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ABSTRACT 

In theory, a call option and its underlying index should move in the same direction, 

while a put option and its underlying index should move in opposite directions. This 

property is referred to as the Empirical Monotonicity Property (EMP) when applied to 

time series of prices. 

In this paper, we use daily call and put options’ data to conduct empirical tests of the 

EMP, including three violation types. Further, we investigate the effect of grouping the 

option prices by their Black-Scholes implied volatility and by moneyness, and also the 

effect of using different quotes (bid, offer, and bid-offer midpoint). In addition to EMP, 

which depends on the signs of the price changes, we also test another theoretical 

constraint concerning the magnitude of these changes. 

This is followed by a discussion of the possible causes for violations of the EMP. We 

use regression analysis to test whether volatility changes may be one of these causes. 

Lastly, we summarize the implications of our study to hedging strategies. 

 

Keywords: Option pricing, Hedging, Monotonicity Property, Volatility 

Subject Terms: Price Movements of Options and the Underlying Index 
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GLOSSARY 

Monotonicity property 
(in the comparative-
statics sense) 

The monotonicity property is satisfied in the comparative-
statics sense if c (t, S,…) is an increasing function of S. That is, 
increasing S, keeping time and all other variables constant, 
increases the call price c.  
 

Monotonicity property 
(in a dynamic sense)  

If the monotonicity property is satisfied in a dynamic sense, this 
has the following meaning: Suppose we compare times t and 
t+dt, and suppose the underlying asset price and the call price 
change to S+dS and c+dc, respectively. Then dS and dc have the 
same sign. 
 

The empirical 
monotonicity property 

The empirical monotonicity property (EMP) states that for a 
given time interval ሾݐ, ݐ ൅ Δݐሿ and for a given call (put) option 
and its underlying asset, Δܿ and Δܵ have the same sign for the 
call option, and have opposite signs for the put option, over that 
time interval.   
 

Call option’s payoff at 
expiration (for a  
European call) 

c = max (S – K, 0), where K is the strike price specified in the 
option. 

 
Put option’s payoff at 
expiration (for a 
European put) 
 

 
p = max (K – S, 0), where K is the strike price specified in the 
option. 
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1. INTRODUCTION 

The owner of a European call option has the right, but not the obligation, to buy an 

“underlying” asset at a predetermined price (“strike price”) at a given time (option’s expiration). 

Mathematically, the call’s payoff at expiration is  

                                          ்ܿ  ൌ – ൫்ܵ ݔܽ݉  ,ܭ  0൯,                                        (1) 

where ܶ is the expiration time, ்ܵ is the underlying asset’s price at time ܶ, and ܭ is the strike 

price specified in the contract. It is clear that as ்ܵ increases, the value of the call option will 

increase as well.  

The owner of a European put option has the right, but not the obligation, to sell an 

“underlying” asset at a predetermined price (“strike price”) at a given time (option’s expiration). 

Mathematically, the put’s payoff at expiration is (with notation as above) 

்݌                                            ൌ ,்ܵ – ܭ൫ ݔܽ݉  0൯.                                      (2)  

It is clear that as  ்ܵ increases, the value of the put option will decrease.  

This is also true for the exercise value of American-style options, where exercise is allowed 

before the option‘s expiration. However, in this paper we limit ourselves to European options.  

The question arises: Is it still true to say that, before expiration, increasing the underlying 

asset’s price will increase the call price and will decrease the put price? (This question will be 

made more exact in the next section.) This property, if it is satisfied, is called the monotonicity 

property. This is the subject of this paper, where this property is tested empirically. 
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The monotonicity property is very important in the context of hedging. Consider, for 

example, a hedged position with a stock and a call. Different models (or the same model with 

different parameters) may specify different hedge ratios, but in all of them the hedge ratio (the 

number of shares per one written call) will be positive. Regardless of the model, such a hedge 

will definitely not work if the stock and the call move in opposite directions. As we shall see 

later, it is an empirical fact that such “violations” occur rather frequently. 

The empirical monotonicity property (EMP) was tested on option prices from the Chicago 

Mercantile Exchange in Bakshi, Cao and Chen (2000), and on an International dataset in 

Pérignon (2006). (“Empirical” means investigating the monotonicity property of a time series of 

prices. This will be defined more exactly in the next section.) We conduct our test on option 

prices on the S&P 500 index from US exchanges. More specifically, we conduct our empirical 

analysis by using three different option prices: bid, offer and bid-offer midpoint prices, based on 

daily (end of the day) observations. We further categorize our data by different criteria, such as 

BS implied volatility and moneyness. Further details will be provided in subsequent sections. In 

addition, we use close prices for the corresponding underlying asset’s prices. The daily 

observations that we use are admittedly less informative compared to tick-by-tick intra-day price 

changes, as in Bakshi, Cao and Chen (2000) and Pérignon (2006). At the same time, daily 

observations are less demanding to handle, while still being sufficient to provide insightful 

findings with acceptable accuracy.  

Based on the selected data, call options’ prices (more specifically, bid-offer midpoint prices) 

move in the opposite direction compared to the index (the underlying asset price) 15% of the 

time. In addition, the percentage of violations is the lowest when using bid-offer midpoint prices, 

and highest when using bid quotes (16.7463%). Similar results are found for put options, where 
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theory suggests that the co-movement should be in opposite directions. With bid-offer midpoint 

prices, put options’ prices and the underlying index move in the same direction 21% of the time. 

Again, the rate of violations is lowest for bid-offer midpoint prices and highest for the bid quotes 

(25.6742%). In addition, the violation rates from puts, ranging from 20.9702% to 25.6742%, are 

much higher than the violation rates from calls, ranging from 14.8903% to 16.7463%, in all three 

categories. We also perform tests by grouping data by BS implied volatility and moneyness.  

 After that we examine the causes of the violations of the EMP. Our findings suggest that BS 

implied volatility does not cause higher violation. In contrast, it looks like that BS implied 

volatility is negatively related to violation rates, i.e., options with higher BS implied volatilities 

actually have lower violation rates. In addition, bid/offer quotes and moneyness definitely affect 

violation rates. Furthermore, other underlying variables in BS model and some qualitative factors 

(i.e. market markers’ activities) also attribute to violations.  

The remainder of the paper is organized as follows. Section 2 elaborates on the meaning 

(actually meanings) of the monotonicity property. Section 3 is a literature review, relying on 

three main relevant articles. One article is theoretical, and among other things it proves the 

monotonicity property. The other two focus on testing the EMP. In section 4, we summarize the 

theory behind the monotonicity property. In section 5, we perform our own empirical tests of the 

EMP on both call and put options written on S&P500 index.  An analysis of our results, with 

comparison to previous works, is provided in Section 6. Section 7 offers a summary of this paper 

and some implications for hedging activities. 
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2. MEANING OF THE MONOTONICITY PROPERTY 

The monotonicity property can be defined in a theoretical sense and in an empirical sense. 

Let us start with the theoretical sense, applied to a call. Suppose we have a model which 

specifies the call price as a function c (t, S,…) of time (t) and the underlying asset’s price (S), 

and possibly of other variables. There are actually two ways to define monotonicity. 

• We say that the monotonicity property is satisfied in the comparative-statics sense if       

c (t, S,…) is an increasing function of S. That is, increasing S, keeping time and all other 

variables constant, increases the call price c. In other words, here the monotonicity property 

is defined via the partial derivative with respect to S. 

• If the monotonicity property is satisfied in a dynamic sense, this has the following meaning: 

Suppose we compare times t and t+dt, and suppose the underlying asset price and the call 

price change to S+dS and c+dc, respectively. Then dS and dc have the same sign. 

In textbooks, in the context of the Black-Scholes model, typically the comparative-statics 

interpretation is discussed. It is rather intuitive that it should also be satisfied in general, not only 

in the Black-Scholes model. To see this, we take time t < T and two possible values of St, such as 

S’’>S’ (regardless whether they are greater than K or not). From the perspective of time t, as 

time moves forward to the expiration time, the distribution of the terminal price ST depends on 

the starting point at time t. If we start from S”, there is higher probability that ST > K, and the 

distribution of ST will be shifted to the right (compared to starting the price process from S’). 

Hence c (t, St) should be higher if St  = S”. It is also clear that a put will then be less valuable. 
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This logic depends on the assumption that the underlying asset's price process is suitably 

well behaved. However, in principle, this is not always the case. One can construct an example 

where starting the price process from S” (in the above example) will increase the likelihood of 

the stock going down and therefore the call price in this case will be lower. 

Thus the monotonicity property (in the comparative-statics sense) is model-dependent. It is 

satisfied in the classical Black-Scholes model in Black and Scholes (1973), Merton (1973), as 

well as in most other option pricing models, for example, Cox and Ross (1976), Derman and 

Kani (1994) and Rubinstein (1994). All these models are based on the assumption that the 

underlying asset price is the single state variable which is the sole source of uncertainty. It 

follows that the option can be dynamically replicated by the underlying asset and the riskless rate, 

and thus its price must be equal to the value of the replicating portfolio, which is a function of t 

and S (in the above notation). It also follows that option prices must be perfectly correlated with 

each other and with the underlying asset, and that the monotonicity property is satisfied. We will 

elaborate on the theory in Section 4. 

Next, based on Pérignon (2006), let us discuss the dynamic version of the property, in the 

context of a theoretical model.  Mathematically, assuming that the price of the option is a 

function of the underlying asset price and time, Ito’s lemma gives   

݀ܿ ൌ ܿ௧݀ݐ ൅  ܿ௦݀ܵ ൅  ଵ
ଶ

ܿ௦௦ሺ݀ܵሻଶ                              (3) 

݌݀ ൌ ൅ ݐ௧݀݌ ௦݀ܵ ൅݌   ଵ
ଶ

 ௦௦ሺ݀ܵሻଶ                             (4)݌

(Subscripts denote partial derivatives.) One can further assume that ܵ is dependent on a single 

standard Brownian motion. That is, 
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݀ܵሺݐሻ/ܵሺݐሻ   ൌ  µሺܵሺݐሻ, ൅ ݐ݀ ሻݐ ,ሻݐሺܵሺߪ   ሻ   (5)ݐሻ ܼ݀ሺݐ

where  and ߪ are functions of ܵሺݐሻ and ݐ and where ܼ is a standard Brownian motion. Then 

ሺ݀ܵሻଶ ൌ  :in equations (3) and (4), which will become ݐଶܵଶ݀ߪ

݀ܿ ൌ ሺܿ௧ ൅  ଵ
ଶ

 ܿ௦௦ ߪଶܵଶሻ݀ݐ ൅ ܿ௦݀ܵ                                      (6) 

݌݀ ൌ ሺ݌௧ ൅  ଵ
ଶ

ݐଶܵଶሻ݀ߪ ௦௦݌  ൅  ௦݀ܵ                                     (7)݌

As a result, assuming that cS>0 (that is, monotonicity in the comparative-statics sense is 

satisfied) and assuming that ሺܿ௧ ൅ ଵ
ଶ

 ܿ௦௦ ߪଶܵଶሻ݀ݐ is negligible, it follows that dc and dS have the 

same sign. Similarly, dp and dS have opposite signs as long as pS<0 and ሺp୲ ൅  ଵ
ଶ

 pୱୱ σଶSଶሻdt is 

negligible. 

Finally, following Pérignon (2006), we can discuss the empirical version of the property. 

For a given time interval ሾݐ, ݐ ൅  ,ሿ and for a given call option and its underlying asset, denoteݐ ∆

 Δܵ ൌ ܵሺݐ ൅ Δݐሻ െ ܵሺݐሻ (8) 

 Δܿ ൌ ܿሺݐ ൅ Δݐሻ െ ܿሺݐሻ (9) 

We say that the call satisfies the empirical monotonicity property (EMP) over that time interval 

if  Δc and ΔS have the same sign. 

The above theoretical discussion implies that the EMP is predicted to be satisfied over 

sufficiently small time intervals. 
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3. LITERATURE REVIEW 

The three main papers on which this work is based are Bergman, Grundy, and Wiener 

(1996), for the theory, and Bakshi, Cao and Chen (2000) and Pérignon (2006) for the empirical 

work.  

Every textbook on options includes a chapter on no-arbitrage relationships (“restrictions”) of 

option prices, for example upper and lower bounds. This goes back to Merton (1973). These are 

general properties in the sense that they do not depend on any assumptions on the volatility of 

the underlying asset. Bergman, Grundy, and Wiener (1996) is a theoretical paper which adds 

more properties to the list. They also do not make any assumptions on the volatility, but they 

need assumptions on the general form of the price dynamics. For example, a single-state 

diffusion process is needed for some of the results. 

BGW are interested in the partial derivatives (comparative statics) relative to all state 

variables. They are also interested in a second derivative (convexity) relative to the underlying 

price (S). For the purpose of our work, we are interested only in the part on monotonicity, where 

BGW investigate the first partial derivative relative to S. They actually have two proofs under 

two different sets of assumptions. In the next section, we will summarize one of them. It should 

be mentioned that BGW’s analysis applies for a general derivative security whose payoff is a 

monotonic function of S, not only calls or puts. (See examples in the following section) 

BGW also demonstrate that there exist theoretical counterexamples where the monotonicity 

property is not satisfied. This may happen if the volatility is stochastic or if the underlying 
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process is not a diffusion (i.e. either discontinuous or non-Markovian). The intuition behind this 

was explained in the previous section. 

In Bakshi, Cao and Chen (2000), they focused on testing the monotonicity property on both 

call and put options. They started with introducing the monotonicity property and then listed 

some testable predictions for both call and put options. Their analyses were based on intraday 

observations: (1) the S&P500 spot index; (2) lead-month S&P500 futures prices; and (3) bid-ask 

midpoint prices for S&P500 index options. The advantages of using intraday data include 

improved accuracy, and the ability to determine the optimal rebalancing frequency of hedging 

strategies in option trading. The use of bid-ask midpoint prices may help eliminate the impact of 

bid-ask bounces. The cash index data and the futures data were obtained from the Chicago 

Mercantile Exchange. The source of the option data was the Berkeley Option Database.  The 

period under study was from March 1, 1994 to August 31, 1994, totalling 3.8 million 

observations on index calls and puts. They grouped their data by moneyness, as follow.  

Table I – Grouping Criteria – Moneyness in Bakshi, Cao and Chen (2000) 

 Criteria 
 Call Options Put Options 

ITM S/K ൒1.03 K/S ൒1.03 
ATM S/K(1.03 ,0.97)א K/S(1.03 ,0.97) א 
OTM S/K൑ 0.97 K/S ൑0.97 

 
BCC did not explain how the figures 0.97 and 1.03 were chosen. (See further discussion in 

Section 5.) In addition to moneyness, they also grouped the data by time to maturity. They 

categorized options with less than 60 days to maturity as short-term, with 60-180 days to 

maturities as medium-term, and with more than 180 days to maturity as long-term. Short- and 

medium-term constitute 80% (83%) of the entire hourly call (put) sample.  
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After explaining data collection and their methodology, they listed four types of violations 

for which the conducted test.  

Table II – Violation types in Bakshi, Cao and Chen (2000) 

 Call Options Put Options 
Type I violation ΔS ൈ Δc ൏ 0 ΔS ൈ Δp ൐ 0 
Type II violation ΔS ് 0 but Δc = 0 ΔS ്0 but Δp = 0 
Type III violation ΔSൌ0 but Δc ് 0 ΔS ൌ 0 but Δp ് 0 
Type IV violation Δc/ΔS ൐1, ΔS ്0 Δp/ΔS൏ -1, ΔS ് 0 

 
For comparison purposes, since we use only daily observations in our paper, we summarize 

their results for “1-day sampling interval” only. (Other sampling intervals include 30 minutes, 1 

hour, 2 hours and 3 hours.) 

BCC use two methods to represent the underlying index: The straightforward method is to 

use the index itself. An alternative method is to use the lead-month index futures. The results are 

summarized in the following table.   

Table III – Violation Results in Bakshi, Cao and Chen (2000) 

 Violations by calls 
 Type I (%) Type II (%) Type III (%) Type IV (%) Total (%) 
Cash Index 9.1 3.6 0.00 11.5 24.2 
Index Futures 7.2 3.5 0.00 7.7 18.4 
 Violations by puts 
 Type I (%) Type II (%) Type III (%) Type IV (%) Total (%) 
Cash Index 5.4 2.8 0.00 13.2 21.4 
Index Futures 6.5 2.7 0.00 9.6 18.8 

 

The above two tables show that, generally speaking, violation rates relative to the index 

futures price are fewer than from those relative to the cash index. In addition, Type IV violation 

occurred most frequently among the four types, while the second most frequent occurrence was 

Type I violation. Type III violation was rare for both call and put options since the S&P500 and 



 

 
10 

 

its futures prices rarely stayed unchanged for one-day period. In this section, they also tested 

whether violations of the monotonicity property are related to violations of the put-call parity. 

The results showed that eliminating put-call parity violations would not overcome their empirical 

findings. 

BCC further refined their analysis by investigating some possible causes for violations. 

Firstly they tested whether the occurrences of violations differed across moneyness and time to 

maturity. For ITM calls, the relationship to time-to-maturity was U-shaped, with the medium-

term options showing least type I violations. In contrast, for ATM and OTM calls, the 

relationship was hump-shaped, with the medium-term options showing the highest type I 

violations. Why did medium-term ATM and OTM call prices move more frequently in opposite 

directions with the underlying asset compared to short-term and long-term options? BCC could 

not explain why the results from medium-term ITM calls were opposite to the results from 

medium-term ATM and OTM calls. 

BCC also tested whether violations are related to market microstructure factors: (i) time of 

day; (ii) dollar bid-ask spread; (iii) number of quote revisions, and (iv) daily trading volume. 

They performed their analysis on hourly call-option prices. Results are summarized in the 

following table.  

Table IV – Violation Results Grouped by Four Market Microstructure Factors in Bakshi, 
Cao and Chen (2000) 

 Violation 
Rates 

Time of Day Dollar Bid-
Ask Spread 

No. of Quote 
Revisions 

Trading 
Volume 

Type I Highest 11AM – 12 PM 3/16 – 1/4 310 – 755 0 – 14 
 Lowest 10AM – 11 AM ൒3/4 <16 0 
Type II Highest 11AM – 12 PM < 3/16 < 16 14 – 115 
 Lowest 9AM – 10 AM 1/2 – 3/4 ൒ 755 0 
Type IV Highest 1PM – 2 PM ൒3/4 ൒755 0 – 14 
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 Lowest 10AM – 11 AM < 3/16 67 – 310 ൒ 935

Then lastly, in the same section, they investigated the magnitude of the violations. They 

grouped the data by moneyness and time to maturity, and tested whether the magnitude for each 

violation type satisfies an upper-bound constraint.  

BCC’s work was continued by Pérignon (2006). He investigated the monotonicity property 

but not the upper bound for the magnitude of the price change.  The distinction that we made in 

Section 2 between static and dynamic monotonicity is based mainly on his work. Pérignon set 

four testing criteria for violations.  

Table V – Violation Testing Criteria in Pérignon (2006) 

 Violations for Call Options Violations for Put Options 
Type I  ΔS < 0, Δc > 0 ΔS > 0, Δp > 0 
Type II ΔS > 0, Δc < 0 ΔS < 0, Δp < 0 

 

Pérignon performed empirical analysis on a dataset consisting of prices of five index options, 

written on the European (DJ EURO STOXX-50), French (CAC 40), German (DAX), Swiss 

(SMI) and British (FTSE) stock indices. For each of the five contracts, the data included all 

transaction prices in 2002, totaling 1.4 million observatioins of call and put option prices and 

more than 173 million traded contracts. The dataset also included the intra-day value of the 

underlying stock indices observed every 15 seconds for the DAX and every 60 seconds for other 

indices (Pérignon, 2006). A notable feature of the data was the use of transacton prices instead of 

using bid-ask midpoint prices, which reduces the sensitivity to bid-offer spread manipulation.  

Pérignon presented resutls for different sampling interval: tick-by-tick, 30 minutes, 1 hour, 2 

hours, 3 hours and 1 day. In addition, he greoups the data by moneyness and time to maturity. 
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Again, for comparison purposes, we summarize violation rates only by “1 day” and moneyness 

in the following table. 

Table VI – Call Options Violation Testing Results in Pérignon (2006) 

CALL European France Germany Switzerland UK 
 I II I II I II I II I II 
1 day 3.0 10.1 1.8 9.8 0.6 6.6 2.0 9.5 1.0 7.9
OTM 10.1 10.5 14.1 14.0 6.2 6.5 8.7 9.1 6.0 6.3
ATM 9.5 10.1 13.4 14.7 5.9 6.4 9.9 10.6 6.3 6.9
ITM 8.1 7.9 17.6 15.7 4.3 4.3 12.2 9.2 5.8 3.8

 

For 1 day sampling interval, Type I violation occurs more frequently than Type II violation. 

Violation rates grouped by moneyness are summarized in the following table.   

Table VII – Call Options Violation Testing Results by Type in Pérignon (2006) 

 Type I Type II 
OTM 45.1 46.4 
ATM 45 48.7 
ITM 48 40.9 

 
A similar summary can be made for put options: 
 

Table VIII – Put Options Violation Testing Results in Pérignon (2006) 

PUT European France Germany Switzerland UK 
 I II I II I II I II I II 
1 day 3.3 8.0 2.9 7.9 0.6 5.7 4.1 7.6 0.9 8.6
OTM 9.1 8.9 14.2 14.2 6.4 6.4 9.3 8.7 5.0 5.0
ATM 10.0 9.9 14.7 15.1 6.3 6.1 11.5 10.6 5.2 6.8
ITM 10.4 10.3 16.0 17.0 4.6 4.7 9.8 9.1 5.4 4.5

 

Table IX – Put Options Violation Testing Results by Type in Pérignon (2006) 

 Type I Type II 
OTM 44 43.2 
ATM 47.7 48.5 
ITM 46.2 45.6 
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The results in the above tables show that for OTM options, puts had lower violation rates for 

both Types; for ATM options, calls had lower violation rates for Type I, and similar violation 

rates for Type II; for ITM options, puts had lower violation rates for Type I and higher violation 

rates for Type II.  

After that, Pérignon discussed three main causes for the violaitons. The first one was other 

underlying variables in the option pricing model. He concluded that  violations of the EMP were 

mainly due to volatility shocks. The second cause was the bid-ask bounce. He concluded that 

Type I violation occurred more frequently when changes in option prices were computed 

between a bid price and an ask price. Type II violation occurred more frequently when changes 

in option prices were computed between an ask price and a bid price. The third cause was 

rational trading tactics, such as price/time priority and liquidity. He concluded that violations of 

the EMP were negatively related to (1) the relative changes in the underlying assets; (2) the 

relative changes in the underlying asset, and (3) the level of activity of the option contract. In 

addition, violations of the EMP were likely to happen right before the market closed and on 

Fridays.  
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4. THE THEORY BEHIND THE MONOTONICITY PROPERTY 

Recall that the property that the price of a call option is a monotonically increasing function 

of the value of its underlying asset is called the monotonicity property (in the comparative static 

sense). Likewise, for a put, it means that the price of a put option is a monotonically decreasing 

function of the value of its underlying asset. In what follows, c and p denote prices of European 

call and put, respectively. The same property can be defined for American options. 

The monotonicity property depends on the assumption that the option price can be written as 

a function of time and underlying asset’s price. Then monotonicity means that delta of the option, 

which is the partial derivative to the underlying asset’s price (holding the time and other 

variables fixed), is positive for a call and negative for a put.  

The monotonicity property holds not only for a call or a put option. Under certain condition, 

if the terminal payoff is an increasing function of the underlying asset’s price, so is the value 

function before expiration. Likewise, if the terminal payoff is a decreasing function of the 

underlying asset’s price, so is the value function before expiration. In other words, the 

monotonicity property is “inherited” from the payoff function to the value function. A call option 

or a put option is a special case.  

In what follows, we will give a few examples with a general boundary condition. We will 

also provide proofs of the monotonicity property under certain conditions. This is based on 

Bergman, Grundy and Wiener (1996) and Bick (2008). 
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Suppose there is a derivative security which pays ݍሾܵሺܶሻሿ at time ܶ, where ሼܵሺݐሻ; ݐ  ൒

 0ሽ represents the price process of the underlying stock. Suppose the time- ݐ value, for ݐ ൑  ܶ, is 

ܸሺݐ, ܵሺݐሻሻ, where ܸሺݐ, ܵሻ is a Calculus function of two variables.  

Then the paper by Bergman, Grundy and Wiener (1996) states if ݍ is an increasing function 

of ܵ, then so is ܸሺݐ, ܵሻ for any ݐ. That is, the partial derivative ௦ܸሺݐ, ܵሻ is positive. If, instead, ݍ is 

a decreasing function of ܵ, then so is ܸሺݐ, ܵሻ for any t, so that the partial derivative ௦ܸሺݐ, ܵሻ is 

negative. 

4.1 Examples of the Monotonicity Property 

Let us check a few examples in the classical BS model in Black and Scholes (1973), where 

the interest rate is a constant r and the stock price process is a geometric Brownian motion  

݀ܵሺݐሻ/ܵሺݐሻ   ൌ  μ ݀ݐ ൅  ሻ,                              (10)ݐሺܼ݀ ߪ 

where µ and σ are constants and where Z is a standard Brownian motion. Suppose the stock does 

not pay dividends. 

• For a ܭ-strike call, the payoff is ݍሺܵሻ  ൌ ሺܵ ݔܽ݉  െ ,ܭ 0ሻ, which is an increasing 

function of S. Here we have the well-known formula for delta 

ܿௌ ൌ  ܰሺ݀ଵሻ,                                                          (11) 

where ܰ is the standard normal cumulative distribution function and ݀ଵ is a certain well-

known expression. This is positive, thus ܿ is an increasing function of ܵ. 

• Consider the payoff function qሺSሻ ൌ Sୟ, where a is a positive constant.  This is clearly an 

increasing function of S. Here we have for the time-t value: 

ܸሺݐ, ܵሻ  ൌ  ܵ௔  ൈ  ݁ቀ௥ାభ
మఙమ௔ቁሺ௔ିଵሻሺ்ି௧ሻ.                         (12) 
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(See McDonald (2006).) This is also an increasing function of ܵ. 

• Consider the payoff function ݍሺܵሻ  ൌ  ݈݊ሺܵሻ, which is an increasing function of ܵ. Here 

we have the time-ݐ value:  

ܸሺݐ, ܵሻ ൌ  ݁ି௥ሺ்ି௧ሻሾ ݈݊ܵ ൅ ቀݎ െ ଵ
ଶ

ଶቁߪ ሺܶ െ  ሻሿ.                      (13)ݐ

    (See Neuberger (1994).) This is also an increasing function of ܵ. 

4.2 Proof in the Case where σ Is Constant (i.e. Standard BS Model) 

Proposition: In the Black-Scholes model, with constant volatility ߪ, consider a derivative 

security which pays ݍሾܵሺܶሻሿ at time ܶ. Suppose ݍሺܵሻ is an increasing (or a decreasing) function 

of S. Suppose the time-ݐ value, for ݐ ൑ ܶ, is of form ܸሺݐ, ܵሺݐሻሻ. Then, for any t, ܸ is an 

increasing (or decreasing, respectively) function of ܵ.  

Proof: As we know from Feynman-Kac Theorem 

ܸ ൌ  ݁ି௥ሺ்ି௧ሻכܧሾݍሺܵሺܶሻ|ܵሺݐሻ  ൌ  ܵሿ,      (14)  

where כܧ denotes expectation relative to the process    

݀ܵሺݐሻ/ܵሺݐሻ  ൌ ݐ݀ݎ  ൅  ሻ                                      (15)ݐሺכܼ݀ ߪ

where ܼכ is also a standard Brownian motion. (This is a new process for stock price ܵ, although 

we use the same notation.). As we know, we can write ܵሺݐሻ from (15) as  

ܵሺݐሻ  ൌ  ݁௞ା௠௧ାఙ௓כሺ௧ሻ,                                                (16) 

where ݇ is a constant (such that ܵሺ0ሻ  ൌ  ݁݇), and ݉ ൌ 1 – ݎ 
2   Clearly, (16) implies that .2ߪ

ܵሺܶሻ  ൌ  ܵሺݐሻ ݁௠ሺ்ି௧ሻାఙሾ௓כሺ்ሻି௓כሺ௧ሻሿ.                           (17) 

We also know that, from time-ݐ perspective, ܼכሺܶሻ  െ ܼכሺݐሻ ~ ܰ ሺ0, ሻ, where ߬ ൌ 2߬ߪ  ܶ –    .ݐ 
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Fix a time  ݐ ൑ ܶ. Also fix ܼכሺݐሻ  ൌ ሻݐand ܵሺ ’ݖ   ൌ  ܵ’ such that ܵ’ ൌ  exp ሺ݇ ൅ ݐ݉ ൅ ݖߪ ′ሻ  

Then  

ܸ ሺݐ, ܵ’ሻ  ൌ  ݁ି௥ሺ்ି௧ሻכܧሾݍሺܵሺܶሻ|ܵሺݐሻ  ൌ  ܵ’ሿ 

ൌ  ݁ି௥ሺ்ି௧ሻכܧሾݍ ሺܵ’ ݁௠ఛାఙሾ௓כሺ்ሻି௓כሺ௧ሻሿሻ|ܼכሺݐሻ  ൌ  ሿ’ݖ 

ൌ  ݁ି௥ሺ்ି௧ሻ ׬ ሺܵԢ݁௠ఛାఙ௫ሻஶݍ
ିஶ

ଵ
ఙ√ଶగఛ

݁ି௫మ ଶఙమఛ⁄  (18)                        ݔ݀ 

Now suppose, instead of ܵ’, we take ܵ’’  such that ܵ’’ ൐  ܵ’. Then  

ܵԢԢ݁௠ఛାఙ௫  ൐ ܵԢ݁௠ఛାఙ௫                                                  (19) 

֜ ሺܵ"݁௠ఛାఙ௫ሻݍ ൐  ሺܵԢ݁௠ఛାఙ௫ሻ                                             (20)ݍ

֜ ܸሺݐ, ܵ’’ሻ ൐  ܸሺݐ, ܵ’ሻ                                                         (21) 

This is the desired result. The case where ݍ is decreasing is similar. QED  

4.3 Proof in the Case where σ Is Not Necessarily a Constant 

Proposition:  Suppose the risk-neutralized process of ܵ from the Feynman-Kac theorem is 

of the form ݂ሺݐ, ,ݐis a standard Brownian motion and ݂ሺ כܼ ሻሻ whereݐሺכܼ  ሻ is a monotonicݖ

function of the second variable. (Thus Eq. (16) is a special case.) Consider a derivative security 

which pays ݍሺܵሺܶሻሻ  at time ܶ, and suppose ݍሺܵሻ is a monotonic function of ܵ. Suppose the 

time-ݐ value, for ݐ ൑ ܶ, is of the form ܸሺݐ, ܵሺݐሻሻ. Then, for any ݐ, ܸ is a monotonic function of ܵ 

in the same direction (increasing or decreasing) as ݍ. 

Proof: As we know from the famous Feynman-Kac theorem, 

ܸ ൌ  ݁ି௥ሺ்ି௧ሻכܧሾݍሺܵሺܶሻ|ܵሺݐሻ  ൌ  ܵሿ,                          (22) 

Where כܧ denotes expectation relative to the process.                                    

݀ܵሺݐሻ  ൌ ,ݐሺכ൅ ௓݂ ݐ݀ ሻݐሺܵݎ   ሻ,                                  (23)ݐሺכܼ݀ ሻሻݐሺכܼ
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And where ܼכ is a standard Brownian motion. (The coefficient of ܼ݀כis a result of Ito’s lemma) 

We also know that, from time-ݐ perspective, ZכሺTሻ ~ N ሺZכሺtሻ, ଶ߬ሻ, where ߬ ൌߪ  ܶ –   .ݐ 

Fix a time ݐ ൑  ܶ. Also, fix  ܼכሺݐሻ  ൌ ሻݐand let ܵሺ ′ݖ ൌ ܵ′ ൌ ݂ሺݐ,   ሻ. Then’ݖ

ܸ ሺݐ, ܵ’ሻ ൌ ݁ି௥ሺ்ି௧ሻכܧሾݍሺܵሺܶሻ|ܵሺݐሻ  ൌ  ܵ’ሿ 

ൌ  ݁ି௥ሺ்ି௧ሻכܧሾݍሺ݂ሺܶ, ሻݐሺכܼ|ሺܶሻሻכܼ ൌ  ሿ’ݖ

ൌ  ݁ି௥ሺ்ି௧ሻ න ,ሺ݂ሺܶݍ ሻሻݕ
ஶ

ିஶ

1
߬ߨ2√ߪ

݁ିሺ௬ି௭ᇲሻమ ଶఙమఛ⁄  ݕ݀ 

ൌ  ݁ି௥ሺ்ି௧ሻ ׬ ,ሺ݂ሺܶݍ ݔ ൅ Ԣሻሻஶݖ
ିஶ

ଵ
ఙ√ଶగఛ

݁ି௫మ ଶఙమఛ⁄  (24)                         ݔ݀ 

Where in the last equality we used a change of variable ݔ ൌ ݕ െ  .’ݖ

Now suppose we take ܵ’’ ൐  ܵ’, this means 

ܵ’’ ൌ ݂ሺݐ, ሻ’’ݖ  ൐  ݂ ሺݐ, ሻ’ݖ  ൌ  ܵ’                                (25) 

There are two “combinations” of changes of q and f:  

Case 1: ݍ and ݂ are both increasing in S. Then equation (25) entails:  

൐ ’’ݖ  (26)                                                                                                                            ’ݖ 

֜  ݂ ሺܶ, ൅ ݔ ሻ’’ݖ   ൐  ݂ ሺܶ, ൅ ݔ  ሻ                                                                          (27)’ݖ 

֜ ,ሺ݂ ሺܶݍ ൅ ݔ ሻሻ’’ݖ   ൐ ,ሺ݂ ሺܶݍ  ൅ ݔ  ሻሻ                                                         (28)’ݖ 

֜ ܸ ሺݐ, ܵ’’ሻ  ൐  ܸ ሺݐ, ܵ’ሻ                                                                              (29) 

Case 2: ݍ is increasing in ܵ and ݂ is decreasing in S. Then equation (25) entails:  

൏ ’’ݖ  Ԣ                                                                                                                     (30)ݖ 

֜ ݂ ሺܶ, ൅ ݔ ሻ’’ݖ   ൐  ݂ ሺܶ, ൅ ݔ  ሻ                                                                          (31)’ݖ 

֜ ,ሺ݂ ሺܶݍ ൅ ݔ ሻሻ’’ݖ   ൐ ,ሺ݂ ሺܶݍ  ൅ ݔ  ሻሻ                                                                    (32)’ݖ 
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֜V ሺt, S’’ሻ ൐ V ሺt, S’ሻ                                                                                                          (33) 

The other two cases are similar. QED 

4.4 BGW Version of the Property (Bergman, Grundy and Wiener (1996))  

Proposition: Suppose the risk-neutralized process of ܵ from the Feynman-Kac theorem is of 

the form:  

݀ܵሺݐሻ  ൌ ൅ ݐሻ݀ݐሺܵݎ  ,ݐሺߪ  ܵሺݐሻሻ ܵሺݐሻ ܼ݀כሺݐሻ                                   (34) 

where ܼכ is a standard Brownian motion. Consider a derivative security which pays ݍሺܵሺܶሻሻ at 

time ܶ, and suppose ݍሺܵሻ is a monotonic function of ܵ.Then, for any ݐ, ܸ is a monotonic 

function of ܵ in the same direction (increasing or decreasing) as ݍ.   

BGW’s proof (a simplified informal outline): Suppose, for simplicity, that we make the 

comparison at time 0. Suppose ܵ’’ሺ0ሻ ൐ ܵ’ ሺ0ሻ ൐ 0 are two given numbers, interpreted as 

possible starting points for the stock price path. Suppose we use a given realization (path) of 

ሼܼכሺݐሻ; א ݐ  ሾ0, ܶሿሽ to create the whole path for ሼܵԢሺݐሻ; ሺא ݐ  ሾ0, ܶሿሻሽ and then the whole path 

ሼܵ"ሺݐሻ; ሺא ݐ  ሾ0, ܶሿሻሽ. This is done using the above starting points and the rule (34). This 

construction has the property that:  

ܵ’’ሺ0ሻ ൒ ܵ’ሺ0ሻ  ฺ  ܵ’’ሺܶሻ ൒ ܵ’ሺܶሻ                            (35) 

Explanation: The rule (34) specifies that, wherever you are on the path, the next increment 

of ܵ depends only on ݐ and ܵሺݐሻ. This means that if there is intersection ܵ’’ሺݐሻ  ൌ  ܵ’ሺݐሻ at some 

point time ݐ, then the two trajectories must be equal at all points after that. In particular, ܵ’’ 

cannot go below ܵ’, and thus equation (35) must hold.  
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If ݍ is an increasing function, one can obtain that ݍሺܵ’’ሺܶሻ ൒  ሺܵ’ሺܶሻሻ. So far we onlyݍ

discuss one realization of ܼכ. If we look at all possible realizations, then ܵ’ሺܶሻ and ܵ’’ሺܶሻ can be 

regarded as random variables, and we conclude that, with probability 1, 

ሺܵ’’ሺܶሻݍ ൒  ሺܵ’ሺܶሻሻ                                          (36) ݍ

ฺ ሾݍሺܵ’’ሺܶሻሻሿ ൒  ሺܵ’ሺܶሻሻሿ                                 (37)ݍሾכܧ 

Or with a different notation,  

ሺܵሺܶሻሻ|ܵሺ0ሻݍሾכܧ ൌ ܵ’’ሺ0ሻሿ ൒ ሺܵሺܶሻሻ|ܵሺ0ሻݍሾכܧ ൌ ܵ’ሺ0ሻሿ                                      (38) 

As before, this entails that: 

ܸ൫0, ܵ’’ሺ0ሻ൯ ൒ ܸ൫0, ܵ’ሺ0ሻ൯.                                     (39) 

The case where ݍ is decreasing is similar. QED 
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5. METHODOLOGY AND RESULTS 

5.1 Data  

We analyze the price dynamics of European style options written on the S&P500 in US 

exchanges from OptionMetrics. We perform our tests based on daily European option prices (bid 

and offer quotes) and their corresponding underlying (closing) asset prices from June 1, 2005 to 

May 31, 2006. Our dataset contains approximately 150 thousand observations of call and put 

options prices and over two thousand contracts (options ID’s in database) traded.  

5.2 Violation Testing Criteria  

In order to test the validity of the EMP, it is relatively easy to count the number of 

incidences when ܿ߂ and ܵ߂ do not have the same sign, and when ݌߂ and ܵ߂ do not have the 

opposite signs, using our selected dataset of option and underlying asset prices. We use lower-

case c and p to denote prices of European-style calls and puts, respectively. 

Three types of violations are tested for call options and three analogous types are tested for 

put options.  

Violations for Call Options:   

ܵ߂ :ܫ ݁݌ݕܶ ൏ 0, ܿ߂ ൐ 0 

ܵ߂ :ܫܫ ݁݌ݕܶ ൐ 0, ܿ߂ ൏ 0 

ܵ߂ :ܫܫܫ ݁݌ݕܶ ് 0, ܿ߂ ൌ 0 
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Violations for Put Options:   

ܵ߂ :ܸܫ ݁݌ݕܶ ൐ 0, ݌߂ ൐ 0 

ܵ߂ :ܸ ݁݌ݕܶ ൏ 0, ݌߂ ൏ 0 

ܵ߂ :ܫܸ ݁݌ݕܶ ് 0, ݌߂ ൌ 0 

Here Δc and Δp are defined as changes in option prices in two consecutive business days:  

ൌ ܿ߂  ܿ௧ାଵ – ܿ௧    (40a) 

ൌ ݌߂  ௧  (40b)݌ – ௧ାଵ݌ 

Our violation types are similar, but not identical, to the ones in Bakshi, Cao and Chen (2000) 

and Pérignon (2006). In Pérignon’s work, Type III and VI (in our notation) are not covered. 

BCC’s Type I violation (see our Section 3) is split in our work into two types of different 

severity, as will be explained below. Their Type VI violation is actually not a violation of 

monotonicity but of the upper (lower) bound for Δc (Δp), which we discuss later in the paper. 

Unlike BCC, we do not include the cases “ܵ߂ ൌ 0 but ܿ߂ ് 0” or “ܵ߂ ൌ 0 but ݌߂ ് 0” (their 

Type III) because they are problematic to interpret. Recall that in equations (6) and (7) above, 

ሺܿ௧ ൅  ଵ
ଶ

 ܿ௦௦ ߪଶܵଶሻ݀ݐ and ሺ݌௧ ൅ ଵ
ଶ

 were neglected. However, if dS=0, then these  ݐଶܵଶሻ݀ߪ ௦௦݌ 

“negligible” terms become important in affecting the sign of the option price change.  

Among the three types of violations for a call, type I is the most serious violation for the 

following reason. It is well known that theta (Θ), which is the rate of change of the value of the 

option with the passage of time, is always negative for a call option. As a result, as time passes 

by, Θ will induce the call price to decrease in value. Thus, if ΔS < 0, there are two causes for 

 is still positive. Thus a ܿ߂ ,to decrease over the time interval. However in violation of Type I ܿ߂
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positive ܿ߂ value in this situation violates the EMP “severely,” thus it requires more attention in 

order to identify the possible cause of the violation.  

The analysis for put options is more complex compared to call options. Theta for a put 

option may have either a positive or a negative sign. Theta will be negative when the put option 

is deep in the money (ITM), and will be positive when the put option is deep out of the money 

(OTM). As a result, a deep OTM put is expected to go down in price (like a call) as time passes, 

and it is also expected to go down if ΔS>0, hence Type IV violation is “severe.” In contrast, a 

deep ITM put is expected to go up as time passes, and it is also expected to go up if ΔS<0, hence 

Type V violation is “severe.” 

5.3 Data Analyzing Process and Methodology 

There are three steps in our data analysis process. Firstly we conduct the analysis by using 

three different options prices: bid, offer and bid-offer midpoint prices. Secondly we group our 

data by implied volatility: one group is with all the options whose BS implied volatility is less 

than 100%, and the other one contains all options whose BS implied volatility is greater than or 

equal to 100%. It seems intuitive that higher volatility of the underlying asset increases the 

probability of a violation. Thus, we would like to test whether the second group (i.e. the group 

which includes options with BS implied volatility greater than or equal to one) will produce 

higher violation rates. 

Thirdly, we analyze our data based the moneyness of the options: in the money (ITM) and 

out of the money (OTM). We do not analyze the situation when the options are at the money 

(ATM) since there are too few data (i.e. only one contract, traded for three times) to analyze.   
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The customary definition of moneyness, as in Hull (2006), is as follows  

Table X – Moneyness defined 

 Criteria 
 Call Options Put Options 
ITM ST > K ST < K 
ATM ST = K ST = K 
OTM ST < K ST > K 

 

As it was pointed out in Section 3, the definition used in Bakshi, Cao and Chen (2000), and 

later in Pérignon (2006), is as follows: A call option is ITM if S/K൒1.03, ATM if S/K0.97)א, 

1.03), and OTM if S/K൑0.97. An analogous definition is applied to puts. They do not explain the 

motivation for such a definition, and the choice of the number 1.03. It may be related to 

moneyness relative to the futures price. In our work we employ the customary definition as in 

Hull’s book. 

The following is the detailed methodology used in this paper.  

(i) For Δc and Δp: We use three different quotes: bid, offer and bid-offer midpoint quotes, to 

calculate the changes in option prices. Although we would like to use the observed 

transaction prices as Δc and Δp, it is unavailable for the daily data in the database. As a 

substitute, we investigate whether bid and offer quotes may provide additional insights.  

(ii) For ΔS: There are two prices available: one is the close prices, and the other is the average 

of lowest and highest price in each trading day. We choose to use “closing” asset prices 

instead of average prices, in order to better “match” the timing of observed option prices 

and the corresponding underlying asset prices.  

(iii) We count the number of Δc x ΔS, which has negative signs, for call options. In addition, 

we further classify whether the violation is a type I or Type II violation.  Similarly, we 
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count the number of Δp x ΔS, which has positive signs, for put options. In addition, we 

further classify whether the violation is a type IV or Type V violation.  For options whose 

prices changes equal to zero, i.e., Δc = 0, or Δp = 0, we count the number of occurrences, 

whose corresponding ΔS is different from zero.  

(iv) We classify data by BS implied volatility (IV): one group with options’ implied volatility 

smaller than one, the other with implied volatility greater than or equal to one, and then we 

follow the same procedure to identify the violation rates within each group. 

(v) Lastly, we categorize options by moneyness, ITM and OTM, in order to test how 

moneyness affects violation rates (or whether there is any influence).  

5.4 Results 

5.4.1 Testing the violation rates for call options without any grouping   

Table XI – General Results: Violation Rates for Call Options 

Call Options Total 
Number 

Number of 
Complying

Number of 
Violations 

Percentage of 
Violations 

With bid prices 77,426 64,460 12,966 16.75% 
With offer prices 77,426 64,841 12,585 16.25% 
With bid-offer midpoint 77,426 65,897 11,529 14.89% 

 

Table XII – Violation Rates for Call Options by Violation Types 

  Bid Offer Midpoint 
# of violations Type I 1981 2469 2132 

 Type II 5376 5621 5611 
 Type III 5609 4495 3786 
 Total # 77426 77426 77426 

Violation Rates Type I 2.56% 3.19% 2.75% 
 Type II 6.94% 7.26% 7.25% 
 Type III 7.24% 5.81% 4.89% 

Total  16.75% 16.25% 14.89% 
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5.4.2 For call options, testing the violation rates after grouping options by BS implied 
volatility: IV ൏1 and IV ൒1 

Table XIII – Violation Rates for Call Options, Grouped by Implied Volatility 

Call Options Implied 
Volatility (IV)

Total 
Number 

Number of 
Complying 

Number of 
Violations 

Percentage of 
Violations 

With bid prices IV < 1 66,009 54,249 11,760 17.82% 
 IV൒1 779 745 34 4.36% 
With offer prices IV < 1 66,009 54,644 11,365 17.22% 
 IV൒1 779 737 42 5.39% 
With bid-offer midpoint IV < 1 66,009 55,617 10,392 15.74% 
 IV൒1 779 746 33 4.24% 

 
5.4.3 Violation Rates for Call Options Grouped by Moneyness 

Table XIV – Violation Rates for Call Options, Grouped by Moneyness1 

 
 ITM OTM 
 Bid Offer Midpoint Bid Offer Midpoint 

# of violations 3931 4162 3779 9035 8422 7750 
Total Number 49570 49570 49570 27854 27854 27854 

Violation Rates 7.93% 8.40% 7.62% 32.44% 30.24% 27.82% 
# of violations 

Type I 1194 1486 1237 787 983 895 
Type II 2439 2387 2287 2937 3234 3324 
Type III 298 289 255 5311 4205 3531 

Violation Rates 
Type I 2.41% 3.00% 2.50% 2.83% 3.53% 3.21% 
Type II 4.92% 4.82% 4.61% 10.54% 11.61% 11.93% 
Type III 0.60% 0.58% 0.51% 19.07% 15.10% 12.68% 

 

From above four tables, three conclusions emerge.  

(1) Violations rates are lowest when using bid-offer midpoint quotes as the changes of option 

prices. When we use bid, offer and bid-offer midpoint prices for computing changes in 

                                                 
1 We only analyze the situations of ITM and OTM, but not ATM, since ATM is a very special case according to our 

definition and there is not enough data to perform the analysis. 
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option prices, violation Type III, Type II and again Type II have the highest frequency, 

respectively. It is interesting to observe that Type I violation, which is the most severe in 

terms of being contradictory to the theory, is the one which is less frequent. 

(2) By categorizing data by BS implied volatility, options with BS implied volatilities greater 

than or equal to one actually have lower violation rates. In addition, for options with 

implied volatilities less than one, using bid-offer midpoint prices produces the lowest 

violation rates. The same conclusion can be made for options with BS implied volatilities 

greater than or equal to one. The above results indicate that BS implied volatility is 

negatively related to violations rates. Assuming that implied volatility is highly correlated 

with “true” volatility, this seems counterintuitive. 

(3) Violation rates are much lower for ITM options than for OTM options. Therefore, 

moneyness can be considered as a factor affecting violation rates. For ITM options, Type 

II violation (i.e., ΔS<0, but Δc>0) are most frequent among all three violation types, and 

in fact more than half of the violations are of Type II. This is followed by Type I 

violations, which constitute one third of the violation rates. For OTM options, Type III, 

when ΔS്0 but Δc = 0, counts for almost half the violations. This makes sense, because 

at this level of the index the call price is low. Because the option price can only change in 

multiples of the tick size, it does not respond to small changes in the underlying index. 

Again, Type II violations constitute one third of the violations. Even though for OTM 

options, Type I “weights” the least among three types of violations, the percentage is 

actually very similar to the one in ITM options.  

Our results are not identical to those in Bakshi, Cao and Chen (2000) and in Pérignon (2006). 

In BCC, they compare the violation rates across moneyness and maturity for call options only. In 
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the case of a cash index and ITM call options with all maturities (i.e., short, medium or long term 

to maturity), they have higher rate of Type I violations compared to what we find. However, for 

OTM calls, their violation rates for type I are lower, while for type II they are higher, They also 

experiment with using index futures prices instead of the cash index, which we do not do. For 

ITM calls, for both type I and type II violations, BCC’s violation rates of medium term calls are 

lower than our rates using offer prices only, while are still higher than our rates using bid and 

bid-offer midpoint prices. For OTM calls, for type I violations, violation rates for all maturities 

are higher than our results, regardless of which quotes of option prices are used. However, 

violation rates for all maturities are lower than our results, regardless of which option quotes are 

used.  

Variations between our results and results in Bakshi, Cao, and Chen (2000) can be explained 

by the different dataset used. They use hourly data, whereas we use daily observations. It can be 

argued that daily data is “more smooth” and less volatile, hence they are expected to exhibit less 

EMP violations  

Our results are different compared to Pérignon’s results. For ITM calls, for type I violations, 

his violation rates are lowest for options on the German index, and they are still higher than our 

violation rates. In contrast, for type II violations, German-data and UK-data violation rates are 

lower than our violation rates (while violation rates from the other three indices are still higher 

compared to our results). For OTM calls, analysis for type I violations is the same as for ITM 

calls as above. However, analyses for type II violations are different. Violation rates for the 

French index are high, and actually have higher violation rates than our results. Again, higher 

violation rates (compared to our results) can be explained by using intra-day data compared to 



 

 
29 

 

daily data. Lower violation rates (compared to our results) can be regarded as the results of 

market-specific factors.   

5.4.4 Testing the violation rates for put options without any grouping  

Table XV – General Results for Put Options 

Put Options Total 
Number 

Number of 
Complying

Number of 
Violations 

Percentage of 
Violations 

With bid prices 77,572 57,656 19,916 25.67% 
With offer prices 77,572 59,697 17,875 23.04% 
With bid-offer midpoint 77,572 61,305 16,267 20.97% 

 

Table XVI – Violation Rates for Put Options by Violation Types 

  Bid Offer Midpoint 
# of violations Type IV 3055 3682 3570 
 Type V 4751 5105 5229 
 Type VI 12111 9088 7468 
 Total # 77572 77572 77572 
Violations Rates Type IV 3.94% 4.75% 4.60% 
 Type V 6.12% 6.58% 6.74% 
 Type VI 15.61% 11.72% 9.63% 
 Total 25.68% 23.04% 20.97% 

 

5.4.5 For put options, testing the violation rates after grouping options by BS implied volatility: 

IV൏ 1and IV ൒1  

Table XVII – Violation Rates for Put Options, Grouped by Implied Volatility 

Put Options Implied 
Volatility (IV)

Total 
Number 

Number of 
Complying 

Number of 
Violations 

Percentage of 
Violations 

With bid prices IV<1 58,651 41,670 16,981 28.95% 
 IV൒1 209 17 192 91.87% 
With offer prices IV<1 58,651 43,407 15,244 25.95% 
 IV൒1 209 62 147 70.33% 
With bid-offer midpoint IV<1 58,636 44,952 13,684 23.34% 
 IV൒1 209 63 146 69.86% 
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5.4.6 Violation Rates for Put Options Grouped by Moneyness.  

Table XVIII – Violation Rates for Put Options, Grouped by Moneyness2 

 ITM OTM 
 Bid Offer Midpoint Bid Offer Midpoint 

# of violations 2184 2118 2051 17732 15756 14215 
Total Number 27875 27875 27875 49695 49695 49695 

Violation Rates 7.84% 7.60% 7.36% 35.68% 31.71% 28.60% 
# of violations 

Type IV 898 990 928 2156 2691 2641 
Type V 1081 929 946 3670 4176 4283 
Type VI 205 199 177 11906 8889 7291 

Violation Rates 
Type IV 3.22% 3.55% 3.33% 4.34% 5.42% 5.31% 
Type V 3.88% 3.33% 3.39% 7.39% 8.40% 8.62% 
Type VI 0.74% 0.71% 0.64% 23.96% 17.89% 14.67% 

 

From four result-tables above, we observe that put options produce very different results 

than call options. Firstly, the violation rates from put options are much higher. Secondly, in 

contrast to the results from call options, BS implied volatility is positively related to the violation 

rates. In fact, violation rates from options whose BS implied volatility is less than one are only 

one third of the violation rates from options whose implied volatility is greater than or equal to 

one. This result agrees with the intuition that higher volatility of the underlying asset price may 

cause higher violation rates for the option prices. 

Results from table XVIII are similar to the results from call options: violations rates are 

much lower from ITM options than from OTM options. Thus, moneyness is one of the factors 

affecting violations. For ITM options, Type IV and Type V weight similarly: both count for 

almost half of the violations. Recall that for ITM put options, Type V violation is most severe, in 

                                                 
2 We only analyze the situations of ITM and OTM, but not ATM, since ATM is a very special case according to our 

definition and there is not enough data to perform the analysis. 
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terms of being in contradiction to the theory. Interestingly, it is more frequent compared to Type 

I violation for calls. In other words, violations for ITM put options have a higher probability of 

disrupting a hedge, compared to a call.  

In contrast, for OTM puts, Type IV violation is “severe,” as we saw. The results are 

analogous to the ones from OTM Call options. Also, Type VI violation rates count up to more 

than half of the violations rates among all three types. The logic (tick size movements) is similar 

to the one for a call. Comparing again the two “severe” cases, violation rates for Type IV, in 

spite of being lowest among the three types, are still higher than Type I violation rates for calls.   

In Bakshi, Cao, and Chen (2000) only analyze call options, hence we cannot make 

comparisons with their results. In Pérignon (2006), for ITM puts, for both type IV and type V 

violations, violations rates (from all five underlying indices) are higher than our results. However, 

analyses for OTM puts are different. For type I violation, his violation rates are lowest for the 

UK data, and they are lower than our violation rates. For Type II violation, violation rates in 

Germany and UK are lower than our results. These conclusions are very similar to the ones for 

call options.  

5.4.7 Comparing the magnitude of the price changes Δc (or Δp) and ΔS 

In previous sections, our focus was on the sign of delta, the partial derivative with respect to 

S. Another well-known property is that the absolute value of delta is below one. In the Black-

Scholes model, this is clear from the explicit formula for delta. See graphs (below) from (Hull 

2006)). In the general case, this is proved in (Bergman, Grundy and Wiener (1996). Thus, in 

general, the delta of a call option is between 0 and 1, and the delta of a put option is between -1 

and 0.  
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In our time series of option prices, we test whether 0 < Δc/ΔS < 1 and -1 < Δp/ΔS < 0 (given 

ΔS്0) holds for call and put options, respectively. In other words, there is a violation if Δc/ΔS is 

either less than or equal to 0 (i.e. a violation of the EMP), or greater than or equal to 1 (i.e. an 

“upper-bound violation” for Δc/ΔS). Likewise, there is a violation if Δp/ΔS is either less than or 

equal to -1 (i.e. a “lower-bound violation” for Δp/ΔS), or greater than or equal to 0 (i.e. a 

violation of the EMP). 

In the results tables listed below, the number of violations for Δc/ΔS is the number of 

observations where it is either less than or equal to 0 or greater than or equal to 1. For Δp/ΔS, 

this is the number of observations where it is either less than equal to -1 or greater than equal to 0. 

The total number is the number of ITM and OTM options.  

Figure I – call’s delta in the BS model as a function of the stock price  
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Figure II – put’s delta in the BS model as a function of the stock price  

 

 
 

Table XIX – Violation Rates for the Two-sided Inequality for Call Options 

  ITM    OTM  
 Bid Offer Midpoint Bid Offer Midpoint 

# of violations 19031 18692 18393 9692 9131 8338 
Total Number 49570 49570 49570 27854 27854 27854 
Violation Rates 38.39% 37.71% 37.11% 34.80% 32.78% 29.93% 

 

Table XX – Violation Rates for the Two-sided Inequality for Put Options 

  ITM    OTM  
 Bid Offer Midpoint Bid Offer Midpoint 

# of violations 9716 9896 9674 18822 16972 15258 
Total Number 27875 27875 27875 49695 49695 49695

Violation Rates 34.86% 35.50% 34.70% 37.87% 34.15% 30.70% 
 

A violation means that at least one of the inequalities is violated. The above results indicate 

the following. All violation rates from call options and put options are higher than the results 
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from table XIV and XX, because these violation rates are violations for two-sided inequalities. 

For calls, violation rates are for violations of the EMP and violations of the upper-bound of the 

inequality. For puts, violation rates are for violations of the EMP and violations of the lower-

bound of the inequality. Thus, if we use the violation rates in tables XIV and XX, minus the 

violation rates in tables XXII and XXIII, the results are the violation rates of upper-bound (for 

calls) and of lower-bound (for puts) only. The results are listed in the tables below.  

Table XXI – Violations Rates for the Upper-Bound of Δc/ΔS 

 ITM OTM 

 Bid Offer Midpoint Bid Offer Midpoint
# of Delta violations  15100 14530 14614 657 709 588 

Total Number 49570 49570 49570 27854 27854 27854 
Violation Rates 30.46% 29.31% 29.48% 2.36% 2.55% 2.11% 

 

Table XXII – Violations Rates for the Lower-Bound of Δp/ΔS 

 ITM OTM 
 Bid Offer Midpoint Bid Offer Midpoint

# of Delta violations  7532 7778 14614 1090 1216 1043 
Total Number 27875 27875 27875 49695 49695 49695

Violation Rates 27.02% 27.90% 27.35% 2.19% 2.45% 2.10% 
 

Recall that violation rates of the EMP for ITM calls and for ITM puts are lower than those 

for OTM calls and OTM puts, respectively. Here we see that violation rates of the upper-bound 

constraint (for calls) and of the lower-bound constraint (for puts) yield the opposite comparison. 

In fact, violation rates of the upper-bound for ITM calls and ITM puts are over ten times higher 

compared to OTM calls and OTM puts, respectively, regardless of which option quotation is 

used. These results conform to our expectations for the following reasons. The deltas of an OTM 

call is small, thus empirically it is unlikely for Δc to be greater than ΔS. In contrast, for deep 

ITM calls, since the delta values are close to one, Δc should be closer to ΔS, and market 
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imperfections may cause it to be higher. Likewise, for put options, since deep ITM puts have 

delta values close to -1, it is rather likely that Δp will exceed ΔS in absolute value. 

To sum up: It makes sense theoretically, and we have confirmed empirically, that the 

frequency of the upper/lower bounds violations is influenced by moneyness. It is higher for ITM 

options and lower for OTM options.  
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6. CAUSES OF VIOLATIONS 

EMP violations may have various causes, such as other underlying variables in the pricing 

model, different quotes used in the measurement of price differences (i.e. bid, offer or their 

average, combined in different ways for the purpose of taking differences), and some 

microstructure factors.  

6.1 Are Violations Caused by Changes in Other Underlying Variables  

Firstly, we address the question whether violations are caused by changes in other 

underlying variables. For example, it is known that value of an option will increase as the 

volatility of the underlying asset increases, keeping other variables fixed. With a similar 

interpretation, the value of a call will decay as it approaches expiration. 

In the Black-Scholes model, the value of an option (V) can be written as 

ܸ ൌ ܸሺܵ, ,ߪ ,ݐ ,ܭ ,ߜ  ሻ                                         (41)ݎ

ܵ: current value of the underlying asset 

  the volatility of the underlying asset :ߪ

 passage of time :ݐ

 the strike price :ܭ

 the dividend yield :ߜ

   the risk free interest rate :ݎ

The Taylor expansion of V gives  

Δܸ ൌ ܽݐ݈݁ܦ ൈ Δܵ ൅ ܸ݁݃ܽ ൈ Δߪ ൅ ܽݐ݄݁ܶ ൈ Δݐ ൅ ܽݒ݅ܦ ൈ Δߜ ൅ ݋݄ܴ ൈ Δݎ ൅ ଵ
ଶ

ܽ݉݉ܽܩ ൈ ሺΔܵሻଶ   (42) 
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Where the coefficients (the “Greeks”) are the first partial derivatives relative to the 

corresponding variables (except for Gamma, which is a second derivative) 

6.2 Single-Variable Linear Regression  

From equation (42), one will notice that an empirical test of the relationship between ΔV 

and ΔS ignores the influence of other variables. In this section, we study the empirical effect of 

adding σ as a variable. We do it in two steps: First, we regress ΔV on DeltaൈΔS, then we regress 

two variables, ΔV on DeltaൈΔS and VegaൈΔσ. We would like to test whether adding one more 

variable could improve the explanatory power, which would identify a source of the violations of 

the EMP. 

Following Bakshi, Cao and Chen (2000), our first regression (simple linear regression – 

SLR) is  

Δܸ ൌ ଴ߚ ൅ ଵߚ ൈ ܽݐ݈݁ܦ ൈ Δܵ,                                                                       (43) 

where Deltas are obtained from the OptionMetrics database. They are calculated by using the 

Black-Scholes model, and thus this test is model-specific. The logic behind this is that Delta×ΔS 

is the change in the option price predicted by the BS model, neglecting the effect of other 

variables. Thus in theory β1 should be 1. Even if the “true” model is different, multiplying ΔS by 

the BS Delta is likely to improve the fit of the regression, compared to using ΔS alone. 

We eliminate those option prices for which deltas are unavailable. We further categorize our 

dataset by moneyness of the options and calculate Δc and Δp by using three different quotes: bid, 

offer and bid-offer midpoint prices. The results are presented in the following tables.  
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Table XXIII – SLR Results: ITM Call Options with Bid Quotes 

Regression Statistics 
Multiple R 0.9715
R Square 0.9439
Adjusted R Square 0.9439
Standard Error 1.4875
Observations 39397

 
  df SS MS F Significance F 

Regression 1 1E+06 1E+06 662238 0 
Residual 39395 87170 2.2127
Total 39396 2E+06       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 0.0403 0.0075 5.3637 8E-08 0.0255 0.055 
DeltaൈΔS 0.9616 0.0012 813.78 0 0.9592 0.9639 

 
 
 

Table XXIV – SLR Results: ITM Call Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9724
R Square 0.9456
Adjusted R Square 0.9456
Standard Error 1.4729
Observations 39397

 
  df SS MS F Significance F 

Regression 1 1E+06 1E+06 684468 0 
Residual 39395 85468 2.1695
Total 39396 2E+06       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 0.0308 0.0074 4.1374 4E-05 0.0162 0.0453 
DeltaൈΔS 0.968 0.0012 827.33 0 0.9657 0.9703 
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Table XXV – SLR Results: ITM Call Options with AVG Quotes 

Regression Statistics 
Multiple R 0.9733
R Square 0.9474
Adjusted R Square 0.9474
Standard Error 1.4425
Observations 39397

 
  df SS MS F Significance F 

Regression 1 1E+06 1E+06 708957 0 
Residual 39395 81970 2.0807
Total 39396 2E+06       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 0.0355 0.0073 4.878 1E-06 0.0212 0.0498 
DeltaൈΔS 0.9648 0.0011 842 0 0.9625 0.967 

 
 
 

Table XXVI – SLR Results: OTM Call Options with Bid Quotes 

Regression Statistics 
Multiple R 0.943
R Square 0.8892
Adjusted R Square 0.8892
Standard Error 0.7065
Observations 27388

 
  df SS MS F Significance F 

Regression 1 109701 109701 219788 0 
Residual 27386 13669 0.4991
Total 27387 123370       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.193 0.0043 -45.31 0 -0.202 -0.185 
DeltaൈΔS 0.8825 0.0019 468.82 0 0.8789 0.8862 
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Table XXVII – SLR Results: OTM Call Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9454
R Square 0.8937
Adjusted R Square 0.8937
Standard Error 0.7141
Observations 27388

 
  df SS MS F Significance F 

Regression 1 117406 117406 230227 0 
Residual 27386 13966 0.51
Total 27387 131371       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.213 0.0043 -49.42 0 -0.222 -0.205 
DeltaൈΔS 0.913 0.0019 479.82 0 0.9093 0.9167 

 
 
 

Table XXVIII – SLR Results: OTM Call Options with AVG Quotes 

 Regression Statistics 
Multiple R 0.9518
R Square 0.9059
Adjusted R Square 0.9059
Standard Error 0.6562
Observations 27388

 
  df SS MS F Significance F 

Regression 1 113521 113521 263606 0 
Residual 27386 11794 0.4306
Total 27387 125314       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.203 0.004 -51.28 0 -0.211 -0.196 
DeltaൈΔS 0.8978 0.0017 513.43 0 0.8943 0.9012 
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Table XXIX – SLR Results: ITM Put Options with Bid Quotes 

Regression Statistics 
Multiple R 0.9687 
R Square 0.9383 
Adjusted R Square 0.9383 
Standard Error 1.3879 
Observations 10880 

 
  df SS MS F Significance F 

Regression 1 318661 318661 165434 0 
Residual 10878 20953 1.9262
Total 10879 339615       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.113 0.0133 -8.475 3E-17 -0.139 -0.087 
DeltaൈΔS 1.0943 0.0027 406.74 0 1.089 1.0996 

 

 

Table XXX – SLR Results: ITM Put Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9691 
R Square 0.9391 
Adjusted R Square 0.9391 
Standard Error 1.3913 
Observations 10880 

 
  df SS MS F Significance F 

Regression 1 324590 324590 167689 0 
Residual 10878 21056 1.9357
Total 10879 345646       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.132 0.0133 -9.913 5E-23 -0.159 -0.106 
DeltaൈΔS 1.1044 0.0027 409.5 0 1.0991 1.1097 
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Table XXXI – SLR Results: ITM Put Options with AVG Quotes 

Regression Statistics 
Multiple R 0.9707 
R Square 0.9423 
Adjusted R Square 0.9422 
Standard Error 1.3461 
Observations 10880 

 
  df SS MS F Significance F 

Regression 1 321619 321619 177498 0 
Residual 10878 19711 1.812
Total 10879 341329       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.123 0.0129 -9.492 3E-21 -0.148 -0.097 
DeltaൈΔS 1.0994 0.0026 421.3 0 1.0943 1.1045 

 
 
 

Table XXXII – SLR Results: OTM Put Options with Bid Quotes 

Regression Statistics 
Multiple R 0.9416 
R Square 0.8866 
Adjusted R Square 0.8866 
Standard Error 0.4861 
Observations 47962 

 
  df SS MS F Significance F 

Regression 1 88637 88637 375085 0 
Residual 47960 11333 0.2363
Total 47961 99970       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.12 0.0022 -54.02 0 -0.124 -0.116 
DeltaൈΔS 1.0991 0.0018 612.44 0 1.0956 1.1027 
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Table XXXIII – SLR Results: OTM Put Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9371 
R Square 0.8781 
Adjusted R Square 0.8781 
Standard Error 0.518 
Observations 47962 

 
  df SS MS F Significance F 

Regression 1 92663 92663 345372 0 
Residual 47960 12868 0.2683
Total 47961 105530       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.133 0.0024 -56.34 0 -0.138 -0.129 
DeltaൈΔS 1.1238 0.0019 587.68 0 1.1201 1.1276 

 
 
 

Table XXXIV– SLR Results: OTM Put Options with AVG Quotes 

Regression Statistics 
Multiple R 0.9518 
R Square 0.9059 
Adjusted R Square 0.9059 
Standard Error 0.4432 
Observations 47962 

 
  df SS MS F Significance F 

Regression 1 90638 90638 461510 0 
Residual 47960 9419.1 0.1964
Total 47961 100058       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.127 0.002 -62.56 0 -0.131 -0.123 
DeltaൈΔS 1.1115 0.0016 679.34 0 1.1083 1.1147 
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The following observations and conclusions can be made from above tables. The regression 

confirms that the EMP is satisfied empirically on the average. Generally speaking, all models 

have strong explanatory power in explaining changes in options prices, since all models have 

relatively high R2 values. For call options, models with ITM options have higher R2 value than 

models with OTM options. The logic for that was explained in a previous section: For low-priced 

options, the constraint is to be priced in multiples of the tick size. Both the intercept term and the 

independent variable, DeltaൈΔS, are significant at 5% significance level which indicate that we 

can reject the null hypothesis that β1 is equal to zero. Furthermore, the β1’s from regressions for 

calls are positive, which empirically proves that on the average call option prices comply with 

the EMP. Further analysis can be done by setting different null hypotheses, such as that β1 is 

greater than zero (i.e. using a one-sided test) and/or β1 is equal to one. One more point worth 

mentioning: In Bakshi, Cao and Chen (2000), they adjusted the standard errors by White’s 

heteroscedasticity-consistent estimator, in order to address “non-constant volatility”. We do not 

do that here. This can be the topic of further investigation. 

Similar conclusions can be made for put options. In fact, this is worth further clarification. 

Note that our independent variable is DeltaൈΔS, where Delta is negative for a put. Thus a 

positive β1 means complying with the EMP. A change in the put price is in the opposite direction 

of the change in corresponding index is already reflected in the fact that delta is negative. Thus 

β1 is theoretically expected to be positive. Also note that, according to Black-Scholes model, β1 is 

expected to have value of one. Indeed, our regression results show that all twelve β1’s have 

values close to one. On average, calls and puts comply with the EMP according to the regression 

results. 



 

 
45 

 

6.3 A Two-Variable Regression 

Since the above regression equation actually explains the validity of the EMP, not the 

violations of the EMP, we add one more independent variable, volatility, into the above 

regression equation. However, Δσ as one of the inputs is unavailable. Even though we do have 

BS implied volatility in the dataset, we cannot use it in our regression, since, by definition, the 

Black-Scholes formula is correct when one uses the implied volatility. In what follows, we 

denote  

ܪ ൌ ୪୬ሺு௜௚௛ሻି୪୬ ሺ௅௢௪ሻ
஺௩௘௥௔௚௘ ௢௙ ୪୬ሺு௜௚௛ሻ௔௡ௗ ୪୬ሺ௅௢௪ሻ

 . 

Here high and low are the highest and lowest prices of the underlying asset during a trading 

day, respectively. We use H as a proxy to the volatility σ, and thus ΔH will be used as a proxy 

for Δσ.  In other words, our analysis focuses on the effects from DeltaൈΔS, and VegaൈΔH. Vega 

is taken from the database OptionMetrics. It is calculated from the Black-Scholes model. The 

logic for using the BS Vega is similar to the one for using the BS Delta, as explained in the 

previous subsection. 

We run the following regression  

ΔV ൌ β଴ ൅ βଵ ൈ Delta ൈ ΔS ൅ βଶ ൈ Vega ൈ ΔH.                                                              (44) 

The results are presented in the following order: (1) call options: ITM with bid, offer and 

bid-offer midpoint prices; OTM with bid, offer and bid-offer midpoint prices; (2) put options: 

ITM with bid, offer and bid-offer midpoint prices; OTM with bid, offer and bid-offer midpoint 

prices.  
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Table XXXV – Results from Equation (44): ITM Call Options with Bid Quotes 

Regression Statistics 
Multiple R 0.9721 
R Square 0.945 
Adjusted R Square 0.945 
Standard Error 1.4759 
Observations 38793 

 
  df SS MS F Significance F 

Regression 2 1E+06 725264 332967 0 
Residual 38790 84492 2.1782
Total 38792 2E+06       

 

  Coefficients 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

β0 0.0382 0.0075 5.094 4E-07 0.0235 0.0529 
DeltaൈΔS 0.9599 0.0012 812.38 0 0.9576 0.9622 
VegaൈΔH -1.148 0.0526 -21.84 4E-105 -1.252 -1.045 

 
 
 

Table XXXVI– Results from Equation (44): ITM Call Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9728 
R Square 0.9464 
Adjusted R Square 0.9464 
Standard Error 1.4646 
Observations 38793 

 
  df SS MS F Significance F 

Regression 2 1E+06 734670 342517 0 
Residual 38790 83201 2.1449
Total 38792 2E+06       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 0.0291 0.0074 3.9082 9E-05 0.0145 0.0437 
DeltaൈΔS 0.9666 0.0012 824.39 0 0.9643 0.9689 
VegaൈΔH -0.907 0.0522 -17.39 2E-67 -1.01 -0.805 
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Table XXXVII – Results from Equation (44): ITM Call Options with AVG Quotes 

Regression Statistics 
Multiple R 0.9738 
R Square 0.9483 
Adjusted R Square 0.9483 
Standard Error 1.432 
Observations 38793 

 
  df SS MS F Significance F 

Regression 2 1E+06 729953 355987 0 
Residual 38790 79539 2.0505
Total 38792 2E+06       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 0.0337 0.0073 4.6237 4E-06 0.0194 0.0479 
DeltaൈΔS 0.9633 0.0011 840.22 0 0.961 0.9655 
VegaൈΔH -1.028 0.051 -20.15 8E-90 -1.128 -0.928 

 
 
 

Table XXXVIII – Results from Equation (44): OTM Call Options with Bid Quotes 

Regression Statistics 
Multiple R 0.9448 
R Square 0.8926 
Adjusted R Square 0.8926 
Standard Error 0.6975 
Observations 26864 

 
  df SS MS F Significance F 

Regression 2 108668 54334 111677 0 
Residual 26861 13069 0.4865
Total 26863 121736       

 

  Coefficients 
Standard 

Error t Stat P-value 
Lower 
95% 

Upper 
95% 

β0 -0.192 0.0043 -45.18 0 -0.201 -0.184 
DeltaൈΔS 0.8785 0.0019 466.5 0 0.8748 0.8822 
VegaൈΔH -0.453 0.0207 -21.86 5E-105 -0.494 -0.413 
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Table XXXIX– Results from Equation (44): OTM Call Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9465 
R Square 0.8959 
Adjusted R Square 0.8959 
Standard Error 0.7086 
Observations 26864 

 
  df SS MS F Significance F 

Regression 2 116117 58058 115632 0 
Residual 26861 13487 0.5021
Total 26863 129604       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.212 0.0043 -48.93 0 -0.22 -0.203 
DeltaൈΔS 0.9104 0.0019 475.88 0 0.9066 0.9141 
VegaൈΔH -0.304 0.0211 -14.42 6E-47 -0.345 -0.262 

 
 
 

Table XL – Results from Equation (44): OTM Call Options with AVG Quotes 

Regression Statistics 
Multiple R 0.9533 
R Square 0.9088 
Adjusted R Square 0.9088 
Standard Error 0.648 
Observations 26864 

 
  df SS MS F Significance F 

Regression 2 112354 56177 133795 0 
Residual 26861 11278 0.4199
Total 26863 123632       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.202 0.004 0 -0.21 -0.194 
DeltaൈΔS 0.8944 0.0017 0 0.891 0.8979 
VegaൈΔH -0.378 0.0193 2E-85 -0.416 -0.341 
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Table XLI – Results from Equation (44): ITM Put Options with Bid Quotes 

Regression Statistics 
Multiple R 0.9688 
R Square 0.9385 
Adjusted R Square 0.9385 
Standard Error 1.3822 
Observations 10829 

 
  df SS MS F Significance F 

Regression 2 315802 157901 82651 0 
Residual 10826 20683 1.9104
Total 10828 336485       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.107 0.0133 -8.055 9E-16 -0.133 -0.081 
DeltaൈΔS 1.0907 0.0027 404.38 0 1.0855 1.096 
VegaൈΔH 0.5007 0.0548 9.1319 8E-20 0.3932 0.6081 

 
 
 

Table XLII – Results from Equation (44): ITM Put Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9697 
R Square 0.9404 
Adjusted R Square 0.9404 
Standard Error 1.3705 
Observations 10829 

 
  df SS MS F Significance F 

Regression 2 320664 160332 85357 0 
Residual 10826 20335 1.8784
Total 10828 340999       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.118 0.0132 -8.94 5E-19 -0.144 -0.092 
DeltaൈΔS 1.0986 0.0027 410.75 0 1.0933 1.1038 
VegaൈΔH 0.6043 0.0544 11.116 1E-28 0.4977 0.7108 
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Table XLIII – Results from Equation (44): ITM Put Options with bid-offer midpoint prices 

Regression Statistics 
Multiple R 0.971 
R Square 0.9429 
Adjusted R Square 0.9429 
Standard Error 1.3339 
Observations 10829 

 
  df SS MS F Significance F 

Regression 2 318227 159113 89423 0 
Residual 10826 19263 1.7793
Total 10828 337490       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.112 0.0128 -8.766 2E-18 -0.138 -0.087 
DeltaൈΔS 1.0947 0.0026 420.52 0 1.0896 1.0998 
VegaൈΔH 0.5525 0.0529 10.442 2E-25 0.4488 0.6562 

 
 
 

Table XLIV – Results from Equation (44): OTM Put Options with Bid Quotes 

Regression Statistics 
Multiple R 0.9418 
R Square 0.887 
Adjusted R Square 0.887 
Standard Error 0.4831 
Observations 47774 

 
  df SS MS F Significance F 

Regression 2 87487 43744 187441 0 
Residual 47771 11148 0.2334
Total 47773 98636       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.119 0.0022 -53.62 0 -0.123 -0.114 
DeltaൈΔS 1.0943 0.0018 608.89 0 1.0908 1.0978 
VegaൈΔH 0.2177 0.0168 12.932 3E-38 0.1847 0.2507 
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Table XLV – Results from Equation (44): OTM Put Options with Offer Quotes 

Regression Statistics 
Multiple R 0.9389 
R Square 0.8816 
Adjusted R Square 0.8816 
Standard Error 0.5052 
Observations 47774 

 
  df SS MS F Significance F 

Regression 2 90773 45387 177815 0 
Residual 47771 12193 0.2552
Total 47773 102967       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.128 0.0023 -55.47 0 -0.133 -0.124 
DeltaൈΔS 1.113 0.0019 592.18 0 1.1093 1.1167 
VegaൈΔH 0.3589 0.0176 20.39 5E-92 0.3244 0.3934 

 

Table XLVI – Results from Equation (44): OTM Put Options with bid-offer midpoint 
prices 

Regression Statistics 
Multiple R 0.9527 
R Square 0.9077 
Adjusted R Square 0.9077 
Standard Error 0.4356 
Observations 47774 

 
  df SS MS F Significance F 

Regression 2 89119 44559 234789 0 
Residual 47771 9066.2 0.1898
Total 47773 98185       

 

  Coefficients 
Standard 

Error t Stat 
P-

value 
Lower 
95% 

Upper 
95% 

β0 -0.123 0.002 -61.89 0 -0.127 -0.119 
DeltaൈΔS 1.1037 0.0016 680.98 0 1.1005 1.1068 
VegaൈΔH 0.2883 0.0152 18.994 4E-80 0.2585 0.318 
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The following observations can be made from tables above. Generally speaking, R2s are not 

improved very much by adding one more independent variable. In each model, all intercepts and 

independent variables are significant at 5% significance level (again, we can reject the null 

hypothesis that β1 and β2 are different from zero). Similarly, to the SLR, further analyses can be 

done by setting different null hypotheses:  β1 is greater than zero, and/or β1 is equal to one; and 

β2 is greater than zero. For call options, some coefficients of VegaൈΔH terms are negative, 

which indicate that volatility of the underlying asset can be considered as a cause of violations of 

the EMP for call options. For example, β2 values from regressions for OTM call options have 

negative signs. For put options, the β2 values from regressions for all ITM and OTM puts have 

positive signs as expected. 

One point worth mentioning is that, according to the Black-Scholes model, we expect the 

coefficient of VegaൈΔσ to be close to one. However, since we use ΔH as a proxy of Δσ, the 

coefficients of VegaൈΔH are not expected to be one anymore. Only the sign matters. To sum up, 

those results indicate that changes in the volatility of the underlying asset can be considered as a 

cause of the violations of the EMP. Further investigation is needed in order to explain these 

results in depth. 

6.4 Are Violations Caused by Different Quotes? 

From all results tables in Section 5, we can conclude that the choice of using different quotes, 

such as bid, or offer, or their average, will affect the changes in option’s value, and thus will 

affect violation rates as well. For call options, violation rates are the highest when using bid 

prices and lowest when using bid- offer midpoints. Similar results are found for put options.  
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If we compare “horizontally”, for example, we compare all type I violations by using 

different option prices and grouping options by moneyness, then the following conclusions can 

be made. For call options, violation rates are the highest when using offer quotes, for both ITM 

and OTM options. Type II violations do not have as clear pattern as Type I violations. Generally 

speaking, violation rates of Type II are very similar among three “option prices” inputs. However, 

if we also take moneyness into account, violation rates are the highest by using bid quotes for 

ITM options, and by bid-offer midpoints for OTM options. There is an apparent but different 

pattern for Type III violations: violations rates are the highest by using bid quotes regardless of 

moneyness of the options. For put options, the same results could be inferred from all the tables 

listed above. Thus, for all options, we can conclude that the choice of the quotation method used 

in the research affects the findings regarding the violation rate of the EMP.  

In addition, we can test how different the results are by using bid – offer and offer – bid 

quotes when we calculate Δc or Δp. The results are listed below.  

Table XLVII – Violation Rates for Call Options by Using (Bid – Offer) and (Offer –Bid) 
Quotes 

 ITM OTM 
 Bid(t+1) – 

Offer(t) 
Offer(t+1) – 

Bid(t) 
Bid(t+1) – 

Offer(t) 
Offer(t+1) – 

Bid(t) 
# of violations 9768 6381 12007 8518 
Total Number 49570 49570 27854 27854 

Violation Rates 19.71% 12.87% 43.11% 30.58% 
# of violations   

Type I 46 5979 2 7867 
Type II 9372 38 11729 138 
Type III 350 364 276 513 

Violation Rates   
Type I 0.09% 12.06% 0.01% 28.24% 
Type II 18.91% 0.08% 42.11% 0.50% 
Type III 0.71% 0.73% 0.99% 1.84% 
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Table XLVIII – Violation Rates for Put Options by Using (Bid – Offer) and (Offer –Bid) 
Quotes 

 ITM OTM 
 Bid(t+1) – 

Offer(t) 
Offer(t+1) – 

Bid(t) 
Bid(t+1) – 

Offer(t) 
Offer(t+1) – 

Bid(t) 
# of violations 4310 5336 18054 22595 
Total Number 27875 27875 49695 49695 

Violation Rates 15.46% 19.14% 36.33% 45.47% 
# of violations     

Type IV 8 5083 10 21495 
Type V 4092 44 17650 77 
Type VI 210 209 394 1023 

Violation Rates     
Type IV 0.03% 18.24% 0.06% 43.25% 
Type V 14.68% 0.16% 35.52% 0.15% 
Type VI 0.75% 0.75% 0.79% 2.06% 

 

The choice of using either (bid – offer) or (offer – bid) prices is closely related to hedging 

strategies from the perspective of a one-day hedger, as these are the quotes which are relevant for 

hedging effectiveness. For both ITM and OTM call options, violation rates are lower by using 

(offer – bid) prices. However, the use of (offer – bid) prices will cause higher Type I violations, 

which is the “most severe” type from a theoretical point of view. Likewise, for both ITM and 

OTM put options, violation rates are lower by using (bid – offer) prices. Here the use of (offer – 

bid) prices will cause higher Type IV violations. 

Let us elaborate on the interpretation for hedging. Suppose an investor A has a long position 

in the index which she wishes to hedge for one business day with a short position in a call. On 

the call position, the profit would be computed from the call prices as follows: – (offer(t+1) – 

bid(t)). Thus, A will want to choose ITM calls which have lower violation rates of 12.87%, 

compared to a violation rate of 30.5809% from OTM calls. In contrast, suppose an investor B 

has a short position in the index which he wishes to hedge for one business day with a long 
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position in a call. Then, on the option component, his profit will be (bid(t+1) – offer(t)) prices. 

Thus, B will want to choose ITM calls, which have lower violation rates of 19.71%, compared to 

higher violation rates of 36.33% from OTM calls. Similar examples can be made for put options. 

In conclusion, the above results can be considered as guidance for which option to choose for the 

purpose of hedging.  

6.5 Are Violations Caused by Market Microstructure Factors? 

So far, our causes of violations are all quantitative factors. However, there are some 

qualitative factors as well, such as trading mechanisms (market microstructure) not reflected in 

our models. We summarize here two additional causes: market makers’ behaviour and rational 

trading tactics.  

As pointed out by Bakshi, Cao and Chen (2000), in the exchanges where options on S&P500 

are traded, there are designated market makers. They exist in order to ensure the continual 

implementation of an “auto-quote” computer program. In other words, they control some 

parameters in the computer systems. More specifically, they can adjust (either widening or 

shrinking) the bid-offer spread, according to different options’ characteristics, such as 

moneyness and maturity, and various market conditions. On one hand, these activities may help 

to improve the efficiency and liquidity of the market. On the other hand, they influence market’s 

prices beyond the stock prices’ “natural” movements by adding additional source of uncertainty. 

As a result, this influence may cause the violations of the EMP.  

According to Perignon (2006), another possible cause of violations of the EMP is the 

rational trading tactics by traders, trying to unload positions at certain times of the day or the 

week. Options with less liquidity may induce traders, who are eager to get their transactions done 
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before the market closes, to lower their limit selling price to be a little bit below the offer price 

observed in the market. For example, suppose trader A wants to sell call options, and the bid and 

offer quotes in the market are $99 and $100 respectively. Suppose the most recent trade was at 

$100, and the investor is willing to sell at $99.5. During the time while A is waiting to sell 

his/her options, the underlying asset’s prices rises by a small amount that does not cause option’s 

price to change. If A still desires to sell his/her options, A sells his/her options actually at $99.5. 

Thus, one can observe an increase in the underlying asset’s price, but a decrease in the option’s 

value. This is a violation of the EMP. Liquidity plays an important role in rational trading tactics, 

and this might be one of the causes of violations of the EMP.  
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7. SUMMARY AND IMPLICATIONS FOR HEDGING 

In this work, we study the co-movement of option prices and the underlying index. In theory, 

a call option and the index should always move in the same direction, while a put option and the 

index should move in opposite directions. When applied to time series of prices, this is called the 

Empirical Monotonicity Property (EMP). In addition, the change in the option price should be, in 

absolute value, below the change in the underlying index. 

After summarizing the definitions and the theoretical results, we conduct empirical tests of 

the above properties. We use call and put options on the S&P 500 index from June 1, 2005 to 

May 31, 2006 from US exchanges. Our tests follow previous work by Bakshi, Cao and Chen 

(2000) and Pérignon (2006). While they used intraday transaction data, for our study we had 

only daily data. To compensate for that, we extend the tests in different directions, using bid and 

offer prices. 

 We test three violation types for call options and three violation types for put options. For 

example, for a call, Type I violation means ΔS < 0, and Δc > 0, Type II means ΔS > 0, and Δc < 

0 and Type III means ΔS്0, and Δc = 0. We also divide the data into subgroups in different 

ways. First, without any grouping, we obtain that call options’ prices move in opposite direction 

to the underlying index 14.89% of the time (using bid-offer midpoint prices for option prices). 

The violation rates increase if we use either bid or offer prices. Among all three violation types, 

Type II violation has the highest occurrence rate, followed by Type III violation. Likewise, put 

options’ prices move in the same direction of the underlying asset 20.97% of the time, using bid-

offer midpoint as above. Again, the violation rates increase if we use either bid or offer prices. 
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Among all three violation types, Type VI violation (i.e. ΔS്0, and Δp = 0) has the highest rate, 

followed by Type V violation (ΔS > 0, and Δp > 0). 

We also test the violation rates while grouping the option prices by their BS implied 

volatility (IV). For call options, we find that violation rates are 4.24% for calls with IV<1 while 

it is 15.74% for calls with IV൒1. In contrast, for put options, violation rates are higher for 

options whose BS implied volatilities are high. It was 23.33% for IV < 1 and 69.86% for IV൒1. 

For call or put options, we obtained these results by using bid-offer midpoint prices. Similar 

results can be found by using either bid and offer prices.  

We also test the violation rates while grouping the option prices by their moneyness. For call 

options, our results indicate that violation rates are much lower for ITM calls (7.62%), compared 

to OTM calls (27.82%), both with bid-offer midpoint prices. Similar results can be found for put 

options. The violation rates are much lower for ITM puts (7.36%), compared to OTM puts 

(28.60%).   

Lastly, we compare the magnitude of the price changes Δc (or Δp) and ΔS. For example, 

there is an “upper-bound violation” for Δc if Δc/ΔS൒1, and there is a “lower-bound violation” 

for Δp if Δp/ΔS൑-1. The results are very similar for call and put prices. The violation rates are 

lowest when we use bid-offer midpoint prices. In addition, violation rates are lower for ITM calls 

and puts, compared with OTM calls and puts, respectively.    

After testing the violation rates for calls and puts, we attempt to find some possible causes 

for the violations of the EMP. We first conduct single linear regression in order to confirm that 

the relationship between ΔS and ΔV follows the EMP, ignoring other variables. Then we 

perform a multi-variable regression in order to test whether violations are caused by changes in 
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other underlying variables. In our case we only do it with volatility of the underlying asset, based 

on a proxy. Our results indicate that changes in volatility may be one of the causes of violations 

of the EMP. We also find that violations are influenced by different option prices quotes, such as 

bid, or offer, or bid-offer midpoint prices. In addition, we find that violation rates also differ by 

using (bid – offer) and (offer –bid) quotes (grouping by moneyness). This may of interest to a 

one-period hedger, who, for example, may buy the option at the offer price and sell it at the bid 

price. Lastly, we summarize possible explanations from Bakshi, Cao and Chen (2000) and 

Pérignon (2006), relating EMP violations to activities of market makers and traders’ rational 

trading tactics, respectively. 

The extent of EMP violation is important in the context of hedging effectiveness. In the 

Black-Scholes model, or any other model, a typical hedge for a stock position involves shorting a 

call (or going long on a put), with the understanding that the call and the stock will move up or 

down in tandem (Bakshi, Cao and Chen (2000)). 

However, the EMP does not always hold. In this paper we find that 14.89% of call price 

movements and 20.97% of put price movements are in the “wrong” direction compared to the 

index. Such a high rate of violation of the EMP will severely affect the effectiveness of the 

hedging strategies and will lead to unexpected losses. In a theoretical world, hedging is 

continuous, while in practice this means frequent position rebalancing. In addition to transaction 

costs, frequent trading may mean that there will be a certain percentage of EMP violations, 

which will compound the hedging losses. 

Thus our violation rates analysis by moneyness and types of violations may be used as 

guidance for the purpose of hedging. For example, if one wishes to hedge a long position in the 
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index, this can be done by going short on a call or going long on a put. The choice between these 

two possible hedges may be affected by our knowledge of the violation rates in each case. The 

same is true for the choice between OTM options and ITM options. Higher violation rates from 

OTM options may reduce the effectiveness of hedging. 
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