold line is the best- 
fit line through the data points. 

We might expect P ( d )  to be exponential in analogy with 

classical scattering theory in two dimensions. Consider No particles of 

radius R 1 incident on a medium with a density (number per unit 

area) p of randomly distributed scattering centers of radius R2 (see 

Fig. 4.10). Then, 



Incident 
particle 

Fig. 4.10 Particle P (species 1 )  incident on medium containing 
a density p of scattering centers (species 2). Particle A is not 
scattered, while particle B is scattered and its direction of 
motion is changed. I ,  is the width of the medium, and .K is the 
distance travelled by a particle before it is scattered. 

where N(x)dx is the number of particles present in the region x and 

xi-dx, D = 2(Rl+R2) and I ,  is the width of the sample. Solving this 

differential equation gives 

where h = ll(pD). The motion of the particle between scattering 

collisions is much like the directed motion of the computational 

protein. The scattering of a particle off a scattering center in the 

medium is analogous to the protein being stopped by a steric barrier 



in the network. Thus, the distribution of path lengths for the directed 

motion of the protein through the network is also expected to be 

exponential .  

1 . o  I i i , 1 I , #  1 1 ,+ 

0 . 0  0 . 1  1 . O  1 0 . 0  100 .  

Drag force F o/r 
0 

Fig. 4.1 1 Plot showing the variation of the mean path length 
of the dragged protein with the dragging force F,. At small 
forces, there is little change in the mean path length, while at 
large forces, the mean path length increases monotonically. 

Fig. 4.1 1 shows the relationship between the mean free path A 

of the protein and the dragging force Fo for various values of S (see 

Eq. (4.1)). The mean path can increase with F, because the 

repulsive potential in Eq. (4.1) does not have a "hardcore" limit. Thus, 

at large Fo, the protein is simply forced through the network. The 

mean path length increases monotonically with F, when Fo OIE > 0 . 1  



for all values of S investigated. The weak dependence of A. on F, in 

the small force regime displayed in Fig. 4.1 1 is due to the fact that 

the protein is prohibited from moving the cytoskeleton out of its way 

in the simulations. We expect that 1 is independent of F, for small 

F , ,  since the guided protein is stopped as soon as it encounters the 

cytoskeleton. 

Fig. 4.12 Dependence of the barrier-free path length L on the 
protein size parameter S ,  showing that L decreases with 
increasing S. Note that the dependence seen here is only valid 
up the point where the protein size exceeds the space 
available for insertion in the network. 

We define the barrier-free path (BFP hereafter) L as the 

asymptotic value of as F o o l &  -+ 0. This extraction of L is carried 

out for several values of the protein interaction parameter S (see Fig. 

4.12 above). We find that L decreases monotonically with increasing 



S ,  reflecting the fact that proteins with larger S values encounter 

network steric barriers earlier than proteins with smaller S values 

moving along identical trajectories. We find that the variation of L 

with S can be fitted approximately with the following power law, 

Although Eq. (4.5) indicates that L vanishes as S approaches the 

geometrical length scale of an average spectrin chain (the average 

end-to-end distance of a spectrin tetramer in the cytoskeleton of 

about 1 2 ~ 3 ,  in fact, the functional form of Eq. (4.5) does not apply at 

large S .  The reason is that the cytoskeleton puts a bound on the 

largest protein that can be fitted into the network. That is, the 

protein is "corraled" at some finite value of S ,  and not mobile in the 

large S limit as implied in Eq. (4.5). 

Since O = 6.4 nm, we find that the BFP's displayed in Fig. 4.1 1 

are approximately in the 10-50 nanometer range. At this time, there 

is no published data available for the barrier-free paths of directed 

protein motion in erythrocytes. However, our predicted BFP's for 

human erythrocytes are much smaller than the hundreds of 

nanometers observed in experiments on rat kidney fibroblastic cells 

(Sako and Kusumi, 1995). While most of this difference probably 

arises from the different cytoskeletal structures in erythrocytes and 

fibroblasts, there also could be differences in how experiments 

extract the BFP's in the zero force limit. This is a difficulty inherent 



in such experiments since the proteins are sometimes "forced" 

through the cytoskeletal network by the optical tweezers. 

4 . 4  Barrier-free paths of large 
prote ins  

Before discussing further the implications of the simulation 

results, we replace the protein interaction parameter S by a more 

geometrically transparent quantity.  The repulsive interaction 

between the vertices of the cytoskeleton vanishes for r > 2 1 / 6 0  

according to Eq. (2.1). This means that each vertex has a cutoff radius 

of 012516 for the intervertex repulsive interaction. The cutoff 

distance for protein-spectrin interaction is 21/65'. Thus, we define the 

effective guided protein radius R E  as the difference between the 

protein cut-off distance 2116s and the spectrin-chain radius 012516, 

In the simulation, large proteins ( R E  2 11 nm) are found to be 

mostly confined in a local region of the network. Due to steric 

interactions, such proteins cannot pass out of the corral defined by 

the three nearest-neighbour chains which constitutes the basic 

triangular cell. In this way, the trajectories of large proteins are 

confined to lie within a single corral. Thus, L decreases with 

increasing R E .  The largest protein that can be inserted into the 

network is limited by the network geometry; that is, there is an 



Fig. 4.13 L+RE shown as a function of the effective radius R E .  
As R E  increases, L+RE decreases and reaches a minimum value 

of 23 nm at RE =: 1 1  0.  

upper bound to R E .  The quantity L + R E  should thus approach a 

constant value allowed by the corral geometry, Fig. 4.13 shows that 

L+RE actually reaches a minimum value of 23 nm (defined to be the 

mean size of a corral) and starts to increase very slightly for large 

proteins (RE =. 2.5 0). This effect can be understood as follows. As 

previously pointed out, large proteins have only very limited space 

where they can be inserted into the network and hence cannot be 

inserted into small corrals. Thus the BFP's of large proteins are not 

evaluated with the full configuration space available to small and 

medium sized proteins but are biased 

towards large corrals. 



Fig. 4.14 Representation of a cytoskeletai corral by an 
equilateral triangle, whose sides, each of length h ,  reflect the 
average distance between the sixfold junctions of the RBC 
cytoskeleton network. The inscribed circle of radius R 
represents the largest protein that can be inserted into the 
t r i a n g l e .  

One immediate question that arises is whether this mean value 

of 23 nm obtained for the corral size is what one would expect from 

the geometry of the computational network. Suppose that we 

represent the average corral in the network by an equilateral 

triangle of side b = 76 nm, approximately equal to the average 

separation distance between sixfold junctions in the human 

erythrocyte (see Fig. 4.14). The maximum radius of an inscribed 

circle (representing the largest protein that can be fitted into the 

corral) in the triangle is thus 20 nm. This is close to the simulation 

value given above, showing that in the limit of large protein sizes, 

the effective corral radius of L+RE = 23 nm, is a reasonable reflection 

of the corral geometry. 



4 . 5  Barrier-free paths of small 
prote ins  

As seen in Fig. 4.13, small proteins have much larger BFP's than 

larger proteins, because they encounter fewer obstacles associated 

with the cytoskeleton. In essence, the small proteins are affected 

mostly by the set of attachment points representing the ankyrin 

junctions. The remainder of the chain network, being further from 

the bilayer plane, hardly perturbs the motion of the small protein. 

In this respect, the chain midpoints, to a reasonable 

approximation, act as a set of scattering centers or, rather, a field of 

barriers, to the guided protein, as it is  dragged along the 

computational xy plane. This interpretation of the protein guided 

motion via two-dimensional scattering theory is consistent with the 

exponential distribution of path lengths in the simulation. 

In view of this analogy described above, we can compare the 

motion of the protein to that of a point particle traversing a planar 

array of disks of diameter D  randomly distributed with a well- 

defined area density P . In classical two-dimensional scattering 

theory, the absorption mean free path of the traversing particle is 

equal to ( p D ) - 1 .  With respect to the reference model, p is the area 

density of ankyrin attachment points and D is the effective diameter 

of ankyrin in the bilayer plane. The point to note is that, for non-zero 

R E ,  D  is affected by both the protein and ankyrin interactions. Thus, 

i n  order to make the connection to the scattering problem described 



above, we determine the value of L in the RE -+ 0. limit This limiting 

value of L can be obtained graphically, as shown in Fig. 4.15. The 

behavior of (L-I) is seen to be linear in R E  at small radii, and the zero 

radius lirnit of (L-1 ) is 8.5 x 10-3 (nm)-1 by extrapolation (or L = 

Fig. 4. 15 Relationship 

lirnit of a zero-radius 

between 1/L and R E .  To approach the 

protein, we extrapolate L - ' as R E 
approaches zero. In this limit of protein size, one can treat the 
protein drag problem much like a two-dimensional scattering 
p r o b l e m .  

The area density of ankyrin junctions in our simulation is 

2 ( 3 )  1/2/62,  where b is the average distance between the sixfold 

junction vertices of the cytoskeleton. Taking b to be approximately 

70 nm, then p =: 7.1 x 10-4 nm-2. This gives D = 12 nm from the 

limiting value of L as RE goes to zero, which is approximately twice 



Fig. 4.16 (a) A segment of the spectrin chain. X represents the 
attachment point, A and B are the nearest neighbours. The 
circles represent the maximun~ extent of the repulsive 
interaction around each element along the chain. (b) Due to 
the close proximity of A and B to X, the effective steric barrier 
around X is increased ( R , c ~  > R,). 

the diameter of the chains (equal to 7.2 nm). This seems counter- 

intuitive but the rationale behind this is as follows. Consider a 

particular attachment point of a chain in the reference model (see 

Fig. 4.16; attachment point is labeled X). The radius of the attachment 

point X is approximately 3.6 nm. Due to the close proximity of the 

two nearest neighbours, denoted by A and B in Fig. 4.16, the 

effective steric barrier around the attachment point X created by this 

close proximity of nearest neighbours is increased somewhat. Thus, 



the effective mean radii of the attachment points as measured by the 

small protein probes is larger than the effective radius of a chain, 

consistent with the factor-of-two value for Reff /Rx extracted in the 

simulation. 

4 . 6  Summary 

The simulation as described in this chapter is used to mimic the 

motion of proteins dragged by optical tweezers, as observed in recent 

SPT experiments. For most combinations of trapping force and 

protein sizes, the distribution of path lengths is found to be 

exponential. A mean path /1 is extracted from the exponential 

distribution and is found to be relatively constant for small trapping 

forces. The barrier-free path L is obtained by extrapolating A to zero 

trapping force F,. 

The obstacles to the directed motion of proteins in our 

simulations are found to be mainly the membrane/skeleton 

attachment sites. Thus, any temperature dependence of L (which is 

not investigated in our simulations) would have been weak because 

of the fixed concentration of the attachment sites in our cytoskeleton 

model. This is in contrast to the experimental results (Edidin e t .  a l . ,  

1991) which showed that the barrier-free path of GPI-linked MHC 

class I proteins in murine HEPA-OVA cells is temperature- 

dependen t .  



The simulation also predicts that L decreases with increasing 

protein size as LICT = 5.O(S/0)-1.4, where CT and 5' are length scales 

associated with the repulsive potentials within the network chains 

and between the protein and the chains, respectively. Large proteins 

are observed to be "corraled" in a region with an effective radius of 

23 nm, consistent with the value of 20 nm expected from the 

geometry of the network. 

The motion of small proteins through the network can be 

interpreted in terms of two-dimensional scattering. The BFP L then 

is equal to (pD)-1 ,  where p is the area density of scattering centers 

(ankyrin) and D is the average in-plane diameter of the junctions. In 

the simulation, D is found to be approximately 12 nm, which is 

roughly double the diameter of the polymer chain. In essence, the 

BFP's of small objects guided through the plasma membrane can be 

used to probe the in-plane sizes of some, but not all, cytoskeletal 

elements of the membrane. 



Chapter 5 
TESTS OF CYTOSKELETONBILAYER 
ASSOCIATION MECHANIS 

5 . 1  Introduct ion 

In Chapter 1, it was pointed out that the attachment of the RBC 

cytoskeleton to the bilayer of the plasma membrane is effected 

largely through the protein ankyrin, which binds both to spectrin 

and to the cytoplasmic domain of the transmembrane protein band 3 

(see Fig. 5.1). Ankyrin has been determined to be a high-affinity 

Bilayer 

1 Band 3 

Ankyrin ~peetrin 
(a ,  p Tetramer) 

Fig.  5.1 Association of the cytoskeleton with the bilayer 
through the proteins band 3 and ankyrin. 



membrane binding site for spectrin and band 3 (Bennett and 

Stenbuck, 1979a). Evidence that ankyrin provides a major membrane 

attachment site for spectrin in erythrocytes is based on several 

experiments. One such experiment (Bennett and Stenbuck, 1979b) 

showed that antibodies that selectively extract ankyrin prevent the 

binding of spectrin to membranes. 

The cytoskeleton may also be attached to the bilayer through 

the protein band 4.1, which promotes the association of spectrin with 

actin (Fowler and Taylor, 1980; Ohanian et al., 1985; Ungewickell e t  

al. 1979), forming the sixfold junction complexes (see Fig. 5.2). Band 

4.1 has been found to remain associated with membranes a f t e r  

Bilayer 

! 
Glycophorin C 

Spedtrin 
(a ,  p Tetramer) 

Fig. 5.2 Binding of the cytoskeleton to the bilayer effected 
th rough  the  pro te in  band 4.1 and t h e  g lycopro te in  
glycophorin C. 



removal of spectrin and actin (Bennett, 1980). This observation 

suggests that the protein 4.1 provides a membrane-linkage site for 

spectrin-actin complexes. 

Several protein candidates for a membrane-binding site for 

protein band 4.1 have been proposed. These include the membrane 

protein glycophorin A (based on experiments on the binding of band 

4.1 to glycophorin A liposomes (Anderson and Lovrien, 1984)) and 

also the membrane proteins glycoconnectin or glycophorin C (Mueller 

and Morrison, 1981). It has been found that the interaction between 

protein 4.1 and glycophorin A is not one of physiological importance, 

in that erythrocytes lacking glycophorin C exhibit a reduction in 

membrane mechanical stability, while glycophorin-A-deficient cells 

remain normal (Reid et al., 1987). 

From the experimental observations mentioned above, a 

question arises: does the cytoskeleton attach itself primarily through 

band 3, or are the attachments through the proteins band 3 and band 

4.1 equally important? To address this question, then, we probe the 

relationship between the geometrical and elastic properties of the 

cytoskeletal network and the different bilayer binding sites that the 

network might have. In this chapter, three alternate mechanisms of 

cytoskeleton attachment are described within the context of the 

reference model developed in Chapter 2.  The two mechanisms 

investigated in this chapter (in addition to the midpoint attachment 

of Chapter 2, referred to as case I) are: (1) Attachment of the sixfold 

junction complexes to the computational bilayer (case 11). (2) 



Attachment at both the midpoints and the sixfold junctions (case 111). 

In both mechanisms, the binding sites are free to move in the 

bilayer.  

In Sec. 5.2, we present the dependence of the geometrical 

properties (such as the equilibrium network area and the mean 

displacement of network from the bilayer) on the attachrnent sites. 

This is followed in Sec. 5.3 by a discussion of how the elastic 

properties (such as compression and shear moduli) are affected by 

alternate binding mechanisms. Sec. 5.4 demonstrates the attachment- 

dependence of barrier-free paths. Finally, the chapter concludes with 

a summary of the results in Sec. 5.5. 

5 . 2  Effects of alternate attachment 
points on network geometry 

The reference model developed in Chapter 2 has the midpoint 

of the network chains tacked to the computational x y  plane. Here, we 

study two different cases. In the first case, only the sixfold junction 

complexes are tacked to the computational x y  plane, leaving all other 

constituents of the network free to move about in the space above 

the xj1 plane. This is to simulate binding of the network skeleton to 

the bilayer only through the protein band 4.1. In the second case, the 

network is tacked at both the sixfold junctions (protein 4.1) and the 

midpoint of the network chains (protein ankyrin). Except for the 

network attachment points, the simulation is carried out in a similar 



fashion as was described in Chapter 2: that is, a mixed NC/MD 

simulation of polymer chains. 

midpoint 

sixfold 

midpoint/ 
sixfold 

Fig.  5.3 The  network area per  junction vertex < A J >  as a 
funct ion of n s , g  for  three different ways of binding the 
network to  the computat ional  bilayer.  As expected,  s imply 
changing the binding site from the chain midpoints to  the 
sixfold junctions has virtually no effect on < A J > .  When the 
network is  bound at both sites simultaneously, the network 
expands (for a given value of n s e g )  This is in part due to the 
increase in steric interactions among the chains. 

The observables measured are the average network area and 

displacement from the bilayer plus the in-plane and out-of-plane 

elastic moduli. First, we evaluate the effect of having alternate 

binding sites on the dependence of the network area per junction 

vertex < A j >  on the number of segments per chain nseg Fig. 5.3 shows 



this dependence, in comparison with the result obtained in Chapter 2. 

The power-law relations between <A;> and n S e g  for the two new 

association geometries are as follows: 

(a) Membrane skeleton tacked at the sixfold junctions (case 11): 

(b) Membrane skeleton tacked at both the midpoints and sixfold 

junctions (case 111): 

Comparison of Eqs. (2.6) and (5.1) shows that the scaling behavior of 

the network area is not altered by changing the binding site from the 

chain midpoints (case I) to the sixfold junctions. On the other hand, 

when the network associates with the bilayer at both the midpoints 

and sixfold junctions, the exponent of the power law increases 

slightly. This difference is also evident in Fig. 5.4, where the ratio of 

the contour area per junction vertex A, to the average area per 

junction vertex <Aj> is plotted as a function of n s e g .  The power law 

dependence of A,I<A j> on n S e g  is as follows: (a) Sixfold junction 

tacking (case 11) 



7 midpoint 
x x sixfold 

x 

midpoint/sixfold 
combined 

Fig. 5.4 Ratio of areas A,/<AJ> as a function of n S e g  Note that 
when the network is tacked either at the midpoint or at the 
sixfold junctions, the scaling behavior is very similar. In the 
case where the network is bound to the membrane at both the 
sixfold junctions and midpoints, A ,/<A j> increases more 
slowly as a function of n S e g  and it is also lower than the other 
two cases. 

(b) Tacking at both the midpoints and the sixfold junctions (case 111): 

Eq. (5.3) shows that the number of segments n s e g  required for the 

network to achieve A c I < A j >  .= 7 (as demanded experimentally) is 32, 

in the case of the attachment solely at the sixfold junctions. This is 

seen clearly in Fig. 5.4, where the data for cases I and 11 are very 



similar. In case 111, the required n s e g  has jumped to the much larger 

number 42 (from Eq. 5.4). This increase of approximately 30% in n S e p  

indicates that the network chains of case 111 are generally stiffer 

than than those found in case I and I1 (when the comparison is made 

at fixed n s e g ) .  To see why this is so, we compare the three cases 

under the condition that n s e g  be the same. The greater number of 

membrane attachment sites in case 111, in contrast to cases I and 11, 

constitutes a larger number of constraints placed on the network. 

This leads to a reduction in the configuration space available to the 

chains in case 111, which correspondingly forces the network to lie 

closer to the bilayer (see Figs. 5.5 and 5,6(a,b)). In order for the 

network in case 111 to be able to shrink from its contour area by a 

factor 7, the network must become "floppier" and, hence, n s e g  must 

increase (see discussion in Chapter 2). 

Since n s e g  is the same for case I and 11, the length scales (T for 

the two cases are equal and take the value 6.4 nm (see Chapter 2). 

On the other hand, in case 111, n s e g  equals 42 and, from the RBC 

spectrin contour length of approximately 200 nm, this gives 0 - 4.9 

n m .  

The mean displacement <t> of the network from the bilayer in 

all three cases reflects the behaviour of the average network area. 

Fig. 5.5 shows the variation of the mean displacement <t> with n S e g .  

The <t> data in cases I and I1 are again seen to be very similar, in 

contrast to the data for case 111. The mean displacement <t> for case 

111 is seen to be markedly lower for the other two cases. This reflects 



the fact that the number of membrane-binding sites is much larger 

in case 111. The scaling behavior of <t> for case I1 is given by 

and for case 111, by 

<t>/O = 0.06 nsepO-9. 

I midpoint 

x sixfold 

Fig. 5.5 The mean displacement <t> as a function of n S e g  The 
behaviour seen in cases I and I1 is similar. The data in case I11 
rise at about the same rate as the other two cases but are lower 
in value. From this, we see that the network i n  case 111 is 
markedly "flatter" than in case I and 11. 



Using the values of CT and n s e g  calculated for cases I1 and 111 

respectively, together with Eqs. (5.5) and (5.6), we find the mean 

displacement <t> for case I1 to be =: 17 nm, the same as in case I, 

while for case 111 <t> is predicted to be approximately 8.5 nm. 

Cytoskeleton 

Fig. 5.6 (a) and (b j  illustrate network attachment for cases I 
and I11 respectively. Notice that the network height in (bj  is 
lower than in (a). 

Fig. 5.6 above shows schematically what happens when the 

network is forced to be tacked down at additional locations along the 

chain. In Fig. 5.6(a), network chains are tacked down at proteins X 

and Y. Thus, effectively, the two chains XZ and ZY form a single long 

chain "XY", of some average length, say 1,. On the other hand, in Fig. 

5.6(b), we have two distinct chains, each of length lb, where 1, > lb. 



Clearly, the mean height of the chains in (b) is going to be smaller 

than in (a). Notice also that the chains XZ and ZY in Fig. 5.6(a), in 

comparison to those in Fig. 5,6(b), have more freedom to move 

horizontally and vertically, which undoubtedly affects the elastic 

behaviour of the chains (a point which will be taken up in Sec. 5.3). 

Effects of attachment on network 
e l a s t i c i t y  

We noted in Chapter 1 that the cytoskeletal network has been 

experimentally observed to bear a significant part of the extensional 

elasticity of the RBC. In Chapter 2, our investigation into the 

geometrical and elastic properties of the RBC cytoskeleton was based 

on the reference network being attached to the bilayer through the 

midpoint of the chains via ankyrin. As mentioned in Sec. 5.1, it has 

been confirmed that ankyrin is the primary binding protein tying the 

network to the bilayer; but, binding through other proteins (band 

4.1) is also possible. If it is true that the network does attach itself to 

the bilayer through band 4.1, then the immediate question that 

arises is what effect this would have on the elastic properties of the 

ne twork.  

Considering the three cases, I, I1 and 111, as described in See. 

5.1, we first look at the in-plane elastic moduli, K A  (area 

compressibi l i ty)  and /! (shear modulus). Fig. 5.7 shows the 

dependence of the in-plane moduli on n S e g .  In case 11, we find that 



K A  and ,D are described approximately as 

and, in  case 111, we have approximately 

* midpoint 

A sixfold 

midpoint1 
sixfold 

x midpoint 

E sixfold 

A midpoint1 
sixfold 

Fig. 5.7 The in-plane elastic modull, K A  and p as a function of 
n L e g  for all cases. In cases I1 and 111, the moduli are seen to 
decrease as n S e g  increases, similar to case I. 



The simulation predictions for the in-plane elastic moduli relevant to 

the human erythrocyte cytoskeletal network are shown in Table 5A. 

Table 5A Comparison of the in-plane elastic moduli, K A  (area 
compressibility) and p (shear modulus), for cases I, I1 and 111, 
where n s e g  and o are selected in each individual case to model 
t h e  h u m a n  e r y t h r o c y t e  c y t o s k e l e t a l  n e t w o r k .  T h e  
uncertainties in the predicted moduli are approximately 20%. 

The first thing to notice from the data presented in Table 5A above is 

that the ratio K ~ / , l f  is approximately equal to 2 for both cases I1 and 

I11 (much as in case I; see Chapter 2). This predicted value for the 

ratio has been verified experimentally for the human erythrocyte 

cytoskeleton (see Chapter 2). Thus, the simulation predicts that 

changing the membrane coupling mechanism of the network affects 

mostly the absolute magnitudes of the in-plane elastic moduli but 

not the ratio KA/,L~. The magnitudes of the moduli K A  and ,Ll for both 

cases are also in agreement with the values measured in 

micropipette aspiration experiments (for K A ,  see Evans and Waugh, 

1977; for ,lf, see Evans et .  a l .  , 1984). 

The other piece of information that can be extracted from Table 



SA is that the effect of switching the binding site from the midpoint 

(case I) to the sixfold junction (case 11) is that the elastic moduli 

agree within statistical errors. On the other hand, if one were to bind 

the network to the bilayer at both the midpoints and sixfold 

junctions (case III), the moduli are found to be = 22% larger for K A  

and about 30% larger for /f (when compared to case I). This is 

consistent with the fact that the network in case 111 is displaced a 

lesser amount from the bilayer and, thus, the chains have less 

configuration space into which to unwind (due to steric interaction 

with the computational bilayer). Thus, the network in case I11 is 

expected to be more rigid than in cases I and 11. 

We now look at the dependence of the transverse or out-of- 

plane elastic moduli, Kv (volume compressibility) and YL (transverse 

Young's modulus), on nseg, which are shown in Fig. 5.8. In case 11, the 

volume compression modulus is given approximately by 

and, for the transverse Young's modulus, 

and, for case 111, we found that 
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Fig 5.8 The out-of-plane e l a s t ~ c  m o d u l ~ ,  K V  and Y i  as a 
function of n S e g  The plot shows that the network in case 111 1s 
somewhat stiffer In the transverse direction as compared to 
cases I and 11. 

As in Table 5A, the transverse elastic properties of the human RBC 

cytoskeleton can be extracted from fluctuations and are shown in 

Table 5B below. It is clear from Table 5B that the network in case I11 

is significantly more rigid in the transverse direction, as compared to 

cases I and 11. We find that Kvl11 is roughly twice the value of K v b n d  

YIll l  is roughly 2.5 times the value of YL" This difference is, again, 

attributable to the fact that the chains in case I11 are close to the 

computational bilayer and, hence, resist strongly the stresses applied 



vertically to the network because of sterics. (See Chapter 2 for 

discussion on the significance of the large values extracted for Y L ) .  

Table 5B Comparison of the out-of-plane elastic moduli, K V  
( v o l u m e  compres s ib i l i t y )  and  Yi_ ( t r a n s v e r s e  Y o u n g ' s  
modulus), for cases I, I1 and 111, where n S e g  and a are selected 
in each  individual  case  to  model  the human erythrocyte 
cytoskeletal  network.  The  uncertaint ies  in the m o d u l ~  are 
about 20%. 

5 . 4  Effects on arrier-free paths 
of roteins 

I n  Secs .  5 .2  and 5 .3 ,  we looked at how various 

cytoskeletonlbilayer coupling mechanisms affect the geometry and 

elasticity of the network. In this section, we study how incorporating 

different networklbilayer coupling mechanisms would affect the 

barrier-free paths of computational "proteins" randomly inserted in 

the network. 

Except for some changes of the location of the binding sites of 

the network, the simulation carried out in this investigation is similar 

to the one described in Chapter 4. That is, a hemispherical protein is 



randomly placed inside a reference network and given a preselected 

random direction along which it is to be dragged. The reference 

configuration, although spatially fixed, is sufficiently large so that it 

provides a representative sample of cytoskeleton configurations. The 

protein interacts sterically with elements of the network and i s  

deemed to be stopped in its track when the total force (arising from 

the network) acting on the protein is greater than or equal to the 

dragging force Fo. The results for cases 11 and I11 will be presented 

separately and compared. 

Fig. 5.9 Plot showing the variation of the mean path length of 
the dragged protein with the dragging force F ,  for case 11. At 
small forces, there is little change in the mean path length, 
while at large forces,  the mean path length increases 
m o n o t o n i c a l l y .  



First, we look at case IT, where the cytoskeleton is coupled to 

the bilayer at the sixfold junctions (band 4.1). The variation with F ,  

of the mean paths of the computational protein is shown in Fig. 5.9. 

The mean paths are slightly larger than those observed in case I but 

are still in the 10-50 nm range (given that 0 = 6.4 nm). At small 

values of F , ,  there is little change in the mean path I; but, beyond 

some threshold value F, = 0.1 o / E ,  I increases monotonically. These 

observed characteristics of directed protein motion are very similar 

to those seen in case I. 

Fig. 5.10 Plot showing the variation of the mean path length 
of the dragged protein with the dragging force F ,  for case 111. 
There is little difference in the qualitative features b u t  the 
mean-free paths are quantitatively smaller than in cases I and 
I1 when the physical value of o is taken into account. 



Now consider case I11 in Fig. 5.10. The first thing to notice i n  

Fig. 5.10 is that 1 is larger than in cases I and 11. However, since CJ 

is smaller in case I11 (when converted to nanometers), .% is actually 

smaller than it is in the other two cases. In fact, the range of values 

for 1 is around 9-30 nm. This is reasonable, if we recall that the 

network in case I11 has a smaller mean displacement from the 

bilayer <t> and, hence, the steric hindrance to the directed motion of 

the computat ional  protein is increased.  In addit ion,  the 

computational protein in case 111 encounters more in-plane obstacles 

(attachment sites). Another thing to notice in Fig. 5.10 is that the 

threshold force F,, beyond which 1 increases monotonically, is larger 

than in case 1 and is approximately equal to 1.0 GI&. This, again, 

reflects the tight coupling of the network to the computational 

bilayer and the smaller <t> in case 111, which results in a larger 

dragging force required to move the protein through the network. 

The barrier-free path length L for the three cases was 

extracted and plotted against the parameter S ,  which is a measure of 

the protein size (for a description of the method of extraction for the 

barrier-free path L and the simulation parameters used, see Chapter 

4). Fig. 5.11 shows this comparison on a log-log plot. The scaling 

behavior for case I1 is given by 
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Fig. 5.1 1 Plot showing the varlation of the barrier-free path L 
with S, which is a measure of the size of the computational 
protein. The three cases show similar behavior, that is, as S 
increases, L decreases like a power law. 

and, for case 111, 

Fig. 5.1 1 shows that, in general, the barrier-free path L for case I1 is 

larger than for cases I and 111, as expected. This is mainly due to the 

smaller number of attachment sites encountered by the protein in 

case 11. This is consistent with Chapter 4, where we observed that 

the stopping points for the protein tend to be at the attachment sites. 

The differences in barrier-free paths for the three cases are 

further seen in Fig. 5.12, which is a plot of L+RE versus R E .  The first 

thing to notice is that, in both cases 11 and 111, L+RE decreases as R E  



Fig. 5.12 Le+Re as a function of R e  for cases I1 and 111. Notice 
that the two graphs have the same downward sloping trend 
for Le+Re The corral size is clearly smaller in case 111 than in 
case 11. 

increases, dropping to some minimum value, which occurs when the 

protein is corraled (similar to case I, see Chapter 4). The difference 



comes in the minimum value of L+RE: (a) Case IT, (L+RE),~, -- 23 nm, 

which is in agreement with that observed in case I (see Chapter 4). 

(b) Case 111, (L+RE),,, .= 18 nm. This slight difference is mainly due 

to the smaller <t> in case 111 (less chance of larger proteins slipping 

under the chains) and in a small part due to the larger diameter of 

the attachment sites (extracted later on in this section). 

The corraling effect in case 111 is also seen to occur at a much 

smaller protein radius as compared to cases I and 11. This can be 

understood in the following way. Recall Fig. 5.6(a), which w a s  

a schematic representation of the situation in cases I and 11, and Fig. 

5.6(b) for case 111. The fluctuations of the displacement of the chains 

above the bilayer is larger in cases I and 11 than in case 111, which is 

confirmed by the predicted mean displacement of the network. This 

in turn means that the computational protein in cases I and 11, on 

average, slips under "fences" or chains more readily and, hence, leads 

to a larger BFP (and also to a larger mean corral size), as compared to 

case 111. The smaller number of in-plane obstacles (attachment 

points) in cases I and I1 also contributes to the observed difference 

from case 111. 

We now turn to look at the effect of different membrane 

coupling mechanisms on the predicted size of the in-plane obstacles 

(attachment sites). Fig. 5.13 shows a plot of 1IL versus R E  for case TI 

and 111. From extrapolating IIL by having R E  -+ 0, as described in 

Chapter 4, we find for case I1 that Lo - 132 nrn and for case I I I 

Lo E= 65 nm. The values of Lo allow us to predict the effective 



Fig. 5.13 Plot of 1/L versus R E  for cases I1 and 111. The limiting 
value of 1/L is obtained by extrapolating R E  to zero. 

diameters of in-plane obstacles. 

C a s e  I I .  The area density of attachment points pII = (21'4 3) lb2 ,  



where b is the average end-end distance of the spectrin chain, taken 

to be 70 nm. This yields for the effective diameter of the attachment 

site D I I  =. 32 nrn. This is more than twice the value predicted in case 

I. Since we are dealing with proteins with infinitesimal radii, the 

mean displacement of the network is not a factor affecting the BFPs 

of the protein. It is, rather, the attachment site which is the major 

factor here. The much larger diameter of the in-plane junction site 

can be understood in the following way. Since there are six nearest 

neighbours for each sixfold junction complex, the effective steric 

barrier around a sixfold junction complex extends further along the 

bilayer plane than in case I for the midpoint attachment site, which 

has only two nearest neighbours. 

C u s e  I I I .  Here, the density is PIII = (817/3)1b2 and, thus, Dill = 

16 nm. This value for the diameter is intermediate between that of 

cases I and 11. In case 111, there are two types of attachment sites 

involved in coupling the network to the bilayer; 75% of the total 

number of attachment sites are chain midpoints, while the remaining 

25% are sixfold junctions. Taking this into account, one can obtain an 

estimate of DI I I  in the following way: 

Dlrr = 0.7501 + 0.25D11 

=. 0.75(12 nm) + 0.25(32 nm) 

=: 17 nrn (5.17) 

This estimate for Dl l I  is in agreement with the value obtained in the 



simulation and is, thus, a self-consistency check on the simulations. 

What Dl11 tells us here is that the computational protein sees an 

environment of scattering centers (attachment sites) which reflects 

the weighted average of the diameters of each type of scattering 

center present. 

5 . 5  Summary 

In this chapter we looked at the effects on the geometry and 

elasticity of the network of having different cytoskeleton/membrane 

coupling mechanisms. In Sec. 5.1, we found that the mean network 

area per junction vertex < A j >  is unchanged when the attachment site 

is simply switched from the chain midpoint (case I) to the sixfold 

junction complex (case 11). The mean displacement above the bilayer 

< t >  is also unchanged and is predicted to be approximately equal to 

17 nm. On the other hand, when the network is attached at both the 

midpoints and sixfold junctions (case HI), < A j >  is larger than in cases 

I and I1 for a fixed value of n S e g ,  and < t >  falls to 8.5 nm. 

The in-plane elastic moduli K A  (area compressibility) and 

(shear modulus) for case I1 are found not to differ significantly from 

that of case I;  while, in case 111, the moduli are found to be 

significantly larger than in case I ,  This effect is confirmed by the 

m e a s u r e m e n t  of the  out -of -p lane  modu l i ,  K v  ( v o l u m e  

compressibility) and Y I  (transverse Young's modulus). It was found 

that KvHl is approximately twice that of K v J  and that YI"I is about 2.5 



times that of Y L i .  It is proposed that a marked increase in the 

number of membrane linkages leads to an increase in membrane 

cytoskeletal rigidity. 

We also investigated how alternate membrane coupling 

mechanisms affect the barrier-free paths of proteins in a directed- 

motion simulation. The barrier free paths and the sizes of the corrals 

for case I and case I1 are found to be in close agreement with each 

other. On the other hand, the predicted diameter of the attachment 

site for case I1 is more than twice that of the attachment site in case 

I. The predictions for case 111 are as expected: (1) BFPs are smaller, 

in the 10-30 nm range. (2) Corral size is also smaller, diameter .=: 18 

nm. (3) The effective diameter of the attachment sites (as "seen" by 

the computational protein) lies somewhere between that of cases I 

and 11, near 16 nm. This is in agreement with estimate (.=: 17 nm) 

obtained through a calculation which uses a weighted average of the 

mean diameters of the attachment sites of cases I and 11. These 

effects as described are due mainly to the different number and 

location of the linkages of the membrane to the bilayer. 



Chapter 6 
CONCLUSION 

6 . 1  Elasticity and geometry of the 
erythrocyte cytoskeleton 

This research has been focused on the study of two main 

properties of the KBC membrane cytoskeleton, namely, geometry and 

elasticity. The cytoskeleton has been modeled as a triangulated 

network of polymer chains attached to the computational xy plane 

representing the lipid bilayer. Several mechanisms were investigated 

for attachment of the cytoskeleton to the bilayer; we placed the 

greatest emphasis on a reference model in which the attachment is at 

the midpoint of the polymer chains, representing the ankyrin 

junctions (referred to as case I). The different attachment 

mechanisms that were considered are summarised in Table 6A 

below. 

l Case == I Attachment through the sixfold junction complexes. 

sixfold junction complexes. 

Tab le  6 A .  The three  d i f ferent  cy toske le ton /membrane  
attachment mechanisms investigated in our simulations. 



Each polymer chain in our model network has n  segments 

between the sixfold junctions. The range 14 < n S e g  2 32 was 

investigated here. 

We consider first the attachment of the network to the bilayer 

at the chain midpoint, namely case I. The polymer chains in the rest- 

state network are observed to be highly convoluted in the space 

above the computational bilayer, as expected from their highly 

flexible nature. This is consistent with experimental observations of 

spectrin tetramers in intact red cell cytoskeletons. Using the 

measured spectrin contour length and the experimental observation 

that the ratio of A, (contour area per junction vertex) to < A  j >  

(average area per junction vertex) is approximately seven, we are 

able to fix nseg  and the length of each segment in the chain. With the 

two model parameters fixed, the model then makes absolute 

predictions for  the elastic constants and geometry of the 

cytoskeleton. For example, we predict the mean thickness of the 

cytoskeleton to be approximately equal to 32 nm, a prediction for 

which there is currently no experimental data available for  

comparison. 

When the model network is placed under both isotropic 

compression and tension, <Aj> is "S"-like in appearance as a function 

of the applied stress,  flattening out at large tensions and 

compressions. At large tensions, the response of the model network 

is found to be approximated reasonably well by a network of 

equilateral triangles with Inter-nodal square-well interactions. Near 



zero stress, we observe that the response of the network is analogous 

to that of a two-dimensional network of springs with an effective 

spring constant pkeffs ,2  = 32, which is a large value, corresponding 

to small fluctuations in the interjunction spacings. This implies that 

the model cytoskeleton behaves like a low-temperature network of 

nodes near zero stress. Full-scale models, using a triangular two- 

dimensional  network of nodes with two- and three-body 

interactions, will be used in future studies to simulate the 

micropipette aspiration experiments on red cells and, thus, to achieve 

a deeper understanding of the RBC elastic response. 

Near zero stress, the ratio of the compression modulus K A  to 

the shear modulus ,U in case I is =: 2.4 $- l o % ,  which is in agreement 

with known experimental data from micropipette aspirations of red 

cells. Furthermore, the normalised in-plane elastic moduli, PKA<A 
and P,U<AI> (Waugh and Evans, 1979) are also in approximate 

agreement with one set of experimental measurements. Both K A  and 

,U increase under tension, which is expected on the basis of the built- 

in tether constraints in the model. The Poisson ratio is found to 

decrease monotonically under tension, becomes negative (very 

weakly) at modest tension, and then increases again at large 

tensions. This phenomenon of a negative Poisson ratio has also been 

observed in computer simulations of two-dimensional networks of 

springs under tension (Boa1 et al., 1993). 

The out-of-plane response (in all three cases), indicated by the 

volume compressibility and transverse Young's modulus, is found to 



be significantly stiffer with the smooth BKF potential of our model 

compared to those observed in bead-and-tether model simulations 

util ising square-well  potentials.  The "quenched" out-of-plane 

fluctuations in a mixed microcanonical/canonical ensemble (used in 

our simulations) seems to be the cause of the transverse Young's 

modulus being one order of magnitude larger than the volume 

compressibility; this is not observed in pure MC simulations (private 

communications with Boal, 1997). 

Attaching the model network to the computational bilayer 

through the sixfold junctions (case TI), instead of the midpoint of the 

chains, did not alter the response of the network signficantly. In fact, 

the elastic moduli decreased only slightly, while the geometrical 

response was almost unchanged (mean displacement .= 16 nm). 

When the network was attached at both the chains' midpoints and 

the sixfold junctions (case HI), the scaling behaviour of the 

geometr ical  observables ( for  example ,  < A  j >  and network 

displacment) are very similar to those of cases I and 11, while the 

elastic moduli are significantly stiffer. The network in case 111 also 

lies closest to the computational bilayer (mean displacement .= 8.5 

nm) .  

Under uniaxial tensions, the network is found to r espond  

anisotropically (in all three cases). That is, the strain response of the 

network in the x-direction for a uniaxial stress in the x-direction is 

not the same as that for the corresponding situation along the y -  

direction. This behavior arises from the inequivalent geometry along 



perpendicular axes drawn through the network. On the other hand, 

the network behaves much like that of a two-dimensional network of 

springs at small uniaxial tensions with an effective spring constant 

k,ff which is essentially the same as that extracted from isotropic 

stress tests described earlier. The Poisson ratio, in the limit that the 

tension goes to zero, has a value of 113, consistent with that expected 

from a two-dimensional network of springs at zero temperature. 

The possibility of a built-in precompression (or prestress) in 

the rest-state of the RBG cytoskeleton has also been probed. We 

found that geometrical and elastic responses of the network modified 

by a prestress is very similar to those without a prestress, once the 

results are converted to physical units. 

Some of the ingredients that were left out in our model which 

might be important to the complete description of the physical 

cytoskeleton, include: (1) spectrin-lipid binding at points other than 

the ones investigated (Everaers e t .  a l . ,  1996); ( 2 )  ionic interactions 

between spectrin chains (Stokke e t .  a l . ,  1986); ( 3 ) .  geometric 

irregularities in the coordination number and the possible existence 

of spectrin hexamers (Steck, 1989); (4) association-dissociation 

equilibrium states between tetramers and dimers (Tsuji e t .  a l . ,  1988). 



The other part of this research involved studying the effects of 

the network on the path lengths for directed motion of objects 

embedded in the computational bilayer, which is analogous to 

experiments in which proteins are dragged through the membrane 

via a laser-trapping device. 

The simulations showed that small "proteins" have significantly 

larger barrier-free path lengths than large proteins, which are 

generally corralled (locally restrained) by the polymer chains. This is 

true for all of cases 1, 11 and 111; but, the barrier-free paths in case 

111 are the smallest among the three cases. We also found that 

knowing the barrier-free paths of small proteins allowed the 

extraction of the mean diameter of an attachment point, when the 

directed motion of the protein is interpreted as a scattering mean 

free path. On the other hand, the directed motion of large proteins 

provides information about the size of the corrals (regions in which 

the c ytoskeleton restricts protein movement). 

Overall, the simulations provide a model in the context of 

which to probe the geometry and elasticity of biological membrane 

systems. Further refinements, such as inclusion of hydrodynamic 

effects and dynamic bilayer-cytoskeleton detachmentlre-attachment 

processes, which are beyond the scope of this current research, can 

be added to study the effects of a dynamically fluctuating 



cytoskeletal  network on  the diffusion properties of membrane 

p ro t e in s .  



Appendix A: Effective spring constant of an 
ideal polymer chain 

In three dimensions, the distribution function p(r,,) for the end-to- 

end distance re ,  of an ideal polymer chain (that is, a chain without 

self-avoidance) is gaussian in shape and is given by 

where n s e g  represents the number of segments of the chain and b is 

the average bond length of each segment. Note that p(r,,) can also be 

written as 

where a ( r , , )  is the number of distinct configurations with end-to- 

end distance re,. The entropy SE of the chain associated with this 

distribution is 

which, when combined with Eq, (A .2 ) ,  gives 



where S o  is a constant. The free energy F(r,,) of the chain, at a fixed 

value of re,, is related to SE by 

where E,  the chain energy, is assumed to be a constant, independent 

of chain conformation. Putting Eq. (A.4) into Eq. (A.5), we get, 

where all constant terms are absorbed into F,.  Now, taking the 

derivative - d ~ l a r , ,  (with respect to re,) of the free energy in Eq. 

(A.6), of the chain gives us the entropic force f that acts on the chain. 

That is, 

where the effective spring constant k,ff is, according to Eq. (A.61, 

k,ff = 3kB Tl(nSegb)2. (A.8) 



Appendix B: Normalised shear 
network of ideal 

Consider an ideal chain with nseg segments (or 

modulus for a 
polymer chains 

nSeg+ 1 vertices) with 

an average bond length b .  From the discussion in Appendix A, we 

know that such a chain resists stretching with an effective spring 

constant keff of 

where p is the inverse temperature ( ~ B T ) - 1  and kerf is the effective 

spring constant of the ideal chain. The end-to-end distance <re,> is 

related to nseg by 

(see Doi and Edwards, 1978), so 

The shear modulus ,U for a triangulated network at zero temperature 

and stress is related to keff (Boa1 e t .  a l . ,  1993) by 



Combining Eqs (B.3) and (B.4), we find 

p j ~  = 3d3/(4<ree>2). ~ 3 . 5 )  

The area A j  per junction vertex of a triangulated network is given by 

so that 

Replacing A j - I  by p,,,,,,,,, which is the number of network nodes 

(sixfold junctions) per unit area, we get 

We note the similarity between this expression and the volumetric 

compression nlodulus Kv = p k ~ T  of an ideal gas. 



Appendix C: Derivation of Eq. (3.5) 

Consider a two-dimensional triangulated network with square-well 

interactions between the nodes. In the niean field approach, or at 

large applied tension, the network triangles are approximately 

equilateral .  A plaquette consisting of two adjacent equilateral 

triangles with sides s (containing a single vertex) has an area per 

junction vertex A,  = ( d 3 / 2 ) s 2 ,  and a maximum area per junction 

vertex A ,  = ( d 3 / 2 ) s m 2  , where 0 < s 5 s,,. The mean area of a 

plaquette <A> is given by 

The denominator of Eq. (C. l )  can be evaluated as 

The numerator of Eq. (C. l )  is calculated to be 



Combining the results in Eqs. (C.2) and (C.3), we arrive at the general 

formula for <A >, 

In the limit of large tensions, i.e., when P is large and negative, we 

arrive at the approximation, 

which is Eq. (3.5). 
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Appendix D: Fluctuation formulae for 

elastic moduli 

The fluctuation formulae for the extraction of elastic moduli are 

as follows: 

(a) In-plane area compressibility K A :  

where <A> is the mean in-plane area of the network. 

(b) Shear modulus ,fi : 

W e  define the in-plane Young's moduli along the x-axis and )i- 

axis, Y, and Y y  respectively, as, 

where L x  and L y  are the simulation box lengths along the x and y 

directions respectively. W e  then define the mean in-plane Young's 

modulus YM = (Y, + Yy)/2 and the shear modulus is calculated from 



(c) The volume compressibility Kv: 

where V is the volume of the network given by the product A e t ,  and 

t is the configurational mean of the network displacement from the 

bi layer .  

(d) The transverse Young's modulus YL: 

(For a further review of the fluctuation formulae, see Boal, 1994). 
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