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Abstract 

Lattice Quantum Chromodynamics is a cornerstone of phenomenology for low-energy strong 

interactions. This thesis deals with new algorithms which may allow the use of larger lattice 

spacing in numerical simulations of QCD. 

Traditionally iattice caieulations have been done using a Wilson action where thc 

lattice spacing has been kept in the 0.10 fm range to achieve good accuracy. In this rescarch 

calculations are performed using an action where leading discretization errors in the Wilson 

action are removed. This so-called tadpole-improved action is used on coarse lattices to makc 

new calculations in SU(2) colour. The efficiency of these calculations is increased by using 

anisotropic lattices whereby the temporal spacing is smaller than the spatial. A "fuzzing" 

technique is used to enhance the signal by smearing the straight line lattice link with other 

nearby paths. 

The specific calculations are for the lattice anisotropy, the static quark potential, the 

scalar glueball mass and the tensor glueball mass. Both Wilson and tadpole-improved act ions 

are used on coarse lattices with spacings in the range of about 0.2 fm to 0.4 fm. 

The lattice anisotropy shows much less renormalization for the tadpole-improvcd 

action than for the Wilson action. As well, breaking of rotational invariance is much smaller 

for the tadpole-improved action. The scalar glueball mass is substantially closer to the 

continuum value for the tadpole-improved action than the Wilson action. Prel iminq results 

for the temr gluebd! m a s  a e  obtained, but no statistically significant difference is 

observed between the two actions. 
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Chapter 1 

Introduction 

Lattice Quantum Chromodynamics (QCD) has become a cornerstone of phenon~enology ti)r 

low-energy strong interactions. Perturbative methods for solving a quantum field theory l i  kc 

Quantum Electrodynamics (QED) fail far treating QCD at low energies or large distances, 

where the running coupling constant a,(r) becomes large. Lattice QCD offers a truly non- 

perturbative technique for studying low erlergy phenomenology. The techniyucs of latticc 

QCD readily lend themselves to computer simulation. Since the mid- 1970's when the gaugc 

invariant lattice action was introduced by Wilson [l 1, the main concern of theorists has hecn 

getting fast enough computers to obtain numerical solutions of full QCD. This thesis deals 

with newly developed methods to reduce the amount of computer time needed to solve QCD 

problems. 

The main ingredient of the cost of doing a lattice simulation on the computer is thc 

lattice spacing (usually denoted by a). The length (L) of a side of the lattice is k n a  where 

n is the number of lattice points on a side. The physical volume of the four-dimensionai 

lattice is L4 a d ,  in order to kesp the physical volli~ile fixed, i k  lcfigtti L miisi tie fixed as 

a+O. Therefore the totid iimkr sf p in t s  ir; the lattice is ij,op;Iti;ltionaf to '1!a4. Fiirthel7iiort: 

the lattice spacing (a) does not appear explicitly either in the action or in ?'-.I: observables 

computed from the simulation Therefore, the length of an observable in lanice units, C-lh, 



diverges as a-4, where 1 is the physical length. Diverging correlation lengths are a hallmxk 

of second order phase tzmsifions and thus it is expected that auto-conelation fitnctions will 

exhibit critical slowing down. The number of updates required to generate an uncorrelated 

member of the ensemble of quantum states, near a critical point, typically diverges as l/a2. 

(See for example reference [Z]). Hence the total cost of doing a computer simulation will 

scale as l/a4. 

In order to keep the cost down it is therefore desirable to use as large a lattice spacing 

as possible. H o w q  errors are introduced in moving from the continuum to the discrete 

lattice and, the larger the lattice spacing, the larger are these errors. Over time, a consensus 

has emerged that lattice spacings should be kept in the 0.05 fin to 0.10 fin range to minimize 

these errors and have reliable results. (For a pedagogical review see, for example, reference 

[3 ] . )  Unfortunately, this requires enormous lattices to achieve adequate physical volume. For 

example a 324 lattice at 0.05 fin spacing has a modest volume of (1 -6 fm)4 bearing in mind 

that a typical length scale for confinement is about 1 fm, the "radius" of a proton. This then 

equates to supercomputhg. 

1.1 Tadpole Improvement 

Consider solving a classical field theory on a lattice, for example Coulomb's law, 

--$A, = p . At leading order in a, the derivatives are defined by finite differences. In the 

example a.A '(x) = (A '(x + ;a) -A '(x - ;a)) 1 2 a + 0 (a ') . A better approximation, 
1 

stimimtirrg the Wa2) errors9 be ob+&r;ed using next-to-nearest neighbctw couplings. A 

similar appmzcf., c m  ke tried for a discrete version of a qtranPm field theory. However, in 

a quantum field theory there are large ultraviolet fluctuations (Ap- l/a) which can spoil such 

power counting in a. fn order to remove these effects which actually generate the leading 



order discretization errors in the conventional lattice actions (usually referred to as Wilson 

actions), a technique called iadpole improvemeni was originally suggested by iepage md 

Mackenzie in 1993.[4] The ultraviolet fluctuations come from so-called tadpole diagratlls 

that are induced by a non-linear connection between the lattice quantum fields and the 

standard continuum gauge fields. Tadpole improvement largely removes these ultraviolet 

fluctuations by doing a mean field renormalization of the lattice quantum fields. 

One of the first and most thorough applications of this technique has bcen the 

calculations of the upsilon [5] and charmonium [6] spectra by Davies and collaborators in 

1994 and 1995, where leading discretization errors in a heavy quark action were removed. 

However, the gluonic action was not improved in these calculations and so the lattice spacing 

was kept relatively small. 

It was more recently demonstrated that tadpole improvement could be used to remavc 

discretization errors in both the gluonic and quark actions in order to work on vcry coarse 

lattices. In 1995, Alford and collaborators computed the SU(3) static quark potential on a 

coarse lattice with spacing of 0.4 fin and found that rotational invariance was broken by 40% 

in the Wilson theory but only 2-4% in the improved theory.[7] In the same research paper 

they also looked at the spin-averaged charmonium spectrum. Using an improved action for 

the lattices with spacings of 0.40 fm, 0.33 fm and 0.24 fm, they found that the spectrum 

agreed within errors to a Wilson action calculation on a lattice with spacing of 0.1 7 fm. 

In 1996, Fiebig and Woloshyn analyzed light hadron masses using a tadpole- 

improved action. For the ratio of nucleon to p-meson mass, the improved action values at 

0.3 fm and 0.4 fm agree with the Wilson action at smaller lattice spacing ( 5  0.1 fm).[8j 

Light hadron spectroscopy has also been done by Alford et ul[9] md by Collins et ul f 10 1. 

Hadroils me mide up of more e1smeiitai-y particles called quai-ks. The gauge patides 

that provide the strong binding force between the quarks are called gluons. The gluons carry 

a colour "charge" and can interact directly with each other. Due to confinement, a state with 



net colour can never be seen; however, colour-singlet combinations of gluons ought to have 

finite energy. These h u n d  states of gluons are referred to as gluonium or more commonly 

as glueballs. By studying the pure gauge sector and ignoring the effects arising from virtual 

quarks an approximation of the glueball mass can be achieved.[l 11 

In 1995 Morningstar =id Peardon used a tadpole-improved acticn ro examine the 

SU(3) scalar glueball spectrum.[12] They found a significant reduction in the finite lattice 

spacing errors in the glueball mass. However the large lattice spacing in the "temporal" 

direction limited the number of statistically useful mass measurements. More recently they 

repeated SU(3) glueballs on an anisotropic lattice. 

Anisotropic Lattice 

The efficiency of certain lattice calculations can be enhanced by using a smaller lattice 

spacing for the "temporal" direction a, than for the "spatial" directions %. For an example, 

the scalar glueball correlation function falls off exponentially with Euclidean time as 

e -MsT while the statistical noise is fairly constant. The idea is to get more measurements at 

smaller physical T before the signal disappears into the noise. Therefore it is more efficient 

here to use a smaller "temporal" lattice spacing than to do additional Monte Carlo 

measurements on an isotropic lattice. 

For an anisotropic lattice the bare input value of anisotropy, a,/a,, is never equal to 

the measured value of anisotropy. The reason is that the bare input value is renormalized by 

quantum effects. In an anisotropic lattice action there are two different couplings. One 

coupling multiplies terms sensitive only to the "spatial" length scale 4. The other coupling 

m~ltiplies terms sensitive to both a, and 4. These two couplings can (and do) behave 

differently as these lattice spacings are sent to zero, and this shows up as a "renormalization" 

of the input anisotropy. Pioneering theoretical work was done by A. Hasedratz and P. 



Hasenfratz 1131 in 1981, and by F. Karsch [14] in 1982. In 1988 Burgers et al. showed 

numerically that these renomaliz=ons can have large effects on his misotropy .I151 hiford 

et al. showed in 1996 that tadpole-improvement removed most of these renorn~aIizations.[l6j 

Some preliminary results obtained in this thesis have been reported in that work. 

Following this work, in 1996 Morningstar and Peardon used coarse anisotropic 

lattices with tadpole-improved actions to examine SU(3) glueball masses1 17) In this 

research, they required much smaller statistical samplings to resolve the glueball correlators 

than in their previous isotropic work.[12] Using an anisotropy of 1/3 with tadpote- 

improvement they found that to get similar accuracy they required two to three orders of 

magnitude fewer calculations than were needed on Wilson actions which used much smaller 

lattice spacings. 

Fuzzing 

Fuzzing is a technique that has been successfully used to reduce the noise and enhance the 

signal in lattice simulations. In a lattice formulation of QCD the gauge fields are replaced by 

"links" which "transport" the phase of a quark (or gauge) field from one site to another. In 

k i n g  the straight line lattice link is smeared with other nearby paths. In some calculations, 

for example the mass of the glueball, the simplest operators are constructed from small loops 

which are generally the size of the smallest cell on the lattice while the objects being 

measured tend to be several lattice spacings in size. The idea is to make operators that are 

closer to the size of the physical ob~ect being measured and thus to increase the overlap with 

the ground state. The Teper f in ing method is described in reference [18]. In this research 

I use the APE collaboration iterative method to get these smeared or fuzzy operators.[l9] 



The work done for this thesis has been lattice gauge theory simulations under SU(2) colour. 

SU(2) shares many features with SU(3), like confinement and glueball states. Therefore 

SU(2) provides a cheaper laboratory for studying this physics. There is a long history of such 

calculations. For example in 1992 the UKQCD collziboration undertook a large scale study 

of potentials to help understand the limit of lattice QCD as the spacing goes to zero. [20] 

They used a 4g3 x 56 SU(2) lattice with a spacing of 0.028 fm. 

The specific calculations in this thesis are the lattice anisotropy, the static quark 

potential, the mass of the scalar glueball and the mass of the tensor glueball. This thesis 

contains the first calculations of these quantities using the SU(2) tadpole-improved action. 

Computations have been done to determine these quantities, for both standard Wilson 

actions and tadpole-improved actions, and then to compare the results over a range of lattice 

spacings. The calculations were done on lattice spacings ranging from 0.1 fm to 0.4 fm. The 

glueball masses were compared with the published results of research using lattices with 

small lattice spacing. The strategy was to quantifj. the gains in reliability of results from the 

tadpole-improved actions compared to the standard Wilson action at large lattice spacing. 

The material in this thesis has been organized as follows. In the following chapter I establish 

the bark theoretical framework for lattice gauge theory, leading from the Feynrnan path 

integral to the Wilson loops. In this same chspter the methodology for obtaining the static 

q w k  potential is detailed. The potential is used to resolve the lattice spacing. At the end of 

the chapter I describe the mechanics of the numerical simulations which are used to calculate 

the observables. In chapter 3 the methods to eliminate leading discretization errors are 



developed. This includes the removal of leading discretization errors both at the classical 

field theory level (ciassical improvement) and at the quantum levei (tadpole improvement). 

In chapter 4 I develop the physics of the anisotropic lattice including a procedure to ascertain 

the measured anisotropy. Theoretical background and the methodology for obtaining the 

glueball mass is introduced in chapter 5. The technique of fuzing is illustrated in chapter 6 

along with results from k i n g  trials. Chapter 7 contains the detailed results from the 

simulations. This includes the first calculations using the SU(2) tadpole-improved action for 

lattice anisotropy, static quark potential, scalar glueball mass and tensor glueball mass. 

Wilson action values, from both the literature and my own simulations, are presented and 

compared with the tadpole-improved values. The last chapter gives the final conclusions. 



Chapter 2 

Wilson Lattice Action 

In lattice QCD, continuous space and time are replaced by a discrete 4-dimensional 

rectangular grid with side length L and lattice spacing a. The lattice sites are designated by 

their position x = (x', x2, x3, x4). Typically the lattice directions are denoted by p, v which 

are also used as the corresponding unit vectors. The quark fields 'live' on the lattice sites 

while the glum fields 'live' on the so-called "links" which join adjacent lattice sites. The 

quantized theory is defined through a Feynman path integral using a gauge invariant action 

based on the lattice gauge fields. For computation it is most convenient to use the Euclidean 

path integral as shown in the next section. The gauge fields on the lattice are the link 

variables which are elements of the gauge group and are related to the continuum gauge 

potential as developed in the link variables section. The static interquark potential can be 

computed by calculating the expectation value of a gauge invariant quantity, called a Wilson 

loop, built only from the gauge fields. This is investigated in the subsequent section along 

with the breaking of rotational invariance. To make the problems tractable, statistical 

methods are employed (specifically the Monte Carlo simulation) as described in the final 

section of the chapter. 



2.1 Feynman Path Integrals 

The Feynman path integral is equivalent to solving the Schradinger equation. In one- 

dimensional quantum mechanics the amplitude to go from an initial space-time point (x,,t,) 

to a final space-time point (x& can be given in terms of the Feynman path integral 
(xrt,) 

i 
-S(x(t)) 

K(x), ; xiti) = 1 D[x(t)l e " 
(xi.fi) 

where J D[x(t)] means the sum over all paths from (xi,ti) to (x&. 

2.1.1 Euclidean Time 

One drawback to using the Feynman path integral in numeric computation is that in 

Minkowski space-time the factor e cagses high frequency oscilk tions. The action is 

and changing to Euclidean space-time and letting t --+ -iT this action becomes 

1 
2 

where L = - rn ( 2) + V (x) . Then the propagator becomes: 
2 



which has exponential damping. This is easier to deal with than the high frequency 

oscillations in the action of Minkowski space-time. Therefore changing to Euclidean time 

where xO-+ -ix4 is desirable. 

2.2 Link Variables 

Ob Let the continuum gauge potential be denoted by A (x) = A b(x) - where o, are the 
P P 2 

Pauli matrices. The definition of the lattice link variable U,(x), which "joins" site x to an 

adjacent site x + p, is given by: 

where E is a path ordered product. 

This link variable U,(x) is a directed line from lattice site x to lattice site x + p. The 

t conjugate link variable U, (x) represents the directed line in the other direction, namely from 

x + p to x. These are illustrated in figure 2.1. 



Figure 2.1 Lattice link variables 

Whatever the meaning of the path ordered product, in the end U,,(x) is a product of 
ie, fi,.a/z ie, a , m  

SU(2) group elements e e . . . and so can be expressed as some element 

of the group 

Thus the link variable can also be presented as 

which gives us the constraint U 2(4) + U 2(i) = 1 V x,p . 
i 

2.2.1 Boundary Conditions 

The length, L, of a side of the lattice is usually given in terms of the number of lattice 

spacings n. Therefore L = n a where n is the number of links in the side. The size of the 



lattice is then normally given as n4 or n3 x n, for a lattice where the "temporal" dimension n, 

is different from the "spatial" dimension n. 

Periodic boundary conditions are used. The boundaries on the lattice are set such that 

for a dimension of length n, the n + 1 position is identified with p ~ i t i o n  1. Also the "0" 

position before position 1 is identified with position n. In other words the lattice wraps 

around on itself like a 4-dimensional torus, for example: 

U (x=n +l,y,z,t) = U (x=l,y,z,t) 
P X P 

2.2.2 Plaquettes 

The SU(2) group is defined by two factors. First, the determinant of the group element is 

unity (detU=l). Second, the elements U, are unitary (UUt=l). The group is closed under 

multiplication. 

The .-rlallest non-trivial object that can be built from the link operator U, is the so- 

called plaquette operator u,,. The plaquette is the product of the link variables around the 

square starting at site x and in the pv plane. 

t t U fx) = U (x) U ( P p )  u t ( x + 3 )  Ut(x) = U,U,U,U, 
P" I' v P v 

Figure 2.2 Plaquette on a lattice. 



Initially consider a U(l) or Abelian lattice theory. Then using the definition 

Doing the multiplication for the plaquette results in 

u PV (x) = u P  (x) U (x'p) u:(x+3) U)X) 

igaA,,(x) igaAy(x+p) -igaA,,(x+O) - igaAv(x) 
= e e e e 

iga[Av(x+p) - AY(x) - AP(x+3) + Ap(x)] 
= & 

iga[a a,,AV(x) - a aVA,,(x)I = e 

2 
i g a  Fliv 

= e 

and expanding in terms of the lattice spacing a the result is 

2 a 4  2 2 + . . .  U (x) = 1 + ia  gFPv - z g  FPv 
P" 

Ob In Yang-Mills theory F = F - [21]. The Baker-Hausdorff theorem shows 
PV PV 2 

that for matrices 

and therefore in SU(2) 

F PV = a A  - a A  
P  v  v  P  



To complete the connection between lattice and continuum theories consider the 

action in the continuum Euclidian field theory given by 

This action is used in the Feynman path integral 
P -, 

x P 

In a similar way the lattice quantum theory is defined by a path integral over the link 

variables U, for the discrete lattice as 
- - 

where in the conventional formulation due to Wilson the action is given by: 

This quantum theory leads to continuum QCD since in the continuum limit (a -+ 0) 
1 a 

U,(x) - 1 + iaA,(x) and p - Tr U = f3 - - (F )2 where f3 = 4/g2. This formalism 
2 PV 4 Clv 

gives the same results for observables as the continuum field theory Feynman path integral 

since the factor of eP is normalized away. 

2.2.3 Gauge Invariance 

'The research involves a non-Abelian gauge theory in SU(2) first proposed by Yang and 

Mills [21]. In this theory, the transformation law for A, is given by: 



. b ub 

b gb 
1 0  - 

2 whereA - A -and0  5 e . The first term in the transformation can bc thought 
I' 2 

of as generating a rotation in an internal space ("colour space" or son~etin~es "isospace") 

while the second generates a "shift". Using the expression for F,, given in the last section thc 

field strength tensor transforms as F (x) -' R(x)F (x)at(x) which is just a pure 
P V  P V  

rotation. The trace of this quantity is gauge invariant. 

This suggests that the link variable transformation law can be written as 

u,w mo U,(x) Qt(x+p) 

which incorporates the rotation and shift transformations of the A, (which lives in thc group 

algebra while U, is an element of the group). Under this transformation the tracc of the 

plaquette described in the last section is gauge invariant. 

This also gives the recipe to test gmge invariance of the action on the lattice. One can 

easily apply Q(x) U,(x) ~ ~ ( x + ~ j  to an entire ~Li(2) lattice by generating some local gauge 

transformations Q(x) for each site in the same SU(2) group. Then gauge invariance is tested 

by comparing a gauge invariant observable such as plaquette value at each site on both the 

original and transformed lattice. For this thesis a sampling of all lattices generated in all 

simulations was specifically tested for gauge invariance to insure proper running of' the 

computer programs. 

As is clearly shown by R(x) U,(x) R ~ ( X + ~ )  the link variable transports the field 

from one end of the link to the other, similar to parallel transport. 



2.3 Potential between Heavy Quarks 

To study the interaction of heavy particles the gauge fields are allowed to fluctuate in the 

presence of a static charge density current. Therefore the action will require an interaction 

term and will become 

where J,, must satisfl current conservation. The Feynman path integral equivalent to solving 

the functional SchrGdinger quation is the same as before 

Now consider in an Abelian theory, a heavy "quark" at position x, with a static charge 

density J = Q 63(f,) . Then the interaction term of the Feynman path integral will 

become 

In terms of link variables this can be written as a Wilson line, the product of link variables 

dong the time coordinate: 

An "anti-quark" at position x, with a static charge density J O = -Q 63(2Z) will make a 

simiiar Wilson line but going the other way. To complete the cment flow around a loop such 



as in figures 2.3 and 2.4, there is a need for current conservation along the spatial edges 

which can also be expressed as Wilson lines. Taken together these lines forin a Wilson loop. 

Under SU(2), a "natural" generalization which preserves gauge invariance is the trax 

of a path ordered product. The next section deals with this in detail. 

2.3.1 Wilson Loops 

The heavy quark potential is measured using a quantity called a Wilson loop which is 
- i j c d x , , g q x )  

defined in the continuum as W (C) = Tr - P e for some closed path C. As 1 

will demonstrate, the analogous quantity on the discrete lattice is given by an ordered 

product of link variables. For example the discrete lattice Wilson loop for a 2x2 square is 

Figure 2.3 2x2 Wilson loop on the lattice. 

Note that the smallest non-trivial Wilson loop on the lattice is the plaquette. 

On the lattice the Wilson loop is normally denoted by W(R,T) where R is the 



"spatial" direction and T is thentemporal" direction. R and T give the number of lattice 

spacings in the corresponding coordinate, for example the 2x2 square given above is W(2,2). 

The following will demonstrate how the Wilson loops measure the interaction of a 

quark anti-quark pair. The derivation presented here is somewhat original as I could not find 

this derivation in the standard literature. The plan is to solve the Schrodinger equation for 

heavy particles. If there were no interactions this would be: 

For heavy particles, m -+ a, and the right hand side will be zero. The gauge field 
u o a interactions are included by making the substitution at - at - igA - in SU(2). Setting 

a 2 
k=l , the Schrijdinger equation for the interaction of a single heavy quark with a colour field 

where H is the interaction Hamiltonian. The solution to the Schrodinger equation is 

where T is the time ordered product. A Taylor expansion of the exponential gives 

Because H is composed of matrices, the order of factors in this Taylor expansion is 

important. This is accomplished by the time ordering operator T which ensures the proper 



sequence of factors by putting all operators with later times on the left. Then the solution to 

the Schrijdinger equation will be 

Consider a quark with initial colour (or "isospin") la) and h a 1  isospin (bl at position 

x,. From the last equation, the amplitude that the quark makes such a transition can be 

written in terms of link variables as 

(bIU o (3 ~f ,t ) u0(~ , . t i ) la)  

The amplitude for an anti-quark at position x, can be written similarly. The intention is to 

measure the energy of a colour singlet state since confinement says there is infinite energy 
1 

for a naked quark. This colour singlet is written as - ( I T )  I 1 ) -  - I I )  I T )- ) just as 
J; Q Q Q - Q 

for ordinary spin. Then the amplitude for a transition from a colour singlet QQ pair at time 

ti to a colour singlet at time t, is 

Notice the colour-singlet pairing of initial colours la) with I-a) and final colours (bl with (-b(. 

Now consider the Pauli spin matrix a,. A feature of this matrix is its effect on 

spinors : 

Similarly o, 1 -) = -i( +) so that o2 la) = ial -a) and thus -iao, la) = I -a) and 

i b (b I o, = (-b I . Therefore the amplitude of the colour singlet transition is: 

19 



The scheme is to drag the last a, through to the first and cancel them out. For all a, 

oa, = -a+* because each Pauli spin matrix anticommutes with all others and commutes with 

itself. Therefore dragging the last a, through to the first will result in changing the sign of 

and conjugating all Pauli matrices pulled through. Then 

Now the amplitude of the colour singlet transition is 

Transposing the second bra-ket results in 

Combining the transpose and conjugation and removing the brackets gives 

This is one half of a trace of the product of link variables and although it is the adjoint of the 

20 



two "temporal" lines in the Wilson loop it is still equivalent since Tr(U) = Tr(Ut) in SU(2). 

This equation is incomplete as it stands. To complete the Wilson loop, the 

requirement is to close the two "temporal" lines with "spatial" lines both top and bottom as 

shown in Figure 2.4. 

Figure 2.4 Wilson lines joined in a Wilson loop. 

To understand why this is required, recognize that two wave functions at different 

"spatial" positions, for example @(x) and @(x +E) are being compared. Due to the local 

gauge invariance of the theory, each of these wave functions can be independently changed 

by a local unitary operator to become e iO(x)@(~) and e iO(x +e) @(x +e) respectively. Since 

these matrix-valued phases are independent of each other, a direct comparison between 

$(x) and Jr(x +E) , such as a comparison of their SU(2) components (i.e. the quark colours), 

is meaningless. A comparator field Q(x +E,x) is used to compensate for the phase changes. 

(For a pedagogical review see, for example, reference [22],) This comparator field is defined 

so that it transforms under the local gauge transformation as e iO(x +e) O ( X + E , X ) ~  -i O(X) 

Therefore a comparison of $(x +e) with Q(x +E,x) @(x) is possible since they both 

transform in the same way. For instance a gauge-covariant derivative may be defined as: 



Then defining 

Q(x+E,x) = 1 + i e g A  (x) 
E 

in the limit of small E results in the usual covariant derivative 

where the local gauge field has emerged. 

To relate the comparator fields to the lattice link variables, postulate a composition 

rule ( both sides transform in the same way): Q(x , + e ,x2) = Q(x + E ,x ,) Q(x ,x,) . Now 

evaluate a "spatial" derivative of Q(x , ,x2) and derive the following relationship 

aQ(x,,x2) Wx1 +e,x2) - Q(x,,x,) 
= lim 

( w* +e,xl) -0 Q(x,,x2) 
= lim 

where the local gauge field A' has again appeared. Therefore 
X~ 

ig J A '(XI) dxl 

n(x,,x,) = P e 1 
- 

where E means path ordered product, analogous to the previous time ordered product. Thus 

the comparator field is a path ordered product and is used to ensure a gauge covariant 



- 
definition of a colour singlet QQ state. TLe quarks are paired up in colour although sep,mted 

and this comparator field will match up the phases. The comparator fields are laid out along 

the "spatial" lines of the Wilson loop. One comparator field is required at t, and mother at 

to account for the phase changes in the initial and final quark wavefunctions. Note that the 

path from x, to x, is not unique, as evidenced by the composition rule. This fict will be used 

later in developing the fuzzing technique. 

The comparator field completes the Wilson loop which is as I de%ined it at the 

beginning of this section. While the derivation of the Wilson loop has been non-relativistic, 
-if  , d x , , a ~ , , ( x )  

W(C) = Tr - P e is in fact manifestly Lorentz invariant. 

2.3.2 Static Quark Potential 

The expectation value of the Wilson loop can be understood as 

(W(R,T)) = ( f l e H T l i )  

where (fl and 1 i)are the final and initial states which are composite states including 

quantum numbers for the quark and antiquark as well as gluons created by the comparator 

fields 0. The final and initial states are not eigenstates of the interaction Wamiltonian. The 

introduction of a complete set of eigenvectors results in 

Thus doing the path integral weighted by the Wilson loop gives the expectation value 

of the Wilson loop which will be a linear combination of exponentials of the energy 

spectrum: 



?'his last line defines a time-dependent estimate of potential. V(R,T) does not measure the 

energy of an actual eigenstate. Rather it is a convenient measure of the approach to V(R) in 

the ?' -+ 00 limit. 

Potentials between quarks in other than their ground state will be larger than the 

ground state potential and thus will fall off at a faster rate in (W(R,T)). Then the potential 

energy between the two static quarks in their ground state can be calculated in the limit as 

T goes to infinity: 

V(R) = lim -In 
(W(R,T)) 

T -m W(R,T-1)) 

= lim V(R,T) 
T-" 

2.3.3 Non-Integer Potentials 

'The method outlined in Section 2.3.2 for calculating static quark potentials can be used to 

calculate potentials that are not at exact integer lattice spacings by using a path where the 

"spatial" leg of the Wilson loop is taken along two or three dimensions. For example if the 

R leg is made by one lattice unit in the x direction and one lattice unit in the y direction then 

by Pythagoras' Theorem the result should correspond to a potential at a quark separation of 

R = fi . At least this should be true in the continuum limit where the lattice cubic 

symmetry should be restored to a continuum rotational symmetry. Similar methods will be 

used to get the square roots of five and eight using a 2x1 and 2x2 leg respectively. The 

square root of three requires the use of a "spatial" leg of one lattice unit in all three "spatial" 



dimensions. 

There is more than one path possible in these multi-dinlensional "spatial" legs. For 

example the state with R = fi could be created along paths _) or r . The symmetric 

linear combination of paths 1 + r is used, as it has been demonstrated in the literature to 

correspond to the ground state.[23] One spatial path combination joins the lines along 'I' at 

T=ti and another spatial path combination joins them at T=t,. 

For the 2x1 leg used in R = fi there are three paths from one corner to thc other 

as shown in figure 2.5. Two are on the perimeter and one zigzags across. All three have been 

included symmetrically. 

Figure 2.5 Example of off-axis potential. The dashed line shows R = fi. 

The 2x2 leg used in R = fi has four zigzag paths from one comer to the other plus 

two legs that follow the perimeter. The four zigzags are included symmetrically while the 

perimeter legs are dropped as they are getting quite far away from the central "direct' path 

and likely will be more strongly contaminated by finite lattice spacing errors. 

The three dimensional leg used in R = 6 has six unique paths from one corncr of' 

the cube to that opposite. All these are included symmetrically and required some very 

complicated computer logic to do this. 

The off-axis potentials provide indicators of the approach to the continuum limit and 



the restoration of rotational symmetry as discussed in more detail in Chapter 3. For example 

if a line is fitted to the on-axis (integer) potentials then the deviation of the off axis potentials 

from this line would quantify the breaking of rotational symmetry by the action used. 

2.3.4 Lattice Spacing 

The slope of the static potential between two heavy quarks is denoted in lattice units (a= 1) 

by m. It is related to the slope AVIAR in physical units by the formula: 

This quark potential is related to the string tension, a, by 

1 
V(R) = aR + - 

AV 
so  - = B at large R. 

R AR 

Thus the lattice spacing is given by 

To get to physical units, the values used are 6 = 0.44 GeV and ?I c = 0.197 

GeV-fin. The value 6 = 0.44GeV comes from an analysis of experimental data on light 

meson Regge trajectories using a simple string model for quark confinement. (For a 

pedagogical review see, for example, reference [24].) Although the experimental value 

should only be used for SU(3) colour simulations (with vacuum polarization), it is 

nevertheless used as the industry standard in SU(2) colour. For example see reference [20]. 



2.4 Statistical Simulations 

Computing the expectation value of an observable in lattice QCD would require a very large 

number of integrations if conventional Riemann swn techniques are used. For example the 

expectation value of a Wilson loop is given by 
r -I 

Using an 84 space-time lattice would give 4 x S4 link variables. In SU(2) each link 

variable is comprised of 3 parameters and therefore approximately 50,000 integrations need 

to be done. Using a Reimann sum with only 8 points per integration, the multiple integral 

would require a sum of 850,000 terms. Therefore statistical methods are normally employed to 

make the problem tractable. The statistical technique used in this research is the Monte Carlo 

method. 

2.4.1 Monte Carlo Sirnullations 

In a Monte Garlo simulation a sequence of link variable configurations is generated by a 

stochastic process such that the probability of obtaining a certain configuration is given by 
-S(UJ 

the Boltzmann factor, e . In a simulation of N configurations the desired quantity, for 

example the value of a Wilson loop Wi , is calculated for each configuration. The expectation 

value of this Wilson loop is then given by 

The method that I used to generate the sequence of link variable configurations is 



called the "heat-bath" method. Ifn this method a link variable is replaced with a new value 

whose probability is given by a local Boltmann distribution, with the rest of the link 

variables being fixed. The method is so named because in effect the link being updated is 

thermalized by touching it with a heat bath reservoir determined by the surrounding links. 

The local Boltmann distribution is determined by the so-called "staples" connected to the 

link. Figure 2.6 shows two staples connected to a link variable. For a given link Up there are 

six staples, two for each perpendicular orientation. For an orientation p, one staple is the 

product of the other three links which would make the plaquette Up,. The other staple is from 

the plaquette formed by using -v instead of v .  

Figure 2.6 Staples connected to a lattice link variable. 

The first step in generating the lattice link configurations is to get a configuration 

which satisfies the probability distribution. This was done by beginning with a cold lattice, 

where U(4,p,x) = 1 and U(i,p,x) = 0, i=1,2,3. Then the heat bath is applied iteratively to each 

configuration to make the next configuration. One iteration consists of applying the heat 

bath to one link at a time until all links have been updated. A sufficient number of iterations 

are applied until the lattice satisfies the Boltmann distribution. At this point the lattice is 

said to be therrnalized. In all of my simulations the initial cold starts were iterated through 

10,000 configurations to achieve this equilibrium. 



After therxnalization a sequence of configuratioils is then generated to be used to 

measure the required observable. However, since each Monte Carlo step only causes a loci11 

change in the system, it requires a number of configurations to be generated until the 

memory of a previous configuration has decayed away, making the resulting link variables 

independent of this previous configuration. This phenomenon is known as relaxation and one 

can associate a correlation time with this decay. Typically in the case of critical phenomena 

the correlation time scales inversely as the second power of the lattice spacing, I /a2. In the 

simulations every n'th configuration generated was used for measurement. The value of n 

was determined so as to minimize the auto-correlations between configurations used in 

measurement. 

2.4.2 Error Determination 

If the sequence of configurations used in measurement constitutes a represcntativc set the11 

the ensemble average of an observable such as the Wilson loup will be approximated by 

By ensuring that the N measurements are statistically independent by the proccdurc 

outlined in the last section. the statistical error in the expectation value will be of thc order 
TC 

I/@. The statistical error, a, in the average of some observable is given by 
1 

For a derived quantity like the logarithm of the Wilson loop, we must "propagate" 

the errors, An efficient algorithm for doing this is the Jackknife 1nethod.[25",~sing the static 

quark potential as aa example, the first step is to calculate the average V(R) from all 

configurations eE) used for measurement. Next is to d e w  V(R) for all the configwdttions 



less one (N-1) which I wilt denote as Vj(R), j indicating the configuration skipped. This last 

step is repeated saving a new Vj(R) for each missed configuration. The error is then 

calculated as 

This method is equivalent to the statistical enor quoted earlier when V(R) is a simple 

average. For derived quantities, the Jackknife has become a lattice industry standard. 



Chapter 3 

Tadpole Improvement 

Over the years, researchers have determined that a good approximation to the continuum 

limit can be achieved for a variety of observables with lattice spacings in the range of about 

0.05 fm to 0.1 fm. For examples, see references [3], [20] and [26]. In moving from the 

continuum to the lattice, discretization approximations have been introduced. The 

expectation is that these approximations will introduce errors that are of leading order (ah$, 

where r, is a characteristic dimension of the observable under consideration. Thus the smaller 

the lattice spacing, the smaller the errors. Attempts have been made in the past to remove the 

leading discretization errors [27], [28] which I will discuss under the classical improve~nent 

section. These improvements did not remove all 0(a2) errors due to the quantum effects [4] 

which have only recently been understood. This I will discuss under the tadpole 

improvement section. The effect of tadpole improvement should be to remove all leading 

0(a2) errors and thus allow the use of larger lattice spacing with results potentially as 

accurate as those achieved using smaller lattice spacings. 



3.1 Classical Imprcvement 

In the mid 1980's a technique was developed to remove the leading discretization errors from 

lattice field theory. [27] [28] The complete derivation is not published and so is developed 

here for the convenience of the reader. Initially consider a U(1) or Abelian lattice theory. 

Take a plaquette such as the one at the right with lattice 

spacing a and centred at x,. The plaquette is a path integral in the 
ig4Ap.dx,,. 

pv plane written as U = e (sum over p') and can be 
P" 

related to the surface area according to Stokes Theorem by 
ig lF, ,"d~~d~, 

U = e  " (no sum on p,v). A Taylor expansion of F,, 
P v xu 

about x, gives (again no sum on p,v) 

I define x, = 0 to keep the mathematics from being too cluttered and hard to follow. Doing 

the integral fiom 4 2  to +a/2 the terms odd in x, and x, vanish and to first order the result 

is 



For ease of notation label this result as 8(1x1) 

The Wilson action in the Abelian theory is defined by 

and in the continuum limit becomes 

(the odd terms being accompanied by an "i"). Now e2 contains terms of 0(a4,a6,a'j while €I4 

contains terms of O(a3 and higher and can be dropped to leading and next-to-leading order 

in a. The integral i d  'x becomes a sum a and so the term of interest is l/a4 0'(I x 1 j. 

1 
Therefore the continuum action - J d 4x F is recovered in the limit a -+ 0. The 

4 P V  

leading discretization term has also been isolated in the action: 

In the Wilson action this last term breaks the rotational invariance of the Euclidean 

theory. As described in section 2.3.3 the expectation is that the off-axis potentials would not 

be consistent with an extrapolation through the on-axis points. My simulations show this 



point in section 7.3. 

The plan now is to get rid of these a2 errors by adding 
4 9 

I 

extra terms to the action. The idea is to use a linear 

combination of B(l x 1) and larger lattice structures like the l ' .  
one to the right. This specific rectangle I label 0,(2x1) where I-----.. -.+..--- 4 

54 
the R refers to the extra piece being to the right. Doing the 

integral for 8,(2x1) from - a/2 to + 3a/2 in the p direction and from - a/2 to + a/2 in the v 

direction, the even terms give 

In this case, not all the odd terms will vanish as in the case of B(lxl), and to first order the 

odd terms are 

Then 0,(2x1) is 

and 1 /a4 0R2(2x1 ) is: 



Doing an integration by parts on the a ' ( a  F )term results in 
P  PV 

( ~ F ~ S '  = ( a ~  ) ( a ~  ) = a ( ~  a~ 1 - F  ~ Z F  
P P" P  PV il P" P PV PV P  P" 

where a  ( F  F ) is a total derivative which vanishes under integration due to periodic 
P  PV P PV 

boundary conditions. Then finally 1 /a4 0R2(2x 1 ) is equivalent to 

There are three other rectangles that are of interest. Namely the 2x1 rectangle to the 

left of the centre, the 1x2 rectangle to the top and the 1x2 rectangle to the bottom. By 

symmetry the left rectangle l/a4 0L2(2x1) is the same as l/a4 0R2(2x1) with the terms odd in 

p changing sign. Similarly the bottom rectangle is the same as the top with terms odd in v 

changing sign. This top rectangle is 

Label a rectangle by the coordinate x of the lower left corner. Then the 1 x2 rectangle 



to the left of x is the same as the 1x2 rectangle to the right of the point x - p. These two 

rectangles will automatically be included in x e i ( x ) .  Therefore the adjustments to a 
X 

particular 1 xl plaquette can be associated with only two of the rectangles, while the other 

two will be associated with other 1x1 plaquettes. The adjustments for a plaquette are 

arbitrarily chosen to be the right and top rectangles. However, when summing over the entire 

lattice there will be a cancellation of the odd terms between l/a4 eR2(2x1) and l/a4 eL2(2x1) 

and between 1 /a4 BT2(1 x2) and 1 /a4 eB2(1 x2). 

Therefore adding only the even terms of l/a4 0$(2x1) and l/a4 0,2(1x2) 

We finally return to the Wilson action, which contains o2(1x1) to 0(a8). By 

subtracting 1/20 of the above equation the 0(a6) errors are eliminated. The result is 

Back in section 2.2.2 I wrote the Wilson action for SU(2) as 

1 
Using a slightly different notation where P = -TrU this action can be written as 

pv 2 PV 



As a consequence of these corrections an improved SU(2) action which is corrected up to 

0(a4) is proposed as 

where R,, is the 2x1 rectangle widest in the direction of the first subscript, in this case 11. 

Actually the derivation has been done in an Abelian or U(1) lattice theory. 'This can 

be generalized to a non-Abelian theory by observing that the action is gauge invariant. FOP 

example, by dimensional analysis, the expectation is that a term such as a F 3 F . in 
P" P P V  

the expansion of dimensionless P,. or R,. in U(l), would become a F a D ab F where the 
P" I.t P" 

covariant derivative is D ab = a 6ab + f a b c ~  Other gauge invariant bilinears on F,,. 
IJ P 

would involve higher order derivatives and therefore be of higher order in a. In this way it 

is seen that Simp should be 0(a4) accurate in SU(2). 

3.2 Tadpole Improvement 

The classical improvement of the last section was developed in the mid 1980's.[27I [2X]. 

However researchers who tried this improved action found that while discretization errors 

were reduced the improvement in many cases was not as significant as would bc expected 

from the analysis of the classical improvement in the last section. The resolution of this 

problem was arrived at only recently by Lepage and Mackenzie [4]. The key lies in the fact 

that a classical field theory analysis was used in the last section. 

To see this, consider an expansion of the link variable in terms of the lattice spacing: 



1 2 2  
= 1 + iagA (x) - - a  g A2(x)  + . . 

I' 2! I' 

In quantum theory this last term induces what are called tadpole diagrams. For 

example, compute the expectation value of a link (U (x)) . In lattice theory the expectation 
k' 

value of a gauge non-invariant quantity vanishes by Elitm's theorem as described later in 

this section. So the evaluation of the expectation value must have a constraint that picks only 

one configuration out of the gauge equivalent set ( QU $2 '} . The details of this gauge fixing 

are unimportant in this analysis. Using the above expansion 

In perturbation theory, the last term can be expressed in terms of a Feynman diagram called 

a tadpole. (A (x)) vanishes under the trace. 
P gf 

Figure 3.1 Feynman diagram of a tadpole. 

The virtual gluon propagates in a closed loop with an amplitude = 1/q2. Since all 
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1 
virtual momenta are allowed, integrate over all possible values i d  4q . In the continuum 

q L  this integral diverges. However on a lattice the integral runs over the first Brillouin zone with 
IUa 

limits J . Therefore this tadpole is proportional to l/a2 which means that in an expectation 
- IUa 

value A, has parts proportional to lla which cancel the explicit factor of a in U = e i A,, 

P 

The tadpole terms are suppressed by only g2 and not by g2a' as expected in a classical field 

theory analysis. 

To get rid of the tadpoles one does a "tadpole improvment" of the action. Such 

improvement is defined by a mean iield renormaIization of the links. Defining the average 

link as U,, the mean field renormalization is 

An obvious definition of the average link is (U (x)) U, . This definition of ti,, 
P 

is not any good since (U (x)) = 0 due to gauge invariance. This statement is formalized 
P 

in Elitzu's Theorem [29] as demonstrated here. The gauge transformation of a lattice link 

is U '(x) = Q(x) U (x) nt(x +p) . The expectation value of the lattice link is calculated 
P P 

by the Feynman path integral f [ d ~ ]  e -' U (x). Both U,' and [I, will be found in the 
P 

ensemble with exactly equal probability. Therefore in doing the integral on the discrete 

lattice a term U (x,) + Q(xO) U (x,) nt(x0+p) will occur, where x, is a particular value 
P P 

of x. A valid gauge transformation is one where Q(xo) = -1 and Q(x L x,) = II. l'his 

gauge transformation will make this term and therefore all terms vanish. 

A definition of U, from a mean link could be made by gauge-fixing when computing 

(U (x)) although its value would not be unique (a proposal to use a smooth gauge such as 
P 

a A = 0 has recently been made [30]). However iii simpler alternative is to give a 
P I' 

definition of the average link in terms of the smallest gauge invariant object which has a 

non-trivial value. The smallest object is a lattice line out and back. This is no good since 



U,U; = 1 . The next smallest gauge invariant object is the average plaquette. The definition 

of U, is therefore given as 

(U (x)) ' u; 
P V  

since there are four lattice links in the plaquette. 

Now consider the expectation value of a gauge-invariant observable, such as a 2x2 
J Fllvdx,,dxv 

Wilson loop (W (2,2)) which in an Abelian theory has the value (e ) . Following 

the classical improvement analysis this has a continuum limit of 

However each expectation value receives a tadpole contribution, which cancels the explicit 

factor of the lattice spacing. This spoils the expansion in powers of a that underlies the 

classical field theory analysis of the previous section. 

The tadpole contribution to any observable such as (W)comes from very short 

distance physics (ultraviolet) and should be independent of the long distance physics 

(infrared). The continuum gauge field should have parts A (x) = AP(x)/ + AP(x)/ . 
I' 1I.R. IU.V. 

This suggests that the link variable could be factored as U (x) = U (x)/ x U,(x)I . P 1I.R. 1U.V 

The average value of this last factor is the average link U, since the plaquette occupies the 

smallest cell on the lattice (i.e. Uo = (U (x)J )). Therefore tadpoles should be removed 
4u.v. 

from the expectation value of an operator by first renormalizing the lattice links. 

where the corrections are truly of higher order in a2g' and not just g. 

In developing the action from the lattice replace Up with U',. This is called a tadpole- 

im;)roved action. In the last section the classically improved action was: 



where P,, contains the product of four U,,'s and R,,, contains the product of six U,,'s. Then the 

tadpole improved action is 

P R 
1 P V  -- - -- 

tad 
x P , V  3 u 4  0 1 2 ~ 6  0 1 2 ~ 6  0 

This action features a new kind of non-linearity, because U, must be determined from 

the average plaquette, which itself is determined by the value of U,. 

A final comment about discretization errors in S,,. The classical field theory analysis. 

together with tadpole renormalization, suggests that St, = S,,,,,,,,, + 0(a4). In hct, each 

operator in S, gets additional renormalizations due to quantum effects. These effects spoil 

the cancellations of the 0(a2) errors, but such corrections are suppressed by g2(a), the running 

coupling evaluated at a length scale of O(a). Therefore the leading discretization errors are 

actually of 0(a2 g(a)), plus errors of 0(a4). For sufficiently small lattice spacing a, g(a)<< 1. 

In fact g(a) a l/ln(a). [3 11 On coarse lattices there is evidence that these two types of errors 

are actually comparable (and small). [4] 



Chapter 4 

Anisotropic Lattice 

A significant feature of this thesis is the use of an anisotropic lattice. One coordinate is 

designated as the "temporal" coordinate with a lattice spacing denoted by a, which is made 

smaller than the lattice spacing for the other three coordinates designated as "spatial" 

coordinates. The "spatial" lattice spacing a, is chosen in the range of 0.2 fm to 0.4 fm. The 

"temporal" lattice spacing a, is kept around 0.1 fm. 

The use of anisotropic lattices allows one to more easily determine the glueball mass. 
-m t 

The correlation function is G(t) + Goe as t + a. This signal falls off rapidly 

with t while the noise in the Monte Carlo simulation remains fairly constant with t. The use 

of the anisotropic lattice a l l~ws  one to get more measurements of this correlation function 

before it disappears into the noise. 

4.1 Anisotropic Action 

Tnis research work is based upon an anisotropic lattice where a11 "spatial" lattice spacings 

q are the same and the "temporal" lattice spacing a, is smaller. As a result there will be two 

values for the average link. One value is for plaquettes where both direc~ons are "spatial". 



The other value is where m e  direction is '"patid" and one is "tempml". These average links 

aredehedas (U (x)) - U 4  and (U (x)) U ~ U ; .  The tadpole-improved action is 
SS 0s 51 

then adjusted so that the mean field renormalization of the piaquettcs includes the 

appropriate number of fxtors of UCk and UCk- The action will also require adjustments in the 

discrete integrals (sums) to account for the anisotropy. This action can be written as 1 hj: 

Two explanations are required and uill be given for this action. The first is Six the 

%/a, and a,/% factors. The second is for the 4 3  factor and lack of an R, tom in the mixed 

"spatial "/"temporal" portion. 

Tfie @a, and a&, terms are adjustments in the discrete integrals. ' f i e  discrctc integral 

for an isotropic lattice is given by i d  'x = z s 4 .  This isotropic integral worked out fine i 11 
1 1 . 4  4 

using the symmetric lattice to define the action since P = - T r U - -- a (FLv)  . " 2 " 4 

However for the anisotropic lattice this integral has to account for the different lengths of 

"spatial" and "temporal" coordinates and therefore becomn i d  'x = x a  'a . For the 
s I 

1 I 
"spatial" plquette P = - Tr U - - a ' ( ~  j2. Multiplication by +'&will adjusl this result 

= 2  ss 4 s  ss 

to get the correct integral . Similarly for the mixed "spatiai"/"tempralt' plaquette 
I I 

= - Tr Ua - - a2a ' (~2 '  and has to be multiplied by &/a, for the integral to work 
2 4 

PF~Y - 
The R, rectangles (with two spacings almg aJ have purposely bsen omitted from this 

adan .  Thus emrs of the order have ken introduced, These errors will be negf igiblc 



The reason for dropping the R, term is to eliminate poles in the gluon propagator that 

have negative residues. [I 6f Due to the negative residue poles (called high-energy doublers) 

the correlation function does not decrease monotonically with time. Instead it shows a hump 

at intermediate times T? caused by the change in slope because of the negative residue. 

Eventually the correlation function decreases exponentially with the energy of a physical 

pole as the doublers can be shown to have very high energy a llq. This complicates the 

extraction of a plateau in the correlation function on an improved lattice. 

Following the procedure of classical improvement (Section 3.1) I will derive this 

mixed "spatial"/"temporaf" portion of the action, the details of which have not been 

published anywhere. On the anisotropic lattice the integration for O(1x1) is fiom - 4 2  to as/2 

in the "spatial" direction and from - 4 2  to a42 in the "temporal" direction. As a result for a 

mixed plaquette 

Instead of 1 /aJ 82( 1 x 1 ) use 1 /(q'q2) B,:( 1 x 1) and drop terms in a4 

The final term of interest is 1/(q'q2) 0b,2(2x1) since l/(a,2%2) 8,,12(1x2) has two 

lattice links in the "temporal" direction and is therefore omitted. Dropping terms in a4 and 

higher and also dropping terms that cancel with 1/(q2q2) 0L2(2x1) this expression is 

Therefore to cancel out the %' corrections to 1/(q2q') 0$(lxl) subtract 1/16 of 
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l/(%"*) 8,:(2x1). This gives a result of 

The plaquette trace of the mixed "spatial"/"temporal" portion of the action therefore 

has a factor 413. Errors of the order have been introduced. These errors will be negligible 

compared to the q4 provided that a, is small compared to q. 

4.2 Set U,, = 1 

In this thesis I have set U,, =1 and have determined U,, self-consistently from the average 

value of the "spatial" plaquette for the entire ensemble: 

The anisotropic action has an invariance under a rescaling of P, U,, and %la,, which 

allows Uo, to be set to any value leaving the physical quantities invariant. That is equate: 

i as 
1 

'old \ <] 3 = 'new [ :] new 

provided that: 



Pol, 

old new 

This condition can be satisfied i f :  

new old Ot 

4.3 Measured Value of Anisotropy 

As indicated in the previous section the value of %/as is rescaled by setting U,, = 1. This is 

a natural choice since U,, is approximately unity in any case for small a,. With this choice 

a,/as undergoes little renormalization. 

One must distinguish between the "bare" value of %/a, which is input to this action 

and the physical or measured value of +/a, . The reason is that the bare input value is 

renormalized by quantum effects.[l3] [14] In an anisotropic lattice action there are two 

different couplings. One coupling multiplies terms sensitive only to the "spatial" length scale 

4. The other coupling multiplies terms sensitive to both a, and %. These two couplings can 

(and do) run differently as these lattice spacings are sent to zero, and this shows up as a 

"renormalization" of the input anisotropy. More specifically, these two terms in the action 

get renormalized differently, and any such renormalization can be absorbed into a rescaling 

of a,/% and p, When at/% is 1 then the "temporal" and "spatial" plaquettes are identical, so 



there is no effect. The measured value of this ratio will become important later in calculating 

such things as lattice spacing and glueball mass. This measured value cat1 be calculated by 

doing a simulation in which one of the "spatial" coordinates is used for Euclidean time 

instead of the "temporal" coordinate in the calculation of the Wilson loops. 

On any lattice the Wilson loop calculation results in W ST = e -V(R) T in the limit 

as T + oo. Here the subscript ST refers to a calculation where the T coordinate is the 

"temporal" coordinate direction. The value of T in this case is some integer times the a, 
-V (R) n at 

lattice spacing, T = nq, and the Wilson loop is WsT = e . Therefore on an 

anisotropic lattice: 

and in the limit T-+m this ratio becomes V ,,(R) = at V (R) . 

Now if I do a Wilson loop where one of the "spatial" coordinates serves as a 
-V(R)n a, 

Euclidean time dimension, then T = na, and the Wilson loop is W ss = e , using 

the notation SS to denote two "spatial" dimensions. As a result: 

and in the limit T+oo this ratio becomes Q,,(R) = a V(R) . 
S 

To get a determination of %/a, , first an ultraviolet cutoff effect must be removed. 
b 

V(R) = O R  - - + V,and this last term V, contains the self energies of the heavy 
R 

quarks which is regulated by an ultraviolet cutoff which is not the same for SS and ST. The 

solution to this is to do a Av: 



4.4 Scaling Lattice Spacing 

The slope of the potential graph first seen in section 2.3.4 is modified to: 

Thus the measured lattice spacing is: 



Chapter 

Hadrons are made 

Mass 

up of more elementary particles called quarks. The gauge particles that 

provide the strong binding force between the quarks are called gluons. The gluons act like 

spin raising and lowering operators because they change the colour (or colour "isospin" in 

SU(2)) of the quarks. Therefore unlike photons, the gauge particles of electromagnetism, the 

gluons carry a colour charge and can interact directly with each other. Due to confinement 

a state with net colour can never be seen; however, colour-singlet combinations of gluons 

ought to have finite energy. These bound states of giuons are referred to as gluonium or more 

commonly as glueballs. 

5.1 Correlation Function 

Recall that the trace of the plaquette Up, contains ( F P V l 2  and that 

F a = #A a - avA a + g f a b c ~  b~ '. The last term of this operator says that there 
P V  v P P " 

are interactions between the gluons a d  this tern can make the bound gluor? states which arc 

P V  2 called glueballs. In general, (F ) can be interpreted as an operator which can create and 

destroy gluons. Then applying this operator to the vacuum state at two different times, 



(01 Op(t) Op(0) lo), will create some state made up of gluons 

glum state at t=t. In terns of plaquettes this expectation value is 

at t=O and annihilate the 

a Feynman path integral 

From quantum mechanics in Euclidean time the operator Op(t) = e Ht Op(0) e -Ht 

where H is the Hamiltonian of the system. From this the glueball spectrum can be extrzcted: 

where 10) is the state created by applying Op(0) to the vacuum state. Similar to the Wilson 

loops, as t becomes large in euclidean time this correlation h c t i o n  will be dominated by the 

lowest energy state. Unfortunately this lowest state will be the vacuum state for an operator 

that transforms as a scalar under the rotation group. The glueball is the next higher state. 

Since the operator is made up of plaquettes, to remove the vacuum state from the sum 

subtract away the average plaquette ( Tr U ) = U: from each plaquette. This will remove 
P" 

the vacuum state and give the next higher energy state. Then to extract the glueball mass 

define 

m (t) -In 
g (01 Op(t-1) Op(0) 10) 

and the actual ground state mass is given by the limit 

m = lim m (t) 
g g 

Since the lattice has periodic boundary conditions the maximum value o f t  has to be 

limited to t=T/2. Afier that value the correlation functions start wrapping back on 



themselves. Therefore in order to get enough values to achieve a plateau the coordinate 'r 
should be reasonably large. This is another good reason to use an anisotropic lattice since IJIC 

T coordinate will have more entries if the shape of the lattice is kept as a hypercube. 

There is no preferred value T that corresponds to t=O. Therefore I use all valucs of 

T as the t=O position and compute correlators for some separation AT. Then 

and 

rn = lim rn (At) 
g g 

5.2 Scalar Glueball 

The lowest glueball state is called the scalar glueball and has J=0. The trace of a plaquette 

will be used as the "Op" in the analysis of the previous section. A plaquette can be 

characterized by the norrnal to its surface. Now U,, can be represented schematically as an 

even hc t ion  of the normal, since UIZ = UZi when traced. Under transformations of the cubic 

symmetry group U,? transforms like some function a,& + a 2 + . . . Similar1 y, U ,, 
2 

is an even function of 5 ,  etc. 

Summing all "spatial" orientations U,, + U13 -+- UZ3 gives a state t h t  transforms like 

(2 + 5 + f and higher orders in 2, 5, 2. These higher order terns will correspond 

to states with higher J in the continuum limit. But these are expected to have higher energies 

and should decay faster as T -+ than the lowest state excited by this operator which should 



Be the scalar glueball. Integrating over all "spatial" positions will give a rotationally and 

trans!atior;a!fy symmetric object. For a fixed time slice in the continuum limit this is the 

rotationally symmetric glueball state with zero three-momentum, namely the scalar glueball. 

Using the standard notation of i and j for "spatial" coordinates, the operator then becomes 

5.3 Tensor Glueball 

The lowest antisymmetric glueball state is called the tensor glueball and has J=2. Again think 

of the normal to the plaquette. Taking the difference of "spatial" orientations U,, - U,, 

gives a state that transforms like (2 - 9 2 ,  and higher orders in 2, 9 .  Integrating over 

all "spatial" positions will give an antisymmetric object, namely the tensor glueball state. The 

operator then becomes 

which should have some overlap with the JP = 2+ state. In this case there is no need to 

subtract away the vacuum expectation value as it will cancel in any case, that is JP = 2+ has 

no overlap with the "scalar" vacuum. 

In order to get the most statistics Erom a given configuration this operator was 

calculated using three combinations of orientations. Then the results were averaged. The 

"spatial" orientation combinations used were (12 - 13), (12 - 23) and (13 - 23). 



Chapter 6 

Fuzzing 

In a conventional Wilson loop the spatial path 'between two lattice sites is chosen to be tht: 

shortest, namely a straight line. There are obviously many more paths connecting two sites. 

In k i n g  the straight line is smeared with other paths. [la] [19] Composite paths were first 

used to overcome the problem of the rapidly decreasing signal being lost in the noise in 

glueball mass calculations [la] [19] [32] and were later applied to potential calculations.[33 I 

The idea is to make operators that are closer to the size of the physical glueball or thc 

quark-antiquark flux tube in the case of a potential calculation. The overlap of the glucball 

states with the simple plaquette operator gets smaller for smaller lattice spacings since the 

plaquette probes a smaller part of the physical state. Therefore by sampling many paths one 

can construct an extended or "fuzzy" operator which can probe more of the glueball 

wavefunction. 

6.1 Fuzzing Method 

Two parameters are used in k i n g ,  the fuzzing constant (C j and the number of fuming 

iterations (N). Fuzzing is done on all the "spatial" links in the lattice using "spatial" staples. 

"Temporal" links are neither bed nor used in the fuzzing process as this would destroy the 



time evolution operator. 

Fuzzy iinks are only used in caicuiating the observables. The original non-fuzzed 

links must still be used in the heat bath. Each configuration selected by the heat bath for 

measurement is made into a fuzzy configuration which is used to make the measurements. 

The heat bath continues to use the original configuration to develop subsequent 

contigurations. 

Fuzzing is done one link at a time over the entire lattice. The chosen link is multiplied 

by the fuzzing constant, then the four surrounding "spatial" staples ar, added in. 

The resulting link is normalized by dividing by IU,"(x)l to prevent overflow and to maintain 

simple SU(2) multiplicative tables. The result is saved in the fizzy lattice replacing the old 

fuzzy link. The method I use is to determine the nth iteration of all fuzzy links fiom the ( n - l ) ~  

iteration. Then the nth iteration of fUzzy links is saved in the fuzzy lattice replacing the (n-1)~ 

iteration. The number of iterations determines how many times this process is repeated. 

The larger the k i n g  constant the greater the contribution to the new fUzzy link fiom 

the original link and in the limit C -+ 00 fuzzing has no effect. The more iterations the 

greater the mixing of the surrounding staples. 

6.2 Results of Fuzzing 

The notation I use is (nn xx.x) where nn is the number of fuzzing iterations and xx.x 

is the fuzzing constant. Although nn=OO is sufficient to prevent fizzing, the case of no 

fuzzing is given as (00 00.0) to avoid any confbsion on my part. 



The simulation runs consist of a 1,000 configuration themalization fiom a cold start 

followed by a 100 configuration sampiing selected from each tenth configuration of the nest 

1,000. The thermalization of 1,000 configurations is a bit of a trade off of accuracy versus 

time. While not sufficient to thoroughly thermalize the lattice it is completed in half a day 

of dedicated computer time whereas a 10,000 configuration thernialization would take 4 to 

5 days. The 100 configuration sampling also takes half a day, so the duration is 

approximately 1 day on a dedicated computer for each trial for each of the seven Q vr ~t I lies. 

Using 4 time-shared computers at roughly 6 trials per P the whole thing took about 4 weeks. 

I was searching here only for a reasonable estimate of the optimal fuzzing paran~eters. 

The runs used here were discarded, and were not used in the final quoted measurements. 

As can be seen in Tables 6.1 and 6.2 and in Figure 6.1 the results are quite drcamatic. 

The example I give in Table 6.1 is the static quark potential for R=1 of the 0.366 fm tddpole- 

improved case where Q=0.848. Without fuzzing I cannot quite get a plateau, as described 

later in section 7.3, within 8 spacings. Whereas with fuzzing, a plateau is easily extracted 

after 4 or 5 spacings. As shown in table 6.2 with only 100 configurations the large errors 

make it very difficult to determine which fuzzing is best for optimizing the glueball mass. 

I used the same fuzzing parameters as for the static quark potential taking the T=l mass as 

a fairly good indicator. 

Table 6.1 Effect of various fuzzing parameters on static quark potential. 
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Scalar Mass 
T 00 00-0 
4 1.15@j 
2 0.85fl2) 
3 I .08p~j 

Tensor Mass 

Table 6.2 Effect of various fizzing parameters on glueball mass. 

Static Quark Potential 

Figure 6.1 Impact of various f k z h g  parameters on static quark potential. 



I value 

- -- - I Number of Iterations I Fuuing Constant 

Table 6.3 Fuzing parameters chosen for each B value. 

As can be seen in table 6.3 the larger the lattice spacing the larger the fuuing 

constant and vice versa, This is consistent with the idea stated earlier that large operators arc 

needed to probe the gluebdf mass. The lattices with larger lattice spacing will requirc less 

fizzing since their plaquettes are fairly large in the first place. Recall that the larger thc 

hzzing constant, the less smearing of nearby- paths occurs. 



Chapter 7 

Results of Simulations 

Simulations were run in order to make a comparison between the Wilson action and the 

tadpole-improved action, Simulations were run on lattices with spacing ranging fiom 0.1 fm 

to 0.4 fm. The entire assortment of simulations is summarized in table 7.1. In order to 

distinguish between the two sets of simulations, P, will denote the coupling for Wilson 

action simulations and 6, will denote the coupling for tadpole-improved action simulations. 

All simulations were run on shared computer resources at Simon Fraser University 

using code written in Fortran. In order to get more statistics some of the P values were run 

on several computers simultaneously and then the results combined in post processing. 

Each simulation was started from a cold start. The heat bath was used to generate 

c ~ ~ g u r a t i o n s .  The fxst 10,000 of these configurations were skipped for thermalization. 

After that, configurations were selected for measurements after skipping enough 

contigwations to minimize autocorrelations A standard technique (for example see reference 

[34]) was used to determine the validity of these skipping values. For the lattices with larger 

spacing (greater than 0.2 fin) each tenth configuration was selected. For smaller spacing (less 

tfIztn 0.2 fin) each twentieth configuration was selected. The total number of configurations 

selected for measurements in each simulation varies based on the number of configurations 

required to reduce the errors suff~ciently to give reasonable results. 



I p value ( Lattice Spacing 
I I 

Action I Lattice Size 
1 

Table 7.1 Summary of simulations. 

Tadpole-improved 

Tadpole-improved 

Tadpole-improved 

Standard Wilson 

Standard Wilson 

Standard Wilson 

Standard Wilson 

7.1 Average Plaquette 

(space" s time) 

8% 32 

8' x 20 

10" 20 

83 x 32 

8' x 20 

18' x 20 

1 2 ~  12 

The simplest measurement that can be taken from a lattice is the average plaquette. This 

value is defined as the average trace of each plaquette in all configurations used for 

measurements. This measure is usehl in computer code debugging. The calculated values 

can frequently be compared to simulation results of other researchers as a first level check 

of computer code validity. 

A summary of the average plaquette for each P value is given in table 7.2. The 

results are given for both the basic configurations directly from the heat bath and the 

configurations after fuzzing. 



f3 value I Average 

Table 7.2 Average plaquette beforc and after k i n g  for each P value. 

Number of 

Configurations 

f3,=0.848 

1.114 

7.1.1 U, used in Tadpole-Improved Heat Bath 

Plaquette 

0.39594(6) 

0.50330(7) 

The average trace of a lattice link U, is defined as the fourth root of the average plaquette 

since a direct trace of all the links would result in zero. U, is used in the tadpole-improved 

action. It is also used to remove the vacuum energy in the scalar glueball mass calculation. 

The tadpole-improved action has a non-linearity since U,, which appears in the 

action, must be determined &om the average plaquette which itself is determined by the 

action. The value of U, used in the tadpole-improved heat bath is developed by an iterative 

procedure during the thermalization and then verified for consistency with the final value of 

U, determined from the entire simulation at the end of the run. Once set, the value of U, 

used in the tadpole-improved heat bath is not changed during the simulation. 

- 

- 

- 

- 

- 
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Configurations 



To get the value of U, from the thermalization, I divide the 10,006 configurations 

used in the thermalization into twenty stages of 500 configurations each. FOP the first stagc 

I use U, = 1 as a rough approximation. At the end of this first stage, I replace U, using the 

average plaquette from all configurations developed in the first stage. 1 repeat this process 

for the second stage. For the subsequent eighteen stages I keep a running average of U, 

replace it at the end of each stage. At the end of the thermalization, the final running average 

of U, is saved and used for the entire simulation. Table 7.3 gives the values of IJ, at 

thermalization and at the end of simulation for the tadpole-improved siniulations. 

Table 7.3 Comparison of average link from thermalization and end of run. 

p, value 

0.848 

Thermalized 

Uot 

0.96570(3) 

0.96568(3) 

Number of 

Configurations 

40,000 

32,000 ' 1.114 I 50,000 I 0.93865(3) 

30,000 0.98868(3) 

1.214 11,001 0.988 18(2) 

5,300 0.988 16(2) 

0.98891 (2) 
I 

0.026% 
1 

0.98890(3) 0.023% 

0.98847(3) 0.029% 

0.98847(5) 0.03 1 % 

Final 

uof 

0.96593(3) 

0.96595(2) 

% 

Difference 

0.023% 

0.027% 



Anisotropy 

A major feature of this thesis is the use of anisotropic lattices. The "spatial" lattice spacing 

a, is chosen in the range of about 0.1 fm to 0.4 fm. The "temporal" lattice spacing is kept 

around 0.1 fm and the anisotropy is introduced in the action by way of @as. In the discussion 

any reference to lattice spacing means "spatial" lattice spacing, unless "temporal" is 

specifically stated. 

7.2.1 Determining the P Value 

One of the first tasks to be done before running a lattice simulation is to determine the j3 

value which will give the desired lattice spacing. Fortunately for me the /3 values for several 

of the lattice spacings I was interested in had been determined by my supervisor in advance 

for other work he was doing. I had to determine the P values for the 103x20 anisotropic 

lattices that would give a lattice spacing of about 0.2 fm for both Wilson and tadpole- 

improved actions. I also had to determine the P value for the S3x20 anisotropic standard 

Wilson action lattice that would give a lattice spacing reasonably close to that for the S3x20 

anisotropic tadpole improved action Prl.114. The results of this latter calculation are shown 

in detail. 

This was a case of trial and error although some educated guesses could be made 

from data that I already knew. The results of the most notable trials that led me to P,=2.243 

are summarized in Table 7.4. 



pp - -  

Table 7.4 Various trials to find a P value for an anisotropic Wilson action. 

p, value 

2.200 

2.243 

2.270 

2.300 

2.400 

7.2.2 Lattice Spacings 

The slope calculated in section 4.4 has to be adjusted for a 1IR term since the formula for the 
b 

static potential between two quarks is of the form V(R) = aR - - + c .  This b 
R 

coefficient is determined by looking for the least chi-squared fit to the integer potentials. 

The lattice spacing %, the "temporal" lattice spacing a, and thc 1/R coefficient arc 

given for each simulation in table 7.5. The determinations of a, and %/a, are discussed in the 

next section. 

a, 

0.265 

0.232 

0.227 

0.213 

0.181 

Input %/a, I Measured 

0.400 

0.400 

0.400 

0.400 

0.400 

0.32 1 

0.338 

0.348 

0.337 

0.357 



Table 7.5 Results of potentid fits for each simulation. 

7.2.3 Anisotropy Results 

S 

0.667(2) 

0.283(1) 

0.205(1 ) 

To illustrate the data obtained in the many simulations, the plateaux of the static quark 

potentials V(R) for both "spatial" Wilson loops (SS) and mixed "spatial"/"temporal" Wilson 

loops (ST) are as shown in Table 7.6 for the 0.2 fm tadpole-improved and Wilson actions. 

The results are graphed in figures 7.1 and 7.2. To make the plots comparable, the ST values 

are resealed using the input a,/% and then the SS values are shifted so that they agree with the 

ST results at R = q. The h e  is fitted to the ST values. The noticeably different slopes of the 

SS values shows the renonnalization of a/a, in the Wilson action. 

Lattice spacing 

a, 

(fm) 

0.366(1) 

0.238(1) 

0.202(2) 

1 /R coefficient 

(b) 

0.187(1) 

0.255(2) 

0.252(2) 

Time spacing 

a, 

(fm) 

O.lOl(1) 

0.097(2) 

0.101(2) 



Figure 7.1 Static quark potential in different orientations for g,=1.2 14. 

0 1 2 3 4 
Rla 

Figure 7.2 Static quark potential in different orientations for j3,=2.300. 



Table 7.6 Static quark potential for SS and ST Wilson loops. 

The ratio of a, over a, was calculated from the results in table 7.6 as discussed in 

chapter 4 and these results are shown in table 7.7 including the results from all other 

anisotropic simulations done. A comparison between input a,/% and measured +/a, is made 

t 

p value 

j3,=1.214 

in Table 7.8 for these actions. 

V(R= 1) 

0.4788(4) 

1.1 12(1) 

Loop 

ST 

SS 

'Table 7.7 Ratio of a, over a, for anisotropic lattices. 

V(R=2) 

0.8085(14) 

1.767(3) 

p,=2.300 

V(R=3) 

1.0572(33) 

2.266(16) 

0.6921(13) 

1.787(9) 

p value 

0.903 l(32) 

2.279(12) 

ST 

SS 

R3 -R2 

0.424 l(3) 

1.159(1) 

Average R2-R1 R3 -R 1 



- - -  

Table 7.8 Comparison of input %/a, to measured for anisotropic lattices. 

As can be seen in table 7.8 rhe renormalizations from quantum effects are much 

larger in the Wilson actions than for the tadpole-improved actions. This result is generally 

true. Unimproved lattice actions can show very large renormalizations [$I, but most of these 

renormalizations come from tadpoles which have been divided out of the improved action, 

leaving only small renormalizations. For the tadpole-improved actions the difference 

between input and measured values is within errors, so no later scaling adjustments wcre 

done. 

p value 

P1=0.848 

Difference - -  
-0.002 

-0.006 

96 

Difference 

-0.7% 

- 1.4% 

%/a, 

input 

0.276 

4% 
measured 

10.278(2) 

1.114 j 0.409 10.4 15(6) 



7.3 Static Heavy Quark Potential 

The static heavy quark potential was calculated for all seven f3 values. In all cases 2,000 

configurations were used to determine the potential. This number of configurations in the 

ensemble was sufficient to reduce the errors enough to get meaningfid results. 

For brevity I have shown the detailed results of V(R,T) for only one of the 

simulations along with a small sampling of other results in graphical form. Table 7.9 shows 

the V(R,T) results for P,=0.848 with the plateau values V(R) highlighted. Representative 

graphs of V(R,T) are shown in figures 7.3 and 7.4. 

R= I R=2 R=3 R=4 
T I T )  '4R ,T) V(R IT) VCR IT) 
1 0.8044(2) I .6062 (5) 2.381 6@) 3.1525[11) 
2 0.7838 (2) 1.5592(6) 2.2940 (1 2) 3.0192(19) 
3 0.7787(3) 1.5464 (8) 2.2638 (1 7) 2.9663pl) 
4 0.7771 (3) I .5410(11) 2.2460 ('26) 2.9271 (61) 
5 0.7767 (4) I .5384 [i 5) 2.2364 (43) 2.918[12) 
6 0.7769 (5) 1.5371jZl) 2.2340 (75) 2.923(26) 
7 0.7771 (6) 1 .5393(30) 2.225(13) 2.854 (53) 
8 0.7767(7) I .5361[45) 2.200 (23) 2.58110) 

R=Sqrt2 R=Sqrt3 R=Sqrt5 R=Sqrt8 
1 I .2417(4) 2.3665 (7) I .8743 (7) 2.3553(9) 
2 1 .I 840[5) 1 .4837 (9) 1.7756~)  2.2169[13) 
3 1.1719@) 1.4566(13) 1.7516(12) 2.1786(17) 
4 I .1685(7) 1.4478(19) 1 .7432 (1 6) 2.1 620(26) 
5 1 .1679p) I -4447 (25) I .7392(23) 2.1551 (41) 
6 I .  l688(l I) 1.4449(38) 1.739334) 2.1561(69) 
7 1 -1 683 (1 5) I .4389[55) 1.7395[51) 2.144(11) 
8 1 .I651 (20) 1.4454(82) 1.7366q8) 2.146PO) 

Table 7.9 Tadpole-improved action V(R,T) for f3 value 0.848. 



I Effective Potential I 

Figure 7.3 Wilson action V(R=l ,T) for P,=2.000. 

I Effective Potential 

Figure 7.4 Tadpole-improved action v(R=\/s ,T) for P,=0.848. 

The plateau value V(R) for a specific R value is determined from the various V(R,'T) 

entries based on their value and error. Subjectively the graph has to look similar to figures 

7.3 and 7.4 in order to determine the plateau value. Ail the V(R,T) graphs from all 

simuiations looked like these representative figures. I look for two or three successive T 

values for which the data V(R.,T) overlap within statistical errors. An estimate of systematic 

error in the extrapolated V(R) is then taken horn the statistical error of the largest T value 



in the plateau. 

Examples of the static heavy quark potentiai V(K) results for representative P values 

are shown in figures 7.5 and 7.6. In all these figures the filled in circles represent the on-axis 

potentials while the open circles represent the off axis potentials. Table 7.5 gave the 

coefficients of the best fit line V(R) = OR - b/R + c which had been calculated using the least 

chi-squared fit to the integer potentials for each P value. These fitted lines have been 

superimposed on figures 7.5 through 7.6. As presented in section 4.4 the lattice spacings are 

calculated from the slope of the various curves. These spacings were summarized in table 

7.1. 

Figure 7.7 and table 7. '1 0 show a comparison of the actual to fitted values for the off 

axis potentials. In the figure the lines are fitted to the Wilson action on-axis potentials and 

the percentages in table 7.10 are used to plot the off-axis points. Both figure and table show 

that for any given lattice spacing the off axis potential is much closer to that calculated from 

integer potentials for the tadpole-improved potential than for the Wilson potential. This also 

shows that generally the off axis potentials are much closer to those calculated from the 

integer potentials for the smaller spacing iattices than for the larger spacing lattices. 



Static Quark Potential 

Figure 7.5 Static quark potential For 0.366 fm tadpole-improved action 



Static Quark Potential 

Figure 7.6 Static quark potential for 0.355 fm Wilson action 



Static Quark Potential 
Wilson Improved I 

Figure 7.7 Comparison of off axis static quark potentials 



Table 7.10 Deviation of off-axis potentials from fit to on-axis data. 

p value 

f3,=0.848 

1.114 

1.214 

~ , = ~ . o o o  

2.243 

2.300 

2.400 

The difference from calculated potentials is approximately the same for the 0.232 fm 

Wilson action (Pw=2.243) as for the 0.366 fin tadpole improved action (f3,=0.848). Typically 

the required computer time scales a aa which would mean that the smaller spacing would 

require 15 times as much computer resources as the lzrger spacing. In my simulations the 

code for tadpole-improvement adds approximately fifty percent to the resources used by the 

simulation, While I have no proof that this can be extrapolated to other lattice spacings, here 

f see an approximately tenfold improvement in doing static quark potential calculations using 

tadpole-improvement. 

$ 
5.4% 

2.7% 

2.6% 

10.6% 

5.2% 

4.8% 

4.1% 

J; 
7.5% 

2.6% 

2.9% 

15.1% 

6.7% 

5.6% 

4.4% 

6 
2.1% 

0.7% 

0.6% 

5.9% 

2.5% 

2.0% 

1.8% 

6 
1.9% 

0.4% 

-0.1 % 

6.6% 

2.7% 

1.8% 

1.5% 



7.4 SU(2) Glueball Mass 

The masses of both the Scalar and Tensor glueballs were calculated in simulations for each 

p value. The number of configurations for each P value varies depending on what was 

required to reduce the statistical error so that the results were meaningful. The number of 

configurations used for measurement for each P value is given in table 7. I 1, 

- -- 

Table 7.1 1 Number of configurations for each f3 value. 

I 
p value 

An estimate of the large T extrapolation of the mass is required. The procedure used 

Number of Configurations 

here is somewhat different from that used for the static quark potential where the errors were 

sufficiently small that a plateau estimate seemed reliable enough. In this case the data points 

m,(T) are fitted in a range of T values from Tmin to T,,,,, to a curve C e -MT . Tmi, must be 

large enough to eliminate excited states within statistical errors. Holding T,,, fixed a value 

-MT ofM(TmiJ is determined fkom C e for successive T,,values. M is chosen based on the 

statistical overlap between two successive M(T,,,,,) values. 



7.4.1 SU(2) Scalar Glueball 

For brevity I have only shown the detailed results for the mass of the scalar glueball from 

one of the simulations. Table 7.12 shows the mass ozthe scalar glueball results for P,=0.848 
M 

with the exponential fit - highlighted. 

6 

Table 7.12 Scalar glueball mass for P,=0.848. 

(TI 
Figures 7.8 and 7.9 show representative graphs of ,- versus T for the scalar 

glueball mass at selected values. In these graphs the solid li flu e with the two dashed lines 
M 

shows the exponential i3 - r 7  along with one sigma errors. 

VfJ Figure 9-10 shows a comparison of the SU(2) scalar glueball masses based on lattice 

spacing. Aiso shown in the figure are data points taken from the literature [23] [32] and an 

extrapolated continuum value. [3 51 



Scalar GlueBall 

Figure 7.8 Scalar glueball mass for 0.366 fm tadpole-improved action 



Scalar GlueBall 

Figure 7.9 Scalar glueball mass for 0.355 fm Wilson action 
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Figure 7.10 Comparison of Scalar glueball masses 
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Tabie 7. i 3 shows a comparison of the SU(2) scalar glueball mass values to the 

continuum value. The last column shows the number of standard errors that the central value 

of the scalar mass is away from the cental value of the continuum mass. 

Lattice % Difference Number of o 
M 

f3 value Spacing - from from 

(fm) 
6 Continuum Continuum 

9 

Table 7.13 Comparison of calculated scalar glueball mass to continuum value. 

As can be seen in Figure 7.10 and Table 7.13 the tadpole-improved actions resulted 

in scalar glueball mass values which are significantly closer to the continuum value than the 

Wilson actions. The differencehm continuum is approximately the same for the 0.128 fm 

Wilson action (P,=2.400) as for the 0.366 fm tadpole improved action (pr0.848). As 



previously stated, the required computer time typically scales as a*' which would mean thr~t 

the smaller spacing would require 550 times as much computer resources as the larger 

spacing. In my simulations the code for tadpole-improvement adds approximately fifty 

percent to the resources used by the simulation, While I have no proof that this can bc 

extrapolated to other lattice spacings, here I would see a 350 fold improvement in doing 

scalar glueball mass calculations using tadpole-improvement if exactly the same physical 

volumes were used and if the skips between measurements were actually scaled by I/$. 

The lattice spacing for the Wilson action must drop below 0.2 f n ~  betbre any 

significant approach to the continuum value is seen. The tadpole improved action goes 

towards the limit even at 0.4 fm, although to drop below 5% error requires a lattice spacing 

of about 0.2 fm. This could suggest that the scalar glueball may be urmually small in SU(2). 

7.4.2 SU(2) Tensor Glueball 

For brevity I have only shown the detailed results of the mass of the tensor glueball for two 

of the simulations. Figures 7.1 1 and 7.12 show graphs of the tensor glueball mass for 

selected P values. In these graphs the solid line with the two dashed lines shows the 
M 

exponential fitted - , including errors. 

Figure 7.1 3 @ hows a comparison of the SU(2) tensor glueball masses based on lattice 

spacing. Also shown in the figure are data points taken from the literature [23] [32] and an 

extrapolated continuum value. [35] 

Table 7.14 shows a comparison of the SU(2) tensor glueball mass values to the 

continuum value. 



Tensor GIueBaII 

Figure 7.1 1 Tensor glueball mass for 0.366 fm tadpole-improved action 
- - -  -- -- - - - - --- - - 
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Tensor GlueBall 

Figure 7.12 Tensor glueball mass for 0.355 fm Wilson action 
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Figure 7.1 3 Comparison 

0.100 0.200 0.300 
Lattice Spacing 

of tensor glueball masses 

- - - - - - -- - - - 



f Lattice 

p valu Spacing 

ifm) 

I Continuum , 

I O/& Difference 

1 from 

ti0 Continuum 

Number of. o 

from 

Continuum 

Table 7.14 Compariscm of caIcuIated tensor glueball mass to continuunl value. 

As can be seen in Figure 7.13 and Tabie 7.14 the tadpole-improved actions resulted 

in tensor glueball mass values which are approximaiely the same as the Wilson actions. 

However the very large errors in the @,=0.848 data prevents reaching any definite 

conclusions. More data is needed. 

There is a large dif f ince  between the lattices with the largest spacing and all other 

l a t h s  tDr Wt tadple-Liproved ic7d Wfilsori zcfi~ils. Nii iadj i  maliing the iadpole- 

imnwved ==-yr ! a i m  spaciig 0.238 6~ f PI=!. ! ! 4) gwe a signif cast improvement in the m u !  ts 

over 0.366 h spacing (f4=4.848). This would suggest that the tensor glueball is larger than 

*fK s d a r  glueball. as one might expect. 



Chapter 8 

The objective of this thesis has been a detailed comparison of latticc gauge theory 

simulations under SU(2) colour with and without tadpole-improvernent. C'alculations h a w  

been done for lattice anisotropy, static quark potential, mass of the scalar glueball and mass 

ofthe tensor glueball. The lattice spacings were in the range of 0.1 fm to 0.4 fin. In thc casc 

of the glueball masses the results were also compared with published res!~lts from 

simulations on small lattices in the less than 0.1 fm range. 

A significant feature of this thesis has been the use of anisotropic lattices. 'l'hc 

"spatial" lattice spacing a, was in the range of 0.1 fm to 0.4 fm. The "temporal" latticc 

spacing was kept around 0.1 h. The use of anisotropic lattices allowed easier determination 

of the scalar and tensor glueball masses since more measurements of the correlation 

h c t i o n s  could be established before they disappeared into the noise. 

Another tool used to more easily extract the signals was fuzzing. This entailed thc 

use of smeared paths to increase the overlap with the ground state. The effects on the 

calculation of the static heavy quark potential were demonstrably dramatic. In the calculation 

of the glueball masses the effects were similar to that of the potential. In the case of the 

8=1.114 (tadpole-improved action on the 0.238 fm spacing lattice) tensor glueball, no  

plateau could be found without using k i n g .  



?'he results of the comparisons of the tadpole improved actions to the standard 

Wilson actions showed significant gains for most observables measured. 

The renormalizations from quantum effects are much larger in the Wilson actions 

thm for the tadpole-improved actions. Unimproved lattice actions tend to show very large 

renumali7ations. but mast of these renormalizations come from tadpoles which have been 

divided out of the improved action. leaving only small renormalizations. For the tadpole- 

improved actions the difference between input anisotropy and measured anisotropy is within 

errors and therefore not statistically significant. 

In the case of the static heavy quark potentiai, the breaking of rotational invariance 

is much smaller fix the tadpole-improved action than for the Wilson action. Rotational 

symmetry breaking provides a direct measure of discretization errors in the lattice action. For 

any given lattice spacing the off axis potential is much closer to interpolations of the integer 

potentials for the tadpole-improved potential than for the Wilson potential. Also as expected, 

rotational symmetry breaking was reduced for lattices with smaller lattice spacing. The 

measured symmetry breaking is approximately the same for the 0.232 fm spacing Wilson 

action as for the 0.366 spacing tadpole-improved action. Since the required computer time 

scales as a-' the smaller spacing would require approximately 15 times as much computer 

resources as the larger spacing. Tadpole-improvement routines add approximately fifty 

percent overhead to the computing resources required, because of the greater complexity of 

the action. Therefore this case resulted in an approximate tenfold decrease in computing 

resources required to do the static potential calculations using the tadpole-improved action. 

The tadpole-improved actions resulted in scalar glueball mass values which were 

significantly closer to the continuum value than the Wilson actions. The difference from 

continuum is approximately the same for the 0.128 fm Wilson action as for the 0.366 fm 

tadpole improved action. Taking into account the required computer time scaling of a4 and 

the fifiy percent overhead of tadpole-improvement this data suggests a 350 fold improvement 



in doing scalar glueball mass calculations using tadpole-improven~ent. This is a day \.ersus 

a year to get the same restifis. 

The lattice spacing for the Wilson action n~ust drop be lw 0.2 Sn1 hetixt. any 

significant approach to the continuum scalar glueball mass \-alue is seen. In the case of thc 

tadpole improved action. a significant drop in discretization errors also requires a latticc 

spacing below about 0.2 fm. This could suggest that the scalar glueball nlay bc unusually 

small in SU(2). A similar conclusion was suggested for SU(3) glueballs h:; blornings~a- and 

Peardon. [ 1 7 j 

Preliminary results for the tensor glueball mass were presented. 'l'he tnclpoic- 

improved actions resulted in tensor glueball mass values which are approximately the same 

as the Wilson actions. but very large statistical errors on the coarsest lattice prevented a 

definitive comparison. There is a large difference between the lattices with the largest 

spacing and all other lattices for both tadpole-improved and Wilson action. Namely making 

the lattice spacing 0.238 fm gave a significant improvement in the results over 0.366 h 

spacing. This could suggest that the tensor glueball is somewhat larger than thc scalar 

glueball, as one might expect. On the other hand, the large errors in the 0.366 fm taclpole- 

improved action results (P=0.848) require more work. A better optimization al'the f'uuing 

tailored specifically for the tensor glueball may help here. 

As suggested in section 3.2 a potential fi~ture research project could be to determine 

if there is a better definition of the average lattice link than using the fourth root of' thc 

average plaquette. A definition based on the average link with a specific gauge fixing has 

been made. [30] Another major project would be to do the same research under SCJ(3). 

For the most part the research was successful. I hzve demonstrated that state-of-the- 

art calculations c a ~  be Cone on small computers using large lattice spacings with tadpole- 

improvement. The results are reasonably close to those obtained using smaller lattice 

spacings which in the past have required a much longer time frame using larger computers. 
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