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Abstract 

In this thesis, a novel image compression scheme is presented which is specially well 

suited for image transmission over the narrow-band networks typically required for 

telemedicine to remote regions. A wavelet compression algorithm is enhanced with 

the ability to dynamically compress different regions of the image. This feature is pro- 

vided while keeping the algorithm's embedding ability, which leads to an 'importance' 

embedding rather than the traditional 'energy' based embedding. To incorporate re- 

gion selection in a wavelet-based compression algorithm, the region edges are carefully 

tuned to eliminate the negative influence that th wavelet transform has on the region L .+ 1, 

algorithm. Tests of this new algorithm on standard test images and ultrasound im- 

agcshowed that both the embedding and region- based features c m  be dynamically 

incorporated into the havelet algorithm with only a small overhead. 
\ 
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Chapter 1 

Introduction 

1.1 Motivation 

Telemedicine [7] is the  provision of health care services via interactive audio visual and 

data  communications. It is a digitized and computerized process incorporating many 

technologies like communications, databases, user-interfaces and medical science while 

the foundation of it is communication. As the medical images may be very big, the 

transmission and storage of the medical image often cause difficulties. 

For example, a single 2048x2038 X-ray image may use 4 megabytes, and trans- 

mitting it over a telephone line operating a t  9600 bits per second (bps) may take one 

hour, which would be very inefficient. So, i f  we want to  get better performance, we'll 

have to either increase the bandwidth of the communication channel or apply some 

compression during transmission. 
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Furthermore, the  situation of nahow-band communication can't be totally elim- . 
inated in the  near future. . In  many remote countryside places, wide-band communi- . 
cation service may be  unavailable; in moving vehicles, ships or planes, it is hard t o  

achievk wide-band communication because of the nature of the channel (e.g. fading). 

So:a compression ratio of a t  least 10:l is highly required, and better could reach 30:l. 

Then for the previous example, it means that the image could be transmitted in only 

a few minutes. / 
B 

/ '; 

There already have been many very successful works on ifnage compression, and 

a large variety of algorithms have been proposed. A standard compression algorithm, 

. JPEG, is available which will get good results on most images except when the com- 

pression ratio is high. Recently, the wavelet transform was proposed and it can achieve 

a better compression ratio without increasing computatiopal complexity. 

\ 

When using wavelet algorithms to  compress an image with a ratio of 10:l or even 

30:1, down to  below one bpp, the decompressed image's quality is enough for most 

uses. But for medical usage there are still some problems. First, as the medical 

image's quality may influence the diagnosis result, lossy compression has not yet been 

completely accepted for use in diagnostic usage. Second, unlike ordinary usage, which 

is mainly concerned with the overall impression of the  image, medical imaging may 
.L 

be very concerned about the detail at some region (e.g. a pathologically important 
Ca 

region), so t,he deviation caused by a 30:l or 10:l compression at that  region may be .--. 

unacceptable. 

By considering the strict requirement of medical imaging and the fact of low-band 

communication in the future decade, the  current image compression technology is still 
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not adequate for the task. Some new technology is required. 

9 

1.1.1 Embedded 

sion 1 

Com'pression 

One of the recent valuable achievements for 

mission is embedded zerotree wavelet image 

J ' 

and Region Based Compres- 

I 

providing better service on image trans- 

coding (EZW) [20, 22, 211. 'Embedded' 

here means that the image is coded in such a way that encodings of the image at  

lower bit rates are always at the beginning of the bit streams of the encoding of the 

same image at higher bit rates. This leads to a result that a small leading part of 

the encoding bit-stream can provide a coarse reconstruction of the original image. 
Y 

c--. 

With the use of embedded coding, we could already make our image transmission 

system more acceptable to the medical users. For example, we could first transmit 

a lower-quality image in a very short time for initial viewing and could get a quick6 

idea for the following steps of diagnosis, then with a following slower transmissian of 

further detail to double check and draw a formal and legal conclusion; or we could let 
4 

the remote expert browse the compressed images in the local image database by just 

transmitting the head of them and then only the relevant images are transmitted 

in their entirety. 
L2 

Interest in a medical image often can be confined to a specific region. A different 

bit-rate can be allocated to different spatial regions according to their 'importance' to 

the user. This kind of bit-rate allocation, different from the widely used optimal bit 
4 

allocation [2] to minimize the total distortion such as the mean squared error (MSE) 

of the image, is a region based bit-rate allocation. A region based method provides 
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another way solving the conflict between the high fidelity requirement for medical 

images and the low bandwidth communication. 

w 

1.1.2 Dynamic Region-based Image Coding 

We have seen that both embedded coding and region based compression are helpful for 

our target of improving the image transmission performance for telemedicine usage, 

but up t o  now, we haven't found any research work which will work on both of them. 

In this paper, a new very flexible and high performance compression scheme called 

dynamic region-based wavelet (DRW) coding is implementkd. It is an algorithm which 

provides region based compression; meanwhile, it is an embedded coding algorithm 

f which also supports progressive transmission. Furthermore, this is a completely dy- 

namic algorithm which can choose a d  change the region of interest (ROI) to encode 
C 

on the fly. If no region of interest is selected, the algorithm will progressively encode 

the whole image until some target requirement such as bit-rate or distortion rate is 

reached. If a region of interest is selected, the successive bit-stream only progressively 

encodes that region(of course it will stop if some requirement is reached). The ROI 
J 

can be changed to-any shape and position in the middle of sending the previous ROI. 

d f  needed, after the encoding of the ROI, the remaining image can continue to be 

coded and transmitted until a bit-rate or some other requirement is reached. 

As mentioned previously, wavelet transform based compression has very good per- 

formance on both-compression ratio and speed. ~ i e  DRW algorithm inherits the high 

performance of wavelets and adds the novel feature of dynamic embedded coding. 



1.2 R e s e ~ c h  Methodology 

In this thesis a state-of-the-art still-image compression method, embedded zerotree 

,  wavelet(^^^) coding [20] is researched. Comparing with other image compression 

scheme, such as JPEG, this wavelet-transform based sub-band coding has better rate- 

distortion performance. In the mean time, it has many attractive features like bit- 
# - 

rate control, progres'sive coding. We adapt this EZW scheme and enhanie it with the 

dynamic region-based feature to fit it for telemedicine applications. 

The research work of this thesis were implemented in the WiTTM visual program- 

ming language [4, 51. WiT is a powerful package for designing complex imaging algo- 

rithms. In WIT, the work is done by building graphs, called igraphs, with icons and 

links. The icons represent operators and the data objects flow on the links between 

operators. An operator can generate objects, process objects or do flow control of the 

\ objects. The igraphs could be executed efficiently by exploiting inhirent parallelism 

using a serverlclient model to distribute computation across a network of resource;. 

It has a large operator (icon in igraph) library which provides basic and advanced 
J 

image procession calls. An efficient mechanism is presented to the programmer to 

add their own special purpose operators. 

1.3 Outline off t he Thesis 

In Chapter 2, the background and previous work on telemedicine, image compression 
b 

and wavelets is discussed. 
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In Chapter 3, Wavelets and their features for image compression usage is discussed. 

In* Chapter 4, the EZW algorithm, which is fundamental foi the later work, is 

discussed. Our implementation and test r e q l t ~  are also given in this chapter. 
fl 

In Chapter 5, our new dynamic region-based wavelet coding is presented together 

with our implementation and test results. 

In Chapter 6, the summary and the potential future work will be given. 

1 



Chapter 2 

Telemedicine and Image 

Compression 

2.1 Telernedicine 

Telemedicine is t he  provision of health care services via electronic transmission of 

medical information among different sites[6]. It is now being used or tested in many 

areas of health care as  pathology, surgery, physical therapy, radiology and so on. 

Telemedicine makes it possible that  the doctor and patient can be in different 

places. T ime  and expense can be saved in transporting the  patient t o  the health 

care expert in the  central city hospital or transporting the  expert t o  the  patient. 

Thus,  health care service quality is improved while the  cost is simultaneously reduced. 

Another application is to  let doctors have rapid access t o  patient records and be able 
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to retrieve vital patient information in multiple formats. 

The development of telemedicine can be traced backdto the 1960s when it was 

used to  monitor astronauts' vital signs. It's becoming more and more attractive 
. 3; 

with the improvements in computer technology and the growth of the information 

super- highway. Now there are many telemedicine research or appjication projects 

under-way. In Bosnia, communication and medical equipment is used by the U.S. 

military to provide high quality medical care services. 

2.2 The Basics of Image Compression 

I 
>' 

With the continuing growth of modern communications technology, demand for image 

transmission and storage is increasing rapidly. The improvement of computer hard- 

ware including processing power and storage power has made it possible to utilize 

many sophisticated signal processing techniques in advanced image compression algo- 

rithms. Many technologies are arising in this area, and a practical image compression 

algorithm is usually a composition of more than one technique. This chapter provides 

some background information on image compression. 

Generally, image data compression is concerned with minimization of the number 

of information carrying units used to represent an image[lO]. 
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2.2.1 Redundancy 

Image compression takes advantage of the  fact that there is a lot of redundant infor- 

mation contained in the  original image. Basically there are three kinds of redundancy: 

Psycho-visual, Inter-pixel and Coding: 

Inter-pixel Redundancy: the  images we are t o  deal with are not just random 

pixels, they have many kinds of structures. This means there are statistical 

dependencies between pixels, especially between neighboring pixels. This kind 

of dependence is a redundancy which may lead to  a compression. 

Psycho-visual Redundancy: the human eye does not respond with equal sensi- 

tivity t o  all image signals; some are even not perceivable. Certain information 

simply has less relative importance than other information in our visual process- 

ing. Therefore, eliminating or distorting some information may be acceptable. 

Coding Redundancy: the uncompressed image usually is coded with each pixel 

having a fixed length code. For example, an image with 256 gray scales is 

represented by an array of 8-bit integers. It is convenient for processing the 
'4. 

image, but usually it's space wkting.  Using some variable length code scheme 

such as  ~ u f f m a n  coding[8] or arithmetic coding[26] may save space. 

There are different methods for dealing with the different kinds of redundancy, 

therefore, an image-compressor is usually a multi-step algorithm in order to  reduce 

these redundancies. 

Image compression may also be classified into lossy or lossless compression. 5 
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Lossless compression permits no loss or distortion from the original image. It 

will ensure the fidelity but it's not so "powerfuln. The compression ratio reached 

is often lower than 3:l or 2:l .  

- 
Lossy compression permits distortion over the original image, and thus can 

achieve higher compression. Theoretically, it can compress an image at  any 

ratio. However, as the compression ratio goes higher, the degradation of the 

image will become serious. For many images a ratio of 10:l to 30:l is acceptable, 
4. 

and sometimes it's even hard to see any difference with our eyes. 

The reason wby lossy compression and its higher compression ratio is applicable is 

that for the three kinds of redundancy mentioned above, the psycho-visual redundancy 

can only b.e removed in lossy compression. 

In this thesis research, the focus is on lossy compression because of its high com- 

pression ratio and wider work space to be improved on. But as the legal issue of lossy 

compression in telemedicine haven't been settled, the lossless compression problem 

will still be discussed in this chapter. 

2.2.2 Lossless Compression 

In some applications, lossless or err&-free compression is the only acceptable schema. 

As the lossless compressors can only achieve compression ratios around 2:l to 3:l for 

most images, the compressed image is still large. A lossless compressor is usually 

comprised of two steps (see Figure 2. l(a)):  step 1 transforms the original image to 

some other format in which the inter-pixel redundancy is reduced; step 2 uses an 
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entropy encoder to get rid of the coding redundancy. The lossless decompressor is an 

accurate reverse process of the lossless compressor. 

2.2.3 Lossy Compression 

4 
Generally most lossy compressors are three step algorithms (see Figure 2. l(b))  which 

could be regarded to be in accordance with the three kinds of redundancy mentioned 

above. 

The first stage is a transform which is used to eliminate the inter-pixel redurtdancy. 

After the transform, the information becomes,more packed. Many kinds of transform 

could be used; one kind of transform is perfbrmed on small blocks of the image, such 

as the variation of Fourier transform - discrete cosine transform (DCT) which is used 
# 

in JPEG image file format; another kind of transform is the sub-band decomposition, 

which is usually applied to a whole image to split it into a series of sub-bands(sub- 

images) according to frequency[16]. An example of sub-band decomposition is the 

wavelet b ~ e d  decomposition filters. 

The transform result signal is then sent to a quantizer to represent it with as few 

bits as possible, where the psycho-visual redundancy is removed. 

The quantized bits are then efficiently encoded to get more compression from the 

coding redundancy. I 

In the decompressor shown in Figure 2.l(b), the dequantization can not reverse 

exactly the process of quantization, so this is where the loss compression arises. 
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Transform 
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....................................................................................... Channel 
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Corn pressor 

Transform Quantization 
- .  Coding 

..................................................................................................................... 
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2.2.4 Distortion Measurement 

e .. 
Another important concept needed to be known about lossy compression is the dis- 

tortion measurement. Lossy compression is a trade off between image distortion and 

the compression ratio, so when using an lossy algorithm, we need to  measure the qual- 

ity of the reconstructed image as well as the compression ratio. One straightforward 

measure is the mean square error (MSE), u2 between the original image f and the 

reconstructed image j which is denoted as: 

here, image size is m x n. Practically,\the peak signal-to-noise ratio (PSNR) which is 

based on MSE is also widely used: 

2 
fmax PSNR = 10 log,, - 
u2 

where the f,,, is the maximum pixel value. These measurements, which are statistical 

terms derived from the image data, are called objective measurements. As the images 

are usually for human viewing, MSE based objective measurement does not represent 

our human visizn process. This leads to subjective measurement based on subjective 

comparisons to tell how "good" the decoded image looks to a human viewer. One fact 

needing to be pointed out is that, although objective measurement, like MSE is not 

perfect, it is still widely used and is the most acceptable because it is quantitative, 

easy to compare and stable. 
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2.3 Survey ok Current compre&ion Methods 

2.3.1 Predictive Coding 

As mentioned before, the  first step of image compression is t o  represent an image by 

uncorrelated data. One easy-to-implement method is predictive compression~l0, 11, - 
24,251. In predictive compression, every pixel is encoded with a prediction error rather 

than its original value. ~ i a ~ r a m s ' o f  the predictive encoder and decoder are shown in 

Figure 2.2. The input image f,, denotes each successive pixel of the  input image; en 

is the  prediction error from the original value of the pixel; e; is the  prediction error 

after quantization; fn is the pixel value recovered from the quantized prediction error; 
* 

and jn is the prediction made for the next pixel. Note that & # en,  so there will be 

distortion after the quantization, which providing the distortion of the  compression. 
- 

If we eliminate this quantization procedure, then & = en and jn = j n ,  and it becomes 

a lossless compression. 

The predictor here usually makes prediction of a pixel's value from its neighbor 

pixels, typically employing a linear combination of some previous pixels. There have 

been a lot of research works done on predictor and quantizer design in predictive 

compression. Predictive compression may have very low algorithm complexity which 

is fit for hardware implementation. The drawback of a pure predictive coding is that 

its performance is not as high as some other scheme such as transform coding (see 

subsection 2.3.2). However, it could be combined with other methods to  get a ,hybrid 

coding algorithm which has higher performance[ll, 281. 
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' ' a  

2.3.2 Transform Coding 

In predictive coding, the image is transformed , pixel by pixel and then compressed. 

In transform coding, a reversible transform (usually linear) is first applied onto each 

block of the image or the whole image to get a set of transformed coefficients, then 

the coefficients are quantized and symbol coded. 

There are many kinds of transform; the most commonly used are discrete Fourier 
Y 

- (DFT) ,  discrete cosine (DCT), Karhunen-Loeve ( K L )  and the wavelet transform. 

Commonly, these transforms have the information-packing that is, most 

of the  information about the original image is packed into a small portion of the 

transform coefficients. 

Taking the advantage of the information-packing, the quantizer can selectively 

eliminate or more coarsely quantize the coefficients that  correspond to  less informa- 

tion of the original image. This process of selecting and quantizing the transform 
d 

coefficients t o  minimize the distortion is called bit allocation. JPEG and E Z W  use 

zonal coding and threshold coding respectively. 

Zonal coding: choose the coefficients to code and set the number of bits to 
9 

quantize a coefficient according to  its maximum variance, because coefficients 
1 

o"f greater variance tend to  carry more picture information and should be coded 

with more bits; coefficients of smaller variance carry less picture information 

and could be coded with fewer bits or even not encoded. u&ally, zonal coding 

uses fixed bits to select to code specific coefficients. 

Threshold coding: choose the coefficients to code and set the number of bits 
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2- 

to  quantize a coefficient according to  its magnitude. The magnitude of each 

transform coefficient varies from image to image, so threshold coding is therefore 

an adaptive method to choose the coefficients and its encoding bits. 

Transform coding achieves relatively larger compression than predictive methods. 

Although transform coding algorithms have higher complexity, with the fast develop- 

ment of hardware, this disadvantage is less and less important. 

f' 

2.3.-3 JPEG i I ' 

A joint I~O/CCITT'  committee known as JPEG (Joint Photographic Experts Group) 

has established the first international transform-based compression standard for con- 

tinuous tone still images [14, 231. A generic schern; is specified as a baseline JPEG 

method for lossy compression. The method is based on a division of the ima& into 

blocks of 8x8 pixels, after which each block is transformed with a discrete cosine trans- 

form (DCT). The transform coefficients are quantized such that the higher frequency 

coefficients are always quantized less accurately than lower ones, since errors in these 

coefficients are less visible to the eye. The quantization accuracy of the coefficients is 

also decided by the required image quality; when higher quality is needed, they are 

quantized more accurately. The quantized coefficients are reordered using a zigzag 

pattern to form a 1-D sequence of quantized coefficients. In this reordering, the coef- 

ficients are ordered according to increasing frequency and also from one coefficient to 

its neighbor. This reordering will normally result long runs of zero coefficients, and 

' IS0  standards for International Standardization Organization. CCITT standards for Interna- 
tional Consultative Committee for Telephone and Telegraph. 
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Figure 2.3: JPEG baseline coding algorithm, Here Table Specifications are the spec- 
ification of bit-allocation of the quantizer and the Huffman code table which should 
be the same for both encoder and decoder 

to take advantage of this, the AC2 coefficient are coded using a variable-length code 

that defines the coefficient's value and number of preceding zeros. The DC3 coeffi- 

cient is difference coded relative to the DC coefficient of the previous sub-image. The 

lengths of the zeros and values of this encoding are all Huffman coded. The JPEG 

method performs well at high or medium bit rates, but it introduces perceptibly an- 

noying blocking artifacts (due to the block-wise transform coding) at low bit rates 

(see Figure 4.10 (b) ) .  The diagram of the JPEG algorithm is shown in Figure 2.3. 

- 

=AC here means all transform coefficients except DC coefficient 
3DC here means the zero frequency coefficient 
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2.3.4 Lossless Compression 

Lossless compression doesn't d'istort the image; its main focus is on how t o  represent 

an image with as low an entropy as possible and then entropy code it. Decorrelation 

of an image usually will lower the entropy. Following are some of the  popular lossless 

compression algorithms currently in use: 

Run length coding: represents a long run of a symbol with the  symbol plus the 

repeating times. However, for ordinary gray-scale images, the occurrence of a long run 

of a symbol is rare. A solution to  this is t o  apply run length coding on t h e  bit-plane. 

Lossless predictive coding: by removing the quantization procedure of the predic- 

tive coding mentioned in subsection'2.3.1, we will get lossless predictive coding. It has 

good performance on gray-scale images, and lossless JPEG [14] compression format 

is based on lossless predictive coding. 

Multi-resolution method: the image is reversibly transformed into a group of dif- 

ferent resolution sub-images. Usually, this reduces the  entropy of the  image. Then, 

by exploiting the tree structdre which undermines this multi-resolution method, some 

kind of tree representation could be used to  get far more compression. A successful 

example is in [18] [17]. 

Although lossless compression can only achieve 2:l to 3:l compression on m o d  

images, in many applications, it's the only acceptable way. 



2.3.5 Entropy Coder 

An entropy coder is usually an essential part of a successful image compression algo- 

rithm. It reduces the coding redundancy which is normally presented in any encoding 

of an image. If we construct a code book which assigns shorter code words to the 

more probable symbols, we may reduce the average code words length of the whole 

encoding; this is called variable-length coding. Huffman coding (81 is the most classical 

variable-length coding. In the situation that the source symbols are coded one at a 

time, Huffman coding is the optimal solution. 

The entropy coder which is very popular now is called arithmetic coding. It doesn't 

code just one symbol at a time; if the source symbol length is infinite, it could achieve 

performance which is infinitely approaching the limit of zero- entropy at any 

source symbol possibility. Alternatively Huffman coding may h or performadce 

on small symbol set; if the symbol set size is increased for higher compression, its 

adapting speed for adaptive coding will be a problem. Thus arithmetic coding is 

specially favorable for small symbol set adaptive coding. More descriptions about 

arithmetic coding are in [15, 26). 



Chapter 3 

Wavelets and Image Compression 

Wavelets are functions tha t  satisfy certain mathematical requirements which could be 

used t o  represent other functions or signals. Wavelets have been developed for a very 

long-time, bu t  only in the last ten years, as they spread into many other fields, was 

their "powern recognized. 

One  of the  very hot applications of wavelets is in image processing and analysis, 

. as wavelets have advantages over traditional Fourier methods in many cases including 

image compression. In this chapter. we will give an introduction t o  wavelets and their 

relatic&hip t o  image compression. 
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3.1 Subband Decomposition 

Subband decomposition uses a linear transformation t o  split an image into sub-images 

containing different frequency information; these sub-images are called subband im- 

ages. This decomposition allows processing of different frequency information sepa- 

rately. Recently, much research has been devoted to  the discrete wavelet transtorm 

(DWT) for subband coding of images. 

3.2 Wavelets 

3.2.1 Introduction 

Wavelets are a group of functions generated from one single function II, by dilation 

and translations: 

Here li, is what we call the mother wavelet o r  analyzing wavetet; is the wavelet 
0 

functions; a and b are dilation and translation coefficients respectively. The mother 

wavelet I+!) has to satisfy 
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which implies a t  least some oscillations. Technically, it's also required that  $ ( t )  

decays faster than ( t  I-' for t -, oo which imply its local property. 

The purpose of the  wavelet transform is to  represent an arbitrary function f as a - 

superposition ofwavelets. In practice one prefers t o  write f as a weighted sum of 

thus: 

0 ,b 
* 

where c0,b are the wavelet transformed coefficients. However, not all wavelets are 

applicable in digital signal processing. According t o  the works of Mallat [13] and 

Daubechies [9], a set of wavelet orthonormal basis functions which have good perfor- 

mance have been developed. 

3.2.2 Wavelet's Relation to Image Compression 

Previously, the transforms that  were widely used were Fourier-like transforms, which 

use periodical basis functions to  transform an image from the spatial domain to the 

frequency domain. The transformed image has the property ofi*energy-packing which 

is very important for image compression. However, for image compression, this kind 

of transform is not perfect, because the transformed image contains only the global 

frequency information. For most images, there are many discontinuities or spikes (like 

edges). These spikes may disperse into many coefficients of the transform, and are 

easy t o  be ignored. Sometimes the transform is only applied on small blocks of the 

image. such as is used in the JPEG algorithm. But, this method still has drawbacks, as 

the image contains information of different frequencies, and this block transformation 
>' 

can not deal with the low frequenc;inforrnation which is wider than the block-size., 
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On the  other hand, if the block-size is increased, its spatial domain resolution for high 

frequency infoi-mation will degrade. Another problem the block-transform algorithm 

may have is the  block-shaped distortion t o  which human eyes are very sensitive. 

For the purposes of signal compression, we wish t o  have a decomposition which 

contains information about both the  time and frequency information of the signal. In 

other words, we want t o  know the frequency information of the  signal a t  each point. 

However, we can't increase the spatial resolution and lower the  frequency a t  the same 

time. This means tha t  we must trade off between frequency and space resolution. This 

situation could also be  understood by thinking low frequency information is spread 

out on the spat id  domain, while high frequency information is more concentrated. 

Therefore, a better way to  achieve our purpose of gettidg local frequency informa- 

tion is t o  have a decomposition which has low resolution for low frequency information 

and high resolution for high frequency informatiori. This arrangement is realized by 

carqfully choosing the  basis functions for decomposition. What we seek is a set of basis 

function {+), each with different "widthn. The different widths allow us to  trade off 

time and frequency resolution in different ways; for example, a wide basis function can 

examine a large region of spatial space, and resolve low frequency information, while 

narrow basis functions can be used to  resolve the spatial position of high frequency 

information. These basis functions can be obtained by scaling and translating th; 

mother wavelet. The  scaling factor controls the "width" of the function. If the scale 

factors are power of 2, then we get a multi-resolution decomposition of the original 

signal [13]. 
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where 

T h e  c,,k can be  obtained by the  waveld transform, which is the  inner product of 

the  signal f ( t )  with t he  basis function $ v , k ( t ) .  It  needed t o  b e  mentioned tha t  for the  

purpose of compression, more restrictions need t o  be add  to  the  wavelet $te obtain 

a nonredundant representation through an orthonormal or biorthogonal basis. 

3.2.3 Discrete wavelet transform 

In order t o  make the  wavelet computable, a discrete algorithm is needed. In [13] 

Mallat proposed a discrete-time algorithm for the computation of t he  wavelet series 

given in the  previous section. 
at 

4 

3.2.4 Implementat ion 

T h e  wavelet transforms can be treated and implemented as bandpass filters. T h e  

forward and inverse wavelet transforms can be implemented by a pair of appropriately 

designed filters. We denote the forward filter pair as (H, G),  where H is the  low-pass 
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filter and G is the  high-pass filter. 

One-dimensional implementation 

If discrete time function f ( t )  is convolved with both H and G and down-sampling the  

results by 2, we get f L ( t )  which we called average signal and j H ( t )  which we called 

detail signal. The reason we could do the down-sampling by 2 after each filtering 

is because this transform had split the signal's bandwidth in half. By iteratively 

applying the filters on the low-frequency band, we get the discrete wavelet transform 

mentioned a t  the end of previous section. 

In the  real application, this decomposition can't be infinitely continue, what we 

get is a'n - leve l  wavelet decomposition. 

The  reverse of this wavelet decomposition is computed by up-sampling jL ( t )  and 

j H ( t )  by 2 and convolving them with the reverse filter pair ( H , G )  respectively. Fig 

3.1 is a diagram of the  forward and reverse one level wavelet decomposition. Note 

that  the output and input are the same. In the real signal-compression applications, 

distortion comes from the quantization. 

Two-dimensional implementation 

The two-dimensional (2-D) wavelet decomposition is realized by cascading one-dimensional 

( I - D )  wavelet filters. Figure 3.2 illustrates a one-step 2-D dyadic discrete wavelet de- 

composition which is the most widely used realization of the two-dimensional wavelet 



C H A P T E R  3. W A V E L E T S  A N D  IMAGE&OMPRESSION 

Forward Transform Reverse Transform (F- 

Figure 3.1: Block diagram of one level 1=D wavelet decomposition and composition. 2 

Note that f ,  fL and fH are discrete signals. 

Vertically LL 

Figure 3.2: Block diagram of m e  level 2-D wavelet decomposition 
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Horizontally 

Figure 3.3: block diagram of one level 2-D wavelet composition 

decomposition. The image f (x ,  y )  is first filtered along the horizontal direction,"re- 

sulting in a lowpass image and a highpass image. Here G and H are 1-D low-pass 

and high-pass filters respectively. Both sub-images are down-sampled by two (drop- 

ping every other filter value) along the horizontal direction, then both sub-images 

are filtered and down-sampled along the vertical direction resulting four sub-images: 

fll(x, y) ,  flh(x, Y ) ,  fhl(x,  9 )  and fhh(x ,  y )  whose total size is the same as the original 

image. f i l (x,  Y )  is called the average signal or average subband and the other three 

are detai l  signals or detail  subbands which correspond to  the horizontal, vertical and 

diagonal directions respectively. 

The corresponding composition process is illustrated in Figure 3.3.  The subbands 

are up-sampled, filtered and summed along two directions to yield a reconstructed 

Image. 

Figure 3.4 shows the one step wavelet decomposition on sample image "lena". 
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Figure 3.4: One level wavelet decomposition of lena. The brightness of a point is linear 
with the magnitude of the coefficients. The detail subbands are nearly dark because 
their magnitude is much smaller compare with the average subband, not because 
they are zero. (a) is the result of directly decomposing the image; (b) is the result of 
subtracting the mean value from the image then doing the wavelet decomposition. 

Figure 3.5: Three level wavelet decomposition of Lena. The mean value is subtracted 
before transform. (a) is the display with brightness linear to magnitude (b) is the 
equalized display, in which the detail subbands have been brightened 
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Figure 3.6: Subband of wavelet coefficients, ( a )  one level transformation; ( b )  three 
levels transformation 

Figure 3.6 ( a )  khows how the  subbands are named; in Figure 3.4 the  visible image 

appears in the  LL band. T h e  detail subbands are  nearly dark because their magnitude 

is much smaller compare with the  average subband. Note t m  Figure 3.4 (a) 's  L L  

band is different t o  tha t  of Figure 3.4 (b ) .  This is because the mean value of the 

original image is an zero frequency information which will be kept in the  L L  subband, 

so the  mean value of the  LL  band is above zero. By subtracting the  mean value from 

the image and then doing the decomposition, the mean value of the L L band may 

be  close t o  zero. This  usually leads to  more near zero coefficients in L L  band and 

lower sum magnitude of the  coefficients in L  L subband, which is valuable for the  da t a  

compression. the net effect is shown in Figure 3.4 ( b )  where the L L  band is overall 

darker than in Figure 3.4  ( a ) ,  and the other bands in Figure 3.4 ( b )  are  lighter than 

in Figure 3.4 ( a )  is because that  the maximum magnitude of the LI, band is smaller 

For image compression, we usually recursively decompose the  average subhand LL 

until its size is reasonably small. Figure 3.5 shows the  3-level wavelet decomposition 
a 
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a 

of "lenan. Figure 3.6 (b)  shows how we name the  subbands in multi-level decom- 

-. position. The reason .we use this decomposition is that after one step of the 2-D '' 

wavelet decomposition, the energy is usually compacted into the  average sub-image 

( the  LL band), and as we will describe later, this decomposition has a tree structured 

relationship among the  coefficients. However, there are still other kinds of multi-level 

decomposition like wavelet-packets [12] [27] which will recursively decompose every 

subband, but its computatior~al complexity is much higher, the encoding of the co- 

efficients is also more complex, and the further compression which might be gained 

from this decomposition may not be very much. 

Wavelet Image Compression 

After wavelet decomposition, we get several sub-images (sub-bands). Their total size 

is still the  same as the original, and except the LL, sub-image, each of them only shows 

a specific frequency information from the original image. From this subband wavelet 

decomposition, energy-packing is achieved (see Figure 3.7) while the  spatial domain 

(sometimes also called time dom'ain) information is retained as much as possible. As 

the wavelet is applied to  a whole image, the block-shaped distortion observed in JPEG 

compression is avoided. The  energy of the subband transformed image is compacted 

to  the average subband and the low frequency detail subbands. The  high-frequency 

subbands contain mostly near-zero coefficients and a small fraction of high coefficients 

which usually correspond to  edges. Compression can # be achieved by allocating lower 

bitrates to  the high-frequency bands while protecting the edge points. 

Presently, many wavelet- based image compression schemes have been proposed. 



CHAPTER 3. WAVELETS AND IMAGE COMPRESSION 

0 50 100 150 200 250 
Pixel Magnilude 

-2000 0 2000 4000 6000 
Coetficient value 

Figure 3.7: (a)  Histogram of the original image lena (b )  
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Figure 3.8: Diagram of wavelet-based image compression 
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Generally they first apply a wavelet decomposition to the image, and then many 

different kinds of method are used to quantize and encode the wavelet image, such 

as vector quantization[?] and tree encoding[?O]. & general procedure of wavelet 

compression is shown in Figure 3.8. 
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Embedded Zerotree Coding 

In this chapter, we will introduce the embedded zerotree wavelet a lgor i thm (EZW) 

[22]. EZW is an algorithm based on the wavelet subband decomposition. Its com- 

pression performance is enhanced by exploiting the self-similarity inherent in images, 

and entropy-coded successive-approximation quantization gives this algorithm the em- 

bedding ability. EZW produces compression results which are competitive with most 

current algorithms. 
P 

4.1 Zerotree for Wavelet 

Zerotree is the fundamental concept for EZW image coding. This algorithm uses 

zerotrees to exploit the self-similarity of the wavelet subbands. Looking a t  the result 

of wavelet transform in Figures 3.3 and 3.5, we find two features: 
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there  are  similarities between wavelet subbands; if there a re  edges a t  low fre- 

quency bands, usually there a re  similar structures a t  the  higher frequency bands. 

the  magnitude of a coeffi+nt a t  a lower frequency4dnd is usually higher than  

tha t  of the  coefficients of the  higher frequency band a t  the  same spatial position. 

These features are  considered t o  be redundant among the  wavelet subbands. Based 

on the  assumption tha t  most images in-use today have the  previous properties, the  

zerotree concept can be  used t o  exploit these redundancies. 

To clarify the  zerotree concept, we first begin with the  definition of descendants. 

For a coefficient a t  all subbands except LL, and the  highest frequency subbands, 

the set of four coefficients a t  the  next finer scale of similar orientation which have 

the same spatial position are  called children of this coefficient, and  this coefficient 

is called the  parent of these children. For a coefficient a t  the  average subband LL,, 

three coefficients of the  same spatial position from L H,, H L, and H H ,  respectively 

are called its children. T h e  parent-child relationship is shown in Figure 4.1. For a 

given parent, its descendants are then defined t o  be its children and  i ts  children's 

descendants. 

If a coefficient x and all its descendants are smaller t,han a given threshold value 

T ,  and i f  x's parent doesn't meet this condition or x doesn't have parents, x and all 

its descendants form a zerotree for threshold T, where x is the  root of this zerotree. 
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Figure 4.1 : Parent-child relationship of wavelet coefficients. Arrows points from par- 
ents t o  the children. In this graph, a coefficient in the LL3 band and all its descendants 
are  plotted. 
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Algorithms 

In general, zerotree encoding is a successive approximation method which is realized 

by first coding with a very coarse threshold or quantization step, then iterating by 

refining the  threshold and redoing the  coding. In each pass of the  zerotree coding, t he  

wavelet coefficients must  be scanned through in such an  order tha t  a coefficient won't 

be  scanned before i ts  parent. In practice, we choose t o  scan subband by subband, 

first t he  average subband L L,, then the  detail subbands from coarse ones t o  the  finer 

ones. This scan order also has 'an advantage that  it is processing from the higher 

energy subbands t o  the  lower energy one. 

~ h i k  scanning through a coefficient a t  the i th  pass, a reference threshold Ti is 

used t o  determine i ts  encoding as positive significant, negative significant, zerotree 

root or separate zero respectively according to  the rules in Table 4.1: 

I I Separate Zero I r is neither significant coefficient nor zerotree root I 

Table 4.1: Zerotree Encoding Rules in Dominant Pass 

T h e  initial threshold To is chosen to be larger or equal to  one-half the magnitude of 

the  largest coefficient; the threshold in subsequent iterations is given by Ti = Ti -1 /2 .  

- 
Entode to-be 

Positive Significant 
Negative Significant 

Zerotree Root 

If x is a significant coefficient, its position and value is added t o  a list called the 

stgnificant list, and I is marked aS significant and set to  zero, which requires tha t  in 
0 

Under the  condition of 

x 2 TI 
x < -TI 

x is a zerotree root for T. 

the following passes, it won't be scanned. Setting x t o  zero will still allow its ancestors 

to  form a zerotree in later iteration. 



, 

If x is a zerotree root. all i ts  descendants are  marked and  won't be scanned and  

coded in this pass. In fact, this is the  important part  where the  compression comes 
.\ 

from, because a large-block of d a t a  is now represented with only one symbol. 

This  scanning through of the  coefficients is called the  dominant pass. After each 

dominant pass, there is a subordinate pass in which the  significant list is scanned 

through and its quantization refined by Ti/2. For each magnitude on the  subordinate 

list, this refinement can be encoded using a binary alphabet with a refine up symbol 

indicating tha t  the  t rue  value falls in the upper half of the old uncertainty interval 

defined with T,, and  a refine down symbol indicating that the  t rue value falls in the  

lower half. 

T h e  string of symbols generated during the  dominant and subordinate passes are  

all entropy coded. T h e  entropy coder here is an adaptive arithmetic coder of Witten 

e t  a1 (261. In adaptive arithmetic coding, the coder is separat,e from the  model, which 

in [26], is in fact a learned occurrence probability of the symbols in t he  stream. In the 

practical coder used in this experiment, three different models are  chosen for different 

situations because they have different symbols and probabilities. In the dominant 

pass, i f  the coefficient is in the finest detail subband ( H L l ,  L H l  and H H 1 ) ,  only 3 

symbols are  needed, because it cannot have a descendent, so there is no difference 

between zerotree root and separate zero; it uses a different z nod el from the other 

coefficients because it can't have descendants. The  subordinate pass also has its own 

model, with only 2 symbols. 

T h e  encoding process continues to  alternate between dominant passes and su bor- 

dinate passes where the threshold is halved before each dominant pass. 
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4 

In the decoding operation, from each decoded symbol, we may decide or refine an 

uncertainty interval in which the original value of one coefficient or a set of coefficients 

in a zerotree may lie. Usually, we choose to set the decode value to be the center of 

the uncertainty interval to reduce the mean square error. 

The process of encoding and decoding gradually refines the precision of the trans- - 

form coefficients in order of their magnitudes. The encoding or decoding may be 

terminated at any point, and the coded bit streamnis a prefix of all lower-rate en- 

coding~; this is referred to as embedded coding. Thus, compression is achieved by 

terminating the transmission or storage of the embedded code at some point in the 

bit stream, and the exact bit rate is controlled by choosing the point at which this 

termination takes place. Embedded coding schemes naturally suit a progressive mode 

of transmission of the image; at any time, images reconstructed from the decoded bit 

stream can be displayed as increasinglydood approximations of the original image. 

4.3 Implementat ion 

4.3.1 WiT visual dataflow image processing environment 

We used WiTTM, a visual programming package for designing complex imaging algo- 

rithms in areas of image processing (4, 51 as our development platforq. In WIT, the 

programs are like a graph, called igraphs. A n  igraph is a set of operators connected 

by links. Operators do the processing functions on data objects, which flow along 

the links from operator to operator. Standard image-processing functions are realized 

in WiT as pre-installed operators. Figure 4.2 is a simple igrqph. The operators are 
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Figure 4.2: Example of a WiT igraph. 

shown as icons. They are connected by links with a small arro-w on them showing 

the dataflow direction (usually from left to  right). Each operator's name is displayed 

above its icon; its parameters and their values are shown below. In this igraph the 
I 

rdObj  operator reads an image object from a WIT file called "sample"; this object 

contains the images size, type and data; the rotate operator with its parameter set to 

be 90 will rotate the image by 90 degrees, and the display operator will display the 

resulting image. A probe labeled original causes the raw image to be displayed as it 

passes along the first link. 

4.3.2 Image Padding for Wavelet and Zerotree 

It may be noticed that both wavelet transform and zerotree representation presume 

that the image width and hight is divisible by some power of 2. For a n step dyadic 

wavelet transform (Section 3.2.4) ,  the original image size must be divisible by 2". In 

order to make the algorithm applicable to any sized image, image padding is necessary. 

In this implementation, the image width and height are padded to be divisible by 8 

for images of which either the width and height is less than 256; the image width and 

height are padded to be divisible by 16 for images of which both the width and height 

are larger than 3.56. The padded pixels are set to be the average of its neighbour. 



Table 4.2: The  fastWav operator. 

I features I original image size, and the  mean value I 

Inputs: 
Parameters: 
Outputs: 

Table 4.3: The fastRevWav operator. 

I Inputs: I wavelet I wavelet image I 

image 
none 
wavelet , 

Image for transform. 

wavelet image 

Table 4.4: The fastZTcompress operator 

Parameters: 
7 

Outputs: 

I Inputs: I wavelet I wavelet image t o  encode I 
I I features I original image size, and the mean value I 

features 
none 
wavelet 

original image size, and the  mean value 

reconstructed image 

I I bytes-coded I size of the stream I 

Parameters: 
Outputs: 

Table 4.5: The fastZTexpand operator. ?u 

Inputs: 

b y t e p ~  
max-bytes 
outs t ream 

in-stream 

original image's pixel size in bytes 
byte budget for the encoding 
encoded stream 

encoded stream 
maximum decode bytes 
decoded wavelet image 
original image size, and the mean value 
original image's pixel size in bytes 
number of bytes actually decoded 

Parameters: 
Outputs: 

max-bytes 
wavelet 
features 

bytepp 
bytes-decoded 
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4.3.3 WiT Implementation 

The embedded zerotree image coder and decoder are implemented in WIT on Sun 

workstations (the code has also been ported to Microsoft Visual C++ on PC). Two 

WiT operators fastWav and fastRevWav are implemented,to p~r form multi-level for- 

ward and reverse two-dimensional wavelet transform. The wavelet transform core of 

these operators is from Said e t  a1 [19]. fastZTcompress and fastZTexpand are imple- 

mented for the zerotree coding and decoding of the wavelet coefficient$. The encoded 

bit stream of fastZTcompress is output as a string and could be written to and read 

from a disk file or it could be passed directly to the fastZTexpand operator as its input. 

The specification of these operators are summarized in Table 4.2, 4.3, 4.4 and 4.5. 

Note there are input or output of features in those operators; these features include 

overhead values for the decoder: 

0 original image size. In order to apply the wavelet transform on to image of any 

size, we may have to pad the image, so the original image size is needed to 

unpad the recovered image. 

0 mean value of wavelet image. In order to get as many "zero" value coefficients as 

possible, the mean value of the wavelet image is subtracted before the forward 

wavelet transform. This value is needed after the reverse transform. 

Figure 4 .3  is an igraph we used to test the oper tors and animate the EZW cod- 6 
ing and decoding process. In this igraph, the image lena is read and changed into 

floating point format which is acceptable by the wavelet transform operator. WIT 

automatically gets its dimension 512x512. The image is then sent to the fastWav 



rdObj fastWav fastZTcom press 

E H 2 ! 3 4  filename: lena type: float constant . max-bytes: 81 92 
conversion: clip b 

K A 

constant: 2 name: Code-bytes 

d~splay #2 fastRevWav fastZTexpand 

name: Reconstructed max-bytes: 4096 

name: Decode-bytes 

Figure 4.3: Igraph of EZW codec 



C H A P T E R  4. EMBEDDED Z E R O T R E E  CODING 4 3 

operator which makes the forward wavelet transform. The resulting wavelet image 

and additional features are then sent to the zerotree coder fastZTcompress. The coder 

will generate a 8192 bytes stream as specified by the max-byte parameter which is 

a 0.25bpp compression of the original 8 bit image; this byte stream is sent to the 

decoder fastZTexpand, the decoder here will only decode the first 4096 bytes to get 

the additional features and the reconstructed wavelet image. The number of bytes t w  

decode could also be any value smaller or equal to 8192. Finally the reverse wavelet 

transform is applied and a 0.125bpp reconstruction of the original image is shown in 

a window generated by the display operator. 

4.4 Results 

The EZW algorithm has been tested on standard images 'lena' and 'goldhill' and 

ultrasound images 'US1' and 'liS2'. ' lend and 'goldhill' are 512 x5 l2  8-bit greyscale 

images as shown in Figure 4.4 (a) and Figure 4.5 (a ) ;  'US1' and 'US2' are 640x480 

&bit greyscale images as shown in Figure 4.6 (a)  and Figure 4.7 (a) .  Each image 
t 

h a s  been compressed at  1.0, 0.75, 0.6, 0.5, 0.4, 0.3, 0.25, 0.20, 0.15 and 0.10 bpp. 

Figures 4.4, 4.5, 4.6 and 4 .7  show some of the reconstructed images. The performance 

measured by PSNR are given in Tables 4.6 and 4.7; the performance of the JPEG 

standard algorithm are also presented in the tables as a reference (As JPEG can't 

control the compression ratio accurately, the results of JPEG here are all that of 

compression ratios lower than' and close to the required ones). Figure 4.8 and 4.9 are 

plotted PSNR versus compression-ratio graph using data from Tables 3.6 and 3.7. 
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Figure 4.4: Result images of EZW on 'lena', (a) Original image, 512x512 8- 
bit greyscale; (b)Reconstruction of 1.0 bpp, 8: 1 compression, PSNR=39.31dB; 
(c)Reconstruction of 0.25 bpp, 32: 1 compression, PSNR=33.15dB; (d)Reconstruction 
of 0.10 bpp, 80: 1 compression, PSNR=29.50dB 
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Figure 4.5: Result images of EZW on 'Goldhill', (a) Original image, 512x512 
8-bit greyscale; (b)Reconstruction of 1.0 bpp, 8: 1 compression, PSNR=35.44dB; 
(c)Reconstruction of 0.25 bpp, 32:l compression, PSNR=30.09dB; (d)Reconstruction 
of 0.10 bpp, 80:l compression, PSNR=27.71dB 
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Figure 4.6: Result images of EZW on 
bit greyscale; (b)Reconstruction of 1.0 

'USl', (a) Original image, 640x480 8- 
bpp, 8:l compression, PSNR=41.72dB; 

(c)Reconstruction of 0.25 bpp, 32: 1 compression, PSNR=28.78dB; (d)Reconstruction 
of 0.10 bpp, 80: 1 compression, PSNR=24.12dB 



CHAPTER 4. EMBEDDED ZEROTREE CODING 

(4 
Figure 4.7: Result images of EZW on 'US2', (a) Original image, 640x480 8- 
bit greyscale; (b)Reconstruction of 1.0 bpp, 8:l compression, PSNR=48.21dB; 
(c)Reconstruct ion of 0.25 bpp, 32: 1 compression, PSNR=34.08dB; (d)Reconstruction 
of 0.10 bpp, 80:l compression, PSNR=28.75dB 
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Table 4.6: Test PSNR of EZW on 'lena' and 'goldhill' in comparison with JPEG. 
I compression I bit rate 1 EZW on I JPEG P I  on 

Table 4.7: ~ i s t  PSNR of EZW on 'US1' and 'US2' in com~arison with JPEG. 

ratio 

8: 1 
10.67: 1 
13.33:l 

16:l 
20: 1 

26.67:l 
32: 1 
40: 1 

53.33: 1 
80: 1 

EZW on 
us1 

PSNR (dB) 
41.72 
37.79 
35.87 
34.31 
31.49 
30.4 1 
28.78 
27.44 
26.54 
24.12 

( ~ P P )  

1 .OO 
0.75 
0.60 
0.50 
0.40 
0.30 
0.25 
0.20 
0.15 
0.10 

compression 
ratio 

bit rate 

(!?PP) 

lena 
PSNR (dB) 

39.31 
38.49 
36.88 
36.20 
35.63 
33.92 
33.15 
32.51 
31.12 
29.50 

lena 
PSNR (dB) 

37.71 
36.50 
35.46 
34.61 
33.41 
31.93 
30.76 
28.89 
26.44 
18.00 

goldhill 
PSNR (dB) 

35.44 
34.45 
33.20 
32.25 
31.51 
30.86 
30.09 
29.28 
28.52 

.-. '27.71 

goldhill 
PSNR (dB) 

34.40 
33.11 
32.19 
31.31 
30.55 
29.24 
28.65 
27.44 
25.30 
18.00 
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Figure 4.8: Comparison of PSNR of EZW with JPEG. (a )  lena; ( b )  goldhill; ( c )  US1; 
(d)  US2 

Figure 4.9: Comparison of PSNR of lena, goldhill US1 and US2. (a)  EZW ( b )  JPEG 
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Figure 4.10: EZW and JPEG images at same PSNR, (a) EZW compression of 'gold- 
hill', 0.093 bpp, 27.44dB; (b) JPEG compression of 'goldhill', 0.23 bpp, same PSNR 
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4.5 Discussion 

Qualitatively, Figures 4.4 - 4.7 show how the images degrade as the bitrate goes 

down. We find that for the bitrate of 1 bpp, the image quality is always very good. 

At the medium bitrate of 0.25 bpp, the image qualities are fairly good but some loss 
/ 

of details; at  low 0.1 bpp, the image quality degradation is huge, many details and 
/ 

textures have lost. 

From Figure 4.8 we find that measured by PSNR, the performance of EZW is 

always better than JPEG.  When at  higher bitrate ( higher than 0.2 bpp) the difference 

is about 1dB to 3dB depending on images. At lower bitrates, the performance of 

JPEG deteriorates much faster than EZW, and there is an almost 10 dB difference 

between these two methods. This proves that JPEG performs worse than EZW at  

any bitrate, and that it performs very poorly at low bitrates. With the decrease of 

bitrate, the reconstruction image of both algorithms will decay, but they decay in a 

different manner. Figure 4.10 sh the 27.40 dB reconstructions of both EZW and a 
JPEG,  where, the JPEG image is like a mosaic of the original image while the EZW 

image is like a blurring of the original image. 

Another interesting result is noticed in Figure 4.9; measured by PSNR the ul- 

trasound images degrade faster than the standard images. For example, at  1.0 bpp, 

LISP's image quality is better than both "lena" and "goldhill" with either EZW or 

JPEG compression; however, at bitrate lower than 0.4 bpp, USl's image quality be- 

comes worse than both of them! This suggests that the ultrasound images have their 

own properties such as the large black areas with white text, finding some special 

treatment for them may improve the performance. 



Chapter 5 

Dynamic Region-based Wavelet 

Compression 

5.1 ROI Partition for Region Based Coding 

We have expanded the  EZW algorithm t,o a region based d y n a m i c  embedded  wavelet 

cod ing  (DEW). 

It is very natural that different regions of an image may have different importance. 

Therefore an intuitive way to  gain more compression is to  partition the important 

regions from the unimportant ones and code them with appropriate accuracy. A 

region-based coding has to  do the following extra work: 

Region partition 
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0 Region encoding 

0 Bitrate  allocation 
- 

T h e  region partition is a binary mask function M over the  image pixels (i, j): 

1 if ( i ,  j) E Region of In t e re s t  
M ( i ,  j) = 

( 0 otherwise 

~ e ~ i o n '  encoding means representing this partition with fewer bits t o  send t o  the  

decoder. Bi t ra te  allocation is the process of applying different quantization bit-rates 

t o  the  different regions, according t o  M ( i ,  j). 

5.1.1 Transform-domain Partition 

A region could be incorporated into a spatial domain coding algorithm which scans 

through each pixel one by one and applies a mask function M to  each pixel, then 

a quantizer of different bitrate is chosen according to  M ( i ,  j). For an  image coding 

algorithm based on small block transformations or spatial domain vector quantization, 

a region-based coding region-based feature could also be added in a similar way by 

using a parthion mask function over blocks rather than over the single pixels. 

For subband image codings such as wavelet coding, the information of each pixel 

is now stored in different subbands and has spread t o  its neighbour, so it is impossible 

t o  specify a quantization rate for a pixel. One way is t o  physically segment the image 

1% 
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f (a, j )  into two images f;,(i, j) and fout(i, j )  where 
. 

and 

then coding fi,(i, j )  and  fout( i ,  j )  with appropriate compression ratios. At the decoder 

side, the  rdconstructed images of f,,(i, j )  and fout ( i ,  j) are added together. However, 

this method has some obvious drawbacks: 

1. thc' number of images t o  be coded is now two, which is inefficient; 

2. this segmentation will introduce artifacts a t  the  edge of the  mask, because after 

t he  segmentation, artificial sharp edges are  introduced a t  t he  edges in both 

fin(;, j )  and fout ( i ,  j ) ,  and these sharp edges a re  hard t o  be perfectly coded, so 

artifacts are  formed after the  two images are  merged together. This effect! was 

observed in [ I ] .  

- 
This  leads t o  the  idea tha t  the  region partition will have t o  be done in the transform 

domain. As the wavelet transform coefficients still have spatial localization, the spatial 

mask over the  original image could be adapted to  a mask over the transformed image. 

-4s t he  wavelet transformation represents an image with a group of subband images, a 

reasonable mask transform is t o  down sample the spatial mask t o  fit in each subband 

of the wavelet coefficient. Figure 5.1 shows an original mask and its transform domain 

counter-part. 
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4- 

(4 ( b )  

Figure 5.1: Mask transformation from Space t o  Wavelet Domain. ( a )  ROI Mask in 
space domain; ( b )  i ts transformation in wavelet domain 

However, in a wavelet transform, besides "splittingn the  energy of one point into a - 

group of subbands, the  energy is also "spreadn into i ts neighbor points because of the  

convolution operation of the  wavelet transform. T h e  straightforward way of solving 

this is t o  enlarge the  mask by a proper degree. Tests have shown tha t  enlarging the 

spatial mask usually gets poor partition performance, even if very wide enlargements 

were applied t o  t he  mask. This is because the size of this spread neighborhood is 

dependent on the  wavelet filter and the  frequency of information. As the  low frequency 

energy spreads much wider than the high frequency one, we couldn't just enlarge the 

mask a t  fixed width in the spat,ial domain. We found tha t  enlarging the mask in 

the transform domain gets good results, because it gives different subbands the least 

necessary enlargement, this will be discussed in more detail in section 5.3. 



C H A P T E R  5. DYNAMZC REGION-BASED WAVELET COMPRESSION 56 

DRW - Dynamic Region-based Wavelet Cod- 

ing 

As shown in Chapter 4, EZW is an embedded coding algorithm, which means it could 

progressively render an image a t  the  decoder side. This embedding feature is very 

useful and it is desirable to  keep this feature while adding the region-based ability. 

The  result is our d y n a m i c  region-based wavelet (DRW) coding. Dynamic here means 

that the codec process could operate dynamically, in that  the  original image is encoded 

in such a way that. the  decoder could reconstruct any length of the  coded bitstream 

and get a recanstructed image utilizing almost every bit (there might be a few bits 

which couldn't be reconstructed, because of the arithmetic coding). Furthermore, at 

a different period, a different coding mask could be set in the coder t o  force it to  only 

encode information in the region specified by the mask. 

The DRW algorithm is a very flexible algorithm, and it is easy for it to  realize the 

functionality of region-based coding. For example, an image is assigned a Region of 

interest (ROI)  which we wish to code with a higher fidelity requirement than the out 

of region part (we call it non-ROI). Using our algorithm, first the coding mask is set to  

be the whole image, and the image is coded and transmitted until the required fidelity 

of non-ROI is reached. Then the mask is reduced t o  the ROI, and the image is coded 

and transmitted until the fidelity requirement under the coding mask is fulfilled. 
8 

In fact, this algorithm is so flexible that different schemes could be used to  encode 

an image and get the same final decoded image. In the previous example, the com- 

pression could also be realized by first setting the coding mask to  the ROI and coding 
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until t he  requirement for ROI is reached, and  then setting t h e  mask t o  non-ROI and 

coding until t he  requirement far non-ROI is reached. 

T h e  differences between the  schemes may lead t o  a small difference of the  bitstream 

length due  t o  the fact tha t  different schemes may lead t o  different zerotfee coding 

order, different region-coding overheads and different performance of t he  adaptive 

entropy coder. However, tests have shown tha t  although this difference is usually 

very small, encoding the  whole image and then coding the important regions always I 

gets a better result, because fewer iterations of the coding pass are  needed. 

In t he  situation tha t  the reconstructed image is only displayed after all the da t a  is 

received and decoded, the differences between the schemes don't show up. However, 

in the  situation tha t  t he  decoded image will be displayed on the fly, a progressive 

rendering of the image will take place, and  this ability t o  choose different schemes 

may have merit. 

Originally, a progressive rendering of the image produces a blurred image which 

contains the  main part  of energy of the  original image, and then additional details 

which are  related to  less energy will be renderetl to  refine the previous result. We 

could call this rendering based.on energy. In our new algorithm, we could change 

the scheme t o  first code the important region or ROI, then code the  non-important 

region, and a t  the decoder side we get progressive transmission of the  image which 

is not just based on the  energ?., but also based on the  regional "importance" of the 

information. 

Another merit of this dynamic algorithm is as we mentioned in Section 1.1.2, while 

this algorithm is used in image transmission over narrow band networks, the  decode 



side could choose a ROI after looking at  the gross reconstruction from the first short 

part of the transmission, then the coder could change its mask to only code the ROI 

which could save a lot of transmitting time. 

->\ 

5.2.1 Algorithms 

Motivation 

Before giving the details of the algorithm, ke would iike,to discuss the motivation of 

this algorithm we get from the EZW. 

In the embedded zerotree wavelet (EZW) coding, the most critical concept is zero 

tree and successive approzimat ion. 

Successive.approximation is realized by first coding with a very coarse threshold, 

then iterating by halving the threshold and redoing t,he coding. The fidelity is then 

revised iteration after iteration. Looking at the successive approximation process of 

the EZW algorithm, we may regard the threshold as a 'fidelity requirement'. 'Dif- 

ferent thresholds mean different fidelity requirements for the reconstructed image. 

Region-based image compression may be described as a compression which has dif- 

ferent fidelity requirements for different regions. In the conventional EZW algorithm, 

the threshold is unique at every iteration, in other words, there is one fidelity require- 

ment for the whole image. We conclude that, if we could specify different thresholds 

for different regions, the  EZW coding could be upgraded to a region-based algorithm. 

In the DRW method, for each coefficient in the wavelet domain, a unique threshold 
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T , ,  is assigned, here, (i, j) is the  address of the coefficient in the  wavelet transformed 

images as in Figure 3.6. These initial values are all set t o  be half the  maximum 

magnitude. T h e r e  is also a mask image M;,j over the  wavelet transformed image, 

which is initialized t o  1 which means it is ,in the coding mask. The  ,coding operates 

by scanning through the coefficients with the same order as in EZW. The coding has 

two main operations, mask encoding and data encoding . 
4 

Mask encoding 

In the  beginning of each scanning pass of the image, one bit is used to  specify if a 

different mask from the  previous (or-initial) mask was selected, if not, a new pass of 

da ta  encoding will continue with the previous (or initial) mask. 

If a new mask is selected, it needs to  be encoded. The mask could be any shape. 

Currently we support rectangle and polygon shaped masks. A rectangle is encoded 

as its upper-left and bottom-right .corner; a polygon is represented by all its vertices. 

The mask is converted into the transform domain using the method mentioned in 

section 5.1.1, and put into M,, giving a result as in Figure 5.1. Then the  mask needs 

to  be enlarged (or dilated) in the transform domain because of the  filtering. A test 

in Section 5.3 has shown that for the wavelet filter we use (a  917-tap filter of -[2]), 

enlargement of 2 pixels is enough for a good partition result. 

After the new mask image M is generated, we set the maximum threshold of the 

in-mask coefficients tm,, by: 
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t,,, is used in t he  d a t a  encoding procedure t o  restrict the  encoding only of the 

coefficients which have the  coarsest quantization step. 

Data encoding 

T h e  d a t a  encoding procedure is similar t o  a coding pass of EZW coding. In the 

dominant pass only a coefficient which is in the  mask and  whose threshold Tyj is 

equal t o  t,,, will be  scanned and encoded t o  significant positive, significant negative, 

zerotree root or separate zero respectively according t o  the  rules in Table 4.1 , where 

now we use t,,, instead of T,. Operations of moving a significant coefficie~t into the 

significant list and skipping the  points which are  in a zerotree will also be done in the 

same way as in EZW coding. T h e  things needed t o  be considered here are: 

1. Sometimes, we may have case tha t  when coding an in-mask coefficient, some of 

its descendents might be outside the mask. These coefficients are  taken as zero 

t o  increase the  possibility of forming zerotrees. 

2. if one coefficient is encoded, its related threshold Ti,, needs t o  be halved. 

3. i f  a coefficient is encoded t o  be a zerotree root, its descendents' thresholds also 

need t o  be halved, but only for those which are  in the  mask and  are  not points 

in the significant list. This is because the out-of-mask coefficients are  just taken 

as zero, not really coded and points in the  significant list will be dealt with only 

in the subordinate pass. 

After the  dominant pass, the t , , ,  is halved, and the  subordinate pass will process 

the points in the  significant list. T h e  difference from the subordinate pass in EZW 
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coding is that only the points which are in the mask and have threshold T i j  2 t,,, 

will be processed and coded to generate refine up or refine down symbols indicating 
a 

that the trues value fall in the upper or lower half of the old uncertainty interval 

whose size is defined by Ti,] .  

The process continues to alternate between mask encoding and data encoding, 

where mask could be changed at  every mask encoding process. Note that if the 

receiver wants to change the encoding mask, another channel must be established 

from the receiver to the user, or a two-way channel is needed. 

5.2.2 Implementation 

The DRW coding has been implemented on WiT for algorithm prototyping research, 

and a Microsoft Visual C++ class is created which can be used for dynamic region- 

based PC image transmission. 

WiT Implementation 

Two WiT operators dynamicZTcompress and dynamicZTexpand are implemented for 

the dynamic region-based zerotree coding and decoding of the wavelet coefficients. 

The specification of the operators are summarised in Table 5.1 and 5.2. 

The DRW encoding operator dynamicZTcompress has one more input, RegionOfln- 

terest, than the EZW encoding operator fastZTcompress. Regionofinterest specifies 

the encoding region; the other inputs are the same. dynamicZTcompress also has two 

more parameters than fastzicompress, start-bytes and progressspeed which are used 
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Table 5.2: The dynarnicZTexpand operator. 

Table 5.1 : The dynamicZTcompress operator. 

Inputs: 

Parameters: 

Outputs: 

I I features I original image size, a i d  the mean value I 

Inputs: 
Parameters: 
Outputs: 

I I bytepp I original image's pixel size in bytes I 

wavelet 
features 
RegionOflnterest 

bytepp 
max-bytes 
st art-bytes 
progressspeed 
out3trearn 
bytes-coded 

1 I bytes-decoded ( number of bytes actually decoded I 

wavelet image to encode 
original image size, and the mean value 
ROI to encode on 
original image's pixel size in bytes 
maximum byte budget for the encoding 
bytes budget to coded the first frame of data 
animation speed of progressive transmission 
encoded st ream 
size of the stream 

instream 
No 
w w l e t  

to set points to stop encoding. Each time encoding is stopped, the current result 

of progressive transmission could be seen at the receiver side, and the ROI could be 

changed at this time. start-bytes orders the encoder to prepare to stop the first time 

after the required bytes are coded: then progressspeed r will order the encoder to stop 

after r round of scans over the original image, so progressspeed must be an integer 

greater or equal to 1, and for a good animation result, it should between 1 and 5. 

encoded st ream 

decoded wavelet image 

Another special feature of the dynamicZTcompress operator is that it operates on the 

"firing on anyn strategy rather than "firing on alln. "firing on alln means that the 

operator will start processing only after all the inputs have arrived; "firing on anyn 

means that the operator could start processing for any input (and might generate 

output). See [3] for more detail of firing strategies. Here, this dynarnicZTcompress 

operator will start compression after the three inputs wavelet, features and bytepp 



arrived. It will stop compression and output the current compressed stream after it 

reached startbytes and finished a full coding pass. T h e  successive compression of dy- 

namicZTcompress operator will be triggered by a single input RegionOflnterest, noting 

that  if the  input is a null object, i.e. the user didn't select any region, the  ROI will 

be unchanged from the  previous pass. 

Figure 5.2 is an igraph used to  test the operators and animate the process of DRW 

coding and decoding. The test image "lenan is read from a wit image file by rd0bj ;  

then it is casted into a floating point format and a wavelet transform is applied. 

The resulting wavelet image and additional features are then sent to  the operator 

dynamicZTcompress. The  coded bitstream output from dynamicZTcompress is dir ted 

to  dynamicZTexpand which decodes the stream and recovers the wavelet ima tt e and 

the addit ionafeatures which are used by fastRevWav to  reconstruct original image. 

Note on the igraph that  the features output is directed t o  an icon with two black 

dots, which is a repeat operator which will continuous send copies of the object it 

received. This is needed because the additional features are only encoded and decoded 

in the first codec round but are needed every time the reverse wavelet transform 

is called. The reconstructed image from fastRevWav is sent to  a getData operator 

which displays the image and lets the user define graphic objects like lines, circles 

and outputs their graphic vector description. Here the  user could choose rectangle 

and/or polygon regions which are acceptable to  the dynamicZTcompress operator. 

The  dynamicZTcompress will be active again after it receives the ROI description 

from getData,  and the cycle repeats. If the user does not want to  change the ROI, a 

null region can be selected or the whole animation could be stopped. 
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rdObj castlmage fastWav ~ynamic~~compress 

filename: lena type: float 
conversion: clip 

constant: 2 

max-bytes: 1 00000 
start-bytes: 1000 
progress-speed : 1 

I display I 

name: Encode-bytes 

display #I t 

getData fast RevWav dynamicZTexpand 

name: Decode-bytes 

- 

Figure 5 . 2 :  igraph of DRW codec testing 

type: rectangle 

b 

3 - 
A w 
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Visual C++ Class Implementation 

This DRW algorithm has been ported to Microsoft Visual C++ on a pentium PC run- 

ning Windows NT 3.5. The coder and the decoder is realized as a C++ class which is 

easy to incorporate into MS-Windows applications. The class interface is given below: 

class CWavelet : public CObject 

{ 

public: 

/ *  construction and deconstruction function */  

C Wavele t ( ) ; 

4 Wavelet ( ); 

/ *  encoder function * /  

ERRORS StartCoder(HD1B & originalImage); 

ERRORS SetRegion(RECT & regionoff nterest); 

HGLOBAL GetData(1ong requireBytes, long *targetsize); 

/ *  decoder function * /  

ERRORS StartDecoder(HGL0BAL bitstream); 

ERRORS PutData(HGL0BAL bitstream); 

ERRORS Recover(HD1B & recoverImage); 

1; 

"C Waveletn and "-Cwavelet" are the construction and deconstruction functions. 

At the encoder side, "StartCodern is called to set the image to be coded, then "SetRe- 

gion" called to set the ROI and then "GetData" is called to start coding and return 
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the required bytes of the coded stream. As the actual coded stream may be larger 
). 

than the required size, "*targetSizen returns the coded stream size. At the decoder 

side, "StartDecodern is called to decode the first piece of the coded stream it received, 

then "PutDatan called to decode the successive streams. Finally, "recover" is called 

to output the reconstructed image using the most recently received data. . -. .: 4$ 

* 

This class is being utilized into a teleconference software package to add progressive 

and region- based features. * 

5.3 Tests and Discussion 

One test is done to show the advantage of enlarging the mask in transform domain 

rather than spatial domain in the process of region partition, one speed test is given 

to show DRW's speed performance, and three dynamic transmission tests on 'lena', 

'USl'  and 'hIR1' are conducted to show the PSNR performance of the DRW coding 

a ! gorithm. 

5.3.1 Regional PSNR 

To measure the fidelity of region-based image compression, the regional PSNR with ., 

respect to a mask ill is needed. In the following test, we use P S N R M  to denote the 

t 

'This  is a t e c h n o l o o  transfer project supported by the  British Columbia Science Council 
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c - : . - * = : 2  

0 2 4 6 8 
Enlargernerd at the mask (pixels) 

10 

Figure 5.3: Comparison between enlarging in the spatial domain and the transform 
domain 

PSNR of the part of image in M: 

Here fitj  and f;,j are original and reconstructed images, Mi j  is the mask function and 

S(M)  are the number of coefficients in the mask M.  

5.3.2 Region Partition Test 

Figure 5.3 shows a comparison between enlarging in the spatial domain and enlarging 

in the transform domain. The mask is as selected in Figure 5.3 (a). For each method, 

the recovered image's in-region PSNR is plotted in Figure 5.3 after applying the 

mask to partition out non-ROI data. We found that if we enlarge the mask in the 
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Table 5.3: Speed of DRW and EZW on lena, in DRW the coding mask is fixed to the 
whole image, the times given are the sum of encoding and decoding time 

spatial domain and then transform it to the transform domain, the performance won't 

increase much even if we choose an enlargement of 10 pixels. On the other hand, if we 

enlarge the mask in the transform domain, the partition performance is good enough 

using just 2 pixels (65dB). In fact, for dilation larger than 2 pixels the partion won't 

cause any distortion, as it includes all the in-ROI information. This t,est is based on 

the 917-tap filter [2] we use; for different filters, the results may be different, but the 

transform domain enlarging is always much better than the spatial domain enlarging. 

compression 

16:l 
32: 1 
64: 1 

L 

5.3.3 Speed Test 

To test the speed of DRW in comparispn with the EZW algorithm, the mask is fixed 

to the whole image, so DRW will provide exactly the same compression result as 

EZW. Table 5.3 compares timing results on 'lena' for the two algorithms at  different 

bitrates, where in DRW the mask is fixed to whole image. It is shown that to provide 

the same compression ratio and PSNR the speed overhead of DRW in comparison . 
with EZW is acceptable. 

bpp 

0.5 
0.25 

0.125 

PSNR 

36.20 
33.15 
30.25 

time EZW 
(seconds) 

11.68 
9.97 
8.52 

time DRW 
(seconds) 

13.14 
11.13 
10.07 
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Table 5.4: Test result on lena - dynamic rendering, ROI is shown on Figure 5.4 (b)  

1 Result Finure I bvtes I b m  I PSNR 1 PSNR in ROI I 

5.3.4 Dynamic Transmission Tests on 'lena' 
7 

" 
Fig 5.4 (a) 
Fig 5.4 (b) 
Fig 5.4 (c) 

Figure 5.4 shows an example of dynamic transmission of the lena image. Table 5.4 

lists the PSNR performance of the example of dynamic transmission in Figure 5.4. 

. 
1314 
3645 
3645 

Figure 5.4(a) shows a 0.04 bpp compression of the whole image; Figure 5.4(b) and 
t 

Figure 5.4(c) are both 0.11 bpp compression. In this case the area of the ROI is 

7.48% of the whole image area. Observe in Figure 5.4(c) how poor the  selected.region 

a. 

0.04 
0.11 
0.11 

looks compared with ~ i ~ u r 6 ' 5 . 4 ( b )  after the same total number of bytes has been 

transmitted. 

26.22 
26.63 
29.56 

In fact, if we go from Figure 5.4(b) and set the ROI back to  the whole image and 

25.62 
36.91 

2 

29.13 

go on with the transmission, we could get exactly the same result as Figure 5.4(d) 

after 29472 bytes, compared with 29056 bytes of Figure 5.4(d). This shows that the 

region-based dynamic transmission has very small overhead. 

5.3.5 Dynamic Transmission Tests on 'US1' 

The dynamic transmission tests were also performed on ultrasound image 'US1' of 

Figure 4;bja). Ultrasound images have text and large black spaces, which makes their 

compression characteristics rather different to the lena-like images, where meaningful 
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Figure 5.4: DRW Dynamic Compression of Lena: 
(a) Mask set to whole image, first 1314 bytes 
(b) Follows (a) , after a ROI is selected, and a total of 3645-bytes have been trans- 
mitted 
(c) shows the first 3645 bytes if the whole image is transmitted 
(d) shows without the ROI, 29056 bytes are needed to create the same fidelity within 
the ROI as shown in (b) 
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data occupies the whole image. For these ultrasound images, it is reasonable to choose 

the ultrasound data as the ROI, as shown in Figure 5.6. Here, the DRW scheme gives 

the non-ROI only enough fidelity requirewnt to recognize the texts and scales. The 

saved bytes budget is used to make the ROI more detailed. In practice, the mask 

is initialized to be the whole image, and after the non-ROI part is clear enough, the 

mask is set to the ROI for the successive coding. In this case the area of the ROI is 

25.72% of the whole image area. 

The in-ROI PSNR at different stages of the dynamic compression are listed in 

Table 5.5, and the bitrates needed for EZW to achieve the same in-ROI PSNR are 

also listed as a comparison. The data in Table 5.5 are also plotted in Figure 5.5. It 

is noticed that the DRW method always out-performs the conventional whole-image 

G' 

EZW compression. Note that for an in-region PSNR of 30.81, the DRW method uses 

only 0.40 bpp whereas the EZW method requires 0.6lbpp; from the original Sbpp 

data, the DRW method provides a 20 times compression, whereas the EZW method 

provides only 13.1 times compression. Figure 5.6 shows the result of DRW at 0.21 - 

bpp, which has the same in-region PSNR as the result of EZW a t  0.34 bpp, hence 

38% more compression is realized. Similar results were obtained for other grey-scale 

ultrasound images. 

5.3.6 Dynamic Transmission Test on 'MRI1' 

'r, 

X similar test is directed on an MRI lung image 'MRI1' as shown in Figure 5.7. 

The compression starts with the mask set to the whole image, and after the receiver 

side could recognize the lung a ea, the ROI is drawn as shown in Figure 5.S. Then i 



rn 
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Figure 5.5: Plot of DRW and EZW performance on US1 (Figure 4.6(a)) 1 
'the PSNR of the region as plotted in Figure 5.6 

Table 5.5: DRW test result on US1 (Figure 4.6a) 

in-region PSNR (dB) 

19.51 
21.92 
25.59 
30.81 
36.51 
42.64 
49.29 
56.92 

bpp/compression ratio 
DRW 

0.0601 133: 1 
0.10/80: 1 

0.21/38.1:1 
0.40/20:1 

0.691 11.6: 1 
1 .02/7.8: 1 

1.37/5.84:1 
1 .70/4.71:1 

bpp / compression ratio 
EZW 

0.0601 133: 1 
0.15/53.3: 1 
0.34/23.5:1 
0.61/13.1:1 
1 .OL/7.92: 1 
1.4615.48: 1 
1.94/4.12:1 
2.4213.31: 1 
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Figure 5.6: US1 compressed with DRW at 0.21 bpp, mask as plotted. 

coding is done with the mask set to the ROI. The same image is also compressed and 

progressively transmitted with EZW for comparison. The test results are listed in 

Table 5.6 and plotted in Figure 5.9. The area of the ROI is 24.37% of the total image 

area. 

In this test we found that the difference between the two results of DRW and EZW 

is larger than for the 'US1' ultrasound image, even though the ROI areas have almost 

the same percentage of the whole image. This is because there is a lot of information 

in the non-ROI area including the strong noise in the barred region of the middle 

of the image. Not coding them will definitely save much of the bit budget. In this 

example, on achieving the same image quality of the ROI, the DRW algorithm may 

only use one fifth of the EZW data size, although the region is almost one fourth of 

the image area. 
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Figure 5.7: Original image of MRI2, lung image 

Figure 5.8: MR12 compressed with DRW at 0.21 bpp, mask as plotted. 
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a 

Table 5.6: DRW test result on MR12 (Figure 5.7) 

Figure 5.9: Plot of DRW and EZW performance on MRI2 (Figure 5.7) 
'the PSNR of the region as plotted in Figure 5.8 



Chapter 6 

Summary 

Review 

In this thesis, a general, high-performance wavelet compression algorithm called EZW 

coding has been studied and implemented. Based on the research work on the EZW's 

/algorithm and performance, a new method is proposed, called DRW coding, which 

incorporates a dynamic region-based feature into wavelet coding. 
i\ 

EZW is a coding which has the embedding feature to support progressive trans- 

mission, but it doesn't support region-based coding.. In our DRW algorithm, not only 

is the region-based feature added, but also the regions can be changed dynamically 

while the progressive coding and decoding is on-going. To solve the partition edge 

artifacts problem which occurs for transform based coding, the mask dilation based 

on the transform domain partition is introduced, and tests have shown its good result. 
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Both EZW and DRW are implemented in the WIT visual programming envirbn- 

ment. Their performance on both standard test image and medical image are analyzed 

and compared. 

It has been found that the DRW algorithm could either act the same as EZW 

or could gain far more compression by turning on the region-based feature. As this 

region-based coding could be triggered on the fly, and even could be fixed up to get 

a normal whole image compression with little extra expanse, we propose that this 

algorithm could have its merits to supplying telemedicine service over narrow band 

communication networks. 

Future Work 

1 
In this thesis, we have shown that the image transmission quality and efficiency could 

be improved by adopting our DRW schemeyand some future works are also incurred. 

The choice of the wavelet filter is an important aspect of tuning any wavelet- 

based compression system. For region-based compression, the region segmentation 
-; 

performance of a filter could be take into consideration. 

A performance improvement may occur if we incorporate tbe dynamic region-based 

concept into other zerotree based algorithms such as the Said-Perlman algorithm [19] 

which has better performance than EZW. 
' C j  

From the test of EZW on ultrasound. images, we found the strange PSNR per- 

formance in compare with ordinary greyscale images. The spectral characterjstics of 

C 
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different medical image modalities m y  require different wavelet basis functions or 

different filters, and different wavelet compression techniques. 

Another aspect concerns the design of the Graphical User Interface for interactively 

drawing the ROI; we are working on designs for the GUI, including the possibility of 

automatic or semi-automatic segmentation of the ROI in ultrasound images to aid in 

data storage and display. 
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