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Abstract

Lattice Quantum Chromodynamics is a cornerstone of phenomenology for low-energy strong
interactions. This thesis deals with new algorithms which may allow the use of larger lattice
spacing in numerical simulations of QCD.

Traditionally lattice calculations have been done using a Wilson action where the
lattice spacing has been kept in the 0.10 fm range to achieve good accuracy. In this research
calculations are performed using an action where leading discretization errors in the Wilson
action are removed. This so-called tadpole-improved action is used on coarse lattices to make
new calculations in SU(2) colour. The efficiency of these calculations is increased by using
anisotropic lattices whereby the temporal spacing is smaller than the spatial. A "fuzzing"
technique is used to enhance the signal by smearing the straight line lattice link with other
nearby paths.

The specific calculations are for the lattice anisotropy, the static quark potential, the
scalar glueball mass and the tensor glueball mass. Both Wilson and tadpole-improved actions
are used on coarse lattices with spacings in the range of about 0.2 fm to 0.4 fm.

The lattice anisotropy shows much less renormalization for the tadpole-improved
action than for the Wilson action. As well, breaking of rotational invariance is much smaller
for the tadpole-improved action. The scalar glueball mass is substantially closer to the
continuum value for the tadpole-improved action than the Wilson action. Preliminary results
for the tensor glueball mass are obtained, but no statistically significant difference is

observed between the two actions.
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Chapter 1
Introduction

Latiice Quantum Chromodynamics (QCD) has become a comerstone of phenomenology for
low-energy strong interactions. Perturbative methods for solving a quantum field theory like
Quantum Electrodynamics (QED) fail for treating QCD at low energies or large distances,
where the running coupling constant e (r) becomes large. Lattice QCD offers a truly non-
perturbative technique for studying low energy phenomenology. The techniques of lattice
QCD readily lend themselves to computer simulation. Since the mid-1970's when the gauge
mvariant lattice action was introduced by Wilson [1], the main concern of theorists has been
getting fast enough computers to obtain numerical solutions of full QCD. This thesis deals
with newly developed methods to reduce the amount of computer time needed to solve QCD
problems.

The main ingredient of the cost of doing a lattice simulation on the computer is the
lattice spacing (usually denoted by a). The length (L) of a side of the lattice is L.=na where
n is the number of lattice points on a side. The physical volume of the four-dimensional
lattice is L* and, in order to keep the physical volume fixed, the length L must be fixed as
a—0. Therefore the total number of points in the lattice is proportional to 1/a*. Furthermore
the lattice spacing (a) does not appear explicitly either in the action or in t“< observables

computed from the simulation. Therefore, the length of an observable in lattice units, {=l/a,



diverges as a—0, where | is the physical length. Diverging correlation lengths are a hallmark
of second order phase transitions and thus it is expected that auto-correlation functions will
exhibit critical slowing down. The number of updates required to generate an uncorrelated
member of the ensemble of quantum states, near a critical point, typically diverges as 1/a%
(See for example reference [2]). Hence the total cost of doing a computer simulation will
scale as 1/a°.

In order to keep the cost down it is therefore desirable to use as large a lattice spacing
as possible. However, errors are introduced in moving from the continuum to the discrete
lattice and, the larger the lattice spacing, the larger are these errors. Over time, a consensus
has emerged that lattice spacings should be kept in the 0.05 fm to 0.10 fm range to minimize
these errors and have reliable results. (For a pedagogical review see, for example, reference
{3].) Unfortunately, this requires enormous lattices to achieve adequate physical volume. For
example a 32° lattice at 0.05 fm spacing has a modest volume of (1.6 fm)* bearing in mind
that a typical length scale for confinement is about 1 fm, the "radius" of a proton. This then

equates to supercomputing.

1.1 Tadpole Improvement

Consider solving a classical field theory on a lattice, for example Coulomb's law,
VA 0 - P- At leading order in a, the derivatives are defined by finite differences. In the
example 9A °(x) = (A (x+ia)-A°(x-ia))/2a + O(a®). A better approximation,
eliminating the O(a®) errors, can be obtained using next-to-nearest neighbeur couplings. A
similar approach can be tried for a discrete version of a quantum field theory. However, in
a quantum field theory there are large ultraviolet fluctuations (A, ~ 1/a) which can spoil such

power counting in a. In order to remove these effects which actually generate the leading
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order discretization errors in the conventional lattice actions (usually referred to as Wilson
actions), a technique called tadpole improvement was originally suggested by Lepage and
Mackenzie in 1993.[4] The ultraviolet fluctuations come from so-called tadpole diagrams
that are induced by a non-linear connection between the lattice quantum fields and the
standard continuum gauge fields. Tadpole improvement largely removes these ultraviolet
fluctuations by doing a mean field renormalization of the lattice quantum fields.

One of the first and most thorough applications of this technique has been the
calculations of the upsilon [5] and charmonium [6] spectra by Davies and collaborators in
1994 and 1995, where leading discretization errors in a heavy quark action were removed.
However, the gluonic action was not improved in these calculations and so the lattice spacing
was kept relatively small.

It was more recently demonstrated that tadpole improvement could be used to remove
discretization errors in both the gluonic and quark actions in order to work on very coarse
lattices. In 1995, Alford and collaborators computed the SU(3) static quark potential on a
coarse lattice with spacing of 0.4 fm and found that rotational invariance was broken by 40%
in the Wilson theory but only 2-4% in the improved theory.[7] In the same research paper
they also looked at the spin-averaged charmonium spectrum. Using an improved action for
the lattices with spacings of 0.40 fm, 0.33 fm and 0.24 fm, they found that the spectrum
agreed within errors to a Wilson action calculation on a lattice with spacing of 0.17 fm.

In 1996, Fiebig and Woloshyn analyzed light hadron masses using a tadpole-
improved action. For the ratio of nucleon to p-meson mass, the improved action values at
0.3 fm and 0.4 fm agree with the Wilson action at smaller lattice spacing (S 0.1 fm).[8]
Light hadron spectroscopy has also been done by Alford et al [9] and by Collins et al [10].

Hadrons are made up of more elementary particles called quarks. The gauge particles
that provide the strong binding force between the quarks are called gluons. The gluons carry

a colour "charge" and can interact directly with each other. Due to confinement, a state with



net colour can never be seen; however, colour-singlet combinations of gluons ought to have
finite energy. These bound states of gluons are referred to as gluonium or more commonly
as glueballs. By studying the pure gauge sector and ignoring the effects arising from virtual
quarks an approximation of the glueball mass can be achieved.[11]

In 1995 Morningstar and Peardon used a tadpole-improved acticn to examine the
SU(3) scalar glueball spectrum.[12] They found a significant reduction in the finite lattice
spacing errors in the glueball mass. However the large lattice spacing in the "temporal"
direction limited the number of statistically useful mass measurements. More recently they

repeated SU(3) glueballs on an anisotropic lattice.
1.2 Anisotropic Lattice

The efficiency of certain lattice calculations can be enhanced by using a smaller lattice
spacing for the "temporal" direction a, than for the "spatial" directions a,. For an example,
the scalar glueball correlation function falls off exponentially with Euclidean time as
e l‘Twhile the statistical noise is fairly constant. The idea is to get more measurements at
smaller physical T before the signal disappears into the noise. Therefore it is more efficient
here to use a smaller "temporal" lattice spacing than to do additional Monte Carlo
measurements on an isotropic lattice.

For an anisotropic lattice the bare input value of anisotropy, a/a,, is never equal to
the measured value of anisotropy. The reason is that the bare input value is renormalized by
quantum effects. In an anisotropic lattice action there are two different couplings. One
coupling multiplies terms sensitive only to the "spatial" length scale a,. The other coupling
multiplies terms sensitive to both a, and a,. These two couplings can (and do) behave

differently as these lattice spacings are sent to zero, and this shows up as a "renormalization"

of the input anisotropy. Pioneering theoretical work was done by A. Hasenfratz and P.
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Hasenfratz [13] in 1981, and by F. Karsch {14] in 1982. In 1988 Burgers et al. showed
numerically that these renormalizations can have large effects on the anisotropy.[15] Alford
et al. showed in 1996 that tadpole-improvement removed most of these renormalizations.[16]
Some preliminary results obtained in this thesis have been reported in that work.
Following this work, in 1996 Morningstar and Peardon used coarse anisotropic
lattices with tadpole-improved actions to examine SU(3) glueball masses.[17] In this
research, they required much smaller statistical samplings to resolve the glueball correlators
than in their previous isotropic work.[12] Using an anisotropy of 1/3 with tadpole-
improvement they found that to get similar accuracy they required two to three orders of
magnitude fewer calculations than were needed on Wilson actions which used much smaller

lattice spacings.

1.3 Fuzzing

Fuzzing is a technique that has been successfully used to reduce the noise and enhance the
signal in lattice simulations. In a lattice formulation of QCD the gauge fields are replaced by
"links" which "transport” the phase of a quark (or gauge) field from one site to another. In
fuzzing the straight line lattice link is smeared with other nearby paths. In some calculations,
for example the mass of the glueball, the simplest operators are constructed from small loops
which are generally the size of the smallest cell on the lattice while the objects being
measured tend to be several lattice spacings in size. The idea is to make operators that are
closer to the size of the physical object being measured and thus to increase the overlap with
the ground state. The Teper fuzzing method is described in reference [18]. In this research

I use the APE collaboration iterative method to get these smeared or fuzzy operators.[19]



1.4 Research Calculations

The work done for this thesis has been lattice gauge theory simulations under SU(2) colour.
SU(2) shares many features with SU(3), like confinement and glueball states. Therefore
SU(2) provides a cheaper laboratory for studying this physics. There is a long history of such
calculations. For example in 1992 the UKQCD collaboration undertook a large scale study
of potentials to help understand the limit of lattice QCD as the spacing goes to zero. [20]
They used a 48° x 56 SU(2) lattice with a spacing of 0.028 fm.

The specific calculations in this thesis are the lattice anisotropy, the static quark
potential, the mass of the scalar glueball and the mass of the tensor glueball. This thesis
contains the first calculations of these quantities using the SU(2) tadpole-improved action.

Computations have been done to determine these quantities, for both standard Wilson
actions and tadpole-improved actions, and then to compare the results over a range of lattice
spacings. The calculations were done on lattice spacings ranging from 0.1 fm to 0.4 fm. The
glueball masses were compared with the published results of research using lattices with
small lattice spacing. The strategy was to quantify the gains in reliability of results from the

tadpole-improved actions compared to the standard Wilson action at large lattice spacing.

The material in this thesis has been organized as follows. In the following chapter I establish
the baric theoretical framework for lattice gauge theory, leading from the Feynman path
integral to the Wilson loops. In this same chapter the methodology for obtaining the static
quark potential is detailed. The potential is used to resolve the lattice spacing. At the end of
the chapter I describe the mechanics of the numerical simulations which are used to calculate

the observables. In chapter 3 the methods to eliminate leading discretization errors are

6



developed. This includes the removal of leading discretization errors both at the classical
field theory level (classical improvement) and at the quantum level (tadpole improvement).
In chapter 4 I develop the physics of the anisotropic lattice including a procedure to ascertain
the measured anisotropy. Theoretical background and the methodology for obtaining the
glueball mass is introduced in chapter 5. The technique of fuzzing is illustrated in chapter 6
along with results from fuzzing trials. Chapter 7 contains the detailed results from the
simulations. This includes the first calculations using the SU(2) tadpole-improved action for
lattice anisotropy, static quark potential, scalar glueball mass and tensor glueball mass.
Wilson action values, from both the literature and my own simulations, are presented and

compared with the tadpole-improved values. The last chapter gives the final conclusions.



Chapter 2

Wilson Lattice Action

In lattice QCD, continuous space and time are replaced by a discrete 4-dimensional
rectangular grid with side length L and lattice spacing a. The lattice sites are designated by
their position x = (x', x%, x*, x*). Typically the lattice directions are denoted by u, v which
are also used as the corresponding unit vectors. The quark fields 'live' on the lattice sites
while the gluon fields 'live’ on the so-called "links" which join adjacent lattice sites. The
quantized theory is defined through a Feynman path integral using a gauge invariant action
based on the lattice gauge fields. For computation it is most convenient to use the Euclidean
path integral as shown in the next section. The gauge fields on the lattice are the link
variables which are elements of the gauge group and are related to the continuum gauge
potential as developed in the link variables section. The static interquark potential can be
computed by calculating the expectation value of a gauge invariant quantity, called a Wilson
loop, built only from the gauge fields. This is investigated in the subsequent section along
with the breaking of rotational invariance. To make the problems tractable, statistical

methods are employed (specifically the Monte Carlo simulation) as described in the final

section of the chapter.



2.1 Feynman Path Integrals

The Feynman path integral is equivalent to solving the Schrddinger equation. In one-
dimensional quantum mechanics the amplitude to go from an initial space-time point (X,.t;)

to a final space-time point (X3t;) can be given in terms of the Feynman path integral
(xr,tf) i

Z5(x(1)

K(xt ;xt) = f D[x(t)] e’

ff’
(xi’ti)

where I Dx(t)] means the sum over all paths from (x;,t;) to (Xpty).
2.1.1 Euclidean Time

One drawback to using the Feynman path integral in numeric computation is that in

Minkowski space-time the factor e S causes high frequency oscilletions. The action is

t

iS = if L(x(t),x(t)) dt

and changing to Euclidean space-time and letting t ~ -iT this action becomes

T

iS = - j LE(x(t),X(r)) drt

1 { dx)?
where L - —2-m{ %) + V(x). Then the propagator becomes:
T

9



(*Xp7)

K(xfrf;xiri) = f D[x(7)] e S&x()

()

which has exponential damping. This is easier to deal with than the high frequency

oscillations in the action of Minkowski space-time. Therefore changing to Euclidean time

where x°- -ix*is desirable.

2.2 Link Variables

o
Let the continuum gauge potential be denoted by Au(x) = Aub(x) ——2—11 where o, are the

Pauli matrices. The definition of the lattice link variable U, (x), which "joins" site x to an

adjacent site x + p, is given by:

i J.".ngA‘_‘(x " ax’
Up(x) =Pe ~ *

where P is a path ordered product.
This link variable U,(X) is a directed line from lattice site x to lattice site x + 1. The
conjugate link variable Upf(x) represents the directed line in the other direction, namely from

x + 1t to x. These are illustrated in figure 2.1.

10



U, &)

. *—)——a [
x‘ xs"' Q
° ) ) )
U: (x2)
. ——— . *
LY X+ M

Figure 2.1 Lattice link variables

Whatever the meaning of the path ordered product, in the end U (x) is a product of

i0, A,-3/2 0, ,-8/2
SU(2) group elements e e - - » and so can be expressed as some element

of the group

i j“mgA (xy ax’
UP(X) _ _I_)_ e x H _ elﬂ fA-8/2

Thus the link variable can also be presented as

0
U cos-—]I+isin—e—6-ﬁ
H 2 2

3
U@R0I + i ), UGLrx) o

i=1

i

which gives us the constraint U 2(4) + Z U 2(i) =1 Vx,u.

1

2.2.1 Boundary Conditions

The length, L, of a side of the lattice is usually given in terms of the number of lattice

spacings n. Therefore L = n a where n is the number of links in the side. The size of the

11



lattice is then normally given as n* or 0’ X n, for a lattice where the "temporal" dimension n,

is different from the "spatial" dimension n.

Periodic boundary conditions are used. The boundaries on the lattice are set such that
for a dimension of length n, the n + 1 position is identified with position 1. Also the "0"
position before position 1 is identified with position n. In other words the lattice wraps
around on itself like a 4-dimensional torus, for example:

U (x=n +Lyzt) = U (x=1y,z,1)

Uu(x =0,y,z,t) = Up(x :nx,y,z,t)

2.2.2 Plaquettes

The SU(2) group is defined by two factors. First, the determinant of the group element is
unity (detU=1). Second, the elements U, are unitary (UU™=1). The group is closed under

multiplication.

The ‘mallest non-trivial object that can be built from the link operator U, is the so-

called plaquette operator U,,. The plaquette is the product of the link variables around the

square starting at site x and in the (v plane.

x+v 3

X 1 X+H

U, =U® Ux+p U:(x+0) Ul =uuulu!

Figure 2.2 Plaquette on a lattice.
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Initially consider a U(1) or Abelian lattice theory. Then using the definition

. J‘x*lﬂgA (X/) dx/ iagA (x)
14 X
U@ =e¢ = =g oo

Doing the multiplication for the plaquette results in

U, ® = U, Ux+p) Ultx+9) U

igaA (x) igaAv(xm) ~igaA (x+9) ~igaAv(x)
e e g €
iga[A (x+0) - A (x) - A (x+9) + A (x)]
e v v u H

igafa g A (x) -a avA (x)]
e u "

[

s o2
_ elga va

and expanding in terms of the lattice spacing a the result is

4
f_ngz

— 1 2 —
Upv(x) =1 + 1a ngv o o +

[e) {
In Yang-Mills theory F w = F,::, —2—b [21]. The Baker-Hausdorff theorem shows

that for matrices

A+B—-;-[A,B]
€ € = €

and therefore in SU(2)
F =0A -0A +ig[A,A}
v pov v w o

u

13



To complete the connection between lattice and continuum theories consider the

action in the continuum Euclidian field theory given by

UV uv

i 1
S =— [d*x F°F® = — [d*% Tr(F F )
4 2 w

This action is used in the Feynman path integral

II IIf [dAp(x)J e

In a similar way the lattice quantum theory is defined by a path integral over the link

variables U, for the discrete lattice as

II IIf [dUp(x)] e

where in the conventional formulation due to Wilson the action is given by:

S = —;‘;ZZTr(Upv)

X u,v

This quantum theory leads to continuum QCD since in the continuum limit (a = 0)

1 a
U, (x) = 1+iaA(x) and B ETrUpv =B - T(F“")Z where B = 4/g2 This formalism
gives the same results for observables as the continuum field theory Feynman path integral

since the factor of e is normalized away.
2.2.3 Gauge Invariance

The research involves a non-Abelian gauge theory in SU(2) first proposed by Yang and

Mills [21]. In this theory, the transformation law for A, is given by:

14



A ™ QXA QX - in(x)a Q'(x)
K K g K

bab

where Ap = Apb %—and Q = e 7. Thefirst term in the transformation can be thought
of as generating a rotation in an internal space ("colour space” or sometimes "isospace”)
while the second generates a "shift". Using the expression for F, given in the last section the
field strength tensor transforms as F uv(x) - Q(x)Fuv(x)Q*(x) which 1s just a pure
rotation. The trace of this quantity is gauge invariant.

This suggests that the link variable transformation law can be written as

U, (%) = Q) U,(x) QT (x+p)
which incorporates the rotation and shift transformations of the A, (which lives in the group
algebra while U, is an element of the group). Under this transformation the trace of the
plaquette described in the last section is gauge invariant.

This also gives the recipe to test gauge invariance of the action on the lattice. One can
easily apply Q(x) U,(x) Q"(x+p) to an entire SU(2) lattice by generating some local gauge
transformations £(x) for each site in the same SU(2) group. Then gauge invariance is tested
by comparing a gauge invariant observable such as plaquette value at each site on both the
original and transformed lattice. For this thesis a sampling of all lattices generated in all
simulations was specifically tested for gauge invariance to insure proper running of the
computer programs.

As is clearly shown by Q(x) U,(x) Qf(X'H.l) the link variable transports the field

from one end of the link to the other, similar to parallel transport.
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2.3 Potential between Heavy Quarks

To study the interaction of heavy particles the gauge fields are allowed to fluctuate in the

presence of a static charge density current. Therefore the action will require an interaction

term and will become

s = 1 f[a% Tr(F F ) - ifd% Tr(JA)
4 nv pv (TR

where J, must satisfy current conservation. The Feynman path integral equivalent to solving

the functional Schrédinger equation is the same as before

IXI II f [dAu(x)] e

Now consider in an Abelian theory, a heavy "quark" at position x, with a static charge

density J° = Q 63(5(’1) . Then the interaction term of the Feynman path integral will

become

ifd* 1*A® iQfdt A°x,)
e =€

In terms of link variables this can be written as a Wilson line, the product of link variables

along the time coordinate:

t

f
Hu .1
t.

An "anti-quark” at position x, with a static charge density J° = ~Q 8°(%,) will make a

simiiar Wilson line but going the other way. To complete the current flow around a loop such

16



as in figures 2.3 and 2.4, there is a need for current conservation along the spatial edges
which can also be expressed as Wilson lines. Taken together these lines form a Wilson loop.
Under SU(2), a "natural" generalization which preserves gauge invariance is the trace

of a path ordered product. The next section deals with this in detail.

2.3.1 Wilson Loops

The heavy quark potential is measured using a quantity called a Wilson loop which is

—i§cdxugAu(x)

defined in the continnumas W(C) = Tr P e for some closed path C. As |

will demonstrate, the analogous quantity on the discrete lattice is given by an ordered

product of link variables. For example the discrete lattice Wilson loop for a 2x2 square is

W(C) = —;—Tr (Uu(x)Uu(x+n)Uv(x+2n) e U:(x+0)U:(x))

® r r ™
. € - €
L' 4 A
. ¢ . ] T
L4 N
. > >

Figure 2.3 2x2 Wilson loop on the lattice.

Note that the smallest non-trivial Wilson loop on the lattice is the plaquette.

On the lattice the Wilson loop is normally denoted by W(R,T) where R is the
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"spatial” direction and T is the"temporal" direction. R and T give the number of lattice
spacings in the corresponding coordinate, for example the 2x2 square given above is W(2,2).

The following will demonstrate how the Wilson loops measure the interaction of a
quark anti-quark pair. The derivation presented here is somewhat original as I could not find
this derivation in the standard literature. The plan is to solve the Schrédinger equation for

heavy particles. If there were no interactions this would be:

For heavy particles, m — e, and the right hand side will be zero. The gauge field

g
interactions are included by making the substitution o~ 9 -i gA:—Z’i in SU(2). Setting
h=1, the Schrodinger equation for the interaction of a single heavy quark with a colour field

is

where H is the interaction Hamiltonian. The solution to the Schrodinger equation is

t

-i[H(t)dr

v(x,1) =T{e ’ } v(x,0)

where T is the time ordered product. A Taylor expansion of the exponential gives

V(x,1) =T{ y ;17 (—in(t') dt') } ¥(x,0)
: 0

n=0

Because H is composed of matrices, the order of factors in this Taylor expansion is

important. This is accomplished by the time ordering operator T which ensures the proper
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sequence of factors by putting all operators with later times on the left. Then the solution to

the Schrodinger equation will be
te te o
-i [H(t)ar ig[A] (t')—Z:dt‘
wxt) = T (e | ) ) = T ( c ) wixt)
Consider a quark with initial colour (or "isospin") |a) and final isospin (b at position

X,. From the last equation, the amplitude that the quark makes such a transition can be

written in terms of link variables as

(bJU Rt - - - UyR,t)]a)

The amplitude for an anti-quark at position X, can be written similarly. The intention is to
measure the energy of a colour singlet state since confinement says there is infinite energy

for a naked quark. This colour singlet is written as — | T)Q | 1)(—2 - l)Q | 1)6 ) just as

v

for ordinary spin. Then the amplitude for a transition from a colour singlet QE! pair at time

t; to a colour singlet at time t; is

b a
Y — Y —— ®UERLL) - - - URLD|a)(-bUR,t) - - - UR,t)|-a)

b=t ﬁ a=x ﬁ

Notice the colour-singlet pairing of initial colours |a) with |-a) and final colours (b| with (-b).

Now consider the Pauli spin matrix g,. A feature of this matrix is its effect on

spinors:
|0 A1) (o] |
o + = = = 1|
| i oJ o) i) 7
Similarly o, |-) = -i|+) sothat o Ja) = ia|-a) andthus -iac |a) = |-a) and

ib(b|o , = (-b| . Therefore the amplitude of the colour singlet transition is:
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y ¥ -2- BIURt) - - - URt)|a)blo,URt) -+ - UR,t)o,|a)

b=¢ a=+

The scheme is to drag the last g, through to the first and cancel them out. For all o,
00,=-0,0 because each Pauli spin matrix anticommutes with all others and commutes with
itself. Therefore dragging the last o, through to the first will result in changing the sign of

and conjugating all Pauli matrices pulled through. Then

t o t u‘
igfA, ()5 dt -igfa]m)tar
U(X’,t)azzT(e ° )02=02T(e ° )

ing.o(t')—oz—'dt' .
=02T(e ° ) =02U(i‘,t)*

Now the amplitude of the colour singlet transition is

1 I o gy
Yy ¥ 5 BIUE -+ UR I BIUE - - - UR,t)"a)

b=t a=+

Transposing the second bra-ket results in

) Z — ®IUR,t) - UR L[ @[UR,) - - UR,t)]17|b)

b= a=%

Combining the transpose and conjugation and removing the brackets gives

yyL ~ BIUE - - - URE)[a) @[UR,L)T - - - UR)Tb)

b=t a=x

This is one half of a trace of the product of link variables and although it is the adjoint of the
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two "temporal” lines in the Wilson loop it is still equivalent since Tr(U) = Tr(U") in SU(2).
This equation is incomplete as it stands. To complete the Wilson loop, the
requirement is to close the two "temporal” lines with "spatial” lines both top and bottom as

shown in Figure 2.4.

® ] ] [ ]
. pro--o- L SRREEE L S 4
4 A
. $ . | T
Y A
° L TEPRER Porerann [ TECEES AXICEE ]
R

Figure 2.4 Wilson lines joined in a Wilson loop.

To understand why this is required, recognize that two wave functions at different
"spatial" positions, for example Y(x)and Y(x+€)are being compared. Due to the local
gauge invariance of the theory, each of these wave functions can be independently changed
by a local unitary operator to become € ‘°™y(x)and e ‘% "y(x +£) respectively. Since
these matrix-valued phases are independent of each other, a direct comparison between
y(x)and P(x+€), such as a comparison of their SU(2) components (i.e. the quark colours),
is meaningless. A comparator field Q(x +¢€,x) is used to compensate for the phase changes.
(For a pedagogical review see, for example, reference [22].) This comparator field is defined
so that it transforms under the local gauge transformation as e °**® Q(x +e,x)e "%,

Therefore a comparison of y(x+e) with Q(x+¢,x) y(x)is possible since they both

transform in the same way. For instance a gauge-covariant derivative may be defined as:
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D y(x) - lim $OTE) ~ Qe ¥00)
e~0 €

Then defining
Q(x+e,x) = I + iegAe(x)

in the limit of small e results in the usual covariant derivative

D, =9, +igA,

8

where the local gauge field has emerged.
To relate the comparator fields to the lattice link variables, postulate a composition
rule ( both sides transform in the same way): Q(x] +e,x2) = Q(x1 +e,x1) Q(xl,xz) . Now

evaluate a "spatial" derivative of Q(x ,x,)and derive the following relationship

aQ(xl,x2) i Q(x1+e,x2) —Q(xl,xz)
ox : e-~0 €
1
( Q(x] +e,x1) ) Q(xl,x )
= lim 2
e~0 €

i}

igA (xl) Q(x %))

where the local gauge field A' has again appeared. Therefore
X2
ig [A(x)dx'

|

Qx x,) =Pe

where P means path ordered product, analogous to the previous time ordered product. Thus

the comparator field is a path ordered product and is used to ensure a gauge covariant
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definition of a colour singlet Q(_2 state. The quarks are paired up in colour although separated
and this comparator field will match up the phases. The comparator tields are laid out along
the "spatial” lines of the Wilson loop. One comparator field is required at t; and another at
t.to account for the phase changes in the initial and final quark wavefunctions. Note that the
path from x, to x, is not unique, as evidenced by the composition rule. This fact will be used
later in developing the fuzzing technique.

The comparator field completes the Wilson loop which is as I defined it at the
beginning of this section. While the derivation of the Wilson loop has been non-relativistic,

~-i §C dx“gA"(x)

W(C) =Tr Pe is in fact manifestly Lorentz invariant.

2.3.2 Static Quark Potential

The expectation value of the Wilson loop can be understood as

(W(R,T)) = (fle "T|i)

where (f|and |i)are the final and initial states which are composite states including
quantum numbers for the quark and antiquark as well as gluons created by the comparator
fields Q. The final and initial states are not eigenstates of the interaction Hamiltonian. The

introduction of a complete set of eigenvectors results in

(fle HT}i) = (fle‘“T(z|n)(n|) i)

ET
=Y e " {finNn|i)

Thus doing the path integral weighted by the Wilson loop gives the expectation value

of the Wilson loop which will be a linear combination of exponentials of the energy

spectrum:
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CW(R_,T)) = ae—v(R)T + be“vi(R)T

-VR,T)T
- ce VRD

This last line defines a time-dependent estimate of potential. V(R,T) does not measure the
energy of an actual eigenstate. Rather it is a convenient measure of the approach to V(R) in
the T — oo [imit.

Potentials between quarks in other than their ground state will be larger than the
ground state potential and thus will fall off at a faster rate in (W(R,T)). Then the potential
energy between the two static quarks in their ground state can be calculated in the limit as

T goes to infinity:

V(R) = lim -In (WR,T))
00 (WR,T-1))
= lim V(R,T)
T-00

2.3.3 Non-Integer Potentials

The method outlined in Section 2.3.2 for calculating static quark potentials can be used to
calculate potentials that are not at exact integer lattice spacings by using a path where the
"spatial" leg of the Wilson loop is taken along two or three dimensions. For example if the
R leg is made by one lattice unit in the x direction and one lattice unit in the y direction then
by Pythagoras' Theorem the result should correspond to a potential at a quark separation of
R = \/5 . At least this should be true in the continuum limit where the lattice cubic
symmetry should be restored to a continuum rotational symmetry. Similar methods will be
used to get the square roots of five and eight using a 2x1 and 2x2 leg respectively. The

square root of three requires the use of a "spatial" leg of one lattice unit in all three "spatial"
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dimensions.

There is more than one path possible in these multi-dimensional "spatial" legs. For
example the state with R = {/2 could be created along paths _] or l'— The symmetric
linear combination of paths _] + r is used, as it has been demonstrated in the literature to
correspond to the ground state.[23] One spatial path combination joins the lines along T at
T=t, and another spatial path combination joins them at T=t,.

For the 2x1 leg used in R = /5 there are three paths from one corner to the other
as shown in figure 2.5. Two are on the perimeter and one zigzags across. All three have been

included symmetrically.

N N
® v 4 ® >- -9
-
-
-
-
-
N A N
-
f
-
-
- -
N N
. rd . rd .

Figure 2.5 Example of off-axis potential. The dashed line shows R = \/g :

The 2x2 legusedin R = \/E has four zigzag paths from one corner to the other plus
two legs that follow the perimeter. The four zigzags are included symmetrically while the
perimeter legs are dropped as they are getting quite far away from the central "direct’ path
and likely will be more strongly contaminated by finite lattice spacing errors.

The three dimensional leg used in R = /3 has six unique paths from one corner of
the cube to that opposite. All these are included symmetrically and required some very
complicated computer logic to do this.

The off-axis potentials provide indicators of the approach to the continuum limit and
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the restoration of rotational symmetry as discussed in more detail in Chapter 3. For example
if a line is fitted to the on-axis (integer) potentials then the deviation of the off axis potentials

from this line would quantify the breaking of rotational symmetry by the action used.

2.3.4 Lattice Spacing

The slope of the static potential between two heavy quarks is denoted in lattice units (a=1)

by m. It is related to the slope A V/AR in physical units by the formula:

=aV(R=n)—aV(R=m):a,,_A;\L
Foo) (3]
— =n| -|— =m

a a

This quark potential is related to the string tension, o, by

AV

—— = o at large R.
AR

1
V(R) = oR + — so
(R) R

Thus the lattice spacing is given by

To get to physical units, the values used are \/; ~ 0.44 GeV and hc = 0.197
GeV-fm. The value ‘/; = 0.44GeV comes from an analysis of experimental data on light
meson Regge trajectories using a simple string model for quark confinement. (For a
pedagogical review see, for example, reference [24].) Although the experimental value
should only be used for SU(3) colour simulations (with vacuum polarization), it is

nevertheless used as the industry standard in SU(2) colour. For example see reference [20].
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2.4 Statistical Simulations

Computing the expectation value of an observable in lattice QCD would require a very large
number of integrations if conventional Riemann sum techriiques are used. For example the

expectation value of a Wilson loop is given by
| [dUJ W(U,) e
oo o

n

Using an 8* space-time lattice would give 4 x 8¢ link variables. In SU(2) each link

—S(U")

(W) =

variable is comprised of 3 parameters and therefore approximately 50,000 integrations need
to be done. Using a Reimann sum with only 8 points per integration, the multiple integral
would require a sum of 8% terms. Therefore statistical methods are normally employed to
make the problem tractable. The statistical technique used in this research is the Monte Carlo

method.
2.4.1 Monte Carlo Simulations

In a Monte Carlo simulation a sequence of link variable configurations is generated by a
stochastic process such that the probability of obtaining a certain configuration is given by
the Boltzmann factor, € _S(U"). In a simulation of N configurations the desired quantity, for
example the value of a Wilson loop W, , is calculated for each configuration. The expectation

value of this Wilson loop is then given by

1 N
(W) = lim — ) W
No N

The method that I used to generate the sequence of link variable configurations is
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called the "heat-bath" method. In this method a link variable is replaced with a new value
whose probability is given by a local Boltzmann distribution, with the rest of the link
variables being fixed. The method is so named because in effect the link being updated is
thermalized by touching it with a heat bath reservoir determined by the surrounding links.
The local Boltzmann distribution is determined by the so-called "staples" connected to the
link. Figure 2.6 shows two staples connected to a link variable. For a given link U, there are
six staples, two for each perpendicular orientation. For an orientation i, one staple is the
product of the other three links which would make the plaquette U,,. The other staple is from

the plaquette formed by using -v instead of v.

<
\' g AV
— > o
A Y

i

<

Figure 2.6 Staples connected to a lattice link variable.

The first step in generating the lattice link configurations is to get a configuration
which satisfies the probability distribution. This was done by beginning with a cold lattice,
where U(4,u,x) = 1 and U(i,u,x) = 0, i=1,2,3. Then the heat bath is applied iteratively to each
configuration to make the next configuration. One iteration consists of applying the heat
bath to one link at a time until all links have been updated. A sufficient number of iterations
are applied until the lattice satisfies the Boltzmann distribution. At this point the lattice is
said to be thermalized. In all of my simulations the initial cold starts were iterated through

10,000 configurations to achieve this equilibrium.
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After thermalization a sequence of configurations is then generated to be used to
measure the required observable. However, since each Monte Carlo step only causes a local
change in the system, it requires a number of configurations to be generated until the
memory of a previous configuration has decayed away, making the resulting link variables
independent of this previous configuration. This phenomenon is known as relaxation and one
can associate a correlation time with this decay. Typically in the case of critical phenomena
the correlation time scales inversely as the second power of the lattice spacing, 1/a”. In the
simulations every n'th configuration generated was used for measurement. The value of n
was determined so as to minimize the auto-correlations between configurations used in

measurement.
2.4.2 Error Determination

If the sequence of configurations used in measurement constitutes a representative set then
the ensemble average of an observable such as the Wilson loop will be approximated by

1N
W)= — ) W
W)= LT W,

i=]

By ensuring that the N measurements are statistically independent by the procedure

outlined in the last section, the statistical error in the expectation value will be of the order

1/[ The statistical error, o, in the average of some observable is given by
o - a2 < | N

For a derived quantity like the logarithm of the Wilson loop, we must "propagate”

the errors. An efficient algorithm for doing this is the Jackknife method.[25] Jsing the static

quark potential as an example, the first step is to calculate the average V(R) from all

configurations (N) used for measurement. Next is to calculate V(R) for all the configurations
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less one (N-1) which I will denote as V(R), j indicating the configuration skipped. This last

step is repeated saving a new V,(R) for each missed configuration. The error is then

calculated as

1

o - j}; (V(R) - VJ,(R))Z (1 - E)

This method is equivalent to the statistical error quoted earlier when V(R) is a simple

average. For derived quantities, the Jackknife has become a lattice industry standard.
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Chapter 3
Tadpole Improvement

Over the years, researchers have determined that a good approximation to the continuum
limit can be achieved for a variety of observables with lattice spacings in the range of about
0.05 fm to 0.1 fm. For examples, see references [3], [20] and [26]. In moving from the
continuum to the lattice, discretization approximations have been introduced. The
expectation is that these approximations will introduce errors that are of leading order (a/r,)’,
where r,, is a characteristic dimension of the observable under consideration. Thus the smaller
the lattice spacing, the smaller the errors. Attempts have been made in the past to remove the
leading discretization errors [27], [28] which I will discuss under the classical improvement
section. These improvements did not remove all O(a?) errors due to the quantum effects [4]
which have only recently been understood. This I will discuss under the tadpole
improvement section. The effect of tadpole improvement should be to remove all leading
O(a®) errors and thus allow the use of larger lattice spacing with results potentially as

accurate as those achieved using smaller lattice spacings.
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3.1 Classical Imprcvement

In the mid 1980's a technique was developed to remove the leading discretization errors from
lattice field theory. [27] [28] The complete derivation is not published and so is developed
here for the convenience of the reader. Initially consider a U(1) or Abelian lattice theory.

Take a plaquette such as the one at the right with lattice

spacing a and centred at x.. The plaquette is a path integral in the B
R i gﬁA".dxu. .
pv plane written as Upv =€ (sum over p') and can be
related to the surface area according to Stokes Theorem by Xe v
igj’vadx"dxv
U =e¢ ° (no sum on p,v). A Taylor expansion of F,, XJ

about x, gives (again no sum on p,v)

va(x) = va(xc) + 6pF“v(xc) (xp—xc) + avav(xc) (xv—xc)

aszv(xc) (xv—xc)2

1 , 1
+ — asz(xc) (xp—xc) + ; |

2! ¢

1
+ o1 apavav(xc) (xp—xc)(xv—xc) + o0

I define x, = 0 to keep the mathematics from being too cluttered and hard to follow. Doing

the integral from -a/2 to +a/2 the terms odd in x,, and x, vanish and to first order the result
is

a a a a a a
+ + — + — + — +— + —

2 2 2 2 2
1 1
fadxv +—2—6in" fax: dx}l fadxv +EaiFuv fadxu faxvz dx

2
{vadxpdxv :va fadx;l

2 2 2 2 2 2

) 1 6
—aFuv+§Za(ai+ai)Fm+O(a)
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For ease of notation label this result as 0(1x1)

- _ a2 1 4,2 6
B(1x1) = {Fuvdxudxv =a’F v —a'(g+ H)F, + 0@

The Wilson action in the Abelian theory is defined by

SylU,] =—§- Y ( 1 - ReUM)

XUV

and in the continuum limit becomes

1 1
S = — e’(1x1) - — g? 8*(1x1) + - - -
v Z[ (x1) - = g* 8'(1x1)
(the odd terms being accompanied by an "i"). Now 02 contains terms of O(a*,a’,a%) while 6*
contains terms of O(a®) and higher and can be dropped to leading and next-to-leading order
in a. The integral fd *x becomes a sum Z a*and so the term of interest is 1/a* 0%(1x1).

1 1
—0°(1x1) =F*> + — a’F (@+3)F + 0(@%
al v 12 peTp TvS Ty

) 1 ) . ..
Therefore the continuum action Z f d*x F;v 1s recovered in the limita = 0. The

leading discretization term has also been isolated in the action:

_ 1 4 ( 2 1 2 2 )
Sw = 7 [d*% ) Bl r— @ va(afl+av)Fw

TRY

In the Wilson action this last term breaks the rotational invariance of the Euclidean
theory. As described in section 2.3.3 the expectation is that the off-axis potentials would not

be consistent with an extrapolation through the on-axis points. My simulations show this
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point in section 7.3.

The plan now is to get rid of these a’ errors by adding P
extra terms to the action. The idea is to use a linear
combination of B(1x1) and larger lattice structures like the ¢ Ty

et

one to the right. This specific rectangle I label 8z(2x1) where

the R refers to the extra piece being to the right. Doing the
integral for 0z(2x1) from - a/2 to + 3a/2 in the p direction and from - a/2 to + a/2 inthe v

direction, the even terms give

+3-a~ +a +3a +a +38 +a
2 2 I 2 2 I 2 2
JF dx dx =F [ dx [dx +—0&'F [ x*dx [ dx +—&°F [ dx [x2dx
O N O H v H oMy boom v howv pe Ty T
* -2 2 -2 -2 -2 .2
2 2 2 2 2 2

In this case, not all the odd terms will vanish as in the case of 8(1x1), and to first order the

odd terms are

+3._a. +1 +3_§ +E +3E +—
2 2 2 2 2 2
{F“vdx“dxv odd:a“F“v fa xudxll fadxv+ oF., fa dx“ faxvdxv+ a“avav fa xpdx“ faxvdxv
2 2 2 2 2 2
=a’d F
poopv
Then Bx(2x1)is
252 3 T 4 1,
0 (2x1) = 2a’F? +a’dF + — a*d®F + — a*3’F
R puv [TE TR 12 popv 12 v uv

and 1/a* 02(2x1) is:
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Doing an integration by parts on the a 2(BPFM) term results in

2 _ - _
@F ) = (aqu)(apFw) =3 (F 8F )-F &@F

BV poopv
where a“(Fwaprv) is a total dertvative which vanishes under integration due to periodic
boundary conditions. Then finally 1/a* 8%(2x1) is equivalent to

1 4 1
—0>(2x1) = 4F% + 4aF 0 F + — a’F &F + — a’F &F
a4 R uv n kv 3 3

There are three other rectangles that are of interest. Namely the 2x1 rectangle to the
left of the centre, the 1x2 rectangle to the top and the 1x2 rectangle to the bottom. By
symmetry the left rectangle 1/a* 8,%(2x1) is the same as 1/a* 0;2(2x1) with the terms odd in
1 changing sign. Similarly the bottom rectangle is the same as the top with terms odd in v
changing sign. This top rectangle is

1 1 4
—0°(1x2) = 4F% +4aF 0F + — a’F &F + — a’F 3F
a4 T pv UV v uv 3 IR TRETRY 3 uv v opv

7
+ —a’dF &F + —a’aF &F + 0(a"
6 vV UV u Uy 6 vV UV vV pv

Label a rectangle by the coordinate x of the lower left corner. Then the 1x2 rectangle
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to the left of x is the same as the 1x2 rectangle to the right of the point x - 1. These two
rectangles will automatically be included in ZB;(X). Therefore the adjustments to a
particular 1x1 plaquette can be associated with Snly two of the rectangles, while the other
two will be associated with other 1x1 plaquettes. The adjustments for a plaquette are
arbitrarily chosen to be the right and top rectangles. However, when summing over the entire
lattice there will be a cancellation of the odd terms between 1/a* 0%(2x1) and 1/a* 6,%(2x1)
and between 1/a* 0;%(1x2) and 1/a* 0,%(1x2).
Therefore adding only the even terms of 1/a* 0%(2x1) and 1/a* 8;%(1x2)

] 2 2 _ 2 5 2 2 4
——4( BR(ZXI) + BT(IXZ) )} = 8va + 3 a Fuv(6u+6v)Fuv + 0O(a”)

a \even

We finally return to the Wilson action, which contains 0%(1x1) to O(a%). By

subtracting 1/20 of the above equation the O(a%) errors are eliminated. The result is

1

4

8 2 4
1 - —)F° + O(a
- (1 - S5)F) + 0@’

( 8°(1x1) - -2%( 6z (2x1) + 62(1x2) ) )

3.2 4
—S*Fuv + O(a )

Back in section 2.2.2 I wrote the Wilson action for SU(2) as

S, = ——S—ZETr(Upv)

X W,v

Using a slightly different notation where va = ETer this action can be written as

SW = —_BZZP;W

X W,V
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As a consequence of these corrections an improved SU(2) action which is corrected up to

O(a*) is proposed as

5 1 1
imp ~B§§ (3 Puv B TQ_Ruv B mRvu)

w2
I

[d*x F: + 0(ah

where R, is the 2x1 rectangle widest in the direction of the first subscript, in this case .
Actually the derivation has been done in an Abelian or U(1) lattice theory. This can
be generalized to a non-Abelian theory by observing that the action is gauge invariant. For

example, by dimensional analysis, the expectation is that a term such as aF 8 F . in

HY popv’

the expansion of dimensionless P, or R, in U(1), would become a 6 F;: D:b F: where the
v

covariant derivative is D:b = 6}1 8% + f®™°A ° Other gauge invariant bilinears on F

would involve higher order derivatives and therefore be of higher order in a. In this way it

is seen that S;,, should be O(a*) accurate in SU(2).

3.2 Tadpole Improvement

The classical improvement of the last section was developed in the mid 1980's.{27] [28].
However researchers who tried this improved action found that while discretization errors
were reduced the improvement in many cases was not as significant as would be expected
from the analysis of the classical improvement in the last section. The resolution of this
problem was arrived at only recently by Lepage and Mackenzie [4]. The key lies in the fact
that a classical field theory analysis was used in the last section.

To see this, consider an expansion of the link variable in terms of the lattice spacing:
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x+ep / /
i f gA”(x ) dx
e x

i

U ()

iagAu(x)

r~

i

. 1 5 32,2
1 + 1agAu(x) o a'g Au(x) +

In quantum theory this last term induces what are called tadpole diagrams. For
example, compute the expectation value of a link (Uu(x)). In lattice theory the expectation
value of a gauge non-invariant quantity vanishes by Elitzur's theorem as described later in
this section. So the evaluation of the expectation value must have a constraint that picks only
one configuration out of the gauge equivalent set { QU Qf} . The details of this gauge fixing

are unimportant in this analysis. Using the above expansion
= : 1 2 2 2 3.3
(Uu(x))gf =1 + 1ag(Au(x))gf > a‘g (Au(x) )gf + O(a’g”)

In perturbation theory, the last term can be expressed in terms of a Feynman diagram called

a tadpole. (Au(x))s (vanishes under the trace.

Au(x) Au(x)

Tadpole
Figure 3.1 Feynman diagram of a tadpole.

The virtual gluon propagates in a closed loop with an amplitude « 1/q2. Since all
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. . ) 1
virtual momenta are allowed, integrate over all possible values fd 4q —- In the continuum

this integral diverges. However on a lattice the integral runs over the first Brillouin zone with

I/a
limits [ . Therefore this tadpole is proportional to 1/a” which means that in an expectation

~IV/a iagA
value A, has parts proportional to 1/a which cancel the explicit factorofain U = e B
n

The tadpole terms are suppressed by only g’ and not by g’a’ as expected in a classical tield
theory analysis.

To get rid of the tadpoles one does a "tadpole improvement” of the action. Such
improvement is defined by a mean field renormalization of the links. Defining the average

link as U,, the mean field renormalization is

An obvious definition of the average link is (U“(x)) = Uo‘ This definition of U,
is not any good since (Up(x)} = 0 due to gauge invariance. This statement is formalized
in Elitzur's Theorem [29] as demonstrated here. The gauge transformation of a lattice link
is Up'(x) = Q(x) Up(x) Q*(x +[1) . The expectation value of the lattice link is calculated
by the Feynman path integral [[dU] e Up(x). Both U,' and U, will be found in the
ensemble with exactly equal probability. Therefore in doing the integral on the discrete
lattice a term Up(x 0) + Q(x 0) Up(xo) !I)'r(x0 +) will occur, where x, is a particular value
of x. A valid gauge transformation is one where Q(x o) = -I and Q(x #x o) = L. This
gauge transformation will make this term and therefore all terms vanish.

A definition of U, from a mean link could be made by gauge-fixing when computing
(Up(x)}although its value would not be unique (a proposal to use a smooth gauge such as
8“All = O has recently been made [30]). However a simpler alternative is to give a
definition of the average link in terms of the smallest gauge invariant object which has a

non-trivial value. The smallest object is a lattice line out and back. This is no good since
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U,U,"= 1. The next smallest gauge invariant object is the average plaquette. The definition

of U, is therefore given as

(Upv(x)> = U ;

since there are four lattice links in the plaquette.

Now consider the expectation value of a gauge-invariant observable, such as a 2x2

F dx dx
uv p

Wilson loop (W(2,2)) which in an Abelian theory has the value <e e > . Following

the classical improvement analysis this has a continuum limit of
1
(W(2,2)) =1 + 4a4g2<F:v> "3 a6g3(Fuv(6i+63)va> + 0%

However each expectation value receives a tadpole contribution, which cancels the explicit
factor of the lattice spacing. This spoils the expansion in powers of a that underlies the
classical field theory analysis of the previous section.

The tadpole contribution to any observable such as (W)comes from very short
distance physics (ultraviolet) and should be independent of the long distance physics
(infrared). The continuum gauge field should have parts Ap(x) = A"(X)I'I,R. + A”(X)"U.V. :
This suggests that the link variable could be factored as Uu(x) = U"(X)!I.R. X U“(X)!U_v. .
The average value of this last factor is the average link U, since the plaquette occupies the
smallest cell on the lattice (i.e. U 0" <U”(X)}U.V.) ). Therefore tadpoles should be removed
from the expectation value of an operator by first renormalizing the lattice links.

) U &
000 - = = U]

where the corrections are truly of higher order in a’g? and not just g.
In developing the action from the lattice replace U, with U',. This is called a tadpole-

improved action. In the last section the classically improved action was:
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5
- -8y -pr - -
Simp ﬂL.,Z 3 R, Rvu}

X g,v

where P, contains the product of four U,'s and R, contains the product of six U,'s. Then the

tadpole improved action is

S
tad _3— 4 Y 6 Py 6
X v v, 1o’ 12y

This action features a new kind of non-linearity, because U, must be determined from
the average plaquette, which itself is determined by the value of U,

A final comment about discretization errors in S,4. The classical field theory analysis,
together with tadpole renormalization, suggests that S,; = S_. imun + O(@"). In fact, each
operator in S, gets additional renormalizations due to quantum effects. These effects spoil
the cancellations of the O(a’) errors, but such corrections are suppressed by g*(a), the running
coupling evaluated at a length scale of O(a). Therefore the leading discretization errors are
actually of O(a’g(a)), plus errors of O(a*). For sufficiently small lattice spacing a, g(a)<<l.
In fact g(a) « 1/In(a). [31] On coarse lattices there is evidence that these two types of errors

are actually comparable (and small). [4]
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Chapter 4
Anisotropic Lattice

A significant feature of this thesis is the use of an anisotropic lattice. One coordinate is
designated as the "temporal” coordinate with a lattice spacing denoted by a, which is made
smaller than the lattice spacing for the other three coordinates designated as "spatial”
coordinates. The "spatial" lattice spacing a, is chosen in the range of 0.2 fm to 0.4 fm. The
"temporal" lattice spacing a, is kept around 0.1 fm.

The use of anisotropic lattices allows one to more easily determine the glueball mass.
The correlation function is G(t) > G o€ e as t = oo This signal falls off rapidly
with t while the noise in the Monte Carlo simulation remains fairly constant with t. The use
of the anisotropic lattice allows one to get more measurements of this correlation function

before it disappears into the noise.

4.1 Anisotropic Action

This research work is based upon an anisotropic lattice where all "spatial” lattice spacings
a, are the same and the "temporal" lattice spacing a, is smaller. As a result there will be two

values for the average link. One value is for plaquettes where both directions are "spatial”.
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The other value is where one direction is "spatial” and one is "temporal". These average links

I
]

are defined as ('Uss(x)) U :; and (Us‘(x)) U 025 U ; . The tadpole-improved action is
then adjusted so that the mean field renormalization of the plaquettes includes the
appropriate number of factors of U, and U,,. The action will also require adjustments in the

discrete integrals (sums) to account for the anisotropy. This action can be written as [16]:

S - BZZ al SP’ 1RSSi |R,
X o5’ 3 3 Uj 12 Uo: 12 U;;
a 4 st 1 Rsl
'BZZ s {_ - - —
xs 2 | 3yjul 12 U;U;)

Two explanations are required and will be given for this action. The first is for the
a/a, and a/a, factors. The second is for the 4/3 factor and lack of an R term in the mixed
"spatial"/"temporal” portion.

The a/a, and a/a, terms are adjustments in the discrete integrals. The discrete integral
for an isotropic lattice is given by [d*x = Y a*. This isotropic integral worked out finc in
using the symmetric lattice to define the action since P”' = % Tr UW ~ % a"(FM)2 :
However for the anisotropic lattice this integral has to account for the different lengths of
"spatial” and "temporal” coordinates and therefore becomss [d*x = Ya’a. For the
"spatial” plaquette P_ = % TrU_ ~ %— a!(F )’. Multiplication by a/a, will adjust this result

to get the correct integral . Similarly for the mixed "spatial"/"temporal” plaquette

P_- %Tr u_ -~ i—a:af(Fﬂ)z and has to be multiplied by a/a, for the integral to work
properly.

The R, rectangles (with two spacings along a,) have purposely been omitted from this
action. Thus errors of the order a” have been introduced. These errors will be negligible
provided that a, is small compared to a,.
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The reason for dropping the R, term is to eliminate poles in the gluon propagator that
have negative residues. [16] Due to the negative residue poles (called high-energy doublers)
the correlation function does not decrease monotonically with time. Instead it shows a hump
at intermediate times T, caused by the change in slope because of the negative residue.
Eventually the correlation function decreases exponentially with the energy of a physical
pole as the doublers can be shown to have very high energy « 1/a,. This complicates the
extraction of a plateau in the correlation function on an improved lattice.

Following the procedure of classical improvement (Section 3.1) I will derive this
mixed “spatial”/"temporal” portion of the action, the details of which have not been
published anywhere. On the anisotropic lattice the integration for 8(1x1) is from -a/2 to a/2
in the "spatial” direction and from -a/2 to a/2 in the "temporal” direction. As a result for a
mixed plaquette

1 1
0 (1x1) =aaF + — a’adF + — aa’d°F
st s t st 24 s t s st 24 s t S

st

Instead of 1/a* 0%(1x1) use 1/(a’a?) 0,%(1x1) and drop terms in a*

1

2_2
a a
s t

1 1
0°(1x1) = F? + — a’F &F_+ — a’F &@F_ + 0(a*
st st 12 s st s st 12 t st t st
The final term of interest is 1/(a,’a?) 0y,%(2x1) since 1/(a’a?) 01, ’(1x2) has two
lattice links in the "temporal” direction and is therefore omitted. Dropping terms in a* and
higher and also dropping terms that cancel with 1/(a’a?) 0,,(2x1) this expression is

1

2.2
s

, 4 1
alzl.st(le) - 4Fsi + ; aSZFsta:Fst * 3— atsttGIZFst * 0(34)

aa
1

Therefore to cancel out the a corrections to 1/(aa2) 0,%(1x1) subtract 1/16 of
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1/(a’a?) Op(2x1). This gives a result of

4 1
a - l—g)Fft * Tgastﬁstt + 0@’

1
1

1
( 02(1x1) - " 8 (2x1))
a

a

2_2
s t

1]

3
ZF; + 0(a) + O(a))

The plaquette trace of the mixed "spatial"/"temporal” portion of the action therefore
has a factor 4/3. Errors of the order a? have been introduced. These errors will be negligible

compared to the a,* provided that a, is small compared to a,.

42 SetU,=1

In this thesis I have set U, =1 and have determined U, self-consistently from the average

value of the "spatial" plaquette for the entire ensemble:

Um:l

B 1/4
UOS _<Pss )

The anisotropic action has an invariance under a rescaling of B, U, and a/a,, which

allows Uy, to be set to any value leaving the physical quantities invariant. That is equate:

9 ( as 1
old L 2 new
a U a
t/od Ot !

new

provided that:



B | = S
old a new a
\ 5/ old 5/ new
This condition can be satisfied if :
a | |8 1
a a
t new t old 0t
1
Bntzw B Bold

4.3 Measured Value of Anisotropy

As indicated in the previous section the value of a/a, is rescaled by setting Uy, = 1. This is
a natural choice since Uy, is approximately unity in any case for small a,. With this choice
a/a, undergoes little renormalization.

One must distinguish between the "bare" value of a/a, which is input to this action
and the physical or measured value of a/a, . The reason is that the bare input value is
renormalized by quantum effects.[13] [14] In an anisotropic lattice action there are two
different couplings. One coupling multiplies terms sensitive only to the "spatial" length scale
a,. The other coupling multiplies terms sensitive to both a; and a,. These two couplings can
(and do) run differently as these lattice spacings are sent to zero, and this shows up as a
"renormalization" of the input anisotropy. More specifically, these two terms in the action
get renormalized differently, and any such renormalization can be absorbed into a rescaling

of a/a, and B. When a/a, is 1 then the "temporal" and "spatial" plaquettes are identical, so
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there is no effect. The measured value of this ratio will become important later in calculating
such things as lattice spacing and glueball mass. This measured value can be calculated by
doing a simulation in which one of the "spatial" coordinates is used for Euclidean time
instead of the "temporal" coordinate in the calculation of the Wilson loops.

On any lattice the Wilson loop calculation results in W or = © V®Tin the limit

as T =» oo, Here the subscript ST refers to a calculation where the T coordinate is the

"temporal" coordinate direction. The value of T in this case is some integer times the a,

“V(R
lattice spacing, T = na, and the Wilson loop is W oy = © ( )M‘. Therefore on an
anisotropic lattice:
- W _(R,na)
VST(R,T) = -ln = atV(R,T)

W_(R,(n-1)a)

and in the limit T oo this ratio becomes V S T(R) = a‘V(R) .

Now if I do a Wilson loop where one of the "spatial" coordinates serves as a

. . . . . . -V(R)na .
Euclidean time dimension, then T = na, and the Wilson loop is W ss = € ', using

the notation SS to denote two "spatial" dimensions. As a result:

. W (R,na)
V..(RT) = -In = a VR,T)
s W _R,(-Da)|

and in the limit T oo this ratio becomes V_ (R) = a V(R).

To get a determination of a/a, , first an ultraviolet cutoff effect must be removed.
V(R) = oR - ibz + Voand this last term V,, contains the self energies of the heavy
quarks which is regulated by an ultraviolet cutoff which is not the same for SS and ST. The

solution to this is to do a AV:




4.4 Scaling Lattice Spacing

The slope of the potential graph first seen in section 2.3.4 is modified to:

a V(R=n) - a V(R=m) AV

m = =a a —-
R R * ' AR
—_—=nt - { — =m
a a
S S

Thus the measured lattice spacing is:
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Chapter 5
Glueball Mass

Hadrons are made up of more elementary particles called quarks. The gauge particles that
provide the strong binding force between the quarks are called gluons. The gluons act like
spin raising and lowering operators because they change the colour (or colour "isospin" in
SU(2)) of the quarks. Therefore unlike photons, the gauge particles of electromagnetism, the
gluons carry a colour charge and can interact directly with each other. Due to confinement
a state with net colour can never be seen; however, colour-singlet combinations of gluons
ought to have finite energy. These bound states of gluons are referred to as gluonium or more

commonly as glueballs.

5.1 Correlation Function

Recall that the trace of the plaquette U, contains (F*")* and that
F:v = d"A va - a“A; + gf abcA:A:. The last term of this operator says that there
are interactions between the gluons and this term can make the bound gluon states which are
called glueballs. In general, (F " ")2 can be interpreted as an operator which can create and

destroy gluons. Then applying this operator to the vacuum state at two different times,
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(0]Op(t)Op(0)]0), will create some state made up of gluons at t=0 and annihilate the

gluon state at t=t. In terms of plaquettes this expectation value is a Feynman path integral
0jop(t)op(0)j0) = IL II | [dUp(x)} e U_ () U ,(0)
TR

From quantum mechanics in Euclidean time the operator Op(t) = ¢ Op(0) ¢ ™

where H is the Hamiltonian of the system. From this the glueball spectrum can be extracted:

c - Yimo)e ™

where |O)is the state created by applying Op(0) to the vacuum state. Similar to the Wilson
loops, as t becomes large in euclidean time this correlation function will be dominated by the
lowest energy state. Unfortunately this lowest state will be the vacuum state for an operator
that transforms as a scalar under the rotation group. The glueball is the next higher state.
Since the operator is made up of plaquettes, to remove the vacuum state from the sum
subtract away the average plaquette (TrUpv ) = U 04 from each plaquette. This will remove

the vacuum state and give the next higher energy state. Then to extract the glueball mass

define

(0]Op(t)Op(0)|0)
(0]Op(t-1)0p(0)]0)

mg(t) g2 -In

and the actual ground state mass is given by the limit

m = lim mg(t)

t—o0

Since the lattice has periodic boundary conditions the maximum value of t has to be

limited to t=T/2. After that value the correlation functions start wrapping back on
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themselves. Therefore in order to get enough values to achieve a plateau the coordinate T
should be reasonably large. This is another good reason to use an anisotropic lattice since the
T coordinate will have more entries if the shape of the lattice is kept as a hypercube.

There is no preferred value T that corresponds to t=0. Therefore I use all values of
T as the t=0 position and compute correlators for some separation AT. Then

Y (0]Op(T+AT) Op(T)|0)
T

Y (0]Op(T+AT-1)Op(T)|T)
T

m (AT) = -In

and

m = lim mg(At)
At-oo

5.2 Scalar Glueball

The lowest glueball state is called the scalar glueball and has J=0. The trace of a plaquette
will be used as the "Op" in the analysis of the previous section. A plaquette can be
characterized by the normal to its surface. Now U, can be represented schematically as an
even function of the normal, since U,, = U,, when traced. Under transformations of the cubic
symmetry group U,, transforms like some function ali 2 4 322 I Similarly, U,
is an even function of ¥, etc.

Summing all "spatial" orientations U, + U; + U,; gives a state that transforms like
(2% + y 2+ %2 ) and higher ordersin 2, ¥, X. These higher order terms will correspond
to states with higher J in the continuum limit. But these are expected to have higher energies

and should decay faster as T — oc than the lowest state excited by this operator which should
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be the scalar glueball. Integrating over all "spatial” positions will give a rotationally and
translationally symmetric object. For a fixed time slice in the continuum limit this is the
rotationally symmetric glueball state with zero three-momentum, namely the scalar glueball.

Using the standard notation of i and j for "spatial” coordinates, the operator then becomes

0p" =Tt ¥ ¥ (Uij(i,t) - UO“)

X i<j
jri

5.3 Tensor Glueball

The lowest antisymmetric glueball state is called the tensor glueball and has J=2. Again think
of the normal to the plaquette. Taking the difference of "spatial" orientations U, - U,;
gives a state that transforms like (2 2 - y %y and higher orders in 2, ¥. Integrating over
all "spatial” positions will give an antisymmetric object, namely the tensor glueball state. The
operator then becomes

Op? =Tr Y (Uu()‘i,t) - U (&b )

X

which should have some overlap with the JP = 27 state. In this case there is no need to
subtract away the vacuum expectation value as it will cancel in any case, that is J* = 2" has
no overlap with the "scalar" vacuum.

In order to get the most statistics from a given configuration this operator was
calculated using three combinations of orientations. Then the results were averaged. The

"spatial" orientation combinations used were (12 - 13), (12 - 23) and (13 - 23).
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Chapter 6
Fuzzing

In a conventional Wilson loop the spatial path between two lattice sites is chosen to be the
shortest, namely a straight line. There are obviously many more paths connecting two sites.
In fuzzing the straight line is smeared with other paths. [18] [19] Composite paths were first
used to overcome the problem of the rapidly decreasing signal being lost in the noise in
glueball mass calculations [18] [19] [32] and were later applied to potential calculations.[33]

The idea is to make operators that are closer to the size of the physical glueball or the
quark-antiquark flux tube in the case of a potential calculation. The overlap of the glueball
states with the simple plaquette operator gets smaller for smaller lattice spacings since the
plaqueite probes a smaller part of the physical state. Therefore by sampling many paths one
can construct an extended or "fuzzy" operator which can probe more of the glueball

wavefunction.

6.1 Fuzzing Method

Two parameters are used in fuzzing, the fuzzing constant (C) and the number of fuzzing
iterations (N). Fuzzing is done on all the "spatial” links in the lattice using "spatial” staples.

"Temporal" links are neither fuzzed nor used in the fuzzing process as this would destroy the
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time evolution operator.

Fuzzy links are only used in calculating the observables. The original non-fuzzed
links must still be used in the heat bath. Each configuration selected by the heat bath for
measurement is made into a fuzzy configuration which is used to make the measurements.

The heat bath continues to use the original configuration to develop subsequent

configurations.

Fuzzing is done one link at a time over the entire lattice. The chosen link is multiplied
by the fuzzing constant, then the four surrounding “spatial" staples ar. added in.
n n-1 n-1 n-1 A n-11 ~
= +
UPx) = CUM() + Yur (U (xa9)U 2" (x+a)

£
v4

The resulting link is normalized by dividing by [U,"(x)| to prevent overflow and to maintain
simple SU(2) multiplicative tables. The result is saved in the fuzzy lattice replacing the old
fuzzy link. The method I use is to determine the n™ iteration of all fuzzy links from the (n-1)®
iteration. Then the n" iteration of fuzzy links is saved in the fuzzy lattice replacing the (n-1)"
iteration. The number of iterations determines how many times this process is repeated.
The larger the fuzzing constant the greater the contribution to the new fuzzy link from
the original link and in the limit C = o fuzzing has no effect. The more iterations the

greater the mixing of the surrounding staples.

6.2 Results of Fuzzing

The notation I use is (nn xx.x) where nn is the number of fuzzing iterations and xx.x
is the fuzzing constant. Although nn=00 is sufficient to prevent fuzzing, the case of no

fuzzing is given as (00 00.0) to avoid any confusion on my part.
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The simulation runs consist of a 1,000 configuration thermalization from a cold start
followed by a 100 configuration sampiing selected from each tenth configuration of the next
1,000. The thermalization of 1,000 configurations is a bit of a trade off of accuracy versus
time. While not sufficient to thoroughly thermalize the lattice it is completed in half a day
of dedicated computer time whereas a 10,000 configuration thermalization would take 4 to
5 days. The 100 configuration sampling also takes half a day, so the duration is
approximately 1 day on a dedicated computer for each trial for each of the seven B values.
Using 4 time-shared computers at roughly 6 trials per B the whole thing took about 4 weeks.

I was searching here only for a reasonable estimate of the optimal fuzzing parameters.
The runs used here were discarded, and were not used in the tinal quoted measurements.

As can be seen in Tables 6.1 and 6.2 and in Figure 6.1 the results are quite dramatic.
The example I give in Table 6.1 is the static quark potential for R=1 of the 0.366 fm tadpole-
improved case where $=0.848. Without fuzzing I cannot quite get a plateau, as described
later in section 7.3, within 8 spacings. Whereas with fuzzing, a plateau is easily extracted
after 4 or 5 spacings. As shown in table 6.2 with only 100 configurations the large errors
make it very difficult to determine which fuzzing is best for optimizing the glueball mass.
I used the same fuzzing parameters as for the static quark potential taking the T=1 mass as

a fairly good indicator.

Table 6.1 Effect of various fuzzing parameters on static quark potential.

55

- R=1
e 00 00.0 15 25.0 10 20.0 10 25.0
1 0.9609(04) 0.8420(12) 0.8204(10) 0.8036(09)
2 0.8678(08) 0.7980(11) 0.7900¢11) 0.7831(09)
'3 0.8223(10) 0.7856(13) 0.7817(13) 0.7776(12)
4 | 0.8023{13) 0.7816(14) 0.7798(14) 0.7772(16)
5 | 0.7895(185) 0.7769(17) 0.7761(17) 0.7754(19)
6 0.7824(22) 0.7773(23) 0.7768(22) 0.7742(22)
7 0.7792(29) 0.7770(28) 0.7766(28) 0.7719(26)
'8 | 0.7754(34) 0.7751(35) 0.7747(34) 0.7709(32)



' Scalar Mass L ; e o
T 00 00.0 15 25.0 i 10 20.0 10 25.0

T 156 099G) 0.91@)  086(4)
2 0.85(12) : G.79(10) ', 0.74(3) P 0.76(8)
3 1.08(36) 0.54(15) - 051012 : 0.85(18)
Tensor Mass —_— , [ N
1T 1536)  152B) - 1.46(6)  1.41(5)

2 1.210168) 1.14(16) ' 1.18(15) 17128
3 0.87(42) NA NA, NA,

Table 6.2 Effect of various fuzzing parameters on glueball mass.
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Figure 6.1 Impact of various fuzzing parameters on static quark potential.
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B value Number of lterations Fuzzing Constant
0.848 10 25.000
1.114 10 15.000
1.214 5 8.000
2.000 10 31.000
2.243 10 15.000
2.300 5 9.000
2.400 5 2.500

Table 6.3 Fuzzing parameters chosen for each B value.

As can be seen in table 6.3 the larger the lattice spacing the larger the fuzzing
constant and vice versa. This is consistent with the idea stated earlier that large operators are
needed to probe the glueball mass. The lattices with larger lattice spacing will require less
fuzzing since their plaquettes are fairly large in the first place. Recall that the larger the

fuzzing constant, the less smearing of nearby paths occurs.
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Chapter 7
Results of Simulations

Simulations were run in order to make a comparison between the Wilson action and the
tadpole-improved action. Simulations were run on lattices with spacing ranging from 0.1 fm
to 0.4 fm. The entire assortment of simulations is summarized in table 7.1. In order to
distinguish between the two sets of simulations, By will denote the coupling for Wilson
action simulations and f, will denote the coupling for tadpole-improved action simulations.
All simulations were run on shared computer resources at Simon Fraser University
using code written in Fortran. In order to get more statistics some of the P values were run
on several computers simultaneously and then the results combined in post processing.
Each simulation was started from a cold start. The heat bath was used to generate
configurations. The first 10,000 of these configurations were skipped for thermalization.
After that, configurations were selected for measurements after skipping enough
configurations to minimize autocorrelations. A standard technique (for example see reference
[34]) was used to determine the validity of these skipping values. For the lattices with larger
spacing (greater than 0.2 fm) each tenth configuration was selected. For smaller spacing (less
than 0.2 fm) each twentieth configuration was selected. The total number of configurations
selected for measurements in each simulation varies based on the number of configurations

required to reduce the errors sufficiently to give reasonable results.
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B value Lattice Spacing Action Lattice Size
(fm) (space’ x time)
B,=0.848 0.366(1) Tadpole-improved 8'x 32
1.114 0.238(1) Tadpole-improved 8 x 20
1.214 0.202(2) Tadpole-improved 10° x 20
Bw=2.000 0.355(2) Standard Wilson 8'x 32
2.243 0.232(2) Standard Wilson 8 x 20
2.300 0.203(1) Standard Wilson 10° x 20
2.402) 0.128(2) Standard Wilson 12} x 12

Table 7.1 Summary of simulations.

7.1 Average Plaquette

The simplest measurement that can be taken from a isttice is the average plaquette. This
value is defined as the average trace of each plaquette in all configurations used for
measurements. This measure is useful in computer code debugging. The calculated values
can frequently be compared to simulation results of other researchers as a first level check
of computer code validity.

A summary of the average plaquette for each B value is given in table 7.2. The
results are given for both the basic configurations directly from the heat bath and the

configurations after fuzzing.
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B value Average Number of Fuzzy Fuzzing
Plaquette Configurations Plaquette Configurations

B,=0.848 0.39594(6) 2,000 0.87053(1) 40,000
1.114 0.50330(7) 2,000 0.95638(1) 40,000
1.214 0.54639(5) 2,000 0.95466(2) 11,001
Bw=2.000 0.33313(9) 2,000 0.81737(2) 20,000
2.243 0.44327(9) 2,000 0.95089(1) 40,000
2.300 0.48309(6) 2,000 0.94086(2) 14,000
2.400 0.62999(4) 2,000 0.98970(1) 20,000

Table 7.2 Average plaquette before and after fuzzing for each B value.

7.1.1 U, used in Tadpole-Improved Heat Bath

The average trace of a lattice link U, is defined as the fourth root of the average plaquette

since a direct trace of all the links would result in zero. U, is used in the tadpole-improved

action. It is also used to remove the vacuum energy in the scalar glueball mass calculation.

The tadpole-improved action has a non-linearity since U,, which appears in the

action, must be determined from the average plaquette which itself is determined by the

action. The value of U, used in the tadpole-improved heat bath is developed by an iterative

procedure during the thermalization and then verified for consistency with the final value of

U, determined from the entire simulation at the end of the run. Once set, the value of U,

used in the tadpole-improved heat bath is not changed during the simulation.
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To get the value of U, from the thermalization, I divide the 10,000 contigurations
used in the thermalization into twenty stages of 500 configurations each. For the first stage
I use U, = 1 as a rough approximation. At the end of this first stage, I replace U, using the
average plaquette from all configurations developed in the first stage. I repeat this process
for the second stage. For the subsequent eighteen stages 1 keep a running average of U, and
replace it at the end of each stage. At the end of the thermalization, the final running average

of U, is saved and used for the entire simulation. Table 7.3 gives the values of U at

thermalization and at the end of simulation for the tadpole-improved simulations.

B, value Number of Thermalized Final %
Configurations Uy, Upge Difference
0.848 40,000 0.96570(3) 0.96593(3) 0.023%
32,000 0.96568(3) 0.96595(2) 0.027%
1.114 50,000 0.98865(3) 0.98891(2) 0.026%
30,000 0.98868(3) 0.98890(3) 0.023%
1.214 11,001 0.98818(2) 0.98847(3) 0.029%
5,300 0.98816(2) 0.98847(5) 0.031%

Table 7.3 Comparison of average link from thermalization and end of run.
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7.2 Anisotropy

A major feature of this thesis is the use of anisotropic lattices. The "spatial” lattice spacing
a, is chosen in the range of about 0.1 fm to 0.4 fm. The "temporal" lattice spacing is kept
around 0.1 fm and the anisotropy is introduced in the action by way of a/a,. In the discussion

any reference to lattice spacing means "spatial" lattice spacing, unless "temporal" is

specifically stated.

7.2.1 Determining the p Value

One of the first tasks to be done before running a lattice simulation is to determine the
value which will give the desired lattice spacing. Fortunately for me the B values for several
of the lattice spacings I was interested in had been determined by my supervisor in advance
for other work he was doing. I had to determine the § values for the 10°x20 anisotropic
lattices that would give a lattice spacing of about 0.2 fm for both Wilson and tadpole-
improved actions. I also had to determine the § value for the 8°x20 anisotropic standard
Wilson action lattice that would give a lattice spacing reasonably close to that for the 8°x20
anisotropic tadpole improved action B=1.114. The results of this latter calculation are shown
in detail.

This was a case of trial and error although some educated guesses could be made

from data that I already knew. The results of the most notable trials that led me to B,~2.243

are summarnized in Table 7.4.
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Bw value Input a/a Measured a/a, a, (fm)
2.200 0.400 0.321 0.265
2.243 0.400 0.338 0.232
2.270 0.400 0.348 0.227
2.300 0.400 0.337 0.213
2.400 0.400 0.357 0.181

Table 7.4 Various trials to find a B value for an anisotropic Wilson action.

7.2.2 Lattice Spacings

The slope calculated in section 4.4 has to be adjusted for a 1/R term since the formula for the

static potential between two quarks is of the form V(R)

coefficient is determined by looking for the least chi-squared fit to the integer potentials.
The lattice spacing a,, the "temporal” lattice spacing a, and the 1/R coefficient are

given for each simulation in table 7.5. The determinations of a, and a/a, are discussed in the

next section.
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B value ca’ 1/R coefficient | Lattice spacing | Time spacing
(b) ay a,
(fm) (fm)
B=0.848 0.667(2) 0.187(1) 0.366(1) 0.101(1)
1.114 0.283(1) 0.255(2) 0.238(1) 0.097(2)
1.214 0.205(1) 0.252(2) 0.202(2) 0.101(2)
Bw=2.000 0.630(2) 0.101(1) 0.355(2) 0.071(3)
2.243 0.268(1) 0.217(1) 0.232(2) 0.078(2)
2.3 0.206(1) 0.211(1) 0.203(1) 0.087(2)
2.4 0.082(1) 0.214(2) 0.128(2) 0.128(2)

Table 7.5 Results of potentia: fits for each simulation.

7.2.3 Anisotropy Results

To illustrate the data obtained in the many simulations, the plateaux of the static quark

potentials V(R) for both "spatial” Wilson loops (SS) and mixed "spatial"/"temporal" Wilson

loops (ST) are as shown in Table 7.6 for the 0.2 fm tadpole-improved and Wilson actions.

The results are graphed in figures 7.1 and 7.2. To make the plots comparable, the ST values

are rescaled using the input a/a_ and then the SS values are shifted so that they agree with the

ST results at R = a,. The line is fitted to the ST values. The noticeably different slopes of the

SS values shows the renormalization of a/a; in the Wilson action.
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Figure 7.2 Static quark potential in different orientations for B=2.300.




B value Loop V(R=1) V(R=2) V(R=3)
B=1.214 ST 0.4788(4) 0.8085(14) 1.0572(33)
SS 1.112(1) 1.767(3) 2.266(16)
Bw=2.300 ST 0.4241(3) 0.6921(13) 0.9031(32)
SS 1.159(1) 1.787(9) 2.279(12)

Table 7.6 Static quark potential for SS and ST Wilson loops.

The ratio of a, over a, was calculated from the results in table 7.6 as discussed in
chapter 4 and these results are shown in table 7.7 including the results from all other
anisotropic simulations done. A comparison between input a,/a, and measured a/a, is made

in Table 7.8 for these actions.

B value R2-R1 R3-R1 R3-R2 Average
B,=0.848 0.277(2) 0.276(3) 0.282(6) 0.278(2)
1.114 0.416(5) 0.415(6) 0.415(16) 0.415(6)
1.214 0.503(4) 0.501(8) 0.498(13) 0.501(7)
Bw=2.000 0.1994) 0.204(10) 0.196(22) 0.200(8)
2.243 0.335(23) 0.338(45) 0.341(104) 0.338(38)
2.300 0.427(5) 0.428(8) 0.429(18) 0.428(7)

Table 7.7 Ratio of a, over a, for anisotropic lattices.
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a/a; a/a; %

B value input measured Difference Difference
B=0.848 0.276 0.278(2) -0.002 -0.7%
1.114 0.409 0.415(6) -0.006 -1.4%
1.214 0.500 0.501(7) -0.001 -0.2%
Bw=2.000 0.250 0.200(8) 0.050 20.0%
2.243 0.400 0.338(8) 0.062 18.3%
2.300 0.500 0.428(7) 0.072 16.8%

Table 7.8 Comparison of input a/a, to measured for anisotropic lattices.

As can be seen in table 7.8 the renormalizations from quantum eftects are much
larger in the Wilson actions than for the tadpole-improved actions. This result is generally
true. Unimproved lattice actions can show very large renormalizations [4], but most of these
renormalizations come from tadpoles which have been divided out of the improved action,
leaving only small renormalizations. For the tadpole-improved actions the difference

between input and measured values is within errors, so no later scaling adjustments were

dcne.
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7.3 Static Heavy Quark Potential

The static heavy quark potential was calculated for all seven B values. In all cases 2,000
configurations were used to determine the potential. This number of configurations in the
ensemble was sufficient to reduce the errors enough to get meaningful results.

For brevity I have shown the detailed results of V(R,T) for only one of the
simulations along with a small sampling of other results in graphical form. Table 7.9 shows

the V(R,T) results for §,=0.848 with the plateau values V(R) highlighted. Representative

graphs of V(R,T) are shown in figures 7.3 and 7 4.

| R=1 R=2 R=3 " R=4
T VIRTY  V(RT) O VRT) VRTL
1 0.8044() 16062(6)  2.3816(8) 3.1525(11)
2 07838(2)  1.5592(6) | 2.2940(12)  3.0192(19)
3 . 07787(3) . 1.54B4(8) . 2.2638(17) = 2.9663(31)
4 .07771(3)  1.5410(11)  22460(26) | 2.9271(61)
5 0.7767(4) = 1.5384(i5) = 22364(43)  2.918(12)
6 0.7769(5) 1.5371Q21)  2.2340@75)  2.923(26)
7 0.7771(6)  1.5393(30) = 2225(13) = 2.854(53)
8 0.77677) 16361(45)  220023) 2.58(10)
, R=Sqrt2 ~ R=Sgrt3  R=Sgrt5 | R=Sqn8
1 1.2417(4) = 2.3665(7) 18743@) 2.3553(9)
2 1.1840(6) ~ 1.48370) = 177560 = 22169(13)
3 L 1.7196) 0 1.45B6(13) - 1.7516(12) . 2.178B(17)
4 1.1685(7) 1.4478(19) 1.7432(16) = 2.1620(26)
5 1.1679(9) L laadzgs) J1.7392023)  21851@41)
6 1.1688(11)  1.4449(38) | 1.7393(34) = 2.1561(69)
7 1.1683(15) 1.4389(55)  17395(61) | 2.144(11)
8 1.1851(20)  1.4454(82)  1.7366(78)  2.146(20)

Table 7.9 Tadpole-improved action V(R,T) for B value 0.848.
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Figure 7.3 Wilson action V(R=1,T) for By=2.000.

Effective Potential

1.88

R=S5qrt5

2375678
T

Figure 7.4 Tadpole-improved action V(R=\/g ,T) for B,=0.848.

The plateau value V(R) for a specific R value is determined from the various V(R,T)
entries based on their value and error. Subjectively the graph has to look similar to figures
7.3 and 7.4 in order to determine the plateau value. All the V(R,T) graphs from all
simulations looked like these representative figures. I look for two or three successive T
values for which the data V(R,T) overlap within statistical errors. An estimate of systematic

error in the extrapolated V(R) is then taken from the statistical error of the largest T value
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in the plateau.

Examples of the static heavy quark potential V(R) results for representative B values
are shown in figures 7.5 and 7.6. In all these figures the filled in circles represent the on-axis
potentials while the open circles represent the off axis potentials. Table 7.5 gave the
coefficients of the best fit line V(R) = oR - b/R + ¢ which had been calculated using the least
chi-squared fit to the integer potentials for each B value. These fitted lines have been
superimposed on figures 7.5 through 7.6. As presented in section 4.4 the lattice spacings are
calculated from the slope of the various curves. These spacings were summarized in table
7.1.

Figure 7.7 and table 7.10 show a comparison of the actual to fitted values for the off
axis potentials. In the figure the lines are fitted to the Wilson action on-axis potentials and
the percentages in table 7.10 are used to plot the off-axis points. Both figure and table show
that for any given lattice spacing the off axis potential is much closer to that calculated from
integer potentials for the tadpole-improved potential than for the Wilson potential. This also
shows that generally the off axis potentials are much closer to those calculated from the

integer potentials for the smaller spacing lattices than for the larger spacing lattices.
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Figure 7.5 Static quark potential for 0.366 fm tadpole-improved action
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Static Quark Potential
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Figure 7.6 Static quark potential for 0.355 fm Wilson action
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Figure 7.7 Comparison of off axis static quark potentials
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B value \/5 \/g \/g \/g

B,=0.848 5.4% 7.5% 2.1% 1.9%
1.114 2.7% 2.6% 0.7% 0.4%
1.214 2.6% 2.9% 0.6% -0.1%
Bw=2.000 10.6% 15.1% 5.9% 6.6%
2.243 5.2% 6.7% 2.5% 2.7%
2.300 4.8% 5.6% 2.0% 1.8%
2.400 4.1% 4.4% 1.8% 1.5%

Table 7.10 Deviation of off-axis potentials from fit to on-axis data.

The difference from calculated potentials is approximately the same for the 0.232 fm
Wilson action (Py,=2.243) as for the 0.366 fm tadpole improved action (8,=0.848). Typically
the required computer time scales as a® which would mean that the smaller spacing would
require 15 times as much computer resources as the larger spacing. In my simulations the
code for tadpole-improvement adds approximately fifty percent to the resources used by the
simulation. While I have no proof that this can be extrapolated to other lattice spacings, here
I see an approximately tenfold improvement in doing static quark potential calculations using

tadpole-improvement.
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7.4 SU(2) Glueball Mass

The masses of both the Scalar and Tensor glueballs were calculated in simulations for each
B value. The number of configurations for each B value varies depending on what was
required to reduce the statistical error so that the results were meaningful. The number of

configurations used for measurement for each B value is given in table 7.11.

B value Number of Configurations
B=0.848 72,000
1.114 80,000
1.214 16,301
Bw=2.000 20,000
2.243 40,000
23 14,000
24 33,500

Table 7.11 Number of configurations for each B value.

An estimate of the large T extrapolation of the mass is required. The procedure used
here is somewhat different from that used for the static quark potential where the errors were
sufficiently small that a plateau estimate seemed reliable enough. In this case the data points
my,(T) are fitted in a range of T values from T, to Ty, to a curve Ce “MT T,.in must be
large enough to eliminate excited states within statistical errors. Holding T, fixed a value
of M(T,,;,) is determined from Ce “MT for successive T,.in values. M is chosen based on the

statistical overlap between two successive M(T,;,) values.
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7.4.1 SU(2) Scaiar Gluebali

For brevity I have only shown the detailed results for the mass of the scalar glueball from
one of the simulations. Table 7.12 shows the mass o< the scalar glueball results for p,=0.848

M
with the exponential fit — highlighted.

Jo

T m (T) R M(T_)
J; min J;

1 3.92(1) 1 3.54(2)

2 3.56(2) 2 3.51(4)

3 3.50(3) 3 3.52(9)

4 3.49(7) 4 3.58(17)

5 3.6(2) 5 3.54(35)

6 3.5(4)

7 3.2(7)

8 5.5(28) Tinax

Table 7.12 Scalar glueball mass for p,;=0.848.

m (T)
& versus T for the scalar

Figures 7.8 and 7.9 show representative graphs of
glueball mass at selected B values. In these graphs the solid li%egwith the two dashed lines
shows the exponential fit —-]\—4- , along with one sigma errors.

Figure 7.10 shows a c%mpan'son of the SU(2) scalar glueball masses based on lattice
spacing. Aiso shown in the figure are data points taken from the literature [23] [32] and an

extrapolated continuum value.[35]
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Figure 7.8 Scalar glueball mass for 0.366 fm tadpole-improved action
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Figure 7.9 Scalar glueball mass for 0.355 fm Wilson action
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Figure 7.10 Comparison of Scalar glueball masses
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Table 7.13 shows a comparison of the SU(2) scalar glueball mass values to the
continuum value. The last column shows the number of standard errors that the central value

of the scalar mass is away from the cental value of the continuum mass.

Lattice % Difference | Number of 0
B value Spacing —N—I— from from
(fm) \/; Continuum Continuum

Continuum 3.87(12)

B=0.848 0.366(1) 3.51(4) -9.4% 9
1.114 0.238(1) 3.57(5) -1.7% 6
1.214 0.202(2) 3.72(17) -3.9% 1

Bw=2.000 0.355(2) 3.08(6) -20.4% 14
2.243 0.232(2) 3.06(6) -21.0% 13
2.300 0.203(1) 3.11(13) -19.8% 6
2.400 0.128(2) 3.49(13) -9.9% 3

Table 7.13 Comparison of calculated scalar glueball mass to continuum value.

As can be seen in Figure 7.10 and Table 7.13 the tadpole-improved actions resulted
in scalar glueball mass values which are significantly closer to the continuum value than the
Wilson actions. The diﬂ'erence(f;rom continuum is approximately the same for the 0.128 fm

Wilson action (By=2.400) as for the 0.366 fm tadpole improved action (B,=0.848). As
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previously stated, the required computer time typically scales as a® which would mean that
the smaller spacing would require 550 times as much computer resources as the larger
spacing. In my simulations the code for tadpole-improvement adds approximately fifty
percent to the resources used by the simulation. While I have no proof that this can be
extrapolated to other lattice spacings, here I would see a 350 fold improvement in doing
scalar glueball mass calculations using tadpole-improvement if exactly the same physical
volumes were used and if the skips between measurements were actually scaled by 1/a°.
The lattice spacing for the Wilson action must drop below 0.2 fm before any
significant approach to the continuum value is seen. The tadpole improved action goes
towards the limit even at 0.4 fm, although to drop below 5% etror requires a lattice spacing

of about 0.2 fm. This could suggest that the scalar glueball may be unusually small in SU(2).

7.4.2 SU(2) Tensor Glueball

For brevity I have only shown the detailed results of the mass of the tensor glueball for two
of the simulations. Figures 7.11 and 7.12 show graphs of the tensor glueball mass for
selected P values. In these graphs the solid line with the two dashed lines shows the
exponential fitted ——hi , including errors.

Figure 7.13 I?ows a comparison of the SU(2) tensor glueball masses based on lattice
spacing. Also shown in the figure are data points taken from the literature [23] [32} and an
extrapolated continuum value. [35]

Table 7.14 shows a comparison of the SU(2) tensor glueball mass values to the

continuum value.
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Figure 7.11 Tensor glueball mass for 0.366 fm tadpole-improved action
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Figure 7.12 Tensor glueball mass for 0.355 fm Wilson action
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Figure 7.13 Comparison of tensor glueball masses
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Lattice % Difference Number of ©
) M
B valu Spacing —= from from
o
(fm) v Continuum Continuum

Continuum 5.63(11)

B,=0.848 0.366(1) 4.39(68) -22.1% 2
1.114 0.238(1) 5.85(14) 3.9% 2
1.214 0.202(2) 5.70(36) 1.2% <1

Bw=2.000 0.355(2) 5.07(8) -10.0% 7
2.243 0.232(2) 5.58(11) -0.9% <1
2.300 0.203(1) 5.95(29) 5.8% 1
2.400 l 0.128(2) 5.92(90) 5.1% <1

Table 7.14 Comparison of calculated tensor glueball mass to continuum value.

As can be scen in Figure 7.13 and Table 7.14 the tadpole-improved actions resulted
in tensor glueball mass values which are approximaiely the same as the Wilson actions.
However the verv large errors in the B,=0.848 data prevents reaching any definite
conclusions. More data 1s needed.

There is a large difference between the lattices with the largest spacing and all other
lattices for both tadpole-improved and Wilson actions. Namely making the tadpole-
improved lattice spacing 0.238 fm {B=1.114) gave a significant improvement in the results
over 0.366 fm spacing (p=0.848). This would suggest that the tensor glueball is larger than
the scalar glueball. as one might expect.
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Chapter 8
Conclusions

The objective of this thesis has been a detailed comparison of lattice gauge theory
simulations under SU(2) colour with and without tadpole-improvement. Calculations have
been done for lattice anisotropy, static quark potential, mass of the scalar glueball and mass
of the tensor glueball. The lattice spacings were in the range of 0.1 fm to 0.4 fm. In the casc
of the glueball masses the results were also compared with published results from
simulations on small lattices in the less than 0.1 fm range.

A significant feature of this thesis has been the use of anisotropic lattices. The
"spatial” lattice spacing a, was in the range of 0.1 fm to 0.4 fm. The "temporal” lattice
spacing was kept around 0.1 fm. The use of anisotropic lattices allowed easier determination
of the scalar and tensor glueball masses since more measurements of the correlation
functions could be established before they disappeared into the noise.

Another tool used to more easily extract the signals was fuzzing. This entailed the
use of smeared paths to increase the overlap with the ground state. The effects on the
calculation of the static heavy quark potential were demonstrably dramatic. In the calculation
of the glueball masses the effects were similar to that of the potential. In the case of the
B=1.114 (tadpole-improved action on the 0.238 fm spacing lattice) tensor glueball, no

plateau could be found without using fuzzing.
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The results of the comparisons of the tadpole improved actions to the standard
Wilson actions showed significant gains for most observables measured.

The renormalizations from quantum effects are much larger in the Wilson actions
than for the tadpole-improved actions. Unimproved lattice actions tend to show very large
renormalizations, but most of these renormalizations come from tadpoles which have been
divided out of the improved action, leaving only small renormalizations. For the tadpole-
improved actions the difference between input anisotropy and measured anisotropy is within
errors and therefore not statistically significant.

In the case of the static heavy quark potentiai, the breaking of rotational invariance
is much smaller for the tadpole-improved action than for the Wilson action. Rotational
symmetry breaking provides a direct measure of discretization errors in the lattice action. For
any given lattice spacing the off axis potential is much closer to interpolations of the integer
potentials for the tadpole-improved potential than for the Wilson potential. Also as expected,
rotational symmetry breaking was reduced for lattices with smaller lattice spacing. The
measured symmetry breaking is approximately the same for the 0.232 fm spacing Wilson
action as for the 0.366 spacing tadpole-improved action. Since the required computer time
scales as a® the smaller spacing would require approximately 15 times as much computer
resources as the larger spacing. Tadpole-improvement routines add approximately fifty
percent overhead to the computing resources required, because of the greater complexity of
the action. Therefore this case resulted in an approximate tenfold decrease in computing
resources required to do the static potential calculations using the tadpole-improved action.

The tadpole-improved actions resulted in scalar glueball mass values which were
significantly closer to the continuum value than the Wilson actions. The difference from
continuum is approximately the same for the 0.128 fm Wilson action as for the 0.366 fm
tadpole improved action. Taking into account the required computer time scaling of a and

the fifty percent overhead of tadpole-improvement this data suggests a 350 fold improvement
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in doing scalar glueball mass calculations using tadpole-improvement. This is a day versus
a year to get the same results.

The lattice spacing for the Wilson action must drop below 0.2 fin betore any
significant approach to the continuum scalar glueball mass value is seen. In the case of the
tadpole improved action. a significant drop in discretization errors also requires a lattice
spacing below about 0.2 fm. This could suggest that the scalar glueball may be unusually
small in SU(2). A similar conclusion was suggested for SU(3) glueballs by Morningstar and
Peardon. [17]

Preliminary results for the tensor glueball mass were presented. The tadpole-
improved actions resulted in tensor glueball mass values which are approximately the same
as the Wilson actions, but very large statistical errors on the coarsest lattice prevented a
definitive comparison. There is a large difference between the lattices with the largest
spacing and all other lattices for both tadpole-improved and Wilson action. Namely making
the lattice spacing 0.238 fm gave a significant improvement in the results over 0.366 fm
spacing. This could suggest that the tensor glueball is somewhat larger than the scalar
glueball, as one might expect. On the other hand, the large errors in the 0.366 fm tadpole-
improved action results (f=0.848) require more work. A better optimization of the (uzzing
tailored specifically for the tensor glueball may help here.

As suggested in section 3.2 a potential future research project could be to determine
if there is a better definition of the average lattice link than using the fourth root of the
average plaquette. A definition based on the average link with a specific gauge fixing has
been made. [30] Another major project would be to do the same research under SU(3).

For the most part the research was successful. I have demonstrated that state-of-the-
art calculations can be done on small computers using large lattice spacings with tadpole-
improvement. The results are reasonably close to those obtained using smaller lattice

spacings which in the past have required a much longer time frame using larger computers.
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