
Andrew Fall 

B.Sc. Simon Fraser University 1990 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

in the School 

of 

Computing Science 

@ Andrew Fall 1996 

SIMON FRASER UNIVERSITY 

December 1996 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



National Library 1*1 of Canada 
Bibiiotheque nationale 
du Canada 

Acquisitions and Direction des acquisitions et 
Bibiiographic Sewices Branch des sewices bibliqraphiques 

395 Wellington Street 395, rue Wellington 
Ottawa. Ontario Ottawa (Ontario) 
KIA ON4 K I A  W4 

Your Irk? Votre r&&ence 

Our lile Notre r @ i & ~ c e  

The author has granted an 
irrevocable non-exclusive licence 
allowing the National Library of 
Canada to reproduce, loan, 
distribute or sell copies of 
his/her thesis by any means and 
in any form or format, making 
this thesis available to interested 
persons. 

L'auteur a accorde une licence 
irrevocable et non exclusive 
permettant 6 la Bibliotheque 
nationale du Canada de 
reproduire, pr&ter, distribuer ou - 
vendre des copies de sa these 
de quelque maniere et scus 
quelque forme que ce soit pour 
mettre des exemplaires de cette 
these a la disposition des 
personnes intbressbes. 

The author retains ownership of L'auteur conserve la propriete du 
the copyright in his/her thesis. droit d'auteur qui protege sa 
Neither the thesis nor substantial these. Ni la t h h e  ni des extraits 
extracts from it may be printed or substantiels de celle-ci ne 
otherwise reproduced without doivent &re imprimes ou 
hlc/her permission. autrement reproduits sans son 

autorisation. 

ISBN 0-612-16875-1 



SIMON FRASER UNIVERSITY 

PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended c s s q  (thc 

title of which is shown below) to users of the Simon Fraser University Library, and to make partial or 

single copies only for such users or in responsz to a request from the library of any other university, or 

other educational institution, on its own behalf or for one of its users. I further agrcc that permission 

for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate 

Studies. It is understood that copying or publication of this work for financial gain shall not be allowed 

without my written permission. 

Title of Thesis/Project/Extended Essay 

Reasoning with Taxonomies 

Author: 

(signature) 

Stewart Andrew Fall 

(name) 

December 1 1,1996 



APPROVAL 

Name: Andrew Fall 

Degree: Doctor of Philosophy 

Title of thesis: Reasoning with Taxonomies 

Examining Committee: Dr. David Fracchia 

Chair 

v Dr. Veronlca Dahl, ~ e n i d ~ u ~ e r v i s o r  

I Dr. Ken Lertman, Supervisor 

Dr. Fred Popowich, Supervisor 

Dr. Hipsan ~ f i k a c i ,  SFU Examiner 

Dr. Nick Cercone, External Examiner 

--5. 

Date Approved: jq, 4qq.C 
I 

ii 



Dedicated to M o m  and Dad 

Elizabeth Anne Fall and Stewart Temple Fall 



Abstract 

"We journey to learn, yet in trovelling grow each day 

1urthe.r and further from where we began" 

- Wade Davis 

Taxonomies are prevalent in a multitude of fields, including ecology, linguistics, pro- 

gramming languages, databases, and artificial intelligence. In this thesis, we focus 

on several aspects of reasoning with taxonomies, including the management of tax- 

onomies in computers, extensions of partial orders to enhance the taxonomic infor- 

mation that can be represent.ed, and novel uses of taxonomies in several applications. 

The first part of the thesis deals with theoretical and implementational aspects of 

representing, or encoding, taxonomies. Our contributions include (i) a formal abstrac- 

tion of encoding that encompasses all current techniques; (ii) a generalization of the 

technique of modulation that enhances the efficiency of this strategy for encoding and 

reduces its brittleness for dynamic taxonomies; (iii) the development of sparse logical 

terns as a universal implementation for encoding that is supported by a theoretical 

and empirical analysis demonstrating their efficiency and flexibility. 

The second part explores our contributions to the application and extension of tax- 

onomic reasoning in knowledge representation, logic programming, conceptual struc- 

tures and ecological modeling. We formalize extensions to partial orders that increase 

the ability of systems to express taxonomic knowledge. We develop a generaliza- 

tion of equality constraints among logic variables that i~duces a partial order among 

equivalence classes of variables. For graphic knowledge representation formalisms, we 

develop techniques for orgafiizing the derived hierarchy among graphs in the knowl- 

edge base. Finally, we organize abstract models of landscapes in a taxonomy that 

provides a framework for systematically cataloging and analyzing landscape patterns. 
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Notation 

"Once you miss the buttonhole you'll never manage to button up" 

- Goethe 

I3ele-z are descriptions of the intended meaning of some of the symbols used ill t,Iw 

thesis. 

Partial order theory: 

n 
!J 

5,  c, 5 

Set theory: 

n, n 
u, U 
G 
f 

Predicate logic: 

A 

meet (greatest lower bound) and meet crest 

join (least upper bound) and join base 

partial order relations 

intersection 

union 

subset (which is also a partial order relation) 

set membership 

conjunct ion 

V disjunction 

-l negation 

+ impiication 

+ logical equivalence 

vii 



Contents 

Acknowiedgements 

Notation vii 

1 Introduction 1 

1.1 Motivation and Summary of Thesis Results . . . . . . . . . . . . . . .  3 

1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

2 Background and Mathematical Preliminaries 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Partial Order Theory 12 

. . . . . . . . . . . . . . . . . . . .  2.1.1 Properties of ordered sets 13 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1.2 Lattices 15 

. . . . . . . . . . . .  2.1.3 Order mappings and lattice completions 17 

. . . . . . . . . . . . . . . . . . . . . . . .  2.1.4 Lattice corilpletions 17 

Part I: Taxonomic Encoding 20 

3 The Evolution of Taxonomic Encoding 2 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Introduction 21 

. . . . . . . . . . . . . . . . . . . .  3.2 Encoding tree-shaped hierarchies 22 

. . . . . . . . . . . . . . . . . . . . . . . .  3.3 Extending trees to graphs 24 

. . . . . . . . . . . . . . .  3.4 Characterizing term encodable hierarchies 25 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.5 Bit-vector encodings 28 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.6 Discussion 33 

4 The Foundations of Taxonomic Encoding 34 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Setting the Stage 36 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Spanning Sets 39 

. . . . . . . . . . .  4.2.1 Taxonomic operations using spanning sets 40 

. . . . . . . . . . . . . . . .  4.2.2 Represent.at.ion theory and encoding I2 

. . . . . . . . . .  4.3 Efficient Implementations of Component Mappings 4 3  

. . . . . . . . . . . . . . . . . . .  . 4.3.1 Unordered implementations 4 

. . . . . . . . . . . . . .  4.3.2 Tree representations and code sharing 45 
. . . . . . . . . . . . . . . . . . . . . . . .  4.3.3 Logical terms . .. -18 

. . . . . . . . . . . . . . . . . . . . . . . .  4.3.4 Sparse logical terms 49 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.3.5 Integer vectors 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 Infinite Suborders 51' 

. . . . . . . . . . .  4.5 Spanning Sets of Principal Down-sets and Up-sets 53 
. . . . . . . . . . . . . . . . . . . . . .  4.5.1 All principal down-sets 53 

. . . . . . . .  4.5.2 Principal down-sets of meet irreducible elements 55 

. . . . . . . . . . . . .  4.6 Spanning Sets of Prime Down-sets and Up-sets 58 

. . . . . . . . . .  4.7 Spanning Sets of Compound Down-sets and Up-sets 60 

4.7.1 Finding a minimal subsumption preserving spanning set is N1'- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Hard 61 

. . . . . . . . . . . . . . . . . .  4.7.2 Multiple occurrences of factors fi6 

. . . . . . . . . . . . . . . . . . . . . . .  4.8 Spanning Set Decomposition 71 

. . . . . . . . . . . . . . . . . . . . . . .  4.8.1 Chain decomposition 72 

. . . . . . . . . . . . . . . .  4.8.2 Meet incompatible decomposition 75 

4.8.3 Meet homogeneous decomposition . . . . . . . . . . . . . . . .  79 

. . . . . . . . . . . . . . . . . . . . . . .  4.9 Constraints and Coreference 81 

. . . . . . . . . . . . . . . . . . . . . . .  4.9.1 Types of constraints 81 
. . . . . . . . . . . . . . . . . . . .  4.9.2 Augmented spanning sets 83 

. . . . . . . . . . . .  4.9.3 Integrating spanning sets and constraints 86 

. . . . . . . . . . . . . . . . . . . . . . .  4.9.4 Guarded constraints 88 



. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.9.5 Coreference 89 

4.9.6 Coreference, decomposition and meet incompatibility constraints 91 
. . . . . . . . . . . . . . . . . . . . . . .  . 4.9 7 Encoding algorithms 94 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.9.8 Variations 95 
. . . . . . . . . . . . . . . . . . . . . . . .  4.10 Discussion and Conclusion 95 

5 Modulated Encoding 99 

. . . . . . . . . . . . . . . . . . . . . . .  5.1 Order Intervals and Modules i O O  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 Order 103 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Modulation 104 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.4 Extending modulation 107 

. . . . . . . . . . . . . . . . .  5.4.1 Lower and Upper Semi-Modules 107 
. . . . . . . . . . . . . . . . . . . . . . .  5.4.2 Generalized Modules 109 

. . . . . . . . . . . . . . . . . . .  5.4.3 Non-overlapping Modulation 110 
. . . . . . . . . . . . . . . . . . . . .  5.4.4 Overlapping Modulation 112 

. . . . . . . . . . . . . . . .  5.4.5 Extending Modulation Algorithms 115 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5 Conclusion 116 

G Encoding with Sparse Logical Terms 117 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.1 Introduction 118 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 Basic Sparse Terms 119 

. . . . . . . . . . . . . . . . . . . . . . . .  6.2.1 Space re~uirements 120 

. . . . . . . . . . . . . . . . .  6.2.2 Unification and Implementatiorz 121 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62.3 Variations 122 

. . . . . . . . . . . . . . . .  6.3 Generalizing Sparse Terms for Encoding 194 

. . . . . . . . .  6.3.1 Explicit and canonical forms for sparse terms 126 

. . . . . . . . . . . . . . . . . . . . .  6.3.2 Sparse term subsumption 128 

. . . . . . . . . . . . . . . . . . . . . . .  6.4 Encoding with Sparse Terms 129 

6.5 Sparse Term Encoding . . . . . . . . . . . . . . . . . . . . . . .  . 131 

. . . . . . . . . . . . . . . . . . . . . . . . .  6.6 Theoretical Justification 133 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.7 Empiricd Evidence 137 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.8 Conclusion 1;N 

Part 11: Applications a n d  Extensions of Reasoning with Taxonomies 140 

7 Extending Part ial  Orders  for Sor t  Reasoning 141 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 Introduction I -11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2 Background 1-12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3 Sort Reasoning 143 

. . . . . . . . . . . . . . . . . . . .  7.3.1 Generalizing sort reasoning 145 

. . . . . . . . . . . . . . . . .  7.3.2 Clausal taxonomic specification 147 

. . . . . . . . . . . . . . . . . . . .  7.3.3 Definitional specifications I48 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.4 Sort Logic 149 

. . . . . . . . . . . . . . . . . .  7.4.1 Complexity of Sort Reasoning 151 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.5 Tractable subcases I XI 

. . . . . . . . . . . . . .  7.5.1 Containing sort reasoning complexity 151 

. . . . . . . . . . . . . . . . . . . . .  7.6 Implenienting Conjunctive Sorts 157 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.7 Conclusion I57 

8 Reference Constraints  in Logic Programming 159 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.1 Int. roduction 159 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.2 Background 161 

. . . . . . . . . . .  8.3 Decoupling Coreference via Reference Constraints 161 

. . . . . . . . . . . . . . . . . . .  8.3.1 Notational considerations 163 

. . . . . . . . .  8.3.2 Maintaining and satisfying the reference order 164 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.3.3 Example l(i5 

. . . . . . . . . . . . . . . .  8.3.4 Comparison with sort hierarchies 166 
. . . . . . . . . . . . . . . . . . . . . . . . . .  8.3.5 Implementation 168 

. . . . . . . . . . . . . . . . . . . . . . .  8.4 Individual Level Inheritance 1 f iX 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.5 Conclusion 175 

9 Organizing the Bierarchy of Conceptual  Graphs  176 
. . . . . . . . . . . . . . . . . . . . . . .  9.1 Backgrouiid and Motivation 177 



. . . . . . . . . . . . . . . . . . . . . . . . . .  9.2 Cardinality Constraints 178 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.3 Xcirmalization 180 

. . . . . . . . . . . . . . . . . . . . . . .  9.4 Spanning Tree Xormal Form 180 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.1 Pivoting 184 

. . . . . . . . . . . . . . .  9.5 Representing the Generalization Hierarchy 185 

. . . . . . . . . . . . . . . .  93.1 Depth-first topological traversals 186 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3.6 Conclusion 188 

10 A Hierarchical Organization of Landscape Models  189 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.1 Introduction 190 

. . . . . . . . . . . . . . . . . . . . . . .  10.2 Background: Neutral models 193 

. . . . . . . . . . . . . . . . . . . . . .  10.3 Landscape Model Prototypes 196 

. . . . . . . . . . . . . . . . . . . . . . . .  10.3.1 Pattern constraints 196 

. . . . . . . . . . . . . .  10.4 A Hierarchy of Landscape Model Prototypes 202 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10.5 Conclusion 207 

Chapter Appendix: Formal Basis for Landscape Model Generators that Per- 

. . . . . . . .  mit General Richness, LAR and Contagion Constraints 207 

I1 Conclusion 211 
. . . . . . . . . . . . . . . . . . . . . . . . .  11 -1 Significance of Research 212 

. . . . . . . . . . . . . . . . . . . . . . . .  1 i -2 Future Research Directions 215 

Bibliography 221 

xii 



List of Tables 

. . . . . . . . . . . . . . .  3.1 Assigning bits to  elements from Figure 3.2 2S 

4.1 Characterization of encoding schemes in terms of spanning set of down- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  sets 9G 

. . . . . . . . . . .  6.1 Asymptotic encoding results for theoretical orders 137 

. . . . . . . .  6.2 Empirical results (in bits) for chess learning system [16] 138 

. . . . . . . . . . . . .  6.3 Empirical results (in hits) for medical ontology 139 

... 
Xlll  



List of Figures 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Research overview 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Sample ordered sets 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Example ordered set 

Example order mappings . The first (centre) mapping is order-preserving 

. . . . . .  and the second (right-hand) mapping is an order.embedding 

Example lattice mappings . Both mappings are (0, 1 )-homomorphisms 

and the second (right-hand) mapping is also order.embedding . . . . .  
. . . . . . . . . .  Minimal completion of the ordered set in Figure 2.2 

. . . . . . . . . . . . . . . . . . . . . . . . .  A tree-shaped hierarchy 

. . . . . . . . . . . . . . . . . . . . . .  Taxonomy showing tree prefix 

. . . . . . . . . . . .  Logical term encoding of a tree-shaped hierarchy 

. . . . . . . . . . . . . . . .  Encoding of type hierarchy in Figure 3.2 

Bottom-up bit-vector encoding of taxonomy in Figure 3.2 . . . . . . .  
. . . . . . . .  Compact bit-vector encoding of taxonomy in Figure 3.2 

A modulated taxonomy and its encoding . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . .  A subsumptio~l only encoding 

. . . . . . . . . . . . . . . . .  Diamond lattice and two spanning sets 

Tree represent at ion . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Chain partition of the ordered set in Figure 2.2 . . . . . . . . . . . .  
Meet incompatible anti-chain partition cf the ordered set in Figure 2.2 

Principal down-set encoding . . . . . . . . . . . . . . . . . . . . . . .  

xiv 



4.6 Cover tree. preorder numbering and interval encoding for the lattice iu 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Figure 4.5 

. . . . . . . . . . . . . . . . . . . . . . . .  4.7 Meet irreducible encoding 

. . . . . . . . . . . . .  4.S Principal up-set and prime down-set encodings 

. . . . . . . . . . . . .  4.9 Elements that cannot be in the same down-set 

. . . . . . . . . . . . . . . . . . . .  4.10 Subsumption preserving encoding 

. . . . . . . . . . . . . . . . . .  4.11 Transformation of a graph to a lattice 

. . . . . . . . . . . . . . . . . . . .  4.12 Subsumption preserving encoding 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.13 Violation of subsumption 

4.14 Example encodings that discriminate non-meet irreducible elemcnts . 
. . . . . . . . . . . . . . . . . . . .  4.15 Distributed virtual time encoding 

. . . . . . . . . . . . . . . . . . . .  4.16 Meet incompatible decomposition 

4.1 7 Logical term implementation of meet incompatible deconrposit ion . . 
. . . . . . . . . . . . . . . . . .  4.18 Transformation of a graph to a lattice 

. . . . . . . . . . . . . . . . . . . .  4.19 Meet homogeneous decomposition 

. . . . . . . . . . . . .  4.20 Term encoding for diamond and cube lattices 

4.21 Lattice for which no augmented spanning set of down-sets can preserve 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  meets and joins 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Types of modules 

. . . . . . . . . . . . . .  5.2 A modulated lattice and its containment tree 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Lower semi-modules 

5.4 Generalized modulation . Lower surrogates (left) are (a :  e, 1 )  and upper 

. . . . . . . . . . . . . . . . . . . . .  surrogates (centre) are { b ,  e. f. n)  

6.1 Encoding implementations: sparse terms generalize other tech ri iq ucs . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 Sparse logical terms 

. . . . . . . . . . . . . . . . . . . . . .  6.3 Binding arity in sparse terms 

. . . . . . . . . . . . . . . . . .  6.4 Anonymous functors in sparse terms 

. . . . . . . . . . . . . . .  6.5 Attribute-value matrix using sparse terms 

. . . . . . . . . . . . . . . . . . . . .  6.6 Chain and anti-chain encodings 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  6.7 Binary tree encoding 



6.8 Square lattice transitive closure and compact encodings . . . . . . . .  136 

. . . . . . . . . . . . . . . .  6.9 Transitive closure encoding of a crown S5 

. . . . . . . . . . . .  7.1 Relation between taxonomic and set operations 

. . . . . . . . . . . .  7.2 Venn diagrams of clausal taxonomy specification 

. . . . . . . . . . . . . . . . . . . . . . . . .  7.3 Aggregate specifications 

7.4 Using sort definitions to represent an iustance of 3-SAT: f = c l A -  . .Ack,  

where c; = V li. V Zi.3, 1 -< i k . . . . . . . . . . . . . . . . . . .  

8.1 State of the reference order at various points in a predicate evaluation 

8.2 Reference order for separating the contexts for a person named John . 
8.3 Reference order for ambiguous parses of "Jack saw a dog on his way 

home" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8.4 Reference order during parse of the sentence " When Sherry saw the 

chair, she shook her handP' . . . . . . . . . . . . . . . . . . . . . . . .  
8.5 Reference constraints for default reasoning . . . . . . . . . . . . . . .  

. . . . . . . .  9.1 Conceptual graph representing "a cat sitting on a mat" 

. . . . . . . . . . . . . . . . . . . . . . . .  9.2 Spanning tree normal form 

9.3 A cyclic graph and a tree representation . . . . . . . . . . . . . . . .  
9.4 4 woman eating a dinner cooked by her husband . . . . . . . . . . .  
9.5 Examples of pivoting the graph in Figure 3 . . . . . . . . . . . . . . .  

10.1 Example neutral models . Each instance was generated on a 30 x 30 

grid (rn=30). with varying proportions of the white feature (p = 0.4, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.6 and 0.8). 

10.2 Instances of landscape model prototypes produced on a 100 x 100 grid . 
Each model has four features with equal landscape area ratios (i.e. 

equal relative proportions) . The value of contagion differs for each 

model instance, taking on the values 0.6, 0.8 and 0.99, respectively . The 

prototype for instance (a) is therefore {LAR = (0.25,0.25,0.25,0.25), 

size = 100 x 100, richness E [I, 41, contagion = 0.6). . . . . . . . . .  



10.3 Geometric view of an instance of a landscape model prototype witmh 

spatial constraints. The instance is overlaid on the elevation model used 

to create it. The model size of this instance is 100 x 100, and the number 

of features is 5. The underlying elevation model provides a contest in 

which spatial constraints, in the form of elevation responses, aff~ct, 

pattern generation. Thus, the prototype for instance (a)  is { s i z e  -- 

100 x 100, richness E [1,5], spatial responses to elevation}. . . . . . .  201 

10.4 Instance of a landscape model prototype (b) generated using stochastic 

temporal constraints and input pattern (a). The model size is 30 x 30, 

and richness is 4. The prototype for instance (b) is therefore {size = 

. . . . . . . . . . . . . . .  30 x 30, richness = 4, temporal responses}. 202 

10.5 Sample fragment of the hierarchy of landscape model prototypes. Each 

node represents a prototype that consists of the constraints labeling the 

. . . . . . . . . . . . . . .  node and all higher nodes in the hierarchy. 203 

10.6 Sample fragment of the hierarchy of landscape model generators. Each 

node represents a generator that permits specification of the constraints 

labeling the node and all higher nodes in the hierarchy. . . . . . . . .  204 



Chapter 1 

Introduction 

"In all things of nature, there is something of the marvelous" 

- Aristotle 

The drive to categorize and crgauize knowledge has been ubiquitous throughout hu- 

man intellectual development. Taxonomic knowledge was first formalized by Aristotle, 

who proposed to define the intention of a complex concept in terms of its genus, or 

general type, and digerentia, or specific properties. It is therefore natural that a 

large portion of current howledge is taxonomically related, and that taxonomies are 

prevalent in a multitude of fields. 

In this thesis, we are concerned with research on the efficient representation and 

use of taxonomies, extending partial orders for taxonomic knowledge representation 

and reasoning, and applying taxonomies to a variety of applications. Central to this 

research is the partial order (Figure 1 .I). 

The motivation for this thesis is based on the following observation: 

Observation Taxonomic knowledge i s  a useful artifact for organizing many  aspects 

o j  hvman  thought, much of which can be captured i n  a mathematically elegant way 

with partial orders. The capability of automated systems depends o n  the identification, 

appla'cation and ef icient  organization of taxonomic information. 
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Representation: I 
Theory and 
Implementation ( Encoding ) 

Figure 1.1: Research overview 

Due to the multi-disciplinary nature of this thesis, we pose a number. of specific: 

theses to explore this observation: 

Thesis 1 (Taxonomic encoding) : There exists a formal characterixation Jar Ihc 

representation, or encoding, of partial orders in computers as the expression 01 cer- 

tain aspects of taxonomic information that is distinct from the manner in u)h.ich thal 

information is implemented. 

Thesis 2 (Modulation) : Concepts naturally groujri into related, but not necessarily 

independent, partitions, and this can be exploited to decompose large taxonomies into 

manageable units. 

Thesis 3 (Sparse term encoding) : There exists a universal mcodiny irnplernen- 

tation that combines the advantages of other implementation techniq~cs. 

Thesis 4 (Extending partial orders) : Partial orders can be extended with taxo- 

aornic infornzation beyond mbsumption, and this can enrich the expressive power and 

consistency of a taxonomic reasoner. 
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Thesis 5 (Reference constraints) : The symmetry of equality constraints can be 

decoupled into two asymmetric reference constraints that induce a novel and practical 

hierarchy on equivalence classes of logical variables. 

Thesis 6 (Conceptual graph generalization hierarchy) : Knowledge-bases of 

graphs that exhibit a derived hierarchical structure can be organized as a spanning tree 

that permits improved traversal efficiency fcr operations on that hierarchy. 

Thesis 7 (Landscape ecology: hierarchy of landscape models) : 

Generators of landscape models can be viewed as imposing sets of constraints on pat- 

tern generation. These sets of constraints induce a hierarchy on landscape models that 

serves as an organizational framework for model generators and for the analysis of 

landscape patterns. 

1.1 Motivation and Summary of Thesis Results 

We motivate the thesis by discussing a number of open problems that we focused 

our research efforts on, and some of the significant results that we obtained. This 

thesis crosses a number of disciplinary boundaries, and advances the state of the art 

in several different fields. The list below follows somewhat the structure of this thesis. 

1. Encoding: Mellish [I021 studied the use of logical terms for encoding lattices. He 

characterized the classes of lattices for which term encodings were possible for 

different forms of terms (e.g. flat terms). However, no algorithm was presented, 

and so no constructive solution to the problem of encoding was proposed. 

On the other hand, researchers advocating the use of bit-vectors and related 

approaches have applied encoding in real applications (e.g. object-oriented pro- 

gramming [24], operating systems [97]). However, these approaches have been 

ad hoc, and no formal apparatus has emerged to permit objective comparison 

and evaluation of the different techniques. 

We develop a formal apparatus for objectively characterizing all encoding algo- 

rithms. Our framework permits the separation of the informational content of 
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an encoding from its implementational details, and allows comparison a t  am ab- 

stract level of different encoding techniques. Furthermore, the advantages and 

disadvantages of various approaches for implementing encodings can be a~lalyzed 

for their effect on space and time efficiency, and their dynamic behaviour. 

2. Modulation: Modulation is a well-known technique for the analysis of pa,st,ial 

orders in discrete mathematics (e.g. [60]), but it wasn't until the seminal work 

of Ai't-Kaci et at. (21 that its use for encoding was proposed. The algorith~n 

proposed in this paper produces an approximate modulation in a, time efficiellt, 

manner. Researchers on partial order theory, on the other hand, have workcd 0x1 

exact modulation algorithms, but it was only recently that an efficient (lincar) 

algorithm was developed [76]. Even with the ability to decompose taxonon~ics 

into modules, however, the ability to take advantage of modulated taxonosnies 

has received limited attention beyond the proposal in [2]. 

An additional issue, and perhaps more important, is that modules are rigidly clc- 

fined constructs. Even if adequate modulations are possible in real taxonornics, 

dynamic updates have the patential to invalidate much of the work involved in 

modulation. Prior to our research, no proposal had been made to address this 

serious issue that undermines the potential advantages of modulated encoding 

by making modules too brittle for real applications. 

Taking advantage of the decomposition tree of a modulation, we develop a8 

technique for modulated encoding that reduces the size of codes, and the time t,a 

compute taxonomic operations, beyond that proposed in [2]. Furthermore, o u r  

abstract treatment of modulation permits a direct generalization to s relaxed 

definition of moduies that degrade gracefully under dynamic updates. We desigrl 

algorithms for operations on generalized modules, which we prove to be correct. 

3. Logical term encoding: The viewpoint taken in the analysis of Mellish [I  02, 

1041 is: given a technique for implementing encodings, what forms of taxononlies 

can be encoded? We feel that, for real-world problems, this viewpoint is flawed, 

In applications that require encoding, we may not have the luxury to restrict 
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the form of a taxonomy to encode. Thus, we believe that a better viewpoint 

is: given a taxonomy, what is the best approach to encode this taxonomy? This 

stance makes it easier for people to describe things naturally, and does not overly 

constrain their expressive power. We highlight "best", since there are a number 

of criteria by which we may evaluate encoding. The most prevalent criterion is 

the size of the resulting codes, although we discuss others later. 

Due to the structural potential and flexibility of logical terms, we feel that term 

er codings are the most promising form of implementation. For example, logical 

terms may permit dynamic updates to a portion of a taxonomy without requir- 

ing a full re-encoding, while any change to the length of a bit-vector encoding 

requires updating every code. However, prior to research conducted for this 

thesis, no algorithms for encoding with logical terms had been proposed. 

Our early attempts at logical term encoding using Prolog terms were unsuccess- 

ful due to the vast number of anonymous variables that produced excessively 

large terms. For this reason, we developed and implemented sparse logical terms 

for the specific task of logical term encoding, although we later found other uses 

for them. Sparse terms vastly improved our term encoding results, but we later 

discovered how the benefits of encoding with logical terms, integer vectors and 

interval sets could be integrated into an extended form of sparse term. 

In this thesis, we propose these extended sparse terms as a universal encoding 

implement ation that encompasses (in terms of efficiency) most other approaches 

to implementing encodings, and we devise and implement the first published log- 

ical term encoding algorithms. This claim is backed up by theoretical compar- 

isons of sparse terms with other approaches to encoding, as well as an empirical 

comparison between bit-vectors and sparse terms for encoding two medium size 

taxonomies from existing applications. Even though each item of information in 

a sparse term uses more space in an absolute sense (i.e. one atom vs. one bit), 

sparse terms outperformed bit-vectors by nearly an order of magnitude. This 

result is strengthened by the improved flexibility obtained by the use of logical 

terms over more rigid implementations such as bit-vectors. 
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4. Extending partial orders: The maintenance of taxonon~ic knowlcdgc has t)t\crl 

polarized. 4 t  one extreme, systems use mathematically pure, but lirni ted, par- 

tial orders for representing taxonomic information. ,4t the other cxtre~nc, k- 

minological systems provide rich formalisms for specifying knowledge, and tasu- 

nomic information is derived through the expensive (and potentially intract,ablt>) 

operation of classification 118, 19, 1591. In order to gain efficiency, some iesnli- 

nological systems limit expressive power to obtain tractable classification. 1 tow- 

ever, there has been no corresponding push in the other direction, tlamely to 

embellish partial orders with further power to incorporate additional forrrls of 

taxonomic knowledge other than simple subset information. 

One of the dangers of this situation is that taxonomic operations, such as meets, 

have been interpreted as equivalent to conceptual, or set- theoretic operat,ions, 

such as intersection. Although this correspondence appears natural, it may lead 

to invalid inferences, as pointed out in [28] in the context 0.f many-sorted logic, 

The solution to this problem suggested in [28] is to embed the taxonomy i n  

a special Boolean lattice that provides consistent inferences. This is adequate 

for logic, but inadequate for applications that must reason efficientJy with taxo- 

nomic knowledge, due to a potentially exponential increase in space. We analyzc 

sort reasoning as a distinct reasoning task, and suggest the inclusion of s sort 

reasoner in applications that utilize taxonomic knowledge. By developing a 

sound and complete sort logic (not a sorted logic for reasoning with sorts, but, a 

logic for reasoning about sorts), we clearly identify the task required as the sort 

reasoning problem. We prove that this problem is NP-Hard, but analyze tht: 

sources of intractability. By limiting certain forms of taxonomic declarations 

and queries, we show that intractability can be bounded, resulting in a sort 

reasoning procedure that only requires polynomial time. 

5. Reference constraints: During the development of a constraint based view of 

encoding, we identified the utility of constructing a hierarchy of logical variahlcs 

(actually, of equivalence classes of variables). In this way, unification can kc 

split into two uni-directional components that allows, for example, updates to 
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a variable X to he automatically unified with variable Y, but not vice versa. 

This form of relation among logical variables has not been previously proposed. 

We develop a formal description of reference constraints, and show how they may 

he specified in a logic program. We also explain how the resulting hierarchy of 

equivalence classes is maintained and satisfied during the processing of a logic 

program. Finally, we discuss how reference constraints can be implemented, and 

propose potential modifications to the control strategy of logic programming 

languages that may take fuller advantage of this new form of constraint. 

While working out the details of reference constraints among logical variables, we 

identified a broad area of application in hypothetical reasoning systems. Refer- 

ence constraints naturally lead to the notion of individual-level inheritance. The 

classical nation of inheritance involves inheritance of properties among classes 

je.g. the class cat inherits properties from the class mammal) and from classes to 

individuals (e.g. the cat Ash inherits properties from the class cat). Individual- 

level inheritance is a novel and distinct form of inheritance among individuals, 

which are apprevimat.ed by terms in logic programming. If individual A inher- 

its from individual B, then the term that approximates A must be more fully 

specified than the term that approximates B. This notion has applications in 

systems that reason with uncertainty, to separate, but relate, hypothetical from 

known information in a given context. 

6. Conceptual structures: Conceptual structures is a graph-based formalism for 

knowledge representation that relies heavily on taxonomies. The type and re- 

lation lattices are declarational structures to which encoding techniques are 

directly applicable. The generalization hierarchy, however, is a partial order 

formed by graphs using the complex operation of projection, which is akin to 

classification in terminological representations such as KL-ONE [la]. Essen- 

tially, one graph subsumes another if the former contains a subset of the infor- 

mation of the latter. However, the computation of this derived taxonomy is ex- 

pensive, and the taxonomy itself is highly dynamic as changes to the knowledge 

base transpire. To organize this hierarchy, a number of techniques, including 



encodicg [42], have been proposed, although research on this proble~n is ongoiug. 

We develop a solution that takes hdvantage of the information content of gra 1'11s 

to organize the generalization hierarchy. Graphs are preproctwx~d using sottw 

n,ormsrc7izatio~ techniques tc prodxe a standclrd form, caiieci s p a n n i q  ~ I W  I I O I , -  

mal form due to the representation of a graph as a tree with coreference links. 

The generalization hierarchy itself is also organized as a tree, and graphs arc fur- 

ther normalized into generalization hierarchy normal fom2 as they are itisertcd 

into the tree. The advantage of this tree form is that the projection operatio11 

between a node and its parent in the tree is greatly simplified, so travcrsnls 

down branches are less costly than general traversals in the hierarchy. Further- 

more, in [42] it is argued that the most efficient traversals of the generalization 

hierarchy are topological. We show that, given a spanning tree produced frwii 

z, left-to-right depth first traversal of a partial order, a right-to left depth Crst, 

traversal of this tree corresponds to a depth first topological t,raversnl of t11~ 

partial order. 

7'- Landscape ecology: model generation Work on theoretical rnoctels of l a d  

scapes, known as neutral models, has proceeded steadily over the last few ycnars 

(e-g. [25, 66, 67, 148]), but is now rapidly expanding, as the number of preswta- 

tions that focused on neutral models at a recent landscape ecology symposiutil 

testifies (e.g. [64, 73, 83, 100, 1571). However, although the development and 

use of neutral models and neutral model generators has proliferated, no unifying 

framework for organizing and categorizing models has emerged. 

By defining the general notion of a landscape model pmtotype, wc provide a for- 

mal framework for describing and comparing t heoretical landscape rnotfels arid 

model generators. A landscape model prototype describes an ezpected p t l f : ~ ~ ~  

in the absence of additional ecological information, and so defines a distribution 

of landscape patterns in a multi-dimensional space of possibilities. Using this 

notion; a hierarchy of prototypes is induced; near the top are general prototypes 

that correspond to neutral models, while lower down are more predictive rnrtdeis. 

Overall, the hierarchy clarifies gradients of neutrality in landscape models, and 



can he used to aid selection of existing landscape model generators, in guid- 

irig the development of new model generators, and for analyzing data sets of 

landscape models wj th respect to the degree of neutrality. 

Organization of Thesis 

T h e  thesis is divided into two major parts. In Part I we look at some theoretical and 

irnpiernentational issues for representing taxonomies, while part I1 considers several 

apy lications and extensions of reasoning with taxonomies. The following chapter 

provides relevant background information for the thesis. In particular, some basic 

partial order theory is presented as well as deviations from standard theory that we 

found important for our research. Due to the diversity of topics covered, each chapter 

will also present background material and related work important to the chapter. 

Part I, taxonomic encoding. is divided into four chapters that contain research 

on various aspects of this topic. Historical developments in taxonomic encoding are 

described in Chapter 3. In Chapter 4. we provide an in-depth study of encoding and 

develop our framework for formalizing encoding. We describe our generalizations of 

modulation in Chapter 5.  In Chapter 6 we develop sparse logical terms as a universal 

encoding implementation. Theoretical and empirical evidence is presented to support 

this position. 

Part I1 is divided into four chapters pertaining to research on extensions to, or 

applications of. reasoning with taxonomies. In Chapter 7, we present results on ex- 

tending the mathematical notion of a partial order to enhance the ability tLo represent 

taxonomic knowledge. In chapter 8, we describe an application of partial orders in 

logic programming for generalizing equality constraints among logical variables. We 

present the use of taxonomies in conceptual structures in Chapter 9. In particular, 

we focus on techniques for organizing the generalization hierarchy induced by concep- 

tuai graphs, inciuding graph normalizat,ion and a spanning tree representation of this 

hierarchy. fin all^. we shots- in Chapter 10 how a partial order can be defined among 

abstract models of landscapes in order to enhance the organization and specification 

of generators of landscape models, and the analysis of data sets of landscape models. 



Chapter 2 

Background and Mat hemat ical 

Preliminaries 

"From here on down, it's uphill all the wayr 

- Walt Kelly 

The cohesive theme of this thesis is the partial order, a simple yet elegant and powcrful 

mathematical concept to which a lot of attention has been devoted (e.g. [15, 38, 1441). 

Partial orders underlie central aspects of many domains, such as rnathernitticai logic 

[128], sorted logic [27, 28, 931 and logic programming [3, 4, 931, type syst,crns [lOG], 

natural language processing (e.g. typed feature structures [23, 7 1, 1 181, systernic 

networks [80, loll) ,  object-orientation (e.g. databases [I], languages [24]), knawlcdgc 

representat ion (e.g. conceptual structures 142, 1361, knowledge bases [45j, dcscri pt ion 

logics f17, 18, 1591, default inheritance and non-monotonic reasoning [22, 85, 1.13, 

1.51]), machine learning (e.g. description idectification [103] and conccpt learuing 

[log: 156, 161]), formal concept analysis 1153, :%I, distributed systems [97], arid 

ecology and ecological modeling [8, 11, 39, 75, 1151. 

As the size of partial orders increases, it becomes important to find representatio~~s 

that are both space efficient, and suppo1.t fast execution of desired operations (c.g. 

greatest lower bounds). Suitable encoding techniques wili depend on the iiature of 

these partial orders (e-g. whether they can change dynamically, whcther cc!rtain 

properties such as distributivity dr bounded width are satisfied) and the operatior~s to 



CIIA PTER 2. BACKGROUND AAiD MATHEMATICAL PRELIiMINARIES 11 

be supported. Research on taxonomic encoding has explored a variety of possibilities 

(e.g. [2, 24, 34, 35, 43, 45, 61, 77, 78, 79, 93, 97, 101, 102, 104, 1141). 

In order to empower logical terms for encoding, we developed sparse terms [51], 

based on an analogy to sparse matrices. There are many similarities, but also some 

important differences: between sparse terms and $-terms in LIFE 141, as well as sorted 

feature structures [23, 1181. 

Although mathematically clean, partial orders limit the representation of taxo- 

nomic knowledge to subsort-supersort (or isa) relationships. We cannot, for example, 

directly state that two sorts are incompatible or define one sort as the intersection 

of a set of other sorts. This poses problems for specifying more complete taxonomic 

relationships as well as for denotational semantics in sorted logic [28]. Research on 

many sorted logics has addressed this issue by expanding the expressive power of re- 

lationships among sorts. In simple many sorted logics the sorts simply partition the 

domain oi discourse, while more complicated logics permit much more expression [28]. 

The potential applications in which we could explore reasoning with taxonomies 

are many. We choose to focus on logic programming, conceptual structures and ecolog- 

ical modeling. An important application that we only explore superficially is natural 

language processing, where important uses of taxonomies include lexical specification 

and typed feature structures (e.g. [23, 1181). We have also used taxonomies in the 

resolution of anaphora and co-specification in discourse processing [54] (synthesizing 

and extending research in [9, 84, 133]), and for hypothetical reasoning [36]. 

Equality constraints partition logical variables into coreference classes, each of 

which denotes an individual (which may be unspecified or partially specified) in a 

domain of discourse. These constraints form a basis for a number of logic programming 

languages, such as Prolog [I381 and LIFE [4]. However, the resulting classes are 

unrelated to each other. Our application is the exploration of a generalization of 

equality constraints that induces a partial ordering among coreference classes. 

Conceptual structures [136] is a rich application for taxonomies. Taxonomic en- 

coding has been proposed for the type lattice [35], and for the generalization hierarchy 

of graphs [a, 421. Other research has analyzed normalization techniques for concep- 

tual graphs [107? 1601. Our focus is on the use of normalization techniques for a novel 



and efficient organization of the generalization hierarchy. 

Landscape ecology [58] and ecological modeling are also prime applicatio~i arcas for 

taxonomies, particularly for spatially explicit population models [40], ethology ( a ~ ~ i -  

ma1 behaviour) models [39]? individual-based modeling 114, 57, 1301, and intelligent, 

simulation [105, 110, 124, 1291. Our focus is on spatially explicit models of litndscnyc~s 

[lo, 135, 1461. Work on theoretical landscapes has shown that models which contain 

no or very little ecological information, known as neutral models, provide a null hy- 

pothesis for landscape pattern and change 166, 67, 148, 145, 147, 150, 1-19]. We 1la.w 

extended this notion to  provide an incremental path from neutral models to landscape 

models that incorporate ecological information, and possibly real data (e.g. from a 

GIS), inducing a partial ordering among landscape models [55, 561. 

2.1 Partial Order Theory 

Since the core of this thesis revolves around the partial order, it is important Lo have a 

clear understanding of the underlying mathematics upon which much of this research 

rests. In this section, we present some basic partial order theory, as can be li-,unct i n  

[38], or any other lattice theory text. Definitions and theorems that introduce our 

additions to, or deviations from, standard theory will be followed by an astcsisk. 

A (partially) ordered set  is a pair (P, 5 )  where P is a set and < is a reflcxivc, 

transitive and anti-symmetric binary relation defined on P. Often, we leave 5 implicit 

and simply call P an ordered set. We call 5 subsumption, and use subscripts (c.g 

<p) to  disambiguate different orders. If x 5 y or y 5 x, then we say that, z and y art: - 

comparable. We denote that x and y are incomparable by xll y. If x 5 y but z $ y, 

we write x < y. We say that. x is covered by y, or y covers x, if x < y and x 5 z < y 
implies that x = z.  Genealogical terms are also used: if x 5 y ,  then we say s is a 

descendant of y, or y is an ancestor of x. If x is covered by y, then we say z is a child 

of y, or y is a parent of x. 

An ordered set P is a chain (or total order) if Vx, y E P either x 5 y or y 5 z; 1' 

is an anti-chain if Vx, y E P x 5 y implies that x = y (i.e. if x # y then slly). Any 

subset & of P is a szcbo~der i f ,  for any s, y E Q,  x SQ y if and only if a: f y. 
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Examples of ordered sets include families of subsets of some domain X ordered by 

set inclusion (i.e. A 5 B if and only if A B), sets of integers ordered by divisibility 

(i.e. x 5 y if and only if x is a factor of y ) ,  and logical term spaces ordered by term 

instantiation. An example of a total order is the set of integers ordered by relative 

magnitude. Ordered sets can be shown diagrammatically (in Hasse diagrams) by 

placing subsuming elements above subsumed elements and only drawing arcs in the 

transitive reduction? as shown in the samples below. 

Figure 2.1: Sample ordered sets 

2.1.1 Properties of ordered sets 

We define the dual Pa of an ordered set P by reversing 5. We similarly define the 

dual of a statement regarding ordered sets. The Duality Principle allows us to deduce 

the dual of a statement once the statement itself is proven. 

Suppose we have a subset Q of an ordered set P. Then q E Q is a maximal element 

of Q if q 5 x E Q implies that q = x, and q is the greatest (or maximum) element of 

Q if q 2 x for every x f Q. Minimal and least elements are defined dually. The set of 

maximal (minimal) elements of a set Q is denoted as [Q] ( LQj ). If P has a greatest 

(least) element, we call it top (bottom), denoted by T (I). If P has both T and I, 

then we call P bounded. An element x E P is an upper (lower) bound of Q if q < x 

(z 5 q) for every q E Q. The set of all upper (lower) bounds of Q is denoted QU (Q1). 

Definition 2.1 Let P be an ordered set and Q a subset of P .  If Qu has a least 

element. x, then x is called the join or least upper bound of Q,  denoted UQ. If Q' has 

n greatest element x, then a: is the meet or greatest lower bound of Q, denotod nQ1. 

'Some order theory texts use A and V to denote meets and joins. (e.g. [38]). These symbols, how- 
ever, conflict with the symbols traditionally used in predicate logic for conjunction and disjunction. 
The sy~nbols ft and U are also used in order theory, and provide a more consistent notation. 



If Q has exactly two elements, x and y, then ~ { s ,  y) and n(.~, y }  rimy tx written 

x U y and x n y, respectively. The join x U y may fail to exist because r and y have 

no common upper bound or because they have no least upper bound ( i  .e. L( .T ,  y ) "1 is 

not a singleton). In the former case we call x and y join incompatible, and if: ,r and !I 

have no common lower bound they are called meet incompatible. Note that in  a finite 

ordered set, there exists a non-unique meet if and only if there exists a non-unique 

join. In the ordered set in Figure 2.2, we can see that dog U wild doesn't exist, while 

dog fl wild  = f era1 dog. 

domestic canine wild social 

Figure 2.2: Example ordered set 

Definition 2.2 (*) Let P be a n  ordered set and & a subset of P.  Thc set of minimal  

upper bounds of Q i s  called the join base of Q and the masimak lower hounds o j  Q is 

the meet crest of Q. 

By abuse of notation, we denote lower bound, or meet, crests the same as meets 

(and upper bound, or join, bases the same as joins), although the result is a set,, not 

a single element. Thus, in Figure 2.2, neither dog fl fox nor dog U wi ld  exist, but, 

wild n social = {wolf, african wild dog) and fox U wolf = { c a n i n e ,  w i l d ) .  

Definition 2.3 Let P be a n  ordered set  and Q a subset of P. Then  Q is  a dawrl-set 

i f f o r  x E Q and y E P ,  y < x implies y E Q.  Up-sets are defined dually. 

We can construct the smallest down-set containing a set Q as id[! = {y E Pl3r: E 

Q,y < x). If Q consists of the single element z, we write Jx. Note that Q is a 

' 1  ure down-set if and only if Q = LQ. As an example, in the second ordered set in  r'g 

2.1, 16 = {6,3,2,1). The family of a11 down-sets of an ordered set P is dermted by 

O(P) ,  and is ordered by set-inclusion. A down-set with a single maximal elernerit is 
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called principal, otherwise it is compound. Compound down-sets can be viewed as the 

union of a set of principal down-sets. Note that if P is an anti-chain, then O(P)  = 2' 

(the power set of P). In general, O(P)  C 2P and is much smaller for most ordered 

sets. 

There is a complementary correspondence between down-sets and up-sets, as for- 

malized in the next theorem. Note that we use the symbol "\" for the set difference 

operator. 

Theorem 2.1 (*) If J.Q is a down-set in an ordered set P then P\ JQ  is an up-set. 

Proof: If e is not in the down-set, then it is not subsumed by any element in Q. So every 

ancestor of e is also not in the down-set. Thus, this complement is an up-set.o 

When P is finite, every non-empty set LQ E O ( P )  can be characterized by its 

maximal elements, called the factors of the down-set. In a canonical down-set JQ, 

every pair of elements in Q is incomparable (i.e. they form an anti-chain) and is thus 

the set of factors of J.Q. Hereafter, we assume that all down-sets are canonical. 

2.1.2 Lattices 

Definition 2.4 Let L be a non-empty ordered set. If joins and meets exist for every 

z, y E L, then L is a lattice. If the join and meet exists for every subset S C L, then 

L is a complete lattice. 

Every complete lattice must be bounded and every finite lattice is complete 1381 

(since the meet of any set can be expressed as the successive meets of pairs of ele- 

ments). An example of a lattice is 2X for a set X, ordered by set inclusion. Also, if 

P is an ordered set, O(P)  is a complete lattice ordered by set inclusion. All of the 

examples in Figure 2.1 are lattices, but the example in Figure 2.2 is not. Note that 

the dual of a statement regarding lattices is obtained by interchanging n and U in 

addition to reversing the order relation. 

Definition 2.5 A non-empty down-set J.Q of a lattice L is an ideal if a ,  b E J.Q 

implies a U b E J.Q. 
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Thus, an ideal is a down-set that is closed under join. A dual ideal is called a, 

filter. An ideal LQ is called proper if Q c L. For each a E L, Ja  is an ideal and ta i s  

a filter, respectively called the principal ideal and principal iilter iuduced by a. Thus, 

every principal. down-set is an ideal. Also, in a finite lattice, every ideal or filter' is 

principal [38]. 

Definition 2.6 Let L be a lattice and Q a proper ideal in L.  Then Q is a prime ideal 

i f  a ,  b E L and a f l  b E Q implies a E Q or b E Q .  A prime filter (ultrafilter) is clejinetl 

dually. 

Definition 2.7 Let P be an ordered set and e E P, e # T .  Then e is meet irreducible 

if x f l  y = e implies that x  = e or y = e .  

Thus, e is meet irreducible if it is not the (unique) meet of any set of clerner~ts 

not containing e. Join irreducible elements are defined dually. We represent the set 

of meet and join irreducible elements by ,iZ/f(Y) and J(F), respectively. In a lattice 

L, the meet (join) irreducible elements are the elements that have exactly one parerit 

(child). For ordered sets, however, the set of meet (join) irreducible elements is not 

as easily identified. 

Theorem 2.2 (*) Let P be an ordered set. Then an element a: E P is mee t  irre- 

ducible if and only if the set of parents A of x  is a singleton or has a non-singleton 

meet crest. 

Proof: Let x be an element of P and let A be the set of parents of x. 

3 If A is not a singleton and has a singleton meet crest, then the meet i s  z, so x is not 

meet irreducible. 

e Suppose A is a singleton or has a non-singleton meet crest. In the former, x is clearly 

meet irreducible. For the latter case, suppose x is non-meet irredncible. Tiler1 there is s set 

of elements Q for which ng = x. Let A' be the elements of A subsumed by some element, 

of Q .  It follows that nA' = x. Clearly x E flA. Consider any lower bound b of A. Since b 

is also a lower bound of A', b 5 z. Thus x is the greatest lower bound, so A h a  a unique 

meet .a 
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2.1.3 Order mappings and lattice completions 

Definition 2.8 Let P and Q be ordered sets. A map cp : P -+ Q is 

i. order-preserving (or monotone) if x 5 y in P implies cp(x) 5 c p ( ~ )  in Q. 

ii. an order-embedding if x < y in P if and only if y(x) 5 cp(y) in Q .  

iii. an order-isomorphism if it is an order-embedding mapping P onto Q (denoted 

as P Q).  

Note that if cp is an order-embedding, then cp(P) E P. Also, an order-embedding 

is one-to-one, so its inverse is a partial function, and an order-isomorphism is bijective, 

so its inverse is a total function. Figure 2.3 shows an ordered set and example order- 

preserving and order-embedding mappings. Two order-isomorphic sets must have 

isomorphic diagrams. 

Figure 2.3: Example order mappings. The first (centre) mapping is order-preserving 
and the second (right-hand) mapping is an order-embedding. 

Definition 2.9 Let K and L be lattices. A map cp : L -+ K is a homomorphism if 9 

is join and meet-preserving. That is, c p ( a ~  b)  = cp(a)~cp(b) and cp(afl b) = ~ ( a )  np(b). 

A bijective homomorphism is a lattice isomorphism. If cp is one-to-one, then the 

sublattice cp(L) of K is isomorphic to L and cp is an embedding ~f L into K.  If 

cp(I) = I and cp(T) = T, then it is called a (0,l)-homomorphism. Figure 2.4 

shows a simple lattice and two homomorphisms, both of which happen to be {0,1)- 

homomorphisms. The second is also an order-embedding. 

2.1.4 Lattice completions 

Since many results depend on a lattice structure, we now describe how to form a 

lattice from an arbitrary ordered set using an order-embedding. This is  know^ as 

lattice completion. 
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Figure 2.4: Example lattice mappings. Both mappings are {O,l)-homomorphisms a,nd 
the second (right-hand) mapping is also order-embedding. 

Definition 2.10 Let P be an ordered set and L a complete lattice. I 'cp  :P 4 1, is 

an order-embedding, then L is a completion of P (via 9 ) .  

For example, the mapping ~ ( x )  = j.x embeds P into the complete lattice 0(17) .  

Other completions include the Boolean lattice completion of Cohn [28]. It is, howcver, 

possible to specify a completion of minimal size. The following definition is isomorphic 

to the Dedekind-MacNeille completion [38, 771 (which maps into a su blat tice oS O( P ) )  

and the completion described in [2] (which maps into a sublattice of 2'). Recall that 

for ordered sets, we define the "fl" operation to return the set of maxirnal lower 

bounds (as opposed to a single meet element). 

Definition 2.11 Let P be an ordered set and L p  E 2P be a lattice deJined as follo,ius: 

A E L p  i f  and only if 3a, b E P for which A = a np  b. For A, B E Lp, A SL, N if 

and only if Va E A, 3b E B such that a S p  b. The minimal lattice completion t,f P is 

the order-embedding y : P + Lp ,  where for a E P,  cp(a) = {a). 

This lattice completion can be constructed simply by checking each pair of elerrtents 

in P. If their meet is not unique, then create a new element that represents this mcet. 

Clearly, L p  E P if and only if P is already a lattice. We could also define a mininlal 

completion in terms of joins, which is isomorphic for finite lattices. As an example, 

Figure 2.5 shows a minimal completion of the lattice in Figure 2.2, where puck cloy = 
(wol f ,  a f rican wild dog) and wild dog = { f era1 dog, f oz, wolf ,  a f ricar~ wild cloy). 

A minimal completion can be viewed in two ways. The first is as an abstract 

construct that gives formal meaning to meet crests within P (by adding new node3 

to stand as proxies for noc-singleton meet crests). In this context, we work with the 

original ordered set. When computing meets, we may obtain a non-singleton meet 
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I Figure 2.5: Minimal completion of the ordered set in Figure 2.2 

crest, which requires additional search in the ordered set. This is the approach taken 

in [2] and is useful when many lattice operations are performed before output to the 

user is required. The second viewpoint, taken in [24, 1021, is to realize the completion. 

Working with a lattice leads to simpler encoding algorithms and decoding schemes. 

Unfortunately, completion may result in adding an exponential number of elements 

to our original set. This problem can be alleviated somewhat using the technique of 

lazy completion in [77], where elements representing non-unique meets and joins are 

only added as they are computed. 

An ordered set P that does not possess a I element is called I-unbounded. For 

a lattice L, every meet in L \{ I )  exists, except those that result in I. All finite 

lattices must be bounded, otherwise they would not be closed under joins and meets. 

In many real lattices, however, I is only implicit (e.g. as an absurd element). There 

are several ways that we can handle I. First, we can treat it as any other element, 

which is simple but may not be very satisfactory, particularly for orders that are wide 

or that may change dynamically. A second approach (espoused in [102]) is to treat I 

as meet failure. That is, if a n  b = I, then the meet operation must fail. We can also 

treat it as decode failure - if the code computed for a meet has not been assigned to 

any element, then assume it is i. These latter two approaches essentially treat the 

lattice as I-unbounded. 



Part I: 

Taxonomic Encoding 

"Discovery consists of looking at the same thing as everyone else 

and thinking something difle4.entn 

- Albert Szent-Goygyi 



Chapter 3 

The Evolution of Taxonomic 

Encoding 

"In rivers, the water you touch is the last of what has passed and 

the first of that which comes: so with time present" 

- Leonardo da Vinci 

Leibniz (in [136]) initiated the quest for representations, or encodings, of lattices and 

partial orders that could be used to efficiently compute operations, such as greatest 

lower bound and comparability. This quest continues today, and has been an active 

area of research in the past few years. In this chapter, we review the developmental 

history of taxonomic encodin_-. 

3.1 Introduction 

Taxonomies appear in a multitude of guises and in many fields. As the size of these 

taxonomies increases, there is a growing need to represent them in a form that is 

amenable to performing operations, such as meets, efficiently. Encoding taxonomies 

in a manner that permits quick execution of such operations has been a goal in logic 

programming, and in other areas computer science, for some time now. Although 

many encoding schemes have been successful, research in this area is ongoing in the 

quest for general purpose, compact, flexible and efficient encoding techniques. 



In logic programming. encodicgs have been used to reduce the length of the proofs 

needed to deduce some kinds of facts, to facilitate intensional replies and to achieve 

partial execution of some queries (e.g. 133, 34, 87 ] ) ,  and to integrate marry-sorted 

logic [4]. In natural language processing, they have been used to permit quick sc- 

mantic agreement verifications on queries, to calculate domain intersections through 

unification, and for incremental description refinement (e.g. [32, 981). In systemic 

linguistics, these techniques have been used for representing and making inferences 

from systemic networks [loll. 

The evolution of taxonomic encoding has involved interactions among resea~llers 

working with both the logic programming and bit-vector approaches. Other tech- 

niques are introduced within our formal framework for encoding in the following 

chapter. The early work in the logic programming [32, 3-2; and bit-vector ['2] dircc- 

tions has been expanded within [24, 961 and between [101, 1021 research lines. 

Schemes for encoding taxonomies so that the basic operations can be perforntecl 

through unification have been studied, e-g., in 134, 98, 101, 1201- Alternative ap- 

proac' zs involfe rewriting the logic programming interpreter or compiler tto extend 

unification to facilitate efficient encodings [52], or to encompass type operations di- 

rectly 135. Bit-vector encoding techniques can be applied using logical terms, hi, 

logical terms may possess structure not easily mimicked with bit-vectors, so the con- 

verse may not be as apparent. In general, most schemes can be abstracted from the 

particular space used for the codes (e.g. terms or bit-vectors) to analyze the actual 

taxonomic information encapsulated in the encoding. 

The following sections of this chapter outline early research on encoding. 7'hc 

viewpoints are expressed in the form of the original research. In the next chapter, 

some of these approaches and other techniques are re-cast in our formal framework. 

3.2 Encoding tree-shaped hierarchies 

One of the early encoding techniques 133, 341 dealt efficiently with tree-shaped hier- 

archies (i-e. hierarchies that do not allow multiple inheritance). It was inspired by 

the simple observation that by representing a type t as a term &il& ... kt,, where we 
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assume that the relationships t c tl, tl c tS,  . . . , tk-1 c tk hold, we can also represent 

partially known types by similar terms in which a variable stands for the unknown se- 

quence of set inclusions, and then check for operations, such as set inclusion, through 

unification. By extending Horn-clause terms, a simple representation of taxonomic 

information is obtained. Essentially, a type in a such a hierarchy can be represented 

as the (unique) path from the root node to the type. As meets are always I in a 

tree-shaped hierarch_v, we are only concerned with joins and subsumption checking. 

As an example, the elements chameleon and dog in Figure 3.1 can be encoded as 

the paths [animal, reptile, chameleon] and [animal, mammal, dog], respectively. 

animal 

Figure 3.1: A tree-shaped hierarchy 

Checking subsumption in this representation can be done by checking if the path 

of the subsuming label is a prefix of the path of the subsumed label. So, for exam- 

ple, the path of mammal, [animal, rnammaq, is a prefix of that of dog, as mammal 

subsumes dog. By representing the paths as difference lists1, this operation can be 

perforr7ed with a single unification. Thus, mammal and dog would actually be rep- 

resented by [animal, mamma:JXf\X and [animal, mammal, dog(YJ \Y, respectively. 

]If this unification fails. then the two elements are incompatible. The join operation 

can be achieved by simply retaining the longest common prefix of the two paths. 

Thus, dog U c ~ t  will find the longest common prefix of [animal, mammal, dog] and 

[animal, mammal. cat] which is [animal, mammal]. Decoding is done by finding the 

Iabel with this path. which is mammal. Since each element has no more than one 

parent, joins will dways be unique, 

'A difference list is a list representation that allows for appends to execute in one unification 
step. To achieve this, a list is viewed as the difference between two other lists. For example, the 
list [l. 2,3] can be viewed as the diierence between [I, 2,3,4,5] and [4,5]. By using a variable as the 
second Iist fe-g. representing [1,2,3] as [1,2,31X]\X), we can append any l i t  to it simply by giving 
a value to X ahrough unification. 



With the difference list representation of paths, we can express incomyletc types. 

That is, we store a path from the root to the most specific type known, with tjlw 

possibility of extending this path as more information is obtairled. For esanqdc, 

if we all know about an object is that it is a mammal, the code for manantal, 

[animal, mammaEIX]\X, can be extended as more information is discovered. 

This technique permits us to formulate intensional replies, to perform quick se- 

mantic agreement verifications on natural 1a.nguage queries and t,o achieve partial ex- 

ecution of some queries. For example, we can state that all reptiles crawl: crawl(A E 

[animal, reptilelX]\X). Now we can ask which animals crawl (e.g. ?- animal(A) , 
c r a w l ( A )  .). This will quickly reply with reptile. If we desire further information, we 

can backtrack to find more specific elements in our hierarchy which crawl. 

This approach has the advantage of being simpie, efficient and entirely within the 

framework of Prolog terms. However, limiting taxonomies to being trees imposes a 

severe restriction on the types of inheritance and operations that can be performed. 

3.3 Extending trees to graphs 

Extending the above method to deal with general partial orders, Massicot te [96] par- 

titions the nodes into two sets: nodes with a unique path from t'he root (deteminislic 

nodes) aod nodes multiple paths from the root (non-deterministic nodes). Non- 

deterministic nodes are a result of one or more ankestors having multiple inheritance. 

In essence, the maximal tree portion of the hierarchy (the tree prefix), starting 

at the root, is treated in the same way as above. Thus, a deterministic node is 

represented by a path, expressed as a difference list, from the root to the node. T?or a 

nondeterministic node, the paths from the closest ancestors with multiple in heri tancc 

are explicitlyrepresented, and the paths from the root to these ancestors are implicitly 

represented (through a predicate call associated with each such path). If a node has 

multiple parents, then multiple paths are associated with it, one from each clovest 

ancestor with multiple inheritance, or from the root if no such ancestors exist. 

To demonstrate, Figure 3.2 shows a hierarchy in which we have emphasized the t rcc 

prefix. The deterministic nodes are {T, persun, adult, child, butter f 12, laruu) and the 
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non-deterministic nodes are {teenager, caterpillar, I). To represent adult requires 

only storing the path [T,person, adult], but to store teenager requires the paths 

[adult, teenager] and [child, teenager]. To find all paths from T to teenager requires 

appending the path [adult,teenager] to each path from T to adult and appending 

[child, teenager] to each path from T to child. This can be achieved via unification; 

the recursive nature of the implicit paths ensures that all paths will be found. 
T 

I 
Figure 3.2: Taxonomy showing tree prefix 

To test whether a label, el, subsumes another label, e ~ ,  now requires checking if 

there exists a path from the root to el which is a prefix of some path from the root 

to ez. If both el and ez are deterministic nodes, then this operation can be achieved 

in one unification. If either one is a non-deterministic node, this will require one 

unification for each possibility in the worst case. Provided the taxonomy is a join 

semi-lattice, joins may also be formulated in a recursive manner. There is, however, 

no simple way to use this approach for meets, or for finding join crests in non-lattices. 

This approach enjoys the simplicity of Dahl's encoding, and it also remains within 

the scope of Prolog. However, it cannot tolerate many multiple inheritances before 

its recursive nature will limit its efficiency. 

3.4 Characterizing term encodable hierarchies 

The technique of using unification to perform hierarchical operations can be gener- 

alized to use logical terms as codes, rather than difference lists. We first note that 

the approach of [34] for encoding tree-shaped hierarchies, can also be achieved by 

representing the partial paths as nested, unary function symbols (as pointed out in 
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[loll). So, for example, the taxonomy in Figure 3.1 can be represented usirlg ternts 

as shown in Figure 3.3. Checking subsumption still requires one unif cat,ion. If the 

unification succeeds, then the term that was further instantiated subsumes thc t m n ~  

that was not. If the unification fails, then the two elements are incompatible. Joins 

can be achieved through anti-unification, the dual of unification. For example, to 

compute the join dog U cat ,  we anti-unify the terms a n i m a l ( n L a m n ,  nE(dog(-) ) ) and 

animal(rnammal(cat(-))), resulting in animal(rnarnmal(-))  which is the term asso- 

ciated with m a m m a l .  

Figure 3.3: Logical term encoding of a tree-shaped hierarchy 

With this scheme, it is possible to utilize functions with more than one argurnerlt. 

The technique in [21] is direct extension of [33] that allows a set of tree shaped hi- 

erarchies, leading to multi-argument terms where a subterm has one argument, per 

tree rooted at that node. This can be taken even further to encode more general tax- 

onomies, by permitting logical variables. As an example, consider the term e~icodi rig 

shown in Figure 3.4 of our example hierarchy from Figure 3.2. 

L-L) 

I 
Figure 3.4: Encoding of type hierarchy in Figure 3.2 

Mellish (in [102]), provides a characterization of lower semi-lattice taxonornics 

(i-e. unique meets exist) for which a particular type of term encoding exists. Such 

encodings are targeted at determining meets and checking subsumption. Essentially, 
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a term encoding, in Mellish's sense, requires that the meet of two elements can be 

determined by unifying the terms associated with these elemects, If the unification 

fails, then the result is bottom. Otherwise, the resulting term is exactly the term 

associated with the unique meet element. This is defined more formally as follows: 

Definition 3.1 A hierarchy H = ( C ,  5 )  is  term encodable i f i  for some t e r m  space 

G, there is a mapping T : C-+G satisfying: 
1. If r (e l )  = r(e2) then  el = e2 

2. T(L) = L 

*3. r(el  n e2) = r(el) fl 7-(e2) 
where el and ez are elements of C ,  and fl represents the t e r m  unification operation. 

The first condition ensures that the mapping is invertible, which is necessary for 

decoding if we are to support meets. The third condition requires that T not only 

preserves subsumption, but also that the unification of the terms of two elements is 

exactly the term of the meet of those elements. The second condition guarantees that 

if this meet is I, the unification fails. Therefore, if we can find a term encoding for 

our taxonomy, meets can be determined using one unification step. 

Although no algorithm for constructing term encodings is given, Mellish does 

categorize taxonomies according to the complexity of the types of terms required for 

such encodings. The simplest encodings require only tree terms (i.e. terms in which 

all variables are singletons). Such terms can always be drawn as trees. At the next 

level, flat terms are studied (i.e. terms in which variables may corefer, but the depth 

is restricted to one). Flat terms can then be generalized to the set of all terms. Going 

beyond terms leads us to the use of rational trees in encodings [30]. 

Unfortunately, determining which type of terms are required for encoding a given 

taxonomy appears to be difficult. Also, constructing encodings that employ terms 

more complex than simple tree terms may be non-trivial, and limits the possibility 

of exploiting parallelism in unification. Even some simple taxonomies turn out to 

be non-tree term encodable, according to the above definition of encodability. We 

provide exarriples of this in the next chapter. Furthermore, a change to the taxonomy 

may require recomputation of the entire, or a significant portion of, the encoding. 

In 11041, Mellish extends his characterization to taxonomies encodable by graphs. 
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3.5 Bit-vector encodings 

A number of researchers have explored the possibility of encoding taxonomies using 

bit-vectors, using the operations of logical (bit-wise) AND and OR t,o compute ~ncets 

and joins. The founding research on using bit-vectors was by Ai't-kaci et id. [2] for 

use in the logic programming language LIFE 141. The definition of encoding used 

assumes that the taxonomy is a lower semi-lattice. In order to achieve this, a rnini~lal 

semi-lattice completion is presented. It is important to note that this semi-lattice 

construction is not actually computed, but rather is used to provide a sernat~t~ics for 

computing meets that are not unique. This contrasts with the approaches by Mellish, 

above, and Caseau, below, which actually require the taxonomy to be a lower setni- 

lattice. Performing this construction may be exponential in the worst-case. 

Transitive closure. A simple bit-vector encoding, called transit.ive closwe, ca,tl be 

achieved by associating one position in the hit-string with each element iu ;z tax- 

onomy (except I). Let us call e l emen t  ji) the element associated with posi ti011 2 

in this bit-vector. For each element e, position i is a 1 if e subsumes e l emer~ l (2 )  

and a 0 otherwise. Thus, each code for an element incorporates all of the lower 

bounds of that element. To demonstrate, consider the taxonorny of Figure 3.2. 

Table 3.1 associates one bit with each element, and Figure 3.5 shows the triln- 

sitive closure of the table according to subsumption (in a hot, tom-up tnanncr). 

Table 3.1: Assigning bits to elements from Figure 3.2 
T person butterfly larva adult child teenager caterpillar ' 

T 1 0 0 0 0 0 0 0 
person 0 1 0 0 0 0 0 0 
butterfly 0 0 1 0 0 0 0 0 
larva 0 0 0 1 0 0 0 0 

1 

I adult 0 0 0 0 1 0 0 0 I 
child 0 0 0 0 0 1 0 0 
teenager 0 0 0 0 0 0 1 0 
caterpillar 0 0 0 0 0 0 0 1 



CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 

Figure 3.5: Bottom-up bit-vector encoding of taxonomy in Figure 3.2 

Both subsumption checking and meet operations can be performed using logical 

AND operations. That is, el 5 e2 if and only if r ( e l )  AND r ( e 2 )  = r ( e l ) .  Also, 

e l  fl e2 is computed by 7 ( e l )  AND r ( e2 ) .  If the meet is unique, this will be the 

code of that element. If not, this code will represent the crown and additional 

decoding must be done to extract the elements comprising this crown. 

Compact encoding. The above approach requires one bit for every element except 

I. Thus, a taxonomy with n elements requi~es n - 1 bits per code. By analyzing 

the structure of the taxonomy, it is possible to reduce this number. When an 

element has exactly one child, we must use an additional bit to distinguish its 

code from that of its child. But when an element has multiple children, it may 

be possible to encode it simply using the OR of the codes of its children. The 

compact encoding scheme optimistically assigns codes in such a way, and if this 

leads to two incomparable elements having comparable codes, then additional 

bits are added.. Thus, while transitive closure indiscriminately uses one bit per 

element, compact encoding adds bits only as necessary, saving space on elements 

that do not require a bit to maintain the encoding homomorphism. Subsumption 

checking and meets are computed using logical AND, as before. 

Consider our example taxonomy. We start with 0 for I. Then we assign 1 

to teenager and 10 to caterpillar. Next adult is allotted 101 and child 1001. 

B u t t e r f l y  is given 10010 and larva 100010. Then person, since it has two 

children is assigned 101 AND 1001 = 1101. Finally T, with three children, gets 

1101 AND 10010 AND 100010 = 111111. In this simple example, we reduce the 
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code size from 8 bits to 6 bits. This compact encoding is shown in Figure 3.6. 

Figure 3.6: Compact bit-vector encoding of taxonomy in Figure 3.2 

Which elements require a bit? For a bottom-up compact encoding, it is precisely 

the join irreducible elements. If this scheme was applied in a top-down man- 

ner, it would be the meet irreducible elements. Therefore, unlike the tra,nsit,ive 

closure approach, a compact encoding may require a different number of bits 

depending on whether it is applied in a top-down or a bot tom-up fashion. 

Illodulation Many objects naturally group themselves into relatively disjoint, densc 

groups with few links between groups. This can be exploited by treating these 

groups, or modules, as a single unit in the taxonomy [2]. Then the rnodificd 

taxonomy (with one module node replacing all the elements of the module) can 

be encoded separately from the elements in the module. Tb do this, the srlodulc 

must itself have the form of a taxonomy. That is, modules have a top and 

a bottom element, and every path from outside to lower elements inside the 

module goes through the top node of the module, and every path from inside to 

lower elements outside the module goes through the bottom node of the module. 

Since modules are sub-taxonomies, this process can continue recursively, until  

each module contains a small number of elements. The difficulty lies in finding 

modules. The heuristic algorithm provided in [2] attempts to rnodulate a given 

taxonomy, but is not guaranteed to find a maximal modulation. A fast (linear) 

algorithm for modulation has recently been developed [76]. 

An element may now reside within a module, which is itself within a module 

and so on. In [a], the code of such an element is the juxtaposition of the codes 
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of the containing modcles (starting with the maximal containing module) and 

the code of the element, which was calculated in the least containing module. 

The operations of subsumption checking and meet are complicated by modula- 

tion and will be described only for one level of modulation. To check if element 

el subsumes element e2, we must first check which modules they are in. If they 

reside in the same module, we simply check if the code for el subsumes the 

code for e2, as before. If they are in different modules, we check if the code 

for the module containing el subsumes the code for the module containing e2. 

Otherwise el does not subsume e2. 

To determine the rneet of el and e2 involves a similar process. If they are in 

the same module, then simply take the AND of their codes. If el subsumes e2, 

then the meet is e2. If e2 subsumes el, then the meet is el. Otherwise, take 

the logical AND of the containing module codes to obtain the meet module and 

the meet element is the topmost element of this module. For non-unique meets, 

crowns are found, as in the compact encoding method above. 

To illustrate, we add an insect element above butterfly and larva in our example 

taxonomy. Now, the portion of the hierarchy dealing with people can form one 

module, and the portion dealing with insects can form another. These modules 

can then be encoded using the compact encoding. This modified taxonomy and 

its modulated encoding are shown in Figure 3.7, where the module codes have 

been separated fram the element codes by a colon. 

Figure 3.7: A modulated taxonomy and its encoding 
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To find the meet adult fl child, we AND the element codes 01 AND 10, aud 

prepend the module code 01 to get 01:00, which is the code of tecnngw.  To 

find adult fl butterfly, we AND the module codes 01 AND 10 to get 00, which 

is the module code of I. 

These operations can be extended in an obvious way for further levels of mod- 

ulation. Since each level of modulation adds one more step in the process and 

since there can be at most logN levels of modulation for a ta,xonomy of N ele- 

ments, these operations take at most logN steps. So, although modulation has 

the potential to reduce the size of the codes substantially, it also increases the 

complexity of cdmputing operations. The assump tion is that most operations 

will be within, not between, modules, so that only one step is required. 

Also, the complexity of determining a modulated encoding is substantial. Mod- 

ifications to the taxonomy can be either more or less costly than for non- 

modulated tax on omit?^. Changes within a module restrict the extent of changes 

to within that module. If, however, one or more modules are breached ( e g  a 

link is added that enters or leaves a module at a mid-point), then we may have 

to re-modulate a significant portion of the hierarchy. 

In Chapter 5, we formally deal with and extend modulation. 

Encoding for subsumption only If the only operation required is subsumption 

checking, then it may be possible to reduce the length of codes further, without 

resorting to modulation. In this situation no decoding is necessary and the 

codes can be such that neither meets nor joins can be determined, as long as 

the subsumption relation is maintained. 

One such approach has been developed for the Laure object-oriented program- 

ming language [24]. This scheme modifies a top-down version of cornpact encod- 

ing, but is restricted to taxonomies that are lattices. The algorithm basically 

assigns a bit position, or gene, to each meet irreducible element. Since the 

taxonomy is a lattice, these are the elements with a unique parent. The code 

for an element is the union of the genes (i.e. logical OR) of its ancestors, plus 
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its gene, if it is meet irreducible. Since we are not concerned with computing 

meets or joins, it is possible to assign the same gene for some elements, provided 

this doesn't violate the subsumption relation. Caseau7s algorithm performs this 

incrementally, in a top-down manner. As each meet irreducible element is pro- 

cessed, an attempt is made to assign a gene already in use. For other elements, 

a check is made to see if the union of the parent genes violates subsumption. If 

so, mutations of ancestral genes are performed until subsumption is respected. 

Using this algorithm, we encode the taxonomy in Figure 3.7 as shown in Figure 

3.8. In the taxonomy at the left, we display the genes assigned to each meet 

irreducible element. As can be seen the adult and butterfly elements share a 

gene, as do child and larva. This reduces the code size to 4 bits, as achieved by 

modulation. Checking for subsumption requires only one logical AND operation: 

element el subsumes el if and only if r ( e l ) A N D r ( e z )  = r (e l ) .  We cannot, 

however, compute meets or joins due to the polymorphic character of genes. 

Figure 3.8: A subsumption only encoding 

3.6 Discussion 

In this chapter, we have attempted to describe the evolution of taxonomic encoding 

in a general and intuitive manner. Where possible, we described techniques from 

the viewpoint of the original research. Some of the techniques covered here, and 

additional techniques, are described in the following chapter, where the emphasis is 

on characterizing techniques using our formal framework. 



Chapter 4 

The Foundations of Taxonomic 

Encoding 

"Everything is simpler than you think and at the same time 

more complex than you imagine" 

- Goethe 

Most of the research on encoding has focused on algorithmic and implemcrtiational 

details of encoding, and has largely ignored or left unstated the informational content, 

of the technique. In this chapter, we explore a fundamental structure underlying 

encoding. By characterizing encoding using spanning sets we are able to provide a 

concise framework in which all schemes can be compared, regardless of the actual 

implementation. This analysis permits a separation of the informational content of 

an encoding scheme from the implementational details, and allows us to see how both 

of these aspects affect time and space requirements. This exploration expands and 

formalizes our introduction of spanning sets for encoding that appeared in a short 

workshop paper [48]. 

In addition to the theoretical appeal of our framework, we also develop several 

important results. We show a correspondence among several existing encoding tech- 

niques (sections 4.5 and 4.6). We prove two NP-Hardness results, which demonstrate 

limitations to encoding algorithms and reveal avenues for approximat ion algorithms 

(sections 4.7 and 4.8). Our abstraction also exposes a more comprehensive view of 
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some existing techniques, indicating directions for further research. We discuss in 

more detail in section 4.10 our contributions to taxonomic encoding as well as specific 

directions for future research. 

In the following section, we motivate and define taxonomic encoding. We rely heav- 

ily on the lattice theory concepts introduced in section 2.1, including our departures 

from standard theory. In section 4.2 we characterize encoding as order-embedding 

mappings induced by spanning sets. Since the result of these mappings is a set, 

taxonomic operations reduce to set operations, independent of the implementation. 

Section 4.3 introduces a variety of implementations of order subsets, specifically for 

the implementation of spanning sets and section 4.4 describes how we can permit 

portions of a taxonomy to be infinite while still benefiting from encoding techniques. 

Using this framework, we analyze the information content of various spanning set 

types and develop formal techniques to reduce the representation cost of the span- 

ning set mapping. Through much of this analysis, we introduce existing encoding 

techniques, characterize them in terms of our spanning set framework, and then ab- 

stract general properties and limitations of such spanning sets. We first characterize 

some simple encodings in terms of spanning sets of principal down-sets in section 4.5. 

This includes the transitive closure and compact encodings of [2]. We then show a 

correspondence between principal down-sets and prime zip-sets, providing a direct link 

to the approach of [77]. Section 4.7 explores and characterizes spanning sets that pre- 

serve only subsumption, aid we prove that determining a minimal such spanning set 

is NP-Hard. The approach of [24] is shown to be an approximation of the optimum. 

We next consider how decomposing a spanning set can achieve more concise results, 

as in the proposals of [97] and [102]. We also prove that, for certain forms of decom- 

position, finding the optimal is NP-Hard. Section 4.9 views partial orders as systems 

of constraints, and encodings as preserving certain properties by representing a subset 

of these constraints. Using coreference, more expressive encodings are possible. Fi- 

ndly, we discuss areas for future research, including expanding the theory presented, 

exploring implementationd issues and designing approximation algorithms. 



4.1 Settingthe Stage 

The general problem we wish to address is as follows: given an ordered s r t  P, how 

do we represent P to provide fast con~putation of subsumptiom, and possibly tiwcts 

and/or joins? We focus on encoding finite ordered sets, although we later tlcscribc 

how these can be augmented with certain forms of infinite orders. Sornc ordercd 

sets, such as families of subsets ordered by set inclusion, sets of i~itegtm orricmd 

by divisibility (i.e. x 5 y if and only if z is a factor of y), and loglcal term spaces 

ordered by term instantiation, have in common the simplicity of element, comparisons; 

J~termining if x 5 y can be done locally (i.e. using only information dirwtly r t~la td  

to x and y )  and efficiently. This is not true, however, of many others, s:ich as sets 

of graphs ordered by subgraph isomorphism and multiple inheritance hierarchics in  

object-oriented systems. In the former case, local information can be uscd to c h c ~ k  

subsumption, but this is costly- In the latter case, only the intransitive, irrefkxive 

portion of the partial order is maintained (i.e. the transitive reductiori), so there is no 

local information to determine if s 5 y. It is in contexts such as these that cncoclirig 

is beneficial. 

We will assume that we are given an ordered set P as a graph G' = (I", E ) ,  

where E is either the transitive closure (i.e, (x, y )  E E if and only if rc 5 y) o r  

the transitive reduction of P. We need a way to implement P that is both spwc 

efficient and facilitates fast computation of operations. Directly implernentirig P iisirig 

standard graph representation techniques is straightforward (where (I' = ( I1 ,  El ) ;  two 

common techniques are adjacency matrices, which take O( 1 P 1 2 )  space, and ltdjacc~l~cyj 

lists, which take O(IEllog(PI + IY I) space. If G is the transitive reduction graph of 

P, then adjacency list representation corresponds to maintaining the list of parents 

(or children) for each element. Subsumption, meets and joins can he determined irr 

O(!E(j time for either implementation. If G' is the transitive cIosure graph of P,  t h e n  

subsumption can he computed in constant time for adjacency matrices, and O( I PI) 

time for adjacency iists. In both cases, meets and joins take O([P1) time. 

Before defining encoding, we recall our generalizations of meet and join: for a 

subset Q of an ordered set P, we caIl the set of minimal upper bounds of dL) thc join 
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base and the maximal lower bounds of Q the meet crest1. A join (meet) is simply a 

singleton join base (meet crest). We use the same notation for joins and join bases 

(and meets and meet crests). Thus, in Figure 2.2, f o z  U wolf = {canine,  wi ld)  and 

wild 17 social = (wo l f :  african wild dog}, whereas dog n wild = {feral dog). 

Definition 4.1 Let P and Q be ordered sets, and T an order mapping T : P -+ Q .  

Then T is 

a (siihsumptionj encoding for P if T is an order-embedding (i.e. x S p  y if and 

0.19 if.(.) SQ "-(Y))- 
e a meet encoding for P i f  T is meet-crest-preserving: if a ,  b E P then a np b = 

--I I i I i a ) n Q ~ ( b ) ) ,  f -[ where r-' is the irtverse o f r 2 .  

a join encoding for P i f  T is  join-base-preserving: i f  a, b E P then a Up b = 

T- ' (~ (a )  UQ ~ ( b ) ) .  

Although LQ defines a partial order on Q, determining if x <Q y may be accom- 

plished in a number of ways: as we discuss in section 4.3. The intent of an encoding is 

that taxonomic operations in Q can be performed more efficiently than in P. There 

are several forms of encoding that have appeared in the literature; the trademark 

of encoding is the pre-computation of the encoding function r and the association 

with each element x E P the value, or code, ~ ( x ) .  Thus encoding trades the cost of 

explicitf y storing T for improved time to compute taxonomic operations. 

In most schemes: the target space Q has the property that elements are inde- 

pendent. That is? the order relation is somehow encoded in the elements themselves. 

Examples of this include bit-vectors and Iagical terms. In the tree encoding scheme of 

[78], however, Q is a tree data structure, and T maps elements of P to nodes of the 

tree. Operations in P are translated to operations on this data structure. 

'The set of upper bounds (lower bounds) is an upset (down-set). The join base (meet crest) is 
precisely the set offactors for this set - its base (crest). Join bases and meet crests are anti-chains. 

'In general, ~ ( a )  n9 r ( b )  is a set of elements in Q, so T-' must map this set back to the meet 
Crest io p. %---A- - ,,.,,ing on the ;est;-;&;-e of Q, however, 7-' is normally treated in one of two ways: 

(i) If Q is a lattice, then r ( a )  fig r t b )  reduces to a single element of Q. In this case, Q embeds a 
minimal completion of P, and the inverse T-' must map back to the meet crest in P; (ii) If T is an 
order isomorphism (i-e. it maps P onto Q), then r ( a )  n9 r ( b )  reduces to the set of elements in Q 
car~apsmcfiag m the meet crest in P. Here, 7-' must map each element in this set back to P. Note 
that if P and Q are both lattices, then T must be meet-preserving in the lattice-theoretic sense. 



In this chapter, it is our goal to develop a unified framework that separates tdhc 

content (semantics) of the encoding map from its implementation (syntax). We do this 

using a structure called a spanning set, which we introduce in section 4.2. Through 

this sepsration we provide a common ground on which different encoding schemes can 

be compared, analyze the effect on time and space of different implementations, and 

study the semantic content that encodings must possess in order to preserve certain 

properties of an ordered set. We also strive to provide a principled basis on which 

to select or design encoding algorithms for particular taxonomic applications, and to 

expose some of the limitations and restrictions to encoding. 

There are several aspects by which we can characterize encoding algorithms: 

0 The taxonomic operations supported. 

0 The time and space complexity of the encoding algorithm. 

0 The space requirements of resulting encodings. 

0 The time complexity of performing operations using resulting encodings. 

0 The complexity of modifying an encoding. 

0 The complexity of decoding (i.e. computing T-I).  

We show how various encoding techniques and implementations affect these char- 

acteristics. Since the focus and requirements of particular taxonomic applications may 

differ, it is apparent that there may be no best encoding algorithm to satisfy all nccds, 

Rather, the designer of an encoding algorithm must take into account the needs of 

the application, and the form of the taxonomies to encode, in order to deterrrli~le thc 

relative importance of the above characteristics. Using our framework, appropriate 

techniques and implementations can be selected, Ieading to existing algorithms, or 

the need to design new algorithms. 

Our framework would be improved with empirical results that den~onstrate t hc 

behaviour of various encoding algorithms with respect to the above characteristics. 

In order to be useful, however, such testing would have to be extensive and this is 

beyond the scope of this thesis. Our research, however, provides an organimtiorml 

basis with which such testing could be carried out. Some empirical results on thc 

space efficiency of different encoding algorithms is available in [43]. 
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4.2 Spanning Sets 

Now we present spanning sets as a basis for encoding, generalized from [102]. 

Definition 4.2 Let P be an ordered set. A family of subsets S of P is called a 

spanning set if the function C : P -t 2' defined by C(s)  = {s E SIX E s)  is one-to- 

one. 

A spanning set S is ordered under set inclusion (where, for s l ,  s2 E S, sl  Ls s2 if 

and only if sl E s2), and the function C is an order mapping, called the component 

mapping (where elements of S can be regarded as components from which P is con- 

structed). In the next subsection we describe some structural restrictions that enable 

us to use spanning sets to perform taxonomic operations locally. Encoding can then 

be viewed as computing a spanning set that preserves the desired properties of an or- 

der P, and tken efficiently representing the component mapping. As an example, the 

figure below shows a simple lattice and two spanning sets: Sl = {sl = {a, I), s2 = 

{b, L),s3 = {c, I)), and Sz = {sl = { a ,  b, c), s2 = { b ,  I), s3 = {T, b, c)). It can 

easiiy be verified that component mappings for both of these are one-to-one. For Sl, 

we have C(a) = {sl), C(T) = 0 and C(1) = {sl, sz, s3). 

A Sl 

s1 3 

a+ 1 s2s1+ 

Figure 4.1: Diamon two spanning sets 

In 1121, a variation of spanning sets was studied to produce a number of funda- 

mental duality results. It is also worth noting the similarity between spanning sets 

and reduced or minimal bases in Wille's concept lattices [155], where lattice elements 

and spanning set components correspond to objects and attributes, respectively, in 

Wille's terminology. 

We are primarily concerned with spanning sets of down-sets (and up-sets), where 

S O(P)  and C : P -t 2•‹(P). What makes these interesting components is that they 



encapsulate much of the order information. In Chapter 5, we introduce the concept. 

of a spanning set of order intervals. 

We hypothesize that all encodings can be characterized as computing a spanniug 

set of down-sets, up-sets or intervals, possibly augmented with constraints, axel i ~ n -  

plementing its associated component mapping. Rat her than trying to establish this 

claim, we portray all the encodings we are aware of by using spanning sets. Thesc 

portrayals are supported by a number of formal results. We later discuss augmenting 

spanning sets with constraints (such as coreference constraints as provided by logical 

variables) (section 4.9) and spanning sets of intervals (Chapter 5). Viewing encoding 

in terms of spanning sets allows us to separate the implementation details of arly pau- 

ticular encoding algorithm from the structural properties of the spanning set being 

constructed. The spanning set embodies the content (semantics) of an encoding and 

the implement ation embodies the form (syntax). 

4.2.1 Taxonomic operat ions using spanning sets 

We now demonstrate how spanning sets that satisfy certain restrictions reduce taxo- 

nomic operations to set operations. 

Definition 4.3 A spanning set S on an ordered set P preserves subsumption if either 

(i) for all a ,  b E P, a 5 b if and only if C(a) C C(b), or (ii) for all a ,  b E P, a 5 6 if 

and only if C(a) _> C(b). 

Equivalently, this requires the component mapping to be an order-embedding. 

Although order-preserving mappings maintain comparability, we need to also preserve 

1.e. a incomparability. We say that subsumption is preserved with subsets i n  case (i) ( '  

is subsumed by b if and only if C(a) is a subset of C(b)) and with supersets in case (ii). 

If S is a spanning set of down-sets, then the component mapping is monotonically 

increasing as we descend the order (since if x E J.Q then any descendant of s is also in 

LQ). In this case, subsurnption may only be preserved with supersets. Conversely, if 

S preserves subsumption with supersets, then S must be a spanning set of down-sets. 

Thus, not all spanning sets preserve subsumption. In the above example, Sz preserves 
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subsumption (with supersets) but not S2, since C(a) = {sl) C {s1,s3) = C(C) yet 

a1 lc. 

Definition 4.4 A spanning set S on a lattice L preserves meets if either (i) for all 

a, b  E L, C(a fl b )  = C(a) n C(b), or (ii) for all a, b E L, C(a n b) = C(a) U C(b). S 

preserves joins if either (i) for all a ,  b E L, C(a LI b) = C(a) n C(b), or (ii) for all 

a, b  E L, C(a U b)  = C(a) U C(b)3. 

If a spanning set preserves meets or joins, then it preserves subsumption, because 

a 5 b  if and only if a n b = a and a U b = b. Also, a spanning set of down-sets can pre- 

serve joins only with intersection and meets only with union. In general, if a spanning 

set S preserves subsumption with supersets (i.e. S is a spanning set of down-sets) 

then C(a) u C(b) C(a l l  b) and C(a U b )  E C(a) n C(b). Unfortunately, it is not always 

possible for a spanning set to preserve both meets and joins (unless the ordered set 

is distributive4, as discussed in section 4.2.2). Consider again the non-distributive 

ordered set in Figure 4.1. The spanning set {la, l b ,  &, J{a, c)) preserves subsump- 

tion, but not joins or meets, since a n c = I, but C(a) U C(c) = {la,  LC, l{a, c)) # 
{la, 56, Jc, J{a, c)) = C(L). Also, a Uc = T, but C(a) nC(c) = {l{a, c ) )  # 8 = C(T). 

The spanning set {la,  Jb, lc) preserves joins with intersection but not meets, while 

(1  {a, b )  , l{b, c), J{b, c )  ) preserves meets with union but not joins. Suppose we have 

a spanning set S that preserves joins with intersection. Since the join of any pair of 

a,  b, c is T, the intersection of any pair of their component mappings must be C(T). 

Further, each must be in at least one component different from the others. But then 

the union of any pair cannot possibly be C(L). 

Theorem 4.1 Spanning Set Duality Theorem. Let L be a lattice and S a span- 

ning set of down-sets for L. Let 3 be the set of up-sets defined as 3 = {L\JQ I JQ E 

S ) .  Then (i) S preserves subsumption with supersets if and only if 3 preserves sub- 

sgmption with subsets and (ii) S preserves joins with intersection if and only if 3 
preserves joins with anion. 

3To generalize this definition to an ordered set P, we say S preserves meet crests if either (i) for 
all a ,  b E P ,  a n b = C-'(C(a) n C(b)), or (ii) for all a ,  b E L,  a fl b = CV1(C(a) U C(b)). 

4A lattice L is distribdive if tla, b, c E L, a n (b  LI c) = (a  n b) u (a  n c).  
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Proof: Consider the component mapping for 3: c(z) = (L\IQ E 31%~ E L\jQ). But 

x  E L\LQ i f  and only if x  6 I & ,  so is isomorphic to the converse mapping of C: Cc(:e)  = 

UQ E SIX 4 iQ1. 
(i) Suppose S preserves subsumption with supersets. Consider aay two elemeuts, a, b  E 

L .  The converse mapping maps these elements as follows: Cc(a )  = S\C(a) and CC(b)  = 

S\C(b). If a  < b  then C ( a )  _> C ( b ) ,  so clearly C C ( a )  5 CC(b) .  If a  $ b then C ( a )  2 C ( b ) ,  and 

so CC(a)  CC(b) .  The case when 3 preserves subsumption with subsets is similarly proved. 

( i i )  Consider the join of any two elements a,  b  E L. If S  preserves joins with intersection 

then C ( a )  n C ( b )  = C ( a  U b) .  The converse mapping maps these as: C C ( a )  = S\C(a), 

Cc(b)  = S\C(b) and Cc(a LI b )  = S\(C(a) n C ( b ) )  = S\C(a) U S\C(b) = C C ( a )  U Cc(b). Now, 

if 3 preserves joins with union then C c ( a )  U Cc(b)  = Cc(a  U b).  The component mapping 

for S maps these as: C ( a )  = S\Cc(a), C ( b )  = S\CC(b) and C ( a  U b )  = S\(Cc(a) u C c ( b ) )  = 

S\Cc(a) n S\Cc(b) = C ( a )  n C(b).o 

This theorem demonstrates that for every spanning set of down-sets that preserves 

joins with intersection, there is a spanning set of up-sets that preserves joins with 

union. Since this construction is invertible, the converse is also true. Together with 

the dual, this shows we can characterize all spanning sets that preserve joins or meets 

with intersection or union by analyzing only those that preserve joins with intersect ion. 

We require an efficient means to evaluate the component mapping C. A key feature 

of encoding is that C is calculated a priori, or incrementally, and sttored in a form 

amenable to efficient computation. This amousts to associating with each element x 

of the taxonomy the set representing C(tc), as we describe in section 4.3. 

4.2.2 Representation theory and encoding 

Representation theory attempts to identify a small suborder Q of a lattice L from 

which the entire lattice can be constructed easily and uniquely. In 1381, it is shown 

that this can be done satisfactorily in the finite case for distributive lattices, In this 

case t is uniquely identified by its set of join (or meet) irreducible elements, where 

Q = g ( L )  and L E O(J(L)) .  The general case for lattices and partial orders is not 

so amenable to such an analysis. 



CHAPTER 4. THE FOUIVDATIONS OF TAXONOMIC' ENCODING 43 

Although encoding can benefit from the results of representation theory, there are 

a number of important differences. First, although we associate with an ordered set 

P a small set (i.e. the spanning set), we want a subset S 5 2', not Q C P. Second, 

we are interested in representing P in order to facilitate efficient computation. To 

this end, we associate a code with each element of P. This contrasts with the above 

goal of uniquely representing P by the set Q. We do not want to reconstruct P, but 

rather we wish to associate with it a spanning set S from which codes can be formed. 

There are, however, some results from representation theory that are fundamen- 

tal to encoding, particularly the identification of join and meet irreducible elements 

as basic elements from which all other elements in an ordered set can be defined. 

This conclusion is also found in section 4.5, but doesn't require the ordered set to 

be a distributive lattice (as in Birkhoff's representation theorem [38]), so we can 

view spanning sets as partial representations of ordered sets (only preserving certain 

properties such as meets). 

Since we are given an arbitrary ordered set P, we may not have the luxury to 

ensure that certain properties are satisfied (e.g. that P is a lattice or is distributive) 

- maintaining certain properties may entail adding an inordinate number of elements 

to P (e.g. the minimal lattice completion for a standard example S, [144], which 

has 272 elements, contains 2" elements [38]). If we can be sure that our set observes 

certain properties, or that the addition of a small (or bounded) number of elements 

can achieve these properties, then our encoding scheme can utilize this structure 

to generate more concise and/or flexible codes. For example, if we are guaranteed to 

have a distributive lattice, then we can specify spanning sets that preserve both meets 

and joins, although in genera1 this is not possible [153]. In fact, every distributive 

lattice is isomorphic to a lattice of sets 1381 (i.e. where meets and joins are computed 

by intersections and unions, respectively). This suggests a fundamental connection 

between representation theory and spanning sets. For a- detailed analysis of properties 

of distributive and simplicial lattices related to encoding see [78]. In our presentation, 

we focus on the problem of encoding genera1 partial orders and lattices and make no 

further structural assumptions regarding the given ordered set, although our analysis 

should apply to techniques designed for more constrained orders. 
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4.3 Efficient Implementat ions of Component Map- 

In this section we describe some approaches to implementing subsets of ordered sets, 

particularly down-sets and up-sets, as returned by component mappings. This list, is 

by no means exhaustive, but includes all the implementations that have been used 

for encoding. We are interested in implementing subsets within the order induced by 

a spanning set S, not in our original order P. This order is isomorphic to a suborder 

of P for spanning sets of principal down-sets, but not for more complicated spanr~ing 

sets. Note that for any spanning set S, the subset C(x) is an up-set in S. 

Given a spanning set S for an ordered set P, our goal is to represent, for each 

x E P, the mapping C(x). In general C can be viewed as a relation: for x E P, s E S ,  

(x, s) E C if and only if s E C(x). We may, however, be able to exploit the structure 

of the order induced by S. 

4.3.1 Unordered implementat ions 

By treating Cfx) as an unordered subset of the domain S (i.e. by treating C as an 

unordered relation) we can realize implementations that do not utilize the hierarchical 

structure of the ordered set S. Such representations employ existing techniques for 

implementing sets. In the representations we describe below, the elements of S arc 

given a linear order (which is not necessarily a linear extension of S ) .  

Characteristic vectors In a characteristic (or bit) vector implementation, we rep- 

resent a subset Q C S using a bit-vector of length n = 15'1, essentially embedding 

S into the Boolean lattice of bit-vectors of length n. We place a 1 in position 1: 

if element i (in the chain 5 )  is a member of the subset and a 0 otherwise. This 

approach is analogous to adjacency matrix representations of graphs? Set union 

and intersection are computed xising bitwise OR and AND, respectively. For two 

subsets Q1 and Q2, Q1 Q2 if and only if QlnQz = Q1 (or Q1UQ2 = Q2). AS an 

51f !PI = m, then an adjacency matrix requires si,%its, whereas here we require n * m bits. 
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example, suppose S = {sl, s z ,  ss, sq, s5). We can represent the subsets {sl, s4) 

and is2, s g ,  s4) by the strings 10010 and 01 110, respectively. The advantages of 

this representation include minimal storage requirements for each position (one 

bit) and immediate hardware implementation of set operations. Disadvantages 

include the need to store unfilled positions (i.e. every subset has length n) ,  and 

more cornplicsted processing required for large domains (asymptotically, the set 

operations grow linearly with the size of the domain). 

Interval sets An alternative (proposed in [I]) is to represent a subset Q with a set of 

intervals, where each contiguous sequence of elements (in 5 )  is represented by an 

interval. For example, the above subsets would be represented as { [l ,  11, [4,4]) 

and {[2,4]). Although this scheme alleviates the need to store unfilled positions, 

the set operations become more complex. Unlike the bit-vector approach, the 

order 5 may have a significant effect on the size of resulting codes. We discuss 

in section 4.5 how the approach in [l] finds optimal orderings. 

Adjacency lists and hashing Analogous to adjacency list graph implementations, 

we can maintain for yach element x E P the list of the elements C(x). This is 

space efficient for cases when C(x) is relatively small (i.e. the spanning set is 

large, but the component mapping only maps each element to a small number 

of elements), but becomes unwieldy as the size of C ( x )  increases. To speed up 

access to particular elements, we can hash C(x) for each x E P (i.e. for a given 

x E P, s E S ,  we can quickly determine if s E C(x)). Using this technique, there 

is no direct support for union and intersection operations. 

4.3.2 Tree representations and code sharing 

Using a linear ordering 5 of a spanning set S ,  we can implement the component 

mapping in a labeled tree form that permits some sharing of common subsets. We 

propose a generalization of the tree encodings in 177, 78, 1141, which apply only to 

distributive lattices. In fact, this technique can be used to implement any family of 

finite subsets from the same domain. The basic structure of such a tree representation 
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is as follows. The elements in the original ordered set P are nodes in the tree (dthough 

there may be additional empty nodes, as discussed below). Each label is a subset of 

elements of S ,  and the union of all labels on the path from an element x E P to the 

root forms the set C(x). 
There are several ways that we can build this tree. If our original ordered set is 

a distributive lattice L, then the approach of [78, 1141 builds a very efficient tree for 

the spanning set S = ( 1 x 1 ~  E M(L)).  Every node of the tree is an element of L and 

each label is a single element from S. Thus, the size of the tree is linear with respect 

to the size of L. Furthermore, the labels on all paths from a node to the root are 

monotonically increasing according to the linear extension 5 of S, and paths are joined 

at common suffixes. By ordering the children of each node according to 5 ,  operations 

can be performed in O([SI) time, using the algorithms in [78, 1141. Decoding (i.e. the 

inverse of the component mapping) is achieved for free as a by-product of computing 

operations in these trees. 

We can apply this technique to a general ordered set P, although we can no lo~lger. 

guarantee that labels will be singletons, or that there will be no empty nodes. We 

order the results of C according to 5 ,  and form the tree by joining elements at common 

prefixes (or suffixes). If a common prefix is not the code of any element, this results in  

the creation of an empty node. As above, the code for x E P is the union of all label6 

on the path from x to the root. To illustrate, consider the lattice in Figure 4.2. This 

latticeis not distributive since an(bUc) = a n T  = a, but (anb)u(anc) = I U c  = c. The 

tree TI implements the spanning set Sl = {la, Jb, Jc, Jd, Je, lf) , where 5 is the given 

order of Sl and elements are assigned numeric values according to 5. In this case, no 

empty nodes are created, but there is one edge with a non-singleton label. The second 

tree, T2, implements the spanning set S2 = (Jib, d), l i b ,  c), Jb, J{a, f ), J { u ,  e) ,  Jn), 

where 5 is the given order of S2. Here, two empty nodes were created as well as edges 

with non-singleton labels. 

Performing unions, intersections, and subset checking is accomplished by locating 

the position of the two elements in the tree and comparing the labels along the paths 

from these elements to the root. To be more concrete, consider the above spanning set 

S2 that preserves meets with union (and thus subsumption with subsets). To check if 
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Figure 4.2: Tree representation 

x 5 y, we incrementally compare the set of labels C(x) and C(y) on the paths from x 

and y to the root, respectively. From the structure of the spanning set, we know that 

s: _< y if and only if C(z) _> C(y). Since the components in labels are monotonically 

ordered within labels and along these paths, this comparison is linear in the size of 

the label sets. For example, C(g) = {1,2,4,5,6) > {1,4,5,6) = C(d), so g 5 d, but 

C(g) 2 0,273, 4,5) = C(h), so g I! h. 

To compute x n y = z ,  we incrementally union the labels on the two paths from 

x and y to the root. Then we descend the tree using this union to find the meet 

element. For example, to find c n d, we find C(c) U C(d) = {1,2,4,5,6), and descend 

to find that this set is C(g). Thus, c fl d = g. 

Operations can be further optimized by finding the node in the tree at which 

the two paths converge, and only considering the portions of the paths below this 

point (which is how the algorithm in [77] works). We can avoid further comparisons 

above this point, since the remainders of the two paths coincide. For details of the 

tree traversal algorithms that compute subsumption, meets and joins for distributive 

lattices, see f77, 781. The modifications required to handle our generalization of this 

tree representation are trivial. 

Determining the space complexity of these trees is not as simple as before. Since 

empty nodes must have at least two children, the number created will be bounded by 

1PI. Non-singleton labels cause these trees to be non-linear in the size of the ordered 

set, but the code sharing can still greatly reduce the overall space requirements. 

Operations are no longer bounded by the depth of the tree, but rather by the number 

of labels on a path to the root. This is also true in the distributive case, but there each 

edge has a singleton label. As before, children of nodes are ordered lexicographically 
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by edge labels. Since the labels from ail element to the root are in strictly decreasing 

It 1011 lexicographic order, operations are linear in the size of the codes using an adapt t' 

of the algorithms in [7S, 1141, and decoding can still be achieved efficiently. Clea,rly, 

the tree constructed will depend on the ordering 5 of S (which is usually a linear 

extension of S ) ,  so algorithms need to be developed that find orderings for which 

optimal trees can be found or approximated. 

4.3.3 Logical terms 

We can also implement sets using logical terms, embedding our order intoo t,hc Ist- 

tice of generalized atomic formulae [121]. Terms with no structure ca,n btb used i n  

a manner similar to bit-vectors using anonymous variables in place of 0. For exarn- 

ple, 11010 can be represented as p(1, 1, -, 1. -) for an arbitrary predicate p. However, 

terms can also be used to capture some structural information. Set union and intcr- 

section correspond to unification and anti-unification, respectively. Subset checlcing 

becomes term subsumption checking. We can also exploit the hierarchical structurc! 

of an up-set to reduce storage requirements. It is important to note that logical 

terms also provide the ability to implement unions that produce the entire donlain 

(e.g. I) by unification failure. To illustrate, consider the ordered set in Figurc 

2.2. We may represent the up-set f kit fox by the term p(canine( f ox(k f ox) ) ,  wi ld ,  -) 

and Tcolbie by p(canine(dog(collie)), -, domestic). Their intersection is o btai~ml by 

anti-unification: p(canine(-), -, -) (representing fcanine). If we represent fdog by 

p(canine(dog(-) j, -, c'omestic) and fwol f by p(canine(wolf), wi ld ,  social), we capt,urc 

the fact that clog rl wolf = I with unification failure. Although desirable, wc shall 

see that this is not always easy to achieve. We show in section 4.8 how compact 

tree terms (terms in which all variables are anonymous) can be derived from spanning 

sets. In section 4.9 we discuss the use of coreference constraints, as provided by logical 

variables, in encoding. 

A disadvantage of logical terms is that specifying filled positions (with an atom 

or functor) requires more space than the 1 bit required for the bit-vector approach. 

An advantage is that not all unfilled positions need to be specified. In our example, 
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the subset for fcanine, p(canine(-), -, -1, only reserves three additional spaces (via 

anonymous variables); additional spaces become available dynamically through in- 

stantiation at these positions. It is also possible to implement parallel algorithms in 

hardware for unification and anti-unification of tree terms. 

4.3.4 Sparse logical terms 

Sparse terms [51] allow an efficient and direct implementation of hierarchical sets 

by providing the tree-shaped structure of ordinary terms as well as several other 

key features. They are similar to the directed acyclic graphs (DAGs) and feature 

structures used in natural language processing systems (e.g. [118]). In [104], the use 

of DAGs to implement encodings is explored in detail. In Chapter 6 ,  we develop 

sparse terms in detail as a universal implementation for encoding. 

4.3.5 Integer vectors 

Natural numbers can be used to implement chains or anti-chains. All finite total 

orders of size n are isomorphic to the interval [I, n], providing a simple and efficient 

binary number implementation using only logn space for each element. We find it 

convenient to use the dual of the natural order, so that 1 is the top of the chain. Each 

integer then represents all the preceding elements in the chain (i.e. k, 1 5 k 5 n 

represents the interval [I, k]). Subsets can be checked in an obvious way (a C b if and 

only if a < b ) ,  while a U b = max(a, b) and a n b = min(a, b). 

Every anti-chain of size n is isomorphic to the flat lattice of the natural numbers 

[I, n]. In this lattice, each pair of unequal i~:egers is treated as meet and join incom- 

pati ble. To represent an anti-chain, we assign each element a unique number in [I, n] , 
and use 0 to represent the empty set. The set operations are defined as follows: 

subsets: i & j * i = j o r i = O .  

union: i U  j failsif i # O , j  # O  and i #  j. Otherwise i b  j = max(i,j). 
intersection: i n j = i if i = j, otherwise i n j = 0. 

By viewing an ordered set as being composed of a number of chains or anti-chains, 

we can use integer vectars to represent up-sets. 



Definition 4.5 Let P be an ordered set. 4 partition Q = { P I ?  Pz; m e ,  E',,,) of I' is 

called a chain (anti-chain) partition if the suborder defined on each. of the Pi is (1 chaiut 

(anti-chain). 

An anti-chain Q is called meet (join) incompafible if every pair of elements in  Ct) 

is meet (join) incompatible. In essence, the above partitions view a partial ordm as a 

number of parallel interconnected chains or anti chains. As an example, considcr thc 

chain and meet incompatible anti-chain partitions of the ordered set of Figure 2.2, 

shown in Figures 4.3 (where each chain is represented vertically) and 4.4 (where each 

anti-chain is represented horizontally). 

Figure 4.3: Chain partition of the ordered set in Figure 2.2 

domestic social 

I canine / I  

Figure 4.4: Meet incompatible anti-chain partition of the ordered set in Figure 2.2 

Integer vectors can be used to represent up-sets using chain or incompatible an t i  

chain partitions by assigning one position in the vector to each chain or anti-chain, 

since we only need to represent at most one element of each. The integer vector 

encoding in [971 uses a chain partition. A ?artition of size k requires vectors of Iengt, h 

k. We need to have a specid integer (we use 0) to place in a position when the up-set 

does not contain any element from the corresponding chain or anti-chain. For chain 

partitions, an entry represents d l  preceding elements in the corresponding chain. f i r  
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meet incompatible anti-chain partitions, at most one element from each anti-chain 

can be present, so a non-zero entry represents an element plus the absence of all 

other elements in the anti-chain. The entire vector then represents the union of the 

information represented in its entries. We denote each entry of a vector V of size k 

as Vfi], 1 5 i < k. The set operations for chain partitions are defined as follows: 

intersection: n & = V tj V l  < i 5 k, V[i] = min(& [i], &[i]). 

In our example, we represeat fkit fox by [0,0,0,0,3,0,1,0] and Tterrier by 

[2,0,1,0, l t  0,0,O]. Their intersection is the code for teanine: [O, 0,0,0,1,0,0, 01. We 

now consider the set operations for meet incompatible anti-chain partitions: 

subsets: r/; c & + V l  < i < k', l.i[i] = &[i] or &[i] = 0. 

union: V1 < i < k, t;Ur/12 = Vfailsif &[i] # 0,V2[i] # 0 and &[i] # V2[i]. 

Otherwise V ji] = max(& [i], G[i]). 

intersection: n V2 = V + V1 5 -i _< k, V[i] = & [i] when Vl [i] = Vz [i] 

Otherwise V[i ]  = 0. 

In our example, we represent Tkit fox by [0,1,1,2,5] and f terrier by [I, 1,0,1,3]. 

The intersection of these is [O, 1,0,0, OJ (f canine) but their union fails. 

Bit-vectors can be viewed as a special case of both forms of integer vectors, where 

an ordered set is seen as a set of n chains or anti-chains of size 1. Note that any 

singleton anti-chain is T~XUOUS~Y meet incompatible. For both cases, 0 represents that 

no element of the corresponding chain or anti-chain is in the subset, and 1 represents 

that the first, and only, element is in the subset. The logical operations of AND and 

OR compute the set operations. Also, flat logical terms (i-e. terms with no functors or 

nesting) provide a direct logical realization of inco~~patible anti-chain vectors, using 

anonymous variables instead of 0 a d  atomic symbols instead of integers. For example, 

the above vectors could be represented as P(-, 1,1,2,5) and p( l , l ,  -? 1,3), respectively. 

Note that we can apply sparse representations to integer vectors (ie. introduce indices 

for non-zero elements, and eliminate the zero entries), as we show in Chapter 6. 
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4.4 Infinite Suborders 

Our analysis of encoding assumes that the original ordered set is finite. For 111c2ny 

applications we require the integration of a finite order with one or more infinitcl orders 

such as real numbers, integers, strings, intervals, etc. Clearly, we cannot comput,c 

codes for the elements of an infinite suborder a priori, so we need lo be atbit: t o  

perform taxonomic operations involving one or more elements in an infinitc suborder 

dynamically. Provided certain restrictions are obeyed, we can permit portions of our 

set to be infinite while still benefiting from encoding. As far as wc know, such a 

formulation has not previously been described. 

Suppose we have an ordered set P with an infinite suborder Q. We can encode the  

finite portion of P using the techniques described in this chapter provided Q obeys 

the following: 

Classification Given any element x in Q, we must be able to ascertain that in fact 

x E Q. Note that one infinite suborder may be a suborder of another infinite 

suborder (e.g. integers and reals). Thus, we must be able to classify elements 

correctly (e.g. checking if 1 < 3/2, we must classify 1 as a rational nurnber). 

Locality The order relation within Q must be locally determined and efficient. 'l'his 

is required for operations involving only elements of Q, so that encoding is not 

necessary. For example, it is easy to locally determine order between intcgcrs, 

strings or intervals of real ncmbers. If meets or joins must also be preserved is 

Q ,  then these operations must also be locally computable. 

Encapsulation In order to compute operations involving one element in & and an- 

other not in Q, Q must he bounded (i.e. it must have top and bottom ele- 

ments, TQ and IQ)6. In a sense, these elements provide entry and exit points 

to the infinite suborder and can be incorporated into the finite portion of the 

ordered set. Normally, the bottom will simply be the bottom of the ordered 

"t may be possible to relax this restriction to require a finite number of maximal and ntininral 
elements of the infinite suborder. This, however, complicates taxonomic operations. For example, 
the meet of two elements not in an infinite suborder Q may result in any element in Q, not juel one 
of the maximal elements. 
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set. We also require that Q be closed. That is, Q = JTQ\JLQ U {LQ) and 

Q = 1 I Q \ f T Q  U (TQ) ,  This requires that the bounds of Q must provide the 

only entry and exit points. We show in Chapter 5 that bounding and closure 

implies that Q must be a module within P. 

These requirements allow us to encode the finite portions of an ordered set, in- 

cluding the hounds of any infinite suborder, as though the entire set was finite. For 

operations involving elements within an infinite suborder, we use locality to compute 

the operation. In the case of meets and joins, the result will also be in the infinite 

suborder. For operations involving one element in an infinite suborder Q and another 

not in Q, we can use the one of the bounds in place of this elemeh. If the result of 

a meet or join is this bound, it can be replaced by the original element. We provide 

more details of how this may be achieved when we discuss modulation in Chapter 5. 

4.5 Spanning Sets of Principal Down-sets and Up- 

sets 

4.5.1 All principal down-sets 

The transitive closure encoding introduced in [2] and described in section 3.5 encodes 

a partial order with k elements using bit-vectors of length k - 1 as follows. Each 

element a, E P (except I) is assigned a unique integer i in [I, k - 11. For any element 

aj E P, bit i, 1 < i < k will be 1 if and only if a; 5 aj. The actual procedure given 

in [2] produces this encoding in a bottom-up manner, starting at I and propagating 

codes upwards towards T. 

In terms of our framework, this procedure simply computes the spanning set S1 

consisting of every principal up-set for the bottom-up case described, or the spanning 

set of every principal down-set for the top-down case. The encoding is the charac- 

teristic vector implementation of these component mappings. The orders induced by 

these spanning sets are isomorphic to the original order. As an example, the following 

figure shows a lattice? a component mapping, and its bit-vector implementation. 
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Figure 4.5: Principal down-set encoding 

The interval encoding in [I] is closely related, and is based on the sane sparirtirlg 

set Sl, but iaplemented using sets of integer intervals. Recall from section 4.3 that, 

under a total order 5 of Sl, any set of components can be implemented using the 

corresponding set of intervals in 5. In [I], an algorithm for finding an optimal ordering 

is described. A cover tree T for the ordered set P is identified by choosing, for each 

element s E P, the parent that has the most ancestors. The authors show that the 

total order 5 defined by the postorder traversal of T produces interval set codes that 

minimize the overall space requirements of the encoding (i.e. the total number of 

intervals for all codesI7. In case P is a tree, for each element x E P,  C ( x )  will be 

exactly one interval. To illustrate, Figure 4.6 shows a cover tree T, the preorcler 

number of T ,  and an interval implementation of the lattice in Figure 4,5. 

Figure 4.6: Cover tree, preorder numbering and interval encoding for the lattice in 
Figure 4.5 

Theorem 4.2 Let L be a lattice. The set of principal down-sets of L forms a ~pannirq 

set Sl that preserves jo,,as through intersection. 

7 ~ h i s  optimum in fact only holds when we do not consider merging two adjacent intervals ( e , g  
[il, i2] and lit, jz] where jl = i2 + 1 could be replaced by [il, jz ] ) -  When merging is performed, the 
total order identified may not be optimal. However, adjacent intervals in the codes raulting from 5 
may be merged to provide an approximation to the optimal. 
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Proof: We need to show that el U ez = e if and only if C(el) n C(e2) = C(e). Suppose that 

el U e2 = e. Consider any principal down-set Ja E C(el) n C(e2). Then el _< a and ez 5 a. 

By the definition of join, e < a, so l a  E C(e). Consider any principal down-set La E C(e). 

Then e f a. Since el 5 e and e2 f e ,  la  E C(el) n C(e2). Therefore, C(el) f l  C(e2) = C(e). 

Assume that C(el) n C(e2) = C(e). Since l e  E C(e), el 5 e and e2 < e .  So e is an upper 

bound of el and e2. Now if el U e2 = a then Ja E C(el) n C(e2), so Ja E C(e) and e < a, 

implying e = a.a 

The dual of the above theorem shows that the set of principal up-sets forms a 

spanning set that preserves meets through intersection. 

Such spanning sets lead to a particularly time eBcient implementation using a 

Boolean matrix in which entry (i, j )  = 1 if i j and 0 otherwise [114]: checking 

subsumption can be accomplished in constant time8. In [93], the encodings of [2] are 

used in the typed feature logic programming language T D L ,  and in [45], a transitive 

closure encoding implemented using tree terms is proposed. 

4.5.2 Principal down-sets of meet irreducible elements 

Since a focus of encoding is space and time efficiency, we are interested in finding 

spanning sets with a minimal number of elements. In [2] it is recognized that not all 

principal down-sets are required to maintain joins. This led to the compact encoding 

algorithm described in section 3.5. Let us denote the set of meet irreducible ancestors 

of an element e as p(e). It is easy to show that p is monotonically increasing as we 

descend the taxonomy from parents to children (i.e. if el 5 e2 then p(e2) & p(el)). 

We now show that in a lattice, p also preserves joins. 

Lemma 4.1 Let L be a lattice. Then for el, e2 E L, el 5 e2 if and only if p(e2) 2 

Proof: + By the monotonicity of p, if el 5 e2, p(e2) C p(el). 

'This is simply the adjacency matrix implementationof the transitive closure graph of the ordered 
set. 
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-e Suppose p(e2) 5 p(e l )  and el ez. Clearly, any ancestor of e2 that does not subsume 

el must not be meet irreducible. So e2 cannot be meet irreducible. If two of the parents of 

e2 subsume e l ,  then the meet of these two parents is not unique. Thus, at least one parent 

p of e2 does not subsume el .  Since p cannot be meet irreducible, we can continue until we 

have an ancestor of e2 that is a child of T and does not subsume el .  But all children of T 

are meet irreducible.0 

Theorem 4.3 The  set of principal down-sets for the meet irreducible elements of n 

lattice L, SJM(~) = (Jele M ( L ) ) ,  forms a spanning set that preserves joins bhmugh 

intersection. 

Proof: The component mapping for the set of principal down-sets of meet irreducible el- 

ements is defined as C ( x )  = ( le le  E p(x)} .  Consider any two elements el and e2. If 

C(el)  = C(e2) then p(el)  = p(ez)  and so p(e l )  C p(e2)  and p(e2)  & p(el).  By the above 

lemma, e2 5 el and el 5 e2, so el = ez. Thus, C is one-to-one and so SJM(L) forms a 

spanning set. 

We need to show that el U e2 = e if and only if C(e l )  n C(e2) = C(e).  This is equivalent 

to  showing that el U e2 = e if and only if p(e l )  n p(e2)  = p(e).  

j Suppose that el U e2 = e. Consider any meet irreducible x E p(e l )  n p(ez) .  Then 

el 5 x and e2 5 x.  By the definition of join, e < x ,  so x E p(e).  Consider any meet 

irreducible x E p(e).  Then e 5 x. Since el 5 e and e2 5 e ,  z E p(e l )  n p(e2). Therefore, 

~ f e l >  n 4 e 2 )  = p(e). 

t= Assume that p(el)  n p(e2) = p(e). Then e is an upper bound of el and e2, since 

p(e)  p(el) and p(e) C p(e2) imply that el < e and e2 5 e,  by the above lemma. For any 

p(2) p(el) n p(e2). From our assumption and the lemma, we deduce that p ( x )  C p(e)  

and e < x, implying el U e2 = e.0 

The dual of this theorem states that the set of principal up-sets for the join ir- 

reducible elements of a lattice L, S3(~) = ( f ele E Jf L)}, forms a spanning set that 

preserves meets through intersection. Also note that the order induced by SM(L),  

for a lattice L, is isomorphic to the suborder obtained by restricting L to the meet 

irreducible elements M (L)  . 
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The compact encoding in 121 for a lattice L implements the component mapping 

of SJ(L),  for the bottom-up case described, and SM(L) for the top-down case, using 

characteristic vectors. We again use the lattice in Figure 4.5 to illustrate. Figure 4.7 

shows the component mapping for SM(~)  and its bit-vector implement ation. 

Figure 4.7: Meet irreducible encoding 

For distributive lattices, the ideal tree in [78, 1141 encodes SM(L) in a tree data 

structure (see section 4.3.2) that permits computation of both meets and joins in 

O(IM(L) I )  time. We now demonstrate that SM(~)  and S3(L) are the smallest span- 

ning sets of principal down-sets or up-sets that preserve not only joins and meets, 

respectively, but also subsumption. 

Lemma 4.2 Let L be a lattice. Then every meet irreducible element of L must be a 

fact03 of at least one down-set in a spanning set of down-sets. 

Proof: If not, it has the same component mapping as its parent.o 

Theorem 4.4 Let L be a lattice. If (M(L)I = m, then any spanning set of principal 

dourn-sets that preserves subsumption with supersets must have at least m down-sets. 

This theorem is a direct consequence of the above lemma. Thus, for subsumption 

preservation, the smallest size spanning set of principal down-sets or up-sets has 

min! IM(L)/,  !,Tf L)! )  elements. 

Theorem 4.5 Let L be a lattice and S a spanning set of down-sets on L that preserves 

j&as By set iatersrrcti~fc- Then e u e q  wmpnent- of S must be a principal doum-set. 

'Recall that a factor is a maximal element of a down-set. 
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Proof: Suppose there is a component Q = J{ql,qz,-- -,q,) E S that is not principal (i.e. 

n 2 2). Consider the join of any two of the maximal elements, say ql and qz. Clearly the 

join must properly subsume both of these elements (since q111q2, and so Q 4 C(qr U q2) ) .  

But Q E C(q1) and Q E C(qz), so Q E C(q1) n C(q2). Thus, S does not preserve joins by 

intersecti0n.o 

This last theorem, along with the Spanning Set Duality theorem, shows us r,hat. 

ISM(L)I (IS3(L) 1) is the minimum size of any spanning set that preserves joins (meets). 

Much of the above discussion assumes that we are encoding a lattice. For a general 

ordered set P, the spanning set of all principal down-sets preserves subsumption, as 

does SM(*), provided we recognize the meet irreducible elements of the order, which 

do not necessarily have a single parent as shown by Theorem 2.2. Both techniques, 

however, can be used to encode for join bases (meet crests) instead of joins (mects). 

When computing a join base a U 6, the intersection of the two component mappings 

C(a)  n C(b) = CaUb will result in a component set that represents the join base. If the 

join base is a singleton (i-e. a join: a U b = c), then C(c) = Carib; otherwise, we need 

to find the maximal elements whose component mappings are subsets sf Caub. 

4.6 Spanning Sets of Prime Down-sets and Up- 

set s 

This section describes spanning sets of prime down and up-sets and shows a direct 

correspondence with spanning sets of principal up-sets and down-sets, respectively. 

Although not standard in lattice theory, we define prime down-sets analogously to 

prime ideals: a down-set J.Q of a lattice L is prime, if when x fl y E LQ, either s E J,Q 

or y E JQ. That is, we cannot get into J.Q from two elements not in JQ. For an 

ordered set P: we generalize this definition: a down-set J.Q of P is prime, i f  when 

x n y E LQ, either x E JQ or y E J.Q. 

Lemma 4-3 Let L be a bttice. If e is an element and Je i s  its principal down-ael 

then tL\JeJ ( i e .  the principal factors of the ztp-set L\Je) are all join irreducible. 
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Proof Suppose f is a minimal element in L\le and is not join irreducible. Then it has at 

least two children, a: and y. Both s and y must be in J e  or else f is not minimal. Since 

both x and y are subsumed by e (by the definition of down-set), e is an upper bound of x, y. 

But f -$ e and f clearly must be the join of s and y, so we don't have a l a t t i ~ e . ~  

Theorem 4.6 Let L be a lattice. Then TQ i s  principal if and only if L\TQ is prime. 

Proof: Suppose an up-set f Q  is principal, Q = {e) .  Let JQF = L\.re. By the dual of the 

above lemma, the factors of this down-set must all be meet irreducible. Suppose 3 el and 

e2 such that el n ez E l Q F  but el $ l Q F  and e2 4 JQF. By the construction of I&, el E. Te, 

so e 5 el .  Similarly, e < e2. Therefore e 5 el n e2. But then el n e2 E fe. 

e Suppose an up-set TQ is not principal. Consider any two factors el and e2 of 16). 
Since el n e2 4 TQ, L\tQ is not a prime down-set.0 

We say that. L\re is the prime down-set induced by e, the elements not in its 

principal up-set. In [102], Mellish shows that if we have a spanning set of prime down- 

sets, we can guarantee that the meet of two elements can be found with unification 

(down-set union). With the Spanning Set Duality Theorem (Theorem 4.1)) we can 

see that a spanning set of down-sets that preserves meets with union can be easily 

constructed from the join irreducible elements. The above theorem shows that this is 

a spanning set of prime down-sets and the final result of the previous section shows 

that this is the smallest such spanning set. Naturally, for an ordered set P, the order 

induced by a spanning set of prime down-sets is dually isomorphic to that produced 

by a %(P).  

As an example, in Figure 4.8, 3 ( P )  = {d,e,a,c). The first encoding shows a 

bit-vector implementation of the spanning set S3(P) = { f d, re, f a ,  Tc) where meets 

are preserved with intersection. The spanning set of prime down-sets associated with 

these join irreducible elements is Srtp1 = t ic ,  l a ,  l{ b, cJ, J{a, b)  ), preserving meets 

with union. The second encoding shows the implementation of this spaming set. 

The encoding of [77] represents each element by the set Q of join irreducible 

elements that it doesn't subsume, which is equivalent to the set of prime down-sets 

induced by elements in Q. The underlying spanning set therefore consists of the 
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Figure 4.8: Principal up-set and prime down-set encodings 

prime down-sets induced by 3 ( P ) ,  and so preserves meets with union. The bi t-vector 

implementation of such a spanning set is identical to the bitwise negation of trhc 

bit-vector implementation of S3p), as can be seen in the above example. 

We have now shown a correspondence between the compact encoding of [2] based 

on set intersection (e.g. bitwise AND), and prime down-set encodings of [77, 1021 

based on set union (e.g. bitwise OR and logical term unification). There is, however, 

one important distinction to make for the approach of Melllsh [102]. In the above 

construction, if the meet of two elements is I, set union will produce the entire 

domain (i.e. the entire spanning set S )  because i is treated as any other element. 

It is also possible (as Mellish's approach requires) to implement me& incompatibility 

as failure (e.g. with unification failure). This strict requirement essentially treats the 

ordered set as I-unbounded. We discuss in sections 4.8 and 4.9 how incompatibility 

as failure may be achieved. 

4.7 Spanning Sets of Compound Down-sets and 

Up-set s 

So far, we have studied spanning sets of principal down-sets that preserve joins with 

intersection, and spanning sets of prime (possibly compound) down-sets that preserve 

meets with union. We showed that the latter case is equivalent to spanning sets 

of principal up-sets that preserve meets with intersection. Between these extremes 

lie spanning sets that preserve subsumption, but neither meets nor joins. We now 

consider such spanning sets, which may contain down-sets with multiple factors. Re- 

call that the factors of a down-set 1Q is the set of maximal elements of 1Q (which 

is an anti-chain). hitidlyf we focus on spanning sets that do not permit multiple 



CHAPTER 4. THE FOb7NL3ATI0,RJS OF TAXONOMIC ENCODING 61 

occurrences of factors. Tha t  is, elements that are factors of several spanning set, 

components. Later in the section, we relax this restriction. 

Our first theorem shows that ,  for any spanning set S of down-sets, there is a 

spanning set containing only meet irreducible factors which is no larger than S. This 

means that,  as in section 4.5, we need only be  concerned with irreducible elements 

when constructing minimal size spanning sets. 

Theorem 4.7 Let S be a spanning set for a lattice L that preserves subsumption. 

Then there exists another spanning set S' that (i) contains no more down-sets than S 

(ii) preserves subsumption and (iii) has only meet irreducible factors in all down-sets. 

Proof: Suppose we have a subsumption preserving spanning set S for which there exists 

a down-set /Q = i{ql, q2,. . -, q,} where qi is not meet irreducible, for some 1 < i 5 m. 

Further suppose we remove qi f w m  Q (this may reduce the number of components in the 

spanning set if Q becomes empty or equivalent to another down-set in S). This produces 

a new spanning set S' that is identical to  S except that Q' = {ql, . - , q;-1, q;+l, - . . , qn} 

has fewer elements than Q (and so J.Q' C JQ) and S' = S\{iQ) U {/Q1). The component 

mapping for St will be denoted by C'. The only difference between C and C' (modulo the 

name change of Q to Q') is that the mapping of elements in /&\JQ1 does not contain Q' 

(i.e. descendants of q; not subsumed by some qj E Q, i + j and 1 5 j 5 m, are not in JQ'). 

If S' does not preserve subsumption, then 3el, e2 E L for which e2 el and CJ(el) C 
Ct(e2) (due to the monotonicity of the component mapping for spanning sets of down- 

sets, the case e2 < el but C1(e2) C1(el) cannot occur). Since C(el) C(e2), C1(el) = 

C(el)\{J,Q} S C(e2) = C1(e2). This situation is only possible if el < q; but el 9 J,Q1 and 

e, & JQ, otherwise C(el) C(e2). 

Let p~,pz,- . . ,p, ,  n 2 2 be the parents of q;. Since qi E Q, none of its parents are in 

1Q7 so .lQ 4 C(pi) and C(pi) C C(qi) C C(ei), C(pi) C C(e2). Thus, e2 5 pi. Similarly, 

ez 5 n r  - --,1~r;. Also el  $ qi, since ez # LQ. This implies that L is not a lattice, since q; 

must be the meet of its parents, but e2 is a lower bound of these parents not subsumed by 

q;. Therefore St must preserve subsumption. Clearly, we can similarly remove a l l  non-meet 

irreducible elements from S to produce a subsumption preserving spanning set that has no 

more components than S.o 
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Hereafter, we assume that  the components of all spanning sets have only rncct, 

irreducible factors. We have already shown that no spanning set S of compot~ttd down- 

sets can preserve joins by intersection. Can S preserve meets with union? If it, dotxs: 

the Spanning Set Duality Theorem tells us that  there is a corresponding spanning set, 

St tha t  preserves meets with intersection. Since St can have only principal ttp-sets for 

components, S must be a spanning set of prime down-sets. 

We now focus on how compound down-sets can reduce the size of a spanriirig set, 

tha t  preserves only subsumption. First let us consider when two elements can he 

factors of the  same down-set. 

Theorem 4.8 Let P be an  ordered set and S be a spanning set of down-sets for P 

with no multiple occurrences of factors. Then S preserves sub sump ti or^ if and o d y  if, 

for every compound down-set JQ E S with factors e l ,  ez, p an  element that is ( 2 ' )  a 

descendant of the parent of el, but not of el itself and (ii) a descendant c?f e2. 

Proof: + Suppose el and e2 are factors of the same down-set JQ of S,  and 3 an element, 

q that is (i) a descendant of the parent p of el, but not of el and (ii) a descendant of ez. 

Since el is a factor of no down-set in S other than LQ, C(el) = C(p) U { 1Q). Also q < - p 

and q 5 ea, so C(p) C C(q) and Q E C(q). Therefore, C(el) C C(q), but q $ el, so ,S tlot:s 

not preserve subsumption. 

+ Suppose for every down-set JQ E S, if el,e2 are factors of LQ then p an elarrier~t 

that is (i) a descendant of the parent p of el ,  but not of el itself and (ii) a descendant of ez .  

So if el ,  ez are factors of JQ then for every element q, if q < p and q < ez, then q I: e l .  If S 

does not preserve subsumption, then 3x, y E P for which C(y) C(x), but z $ y. I,et el t)c 

a maximal ancestor of y for which x $ el and C(el) C(x). If el  is r~on-meet irredrtcihlc, 

then the meet of the parents Q of el is unique. Clearly, this meet must be el .  Also, every 

parent of el must subsume x, otherwise it is not maximal, so x is a lower bound of Q .  But 

then x 5 el. 

Thus el is meet irreducible, and so must be a factor of some down-set LC). Since 

C(el) 5 C(x), JQ f C(x). Since x $ el, 1Q must have at least one other factor e2 for which 

x ez.  But then our assumption is violated, since el,  ez E Q, x _< p where p is the parent 
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Figure 4.9 illustrates the case when el and e2 do not satisfy the constraints of 

the theorem. If we put el and e2 as factors of the same component, the component 

mapping for the descendant d will be a superset of that of el, and so we will incorrectly 

conclude that d 5 el. 

Y 
Figure 4.9: Elements that cannot be in the same down-set 

In [24], Caseau proposes an encoding scheme that preserves subsumptim. His 

algorithm computes a subsumption preserving spanning set of down-sets, implemented 

with bit vectors. Through his notion of "gene sharing", compound down-sets may be 

formed. The algorithm proposed computes the spanning set incrementally as the 

ordered set is constructed from top to bottom. When meet irreducible elements iLre 

added, the algorithm adds the element as a factor of the first down-set permitted 

according to the above theorem. When non-meet irreducible elements are added, a 

check is made to see if the conditions of the theorem are violated. If they are, a factor 

of some down-set contributing to this violation is moved to another down-set in a 

process called "gene mutation". 

Below is an example ordered set and the encoding that the algorithm determines 

immediately before and after the addition of element i (which causes a gene mutation, 

since i is (i) a descendant of the parent a of c, but not of c itself and (ii) a descen- 

dant of e). The spanning sets prior to and following the mutation are respectively 

{ la ,  l b ,  J{c, e), Lid, f ) )  azld {La, Lb, J.{r o ) ,  Jd, J, f ). The rightmost encoding shows a 

more compact encoding than Caseau's that satisfies the above theorem, but which the 

algorithm does not find. The spanning set for this encoding is {la,  Jb, l{c, f}, l i d ,  e)). 

Intuitively, it seems that subsumption preservation should not rely on the existence 

of meets or joins. However, Caseau's incremental algorithm forms the minimal (i.e. 

Dedekind-MacNeille) lattice completion of the given ordered set, which is potentially 

costly. 
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Figure 4.10: Subsumption preserving encoding 

Theorem 4.9 Let P be an ordered ,et. Then the elements that must be represented as 

factors of down-sets for a subsumption preserving spanning set are the meet irreduclible 

elements of P. 

It is easy to show that M ( P )  = M(Lp),  where Lp is the minimal lattice com- 

pletion of P. The proof of the above theorem follows from this fact and previous 

theorems. Thus, we don't need to actually realize the lattice completion. Rat her, we 

need only recognize which elements are meet irreducible. 

4.7.1 Finding a minimal subsumption preserving spanning 

set is NP-Hard 

In Caseau's paper, a suggestioc. is made for the gene mutation process to atte:mpt, 

to detect more compact ways to rectify a violation, once detected. Both the original 

algorithm and this suggested improvement, however, provide approximat ions to t, tic 

problem of finding a minimal spanning set of down-sets that preserves sul~urn ption . 
Unfortunately, as we show through the next theorem, this problem is NP-Hard. This 

result is related to one suggested in [77j regarding the bounded dimension of an ordcrt:d 

set, dirnz(P). 

Definition 4.6 Minimum Subsumption Preserving Spanning Set. Given a 

l&t,ice L and a positive number k 5 ILI. IS there a spanning set o,f down-sels o j  size 

k that preserves subsumption? 

Theorem 4-10 The Miaimam S~bsumption Preserving Spanning S e t  problem is Nf'- 

Complete. 
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Proof: Consider the following problem, which is known to be NP-complete [69]: 

Partition into Cliques* Given a graph G = (17, E) and a positive number k < IV1. Is 

there a partition of G into k cliques? 

We provide a polynomial transformation from this problem to our problem. Let us 

construct a lattice I, from G = (I.': E) ,  where n = IVJ and e = IEl, a.s follows: (i) start with 

a T element (I will be left implicit). (ii) Add n elements PI, P2, - - a ,  P,, where Pi < T. 

(iii j Add n elements vl, vz? - - -, v,; where v; < Pi. (iv) Add m = n(n - 1)/2 - e elements as 

follows: For each pair of vertices a;, vj? where i < j ,  that does not have a connecting edge 

in E, add an e!ement (q, vj) where (vi, vj) 5 Pi and (v;, vj) < vj . 
Claim: L has a subsumption preserving spanning set of size n + k if and only if G has 

a partition into b cliques. 

Suppose L has a subsumption preserving spanning set S of size n + k. First note 

that, by theorem 4.8, S must contain n principal down-sets corresponding to  the Pi meet 

irreducibles. Since the (z;;, z;;) elements are not meet irreducible, all other hwn-sets must be 

composed of the v; elements. Further, there must be exactly k of these down-sets. Consider 

any one of t.hese down-sets .iQ. Claim: The corresponding vertices in G forms a clique. 

Consider any pair of elements u;, % E Q. where i < j .  Since they are factors of the same 

down-set, /3 an element that is (i) a descendant of the parent of v;, but nat of v; itself 

and (ii) a descendant of vj. By the above construction, the only possible element for which 

this could occur is (pi, sj j). which only exists if vi, a j  are not connected by an edge. Thus, 

,ar;, vj have a connecting edge. Therefore, the corresponding vertices within each of these k 

down-sets forms a clique in G. 

% Suppose G has a partition into k cliqnes. Each of the Pi meet irreducibles must form 

a down-set for any spanning set that. preserves subsumption on L. This makes n down-sets. 

Consider any one of the k cliques, Q. Claim: The corresponding meet irreducibles in L can 

be factors of the same down-set. By the theorem, any pair v;, vj, i < j ,  can be factors of the 

same down-set- provided B an element that is (i) a descendant of the parent of v;, but not 

of u; itself and (ii) a descendant of 3- By the above construction, the only possible element 

for which this could occur is (v;, uj ?, which only exists if vi, vj are not connected by an edge. 

But since B,, cj are in a clique. they are connected by an edge. Thus, the corresponding 

meet irreducibles within each of these k cliques can be factors of the same down-set in a 

spanning set that preserves subsumption on La 



Figure 4.11 shows an example of this reduction. Elements a ,  b, c. d form a cliqw in 

the graph and can also be factors of the same down-set in a subsun~ption preserving 

spanning set for the lattice. 

Figure 4.1 1: Transformation of a graph to a lattice 

4.7.2 Multiple occurrences of factors 

Although, it may seem unnecessary for an element to be a factor of more t hm 

one down-set, more compact spanning sets may result by allowing multiple occur- 

rences of factors. We characterize the general conditions such spanning sets must, 

satisfy. In Figure 4.12, any spanning set without multiple occurrences of lactars 

has at least ten elements. It is easy, however, to verify that the spanning set S = 

{l{a,b,c,d,e,f3,.l(a,b,c,g,h,i),l{a,d,e7~,h,j)7l{b7c~,f7g?i,j)?l{c,e,f?fr.,.i,j)) 

preserves subsumption. 

T 00000 

a b c d e f g h i j  11 

Y I 

Figure 4.12: Subsumption preserving encoding 

Theorem 4.11 Let P be an ordered set and S be a .spannir~g set i/f meet irreducztile 

dmm-sefs for P .  Then S pmsemes subswzption if and only ih for every meet irm- 

dvcible element el E M ( P ) ,  ,El an element x for which (i) z is a descendant of th,c 

parent of el, but not of el itself and (ii) VJQ E S where 6.1 is a factor of j,Q, 3 a 

factor ez of JQ for which z is a descendant of e2. 
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The proof of this theorem is similar to that for Theorem 4.8. Figure 4.13 illustrates 

the case when the constraints of the theorem are violated for an element el. If every 

component for which el is a factor, has one of the f; as a factor, the component map- 

ping for the descendant d will he a superset of that of el, and so we will incorrectly 

conclude that d 5 el. Allowing multiple occurrences of factors provides greater flexi- 

bility to subsumption encoding and permits more compact spanning sets. Finding a 

minimal sized spanning set is undoubtedly NP-Hard, but it may be possible to design 

an approximation algorithm (such as an extension to Caseau7s greedy algorit,hm) that 

performs better than existing algorithms. 

Figure 4.13: Violation of subsumption 

There have been two encoding schemes ([GI, 791) that permit multiple factors in 

compound spanning sets. Although the algokiilms are too detailed to describe fully 

in this thesis, there are several issues of interest. 

The algorithm in [613 constructs a bit-vedor encoding using two passes over a 

lattice L: one upwards and one downwards. The resulting encoding preserves sub-- 

sumption with subsets, and thus implements a spanning set of up-sets. One of the 

goals of this encoding is to provide efficient meet comput.ations (join computations 

are described, but. are not efficiently handled). Meet computations are achieved in 

this subsumption preserving encoding by using an interesting indexing method. Sup- 

pose L is the lattice to encode, and S is the spanning set of up-sets generated by 

the algorithm. With each non-meet irreducible element a: G L, x 4 M  ( L )  , one of the 

components s, f S is associated in the following way: 

Definition 4.7 Let L be a lattice, and S be a spanning set of up-sets on L. Then S 

discriminates the non-meet i'~~eHucilZe elements o f L  if V x  E L, x $ M ( L ) ,  3s, E S 

for which jij 2 E s ,  and jiij Sjy E L, y ff M ( L ) ,  and y E s,, then z 5 y ji.e. a: is 

the unique minimum no=-meet irreducible element of s,). 
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To compute a meet x fl y, we first check if x 5 y or y < x. If neither of these hold, 

we know that, the meet must be a non-meet irreducible element. We then intersect, 

the component mappings for x and y: Cans = C(x) n C(y). Using a linear ext.ensior-1 

4 - of the lattice L, a linear ordering is formed for S ;  the details of r,he particular 

linear extension formed in [61] are unimportant, but what is essential is that,, for two 

non-meet irreducible elements z, y f L, if z 5 y then s, 5 s,. By the manner in  

which S is formed, the meet will correspond to either the first or second spanni~ig 

set component in Carib corresponding to a non-meet irreducible elen~ent'~. Using a 

bit-vector mask (which contains a 1 in each position corresponding to a, non-rneet, 

irreducible component), these components can be identified. A table indexed by the 

bit corresponding to these components is then used to decode the meet. 

Note that this approach to decoding meets through a table lookup car1 be applied 

to any spanning set that preserves subsumption with subsets and discriminat,es the 

non-meet irreducible elements. In particular, the transitive closure met hod of [2] coil Id 

use this indexing technique for efficient decoding. 

Rather tha~l  elaborate on the details of this algorithm, it will be more fruitful to 

elucidate its importaat contributions. First, although this approach usually rtyriires 

less space than the transitive closure method of 121, there are cases in which a spanning 

set contains redundancy. By the dual of Theorem 4.7, subsumption preservation necds 

only to deal with join irreducible elements. For the indexing method to funct,ion, 

however, we need to keep those components associated with non-rnwt irred uciblc 

elements (which may contain non-join irreducible factors). However, there are other 

redundancies that may result from the algorithm in [61]: (i) it is possible to have a 

factor that is meet irreducible but not join irreducible; such factors can be removed 

(by Theorem 4.7). (ii) it is possible to have duplicate and redundant comporrents. 

By remediating these problems in the resulting spanning set, the algorithm could be 

improved. 

As an example, consider the ordered set in Figure 4.14. The first encoding re- 

sults from the algorithm in [61]. The spanning set that is irnplemer~ted is $5' = 

(f ( e ,  g), TT, f e, Tg, tf, l ( e ,g )J .  Note that the component f ( e ,  f) appears twice ( i n  

1 0 ~  generalization of this property is proven below. 
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the first and last bit positions), which is clearly unnecessary. Secondly, this compo- 

nent is reJu~dan;,, since it is not associated with any non-meet irreducible element, 

and f e and f y are both components of S. A more efficient spanning set that preserves 

the desired properties is S' = {f T, Te, Tg, T f); its bit-vector implementation is shown 

on the right-hand side of Figure 4.14. 

Figure 4.14: Example encudings that discriminate non-meet irreducible elements 

We now formulate the encoding problem tackled by the algorithm in [61] in a gen- 

eral manner, which may lead io the development of more efficient solutions. Suppose 

we have a lattice L and we wish to construct a spanning set S that (i) preserves sub- 

sumpt~on with subsets (i-e. x is subsumed by y (x < y) if and only if C(x) 2 C(y)), and 

(ii) discriminates non-meet irreducible elements. For each element x 6 L, x $ M (L), 

define the set R(xj = (y  E Lly 5 x.Vz E L,z 4 M(L) ,y  5 z -+ x 5 z) .  These 

are the elements that are subsumed by x, but not by any other non-meet irreducible 

element that is not an ancestor of x. Note that x E R(x). Now the problem can be 

described as constructing a subsumption preserving spanning set of up-sets S with the 

restriction that Vx E L , x  6 M(L) ,  3.5, E S for which the factors of s, are a subset 

of R(x) (i-e. I s,j C R(s)). This ensures that S discriminates non-meet irreducible 

elements. The component s, will be caller! the component associated with x. 

?Ve know from theorem 4.7 that to preserve subsumption, we need only be con- 

cerned with the join irreducible elements J ( L ) .  Thus, for optimality, we need only 

consider the join irreducible elements of R(z); if there are none, then we can use 

9, = TI. 
The interesting result is as follows: 



Theorem 4.12 Let L be a lattice and S be a spanning set of up-sets for .L such that 

i. S preserves subsumption 
. . 
zz. S discriminates aon-meet irreducible elemejzts 

iii. S is partitiond into those co,mponents that are associated with 11,on-nzcet ir- 

reducible elements, Sl and those that are not, S2 

iv. There is a linear extension 3 of Sl . 

Then, for any meet a n b  = c, consider Carib = C ( a )  n C(b) .  

i. if Carib = C ( a ) ,  then a = c. 

ii. i f  Carib L- C(b) ,  then b = c. 

iii. i f  Carib = 0, then c = 1. 

zv. if Carib n Sl = {s,), then: if a 2 a: (or b 5 x), then I = c ,  otherwise z = c. 

v. if ICanbnSl I 2 2, then let s, and s, be the Jirst and second elements (accortliny 

to 5)  in Carib n sl. If a 5 z (or b  5 x), then y = c, otherwise x = c. 

Proof: Let L be a lattice and S a spanning set of up-sets for L that satisfies thc ahow 

conditions. Consider any meet a fl b = c and the set CUnb = C(a) n C(b).  Since S preservcs 

subsumption, cases (i-iii) hold. 

Now suppose s, is the first component (according to 5 )  of Carib n S1. It is possible t tiat 

a E R ( x )  and b  E R(x),  in which case a < x and b  _< x  (i.e. the factors of s, arc below a, b 

and x). Since x  subsumes every element in R ( x ) ,  either both a and b  subsume z or both arc 

subsumed by x .  Since 5 is a linear extension, if both a and b  subsume x, clearly z = a fl 6 .  

Claim: For any component s, E Carib n S1, s, # s,, both a and b  subsume y (or 

conversely, it is impossible for y  to subsume G and 6) .  Suppose y  subsumes a and 13. ?'bus, 

a E R ( y )  and b E R ( y ) .  Since 5 is a linear extension of S1, x must also subsurnc (L and 6, 

and either y  5 x  or xlly. In the first case, we can infer that x E R ( y ) ,  which is impossible, 

since x is non-meet irreducible. In the secend case, we can infer that L is not a lattice. 

Thus, in case x  subsumes a and b, we can select the second element s, of CUnb n SI. if 

no such element exists, then a i7 b = i, otherwise a n b = y.a 

This theorem provides a general and efficient procedure for computing and dccod- 

k g  meets, which abstracts the algorithm in [GI]. Given a and 6,  if neither subsumes 
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the other, and the intersection of their component mappings is non-emp~y, then we 

can determine their meet simply by extracting the first component s, correspond- 

ing to a non-meet irreducible element x. If x does not subsume either a or b, then 

a n - x; otherwise extract the second component s, corresponding to a non-meet 

irreducible element y. If no such component exists, a i l  b = I; otherwise a fl b = y. 

Another approach that implements spanning sets of compound down-sets, de- 

scribed in [79], decomposes an ordered set P into co-atomic sublatticesl1. By grouping 

elements together that have the same set of subsuming co-atoms, the authors show 

thal the resulting order is a co-atomic lattice. If P is already a co-atomic lattice, then 

the resulting order is isomorphic to Y. This partitioning is performed repeatedly on 

each group of elements, forming a tree of co-atomic lattices that is used as the basis 

for generating a bit-vector encoding of the original ordered set. Their algorithm can 

also be viewed as  computing a spanning set of compound up-sets, although the details 

are beyond the scope of this thesis. 

4.8 Spanning Set Decomposition 

We have seen that with spanning sets of down-sets, we can only preserve joins with 

principal down-sets (section 4.5) and meets with prime down-sets (section 4.6) 12. The 

preceding section discussed combining principal down-sets i5to compound down-sets 

while still preserving subsumption. In this section, we describe how decompositions 

of spanning sets that satisfy certain restrictions can lead to some efficient implemen- 

tations using, for example, integer vectors or logical terms. 

Suppose a spanning set S for an ordered set P is decomposed into cul, 02,. . . , cuk 

( ie.  crl LJ a2 U - - U t ~ k  = S). In order to use this decomposition, we modify the 

component mapping to return, in addition to each component, the subset containing 

it. We use the notation af s) to denote that component s is in subset a .  For example, 

if a(s)  E C(e), thm e E s aad s is a member of the subset a, We say that an element 

" h co-atomic lattice is a lattice in which every element is a meet of one or more co-atoms. 
"Without the use of additional constraints, such as coieference, as discussed in section 4.9, and 

in €102, 1041. 
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of P is in a subset if it is in any of its constituent components. If we can guarantee 

that subsets possess certain structure, we can implement them with space logarithmic 

to the number of components, as opposed to the linear space required to represent 

the components individually. 

4.8.1 Chain decomposition 

For a spanning set S on an ordered set P, a chain partition, as defined in section 4.3.5, 

of the order induced by S is one form of chain decomposition. If the components of S 

are principal down-sets, a chain partition of S is also isomorphic to a chain partition 

of P. In general, if S is subsumption preserving, it corresponds to a chain product 

embeddicg of P, as we discuss below. 

The key feature of a chain decomposition S = a* U a2 U . . . U crk is that, giver] a 

component si of a,, we can infer every component preceding s; in the chain. Thus, 

we need not represent all components explicitly - the component mapping need only 

return at most one for each subset. Integer vectors, described in section 4.3.5, provide 

a direct and efficient implementation. 

The virtual time proposal in i97], addressing the problem of global time in dis- 

tributed systems, essentially performs a chain partition on a spanning set of pri~lci- 

pal dovn-sets implemented using integer vectors. At each of k sites, transitions arc: 

caused by internal state changes, and message sends and receives, foxming a partial 

order based on precedence constraints among events (e.g. a send must precede its 

corresponding receive). Note that this partial order is not necessarily a lattice, sir~cc 

two sites may simultaneously send to each other. The transition events for each site 

represent local clock advances. Possible combinations of the local clocks constrain 

the possible global times. No global time is maintained in the system, but each site 

zpproximates it using its local time plus the times obtained from other processes hy 

messages received. 

The transitions at each site form a chain, interconnected by message ser~ds and 

receives, producing a natural chain partition that is represented by a vector of k 

ktegers, Since the clock at each site is updated after each transition, the code of 
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an event for site i consists of the code of its parent at this site, with the ith entry 

incremented and, if the event is a receive, the union is formed with the vector sent with 

- this message. The underlying spanning set is thus the set of all principal down-sets, 

so it preserves joins but not meets. As an example, a three site system is depicted in 

Figure 4.15. A space reduction could be realized if down-sets were restricted to the 

meet irreduci bles. 
Site 1 Site 2 Site 3 

[I ,o,ot [091 $1 [0,0,1 I 
I 

send [2 ,b1  1 infernal [0,0.2] 

I receive [2,2,0] I - 1 send K%4.01 receive [2,3,3] 

receive [3,4,0] 
Figure 4.15: Distributed virtual time encoding 

Generalizing this scheme requires partitioning an arbitrary spanning set S into the 

minimlun number of chains, which is equivalent to finding the maximum sized anti- 

chain of S [74]. The cardinality of this anti-chain, called the widih of S ,  determines 

the minimum number of chains needed to represent S, and thus the minimum size 

of a vector implementation. In the distributed system, the width is the number of 

sites. In general, determining the width of S is possible in O(1SI3) time [74]. The 

next theorem shows the space requirements for a balanced chain partition. 

Theorem 4.13 Let S be an ordered set with n elements and width k .  Further suppose 

that therz is chain partition of S into ik ch.ains of size n / k .  Then the integer vector 

encoding for S on this partition regekes O(nk(Llog(n/k)J + 1 ) )  space. 

Since each element requires a vector of size k, and the maximum sized integer in 

each vector is n/k (requiring O(log(n!E)) space), the result follows. Note: If k = 1, 

then we have a total order and we require O(logn) space to represent each element. 

If k = n, then we have an anti-chain and we require O ( n )  space for each element. In 

both cases, bit-vectors require O(n) qace. 
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Chain product embeddings 

Chain partitions are in fact a specia.1 case of chain product embeddings. 

Definition 4.8 Let P be an ordered st t ,  { C 1 , .  . . , Ck)  be a set of chains, rtnd T : P -+ 

x . - . x Ck be a function from P to the cross product of these cha.ins. Then. T is 

a chain product embedding iS, for x, y E P, x 5 y if and only if T(Z) = (cf?.  . . c i ) ,  

~ ( y )  = (c:, ... c i )  a n d 6  LC, cy for 1 5  i 5 k. 

We define element i of the vector T(X) as ~ ( z ) [ i ]  (i.e. r ( z ) [ i ]  = c:). A chain parti- 

tion is the case when the Ci are chain suborders of P that partition P. Chain product 

embeddings are closely related to  order dimension 11441, and encoding dimension [Dl. 

Theorem 4.14 Let P be an ordered set. Then every chain partition of a subsu?r;ptio~ 

preserving spanning set of up-sets S for P corresponds to a chain product embedding 

of P, and every chain product embedding T of P corresponds to a chain partition o j  

some spanning set of up-sets for P that preserves subsumption. 

Proof: + Let S be a subsumption preserving spanning set of up-sets for P, and I d ,  

(Cl, C 2 : .  . . , C k }  be a chain partition of S. Let us also define a special null component 

sg $ S that subsumes every component of S. Define the mapping T : P -+ C1 x - . x (Ik 

as T ( X )  = ( c1 , c2 , .  . . , c k )  where, for 1 5 i  < k ,  c, is the least element in C:. that is in  C ( z ) .  

If Ci n C ( z )  = 8 (i.e. there is no element in chain Ci that is in C ( x ) ) ,  then c; = s* .  'I'hus, 

ignoring the null components in this mapping, C ( x )  = Ticl, c2, . . . , ck)13- 

Claim: T is a chain product embedding. If z 5 y, then C ( z )  IL_ C ( y ) .  Clearly, for 

1 5 i < k, we have ~ ( x ) [ i ]  <c, ~ ( ~ ) [ i ] l ~ .  Conversely, suppose for 1 5 i 5 k, we have 

r ( x ) [ i ]  <c, r ( y ) [ i ] .  Then C ( x )  C ( y ) ,  so x  5 y. 

e Let T be a chain product embedding of P into the set of chains (C1, Cz, . . . , C k ) .  
1 2 k k Define [C; = a;. Define the spanning set S = {si  , . . . , snl , s: , . . . sn2 , . . . , s1, . . . s,'~ ), whew, 

fm 1 5 i < k, 1 <I j 5 ~ q ,  we define S' 3 = (Z 6 4 f j  SC, ~ ( x ) [ i ] ) .  Note that a, = {=$,.. .3:,), 

for 1 5 i < it, d e f k ~ s  a chain partition of S. 

13Recall that for a spanning set S,  C(z) = (s E Slr E s) is an up?set in .S. 
''This holds wen if ~ ( ~ j [ d  or both r(y)fiJ and r f z ) [ i ]  are equal to sg. 
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Claim: S is a subsumption preserving spanning set of up-sets. If x < y, then for 

1 < i 5 k ,  r ( x ) [ i ]  sc, r ( y ) [ i ] .  Suppose sf E C ( x ) .  Since j <c, r ( x ) [ i ]  and r ( x ) [ i ]  <c, 

r ( y ) [ i ] ,  j <c, r ( y ) [ i ] ,  and sj  6 C ( y ) .  Thus, C ( x )  5 C ( y ) .  Conversely, if C ( x )  C ( y ) ,  then 

r [ x ) [ i ]  5~ r ( y ) [ i ] ,  for a l l  1 < i 5 k.  Thm x  < y.0 

Chain products have a natural implementation using integer vectors. A nice de- 

scription of encoding by embedding ordered sets in products of chains is given in [79]. 

IJnfortunately, finding a minimal size product of chains into which an ordered set can 

be em bedded is NP-Hard15. 

4.8.2 Meet incompatible decomposition 

A meet incompatible subset o.(sl, sz, - - - , sk) C S is a subset in which components are 

pairwise meet incompatible. That is, if i # j then V a  f s;, b f sj, a V b = I. If the 

spanning set is composed of down-sets, this is equivalent to si n sj = {I). For a meet 

incompatible subset a, any non-bottom element in a will be in exactly one of the 

constituent components. So if a(s; )  E C(z), then x E si and for all other components 

s j  of a, x 4 sj. Within this framework, subset checking, union and intersection are 

 essential!^ the same as before. Now, however, if we are computing the union of two 

component mappings and they contain a subset a with different components, the 

union fails. This is facilitated by treating our lattice as I-unbounded. 

A spanning set S of all principal down-sets of an ordered set P is isomorphic to 

P. In this case, a meet incompatible partition of S is just a meet incompatible anti- 

chain partition of P,  as defined in section 4.3. This is the basis for the tree term 

encoding in [34], which gives a logicai term encoding of tree shaped taxonomies. In 

general, however, this does not hold. Note that a decomposition need not partition 

the components of S. By allowing components to be members of more than one 

subset. implementing meet incompatibility as union failure may be more viable. In 

addition, even if we are not concerned with meet incompatibility, specifying that a 

I 5 ~ h i s  is called finding the encoding dimension in [79], and is closely related to the NP-Hard 
problem of finding the dimension of an ordered set P (the minimum number k for which P can be 
embedded in a product d t chains). 
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set of components is meet incompatible cam per~nit a large spa.ce savings, a.s sl~owll 

for the following representations. 

Bit-vectors Instead of representing a component in a subset of size 71, by onc. bit, 

we assign Llogn] + 1 bits to the subset and assign a number from 1 . . . n.  For 

elements not in the subset, we place a 0 in these positions, as before. b'or :I,II 

element in the subset, we place the number of the unique cornponcnt colltaining 

this element. This derives the integer vector representation of scction 4.3. 

Logical terms In a term, we use one position for each subset. I h r  elernerit,~ not, 

in the subset, we place an anonymous variable for ordinary tern~s and noth- 

ing for sparse terms. For an element in the subset, we place a unique sy1111)ol 

for the component containing this element. Unification and anti-unilicatiol~ 

operate as expected. We can exploit the hierarchical structure of terms by i l l -  

troducing a subset o(sl ,  s2, - - ' . sk) at the functor for one of the co~t~po~lcnts 

in u{sl, s2, - . . , ski .  This can provide a significant space savings over integer 

vector (or flat term) implementations. This is the form of tree tcrrr~ encod- 

ings discussed in [102]. More general term encodings permit the use of logical 

variables (coreference) , as discussed in section 4.9. 

As an example, Figure 4.16 shows a meet incompatible anti-chain partition of the 

spanning set S M p )  (i.e. the principal down-sets associated with the meet irrccluciblc 

elements) for the ordered set P in Figure 2.2. Note that since dog and f ( m l  dog arcb 

not meet irreducible, they do not have corresponding elements in Figure 4. 16. Figure 

4.17 then shows a logical term implementation of this partitioned sparlnixlg sct. 

Figure 4-16: Meet incompatible decomposition 



CHAPTER 4, THE FOIIWDATIONS O F  TAXONOMIC ENCODING 7 7 

Figure 4.17: Logical term implementation of meet incompatible decomposition 

In section 4.6 we analyzed spanning sets of prime down-sets and showed a direct 

correspondence with spanning sets of principal up-sets. We were able to then claim 

that any finite lattice has a spanning set of prime down-sets that preserves meets 

with union - this can easily be implemented using tree terms. In [102], an additional 

constraint is imposed on such spanning sets: if a fl b = I then the C(a) U C(b) must 

fail. As we saw above, this may be accomplished using decomposition, but this is 

not always possible. Logical terms provide an impleaentation of this with unification 

failure. For implementations using tree terms, this constraint is formulated as follows. 

Theorem 4.15 [log] Let L be a lattice. Then L has a meet preseraing tree term 

encoding i f  and only if, for any a,  b E L,  a n b = I if and only if there are two meet 

incompatible prime down-sets PI, P2 for which a E PI and b E P2. 

Clearly, if there are two meet incompatible prime down-sets containing a and b, 

respectively, aflb = I. Requiring the converse, however, means that many lattices are 

not tree term encodable, according to Mellish's definition. Surprisingly, this includes 

even the lattice shown in Figure 4.5. Encoding this lattice so that I is implemented 

as unification failure requires coreference, as shown in [47, 1021. Determining if a 

lattice is tree term encodable in this sense can be accomplished in polynomial time 

since all meet incompatibility must be incorporated into a decomposition. 

1x1 general, we wast to find the smallest decomposition of a spanning set. Unfor- 

tunately, this is NP-Hard for the simpler case of partitioning an ordered set into meet 

incompatible subsets. 
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Definition 4.9 Meet Incompatible Ordered Set Partitioning. G i c w ~ ~  a l r  or- 

dered set P ,  and a positive number k < /PI. Is there a parfrfion of ).' into h. t l , t ~ t  

incompatible subsets? 

Theorem 4.16 Meet Incom.patible Ordered Set Partitionin.g is NP-C!onrylt:tc. 

Proof: We give a polynomial transformation from the Partition into Cliques problcw, dr- 

scribed in section 4.7, to our problem. Let us construct an ordered set P from C as follows: 

Let n = IVI ande  = jEl. ( i )Addn  vertexelements v~,vz;-.,v,,. (ii) Add 9n = 9~(n-l) / 'L-e 

non-edge elements as follows: For each pair of vertices u,, vJ, where i < j ,  which does tlot 

have a connecting edge in E ,  add the element (v,, v,) where (v,, v3 ) < u, and ( u,, vJ) < uJ .  

Claim: P has a partition into k + 1 meet incompatible subsets if and only i f  G has ;\ 

partition into k cliques. 

+ Suppose P has a partition into j meet incompatible subsets. Select one subset 0' that 

does not contain any vertex element. If no such subset exists, j = k and lct a' = Q) (;L trivial 

meet-incompatible subset) to  bring the number of subsets to k + 1; otherwise :, = k. f I .  

Consider any subset a # a'. Claim: The vertices corresponding to the vertex elane~lts i n  

a form a clique in G. Consider any pair of vertex elements v,, 23 E a,  where i < j .  Sincc 

they are components of the same subset, they are incompatible. By the above constrtlct ion, 

this could only occur if v,, u, have a connecting edge. Therefore, the corresporidirtg vcrt,ices 

within each of these k subsets forms a clique in G. 

e Suppose G has a partition into k cliques. Consider any one of the k clicl ues, tr.  Clai 111 : 

The corresponding elements in P can be components of the same subset. Any pair u,, uJ ,  

i < j, can be components of the same subset provided they are in~ompat"~ '  13y thc ahovcl 

construction, this can only occur if v;, v, are connected by an edge. Sirice u,, 11, arc: in a, 

clique, they are connected by an edge. Thus, the corresponding elernents within each of 

these k cliques can be components of the same subset. One additional rnert incompat,ihlc 

subset can be formed from all of the non-edge e1ements.o 

The following figure shows a n  example of the  above trawformation. I t  is easy to 

see that the elements a ,  h, c, d form a clique in the graph and are meet incorn pa ? i  blc 

in  the lattice. 

Any meet incompatible decomposition of a spanning set S of an orderetl set I' 

corresponds t o  a meet incompatible decomposition of the  induced subset order of S ,  



a a b c d e f  

Figure 4-13: Transformation of a graph to a lakticc 

but not vice versa (since we may have two components sl, s2 f S for which v l  fls $42 = 

is, but sl # 0). However, we can add elements (s, ,  s,) for any pair of couiponcnt,~ 

in S that are incompatible with respect to the induced order of S, but compatiblr 

with respect to the order of P. These elements would ensure equivalence Isct,ween t,lw 

two forms of meet incompatibility among components in S. Thus, the more general 

problem of finding a minimal meet incompatible decomposition of a spanning set is 

also NP-Hard. 

4.8.3 Meet homogeneous decomposition 

We now generalize the notion of meet-incompatible subsets; we hope that this gen- 

eralization caE be exploited in the development of new encoding algorithms. WC call 

a subset cu(sl, s2, - . , s k )  meet homogeneous (or simply homogeneous) i C  for ally two  

distinct components sl,s2 E a ,  a G s1 and b E s2 implies a fl b E s,Vs E a. rI'l~azt, 

is, every element is either in 0, 1 or all the components of the subset. A mc3ct i l l -  

compatible subset can be viewed as a special case of a homogeneous subset, wi t,h 1,hc. 
added restriction that a n b = I. Since any element in the subset will eithcr hc i n  

exactly one or all of the components, we need to associate a special symbol, I,, with 

each subset indicating that every component is present. We redefine below the wi, 

operations for meet homogeneous subsets. 

subsets: C(el) c C ( e 2 )  w Va(z) E C(el), either 

i six) r C(e2) or 
. . 
11- a(& j E C(e2,). 



union: C(e1) ti C(ez) = Q ej Va(z) E Q, either 

i. a (z)  E C(el! and e2 4 a, 

ii. a(z) E C(e2) and el 6 cr or 

iii. a ( z )  E C(el), a(y)  E C(e2) and x 2:- y = z or z = 1, 

intersection: C(q)  ii C(ez) = Q f . ~  Va(z) E Q either 

. a ( ~ )  f C(e1) and a(z)  E C(e2), 

ii. a ( ~ j  E C(e1) and a(L,) E C(e2) or 

iii. a(&) E C(e1) and a(z)  E C(e2). 

We can implement these operations with a modification to the sparse term or in- 

teger vector representations. By partitioning a spanning set into meet homogeneous 

subsets, we can achieve the benests of meet incompatible subsets. The generality 

and flexibility of this structure, however, may permit more dense decomposition, de- 

creasing the space requirements of an encoding, which may over-compensate for the 

increased operational complexity. To illustrate these concepts, consider the ordered 

set below. The minimal subsumption preserving spanning set of down-sets (with 

no multiple occurrences of factors) is S = {Ja, Jb, Jc, Ld, Je, J f ,  Lh, JL) ,  which also 

preserves joins. Since every pair of components is compatible, meet incompatible 

decomposition provides no benefit. However, the following is one possible homoge- 

neous decomposition of S: {crl ( la ,  J f ,  Jh) ,  cr2(4b, Jc, Jd, Je), cr3(JL)). The component 

mapping corresponding to this decomposition is also shown in the figure. 

I al(~)&.),a3~ 

Figure 4.19: Meet homogeneous decomposition 



4.9 Constraints and Coreference 

We now develop a constraint-based examination of encoding, viewing bdtti ordtwd 

sets and spanning sets as systems of constraints, and we fosn~ulate an i~ltegratiou of 

spanning sets with other forms of constraints. In this contest, we are able to view t,hc 

process of taxonomic encoding as a special case of constraint satisfaction. \UP first, 

introduce the various types of constraints imposed by an ordered set. l'rescrving rer- 

tain properties involves satisfying some of these. We next show how these constraints 

can be incorporated into the components of any subsumption presesvir~g spatilting 

set S of down-sets, through the use of guarded constraints, which are analogous to 

Dijkstra's guarded commands. This involves restating the initial constraints in tcrrils 

of the components of S, and may alter the properties of S with respect to joins and 

meets. Many constraints can be implemented using techniques previously coverd, 

such as chain partitions. We introduce coreference, such as that offered by logical 

variables, as a c~mplernent~ary implementation tool, formalized through equivalence 

classes of constraints. We also hypothesize about more general implementations. 

4.9.1 Types of constraints 

We will view constraints in a top-down manner as logical implications, denoted tlsirlg 

the -+ symbol. Inferences on constraints are denoted using the i- symbol, and scts of 

constraints are denoted using I?, Given a set of elements and a constraint involvi~lg 

one or more of these elements, some consequence may follow through the applicnl,io~~ 

of modus ponens, where we use "A" to denote logical conjunction and "V" to de- 

note logical disjunction. For example, given u, b and a A b -+ c we infer c,  writ,t,cr~ 

a ,  b, aAb-w i- c. Different categories of constrai,lts are: distinguished by subscripting 

the I' symbol. To be precise, we should also specify the partial order to which t h e  

constraints apply, but this is usually obvious. 

Order constrai~ts (I?<): - The constraint imposed by the relation a 5 h is simply 

a 4 b. Thus, given element a and this constraint, we can infer elernent h. 7'hk 

constraint has been implicit in our analysis, and is integral to any subsumption 
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preserving spanning set of down-sets. The cover relation dictates a set of cover 

constraints r<s. - Inferring T< - from the reflexive and transitive closure of - 

follows. 

Meet and jain constraints (rn, Tu): Su~pose  we have al fl a2 n . . fl ak = b. In- 

terpreting this logically, if we have all of the a;, we can infer b. The constraint 

imposed by this relation is then a1 A a2 A . - - A ak +- b16. An important effect 

of this constraint is that if b 5 c then a1 A a2 A - .  . A ak +- c,  even if none of 

a l ,  a2, - . - , ak are comparable with c. From an encoding point of view, a meet 

constraint is satisfied by deducing new information. We later show how certain 

cases of meet constraints can be implemented using coreference. 

Suppose we have a1 U a;? U - . U ak = b. Interpreting this logically, if we have at 

least one of the a; ,  we can infer b. The constraint is then a1 V a2 V V ak t 

b. Thus, from the uncertainty associated with a disjunction, we can infer a 

consequent. Due to the difficulty in implementing join constraints except with 

intersection, we will rely on previous techniques to satisfy ru. 

Meet and join incompatibility constraints (rl,rT): Suppose we wish to im- 

plement I as failure and we have a meet al n a2 fl - - fl ak = I that is minimal 

in the sense that any subset of the a; is meet compatible. This results in k 

constraints: a1 A - - .  A a;-1 A a;+l A - .  A ak -+ l a ; ,  1 5 i 5 k. Join incompati- 

bility constraints can he defined dually, although we do not discuss them. The 

negation of an element a; is a logical construct, the purpose of which is to cause 

an inconsistency in case we infer ai . We show later how these constructs can 

be used to implement i as failure. 

As indicated, we only explicitly deal with r<, rn and rL. Thus, the antecedent - 
of every constraint will be a conjunction (or a singleton). Our only rule of inference 

is modus ponens: A, A--+b I- b, where A is a conjunction of one or more elements. 

This rule enables us to deduce new elements from a given base set. Rather than 

16The generalization to meet-crest constraints is straightforward: if we have a1 fl a2 fl . . . n a k  = 
( b l ,  bar.. . , b j ) ,  then the resulting constraint is a1 A a2 A - .  A ak -+ bl V b2 V . . - V b, .  To keep our 
discussion clear, however, we will focus only ,m meet constraints and lattices. 



allowing closure immediately7 me provide an incre~nental inference procedure. 'I'his 

is important for encoding, since we need to hound the number of infereuc~ steps ill 

a deduction for the sake of efficiency. The following rules describe this procedure 

for a given initial set of constraints r, where represents one application of modus 

ponens: 

We say r I- A + b if there is sonre i 2 0 for which A --+ b  E l7'. Sincc I' is 

finite, there will be a number k 2 0 for which rkt' = l ? ,  giving a fixed-point for this 

construction and I?* = rk. Of course. using the above rules, we could specify a niinirna,l 

set of constraints from which all others could be obtained (e.g. the entire order rclatiorr 

could be derived from the cover relation), and perform taxonomic operations wing 

inference. However, to satisfy locality, every constraint we wish to satisfy rieeds to 

be immediately accessible (i-e. in a constraint set) or derivable in a small nurnbcr of 

steps. For the spanning sets we have studied, all constraints are local. Wc show la,tcr 

how coreference may allow us to derive additional constraints in one inferericc step. 

We will use the diamond lattice in Figure 4.1 to illustrate the specification ard 

use of constraints. The cover constraints are J?<I - = {a- T ,  b+T, c-T, L-ia ,  I -  + I ] ,  

I-w). The meet and join constraints are: rn = ( a A b - + I ,  aAc-+l ,  ~ A C - L L )  and 

rU = { a ~ b - + T ,  aVc-T, b~c--+T) ,  respectively. Recall that we showed in  sect,ion 

4.2 that no spanning set exists that preserves both meets and joins for this lattice. 

We later show how rn and Tu may be preserved using coreference. 

4.9.2 Augmented spanning sets 

Each component of a spanning set S can be viewed as encompassing a set of <:or)- 

straints, and S preserves certain properties that we can infer from these constraints. 

A down-set l { a l ,  a2, - - - , ak )  represents the set of constraints Vx E J{(L~,  a2, - . ? ~ l k ) ,  

x -+ al V a2 V - - - V a k .  That is, given any element in the down-set, we can infer the  

disjunction of the factors. In case the down-set is principal, l a ,  we have Vx E l a ,  



z --+ a. An up-set T(al ; az7 - - - , ak) embodies the constraints: Va E f {al, a2, - - - , a k ) ,  

a1 /; a2 /'. - - - A ak - x. That. is. given all of the factors, we can infer any element in 

the up-set. In case the up-set is principal, Ta, we have Vx E Ta, a -+ x. Our analysis 

focuses on down-sets. We can also view a component itself as a set of constraints: the 

coniponent s represents z -+ s for all x f .s. 

Principal down-sets thus include a subset of I?< - and the spanning set of all principal 

down-sets induces this entire set. We showed in Theorem 4.3 that the meet irreducible 

elements embody the essence of joins, so Sn/l(L) preserves subsumption and joins while 

retaining only a subset of I?<. - Compound down-sets, however, incorporate ambiguity. 

By merging the constraints of two or more principal down-sets, uncertainty arises as to 

which constraint is satisfied. Although we cannot preserve joins with such uncertainty 

(as we have shown), we can possibly preserve subsumption and meets (sections 4.6 

and 4.7). In general, if Cfxl) U C(x2) U . - .  U C(xk) _> C(y) then XI A 2 2  A . . . A xk -+ y. 

We denote the set of constraints of a spanning set S as I?(S). These can be expressed 

dually in terms of components: if sl fl s 2  n . - .  n sk C s then sl A s 2  A . . . A sk -+ s. 

A decomposition S r= crl U . . . U a k  represents additional constraints. A chain 

decomposition induces the constraints V1 5 i < k, if sl, sz E at and sl <,, s2 then 

sl -+ s2. For a meet incompatible decomposition we have: V l  5 i < k, if sl ,  sz E cri 

and sl # s z  then sl + 1 ~ 2 -  For a meet homogeneous decomposition, V1 5 i < k, if 

~ 1 ,  SZ, $3 E a; and sl # sz then sl A s 2  -+ s3. 

To integrate constraints and spanning sets, we express const.raints in terms of 

spanning set components. We now discuss how this affects the component mapping 

and taxonomic operations. 

Definition 4.10 A component constraint of an ordered set P is a constraint 

sl A . . . sk-1 3 s k ,  where each of the antecedents and the conseqzlent are subsets of 

P -  4 set of compon.ent consfrccints Sr of P is calked an augmented spanning set if the 

function Cr : L -t 2'r defined by Cr(x) = (sl A s 2  A . . . A S ~ - I  -+ SI; E Sr/3ir 1 < i < 
k, I E s;) is one-fo-one. 

Ordinary spanning sets are a special case, where k = 1 for every constraint. We as- 

sociate a constraint with every element in its antecedent or consequent. An augmented 



spanning set for our example is as follows: Sr = { l a ,  .lb, LC, l a  AJ b-).lc., ~ a ~ J c - + . l . t ~ .  

~b~.lc-).la). We say that Sr is an augmented spanning set of down-sets if  ctwy tan- 

tecedent and consequent is a down-set. 

Although many constraints can be inferred from a base set, encoding essrwt.ially 

performs all the desired inferences a priori, and then represents the conscqutwccs 

of an element in a code. Using this code, we can perform operations locally, which 

amounts to reducing inferences to one step. We shall see in Chapter 5 one approach 

to relaxing this to allow inferences with a fixed number of steps. How can we perform 

a one-step inference? Since we associate constraints with elements, we can perforr~~ 

set operations, as we have previously shown. We can also apply one lcvel of moclils 

ponens (i.e. calculate r1 from I?') using coreference, as we describe later. 

We must now redefine property preservation for an augmented spanning set SF of 

down-set s: 

Subsumption: x 5 y if and only if Cr(y) C Cr (z). 

Meets: x fl y = z if and only if Cr(x), Cr(y)FCr(z). 

Joins: z U y = z if and only if C r ( s )  n Cr(y) = Cr(z). 

Note that when computing meets, we use the constraints to infer additional corn- 

ponents. For efficiency, we will usually only perform one inference step. That, is, we 

only infer components from the given components and inferences, and do not at,t,ernpt 

further inferences usi~lg inferred components (i.e. we compute tI). After perfor~nirlg 

the inference step of a meet, we can remove trivial ~onstra~ints (e.g. if wc already !.avc 

s2: then s 1 - f ~ ~  is redundmt). 

Our example preserves subsumption and meets, but not joins. For clcrnents a ,  b 

and I: 

i Cr(a) = {la, laAlb-+lc ,  JaAlc+J.b, .lb~Jc+.la} 

ii. Cr(b) = (Jb, Ja~Jb--+.lc,  JaAlc--+.lb, J b ~ J c j J . a }  

We can see that Crfa) c Cr(i) .  To compute a Il b, we cornpute the infcwrice 

Cr(a),Cr(b) I- Jc using the constraint J a ~ l b - t J c .  We can thus infer Cr ( l ) ,  and so 



ugh = 1. Simplifying the constraints then yields the set (La, ib:  LC). Since Cr(T) = 0, 
but Cr(aj and Cr(bj are not disjcint, this spanning set does not preserve joins. 

4.9.3 Integrating spanning sets and constraints 

Suppose we have a set of constraints r we wish to satisfy and a spanning set S of 

down-sets that may satisfy some of these constraints. In order to  integrate S and 

r, we need to transform r so that the antecedents and consequents are expressed in 

terms of components. 

How do we convert elements to components? This can easily be done for any 

subssmption preserving spanning set S of down-sets. Using the original set r of 

constraints (we assume that I' _> r(S) _> T<), - we construct an axgmented spanning set 

Sr. The next theorem shows not only how these conversions can be accomplished, but 

also proves that it can always be done in a sound and complete manner. For soundness 

we require: Sr I- alAa2A- .~u~---tb implies r alAa2A. . .Aak-+b and for completeness 

we require: r t al A  a2 A - .  - A ak+b implies Sr t- a1 A a2 A - .  - A ak-+b. We need to 

specify how we can infer a constraint on elements from a set of component constraints: 

Sr I- a1 A a2 A - .. A ak+b if and only if (i) Q = UISiSk C(ai) and (ii) Sr I- Q-s for 

every s E C(b) .  That is, if we can infer every component of the consequent from 

the components of the antecedents, then we can infer that the antecedents imply the 

consequent. 

Theorem 4.17 Let L, be a lattice, S a spanning set that preserves subsumption and 

I' a set of constraints on L of the form a1 A  a2 A . . . A ak+b (which contains I'(S)). 

Then the avgmented spanning set Sr = SU(Q-sIA-+b E I?, Q = U,,, C(a), s E C(b)) 

is sound and complete. 

Proof: Soundness: Suppose Sr I- A-b and Q = UaEA C(a). Then Sr I- Q-+Q1, where Q' _> 

Cfb). Le% the sequence of constraints in Sr that were used to derive Q' be Q1+q1, . . . , Q,+qm, 

where Q 2 Q1 a d  Q1 C Q U (qlt . . qm). Each component constraint Qi-q must have 

come from acolrstraint A;--b; E I?, where A _> A1. Thus, I',A I- b;, 15 i < m (i.e. each 

inference step is justified). Since UaEaC(a) U Ub,EIbI,...,bn) C(bi) 2 C(b) and Sr preserves 

strbsmption, we haveA hb1/ i  . . . A  b, + b e  f(Sj C I?. Thus, r ,At-  b. 



CompEeteness: Suppose I'. A b. Let the sequence of constraints in t' that were used 

to derive b be -41-bl,. . . . A,-+b,, where A 2 A1 and b = b,,. For each const r i t int  ,-l,-.b,, 

there is a set of constraints in ST: Q,-s, where Q, = UaEA, C(n)  and s E C(b,). 'l'btls, wtb 

can derive Sr, Q I- b,, where Q = UaEA C(a).a 

We can now convert any constraint to a component constraint and t h  the-ore111 

shows that the resulting set will be sound and complete. The resulting constraints can 

of course be simplified. Constraints with empty consequences, or for which a cortipo- 

nent appears as both an antecedent and the consequent, can be eliminated. Contin- 

uing with our example, if S = (Ja. Jb, Jc) and l7 = {u--+T, b-+T, c+T, ( t ~ b - - + ~ ,  

aAc-+b, bAc+a, l + a ,  I+b ,  1-c), then the augmented spanning set, is: S',- = 

{la,  l b ,  Jc, JaAJ.b-+.ic, JuAJ,c--+J~, Jbr\J.c-+@). We can achieve a further reclrtc- 

tion in this example, and still maintain order and meets, by eliminating the compo- 

nents containing Ja in their consequents. This results in the augmented spanr~ing sot 

Sf. = { J b ,  Jc, JaAJ.b-+Jc, J.ct~Jc-+Jb). Although it may be difficult to determine a 

minims! augmented spanning set, approximation algorithms may be developed. 

Our analysis above did not consider negated elements resulting from rnect incom- 

patibility constraints. For this, we require the notion of a negated component, ~ s ,  

which represents a logical barrier to the  inference of a component s (i.c. s A 1 s  is 

inconsistent). The constraint a1 A a2 A . - - A ak-+lb, can be replaced hy C(u l  ) U 

C(a2) U - - .  C! C(ak) -+ is  provided: (i) s E C(b) and (ii) td factors f of s, we have 

a1 A a2 A - . - A a k - n  f .  Thus, we can replace a negated element by the negation of on(: 

of its components provided the antecedents imply the negation of every factor. This is 

required because incompatibility will be detected by inference failure and wc necrl to 

be certain that all failures are justified. We can always accomplish this i f  the negatc:cl 

element is the factor of a principal down-set component. If no component satisfies 

this constraint, we can add this principal down-set to the spanning set. We later show 

how coreference and decomposition can be used to implement these constraints. 

As an example, a spanning set for the rube lattice in Figure 4.5 is SJU = ( l a ,  Jb, Jc) 

and the meet incompatibility constraints are (an f =l, bne=l ,  cfld=l).  The aug- 

mented spanning set is Sr = ( la ,  1 ' 1 ,  l r ,  la~Jb-Jc, J.ur\J.c--+~+lb, ,lb~J.c--+lJa). 
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To take the meet n j a ,  b,c): we first obtain the entire set above, from which we can 

derive l a 7  fb, Jc, JaAJb---+7LctJc: which is inconsistent. We can again reduce the 

number of components in the augmented spanning set, while still maintaining meets: 

5'; = (Jb, LC, J , u A / ~ - + - ~ c ,  la~Jc-+-Jb).  

4.9.4 Guarded constraints 

Although constraints are global, for efficiency we want to selectively associate con- 

straints with elements. We must do this in a way that ensures satisfaction, yet mini- 

mizes the number of constraints associated with each element. A constraint could be 

affiliated with each of its antecedents and its consequent, but to ensure satisfaction 

only one antecedent, or the consequent in case there are no antecedents, needs to 

be linked to it (since the antecedents are conjunctive). This leads to the notion of 

guarded constraints, which are analogous to Dijkstra's guarded commands. 

Definition 4.11 Let P be an ordered set. A guarded constraint for P is a constraint 

of the form a : A-4, where AAa+b is a constraint in PI7. For any element a E P,  

a : a is a trivial guarded con.straint. 

The set of guarded constraints obtained from I? is denoted as rG. A constraint 

with k antecedents may result In up 50 k: guarded constraints, but we may not need 

to retain all of these: it may be possible to eliminate up to k - 1 of the constraints, 

although we shall see that this cannot be done arbitrarily. In the diamond lattice 

example (Figure 4.1), we can guard the meet constraints and still maintain meets as 

follows: rG = (a:b-+l, a:c-+l, cb-+l). 

Modus ponens can be revised to operate on guarded constraints: a ,  A, (a:A-+ b) t b. 
Given a starting set of constraints r, constraint inference becomes: 

i. r0= (a:A+b I I? ,a ,At l  b (2 I') 
ii. I"+' = {a:A+b I ( T i ,  a, A t1 cl), - .  . , (I", a, A I-, ck) and Ti? q, - - c k  I-, b )  

"ff A = 8, we write a : b. 



For encoding, we will guard the constraints in augmented spanning sets; Thus -5': 

will be a set of guarded component constraints from SF. We guard an elementary cow- 

ponmt s as s : ~  (if we write s, this is assuming the implicit form s : ~ ) .  'l'he conlponr*11t 

mapping is modified as follows: Cr(s) = Isl A . . . A S ~ - ~ - + S ~ ~ ~ + ~  : Y ~ A . .  . A S ~ - ~ - - + S ~  E 

SF, z E sg). 

Taxonomic operations are performed as kiore. The reason t4 hat we don't includt: 

the guard in the result of the augmented component m.upping is that the guard in- 

dicates to which elements a constraint (or augmented conzponent) k associated, aucl 

the rest of the constraint is conditional on t.he context of the guard (analogous to 

conditional probability). Also, in order to implement a u g ~ e n  ted spanning sets, we 

require that, for every component of the form sg:slA.. . I \ s ~ - ~ - + s ~ ,  there arc elcmen- 

tary components s i x ;  for 1 5 i 5 k. Thus, down-sets involved in constrairlts (but not 

necessarily guards) must be present as elementary components. We show later how 

this property can be used to reduce encoding size. 

In our example. SF = (lu, Jb, LC, La:lb-+, Ja:lc+Jb, lb:&+la). Meets, 

and now also joins, are preserved. We can also reduce this spanning set to ,S[(: = 

{Jb, LC, la:Jb-+Jc, Ja:j.c-+Jb). 

4.9.5 Coreference 

Logical terms provide coreference through named variables or labels. Two or mom po- 

sitions in a term that corefer must hold identical values, called a coreference constrai~~t,. 

If one is instantiated, then all are identically instantiated. We can characterize cciref- 

erence as persistent or transient. Once a coreference point is instantiated, transient 

coreference disappears (i.e. there is no recollection of the coreferring positions). '('his 

is the form provided by Prolog. Although implementations may retain the coreferencc 

constraint to reduce storage requirements, the surface form is transient. I'ersistcnt 

coreference, as provided by LIFE [4], maint ains the coreference after instantiation . 
&%ore generally, corefei-ence is an equivalence relation within a term. 'f hat is 

coreference is (i) symmetric: if it is used to implement a - 4 ,  then it also irnj>lernents 

b+a, and (ii) transitive (since we can only have one coreference label or variable at 
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a position in a term): if we implement a-+b and b+c, then we are also implementing 

61-C. By introducing coreference within a specific term, we implement s guarded 

equivalence relation. For example, if we use coreference to implement the guarded 

constraint s:.sl--isp, then the equivalence class sl ++ s;! is implemented for elements 

in s. Meet incompatibility constraints (e.g. s:sl-+~s2) require the use of symbols, 

as discussed in the next subsection. If we can decompose our meet inferences into 

guarded equivalence classes, we can implement an augmented spanning set using 

coreference in logical t,erms, as formalized below. 

Theorem 4.18 Let L be a lattice: and SF be a guarded augmented spunning set on L. 

th,at contains no negated components (i.e. no meet incompatibility constraints). Then 

there is a logical term implementation (which may use coreference) of SF i f  and only 

if 
i. If sg:s1As2A. - h k + s  E SF then k 5 1 

ii. 1f SF C sg:sl-ts2 then SF 1 sg:s2+sl 

iii. ~f SF I- sg:sl*s2 and SF t sg:s2-+,s3 then SF I- sg:sl-+s3 

The proof of this theorem follows from the fact that coreference cannot itself be 

conditional (conditicn (i)) and it imposes a set of equivalence classes (conditions (ii) 

and (iii)). Condition (iii) is actually unnecessary, since it follows from inference. It is 

possible to take any constraint with more than one antecedent and split it into a num- 

ber of constraints with two antecedents each. For the constraint alAa2A . . . Auk-+ 

we can create k - 2 additional elements 12,3, 13,47 - - I.E-l,X- and rewrite the constraint 

as: n i A ~ 2 - + 1 2 , 3 ,  /2,3Aa3-+k,4, - - , lk-l,kAak+b. 

Logical terms can be used to implement augmented spanning sets that satisfy the 

above restrictions. A coreference equivalence class will be introduced by its guard by 

placing a new variable in the positions assigned to each of the coreferring components. 

We may also be able to implement coreference using integer vectors equipped with 

pointers. For non-decomposed spanning sets, we can use the same symbol (e-g, 1) 

for all components, or just record the presence of the component without a symbol 

(as is possible with sparse terms). We describe additional restrictions for decomposed 

spanning sets and meet incompatibility constraints in the next subsection. Using 



coreference, we can impiement our example spanning set for the dimoud \at ticc as 

shown in the first diagram in Figure 4.20. Meets are preserved with unification arid 

joins with anti-unification. 

Figure 4.20: Term encoding for diamond and cube lattices 

There are lattices for which we cannot preserve both meets and joins with a q -  

mented spanning sets of down-sets. As indicated, problems arise when we ca~iriot~ 

establish symmetry or transitivity of constrzints. Figure 4.21 shows such a 1a.ttic:e. 

If we are to preserve joins, the component mappings for each of a, b, c must be dis- 

joint. Thus all the down-sets must be principal, and in particular the guards must, 

be principal down-sets. We must preserve the constraint aAc-b, but rteither nAb-+c 

nor bAc+a holds, so there is no way to guard this constraint for implementation wi th  

coreference. 
T 

Figure 4.21: Lattice for which no augmented spanning set of down-sets can preserve 
meets and joins 

4.9.6 Coreference, decomposition and meet incompatibility 

constraints 

Decomposition in augmented spanning sets only applies to eiernentary cornponcnts 

(components of the form s:s); the other components will be irnpiemented as  con- 

straints between these. Meet-incompatible decomposition, in addition to reducing 

space requirements, permits some meet incompatibility to be detected by uriion fail- 

ure, and represents incompatibility constraints among pairs of elements. However, 
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when the meet of three or more elements is 1, but every pair is compatible, we 

cannot ensure incompatibility-as-failure using decomposition alone [102]. 

Since coreference imposes equality constraints between positions within terms, 

and each subset in a decomposition is assigned a position within a term, we define a 

pdrtial function symbol that. maps elementary component/subset pairs to the symbol 

used to represent the elementary component within the subset. Thus symbol(s, a ) ,  

for s E a C S, returns the symbol used to discriminate component s from other 

components within subset a. ?Ve specify the subset siilce components may be in 

multiple su bsets. For non-decomposed spanning sets with no meet incompatibility 

constraints this was unnecessary, as every component could be assigned the same 

symbol. For a chain decomposition, the symbols must be ordered according to the 

chain order. For meet homogeneous decomposition, we must have a I, symbol to put 

in the position of a for elements in every component, but otherwise the restr; IC t '  ions are 

similar to those for meet incompatible decomposition. We do not consider these cases 

further. Integrating coreference with meet incompatible decomposition of spanning 

sets requires different restrictions than in Theorem 4.18: 

Theorem 4.19 Let L be a lottice, SF be a guarded ~vgmented spanning set on L, and 

A = (al , .  . . , ak) be a meet incompatible decomposition of the elementary components 

o/SF. Then there is a logical t erm implementation (which may use coreference) of Sg 

if and only i f  (i) 'd .#:slAs2A - - - A S ~ ~ S  E SF, k < 1 and (ii) 3 guarded equivalence 

relations, =,gC A x A for each guard sg in Sg, and a symbol mapping that satisJy: 



For every constraint sg:sl-+s2 we need to establish coreference between each sub- 

set containing s 2  and some subset containing sl .  For every constraint sg:s, -+7,s2, we 

need to establish coreference between one subset containing st and one containing s a .  

By ensuring equality or inequality of the symbols, we can satisfy the constraint in th t  

context of sg. In the former case, we will infer s 2  given sl; in the latter case unification 

will fail if we have both sl and s2. Thus, provisions (i), (ii) arid (iii) are necessary 

conditions for implementation of the non trivial  constraint,^ in SF with coreferetlcc. 

Since coreference forms a guarded equivalence relation among subsets of thtb t1ecot11- 

position A, not among components, the establishment of coreference constraints 1~11st 

be consistent with other constraints pertaining to the coreferring subsets. Provisior~ 

(iv) ensures that no unsupported inferences are made. Note that the above conditiom 

can be used when attempting to satisfy meet and meet incompatibility constraints 

even if our spanning set is not decomposed by giving it the trivial decotnposition that 

puts each component in its own subset. 

Given a satisfying set of guarded coreference relations and symbol mapping, we 

can easily construct the terms as before. Each subset will have a position, as discussed 

in Section 4.8. When computing the term for an element x, start with tlre inlmit,cd 

term (i.e. the unification of the parent terms). For each subset N for W I I I C I I  2 is a 

factor of a component s E a, put syrnbol(s, a )  in the position for a. For each guard 

s9 for which z is a factor of sg, add coreference between all positions c q ,  a2 for which 

a1 =ss a q .  

As an example, consider again the lattice in Figure 4.5. Using principal down-scts, 

we can derive the augmented spanning set SF = {Ju, Jb, Jc, Jb:Ja--t~Jc, Jb:Jc--+-~~a}.  

,'ls in the previous case, we can notice that the elementary component Jb is unncces- 

sary, so a reduced spanning set is S1F = {la, Jc, l b : J a + ~ J c ,  Jb:Jc-++a}. We can 

now give the trivial meet-incompatible decomposition, and define the symbol map- 

ping as follows: symbol(la, { l a ) )  = 1 symbok(.Lc, {Jc)) = 2. Since the coristraints 

guarded by J.b are equivalent, we can easily implement this spanning set, as shown in 

the second diagram in Figure 4.20. 
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4.9.7 Encoding algorithms 

In [I021 is an exploration of which forms of ordered sets can be encoded using logical 

terms so that meets are preserved with union (i.e. unification) and meet incompati- 

bility is detected with failure. In [lo41 this exploration is extended to general DAGs. 

Our exploration of the use of constraints and coreference takes a different approach. 

Mellish fixes on an implementation (e.g, terms or DAGs) and attempts to find the 

class of ordered sets that can be encoded to preserve I'n and rl. In contrast, we take 

the ordered set P to encode and the constraints to satisfy as input that we cannot 

control. Our goal is to develop a variety of tools with which we can efficiently encode 

P regardless of its fcrm (although we assume that P is finite, and Mellish does not). In 

the above two papers, the form of encodable ordered sets is explored, but no encoding 

algorithms are presented. The only encoding algorithm that exploits coreference that 

we are aware of is the brute force algorithm in [101]. Unfortunately, this algorithm 

may potentially produce terms that are of exponential size compared to the size of 

the ordered set to encode. 

We have not given any encoding algorithm, although a naive one may be specified: 

i. Start with the constraints t.o satisfy (e.g. a subset of r< - LJ I'n LJ rL). 
. . 
11. Derive an augmented spanning set SF that satisfies these constraints (e.g. 

the principal down-sets for meet-irreducible elements satisfy this). 

iii. Form a meet-incompatible decomposition of the elementary components. 

iv. Form guarded coreference relations and a symbol mapping that satisfy as 

many of the constraints as possible, while obeying provisions (i) and (iv) of 

Theorem 4.19. 

v. Derive the logical term for each element using the component and symbol 

mappings, and the guarded coreference relations. 

Recall that finding a minimal meet-incompatible decomposition is NP-Hard. Thus, 

i t  seems likely that encoding algorithms that exploit logical terms and coreference 

will be approximation algorithms. The above high-level algorithm will find a term 

encoding that approximates the optimal in terms of space requirements and properties 

satisfied. An area for future research is to design specific algorithms for term encoding. 



4.9.8 Variations 

In order to enhance implementations of augmented spanning sets, therc arc several 

avenues worth considering. The first involves the preservation of joins. Given a 

spanning set S M ,  which preserves jcins, when we augment this with constraints wtb 

may lose joins because of constraints that are associated with each element of tho join, 

but not with the result. This problem can be avoided by redef ning joins to consicler 

only the elementary components. 

Although coreference provides an efficient and available implementation of ccrttain 

forms of constraints, its nature restricts its usage. Since logical inference is transitive, 

this is a desirable property to implement constraints. Symmetry, on the other lli~11c1 IS 

not always desired; it does not always hold in a set of constraints. What we requirc is 

a way to implement arbitrary guarded constraints. One approach would be to use a 

constraint logic programming language. This is viable only if the language cfficitmtly 

implements such constraints. Another possibility is to use a "trigger" rncchanism 

that invokes a constraint when the antecedents are satisfied, but ignores it O~,~ICPW~SG. 

Coreference essentially allows the consequence to trigger the constraint as well as t,llcl 

antecedent. This functionality is developed as reference constraints in Chapter 8. 

4.10 Discussion and Conclusion 

In this chapter, we have characterized encodings as implementations of spanning sct,~ 

that preserve subsumption and possibly meets and/or joins. We have thus provided 

a framework in which to compare all approaches to encoding. Although irnplementa,- 

tions may have a drastic effect on the size and efficiency of encodings, we can ahstmct 

the fundamental aspects of a technique to the level of spanning sets. 

Throughout our analysis: we classified current encoding techniques within this 

structure. We showed how the transitive c!osure and compact encodbgs in [2], thc 

tree encoding in 2771 and a simplified version of a tree term encoding defined i n  [ I  021 

are all implementations (or equivalent to implementations) of spanning sets of prin- 

cipd down-sets or up-sets. The compact hierarchical encoding of [24] implements it 
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spanning set of compound down-sets, which we showed to be an approximation to 

the NP-Hard optimum. The integer vector encoding of 19'71 employs chain partition- 

ing. More complex term encodings described in [I021 arise from meet incompatible 

decornposi tion and coreference constraints induced by logical variables. Table 4.1 

summarizes our characterization of these encoding schemes in terms of the opera- 

tions satisfied, the types of components in the spanning set, whether decomposition 

is utilized and the implementation of the spanning set. For comparison, we charac- 

terize schemes using spanning sets of down-sets, which may be the dual of the actual 

algorithm described. As can be seen, there are many possibilities open for exploration. 

Table 4.1: Characterization of encoding schemes in terms of spanning set of down-sets 
type of spanning set decomposition implement at ion 

I 
encoding components 

transitive closure join principal - bit 

PI SI vector 
compact join principal - bit 

f21 SM vector 
interval join principal - integer 

PI Sl intervals 
virtual time join principal chain integer 

1971 SI vector 
tree encoding meet prime - bit 

[ 771 ST vector 
tree term [102] meet. prime meet tree 

[lo21 ST incompatible term 
term meet pseudo-prime18 meet logical 
[10'2] - incompat i ble term 
compact subsumption compound - bit - 
hierarchical 6241 vector 
indexed join compound - bit - 

vector 
co-atomic tree subsumption compound - bit 
encoding (791 vector 

- 

In many of the our inquiries, the complexity of the problem has left open many 

avenues for contimed research. The NP-Hard results for minimal spanning sets of 
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compound down-sets and meet incompatible decomposition warrant further csylo- 

ration for approximation algorithms. In particular, we have indicated the utilit,y 

of multiple occurrences of factors in compound down-sets, offering the potent,ial for 

finding approximation algorithms resulting in more efficient subsumption crlcocfi~tgs 

than in [24, 61, 793. Another area justifying more research is in the specification 

and implementation of constraint-based spanning sets. Coreference provides a logical 

implementation for certain forms of constraints. Mellish [ lo l l  provides a brute forcc 

method for encoding any finite taxonomy using coreference. 

A key factor affecting the design of encoding algorithms is whether the ordered 

set is dynamic or static (i.5. the degree to which the ordered set may change during 

run-time). The e~lcoding of a static order can be computed a priori. In this caw, 

the speed of the encoding algorithm, and the feasibility of modifying codes is 1 1 o t  

as important as the efficiency of the codes. For dynamic orders, however, we 1lc:cd 

encoding schemes that efficiently generate encodings and are not brittle in the fare 

of change. In this case, the modifications required for codes should be local to the 

change in the ordered set and should not take too long to update. Of course the  

underlying spanning set, will have a great impact on the scope of a change. Clorrlpou~~ii 

components and decomposition both magnify the number of elements directly cffectcd. 

Implementations also have a significant effect on scope. Those which require cvcry 

element to be of the same length (e.g. bit-vectors and integer vectors), or which require 

the specification of unfilled positions (e-g. bit-vectors and ordinary logical terrns), 

cause the scope of change to extend beyond those elements directly affected. For 

the interval encoding in [I], the authors describe how leaving gaps between differcnt 

intervals can reduce the cost of updates (both inserts and deletes). As these gaps fi l l ,  

it may become necessary to re-encode the ordered set. We argue in Chapter 6 that, 

sparse terms may offer the flexibility required of dynamic environments. 

One of the contributions of our analysis is that it may guide the development of 

new encoding schexies. ,4 given encoding problem may dictate certain conutrahts, 

such as sipuctural properties of the ordered sets to encode (eg .  lattice, distribu- 

tive, bounded width), operations required (order checking, meets, joins), if  the ordcr 

18see I1021 for a description of pseuduprime spanning sets. 
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changes dynamically and how (does it grow top-down? are the changes frequent?), 

and so on. The application and available hardware may also suggest an implemen- 

tation (e.g. parallel hardware may preclude the use of coreference). The problem 

parameters will constrain the available techniques and may indicate the availability 

or absence of existing algorithms to solve the problem. In the latter case, some of our 

results may assist in the development of new algorithms. 

There are several important topics that we did not cover in this chapter. We did 

not discuss in detail the problem of decoding the result of a meet or join operation 

to obtain the element(s) in the original order. The importance of this depends on 

the application. Some applications (e.g. [2]) only rieed to perform a decode operation 

after many meet operations, and so the efficiency of decoding is less significant. Other 

applications, however, may need to decode after every operation. There are several 

options to decode efiiciently. Efficient algorithms have been proposed in [61, 77, 78, 

1141. The composition of sparse terms may be exploited in decoding. Depending 

on the implementation, hashing may also be possible. Anothe~ area we ignored is 

relative complements, which involves the association of negative, as well as positive, 

information with elements. We hypothesize that the technique in [2] can be formalized 

in terms of spanning sets and integrated with the techniques we have discussed. 

We have proposed spanning sets as a foundationai framework in which taxonomic 

encoding techniques can be classified. Our analysis exposes connections among ex- 

isting schemes in terms ~f the information content of the resulting encodings and 

the implementation techniques employed. We have also shown some of the limits of 

encoding, especially our NP-Hardness results. The classification also reveals several 

avenues for continued research on encoding, particularly for algorithms to approxi- 

mate the NP-Hard problems (e-g. sections 4.7 and 4.8) and for exploration of some of 

the generalizations and extensions that we have proposed. Additional exploration of 

the use of constraints (such as coreference constraints provided by logical variables) 

is also wuraated. 

We feel that this work provides an important view on the field of iaxonomic encod- 

ing, summaxizing current efforts and giving direction for its continuing development. 

It is one step forward in the quest for efficiency in taxonomic reasoning. 



Chapter 5 

Modulated Encoding 

"Thinking is sometimes injurious to health'? 

- Aristotle 

In the previous chapter, we considered encoding ordered sets in their entirety. Using 

the techniques presented, many efficiency gains can be realized. However, il: we could 

decompose our ordered set P into a number of smaller units, dramatic decreases in 

space may be achieved1. 

In this chapter, we examine ordered sets in terms of intervals. ,4 special type of 

interval, called a module, leads to an t:fficient form of order partitioning called mocln- 

lation [2] where each partition can be encoded, or further modulated, indepenclently. 

This allows us to synthesize, with little overhead, different approaches to encoding, 

by taking advantage of the most efficient techniques for portions of a taxonomy. 

Modulation is related to modular decomposition of graphs, particularly carnpara- 

bility graphs [90, 109, 1121'. Another form of partitioning for distributive latticcs is 

described in [78]. We present a flexible scheme LO perform lattice operations on rnocl- 

da ted  taxonomies, and also lay some groundwork for generalizing modulation. This 

chapter extends our research in [49], and provides correctness proofs for operations in 

modulated t axoaomies. 

lThe decomposition techniques described in section 4.8 of Chapter 4 are designed to decfirnposc 
spanning sets to improve the space efficiency of implementation whereas in this chapter, decompo- 
sition is a meta-level technique for subdividing an order to encode into two or more smaller ortiere. 

2A graph Gp is the comparability graph of an ordered set P if Gp = (P ,  Ej and (z, y) E E if and 
only if z < y or y < 2.  
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5.1 Order Intervals and Modules 

Definition 5.1 Let P be an ordered set. A closed interval, denoted as 

[{al,. - , a,), {bl, - , b,)], is a set of elements {x E PJ?ai,  bj such that ai 5 J: < b,). 

We can alternatively define a closed interval as the intersection of a down-set and 

an up-set: [{al:-a-,am),(bl,...,bk)] = f{al,-..,a,) n J{bl,---,bk}. Intervals in 

ordered sets are analogous to intervals in total orders, such as the integers, and are 

also known as convex suborders. Open and half-open intervals can be similarly defined 

using non-inclusive subsumption. If m = 1 and n = 1, then the interval is called 

principah; otherwise it is compound. A canonical principal interval [a, b] requires a 5 b 

and represents a unique, non-empty set of elements3. If A, B C P then the compound 

interval [A ,  B] can be defined as a union of principal intervals: [A, B] = UaEA,bEB[a, b]. 

The notation for a compound interval must not contain any redundant information: 

[A, B ]  is canonical if A and B are anti-chains, and Va E A, 3 b  E B, a < b and dually. 

This ensures that non-empty intervals are uniquely represented with this notation. 

Since intervals are a restricted type of subset, a spanning set of intervals is simply 

a set of intervals for which the component mapping is one-to-one. Rather than using 

spanning sets of intervals directly, however, we will employ certain forms of intervals to 

partition the ordered set into more manageable pieces that can then be encoded using 

approaches described previously. Down and up-sets in these segments correspond to 

intervals in the original ordered set. 

Intervals are related by two partial orders: containment and subsumption. Since 

intervals represent subsets of a lattice L, they can be related by set containment: 

[a,  b] C [c, dj if and only if c 5 a and b < d and [A,  B] 2 [C, D] if and only if 

Va E A, b E B, 3c E C, d E D where c 5 a and b 5 d. The subsumption ordering on 

L can also specify subsumpt ion on intervals. We first define (absolute) subsumption: 

[a, 6 j  5 [c, d] if and only if b < c, which is equivalent to: 'dx E [a, b], Vy E [c, d], x 5 y . 
For compound intervals, [A,B] 5 [C? Dl if and only if Vb E B,Vc E C, b 5 c. We 

now define partial subsumption among intervals: [a, b] 5 [c, 4 if and only if Vx E 

31f a < 6 does not hold, then [a, 4 = 43. 
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[a, b], 3y E [c, 4, x L: y. This is equivalent to: b < d. Absolute subsumption and 

interval containment can both be seen as special c.ases of this. 

We are particularly interested in certain forms of intervds that permit us  to parti- 

tion an ordered set without incurring a loss of information or unreasonable addit,ional 

cost to  maintain order. Our analysis formalizes and extends an earlier proposd in [2]. 

Definition 5.2 Let P be an ordered set, a E P and Q 5 P. A surrogate fop a in Q 

is an element b E P for which V x  E Q ,  (i) a 5 x if and only if b 5 x and (i i) a 2 :c 

i f  and only if b 2 x. 

An element b E P that satisfies only the first (second) condition is called an upper 

(lower) surrogate for a in Q. Also, if a is a surrogate for 6 in Q? then b must also Be 

a surrogate for a in Q. 

Definition 5.3 Let P be an ordered set. A subset M C P is called a module i] 

Vx, y E M, x is a surrogate for y in P\M. 

That is, Vx, y E M and z f P\M, x 5 z if and only if y 5 z, and x 2 z if and 

only if y 2 z.  Modules are also called order autonomous sets [go], and the sets in the 

comparability graph Gp that correspond to modules are called modubes, stable sets, 

or clumps [log]. We now state some properties of modules. 

Theorem 5.1 Let L be a lattice. Then M 5 L is a module if and only if UM = b i s  

an upper surrogate and n M  = a is a lower surrogate for M in L\M. 

ProoE Suppose M is a module. Let b = UM and a = nM. Also, let t E L\M arrd 

x E M. If z > b then z > x (by the definition of join). If z > x then z 2 y for all y E M 

(by the definition of a module). Then z 2 b (by the definition of join). Thus b is an upper 

surrogate for M in L\M. An analogous proof can show that a is a lower snrrogatr? for A4 

in L\M. 

e Suppose b is an upper surrogate, and a is a lower surrogate, for M in L\M. G1on~idt.r 

any z E L\M and x,y E M .  z 2 z if andonlyif z 2 bif andonlyif z 2 y, and z 5 x if 

and only if z 5 a if and only if z 5 y. Thus every pair of elements in M are surrogates in 
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Corollary 5.1 Let L be a lattice. If a subset M E L is a module, then 

i. There are no elements between the maximal (minimal) elements of A4 and 

the join (meet) of M: [[w , uM] = 0 and [nM, LMJ] = 0, 

ii. M is a closed interval: A4 = [[MJ, [MI] and 
... 
222. The only arcs entering (leaving) M are through the maximal (minimal) ele- 

m.ents of M :  

M = UW\L 1MJ u 1M.J = TlMJ\TTMl u [MI- 

Proof: (i) Suppose 3a E L\M for which a < UM and z > y for some y € [ M I .  But 

then LIM is not an upper surrogate for M  in L\M. By the above theorem, M  cannot be a 

module. 

(ii) If z E M, clearly a E [LMJ,  [MI] .  Let z E [ [ M J ,  [ M I ] .  Then 3a E [ M I ,  b E [ M J  

such that b < a < a .  Suppose a 4 M .  Then a and b cannot be surrogates for each other 

with respect to a.  

(iii) Suppose M  is a module. By (ii) above, M  = [ [ M  f , [Mf 1. Let x E M .  Clearly 

x E J, [ M I .  x E 1 [ M J  if and only if x E [ M I .  In either case, x E I [MI \I [ M J  U LMJ. Let 

x E J, [MI \J, LMJ u [ M J .  Then either x E I [MI and x $ 1 [&I] or x E [ M I .  In the latter 

case, x E 1M. For the former case, 3a 6 [MI for which x 5 a and Vb E [ M I ,  x $ b. If x 4 M 

then M cannot be a module. We can analogously show that M  =I [ M J  \ [MI u [MI 

This corollary shows that a module is a special type of interval (item (ii) above). 

The general forms of a module are shown in the following figure. In the first and third 

b is a surrogate. In the first and second, a is a surrogate. In all cases, a is a lower 

surrogate and b is an upper surrogate. 

Figure 5.1: Types of modules 
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5.2 Order partitions 

Definition 5.4 Let P be an. ordered set. An order partition is a partition of 1' irrto 

two suborders Q and P\Q.  

A partition basically loses the subsumption information between elentctnt,s in Q 
and P\Q.  We say that Q C P induces the partition Q and P\Q. 

Definition 5.5 A partition of an ordered set P. into Q and P \ Q  preserves subsump- 

tion i f  3a, b E P \ Q  such that a is a lower surrogate, and b an upper surrogate, SOIS 62 

in P\Q. 

Theorem 5.2 Let L be a lattice and Q L .  Then Q is a module if and only if the 

partition induced b y  &\{UQ, nQ) preserves subsumption. 

Proof: + Suppose Q is a module. Let b = UQ and a = nQ. By a previous theorem, b is 

an upper surrogate, and a a lower surrogate, for Q in P\Q. Since Q\{uQ, nQ} 6) and 

a, b 4 Q\{UQ, nQ}, this partition is subsumption preserving. 

(I Suppose the partition induced by Q\{uQ, nQ) preserves subsumption. 

Then 3, d E P\(Q\{UQ, nQ}) such that c is an upper surrogate, and d a lower surrogat,~, 

for Q in P\(Q\{UQ, nQ}). Let x, y E Q and z E P\Q. Then x _< z if and only if  c < z i f  

and only if y < a and x 2 z if and only if d 2 a if and only if y 2 z. Thus, Q is a mod u1c.o 

Note that  UQ and n Q  need not be in Q. Both are in Q only for principal rnodulcs. 

In this case, only one of these need be left behind in the partitioning, 

Theorem 5.3 Let L be a lattice and let Q be a module in L.  Then the decomposilion 

of L into Q and L\Q U {UQ, flQ) produces two lattices. 

Proof: Clearly Q is a sub-lattice (i-e. it is closed under meets and joins). Consicler the 

meet of any two elements in L\Q U {uQ, nQ}: x n y. The only way x TI y could be in I) is 

if z n y = UQ, otherwise Q is not a  module.^ 
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5.3 Modulation 

Modulation involves partitioning a lattice into two sublattices according to a mod- 

ule, and successively repeating until only trivial or small modules remain, essentially 

constructing a lexicographic decomposition [90]. In the comparability graph, this 

corresponds to modular, tree or substitution decomposition [90, 1091. 

At each step, the surrogates for the module inducing the partition are retained 

and associated with this module, essentially creating the quotient graph induced b y  

this module [log]. Due to the partitioning, the containment relation of the final set of 

modules forms a tree, called the containment or decomposition tree and denoted as C7. 

This tree corresponds to the decomposition graph of Gallai [60, 901. Subsumption, 

meets and joins in the original lattice are maintained in the modulated lattice through 

the i~ldividual modules? their surrogates and the containment tree. The orders induced 

by the modules and C 7  will be distinguished using subscripts. 

Let us define two functions mapping modules to their surrogates: SuppeT(M) and 

SI,,,, ( M ) .  To simplify our procedures for taxonomic operations in modulated lattices, 

we define, for an element x E L, SuWeT(x)  = x and SloweT(x)  = x. Let us also define a 

function mapping elements to their smallest containing module: M ( x ) .  We can now 

define the taxonomic operations in a modulated lattice L: 

Meet x nL y = z if and only if 

i . ~49contex2r &Ix, My are as above. 

ii. If 5 rL y then z = y. If x LL y then z = x. 

iii. If x1j.y then z = Sl ,,,, (A&) nm ,,,,, Sl,,,,(M,). 

*If M ( z )  = M(y), then MCmt,,t will be a leaf of the containment tree. In this case, M, = 2: and 
MY = y. Essentially, this treats elements as (atomic) modules. 



Theorem 5.4 Let L, be a .modulated lattice. Then the above ~quinaler~ces  for sub- 

sumption, meets and joins hold. 

Proof: 
Subsumption Let x, y E L. Mz (My) is the largest module that contains x (y) but not, y 

(x), and MCOntezt is the smallest module that contains both x and y. By the dehnitiou 

of surrogates, z SL y if and only if Su ,,,, jMxj ~~~,,,,,,, y. Similarly, z < L  y if  and 

only if x < M ~ ~ ~ ~ ~ ~  Slower(itiy). Putting these together, we arrive at our result. 

Meet Let x, y E L and suppose xnr, y = z. Clearly, if x 21, y ( x  LL, y) then a = y ( z  = z). 

Otherwise, z <r, z, z < L  y. ,+Iz (My) is the largest module that contains z ( y )  t n ~ t  

not y (x), and Kate& is the smallest module that contains both x ant1 y. Atso, by 

the definition of modules, z must be an element of iC.PCcntexl. 

By the definition of surrogates, z 5~ x if and only if z < M , , , , ~ , , ~  Si,,,,(hrl,). Similarly, 

z < L  y if and only if z <?Mconrert SloWerfM9). Putting these together, gives our result. 

Join The proof is the dual of the praof for meets. 

0 

In an unmodulated encoding, subsumption requires one comparison of codes and 

meets require one calculation followed by decoding. Here, subsurnptioli requires one 

calculation in the containment tree to find the context module and one contparisor~ of 

codes within this module- Meets require the calculation to find the context module, 

one calculation within this module and decoding. Thus, although the number 01' 

comparisons is greater, the size of each code can be drastically reduced, since the size of 

the resulting modules and the containment tree will be much smaller than the origi r1a1 

ordered set P. For the proposal in [2], the number of operations increases linearly 

with the depth of the containment tree CT. The above operations are sirnplifitd if, 

for each modde, upper and lower siin~g;ii= are the same element. 



'lb encode a modulated lattice involves encoding each sublattice formed by the 

partitioning as we13 as the containment tree. Any of the techniques previously cov- 

ered can be used. although there are particularly simple and efficient techniques for 

encoding trees (e-g, i341). Associated with each element is its smallest containing 

rnodule M(z) and its code C M ( x )  within this module. Associated with each module 

iW is a code for the containment tree and the surrogates SqP,,(M) and Sl,,,,(M). 

The spanning set for the entire lattice is t~he union of the spanning sets for these 

sublattices plus the intervals defined by the sublattices themselves. The component 

mapping will compute the components of an element within its smallest containing 

module plus the defining interval of this module. Thus, the above operations can be 

efficiently implemented. 

Since any technique can be used to encode a module, modulation opens the pos- 

sibility of heterogeneous encoding 1491: different modules can be encoded using tech- 

niques that are best suited to the form of the order within the module. For exam- 

ple, modules that are chains may be encoded using integers, while modules that are 

anti-chains may be encoded using logical terms. In both cases, the use of different 

techniques can lead to optimal encodings. The only additional information required 

for a module is the type of encoding technique utilized. 

Figure 5.2 depicts a modulated lattice, where the modules are encircled by ovals 

and named for illustrative purposes. In an implementation, they can be replaced by 

their surrogate elements. The containment tree of this modulation is also shown. In 

order to determine if z. 5 d. we first compute MC,,,,,, = A& UcT M5 = M .  hPV = M3 

and Md = -I%$, . Now. 54 LAf XI. so we conclude that v 5 d. To compute c fl d, we 

find Afmtezt = M, = _If4 and -%Id = ME. Then 1V14 flnf, M5 = s- Similarly, c fl e 

gives us the surrogate of which is u, 

There still remains tbe problem of finding modules. Fortunately, we can take ad- 

vmtage of results from comparabilit;. grzphs. In [109], afi algorithm that requires 

O( f PI3) time and 0([Pf2) space is described for constructing tbe entire decomposi- 

t ion t r e  in a top-down manner. This paper aiso cites two other algorithms that have 

time and space complefity of 0(1PI2), the latter of which constructs the decomposi- 

t i m  t-ice iinmmmidly. There exist more recent linear algorithms for producing the 
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Figure 5.2: A modulated lattice and its containment tree 

entire containment tree [3l, '761. These algorithms may be adaptable to 1leterogt:- 

neous encoding. Also, in (21, an efficient approximation algorithm for modulation is 

described. 

5.4 Extending modulation 

The restrictive natiire of a nodule permits efficient partitioning as well as compu- 

tation of lattice operations. Unfortunately, many lattices cannot take advantage of 

modulation, particularly very dense lattices. Additionally, in a dynamic environrr~ent, 

moduies are fragile and can be breached by the addition of a single arc entering or 

leaving the middle of the module. W-e outline below one approach we have cleveloped 

to make modules more flexible. 

5.4.1 Lower and Upper Semi-Modules 

Definition 5.6 Let P be an ordered set. A subset M C P is cakled a lower semi- 

module i fVs ,  y f M, z is a dower surrogate for y in P\M, 

Upper semi-modules are defined dually. For a subset M of a lattice L, we can show 

that nM = a is a lower surrogate for M in M\L if and only if M is a lower semi- 

module. For a lower semi-module, we only obtain a lower surrogate. Elements within 
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the semi-module may have different upper surrogates, but we may still be able to split 

our lattice on this semi-module, retaining only the surrogates in the original lattice. 

Thus, instead of an order partition, we end up with an order decomposition and the 

containment tree becomes a containment order. An example is shown in Figure 5.3. 

The first diagram is a lower semi-module within the context of our lattice, where 

element a is a lower surrogate. The second diagram shows a partition of this semi- 

module (with the grey lines) according to upper surrogates, which are the greatest 

elements within each partition. Only these elements need be retained in the original 

lattice, as we modulate. The set of upper surrogates in a lower semi-module M is 

the set obtained by the meet closure (within M) of the elements that breach M 

from above. In this example, elements b, c and e breach M and the meet closure is 

{b, c,  e, i}, since e fl c = i. 

Figure 5.3: Lower semi-modules 

Lower modulation incurs some duplication of elements, since the 1a.ttice is not 

partitioned (i.e. the upper surrogates are in both resulting lattices). Each element 

must now have associated with it not only its smallest containing semi-module, but 

also its upper surrogate in this semi-module (the lower surrogate is associated with the 

semi-module). Within the semi-module, the duplicated elements are ghost elements 

- they are no longer treated as other elements, but act as place holders for resolving 

operations within the semi-module. We may, however, still achieve space savings if 

we can decompose a lattice using lower semi-modules that do not have too many 

upper surrogates. Upper semi-modules may be particularly useful for ordered sets 

that grow dynamically downwards (such as those in [24]). In this case, once an upper 

semi-module is identified, it will never be breached by later updates, although the 

number of lower surrogates may change. 



5.4.2 Generalized Modules 

'CVe can generalize this technique one step further to decompose a lattice based on 

any interval that is closed under meets and joins. Note that a trivial sublattice of an 

ordered set P is a singleton set, P itself or the empty set. 

Definition 5.7 A generalized module of a lattice L i s  a non - t r i~ ia l  sublattice of .L. 

A number of upper and lower surrogates for the module may need to be left in the 

parent lattice on decomposition. These elements can be determined as above, wl~e rc  

the lower surrogates will be the join closure of elements that breach the module from 

below. Now, in addition to the smallest containing module M ,  we need to associate 

with every element its upper and lower surrogates within this module (as well as its 

code in M ) .  

There are several consequences of modulation using generalized modules: 

i. Modules may overlap: we may have MI M2, M2 Sf M I ,  but MI n M2 # 0. 
The containment relation is no longer a tree, but a general partial order. 

ii. Upper and lower surrogates are no longer associated with modules, but with 

iiidividual elements. 

iii. Ghost elements result in duplication of surrogate elements. 

Consider the lattice fragment in Figure 5.4, where we have encircled a potential 

module M .  The left fragment partitions M according to lower surrogates and the 

right fragment partitions M according to upper surrogates. Modulation on M will 

remme all the elements that are neither upper nor lower surrogates in M ,  as shown 

in the rightmost diagram in Figure 5.4. Each element has a unique upper arid lowcr 

surrogate in these remaining elements. For elements that are removed (i-e. elcrnerits 

that are neither upper nor lower surrogates for this module), no duplication occurs. 

Both upper and lower surrogate elements are now duplicated: the element that is in 

the module is a ghost element. We discuss the implications and handling of ghost 

elements below. Once the decomposition has occurred for a module, we can continue 

the process of modulation. 
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Figure 5.4: Generalized modulation. Lower surrogates (left) are { a ,  e ,  1 )  and upper 
surrogates (centre) are {b, e ,  f ,  n }  . 

5.4.3 Non-overlapping Modulation 

We first consider generalized modulation for modules that do not overlap (i.e. for two 

modules, either one contains the other, or they share no elements in common). In this 

case, the containment relation is strictly a tree. In the example in Figure 5.4, further 

modulation would either contain all or none or { a ,  b, e ,  f, 1, n}. 

We associate with each module It{ its code in the containment tree CT. With 

each element x we associate its least containing module M(x) ,  its upper and lower 

surrogates Swe, (x) and S~ow,,(s) ,  and its code in this module. 

The procedure for computing subsumption can now be extended with a modifica- 

tion to use the surrogates associated with individual elements rather than modules. 

A surrogate pathway will need to be followed through the containment tree from the 

initial elements to the context interval. 

Subsumption x sf, y if and only if 

i -  -ucontezt = ~ W ( X )  UCT M(y). 
. . 
11. 3 elements s,? s, in l%ICo,,ezt that can act - s  surrogates for x and y (and 

can be computed as follows, where ":=" denotes assignment.): 

S x  := 5; Sy := y; 

while M(s,) # sX := Supper ( s ~ )  ; 

udde M (s,) # MCOntext: sy := Slower ( s ~ ) .  
*.. 
111. sz L M ~ ~ ~ , ~  sy. 

A similarly modified procedure can be applied to compute meets. The procedure 

for joins can easily be derived. 
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Meet a: f l L  y = z if and only if 

i. If x 2 y then z = y. If x 5 y then z = s 

ii. If x11y then 

ii.a. MCOntext = M(x) U c l  M(y). 
ii-b. 3 surrogate elements s,, s, in i\lcOnt,,t for x and y (and can bc 

computed as follows): 

In strict modulation, surrogates are associated with modules, so once we haw 

found the contextual module McOntext, we can use the surrogates for the appropriate 

children. Here, we must follow a path of surrogates from the initial elements to t hc 

contextual module. Whether upper or lower surrogates are following depends on the 

operation. The length of these paths depends on the depth of the containment trec, 

which in turn depends on the sizes of  module?^. 

Note that when performing a meet a: fl y = z ,  the result z may be embedded wit h i  tz 

a module below (in the containment tree) the context McOntext. Due to the way gl~ost, 

elements are dealt with (i.e. duplicating elements in the meet and join closure of 

breaching elements), however, this element will be duplicated in both the context, and 

this lower level module (in the latter, it will be a ghost element). Thus, the meet car] 

be performed in McOntezt. 

Theorem 5.5 Let L be a lattice that is modulated using generalized modules with no 

overlapping modules. Then the above equivalences for subsumption and meets hold. 

Proof: 

Slabsumption Let z7 y E L. MCont,* is the smallest module that contains both z and y, 

Let sl = x, sz, . . . , sk = s, be the path of surrogates followed from z to s, i n  the 

above procedure (i-e. s, = S,,,,(S,,e,(. - - (SVe,(x) -. a) ) )  and M ( s Z )  = MCont&zt ) .  

By the definition of surrogates, z st, y if and only if s, <M,,,,,, y. Similarly, s f 1, r/ 

if and only if z LM-t,,t sy. Putting these together, we arrive at out result. 
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Meet Let x, y E L and suppose z nL y = z. Clearly, if x >L y (x I L  y) then z = y ( z  = x). 

Otherwise, z <L x, z < L  y .  McOntext is the smallest module that contains both x and 

y. Also, by the construction used in generalized modulation, z must be an element 

of MmnteZt. This is because the meet closure of elements that breach any module are 

duplicated (one is left in the containing module, and the other is retained as a ghost 

element in the contained module). By the definition of surrogates, z x if and only 

if z &con,,,t s, (as shown above). Similarly, z LL y if and only if z i~~~~~~~~ sy. 

Putting these together, we arrive a t  our result. 
0 

An area requiring a closer look is the treatment of ghost elements, which are 

duplicated upon decomposition. A ghost element x, is created when an element z is 

a surrogate for one or more elements in a module M. The element x remains in the 

parent lattice, and its duplicate x, remains in the module. This ghost element only 

needs to be present as an image of x so that operations within the module M which 

result in x, can be resolved. Thus, the ghost needs to be encoded in M,  but it does 

not need any other associated information (i.e. the smallest containing module and 

surrogates). A ghost element x, can be viewed as a place holder for the portion of 

the code of x associated with module M. 

5.4.4 Overlapping Modulation 

In strict modulation, overlapping modules are not possible. In our generalization, 

this may now occur - this will happen in the example in Figure 5.4 if a new module 

contains some, but not all of ( a ,  b, e, f ,  I, n). There are two complications that arise 

from overlapping modules: (i) the containment information is no longer a simple tree, 

but a general partial order, and (ii) determining the context McOntext of an operation, 

and the surrogates in this context, is more difficult. 

To deal with these problems, we no longer rely on the containment relation be- 

tween modules. Instead, we use surrogate containment information, and the resulting 

surrogate containment order SC: For two modules MI and M2, M2 covers MI in SC 

if and only if M2 contains a surrogate for at least one element in MI (i-e. iff 3x E MI 

such that S,-(z) E M2 or Slo,,(x) E M2). 
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Extending the taxonomic operations for overlapping modules requires following 

surrogate pathways through SC to find the contextual module. Since we canrwta 

easily identify the contextual module, rather than encoding SC, we associa.t,e witill 

each module M a level, Eevel(A4), which is the length of the longest pat>h from kt to 

the root of SC. The modified procedures for subsumption (for generalized modules) 

and meets are given below. 

Subsumption x LL y if and only if 

i. 3 McOntext and elements s,, s, in McOntezt that can act as surrogates for 

J: and y (and can be computed as follows): 
S, := x; Sy := y ;  

Lev := max(level(M(s,)), level(M(s,))) - 1; 
while M(s,) # M(s,) 

while kevel(M(s,)) > Lev: s, := SuPPe,(s,); 
while Eevel(M(s,)) > Lev: s, := SrOwe,(s,); 
Lev := max(level(M(s,)), level(M(s,))) - 1; 

Meet x nL y = z if and only if 

i. If x 2 y then z =  y. If x 5 y then z =  2. 

ii. If xlly then 

ii.a. 3 McOntezt and elements s,, s, in McOntext that can act as surro- 

gates for x and y (and can be computed as follows): 

Sz := x; Sy := y; 

Lev := maz(level(M(s,)), level(hf(sy))) - 1; 
while M(s,) # M(s,) 

while leveb(,U(s,)) > Lev: s, := St0,,,(s,); 
while level(M(s,)) > Lev: S, := Stower(sy); 
Lev := max(level(M(s,)), level(M(s,))) - 1; 

end while; 

Mcontert := M(sx)- 
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Theorem 5.6 Let L be a lattice that is modulated using generalized modules (with 

possible overlapping modules). Then the above equivalences for subsumption and meets 

hold. 

Proof: 
Subsumption Let x, y E L. We need to find McOntext as well as surrogates for x and y in 

L W ~ ~ , ~ , , ~ .  The level of modules decreases monotonically as we ascend the surrogate 

containment order S C  searching for Mcontext, s, and s,, but it may decrease in steps 

greater than one. 

Initially, we set Lev to  one level above the lowest (maximum) level of x and y. This 

ensures that the lowest of s,, S, (or both if they are at the same level in different 

modules) will move up at  least one level in the subsequent two loops. The outer 

loop continues until we have found McOntezt (i.e. until M(s,) = M(s,)). The two 

inner loops each continue until the level of s, (s,) is at or above Lev. Since we are 

following upper (lower) surrogates for s, (s,), the subsumption relation between s, 

and s, remains invariant. After both inner loops complete, we set Lev again as above. 

At the end of the loops, M(sX) = M(s,) = Mcontext- Mcontezt is the smallest module 

that contains both an upper surrogate for x and a lower surrogate for y. Since we 

move up SC following upper (lower) surrogates for x (y), we find the first module that 

contains appropriate surrogates for both. 

Let sl = x, s2,. . . , sr, = s, be the path of surrogates followed from x to s, in the 

above procedure (i-e. s, = Supper(SuppeT(' - - (SUppeT(x) - -1)) and M(s,) = kfcontext). 

By the definition of surrogates, x <L y if and only if s, iMc0,,,,, y. Similarly, x i~ y 

if and only if x <M~,,,,, s,. Putting these together, we arrive at our result. 

Meet Let z, y E L and suppose x n~ y = z. Clearly, if x LL y (x < L  y) then z = y ( z  = x). 

Otherwise, z <L x, z < L  y. We need to find Mcontext as well as surrogates for x and 

y in MCmtezt, as above. 

Initially, we set Lev to one level above the lowest (maximum) level of x and y. This 

ensures that the lowest of s,,s, (or both if they are at the same level in different 

modules) will move up at  least one level in the subsequent two loops. The outer loop 

continues until we have found McOntext (i.e. until M(s,) = M(sy)). The two inner 

loops each continue until the level of s, (sy) is at or above Lev. Since we are following 
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lower surrogates for s, (s,), the subsumption relation between s, (s,) and .z rc~nainw 

invariant. After both inner loops complete, we set Leu again as above. 

At the end of the loops, M(sX) = M(sY) = Mcoqtezt. McolLtexi is the smal1et;t modulc 

that contains a lower surrogate for both x and y. Since we move up S C  following lower 

surrogates for x (y), we find the first module that contains appropriate surrogates for 

both. 

By the construction used in generalized modulation, z must be an element of M,,,tcsl. 

This is because the meet closure of elements that breach any module are duplicated 

(one is left in the containing module, and the other is retained as a ghost element in 

the contained module). 

By the definition of surrogates, z <L x if and only if z < M ~ ~ ~ ~ , , ~  S, (as shown above). 

Similarly, z LL y if and only if z <M,,,~,,~ s,. Putting these together, we arrive at 

our result. 

5.4.5 Extending Modulation Algorithms 

We have outlined the properties and requirements of generalized modulation for encocl- 

ing purposes, but we need algorithms that can find "good" decompositions. Perhaps 

some of the algorithms for modulakion can be adapted to decompose an ordered set 

into lower semi-modules or generalized modules for which the number of surrogates 

(i.e. the degree of duplication) and the amount of overlap is minimized. 

Although generalized modulation may not guarantee encoding efliciency, it does 

offer many potential benefits. First, the fragility and stringent nature of strict rnod- 

ules makes modulation impractical for many encoding environments, especially for 

ordered sets that are dense. Although generalized modulation may still be inefficient 

for very dense lattices, there is the opportunity to expand the utility of decornpor;it,ion 

and heterogeneous encoding. Generalized modulation may also be ttsed in conjunc- 

tion with strict modulztion in dynamic environments. Starting with a ~rtndulated 

lattice, updates to  the lattice that breach modules may be tolerated, while incurring 

only a small overhead for updating the encoding, When the decomposition becomes 

ineEcient, the new ordered set can be remodulated. Another benefit of generalized 
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niodulation is in distributed environments, in which a large ordered set may be spread 

out over a number of sites. The portion of the ordered set at each site can be encoded 

independently of the others, and duplication of information across sites may only be 

necessary for the containment order. 

Conclusion 

Recent results in taxonomic encoding have identified various taxonomic forms for 

which efficient encodings exist (e.g. distributive lattices, trees and bounded width 

lattices). Through order partitioning techniques, a generalized heterogeneous en- 

coding scheme can take advantage of these encoding schemes when such forms are 

identified as suborders. 

In this chapter, we formalized and extended lattice modulation for encoding, intro- 

duced in [2]. Modulation partitions a lattice to encode into sublattices and offers the 

possibility of greatly reducing encoding sizes regardless of implementation, and with- 

out undue cost in performance. Generalized modules may increase the applicability 

of modulation, even for dense, dynamic or distributed lattices. By maintaining (and 

encoding) the containment information of the decomposition, we provide an efficient 

framework in which modulated encoding is both feasible and efficient. 

For dynamic taxonomies? modulation may confine the extent of change. The 

strict nature of modules, however, makes them susceptible to violation as a result of 

change. The generalized modules developed in section 5.4 are more impervious to 

change. Finally, modulated encoding may aid in decoding, since we know in which 

partition the result lies, greatly reducing the search space. 



Chapter 6 

Encoding with Sparse Logical 

Terms 
"Unless you expect the unexpected you will never find truth, 

for it is hard to discover and hard to attain" 

- Heraelitus 

The purpose of the present chapter is to empirically apply the theory of encoding. 

During our research, we developed sparse EogicaE terms as a varimt of logical terms that 

are particularly suitable for encoding [5i]. Sparse terms are closely related to direct,ed 

acyclic graphs (DAGs), which have also been studied for encoding [104]. Our focus, 

however, is on developing an efficient implementation for encoding rather than taking 

an existing technique. Sparse terms share a number of similarities with Prolog terrns, 

$-terms in LIFE [4], feature structures [5, 23, 1181, the PATR I1 forrnalisrn [131, 1323, 

etc. However, the focus of sparse terms as an efficient representation for encoding 

endows them with a number of key distinctions from these other formalisms, as will 

become clear. Since our aim is to use sparse terms as a contribution to encoding, 

rather than as a contribution to the suite of logical formalisms, we chose to omit 

in-depth coverage of these related formalisms. 

After motivating our development of sparse terms, we introduce the basic form of 

sparse term developed in 1511. In section 6.3, we develop extensions that make sparse 

terms suitable as a universal encoding implementation. We then provide algorithms 

that implement the transitive dusure and compact encoding techniques, which are 
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the first logical term algorithms to be published. Finally, we analyze some theoretical 

properties of sparse terms in encoding, which we back up with an empirical study of 

encoding using two taxonomies derived from existing applications. 

6.1 Introduction 

Compact representations for data structures are commonly used when certain proper- 

ties can be exploited to significantly reduce the storage space required. As an example, 

principles of locality are used in data compression techniques. For sparse matrices, 

the assumption that the majority of elements are zero permits us to retain only the 

nonzero elements, along with their coordinates. If this assumption holds true, the 

savings accrued by not explicitly storing the zero elements outweighs the additional 

cost of storing coordinates for nonzero entries. 

We develop a similar representation for logical terms. A sparse term is a term in 

which the majority of elements (i.e. functors, atoms and variables) are anonymous 

variables. Named variables provide coreference between term positions, whereas the 

only purpose of anonymous variables is to reserve positions, and so they do not con- 

tribute to the information content of a term. 

Applications that work with sparse terms can benefit from sparse terms both in 

terms of space and time. Unification with an occurs check needs only to examine 

the named variables. Unification without an occurs check is linear in the sum of the 

number of atoms, functors and variables of the two terms. This will be more efficient, 

as our sparse representation eliminates the storage of anonymous variables. 

Sparse terms were, however, developed primarily to provide a form of logical term 

adapted for encoding. In extending the basic sparse term, we incorporate integer sorts 

(i.e. when unifying two different functors fl and fi, if both are integers, the result 

is rnos(f i , f i ) ;  if at least one is not an integer, then unification fails). Integer sorts 

come for "free", and can be used to generalize integer vectors: integer sorts provide a 

form of sparse integer vector that permits the integration of integer vectors and logical 

terms. This combination is powerful for encoding, since integer sorts are suited for 

encoding chains, while ordinary fanctors axe suited for encoding anti-chains. 



We also integrate more compact and flexible forms of subterm indexing. The basic 

form of sparse terms a.re very compact, for terms with many anonymous variables. 

However, as the terms become less sparse, the overhead of explicit subterm inclesi~~g 

surpasses the savings of eliminating anonymous variables. In the expanded form, wc 

permit "relative" indices which denote integer indices that are relative t~ preceding 

integer indices in a term. In this more expressive form, as a term becomes mosc 

dense, the sparse term representation can remain more compact, up to a point, thm 

the corresponding ordinary terms or integer vectors. 

We also permit grouping sequences of indices with identical subterms into intervals. 

For encoding, this will normally only occur for unspecified subterms. Index intervals 

in sparse terms provide a generalized implementation ctf sets of intervals, which have 

also been used in encoding [I]. Figure 6.1 shows the relation of sparse terms tn ',he 

encoding implementations of which we are aware. 

sparse terms 

b*c&q', I 
flat terms integer vectors interval sets 

Figure 6.1: Encoding implementations: sparse terms generalize other techniques 

6.2 Basic Sparse Terms 

Our representation is modeled after that of sparse matrices. An n x rn sparse matrix 

may be stored as a list of coordinate/value pairs for the non-zero elements rather 

than as an n x m array. For example, the following matrix can be stored as [(I ,2)- 1 ,  

We avoid storing the zeros by using a more space-consuming representation for 

the non-zero elements. By assuming that most of the elements are zeros we. predict a 

net redudior; in storage space. 
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A sparse term representation relieves us from storing anonymous variables at the 

expense of a more complex scheme for the named elements (i-e. atoms, predicates, 

functors and named variables). We focus on the surface form of terms. Although 

the internal representation may be quite different from this and is implementation 

dependent: it is the surface form that users manipulate and store outside the system. 

As for sparse matrices, we need to store the position, or index, of the named elements. 

Using a rooted graph notation, we can do this by labeling arcs with the index of the 

named elements and removing the anonymous variables (which are represented by 

underscores in Prolog,). Consider the Prolog term: a(b(- c, d, -), -, -, e(-, f(-, -1, -1). 
The ordinary and sparse forms are shown graphically below. The sparse t8erm can be 

represented linearly as: ail- h.[2 - c, 3 - dl, 4 - e.[ 2 - f]]: where the argument lists 

are ordered according to  increasing index. 

-- 

Figure 6.2: Sparse logical terms 

To be more precise, we provide the hllowing definition of our representation: 

Definition 6.1 A basic sparse terrn is either (i) an atom (ii) a named variable or (iii) 

a ftrlsctor of the form a.L, where a is the functor symbol and L is a sparse argument 

list. A sparse argument list is a list of elements of the form n-ST, where S T  is a sparse 

term and n. is the index of ST in the parent term. This fist is ordered by increasing 

indices with no repetitions. 

6.2.1 Space requirements 

Piow that we have a sparse representation for logical terms, when is a term consid- 

ered sparse? That is, when wilt this representation benefit an application? Since an 

acctrrate account or' the space required to represent a logical term, for exampie in 

Prolog, is implementation dependent, we restrict our analysis to the asymptotic time 

and space behavior of the surface form. 
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Consider an ordinary term that has n named elements and 777 anonymolis variables. 

Since there are n + 1 symbols, let us assume representing each requires O(1ogn) spacc. 

For the sparse representation, 0 (logn) space is also required. Both rcpresen tatiox! s 

require space for the n named elements, so we do not include this factor ixl our calcu- 

lations. For punctuation marks (e.g. commas, parentheses, dashes), ordinary terrus 

require O(n + m) space whereas sparse terms require O ( n )  space. Since punctuation 

may not form part of the internal representation, we do not consider it further. 

In addition to the above, ordinary terms require 0 (mlogn ) space for anon y lnous 

variables, whereas in the worst-case sparse terms require O(nlog(n + m)) space for 

indices. Essentially, this means that the space benefits of our sparse representation 

begin tso manifest when the ratio of anonymous variables to named elements is greater 

than cine. Of course, due to the constants not included in this analysis, these benefits 

may not become evident until this ratio is somex hat greater than this. 

6.2.2 Unification and Implementation 

Without an occurs check, ullification of both ordinary and sparse terms is linear i r k  

the number of symbols involved. If the number of named elements in both terms is ?L 

and the number of anonymous variables is rn, we have O(n + m) for ordinary terrns 

vs. O(n) for sparse terms. For unification with an occurs check, we avoid needlessly 

checking the anonymous variables. In both cases, we achieve asymptotically better 

results. Thus, by using our sparse representation, applications involving sparse terrns 

have potential benefit both in terms of time and space. 

The straightforward nature of sparse terms permits a simple implementation of 

the required algorithms (unification, subsumption, et c.) either in a logic languagc (e.g 

Prolog) or as an extension to a logic language (written in, e.g., C). Our representation 

shares some features with the +terms in LIFE 141, in particular attribute indexing 

and unbound arity, but it also differs in several respects. Named variables in LIFE 

use more generalized coreference labels (which can specify coreference between any 

two locations in the graphical representation, not just hetween leaves). Although our 

definition of sparse terrns implies the use of Prolog vzriables, we have also extended 
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our implementation to provide both forms of coreference. Our representation also 

deviates from $-terms in the use of anonymous and disjunctive functors, discussed 

below. Another significant difference is that our representation is intended as an 

enhancement to Prolog systems, not as a replacement. 

6.2.3 Variations 

Our sparse representation removes the burden of explicitly storing anonymous vari- 

ables. We now explore some variations on this theme. Prolog is capable of expressing 

uncertainty through variables, only for entire predicates, functors or atoms. We ana- 

lyze how we may incorporate finer scale uncertainty into logical terms, specifically for 

arity and functors. We also integrate an extension of argument indexing that permits 

arbitrary labels, or at tributes, rather than just numerical indices. By blending these 

variations, applications have the ability to incorporate varying degrees of uncertainty 

and information into logical terms, while remaining concise and efficient. 

Binding arity. The representation presented does not provide a one-to-one corre- 

spondence between sparse and ordinary terms. For example, the following terms 

correspond to the sparse term f .[1 -a]: f (a), f (a, -1, f (a, -, -), f (a(-), -), ... Any 

sparse term has an infinite number of corresponding ordinary terms. The arity 

of each functor and atom is not bound, so we can always append an arbitrary 

number of anonymous variables as arguments of functors and atoms. 

If we require the arity of terms to be bound, we must specify it explicitly. This 

can be accomplished by extending part (iii) of our definition to allow functors 

of the form a1iV.L where a is a functor, N is the arity of the functor and L is a 

sparse argument list. For example, the term f (-, b(-, -), c, d(e, -), -) is completely 

represented by f /5.[2 - b/2,3 - c /o ,  4 - d/2.[1 - e/O]], and graphically as: 

d o  
Figure 6.3: Binding arity in sparse terms 
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Anonymous functors. An interesting variation that we have found useful for en- 

coding allows terms to specify only those argument positions that are occupied, 

but not record the functor or atom in that position. This information, prc- 

sumably, would be stored elsewhere. This greatly reduces space requiren~erlt~s 

for cases when many terms are being formed from one set of data, which is 

indeed the case for our logical term encodings where each element of a taxon- 

omy is assigned a term that is a subgraph of the taxonomy itself. We can label 

the original taxonomy with term positions and use it to decode our terms. Ti, 

provide functorless terms, we simply remove the functor or atom from the el- 

ements of the sparse argument list. The term f(-,b(-,-) 2-,c(d,-,e) !-) would thus 

be represented as the term [2,4-[1,3]] and graphically as: 

Figure 6.4: Anonymous functors in sparse terms 

Attribute-value matrices. Attribute-Value Matrices (AVMs), or Feature Struc- 

tures, are a tool used in several computational linguistic systems (e.g. [I  1 81). 

Some implementations of AVMs using ordinary terms require prior knowledge 

of all the attributes an AVM may contain in order to compile appropriate terrns 

(e.g. [91, 1191). A simple modification to our scheme, allowing atomic, rather 

than numeric, indices (for the attributes) and omitting fufictor names (a valuc: 

is either an atom or another AVM), provides for efficient and dynamic AVMs. 

A predicate can be provided to access the value of an attribute, or a sequence of 

attributes. As an example, the sparse term [al-vl, a~-v2, a3-[bl-xl, b2-xZ], a4-v4] 

represents the following AVM (shown in both its matrix and graphic forms): 

Figure 6.5: Attribute-value matrix using sparse terms 
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Disjunctive functors. Thus far, we have permitted two levels of certainty regarding 

a functor symbol: either it is unknown (i.e. it may be any atomic symbol) or it is 

known. Between these extremes lies a range of increasingly focused information 

as to the actual functor symbol. That is, we may know that it is one of a set 

of possible symbols. When this set has cardinality one, we know which symbol 

it must be. We nzme such functors disjunctive and represent them with a set 

notation. For example, the term [model-{MacSE; MacII), memory-{1;2;4;8)] 

may be used to represent a computer system whose model type is either a 

MacSE or a MacII and with either 1, 2, 4 or 8 KB of memory. 

Applications that permit and maintain uncertainty may find the flexibility of- 

fered by disjunctive functors a valuable property. Examples include computa- 

tional linguistics, for maintaining the uncertainty of the referent of a pronoun, 

and automatic system configuration (e.g. [37]). 

6.3 Generalizing Sparse Terms for Encoding 

Basic sparse terms are based on the observation that anonymous variables only reserve 

positions and do not contribute to the information content of a logical term. We now 

extend the basic form to develop a universal encoding implementation. In addition to 

the benefits of eliminating anonymous variables, there are some properties of extended 

sparse terms that endow them with flexibility and conciseness required for encoding: 

Unbound arity A sparse term can represent an infinite number of ordinary terms, 

since arity is not bound. This permits flexibility for encoding updates since a 

code may be extended with a subterm without affecting related codes. 

Unspecified functors Positions in terms can be specified as filled, but the actual 

symbol (predicate, atom or functor) occupying the position can be left unspec- 

ified. Thus, [2,4 - [i, 313 represents a term in which the second position is 

occupied by an unknown subterm, and the fourth position is occupied by a sub- 

term in which the first and third positions are filled. Of course, unification can 

only fail if there are different functors at the same location in two terms. 
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Integer sorts Although sparse terms were designed for encoding, they share a n u u ~  

ber of similarities with $-terms in LIFE [4], including unbound arity. A hicrax- 

chy can be specified among functors in LIFE, which is used when two different 

functors are unified. If cr and /3 are unified, the result will be a n /? or failure 

if this results in I. One of the most influential papers on encoding was written 

with the purpose of performing these operations efficiently [ 2 ] .  However, tl~cre 

is a very simple functor ordering that we can incorporate int.0 sparse terms for 

free: the total order on integers. Unification of two functors will be as in Pro- 

log, unless both are integers nl and nz, in which case unification will result in 

max(nl, n2). This simple addition generalizes integer vectors, providing a form 

of sparse integer vectors with the hierarchical advantages of logical terms. 

Relative Indices As terms become less sparse, the advantages of explicit indcxiug 

diminish until the costs outweigh the benefits. To overcome this, some in- 

dices may be relative. Relative indices can be specified by preceding a positive 

integer n by the "+" symbol, and represent the previous numerical index to 

the left plus n. If there is no preceding numerical index, then the index is n. 

For example, the sparse term [535,538,546,577,578] could be represented as 

[535, +3, +8, +31, +I]. Although we must still provide an index, if the absolute 

index is very large, a space saving may be realized. 

Interval Indices As terms become even more compact, there may be situations 

(particularly for encoding) in which we can benefit from denoting a sequence of 

indices using a set. These interual indices provide a generalization of int,erval 

sets, which have been used for encoding [I]. To illustrate, the sparse tmrn 

[5,6,7,8,9,10,11,12,73,74,75,76,77] could be represented as [(5,12), (73,77)], 

Relative indices can also be used in the interval bounds. 

As we have mentioned, sparse terms generalize the various implementations that 

have been used for encoding. The significance of this is that, not only can encoding 

algorithms be adaptive and selected from existing encoding techniques, but mixtures 

of techniques can take advantage of structures within taxonomies. The following 

definition is based on the original definition, but extended with integer sorts, and 
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relative and interval indices. We do not provide any form of coreference, since it is 

not necessary for our application, although this could be easily integrated. 

Definition 6.2 A sparse term ST is defined as: 

ST A Functor.ArgumentList I ArgumentList I Functor 

Functor - Atom 1 NaturalNumber 

Argument List = [Argument [Argument List] I [ I  
Argument - Index-ST I Index 

Index A NurnericIndex 1 (Numericlndex, Numericlndex) / Atom 

Numericlndex NaturalNumber I + NaturalNumber 

where NaturalNurnber is any natural number. The notation [HeadlTail] denotes a 

list, the first element of which is Head and the remainder of which is Tail, while [ ]  
denotes an empty list (as in Prolog). 

6.3.1 Explicit and canonical forms for sparse terms 

In order to simplify description of a canonical form, and for defining subsumption, 

unification and anti-unification, we need to describe an explicit form for sparse terms. 

The explicit form replaces all relative indices by their corresponding absolute values, 

and all interval indices by their corresponding sequences. We also clarify terms that 

have empty argument lists or no functors, where explicit sparse terms use anonymous 

variables ("-") in place of unspecified functors. 

Definition 6.3 An explicit sparse term ST, is defined as: 

ST, Functor,.ArgumentList, 

Functor, A Atom I NaturalNumber I - 

ArgumentList, [Index,--ST I ArgumentList] I [ ]  
Index, NcaturaINurnber Atom 

Given a sparse term S T ,  we can construct its explicit form as follows: 

Empty Argument Lists If F is a subterm with an empty argument list (i.e. F is 

just a functor), then replace it by F.[]. 
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Unspecified Functors If AL is a subterm with an unspecified functor (i.e. Al, is 

just an argument list), then replace it by -.AL. Note that in sparse terms, the 

anonymous variable can only be instantiated to a functor. 

Relative Indices Suppose +n is the first relative index in an argument list (includ- 

ing those that appear in interval indices): [. . . , +n - ST, .  . .]. If there i s  no 

absolute numerical index to the left of this position, then replace +n - S'T 

by n - ST. Otherwise, if the first absolute numerical index to the left of t,his 

position is rn, then replace +n - ST by nl - ST,  where nl = n + m. 

Interval Indices Suppose we have an argument list containing an interval index: 

[. . . , (nl,n2) - ST,. . .I. If nl > na, then sirriply remove (n1,n2) - ST from 

the argument list (i.e. the interval is empty). Otherwise, replace it by the 

sequence ml - ST, .  . . , r n k  - ST, where ml = nl, mi+l = mi + 1,1 < z' 5 k ,  and 

k = n2 -n1 + 1. 

Given an arbitrary sparse term, for efficiency we want to define a canonical or nor- 

mal form. For terms in canonical form, subsumption, unification and anti-unification 

algorithms can be designed much more efficiently than otherwise possible (i.e, linear 

in term size). Below we define a canonical form for a term ST in terms of its explicit 

form. We say that ST is in canonical form, if its explicit form is in canonical form. 

Let ST be a sparse term, and ST, be its explicit form. We define the canonical 

form ST, of ST as follows: 

No duplicate indices If ST, has a duplicate index I in some argument list: [. . . , I  - 
5'7-1, . . . , I - ST2, . . .I, then remove I - STl and I - ST2 and add I - where 

STlv2 is the unification of STl and ST2. 

in increasing order For any subterm in ST,, if index II precedes index I2 
then Il 5 12, where denotes a lexical ordering on indices. 
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6.3.2 Sparse term subsumption 

We now describe how subsumption (5) is computed for explicit canonical sparse 

terms. Unification and anti-unification can easily be derived in a standard way based 

on subsumption. All three operations have been implemented in Sicstus Prolog. Con- 

verting from an ordinary canonical sparse term to the explicit form can be done easily 

during processing. First, some general properties are given below: 

3 [ ]  subsumes everything (i.e. ST 5 [ I  for any sparse term ST). 

e If nl ,  n2 are integers and nl 5 n2 then n2 5 nl (note the role reversal). 

0 If n is an integer and a is a non-integer atom, then nlla (i.e. n and a are 

incomparable). 

0 If al,az are non-integer atoms and a1 # a2, then al(ja2. 

Definition 6.4 irf ST, and ST2 ore sparse terms, then STl 5 ST2 if and only if all 

of the following hold: 

I .  STl = Fl.ArgListl and ST2 = F2.ArgList2 

2. F1 5 F2 

3. ArgListl 5 ArgList2 

If Fl and F2 are functors, then Fl 5 F2 if and only if one of the following holds: 

1. F2 = - (functorless terms) 

2. Fl and F2 are non-integer atoms and Fl = F2 (atomic functors) 

3. Fl and F2 are integers and F2 5 Fl (numeric functors) 

i f  ArgList1 and ArgList2 are argument lists, then ArgListl 5 ArgList2 if and only 

a'f one of the following holds: 

1,  ArgList2 = [ ]  
2. ArgListl = [Indexl - STl I Restl], ArgList2 = [Index2 - ST2 1 Rest2] and one of 

the following holds: 

(a) Indexl = Index2, STl 5 ST2 and Restl Rest2 

(b) Index* 5 Indexz and Restl 5 ArgList2 
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Encoding with Sparse Terms 

The most well-studied implementation for encoding is the bit-vector f2, 24. 61, 7'91. 

The available hardware implementation and minimal requirements for each itcli~ of 

information (one bit) makes them attractive for encoding. However, there are a, 

number of drawbacks to using bit-vectors for encoding very large, dynamic ordered 

sets: 

0 Codes in a bit-vector implementation all have the same size, so updates to the 

encoding that require changing this length affect every code. This problem is 

shared with integer vectors. Sparse terms, however, do not suffer from this, so 

the scope of change can be contZined. 

a Both logical terms and integer vectors generalize bit-vectors in different, dimcn- 

sions (see Chapter 4). A bit-vector s of length k can be representcd with a 

logical term T of arity k: if position i in s is a 1 (resp. O), then positiori i in r is 

the functor 1 (resp. an anonymous variable). The translation from hit-vectors 

to integer vectors is obvious. Thus, any bit-vector encoding can be translated to 

use sparse terms and exhibit the same asymptotic behaviour; only the asyrnp- 

totic constant changes. Since we are most concerned with asymptotic behaviour 

for encoding large taxonomies, bit-vectors do not actually provide any real ben- 

efit, although their inflexibility is certainly a drawback. In fact, we show later 

how the hierarchical structure of sparse terms can provide a significant savings 

over bit-vectors even for modest taxonomies of only several thousand riodcs. 

As we showed in Chapter 4, all encoding algorithms we are aware of can be ah- 

stracted into two components: (i) the underlying information stored in the encoding 

(which can be characterized using what we call spanning sets) and (i i )  the iniplerr.c~~- 

tation details for storing this information in a computer. Some encoding algorithms 

require a lot of effort to generate codes. This is understandable, given the complexity 

of the problem (in [79], evidence for the NP-Hardness of finding optimal encodings 

is discussed). For static taxonomies, it may be worthwhile spending a lot of energy 

to construct compact, encodings. For dynamic taxonomies, however, this effort rn ay 
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be wasted by changes to the hierarchy. In fact, the changes required for an encoding 

after updates io the source taxonomy may be more extensive in complex cncodings, 

due to the wider scope of analysis performed. 

Encoding algorithms for dynamic taxonomies must be efficient, in addition to gen- 

erating efficient codes. Two of t he earliest and most well-known, encoding algorithms 

(transitive closure and compact [2]) satisfy the need for efficient computation of codes. 

However, the algorithms described directly construct bit-vector implementations. As 

we showed in Chapter 4, these basic algorithms form the basis of 3 number of encoding 

techniques. We describe how sparse terms can implement these simple schemes. This 

in itself does not contribute significantly, but we show in a s~bsequent section how 

sparse terms equal or surpass other implementations for encoding a number of theo- 

retical ordered sets. This is followed empirically, where two ordered sets taken from 

existing applications are encoded using the transitive closure and compact algorithms. 

These results are compared with the space requirement for bit-vectors. 

Since we are concerned with large taxonomies, we must carefully count space 

requirements (i.e. an integer of size n takes l o p ,  not constant, space). Two common 

techniques for implementing a ,graph G = (P,  E) are adjacency matrices, which take 

O(IPI2) space, and adjacency lists, which take O(lElloglPI + ]PI) space. Adjacency 

list representation corresponds to maintaining the list of parents (or children) for each 

element. 

Both the encoding algorit hrn and the implementation affect these characteristics. 

Since the requirements of particular taxonomic applications may differ, it is apparent 

that there may be no best encoding algorithm to satisfy all. needs. Rather, the designer 

of an encoding algorithm must take into account the needs of the application, and 

the form of the taxonomies to encode, in order to determine the relative importance 

of different characteristics. 

Most existing algorithms concentrate on the resulting codes and have not been as 

concerned with the complexity of the encoding algorithm or of dynamic updates. In 

addition to the space requirement of the resulting codes, we focus on these two issues. 
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6.5 Sparse Term Encoding 

The simple transitive closure and compact encoding algorithms in [2] satisfy one of 

our goals: the complexity of the encoding algorithm is minimal. Traasitive closure 

has an additional advantage: decoding (i.e. determining the element(s) derloted by a 

given code) can be done efficiently in both bit-vector [47, 611 and sparse term imple- 

mentations. Sparse terms use a spanning tree of the order for decoding in time lincnr 

in the depth of a code term. Research on complex encoding algorithms to find optimal 

encodings (e.g. [79]) is important, but is of limited practical use in dynamic environ- 

ments. Below we use the abstract versions sf these two simple encoding algorithrrls 

described in Chapter 4 to specify versions that compute sparse term encodings. Notc 

that we use these algorithms in a top-down manner (which preserve joins), while thc 

dual bottom-up versions (which preserve meets) were described in [2]. 

The transitive closure algorithm for sparse term encoding is given below. Sevcral 

variations were implemented in Sicstus Prolog, and were used to derive the empirical 

results of section 6.7. A topographic traversal of the ordered set is done so that, when 

processing an element p, the codes for all parents of p have already been constructed. 

Associated with each element p is a "path" (a sequence of indices from the root of 

the code ~ ( p )  to one of the leaves), and a "label" indicating how to cxtcr~cl ~ ( p ) .  

The code for an element is built from the unification of the parent codes, plus an 

extension of the path associated with one of its parents. The subroutine extend will 

select one of the parents to extend, and either increment an integer sort (done through 

extendintegersort) or add a new subterm (done through ex tend~rg l i s t ) .  Thcse two 

straightforward functions are not described. 

Algorithm 1 sparse-temencoding(input: P;  output:^) 

1. let < PI,. . . , p, > be a (top-down) topographic ordering of P, where pt = T 

2. T(T) := [ ]  
3. path(T) := [ ]  
4. Eabel(T) := 1 

5. for i = 2 to n do 

6. .r(~i) := nqEpawnts(p,)~fq)n extend(pi) 
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Algorithm 2 extend(input: p; output:a) 

Global information: ordered ~ e t  P (p E P), and path,  lubel and pred information 

1. zj 3 q  E paren t s (p )  such that label(q)  > 0 then 

2. cu := e x t e n d i n t e g e r s o r t  (pa t  h ( q ) ,  Eabel(q j )  

3. p a t h ( p ) : = p a t h ( q )  

4 lnbeI(p) := label(q)  + 1 

5. if label(q) = 1 then  

6. label(q)  := -1 

7. else 

8. labeE(qj i label(pred(q))  

9. endi j  

10. e k e  

I .  s eEec tanyqEparen . t s (p )  

12. n := -label(q) 

13. a := e x t e n d x r g l i s t ( p a t h ( q ) ,  n)  

14. path(pj  := a! 

15. tabel(p) := 1 

Note the polyn~orphic use of the predicate label. If label is a positive integer n, 

then term extension is to be accomplished by setting the integer sort at the end of 

the path specified in the path  predicate to n. If label is a negative integer -n, then 

term extension is to be accomplished by adding a new subterm at the end of path  

with index n. Also note that we used ":=" to denote variable assignment, while the 

symbol "4" is used to denote identity (i.e. in line 8, label(q)  becomes identical to 

the late1 of its predecessor prediq)).  Essentially, if any parent q can be extending by 

incrementing an integer sort, we select that parent (lines 1 to 9). The current element 

p inherits the path of q (line 3) and increments the next integer sort extension (line 

4). If the label for q is 1 then a new subtenn list is begun (line 51, otherwise subterm 



expansion is done using its predecessor's sublist (line 8) so new subterm extensions 

will be done correctly (since q and its predecessor have the same p a t h ) .  In hoth cases, 

new extensions will be argument list extensions. If no parent can be extendcd with 

integer sorts, we select one to extend by adding a new subterm (lines 11 to 17). Ttw 

label is the negation of the new subterm index, which is used to extend the path of 

q, and also becomes the new path of p (lines 12 to 14). Now p can be extwded I y  

incrementing (the currently non-existent) integer sore functor (line 15), while tlic tiest 

extension of q is updated (line 16). The last line sets up the predecessor information. 

For compact encoding, we need only change line 6 of the sparse term encoding 

algorithm to the following, so that only the codes for meet irreducible elenwnts arc 

extended. The code for a non-meet irreducible element is simply the unification of 

the parent codes. 

Postprocessing can optimize codes to use relative and interval indices, whcrc a 

space saving can be realized. For dynamic updates to the taxonomy, variations of 

~hese  algorithms can modify existing encodings by updating only codes below !,kc! 

point of change, although we do not describe these here. 

Theoretical Justification 

We now justify, using a variety of theoretical taxonomies, that sparse tcrnls provide 

the necessary flexibility md efficiency required for encoding. This analysis con ple- 

=exts u: earlier thmret,icz! ccmpariscn of various encoding techniyuc3, i n d d i n g  fiat 

terms. on theoretical orders 1431, where the focus was on comparing different encod- 

ing algorithms. We focus on comparing different implementations of two algorithms: 

transitive closure and compact. There is o w  deviation, however, for interval sc:ts, 



where we used the results of the more complicated algorithm described in [l]. Al- 

though the underlying information is the same, the resulting interval sets are more 

compact (at the cost of more encoding effort). 

Chains: Integers are we11 suited for encoding chains. Thus, sparse terms (using inte- 

ger sorts), integer vectors and interval sets provide optimal encodings. However, 

bit-vectors require linear space. Since every element is meet irreducible, bit- 

vectors using the compact encoding algorithm also require linear space. Figure 

6.6 shows a sparse term encoding for a chain. 

Figure 6.6: Chain and anti-chain encodings 

Anti-chains: Terms and interval sets optimally encode anti-chains. Bit-vectors and 

integer vectors, however, require linear space. Figure 6.6 shows a sparse term 

encoding for an anti-chain. The second anti-chain encoding shows how I could 

be encoded as unification failure using atomic functors. 

Complete Binary Trees: In this case, the combination of integer sorts and logical 

terms permits optimal encoding using sparse terms (linear with respect to the 

height of the tree). Integer vectors and sparse terms without integer sorts both 

require linear code space, as do bit-vectors. With additional processing, bit- 

vectors can achieve optimal code size, using modulation or other techniques 

[2, 24, 491. Figure 6.7 shows a sparse term encoding for a complete binary tree. 

Figure 6.7: Binary tree encoding 

If we invert the tree. and add a top element, the space requirement for sparse 

terms, bit-vectors and integer vectors does not change, but interval sets require 
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For arbitrary binary trees, t.he code size for sparse terms remains linear wit.11 

respect to the tree height. The worst-case occurs for a right-skewed binary trw 

(ix. where the left branch is always a leaf), where the height is asymptotically 

the same as n.  However, all of the other implementations require linear coclc 

space, except for interval sets which is optimal using the more cornpiex algo- 

rithm. Also, if the tree is flipped left-right, then sparse terms achieve optimal 

encoding. In general, due to the use integer sorts, sparse terms will perform bet- 

ter if trees are organized so that the leftmost branch of a node has the largest, 

subtree. In case two children have the same size subtree, the deepest should 

be selected as the leftmost. These selection criteria are closely related to those 

used in the interval sets approach [I]. 

For complete k-ary trees, bit and integer vectors remain linear. However, i f  thc 

tree has height h, then sparse terms require O(h1ogk). Since h < b C J k 7 l  this is 

bounded above by O(Zogkn * logk). 

Square Lattices: A square lattice is a partial order resulting from the product of 

two chains. An example is shown in Figure 6.8. For two chains of length A:, 

their product has n = k2 elements. 

Transitive closure bit-vectors require linear space. Integer vectors, i nterval sets 

and sparse terms require O ( f i l o g ( f i ) )  = O ( f i 1 o g n )  which is ~ublinea~r, al- 

though not optimal. This is primarily because the square iattice has width 

k = fi. If additional work is performed to determine that this lattice is a 

chain product, then space can be improved to 0 ( 2 1 0 g f i )  = O(1ogn). In gen- 

eral, however, finding the minimum number of chains that decompose a partial 

order is NP-Hard[l44]. 

r l For compact encoding, there are 2k = 2 f i  rxeet irreducible elements. I h u ~ ,  

bit, vectors require O ( A .  Compact encoding for sparse terms, integer vectors 

and interval sets, however, achieve optimal codes. Figure 6.8 shows a transitive 

closure and compact sparse term encoding for a square lattice. 
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Figure 6.8: Square lattice transitive closure and compact encodings 

Consider a product of m chains of length k each (so n = km). Optimally, if 

we have an algorithm that can decompose this order, integer vectors require 

O(m1og k). However, using the transitive closure algorithm, we can only detect 
m-1 

that the width of the order is km-' = n . 7 .  Thus, integer vectors, interval sets 

and sparse terms require O(km-'logk) = 0(nV$logn)  which is still sublinear. 

Using the compact algorithm, we again obtain optimal results. 

Generalized Crowns: The preceding example orders are all somewhat sparse (and 

of low dimeusion[144]). In lattice theory, generalized crowns are the standard 

example used for minimal sized partial orders of high dimension. Figure 6.9 

shows the generalized crown S5 of dimension 5. An important property of such 

orders, is that the minimal size lattice into which the generalized crown Sn of 

2n elements can be embedded has 2" elements. 

Determining compact encodings for the generalized crown S, is a challenge. 

Bit-vectors and integer vectors both require linear space, even for the compact 

algorithm. Note that even if we can determine the dimension (which is NP- 

Hard), we cannot improve on these results. However, interval sets and sparse 

terms can encode Sn using optimal space (also shown in Figure 6.9). 

Figure 6.9: Tramitive closure encoding of a crown Ss 
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Table 6.1 summarizes these results, where n is the number of elenlents in the 

ordered set. Unless indicated, results are for both transitive closure a11n compact 

algorithms. Also, recall that the results for interval sets are somewhat biased as they 

are based on the more complex algorithm in [I]; using this algorithm, sparse terms 

can match or surpass these results, since they generalize interval sets. 

Table 6.1 : Asymptotic encoding results for theoretical orders 
1 Sparse Terms 1 Bit-Vector I 

Chains 
Anti-Chains 
Complete Binary Tree 

(inverted) 
Arbitrary Binary Tree 
Square Lattice 

(transitive closure) 
(compact) 

Product of m chains 
(transitive closure) 
(compact) 

Crown 

logn 
logn 
logn 
logn 

n 

n1I22ogn 
logn 

m-1 
n m  + Llogn m 

logn 
logn 

Integer Vector 

logn 
n 
n 
72 

n1I2logn 
logn 

rn-1 
n- * klogn 

logn 
n 

m- 1 
n- * $ l o p  

logn 
10,q" 

6.7 Empirical Evidence 

The above clearly shows the power of sparse terms. However, the partial orders likely 

to occur in practice are unlikely to possess any of the above forms. Intuitively, a large 

partial order will probably have some regions that are very sparse while others thah 

are dense; some regions may possess certain properties, while others possess different 

properties. One technique that can be used to encode such hierarchies is modulation 

[2, 491, which decomposes a partial order into suborders that can be independently 

encoded. Modulation can be a powerful technique provided the order is not too 

dense. Although we generalized modulation to handle denser orders in Chapter 5, 

and a linear modulation algorithm now exists [XI, it may not be appropriate for ail 

dynamic taxonomies. 
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demonstrate the power of sparse terms, we encoded two large empirically ob- 

tained taxonomies, using transitive closure and compact algorithms. The resulting 

sparse terms were not optimized in the sense that no relative or interval indices were 

used. Also, for the compact encoding, no integer sorts were used - this accounts 

for poorer behaviour in some cases compared with the transitive closure algorithm. 

If integer sorts are incorporated, more dramatic results may be achieved. We show 

the resulting space requirement of the encodings, as well as the required space for 

bit-vector encodings. Here too, the results are skewed against sparse terms. The 

sparse term space requirement was the actual memory used to store all codes; for 

bit-vectors, however, the space requirement does not consider memory padding. Still, 

the improvement that sparse terms offer over bit-vectors is remarkable. 

The first taxonomy was obtained from a chess learning program [95], in which 

each node is a board position. There are 1,815 nodes (590 meet irreducible elements 

and 1,425 join irreducibles) and 8,227 links in the transitive reduction. As shown in 

Table 6.2, sparse terms require one quarter of the space for bit-vectors in the top-down 

transitive closure algorithm, and three quarters for the compact algorithm. Similar 

space improvements are made for the bottom-up algorithms. Thus, we not only gain 

the improved flexibility of sparse terms over bit-vectors, but this shows that even for 

moderate size taxonomies, the asymptotic advantage of sparse terms pays off. 

Bit-Vectors total 
bits/code 

Sparse Terms total 
bits/code 

Sparse Term/ 
Bit-Vector ratio 

Table 6.2: Empirical results (in bits) for chess learning system [16] 

Trans. Closure 

3,294,225 ! 1,815 ' 820,872 
452 

Top-Down 
Compact 1 
2,586,3751 

Top-Down I Bot tom-Up 
Compact 

1,070,850 
590 

803,056 
442 

The second taxonomy was obtained from a terminological medical knowledge 

~otto&-/ 
Trans. Closure 

3,294,225 
1,815 

966,920 
533 

base1. Nodes are medical terms, and the partial order is subsorting. There are 

'Thanks to Ian Horrocks, Medicd Informatics Group at the Univ. of Manchester. 
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2,717 terms (2,640 meet irreducible elements and 2,187 join irreducibles), and 4,766 

links in the transitive reduction. This taxonomy is less dense t hm the previous one 

(more nodes, less links), and most of the elements are irreducible. In this situation, 

compact encoding provides very little benefit for the additional cost.. Howevcr, t lie 

benefits of sparse term encoding are even more marked: about 10 times morc efficient 

than bit-vectors. 

Bit-Vectors total 
bits/code 

Sparse Terms total 
bits/code 

Sparse Term/ 
Bit-Vector ratio 

Table 6.3: Empirical results (in bits) for medical ontolc 

Trans. Closure 
I Top-Down 

Compact 

7,172,880 
2,640 

812,768 
299 

0.11 

Top-Down Bottom-Up 
Trans. Closure 

7,382,089 
2,717 

812,064 
299 

;Y 
Bottom-LJp 
Compact 

Our goal in this chapter is twofold. First, we presented sparse terms as a imiversi~l 

implementation for encoding, generalizing the basic form of sparse terms [51] arid ex- 

tending previous work on logical term encoding [35]. Second, we argued that for large 

dynamic taxonomies, simple and fast encoding algorithms are necessary. These two 

claims are backed up by theoretical and empirical evidence. Furthermore, either clairrl 

could be taken independently. In particular: sparse terms could be exploited in any 

encodiag algorithm with a potentially large decrease in space. Finally, although lagi- 

cd term encoding has been extensively studied [35,43, 47, 1021, this chapter prevents 

the first published description of algorithms for encoding with terms. The results 

presented are important in contexts such as conceptual structures, where taxonomic 

knowledge is likely to change frequently. 



Part 11: 

Applications and Extensions 

Reasoning with Taxonomies 

"Then he was told: Remember whet you have seen, 

because everything forgotten returns to the circling winds" 

- Lines from a Navajo chant 



Chapter 7 

Extending Partial Orders for Sort 

Reasoning 

'(Reason, alas, does not move mountains. It only tries to walk around them 

and see what is  on the other siden 

- G .  W. Russel 

The mathematical basis of partial orders has been exploited in taxonomic knowl- 

edge representation and reasoning, and research on taxonomic encoding has provicied 

techniques for the efficient management of partial orders. Unfortunately, the simple 

structure of a partial order limits the taxonomic knowledge that can be represented. 

At the other extreme are description logics (e.g. the KL-OXE farnily [19, 1591) i u  

which taxonomic relationships among sorts are specified using a formal language, hut 

the taxonomy itself must be derived through classi,fication (which may or rnay not, bc 

NP-Hard, depending on the logic). We feel that, explicit maintenance of a taxonarny is 

important for efficiency. In this chapter, we formally extend partial orders to permit, 

incorporation of additional taxonomic information. 

7.1 Introduction 

Research on integrating additional forms of taxonomic knowledge into partial orders 

is scarce. Most notable, work by Cohn 1281 proposed a generalized form of taxonomic 
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specification within a sorted-logic framework. In [53] we proposed some extensions to 

partial orders to integrate machine learning [103] and systemic classification [20, 1011. 

We extend these proposals in this chapter in an attempt to develop a taxonomic 

knowledge representation system that is both flexible and parsimonious. 

We may wish, for example, to define an element to be the intersection (union) 

of another set of elements (e.g. woman = human n female). Although this may 

hold coincidentally through meets (joins), such a restriction ensures that any changes 

must also respect this constraint. As acother example, every element in a taxonomy 

must normally be specified, but there may be cases when this is both unnecessary 

and inefficient. Suppose we wish, e.g., to view people along lines of religicrl (e.g. 

Catholic, Jewish, Muslim, etc.), nationality (e.g. Canadian, Belgian) and occilpation 

(e.g. student, prof, miner). Currently, we need to specify all possible combinations 

(i.e. the cross-product) of these facets to produce all sorts of people (e.g. a Belgian 

Catholic student). It would be cleaner if we could specify these lines separately, and 

infer the cross-product when needed. 

After providing some background on sorted logic and sorted logic programming, we 

formalize sorts and sort hierarchies, and identify the relation between lattice and set 

operations. We then propose the sort reasoning problem as the fundamental problem 

for a sort reasoner, and discuss how sort relations can be specified in two expressive, 

but equivalent ways. In section 7.3 we develop a three-valued propositional logic for 

sort reasoning and introduce the notion of a sort context. Using this logic, we show 

that, although resolution provides a sound and complete mechanism for sort reasoning, 

it is NP-complete. The focus of section 7.5 is to identify tractable subcases of sort 

reasoning. Finally, we discuss some implementation issues. 

7.2 Background 

First-order logic is unsorted in the sense that the domain of discourse (i.e. the uni- 

verse) is treated as a single undivided set. A sort can be viewed as a subset of the 

domain of discourse, and is generally a group of objects related in some way (e.g. the 

set of dogs). Sorts can be mimicked using special sort predicates, but many sorted 
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logics move sorts into the forefront as first-class objects. This allows specification of 

the non-logical symbols as belonging to certain sorts, and provides a. simple syntactic: 

mechanism to state semantic constraints. Thus, in a many-sorted logic, a. set of sort,s 

can be specified that divide the domain of discourse. Although in some logics, sortLs 

must be disjoint, most permit overlap between sorts, in which case the subsct rclation 

forms an order on sorts. 

There are a number of advantages to using sorts in logic, particularly the rduct,ioii 

in the length of certain proofs by eliminating futile branches of the search spncc. Scc 

[27] for specific coverage of the benefits of many-sorted logic. 

Sorted logic programming is simply the logic programming analog to sorted logic. 

Prolog is unsorted, and so the unification to two unequal atoms results in failure. 

LIFE [4], on the other hand, permits the specification of a sort hierarchy P. In tho 

event of unification of unequal atoms a1 and a2, the sort hierarchy is used to cleterrnine 

the result. If a1 !-Ip a2 = I then failure results. If al f l p  a2 = b, then the result, of the 

unification is b. Since the sort hierarchy does not need to be a lattice, a1 TIp a2 may be 

{bl, b2, . . . , bk). In this case, processing proceeds with the result bl, and si~hsequent 

sorts from this set are attempted in turn on backtracking. 

7.3 Sort Reasoning 

Sorts represent sets of individuals grouped according to common features. Int,i~it ivcl y, 

a sort pl is a subsort of p~ provided that every individual in pl is also in p.2 (e.g. collie 

is a subsort of dog). We don't require that sorts denote unique sets of individuals, s o  

two sorts pl and pz may be aliases for the same set (e.g. car and autmwbile), or that 

a sort be non-empty (e.g. unicorn is an empty sort). As we describe bebw,  subsct, 

information on sets of aliases forms a partial order. 

Let U be the domain of discourse (i.e. the set of individuals). 

a Let P be a set of base sorts, notated using letters p and q. 'dp E P,  p represents 

a subset of U .  P contains an implicit element: Tp,  representing U .  

Then C foms  a preorder relation on P (i .e. C is reflexive and trarlsi ti ye). 
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From P we can specify the literal sorts: Pc = {p, iplp E P, l p  = U\p), notated 

using greek letters a ,P ,  etc. We can derive an implicit literal sort _Lp = 7Tp  that 

represents a. We can also extract two relations: 

0 The sort equivalence relation, = p :  for pl, p2 E P, pl = p  p2 if and only if pl C p2 

and p2 2 pl. We denote the set of equivalence classes of P as P,, and each 

equivalence class as b], where p is a representative for the class. 

0 The sort (~artial) order, (P=, S p ) :  for [p3, [q] E P=, b] <p Eq] if and only if 

Vpi E [p],qj E [q], pi C qj- Clearly L p  is reflexive and transitive. To show 

anti-symmetry, consider two classes [p] and [q]. If b] L p  [q] and [q] Lp Ip], and 

pi E Lp], q j  E [q], then pi E q j  and q j  E pi. Thus, pi =p qj, SO it must be the 

case that [p] = [q]. 

For simplicity of notation, we omit the brackets surrounding alias classes. We now 

describe the relationship between taxonomic and set operations. 

If pl n p2 = p3, then pl n p2 -> p3. For example, if pl n p2 = I, we cannot infer 

that there is no element in U that is in both pl and p2. We can only infer that 

there is no known sort that represents such elements. However, if we know that 

pl n p2 = PS then we can infer pl n p2 = p3. For non-singleton meet crests, if 

pi np2 = {qi,.-.,qk}, then Vqi,1 L i L L,pl n p 2  > q;. 

If pi U p2 = p3, then pl U p2 S p3. However, if we know that pl U pz = p3 then 

we can infer pl U pa = p3. For non-singleton join bases, if pl LI p2 = iql, . . . , qk),  

then Qqi, I L i 5 L, pl u pz E q;. 

Thus, it is not always possible to perform sort inferences using taxonomic oper- 

ations. This issue was the focus of the lattice completion proposed in 1281. Figure 

7.i shows the above relationships using Venn diagrams. Our goal is to exploit both 

the complete and incomplete knowledge in a sort hierarchy for a sort reasoning sys- 

tem. This requires a general means of specifying, maintaining and reasoning with 

information that relates sorts. 
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Figure 7.1 : Relation between taxonomic and set operations 

7.3.1 Generalizing sort reasoning 

Definition 7.1 Suppose we have a set P of n base sorts. 

A n  atomic sort is a sort s obtained by intersecting, for every sort p E P ,  tibht3r 

p or its complement ~ p .  

A derived sort is a set of atomic sorts. 

A conjunctive sort is the intersection (conjunction) of a set of literal sorts. 

A conjunctive sort s is consistent if and only if it does n~ot contain both a burst? 

sort and its complement. A consistent conjunctive sort is a derived sort. 

In a Venn diagram of all possible combinations of sorts, each distmct region is an 

atomic sort of which there are 2n. Taxonomic information may reduce the r ~ u m  ber 

of non-empty atomic sorts (e.g. if pl _< pz then an atomic sort with pl but not 

pz is empty). A derived sort is obtained by selecting 0 or more atorriic sorts, arid 

corresponds to the union of distinct regions in a Venn diagram. In the worst case (no 

taxonomic constraints) there are 22n non-empty derived sorts. 

To illustrate, consider the specifications: (i) francophone 5 person, arid ( i i )  

canadian 5 person. Although sorts francophone and cunadian are incomparable, 

there is no information that indicates they are disjoint. Combining thcm results ir l  

the derived sort canadian-francophone. In general, conjunctive sorts can he denat,ecl 

by juxtaposink their constituent sort labels (lexicographically to ensure uniqueness, 

although any total order on the sort labels cmld be used). Autornatic derivation of 

conjunctive sorts can be contrasted with LIFE in which the same combination will 

result in failure, since their coincidental meet is I. 
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For conjunctive sorts, we can specify an intrinsic ordering (5): for two conjunctive 

sorts sl and s2, we know that sl  2 s2 if sl contains a superset of the literals in s2. For 

example, pl A 7p2 p3 5 7 2 2  A p3- Taxonomic information provides further extrinsic 

ordering among conjunctive sorts. Thus, for conjunctive sorts sl and s2, sl 5 s:! 

irnplies that sl C_ s2,  but not necessarily the converse. 

Clearly there is potential for a combinatorial explosion in the number and size of 

derived sorts. In [28], completeness in a many-sorted logic setting is required, and 

so the entire derived sort space must be handled. Unfortunately, this leads to the 

possibility of a sort structure of exponential size. Our goal is to produce a general 

sort reasoner that minimally retains polynomial space, and so we choose to restrict 

the set of derived sorts to  conjunctive sorts. 

Conjunctive sorts are natural in that they group together individuals in U that 

share attributes. They provide for monotonic sort reasoning, since the set of individu- 

als denoted by a partially specified sort cannot increase as new constraints are applied. 

These are the types of sorts produced in LIFE [4] through unification. Conjunctive 

sorts have a natural representation using a three-valued logic by selecting for each 

base sort p E P either true (include sort p), false (exclude sort p) or uncertain. Thus, 

there are at most 3" different consistent conjunctive sorts, although constraints may 

reduce this number. Conjunctive sorts have a simple and efficient implementation 

using logical terms (see section 7.6). 

Our problem can now be described succinctly as follows: 

Definition 7.2 Sort Reasoning Problem (abstract): Given a set of base sorts 

P, a set of assertions A that specify the emptiness or non-emptiness of zero or more 

conjznctive sorts, and a conjunctive sort s .  Can we infer that s is empty or non- 

empty? 

We show that interesting sort reasoning problems can be characterized as special 

cases of this problem, and we describe general methods of specifying the assertions. 

We develop a sort logic (not a sorted-logic, but a logic for sort reasoning) that has 

a sound and complete reasoning strategy. We also show that this problem is NP- 

Complete, so we explore tractable subsets of sort reasoning. 
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The assertions A partition the conjunctive sorts into three groups: f i u p t y  sorts, 

non-empty sorts and possibly empty sorts. If a conjunctive sort sl is empty, attci 

sz 3 sl? then s z  must also be empty. Dually, if sl is non-empty, and sl 5 .s2. ttwn 

sz must be non-empty. Thus, sort reasoning can be viewed as classifying conjunctive 

sorts into these groups based on the current set of assertions. 

7.3.2 Clausal taxonomic specification 

In [28], a suggestion is made for clausal specification of taxonomies: Qx, pl (z)  V . . . V 

p, (x) V 7ql(zj V . . . V iqn(x j? where the p; and q j  are base sorts. A number of special 

cases are worth noting: 

1 .  m = 0,  n = 2: q1 and q2 are incompatible. 

2. m = 0 ,  n > 2: ql, - - - , q, cannot simultaneously hold. 

3. m = l ,n  = 1: ql C p,.  

4- m > 1, n = 0: pl, - - . , pm decompose T (i.e. U{pl,. - - , p,) = T). 

The usefulness of these clausal specifications is not explored in [28]. In light of 

the sort reasoning problem, such a specification can be viewed a. asserting that ar 
rnl certain conjunctive sort is empty. 1 ne universally quantified form is cquivalcnt to 

fix,  l p ~ ( x )  A - . - A -.p,(s) A ql(x) A - - A q,(x) (i.e. conjunctive sort 7 1 1  A . . A 1pTtL A 

ql A - . - A qn is empty). We propose to also allow dual specifications: 32, - 7 p l ( x )  A - . . A 

~P,(x)  A ql(x) A - - , A qnlx), which permit asserting that a certain conj tmctive sort is 

not empty. Duals of the above special cases are: 

1. rn = 0 , n  = 2: ql and qz are compatible. 

2. rn = 0, n > 2: ql, - . , q, can simul~aneously hold. 

3. r n =  1,n = 1: ql g p l .  

4. rn > 1,n  = 0: pl; - . , p ,  do not decompose T. 

with these two f~rrns, we have the ability to fully specify any instance of the sort, 

reasoning problem, so we can dispense with the quantification, and lirni t our focus to 

propositions' logic. Universally quantified assertions for universal sorts) are global i n  

that they must all simultaneously hold, but not existentially quantified assertions (or 

existential sorts), which may specify different individuals in U. Figure 7.2 shows the 

set relationships imposed by these specifications. 
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7.3.3 Definitional specificat ions 

As an alternative to claasal specifications. a number of natural relationships can be 

constructed using sort definitions. Some possibilities are described below and shown 

in Figure 7.3, and formed the basis of extended description spaces [53]. 

Conjoined Sort Definition: ?Ye may rvmt to define a sort as precisely the intersec- 

tion of a set of other sorts. For example. we may want to define woman as the 

intersection of person and female. We can denote this using set. intersection: 

p = al n- . -flak, where the a, are sort literals. Such definitions are equivalent to 

the clauses: (i) pV la1 V - - - v ~ r k ;  and (ii) - p  V ai for 1 5 i 5 k. Partial orders 

only permit the second set of clauses, and so we may only say: p 5 al n . n ak.  

Sort Decomposition: Sometimes w e  knox- trhat a set (al .  - - - . ak ) of (possibly over- 

lapping) sorts Heciimpclaes anoiber sct~-i p. Thai is, y = U - - - U ak.  For 

example, we may wish to define a sort u n i ? x r s i t y m r s e  = grad-course U 

u-ndergrad-course (where some courses may be cross-listed as both). Sort de- 

composition is analogous to generalization in the entity-relationship model [92]. 

Such a declaration is equivalent to the clausal specifications: (i) l p V a l  V .  - . V a k ;  

and (ii) p V  l a ; .  for 1 5 i < E .  Every conjoined sort definition p = a1 n . . . n a k  

induces a dual sort decomposition l p  = la1 U - - - U l a k ,  and vice versa. 

Sort Partitioning: it+ may have even stronger information that a set Q decomposes 

a supersort p and every pair of elements in Q is disjoint. For example, we may 

wan? to say thzt the sort persm is partitioned into woman and man. We can 

denote this using disjoint. set- union: p = 01 + - .  - + ak ,  where $- is interpreted 

as union with the constraint that each pair of sorts on the right-hand side must 

be disjoint. Such assertions are equivalent to the clauses: (i) -p V a1 V - - V  a k ;  

(ii) p V Y C Z ~  for 1 5 i 5 k: and @) V 1aj7 for 1 5 2 < j 5 k. 



Figure 7.3: Aggregatx specifications 

We can specify the dual of these assertions, by replacing equd signs by strict, 

subsets. We may, e-g., state that wild and canine is insufficient to defir~e wo1.f as 

wolf c wild n canine (i.e. the sort iwo l  f A wild A canine is non-empty). 

Interestingly, definitional and clausal specifications are equivalent,. -4 universal 

assertion: pl V - - V p, V 7ql V - - - V i q n  can be specified as: ( i )  q' = ql n . . n qn;  

(ii) p' = pl U - - - U pm; and (iii) q' n p' = q' (or q' 5 p'). An existential assertion: 

i ( p l  V - - .  V p, V i q l  V . - - V i q , )  can be specified as: (i) q' = ql n . . . U qrL; ( i i )  

p' = pl U - - - U p,; and (iii) q' n p' c q' (or q' $ p'). 

7.4 Sort Logic 

Definition 7.3 A sort context is a triple C = ( P ,  I,JZ/), where 

e P is a set of sort symbols, and 'PL is the corresponding set of sort 1z'lerul.s. 

I is a set of universal sort assertions, where for every 6 E E ,  c = ol V . . . V cwk 

and each a;, 1 5 i 5 k, is a sort literal. Conjunctive sort i t  is in the sume sort 

equivalence class as lp (i.e. Y E  is an empty sort). 

,u is a set of existential sort assertions, for every 7 E N ,  r, = a1 A . . . A rind 

each a;, 1 5 i 5 kp is a sort literal. Conjunctive sort 7 is in a diflcrent sort 

equi~alence class from ip (i.e. q~ is a non-empty sort). 

Since existential sort clauses are local (i.e. they implicitly existentially quantify 

an individual); cannot use them indiscriminately: we only allow at most o w  to 

appear in a proof. Our sort logic has three truth values: T ( t rue) ,  k' ( f a l s e )  and IJ 

(unknozun or zlncertain). For example, the answer to the y uery dqy A cat = 0:' may be 

true, whereas the answer to  the query student A plumber = 0? may be uncertain. We 
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also have one rule of inference, resolution, which we can formalize as follows (where 

the a; and pj are sort literals, and l i p  = p): 

Using a standard resolution process, we finish when either the empty clause is 

derived, or no more resolution is applicable. The empty clause is derived only if both 

a and l a  can be derived, which clearly indicates inconsistency. 

A sort context C is consistent if for every conjunctive sort s resulting from PC, 
we cannot infer that s is both empty and non-empty. Since resolution is sound and 

refutation complete [72], determining if a sort context is inconsistent using resolution 

is sound and complete. We do not assume complete knowledge, 

be the case that we cannot infer that s is empty or non-empty. In 

Cohn [28], we call s possibly-empty. 

Queries can be dealt with as follows: 

however, so it may 

this case, following 

Empty Sorts: To check if a conjunctive sort s = a1 A - .  . A a k  is empty, we assert 

that it is not empty by adding s as an existential sort, and attempt to derive 

the empty clause through resolution. If we derive the empty clause, then s must 

be empty, and 7 s  must be a universal sort (i.e. the sort context ('P, E, is)) is 

inconsistent). If not, then s may be either non-empty or possibly-empty. Note 

that we only use elements of E, but not of N ,  for this. 

Inferring Sorts: We may be interested in the sorts that can be inferred from s. 

These can be produced as a side product of the above resolution process. If s 

is an empty sort, then every sort is derivable. 

Non-empty Sorts: To check if s is non-empty, we assert that it is empty (i-e. add 1 s  

as a universal sort), and attempt to derive the empty clause through resolution. 

We do this by finding s non-empty sort 7 f ,V with which we can derive the 

empty sort (i.e. the sort context (P, E U {ls), ( 9 ) )  is inconsistent). Note that 

this is akin to skolernizilag the existential sort 9. 
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We can now restate the sort reasoning problem in more definite terms. 

Definition 7.4 Sort  Reasoning Problem (concrete): Gizwn a sort corrted S = 

(P ,  I, {s)). Is C consistent? 

The Sort Reasoning Problem is NP-complete, as we prove formally in the following 

subsection. This can be demonstrated by modeling an instance of 3-SAT using sort 

definitions, as shown in Figure 7.4, where a conjunctive normal for~n fortnula with 

ternary clauses f = cl A -  . - Ack, where c; = \11;,~ V li,3, 1 < i 5 k can be represented 

using one intersection definition for f and one union definition for each of the clauses. 

In diagrams, we denote intersection (resp. union) definitions by connecting the parent 

(resp. child) subsumption arcs with a horizontal line. Answering the query "Is f an 

empty sort?" is clearly NP-Complete. 

Figure 7.4: Using sort definitions to represent an instance of 3-SAT: f = cl A - . A ck, 
where C; = litl V li,2 V 1 I i I k 

From a logical standpoint, intractability is of no concern, provided the logic is 

sound and complete. Also, some systems may prefer to retain expressiveness and 

assume that the worst-case will rarely, if ever, occur. Even so, there is some sort 

structure maintenance that we may perform to reduce the cost of sort reasoning. If 

u7e determine that a sort s is empty or non-empty, then we can assert this information 

in the sort context. We refer to this as sort memoing, since it is akin to memoing in  

OT DT resolution 11251. If sort reasoning is performed in localized areas of the sort 

structure, then this enhancement may result in improved performance at the cost of 

additional storage (in the worst-case, one conjunctive sort is added to the context far 

any query). 

7.4.1 Complexity of Sort Reasoning 

We now prove that sort reasoning is NP-Complete. Note that context C = (P, 1: { 8)) 

is consistent if and only if s is not provably empty. 



CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 152 

Lemma 7.1 If s is an empty conjunctive sort and s f  contains a superset of the literals 

of s (i.e. s f  5 s), then sort resolution can show that s f  is empty. 

Proof: Suppose s is an empty sort: s = a1 A .  - A a k  (so -a1 V . . V ~ a k  is a universal sort), 

and st contains a superset of the components of s: st = a1 A - . - A a k  A ,Bl A . . . A  pj. Further 

suppose that sf is not empty: assert al, . . . , a k ,  PI,. . .,pi. Clearly, through resolution we 

can derive the empty clause. Thus, sort resolution can show that sf must be e r n p t ~ . ~  

Lemma 7.2 If s is an atomic sort (i.e. s = al A . - .  A a,), then s is provably empty 

i f  and only i f  37s' f & for which s 5 s f .  

Proof: =+ Suppose B-Ts' E E for which s 5 sf. The only way t o  irf-r that s may be empty 

from E is to find a decomposition of s ,  each element of which is provably empty. But since 

s is atomic, no decompositions exist. 

+ Suppose 37s' E & for which s 5 sf. By Lemma 7.1, clearly s is provably ernpty.0 

Theorem 7.1 The Sort Reasoning Problem is NP-Complete. 

Proof: Given a conjunctive sort s, if s is not provably empty, then there exists an atomic 

sort s' subsumed by s that is not provably empty. By Lemma 7.2, checking if s' is not 

provably empty and checking if sf j s can botk be done in polynomial time. Thus, the sort 

reasoning problem is in NP. 

To show that this problem is NP-complete, we show a transformation to  sort reasoning 

from 3-SAT [69]. The 3-SAT problem can be specified as follows: Given a set of n variables 

vl, ., v, and a formula F that is a conjunction of k clauses, each of which is a disjunction 

of precisely 3 literals, is there a truth assignment to the variables for which F is true? 

Suppose we have an instance of the 3-SAT problem: V = {q, - . . , v,}, F = Cl A - . . A Ck 

and G; = 1 ; ~  V IiS2 V li,37 1 5 i 5 k, where each of the I i j  is either a positive or negated 

variable from V. Let us define a sort context trivially as C = (V U {q), {g, C1, - .  , Ck}, 0). 
Clearly this can be done in polynomial time. Note that the sort q must subsume all the 

other sorts (i.e. it is in the same sort equivalence class as T). Each atomic sort corresponds 

to  a truth assignment. 

Clzim: there is a solution to  the SSAT problem if and only if we cannot infer that q is 

empty. 
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+ Suppose formula F is satisfiable. Take any satisfying truth assignment, and define 

an atomic sort s as: s = ax A - - -  A a,, where cri = v;, if v; = true and cri = yo; otherwise 

(for 1 5 i 5 n). If s is provably empty, then 3 a clause Ci = V k i V 2  V bi ts  for which 

4'; = A ~ l ; , ~  A l l i , s  subsumes s by Lemma 7.2. But a t  least one of l ; ~ ,  l i 1 2 ,  l i ,3  is Iruc, 

so no such clause exists. Therefore, s is not provably empty, which implies that q is not 

provably empty. So, if F is satisfiable then q is not provably empty. 

-e Suppose that q is not provably empty. Then 3 an atomic sort s thaft is not provably 

empty. Defiue a truth assignment as follows: if v; is a component of s then set v; = t w ~ e  

and if -v; is a component of s then set v; = false. Consider any clause C; = l;,r V til2 V li,:3 

for which none of the literals are true. Then T L ; J ,  -d;,2 and ~ l ; , ~  are all components or s. 

But then s must be empty, so no such clause exists, and this truth assignment satisfies F. 

So, if q is not provably empty then F is satisfiab1e.o 

Tractable subcases 

Many knowledge representation systems are concerned with tractable reasoning strate- 

gies, so it is important to identify subcases of the sort reasoning problem with poly- 

nomial solutions. As intractability results from empty sort assertions (i.e. universal 

sorts) and queries, there is no need to restrict the form of non-empty sort assertions. 

Positive literal sorts. A simple way to achieve tractability is to avoid negated sorts 

by only allowifig assertions that involve positive literals. In LIFE [4], only 

subsumption (i.e. p 5 q )  assertions are permitted in specifying a sort, hierarchy. 

However, if the meet crest pl n -  - . n pk happens to be {ql, . . . , q,), there is an  

implicit assertion of the form pl A - - - A p, =: ql V . - .  V q,. 

Horn sorts. Anothe, possibility is to restrict specification to Horn clauses (clause8 

with at most one positive literal). This leads to tractable resolution if we restrict 

each base sort to be a positive literal of at most one clause. This restriction 

may be relaxed somewhat using the notion of OED-Horn clauses described in 

[113] for finding a maximal tractable subclass of Allen's Interval Algebra [?I for 

temporal reasoning. 
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7.5.1 Containing sort reasoning complexity 

Both cases above impose unnecessarily strict limitations on the expression of tax- 

onomic knowledge. To achieve more flexibility while retaining tractability, we can 

either restrict the form of assertions or the form of queries. We choose a combination. 

The basic form of universal sort assertions we allow are (i) binary clauses, which can 

define a partial order among the literal sorts (i.e. p V q,p  V i q  or i p  V i q ) ;  (ii) in- 

tersection (conjoined sort) definitions: p = a1 A .. . A a,; and (iii) union definitions 

(sort decomposition) : p = ol V - - - V a,. 

Sort contexts can be described as (P, A, N ) ,  where A is a set of definitional 

assertions that satisfies the above forms. Such assertions could be reduced to clausal 

form, but these definitional assertions can be maintained in a partial order structure 

on the literal sorts, augmented with notation for the intersection and union definitions. 

JV is a set of existential conjunctive sort assertions as before. 

Note that asserting a binary clause imposes two constraints: a V asserts l a  5 p 
and ~p 5 a. Asserting an intersection or union definition, also asserts the dual. The 

intersection definition, p = ol A . - A a, also asserts i p  = l a l  V . . . V la,. The 

union definition p = crl V . - - v a, also asserts i p  = l a l  A . A la,. 

Without restrictions, of course, we have full sort reasoning power with the above 

assertion forms. Even limiting sorts to have at most one definition may lead to 

intractable behaviour, as shown in Figure 7.4. Our solution is to limit the extent of 

intractability. First we need to define several notions. 

Definition 7.5 Let s = cyl A - .  - A ak be a conjunctive sort. The expanded form s* 

o f s  is the fixpoint of the following construction (i.e. there ezists a k 2 0 for which 

s k + l  = sic = s*): (i) SO = (a1,. - . , ak);  (ii) S;+Z = S; U { P  E PL13y E s; such that 

7 5 P )  U (/? E PLlp = 71 A - - - A y, is an assertion in A and yj E s;, 1 5 j 5 m )  

Thus, given a conjunctive sort s, its expanded form is the set of all sort literals 

that may be directly inferred from s ,  
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Definition 7.6 Let s = ol A - -  A a k  be a conju?zctioe sort, and s* be its ezyaud~d 

form. The set of potential conjunctive inferences C ( s )  associated with s is defied 

recursively as the jixpoint of the following construction (2.e. there exists n k > O fov 

which sk+l = sk = C(s)): (i) so = s*; (ii) s;+l = s; CJ {PIP = 7 1  A . . A y,,, is a n  

assertion in A, and cyj E s; for some 1 5 j _< m )  

Definition 7.7 Let s = a1 A - - A a k  be a conjunctive sort, and s* be its expcznded 

form. The set of unresolved disjunctions D ( s )  associated with s is defined as: D(s) = 

{{PI V - - - V Pk)I(i)a = PI V - - V Pk is an assertion in A; (ii) o E s*; and (ii?:)$? E s* 

such that y _< pi for some i, 1 5 i 5 k). 

Thus, D(s) is the set of union definitions for which the left-hand side sort, but rlonc 

of the right-hand side sorts, is in s* (so the disjunction is implied but not satisfied by 

4- 

Definition 7.8 Let s = cul A - - -  A o k  be a conjunctive sort. A locally consistent 

selection of literals from the unresolved disjunctions V(s) is a set Q = {PI, . . . , 
of at least one sort literal from each disjunction in D(s), where the expanded sort si 

(sl = a1 A - . - A a k  A . - . h pmj is consistent. 

The existence of a locally consistent selection is necessary but not sufficient t,o 

show that sort s is not provably empty. Unresolved disjunctions may cascade due to 

a locally consistent selection - V(sl) may contain unresolved disjunctions. 

In order to determine if s is provably empty or not (provided s* is consistent), wc 

need to show that every possible way of resolving the set of disjunctions D(s) leads 

to inconsistency. This problem may be intractable in two dimensions. First, even 

making a locally consistent selection from D(s )  may be NP-complete (cfr. 3-SAT 

problem). Second, the potential cascading effect of unresolved disjunctions may lead 

to an exponential search space, even if determining locally consistent selections can 

be done in poiynomid time. The foiiowing set of restrictions attempts to curtail both 

of these sources of intractability, while retaining a degree of power that makes sort 

reasoning useful: 
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1. Positive literal sorts may not subsume negative literal sorts, and no set contain- 

ing negative literals may imply a positive literal. This is achieved by enforcing 

the following syntactic constraints on assertions: (i) Subsumption assertions 

must have the form p V i q  (i.e. q 5 p and i p  5 7 q )  or i p  V i q  (i.e. p < l q  

and q 5 ip ) ;  (ii) The sorts on the right-hand side of intersection and union 

definitions must be positive literals. 

2. For a given conjunctive sort s = al A - .  A a k ,  limit the number of unresolved 

disjunctions (union definitions) containing positive literals associated with s to 

a constant nu. This ensures that we can determine in polynomial time if there is 

a locally consistent selection of literals from the unresolved disjunctions V(s) . If 
D(s) is empty or contains only disjunctions with negative literals, then a locally 

consistent selection can be done in linear time. 

3. Limit the cascade of unresolved disjunctions by imposing constraints on the 

relation of positive sorts involved in one union definition p = ql V . - . V q k  

to other union definitions. If si E C(q;), 1 5 i 5 k, then D(s;)  can only 

contain disjunctions with negative literals. Note that if qi is not subsumed by 

any sorts on the right-hand side of an intersection definition, then this reduces 

to the constraint: D(qi) can only contain disjunctions with negative literals. 

This restriction ensures that, for a conjunctive sort s, any locally consistent 

selection from D(s) can be checked for global consistency in polynomial time 

since cascading disjunctions can only contain negative literals (and no selection 

of negative literals can result in a positive literal being derived). 

The first and third restrictions are purely syntactic. The second affects both as- 

sertions (i.e. the conjunctive sorts on the right-hand side of intersection definitions) 

and queries, and depends largely on the current sort structure. It can, however, be 

checked quickly given any conjunctive sort. If it is not satisfied in a query, we can no- 

tify the client am! provide the option to a t t e ~ p t  a potentially costly answer. Together 

these restrictions permit us to specify a polynomial time algorithm for determining if 

a, conjunctive sort s is provably empty: 
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i. Construct s*. If s* is inconsistent then s is provably empty. 
. . 
11. Determine D(s) and check if there is a locally consistent selection. If none 

exists, then s is provably empty. 

iii. Attempt to expand each locally consistent selection to a globally c.onsist,ent 

selection. If this is not possible, then s is provably empty. 

The first step of the algorithm is performed automatically and eficiently using 

lattice operations and the logical term implement ation described in the next sect ion. 

Due to the second restriction above, step (ii) can be accomplished in polynomial tixnc, 

and due to the third restriction, checking if there exists at least one globally consistent, 

selection (in which case s is not provably empty) also takes polynomial time. 

7.6 Implementing Conjunctive Sorts 

For a simple logical term encoding of sort orders, that is fast to compute and flexible 

to update, we assign terms in which each element has one position and use a vxiant 

of top-down transitive closure encoding 121. For any element p E ?', position i of the 

code T ( ~ )  may have one of three values: (i) If p 5 p; then position i will contaiu a 1 ; 

(ii) If p 5 l p i  then position i will contain a 0; (iii) Otherwise position i will contain 

an anonymous variable (denoted "-"). 

We can extend our logic and implementation to four values: true (I) ,  false (0), 

uncertain (-) and inconsistent (!). Inconsistency in a sort position could be used 

as an explanatory feat-ure to identify the base s o ~ t  at the root of an inconsisterlcy. 

It could also be used as a basis for extending our sort logic to include default and 

non-monotonic reasoning - an inconsistent value for a base sort p would indicate that 

somehow both p and i p  have been acquired. Our approach does not provide a nicans 

of resolving this inconsistency, but does give a framework upon which a default or 

non-monotonic logic system can be built. 

Taxonomic knowledge representation is a complex, yet intuitive and pervavive prob 

lem. By separating sort constraints into a sort reasoner, specialized techniques can 
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be used to manage the sort relations arising in a system. We argued that, although 

mathematically elegant, partial orders are unwieldy for representing all the relations 

desired in a system. Although sort reasoning can be plunged into a partial order 

(in fact, a Boolean lattice), the size of this partial order is extraordinary - given n 

base sorts, the lattice can be as large as 22n. The typical use of partial orders for 

sort reasoning, in which each base sort IS an atom (i.e. plunging the sort structure 

in a Boolean lattice of size 2"), leads to either the inability to state certain relations 

(e.g. sort woman is the intersection of sorts person and female) or to unjustifiable 

conclusions. 

We extended partial orders to more efficiently handle sort processing. By restrict- 

ing attention to conjunctive sorts (sorts that consist of conjunctions of positive and 

negative base sorts), the scope of the problem is reduced to the interesting case that 

is most apparent in current logic programming systems (e.g. LIFE [4]). We extended 

a clausal sort specification notation introduced in [28] to include the specification of 

existential sort assertions, the dual of universal sort constraints. We also developed a 

definitional specification notation, in which many important taxonomic relations can 

be asserted (e.g. sort universitystudent is defined as the union of sorts grad-student 

and undergrad-student). Although the two forms are equivalent in power, the latter 

may be more intuitive for some constraints. 

Using the set of base sorts, and the existential and universal sort relations, we 

defined a sort context, and formalized the sort reasoning problem as the problem of 

inferring whether a given conjunctive sort s is provably empty, provably non-empty 

or neither, given a particular sort context. Sort reasoning is NP-Complete in general, 

and for many-sorted logics this is of little concern, since sound and complete resolution 

strategies can be csed. A main contribution of this chapter is the identification of 

a tractable subcase of sort reasoning, which is important for practical many-sorted 

systems. We identified a number of restrictions that achieve a polynomial-time sort 

reasoning algorithm, while retainiag a relatively high-level of expressive power. This 

goal is not easily obtained, due to the many ways in which intractability may creep 

into a sort structure. 



Chapter 8 

Reference Constraints in Logic 

"Man stays wise as long as he searches for wisdom; as soon as he thinks 

he has found it, he becomes a fool" 

- Talmud 

Equality constraints that arise through unification partition logical variables into 

coreference classes, each of which denotes an individual in a domain of discourse. 

These classes, however, are unrelated to each other. We develop reference ~ o r ~ s t r ~ i n t ~  

as a generalization of equality constraints, allowing the specification of a partial order- 

ing among coreference classes. This leads to the notion of individual level i nhedunce ,  

where an individual denoted by a variable may inherit properties from another indi- 

vidual denoted by a subsuming variable in the partial order. A variety of syst,erris, 

especially systems that reason in ambiguous domains, can benefit from an efficient,, 

formally based implementation of reference constraints. 

8.1 Introduction 

Sort (or class) level inheritance permits the declaration of properties for a sort, which 

are auiomaticalfy propagated to all of its sub-sorts. A sort represents a conjunctive 

set of individuals (the subset of the universe that belongs to the sort), where&% a 
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variable represents a disjunctive set of individuals (the subset of the universe that 

contains the individual). Each individual (or instance) inherits the combination of 

properties of its ancestors in the sort hierarchy. For multiple-inheritance hieraxchies 

(i.e. general partial orders, not just trees), research has focused on resolving conflicts 

among the inherited properties (e.g. [22, 85, 1431). 

There are, however, applications in which inheritance among individuals (instance 

level inheritance) is useful. If an individual cu inherits from another individual P,  
then any additional properties acquired by ,O must also be dynamically acquired by 

a. Such constraints may have use, for example, in systems that explore alternatives 

in ambiguous situations. During a line of exploration, we may determine properties of 

the solution we seek that must be propagated to all lines of exploration. Systems that 

exhi bit such characteristics include natural language processing systems, automatic 

configuration systems, dynamic programming, and non-monotonic reasoning systerns. 

An unsatisfactory way of achieving this is to allow instances to be maximally 

specific (or leaf) sorts. The problems of mixing class and instance (i.e. subset vs. 

element) links in hierarchies were clearly identified by Woods [I581 and Brachman 

(161. Another unsatisfactory solution is to create new sorts that denote single elements, 

because sorts are declarative in nature whereas individuals are assertional. Reference 

constraints provide a formal means of instance level inheritance. 

Logical variables denote individuals. This is true even for a universally quantified 

variable; it may range over a set of individuals, but can only denote one of these at 

any instant. Although variables may be sorted, the key difference between the sets 

represented by variables and sorts is that sorts are conjunctive (e,g. every instance 

in the set denotea ,y dog is a dog) and variables are disjunctive (e.g. X:dog denotes 

some instance in the set denoted by dog). We show how the symmetric coreference 

constraints imposed by equality among variables can be decoupled into two asymmet- 

ric, unidirectional reference constraints. Although individual level inheritance and 

reference constraints may be applied to a general many-sorted logic setting, we focus 

on logic programming. We use Prolog and LIFE [4] for examples, and discuss how 

reference constraints can be efficiently implemented using attributed variables [86]. 

After providing some background, we describe our decoupling of coreference in 



logical variables. This includes a discussion of the syntax and semantics of refercncc\ 

constraints, maintenance of the reference order, an extended example, a comparison 

with sort hierarchies, and how reference constraints may be efficiently imple~nentcd 

in a logic programming language. Section 8.4 develops and justifies instance lcvcl 

inheritance, including a number of potential applications. 

The entity to which a logical variable refers to may be unspecified or partially spccifkd. 

In logic programming, each variable X has an associated term r ( X )  that contains 

information regarding the entity that it denotes. In case there is no information, 

r ( X )  = -. When two variables X and Y are unified (i.e. X = Y ) ,  then we are saying 

that the entities to which X and Y refer are the same (i.e. X and Y corefer). Atiy 

change to X is reflected in and vice versa (i.e. T ( ~ )  = T ( Y ) ) .  Naturally, to ensure 

this property, any rational implementation will store only one term for X and Y. Such 

a constraint is called an equality or coreference constraint, and is a fundamental basis 

for some logic programming languages such as Prolog. Equality constraints part.ition 

variables into a set of unrelated coreference classes. 

8.3 Decoupling Coreference via Reference Con- 

straints 

Suppose we decouple coreference and permit reference constraints. That is, sup posc 

we can say that X refers to Y without saying the converse. To do this, we acid a 

reference (or semi-unification or sz~bsumption) operator 5. The corrstraint X 5 Y 

states that r ( X )  must be subsumed by T ( Y )  (but not necessarily the converst:). Any 

property holding for the entity to which Y refers must also hold for the en ti ty to w hicli 

X refers ji-e. information in T ( Y )  implies that this same inforxnation, and poasihly 

more, must be in T ~ X ) ) .  The pair of constraints X -( Y and Y 5 X is ecjuiv&nt to 

coreference/wlification (i-e. X = Y). Since the term associated with a variable is just 
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an approximation of an entity: X 5 Y implies differing degrees of knowledge (i.e. the 

range of variable X is a subset of the range of Y). In Prolog, an entity denoted by 

a variable is only fully specified when the associated term is ground. LIFE, however, 

is based upon approximation - terms have unbound arity (i-e. the arity of terms is 

not fixed), and so the notion of a ground term has no meaning. 

What are the consequences of reference constraints? Reference forms a preorder on 

the set of variables in z clause. That is. reference is tran~it~ive and reflexive. However, 

it also forms a partial order among coreference equivalence classes. If X 5 Y and 

Y 5 X ,  then X and Y are in the same equivalence class. Note that in order theory 

f38], we can always form a partial order from such classes for any preorder. Logical 

variables in logic programming languages such as Prolog or LIFE create a set of 

coreference equivalence classes, but there is no connection among these classes. With 

our treatment of reference constrains, we can construct a relation among these classes. 

If X 5 Y and we further instantiate T(Y), then we must similarly update r ( X )  

[and the terms for all variables subsumed by the class of X). For example, the output 

for the code: X 5 Y, X = f (, b) ,  Y = f ( a .  -) will be: X' = f ( a ,  b ) ,  Y = f (a ,  -). 

More formally, we can define a set of reference constraints as a state in a logic 

program. We sketch the formal details here. We first define some relevant static 

aspects of a program: 

r Let U be the domain of discourse (i.e. the set of individuals). 

r Let X be a set of variables. This may be infinite, or viewed as the variables 

mentioned in the logic program. 

r Let GAF be the lattice of logical terms, or generalized atomic formulae [121]. 

We now define the state fretexant to reference constraints) of a logic program: 

0 Let T:X -+ GAF be a function mapping variables to terms. Initially, VX E X, 

~ ( x )  = -. 
r Let the reference constraints, 5. be a preorder relation on X such that, for 

-Y.Y E X ,  9 5 Y implies T ( X )  LGAF T(Y) (i.e. the term of X is subsumed by 

the tern; of 1; in GAF). 

From 5 we can extract two relations: 



The coreference equivalence relation, =, is defined as: for S. Y E A', S = 1' 

if and only if X 5 Y and Y 5 X. We denote the set of equivalertce classc~s 

as P. For each equivalence class in P, we identify one ~nenlher element .Y as 

a representative for the class. and denote the equivalence class as [[XI. We call 

extend the function T to reference classes: T([X]> = T( -Y) .  

The reference (partial) order, ( P ,  +): for [XI, [Y] E P ,  [XI 5 p  [I7] if and only 

if VXz E [XI, Y ,  E [Eq, X', 3 Y,. Clearly ip is reflexive and transitive. To show 

anti-symmetry, consider two coreference classes [XI and [Y] .  If [,Y] 5 p  [Y] and 

[Yl sP [XI, and Xi E [.X],EI', E [Y], then X ,  3 Y ,  and L; 5 St. Thus, X, = lj, 

so it must be the case that [XI = [Yf. 

In this framework, we can identify two state changes that may occur during thc 

processing of a logic program: updates to 5 and updates to T. These updates are 

caused by explicit reference and coreference constraints, and through unificatiol~, as 

we discuss in section 8.3.2. We assume initially that both are monotonic (wc can 

only add new reference constraints, and further instantiate terms). That is, st1 ppose 

(5:~;)  and (ii+l,~,+l) are two subsequent states of 5 and T in the program. 'L'IwII 

siCsi+l and VX E X ,  T~+~(,Y) sG-4F T;(X). This condition holds in Prolog, hut may 

be invalidated in LIFE by destructive variable assignment. 

8.3.1 Notational considerations 

There are two ways in which coreference can be noted in a logic program: explic- 

itly through an equality constraint ( e g  X = Y), or implicitly by using the sa~nr 

i-ariable name at two or more locations in a clause (e-g. f ( X ,  x) irt Prolog or 

persm(mdfte.r => Xf:persm, kstFriend => X) in LIFE). Although the impjici t 

notation is important to keep clauses concise and clear, it can he viewed as a co~t- 

vexkace; we codd replace all occurrences of a variable X by unique names, a d  

explicitly state the coreference constraints among this set of variables. 

Reference constraints can he noted in clauses explicitly fe-g. X 5 Y c:onld he 

noted using ASCII as x <- Y). Impiic~t notation for reference r~nstraints may be 

c,=f.-;fsiCg, m d  we Oft not consider this possibiEty. 
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8.3.2 Maintaining and satisfying the reference order 

In a logic programming language, such as Prolog, the scope of a variable is the clause. 

Due to the coreference constraints on variables in the head of a clause when a predicate 

is called, the initial coreference classes may not all be singletons. For example, if we 

call the predicate f /2 with f (X, X), then the two variables in the head will al~eady be 

in the same coreference class upon entry to the clause. Similarly, a predicate may alter 

the coreference classes of calling clauses. For example, if the predicate g / 2  unifies its 

two head variables (e-g. if the head clause is g(X, X)), then the coreference classes of 

the two variables in any calling clause will be combined. Thus, from the perspective 

of a clause, we start wi bh a given set of coreference classes containing the variables in 

the head, which may be modified (monotonically) in either the head or the body of 

the clause. With reference constraints, the reference order will similarly be modified. 

At any stage in the processing of a clause, we have a current reference order 

(P ,  ip), where P is the set of coreference classes. For efficiency, we only maintain 

the representative for each coreference class in P, and the wsociation of variables 

with their representative fe-g. via union-find). In this way, reference constraints are 

constructed on top of standard coreference. There are three situations we need to 

consider. 

Explicit reference constraints Suppose we encounter an explicit reference con- 

straint X 5 Y ,  where the representatives for X and Y are X' znd y', respec- 

tively. If [X'] Sip [Y1]> then nothing need be done. Otherwise we must update 

the reference order and propagate changes to new descendants. 

If [PI I p  [X'j, then we coIIapsc the suborder between [Xq and [Y'], completing 

t h e  coreference between -7C and Y: for any class [Z]  for which [Y1] 5p [Z]  & 

[S'i, we merge [Z ]  with [Y']. After ail such classes have been merged, we 

propagate the term associated with [Y'], which will be at least as instantiated 

as the term associated with [X'] ,  to aU new descendants of [Y3]. These will be 

the coreference classes [Q] for which, prior to the hierarchy update, [Qj -& [X'] , 
but LC21 $P [Y'j- 
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the order. Classes below [X'] will now also be below [Y'], so npw descc211dittlt.s 

of [Y'] (including [X']) need the term associated with [Y'] propaga,tecl. to them. 

Explicit equality constraints Suppose we encounter a variable unificatioll S = l', 

where the representatives for X' and El' are X' and Y', respectively. We could 

handle this as two separate reference corlstraints X 5 Ir and 1'' 5 X, but it may 

be more efficient to  handle the coreference directly. If X' = Y' then nothi~lg ncctl 

be done. If either [XI] ip [Y'] or [Y'j 5 p  [XI], then we handle the completion 

of this coreference as above. If, however, [X'] and [Y'] are iricomparablc, tlicn 

we melge these reference classes, and propagate the term associated with [X'] 

to  the descendants of [Y'] (that are not also descendants of [XI) and vice v ~ ~ s i t .  

Term unification Additional coreference class updates and term propagation may 

result from implicit constraints arising in unification. During the unification of 

two terms, if we unify a variable X with another variable Y,  then the si tua.t,ion 

is as above. 

Suppose, however, we unify a variable X with a term TI (e.g. = ! (a ,  %)). In 

this case we find the representative X' for X, unify 7% and T (XI), and propagate 

this unified term to all descendants of [XI] in the reference hierarchy. Although 

this operation does not directly modify the hierarchy, the unification of TI arrrf 

7 ( X r )  may- result in further coreference class mergings, as described above. 

8.3.3 Example 

We now show an example with which we hope to elucidate the nuances of referenct: 

constraints. Consider the following predicates: 

Now consider the results of the predicate call p(X,Y ,Z). Initially, there are thrce 

separate, incomparable coreference classes, as shown in the first reference onler in 
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Figure 8.1, where T represents an implicit top element. The second reference order 

in the figure results after processing the body of p before the call to predicate q 

(where the associated terms are shown below the variables). The structure arises 

from the reference constraints. For example, the constraints G <" H and G <" J set 

input variable X (unified with G) to be subsumed by variables J and Y (unified with 

N). The associated terms arise from the explicit unifications in the predicate and the 

flow of information in the reference order. For example, the term a~sociated with X 

is formed from the unification G = f (g(-) , -, -) and the inheritance of information 

from J and Y .  

The third reference order results after processing the first predicate in the body 

of q. The order itself did not change, but propagation from J to X and I< occurs. 

The next reference order is the final order after variables X, Y and K merge to form 

one coreference class, with representative Y .  The last order shows the returned state 

after the local variable J is removed. 

Figure 8.1: State of the reference order at various points in a predicate evaluation 

8.3.4 Comparison with sort hierarchies 

There are a number of similarities, but also many important differences between our 

reference hierarchy and sort hierarchies in many-sorted logics [28] and sorted logic 

programming languages (e.g. LIFE 141). The two are compatible, but independent 

uses of partial orders. 

Semantics: As mentioned above, a sort represents a conjunctive set of individu- 

als, whereas a variable represents a disjunctive set of individuals. If the exact 
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individual denoted by a variable is unknown, the set represented by it is nei- 

ther empty nor a singleton. The distinctions between sorts and individuals (or 

declarational vs. assertional relations) are described in [lo], and t,he need to 

distinguish between subsort (i.e. isa subsort 04 relations and member ji.e, isa 

instance 04 relations is justified. Thus, we cannot intermix t.ht sort hierarchy 

and individuals (where individuals might be seen as minimal sorts or leaves of 

the hierarchy). In a sense, reference constraints add another relation "is inow 

specified than" among instances. 

Scope: There is a fundamental difference between the scopes of sorts arid yariablcs. 

A 30rt hierarchy is intrinsically global (declarational) in scope. In many systems 

(e.g. imperative objected-oriented languages such as C++), tLhe sort hierarchy is 

specified at compile time. In LIFE, the sort hierarchy may be modified duri tig 

run-time, but in a limited way. New sorts may be added, and sorts may hc 

redefined (e.g. to have new attributes), but these changes axe not propagated 

to existing individuals that are subsorts of those modified. 

The scope of a variable in logic is well-defined. In logic programmirig languages, 

the scope of a variable is not global to a program, but local to a clause. Thus, all 

variable changes are during run tinre, which we would expect to be inore freyueitt, 

than changes to sort hierarchies. In our approach, any change to the reference 

hierarchy is reflected in the instances represented by the variables affected. 

Dynamic Behaviour: A key difference between sort hierarchies and referencc coti- 

straints is with unification. In sorted logic programming, unification docs not 

modify the hierarchy; rather the unification of two sorts is generally their great- 

est lower bound. With reference constraints, however, unification may actually 

change the structure of the reference hierarchy, which in turn may modify terms 

associated with affected variables. This was exemplified in section 8.3.3. 

Thus, we conclude that sort arid reference hierarchies share some similari t ics , 
but are fundamentally diffefer~t and independent. However, they are not rriu t uall y 

exclusive, and we feel that systems should provide both features. 
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8.3.5 Implementation 

Can reference constraints be efficiently implemented? If only coreference is used, then 

the reference order is an anti-chain (i.e. each pair of coreference classes is incompara- 

blej. In this case there is little or no overhead when permitting reference constraints. 

If reference is used, then we must maintain the partial order among coreference classes, 

and propagate changes in a class to all of its subclasses. This could be achieved effi- 

ciently through uttribzlted variables f86], where the couer (child) relation is stored with 

variables, and may be implemented at the WAM level. Thus, a modified variable will 

have knowledge of its immediate descendants in the reference order, and so changes 

can easily be propagated. initially, the set of children for a variable will be empty. 

For changes to the reference order, the only lattice operation that we need to perform 

is comparability (i.e. X sp Y?).  This could be achieved in time linear in size of 

the descendant cover relation for Y with a (parallelizable) marker passing algorithm. 

Sucl, an algorithm would be efficient as long as the size of reference order did not 

become too large, in which case taxonomic encoding techniques could be exploited. 

To facilitate backtracking, the state of the reference order would have to be saved, 

along with the standard traii information, at choice points. Reference constraints aiso 

merge well with memoing techniques [152]. Instead of tabling only predicate call and 

return value information, we also need to store the relevant aspects of the reference 

order prior to the predicate call, and upon return from the call. The relevant portion 

of the reference order P for a predicate invocation is simply the suborder of P that 

contains only the variables mentioned in the predicate call. When a look-up matches 

an entry in the table (i-e. both the predicate call and reference constraints on variables 

in the call match), then we simply use the result information, which will provide both 

variable values and updates to the current reference order. 

8,4 Individual Level Inheritance 

What are the benefits and uses of reference constraints? Ironically, although large 

reference orders may bene6t from taxonomic encoding, it was in the development 
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of our constraint-based view of encoding that the need for reference constraints was 

first identified [47]. Encoding is, however. a limited domain of utility for this gcwral 

mechanism. More interesting applications arise with the notion of individliczl Eccd 

inheritance (inheritance among individuals as opposed to classes). A sort hicrarcliy 

provides a partial order among sets of entities, whereas reference constraints const+ruct 

a partial order among individual entities. Thus sort hierarchies and ob ject-oricntctl 

class hierarchies permit class to class and class to individual in beritancc. 

There are several reasons why we may want iadividual level inheritance. It1 all 

ambiguous domain, we may want to separate the known information about an etltity 

from hypothetical or speculative information. In complex scenarios, we may wanto t,o 

separate information related to an entity in different contexts. We may cven want 

to relate different entities that must share some cornmon, but, dynamically changi~~g 

properties. In all these cases, reference constraints permit the separation of inforrria- 

tion, while retaining a close structural relatiou. We now describe some propertics of 

applications that may benefit from individual level inheritance. 

In an ambiguous setting, we may have some information regarding an entity Chat 

we are certain of, and we may have other information that we are uncertain of. I t1  

an exploratory fashion, we can analyze this other information, perhaps in  a brvadt, 11- 

first manner. If we discover new information with certainty, we car1 apply it to the 

original entity, and it will be propagated down all paths of exploration. Any paths 

that become inconsistent will be pruned, requiring a different processing strategy t hall 

Prolog: instead of backtracking when the term of a variahlc X becomes inconsistent , 
we can simply mark X as inconsistent (e-g. T ( X )  = I) and prune it from the refcrerm 

order. 

Another case arises if we want to retain information for a single entity, h i t  

in separate contexts. For example, suppose we have a variable John which rep- 

rese~ts general aspects of a person named John. We may have additional vari- 

a5ks FatherJohn 5 John and PilotJohr, 5 John which represent fuller infor- 

mation related to John in the context of his being a father or a pilot, This situa- 

tion is shown in Figure 8.2. We could combine these two contexts with a variable 

FetherSilotJohn 5 Father John,  Fat her Pilot  John 5 Pilot Job. In this way, 



we maintain the information related to John in a hierarchically structured way; all 

information is accessible, but the information within any context will not be cluttered 

by irrqlevant information. In addition, any updates at higher levels (e.g. adding gen- 

eral information about John, such as his age) will be propagated to all lower levels. 

Such a scheme may also be used for analyzing aliases, particularly if we allow infor- 

mation introduced at a descendant to override that introduced at an ancestor (i.e. 

local information having precedence over inherited information). 

John . 
oersonfname=>iohn) 

Figure 8.2: Reference order for separating the contexts for a person named John 

The above outlines properties of applications that would benefit from individual 

level inheritance. We next describe some concrete applications. 

Automatic configuration: Suppose we have a system that automatically designs 

a system configuration given a set of constraints among components and a set 

of specification constraints (e.g. [37]). At any point, we may be certain about 

some properties of our system BaseSys,  but uncertain about others. Through 

expIoratory reasoning, we could try a number of possibilities simultaneously, 

each of which must conform to BaseSys. 

For each possibility, we could assign a variable, say Sy  s;, and make the constraint 

Sys; 5 BaseSys. We could then add additional, hypothesized components to 

Sysi. Of course, this could be done recursively, creating an entire hierarchy 

of possibilities, with BeseSys as the root. If we also detect relations among 

hypothetical systemst then this hierarchy may be a general partial order, not 

just a tree (e.g. if we detect that Sysj, where Sysj 3 Sys;, is an enhanced 

system of Sysk, we can add Sys, 3 Sysk). 

During processing, we may determine the necessity of components in a higher 



system, resulting from analysis or additional user input. For example, if we real- 

ize the need for a certain component in the base system, we add i t  to UnseSjs 

(via unification) and it will be automatically propagated to all of i t s  descen- 

dants. This propagation may detect inconsistency of one or more hypotl~ct,icaI 

systems, which will then be pruned from the search space. 

Of course, this system may be incorporated as part of a larger constraint solviiig 

system, and reference constraints can be viewed as one more form of constraint8 

in constraint logic programming. 

Natural Language Processing: Computational linguistics systems must be robust, 

due to the high level of ambiguity in human languages. As examples, consider 

phrase parsing and discourse processing. A number of techniques, sucll as chart, 

parsing [70, 6, 119, 1341, have been designed to minimize the effort involved in  

analyzing a sentence that may have multiple parses. 

For a simple example, suppose a variable X represents what is known about a 

phrase, and variables Y ,  (where Y ,  5 X) represent the investigation of various 

ambiguous parses (i-e. for each some decision has been made regarding thc 

interpretation of an opaque word or phrase). During the parse, if sorncthing 

becomes known about the entire sentence X (or about some sub-parsc higher 

than the current level), this must be propagated down from X to the 'i/; (and re- 

cursively to their descendants). This idea can be extended from single sentences 

to entire discourses. 

In the sentence "Jack saw a dog on his way home", the prepositional phrase " o n  

his way homen may apply to either the dog or to Jack. We may have semantic 

preference rules that would select the latter reading, but the context of this 

sentence may override such rules. Thus, we may explore both possibilities, b u t  

focus on the most likely reading given the current information available. In 

either case, we know that Jack saw a dog, so we may assert this as known, 

and place the two readings in relation to this using reference constraints. Latcr 

processing may incorporate additional certain information, which may pru rxe 

one of the possibilities. 
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To achieve this using reference constraints, we must use a representation for 

parsed sentences in which ambiguity can be resolved via further instantiation of 

terms. Figure 8.3 shows one possibility in which prepositional phrases are stored 

in a list as the last argument of the main predicate1. In the term for variable X, 

we denote the ambiguity as to whether Jack or the dog is on his way home using 

the disjunctive set notation {Y; Z }  (where, for example, {jack;  dog) unified with 

dog results in dug). Although Prolog does not support such notation directly, 

it can be specified in LIFE and with sparse logical terms [51]. 

Figure 8.3: Reference order for ambiguous parses of "Jack saw a dog on his way home" 

As another example, the word "chair" is ambiguous in the sentence "When 

Sherry saw the chair, she shook her hand". The default reading may be as a 

piece of furniture, but it may also refer to the chairperson of a meeting. By 

maintaining both possibilities, backtracking may be avoidzd as further infor- 

mation is discovered. Figure 8.4 shows how this may be represented using an 

interaction between reference constraints and a sort hierarchy. The first di- 

agram in the figure shows a portion of a sort hierarchy for word meanings, 

in which furniture-chair and rneetingzhair are both subsorts of chair, and 

meetingxhair is a subsort of person. The second diagram shows the reference 

order after the sentence has been parsed. The pronouns she and her have not 

yet been resolved, and the disjunctive set notation indicates that both must 

refer to either "Sherrym or "the chair" (although the default may be that "she" 

refers to 5herry'' and "her" refers to "the chair"). In the interpretation where 

"the chair'" is a piece of furniture, we apply the semantic constraint that hand 

shaking is bme by perms, leading to a parse in which Sherry is shaking her 

own hand. 

 ore linguistically motivated possibilities also exist, but their development is beyond the scope 
of this thesis. 



chair person x 
r-4 when(saw(Y:sheny.Z:chair), 

shook((Y:Z),hand-of(( Y;Z)))) 
furniture-chair meetingchair 

e x ?  
when(saw(Y:sherry,Z:furniture_chair), when(saw(Y:sherry,Z:~neeting-chuir). 

shook(Y,hand-of(Y))) shook((Y;Z).hand-of((Y;Z)))) 

Figure 8.4: Reference order during parse of the sentence i' When Sherry saw the  clrcrir. 
she shook her hanci? 

Chart parsing can be viewed as an instance of dynamic progra.mniing. I t  is 

generally bottom-up in that it starts with words, which coalesce into larger i ~ ~ d  

larger phrases, until one phrase (often a sentence) spans the entire input. TIN* 

benefit of saving intermediate results is a reduction in redundant processiilg 

(which is also the basis of, and motivation for, menioing i! 521). Reference con- 

straints can be used as an automatic aid to dynamic prograrnrnirig systems in 

which information that applies to a node in the search space can bc automati- 

cally propagated, with inconsistencies corresponding to pruning. 

Reference constraints may also aid in the integration of top-dowrt and botrt,orn- 

up techniques of discourse processing by providing a structure for relating i l l -  

termediate results. By maintaining ambiguity using reference during top-dow 11 

parsing, needless backtracking may be avoided. If bottom-up results arc storcd 

in a form that is unifiable with the final result, then they too can he coalescctcl 

using reference. Thus, both forms of processing create additional entities below 

existing entities; certainty is added higher up in the reference order, and UII -  

certainty is added at  lower levels. When the entire structure coalesces into otic 

coreference class, all ambiguity has been resolved. 

Non-monotonic and Default Reasoning: Although default properties are sprci- 

fied in sort hierarchies, reference constraints may be exploited to enlrance t lic 

eEciency of default reasoning by allowing a clean way of separating known from 

assumed properties. When a variable X is constrained to  be of sort s (e.g. via 

an assertion of the form X:s) ,  we can unify X with all the strict, properties of 

s, and create an implicit default variable Xd, where Xd 5 X, with which we 

unify a& the defadt properties of s. In order to  maintain the default variable, 
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new properties of X are unified with ;id using what we call c-unification [141]. 

In c-unification, one of the terms is dominant and the other is subordinate. If a 

conflict arises during unification, instead of failing, only the information in the 

dominant term is kept. Thus, when updating Xd after a change to X, we c-unify 

r ( X )  with r(Xd), where r(X) dominates 7(Xd). In this way Xd retains only 

those default properties that may still be applicable to X. Additional default 

reasoning strategies (as in e.g. [22, 8.5, 1431) may be built into c-unification. The 

importance of using reference constraints in this way is that monotonic aspects 

of reasoning can be separated from, but still related to, non-monotonic aspects. 

To illustrate, we use the standard flying birds example. Suppose that bird 

is a sort with default properties feathered=>true and fZy=>true, and that 

pen.guin is a subsort of bird with a strict property fly=> false and a default 

property home=>untarctica.. The first diagram in Figure 8.5 shows the situa- 

tion after initializing a variable Opus to be of sort bird (e.g. after an assertion of 

the form O p s :  bird). The second diagram shows the situation after we specialize 

Opus to be of sort penguin. 

Opus 
b1rd 

Figure 8.5: Reference constraints for default reasoning 

The hypothetical reasoning systems we described add uncertain assertions as 

children of a node. In this way, certainty can be incorporated as it is deter- 

mined, and removal of assertions corresponds to pruning children. However, 

there may be systems in which assertions must be explicitly withdrawn with- 

out pruning the node. In this case, additional work must be performed since 

branches of the reference order may have been pruned using the information to 

be withdrawn. One possible solution is to mark, but not prune, inconsistent 

nodes of the reference order. These nodes would be treated as pruned unless 

an assertion they contain is removed, in which case they may change state from 

inconsistent to consistent. 
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Individual level inheritance is certainly possible without refercncc const,raints, and 

in fact many systems appear to be already doing this. However, we call apply t,lw 

same arguments as for sort hierarchies in many-sorted logics, and for inheritancc i n  

object-oriented systems. By making this process explicit, declarative a11ct a~tomat~ic, 

the programmer (or logician) is freed of the burden of performing this  task, a.tltl 

can instead focus on higher-level aspects of the problem. Due to the formal basis of 

reference constraints as a generalization of equality constraints, we ensurc a ror~sis tiw t, 

semantics when individual level inheritance is exploited. 

Conclusion 

We have proposed two notions in this chapter: reference constt.c~ints and indiaidunl  

level inheritance. Reference constraints are a generalization of quality const1rairit,s 

among logical variables. Equality constraints form equivalence classes based on cord-  

erence. Reference constraints decouple the symmetry of coreference, and pcrrn i t t, t I ( *  

construction of a partial order of coreference classes. We have shown that, c l r ~ .  to t, t ~ .  

semantic differences between sorts and variables, the reference order is quit<. dist,i~~c.l~ 

from a sort hierarchy in many-sorted l~gics and sorted logic programming lauguages. 

We believe, however, that both are compatible and desirable in a system, althol~gh 

we did not deeply explore the interaction between the two. In this inquiry, wcb fo(:tlscvl 

on reference constraints in logic programming languages such as Prolog or 1,114'15 141. 

A full model theoretic analysis in a logic system is required. 

Reference constraints lead to individual level inheritance, which permi t,s i IJ her- 

itance from one individual to another. This is distinct from t h c  ordinary notior1 id 

inheritance which is from a sort for class) to another sort or to an individual. ' f ' t t  rough 

a general outline of the types of applications that may benefit from automating j r i d i -  

vidual level inheritance, and descriptions of its use in automatic configuration (and 

constraint logic programming), natural language processing (and dynamic program- 

mingj and default reasoning, we investigated the potential benefits of our work i ~ i  

logic programming and artificial intelligence systems. 



Chapter 9 

Organizing the Hierarchy of 

Conceptual Graphs 

"When nothing is done, nothing is left undone" 

- Lao Tsu 

""Who really invented nothing 

- Walt Kelly 

Conceptual structures is a graphical knowledge representation formalism that is cquiv- 

alent in expressive power to first order logic. There are two main forms of hicrarchiw 

used in the formalism: defined and derived. Defined (declarative) hierarchies, such  a,s 

sort and class hierarchies, have an explicit partial order relation. 111 conceptual st,ruc- 

tures, the type and relation lattices are defined. A derived hierarchy is a partial order 

that is induced by internal structural relations among components. T w o  conceptual 

graphs can be compared using the su bsumption relation, where graph gl sul-)su i r i c ? ~  

graph g2 if it contains a subset of the information in gz. Derived partial orders art: 

employed in other knowledge representation systems, most notably for ~k~ss . i f i~c~l ' ton  

in the KL-ONE family of terminological systems [18]. 

To organize derived hierarchies such as these, which are highly dynamic and cx- 

pensive to construct, a number of techniques have been proposed, inciuding cm:oil i r~g 

[42] and multi-level indexing [94]. In this chapter, we develop a novel approach to 

organizing derived hierarchies using graph normalization and spanning t rccs. 



CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 

After providing a brief overview of conceptual structures, we introduce some nor- 

malization techniques for conceptual graphs, leading to spanning tree normal form 

(STNF). In [fjO], we show how an integration of sparse terms and order-sorted feature 

terns,  called sparse feature terns, can be used to implement graphs in STNF, and 

how some operations on graphs in STNF can exploit unification and enhance opera- 

tional efficiency. Starting with graphs in STNF, we develop a generalization hierarchy 

normal form (GHNF) with which we organize the derived hierarchy of graphs, called 

the generalization hierarchy, into a spanning tree. We show how searches in this 

hierarchy can be performed efficiently using this spanning tree organization. 

9.1 Background and Motivation 

Since details of conceptual structures are not necessary for the following, for brevity we 

choose to limit detailed background cln the subject, which can be found in [136]. Es- 

sentially, a conceptual graph (CG) is a connected bipartite graph consisting of labeled 

relation nodes and conceptual type nodes. Conceptual types are standard ontological 

objects, such as "person", LLcat" or "eat", and conceptual relations are basic relations 

among types, such as "agent" and "object". A standard example graph is shown in 

Figure 9.1 [136], and represents the declarative statement "a cat sitting on a mat". 

@ 1 
CAT SIT MAT 

Figure 9.1: Conceptual graph representing "a cat sitting on a mat" 

For our research, there are three ordered sets that are important: the conceptual 

types (the type lattice), the conceptual relations (the relation lattice), and the graphs 

themselves (the generalization hierarchjr). The formalism requires both the types and 

relations to form lattices, which we have argued is overly strict, and that only ordered 

sets are required [ S O ] .  These two ordered sets are definitional, in that the user imposes 

the partial order relation. Since previous chapters have dealt with encoding defined 
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taxonomies, we omit further discussion of the type and relation lattices, 

The generalizatior, hierarchy, on the other hand, is derived using a set of car~ontcizl 

formation rules that define how graphs relate. If graph g, can be dt4ved from graph 

gz using the canonical formation rules, then gl must contain a? least as 1 1 1 ~ ~ 1 1  illfor- 

mation as g2. A conceptual graph system begins with a set of given graphs, callcct 

the canonical basis. All other valid graphs used by the system must be dcrivablc from 

the canonical basis. 

Spanning trees are a valuable tool for improving the operational efficiency of graplis 

and the generalization hierarchy. We only deal with utomic co~lceptual grzghs in 

which all relations are both dyadic and invertible. Atornic conceptaal grapbs contain 

no logical connectives (i.e. they are connected), no logical quantifiers (other tllart 

the implicit existential), and no nesting (i.e. there is only one context) [Zi, 411. 

The inverse of a dyadic conceptual relation R is a relation R-' that is semantically 

identical to R with the direction of the arrows reversed. For example, tile inverses of 

AGNT and PARENT are AGNT-OF and CHILD, respectively. Similar assumptions 

have been made in [41, 107, 111, 1601. 

We first discuss the notions of cardinality constraints and functional rclatioils. 

Although cardinality can be expressed using sets or complex nesting of contexts, it, 

is important to have the ability to express such constraints simply and declarat,ivcly. 

Graph normalization techniques introduced in [?  071 are expanded upon in section 9.3 

to prepare for constructing the spanning tree normal form that we introduce in st~rtion 

9.4. Of particular importance to  operational efficiency is the elucidation of func:t,iona,l 

relations in graphs. We then explore their use in the generaliza.tior1 hierarchy to 

specify a generalization hierarchy normal form, to enhance search operations such a.s 

matching and retrieval, and to efficiently perfcrm topological traversals. 

9.2 Cardinality Constraints 

Although some conceptual relations are functional in character, CG theory providcs 

no simple way to represent these and other forms of cardinality constraints declar- 

ativejy, without resorting to the use of actors, sets or complex nesting of contexts. 



Actors imply computation of dependent, concepts from independent concepts, while 

sets do not restrict the number of relations of a particular type, which can be a valu- 

able constraint for normalization and matching. For example, the canonical graph: 

[EAT]+(AGNT)I[ANIM~~TE] does not tell us whether an act of eating must have 

exactly one agent or may have multiple agents (i.e. if AGNT is a functional relation 

of E A T ) .  Another example is: [PERSON]-+(SPOUSE)+ [PERSON] which says that 

the spouse of a person must be person, but does not constrain a person to have at 

most one s2ouse. For illustration, we assume that both of these cases are functional. 

Definition 9.1 A cardinality constraint, & fiz E 2+), between a concept c and a 

relation r states that at most n relations of type r may be connected to  c .  

A cardinality constraint is denoted on the arc between the concept and the relation. 

Thus, the above example becomes: [EAT]-@l-+(AGNT)-+[ANIMATE]. Restricting 

a relation to one occurrence for a concept (i.e. n = 1) is a functional cardinality con- 

straint, and it is these constraints that we focus on. The connection to logic is simple: 

if the variable representing the independent concept appears in two instances of the 

relation, then the variables representing the dependent concepts must be equal. This 

provides a sort of uniqueness constraint. Our example translates to: 3x3y  (EAT(x) 

/\ ANIMATE(y )  A AGNT(s, y )  AVz, AGNT(a, z) > z = y). We do not suggest that 

all functional dependencies can or should be expressed in this way. Rather, we feel 

that by notating functional relations, normal forms for CGs will be more distinct and 

easier to determine. 

Cardinality constraints blend well with set cardinality 163, 1361. For set coercion, 

a cardinality constraint can be moved into the set notation. On expansion, the set 

cardinality can be moved out to a cardinality constraint. To ensure set joins, we make 

concept sets functional. As an example, for: [DANCE]+( AGNT)+ [PERSON: Liz], 

set coercion oil PERSGN results in: [DANCE]-@l+(AGNT)+ [PERSON: (Liz)], 

whereas set expansion on: [DANCE]-@l+(AGNT)-+[PEREON: (Liz,Kirby)@2] re- 

s ~ d t s  in: [PERSON:Liz]t(AGNT)t@2-[DANCE]-Q2+(AGNT)+[PERSON:Kirby]. 



Normalization 

Normalization is importam to enhance the similarity among graphs arid can Ilc 

achieved via transformation rules [lo?]. lye assume that d l  relations arc i~ivt~t.til>lc 

so, e.g., the inverse of WORKS-FOR is EMPLOYS, whereas tphe inverse of SPQlrSIC 

is itself ji.e. it is symmetric). In [50]. we show how our representation automatically 

performs some simplification, reducing redundancy that can arise during: joins. 

Explicitly representing functional relations can be exploited to determine a, pr~cc- 

dence between a relation R and its inverse Rdl. Priority is given to functioual 

relations. Thus, assuming a world in which a person has at most one national- 

ity. we would prefer the graph: [PERSON]-c@l+(CITIZENSHfP)-[COIiNTRk'] to: 

[COUNTRY]-+(CITIZEN)-@l+[PERSON]. If both R and R-I are functional, wc in-  

corporate both (i.e. we perform symmetry completion [107]). By doing this, wc 

traverse all functional relations in the direction of their arcs. If neither R nor R-I are 

functional, other preference schemes need to be specified. 

Normalization will also incorporate selectional constraints related to the graph, 

particularly those which add functional relations between concepts. To illustrate, thc 

well-known example in Figure 9.1 shows a normalized version of the CC, i n  which tho 

concept SIT imposes the selectional constraint that it has exactly one agent. 

9.4 Spanning Tree Normal Form 

It is easy to specify a spanning tree for any conceptual graph, with corefcrcnce Iirikirig 

identical concepts as in the linear form. Any traversal of a graph that visits ctvcry 

concept and relation defines a spanning tree: the first node visited is the root arid 

cycles are broken by introducing coreference. Our goal is to specify a spunniy h c  

normal form (STNF) that can be used to improve the efficiency of CG opwations, 

by exposing functional relations, as well as to organize and search the ger~eraiizatior~ 

hierarchy. In El601 there is also a proposal for a normal form that is a sparlni~rg tree, 

but the tree is determined in an ad hoc manner (alphabetical order is used to select 

the root and relations to  expand partial trees). 



Definition 9.2 A spanning tree T for a csnceptual graph G is a connected acyclic 

subyraph of G' containing all the concepts of G (but not necessarily all the relations). 

For each spanniny tree, one concept is designated the root. 

In the linear form [136], concepts and relations form the nodes of a spanning tree, 

and arcs are labeled with directional arrows. For STNF, only concepts are nodes while 

relations are arc labels. The direction of arcs is implicitly downward. Although this 

format is suitable for binary relations, which form the majority of conceptual relations 

[ I  231, it may be possible to accommodate monadic a ~ r l  higher-order relations; we do 

not explore this here. ?Ve assume that our graph is normalized as described in section 

9.3 and that we have linear extensions T and p of the type and relation hierarchies, 

respectively. Since some graphs may require multiple root elements, we actually 

construct a spanning forest. We maintain the individual trees in a list ordered by the 

type of the root concepts (according to T). When drawing forests, we add an untyped 

dummy root to connect the trees together. 

We give below an algorithm that takes as input a normalized conceptual graph 

G, and outputs a spanning forest F that represents G in STNF. The concepts and 

relations of G are the ordered lists C and R, respectively. Each node in the forest is a 

concept c to which a (possibly empty) list of children is associated (via children(c)). 

Each child contains a pair: the child concept and the connecting relation. The root 

of the tree containing a concept c is obtained by calling tree(c, F). 

Algorithm 3 STNF(input: G =< C, R >; output: F )  

1. F':=  C 

2. for each concept c E C, children(c) := 8 
3. for each relation r(c,. ~ j )  f R (taken in order) 

4. if @ee(cj, F )  = cj AND tree(&, F )  f tree(cj, F ) )  then 

5. children(c;) := children(q) U {< r ,  cj >) 
6. F := F - { e j )  

7. else 

8. ckz ' ldren(~)  := eh%ldren(q) ti (< r, core f ( c j )  >) 
9. end 
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First, we start with a forest consisting of each concept in the  graph C: as ;I t r ~  

(lines 1 and 2). We consider relations one at a t-ime and update the forest as newssay,.. 

-4 node is always placed below the entering concept c,, labeled with the relation type.  

If the exiting concept, c,, is the root of a different tree in the forest froin c., si~llplj. 

connect this tree below c; (lines 5 and 6 ) .  We do this by adding the rclation/conccpt 

pair to the children list of c, and removing the tree rooted at c, from the forest. If ,  

however, c, is not a root or is in the same tree as c,, the node below c, will cor1tai11 

a coreference label linking to c, (line 8). Once we have visited all relations, wc havtl 

a spanning forest for our graph. The time complexity of this algorithm is near l i  J I C ~ I  r 

in the number of concepts and relations in the input graph if the t rcc  function is 

implemented using a union-find algorithm. 

The order in which we visit relations (line 3) is important. \Ve consider all fnnc- 

tional relations, before any non-functional ones. Within these groups, the order clc- 

pends on the types of the relation and twc incident concepts. The order of prec:ctlcnc.r~ 

is the relation, followed by the entering concept and lastly the exiting concept. I3xplor- 

ing the consequences of choosing different precedence orderings is a topic fcr furtlic~r 

research. It may still be possible for there to be two or more arcs with precisely t11c 

same relation and incident concept types. In this case, contextual information may 

be needed for selection. In this preliminary analysis, we simply select one ar hi t rari l y, 

and this is the only place where non-uniqueness can enttr- into the process. Thus ,  0 1 1  r 

construction computes a spanning tree normal form that is nearly unique for normal- 

ized graphs. As an example of this construction, Fig. 9.2 shows the STNE' of the. 

graph in Fig. 9.1. Note that both AGNT and LOC are functional relations of SIT. 

The last relation visited is STAT, which is added using coreference. In  diagrams, wc 

notate functional relations using thick lines and non-functionai mes with thin lines. 

CAT MAT 

1 STAT 

*x 

Figure 9.2: Spanning tree normal form 
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Another well-known example, with a cycle, is: a monkey eating a walnut using the 

walnut 'S .shell as a spoon 11363. Figure 9.3 shows the normalized graph as well as its 

STNF. For illustrative purposes, we assume that an entity can only be (intransitiv~ly) 

a part of at most one other entity, and that an instance of eating has one agent and 

one object. Thus the relation PART is inverted to PART-OF. We assume that the 

linear ordering of relations is AGNT < OBJ < PART-OF < INST < MATR. We 

first add MONKEY and ?VALNUT as children of EAT, then a coreference link to 

WALNUT as a child of SHELL, and finally we add the non-functional relations INST 

and MATR in the tree rooted at EAT. 

MONKEY WALNUT:*y S P ~ O N  

M ATR 1 
I 

SHELL 
PART-OF 1 

*Y 

Figure 9.3: A cyclic graph and a tree representation 

For a more complicated example, consider the statement: a woman eating a dinner 

cooked by her husband, which is shown in Figure 9.4. In this case, we end up with two 

trees since both EAT and COOK only have exiting relations in the normalized form. 

Assuming the types are ordered by COOK < EAT < WOMAN < MAN, we obtain 

the STNF as shown. 

OMAN 

@ l l  EAT 
A G N ~ T  

WOMAN:*z *y 

l s p o u s e  

*z *x 

Figure 9.4: A woman eating a dinner cooked by her husband 



In f-501, we describe more fully the advantages of STNF. Graphs in Srl'Nl' d u i t  

a direct implementation using order sorted feature structures [4, 51; wc deve!oped a 

variant of sparse terms for this purpose. We demonstrate how the canonical format ion 

rules can be performed on graphs in STNF, in particular how unification call bc 

exploited to efficiently implement t.hese rules by observing the co~lstraints imposed hy 

functional relations. Since these issues are outside the scope of this tllcsis, wc chonw 

to omit details. 

9.4.1 Pivoting 

Given a graph in STNF, we may need a certain concept to be the root of onc ol' tlw 

trees in the forest in order to perform graph matching, to obtain different viewpoints 

of a graph, or to further normalize the spanning tree for storage in the know ledge haw. 

We call this process pivoting. Although there are several possibilities for pivot,ing, wc 

have chosen one that is particularly simple, yet, useful for organizing the knowlecigc 

base. We call the node of a concept in a spanning forest that maintains the typc 

information (and possibly has a subtree) the dominant node. ,411 other, corderring 

nodes are called subordinate. Basically, to pivot a concept that is not already a root, is 

accomplished tj replacing the dominant node for the concept by a suborcli~latc rlodc 

and adding the subtree rooted at  this node as a# top level tree in the forest. Pivoting 

can easily be carried out, as shown in the following figure which shows pivoting of' the 

STNF form of the graph in Fig. 9.3 on the concepts "WALNUT" and '51-If-3LL". 

A 
EAT WALNUT:*y 

A G N ~ T  ST 

MONKEY *Y SPOON 
i 
~MATR  WALNUT:*^ IMPTR 

*z 
'VRT-oF 

*Y 

Figure 9.5: Examples of pivoting the graph in Figure 3 
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9.5 Representing the Generalization Hierarchy 

A CG database contains of some of the (infinitely many) canonical graphs that can 

he obtained from the canonical basis B using the canonical formation rules. The 

generalization hierarchy organizes graphs into a partially ordered set of equivalence 

classes [41, 11 11: where each graph in a class is canonically derivable from all others 

i n  the class, and one class subsumes another if each graph in the latter is derivable 

from each graph in the former. The generalization hierarchy consists of both the 

canonical basis (which represents things t h t  could exist) and the database graphs 

(which represent things that do exist). Although B may not form an anti-chain, there 

is a subset Bo of B that forms the initial level, or co-atoms, of the generalization 

hierarchy. Our goal is to use STNF to assist in the organization and search of this 

hierarchy. The advantages of explicitly maintaining the generalization hierarchy are 

described more fully in 1421. This hierarchy can be encoded so that many operations 

arnong graphs in the hierarchy can be performed efficiently using only taxonomic 

operaiions, avoiding matching altogether. In our case, we maintain the full hierarchy, 

but mark one parent of each graph as dominant, to identify a spanning tree. 

We first describe the process of constructing the spanning tree for the general- 

ization hierarchy incrementall_v, leading to another normal form. We start with an 

empty generalization hierarchy consisting o d y  of [TI and [l]. We need to order the 

chilctren of any element, so we define a total order on graphs (perhaps based on the 

linear extensions of the type and relation hierarchies, and the form of the graphs). 

l'he method used to specify this ordering is not important to the following discussiors. 

Suppose we have a generalization hierarchy organized with an underlying spanning 

tree TG and we wish to add a graph Q in STNF. We essentially use the algorithm of 

[112] to search the hierarchy and find the immediate predecessors (IP) and immediate 

successors (IS) of Q. VITe store graphs so that every STNF graph G is a simple 

specialization of its parent G' in TG. That is, G and G' have a direct matching (i.e. 

their feature term implementations are unifiable, and the term of G" subsumes that 

of G). This cannot be achieved for all ancestors of G, but if it holds for all ancestors 

in TG (i-e. graphs on the path from G to the root [TI), then we can improve search 



and matching operations. The position of & in TG is below the Icftnlost 11'. 

As we find each predecessor C of Q in TG, we modifj- the form of Q. Since I w t  11 

C and Q are in STNF. the spanning trees in +he forest C will be contaiucd in  t lw  

trees of Q (modulo symmetric relations and coreferencc). k'or each trcc of ( ' \vllos(~ 

root is not a root of Q, we pivot. Pivothg does not destroy the  STNF properties, b ~ ~ t  

creates additional trees, so we essentially flatten Q until C is more evident i l l  its forclst. 

When all the ancestors of Q in TG have been processed, Q will bc in  g e n ~ t d t z t r t i o t ,  

hierarchy normal form (GHNF). The advantage of a storing graphs in C:lINP' is t l~al  

if we have graphs Q and &' for which Q subsumes Q' in Tc, then Q and 6)' h a w  a 

direct and sirrlyle matching. That is, not only is &' a specialization of Q ,  thc. fcatrtw 

terms representing Q and Q' are related by term subsumption. 

9.5.1 Depth-first topological traversals 

The spanning tree TG underlying the generalization hierarchy c m  be vicwcd as r t y r c 3 -  

senting a left-to-right (LR) depth first (DF) traversal of the generalizatioll Iticrarcl~y. 

\"vk show here a relation between LR-DF traversals and D F  topologi ral travcrsitls, 

vvhere a topological traversal is any traversai that obeys the topological propcrtry 

that a node cannot be visited until all of its parents have bee11 visitcl. 111 [42], t h  

advantages of searching the hierarchy for I P and IS topologically are clescril ~etl. 

We make the distinction between breadth first (BF) and depth first tapologicd 

traversals. In BF traversals, we visit nodes by level. The level in an ordinary 131: 

traversal is the length of the shortest path to the root, since we place an clcrnc-rite I n  

the search queue when it is first accessible. The level for a topological HI+' traversal, 

however, is the length of the longest path to the root hecausc we placc a n  elernc~rit, i t )  

the search queue only when last accessible (when the last parent has hew visited). 

DF traversals, on the other hand, select the next candidate node to visit with thc 

longest leftmost path to the root (in a LR traversal), where confiicts arc reso1vt:cl by 

choosing the leftmost element. For ordinary DF traversal, a candidate is any unvisi tecl 

node that is connected by an arc to the tree traversed so far. When obscrvir~g the: 

~opological pro pert^.; the only candidates are those whose pa~ents have all been visi teil. 
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It should be clear that BF and DF topological traversals are implemented differ- 

ently (using a queue in the fmmer and a stack in the latter) and may visit nodes in 

r1iffc:rent orders. The proposal in [42] performs a BF topological search of the gener- 

alization hierarchy to perform updates and retrievals. We feel that it is interesting to 

explore DF topological searches for several reasons. First, such a search would result 

in finding the first member of IP earlier than a BF topological search. Second, we 

show how the spanning tree 'rc; can be used to perform a DF topological traversal 

without needing to mark elements as visited. Third, we can ntiiize GHNF more fully 

to improve the efficiency of graph comparisons. 

Althoiigh we cannot use the LR-CF traversal suggested by TG in the search algo- 

rithm, there is an interesting connection between DF traversals and D F  topological 

traversals. If TG represents a LR-DF traversal of a hierarchy P, then a right-to-left 

(RL) DF traversal of TG is a RL-DF topological traversal of P. 

Theorem 9.1 Suppose G is a rooted directed acyclic graph and TG is the tree resulting 

from a LR-DF traversal of G. Then a RL-DF traversal of TG is a RL-DF topological 

traversal o j  G. 

Proof: Consider any point in a t~aversal of TG. Suppose the next node to visit, v, with 

parent p in TG, has an unvisited parent p l .  Since p1 is unvisited, it must be to the left of p 

in Tr;., but then during the initial DF  traversal pl would have been visited before p,  and so 

v would be below pl not p in TG.rn 

Thus, a simple RL-DF traversal of TG performs a DF topological traversal of the 

ordered set without the overhead of checking when all parents have been visited. 

In order to f-ally utilize the spanning tree structure of the generalization hierarchy 

ar,d the GHNF form of graphs, we describe a modification of the search algorithm of 

[lt2f. The problem is to find the immediate predecessors (IF) and then the immediate 

successors (IS) of a graph Q,  which may or may not be in the hierarchy. We assume 

that after a comparison between Q and a graph u in which u > Q, it is desirable to 

compare the children of u with Q so that we can benefit from the result of the match 

(while still obeying the topological property). By following the depth first topological 



traversal described ahow, this can be achieved with I-ery little effctst: wc rlon't ~ Y - C I ~  

need to mark elements as risited. By marking only those which successfully t ~ m t  ch C,), 

we can perform the search -.\-ith a mininlum amount of aciministration. 12111-1 ht~s~norc~, 

since graphs are in GKNF, we will successively compare graphs wllosc. (;TIN12 f o s t ~ ~ s  

most closely match until a subtree is traversed or until a graph is found av1iic.h ctocw~'~ 

match Q. Another advantage of this approach is that by performing a 1)l: tol>ological 

search, the focus (as described in f421) becomes restricted more quit-kly, pro~itfirlg a 

more constrained target for guiding the search. 

9=6 Conclusion 

We have explored the use of spanning tree representations of graphs arlcl thch gc~ncral- 

ization hierarchy in conceptual structures. We first proposed a means of tlcclasativt~ly 

representing cardinality constraints. Of particular interest are flmctiorml reli~tiot~s, 

which restrict the number of occurrences of a particular relation type to o w .  'I'l~csc~ 

constraints are important for improving the efficiency of matching and o t h ( ~  graph op- 

erations. We extended and refined CG normalization, as int-roduced i l l  [107], f l i r o ~ ~ g l ~  

the use of functional relations. We developed a spanning tret. rtqxeserttatiori of CCh, 

leading to a spanning tree normal form (STNF) thai is based on scrnarttic c.ontc+nt 

and is less ad hoc than some previous proposals. Graphs reprcsentccl i r ~  SrI'NF tlizvc. 

a natural implementation using a variation of order-sortr-d feat urc3 structures, pro- 

viding a scheme in which graph operations can benefit from the efficiency of Scvtrurc 

term unification. Finally, w7e showed how identifying an underlying spanrlirtg t rw  for 

the generalization hierarchy can benefit both storage and traversds. A sparinirlg tsccl 

can assist in a further refinement of STNF to generalization hierarchy rlorrnal fortn 

(GHNF) in which all graphs on the same path to the root are unifiable. I'urtf.rerrriorc, 

by traversing this left-to-right depth first tree in a right-to-left depth first ntanrii:r, wrL 

achieve a depth first topoiogica! travcrsaI that can be used as an d!ernatiw stwcb 

procedure of [$2]. An advantage of this search, in addition to its efficiency arid sirn- 

plicity, is that graphs which are closely related have a higher chance of being compart:d 

successively, so we can take advantage of the results of previous matches. 



Chapter 10 

A Hierarchical Organization of 

Landscape Models 

"No man can reveal to you ought but that which already lies half asleep 

in the darning of your knowledge' 

- Kahlil Gibran 

Due to the spatial scale at which most empirical landscape studies are performed, 

replication is rarely feasible. and experimenters may require artificial replication through 

the use of landscape models that are synthetically generated. In our view, a land- 

scape is a heterogeneous region on the surface of the earth, and a landscape model 

is a simplified representation fe.g. as a digital map) of a landscape of interest. A 

generator of landscape models is a procedure for producing landscape models. 

Artificial generation of landscape models is becoming incredingly prevalent in 

landscape ecology and is useful for a variety of purposes, including comparison with 

real data, testing general theoretical hypotheses, and providing input to simulation 

models. However, the number of generators of landscape models is increasing and 

tilere is no framework within which generators can be analyzed, compared and or- 

ganized. fn this chapter, we propose a hierarchical framework that unifies landscape 

mdek within a forma! er g- ~n;zational system. A landscape model that is artificially 

generated using a simple random process is called a neutral model. Generators of neu- 

t r d  models produce instances of landscape models with two or more patch types, and 
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constrain the patterns generated by specifying the proportion of t,hc 111odel co\:eretl 

by each patch type. We develop a generalization of neutral models, where landscape 

models are generated according to a set of constraints on possible patterns. A sct of 

constraints is a landscape model prototype. 

Different landscape model prototypes can be compared according to the nunrbel- 

and type of restrictions, where a prototype is considered "less neutral" or "111orc rc- 

stricted" than another if the former has a superset of the constraints of the lat,tcr. 

This relation produces a hierarchy that captures gradients of nwdrality arno~lg psoto- 

types. The hierarchy thus formalizes, in a nlathernatically elegant manner, a niulti- 

dimensional transition from neutral models that impose few restrictions 011 paktcrn 

generation to predictive models that impose a variety of more ecologically ~notivatecl 

constraints on the generation of landscape models. In a more practical context, this 

hierarchy may be used to guide the development of landscape model generators, to 

aid selection of appropriate existing generators, and to assist in the analysis of n~odels 

derived from real landscapes through the use of landscape model prototypes. 

I .  Introduction 

A landscape is a heterogeneous region of the earth that is composed of a mosaic of 

different patches, and generally contains a few interacting ecosystems [lo]. Lanctscapes 

may be defined from the viewpoint of a particular organism, although a comxrion 

viewpoint is from the human perspective, where a landscape is generally in  the range 

of lo3 to lo6 ha (e.g. [150]). A landscape model is a simplified represerltation (cg.  

as a digital raster map) of a landscape of interest, either real or thcoret i~~l ,  and is 

produced from natural (e.g. remote sensing) or artificial (e.g. simulatjon modeling) 

sources. We must distinguish between three things, each of which may hc: viewed as 

a model: an instance of a landscape model refers to a particular map that represents 

a landscape, a pro-tutgpe of a landscape model refers to a set of constraints a n  the 

generation of landscape models, and a generator of landscape models is a proced~~re 

for synthetically producing model instances from model prototypes. 
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The spatial scale of many landscape studies limits the ability to perform experi- 

ments in a traditional way: it is difficult to exert the required control for manipulative 

experiments, and hard, if not impossible, to find true replicates. With the increase 

in modeling related technology and techniques, many studies have used computer- 

generated landscapes both for artificial replication and for studying theoretical prop- 

erties of idealized landscapes. 

Research on the generation of landscape models can be classified in two main 

groups. The goal of one group has been to produce accurate prediction or duplication 

of the patterns seen in real landscapes (e.g. [59]). We refer to such model generators as 

predictive. The goal of the other group has been to generate landscape patterns that 

exhibit a simplified, but known, structure, and are generated by a random process. 

These types of generators have been termed neutral models since they are neutral with 

respect to ecological processes responsible for patterns observed in real landscapes [66]. 

The patterns that emerge in neutral models are the patterns expected in the absence 

of any ecological effects. Thus, neutral models can form a null hypothesis for testing 

for the effect of ecologicill processes on natural landscape patterns. A potential focus 

for hypotheses that relate ecological process and pattern is to explain the difference 

between neutral model patterns and patterns observed in real landscapes. 

Work on neutral models has proceeded steadily over the last few years (e.g. [25, 

66, 67, 1481)) but is now rapidly expanding, as the number of presentations that 

focused on neutral models at a recent landscape ecology symposium testifies (e.g. 

[64, 73,83, 100, 1571). However, although the development and use of neutral models 

and neutral model generators has proliferated, no unifying framework for organizing 

and categorizing models has emerged. Even the notion of a neutral model is becoming 

vague as neutral model generators are enriched with new features (e.g. [64, 651). 

We develop a general, and formal, view for artificial generation of landscape mod- 

els. We define a landscape model prototype to be a set of constraints that restricts 

the generation of landscape models. Intuitively, a landscape model prototype is an 

abstract ideal of a landscape model, and can be viewed as specifying some character- 

istics of landscape models that are generated using this prototype. For example, a 

prototype may include restrictions to landscape indices (e.g. richness or contagion) 
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or may be maie complex, involving non-trivial spatial or temporal relations. Special- 

ized generators must be developed to produce landscape models for different t,ypes 

of constraints. A variety of such generators already exist, and more are continually 

being developed. 

Prototypes separate processes on landscapes into those aspects that account t iw 

the resulting pattern (i-e. the processes embodied in the consixaints) from those. 

that are not considered. The patterns that emerge from landscape model prototypcls 

are the expected patterns in the absence of all ecological effects not incorpomt~d 

into the set of constraints. Landscape model prototypes also form a null hypothesis 

for landscape patterns, and can be used for testing the effect of ecological processes 

acting on patterns in natural landscapes that are not accounted for in the constraints. 

Hypotheses may attempt to explain the difference between the patterns observed in 

the prototype instances and real landscapes. 

A given set of constraints will generate a distribution of landscape models with 

expected characteristics, and may be deterministic or stochastically distributed. As 

the immber of constraints increase, the expected pattern generated becomes morcb rc- 

stricted, providing a gradient from simple models to more complex, predictive rnodcls. 

This relation forms a hierarchy, or partial order [38], on landscape   nod el prototypes. 

The highest element of the hierarchy imposes no constraints on landscape structure 

and hence all landscape patterns have equal probability. We develop a framework 

within which this hierarchy of landscape models can be constructed, and describe its 

utility to landscape ecology for managing and analyzing sets of landscape modcis, 

landscape model prototypes and model generators. 

Our framework provides a number of significant contributions to landscape ecol- 

ogy. First, by formalizing the abstract notion of a prototype, we provide a corrlrnon 

ground upon which different generators can be compared. This not only may avoid 

re-deveIoping existing generators, but provides a structure within which generators 

can be contrasted, and gaps identified. In addition, the resulting hierarchy nrovides a 

means for a common organization of landscape model generators, producing a struc- 

ture for access to existing generators. Finally, the prototype hierarchy can be used 

to  guide the analysis of data sets of landscape models, assisting the identification of 
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characteristics for which the data set deviates from random. 

The next section develops the notion of neutral models, as introduced by Garder 

et. al. [66]. This is followed by a definition of landscape model prototypes. Section 

10.4 uses this formal description to construct a hierarchy of prototypes. Finally, we 

describe the potential uses of landscape model prototypes and the prototype hierarchy 

for landscape ecology. 

10.2 Background: Neutral models 

Landscape patterns may be represented using a two-dimensional array of cells, where 

each cell is occupied by some value, which we call a landscape feature. A patch is 

formed where adjacent cells are occupied by the same landscape feature. The neutral 

models introduced in Gardner et al. [66] are whole mosaic models [lo] that are con- 

structed using methods derived from percolation theory [137]. In their simplest form, 

each cell in the model is occupied by one of two distinct landscape features, which 

may differentiate, for example, community types that are susceptible or unsusceptible 

to disturbance. These models are specified by two parameters: 

p : the fraction of the landscape occupied by one of the fea.tures 

rn : the linear dimension of the map (i.e. the length of one side) 

By a simple random process, cells are occupied by feature 1 with a probability p, 

and feature 2 with a probability of (1 - p). These models are similar to landscape 

maps that have been classified into two categories, but are "neutral" with regard to 

the physical and biological processes that create real landscape patterns. Figure 10.1 

shows three example neutral models for various values of p. 

Gardner et a/. I663 used such simple neutral models to examine the effect of varying 

model size on patch size and shape in order to define appropriate scales for landscape 

analysis, and later Gardner et al. [68] examined effects on animal movements. Turner 

et al. [I481 simulated disturbances on neutral landscapes with different proportions of 

susceptible habitat. The disturbances were modeled as random events that occur with 

a given frequency (probability of initiating) and intensity (probability of spreading 



Figure 10.1: Example neutral models. Each instance was generated 011 a 30 x 30 grid 
(rn=30), with varying proportions of the white feature ( p  = 0.4, 0.6 and 0.8). 

to neighboring cells). They showed that the disturbance characteristic (frequency 

vs. intensity) primarily responsible for the propagation and extent of a disturbanct? 

depends on landscape connectivity (i.e. the value of p). In this last study, significar~t, 

changes in model behaviour were detected near the percolation threshold (i.e. t l i t a  

value of p at which a patch of type feature I traverses the landscape model). In thew 

simple neutral models, the percolation threshold occurs at a value of p = 0.5928 for 

very large models. 

Gardner and O'Neill [67] introduced a contagion factor (see section 10.3) that (:ill1 

be used to create landscape models with larger contiguous patches while retaini I lg 

the same relative proportion of features in the model. They used these contagioi~s 

landscapes to study the potential for movement and resource use by species living i r ~  

patchy landscapes. They found that the percolation threshold varies inversely wit 11 

contagion. Turner et a,!. [I491 compared the results of simulating natural distur- 

bance on real landscape models (Yellowstone National Park) with results from t,hc 

same simulations run on neutral models that have an eqriivalent proportior1 of the firct 

susceptible community type. A number of these studies propose that significant dv- 

pariures by real landscapes from the expected patterns generated by a neutral mock/ 

may be used to form and test hypotheses about the relationship between the observcvl 

patterns and ecological processes 166, 1491. 

Neutral models have a number of important uses ir_ landscape ecology, some of 

which are mentioned below. 
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Comparison with real data. This is the main use endorsed by Gardner et al. [66] 

and Caswell 1251. Here, a neutral model is used as an ideal against which to compare 

real landscape data. Using a landscape statistics tool such as FRAGSTAT [99, 1261, 

we can compute statistics that may differentiate between landscape patterns (e.g. 

average patch size, number of patches, patch adjacency, fractal dimension, contagion, 

etc.) [l46]. Deviations from the neutral model permit an estimate of the effect of 

ecological interactions on the pattern observed in nature, and may lead to hypotheses 

regarding ecological processes responsible for these differences in pattern. 

Testing broad-scale landscape hypotheses. Neutral models can be used to test 

hypotheses about laxdscape phenomena, such as the spread of disturbance and animal 

movements. The simplified structure of neutral models permit a clear analysis of 

how changing the parameter p effects the characteristics of interest. This is how 

neutral models were exploited in [68, 1481. Another use in this context is to analyze 

properties of neutral models themselves, using tools such as FRAGSTAT [99], in order 

to determine how the value of p affects the value of different landscape indices, such 

as average patch size. 

Comparison with output from predictive models. Since we know the char- 

acteristics of neutral models, they are useful for comparison with the output from 

predictive models of landscapes. The difference between real landscape data and 

the predictions of a model are one measure of a model's ability to predict landscape 

patterns f66). Neutral models provide a baseline that can be used to measure the im- 

provement in predictability that is achieved by modeling geomorphological, climatic, 

biotic and other ecological effects. 

Input to simulation models. Replication of landscapes is a diEcult problem in 

landscape ecology By specfiing certain constraints, generation using neutral models 

provides a means of approximating replicates of landscapes with some specific char- 

acteristics (e-g. a fixed contagion). These artificial replicates can be used as input to 

landscape simulation modejs that generate new landscape models from a given input 

model (e-g. SE.LES [%I). 
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10.3 Landscape Model Prototypes 

Our objective is to extend the core ideas of neutral models into a general framework for 

reasoning with landscape models that are artificially generated. The loose defini t iolt 

of a iieiitral model given by Casweil i25j is: "a neutrai model is an espccted pattcrn 

in the absence of specific ecological processes". Rather than focus on t,he nbseact. 

(i.e. neutrality) of specific processes, we feel that models should be defined in tesrns 

of the presence of specific processes. That is, "a landscape model prototype is all 

expected pattern in the presence of specific constraints on that pat terrl" . ' I ' i t c w  

pattern constraints, which we describe in detail below, dictate the expect,ed paltern. 

We now give a formal definition: 

Definition 10.1 A landscape model prototype is a set of pattern con.struinb,s Ihui. 

restrict the possible generation of landscape models. An instance of a p~ototypc is a 

landscape model generated mder  the set of constraints. 

Thus a landscape model prototype describes the expected pattern of a 1ancIsca.pc~ 

and in essence gi~:es a distribution of possible instances, which are particular landsrape 

patterns generated using the given set of constraints. 

10.3.1 Pattern constraints 

There are many ways in which ecological information may be incorporated into lallcl- 

scape model prototypes. We have already seen two pat tern const raints, as usc(1 i l l  t,h 

simplest neutral models [66]: the model size m and the landscape areu rutio (whcrc 

landscape feature 1 had a relaiive distribution of p, and feature 2 had a distrihtio~l 

of 1 - p). In addition, these models restrict richness to the interval [ l ,  21. ' i 'h~~s, tilcsc 

models are random with respect to pattern, but always have a maximum richness 

of 2 and a landscape area ratio (LAR) for feature 1 normally distributed around 1). 

The RULE program [65] permits the generation of models that precisely satisfy p. 

Richness, model size and LAR can be viewed as constraints on the patterns generated 

by these neutral models (i-e. they arc. not completely random j. That is, a neutral 
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model with p = 0.4 and rn = 30 can be represented as a landscape model prototype 

with the constraints: ( L A R  = (0.4,0.6), size = 30 x 30, richness E [I, 21). 

Additional constraints may be specified by restricting values of other landscape 

indices (e.g. contagion or average patch size), or by incorporating feature responses to 

spatially explicit landscape parameters such as elevation or soil type. We now discuss 

a number of constraints that can be imposed on the generation of landscape pattern. 

This list is not intended to be exhaustive. The example instances were generated 

using the spatially explicit landscape dynamics simulator SELES 1561. 

Constraints on bounds: Since a landscape model must be represented in a finite 

amount of memory, bounds on the grid size and maximum number of cell values 

are important. Restricting the grid size (i.e. the number of cells) is a fundamental 

constraint, and is related to the extent (i.e. the physical area represented by the entire 

model) and the grain (i.e. the physical area represented by each cell in the model) of 

the landscape of interest, where extent = number of cells x grain. 

Normally, each cell is represented by an integer, and so the number of potential cell 

values is bounded by the maximum size of integer that can be represented. In the case 

of the neutral models of Gardner et al. [66] ,  each cell could be represented by a single 

bit, limiting the number of cell values to two (0 and 1). For instances generated from 

prototypes that specify only bound constraints, there will be no expected pattern; the 

feature in each cell is completely independent of all other cells, and hence no expected 

value (or expected distribution) can be predicted. 

Constraints on landscape indices: In the literature to date, neutral models have 

been restricted to two landscape features (i.e. patch type richness is 5 2). We can 

extend this to any number of features, permitting richness in a range of values (e.g. 

richness E [1,5]). For a particular ~pplication, each feature can be assigned different 

characteristics (e.g. to describe differential effects of a particular disturbance). In the 

context of percolation theory [137], instead of restricting each cell to either percolate 

or not percolate, varying degrees of percolation properties can be assigned to different 

cell types. For studies of the spread of disturbance in neutral models (e.g. [148]), 

this corresponds to permitting varying susceptibility to disturbance spread (e.g. fires 
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or insect outbreaks) for each feature, as opposed to the simple binary propcrtics of 

susceptible vs. unsusceptible. In the absence of contagion, this is very siinplc: for k 

features, we need to specify k relative abundance probabilities (which 11iust s tm to 

1). A model containing at most k features can easily be generated. 

We mentioned above that Gardner and 07Neill [67] propose contagion as a land- 

scape index that. may be used to constrain pattern generation for the two fc.,1. CI llrci 

neutral models. However, when combined with an arbitrary richness constritirrt,, tlw 

notion of contagion becomes more complex. In the two feature model, orily one uurn- 

ber was needed to represent contagion: an index indicating the probability that, two 

adjacent cells will have the same feature. Now, in addition, we czn specify contngiou 

among different features. 

To take a more concrete example, suppose our features are tree species. For a ccll 

of type Douglas-fir (Pseudotsuga menziesii), we may specify not only the probahili ty  

that an adjacent cell is Douglas-fir, but also the probability that it is Western hemlock 

(Tsuga heterophybla), Red alder (Alnus rubra), etc. Thus we have k 2  contagio~~ values 

to specify. In some situations, it may be difficult to have precise ecological data to 

specify this accurately. We can simplify matters by only requiring one coritagiori value 

c that specifies the probability that adjacent cells will have the same feature. That, is, 

for each pair of identical features (e.g. Douglas-fir next to Douglas-fir), the contagion 

value is c, and for each pair of different features, no contagion is specified. 

Simultaneously preserving the probability distribution (i .e. LAR) and contagion is 

not trivial, but can be accomplished by a formal generalization of contagion, which we 

develop in the appendix at the end of this chapter. Examples of landscape instances 

generated using different values for contagion are shown in Figure 10.2. All thrce 

models have four features with equal relative proportions (0.25). 

Although contagion is an intuitive and common index for landscapes, t,here is 

nothing ecologically inherent that distinguishes it from other indices. We could, in 

theory, restrict the value of any landscape index to constrain possible landscapes. For 

example, we could set Shannon's diversity index or edge fractal dimension, arid only 

generate landscapes that have a particular expected value for these indices. Further- 

more, we could specify restrictions to more than one landscape index simultaneously, 



Figure 10.2: Instances of landscape model prototypes produced on a 100 x 100 grid. 
Each model has four features with equal landscape area ratios (i.e. equal relative 
proportioils). The value of contagion differs for each model instance, taking on the 
vzlues 0.6, 0.8 and 0.99, respectively. The prototype for instance (a) is therefore 
{LnR  = (0.25,0.25,0.2.5,0.2.5). s ize  = 100 x 100, richness E [I, 41, contagion = 0.6). 

and generate landscapes that satisfy all the values of these indices. In this way, we 

view landscape model prototypes as models that are not neutral with respect to a 

given set of explicit constraints (landscape indices in this case), but neutral with 

respect to everything else. 

Spatial constraints: There is no mechanism in the models of Gardner et al. [66] 

to incorporate the effects of physiography when generating landscape models. The 

dist,ribution of real landscape features may be strongly influenced by some physical 

characteristics of the landscape, and we may want to integrate them into model gen- 

eration. We can incorporate responses to spatial parameters (e.g. topography, soil 

type, slope, etc.) as constraints on the probability distributions of features, providing 

a spatial context for pattern generation. Such parameters affect both the relative 

proportion and spatial distribution of the features in the model. We call such models 

site specific due to the local effect of parameter values at a given site. This use of 

spatial parameters essential1 y replaces a statistical approach to spatial distribution 

with a more e~npirical based. process oriected approach. 

These parameters can be derived from real data, or can themselves be artificially 

genera.ted. For example, a topography parameter can be derived from a real landscape 

through cxtographic techniques, or it may represent a theoretical topography derived 
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through fractaE modelgeneration (e.g. [56, 116, 1171). Spatial parameters arc matched 

to the landscape model, so that, each cell in the landscape model has a corrcsporiciing 

value in the parameter model. 

Generating a site specific model involves calculating, for each cell, t he  relatiw 

probability of occurrence for each feature. This is akin to deriving a local L A R .  'l'liis 

information is then used to either randomly determine a feature for thc cell, bascd 

on this distribution or it can be further constrained (e.g. with contagiori). Note that 

as prototypes become "less" neutral, the significance of contagion in forrnitlg p;~tc.\ics 

decreases. Contagion can be viewed as the aggregation of ecological processes t,ha,t, 

explain why features are often grcuped into patches. As these ecological processes are 

integrated into a model through spatial constraints, the need for a contagion factor 

decreases, since features will become more naturally aggregated. 

These site specific models can range from more neutral models (i.e. site ii~clc- 

pendent, aspatial distributions of landscape features) to complex models that spcci fy 

relationships for many parameters. This extends our notion of gradients of ncut,raI- 

ity, from prototypes that specify aspatial constraints, to prototypes that iricorporatc~ 

a spatial context that influences pattern generation, taking one more skep towards 

predictive models 

Figure 10.3 shows an instance of a site specific model for which fcaturcs vary 

with altitude Each of the five features differs in its response to elevation. ?'he darkw 

features respond "better'90 lower elevation, while lighter features respond "bet, tern to 

higher elevation. That is, at low elevations, the relative probability of darlxr fcaturc:~ 

is higher than lighter features, and vice versa at high elevations. 

The model instance is draped over the elevation map that was usccl to crc:a.t,t* 

it, providing a contextuai view of the instance. Note that using the sarrtc sct of' 

constraints, but a different elevation map, would produce a different model instancc:. 

Ih this example, no contagion was used. 

Temporal constraints: We can also constrain pattern generation temporally through 

the use of an existing model instance. If we view the existing instance as  a previ- 

ous state of the landscape, this creates a temporal context for pattern gencratiori. 



Figure 10.3: Geometric view of an instance of a landscape model prototype with 
spatial constraints. The instance is overlaid on the elevation model used to create 
it. The model size of this instance is 100 x 100? and the number of features is 5. 
The underlying elevatj on model provides a context in which spatial constraints, in 
the form of elevation responses, affect pattern generation. Thus, the prototype for 
instance (a) is {size = 100 x 100, richness E [l, 51, spatial responses t o  elevation). 

Using a combination of the input landscape model, and temporal change sequences 

(e.g. modeling succession or disturbance), a landscape simulator may attempt to 

mimic ecological and/or abiotic processes in the production of landscape pattern in 

the output model. 

Specifying temporal constraints may be as simple as providing a Markov chain [lo] 

(i.e. a transition matrix, where entry ( 2 ,  j )  specifies the probability thilt a cell with 

feature i in the input model will have feature j in the output model). At the other 

extreme, ternporal constraints may determine the features of the output model based 

on an analysis of the input pattern, and possibly other information such as spatial 

parameters. Depending on the complexity of the constraints on temporal sequences, 

these prototypes Inax also provide a gradient from models that are a small step beyond 

neutral models to more predictive models. 

Figure 10.4 shows an instance of a prototype (pattern (b) ) generated using tempo- 

;;: constraints and an input model (pattern (a)).  The temporal sequence is stochastic, 

m d  most of the cells obtained their feature from ill; previous state; some of the cells 

(most notably in the centre left of the pattern) obtained different values. In general, 



such sequences may rnodel a successional trajectory, t 11c t , t f ( ~ . !  111 ;I (list rii~1~1rc.c event,, 

or some other dynamic landscape proccss. l'11(. spei-ifii-atio11 of t t ~ l ~ ~ l ~ ~ > i . i i l  c.t~rlst,ra.i!~ts, 

and the generation of sequences of rnoctct? bastti o n  t hew. coirsl raiirt s i b  t f ~ i s  heart, of 

landscape dynamics simulators. such as SSEl,13 [Nj. 5ot)i. t frat t 11v oirly t~oilstra.ints 

involved iii the generation of this model irwt.anct3 are ricltr~c,s..;. ri,otic 1 s/:t ; ~ r ~ c l  / e m p o d  

responses: the resulting pattern is largely depende~it, on t 11t. iil!j~i t. la~~tlsc.;i~)c.. 

Figure 10.4: Instance of a landscape model prototype (b )  gerteratetl 11si11g st,ocliastic. 
temporal constraints and input pattern (a) .  The rnodel siac is 30 x 30, a I I ~  s ivh rress is 
4. The prototype for instance ( b )  is therefore (szze = 30 x 30, rlchrtt S.S = if, l e ~ n y o ~ n l  
responses}. 

10.4 A Hierarchy of Landscape Model Prototypes 

Different combinations of constraints lead to difTwcmt Iandscapc* rr~odvl prototypes, 

and the  relation among these prototype5 forms a hiwarc-hy. [lor I wo psototypes, 

PI a d  P2, if PI is defined b_v a superset of the constrair~t~; of P,. t hrr~ irkstances 

gerierated by PI are more restricted than those generat;4 hji PL 111 ! l i i 5  :-we, we 

place PI ..lower" in the 'hierarchy than P2. The most g c w d  j)rototyprh. denoted 

T, is the one that imposes no ronc;trajnt.; on pattern gtw.satior~. AItlro~~gil such a 

prototype may h a w  limited practical utility. it doe., servr. as a corn i i l o u  i! ar: ing p ~ i n t  
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for all other prototypes. The prototype hierarchy forms a general partial order not 

just, a tree shaped hierarchy7 since a prototype may have multiple parents. 

This hierarchy provides a framework for systematically cataloging and analyzing 

landscape pattern. A prot.otype can be used to generate a set of instances with an 

expected pattern under known constraints. Deviations from this expected pattern in 

real landscapes, or simulation results, can help us identify components of pattern not 

explained by the constraints of the prototype. 

Figure 10.5 shows a sample fragment from this hierarchy. Each node in the hier- 

archy includes the set of constraints imposed by all nodes above it. Thus, the lowest 

node represents the prototype with the constraints: {richness = 4, model size = 100, 

LAR = (0.1,0.2,0.3,0.4), contagion = 0.8, spatial responses to elevational data). The 

other nodes in the example contain various subsets of these constraints. 

A 
Richness = 4 Model Size = 100 - 

s 

Elevational 
(0.1,0.2,0.3,0.4) 

Figure 10.5: Sample fragment of the hierarchy of landscape model prototypes. Each 
node represents a protot.ype that consists of the constraints labeling the node and all 
higher nodes in the hierarchy 

The prototype hierarchy organizes work oa neutral models and landscape model 

prototypes both for developers aad users of model generators. Some of the potential 

appiicrations of the hierarchy are described below. 

Development of landscape model generators: Landscape model generators are 

procedures for the synthetic production of instances of landscape models. In gen- 

eral. they pennit the specification of prototypes via parameter values. Once a set 

of parameters (constraints) has been provided, landscape instances satisfying those 
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constraints can be produced. Thus, generators are more abstract t<haal prototypes 

in that they only restrict which constraints may be specified, while pr~t~otypes also 

restrict the value of the constraints. Our framework provides a structure within which 

landscape model generators can be systematically developed and compared. Not only 

can two generators be contrasted as to which constraints may be specified, but, gaps 

in the suite of existing generators can be identified. In this viewpoint, the llicrarcliy 

does not specify values for constraints. The constraints that may be imposed by a 

generator determine its position in the hierarchy, and its relation to other genelx.tors. 

A sample fragment of the generator hierarchy is shown in Figure 10.6. Each node 

represents a generator that allows specification of the constraints at tacked to that 

node and all nodes above it in the hierarchy. For example, the node labeled Edgr 

Fractal Dimension permits specification of richness, model size, landscape area ratio, 

and edge fractal dimension. The node below Richness and Modek Size represents 

a "totally neutral model", where only bound constraints are specified. Note this 

fragment is incomplete, and is not intended to suggest any particular relations amorlg 

constraints. Thus, for example, there may be another node above the one labeled 

Edge Fractal Dimension that permit specification of edge fractal dinenszon, but does 

not require landscape area ratio. 

A 
Richness Model Size 

C - 
Temporal Landscape Area Ratio Contagion Elevzltional 
Sequences Responses 

Edge Fractal 
Dimension 

Figure 10.6: Sample fragment of the hierarchy of landscape model generators. Each 
node represents a generator that permits specification of the constraints labeling the 
node and all higher nodes in the hierarchy. 
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A common organization of landscape model generators: Access to existing 

tools is a prevalent problem. Currently, developers of landscape model generators have 

no source of information as to which generators already exist, and so run the risk of 

re-inventing the wheel. Similarly, potential users of generators have no systematized 

way of searching for generators. The prototype hierarchy has the potential to alleviate 

these problems as a common organization of model generators. A site on the Internet 

could be established to maintain the hierarchy, and nodes could have links to sites 

from which the corresponding generator cen be accessed. Thus, once the desired 

set of constraints has been identified, the hierarchy could be traversed, and if the 

node corresponding to these constraints could be found, then the landscape model 

generator exists and can be accessed. 

With time, this hierarchy may potentially grow to a size where access becomes 

cumbersome. In this case, the encoding techniques developed previously in this thesis 

for efficiently storing and traversing hierarchies could be utilized. A user could enter 

the desired set of constraints, and the system would automatically find the desired 

node if it exists. If no such generator exists, then the set of most closely related nodes 

could be returned. 

We envision the prototype hierarchy as providing a cooperative resource for land- 

scape ecologists to share landscape modei generators, to find desired generators, and 

to identify gaps in the current state of landscape model generation. 

Analysis of landscape pattern: Landscape ecologists benefit directly from the hi- 

erarchy of landscape model prototypes. Given a data set of one or more landscapes, 

the hierarchy can guide hypothesis testing to determine the level of neutrality of the 

data set. That is, we can find the node P in the hierarchy for which the models 

generated by prototype P are not significantly different from the models in the data 

set. We provide below a theoretical example of how this can be accomplished. The 

process of arriving at P may identify deviations from random, or neutral, characteris- 

tics. This in turn may lead to hypotheses to explain these differences. The node itself 

is also of interest, since it is the most general prototype that captures the pattern 

exhibited in the data set, establishing the "level of neutrality" of the data set. That 
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is, this prototype serves as a predictive model for the data set, and is the rnost general 

such prototype. 

For example, suppose we have a data set X of landscape models with sizc 1 1 1  auci 

richness k. Starting near the top of tlhe hierarchy, we can take a basic prototype with 

constraints only on model size and maximum richness. Using this prototype, we can 

generate a number of model instances, which can be used as a random sample of t.11~: 

prototype. Now we can compare an attribute of the data set, such as the avcragr 

contagion, with that of the sample. Note that the contagion for the sample provitfcs 

an expected value for contagion in the absence of additional ecological informatiou. 

If no significant difference can be detected between the contagion of the data set 

and that of the sample from the prototype, then the data set has a contagion valut. 

that is indistinguishable from random. This isn't to say that there is no process in 

these landscapes acting on this attribute, but rather that we cannot distinguish horn 

pattern that is random with respect to this attribute. We can continue hy selectiug 

another attribute, such as LAR or elevation responses. 

If, however, we find that the attribute value for X differs significantly from the 

expected value of the attribute, then there is some process responsible for this cliver- 

gence. The ideniification of this deviation may lead to hypotheses for expla,ining the 

difference. For example, if the average contagion for the data set X is greater than 

the average contagion for the sample from the prototype, then this indicates that 

there is some ecological process responsible for the higher degree of aggregation in  tht: 

data set than is expected from random. This may lead to a hypothesis to explain tlie 

aggregation seen in the data set. 

We can now continue this process by taking a more constrained landscape model 

prototype that restricts model size, maximum richness and contagion. In this way we 

are able to systematically exploit the model generators available in order to classify a 

landscape on the neutrality gradient, and generate hypotheses to explain deviatiorls 

from random. If we find a prototype P for which all attributes of the data set are 

indistinguishable from the instances produced by P ,  then this prototype not only 

identifies the level of neutrality for the data set, but it can also serve as 9 predictive 

generator for the data set (at least for the attributes tested during this analysis). 
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10.5 Conclusion 

We have formalized landscape model generators using the notion of a landscape model 

prototype, which is a set of constraints that restricts the generation of pattern. These 

prototypes induce a hierarchy that provides a formal framework within which model 

generators can be constructed, compared and accessed. This hierarchy can be used 

to guide the analysis of pattern from a data set of landscape models, and captures 

the idea of "gradients of neutrality". That is, prototypes provide some measure of 

distance from neutrality, and the hierarchy embodies the variety of ways in which 

models can diverge from random in a multi-dimensional space of possible constraints 

on paitern generation. Analysis of data sets of landscape models can exploit this 

hierarchy to guide identification of differences between the data set and random. In 

addition, we described how one can determine the node in the hierarchy for which 

there are no significant differences between the models generated by the prototype 

represented by this node and the models in the datd set. This not only establishes 

the level of neutrality for the data set, but also the prototype at this node acts as a 

predictive model for the data set. 

Chapter Appendix: Formal Basis for Landscape 

Model Generators that Permit General Richness, 

LAR and Contagion Constraints 

In this appendix, we provide a mathematical derivation for landscape model gen- 

erators that can satisfy general constraints on richness, landscape area ratio and 

contagion. Gardner and O'Neill [67] provided the mathematical basis for combining 

landscape area ratio (LAR) a d  contagion for models with a richness of 2. However, 

their results do not permit a direct generalization to an arbitrary number of landscape 

features. Our goal is to provide a means of generating landscape models that satisfy 

constraints on richness, LAR and contagion. Clearly, not all possible combinations 

of constrzi~ts are satisfiable. For example, the constraints richness = 2 and LAR 



CHAPTER 10. A HIERARCHY OF LAIVDSCAPE A4ODErLS 20s 

= (1.0,O.O) imply that contagion must be 1 .  Even though these coristraitlts are not 

completely independent, we can attempt to satisfy the cont.agion constrailit, while 

maintaining the richness and LAR constraints. Here, we provide a formal clerivat~ioli 

for this landscape model generator. 

In general, for k features, there can be up to k2 contagion factors, where contzagiail 

factor c;j can be viewed as a probability index that a cell of feature i is next to a cell 

of feature j. This can be specified using a k x E array Ckk.  Each contagion factor 

c,j may take on any value in [-I, 11, where a value greater (less than) than 0 dewt,c>s 

that a cell of feature i is more (less) likely to be next to one of feature j than random. 

A value of 0 denotes that a cells of feature i and j are juxtaposed randomly. That, is, 

the probability that feature j is next to feature i is the same as the relative abundanre 

of feature j in the entire model. We minimally require one contagion factor c that is 

assumed to be the contagion for adjacent cells of the same type. This is the si t,uation 

we used in section 10.3 for examples. We generalize this somewhat, and pennit, a 

vector of k contagion factors C k ,  where c, denotes the probability index that a cdl 

of feature i will be next to another cell of feature i .  The other contagion wd!les (i.e. 

r,:,, i # j )  are assumed to be 0. 

The relative abundance vector Pk (i-e. LAR for each of the k features) must clcarly 

sum to 1 (i.e. Xf=,Pk[i] = I). Our algorithm for constructing the contagion rriatrix 

takes as input the relative abundance vector Pk and a contagion factor vector fi. O u r  

goal is to generate a contagion matrix Qkk, where each element qiJ is the probahilit,y 

of feature j being adjacent to feature i, and Qkk somehow satisfies the LAR Pk. 411 

the case of no contagion, each row of Qkk will be identical to Pk. As contagion is 

changed (either increasing or decreasing clumping), we must change the entries of  

Qkk to reflect this change while still satisfying the relative abundance reyuirements in 

Pk over the entire landscape. Note that if q;; = pi ,  then feature i will not be ciircctly 

afFected by contagion. If q;; > p;, then feature i will be more cli~rnpec-1 than random 

and if q;i < pi, feature i will be less clumped. 

In the two feature case, changing contagion while maintaining Pk was simplr: to 

achieve, and the mathematics is given in [67]. Their specification of the problem was 

difficult to generalize, so we look at it slightly differently. First, we need to formalize 



CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 209 

what we mean when we say that a contagion matrix Qkk %atisfies" Pk. Our algorithm 

for constructing a contagion matrix Qkk starts with each row of Qkk identical to Pk. 

Clearly, using this matrix to generate a landscape will he the same as using Pk alone. 

We then transform Qkk SO that Pk is always satisfied and at the end, Qkk reflects the 

desired contagion factors. 

Definition 10.2 Suppose we have k features and a relative abundance vector Pk. 

Then a contagion mat* Qkk satisfies Pk if and only if C:,,pj * qji = pi. 

If this equation is satisfied, then the overall probability that a cell will have feature 

i (i.e. pi) will be the same as the sum of the probabilities that an adjacent cell will have 

feature j times the probability that feature i will he next to feature j .  One property 

that we require of any contagion matrix (as we do for the relative abundance vector) 

is that the sum of the probabilities in any row must be 1 and that all probabilities 

must be non-negative. 

Lemma 10.1 Suppose we have we have k features and a relative abundance vector 

Pk. Then a contagion matriz Qkk satisfies Pk if, for di 1 5 i, j 5 k ,  pi * q;j = pj * q - . .  3 2  

Pmof: Suppose the above property is satisfied. Consider any feature i. Then c F = , ~ ~  * q j i  = 

 pi * 9ij = Pi * ~ $ = ~ q i ~  = p& since any row of Qkk must always sum to 1 

In the initial state q;j = pj, so this propert?y is satisfied. We now show that we 

can perform transformations on Gkk that preserve this property. 

Theorem 10.1 Suppose we have we have k features, a relative abundance vector Pk 

a d  a contagion matrix Qkk that satisfies Pk. Given some 1 5 i, j 5 k and a factor 

o svch that r n a ~ ( - q , ~ / ~ ~ , ; ,  -qjj/gj;) 5 a 5 1, then after the following transformation, 

Qkk still satisfies Pk: 

qii = gii + a * ?ij 

q;j = qi3 - Q * qjj = ( 1  - (11) * qij 

q;ij = qjj  + a * qj; 

qj; = qj; - cx * qji = f 1 - tu) * qji 



Proof: Since only the above four entries are modified, we need only ensure tha t  the propert*y 

of the above lemma is satisfied. For the diagonal elements, this is trivially sa.tisfied: pi + yi, = 

pi * q;; and pj  * q j j  = pj * q j j .  

For the other two elements, we must satisfy: pi * qij = pj * qj;.  By our assumption, this 

property holds before the transformation. After the transformation, we have: pi * ((1 - a )  * 
q . . )  $3 = pj * ( ( 1  - a)  t q j ; ) .  Dividing both sides by (1 - a )  yields the desired result 

The proof does not depend on the restriction to the value of a. This restrictior~ 

ensures that the entries in Qkk remain non-negative. If a > 1, then q,, and q,, hecon~e 

negative and if a < -q i i /q i j  or a < - q j , / q j ,  then one of q;, or q,, becomes ncgat.ive. 

Given a relative abundance vector Pk and a contagion factor vector Ck (both of 

size k)) the contagion matrix Qkk can be computed as follows: Start with each row 

of Qkk equal to Pk. For each contagion factor, c; perform the above trarcdor~natio~l 

on Qkk (where a becomes ci). Once we have Q k k ,  the landscape model instancc N,,,,, 

can be easily generated as follows: 

1. For the first cell noo, select a feature randomly using Pk. 

2. For each cell nio in rest of the first row, select a feature randornly using thc row 

of Qkk corresponding to the left neighbour. 

3. For each subsequent row: 

(a) For the first cell noj,  select a feature randomly using the row of Q k k  corr(:- 

sponding to the neighbour above in the map. 

(b) For each remaining cell n;j in the row, using the average of the rows ol' Q k k  

corresponding to the neighbour left and above. 

This algorithm will tend to have a diagonal bias, which can be partially allcviatcd 

by alternately traversing rows left and right. This wilI still leave a slight vertical 

bias, but not very pronounced except at  high values of contagion. Other generation 

techniques may be possible to generate maps using the contagion matrix, hut without, 

any bias. The model instances shown in [67] have a clear horizontal bias, and rnrixt 

have been compqted without considering the vertical neighbouru. 



Chapter 11 

Conclusion 

"There is in nulure what is within reach and what is beyond reachn 

- Goethe 

Reasoning is a fundamental problem in a variety of human intellectual endeavors. Tax- 

onomies assist the reasoning process by clarifying and categorizing knowledge. This 

thesis is an attempt to bring taxonomic reasoning to centre stage, and to push fortsh 

some of the frontiers of research. From a pragmatic viewpoint, we have formalized 

research on managing large taxonomies, a task known as taxonomic encoding. Our 

formal framework encapsulates the essence of encoding and we are able to  characterize 

all known encoding techniques within it. 

During our analysis of encoding, we developed sparse logical terms as a universal 

implementation for encoding. We explored the utility of sparse terms for encoding, 

hot h theoretically and empirically. 

Although partial orders are an elegant and mathematically formal basis for rep- 

resenting taxonomic knowledge, we became dissatisfied with their limited expressive 

ability. Rather than shift to the other extreme, where trxonomic information is hidden 

within a description logic (such as KL-ONE) and can only be extracted via classi- 

fication, we feel that explicit maintenance of taxonomic knowledge is essential for 

taxonomic reasoning. To pursue this line of thought, we formally extended partial 

orders to incorporate additional information, and developed a sort logic for reason- 

ing within this more expressive framework. To maintain tractable reasoning, we also 

derived a restricted form of the logic. 
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In t,he course of this thesis, it became apparent that taxonomies were prevalent 

in almost every field. We followed shallow explorations of a number of applicat,ions, 

such as natural language processing, and delved deeper into tbhrec of thc~ fields that3 

are rich with possibilities. 

Research on using logical terms for encoding led to a viewpoint t,l~at c0rt4~rc1lcc~ i t 1  

logical variables imposes requirements that are too strict. By viewing the synlrrwtry 

of coreference as the product of two asymmetric reference constraints, a tasorlouly 

may be constructed, where each node represents an equivalence class of variablvs (i.c. 

variables that corefer). In current logic programming systems, variable corcfwviw 

classes are constructed, but cannot be related to one another. 

Conceptual structures was the first field to which our initial research o n  cricoditlg 

was applied. It became apparent that encoding has a great potential impact or1 tllc 

field due to the variety of (potentially large) taxonomies that are used in t hc formitlisrt 1. 

In addition, our research led us to further application of sparse terms to iniple~ricrrt 

normalized conceptual graphs. 

The final area of application for this thesis is ecological modeling. Although hiw- 

archies have been used in a number of domains, we applied taxonomic reasoriirlg to 

unbroken ground in landscape ecology. By formalizing a hierarchy of lantlscqw r n o t l -  

els, we have been able to  bridge the gap between predictive and theoretical rrmdcls of' 

landscapes, to provide a framework within which generators of landscape rnociels can 

be designed, compared and accessed, and to guide analysis of sets of la~idscape data. 

Significance of Research 

The overall goal of this thesis was to forge ahead with research on rt:asoriing with 

taxonomies, to develop a formal foundation upon which systems that usc t,axoriolr~ir:s 
r l can rest, and to apply the theory to  a variety of applications. I he rcsearch that 

' ow: comprises this thesis has had a number of impacts on several fields, as outlinctl 1x1 

1. The theoretical work on encoding has provided a foundation or1 which difftmrit 

encoding algorithms and techniques can be compared and critiqued. Prior to 
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this development, encoding research was somewhat ad hoc, with no context or 

means to critically evaluate advances in the field. The notion of a spanning set 

for separating the information content of an encoding from the implementational 

details provides a yardstick for the addition of new techniques, and avoids the 

potential problem of re-inventing the wheel. 

2. Our contributions to modulation provide the potential to improve further the 

efficiency gained from using this technique. Furthermore, our generalization 

of modulation extends the elegance of modulated encoding into the realm of 

practical encoding with dynamic and irregular taxonomies. By relaxing the no- 

tion of a module, the effort involved in modulation can degrade gracefully over 

time, rather that break in brittle mathematical precision. We have also pro- 

vided proven algorithms that permit the computation of taxonomic operations 

in generalized modules. 

3. Our constraint based view of encoding provides a guideline for the use of coref- 

erence (i.e. logical variables) in encoding. By providing a formal analysis of 

encoding in terms of constraints? we have shed light on the advantages and 

pitfalls of going beyond tree terms for logical term encodings. 

4. The theoretical and empirical results of sparse term encodings place sparse terms 

as a universal encoding implementation. The general form of sparse term devel- 

oped for encoding directly subsumes most other encoding implementations (e-g. 

integer vectors, logical terms, interval sets), with the exception of bit-vectors. 

The empirical evidence provided by encoding two medium size taxonomies from 

existing applications, however, shows how sparse terms let us have our cake and 

eat it too. Sparse terms used significantly less space than bit-vectors, while 

providing the flexibility required for dynamic updates to encodings (i.e. partial 

re-encoding ). 

5. Our work on extending parti31 orders separates the task of taxonomic, or sort, 

reasoning from applications that use taxonomic information. The sort reasoner 

is provided with taxonomic knowledge in the form of assertions, and can be 
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called upon to answer queries regarding the taxonomic. stxucturc specified. \\it. 

developed a sound and complete sort logic as a logic for reasoning about sorts (as  

contrasted with sorted logic for reasoning with sorts). To find utility in practical 

systems, sort reasoning must be efficient. One of our n~airl contril~ntions is 

the development of a tractable restriction of the sort reasoning probltw~ t hat 

retains enough expressive power to capture many common forms of t,axor~orllic. 

knowledge. 

6. Our development of reference constraints as a generalization of equality con- 

straints in logic and logic programming is a novel application of reasoning wit,li 

taxonomies. Although equality constraints form equivalence classes of logical 

variables, reference constraints induce a partial order among thew cor~ft~rcr~c-t~ 

classes. We provided a formal description of how reference co~lst~railils rllay 

be specified in a logic program, and how the resulting refclwice ordcr cil,Il I)c 

maintained and satisfied. 

Since variables denote individuals, reference constraints lead to the  not iolt of 

individual level inheritance, where an individual denoted by a variablc 111i~y 

inherit properties from another individual which is denotccl by a sui.)stirrr i I I ~  

variable in the partial order. A variety of systems, especially systems reasoning 

in ambiguous domains, can potentially benefit from an efFicient,, formally basctl 

implementation of reference constraints and individual level in hcr i tmc-e. 

" 
l .  The issues involved in maintaining derived hierarchies, such as the ger~eralizat~io~r 

hierarchy of conceptual graphs differ from encoding issues for clefinecl h i w a r -  

chies, such as class or sort hierarchies. Derived hierarchies may hc inducc:tl 

by the set of data (graphs) in a knowledge base; they are highly dyriarnic: a ~ ~ c l  

expensive to compute. Focusing on the field of conceptual structures, we devcl- 

oped an approach to normalize graph knowledge bases and stort: the graphs in  

a spanning tree of the underlying partial order. The advantages of riorrri a1 ix ing  

within this spanning t r ~ e  are twofold: (i) the normalization of a graph can c l e -  

pend on its parent in the tree, so that traversals within the tree can tiis mtsi:h 

more efficient than traversals in the general partial order; (ii) there a,rc a r t l m  hcr 
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of benefits of traversing such hierarchies in a topological fashion (e.g. more rapid 

retrieval of a target graph), as covered in [42]. However, there are a variety of 

topological traversals; the one described in [42] is breadth-first. We argued that 

there are benefits to depth-first topological traversals, and we showed that if 

the spanning tree is formed as a left-to-right depth-first traversal of the original 

partial order, then a right- to-left depth-first traversal of this tree corresponds 

to a right-to-left depth-first topological traversal of the partial order. 

8. Artificial generation of landscape models is becoming increasingly prevalent in 

landscape ecology. Due to the spatial scale at which most landscape studies are 

performed, replication is rarely feasible and experimenters may require artificial 

replication. Artificial generation of landscape models can be used for a variety 

of purposes, including comparison with real data, testing general theoretical hy- 

potheses, and providing inputs to simulation models. However, the number of 

generators is increasing and there is no framework within which generators can 

be analyzed, compared and organized. We proposed a hierarchical framework 

that unifies landscape models within a formal organizational system. By gen- 

eralizing neutral landscape models, we proposed landscape model prototypes 

that induce a hierarchy that represents gradients of neutrality. We described 

how this hierarchy may be used to guide the development of landscape model 

geneiators, to aid selection of appropriate existing model generators, and to 

assist in the analysis of models derived from real landscapes through the use of 

landscape model prototypes. 

11.2 Future Research Directions 

"The solution to every problem is another problem" 

- Goethe 

The research presented in t.his thesis has contributed to a number of disciplines and 

made a variet.y of connections among fields. It has also opened many doors and 

identified unexplored pathways which were beyond the scope of a single thesis. This 



final section of the thesis identifies some promising areas in which rescarrh car1 btl 

continued. 

Encoding. Using our notion of spanning sets, further thcorvtical work slior~ld b c -  

carried out on the limits of t>axonomic encoding. Research continues to push 

the frontiers in the quest for minimal size encodings (e.g. [797), and we tnailtt.ail~ 

that the framework prosided in this thesis is an appropriate comntori ground o r 1  

which new techniques should be evaluated. More em; rical testing of  tfifkrcnt 

encoding algorithms and implementations should be done. As more taxo~ioii~it~s 

from real applications become available, this will become easier to perfornt. 

Modulation. Although the advantages of modulation are i l l t u i t i v~ ,  there is a rcd 

need for empirical testing of its actual benefit, and for dcterrninillg at2 wliclt, size 

of taxonomy should modulation be at tempted. We expect that t , l i t ~  1,cwcfi t,s of' 

modulation will not show up until taxonomies are quite large, but t,hat this 

technique will address issues of scaling encoding up to much larger taxorio~ I 1 it.s 

than are currently encountered. Finally, to address issues of dficicwcy, tlicw 

is a need to integrate the linear time modulation algorithm of j76] wi tli our  

techniques, which may require changes to this fast algorithm to accornrnoriatc: 

our generalized forms of modules. 

Sparse Term Encoding. Further theoretical and empirical testing of difft*rcrit en- 

coding techniques is required to provide a strong basis for comparisori of sparsr. 

term encoding with other implementation schemes. Also, acltlitiorial work 011 

sparse term encoding should be researched to implement and t ~ s t  the ut,ilit,y of  

encoding in highly dynamic environments. 

In the theoretical arena: there are a number of dimensions along which c-orrt- 

parisons can be made. We selected two techniques that wr felt appropriatt* for 

encoding dynamically changing taxonomies (transitive clcsure and cotnpact), 

and compared the effects of different implementations on these techr~iyt~es, Onc: 

advantage of our framework for encoding is that it makes possihlc: sudi corrtpilr- 

isons. Another approach, taken in [S], is to compare different algorithms (that 



mix technique with implementation). There is a great need for more rompar- 

isms of these kinds, to ideniify the types of taxonomies that are best suited for 

different approaches to encoding. 

Extending Partial Orders. Although we have developed a theoretical foundation 

for tractable sort reasoning in Chapter 7, this work needs to be implemented, and 

empirical testing can identify the utility of our restrictions to obtain tractability. 

Other sets of restrictions can also be developed and contrasted with our proposal 

to develop a n  efficient sort reasoner. 

Also, more efficient encoding techniques that take advantage of the structure 

of extended partial orders should he detdoped. For example, t.wo incompatible 

sorts can share the same position within a term, leading to unification failure 

if an object is postulated to belong to both sorts. This opens a whole area 

of research for generalizing our spanning set framework for encoding extended 

partial orders. 

Data Mining. Tree-shaped conceptual hierarchies have been proposed for use in 

data mining f13, 81, 823. There exists a great potential for generalizing these 

techniques to use partial orders, and even extended partial orders. 

Reference Constraints. To fully demonstrate the utility of individual-level inheri- 

tance. reference constraints must be implemented in a logic programming sys- 

tern. Possibilities include implementation in sparse terms or another logic pro- 

gramming language. such as LIFE [4] or Bin Prolog 11401. A variant of sparse 

terms has been implemented that includes coreference akin to that in LIFE [4]. 

This variant could be extended in a ~traight~forward manner to handle reference 

constraints. In addit ion, the effects and advantages of different control strategies 

as mentiorled in Chapter 8 should be explored. 

Also. applications of hypothetical reasoning such as those outlined in this the- 

sis need to be more thoroughly developed and implemented. The application 

of individual-level inheritance as a means to integrate top-down hypothetical 

analysis and bottom-up chart parsing in discourse processing appears to be 



a promising area to pursue in this direction. In addit)iou, t,he irlcorporat,iotr 

of reference constraints into ,4ssumptcion Grammars [I421 for ~la.t,ural 1a.ngungc 

processing should be studied. 

Conceptual Structures. As implementation of the Peirce workbench [44] and ot,ht"r 

systems for reasoning with conceptual graphs proceeds, there will be opport,ur\i- 

ties to implement. a ~ - d  compare t8he various approaches to tla,ndli~ig taxoriortlic~s 

of complex and dynamically changing information, such as graph knowlcdgc 

bases. Empirical testing of the advantages of the spanning tree organizat,ioli for 

the generalization hierarchy compared to other organizations of complcs data 

(e-g. [42]) must be performed. 

Landscape Model Prototypes. Using the hierarchy of landscape niodel proto- 

types, existing model generators can be placed in relation to each 0 t h .  rrhc 

next step is to use this hierarchy to provide a common organizatioit for nlodel 

generators, and to organize existing and future generators for simple access by 

users. The internet is a natural location to place such a hierarchy; a proposd 

in this direction is in progress. 

Landscape studies need to attempt to use the hierarchical techniques pro~~osetl 

to  guide the analysis of data sets of landscape models. Studies that cornpan 

data sets against landscape prototypes will identify gaps in the suite of availitblc~ 

generators. 

Analysis of Landscape Models using Formal Concept Analysis. 'I'he Ilicras- 

chy of landscape model prototypes developed in Chapter 10 pcrrni ts analysis 

of the properties of an entire data set in comparison with artificially genc:rat,ed 

models. Other techniques are necessary for the analysis of the propert,ics of 

individual models in comparison with other models in a giver? data set. 'i'he 

issues addressed here are quite different, and focus more on how the modcls in 

a data set can be differentiated and/or grouped. Such analysis is complex, arrd 

researchers have proposed a multitude of indices for the comparison of landscape 

models in a data set j"r26j. An attempt to select a core subset from this army of 



indices has been explored in Riitters et al. [122]. However, attempts to derive 

a core set of indices that is independent from a data set fail to recognize that 

different sets of landscapes have inherently different properties. 

We propose an alternate approach for reducing the set of potential indices 

through the use of formal concept analysis [153]. Formal concept analysis is 

based on a mathematical, set-theoretic model of concepts and conceptual hier- 

archies [62, 1551. It was developed as a new approach to data analysis that, 

permits structural analysis of data without reducing the data. Concept analysis 

provides a formal, objective, data-driven technique for automatically construct- 

ing a hierarchy of relationships from a set of objects (e.g. landscape models) and 

a set of attributes (e.g. landscape indices). This hierarchy, known as the formal 

concept lattice, elucidates relationships inherent in the data, and can aid in the 

selection of key indices for a given set of landscape models. Formal concept 

analysis has been applied to a variety of domains with many nice results (e.g. 

analysis of Rembrant paintings [155]: comparison of recreation opportunities in 

national parks [139], and information retrieval [29]). 

In general, a concept- lattice provides a hierarchical conceptual clustering of 

the objects, and also represents all the implications among the attributes [155]. 

Using the techniques of formal concept analysis, we can automatically generate 

a concept lattice that illurnmates subtle dependencies contained in the data 

such as: dependencies among landscape indices; index groupings that cluster 

or differentiate subsets of landscape models; anil gradients of complexity within 

the data set. The concept latt.ice, if properly drawn, elucidates many of the 

nuances and implications contained in the data set that are not apparent by 

inspecting the data only. Producing good diagrams of concept lattices is an art 

in itself, although some progress in automating this task has been made [154]. 

Concept analysis is related to cluster analysis 146, 88, 831, although it differs in 

its ability to graphically illustrate subtle properties of the data. A primary dis- 

tinction between traditional cluster analysis and formal concept analysis is that 

the former produces a tree of clusters grouped according to similarity criteria 



[127], while the latter forms a lattice. This not only involves a novel apylicatio~r 

of reasoning with taxonomies, but permits the detection of subtle relationstlips 

as well as general trends in the data. A wide avenue for future rcscarcI~ is t,o 

pursue the use of formal concept analysis in landscape ecology by studying i t s  

utility for the analysis of one or more sets of landscape models. 
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