REASONING WITH TAXONOMIES

by

Andrew Fall

B.Sc. Simon Fraser University 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the School
of

Computing Science

(© Andrew Fall 1996
SIMON FRASER UNIVERSITY
December 1996

Al rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

ional Lib
Bl S

Acquisitions and

Bibliothégue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street

Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your hie Votre rétérence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et scus
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent é&tre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-16875-1

Canada

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the
title of which is shown below) to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further agree that permission
for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate
Studies. It is understood that copying or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

Reasoning with Taxonomies

Author:

(signature)

Stewart Andrew Fall

(name)

December 11, 1996

{date)

APPROVAL

Name: Andrew Fall
Degree: Doctor of Philosophy
Title of thesis: Reasoning with Taxonomies

Examining Committee: Dr. David Fracchia
Chair

Dr. Vero(?l'ic/a‘ Dahl, Senioa{‘iupervisor ,
Dr. Ken Lertz!man, Supervisor
Dr. Fred Popowich, Supervisor
Dr. Hassan A)”ti’Kam, SFU Examiner

Dr. Nick Cercone, External Examiner

Date Approved: UW‘A} 7 Ja | ‘\"\67

ii

Dedicated to Mom and Dad
Elizabeth Anne Fall and Stewart Temple Fall

il

Abstract

“We journey to learn, yet in travelling grow each day
further and further from where we began”

— Wade Davis

Taxonomies are prevalent in a multitude of fields, including ecology, linguistics, pro-
gramming languages, databases, and artificial intelligence. In this thesis, we focus
on several aspects of reasoning with taxonomies, including the management of tax-
onomies in computers, extensions of partial orders to enhance the taxonomic infor-
mation that can be represented, and novel uses of taxonomies in several applications.

The first part of the thesis deals with theoretical and implementational aspects of
representing, or encoding, taxonomies. Qur contributions include (i) a formal abstrac-
tion of encoding that encompasses all current techniques; (i1) a generalization of the
technique of modulation that enhances the efficiency of this strategy for encoding and
reduces its brittleness for dynamic taxonomies; (iii) the development of sparse logical
terms as a universal implementation for encoding that is supported by a theoretical
and empirical analysis demonstrating their efficiency and flexibility.

The second part explores our contributions to the application and extension of tax-
onomic reasoning in knowledge representation, logic programming, conceptual struc-
tures and ecological modeling. We formalize extensions to partial orders that increase
the ability of systems to express taxonomic knowledge. We develop a generaliza-
tion of 7eq'uawlrity' constraints among logic variables that irduces a partial order among
equivalence classes of variables. For graphic knowledge representation formalisms, we
develop techniques for organizing the derived hierarchy among graphs in the knowl-
edge base. Finally, we organize abstract models of landscapes in a taxonomy that

provides a framework for systematically cataloging and analyzing landscape patterns.

v

Acknowledgements

“No matter how much we seek, we never find anything but ourselves”

— Anatole France

My first thanks are to Marie-Ange, for tolerating my incessant drive to achieve my
goals, for patiently listening to my explanations in various dialects of martian, and for
enduring many lonely times while I was away at conferences. Qur kitten Ash and my
long-time companion lovebird Milk kept her company during my absences. One of my
dreams has been to make my parents proud of my achievements. Even if they are no
longer here, they share their love in my heart. They also live on in my brother Joseph,
with whom I have been fortunate to have worked with on some of my research.

I wish to express gratitude to my supervisor, Veronica Dahl, without whom I
would not have had the courage to let my ideas see the light of day. She has provided
inspiration both professionally and personally during the course of my degree. I would
also like to thank my committee, Hassan Ait-Kaci, Nick Cercone, Ken Lertzman and
Fred Popowich, as well as Paul Tarau, for many enlightening conversations, and for
encouraging me to pursue some of the routes I explored during my research. Thanks
to all my friends and family, and to Mother Nature, who walked beside me along my
path, diverting my attention to other important aspects of iife.

Support for this research was initially funded by NSERC PGS-A and PGS-B
Postgraduate Scholarships, and later by an ECO-Research Doctoral Fellowship. Addi-
tional support was made by Veronica’s NSERC Research Grant 31-611024 and NSERC
Infrastructure and Equipment Grant given to the Logic and Functional Programming
Lab, where this work was primarily developed. Thanks for the use of facilities are
also due to the School of Computing Science, and to the Forest Ecology Lab in the

School of Resource and Environmental Management, at Simon Fraser University.

\ -

“The human race is challenged more than ever before to demonstrate
»

our mastery - not over nature - but of ourselves

— Rachel Carson

It is the author’s wish that no military benefit

be derived from any results in this thesis.

vi

Notation

“Once you miss the buttonhole you’ll never manage to button up”

~ (Goethe

Belcw are descriptions of the intended meaning of some of the symbols used in the

thesis.

Partial order theory:

M meet (greatest lower bound) and meet crest
i join (least upper bound) and join base

<G, =X partial order relations

Set theory:

N,N intersection

u,U union

C subset (which is also a partial order relation)
€ set membership

Predicate logic:

A conjunction

\Y disjunction

= : negation

— impiication

& logical equivalence

vil

Contents

Abstract
Acknowledgements
Notation

1 Introduction
-1.1 Motivation and Summ

1.2 Organization of Thesis

ary of Thesis Results

..........................

2 Background and Mathematical Preliminaries

2.1 Partial Order Theory

...........................

2.1.1 Properties of ordered sets

2.1.2 Lattices . . .

...........................

2.1.3 Order mappings and lattice completions
2.1.4 Lattice completions

Part I: Taxonomic Encoding

3 The Evolution of Taxonomic Encoding

3.1 Introduction

...........................

3.2 Encoding tree-shaped hierarchies
3.3 Extendingtreestographs, ...
3.4 Characterizing term encodable hierarchies

3.5 Bit-vector encodings

...........................

iv

vil

10
12
13
15
17
17

20

3.6 Discussion L 33

The Foundations of Taxonomic Encoding 34
4.1 Setting the Stage L 36
4.2 Spanning Sets L. 39
4.2.1 Taxonomic operations using spanning sets 40
4.2.2 Representation theory and encoding 42
4.3 Efficient Implementations of Component Mappings 44
4.3.1 Unordered implementations q:
4.3.2 Tree representations and code sharing 45
433 Logical termso oL 48
4.3.4 Sparse logical terms. o000 49
4.3.5 Integer vectors oo 49
4.4 Infinite Suborders oL 52
4.5 Spanning Sets of Principal Down-sets and Up-sets 53
4.51 All principal down-sets 0L 53
4.5.2 Principal down-sets of meet irreducible elements 5H
4.6 Spanning Sets of Prime Down-sets and Up-sets H8
4.7 Spanning Sets of Compound Down-sets and Up-sets 60
4.7.1 Finding a minimal subsumption preserving spanning set is NP-
Hard 64
4.7.2 Multiple occurrences of factors 66
4.8 Spanning Set Decompositiono Tl
4.8.1 Chain decomposition L 72
4.8.2 Meet incompatible decompositiono 5
4.8.3 Meet homogeneous decomposition 79
4.9 Constraints and Coreference, 81
491 Types of constraints e 8l
4.9.2 Augmented spanning sets oL 83
4.9.3 Integrating spanning sets and constraints 86
494 Guarded constraints 88

1X

4.95 Coreference o v i i i e e e e e e e e e e e e 89

4.9.6 Coreference, decomposition and meet incompatibility constraints 91

4.9.7 Encoding algorithms P 94
4.9.8 Variations v v v i e e e e e e e e e e e e e 95
4.10 Discussion and Conclusiono 95
Modulated Encoding 99
5.1 Order Intervals and Modules 100
5.2 Order partitionso 103
5.3 Modulation e 104
5.4 Extending modulation oL 107
5.4.1 Lower and Upper Semi-Modules 107
54.2 GQGeneralized Modules 109
5.4.3 Non-overlapping Modulation 110
5.4.4 Overlapping Modulation e e e e e 112
5.4.5 Extending Modulation Algorithms. 115
5.5 Conclusion i e e e e e e 116
Encoding with Sparse Logical Terms 117
6.1 Introductiono 118
6.2 Basic Sparse Terms 119
6.2.1 Spacerequirementsl 120
6.2.2 Unification and Implementation 121
6.2.3 Variationso e e 122
6.3 Generalizing Sparse Terms for Encoding 124
6.3.1 Explicit and canonical forms for sparse terms 126
6.3.2 Sparse term subsumption. 128
6.4 Encoding with Sparse Terms 129
6.5 Sparse Term Encoding 131
6.6 Theoretical Justification oL 133
6.7 Empirical Evidence oo 137

6.8 Conclusion 139

Part II: Applications and Extensions of Reasoning with Taxonomies 140

7 Extending Partial Orders for Sort Reasoning 141
7.1 Introduction [41
7.2 Background 142
7.3 Sort Reasoning 143

7.3.1 Generalizing sort reasoning 115
7.3.2 Clausal taxonomic specification 147
7.3.3 Definitional specifications w148
T4 Sort Logic 149
7.4.1 Complexity of Sort Reasoning 151
7.5 Tractablesubcases o000 153
7.5.1. Containing sort reasoning complexity15
7.6 Implementing Conjunctive Sorts 157
7.7 Conclusion 157

8 Reference Constraints in Logic Programming 159
8.1 Introduction Lo 159
82 Background L 161
8.3 Decoupling Coreference via Reference Constraints 161

8.3.1 Notational considerations 163
8.3.2 Maintaining and satisfying the reference order 164
833 Example o 165
8.3.4 Comparison with sort hierarchies 166
8.3.5 Implementation 168

8.4 Individual Level Inheritance 168
b Conclusion oL oL oL 175

9 Organizing the Hierarchy of Conceptual Graphs 176
9.1 Background and Motivation 177

xi

9.2 Cardinality Constraints 178

9.3 Normalization L 0oL 180
9.4 Spanning Tree Normal Form 180
94.1 Pivoting 184

9.5 Representing the Generalization Hierarchy 185
9.5.1 Depth-first topological traversals 186

96 Conclusion L e 188
10 A Hierarchical Organization of Landscape Models 189
10.1 Introduction e 190
10.2 Background: Neutral models 193
10.3 Landscape Model Prototypes 196
10.3.1 Pattern constraints00 196

10.4 A Hierarchy of Landscape Model Prototypes 202
10.5 Conclusion 207

Chapter Appendix: Formal Basis for Landscape Model Generators that Per-

mit General Richness, LAR and Contagion Constraints 207

11 Conclusion 211
11.1 Significance of Research 0. 212
11.2 Future Research Directions 215
Bibliography 221

Xii

List of Tables

3.1

4.1

6.1
6.2
6.3

Assigning bits to elements from Figure 3.2 28

Characterization of encoding schemes in terms of spanning set of down-

sefs . . . L e 96
Asymptotic encoding results for theoretical orders 137
Empirical results (in bits) for chess learning system {16] 138
Empirical results (in bits) for medical ontology 139

xii

List of Figures

1.1

2.1
2.2
2.3

2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

Research overview o oo 2
Sampleordered setso o 13
Example ordered set 14
Example order mappings. The first (centre) mapping is order-preserving

and the second (right-hand) mapping is an order-embedding. 17
Example lattice mappings. Both mappings are {0,1}-homomorphisms

and the second (right-hand) mapping is also order-embedding. 18
Minimal completion of the ordered set in Figure 2.2 19
A tree-shaped hierarchy 23
Taxonomy showing tree prefix 25
Logical term encoding of a tree-shaped hierarchy. 26
Encoding of type hierarchy in Figure 3.2 26
Bottom-up bit-vector encoding of taxonomy in Figure 3.2 29
Compact bit-vector encoding of taxonomy in Figure 3.2 30
A modulated taxonomy and its encoding 31
A subsumption only encoding o000 33
Diamond lattice and two spanning sets 39
Tree representationo L 47
Chain partition of the ordered set in Figure 2.2 50
Meet incompatible anti-chain partition of the ordered set in Figure 2.2 50
Principal down-set encoding 54

xiv

4.6

4.7

4.8

4.9

4.10
4.]11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

9.1
5.2
3.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Cover tree, preorder numbering and interval encoding for the lattice in

Figure 4.5 L e 54
Meet irreducible encodingo a7
Principal up-set and prime down-set encodings 60
Elements that cannot be in the same down-set 63
Subsumption preserving encoding, 64
Transformation of a graph to a lattice. 66
Subsumption preserving encoding 66
Violation of subsumption L L. 67
Example encodings that discriminate non-meet irreducible elements . 69
Distributed virtual time encoding e 3
Meet incompatible decomposition L L. 76
Logical term implementation of meet incompatible decomposition . . 77
Transformation of a graph to alattice. 79
Meet homogeneous decomposition e e e e 80
Term encoding for diamond and cube lattices 91
Lattice for which no augmented spanning set of down-sets can preserve

meets and JOINso e e 91
Typesof modules L o 102
A modulated lattice and its containment tree 107
Lower semi-modules e e 108
Generalized modulation. Lower surrogates (left) are {q, ¢,{} and upper

surrogates (centre) are {b,e, f,n}. 110
Encoding implementations: sparse terms generalize other techniques . 119
Sparse logical terms oo 120
Binding arity in sparse terms 122
Anonymous functors in sparse termso 123
Attribute-value matrix using sparse terms 123
Chain and anti-chain encodings 134
Binary treeencoding Lo L oo 134

XV

6.8
6.9

7.1
7.2
7.3
7.4

8.1
8.2
8.3

8.4

8.5

9.1
9.2
9.3
9.4
9.5

10.1

10.2

Square lattice transitive closure and compact encodings

Transitive closure encoding of acrown Ss

Relation between taxonomic and set operations
Venn diagrams of clausal taxonomy specification

Aggregate specifications oL

Using sort definitions to represent an instance of 3-SAT: f = ¢; A+ - -Acy,

where C; = li,l vV l,‘"z \% li'a, 1 S) S k... e

State of the reference order at various points in a predicate evaluation
Reference order for separating the contexts for a person named John .
Reference order for ambiguous parses of “Jack saw a dogron his way
home” e e
Reference order during parse of the sentence “When Sherry saw the
chair, she shook her hand”

Reference constraints for default reasoning L

Conceptual graph representing “a cat sitting on a mat”
Spanning tree normal form oL o000
A cyclic graph and a tree representation
A woman eating a dinner cooked by her husband

Examples of pivoting the graph in Figure 3

Example neutral models. Each instance was generated on a 30 x 30
grid (m=30), with varying proportions of the white feature (p = 0.4,
06and 0.8).
Instances of landscape model prototypes produced on a 100 x 100 grid.
Each model has four features with equal landscape area ratios (i.e.
equal relative proportions). The value of contagion differs for each
model instance, taking on the values 0.6, 0.8 and 0.99, respectively. The
prototype for instance (a) is therefore {LAR = (0.25,0.25,0.25,0.25),
size = 100 x 100, richness € [1,4], contagion =0.6}.

151

166

170

172

173

174

177
182
183
183
184

194

199

10.3

10.4

10.5

10.6

Geometric view of an instance of a landscape model prototype with
spatial constraints. The instance is overlaid on the elevation model used
to create it. The model size of this instance is 100x 100, and the number
of features is 5. The underlying elevation model provides a context in
which spatial constraints, in the form of elevation responses, affect
pattern generation. Thus, the prototype for instance (a) is {size =
100 x 100, richness € [1,5], spatial responses to elevation}.
Instance of a landscape model prototype (b) generated using stochastic
temporal constraints and input pattern (a). The model size is 30 x 30,
and richness is 4. The prototype for instance (b) is therefore {size =
30 x 30, richness = 4, temporal responses}..
Sample fragment of the hierarchy of landscape model prototypes. Iach
node represents a prototype that consists of the constraints labeling the
node and all higher nodes in the hierarchy.
Sample fragment of the hierarchy of landscape model generators. liach
node represents a generator that permits specification of the constraints

labeling the node and all higher nodes in the hierarchy.

xvii

201

202

203

204

Chapter 1

Introduction

“In all things of nature, there is something of the marvelous”

— Aristotle

The drive to categorize and crganize knowledge has been ubiquitous throughout hu-
man intellectual development. Taxonomic knowledge was first formalized by Aristotle,
who proposed to define the intention of a complex concept in terms of its genus, or
general type, and differentia, or specific properties. It is therefore natural that a
large portion of current knowledge is taxonomically related, and that taxonomies are
prevalent in a multitude of fields.

In this thesis, we are concerned with research on the efficient representation and
use of taxonomies, extending partial orders for taxonomic knowledge representation
and reasoning, and applying taxonomies to a variety of applications. Central to this
research is the partial order (Figure 1.1).

The motivation for this thesis is based on the following observation:

Observation Taronomic knowledge is a useful artifact for organizing many aspects
of human thought, much of which can be captured in a mathematically elegant way
with partial orders. The capability of automated systems depends on the identification,

application and efficient organization of taxonomic information.

CHAPTER 1. INTRODUCTION

o™

Extended Logic Ecological Conceptual
Partial Orders Programming Modeling Structures

Extensions

and Applications
Taxonomies
(Parttal Orders)
Representation:
Theory and Taxonomic
Implementation Encoding

Modulated

Sparse Logical
Encoding C

Term Encoding

Figure 1.1: Research overview

Due to the multi-disciplinary nature of this thesis, we pose a number of specific

theses to explore this observation:

Thesis 1 (Taxonomic encoding) : There exisis a formal characterization for the
representation, or encoding, of partial orders in computers as the expression of cer-
tain aspects of taronomic information that is distinct from the manner in which that

information is implemented.

Thesis 2 (Modulation) : Concepts naturally group into related, but not necessarily
independent, partitions, and this can be exploited to decompose large tazonomies into

manageable units.

Thesis 3 (Sparse term encoding) : There ezists a universal encoding implemen-

tation that combines the advantages of other implementation techniqucs.

Thesis 4 (Extending partial orders) : Partial orders can be extended with tazo-
nomic information beyond subsumption, and this can enrich the ezpressive power and

consistency of a tazonomic reasoner.

CHAPTER 1. INTRODUCTION 3

Thesis 5 (Reference constraints) : The symmetry of equality constraints can be
decoupled into two asymmetric reference constraints that induce a novel and practical

hierarchy on equivalence classes of logical variables.

Thesis 6 (Conceptual graph generalization hierarchy) : Knowledge-bases of
graphs that exhibit a derived hierarchical structure can be organized as a spanning tree

that permits improved traversal efficiency for operations on that hierarchy.

Thesis 7 (Landscape ecology: hierarchy of landscape models) :

Generators of landscape models can be viewed as imposing sets of constraints on pat-
tern generation. These sets of constraints induce a hierarchy on landscape models that
serves as an organizational framework for model generators and for the analysis of

landscape patterns.

1.1 Motivation and Summary of Thesis Results

We motivate the thesis by discussing a number of open problems that we focused
our research efforts on, and some of the significant results that we obtained. This
thesis crosses a number of disciplinary boundaries, and advances the state of the art

in several different fields. The list below follows somewhat the structure of this thesis.

1. Encoding: Mellish [102] studied the use of logical terms for encoding lattices. He
characterized the classes of lattices for which term encodings were possible for
different forms of terms (e.g. flat terms). However, no algorithm was presented,

and so no constructive solution to the problem of encoding was proposed.

On the other hand, researchers advocating the use of bit-vectors and related
approaches have applied encoding in real applications (e.g. object-oriented pro-
gramming [724], operating systems [97]). However, these approaches have been
ad hoc, and no formal apparatus has emerged to permit objective comparison

and evaluation of the different techniques.

We develop a formal apparatus for objectively characterizing all encoding algo-

rithms. Our framework permits the separation of the informational content of

CHAPTER 1. INTRODUCTION 1

an encoding from its implementational details, and allows comparison at an ab-
stract level of different encoding techniques. Furthermore, the advantages and
disadvantages of various approaches for implementing encodings can be analyzed

for their effect on space and time efficiency, and their dynamic behaviour.

2. Modulation: Modulation is a well-known technique for the analysis of partial
orders in discrete mathematics (e.g. [60]}, but it wasn’t until the seminal work
of Ait-Kaci et al. [2] that its use for encoding was proposed. The algorithm
proposed in this paper produces an approximate modulation in a time efficient
manner. Researchers on partial order theory, on the other hand, have worked on
exact modulation algorithms, but it was only recently that an efficient (linear)
algorithm was developed [76]. Even with the ability to decompose taxonomies
into modules, however, the ability to take advantage of modulated taxonomies

has received limited attention beyond the proposal in [2].

An additional issue, and perhaps more important, is that modules are rigidly de-
fined constructs. Even if adequate modulations are possible in real taxonomies,
dynamic updates have the potential to invalidate much of the work involved in
modulation. Prior to our research, no proposal had been made to address this
serious issue that undermines the potential advantages of modulated encoding

by making modules too brittle for real applications.

Taking advantage of the decomposition tree of a modulation, we develop a
technique for modulated encoding that reduces the size of codes, and the time to
compute taxonomic operations, beyond that proposed in [2]. Furthermore, our
abstract treatment of modulation permits a direct generalization to a relaxed
definition of modules that degrade gracefully under dynamic updates. We design

algorithms for operations on generalized modules, which we prove to be correct.

3. Logical term encoding: The viewpoint taken in the analysis of Mellish [102,
104] is: given a technique for implementing encodings, what forms of taxonomies
can be encoded? We feel that, for real-world problems, this viewpoint is flawed.

In applications that require encoding, we may not have the luxury to restrict

CHAPTER 1. INTRODUCTION 5

the form of a taxonomy to encode. Thus, we believe that a better viewpoint
is: given a taxonomy, what is the best approach to encode this taxonomy? This
stance makes it easier for people to describe things naturally, and does not overly
constrain their expressive power. We highlight “best”, since there are a number
of criteria by which we may evaluate encoding. The most prevalent criterion is

the size of the resulting codes, although we discuss others later.

Due to the structural potential and flexibility of logical terms, we feel that term
er codings are the most promising form of implementation. For example, logical
terms may permit dynamic updates to a portion of a taxonomy without requir-
ing a full re-encoding, while any change to the length of a bit-vector encoding
requires updating every code. However, prior to research conducted for this

thesis, no algorithms for encoding with logical terms had been proposed.

Our early attempts at logical term encoding using Prolog terms were unsuccess-
ful due to the vast number of anonymous variables that produced excessively
large terms. For this reason, we developed and imprlemented sparse logical terms
for the specific task of logical term encoding, although we later found other uses
for them. Sparse terms vastly improved our term encoding results, but we later
discovered how the benefits of encoding with logical terms, integer vectors and

interval sets could be integrated into an extended form of sparse term.

In this thesis, we propose these extended sparse terms as a universal encoding
implementation that encompasses (in terms of efficiency) most other approaches
to implementing encodings, and we devise and implement the first published log-
ical term encoding algorithms. This claim is backed up by theoretical compar-
isons of sparse terms with other approaches to encoding, as well as an empirical
comparison between bit-vectors and sparse terms for encoding two medium size
taxonomies from existing applications. Even though each item of information in
a sparse term uses more space in an absolute sense (i.e. one atom vs. one bit),
sparse terms outperformed bit-vectors by nearly an order of magnitude. This
result is strengthened by the improved flexibility obtained by the use of logical

terms over more rigid implementations such as bit-vectors.

CHAPTER 1. INTRODUCTION 6

4. Exctending partial orders: The maintenance of taxonomic knowledge has been
polarized. At one extreme, systems use mathematically pure, but limited, par-
tial orders for representing taxonomic information. At the other extreme, ter-
minological systems provide rich formalisms for specifying knowledge, and taxo-
nomic information is derived through the expensive (and potentially intractable)
operation of classification [18, 19, 159]. In order to gain efﬁcieﬁcy, some termi-
nological systems limit expressive power to obtain tractable classification. How-
ever, there has been no corresponding push in the other direction, namely to
embellish partial orders with further power to incorporate additional forms of

taxonomic knowledge other than simple subset information.

One of the dangers of this situation is that taxonomic operations, such as meets,
have been interpreted as equivalent to conceptual, or set-theoretic operations,
such as intersection. Although this correspondence appears natural, it may lead

to invalid inferences, as pointed out in [28] in the context of many-sorted logic.

The solution to this problem suggested in [28] is to embed the taxonomy in
a special Boolean lattice that provides consistent inferences. This is adequate
for logic, but inadequate for applications that must reason efficiently with taxo-
nomic knowledge, due to a potentially exponential increase in space. We analyze
sort reasoning as a distinct reasoning task, and suggest the inclusion of a sort
reasoner in applications that utilize taxonomic knowledge. By developing a
sound and complete sort logic (not a sorted logic for reasoning with sorts, but a
logic for reasoning about sorts), we clearly identify the task required as the sort
reasoning problem. We prove that this problem is NP-Hard, but analyze the
sources of intractability. By limiting certain forms of taxonomic declarations
and queries, we show that intractability can be bounded, resulting in a sort

reasoning procedure that only requires polynomial time.

5. Reference constraints: During the development of a constraint based view of
encoding, we identified the utility of constructing a hierarchy of logical variables
(actually, of equivalence classes of variables). In this way, unification can bhe

split into two uni-directional components that allows, for example, updates to

CHAPTER 1. INTRODUCTION 7

a variable X to be automatically unified with variable Y, but not vice versa.

This form of relation among logical variables has not been previously proposed.

We develop a formal description of reference constraints, and show how they may
be specified in a logic program. We also explain how the resulting hierarchy of
equivalence classes is maintained and satisfied during the processing of a logic
program. Finally, we discuss how reference constraints can be implemented, and
propose potential modifications to the control strategy of logic programming

languages that may take fuller advantage of this new form of constraint.

While working out the details of reference constraints among logical variables, we
identified a broad area of application in hypothetical reasoning systems. Refer-
ence constraints naturally lead to the notion of individual-level inheritance. The
classical notion of inheritance involves inheritance of properties among classes
(e.g. the class cat inherits properties from the class mammal) and from classes to
individuals (e.g. the cat Ash inherits properties from the class cat). Individual-
level inheritance is a novel and distinct form of inheritance among individuals,
which are apprevimated by terms in logic programming. If individual A inher-
its from individual B, then the term that approximates A must be more fully
specified than the term that approximates B. This notion has applications in
systems that reason with uncertainty, to separate, but relate, hypothetical from

known information in a given context.

6. Conceptual structures: Conceptual structures is a graph-based formalism for
knowledge representation that relies heavily on taxonomies. The type and re-
lation lattices are declarational structures to which encoding techniques are
directly applicable. The generalization hierarchy, however, is a partial order
formed by graphs using the complex operation of projection, which is akin to
classification in terminological representations such as KL-ONE [18]. Essen-
tially, one graph subsumes another if the former contains a subset of the infor-
mation of the latter. However, the computation of this derived taxonomy is ex-
pensive, and the taxonomy itself is highly dynamic as changes to the knowledge

base transpire. To organize this hierarchy, a number of techniques, including

CHAPTER 1. INTRODUCTION

o

encodirg [42], have been proposed, although research ou this problem is ongoing.

We develop a solution that takes advantage of the information content of graphs
to organize the generalization hierarchy. Graphs are preprocessed using some
normalization techniques to produce a standard form, called spanning tree nor-
mal form due to the representation of a graph as a tree with coreference links.
The generalization hierarchy itself is also organized as a tree, and graphs are fur-
ther normalized into generalization hierarchy normal form as they are inserted
mto the tree. The advantage of this tree form is that the projection operation
between a node and its parent in the tree is greatly simplified, so traversals
down branches are less costly than general traversals in the hierarchy. Further-
more, in [42] it is argued that the most efficient traversals of the generalization
hierarchy are topological. We show that, given a spanning tree produced from
a left-to-right depth first traversal of a partial order, a right-to left depth first
traversal of this tree corresponds to a depth first topological traversal of the

partial order.

7. Landscape ecology: model generation Work on theoretical models of land-
scapes, known as neutral models, has proceeded steadily over the last few years
(e.g. [25, 66, 67, 148]), but is now rapidly expanding, as the number of presenta-
tions that focused on neutral models at a recent landscape ecology symposium
testifies (e.g. [64, 73, 83, 100, 157]). However, although the development and
use of neutral models and neutral model generators has proliferated, no unifying

framework for organizing and categorizing models has emerged.

By defining the general notion of a landscape model prototype, we provide a for-
mal framework for describing and comparing theoretical landscape models and
model generators. A landscape model prototype describes an ezpected pattern
in the absence of additional ecological information, and so defines a distribution
of landscape patterns in a multi-dimensional space of possibilities. Using this
notion, a hierarchy of prototypes is induced; near the top are general prototypes
that correspond to neutral models, while lower down are more predictive models.

Overall, the hierarchy clarifies gradients of neutrality in landscape models, and

CHAPTER 1. INTRODUCTION 9

can be used to aid selection of existing landscape model generators, in guid-
ing the development of new model generators, and for analyzing data sets of

landscape models with respect to the degree of neutrality.

1.2 Organization of Thesis

The thesis is divided into two major parts. In Part I we look at some theoretical and
implementational issues for representing taxonomies, while part II considers several
applications and extensions of reasoning with taxonomies. The following chapter
provides relevant background information for the thesis. In particular, some basic
partial order theory is presented as well as deviations from standard theory that we
found important for our research. Due to the diversity of topics covered, each chapter
will also present background material and related work important to the chapter.

Part I, tazonomic encoding, is divided into four chapters that contain research
on various aspects of this topic. Historical developrments in taxonomic encoding are
described in Chapter 3. In Chapter 4, we provide an in-depth study of encoding and
develop our framework for formalizing encoding. We describe our generalizations of
modulation in Chapter 5. In Chapter 6 we develop sparse logical terms as a universal
encoding implementation. Theoretical and empirical evidence is presented to support
this position.

Part II is divided into four chapters pertaining to research on extensions to, or
applications of, reasoning with taxonomies. In Chapter 7, we present results on ex-
tending the mathematical notion of a partial order to enhance the ability to represent
taxonomic knowledge. In chapter 8, we describe an application of partial orders in
logic programming for generalizing equality constraints among logical variables. We
present the use of taxonomies in conceptual structures in Chapter 9. In particular,
we focus on techniques for organizing the generalization hierarchy induced by concep-
tual graphs, including graph normalization and a spanning tree representation of this
hierarchy. Finally, we show in Chapter 10 how a partial order can be defined among
abstract models of landscapes in order to enhance the organization and specification

of generators of landscape models, and the analysis of data sets of landscape models.

Chapter 2

Background and Mathematical

Preliminaries

“From here on down, it’s uphill all the way”

- Walt Kelly

The cohesive theme of this thesis is the partial order, a simple yet elegant and power{ul
mathematical concept to which a lot of attention has been devoted (e.g. [15, 38, 144]).
Partial orders underlie central aspects of many domains, such as mathematical logic
[128], sorted logic [27, 28, 93] and logic programming [3, 4, 93], type systems [106],
natural language processing (e.g. typed feature structures [23, 71, 118], systemic
networks [80, 101]), object-orientation {e.g. databases [1], languages [24]), knowledge
representation (e.g. conceptual structures [42, 136], knowledge bases [45], description
logics [17, 18, 159], default inheritance and non-monotonic reasoning [22, 85, 143,
151]), machine learning (e.g. description idertification [103] and concept learning
[108, 156, 161]), formal concept analysis [153, 155], distributed systems [97], and
ecology and ecological modeling (8, 11, 39, 75, 115].

As the size of partial orders increases, it becomes important to find representations
that are both space efficient, and support fast execution of desired operations (e.g.
greatest lower bounds). Suitable encoding techniques will depend on the nature of
these partial orders (e.g. whether they can change dynamically, whether certain

properties such as distributivity or bounded width are satisfied) and the operations to

10

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 11

be supported. Research on tazonomic encoding has explored a variety of possibilities
(e.g. [2, 24, 34, 35, 43, 45, 61, 77, 78, 79, 93, 97, 101, 102, 104, 114]).

In order to empower logical terms for encoding, we developed sparse terms [51],
based on an analogy to sparse matrices. There are many similarities, but also some
important differences, between sparse terms and -terms in LIFE [4], as well as sorted
feature structures [23, 118].

Although mathematically clean, partial orders limit the representation of taxo-
nomic knowledge to subsort-supersort (or isa) relationships. We cannot, for example,
directly state that two sorts are incompatible or define one sort as the intersection
of a set of other sorts. This poses problems for specifying more complete taxonomic
relationships as well as for denotational semantics in sorted logic [28]. Research on
many sorted logics has addressed this issue by expanding the expressive power of re-
lationships among sorts. In simple many sorted logics the sorts simply partition the
domain of discourse, while more complicated logics permit much more expression [28].

The potential applications in which we could explore reasoning with taxonomies
are many. We choose to focus on logic programming, conceptual structures and ecolog-
ical modeling. An important application that we only explore superficially is natural
language processing, where important uses of taxonomies include lexical specification
and typed feature structures (e.g. [23, 118]). We have also used taxonomies in the
resolution of anaphora and co-specification in discourse processing [54] (synthesizing
and extending research in [9, 84, 133]), and for hypothetical reasoning [36].

Equality constraints partition logical variables into coreference classes, each of
which denotes an individual (which may be unspecified or partially specified) in a
domain of discourse. These constraints form a basis for a number of logic programming
languages, such as Prolog [138] and LIFE [4]. However, the resulting classes are
unrelated to each other. Our application is the exploration of a generalization of
equality constraints that induces a partial ordering among coreference classes.

Conceptual structures [136] is a rich application for taxonomies. Taxonomic en-
coding has been proposed for the type lattice [35], and for the generalization hierarchy
of graphs [41, 42]. Other research has analyzed normalization techniques for concep-

tual graphs [107, 160]. Our focus is on the use of normalization techniques for a novel

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 12

and efficient organization of the generalization hierarchy.

Landscape ecology [58] and ecological modeling are also prime application areas for
taxonomies, particularly for spatially explicit population models [40], ethology (ani-
mal behaviour) models [39], individual-based modeling [14, 57, 130}, and intelligent
simulation [105, 110, 124, 129]. Our focus is on spatially explicit models of landscapes
[10, 135, 146]. Work on theoretical landscapes has shown that models which contain
no or very little ecological information, known as neutral models, provide a null hy-
pothesis for landscape pattern and change [66, 67, 148, 145, 147, 150, 149]. We have
extended this notion to provide an incremental path from neutral models to landscape
models that incorporate ecological information, and possibly real data (e.g. rom a

GIS), inducing a partial ordering among landscape models [55, 56].

2.1 Partial Order Theory

Since the core of this thesis revolves around the partial order, it is important {o have a
clear understanding of the underlying mathematics upon which much of this research
rests. In this section, we present some basic partial order theory, as can be found in
[38], or any other lattice theory text. Definitions and theorems that introduce our
additions to, or deviations from, standard theory will be followed by an asterisk.

A (partially) ordered set is a pair (P, <) where P is a set and < is a reflexive,
transitive and anti-symmetric binary relation defined on P. Often, we leave < implicit
and simply call P an ordered set. We call < subsumption, and use subscripts (e.g
<p) to disambiguate different orders. If z < y or y < z, then we say that = and y are
comparable. We denote that z and y are incomparable by z|ly. If £ < y but = # y,
we write z < y. We say that z is covered by y, or y covers z,ifz <yand z <z <y
implies that z = 2. Genealogical terms are also used: if z < y, then we say z is a
descendant of y, or y 1s an ancestor of z. If x is covered by y, then we say x is a child
of y, or y is a parent of z.

An ordered set P is a chain (or total order) if Vz,y € P either z <yory < z; P
is an anti-chain if Vz,y € P z < y implies that z = y (i.e. if z # y then z||y). Any
subset @) of P is a suborderif, for any =,y € Q, z <g y if and only if z <p y.

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 13

Examples of ordered sets include families of subsets of some domain X ordered by
set inclusion (i.e. A < B if and only if A C B), sets of integers ordered by divisibility
(i.e. z <y if and only if z is a factor of y), and logical term spaces ordered by term
instantiation. An example of a total order is the set of integers ordered by relative
magnitude. Ordered sets can be shown diagrammatically (in Hasse diagrams) by
placing subsuming elements above subsumed elements and only drawing arcs in the

transitive reduction, as shown in the samples below.

{a,b,c} 12

)
)

{a,b} {ac} ({byc}

{af (b} {c}
\{l}/

Figure 2.1: Sample ordered sets

§
<z

2.1.1 Properties of ordered sets

We define the dual P? of an ordered set P by reversing <. We similarly define the
dual of a statement regarding ordered sets. The Duality Principle allows us to deduce
the dual of a statement once the statement itself is proven.

Suppose we have a subset ¢} of an ordered set P. Then q € @ is a mazimal element
of Q if ¢ < z € () implies that ¢ = z, and ¢ is the greatest (or maximum) element of
Q if ¢ > z for every x €). Minimal and least elements are defined dually. The set of
maximal (minimal) elements of a set @ is denoted as [@Q] (|@]). If P has a greatest
(least) element, we call it top (bottom), denoted by T (L). If P has both T and L,
then we call P bounded. An element x € P is an upper (lower) bound of Q if ¢ < x
(z < gq) for every ¢ € Q. The set of all upper (lower) bounds of Q is denoted Q* (Q").

Definition 2.1 Let P be an ordered set and @ a subset of P. If Q* has a least
element z, then z is called the join or least upper bound of Q, denoted UQ. If Q' has

a greatest element z, then = is the meet or greatest lower bound of Q, denoted NQ".

!Some order theory texts use A and V to denote meets and joins. (e.g. [38]). These symbols, how-
ever, conflict with the symbols traditionally used in predicate logic for conjunction and disjunction.
The symbols ' and U are also used in order theory, and provide a more consistent notation.

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 14

If Q has exactly two elements, r and y, then U{z,y} and M{z,y} may be written
z !y and z My, respectively. The join z Ll y may fail to exist because z and y have
no common upper bound or because they have no least upper bound (i.e. [{z,y}*] is
not a singleton). In the former case we call z and y join incompatible, and if = and y
have no common lower bound they are called meet incompatible. Note that in a finite
ordered set, there exists a non-unique meet if and only if there exists a non-unique
join. In the ordered set in Figure 2.2, we can see that dog U wzld doesn’t exist, while

dog Nwild = feral dog.

domestic canine wild social

african
wild dog

fox wolf

collie poodle terrier feral dog kit fox red fox

Figure 2.2: Example ordered set

Definition 2.2 (*) Let P be an ordered set and Q) a subset of F. The set of minimal
upper bounds of @) is called the join base of @ and the mazimal lower bounds of () is
the meet crest of Q).

By abuse of notation, we denote lower bound, or meet, crests the same as meets
(and upper bound, or join, bases the same as joins), although the result is a set, not
a single element. Thus, in Figure 2.2, neither dog M for nor dog U wild exist, but
wild N social = {wolf, african wild dog} and for U wolf = {canine, wild}.

Definition 2.3 Let P be an ordered set and Q) a subset of P. Then () is a down-set
ifforz € Q andy € P, y <z implies y € Q. Up-sets are defined dually.

We can construct the smallest down-set containing a set @ as [|Q = {y € P|3z €
Q,y < z}. If Q consists of the single element =, we write |z. Note that Q) is a
down-set if and only if @ = |Q. As an example, in the second ordered set in Figure

2.1, |6 = {6,3,2,1}. The family of all down-sets of an ordered set P is denoted by

O(P), and is ordered by set-inclusion. A down-set with a single maximal element is

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 15

called principal, otherwise it is compound. Compound down-sets can be viewed as the
union of a set of principal down-sets. Note that if P is an anti-chain, then O(P) = 2¥

(the power set of P). In general, O(P) C 2F and is much smaller for most ordered

sets.

There is a complementary correspondence between down-sets and up-sets, as for-

malized in the next theorem. Note that we use the symbol “\” for the set difference

operator.
Theorem 2.1 (*) If |Q is a down-set in an ordered set P then P\|Q is an up-set.

Proof: If e is not in the down-set, then it is not subsumed by any element in Q. So every

ancestor of e is also not in the down-set. Thus, this complement is an up-set.g

When P is finite, every non-empty set |Q € O(P) can be characterized by its
maximal elements, called the factors of the down-set. In a canonical down-set |@,
every pair of elements in () is incomparable (i.e. they form an anti-chain) and is thus

the set of factors of |(). Hereafter, we assume that all down-sets are canonical.

2.1.2 Lattices

Definition 2.4 Let L be a non-empty ordered set. If joins and meets exist for every
z,y € L, then L s a lattice. If the join and meet exists for every subset S C L, then

L is a complete lattice.

Every complete lattice must be bounded and every finite lattice is complete [38]
(since the meet of any set can be expressed as the successive meets of pairs of ele-
ments). An example of a lattice is 2% for a set X, ordered by set inclusion. Also, if
P is an ordered set, O(P) is a complete lattice ordered by set inclusion. All of the
examples in Figure 2.1 are lattices, but the example in Figure 2.2 is not. Note that
the dual of a statement regarding lattices is obtained by interchanging M and Ul in

addition to reversing the order relation.

Definition 2.5 A non-empty down-set |Q of a lattice L is an ideal if a,b € |Q
impliesallbe [Q.

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 16

Thus, an ideal is a down-set that is closed under join. A dual ideal is called a
fitter. An ideal |Q is called proper if @ C L. For each a € L, |a is an ideal and Ta is
a filter, respectively called the principal ideal and principal ilter induced by a. Thus,
every principal down-set is an ideal. Also, in a finite lattice, every ideal or filter is

principal [38].

Definition 2.6 Let L be a lattice and @@ a proper ideal in L. Then () is a prime ideal
ifa,b€ L and alb € Q impliesa € Q or b € Q. A prime filter (ultrafilter) is defined
dually.

Definition 2.7 Let P be an ordered set and e € P,e # T. Then e is meet irreducible

if t My = e implies that Tt = e ory = e.

Thus, e is meet irreducible if it is not the (unique) meet of any set of elements
not containing e. Join irreducible elements are defined dually. We represent the set
of meet and join irreducible elements by M(P) and J(P), respectively. In a lattice
L, the meet (join) irreducible elements are the elements that have exactly one parent
(child). For ordered sets, however, the set of meet (join) irreducible elements is not

as easily identified.

Theorem 2.2 (¥) Let P be an ordered set. Then an element x € P is meet irre-
ducible if and only if the set of parents A of x is a singleton or has a non-singleton

meetl crest.

Proof: Let z be an element of P and let A be the set of parents of z.

= If A is not a singleton and has a singleton meet crest, then the meet is x, so z is not
meet irreducible.

< Suppose A is a singleton or has a non-singleton meet crest. In the former, z is clearly
meet irreducible. For the latter case, suppose z is non-meet irreducible. Then there is a set
of elements @ for which NQ = z. Let A’ be the elements of A subsumed by some element
of Q. Tt follows that MA’ = z. Clearly z € MA. Consider any lower bound b of A. Since b
is also a lower bound of A’, b < z. Thus z is the greatest lower bound, so A has a unique

meet.q

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 17

2.1.3 Order mappings and lattice completions

Definition 2.8 Let P and QQ be ordered sets. A map ¢ : P — @ is
i. order-preserving (or monotone) if z <y in P implies p(z) < ¢(y) in Q.
. an order-embedding if z <y in P if and only if p(z) < p(y) in Q.
iii. an order-isomorphism if it is an order-embedding mapping P onto Q (denoted
as P= Q).

Note that if ¢ is an order-embedding, then ¢(P) = P. Also, an order-embedding
is one-to-one, so its inverse is a partial function, and an order-isomorphism is bijective,
so its inverse is a total function. Figure 2.3 shows an ordered set and example order-
preserving and order-embedding mappings. Two order-isomorphic sets must have

isomorphic diagrams.

T =@(b o(T)
- W)I " o o)
< Py ~
c. 4 o(d)=9(L) o& o
\/ ~_—
1 o

Figure 2.3: Example order mappings. The first (centre) mapping is order-preserving
and the second (right-hand) mapping is an order-embedding.

Definition 2.9 Let K and L be lattices. A map ¢ : L — K is ¢ homomorphism if ¢
is join and meet-preserving. That is, p(allb) = ¢(a)Up(b) and ¢(alb) = ¢(a)Me(b).

A bijective homomorphism is a lattice isomorphism. If ¢ is one-to-one, then the
sublattice ¢(L) of K is isomorphic to L and ¢ is an embedding of L into K. If
@(Ll) = L and ¢(T) = T, then it is called a {0,1}-homomorphism. Figure 2.4
shows a simple lattice and two homomorphisms, both of which happen to be {0,1}-

homomorphisms. The second is also an order-embedding.

2.1.4 Lattice completions

Since many results depend on a lattice structure, we now describe how to form a
lattice from an arbitrary ordered set using an order-embedding. This is known as

lattice completion.

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 18

T o(T)=¢(b) o(T)
PN

a b

NS
i

¢(a)=9(L) ¢@ ob) ¢
\l/

o)
Figure 2.4: Example lattice mappings. Both mappings are {0,1}-homomorphisms and
the second (right-hand) mapping is also order-embedding.

Definition 2.10 Let P be an ordered set and L a complete lattice. If o :P — L s
an order-embedding, then L is a completion of P (via ¢).

For example, the mapping ¢(z) = |z embeds P into the complete lattice O(P).
Other completions include the Boolean lattice completion of Cohn [28]. It is, however,
possible to specify a completion of minimal size. The following definition is isomorphic
to the Dedekind-MacNeille completion [38, 77] (which maps into a sublattice of O(P))
and the completion described in [2] (which maps into a sublattice of 27). Recall that
for ordered sets, we define the “I1” operation to return the set of maximal lower

bounds (as opposed to a single meet element).

Definition 2.11 Let P be an ordered set and Lp C 2F be a lattice defined as follows:
A € Lp if and only if Ja,b € P for which A=alpb. For A,B€ Lp, A<y, B if
and only if Va € A, 3b € B such that a <p b. The minimal lattice completion of P 1is
the order-embedding v : P — Lp, where for a € P, p(a) = {a}.

This lattice completion can be constructed simply by checking each pair of elements
in P. If their meet is not unique, then create a new element that represents this meet.
Clearly, Lp = P if and only if P is already a lattice. We could also define a minimal
completion in terms of joins, which is isomorphic for finite lattices. As an example,
Figure 2.5 shows a minimal completion of the lattice in Figure 2.2, where pack dog =
{wolf,african wild dbg} and wild dog = {feral dog, fox,wolf,african wild dog}.

A minimal completion can be viewed in two ways. The first is as an abstract
construct that gives formal meaning to meet crests within P (by adding new nodes
to stand as proxies for non-singleton meet crests). In this context, we work with the

original ordered set. When computing meets, we may obtain a non-singleton meet

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 19

T
domestic canine wild social
do wild dog

pack dog

fox Eolf vavj;]iiﬁ%g

collie poddle terrier feral dog

fox
N

ki

Figure 2.5: Minimal completion of the ordered set in Figure 2.2

crest, which requires additional search in the ordered set. This is the approach taken
in [2] and is useful when many lattice roperations are performed before output to the
user is required. The second viewpoint, taken in [24, 102], is to realize the completion.
Working with a lattice leads to simpler encoding algorithms and decoding schemes.
Unfortunately, completion may result in adding an exponential number of elements
to our original set. This problem can be alleviated somewhat using the technique of
lazy completion in [77], where elements representing non-unique meets and joins are
only added as they are computed.

An ordered set P that does not possess a 1 element is called L-unbounded. For
a lattice L, every meet in L\{Ll} exists, except those that result in 1. All finite
lattices must be bounded, otherwise they would not be closed under joins and meets.
In many real lattices, however, L is only implicit (e.g. as an absurd element). There
are several ways that we can handle 1. First, we can treat it as any other element,
which is simple but may not be very satisfactory, particularly for orders that are wide
or that may change dynamically. A second approach (espoused in [102]) is to treat L
as meet failure. That is, if aMb = L, then the meet operation must fail. We can also
treat it as decode failure - if the code computed for a meet has not been assigned to
any element, then assume it is L. These latter two approaches essentially treat the

lattice as L-unbounded.

Part I:

Taxonomic Encoding

“Discovery consists of looking at the same thing as everyone else
and thinking something different”
— Albert Szent-Goygyi

20

Chapter 3

The Evolution of Taxonomic

Encoding

“In rivers, the water you touch is the last of what has passed and

the first of that which comes: so with time present”

— Leonardo da,r Vinci

Leibniz (in [136]) initiated the quest for representations, or encodings, of lattices and
partial orders that could be used to efficiently compute operations, such as greatest
- lower bound and comparability. This quest continues today, and has been an active
area of research in the past few years. In this chapter, we review the developmental

history of taxonomic encodin .

3.1 Introduction

Taxonomies appear in a multitude of guises and in many fields. As the size of these
taxonomies increases, there is a growing need to represent them in a form that is
amenable to performing operations, such as meets, efficiently. Encoding taxonomies
in a manner that permits quick execution of such operations has been a goal in logic
programming, and in other areas computer science, for some time now. Although
many encoding schemes have been successful, research in this area is ongoing in the

quest for general purpose, compact, flexible and efficient encoding techniques.

21

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 2

[

In logic programming, encodirgs have been used to reduce the length of the proofs
needed to deduce some kinds of facts, to facilitate intensional replies and to achieve
partial execution of some queries (e.g. [33, 34, 87]), and to integrate many-sorted
logic [4]. In natural language processing, they have been used to permit quick se-
mantic agreement verifications on queries, to calculate domain intersections through
unification, and for incremental description refinement (e.g. [32, 98]). In systemic
linguistics, these techniques have been used for representing and making inferences
from systemic networks [101].

The evolution of taxonomic encoding has involved interactions among researchers
working with both the logic programming and bit-vector approaches. Other tech-
niques are introduced within our formal framework for encoding in the following
chapter. The early work in the logic programming [32, 34] and bit-vector [2] direc-
tions has been expanded within [24, 96] and between [101, 102] research lines.

Schemes for encoding taxonomies so that the basic operations can be performed
through unification have been studied, e.g., in [34, 98, 101, 120]. Alternative ap-
proac’ zs involve rewriting the logic programming interpreter or compiler to extend
unification to facilitate efficient encodings {52], or to encompass type operations di-
rectly (3]. Bit-vector encoding techniques can be applied using logical terms, but
logical terms may possess structure not easily mimicked with bit-vectors, so the con-
verse may not be as apparent. In general, most schemes can be abstracted from the
particular space used for the codes (e.g. terms or bit-vectors) to analyze the actual
taxonomic information encapsulated in the encoding.

The following sections of this chapter outline early research on encoding. The
viewpoints are expressed in the form of the original research. In the next chapter,

some of these approaches and other techniques are re-cast in our formal framework.

3.2 Encoding tree-shaped hierarchies

One of the early encoding techniques (33, 34] dealt efficiently with tree-shaped hier-
archies (i.e. hierarchies that do not allow multiple inheritance). It was inspired by

the simple observation that by representing a type t as a term t&t,&...&t,, where we

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 23

assume that the relationships ¢ C ¢1,¢; C #3,...,tx_1 C tx hold, we can also represent
partially known types by similar terms in which a variable stands for the unknown se-
quence of set inclusions, and then check for operations, such as set inclusion, through
unification. By extending Horn-clause terms, a simple representation of taxonomic
information is obtained. Essentially, a type in a such a hierarchy can be represented
as the (unique) path from the root node to the type. As meets are always L in a
tree-shaped hierarchy, we are only concerned with joins and subsumption checking.
As an example, the elements chameleon and dog in Figure 3.1 can be encoded as

the paths [animal, reptile, chameleon] and [animal, mammal, dog], respectively.

animal

reptile mammal

chameleon snake dog cat
Figure 3.1: A tree-shaped hierarchy

Checking subsumption in this representation can be done by checking if the path
of the subsuming label is a prefix of the path of the subsumed label. So, for exam-
ple, the path of mammal, [animal, mammal], is a prefix of that of dog, as mammal
subsumes dog. By representing the paths as difference lists', this operation can be
perforrned with a single unification. Thus, mammal and dog would actually be rep-
resented by [animal, mammea!|X]\ X and [animal, mammal, dog|Y]\Y, respectively.
If this unification fails, then the two elements are incompatible. The join operation
can be achieved by simply retaining the longest common prefix of the two paths.
Thus, dog U cat will find the longest common prefix of [animal, mammal,dog] and
{animal, mammal, cat] which is [animal, mammal]. Decoding is done by finding the
label with this path, which is mammal. Since each element has no more than one

parent, joins will always be unique.

'A difference list is a list representation that allows for appends to execute in one unification
step. To achieve this, a list is viewed as the difference between two other lists. For example, the
list 1,2, 3] can be viewed as the difference between [1,2,3,4,5] and [4,5]. By using a variable as the
second list (e.g. representing [1,2,3] as [1,2, 3] X]\ X), we can append any list to it simply by giving
a value to X through unification.

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 24

With the difference list representation of paths, we can express incomplete types.
That is, we store a path from the root to the most specific type known, with the
possibility of extending this path as more information is obtained. For example,
if we all know about an object is that it is a mammal, the code for mammal,
[animal, mammal] X]\ X, can be extended as more information is discovered.

This technique permits us to formulate intensional replies, to perform quick se-
mantic agreement verifications on natural language queries and to achieve partial ex-
ecution of some queries. For example, we can state that all reptiles crawl: crawl(A €
[animal, reptile] X]\ X). Now we can ask which animals crawl (e.g. ?- animal(A),
crawl(A) .). This will quickly reply with reptile. If we desire further information, we
can backtrack to find more specific elements in our hierarchy which crawl.

This approach has the advantage of being simple, efficient and entirely within the
framework of Prolog terms. However, limiting taxonomies to being trees imposes a

severe restriction on the types of inheritance and operations that can be performed.

3.3 Extending trees to graphs

Extending the above method to deal with general partial orders, Massicotte [96] par-
titions the nodes into two sets: nodes with a unique path from the root (deterministic
nodes) and nodes with multiple paths from the root (non-deterministic nodes). Non-
deterministic nodes are a result of one or more ancestors having multiple inheritance.

In essence, the maximal tree portion of the hierarchy (the tree prefir), starting
at the root, is treated in the same way as above. Thus, a deterministic node is
represented by a path, expressed as a difference list, from the root to the node. For a
nondeterministic node, the paths from the closest ancestors with multiple inheritance
are explicitly represented, and the paths from the root to these ancestors are implicitly
represented (through a predicate call associated with each such path). If a node has
multiple parents, then multiple paths are associated with it, one from each closest
ancestor with multiple inheritance, or from the root if no such ancestors exist.

To demonstrate, Figure 3.2 shows a hierarchy in which we have emphasized the tree

prefix. The deterministic nodes are {T, person, adult, child, butter fly, larva} and the

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 25

non-deterministic nodes are {teenager, caterpillar, L}. To represent adult requires
only storing the path [T, person,adult], but to store teenager requires the paths
[adult, teenager] and [child, teenager]. To find all paths from T to teenager requires
appending the path [adult,teenager] to each path from T to adult and appending
[child, teenager] to each path from T to child. This can be achieved via unification;

the recursive nature of the implicit paths ensures that all paths will be found.

T
adult\/chi]d
teenager caterpillar
1

Figure 3.2: Taxonomy showing tree prefix

To test whether a label, e;, subsumes another label, e;, now requires checking if
there exists a path from the root to e; which is a prefix of some path from the root
to e;. If both €; and e, are deterministic nodes, then this operation can be achieved
in one unification. If either one is a non-deterministic node, this will require one
unification for each possibility in the worst case. Provided the taxonomy is a join
semi-lattice, joins may also be formulated in a recursive manner. There is, however,
no simple way to use this approach for meets, or for finding join crests in non-lattices.

This approach enjoys the simplicity of Dahl’s encoding, and it also remains within
the scope of Prolog. However, it cannot tolerate many multiple inheritances before

its recursive nature will limit its efficiency.

3.4 Characterizing term encodable hierarchies

The technique of using unification to perform hierarchical operations can be geuer-
alized to use logical terms as codes, rather than difference lists. We first note that
the approach of [34] for encoding tree-shaped hierarchies, can also be achieved by

representing the partial paths as nested, unary function symbols (as pointed out in

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 26

[101]). So, for example, the taxonomy in Figure 3.1 can be represented using terms
as shown in Figure 3.3. Checking subsumption still requires one unification. If the
unification succeeds, then the term that was further instantiated subsumes the term
that was not. If the unification fails, then the two elements are incompatible. Joins
can be achieved through anti-unification, the dual of unification. For example, to
compute the join dog U cat, we anti-unify the terms animal{(mammal(dog(-))) and
animal(mammal(ca?(.))), resulting in animal(mammal(.)) which is the termn asso-

ciated with mammeal.
animal(_)

animal(reptile(_)) animal(mammal(_))

animal(reptile(cham(_))) animal(reptile(snake(_))) animal(mammmmal(cat(a)))

Figure 3.3: Logical term encoding of a tree-shaped hierarchy

With this scheme, it is possible to utilize functions with more than one argument.
The technique in [21] is direct extension of [33] that allows a set of tree shaped hi-
erarchies, leading to multi-argument terms where a subterm has one argument per
tree rooted at that node. This can be taken even further to encode more general tax-
onomies, by permitting logical variables. As an example, consider the term encoding

shown in Figure 3.4 of our example hierarchy from Figure 3.2.

f(—’_’.—.)
W f(insect,butterfly,_) f(insect,_,larva)
f(person,Won,_,child)
f(person,adult,child) f(insect,butterfly,larva)
1

Figure 3.4: Encoding of type hierarchy in Figure 3.2

Mellish (in [102]), provides a characterization of lower semi-lattice taxonomies
(i.e. unique meets exist) for which a particular type of term encoding exists. Such

encodings are targeted at determining meets and checking subsumption. Essentially,

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 27

a term encoding, in Mellish’s sense, requires that the meet of two elements can be
determined by unifying the terms associated with these elements. If the unification
fails, then the result is bottom. Otherwise, the resulting term is exactly the term

associated with the unique meet element. This is defined more formally as follows:

Definition 3.1 A hierarchy H = (¥, <) is term encodable iff, for some term space

G, there is a mapping T : X—G satisfying:
1. If T(e1) = 7(eg) then e; = e

2. r(L)y=1

3. 7(er Mep) = 1(e1) M 7(ez)
where e; and e; are elements of X, and M represents the term unification operation.

The first condition ensures that the mapping is invertible, which is necessary for
decoding if we are to support meets. The third condition requires that 7 not only
preserves subsumption, but also that the unification of the terms of two elements is
exactly the term of the meet of those elements. The second condition guarantees that
if this meet is L, the unification fails. Therefore, if we can find a term encoding for
our taxonomy, meets can be determined using one unification step.

Although no algorithm for constructing term encodings is given, Mellish does
categorize taxonomies according to the complexity of the types of terms required for
such encodings. The simplest encodings require only ¢ree terms (i.e. terms in which
all variables are singletons). Such terms can always be drawn as trees. At the next
level, flat terms are studied (i.e. terms in which variables may corefer, but the depth
is restricted to one). Flat terms can then be generalized to the set of all terms. Going
beyond terms leads us to the use of rational trees in encodings [30].

Unfortunately, determining which type of terms are required for encoding a given
taxonomy appears to be difficult. Also, constructing encodings that employ terms
more complex than simple tree terms may be non-trivial, and limits the possibility
- of exploiting parallelism in unification. Even some simple taxonomies turn out to
be non-tree term encodable, according to the above definition of encodability. We
provide examples of this in the next chapter. Furthermore, a change to the taxonomy
may require recomputation of the entire, or a significant portion of, the encoding.

In [104], Mellish extends his characterization to taxonomies encodable by graphs.

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 2

a0

3.5 Bit-vector encodings

A number of researchers have explored the possibility of encoding taxonomies using
bit-vectors, using the operations of logical (bit-wise) AND and OR to compute meets
and joins. The founding research on using bit-vectors was by Ait-Kact et al. [2] for
use in the logic programming language LIFE [4]. The definition of encoding used
assumes that the taxonomy is a lower semi-lattice. In order to achieve this, a minimal
semi-lattice completion is presented. It is important to note that this semi-lattice
construction is not actually computed, but rather is used to provide a semantics for
computing meets that are not unique. This contrasts with the approaches by Mellish,
above, and Caseau, below, which actually require the taxonomy to be a lower semni-

lattice. Performing this construction may be exponential in the worst-case.

Transitive closure. A simple bit-vector encoding, called transitive closure, can be
achieved by associating one position in the bit-string with each element in a tax-
onomy (except L). Let us call element(z) the element associated with position z
in this bit-vector. For each element e, position ¢ is a 1 if € subsumes element(z)
and a 0 otherwise. Thus, each code for an element incorporates all of the lower
bounds of that element. To demonstrate, consider the taxonomy of Figure 3.2.
Table 3.1 associates one bit with each element, and Figure 3.5 shows the tran-

sitive closure of the table according to subsumption (in a bottom-up manner).

Table 3.1: Assigning bits to elements from Figure 3.2
i T person butterfly larva adult child teenager caterpillar]

T 0 0 0 0 0 0

person
butterfly
larva

1
0
0
0
adult 0
0
0
0

child
teenager
caterpillar

ol—lo|loclojololo

OO~ OOl OoOI O
Ll =] Re=lNan] Ren] Ran] Nan]

olo|lojo|o|lo|~
olojojoloj—|o
ololojlo|—lolo
ololo|—|ololo

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 29

11111111

01001110 00100001 00010001

00001010 00000110

10 1

\/

00000000
Figure 3.5: Bottom-up bit-vector encoding of taxonomy in Figure 3.2

Both subsumption checking and meet operations can be performed using logical
AND operations. That is, e; < e; if and only if 7(e;) AND 7(e3) = 7(e1). Also,
el Me2 is computed by 7(e;) AND 7(e;). If the meet is unique, this will be the
code of that element. If not, this code will represent the crown and additional

decoding must be done to extract the elements comprising this crown.

Cdmpact encoding. The above approach requires one bit for every element except
1. Thus, a taxonomy with n elements requies n—1 bits per code. By analyzing
the structure of the taxonomy, it is possible to reduce this number. When an
element has exactly one child, we must use an additional bit to distinguish its
code from that of its child. But when an element has multiple children, it may
be possible to encode it simply using the OR of the codes of its children. The
compact encoding scheme optimistically assigns codes in such a way, and if this
leads to two incomparable elements having comparable codes, then additional
bits are added. Thus, while transitive closure indiscriminately uses one bit per
element, compact encoding adds bits only as necessary, saving space on elements
that do not require a bit to maintain the encoding homomorphism. Subsumption

checking and meets are computed using logical AND, as before.

Consider our example taxonomy. We start with 0 for L. Then we assign 1
to teenager and 10 to caterpillar. Next adult is allotted 101 and child 1001.
Butter fly is given 10010 and larve 100010. Then person, since it has two
children is assigned 101 AND 1001 = 1101. Finally T, with three children, gets
1101 AND 10010 AND 100010 = 111111. In this simple example, we reduce the

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 30

code size from 8 bits to 6 bits. This compact encoding is shown in Figure 3.6.

111111

001110 100001 010001

YN

001010 000110

M 000601
T~

000000
Figure 3.6: Compact bit-vector encoding of taxonomy in Figure 3.2

Which elements require a bit? For a bottom-up compact encoding, it is precisely
the join irreducible elements. If this scheme was applied in a top-down man-
ner, it would be the meet irreducible elements. Therefore, unlike the transitive
closure approach, a compact encoding may require a different number of bits

depending on whether it is applied in a top-down or a bottom-up fashion.

Modulation Many objects naturally group themselves into relatively disjoint, dense
groups with few links between groups. This can be exploited by treating these
groups, or modules, as a single unit in the taxonomy [2]. Then the modified
taxonomy (with one module node replacing al! the elements of the module) can
be encoded separately from the elements in the module. To do this, the module
must itself have the form of a taxonomy. That is, modules have a top and
a bottom element, and every path from outside to lower elements inside the
module goes through the top node of the module, and every path from inside to

lower elements outside the module goes through the bottom node of the module.

Since modules are sub-taxonomies, this process can continue recursively, until
each module contains a small number of elements. The difficulty lies in finding
modules. The heuristic algorithn provided in [2] attempts to modulate a given
taxonomy, but is not guaranteed to find a maximal modulation. A fast (linear)

algorithm for modulation has recently been developed [76].

An element may now reside within a module, which is itself within a module

and so on. In [2], the code of such an element is the juxtaposition of the codes

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 31

Module 1

of the containing modules (starting with the maximal containing module) and

the code of the element, which was calculated in the least containing module.

The operations of subsumption checking and meet are complicated by modula-
tion and will be described only for one level of modulation. To check if element
e; subsumes element e, we must first check which modules they are in. If they
reside in the same module, we simply check if the code for e; subsumes the
code for ey, as before. If they are in different modules, we check if the code

for the module containing e; subsumes the code for the module containing e,.

Otherwise e; does not subsume ej,.

To determine the meet of e, and ey involves a similar process. If they are in
the same module, then simply take the AND of their codes. If e; subsumes e,
then the meet is e;. If e; subsumes e;, then the meet is e;. Otherwise, take
the logical AND of the containing module codes to obtain the meet module and
the meet element is the topmost element of this module. For non-unique meets,

crowns are found, as in the compact encoding method above.

To illustrate, we add an insect element above butter fly and larva in our example
taxonomy. Now, the portion of the hierarchy dealing with people can form one
module, and the portion dealing with insects can form another. These modules
can then be encoded using the compact encoding. This modified taxonomy and
its modulated encoding are shown in Figure 3.7, where the module codes have

been separated from the element codes by a colon.

T 11

Module 2 /\

01:11 10:11

NN N

person

adult 01:01 = 01:10 10:01 10:10
teenager 01:00 \m{
I 00

Figure 3.7: A modulated taxonomy and its encoding

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 32

To find the meet adult M child, we AND the element codes 01 AND 10, and
prepend the module code 01 to get 01:00, which is the code of teenager. To
find adult M butter fly, we AND the module codes 01 AND 10 to get 00, which

is the module code of L.

These operations can be extended in an obvious way for further levels of mod-
ulation. Since each level of modulation adds one more step in the process and
since there can be at most logV levels of modulation for a taxonomy of N ele-
ments, these operations take at most log/V steps. So, although modulation has
the potential to reduce the size of the codes substantially, it also increases the
complexity of computing operations. The assumption is that most operations

will be within, not between, modules, so that only one step is required.

Also, the complexity of determining a modulated encoding is substantial. Mod-
ifications to the taxonomy can be either more or less costly than for non-
modulated taxonomics. Changes within a module restrict the extent of changes
to within that module. If, however, one or more modules are breached (e.g. a
link is added that enters or leaves a module at a mid-point), then we may have

to re-modulate a significant portion of the hierarchy.

In Chapter 5, we formally deal with and extend modulation.

Encoding for subsumption only If the only operation required is subsumption

checking, then it may be possible to reduce the length of codes further, without
resorting to modulation. In this situation no decoding is necessary and the
codes can be such that neither meets nor joins can be determined, as long as

the subsumption relation is maintained.

One such approach has been developed for the Laure object-oriented program-
ming language [24]. This scheme modifies a top-down version of compact encod-
ing, but is restricted to taxonomies that are lattices. The algorithm basically
assigns a bit position, or gene, to each meet irreducible element. Since the
taxonomy is a lattice, these are the elements with a unique parent. The code

for an element is the union of the genes (i.e. logical OR) of its ancestors, plus

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 33

its gene, if it is meet irreducible. Since we are not concerned with computing
meets or joins, it is possible to assign the same gene for some elements, provided
this doesn’t violate the subsumption relation. Caseau’s algorithm performs this
incrementally, in a top-down manner. As each meet irreducible element is pro-
cessed, an attempt is made to assign a gene already in use. For other elements,
a check is made to see if the union of the parent genes violates subsumption. If

so, mutations of ancestral genes are performed until subsumption is respected.

Using this algorithm, we encode the taxonomy in Figure 3.7 as shown in Figure
3.8. In the taxonomy at the left, we display the genes assigned to each meet
irreducible element. As can be seen the adult and butter fly elements share a
gene, as do child and larva. This reduces the code size to 4 bits, as achieved by
modulation. Checking for subsumption requires only one logical AND operation:
element e, subsumes e, if and only if 7(e1)AND7(ez) = 7(e1). We cannot,

however, compute meets or joins due to the polymorphic character of genes.

T 0000

gl :Pmnsect m

g2:adult g3:child g2:buw arva 0011 0101 10<\|/100

teenager : caterpillar 0111 1110

1111
Figure 3.8: A subsumption only encoding

3.6 Discussion

In this chapter, we have attempted to describe the evolution of taxonomic encoding
in a general and intuitive manner. Where possible, we described techniques from
the viewpoint of the original research. Some of the techniques covered here, and
additional techniques, are described in the following chapter, where the emphasis is

on characterizing techniques using our formal framework.

Chapter 4

The Foundations of Taxonomic
Encoding

“Fverything is simpler than you think and at the same time

more complez than you imagine”

— Goethe

Most of the research on encoding has focused on algorithmic and implementational
details of encoding, and has largely ignored or left unstated the informational content
of the technique. In this chapter, we explore a fundamental structure underlying
encoding. By characterizing encoding using spanning sets we are able to provide a
concise framework in which all schemes can be compared, regardless of the actual
implementation. This analysis permits a separation of the informational content of
an encoding scheme from the implementational details, and allows us to see how both
of these aspects affect time and space requirements. This exploration expands and
formalizes our introduction of spanning sets for encoding that appeared in a short
workshop paper [48].

In addition to the theoretical appeal of our framework, we also develop several
important results. We show a correspondence among several existing encoding tech-
niques (sections 4.5 and 4.6). We prove two NP-Hardness results, which demonstrate
limitations to encoding algorithms and reveal avenues for approximation algorithms

(sections 4.7 and 4.8). Our abstraction also exposes a more comprehensive view of

34

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 35

some existing techniques, indicating directions for further research. We discuss in
more detail in section 4.10 our contributions to taxonomic encoding as well as specific
directions for future research.

In the following section, we motivate and define taxonomic encoding. We rely heav-
ily on the lattice theory concepts introduced in section 2.1, including our departures
from standard theory. In section 4.2 we characterize encoding as order-embedding
mappings induced by spanning sets. Since the result of these mappings is a set,
taxonomic operations reduce to set operations, independent of the implementation.
Section 4.3 introduces a variety of implementations of order subsets, specifically for
the implementation of spanning sets and section 4.4 describes how we can permit
portions of a taxonomy to be infinite while still benefiting from encoding techniques.

Using this framework, we analyze the information content of various spanning set
types and develop formal techniques to reduce the representation cost of the span-
ning set mapping. Through much of this analysis, we introduce existing encoding
techniques, characterize them in terms of our spanning set framework, and then ab-
stract general properties and limitations of such spanning sets. We first characterize
some simple encodings in terms of spanning sets of principal down-sets in section 4.5.
This includes the transitive closure and compact encodings of [2]. We then show a
correspondence between principal down-sets and prime up-sets, providing a direct link
to the approach of [77]. Section 4.7 explores and characterizes spanning sets that pre-
serve only subsumption, and we prove that determining a minimal such spanning set
is NP-Hard. The approach of [24] is shown to be an approximation of the optimum.
We next consider how decomposing a spanning set can achieve more concise results,
as in the proposals of [97] and [102]. We also prove that, for certain forms of decom-
position, finding the optimal is NP-Hard. Section 4.9 views partial orders as systems
of constraints, and encodings as preserving certain properties by representing a subset
of these constraints. Using coreference, more expressive encodings are possible. Fi-
nally, we discuss areas for future research, including expanding the theory presented,

exploring implementational issues and designing approximation algorithms.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 36

4.1 Setting the Stage

The general problem we wish to address is as follows: given an ordered set P, how
do we represent P to provide fast computation of subsumption, and possibly meets
and/or joins? We focus on encoding finite ordered sets, although we later describe
how these can be augmented with certain forms of infinite orders. Some ordered
sets, such as families of subsets ordered by set inclusion, sets of integers ordered
by divisibility (i.e. £ < y if and only if z is a factor of y), and logical term spaces
ordered by term instantiation, have in common the simplicity of element comparisons:
determining if z < y can be done locally (i.e. using only information directly related
to z and y) and efficiently. This is not true, however, of many others, such as sets
of graphs ordered by subgraph isomorphism and multiple inheritance hierarchies in
object-oriented systems. In the former case, local information can be used to check
subsumption, but this is costly. In the latter case, only the intransitive, irreflexive
portion of the partial order is maintained (i.e. the transitive reduction), so there is no
local information to determine if z < y. It is in contexts such as these that encoding
is beneficial.

We will assume that we are given an ordered set P as a graph G = (P, F),
where E is either the transitive closure (i.e. {(z,y) € F if and only if z < y) or
the transitive reduction of P. We need a way to implement P that is both space
efficient and facilitates fast computation of operations. Directly implementing P using
standard graph representation techniques is straightforward (where GG = (P, ££)); two
common techniques are adjacency matrices, which take O(|P|?) space, and adjacency
lists, which take O(|E|log|P| + |P]) space. If G is the transitive reduction graph of
P, then adjacency list representation corresponds to maintaining the list of parents
(or children) for each element. Subsumption, meets and joins can be determined in
O(!E|) time for either implementation. If G is the transitive closure graph of P, then
subsumption can be computed in constant time for adjacency matrices, and O(|P})
time for adjacency lists. In both cases, meets and joins take O(|P|) time.

Before defining encoding, we recall our generalizations of meet and join: for a

subset () of an ordered set P, we call the set of minimal upper bounds of {J the join

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 37

base and the maximal lower bounds of () the meet crest'. A join (meet) is simply a
singleton join base (meet crest). We use the same notation for joins and join bases
(and meets and meet crests). Thus, in Figure 2.2, foz U wolf = {canine,wild} and

wild N social = {wolf, african wild dog}, whereas dog M wild = {feral dog}.

Definition 4.1 Let P and @) be ordered sets, and 7 an order mapping 7 : P — Q).
Then 7 1s
e a (subsumption) encoding for P if T is an order-embedding (i.e. x <p y if and
only if 7(z) <q 7(y))-
e a meet encoding for P if T is meet-crest-preserving: if a,b € P then alp b =
7Y 7(a) Ng 7(b)), where 77! is the inverse of 7.
e a join encoding for P if T ts join-base-preserving: if a,b € P then alp b =

77! (7(a) Ug 7(b)).

Although < defines a partial order on (), determining if z <p y may be accom-
plished in a number of ways, as we discuss in section 4.3. The intent of an encoding is
that taxonomic operations in () can be performed more efficiently than in P. There
are several forms of encoding that have appeared in the literature; the trademark
of encoding is the pre-computation of the encoding function 7 and the association
with each element z € P the value, or code, 7(z). Thus encoding trades the cost of
explicitly storing 7 for improved time to compute taxonomic operations.

In most schemes, the target space () has the property that elements are inde-
pendent. That is, the order relation is somehow encoded in the elements themselves.
Examples of this include bit-vectors and logical terms. In the tree encoding scheme of
{78], however, @) is a tree data structure, and 7 maps elements of P to nodes of the

tree. Operations in P are translated to operations on this data structure.

'The set of upper bounds (lower bounds) is an up-set (down-set). The join base (meet crest) is
precisely the set of factors for this set - its base (crest). Join bases and meet crests are anti-chains.

?In general, 1(a) Ng 7(b) is a set of elements in @, so 7~ must map this set back to the meet
crest in P. Depending on the structure of Q, however, 7~! is normally treated in one of two ways:
(1) H Q 1s a lattice, then 7(a) Mg 7(b) reduces to a single element of (). In this case, @ embeds a
minimal completion of P, and the inverse 7~! must map back to the meet crest in P; (ii) If 7 is an
order isomorphism (i.e. it maps P onto Q), then 7(a) Ng 7(b) reduces to the set of elements in Q
corresponding to the meet crest in P. Here, 7! must map each element in this set back to P. Note
that if P and @Q are both lattices, then 7 must be meet-preserving in the lattice-theoretic sense.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 3

o

In this chapter, it is our goal to develop a unified framework that separates the
content (semantics) of the encoding map from its implementation (syntax). We do this
using a structure called a spanning set, which we introduce in section 4.2. Through
this separation we provide a common ground on which different encoding schemes can
be compared, analyze the effect on time and space of different implementations, and
study the semantic content that encodings must possess in order to preserve certain
properties of an ordered set. We also strive to provide a principled basis on which
to select or design encoding algorithms for particular taxonomic applications, and to
expose some of the limitations and restrictions to encoding.

There are several aspects by which we can characterize encoding algorithms:
e The taxonomic operations supported.
e The time and space complexity of the encoding algorithm.

e The space requirements of resulting encodings.

The time complexity of performing operations using resulting encodings.
e The complexity of modifying an encoding.

e The complexity of decoding (i.e. computing 77!).

We show how various encoding techniques and implementations affect these char-
acteristics. Since the focus and requirements of particular taxonomic applications may
differ, it is apparent that there may be no best encoding algorithm to satisfy all needs.
Rather, the designer of an encoding algorithm must take into account the needs of
the application, and the form of the taxonomies to encode, in order to determine the
relative importance of the above characteristics. Using our framework, appropriate
techniques and implementations can be selected, leading to existing algorithms, or
the need to design new algorithms.

Our framework would be improved with empirical results that demonstrate the
behaviour of various encoding algorithms with respect to the above characteristics.
In order to be useful, however, such testing would have to be extensive and this is
beyond the scope of this thesis. Our research, however, provides an organizational
basis with which such testing could be carried out. Some empirical results on the

space efficiency of different encoding algorithms is available in [43].

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 39

4.2 Spanning Sets

Now we present spanning sets as a basis for encoding, generalized from [102].

Definition 4.2 Let P be an ordered set. A family of subsets S of P s called a
spanning set if the function C : P — 2° defined by C(z) = {s € S|z € s} is one-to-

one.

A spanning set S is ordered under set inclusion (where, for s;,5;, € S, 51 <g 57 if
and only if s; C s;), and the function C is an order mapping, called the component
mapping (where elements of S can be regarded as components from which P is con-
structed). In the next subsection we describe some structural restrictions that enable
us to use spanning sets to perform taxonomic operations locally. Encoding can then
be viewed as computing a spanning set that preserves the desired properties of an or-
_der P, and then efficiently representing the component mapping. As an example, the
figure below shows a simple lattice and two spanning sets: S; = {s; = {a, L},s, =
{b,L},83 = {¢, L}}, and Sz = {81 = {a,b,c},s2 = {b,L},s3 = {T,b,c}}. It can
easi.y be verified that component mappings for both of these are one-to-one. For S,

we have C(a) = {51}, C(T) =0 and C(L) = {s1, s2, 83}-

In [12], a variation of spanning sets was studied to produce a number of funda-
mental duality results. It is also worth noting the similarity between spanning sets
and reduced or minimal bases in Wille’s concept lattices [155], where lattice elements
and spanning set components correspond to objects and attributes, respectively, in
Wille’s terminology.

We are primarily concerned with spanning sets of down-sets (and up-sets), where

S C O(P) and C: P — 2°(P), What makes these interesting components is that they

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 40

encapsulate much of the order information. In Chapter 5, we introduce the concept
of a spanning set of order intervals.

We hypothesize that all encodings can be characterized as computing a spanning
set of down-sets, up-sets or intervals, possibly augmented with constraints, and im-
plementing its associated component mapping. Rather than trying to establish this
claim, we portray all the encodings we are aware of by using spanning sets. These
portrayals are supported by a number of formal results. We later discuss augmenting
spanning sets with constraints (such as coreference constraints as provided by logical
variables) (section 4.9) and spanning sets of intervals (Chapter 5). Viewing encoding
in terms of spanning sets allows us to separate the implementation details of any par-
ticular encoding algorithm from the structural properties of the spanning set being
constructed. The spanning set embodies the content (semantics) of an encoding and

the implementation embodies the form (syntax).

4.2.1 Taxonomic operations using spanning sets

We now demonstrate how spanning sets that satisfy certain restrictions reduce taxo-

nomic operations to set operations.

Definition 4.3 A spanning set S on an ordered set P preserves subsumption if either
(i) for all a,b € P, a < b if and only if C(a) C C(b), or (ii) for all a,b € P, a < b if
and only if C(a) 2 C(b).

Equivalently, this requires the component mapping to be an order-embedding.
Although order-preserving mappings maintain comparability, we need to also preserve
incomparability. We say that subsumption is preserved with subsets in case (i) (i.e. ¢
is subsumed by & if and only if C(a) is a subset of C(b)) and with supersets in case (ii).
If S is a spanning set of down-sets, then the component mapping is monotonically
increasing as we descend the order (since if z € |() then any descendant of z is also in
1@). In this case, subsumption may only be preserved with supersets. Conversely, if
S preserves subsumption with supersets, then S must be a spanning set of down-sets.

Thus, not all spanning sets preserve subsumption. In the above example, S preserves

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 41

subsumption (with supersets) but not Sy, since C(a) = {s1} C {s1,s3} = C(c) yet

allc.

Definition 4.4 A spanning set S on a lattice L preserves meets if either (i) for all
a,b € L, C(amb) = C(a) NC(b), or (ii) for all a,b € L, C(aMb) = C(a)UC(b). S
preserves joins if either (i) for all a,b € L, C(a U b) = C(a) NC(b), or (i) for all
a,be L, C(alb) =C(a)UC(b).

If a spanning set preserves meets or joins, then it preserves subsumption, because

a <bifand only if aMb = a and allb = b. Also, a spanning set of down-sets can pre-
serve joins only with intersection and meets only with union. In general, if a spanning
set S preserves subsumption with supersets (i.e. S is a spanning set of down-sets)
then C(a)UC(b) C C(aMb) and C(alb) C C(a)NC(b). Unfortunately, it is not always
possible for a spanning set to preserve both meets and joins (unless the ordered set
is distributive*, as discussed in section 4.2.2). Consider again the non-distributive
~ ordered set in Figure 4.1. The spanning set {|a, b, lc, [{a,c}} preserves subsump-
tion, but not joins or meets, since a Mc¢ = L, but C(a)VU C(c) = {ld,lc,l{a, c}} #
{la, b, lc, l{a,c}} = C(L). Also, atlec = T, but C(a)NC(c) = {l{a,c}} # 0 =C(T).
The spanning set {la, |, |c} preserves joins with intersection but not meets, while
{l{a, b}, [{b,c}, }{b,c}} preserves meets with union but not joins. Suppose we have
a spanning set S that preserves joins with intersection. Since the join of any pair of
a,b,cis T, the intersection of any pair of their component mappings must be C(T).
Further, each must be in at least one component different from the others. But then

the union of any pair cannot possibly be C(.L).

Theorem 4.1 Spanning Set Duality Thecrem. Let L be a lattice and S a span-
ning set of down-sets for L. Let S be the set of up-sets defined as S = {L\|Q|1Q €
S}. Then (i) S preserves subsumption with supersets if and only if S preserves sub-
. sumption with subsets and (ii) S preserves joins with intersection if and only if S

preserves joins with union.

3To generalize this definition to an ordered set P, we say S preserves meet crests if either (i) for
alla,b€ P,anb=C"1(C(a) NC(b)), or (ii) for all a,b € L, aNb = C~1(C(a) ULC(})).
1A lattice L is distributive if Va,b,c€ L,aN(bUc) = (anb) U (aMc).

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 42

Proof: Consider the component mapping for §: C(z) = {L\|Q € S|z € L\|Q}. But
z € L\|Q if and only if z ¢ |Q, so C is isomorphic to the converse mapping of C: C%(x) =
{1Q € S|z ¢ 1Q}.

(i) Suppose S preserves subsumption with supersets. Consider auy two elements, a,b €
L. The converse mapping maps these elements as follows: C(a) = S\C(e) and C°(b) =
S\C(b). If a < b then C(a) 2 C(b), so clearly C¢(a) C C%(b). If @ £ b then C(a) 2 C(b), and
so C°(a) € C°(b). The case when S preserves subsumption with subsets is similarly proved.

(ii) Consider the join of any two elements a,b € L. If § preserves joins with intersection
then C(a) N C(b) = C(a U b). The converse mapping maps these as: C%(a) = S\C(a),
Ce(b) = S\C(b) and C(a Ll b) = S\(C(a)NC(b)) = S\C(a)U S\C(b) = C%(a) U C*(b). Now,
if § preserves joins with union then C°(a) U C¢(b) = C°(a U b). The component mapping
for S maps these as: C(a) = S\C(a), C(b) = S\C°(b) and C(a U b) = S\(C(a) U Ce(b)) =
S\C¢(a) N S\C¢(b) = C(a) N C(b).a

This theorem demonstrates that for every spanning set of down-sets that preserves
joins with intersection, there is a spanning set of up-sets that preserves joins with
union. Since this construction is invertible, the converse is also true. Together with
the dual, this shows we can characterize all spanning sets that preserve joins or meets
with intersection or union by analyzing only those that preserve joins with intersection.

We require an efficient means to evaluate the component mapping C. A key feature
of encoding is that C is calculated a priori, or incrementally, and stored in a form
amenable to efficient computation. This amounts to associating with each element

of the taxonomy the set representing C(z), as we describe in section 4.3.

4.2.2 Representation theory and encoding

Representation theory attempts to identify a small suborder @ of a lattice L from
which the entire lattice can be constructed easily and uniquely. In [38], it is shown
that this can be done satisfactorily in the finite case for distributive lattices. In this
case L is uniquely identified by its set of join (or meet) irreducible elements, where
Q = J(L) and L = O(J(L)). The general case for lattices and partial orders is not

so amenable to such an analysis.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 43

Although encoding can benefit from the results of representation theory, there are
a number of important differences. First, although we associate with an ordered set
P a small set (i.e. the spanning set), we want a subset S C 27, not @ C P. Second,
we are interested in representing P in order to facilitate efficient computation. To
this end, we associate a code with each element of P. This contrasts with the above
goal of uniquely representing P by the set (). We do not want to reconstruct P, but
rather we wish to associate with it a spanning set S’ from which codes can be formed.

There are, however, some results from representation theory that are fundamen-
tal to encoding, particularly the identification of join and meet irreducible elements
as basic elements from which all other elements in an ordered set can be defined.
This conclusion is also found in section 4.5, but doesn’t require the ordered set to
be a distributive lattice (as in Birkhof’s representation theorem [38]), so we can
view spanning sets as partial representations of ordered sets (only preserving certain
properties such as meets).

Since we are given an arbitrary ordered set £, we may not have the luxury to
ensure that certain properties are satisfied (e.g. that P is a lattice or is distributive)
- maintaining certain properties may entail adding an inordinate number of elements
to P (e.g. the minimal lattice completion for a standard ezample S, [144], which
has 2n elements, contains 2" elements [38]). If we can be sure that our set observes
certain properties, or that the addition of a small (or bounded) number of elements
can achieve these properties, then our encoding scheme can utilize this structure
to generate more concise and/or flexible codes. For example, if we are guaranteed to
have a distributive lattice, then we can specify spanning sets that preserve both meets
and joins, although in general this is not possible [153]. In fact, every distributive
lattice is isomorphic to a lattice of sets [38] (i.e. where meets and joins are computed
by intersections and unions, respectively). This suggests a fundamental connection
between representation theory and spanning sets. For a detailed analysis of properties
of distributive and simplicial lattices related to encoding see [78]. In our presentation,
we focus on the problem of encoding general partial orders and lattices and make no
further structural assumptions regarding the given ordered set, although our analysis

should apply to techniques designed for more constrained orders.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 44

4.3 Efficient Implementations of Component Map-
pings

In this section we describe some approaches to implementing subsets of ordered sets,
particularly down-sets and up-sets, as returned by component mappings. This list is
by no means exhaustive, but includes all the implementations that have been used
for encoding. We are interested in implementing subsets within the order induced by
a spanning set S, not in our original order P. This order is isomorphic to a suborder
of P for spanning sets of principal down-sets, but not for more complicated spanning
sets. Note that for any spanning set S, the subset C(z) is an up-set in S.

Given a spanning set S for an ordered set P, our goal is to represent, for each
r € P, the mapping C(z). In general C can be viewed as a relation: for z € P,s € S,
(z,s) € C if and only if s € C(z). We may, however, be able to exploit the structure
of the order induced by §.

4.3.1 Unordered implementations

By treating C(z) as an unordered subset of the domain S (i.e. by treating C as an
unordered relation) we can realize implementations that do not utilize the hierarchical
structure of the ordered set S. Such representations employ existing techniques for
implementing sets. In the representations we describe below, the elements of § are

given a linear order < (which is not necessarily a linear extension of S).

Characteristic vectors In a characteristic (or bit) vector implementation, we rep-
resent a subset Q C S using a bit-vector of length n = | S|, essentially embedding
S into the Boolean lattice of bit-vectors of length n. We place a 1 in position ¢
if element ¢ (in the chain <) is a member of the subset and a 0 otherwise. This
approach is analogous to adjacency matriz representations of graphs®. Set union
and intersection are computed using bitwise OR and AND, respectively. For two

subsets Q; and Q3, @; C Q. if and only if @1NQ2 = Q1 (or @1UQ2 = Q2). Asan

5If | P| = m, then an adjacency matrix requires 1> bits, whereas here we require n * m bits.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 45

example, suppose S = {s1, 2, 33, 84, 85}. We can represent the subsets {s1, 54}
and {s2, 83, s4} by the strings 10010 and 01110, respectively. The advantages of
this representation include minimal storage requirements for each position (one
bit) and immediate hardware implementation of set operations. Disadvantages
include the need to store unfilled positions (i.e. every subset has length n), and
more complicated processing required for large domains (asymptotically, the set

operations grow linearly with the size of the domain).

Interval sets An alternative (proposed in [1]) is to represent a subset) with a set of
intervals, where each contiguous sequence of elements (in <) is represented by an
interval. For example, the above subsets would be represented as {[1,1],[4, 4]}
and {[2,4]}. Although this scheme alleviates the need to store unfilled positions,
the set operations become more complex. Unlike the bit-vector approach, the
order < may have a significant effect on the size of resulting codes. We discuss

in section 4.5 how the approach in [1] finds optimal orderings.

Adjacency lists and hashing Analogous to adjacency list graph implementations,
we can maintain for each element = € P the list of the elements C(z). This is
space efficient for cases when C(z) is relatively small (i.e. the spanning set is
large, but the component mapping only maps each element to a small number
of elements), but becomes unwieldy as the size of C(z) increases. To speed up
access to particular elements, we can hash C(z) for each z € P (i.e. for a given
z € P,s € 5, we can quickly determine if s € C(z)). Using this technique, there

is no direct support for union and intersection operations.

4.3.2 'Tree representations and code sharing

Using a linear ordering < of a spanning set S, we can implement the component
mapping in a labeled tree form that permits some sharing of common subsets. We
propose a generalization of the tree encodings in [77, 78, 114], which apply only to
distributive lattices. In fact, this technique can be used to implement any family of

finite subsets from the same domain. The basic structure of such a tree representation

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 46

is as follows. The elements in the original ordered set P are nodes in the tree (although
there may be additional empty nodes, as discussed below). Each label is a subset of
elements of S, and the union of all labels on the path from an element x € P to the
root forms the set C(z).

There are several ways that we can build this tree. If our original ordered set is
a distributive lattice L, then the approach of [78, 114] builds a very efficient tree for
the spanning set S = {|z|r € M(L)}. Every node of the tree is an element of I, and
each label is a single element from S. Thus, the size of the tree is linear with respect
to the size of L. Furthermore, the labels on all paths from a node to the root are
monotonically increasing according to the linear extension < of S, and paths are joined
at common suffixes. By ordering the children of each node according to <, operations
can be performed in O(|S]) time, using the algorithms in [78, 114]. Decoding (i.e. the
inverse of the component mapping) is achieved for free as a by-product of computing
operations in these trees.

We can apply this technique to a general ordered set P, although we can no longer
guarantee that labels will be singletons, or that there will be no empty nodes. We
order the results of C according to <, and form the tree by joining elements at common
prefixes (or suffixes). If a common prefix is not the code of any element, this results in
the creation of an empty node. As above, the code for z € P is the union of all labels
on the path from z to the root. To illustrate, consider the lattice in Figure 4.2. This
lattice is not distributive since af(blic) = aMT = a, but (aMb)U(aMc) = Lide = ¢. The
tree T1 implements the spanning set S1 = {|a, |b, lc, ld, le, | f}, where < is the given
order of S; and elements are assigned numeric values according to <. In this case, no
empty nodes are created, but there is one edge with a non-singleton label. The second
tree, Tz, implements the spanning set Sy = {|{b,d}, [{b,c}, |b, {qa, f}, {a,¢e}, la},
where < is the given order of S;. Here, two empty nodes were created as well as edges
with non-singleton labels.

Performing unions, intersections, and subset checking is accomplished by locating
the position of the two elements in the tree and comparing the labels along the paths
from these elements to the root. To be more concrete, consider the above spanning set

S, that preserves meets with union (and thus subsumption with subsets). To check if

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 47

T T, . T 5 T, L ssT 45,6
2 N 258N PN 8
c d e f L ¢ d e t b g
N A 4 5|
g h g 5|
T~——— h
1 "1

Figure 4.2: Tree representation

z < y, we incrementally compare the set of labels C(z) and C(y) on the paths from z
and y to the root, respectively. From the structure of the spanning set, we know that
z < y if and only if C(z) O C(y). Since the components in labels are monotonically
ordered within labels and along these paths, this comparison is linear in the size of
the label sets. For example, C(g) = {1,2,4,5,6} 2 {1,4,5,6} = C(d), so g < d, but
C(g) 2 {1,2,3,4,5} =C(h),s0 g £ h.

To compute = My = z, we incrementaily union the labels on the two paths from
z and y to the root. Then we descend the tree usingr this union to find the meet
element. For example, to find c¢MNd, we find C(c) UC(d) = {1,2,4,5,6}, and descend
to find that this set is C(g). Thus, cNd = g.

Operations can be further optimized by finding the node in the tree at which
the two paths converge, and only considering the portions of the paths below this
point (which is how the algorithm in [77] works). We can avoid further comparisons
above this point, since the remainders of the two paths coincide. For details of the
tree traversal algorithms that compute subsumption, meets and joins for distributive
lattices, see [77, 78]. The modifications required to handle our generalization of this
tree representation are trivial.

Determining the space complexity of these trees is not as simple as before. Since
empty nodes must have at least two children, the number created will be bounded by
|P|. Non-singleton labels cause these trees to be non-linear in the size of the ordered
set, but the code sharing can still greatly reduce the overall space requirements.
Operations are no longer bounded by the depth of the tree, but rather by the number
of labels on a path to the root. This is also true in the distributive case, but there each

edge has a singleton label. As before, children of nodes are ordered lexicographically

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 48

by edge labels. Since the labels from an element to the root are in strictly decreasing
lexicographic order, operations are linear in the size of the codes using an adaptation
of the algorithms in [78, 114], and decoding can still be achieved efficiently. Clearly,
the tree constructed will depend on the ordering < of S (which is usually a linear
extension of S), so algorithms need to be developed that find orderings for which

optimal trees can be found or approximated.

4.3.3 Logical terms

We can also implement sets using logical terms, embedding our order into the lat-
tice of generalized atomic formulae [121]. Terms with no structure can be used in
a manner similar to bit-vectors using anonymous variables in place of 0. For exam-
ple, 11010 can be represented as p(1,1,_,1._) for an arbitrary predicate p. However,
terms can also be used to capture some structural information. Set union and inter-
section correspond to unification and anti-unification, respectively. Subset checking
becomes term subsumption checking. We can also exploit the hierarchical structure
of an up-set to reduce storage requirements. It is important to note that logical
terms also provide the ability to implement unions that produce the entire domain
(e.g. L) by unification failure. To illustrate, consider the ordered set in Figure
2.2. We may represent the up-set Tkit foz by the term p(canine(fozx(kfozx)),wild, .)
and fcollie by p(canine(dog(collie)), -, domestic). Their intersection is obtained by
anti-unification: p(canine(.),_,_) (representing Tcanine). If we represent Tdog by
p(canine(dog(.)), -, “omestic) and Twol f by p(canine(wol f), wild, social), we capture
the fact that dog N wolf = L with unification failure. Although desirable, we shall
see that this is not always easy to achieve. We show in section 4.8 how compact
tree terms (terms in which all variables are anonymous) can be derived from spanning
sets. In section 4.9 we discuss the use of coreference constraints, as provided by logical
variables, in encoding.

A disadvantage of logical terms is that specifying filled positions (with an atom
or functor) requires more space than the 1 bit required for the bit-vector approach.

An advantage is that not all unfilled positions need to be specified. In our example,

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 49

the subset for Tcanine, p(canine(.),-,-), only reserves three additional spaces (via
anonymous variables); additional spaces become available dynamically through in-
stantiation at these positions. It is also possible to implement parallel algorithms in

hardware for unification and anti-unification of tree terms.

4.3.4 Sparse logical terms

Sparse terms [51] allow an efficient and direct implementation of hierarchical sets
by providing the tree-shaped structure of ordinary terms as well as several other
key features. They are similar to the directed acyclic graphs (DAGs) and feature
structures used in natural language processing systems (e.g. [118]). In [104], the use
of DAGs to implement encodings is explored in detail. In Chapter 6, we develop

sparse terms in detail as a universal implementation for encoding.

4.3.5 Integer vectors

Natural numbers can be used to implement chains or anti-chains. All finite total
orders of size n are isomorphic to the interval [1,n], providing a simple and efficient
binary number implementation using only logn space for each element. We find it
convenient to use the dual of the natural order, so that 1 is the top of the chain. Each
integer then represents all the preceding elements in the chain (i.e. k,1 < k < n
represents the interval [1, k]). Subsets can be checked in an obvious way (a C b if and
only if @ < b), while a U b = maz(a, b) and a N b = min(a,b).

Every anti-chain of size n is isomorphic to the flat lattice of the natural numbers
[1,7]. In this lattice, each pair of unequal irtegers is treated as meet and join incom-
patible. To represent an anti-chain, we assign each element a unique number in [1, n],
~and use 0 to represent the empty set. The set operations are defined as follows:
subsets: tCi&1=70r1=0.
union: tUj failsif 2 #£ 0,5 # 0 and ¢ # j. Otherwise ¢ U j = mazx(z, 7).
intersection: iNj=1ifi=j, otherwiseiNj = 0.

By viewing an ordered set as being composed of a number of chains or anti-chains,

we can use integer vectors to represent up-sets.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 50

Definition 4.5 Let P be an ordered set. A partition Q = {P1,Py,---, P} of P is
called a chain (anti-chain) partition if the suborder defined on each of the P; is a chain
(anti-chain).

An anti-chain @ is called meet (join) incompatible if every pair of elements in @
is meet (join) incompatible. In essence, the above partitions view a partial order as a
number of parallel interconnected chains or anti-chains. As an exainple, consider the
chain and meet incompatible anti-chain partitions of the ordered set of Figure 2.2,
shown in Figures 4.3 (where each chain is represented vertically) and 4.4 (where each

anti-chain is represented horizontally).

domestic canine wild social
/
dog fox wolf african

F \\ \\\ \/ [\ \ wild dog

collie]poodle | terrier | feral dog kit fox | red fox

Figure 4.3: Chain partition of the ordered set in Figure 2.2

domestic social

canine /
AN
EOVASE™
com{ Ien!ier Mg kit foxh fox

Figure 4.4: Meet incompatible anti-chain partition of the ordered set in Figure 2.2

Integer vectors can be used to represent up-sets using chain or incompatible anti-
chain partitions by assigning one position in the vector to each chain or anti-chain,
since we only need to represent at most one element of each. The integer vector
encoding in [97] uses a chain partition. A partition of size k requires vectors of length
k. We need to have a special integer (we use 0) to place in a position when the up-set
does not contain any element from the corresponding chain or anti-chain. For chain

partitions, an entry represents all preceding elements in the corresponding chain. For

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 51

meet incompatible anti-chain partitions, at most one element from each anti-chain
can be present, so a non-zero entry represents an element plus the absence of all
other elements in the anti-chain. The entire vector then represents the union of the
information represented in its entries. We denote each entry of a vector V of size k

as V[i], 1 <: < k. The set operations for chain partitions are defined as follows:
subsets: W C VWV, &Vl<i<k W< Wi
union: NuW =V &Vl <<k, V[i] = maz(V[z], Vali]).
intersection: ViNV, =V & V1 <:i <k, V[i] = min(Vi[z], V2[7]).

In our example, we represent Tkit foz by [0,0,0,0,3,0,1,0] and fterrier by
[2,0,1,0,1,0,0,0]. Their intersection is the code for Tcanine: [0,0,0,0,1,0,0,0]. We

now consider the set operations for meet incompatible anti-chain partitions:
subsets: Wi C V&Vl <i <k W)= W[ior VL[i=0.

union: V1 <z <k, UV, = Vfails if V{[7] # 0, V3[z] # 0 and V;[i] # Va[d].
Otherwise V{i] = maz(Vi[7], V2[7]).

intersection: VNV, =V & V1 <1<k, V[i] = W[i] when Vi[i] = V;[¢]
Otherwise V[z] = 0.

In our example, we represent Tkit fox by [0,1,1,2,5] and Tterrier by [1,1,0,1,3].
The intersection of these is [0,1,0,0,0] (Tcanine) but their union fails.

Bit-vectors can be viewed as a special case of both forms of integer vectors, where
an ordered set is seen as a set of n chains or anti-chains of size 1. Note that any
singleton anti-chain is vacuously meet incompatible. For both cases, 0 represents that
no element of the corresponding chain or anti-chain is in the subset, and 1 represents
that the first, and only, element is in the subset. The logical operations of AND and
OR compute the set operations. Also, flat logical terms (i.e. terms with no functors or
nesting) provide a direct logical realization of incompatible anti-chain vectors, using
anonymous variables instead of 0 and atomic symbols instead of integers. For example,
the above vectors could be represented as p(_,1,1,2,5) and p(1,1, _, 1, 3), respectively.
Note that we can apply sparse representations to integer vectors (i.e. introduce indices

for non-zero elements, and eliminate the zero entries), as we show in Chapter 6.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 52

4.4 Infinite Suborders

Our analysis of encoding assumes that the original ordered set is finite. For many
applications we require the integration of a finite order with one or more infinite orders
such as real numbers, integers, strings, intervals, etc. Clearly, we cannot compute
codes for the elements of an infinite suborder a priori, so we need to be able to
perform taxonomic operations involving one or more elements in an infinite suborder
dynamically. Provided certain restrictions are obeyed, we can permit portions of our
set to be infinite while still benefiting from encoding. As far as we know, such a
formulation has not previously been described.

Suppose we have an ordered set P with an infinite suborder). We can encode the
finite portion of P using the techniques described in this chapter provided @ obeys
the following;:

Classification Given any element z in (), we must be able to ascertain that in fact
z € (). Note that one infinite suborder may be a suborder of another infinite
suborder (e.g. integers and reals). Thus, we must be able to classify elements

correctly (e.g. checking if 1 < 3/2, we must classify 1 as a rational number).

Locality The order relation within) must be locally determined and efficient. This
is required for operations involving only elements of (), so that encoding is not
necessary. For example, it is easy to locally determine order between integers,
strings or intervals of real numbers. If meets or joins must also be preserved in

@, then these operations must also be locally computable.

Encapsulation In order to compute operations involving one element in) and an-
other not in @, () must be bounded (i.e. it must have top and bottom ele-
ments, Tg and Lg)%. In a sense, these elements provide entry and exit points
to the infinite suborder and can be incorporated into the finite portion of the

ordered set. Normally, the bottom will simply be the bottom of the ordered

51t may be possible to relax this restriction to require a finite number of maximal and minimal
elements of the infinite suborder. This, however, complicaies taxonomic operations. For example,
the meet of two elements not in an infinite suborder) may result in any element in @, not just one
of the maximal elements.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 33

set. We also require that @ be closed. That is, @ = [To\llgo U {Llg} and
@ = 11Lo\TTo U {Tg}. This requires that the bounds of) must provide the
only entry and exit points. We show in Chapter 5 that bounding and closure
implies that @ must be a module within P.

These requirements allow us to encode the finite portions of an ordered set, in-
cluding the bounds of ary infinite suborder, as though the entire set was finite. For
operations involving elements within an infinite suborder, we use locality to compute
the operation. In the case of meets and joins, the result will also be in the infinite
suborder. For operations involving one element in an infinite suborder ¢ and another
not in), we can use the one of the bounds in place of this elemeut. If the result of
a meet or join is this bound, it can be replaced by the original element. We provide

more details of how this may be achieved when we discuss modulation in Chapter 5.

4.5 Spanning Sets of Principal Down-sets and Up-

sets

4.5.1 All principal down-sets

The transitive closure encoding introduced in [2] and described in section 3.5 encodes
a partial order with k£ elements using bit-vectors of length & — 1 as follows. Each
element a; € P (except L) is assigned a unique integer ¢ in [1, k¥ — 1]. For any element
a; € P, bit 2,1 <1 <k will be 1 if and only if a; < a;. The actual procedure given
in [2] produces this encoding in a bottom-up manner, starting at | and propagating
codes upwards towards T.

In terms of our framework, this procedure simply computes the spanning set S;
consisting of every principal up-set for the bottom-up case described, or the spanning
set of every principal down-set for the top-down case. The encoding is the charac-
teristic vector implementation of these componeni mappings. The orders induced by
these spanning sets are isomorphic to the original order. As an example, the following

figure shows a lattice, a component mapping, and its bit-vector implementation.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 94

T 0000000

{}
a b ¢ {la) (b} Ic} 0000001 0000010 0000100
d e: f (ladbdd} (ladcle} {Ibdeclf) 0001011 001;101 onm]110
\.I/

i (dadbde,dd dedfdL) 1111111

Figure 4.5: Principal down-set encoding

The interval encoding in [1] is closely related, and is based on the same spanning
set 51, but implemented using sets of integer intervals. Recall from section 4.3 that,
under a total order < of S;, any set of components can be implemented using the
corresponding set of intervals in <. In [1], an algorithm for finding an optimal ordering
is described. A cover tree T for the ordered set P is identified by choosing, for each
element r € P, the parent that has the most ancestors. The authors show that the
total order < defined by the postorder traversal of T' produces interval set codes that
minimize the overall space requirements of the encoding (i.e. the total number of

intervals for all codes)’.

In case P is a tree, for each element z € P, C(z) will be
exactly one interval. To illustrate, Figure 4.6 shows a cover tree T', the preorder

number of T, and an interval implementation of the lattice in Figure 4.5.

(1.8]

T 8
/I\ //—[\
a b ¢ 44\7 1,41 (1,2L[5.6] [1,11,03,3),(5.5L.[7.7]

SN NN

d e f 2 3 5 (,2] [(L,1L[3.3] [1,1],[5.5]

\
1 ™ (L1]

Figure 4.6: Cover tree, preorder numbering and interval encoding for the lattice in
Figure 4.5

Theorem 4.2 Let L be a lattice. The set of principal down-sets of L forms a spanning

set Sy that preserves jo.as through intersection.

“This optimum in fact only holds when we do not consider merging two adjacent intervals (e.g.
[#1,42] and [ji1, j2] where j3 = i3 + 1 could be replaced by [i;, jo]). When merging is performed, the
total order identified may not be optimal. However, adjacent intervals in the codes resulting from <
may be merged to provide an approximation to the optimal.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 55

Proof: We need to show that e; U e; = e if and only if C(e;) NC(ez) = C(e). Suppose that
e; U ey = e. Consider any principal down-set |a € C(e;) NC(ez). Then e; < a and e, < a.
By the definition of join, € < a, so |a € C(e). Consider any principal down-set |a € C(e).
Then e < a. Since e; < e and ez < e, la € C(e;) NC(ez). Therefore, C(ey) N C(ez) = C(e).
Assume that C(e;) NC(ez) = C(e). Since le € C(e), e; < e and e; < e. So e is an upper
bound of e; and e;. Now if e; Ue; = a then la € C(e;) N C(ez), so la € C(e) and e < a,

implying e = a.g

The dual of the above theorem shows that the set of principal up-sets forms a
spanning set that preserves meets through intersection.

Such spanning sets lead to a particularly time efficient implementation using a
Boolean matrix in which entry (z,5) = 1 if + < j and 0 otherwise [114]: checking
subsumption can be accomplished in constant time®. In [93], the encodings of [2] are
used in the typed feature logic programming language 7 DL, and in [45], a transitive

_closure encoding implemented using tree terms is proposed.

4.5.2 Principal down-sets of meet irreducible elements

Since a focus of encoding is space and time efliciency, we are interested in finding
spanning sets with a minimal number of elements. In 2] it is recognized that not all
principal down-sets are required to maintain joins. This led to the compact encoding
algorithm described in section 3.5. Let us denote the set of meet irreducible ancestors
of an element e as p(e). It is easy to show that u is monotonically increasing as we
descend the taxonomy from parents to children (i.e. if e; < e; then u(ez) C p(er)).

We now show that in a lattice, u also preserves joins.

Lemma 4.1 Let L be a lattice. Then for ey,e; € L, e1 < ez if and only if p(ez) C
pler)-

Proof: = By the monotonicity of y, if e; < eg, p(ez) C p(e;).

8This is simply the adjacency matrix implementation of the transitive closure graph of the ordered
set.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 56

<= Suppose u(ez) C p(ey) and e; £ e2. Clearly, any ancestor of e; that does not subsume
e; must not be meet irreducible. So e; cannot be meet irreducible. If two of the parents of
ez subsume e;, then the meet of these two parents is not unique. Thus, at least one parent
p of e; does not subsume e;. Since p cannot be meet irreducible, we can continue until we
have an ancestor of e; that is a child of T and does not subsume e;. But all children of T

are meet irreducible.g

Theorem 4.3 The set of principal down-sets for the meet irreducible elements of a
lattice L, Sm(ry = {lele € M(L)}, forms a spanning set that preserves joins through

intersection.

Proof: The component mapping for the set of principal down-sets of meet irreducible el-
ements is defined as C(z) = {le|le € p(z)}. Consider any two elements e; and e;. If
C(e1) = C(e2) then u(e;) = p(ez) and so p(e;) C p(ez) and p(ez) C p(er). By the above
lemma, ez < e; and e; < ez, so e; = e;. Thus, C is one-to-one and so S.M(L) forms a
spanning set. - |

We need to show that e; U ez = e if and only if C(e;) N C(ez) = C(e). This is equivalent
to showing that e; U e; = e if and only if p(e1) N p(ez) = p(e).

= Suppose that e; U e; = e. Consider any meet irreducible z € u(ey) N p(ez). Then
e1 < z and ez < z. By the definition of join, e < z, so z € pu(e). Consider any meet
irreducible z € u(e). Then e < z. Since e; < e and e; < e, z € u(e;) N pu(ez). Therefore,
pu(e1) N p(e2) = p(e).

<« Assume that p(e;) N p(ez) = p(e). Then e is an upper bound of e; and e;, since
u(e) € p(er) and p(e) C pez) imply that e; < e and e; < e, by the above lemma. For any
upper bound z of e; and e; we have p(z) C u(e;) and p(z) C u(ez), by the lemma, and so
u(z) € u(er) N u(ez). From our assumption and the lemma, we deduce that u(z) C u(e)

and e < z, implying e; U e; = e.g

The dual of this theorem states that the set of principal up-sets for the join ir-
reducible elements of a lattice L, Sy1) = {Tele € J(L)}, forms a spanning set that
preserves meets through intersection. Also note that the order induced by Sy,
for a lattice L, is 1somorphic to the suborder obtained by restricting L to the meet

irreducible elements M(L).

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 57

The compact encoding in [2] for a lattice L implements the component mapping
of S7(1), for the bottom-up case described, and Saz) for the top-down case, using
characteristic vectors. We again use the lattice in Figure 4.5 to illustrate. Figure 4.7

shows the component mapping for Siqr) and its bit-vector implementation.

{} 000

T
{la} {{b} {ic} 001 010 100

(dadb} (ladc} {Ibdc) 011 101 110
{la,ib,lc} 111
Figure 4.7: Meet irreducible encoding

For distributive lattices, the ideal tree in [78, 114] encodes Sy in a tree data
structure (see section 4.3.2) that permits computation of both meets and joins in
O(JM(L)|) time. We now demonstrate that Sasz) and Sz() are the smallest span-
ning sets of principal down-sets or up-sets that preserve not only joins and meets,

respectively, but also subsumption.

Lemma 4.2 Let L be a lattice. Then every meet irreducible element of L must be a

factor® of at least one down-set in a spanning set of down-sets.

Proof: If not, it has the same component mapping as its parent.g

Theorem 4.4 Let L be a lattice. If |M(L)| = m, then any spanning set of principal

down-sets that preserves subsumption with supersets must have at least m down-sets.

This theorem is a direct consequence of the above lemma. Thus, for subsumption
preservation, the smallest size spanning set of principal down-sets or up-sets has

min(JM(L)|,|J(L)]) elements.

Theorem 4.5 Let L be a lattice and S a spanning set of down-sets on L that preserves

joins by set intersection. Then every component of S must be a principal down-set.

9Recall that a factor is a maximal element of a down-set.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 58

Proof: Suppose there is a component @ = |{q1,42,"--,¢.} € S that is not principal (i.e.
n > 2). Consider the join of any two of the maximal elements, say q; and g2. Clearly the
join must properly subsume both of these elements (since g1/|gz, and so @ ¢ C(¢1 U ¢2)).
But @ € C(q1) and @ € C(q2), so @ € C(gq1) NC(gz). Thus, S does not preserve joins by

intersection.g

This last theorem, along with the Spanning Set Duality theorem, shows us that
|Samyl (JS7(yl) is the minimum size of any spanning set that preserves joins (meets).

Much of the above discussion assumes that we are encoding a lattice. For a general
ordered set P, the spanning set of all principal down-sets preserves subsumption, as
does Saq(p), provided we recognize the meet irreducible elements of the order, which
dc not necessarily have a single parent as shown by Theorem 2.2. Both techniques,
however, can be used to encode for join bases (meet crests) instead of joins (meets).
When computing a join base a U b, the intersection of the two component mappings
C(a) NC(b) = C,up will result in a component set that represents the join base. If the
join base is a singleton (i.e. a join: a U b = ¢), then C(c) = C,rp; otherwise, we need

to find the maximal elements whose component mappings are subsets of C, .

4.6 Spanning Sets of Prime Down-sets and Up-

sets

This section describes spanning sets of prime down and up-sets and shows a direct
correspondence with spanning sets of principal up-sets and down-sets, respectively.
Although not standard in lattice theory, we define prime down-sets analogously to
prime ideals: a down-set [Q of a lattice L is prime, if when zMy € | @, either z € Q)
or y € |Q. That is, we cannot get into | from two elements not in [(). For an

ordered set P, we generalize this definition: a down-set |Q of P is prime, if when
zMy C |Q, either x € [Q ory € | Q.

Lemma 4.3 Let L be a lattice. If e is an element and |e is its principal down-sel
then |L\]e| (i.e. the principal factors of the up-set L\ |e) are all join irreducible.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 59

Proof: Suppose f is a minimal element in L\]e and is not join irreducible. Then it has at
least two children, z and y. Both z and y must be in [e or else f is not minimal. Since
both z and y are subsumed by e (by the definition of down-set), e is an upper bound of z, y.

But f £ e and f clearly must be the joir of 2 and y, so we don’t have a lattice.g

Theorem 4.6 Let L be a lattice. Then TQ is principal if and only if L\TQ is prime.

Proof: = Suppose an up-set 1Q is principal, @ = {e}. Let |Qz = L\Te. By the dual of the
above lemma, the factors of this down-set must all be meet irreducible. Suppose 3 e; and
es such that ey Mey € |Qz but e; ¢ |Qz and e; ¢ [Qz. By the construction of |Qz, e; € Te,
so e < e;. Similarly, e < ey. Therefore e < €; Mez. But then e; Ne; € Te.

< Suppose an up-set 7@ is not principal. Consider any two factors e; and e; of TQ.

Since ey Mez ¢ TQ, L\TQ is not a prime down-set.q

We say that L\Te is the prime down-set induced by e, the elements not in its
principal up-set. In [102], Mellish shows that if we have a spanning set of prime down-
sets, we can guarantee that the meet of two elements can be found with unification
(down-set union). With the Spanning Set Duality Theorem (Theorem 4.1), we can
see that a spanning set of down-sets that preserves meets with union can be easily
constructed from the join irreducible elements. The above theorem shows that this is
a spanning set of prime down-sets and the final result of the previous section shows
that this is the smallest such spanning set. Naturally, for an ordered set P, the order
induced by a spanning set of prime down-sets is dually isomorphic to that produced
by a Sz(p).

As an example, in Figure 4.8, J(P) = {d,e,a,c}. The first encoding shows a
bit-vector implementation of the spanning set Syp) = {1d,Te, Ta, Tc} where meets
-are preserved with intersection. The spanning set of prime down-sets associated with
these join irreducible elements is S7p) = {l¢c, la, [{b,c}, |{a,b}}, preserving meets
with union. The second encoding shows the implementation of this spanning set.

The encoding of [77] represents each element by the set @ of join irreducible
elements that it doesn’t subsume, which is equivalent to the set of prime down-sets

induced by elements in . The underlying spanning set therefore consists of the

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 60

1111 0000

///’/T\\\\\ ////’T\\\\\
a b c 10W01 01W10
NN\

d e 1000 0100 0111 1011
0000 1111

Figure 4.8: Principal up-set and prime down-set encodings

prime down-sets induced by J(P), and so preserves meets with union. The bit-vector
implementation of such a spanning set is identical to the bitwise negation of the
bit-vector implementation of Sy(p), as can be seen in the above example.

We have now shown a correspondence between the compact encoding of [2] based
on set intersection (e.g. bitwise AND), and prime down-set encodings of {77, 102]
based on set union (e.g. bitwise OR, and logical term unification). There is, however,
one important distinction to make for the approach of Mellish [102]. In the above
construction, if the meet of two elements is L, set union will produce the entire
domain (i.e. the entire spanning set S) because L is treated as any other element.
It is also possible (as Mellish’s approach requires) to implement meet incompatibility
as failure (e.g. with unification failure). This strict requirement essentially treats the
ordered set as L-unbounded. We discuss in sections 4.8 and 4.9 how incompatibility

as failure may be achieved.

4.7 Spanning Sets of Compound Down-sets and

Up-sets

So far, we have studied spanning sets of principal down-sets that preserve joins with
intersection, and spanning sets of prime (possibly compound) down-sets that preserve
meets with union. We showed that the latter case is equivalent to spanning sets
of principal up-sets that preserve meets with intersection. Between these extremes
lie spanning sets that preserve subsumption, but neither meets nor joins. We now
consider such spanning sets, which may contain down-sets with multiple factors. Re-
call that the factors of a down-set |@ is the set of maximal elements of |Q (which

is an anti-chain). Imitially, we focus on spanning sets that do not permit multiple

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 61

occurrences of factors. That is, elements that are factors of several spanning set
components. Later in the section, we relax this restriction.

Our first theorem shows that, for any spanning set S of down-sets, there is a
spanning set containing only meet irreducible factors which is no larger than S. This
means that, as in section 4.5, we need only be concerned with irreducible elements

when constructing minimal size spanning sets.

Theorem 4.7 Let S be a spanning set for a lattice L that preserves subsumption.
Then there exists another spanning set S' that (i) contains no more down-sets than S

(i1) preserves subsumption and (i1i) has only meet irreducible factors in all down-sets.

Proof: Suppose we have a subsumption preserving spanning set S for which there exists
a down-set |Q = |{q1,¢2, -, qm} Where ¢; is not meet irreducible, for some 1 < 7 < m.
Further suppose we remove ¢; from ¢ (this may reduce the number of components in the
spanning set if) becomes empty or equivalent to another down-set in 5). This produces
a new spanning set S’ that is identical to S except that Q' = {q1, " ,qi~1,Gi+1, "> qn}
has fewer elements than € (and so |Q’' C |@Q) and S’ = S\{|Q} U {]lQ’}. The component
mapping for S’ will be denoted by C’. The only difference between C and ¢’ (modulo the
name change of @ to Q') is that the mapping of elements in |Q\|Q’ does not contain @’
(i.e. descendants of ¢; not subsumed by some ¢; € @, # j and 1 < j < m, are not in |Q’).

If §” does not preserve subsumption, then Je;,e; € L for which e; £ e; and C'(e1) C
C'(ez) (due to the monotonicity of the component mapping for spanning sets of down-
sets, the case e; < e; but C’(e2) € C'(e;) cannot occur). Since C(ey) € C(ez), C'(e1) =
C(e1)\{1Q} C C(e2) = C'(ez). This situation is only possible if e; < ¢; but e; € |Q’ and
ez ¢ 1Q, otherwise C(e;) C C(ez).

Let py,p2,-++,Pn, n > 2 be the parents of ¢;. Since ¢; € @, none of its parents are in
1Q, so |Q & C(p1) and C(p1) C C(q:) € C(e1), C(p1) C C(e2). Thus, ez < p;. Similarly,
ez < P2, -, py. Also ey £ g;, since ez € |Q. This implies that L is not a lattice, since g;
must be the meet of its parents, but e; is a lower bound of these parents not subsumed by
g;- Therefore 5’ must preserve subsumption. Clearly, we can similarly remove all non-meet

irreducible elements from S to produce a subsumption preserving spanning set that has no

more components than S.g

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 62

Hereafter, we assume that the components of all spanning sets have only meet
irreducible factors. We have already shown that no spanning set S of compound down-
sets can preserve joins by intersection. Can S preserve meets with union? If it does,
the Spanning Set Duality Theorem tells us that there is a corresponding spanning set
S’ that preserves meets with intersection. Since S’ can have only principal up-sets lor
components, S must be a spanning set of prime down-sets.

We now focus on how compound down-sets can reduce the size of a spanning set
that preserves only subsumption. First let us consider when two elements can be

factors of the same down-set.

Theorem 4.8 Let P be an ordered set and S be a spanning set of down-sets for P
with no multiple occurrences of factors. Then S preserves subsumption if and only if,
for every compound down-set | Q) € S with factors e1,e2, A an element that is (i) a

descendant of the parent of e1, but not of ey itself and (ii) a descendant of e;.

Proof: = Suppose e; and e, are factors of the same downr—rset 1@ of §, and 3 an element
g that is (i) a descendant of the parent p of e;, but not of e; and (ii) a descendant of e3.
Since e; is a factor of no down-set in S other than |Q, C(e;) = C(p)U {1Q}. Also ¢ < p
and ¢q < ey, so C(p) C C(q) and @ € C(g). Therefore, C(e;) C C(q), but g £ €1, s0 5 does
not preserve subsumption.

< Suppose for every down-set |} € 5, if ey, ey are factors of |@Q then A an clement
that is (1) a descendant of the parent p of e;, but not of e; itself and (ii) a descendant of e,.
So if eq, eq are factors of | @) then for every element ¢, if ¢ < p and ¢ < eq, then ¢ < . If 5
does not preserve subsumption, then Jz,y € P for which.C(y) CC(z),but ¢ £ y. Let e, be
a maximal ancestor of y for which z £ e; and C(e;) C C(z). If &; is non-meet irreducible,
then the meet of the parents @} of e; is unique. Clearly, this meet must be e;. Also, every
parent of e; must subsume z, otherwise it is not maximal, so z is a lower bound of (). But
then z < ey.

Thus e; is meet irreducible, and so must be a factor of some down-set |{). Since
C(e1) C C(z), 1Q € C(z). Since z £ €1, |@Q must have at least one other factor e, for which
z < e;. But then our assumption is violated, since e1,e; € Q, z < p where p is the parent

of e,z £ e and z L ez3.n

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 63

Figure 4.9 illustrates the case when e; and e; do not satisfy the constraints of
the theorem. If we put e; and ey as factors of the same component, the component
mapping for the descendant d will be a superset of that of e;, and so we will incorrectly
conclude that d < ey.

p

N\
Y

Figure 4.9: Elements that cannot be in the same down-set

€
./2

In [24], Caseau proposes an encoding scheme that preserves subsumption. His
algorithm computes a subsumption preserving spanning set of down-sets, implemented
with bit vectors. Through his notion of “gene sharing”, compound down-sets may be
formed. The algorithm proposed computes the spanning set incrementally as the
ordered set is constructed from top to bottom. When meet irreducible elements wre
added, the algorithm adds the element as a factor of the first down-set permitted
according to the above theorem. When non-meet irreducible elements are added, a
check is made to see if the conditions of the theorem are violated. If they are, a factor
of some down-set contributing to this violation is moved to another down-set in a
process called “gene mutation”.

Below is an example ordered set and the encoding that the algorithm determines
immediately before and after the addition of element i (which causes a gene mutation,
since ¢ is (i) a descendant of the parent a of ¢, but not of ¢ itself and (ii) a descen-
dant of e). The spanning sets prior to and following the mutation are respectively
{la,lb, l{c,e}, 1{d, f}} and {la, |b, | {~ <}, ld,]lf}. The rightmost encoding shows a
more compact encoding than Caseau’s that satisfies the above theorem, but which the
algorithm does not find. The spanning set for this encoding is {}a, |b, [{c, f}, 1 {d,e}}.

Intuitively, it seems that subsumption preservation should not rely on the existence
of meets or joins. However, Caseau’s incremental algorithm forms the minimal (i.e.
Dedekind-MacNeille) lattice completion of the given ordered set, which is potentially
costly.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 64

a/T\b 100000010 00%10 1000O0010
VAN VANV

d e f 01@010110 1010 001Q1 01001 00110 10010 01Q16 10Q1 1010 0110

>
>
>
>

o

g 1 h 1101 1

—
—
(=]

01101 0111110110 1101 1011 1110

Figure 4.10: Subsumption preserving encoding

Theorem 4.9 Let P be an ordered _et. Then the elements that must be represented as
factors of down-sets for a subsumption preserving spanning set are the meet irreducible

elements of P.

It is easy to show that M(P) = M(Lp), where Lp is the minimal lattice com-
pletion of P. The proof of the above theorem follows from this fact and previous
theorems. Thus, we don’t need to actually realize the lattice completion. Rather, we

need only recognize which elements are meet irreducible.

4.7.1 Finding a minimal subsumption preserving spanning
set is NP-Hard

In Caseau’s paper, a suggestion is made for the gene mutation process to attempt,
to detect more compact ways to rectify a violation, once detected. Both the original
algorithm and this suggested improvement, however, provide approximations to the
problem of finding a minimal spanning set of down-sets that preserves subsumption.
Unfortunately, as we show through the next theorem, this problem is NP-Hard. This

result is related to one suggested in [77] regarding the bounded dimension of an ordered
set, dlmg(P).

Definition 4.6 Minimum Subsumption Preserving Spanning Set. Given a
lattice L and a positive number k < |L|. Is there a spanning set of down-sels of size

k that preserves subsumption?

Theorem 4.10 The Minimum Subsumption Preserving Spanning Set problem s NP-
Complete.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 65

Proof: Consider the following problem, which is known to be NP-Complete [69):

Partition into Cligques. Given a graph G' = (V, F) and a positive number £ < |V|. Is
there a partition of G into k cliques?

We provide a polynomial transformation from this problem to our problem. Let us
construct a lattice L from G = (V, E), where n = |V| and e = |E|, as follows: (i) start with
a T element (L will be left implicit). (ii) Add n elements Py, P,,---, P,, where P; < T.
(iii) Add n elements vy, vy, - -, vy, where v; < P;. (iv) Add m = n(n — 1)/2 — e elements as
follows: For each pair of vertices v;,vj, where : < j, that does not have a connecting edge
in E, add an element (v;, v;) where (v;,v;) < P; and (v, v;) < v; .

Claim: I has a subsumption preserving spanning set of size n + k if and only if G has
a partition into k cliques.

= Suppose L has a subsumption preserving spanning set 5 of size n + k. First note
that, by theorem 4.8, S must contain n principal down-sets corresponding to the P; meet
irreducibles. Since the (v;, v;) elements are not meet irreducible, all other down-sets must be
composed of the v; elements. Further, there must be exactly k of these down-sets. Consider
ahy one of these down-sets |@. Claim: The corresponding vertices in G forms a clique.
Consider any pair of elements v;, v; € Q, where ¢ < j. Since they are factors of the same
down-set, A an element that is (i) a descendant of the parent of v;, but not of v; itself
and (ii) a descendant of v;. By the above construction, the only possible element for which
this could occur is (v;, v;), which only exists if »;,v; are not connected by an edge. Thus,
v;,v; have a connecting edge. Therefore, the corresponding vertices within each of these k
down-sets forms a clique in G.

4= Suppose G has a partition into k cliques. Each of the P; meet irreducibles must form
a down-set for any spanning set that preserves subsumption on . This makes n down-sets.
Consider any one of the k cliques, . Claim: The corresponding meet irreducibles in [can
be factors of the same down-set. By the theorem, any pair v;,v;, ¢ < j, can be factors of the
same down-set provided A an element that is (i) a descendant of the parent of v;, but not
of v; itself and (ii) a descendant of v;. By the above construction, the only possible element
for which this could occur is (v;, v;), which only exists if v;, v; are not connected by an edge.
But since v;, v; are in a clique, they are connected by an edge. Thus, the corresponding

J
meet irreducibles within each of these k& cliques can be factors of the same down-set in a

spanning set that preserves subsumption on L.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 66

Figure 4.11 shows an example of this reduction. Elements a, b, ¢, d form a clique in
the graph and can also be factors of the same down-set in a subsumption preserving

spanning set for the lattice.

d (ae) @b (bH (ce) (de)
Figure 4.11: Transformation of a graph to a lattice

4.7.2 Multiple occurrences of factors

Although, it may seem unnecessary for an element to be a factor of more than
one down-set, more compact spanning sets may result by allowing multiple occur-
rences of factors. We characterize the general conditions such spanning sets must
satisfy. In Figure 4.12, any spanning set without multiple occurrences of factors
has at least ten elements. It is easy, however, to verify that the spanuning set S =
{Ha,b,c,d,e, 1, l{a, b,e,9,k,i}, {a,d, e, ,h, 5}, L{b,d, £,9,4, 5}, e, e, fo by}

preserves subsumption.

T 00000

. ”ﬁ%M
aw 11010 % 101101 10011 211 0110”1 001
1 111

Figure 4.12: Subsumption preserving encoding

‘Theorem 4.11 Let P be an ordered set and S be a spanning sel of meet irreducible
down-sets for P. Then S preserves subsumption if and only if, for every meet irre-
ductble element e, € M(P), A an element = for which (i) z is a descendant of the
parent of ey, but not of e, itself and (ii) V|Q € S where €; is a factor of |Q, 3 a
factor ey of |Q for which z is a descendant of e,.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 67

The proof of this theorem is similar to that for Theorem 4.8. Figure 4.13 illustrates
the case when the constraints of the theorem are violated for an element e;. If every
component for which e, is a factor, has one of the f; as a factor, the component map-
ping for the descendant d will be a superset of that of e;, and so we will incorrectly
conclude that d < e;. Allowing multiple occurrences of factors provides greater flexi-
bility to subsumption encoding and permits more compact spanning sets. Finding a
minimal sized spanning set is undoubtedly NP-Hard, but it may be possible to design
an approximation algorithm (such as an extension to Caseau’s greedy algorithm) that

performs better than existing algorithms.

/K £, £ - £y

! AV AR e
2
d

Figure 4.13: Violation of subsumption

There have been two encoding schemes ([61, 79]) that permit multiple factors in
compound spanning sets. Although the algoritims are too detailed to describe fully
in this thesis, there are several issues of interest.

The algorithm in [61] constructs a bit-vector encoding using two passes over a
lattice L: one upwards and one downwards. The resulting encoding preserves sub-
sumption with subsets, and thus implements a spanning set of up-sets. One of the
goals of this encoding is to provide efficient meet computations (join computations
are described, but are not efficiently handled). Meet computations are achieved in
this subsumption preserving encoding by using an interesting indexing method. Sup-
pose L is the lattice to encode, and S is the spanning set of up-sets generated by
the algorithm. With each non-meet irreducible element z € L,z ¢ M(L), one of the

components s, € S is associated in the following way:

Definition 4.7 Let L be a lattice, and S be a spanning set of up-sets on L. Then S
discriminates the non-meet irreducible elements of L if Ve € L,z ¢ M(L), ds, € S
Jor which (ij x € s, and (i) ify € L,y ¢ M(L), and y € s;, then z < y (i.e. z is

the unique minimum non-meet irreducible element of s.).

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 6

oo

To compute a meet z My, we first check if z < y or y < x. If neither of these hold,
we know that the meet must be a non-meet irreducible element. We then intersect
the component mappings for z and y: Cory = C(z) NC(y). Using a linear extension
=< of the lattice L, a linear ordering is formed for S; the details of the particular
linear extension formed in [61] are unimportant, but what is essential is that, for two
non-meet irreducible elements z,y € L, if 2 < y then s, < s,. By the manner in
which S is formed, the meet will correspond to either the first or second spanning
set component in C,qy corresponding to a non-meet irreducible element'®. Using a
bit-vector mask (which contains a 1 in each position corresponding to a non-meet
irreducible component), these components can be identified. A table indexed by the
bit corresponding to these components is then used to decode the meet.

Note that this approach to decoding meets through a table lookup can be applied
to any spanning set that preserves subsumption with subsets and discriminates the
non-meet irreducibie elements. In particular, the transitive closure method of [2] could
use this indexing technique for efficient decoding.

Rather than elaborate on the details of this algorithm, it will be more fruitful to
elucidate its important contributions. First, although this approach usually requires
less space than the transitive closure method of [2], there are cases in which a spanning
set contains redundancy. By the dual of Theorem 4.7, subsumption preservation neecds
only to deal with join irreducible elements. For the indexing method to function,
however, we need to keep those components associated with non-meet irreducible
elements (which may contain non-join irreducible factors). However, there are other
redundancies that may result from the algorithm in [61]: (i) it is possible to have a
factor that is meet irreducible but not join irreducible; such factors can be removed
(by Theorem 4.7). (ii) it is possible to have duplicate and redundant components.
By remediating these problems in the resulting spanning set, the algorithm could he
improved.

As an example, consider the ordered set in Figure 4.14. The first encoding re-

sults from the algorithm in [61]. The spanning set that is implemented is 5 =
{1{e,9},1T,Te,79,1f,T{e,9}}. Note that the component T{e, f} appears twice (in

10A generalization of this property is proven below.

CHAPTER *. THE FOUNDATIONS OF TAXONOMIC ENCODING 69

the first and last bit positions), which is clearly unnecessary. Secondly, this compo-
nent is reJundan:, since it is not associated with any non-meet irreducible element,
and Te and Tg are both components of S. A more efficient spanning set that preserves
the desired properties is S’ = {1 T, Te, 1g, Tf}; its bit-vector implementation is shown
on the right-hand side of Figure 4.14.

T lllllll 11I11
101111 0111

c/\ 101@111 010(}011
NN P
M 101001 000010 100101 0100 0001 0010
\l/
\i/ \ooou‘m/ 0000

Figure 4.14: Example encoudings that discriminate non-meet irreducible elements

We now formulate the encoding problem tackled by the algorithm in [61] in a gen-
eral manner, which may lead to the development of more efficient solutions. Suppose
we have a lattice L and we wish to construct a spanning set S that (i) preserves sub-
sumption with subsets (i.e. z is subsumed by y (z < y) if and only if C(z) C C(y)}, and
(it) discriminates non-meet irreducible elements. For each element z € L,z ¢ M(L),
define the set R(z) = {y € Lly € z.Vz € L,z ¢ M(L),y < z = z < z}. These
are the elements that are subsumed by z, but not by any other non-meet irreducible
element that is not an ancestor of z. Note that £ € R(z). Now the problem can be
described as constructing a subsumption preserving spanning set of up-sets S with the
restriction that Vz € L,z ¢ M(L), 3s, € S for which the factors of s, are a subset
of R(z) (i.e. 1sz| € R(z)). This ensures that S discriminates non-meet irreducible
elements. The component s; will be called the component associated with z.

We know from theorem 4.7 that to preserve subsumption, we need only be con-
cerned with the join irreducible elements J(L). Thus, for optimality, we need only
consider the join irreducible elements of R(z); if there are none, then we can use
s = Tx.

The interesting result is as follows:

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 70

Theorem 4.12 Let L be a lattice and S be a spanning set of up-sets for L such that
1. S preserves subsumption
i. S discriminates non-meet irreducible elements
wi. S is partition d into those components that are associated with non-meet ir-
reducible elements, S; and those that are not, S,

tv. There is a linear extension <X of S;.

Then, for any meet aT b= ¢, consider Cormp = C(a) N C(b).
i. if Corp =C(a), then a =c.
ii. if Corp = C(b), then b=c.
Wi if Corp = 0, then c= 1.
. tf Cop N Sy = {5z}, then: ifa <z (orb< z), then L = ¢, otherwise x = c.
v. if |CarwNS1| > 2, then let s, and s, be the first and second elements (according
to %) CorsNSy. Ifa <z (orb< z), then y = ¢, otherwise z = c.

Proof: Let L be a lattice and S a spanning set of up-sets for L that satisfies the above
conditions. Consider any meet a Mb = ¢ and the set Conp = C(a) NC(b). Since S preserves
subsumption, cases (i-iii) hold.

Now suppose s; is the first component (according to <) of Cynp N S). Tt is possible that
a € R(z) and b € R(z), in which case a < z and & < z (i.e. the factors of s, arc below a,b
and z). Since z subsumes every element in R(z), either both e and b subsume z or both are
subsumed by z. Since < is a linear extension, if both a and b subsume z, clearly z = afb.

Claim: For any component s, € Corp N 51, Sy # Sz, both @ and b subsume y (or
conversely, it is impossible for y to subsume ¢ and b). Suppose y subsumes @ and b. Thus,
a € R(y) and b € R(y). Since < is a linear extension of S, z must also subsume ¢ and b,
and either y < z or z||y. In the first case, we can infer that z € R(y), which is impossible,
since z is non-meet irreducible. In the second case, we can infer that L is not a lattice.

Thus, in case z subsumes a and b, we can select the second element s, of Co,rp N 5y If

no such element exists, then ambd = 1, otherwise af b = y.0

This theorem provides a general and efficient procedure for computing and decod-

ing meets, which abstracts the algorithm in [61]. Given « and b, if neither subsumes

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 71

the other, and the intersection of their component mappings is non-emptuy, then we
can determine their meet simply by extracting the first component s, correspond-
ing to a non-meet irreducible element z. If x does not subsume either a or b, then
a Nk = z; otherwise extract the second component s, corresponding to a non-meet
irreducible element y. If no such component exists, a b = L; otherwise a M b =y.
Another approach that implements spanning sets of compound down-sets, de-
scribed in [79], decomposes an ordered set P into co-atomic sublattices''. By grouping
elements together that have the same set of subsuming co-atoms, the authors show
tha! the resulting order is a co-atomic lattice. If P is already a co-atomic lattice, then
the resulting order is isomorphic to P. This partitioning is performed repeatedly on
each group of elements, forming a tree of co-atomic lattices that is used as the basis
for generating a bit-vector encoding of the original ordered set. Their algorithm can
also be viewed as computing a spanning set of compound up-sets, although the details

are beyond the scope of this thesis.

4.8 Spanning Set Decomposition

We have seen that with spanning sets of down-sets, we can only preserve joins with
principal down-sets (section 4.5) and meets with prime down-sets (section 4.6)'2. The
preceding section discussed combining principal down-sets into compound down-sets
while still preserving subsumption. In this section, we describe how decompositions
of spanning sets that satisfy certain restrictions can lead to some efficient iinplemen-
tations using, for example, integer vectors or logical terms.

Suppose a spanning set S for an ordered set P is decomposed into oy, as,. .., 0
(ie. eyUazU---Uar = S). In order to use this decomposition, we modify the
component mapping to return, in addition to each component, the subset containing
it. We use the notation a(s) to denote that component s is in subset a. For example,

if a(s) € C(e), then e € s and s is a member of the subset a. We say that an element

~

11 A co-atomic lattice is a lattice in which every element is a meet of one or more co-atoms.
-5 - -y . - - .
12Without the use of additional constraints, such as coreference, as discussed in section 4.9, and

in [102, 104].

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING T2

of P is in a subset if it is in any of its constituent components. If we can guarantee
that subsets possess certain structure, we can implement them with space logarithmic
to the number of components, as opposed to the linear space required to represent

the components individually.

4.8.1 Chain decomposition

For a spanning set S on an ordered set P, a chain partition, as defined in section 4.3.5,
of the order induced by S is one form of chain decomposition. If the components of S
are principal down-sets, a chain partition of S is also isomorphic to a chain partition
of P. In general, if S is subsumption preserving, it corresponds to a chain product
embedding of P, as we discuss below.

The key feature of a chain decomposition S = a; U az U... U a4 is that, given a
component s; of «;, we can infer every component preceding s; in the chain. Thus,
we need not represent all components explicitly - the component mapping need only
return at most one for each subset. Integer vectors, described in section 4.3.5, provide
a direct and efficient implementation.

The virtual time proposal in [97], addressing the problem of global time in dis-
tributed systems, essentially performs a chain partition on a spanning set of princi-
pal down-sets implemented using integer vectors. At each of & sites, transitions are
caused by internal state changes, and message sends and receives, forming a partial
order based on precedence constraints among events (e.g. a send must precede its
corresponding receive). Note that this partial order is not necessarily a lattice, since
two sites may simultaneously send to each other. The transition events for each site
represent local clock advances. Possible combinations of the local clocks constrain
the possible global times. No global time is maintained in the system, but each site
~ approximates it using its local time plus the times obtained from other processes by
messages received.

The transitions at each site form a chain, interconnected by message sends and
receives, producing a natural chain partition that is represented by a vector of k

integers. Since the clock at each site is updated after each transition, the code of

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 73

an event for site 2 consists of the code of its parent at this site, with the ith entry
incremented and, if the event is a receive, the union is formed with the vector sent with
this message. The underlying spanning set is thus the set of all principal down-sets,
so it preserves joins but not meets. As an example, a three site system is depicted in

Figure 4.15. A space reduction could be realized if down-sets were restricted to the

meet irreducibles.

Site 1 Site 2 Site 3

[1,0,0] [0,1,0] [0,0,1]

send [2,0,0 internal [0,30,2]
receive [2,2,0]
send [2,!3,0]

send [2,4,0] receive [2,3,3]

receive [3.4,0]
Figure 4.15: Distributed virtual time encoding

Generalizing this scheme requires partitioning an arbitrary spanning set S into the
minimum number of chains, which is equivalent to finding the maximum sized anti-
chain of S [74]. The cardinality of this anti-chain, called the width of S, determines
the minimum number of chains needed to represent S, and thus the minimum size
of a vector implementation. In the distributed system, the width is the number of
sites. In general, determining the width of S is possible in O(|S[?) time [74]. The

next theorem shows the space requirements for a balanced chain partition.

Theorem 4.13 Let S be an ordered set with n elements and width k. Further suppose
that there is chain partition of S into k chains of size nfk. Then the integer vector
encoding for S on this partition requires O(nk(|log(n/k)| + 1)) space.

Since each element requires a vector of size k, and the maximum sized integer in
each vector is n/k (requiring O(log(n/k)) space), the result follows. Note: If k = 1,
then we have a total order and we require O(logn) space to represent each element.
If k = n, then we have an anti-chain and we require O(n) space for each element. In

both cases, bit-vectors require O{n) space.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 74

Chain product embeddings

Chain partitions are in fact a special case of chain product embeddings.

Definition 4.8 Let P be an ordered sct, {Cy,...,Ci} be a set of chains, and 7 : P —
C1 X --- X Ck be a function from P to the cross product of these chains. Then 7 is
a chain product embedding if, for x,y € P, * <y if and only if 7(x) = (c},...<}),
(y) = (cl,...c}) and ¢ <¢; ¢} for1 <1< k.

We define element z of the vector 7(z) as 7(z)[i] (i.e. 7(z)[7] = ¢}). A chain parti-
tion is the case when the C; are chain suborders of P that partition P. Chain product

embeddings are closely related to order dimension [144], and encoding dimension [T9].

Theorem 4.14 Let P be an ordered set. Then every chain partition of a subsur.ption
preserving spanning set of up-sets S for P corresponds to a chain product embedding
of P, and every chain product embedding v of P corresponds to a chain partition of

some spanning set of up-sets for P that preserves subsumption.

Proof: = Let S be a subsumption preserving spanning set of up-sets for P, and let
{C1,C4,...,Ci} be a chain partition of S. Let us also define a special null component
sg ¢ S that subsumes every component of S. Define the mapping 7 : P — Cy x --- x
as 7(z) = (e1,¢2,...,ck) where, for 1 < i <k, ¢; is the least element in C; that is in C(z).
If C;NnC(z) = 0 (i.e. there is no element in chain C; that is in C(z)), then ¢; = sy. Thus,
ignoring the null components in this mapping, C(z) = T{e1, €2, ..., cx}!2.

Claim: 7 is a chain product embedding. If z < y, then C(z) C C(y). Clearly, for
1 < i < k, we have 7(z)[i] <¢, 7(¥)[i]'*. Conversely, suppose for 1 < i < k, we have
7(z)[i] <c¢; 7()[é]- Then C(z) € C(y),s0 z < y.

< Let 7 be a chain product embedding of P into the set of chains {Cy,C%,...,Ck}.
Define |[C;| = n;. Define the spanning set § = {s},...,sL ,s%,...52 ,... 55 .. s& }, where,
for1 <i<k,1<j<n;, wedefine s} = {z € P|j <c, 7(z)[¢]}. Note that a; = {si,...80. 1,

for 1 < 1 < k, defiries a chain partition of 5.

13Recall that for a spanning set S, C(z) = {s € S|z € s} is an up-set in S.
14This holds even if 7{y}[i] or both 7(y)[i] and 7(z)[i] are equal to sp.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 75

Claim: S is a subsumption preserving spanning set of up-sets. If ¢ < y, then for
1 <1<k, 7(z)[i] <¢, 7(y)[i]. Suppose 3§ € C(z). Since 37 <¢; 7(z)[¢] and 7(z)[7] <¢,
()], 5 <c. T(y)li], and s} € C(y). Thus, C(z) C C(y). Conversely, if C(z) C C(y), then
T(z)[?] <c, T(y)[¢), forall 1 < ¢ < k. Thus z < y.o

Chain products have a natural implementation using integer vectors. A nice de-
scription of encoding by embedding ordered sets in products of chains is given in [79].

Unfortunately, finding a minimal size product of ctains into which an ordered set can

be embedded is NP-Hard?®.

4.8.2 Meet incompatible decomposition

A meet incompatible subset a(sy,s2,--+,5k) C S is a subset in which components are
pairwise meet incompatible. That is, if : # j then Va € s;,b € 55, a1 b= L. If the
spanning set is composed of down-sets, this is equivalent to s; N s; = {L}. For a meet
incompatible subset a, any non-bottom element in « will be in exactly one of the
constituent components. So if a(s;) € C(z), then = € s; and for all other components
sj of o, = ¢ s;. Within this framework, subset checking, union and intersection are
essentially the same as before. Now, however, if we are computing the union of two
component mappings and they contain a subset a with different components, the
union fails. This is facilitated by treating our lattice as L-unbounded.

A spanning set S of all principal down-sets of an ordered set P is isomorphic to
P. In this case, a meet incompatible partition of S is just a meet incompatible anti-
chain partition of P, as defined in section 4.3. This is the basis for the tree term
encoding in [34], which gives a logical term encoding of tree shaped taxonomies. In
general, however, this does not hold. Note that a decomposition need not partition
the components of S. By allowing components to be members of more than one
subset, implementing meet incompatibility as union failure may be more viable. In

addition, even if we are not concerned with meet incompatibility, specifying that a

15This is called finding the encoding dimension in [79], and is closely related to the NP-Hard
problem of finding the dimension of an ordered set P (the minimum number & for which P can be
embedded in a product of k chains).

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 76

set of components is meet incompatible can permit a large space savings, as shown

for the following representations.

Bit-vectors Instead of representing a component in a subset of size n by one bit,
we assign |logn| + 1 bits to the subset and assign a number from ! ...n. For
elements not in the subset, we place a 0 in these positions, as before. For an
element in the subset, we place the number of the unique component containing

this element. This derives the integer vector representation of section 4.3.

Logical terms In a term, we use one position for each subset. Ior elements not
in the subset, we place an anonymous variable for ordinary terms and noth-
ing for sparse terms. For an element in the subset, we place a unique symbol
for the component containing this element. Unification and anti-unification
operate as expected. We can exploit the hierarchical structure of terms by in-
troducing a subset «a(sy,s2,--,sk) at the functor for one of the components
in U{sy, 82, --,sk}. This can provide a significant space savings over integer
vector (or flat term) implementations. This is the form of tree term encod-

ings discussed in [102]. More general term encodings permit the use of logical

variables (coreference), as discussed in section 4.9.

As an example, Figure 4.16 shows a meet incompatible anti-chain partition of the
spanning set Syqp) (i.e. the principal down-sets associated with the meet irreducible
elements) for the ordered set P in Figure 2.2. Note that since dog and feral dog arc
not meet irreducible, they do not have corresponding elements in Figure 4.16. Figure

4.17 then shows a logical term implementation of this partitioned spanning set.

ldomestic lsesial

m dcanine /
AW/
/ m if(ﬁwol%éfﬁgg

N N\
deollie dpoodie derrier kit fox dred fox

Y'-*

Figure 4.16: Meet incompatible decomposition

"HAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 77

domestic canine wild social

p(d._,) p(e(),) p._.w()) p(s._._)

do

african wild dog

fox wolf
plLe()w(fx)) p(s.c(L),w(w)) p(s,c(_),w(awd))

collie poodle terrier feral dog kit fox red fox
pdc(©).) pdep).) Pe®).) pde).w() pLekDw(fx) plclrh)w(fx)

Figure 4.17: Logical term implementation of meet incompatible decomposition

In section 4.6 we analyzed spanning sets of prime down-sets and showed a direct
correspondence with spanning sets of principal up-sets. We were able to then claim
that any finite lattice has a spanning set of prime down-sets that preserves meets
with union - this can easily be implemented using tree terms. In [102], an additional
constraint is imposed on such spanning sets: if a b = L then the C(a) U C(b) must
fail. As we saw above, this may be accomplished using decomposition, but this is
not always possible. Logical terms provide an implementation of this with unification

failure. For implementations using tree terms, this constraint is formulated as follows.

Theorem 4.15 [102] Let L be a lattice. Then L has a meet preserving tree term
encoding if and only if, for any a,b € L, a b= L if and only if there are two meet
incompatible prime down-sets Py, P, for which a € P, and b € P,.

Clearly, if there are two meet incompatible prime down-sets containing a and b,
respectively, al1b = L. Requiring the converse, however, means that many lattices are
not tree term encodable, according to Mellish’s definition. Surprisingly, this includes
even the lattice shown in Figure 4.5. Encoding this lattice so that L is implemented
as unification failure requires coreference, as shown in {47, 102]. Determining if a
lattice is tree term encodable in this sense can be accomplished in polynomial time
since all meet incompatibility must be incorporated into a decomposition.

In general, we want to find the smallest decomposition of a spanning set. Unfor-
tunately, this is NP-Hard for the simpler case of partitioning an ordered set into meet

incompatible subsets.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 78

Definition 4.9 Meet Incompatible Ordered Set Partitioning. Given an or-
dered set P, and a positive number k < |P|. Is there a partition of P into k meet

incompatible subsets?
Theorem 4.16 Meet Incompatible Ordered Set Partitioning is NP-Complete.

Proof: We give a polynomial transformation from the Partition inte Cligues problem, de-
scribed in section 4.7, to our problem. Let us construct an ordered set P from (' as follows:
Let n = |V]| and e = |E|. (i) Add n vertez elements vy, vq, - -, 5. (ii) Add m = n(n—1)/2—¢
non-edge elements as follows: For each pair of vertices v;,v;, where © < j, which does not
have a connecting edge in E, add the element (v;, v;) where (v;,v;) < v; and (v;,v;) < v;.

Claim: P has a partition into k + 1 meet incompatible subsets if and only if ¢ has a
partition into k cliques.

= Suppose P has a partition into j meet incompatible subsets. Select one subset o’ that
does not contain any vertex element. If no such subset exists, j = k and let o' = @ (a trivial
meet-incompatible subset) to bring the number of subsets to k£ 4 1; otherwise j = k + 1.
Consider any subset a # a'. Claim: The vertices corresponding to the vertex elements in
a form a clique in G. Consider any pair of vertex elements v;,v; € a, where i < j. Since
they are components of the same subset, they are incompatible. By the above construction,
this could only occur if »;,v; have a connecting edge. Therefore, the corresponding vertices
within each of these k subsets forms a clique in G.

< Suppose G has a partition into k cliques. Consider any one of the & cliques, . Claim:
The corresponding elements in P can be components of the same subset. Any pair v;,v;,
i < j, can be components of the same subset provided they are incompat™ By the above
construction, this can only occur if »;,v; are connected by an edge. Since v;,v; are in a
clique, they are connected by an edge. Thus, the corresponding elements within each of
these k cliques can be components of the same subset. One additional meet incompatible

subset can be formed from all of the non-edge elements.g

The following figure shows an example of the above transformation. It is easy to
see that the elements a, b, ¢,d form a clique in the graph and are meet incompatible
in the lattice.

Any meet incompatible decomposition of a spanning set S of an ordered set /’

corresponds to a meet incompatible decomposition of the induced subset order of 5,

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 79

AN

(a,e) (a,f) (b.f) (c.e) (d.e)

Figure 4.18: Transformation of a graph to a lattice

but not vice versa (since we may have two components s1, sy € S for which s; Ng s, =
ig, but s1Nsy # 0). However, we can add elements (s;, s;) for any pair of components
in S that are incompatible with respect to the induced order of S, but compatible
with respect to the order of P. These elements would ensure equivalence between the
two forms of meet incompatibility among components in S. Thus, the more general
problem of finding a minimal meet incompatible decomposition of a spanning sel is

also NP-Hard.

4.8.3 Meet homogeneous decomposition

We now generalize the notion of meet-incompatible subsets; we hope that this gen-
eralization can be exploited in the development of new encoding algorithms., We call
a subset (s, sq,---,5k) meet homogeneous (or simply homogeneous) if for any two
distinct components $1,8; € @, @ € sy and b € s, implies aM b € 5,Vs € a. That
is, every element is either in 0, 1 or all the components of the subset. A meet in-
compatible subset can be viewed as a special case of a homogeneous subset, with the
added restriction that a M b = 1. Since any element in the subset will either be in
exactly one or all of the components, we need to associate a special symbol, L, with
each subset indicating that every component is present. We redefine below the set

operations for meet homogeneous subsets.

subsets: Cle1) CC(ez2) & Va(r) € C(ey), either
i. a(z) € C(ez) or
O!(J_Q) € C(Gz).

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 80

union: Cle1) UC(ez) = @ & Yoa(z) € Q, either
i. afz) €C(e) and e; ¢ a,
. oz) € C(e2) and e; ¢ a or

. a(z) € Cle1),a(y) €C(ez) and z =y =z or z = L,.

intersection: C(e;)NC(ez) = Q < Va(z) € Q either
i. a(z) € C(e;) and ofz) € C(e,),
. afz) € C(e1) and a(Ly) € C(es) or
ill. a(L,) € C(e1) and afz) € C(ey).

We can implement these operations with a modification to the sparse term or in-
teger vector representations. By partitioning a spanning set into meet homogeneous
subsets, we can achieve the benefits of meet incompatible subsets. The generality
and flexibility of this structure, however, may permit more dense decomposition, de-
creasing the space requirements of an encoding, which may over-compensate for the
increased operational complexity. To illustrate these concepts, consider the ordered
set below. The minimal subsumption preserving spanning set of down-sets (with
no multiple occurrences of factors) is S = {la, b, ¢, |d, le, | f, |k, | L}, which also
preserves joins. Since every pair of components is compatible, meet incompatible
decomposition provides no benefit. However, the following is one possible homoge-
neous decomposition of S: {a;(la, | f, [k),a2(lb, |c, |d, le), as(|L)}. The component

mapping corresponding to this decomposition is also shown in the figure.

T 0

%N?/r ay(a) ap(b) op(c) 0p(d) dy(e) og(f)
!]

~ \"L‘ @) o000 a DI

i o (L)onl)
i o (L),0),05(L)
Figure 4.19: Meet homogeneous decomposition

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING S8l

4.9 Constraints and Coreference

We now develop a constraint-based examination of encoding, viewing both ordered
sets and spanning sets as systems of constraints, and we formulate an integration of
spanning sets with other forms of constraints. In this context, we are able to view the
process of taxonomic encoding as a special case of constraint satisfaction. We first,
introduce the various types of constraints imposed by an ordered set. Preserving cer-
tain properties involves satisfying some of these. We next show how these constraints
can be incorporated into the components of any subsumption preserving spanning
set S of down-sets, through the use of guarded constraints, which are analogous to
Dijkstra’s guarded commands. This involves restating the initial constraints in terms
of the components of 5§, and may alter the properties of S with respect to joins and
meets. Many constraints can be implemented using techniques previously covered,
such as chain partitions. We introduce coreference, such as that offered by logical
variables, as a complementary implementation tool, formalized through equivalence

classes of constraints. We also hypothesize about more general implementations.

4.9.1 Types of constraints

We will view constraints in a top-down manner as logical implications, denoted using
the — symbol. Inferences on constraints are denoted using the F symbol, and sets of
constraints are denoted using I'. Given a set of elements and a constraint involving
one or more of these elements, some consequence may follow through the application
of modus ponens, where we use “A” to denote logical conjunction and “V” to de-
note logical disjunction. For example, given a,b and a A b — ¢ we infer ¢, written
a,b,aAb—c - c. Different categories of constraints are distinguished by subscripting
the I' symbol. To be precise, we should also specify the partial order to which the

constraints apply, but this is usually obvious.

Order constraints (I'<): The constraint imposed by the relation a < b is simply
a — b. Thus, given element a and this constraint, we can infer element b. This

constraint has been implicit in our analysis, and is integral to any subsumption

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 82

preserving spanning set of down-sets. The cover relation dictates a set of cover
constraints I'<.. Inferring I'< from the reflexive and transitive closure of I'</

follows.

Meet and join constraints (I'n,',): Suppose we have a; May; M ---Ma; = b. In-
terpreting this logically, if we have all of the a;, we can infer b. The constraint
imposed by this relation is then a; A ay A --- A ay — b'®. An important effect
of this constraint is that if &6 < ¢ then ay Aay A --- A ax — ¢, even if none of
ai,as,- - -, ar are comparable with ¢. From an encoding point of view, a meet
constraint is satisfied by deducing new information. We later show how certain

cases of meet constraints can be implemented using coreference.

Suppose we have a; Uay L ---Uag = b. Interpreting this logically, if we have at
least one of the a;, we can infer 6. The constraint is then a; Vas V-V ap —
b. Thus, from the uncertainty associated with a disjunction, we can infer a
consequent. Due to the difficulty in implementing join constraints except with

intersection, we will rely on previous techniques to satisfy I',.

Meet and join incompatibility constraints (I';,I't): Suppose we wish to im-
plement 1 as failure and we have a meet a, May M ---Mag = L that is minimal
in the sense that any subset of the a; is meet compatible. This results in &
constraints: a; A--- Aa;_y Aaiy1 A--- Aag — —a;, 1 <7< k. Join incompati-
bility constraints can be defined dually, although we do not discuss them. The
negation of an element q; is a logical construct, the purpose of which is to cause
an inconsistency in case we infer a; . We show later how these constructs can

be used to implement i as failure.

As indicated, we only explicitly deal with I'c,I'n and T';. Thus, the antecedent
of every constraint will be a conjunction (or a singleton). Our only rule of inference
is modus ponens: A, A—b t b, where A is a conjunction of one or more elements.

This rule enables us to deduce new elements from a given base set. Rather than

'%The generalization to meet-crest constraints is straightforward: if we have a; Mas M ---MNag =
{b1,b2,...,b;}, then the resulting constraint is a; Aag A---Aag — by Vb V...V b;. To keep our
discussion clear, however, we will focus only on meet constraints and lattices.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 83

allowing closure immediately, we provide an incremental inference procedure. This
is important for encoding, since we need to bound the number of inference steps in
a deduction for the sake of efficiency. The following rules describe this procedure
for a given initial set of constraints I', where ; represents one application of modus
ponens:

i. T°={A-b|T, AR b} (21)

i, T = {A - b| (T, Al ¢), -, (I, Aby c) and TP ¢q, -+, cx by b}

i, T = U2, I

We say I' - A — b if there is some 7 > 0 for which A — b € I'*. Since I is
finite, there will be a number k£ > 0 for which T**! = I'*, giving a fixed-point for this
construction and I'* = I'*. Of course, using the above rules, we could specifly a minimal
set of constraints from which all others could be obtained (e.g. the entire order relation
could be derived from the cover relation), and perform taxonomic operations using
inference. However, to satisfy locality, every constraint. we wish to satisfy needs to
be immediately accessible (i.e. in a constraint set) or derivable in a small number of
steps. For the spanning sets we have studied, all constraints are local. We show later
how coreference may allow us to derive additional constraints in one inference step.

We will use the diamond lattice in Figure 4.1 to illustrate the specification and
use of constraints. The cover constraints are I'c: = {a—=T,b-T,c—=T, L—a, L-b,
1 —c}. The meet and join constraints are: I'n = {aAb— 1, eAc—1, bAc—1} and
'y = {aVb—T, aVe—T, bVc—T}, respectively. Recall that we showed in section
4.2 that no spanning set exists that preserves‘both meets and joins for this lattice.

We later show how I'n and I', may be preserved using coreference.

4.9.2 Augmented spanning sets

Each component of a spanning set S can be viewed as encompassing a set of con-
straints, and S preserves certain properties that we can infer from these constraints.

A down-set |{a;,as,- -, ai} represents the set of constraints Vz € [{a;,az,- -, ar},
z — a3 VazV---Va; That is, given any element in the down-set, we can infer the

disjunction of the factors. In case the down-set is principal, }a, we have Vz € la,

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 84

r — a. An up-set {a,,az,--,a;} embodies the constraints: Yz € T{ay,as, --,a},
a, Aay A--- Aap — z. That is, given all of the factors, we can infer any element in
the up-set. In case the up-set is principal, Ta, we have Yz € Ta, @ — z. Our analysis
focuses on down-sets. We can also view a component itself as a set of constraints: the
component s represents z — s for all z € s.

Principal down-sets thus include a subset of I'< and the spanning set of all principal
down-sets induces this entire set. We showed in Theorem 4.3 that the meet irreducible
elements embody the essence of joins, so Sxy(r) preserves subsumption and joins while
retaining only a subset of I'c. Compound down-sets, however, incorporate ambiguity.
By merging the constraints of two or more principal down-sets, uncertainty arises as to
which constraint is satisfied. Although we cannot preserve joins with such uncertainty
(as we have shown), we can possibly preserve subsumption and meets (sections 4.6
and 4.7). In general, if C(z1)UC(z2) U---UC(zx) 2 C(y) then 21 Aza A Az — y.
We denote the set of constraints of a spanning set S as I'(S). These can be expressed
" dually in terms of components: if sy Nsa N---Nsp Csthen s;As2 A ... Asp — s.

A decomposition § = a; U ... U a; represents additional constraints. A chain
decomposition induces the constraints V1 < 1 < k, if 81,52 € o; and s; <,, $2 then
81 — 82. For a meet incompatible decomposition we have: V1 <1 < k, if s1,55 € o;
and s; # s, then s; — —s3. For a meet homogeneous decomposition, V1 <z < k, if
81,982,953 € a; and s; # s, then s; A s3 — s3.

To integrate constraints and spanning sets, we express constraints in terms of
spanning set components. We now discuss how this affects the component mapping

and taxonomic operations.

Definition 4.10 A component constraint of an ordered set P is a constraint

S1 A ... A Sk — Sk, where each of the antecedents and the consequent are subsets of
P. A set of component constraints Sy of P is called an augmented spanning set if the
function Cr : L — 257 defined by Cr(z) = {s; A sy A ... ANsg_1 — sg € Sp|F,1 < <

k,z € 8;} is one-to-one.

Ordinary spanning sets are a special case, where & = 1 for every constraint. We as-

sociate a constraint with every element in its antecedent or consequent. An augmented

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 85

spanning set for our example is as follows: Sy = {]a, |b, lc, laAlb—]c, laA]c—|b,
tbAlec—]a}. We say that Sr is an augmented spanning set of down-sets il every an-
" tecedent and consequent is a down-set.

Although many constraints can be inferred from a base set, encoding essentially
performs all the desired inferences a priori, and then represents the consequences
of an element in a code. Using this code, we can perform operations locally, which
amounts to reducing inferences to one step. We shall see in Chapter 5 one approach
to relaxing this to allow inferences with a fixed number of steps. How can we perform
a one-step inference? Since we associate constraints with elements, we can perform
set operations, as we have previously shown. We can also apply one level of modus
ponens (i.e. calculate I'' from I'°) using coreference, as we describe later.

We must now redefine property preservation for an augmented spanning set Sp of

down-sets:

Subsumption: z < y if and only if Cr(y) C Cr(z).
Meets: z My = z if and only if Cr(z),Cr(y)FCr(2).
Joins: z Uy = z if and only if Cr(z) N Cr(y) = Cr(2).

Note that when computing meets, we use the constraints to infer additional com-
ponents. For efficiency, we will usually only perform one inference step. That is, we
only infer components from the given components and inferences, and do not attempt
further inferences using inferred components (i.e. we compute F;). After performing
the inference step of a meet, we can remove trivial constraints (e.g. if we already l.ave
S2, then s;—s; 1s redundant).

Our example preserves subsumption and meets, but not joins. For elements a,b
and 1:

i. Cr(a)={la, lanlb—]c, lan|c—]b, |bA|c—]a}
ii. Cr(b) = {lb, lanlb—lc, laAlc—]b, |bAlc— |a}
iii. Cr(L) = {la, 1b, le, lanlb—]c, lanlc—|b, |bAlc—]a}

We can see that Cr(a) C Cr(Ll). To compute a M b, we compute the inference
Cr(a),Cr(b) I |c using the constraint |aAlb—]c. We can thus infer Cp(L), and so

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 86

alb = L. Simplifying the constraints then yields the set {|a, 1b, [c}. Since Cr(T) = 0,

but Cr(a) and Cr(b) are not disjeint, this spanning set does not preserve joins.

4.9.3 Integrating spanning sets and constraints

Suppose we have a set of constraints I' we wish to satisfy and a spanning set 5 of
down-sets that may satisfy some of these constraints. In order to integrate S and
I', we need to transform T so that the antecedents and consequents are expressed in
terms of components.

How do we convert elements to components? This can easily be done for any
subsumption preserving spanning set S of down-sets. Using the original set I' of
constraints (we assume that ' D T'(S) 2 I'<), we construct an augmented spanning set
Sr. The next theorem shows not only how these conversions can be accomplished, but
also proves that it can always be done in a sound and complete manner. For soundness
we require: Sp F ajAasA---Aap—bimpliesT' F a;AasA- - -Aap—b and for completeness
we require: I' F ay A ag A --- A ap—b implies Sp Fa; Aaz A --- A ag—b. We need to
specify how we can infer a constraint on elements from a set of component constraints:
SrFaiAagA--- Aap—bif and only if (i) @ = Ui<icx C(as) and (ii) Sr F Q—s for
every s € C(b). That is, if we can infer every component of the consequent from
the components of the antecedents, then we can infer that the antecedents imply the

consequent.

Theorem 4.17 Let L be a lattice, S a spanning set that preserves subsumption and
I' a set of constraints on L of the form a; Aay A ... A ag—b (which contains T'(S)).
Then the augmented spanning set St = SU{Q—s|A—b e T',Q = U,c4C(a),s € C(b)}

is sound and complete.

Proof: Soundness: Suppose Sp - A—b and @ = (J,c4C(a). Then St F Q—Q’, where Q' 2
C(b). Let the sequence of constraints in St that were used to derive Q' be @1—q1,...,Qm—qm,
where @ 2 @ and Q' C Q U {q1,---,¢n}. Each component constraint Q;—g¢; must have
come from a constraint A;—b; € T', where A D A;. Thus, A F b;,1 < i< m (i.e. each
inference step is justified). Since U,eaC(a) U Uyefs,...5,3C(8i) 2 C(b) and St preserves
subsumption, we have AAb A...Aby - b€ T(S)CT. Thus, Al b.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 8

=1

Completeness: Suppose I', A b. Let the sequence of constraints in I' that were used
to derive b be A;—b;,.... A,,—b,,, where A D A, and b = b,,,. For each constraint A;—b;,
there is a set of constraints in Sp: Q;—s. where @; = | ¢4, C(a) and s € C(b;). Thus, we

can derive Sr, ¢ F b;, where @ = J,c4C(a).0

We can now convert any constraint to a component constraint and the theorem
shows that the resulting set will be sound and complete. The resulting constraints can
of course be simplified. Constraints with empty consequences, or for which a compo-
nent appears as both an antecedent and the consequent, can be eliminated. Contin-
uing with our example, if S = {la, |b, lc} and [= {a—T, b—T, ¢—>T, arb—oec,
ahc—b, bAc—a, L—a, L—b, L—c}, then the augmented spanning set is: Sp =
{la, ib, le, lanjb—]c, laAlc—]b, |bAlc—]a}. We can achieve a further reduc-
tion in this example, and still maintain order and meets, by eliminating the compo-
nents containing |a in their consequents. This results in the augmented spanning set
St = {lb, le, lanlb—]e, lanlc—|b}. Although it may be difficult to determine a
minimal augmented spanning set, approximation algorithms may be developed.

Our analysis above did not consider negated elements resulting from meet incom-
patibility constraints. For this, we require the notion of a negated component —s,
which represents a logical barrier to the inference of a component s (i.e. s A —s i3
inconsistent). The constraint a; A az A --- A ap—~—b, can be replaced by C(a,) U
C(az) U --- U C(ag)——s provided: (i) s € C(b) and (ii) V factors f of s, we have
arAay A--- Aap——f. Thus, we can replace a negated element by the negation of one
of its components provided the antecedents imply the negation of every factor. Thig is
required because incompatibility will be detected by inference failure and we need to
be certain that all failures are justified. We can always accomplish this if the negated
element is the factor of a principal down-set component. If no component satisfies
this constraint, we can add this principal down-set to the spanning set. We later show
how coreference and decomposition can be used to implement these constraints.

As an example, a spanning set for the cube lattice in Figure 4.5 is Sy = {la, |b, | ¢}
and the meet incompatibility constraints are {aMf=1,bMNe=1,cNd=1}. The aug-
mented spanning set is St = {la, 1}, lr, laAlb——]ec, laAlc—lb, |bAlc——]a}.

CHAPTER 4. THE FOUNDATIONS OF TAXONCMIC ENCODING 88

To take the meet M{e,b,c}, we first obtain the entire set above, from which we can
derive |a, |b, lc, lan]b——]cF]c, =]e, which is inconsistent. We can again reduce the
number of components in the augmented spanning set, while still maintaining meets:

Sp = {16, lc, laAlb—~]e, laA|lc——]b}.

4.9.4 Guarded constraints

Although constraints are global, for efficiency we want to selectively associate con-
straints with elements. We must do this in a way that ensures satisfaction, yet mini-
mizes the number of constraints associated with each element. A constraint could be
afliliated with each of its antecedents and its consequent, but to ensure satisfaction
only one antecedent, or the consequent in case there are no antecedents, needs to
be linked to it (since the antecedents are conjunctive). This leads to the notion of

guarded constraints, which are analogous to Dijkstra’s guarded commands.

Definition 4.11 Let P be an ordered set. A guarded constraint for P is a constraint
of the form a : A—b, where ANa—b is a constraint in P17, For any element a € P,

a: a is a trivial guarded constraint.

The set of guarded constraints obtained from I is denoted as I'C. A constraint
with k antecedents may result in up to k guarded constraints, but we may not need
to retain all of these: it may be possible to eliminate up to £ — 1 of the constraints,
although we shall see that this cannot be done arbitrarily. In the diamond lattice
example (Figure 4.1), we can guard the meet constraints and still maintain meets as
follows: T'¢ = {a:b— L, a:e— L, c:b—1}.

Modus ponens can be revised to operate on guarded constraints: a, A, (a:A—b) F b.
Given a starting set of constraints I', constraint inference becomes:

i. = {a:A—b|T,a,AF 6(2T)
. I = {a:A—b | (I,a,AF1 ¢1),--, (T, a,A by k) and T, ¢y, - - - ¢ by b}

7If A =8, we write a : b.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 89

For encoding, we will guard the constraints in augmented spanning sets. Thus S§
will be a set of guarded component constraints from Sr. We guard an elementary com-
ponent s as s:s (if we write s, this is assuming the implicit form s:s). The component
mapping is modified as follows: Cr(z) = {51 A ... A Sk_1—=8k]87 : S1IA . ASp_—5; €
SE,r € s9}.

Taxonomic operations are performed as bciore. The reason that we don’t include
the guard in the re<ult of the augmented component mapping is that the guard in-
dicates to which elements a constraint (or augmented component) is associated, and
the rest of the constraint is conditional on the context of the guard (analogous to
conditional probability). Also, in order to implement augmented spanning sets, we
require that, for every component of the form s9:51A ... Asg_1—r s, there are elemen-
tary components s;:s; for 1 <7 < k. Thus, down-sets involved in constraints (but not
necessarily guards) must be present as elementary components. We show later how
this property can be used to reduce encoding size.

In our example, S§ = {la, |b, le, la:lb—lc, la:le—1b, lb:lc—la}. Meets,
and now also joins, are preserved. We can also reduce this spanning set to S[¥ =

{1b, le, la:lb—]e, la:le—]b}.

4.9.5 Coreference

Logical terms provide coreference through named variables or labels. Two or more po-
sitions in a term that corefer must hold identical values, called a coreference constraint.
If one is instantiated, then all are identically instantiated. We can characterize coref-
erence as persistent or transient. Once a coreference point is instantiated, transient
coreference disappears (i.e. there is no recollection of the coreferring positions). This
is the form provided by Prolog. Although implementations may retain the coreference
constraint to reduce storage requirements, the surface form is transient. Persistent
coreference, as provided by LIFE [4], maintains the coreference after instantiation.
More generally, coreference is an equivalence relation within a term. That is
coreference is (1) symmetric: if it is used to implement a—b, then it also implements

b—a, and (ii) transitive (since we can only have one coreference label or variable at

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 90

a position in a term): if we implement a—b and b—c, then we are also implementing
a—c. By introducing coreference within 2 specific term, we implement a guarded
equivalence relation. For example, if we use coreference to implement the guarded
constraint s:s;—s,, then the equivalence class s; «» s; is implemented for elements
in s. Meet incompatibility constraints (e.g. s:5;——82) require the use of symbols,
as discussed in the next subsection. If we can decompose our meet inferences into
guarded equivalence classes, we can implement an augmented spanning set using

coreference in logical terms, as formalized below.

Theorem 4.18 Let L be a lattice, and SE be a guarded augmented spanning set on L
that contains no negated components (i.e. no meet incompatibility constraints). Then
there is a logical term implementation (which may use coreference) of SF if and only
if

i. Ifs9:51A83A -+ Asp—s € SE then k < 1

i. If SEF s9:51—s85 then SE b s9:5,—5;

iti. If SE+ s9:51—5, and SF & s9:5,—53 then SE F 59:5,— 53

The proof of this theorem follows from the fact that coreference cannot itself be
conditional (conditicn (i)) and it imposes a set of equivalence classes (conditions (ii)
and (iii)). Condition (iii) is actually unnecessary, since it follows from inference. It is
possible to take any constraint with more than one antecedent and split it into a num-
ber of constraints with two antecedents each. For the constraint a;AasA--- Aag—b,
we can create k — 2 additional elements l5 3,034, -+ {t_1 4 and rewrite the constraint
as: ajAay—ly 3, lsNaz—l34,- -, lk_1 xNag—b.

Logical terms can be used to implement augmented spanning sets that satisfy the
above restrictions. A coreference equivalence class will be introduced by its guard by
placing a new variable in the positions assigned to each of the coreferring components.
We may also be able to implement coreference using integer vectors equipped with
pointers. For non-decomposed spanning sets, we can use the same symbol (e.g. 1)
for all components, or just record the presence of the component without a symbol
(as is possible with sparse terms). We describe additional restrictions for decomposed

spanning sets and meet incompatibility constraints in the next subsection. Using

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 91

coreference, we can impiement our example spanning set for the diamond lattice as
shown in the first diagram in Figure 4.20. Meets are preserved with unification and

joins with anti-unification.
f(-—-’-—-) f(—.’.—-)

f(1,.) fOCX) (1) f,_) fXX) 1(.2)

f(1,1) 1,1 f(1,2) (2,2

Figure 4.20: Term encoding for diamond and cube lattices

There are lattices for which we cannot preserve both meets and joins with aug-
mented spanning sets of down-sets. As indicated, problems arise when we cannot
establish symmetry or transitivity of constraints. Figure 4.21 shows such a lattice.
If we are to preserve joins, the component mappings for each of a,b,c must be dis-
joint. Thus all the down-sets must be principal, and in particular the guards must
be principal down-sets. We must preserve the constraint «Ac—b, but neither aAb—c
nor bAc—sa holds, so there is no way to guard this constraint for implementation with

coreference.

Figure 4.21: Lattice for which no augmented spanning set of down-sets can preserve
meets and joins

4.9.6 Coreference, decomposition and meet incompatibility

constraints

Decomposition in augmented spanning sets only applies to elementary components
(components of the form s:s); the other components will be implemented as con-
straints between these. Meet-incompatible decomposition, in addition to reducing
space requirements, permits some meet incompatibility to be detected by union fail-

ure, and represents incompatibility constraints among pairs of elements. However,

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 92

when the meet of three or more elements 1s L, but every pair is compatible, we
cannot ensure incompatibility-as-failure using decomposition alone [102].

Since coreference imposes equality constraints between positions within terms,
and each subset in a decomposition is assigned a position within a term, we define a
partial function symbel that maps elementary component/subset pairs to the symbol
used to represent the elementary component within the subset. Thus symbol(s, a),
for s € a C S, returns the symbol used to discriminate component s from other
components within subset a. We specify the subset since components may be in
multiple subsets. For non-decomposed spanning sets with no meet incompatibility
constraints this was unnecessary, as every component could be assigned the same
symbol. For a chain decomposition, the symbols must be ordered according to the
chain order. For meet homogeneous decomposition, we must have a L, symbol to put
in the position of « for elements in every component, but otherwise the restrictions are
similar to those for meet incompatible decomposition. We do not consider these cases
further. Integrating coreference with meet incompatible decomposition of spanning

sets requires different restrictions than in Theorem 4.18:

Theorem 4.19 Let L be a lattice, SE be a guarded cugmented spanning set on L, and
A= {ay,...,a1} be a meet incompatible decomposition of the elementary components
of SE. Ther there is a logical term implementation (which may use coreference) of S§
if and only if (i) V 39:51As3A -+ - Asy—s € SE, k < 1 and (i) 3 guarded equivalence
relations, =,eC A x A for each guard s° in SE, and a symbol mapping that satisfy:
t. VYa€ A, if 51,53 € a and s; # sz then symbol(sy, a) # symbol(s,, a)
. Ifs9:5,—s; € S8 then Va, € A for which ¢, € ag, Jay € A for which s; € a;
and symbols;, &) = symbol(sz, az) and oy =4 a2
iii. If $9:51—5-sy € SE then Joy,0p € A for which s; € 1,53 € ay and
symbol(s1, a1) # symbol(sy, az) and a; =4
te. If neither s9:81—s, € S? nor s9:5;—sy € Slg, then
tv.1. Vag,ay € A such that s, € a; and sy € oz, if symbol(sy,a1) #
symbol(s,, ay) then —(a; =59 a3)
w.2. day,az € A such that s; € oq and s; € az, and (0 =4 a3)

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 93

For every constraint s9:s,—s, we need to establish coreference between each sub-
set containing s; and some subset containing s,. For every constraint $9:s,——s,, we
need to establish coreference between one subset containing s, and one containing s,.
By ensuring equality or inequality of the symbols, we can satisfy the constraint in the
context of s9. In the former case, we will infer s; given sy; in the latter case unification
will fail if we have both s; and s;. Thus, provisions (i), (ii) aud (iii) are necessary
conditions for implementation of the non trivial constraints in SF with coreference.
Since coreference forms a guarded equivalence relation among subsets of the decom-
position A, not among components, the establishment of coreference constraints must
be consistent with other constraints pertaining to the coreferring subsets. Provision
(iv) ensures that no unsupported inferences are made. Note that the above conditions
can be used when attempting to satisfy meet and meet incompatibility constraints
even if our spanning set is not decomposed by giving it the trivial decomposition that
puts each component in its own subset.

Given a satisfying set of guarded coreference relations and symbol mapping, we
can easily construct the terms as before. Each subset will have a position, as discussed
in Section 4.8. When computing the term for an element z, start with the inherited
term (i.e. the unification of the parent terms). For each subset « for which z is a
factor of a component s € ¢, put symbol(s,a) in the position for a. For each guard
s9 for which z is a factor of s?, add coreference between all positions ay, a, for which
o1 =49 Q3.

As an example, consider again the lattice in Figure 4.5. Using principal down-sets,
we can derive the augmented spanning set S§ = {|a, b, lc, lb:la—~]c, |b:le—]a}.
As in the previous case, we can notice that the elementary component |b is unneces-
sary, so a reduced spanning set is S1¢ = {la, lc, [b:la—=]c, |b:lc—=]a}. We can
now give the trivial meet-incompatitble decomposition, and define the symbol map-
ping as follows: symbol(la,{la}) = 1 symbol(lc,{lc}) = 2. Since the constraints
guarded by |b are equivalent, we can easily implement this spanning set, as shown in

the second diagram in Figure 4.20.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 94

4.9.7 Encoding algorithms

In [102] is an exploration of which forms of ordered sets can be encoded using logical
terms so that meets are preserved with union (i.e. unification) and meet incompati-
bility is detected with failure. In [104] this exploration is extended to general DAGs.

Our exploration of the use of constraints and coreference takes a different approach.
Mellish fixes on an implementation {e.g. terms or DAGs) and attempts to find the
class of ordered sets that can be encoded to preserve I'y and I') . In contrast, we take
the ordered set P to encode and the constraints to satisfy as input that we cannot
control. Our goal is to develop a variety of tools with which we can efficiently encode
P regardless of its form (although we assume that P is finite, and Mellish does not). In
the above two papers, the form of encodable ordered sets is explored, but no encoding
algorithms are presented. The only encoding algorithm that exploits coreference that
we are aware of is the brute force algorithm in [101]. Unfortunately, this algorithm
may potentially produce terms that are of exponential size compared to the size of
the ordered set to encode.

We have not given any encoding algorithm, although a naive one may be specified:

i. Start with the constraints to satisfy (e.g. a subset of '« UTnUT1).

ii. Derive an augmented spanning set S that satisfies these constraints (e.g.
the principal down-sets for meet-irreducible elements satisfy this).

1ii. Form a meet-incompatible decomposition of the elementary components.

iv. Form guarded coreference relations and a symbol mapping that satisfy as
many of the constraints as possible, while obeying provisions (i) and (iv) of
Theorem 4.19.

v. Derive the logical term for each element using the component and symbol

mappings, and the guarded coreference relations.

Recall that finding a minimal meet-incompatible decomposition is NP-Hard. Thus,
it seems likely that encoding algorithms that exploit logical terms and coreference
will be approximation algorithms. The above high-level algorithm will find a term
encoding that approximates the optimal in terms of space requirements and properties

satisfied. An area for future research is to design specific algorithms for term encoding.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 95

4.9.8 Variations

In order to enhance implementations of augmented spanning sets, there are several
avenues worth considering. The first involves the preservation of joins. Given a
spanning set Sxq, which preserves joins, when we augment this with constraints we
may lose joins because of constraints that are associated with cach element of the join,
but not with the result. This problem can be avoided by redefining joins to consider
only the elementary components.

Although coreference provides an efficient and available implementation of certain
forms of constraints, its nature restricts its usage. Since logical inference is transitive,
this is a desirable property to implement constraints. Symmetry, on the other hand is
not always desired; it does not always hold in a set of constraints. What we require is
a way to implement arbitrary guarded constraints. One approach would be to use a
constraint logic programming language. This is viable only if the language efficiently
implements such constraints. Another possibility is to use a “trigger” mechanism
that invokes a constraint when the antecedents are satisfied, but ignores it otherwise.
Coreference essentially allows the consequence to trigger the constraint as well as the

antecedent. This functionality is developed as reference constraints in Chapter 8.

4.10 Discussion and Conclusion

In this chapter, we have characterized encodings as implementations of spanning sets
that preserve subsumption and possibly meets and/or joins. We have thus provided
a framework in which to compare all approaches to encoding. Although implementa-
tions may have a drastic effect on the size and efficiency of encodings, we can abstract
the fundamental aspects of a technique to the level of spanning sets.

Throughout our analysis, we classified current encoding techniques within this
structure. We showed how the transitive closure and compact encodings in [2], the
tree encoding in [77] and a simplified version of a tree term encoding defined in [102]
are all implementations (or equivalent to implementations) of spanning sets of prin-

cipal down-sets or up-sets. The compact hierarchical encoding of [24] implements a

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

96

spanning set of compound down-sets, which we showed to be an approximation to
the NP-Hard optimum. The integer vector encoding of [97] employs chain partition-

ing. More complex term encodings described in [102] arise from meet incompatible

decomposition and coreference constraints induced by logical variables. Table 4.1

surnmarizes our characterization of these encoding schemes in terms of the opera-

tions satisfied, the types of components in the spanning set, whether decomposition

is utilized and the implementation of the spanning set. For comparison, we charac-

terize schemes using spanning sets of down-sets, which may be the dual of the actual

algorithm described. As can be seen, there are many possibilities open for exploration.

Table 4.1: Characterization of encoding schemes in terms of spanning set of down-sets

encoding [79]

type of spanning set decomposition implementation
encoding components

transitive closure join principal - bit
(2] Si vector
compact join principal - bit
(2] Sm vector
interval join principal - integer
[1] S1 intervals
virtual time join principal chain integer
[97] S1 vector
tree encoding meet prime - bit
[77] - vector
tree term [102] meet prime meet tree
[102] K incompatible term
term meet pseudo-prime!® meet logical
(102] incompatible term
compact subsumption compound - bit
hierarchical [24] vector
indexed join compound - bit
[61] vector
co-atomic tree subsumption compound - bit

' vector

In many of the our inquiries, the complexity of the problem has left open many

avenues for continued research. The NP-Hard results for minimal spanning sets of

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 97

compound down-sets and meet incompatible decomposition warrant further explo-
ration for approximation algorithms. In particular, we have indicated the utility
of multiple occurrences of factors in compound down-sets, offering the potential for
finding approximation algorithms resulting in more efficient subsumption encodings
than in [24, 61, 79]. Another area justifying more research is in the specification
and implementation of constraint-based spanning sets. Coreference provides a logical
implementation for certain forms of constraints. Mellish [101] provides a brute force
method for encoding any finite taxonomy using coreference.

A key factor affecting the design of encoding algorithms is whether the ordered
set is dynamic or static (i.e. the degree to which the ordered set may change during
run-time). The encoding of a static order can be computed a priori. In this case,
the speed of the encoding algorithm, and the feasibility of modifying codes is not
as important as the efficiency of the codes. For dynamic orders, however, we need
encoding schemes that efficiently generate encodings and are not brittle in the face
of change. In this case, the modifications required for codes should be local to the
change in the ordered set and should not take too long to update. Of course the
underlying spanning set will have a great impact on the scope of a change. Compound
components and decomposition both magnify the number of elements directly effected.
Implementations also have a significant effect on scope. Those which require every
element to be of the same length (e.g. bit-vectors and integer vectors), or which require
the specification of unfilled positions (e.g. bit-vectors and ordinary logical terms),
cause the scope of change to extend beyond those elements directly affected. Ior
the interval encoding in [1], the authors describe how leaving gaps between different
intervals can reduce the cost of updates (both inserts and deletes). As these gaps fill,
it may become necessary to re-encode the ordered set. We argue in Chapter 6 that
sparse terms may offer the flexibility required of dynamic environments.

One of the contributions of our analysis is that it may guide the development of
new encoding schemes. A given encoding problem may dictate certain constraints,
such as structural properties of the ordered sets to encode (e.g. lattice, distribu-

tive, bounded width), operations required (order checking, meets, joins), if the order

18Gee [102] for a description of pseudo-prime spanning sets.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 98

changes dynamically and how (does it grow top-down? are the changes frequent?),
and so on. The application and available hardware may also suggest an implemen-
tation (e.g. parallel hardware may preclude the use of coreference). The problem
pararneters will constrain the available techniques and may indicate the availability
or absence of existing algorithms to solve the problem. In the latter case, some of our
results may assist in the development of new algorithms.

There are several important topics that we did not cover in this chapter. We did
not discuss in detail the problem of decoding the result of a meet or join operation
to obtain the element(s) in the original order. The importance of this depends on
the application. Some applications (e.g. [2]) only need to perform a decode operation
after many meet operations, and so the efficiency of decoding is less significant. Other
applications, however, may need to decode after every operation. There are several
options to decode efficiently. Efficient algorithms have been proposed in [61, 77, 78,
114]. The composition of sparse terms may be exploited in decoding. Depending
on the implementation, hashing may also be possible. Anothei area we ignored is
relative complements, which involves the association of negative, as well as positive,
information with elements. We hypothesize that the technique in [2] can be formalized
in terms of spanning sets and integrated with the techniques we have discussed.

We have proposed spanning sets as a foundationai framework in which taxonomic
encoding techniques can be classified. Our analysis exposes connections among ex-
isting schemes in terms of the information content of the resulting encodings and
the implementation techniques employed. We have also shown some of the limits of
encoding, especially our NP-Hardness results. The classification also reveals several
avenues for continued research on encoding, particularly for algorithms to approxi-
mate the NP-Hard problems (e.g. sections 4.7 and 4.8) and for exploration of some of
the generalizations and extensions that we have proposed. Additional exploration of
the use of constraints (such as coreference constraints provided by logical variables)
is also warranted.

We feel that this work provides an important view on the field of taxonomic encod-
ing, summarizing current efforts and giving direction for its continuing development.

It is one step forward in the quest for efficiency in taxonomic reasoning.

Chapter 5

Modulated Encoding

“Thinking is sometimes injurious to health”™

~ Aristotle

In the previous chapter, we considered encoding ordered sets in their entirety. Using
the techniques presented, many efficiency gains can be realized. However, if we could
decompose our ordered set P into a number of smaller units, dramatic decreases in
space may be achieved®.

In this chapter, we examine ordered sets in terms of intervals. A special type of
interval, called a module, leads to an efficient form of order partitioning called modu-
lation [2] where each partition can be encoded, or further modulated, independently.
This allows us to synthesize, with little overhead, different approaches to encoding,
by taking advantage of the most efficient techniques for portions of a taxonomy.

Modulation is related to modular decomposition of graphs, particularly compara-
bility graphs [90, 109, 112]2. Another form of partitioning for distributive lattices is
described in [78]. We present a flexible scheme to perform lattice operations on mod-
ulated taxonomies, and also lay some groundwork for generalizing modulation. This
chapter extends our research in [49], and provides correctness proofs for operations in

modulated taxonomies.

!The decomposition techniques described in section 4.8 of Chapter 4 are designed to decompose
spanning sets to improve the space efficiency of implementation whereas in this chapter, decompo-
sition is a meta-level technique for subdividing an order to encode into two or more smaller orders.

2A graph Gp is the comparability graph of an ordered set P if Gp = (P, E) and (z,y) € E if and
onlyifzr<yory<z.

99

CHAPTER 5. MODULATED ENCODING 100

5.1 Order Intervals and Modules

Definition 5.1 Let P be an ordered set. A closed interval, denoted as
[{a1, - ,am}, {b1, -, b.}], is a set of elements {z € P|3a;, b; such that a; < z < b;}.

We can alternatively define a closed interval as the intersection of a down-set and
an up-set: [{ay, - ,am}, {b1, -, 0} = T{ar,---,am} N [{b1,---,bi}. Intervals in
ordered sets are analogous to intervals in total orders, such as the integers, and are
also known as conver suborders. Open and half-open intervals can be similarly defined
using non-inclusive subsumption. If m = 1 and n = 1, then the interval is called
principal; otherwise it is compound. A canonical principal interval [a, b] requires a < b
and represents a unique, non-empty set of elements®. If A, B C P then the compound
interval (A, B] can be defined as a union of principal intervals: [A, B] = U,c4 5e5l9, b]-
The notation for a compound interval must not contain any redundant information:
[A, B] is canonical if A and B are anti-chains, and VYa € A,3b € B,a < b and dually.
This ensures that non-empty intervals are uniquely represented with this notation.

Since intervals are a restricted type of subset, a spanning set of intervals is simply
a set of intervals for which the component mapping is one-to-one. Rather than using
spanning sets of intervals directly, however, we will employ certain forms of intervals to
partition the ordered set into more manageable pieces that can then be encoded using
approaches described previously. Down and up-sets in these segments correspond to
intervals in the original ordered set.

Intervals are related by two partial orders: containment and subsumption. Since
intervals represent subsets of a lattice L, they can be related by set containment:
[a,b] C [c,d] if and only if ¢ < @ and b < d and [A,B] C [C, D] if and only if
Va€ A,be B,3c € C,d € D where ¢ < a and b < d. The subsumption ordering on
L can also specify subsumption on intervals. We first define (absolute) subsumption:
(a, 8] < [c,d] if and only if b < ¢, which is equivalent to: Vz € [a,b],Vy € [¢,d],z < y.
For compound intervals, 4, B] < [C, D] if and only if Vb € B,Vc € C,b < c. We

now define partial subsumption among intervals: [a,b] < [c,d] if and only if Vz €

3If a < b does not hold, then [a,b] = 0.

CHAPTER 5. MODULATED ENCODING 101

la,b],3y € [c,d],z < y. This is equivalent to: b < d. Absolute subsumption and
interval containment can both be seen as special cases of this.

We are particularly interested in certain forms of intervals that permit us to parti-
tion an ordered set without incurring a loss of information or unreasonable additional

cost to maintain order. Our analysis formalizes and extends an earlier proposal in [2].

Definition 5.2 Let P be an ordered set, a € P and C P. A surrogate for a in @
is an element b € P for whichVx € Q, (i) a < z if and only if b < z and (i) a > =
if and only if b > x.

An element b € P that satisfies only the first (second) condition is called an upper
(lower) surrogate for a in Q). Also, if a is a surrogate for b in ¢}, then b must also be

a surrogate for a in Q.

Definition 5.3 Let P be an ordered set. A subset M C P is called a module if
Vz,y € M, = is a surrogate fory in P\M.

That is, Vz,y € M and z € P\M, z < zif and only if y < 2z, and z > 2 if and
only if y > z. Modules are also called order autonomous sets [90], and the sets in the
comparability graph Gp that correspond to modules are called modules, stable sets,

or clumps [109]. We now state some properties of modules.

Theorem 5.1 Let L be a lattice. Then M C L is a module if and only if UM = b is

an upper surrogate and MM = a is a lower surrogate for M in L\M .

Proof: = Suppose M is a module. Let b = UM and @ = NM. Also, let z € L\M and
r € M. If 2> b then z > z (by the definition of join). If 2 > z then z > yforall ye M
(by the definition of a module). Then 2 > b (by the definition of join). Thus b is an upper
surrogate for M in L\ M. An analogous proof can show that a is a lower surrogate for M
in L\M.

<« Suppose b is an ubper surrogate, and d is a lower surrogate, for M in L\M . Consider
any 2 € L\M and z,y € M. 2z > zifand only if 2 > b if and only if z > y, and z < z if
and only if 2 < a if and only if z < y. Thus every pair of elements in M are surrogates in
I\M, so M is a module.g

CHAPTER 5. MODULATED ENCODING 102

Corollary 5.1 Let L be a lattice. If a subset M C L is a module, then

i. There are no elements between the mazimal (minimal) elements of M and

the join (meet) of M: [[M|,UM] =0 and MM, |M]] =0,
iW. M is a closed interval: M = [|M], [M]] and

wi. The only arcs entering (leaving) M are through the mazimal (minimal) ele-
ments of M :
M = [[MI\|[M] U [M]=T[M]\T[M] U [M].

Proof: (i) Suppose 3z € L\M for which z < UM and z > y for some y € [M]. But
then UM is not an upper surrogate for M in L\M. By the above theorem, M cannot be a

module.

(i) If z € M, clearly z € [[M],[M]]. Let z € [[M],[M]]. Then Ja € [M],b € |M]|
such that b < z < a. Suppose z ¢ M. Then a and b cannot be surrogates for each other
with respect to z.

(iii) Suppose M is a module. By (ii) above, M = [|[M],[M]]. Let z € M. Clearly
z € [[M]. z € |[|[M] if and only if 2 € [M]. In either case, z € [[M]\||M]| U [M]. Let
z € |[[M]\|[M]U|M]. Then either z € |[M] and 2 ¢ ||[M]| or z € |[M]. In the latter
case, z € M. For the former case, 3a € [M] for whichz < aandVbe ([M|,z £b. fz ¢ M
then M cannot be a module. We can analogously show that M =7 |[M|\ T [M] U [M].q

This corollary shows that a module is a special type of interval (item (ii) above).
The general forms of a module are shown in the following figure. In the first and third
b is a surrogate. In the first and second, a is a surrogate. In all cases, a is a lower

surrogate and b is an upper surrogate.

X X X X

y NP N A
Figure 5.1: Types of modules

CHAPTER 5. MODULATED ENCODING 103

5.2 Order partitions

Definition 5.4 Let P be an ordered set. An order partition is a partition of P into
two suborders @) and P\Q.

A partition basically loses the subsumption information between elements in

and P\@Q. We say that @ C P induces the partition () and P\Q.

Definition 5.5 A partition of an ordered set P.into) and P\Q preserves subsump-

tion if Ja,b € P\Q suca that a is a lower surrogate, and b an upper surrogate, for @

in P\Q.

Theorem 5.2 Let L be a lattice and Q@ C L. Then Q is a module if and only if the
partition induced by Q\{UQ,NQ} preserves subsumption.

Proof: = Suppose () is a module. Let b = UQ and a = M. By a previous theorem, b is
an upper surrogate, and a a lower surrogate, for @ in P\@Q. Since Q\{UQ,NQ} C @ and
a,b ¢ Q\{UQ,NQ}, this partition is subsumption preserving.

< Suppose the partition induced by Q\{UQ,NQ} preserves subsumption.
Then Je¢,d € P\(Q\{UQ,NQ}) such that ¢ is an upper surrogate, and d a lower surrogate,
for @ in P\(Q\{UQ,NQ}). Let z,y € Q and z € P\Q. Then z < z if and only if ¢ < z if
and only if y < z and z > z if and only if d > z if and only if y > z. Thus, Q is a module.g

Note that UQ and M) need not be in Q). Both are in @ only for principal modules.

In this case, only one of these need be left behind in the partitioning.

Theorem 5.3 Let L be a lattice and let Q) be a module in L. Then the decomposition
of L into Q and L\Q U {UQ,NQ} produces two lattices.

Proof: Clearly @ is a sub-lattice (i.e. it is closed under meets and joins). Consider the
meet of any two elements in L\Q U {UQ,NQ}: z My. The only way z Ny could be in () is

if z My = UQ, otherwise @ is not a module.g

CHAPTER 5. MODULATED ENCODING 104

5.3 Modulation

Modulation involves partitioning a lattice into two sublattices according to a mod-
ule, and successively repeating until only trivial or small modules remain, essentially
constructing a lexicographic decomposition [90]. In the comparability graph, this
corresponds to modular, tree or substitution decomposition [90, 109].

At each step, the surrogates for the module inducing the partition are retained
and associated with this module, essentially creating the quotient graph induced by
this module [109]. Due to the partitioning, the containment relation of the final set of
modules forms a tree, called the containment or decomposition tree and denoted as C7T .
This tree corresponds to the decomposition graph of Gallai [60, 90]. Subsumption,
meets and joins in the original lattice are maintained in the modulated lattice through
the individual modules, their surrogates and the containment tree. The orders induced
by the modules and C7 will be distinguished using subscripts. '

Let us define two functions mapping modules to their surrogates: Sypper(M) and
Stower (M). To simplify our procedures for taxonomic dperatidns in modulated lattices,
we define, for an element z € L, Syppe,(2) = = and Sjpper () = z. Let us also define a
function mapping elements to their smallest containing module: M(z). We can now

define the taxonomic operations in a modulated lattice L:

Subsumption z <;, y if and only if
1. Meonters = M(z) Uer M(y).
i1. 3 children My, M, of M onies: for which M(z) <c7 M, and M(y) <c1 M,
1. Supper(Mz) SMeoncese Stower (My).

Meet z Ny y = z if and only if
1. Meontezt, My, M, are as above.
n. Ifx>pythen z=y. If z <, y then z = 2.
iii. If z|ly then z = Siower(Mz) NMatoonreae Stower (My)-

“If M(z) = M(y), then M_,n105¢ will be a leaf of the containment tree. In this case, M, = z and
M, = y. Essentially, this treats elements as (atomic) modules.

CHAPTER 5. MODULATED ENCODING 105

Join z Uiy y = z if and only if
1. Meontezt, Mz, M, are as above.
n lfz>pythen z=z. fr<pythen:z=y.
ii. If 2|y then z = Sypper(Me) Untooniere Supper(My)-

Theorem 5.4 Let I be a modulated lattice. Then the above equivalences for sub-

sumption, meets and joins hold.

Proof:
Subsumption Let z,y € L. M, (M,) is the largest module that contains x (y) but not y

(z), and Moniert is the smallest module that contains both = and y. By the delinition
of surrogates, z <r, y if and only if Sypper(Mz) <M.onrere ¥- Similarly, £ <y, y if and

only if <af,.1eze Stower(My). Putting these together, we arrive at our result.

Meet Let z,y € L and suppose zMpy = z. Clearly, if z > y (z <r, y) then z = y (z =).
Otherwise, z < z, z <p y. M; (M) is the largest module that contains = (y) but

not y (z), and M ontert i3 the smallest module that contains both z and y. Also, by

the definition of modules, z must be an element of M onier:-

By the definition of surrogates, z <y, z if and only if 2 <ps_,,..... Stower(My). Similarly,

z <r yif and only if z <ar._..... Stower(My). Putting these together, gives our result.

Join The proof is the dual of the proof for meets.

u]

In an unmodulated encoding, subsumption requires one comparison of codes and
meets require one calculation followed by decoding. Here, subsumption requires one
calculation in the containment tree to find the context module and one comparison of
codes within this module. Meets require the calculation to find the context module,
one calculation within this module and decoding. Thus, although the number of
comparisons is greater, the size of each code can be drastically reduced, since the size of
the resulting modules and the containment tree will be much smaller than the original
ordered set P. For the proposal in [2], the number of operations increases linearly
with the depth of the containment tree C7. The above operations are simplified if,

for each module, upper and lower surrogates are the same element.

CHAPTER 5. MODULATED ENCODING 106

To encode a modulated lattice involves encoding each sublattice formed by the
partitioning as well as the containment tree. Any of the techniques previously cov-
ered can be used, although there are particularly simple and efficient techniques for
encoding trees (e.g. {34]). Associated with each element z is its smallest containing
module M(z) and its code Cps(x) within this module. Associated with each module
M is a code for the containment tree and the surrogates Sypper(M) and Sipyer (M).
The spanning set for the entire lattice is the union of the spanning sets for these
sublattices plus the intervals defined by the sublattices themselves. The component
mapping will compute the components of an element within its smallest containing
module plus the defining interval of this module. Thus, the above operations can be
efficiently implemented.

Since any technique can be used to encode a module, modulation opens the pos-
sibility of heterogeneous encoding [49]: different modules can be encoded using tech-
niques that are best suited to the form of the order within the module. For exam-
ple, modules that are chains may be encoded using integers, while modules that are
anti-chains may be encoded using logical terms. In both cases, the use of different
techniques can lead to optimal encodings. The only additional information required
for a module is the type of encoding technique utilized.

Figure 5.2 depicts a modulated lattice, where the modules are encircled by ovals
and named for illustrative purposes. In an implementation, they can be replaced by
their surrogate elements. The containment tree of this modulation is also shown. In
order to determine if v < d, we first compute M onterr = Mg Uer Ms = M. M, = M,
and My = M;. Now, M; <;; M,. so we conclude that v < d. To compute ¢ d, we
find Meonteze = My, M. = My and My; = M;. Then M, Ny, Ms = s. Similarly, cMe
gives us Mj, the surrogate of which is u.

There still remains the problem of finding modules. Fortunately, we can take ad-
vantage of results from comparability graphs. In [109], an algorithm that requires
O(|PJ?) time and O(]P}?) space is described for constructing the entire decomposi-
tion tree in a top-down manner. This paper also cites two other algorithms that have
time and space complexity of O(|P|?), the latter of which constructs the decomposi-

tion tree incrementally. There exist more recent linear algorithms for producing the

CHAPTER 5. MODULATED ENCODING 107

Figure 5.2: A modulated lattice and its containment tree

entire containment tree [31, 76]. These algorithms may be adaptable to heteroge-
neous encoding. Also, in [2], an efficient approximation algorithm for modulation is

described.

5.4 Extending modulation

The restrictive nature of a module permits efficient partitioning as well as compu-
tation of lattice operations. Unfortunately, many lattices cannot take advantage of
modulation, particularly very dense lattices. Additionally, in a dynamic environment,
modules are fragile and can be breached by the addition of a single arc entering or
leaving the middle of the module. We outline below one approach we have developed

to make modules more flexible.

5.4.1 Lower and Upper Semi-Modules

Definition 5.6 Let P be an ordered set. A subset M C P is called a lower semi-
module if Vz,y € M, z is a lower surrogate for y in P\M.

Upper semi-modules are defined dually. For a subset M of a lattice L, we can show
that MM = a is a lower surrogate for M in M\L if and only if M is a lower semi-

module. For a lower semi-module, we only obtain a lower surrogate. Elements within

CHAPTER 5. MODULATED ENCODING 108

the semi-module may have different upper surrogates, but we may still be able to split
our lattice on this semi-module, retaining only the surrogates in the original lattice.
Thus, instead of an order partition, we end up with an order decomposition and the
containment tree becomes a containment order. An exampie is shown in Figure 5.3.
The first diagram is a lower semi-module within the context of our lattice, where
element a is a lower surrogate. The second diagram shows a partition of this semi-
module (with the grey lines) according to upper surrogates, which are the greatest
elements within each partition. Only these elements need be retained in the original
lattice, as we modulate. The set of upper surrogates in a lower semi-module M is
the set obtained by the meet closure (within M) of the elements that breach M

from above. In this example, elements b, ¢ and e breach M and the meet closure is

{b,¢c,e,i}, since eMec = 1.

Figure 5.3: Lower semi-modules

Lower modulation incurs some duplication of elements, since the lattice is not
partitioned (i.e. the upper surrogates are in both resulting lattices). Each element
must now have associated with it not only its smallest containing semi-module, but
also its upper surrogate in this semi-module (the lower surrogate is associated with the
semi-module). Within the semi-module, the duplicated elements are ghost elements
- they are no longer treated as other elements, but act as place holders for resolving
operations within the semi-module. We may, however, still achieve space savings if
we can decompose a lattice using lower semi-modules that do not have too many
upper surrogates. Upper semi-modules may be particularly useful for ordered sets
that grow dynamically downwards (such as those in [24]). In this case, once an upper
semi-module is identified, it will never be breached by later updates, although the

number of lower surrogates may change.

CHAPTER 5. MODULATED ENCODING 109

5.4.2 Generalized Modules

We can generalize this technique one step further to decompose a lattice based on
any interval that is closed under meets and joins. Note that a trivial sublattice of an

ordered set P is a singleton set, P itself or the empty set.
Definition 5.7 A generalized module of a lattice L is a non-trivial sublattice of L.

A number of upper and lower surrogates for the module may need to be left in the
parent lattice on decomposition. These elements can be determined as above, where
the lower surrogates will be the join closure of elements that breach the module from
below. Now, in addition to the smallest containing module M, we need to associate
with every element its upper and lower surrogates within this module (as well as its
code in M).

There are several consequences of modulation using generalized modules:

i. Modules may overlap: we may have My € My, My, € M,, but My 0 M, # 0.

The containment relation is no longer a tree, but a general partial order.

ii. Upper and lower surrogates are no longer associated with modules, but with

individual elements.
iii. Ghost elements result in duplication of surrogate elements.

Consider the lattice fragment in Figure 5.4, where we have encircled a potential
module M. The left fragment partitions M according to lower surrogates and the
right fragment partitions M according to upper surrogates. Modulation on M will
remove all the elements that are neither upper nor lower surrogates in M, as shown
in the rightmost diagram in Figure 5.4. Each element has a unique upper and lower
surrogate in these remaining elements. For elements that are removed (i.e. elements
that are neither upper nor lower surrogates for this module), no duplication occurs.
Both upper and lower surrogate elements are now duplicated: the element that is in
the module is a ghost element. We discuss the implications and handling of ghost
elements below. Once the decomposition has occurred for a module, we can continue

the process of modulation.

CHAPTER 5. MODULATED ENCODING 110

Lot

h'd
~

N\
|

SN

Figure 5.4: Generalized modulation. Lower surrogates (left) are {a,e,!} and upper
surrogates (centre) are {b,e, f,n}.

5.4.3 Nen-overlapping Modulation

We first consider generalized modulation for modules that do not overlap (i.e. for two
modules, either one contains the other, or they share no elements in common). In this
case, the containment relation is strictly a tree. In the example in Figure 5.4, further
modulation would either contain all or none or {a,b,e, f,l,n}.

We associate with each module M its code in the containment tree C7. With
each element ¢ we associate its least containing module M(zx), its upper and lower
surrogates Supper () and Siower (), and its code in this module.

The procedure for computing subsumption can now be extended with a modifica-
tion to use the surrogates associated with individual elements rather than modules.

A surrogate pathway will need to be followed through the containment tree from the

initial elements to the context interval.

Subsumption z <; y if and only if

i Momtewt = M(z) Uer M(y).
ii. 3 elements s;, 5y in Mconters that can act -s surrogates for z and y (and
can be computed as follows, where “:=” denotes assignment.):
Sp 1= X; 8y 1= U;
while M(sz) # Mcontert: Sz = Supper(Sz);
while M(sy) # Mcontezt: Sy = Stower (Sy)-
. sz <py, Sy-

context

A similarly modified procedure can be applied to compute meets. The procedure

for joins can easily be derived.

CHAPTER 5. MODULATED ENCODING mn

Meet z Mgy = z if and only if

i. fz>ythen z=y. If <y then z = z.
ii. If z{ly then

1n.a. M.ntert = M(z) Uer M(y)

ii.b. 3 surrogate elements s;, s, in Mcontere for and y (and can be
computed as follows):
Sz 1= T Sy = U;
while M(3;) # Meontent® Sz := Siower(Sz);
while M(3y) # Meontest: Sy := Siower(Sy)-

11.C. 2 = Sl‘ '—'Mcontc.rt Sy'

In strict modulation, surrogates are associated with modules, so once we have
found the contextual module M ,sez:, We can use the surrogates for the appropriate
children. Here, we must follow a path of surrogates from the initial elements to the
contextual module. Whether upper or lower surrogates are following depends on the
operation. The length of these paths depends on the depth of the containment tree,
which in turn depends on the sizes of modules.

Note that when performing a meet zMy = z, the result z may be embedded within
a module below (in the containment tree) the context M yniezt. Due to the way ghost
elements are dealt with (i.e. duplicating elements in the meet and join closure of
breaching elements), however, this element will be duplicated in both the context and
this lower level module (in the latter, it will be a ghost element). Thus, the meet can

be performed in M yniez:-

Theorem 5.5 Let L be a lattice that is modulated using generalized modules with no

overlapping modules. Then the above equivalences for subsumption and meets hold.

Proof:

Subsumption Let z,y € L. Mcontert is the smallest module that contains both z and y,
Let sy = z,89,...,8t = 8; be the path of surrogates followed from z to s; in the
above procedure (i.e. Sz = Sypper(Supper(** (Supper(z)-+*))) and M(s;) = Meontest)-
By the definition of surrogates, z <z, ¥ if and only if s; <af e ¥- Similarly, z </, y

if and only if £ <pf,.,... Sy- Putting these together, we arrive at our result.

CHAPTER 5. MODULATED ENCODING 112

Meet Let z,y € L and suppose zMyy = 2. Clearly,if ¢ > y (z <r y) then z = y (2 = z).
Otherwise, z <, =, z <f, Y. Mcontert is the smallest module that contains both z and
y. Also, by the construction used in generalized modulation, z must be an element
of M niezt- This is because the meet closure of elements that breach any module are
duplicated (one is left in the containing module, and the other is retained as a ghost
element in the contained module). By the definition of surrogates, 2 <y, z if and only
if 2 <Mopniese Sz (as shown above). Similarly, z <z y if and only if 2 <ar,npe0 Sy-

Putting these together, we arrive at our result.

An area requiring a closer look is the treatment of ghost elements, which are
duplicated upon decomposition. A ghost element z, is created when an element z is
a surrogate for one or more elements in a module M. The element # remains in the
parent lattice, and its duplicate z, remains in the module. This ghost element only
needs to be present as an image of z so that operations within the module M which
result in z, can be resolved. Thus, the ghost needs to be encoded in M, but it does
not need any other associated information (i.e. the smallest containing module and
surrogates). A ghost element z, can be viewed as a place holder for the portion of

the code of z associated with module M.

5.4.4 Overlapping Modulation

In strict modulation, overlapping modules are not possible. In our generalization,
this may now occur - this will happen in the example in Figure 5.4 if a new module
contains some, but not all of {a,b,e, f,I,n}. There are two complications that arise
from overlapping modules: (i) the containment information is no longer a simple tree,
but a general partial order, and (ii) determining the context M snsez: of an operation,
and the surrogates in this context, is more difficult.

To deal with these problems, we no longer rely on the containment relation be-
tween modules. Instead, we use surrogate containment information, and the resulting
surrogate containment order SC: For two modules M; and M;, M, covers M; in SC
if and only if M, contains a surrogate for at least one element in M, (i.e. iff 3z € M,

such that Supper(2) € M 0r Siouer(T) € M3).

CHAPTER 5. MODULATED ENCODING 113

Extending the taxonomic operations for overlapping modules requires following
surrogate pathways through SC to find the contextual module. Since we cannot
easily identify the contextual module, rather than encoding SC, we associate with
each module M a level, level(M), which is the length of the longest path from M to
the root of SC. The modified procedures for subsumption (for generalized modules)

and meets are given below.

Subsumption z <; y if and only if
i. 3 M_onter: and elements s, 8y in Meonzers that can act as surrogates for
r and y (and can be computed as follows):
Sz i=T; 8y =Y;
Lev := maz(level(M(s;)), level(M(sy))) — 1;
while M(sz) # M(sy)
while level(M(s;)) > Lev: 85 := Supper{Sz);
while level(M(sy)) > Lev: sy := Siower(Sy);
Lev := maz(level(M(s;)), level(M(sy))) — 1;
end while;
M ontext := M(s2).

1. Sg S-Z\lcant'e:z:t Sy-

Meet z My = z if and only if
i. fz>ythenz=y. If z <y then z = z.
ii. If z||y then

il.a. 3 Meontert and elements sz, S, in Meonier: that can act as surro-

gates for z and y (and can be computed as follows):
Sz =T} Sy =Y
Lev := maz(level(M(s;)), level(M(s,))) — 1;
while M(s;) # M(sy)
while level(M(sz)) > Lev: sz := Siower(5z);
while level(M(s,)) > Lev: sy := Siguwer($y);
Lev := maz(level(M(s;)), level(M(s,))) — 1;
end while;
Meontezt 1= M(Sa:)-

i.b. z = 8; MM, peene Sy

CHAPTER 5. MODULATED ENCODING 114

Theorem 5.6 Let L be a lattice that is modulated using generalized modules (with
possible overlapping modules). Then the above equivalences for subsumption and meets

hold.

Proof:
Subsumption Let z,y € L. We need to find Mconter: as well as surrogates for z and y in

Mcontezt- The level of modules decreases monotonically as we ascend the surrogate
containment order SC searching for M ontez:t, Sz and sy, but it may decrease in steps

greater than one.

Initially, we set Lev to one level above the lowest (maximum) level of z and y. This
ensures that the lowest of s;,s, (or both if they are at the same level in different
modules) will move up at least one level in the subsequent two loops. The outer
loop continues until we have found Meonter: (i-e. until M(s;) = M(s,)). The two
inner loops each continue until the level of s; (s,) is at or above Lev. Since we are
following upper (lower) surrogates for s, (sy), the subsumption relation between s;

and s, remains invariant. After both inner loops complete, we set Lev again as above.

At the end of the loops, M (sz) = M(sy) = Montert- Meontext is the smallest module
that contains both an upper surrogate for z and a lower surrogate for y. Since we
move up SC following upper (lower) surrogates for z (y), we find the first module that

contains appropriate surrogates for both.

Let sy = z,89,...,8; = sz be the path of surrogates followed from z to s; in the
above procedure (i.e. 8; = Supper(Supper(* - *(Supper(z) -+ +))) and M(sz) = Meontest)-
By the definition of surrogates, z <r, y if and only if s; <pr....... ¥- Similarly, z <p y

if and only if z <as,,.;... Sy- Putting these together, we arrive at our result.

Meet Let z,y € L and suppose zMry = z. Clearly,if z >, y (x <g y) then 2 = y (z = z).

Otherwise, z <, 2, z <p y. We need to find M y,¢cr: as well as surrogates for ¢ and

Y in Montext, as above.

Initially, we set Lev to one level above the lowest (maximum) level of z and y. This
ensures that the lowest of s;,s, (or both if they are at the same level in different
modules) will move up at least one level in the subsequent two loops. The outer loop
continues until we have found Mcontes: (i-e. until M(s;) = M(sy)). The two inner

Joops each continue until the level of s; (s,) is at or above Lev. Since we are following

CHAPTER 5. MODULATED ENCODING 115

lower surrogates for s; (sy), the subsumption relation between s, (s,) and z remains
invariant. After both inner loops complete, we set Lev again as above.

At the end of the loops, M(s;) = M(sy) = Meontert- Meontert is the smallest module
that contains a lower surrogate for both z and y. Since we move up SC following lower
surrogates for z (y), we find the first module that contains appropriate surrogates for

both.

By the construction used in generalized modulation, z must be an element of M onsex: .
This is because the meet closure of elements that breach any module are duplicated
(one is left in the containing module, and the other is retained as a ghost element in

the contained module).

By the definition of surrogates, 2 <y, z if and only if z <p,_.,... Sz (as shown above).
Similarly, z <, y if and only if z <pf...,.c Sy. Putting these together, we arrive at

our result.

5.4.5 Extending Modulation Algorithms

We have outlined the properties and requirements of generalized modulation for encod-
ing purposes, but we need algorithms that can find “good” decompositions. Perhaps
some of the algorithms for modulation can be adapted to decompose an ordered set
into lower semi-modules or generalized modules for which the number of surrogates
(i.e. the degree of duplication) and the amount of overlap is minimized.

Although generalized modulation may not guarantee encoding efficiency, it does
offer many potential benefits. First, the fragility and stringent nature of strict mod-
ules makes modulation impractical for many encoding environments, especially for
ordered sets that are dense. Although generalized modulation may still be inefficient
for very dense lattices, there is the opportunity to expand the utility of decomposition
and heterogeneous encoding. Generalized modulation may also be used in conjunc-
tion with strict modulation in dynamic environments. Starting with a modulated
lattice, updates to the lattice that breach modules may be tolerated, while incurring
only a small overhead for updating the encoding. When the decomposition becomes

inefficient, the new ordered set can be remodulated. Another benefit of generalized

CHAPTER 5. MODULATED ENCODING 116

modulation is in distributed environments, in which a large ordered set may be spread
out over a number of sites. The portion of the ordered set at each site can be encoded
independently of the others, and duplication of information across sites may only be

necessary for the containment order.

5.5 Conclusion

Recent results in taxonomic encoding have identified various taxonomic forms for
which efficient encodings exist (e.g. distributive lattices, trees and bounded width
lattices). Through order partitioning techniques, a generalized heterogeneous en-
coding scheme can take advantage of these encoding schemes when such forms are
identified as suborders.

In this chapter, we formalized and extended lattice modulation for encoding, intro-
duced in [2]. Modulation partitions a lattice to encode into sublattices and offers the
possibility of greatly reducing encoding sizes regardless of implementation, and with-
out undue cost in performance. Generalized modules may increase the applicability
of modulation, even for dense, dynamic or distributed lattices. By maintaining (and
encoding) the containment information of the decomposition, we provide an efficient
framework in which modulated encoding is both feasible and efficient.

For dynamic taxonomies, modulation may confine the extent of change. The
strict nature of modules, however, makes them susceptible to violation as a result of
change. The generalized modules developed in section 5.4 are more impervious to
change. Finally, modulated encoding may aid in decoding, since we know in which

partition the result lies, greatly reducing the search space.

Chapter 6

Encoding with Sparse Logical

Terms

“Unless you ezpect the unezpected you will never find truth,
for it is hard to discover and hard to attain”

- Heraclitus

The purpose of the present chapter is to empirically apply the theory of encoding.
During our research, we developed sparse logical terms as a variant of logical terms that
are particularly suitable for encoding [51]. Sparse terms are closely related to directed
acyclic graphs (DAGs), which have also been studied for encoding [104]. Our focus,
however, is on developing an efficient implementation for encoding rather than taking
an existing technique. Sparse terms share a number of similarities with Prolog terms,
y-terms in LIFE [4], feature structures [5, 23, 118], the PATR II formalism [131, 132},
etc. However, the focus of sparse terms as an efficient representation for encoding
endows them with a number of key distinctions from these other forma.lisrris, as will
become clear. Since our aim is to use sparse terms as a contribution to encoding,
rather than as a contribution to the suite of logical formalisms, we chose to omit
‘in-depth coverage of these related formalisms.

After motivating our development of sparse terms, we introduce the basic form of
sparse term developed in [51]. In section 6.3, we develop extensions that make sparse
terms suitable as a universal encoding implementation. We then provide algorithms

that implement the transitive closure and compact encoding techniques, which are

117

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 118

the first logical term algorithms to be published. Finally, we analyze some theoretical
properties of sparse terms in encoding, which we back up with an empirical study of

encoding using two taxonomies derived from existing applications.

6.1 Introduction

Compact representations for data structures are commonly used when certain proper-
ties can be exploited to significantly reduce the storage space required. As an example,
principles of locality are used in data compression techniques. For sparse matrices,
the assumption that the majority of elements are zero permits us to retain only the
nonzero elements, along with their coordinates. If this assumption holds true, the
savings accrued by not explicitly storing the zero elements outweighs the additional
cost of storing coordinates for nonzero entries.

We develop a similar representation for logical terms. A sparse term is a term in
which the majority of elements (i.e. functors, atoms and variables) are anonymous
variables. Named variables provide coreference between term positions, whereas the
only purpose of anonymous variables is to reserve positions, and so they do not con-
tribute to the information content of a term.

Applications that work with sparse terms can benefit from sparse terms both in
terms of space and time. Unification with an occurs check needs only to examine
the named variables. Unification without an occurs check is linear in the sum of the
number of atoms, functors and variables of the two terms. This will be more efficient,
as our sparse representation eliminates the storage of anonymous variables.

Sparse terms were, however, developed primarily to provide a form of logical term
adapted for encoding. In extending the basic sparse term, we incorporate integer sorts
(i.e. when unifying two different functors f; and f;, if both are integers, the result
is maz(fi, f2); if at least one is not an integer, then unification fails). Integer sorts
come for “free”, and can be used to generalize integer vectors: integer sorts provide a
form of sparse integer vector that permits the integration of integer vectors and logical
terms. This combination is powerful for encoding, since integer sorts are suited for

encoding chains, while ordinary functors are suited for encoding anti-chains.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 119

We also integrate more compact and flexible forms of subterm indexing. The basic
form of sparse terms are very compact for terms with many anonymous variables.
However, as the terms become less sparse, the overhead of explicit subterm indexing
surpasses the savings of eliminating anonymous variables. In the expanded form, we
permit “relative” indices which denote integer indices that are relative to preceding
integer indices in a term. In this more expressive form, as a term becomes more
dense, the sparse term representation can remain more compact, up to a point, than
the corresponding ordinary terms or integer vectors.

We also permit grouping sequences of indices with identical subterms into intervals.
For encoding, this will normally only occur for unspecified subterms. Index intervals
in sparse terms provide a generalized implementation of sets of intervals, which have
also been used in encoding [1]. Figure 6.1 shows the relation of sparse terms to the

encoding implementations of which we are aware.

sparse terms
logical terms
flat terms integer vectors interval sets
bit vectors

Figure 6.1: Encoding implementations: sparse terms generalize other techniques

6.2 Basic Sparse Terms

Our representation is modeled after that of sparse matrices. An n x m sparse matrix
may be stored as a list of coordinate/value pairs for the non-zero elements rather

than as an n X m array. For example, the following matrix can be stored as [(1,2)-1,

(2,4)-5, (4,2)-3, (4,5)-4]:

0 1 00 0
:00050
00000
f03004

We avoid storing the zeros by using a more space-consuming representation for
the non-zero elements. By assuming that most of the elements are zeros we predict a

net reduction in storage space.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 120

A sparse term representation relieves us from storing anonymous variables at the
expense of a more complex scheme for the named elements (i.e. atoms, predicates,
functors and named variables). We focus on the surface form of terms. Although
the internal representation may be quite different from this and is implementation
dependent, 1t is the surface form that users manipulate and store outside the system.
As for sparse matrices, we need to store the position, or index, of the named elements.
Using a rooted graph notation, we can do this by labeling arcs with the index of the
named elements and removing the anonymous variables (which are represented by
underscores in Prolog). Consider the Prolog term: a(b(¢,d,-), -, -, e(-, f(--),-)).
The ordinary and sparse forms are shown graphically below. The sparse term can be
represented linearly as: a.[1 — b.[2—¢, 3—d], 4 —e.[2 — f]], where the argument lists

are ordered according to increasing index.
a a

1 4
/cg? ,A/\jz

Figure 6.2: Sparse logical terms
To be more precise, we provide the following definition of our representation:

Definition 6.1 A basic sparse term is either (i) an atom (ii) a named variable or (i)
a functor of the form a.L, where a is the functor symbol and L is a sparse argument
list. A sparse argument list is a list of elements of the form n-ST, where ST is a sparse
term and n is the index of ST in the parent term. This list is ordered by increasing

indices with no repetitions.

6.2.1 Space requirements

Now that we have a sparse representation for logical terms, when is a term consid-
ered sparse? That is, when will this representation benefit an application? Since an
accurate account of the space required to represent a logical term, for example in
Prolog, is implementation dependent, we restrict our analysis to the asymptotic time

and space behavior of the surface form.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 121

Consider an ordinary term that has n named elements and m anonymous variables.
Since there are n+1 symbols, let us assume representing each requires O(logn) space.
For the sparse representation, O(logn) space is also required. Both representations
require space for the n named elements, so we do not include this factor in our calcu-
lations. For punctuation marks (e.g. commas, parentheses, dashes), ordinary terms
require O(n + m) space whereas sparse terms require O(n) space. Since punctuation
may not form part of the internal representation, we do not consider it further.

In addition to the above, ordinary terms require O(mlogn) space for anonyinous
variables, whereas in the worst-case sparse terms require O(nlog(n + m)) space for
indices. Essentially, this means that the space benefits of our sparse representation
begin to manifest when the ratio of anonymous variables to named elements is greater
than one. Of course, due to the constants not included in this analysis, these benefits

may not become evident until this ratio is somev. hat greater than this.

6.2.2 Unification and Implementation

Without an occurs check, uiification of both ordinary and sparse terms is linear in
the number of symbols involved. If the number of nared elements in both terms is n
and the number of anonymous variables is m, we have O(n + m) for ordinary terms
vs. O(n) for sparse terms. For unification with an occurs check, we avoid needlessly
checking the anonymous variables. In both cases, we achieve asymptotically better
results. Thus, by using our sparse representation, applications involving sparse terms
have potential benefit both in terms of time and space.

The straightforward nature of sparse terms permits a simple implementation of
the required algorithms (unification, subsumption, etc.) either in a logic language (e.g
Prolog) or as an extension to a logic language (written in, e.g., C). Our representation
shares some features with the t-terms in LIFE [4], in particular attribute indexing
and unbound arity, but it also differs in several respects. Named variables in LIFE
use more generalized coreference labels (which can specify coreference between any
two locations in the graphical representation, not just between leaves). Althongh our

definition of sparse terms implies the use of Prolog variables, we have also extended

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 122

our implementation to provide both forms of coreference. Our representation also
deviates from 1-terms in the use of anonymous and disjunctive functors, discussed
below. Another significant difference is that our representation is intended as an

enhancement to Prolog systems, not as a replacement.

6.2.3 Variations

Our sparse representation removes the burden of explicitly storing anonymous vari-
ables. We now explore some variations on this theme. Prolog is capable of expressing
uncertainty through variables, only for entire predicates, functors or atoms. We ana-
lyze how we may incorporate finer scale uncertainty into logical terms, specifically for
arity and functors. We also integrate an extension of argument indexing that permits
arbitrary labels, or attributes, rather than just numerical indices. By blending these
variations, applications have the ability to incorporate varying degrees of uncertainty

and information into logical terms, while remaining concise and efficient.

Binding arity. The representation presented does not provide a one-to-one corre-
spondence between sparse and ordinary terms. For example, the following terms
correspond to the sparse term f.[1—a]: f(a), f(a,-), f(a,), f(a(.),-), ... Any
sparse term has an infinite number of corresponding ordinary terms. The arity
of each functor and atom is not bound, so we can always append an arbitrary

number of anonymous variables as arguments of functors and atoms.

If we require the arity of terms to be bound, we must specify it explicitly. This
can be accomplished by extending part (iii) of our definition to allow functors
of the form a/N.L where a is a functor, N is the arity of the functor and L is a
sparse argument list. For example, the term f(_, b(_,.), ¢, d(e, -),) is completely
~represented by f/5.[2 —5/2,3 — ¢/0,4 — d/2.[1 — e/0]], and graphically as:
5

b2 /0 d2

Figure 6.3: Binding arity in sparse terms

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 123

Anonymous functors. An interesting variation that we have found useful for en-
coding allows terms to specify only those argument positions that are occupied,
but not record the functor or atom in that position. This information, pre-
sumably, would be stored elsewhere. This greatly reduces space requirements
for cases when many terms are being formed from one set of data, which is
indeed the case for our logical term encodings where each element of a taxon-
omy is assigned a term that is a subgraph of the taxonomy itself. We can label
the original taxonomy with term positions and use it to decode our terms. To
provide functorless terms, we simply remove the functor or atom from the el-
ements of the sparse argument list. The term f(_,b(-,-),-,c(d,~e),-) would thus

be represented as the term [2,4-[1,3]] and graphically as:

/>\
Figure 6.4: Anonymous functors in sparse terms

Attribute-value matrices. Attribute-Value Matrices (AVMs), or Feature Struc-
tures, are a tool used in several computational linguistic systems (e.g. [118]).
Some implementations of AVMs using ordinary terms require prior knowledge
of all the attributes an AVM may contain in order to compile appropriate terms
(e.g. [91, 119]). A simple modification to our scheme, allowing atomic, rather
than numeric, indices (for the attributes) and omitting funictor names (a value
is either an atom or another AVM), provides for efficient and dynamic AVMs.
A predicate can be provided to access the value of an attribute, or a sequence of
attributes. As an example, the sparse term [a;-vy, az-vq, az-[b1-x1, ba-Xa], ag-v4]

represents the following AVM (shown in both its matrix and graphic forms):

ERE
a V2
a3 Ei xl:l
by X
l34 Vi J X} Xy

Figure 6.5: Attribute-value matrix using sparse terms

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 124

Disjunctive functors. Thus far, we have permitted two levels of certainty regarding
a functor symbol: either it is unknown (i.e. it may be any atomic symbol) or it is
known. Between these extremes lies a range of increasingly focused information
as to the actual functor symbol. That is, we may know that it is one of a set
of possible symbols. When this set has cardinality one, we know which symbol
it must be. We name such functors disjunctive and represent them with a set
notation. For example, the term [model-{MacSE; Macll}, memory-{1;2;4;8}]
may be used to represent a computer system whose model type is either a

MacSE or a Macll and with eitker 1, 2, 4 or 8 KB of memory.

Applications that permit and maintain uncertainty may find the flexibility of-
fered by disjunctive functors a valuable property. Examples include computa-
tional linguistics, for maintaining the uncertainty of the referent of a pronoun,

and automatic system configuration (e.g. [37]).

6.3 Generalizing Sparse Terms for Encoding

Basic sparse terms are based on the observation that anonymous variables only reserve
positions and do not contribute to the information content of a logical term. We now
extend the basic form to develop a universal encoding implementation. In addition to
the benefits of eliminating anonymous variables, there are some properties of extended

sparse terms that endow them with flexibility and conciseness required for encoding:

Unbound arity A sparse term can represent an infinite number of ordinary terms,
since arity is not bound. This permits flexibility for encoding updates since a

code may be extended with a subterm without affecting related codes.

Unspecified functors Positions in terms can be specified as filled, but the actual
symbol (predicate, atom or functor) occupying the position can be left unspec-
ified. Thus, (2,4 — [1,3]] represents a term in which the second position is
occupied by an unknown subterm, and the fourth position is occupied by a sub-
term in which the first and third positions are filled. Of course, unification can

only fail if there are different functors at the same location in two terms.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 125

Integer sorts Although sparse terms were designed for encoding, they share a num-
ber of similarities with ¢-terms in LIFE [4], including unbound arity. A hierar-
chy can be specified among functors in LIFE, which is used when two different
functors are unified. If @ and B are unified, the result will be M 8 or failure
if this results in L. One of the most influential papers on encoding was written
with the purpose of performing these operations efficiently [2]. However, there
is a very simple functor ordering that we can incorporate into sparse terms for
free: the total order on integers. Unification of two functors will be as in Pro-
log, unless both are integers n; and n,, in which case unification will result in
maz(ny,n2). This simple addition generalizes integer vectors, providing a form

of sparse integer vectors with the hierarchical advantages of logical terms.

Relative Indices As terms become less sparse, the advantages of explicit indexing
diminish until the costs outweigh the benefits. To overcome this, some in-
dices may be relative. Relative indices can be specified by preceding a positive
integer n by the “4+” symbol, and represent the previous numerical index to
the left plus n. If there is no preceding numerical index, then the index is n.
For example, the sparse term [535,538,546,577,578] could be represented as
[635, 43,48, 431, +1]. Although we must still provide an index, if the absolute

index is very large, a space saving may be realized.

Interval Indices As terms become even more compact, there may be situations
(particularly for encoding) in which we can benefit from denoting a sequence of
indices using a set. These interval indices provide a generalization of interval
sets, which have been used for encoding [1]. To illustrate, the sparse term
[5,6,7,8,9,10,11,12,73,74,75, 76, 77] could be represented as [(5,12), (73, 77)].

Relative indices can also be used in the interval bounds.

As we have mentioned, sparse terms generalize the various implementations that
have been used for encoding. The significance of this is that, not only can encoding
algorithms be adaptive and selected from existing encoding techniques, but mixtures
of techniques can take advantage of structures within taxonomies. The following

definition is based on the original definition, but extended with integer sorts, and

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 126

relative and interval indices. We do not provide any form of coreference, since it is

not necessary for our application, although this could be easily integrated.

Definition 6.2 A sparse term ST is defined as:
ST = Functor.ArqumentList | ArgumentList | Functor
Functor = Atom | NaturalNumber
ArgumentList = [Argument|ArgumentList] | []
Argument = Indexz—ST | Index
Indexr = NumericIndex | (NumericIndex, NumericIndex) | Atom
NumericIndex = NaturalNumber | + NaturalNumber
where Natural Number is any natural number. The notation [Head|Tail] denotes a

list, the first element of which is Head and the remainder of which is Tail, while []
denotes an empty list (as in Prolog).

6.3.1 Explicit and canonical forms for sparse terms

In order to simplify description of a canonical form, and for defining subsumption,
unification and anti-unification, we need to describe an explicit form for sparse terms.
The explicit form replaces all relative indices by their corresponding absolute values,
and all interval indices by their corresponding sequences. We also clarify terms that
have empty argument lists or no functors, where explicit sparse terms use anonymous

variables (“_”) in place of unspecified functors.

Definition 6.3 An explicit sparse term ST, is defined as:
ST, = Functor;.ArgumentList,
Functor, = Atom | NaturalNumber | .
ArgumentList, = [Indez,—ST | ArgumentList] | []

Index, = NaturalNumber | Atom
Given a sparse term ST, we can construct its explicit form as follows:

Empty Argument Lists If F is a subterm with an empty argument list (i.e. F is
just a functor), then replace it by F.[].

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 1

[aN)
|

Unspecified Functors If AL is a subterm with an unspecified functor (i.e. AL is
just an argument list), then replace it by _.AL. Note that in sparse terms, the

anonymous variable can only be instantiated to a functor.

Relative Indices Suppose +n is the first relative index in an argument list (includ-
ing those that appear in interval indices): [...,+n — ST,...]. If there is no
absolute numerical index to the left of this position, then replace +n — ST
by n — ST. Otherwise, if the first absolute numerical index to the left of this

position is m, then replace +n — ST by ny — ST, where ny, = n + m.

Interval Indices Suppose we have an argument list containing an interval index:
[...,(n1,n2) — ST,...]. I ny > na, then simply remove (ni,nz) — ST from
the argument list (i.e. the interval is empty). Otherwise, replace it by the
sequence my — ST, ...,my — ST, where my = ny, mjz1 = m;+1,1 <t <k, and

k=n2—n1+1.

Given an arbitrary sparse term, for efficiency we want to define a canonical or not-
mal form. For terms in canonical form, subsumption, unification and anti-unification
algorithms can be designed much more efficiently than otherwise possible (i.e. linear
in term size). Below we define a canonical form for a term ST in terms of its explicit
form. We say that ST is in canonical form, if its explicit form is in canonical form.

Let ST be a sparse term, and ST, be its explicit form. We define the canonical
form ST, of ST as follows:

No duplicate indices If ST has a duplicate index I in some argument list: ..., /-
STy,...,1—-ST,,...], then remove I — STy and I — ST, and add I — ST 4, where
ST 5 is the unification of STy and STs.

Indices in increasing order For any subterm in ST, if index I, precedes index I,

then I € I,, where ; denotes a lexical ordering on indices.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 128

6.3.2 Sparse term subsumption

We now describe how subsumption (<) is computed for explicit canonical sparse
terms. Unification and anti-unification can easily be derived in a standard way based
on subsumption. All three operations have been implemented in Sicstus Prolog. Con-
verting from an ordinary canonical sparse term to the explicit form can be done easily
during processing. First, some general properties are given below:

e [] subsumes everything (i.e. ST =[] for any sparse term ST').

o If ny,n, are integers and n; < n, then ny < n; (note the role reversal).

o If n is an integer and a is a non-integer atomi, then nl|la (i.e. n and a are

incomparable).

o If ay,a, are non-integer atoms and a; # az, then a,||a,.

Definition 6.4 If ST, and ST, are sparse terms, then STy < ST if and only if all
of the following hold:

1. 8T\, = Fi.ArgList; and ST, = F3.ArglList,

2. F, X F

3. Arglist; < ArglList,

If Fy and F, are functors, then Fy < F, if and only if one of the following holds:

1. Fy = _ (functorless terms)
2. F\ and F; are non-integer atoms and Fy = F; (atomic functors)
3. Fy and F; are integers and F2 < Fy (numeric functors)

If ArgList, and ArgListy are argument lists, then ArgList; < ArgLists if and only
if one of the following holds:
1. ArgList; =[]
2. ArgList; = [Index, — STy|Rest,], ArgList, = [Index; — ST;|Rest,] and one of
the following holds:

(a) Index, = Indexy, ST, < ST, and Rest; < Rest,
{6) Index; C Index, and Rest; < ArglList,

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 129

6.4 Encoding with Sparse Terms

The most well-studied implementation for encoding is the bit-vector [2, 24, 61, 79].
The available hardware implementation and minimal requirements for each item of
information (one bit) makes them attractive for encoding. However, there are a
number of drawbacks to using bit-vectors for encoding very large, dynamic ordered

sets:

e Codes in a bit-vector implementation all have the same size, so updates to the
encoding that require changing this length affect every code. This problem is
shared with integer vectors. Sparse terms, however, do not suffer from this, so

the scope of change can be contained.

¢ Both logical terms and integer vectors generalize bit-vectors in different dimen-
sions (see Chapter 4). A bit-vector s of length k£ can be represented with a
logical term 7 of arity k: if position ¢ in s is a 1 (resp. 0), then position ¢ in 7 is
the functor 1 (resp. an anonymous variable). The translation from bit-vectors
to integer vectors is obvious. Thus, any bit-vector encoding can be translated to
use sparse terms and exhibit the same asymptotic behaviour; only the asymp-
totic constant changes. Since we are most concerned with asymptotic behaviour
for encoding large taxonomies, bit-vectors do not actually provide any real ben-
efit, although their inflexibility is certainly a drawback. In fact, we show later
how the hierarchical structure of sparse terms can provide a significant savings

over bit-vectors even for modest taxonomies of only several thousand nodes.

As we showed in Chapter 4, all encoding algorithms we are aware of can be ab-
stracted into two components: (i) the underlying information stored in the encoding
(which can be characterized using what we call spanning sets) and (ii) the implerm.en-
tation details for storing this information in a computer. Some encoding algorithms
require a lot of effort to generate codes. This is understandable, given the complexity
of the problem (in [79], evidence for the NP-Hardness of finding optimal encodings
is discussed). For static taxonomies, it may be worthwhile spending a lot of energy

to construct compact encodings. For dynamic taxonomies, however, this effort may

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 130

be wasted by changes to the hierarchy. In fact, the changes required for an encoding
after updates to the source taxonomy may be more extensive in complex encodings,
due to the wider scope of analysis performed.

Encoding algorithms for dynamic taxonomies must be efficient, in addition to gen-
erating efficient codes. Two of the earliest and most well-known, encoding algorithms
(transitive closure and compact [2]) satisfy the need for efficient computation of codes.
However, the algorithms described directly construct bit-vector implementations. As
we showed in Chapter 4, these basic algorithms form the basis of a number of encoding
techniques. We describe how sparse terms can implement these simple schemes. This
in itself does not contribute significantly, but we show in a subsequent section how
sparse terms equal or surpass other implementations for encoding a number of theo-
retical ordered sets. This is followed empirically, where two ordered sets taken from
existing applications are encoded using the transitive closure and compact algorithms.
These results are compared with the space requirement for bit-vectors.

Since we are concerned with large taxonomies, we must carefully count space
requirements (i.e. an integer of size n takes logn, not constant, space). Two common
techniques for implementing a graph G' = (P, E) are adjacency matrices, which take
O(|P|?) space, and adjacency lists, which take O(|E|log|P| + |P|) space. Adjacency
list representation corresponds to maintaining the list of parents (or children) for each
element.

Both the encoding algorithm and the implementation affect these characteristics.
Since the requirements of particular taxonomic applications may differ, it is apparent
that there may be no best encoding algorithm to satisfy all needs. Rather, the designer
of an encoding algorithm must take into account the needs of the application, and
the form of the taxonomies to encode, in order to determine the relative importance
of different characteristics.

Most existing algorithms concentrate on the resulting codes and have not been as

~concerned with the complexity of the encoding algorithm or of dynamic updates. In

addition to the space requirement of the resulting codes, we focus on these two issues.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 131

6.5 Sparse Term Encoding

The simple transitive closure and compact encoding algorithms in [2] satisfy one of
our goals: the complexity of the encoding algorithm is minimal. Transitive closure
has an additional advantage: decoding (i.e. determining the element(s) denoted by a
given code) can be done efficiently in both bit-vector [47, 61] and sparse term imple-
mentations. Sparse terms use a spanning tree of the order for decoding in time linear
in the depth of a code term. Research on complex encoding algorithms to find optimal
encodings (e.g. {79]) is important, but is of limited practical use in dynamic environ-
ments. Below we use the abstract versions of these two simple encoding algorithms
described in Chapter 4 to specify versions that compute sparse term encodings. Note
that we use these algorithms in a top-down manner (which preserve joins), while the
dual bottom-up versions (which preserve meets) were described in [2].

The transitive closure algorithm for sparse term encoding is given below. Several
variations were implemented in Sicstus Prolog, and were used to derive the empirical
results of section 6.7. A topographic traversal of the ordered set is done so that, when
processing an element p, the codes for all parents of p have already been constructed.
Associated with each element p is a “path” (a sequence of indices from the root of
the code 7(p) to one of the leaves), and a “label” indicating how to extend 7(p).
The code for an element is built from the unification of the parent codes, plus an
extension of the path associated with one of its parents. The subroutine eztend will
select one of the parents to extend, and either increment an integer sort (done through
ertend_integer_sort) or add a new subterm (done through eztend_arglist). These two

straightforward functions are not described.

Algorithm 1 sparse_term_encoding(input: P; output:t)

1. let < p1,...,pn > be a (top-down) topographic ordering of P, where py = T
2. 7(T) =]

3. path(T) =[]

4. label(T):=1

5. fori=2ton do

6. T(Pi) = Nyeparents(p) T(9)71 extend(p;)

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 132

Algorithm 2 eztend(input: p; output:a)
Global information: ordered cet P (p € P), and path, label and pred information

1. if 3q € parents(p) such that label(q) > 0 then
2. a := extend_integer_sort(path(q),label(q))
3 path(p) := path(q)

4. label(p) := label(q) + 1

3. if label(q) = 1 then

6. label(q) := —1
7. else
8. label(q) — label(pred(q))
9. endif
10. else
11. select any q € parents(p)

12. n := -label(q)

13. « := extend_arglist(path(q),n)
14. path(p) := «a

15. label(p) =1

16. label(q) == —(n+ 1)

17. endif

18. pred(p) := ¢

Note the polymorphic use of the predicate label. If label is a positive integer n,
then term extension is to be accomplished by setting the integer sort at the end of
the path specified in the path predicate to n. If label is a negative integer —n, then
term extension is to be accomplished by adding a new subterm at the end of path
with index n. Also note that we used “:=" to denote variable assignment, while the
symbol “—” is used to denote identity (i.e. in line 8, label(q) becomes identical to
the label of its predecessor pred(q)). Essentially, if any parent ¢ can be extending by
incrementing an integer sort, we select that parent (lines 1 to 9). The current element
p inherits the path of ¢ (line 3) and increments the next integer sort extension (line

4). I the label for g is 1 then a new subterm list is begun (line 5), otherwise subterm

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 133

expansion is done using its predecessor’s sublist (line 8) so new subterm extensions
will be done correctly (since ¢ and its predecessor have the same path). In both cases,
new extensions will be argument list extensions. If no parent can be extended with
integer sorts, we select one to extend by adding a new subterm (lines 11 to 17). The
label is the negation of the new subterm index, which is used to extend the path of
g, and also becomes the new path of p (lines 12 to 14). Now p can be extended by
incrementing (the currently non-existent) integer sort functor (line 15), while the next
extension of ¢ is updated (line 16). The last line sets up the predecessor information.

For compact encoding, we need only change line 6 of the sparse term encoding
algorithm to the following, so that only the codes for meet irreducible elements are
extended. The code for a non-meet irreducible element is simply the unification of

the parent codes.

6.1. if p; is meet irreducible then

6.2. 7(pi) := Nyeparents(p,)T(¢q) N extend(p;)
6.3. else

6.3. 7(pi) 1= Moeparents(p)7(9)

Postprocessing can optimize codes to use relative and interval indices, where a
space saving can be realized. For dynamic updates to the taxonomy, variations of
these algorithms can modify existing encodings by updating only codes below the

point of change, although we do not describe these here.

6.6 Theoretical Justification

We now justify, using a variety of theoretical taxonomies, that sparse terms provide
the necessary flexibility and efficiency required for encoding. This analysis comple-

1ents an earlier theoretical comparison of various encoding techniques, including flat
terms, on theoretical orders [43], where the focus was on comparing different encod-
ing algorithms. We focus on comparing different implementations of two algorithms:

transitive closure and compact. There is one deviation, however, for interval sets,

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 134

where we used the results of the more complicated algorithm described in [1}. Al-
though the underlying information is the same, the resulting interval sets are more

compact {at the cost of more encoding effort).

Chains: Integers are well suited for encoding chains. Thus, sparse terms (using inte-
ger sorts), integer vectors and interval sets provide optimal encodings. However,
bit-vectors require linear space. Since every element is meet irreducible, bit-
vectors using the compact encoding algorithm also require linear space. Figure

6.6 shows a sparse term encoding for a chain.

(] [] []

%\%\

1 (13 - [n-1] [1-a;] [1-a] - [1-a]

n'l L{(1,n-1)]
Figure 6.6: Chain and anti-chain encodings
Anti-chains: Terms and interval sets optimally encode anti-chains. Bit-vectors and
integer vectors, however, require linear space. Figure 6.6 shows a sparse term

encoding for an anti-chain. The second anti-chain encoding shows how L could

be encoded as unification failure using atomic functors.

Complete Binary Trees: In this case, the combination of integer sorts and logical
terms permits optimal encoding using sparse terms (linear with respect to the
height of the tree). Integer vectors and sparse terms without integer sorts both
require linear code space, as do bit-vectors. With additional processing, bit-
vectors can achieve optimal code size, using modulation or other techniques

[2, 24, 49]. Figure 6.7 shows a sparse term encoding for a complete binary tree.
8
1 [1]
T ip T

3 2[n L2-1j LE2-{i {21 [-1.01 0-0-11 [g--p
Figure 6.7: Binary tree encoding
If we invert the tree, and add a top element, the space requirement for sparse

terms, bit-vectors and integer vectors does not change, but interval sets require

Of(logn)?) space.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 135

For arbitrary binary trees, the code size for sparse terms remains linear with
respect to the tree height. The worst-case occurs for a right-skewed binary tree
(i.e. where the left branch is always a leaf), where the height is asymptotically
the same as n. However, all of the other implementations require linear code
space, except for interval sets which is optimal using the more complex algo-
rithm. Also, if the tree is flipped left-right, then sparse terms achieve optimal
encoding. In general, due to the use integer sorts, sparse terms will perform bet-
ter if trees are organized so that the leftmost branch of a node has the largest
subtree. In case two children have the same size subtree, the deepest should
be selected as the leftmost. These selection criteria are closely related to those

used in the interval sets approach [1].

For complete k-ary trees, bit and integer vectors remain linear. However, if the
tree has height &, then sparse terms require O(hlogk). Since h < login this is
bounded above by O(logkn * logk).

Square Lattices: A square lattice is a partial order resulting from the product of
two chains. An example is shown in Figure 6.8. For two chains of length &,

their product has n = k? elements.

Transitive closure bit-vectors require linear space. Integer vectors, interval sets
and sparse terms require O(y/nlog(1/n)) = O(y/nlogn) which is sublinear, al-
though not optimal. This is primarily because the square lattice has width
k = y/n. If additional work is performed to determine that this lattice is a
chain product, then space can be improved to O(2log\/n) = O(logn). In gen-
eral, however, finding the minimum number of chains that decompose a partial

order is NP-Hard[144].

For compact encoding, there are 2k = 2v/n meet irreducible elements. Thus,
bit vectors require O(y/n). Compact encoding for sparse terms, integer vectors
and interval sets, however, achieve optimal codes. Figure 6.8 shows a transitive

closure and compact sparse term encoding for a square lattice.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 136

[l (]

1/§1] 1/\[1]
S S - S S S <
2 1.[1-1] [1-[1]] 2 L{1] [1-1]

3 2.[1-2]1 L[1-1{1-1]] [1-[1-[1]]] 3 2.1 1.[I-1] [1-2]
41317 2[1-3J1-1)) L{I-1.[1-2.[1]]] 3.]1) 2.[1-1] 1.[1-2]
5.[1-301-1]] 2.[1-4.[1-2.[1]]] 3.[1-1] 2.[1-2]

\/
6.[1-4.[1-2.[1]]) 3.[1-2)

Figure 6.8: Square lattice transitive closure and compact encodings

Consider a product of m chains of length k each (so » = k™). Optimally, if
we have an algorithm that can decompose this order, integer vectors require
O(mlogk). However, using the transitive closure algorithm, we can only detect
that the width of the order is k™! = n" . Thus, integer vectors, interval sets
and sparse terms require O(k™ logk) = O(an“l —~logn) which is still sublinear.

Using the compact algorithm, we again obtain optimal results.

Generalized Crowns: The preceding example orders are all somewhat sparse (and
of low dimension[144]). In lattice theory, generalized crowns are the standard
example used for minimal sized partial orders of high dimension. Figure 6.9
shows the generalized crown Ss of dimension 5. An important property of such
orders, is that the minimal size lattice into which the generalized crown S,, of

2n elements can be embedded has 2" elements.

Determining compact encodings for the generalized crown S, is a challenge.
Bit-vectors and integer vectors both require linear space, even for the compact
algorithm. Note that even if we can determine the dimension (which is NP-
Hard), we cannot improve on these results. However, interval sets and sparse

terms can encode S, using optimal space (also shown in Figure 6.9).

[1-1,2,+2)] | 2.[2,+2)] 1.[1,42-1,41] 1.[1,+1-1,+42] 1.[1-[1},+1,+1]
Figure 6.9: Transitive closure encoding of a crown S;

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 137

Table 6.1 summarizes these results, where n is the number of elements in the
ordered set. Unless indicated, results are for both transitive closure and compact
algorithms. Also, recall that the results for interval sets are somewhat biased as they
are based on the more complex algorithm in [1]; using this algorithm, sparse terms
can match or surpass these results, since they generalize interval sets.

Table 6.1: Asymptotic encoding results for theoretical orders
l (Sparse Terms l Bit-Vector] Integer Vector l Interval Sets]

Chains logn n logn logn
Anti-Chains logn n n logn
Complete Binary Tree logn n n logn

(inverted) logn n n (logn)?
Arbitrary Binary Tree n n n logn
Square Lattice

(transitive closure) n'/2logn n n'/?logn n'/?logn

(compact) logn N logn logn
Product of m chains

(transitive closure) | n™m * Llogn n nm Llogn nm * =logn

(compact) logn k+¥n | logn logn
Crown logn n n logn

6.7 Empirical Evidence

The above clearly shows the power of sparse terms. However, the partial orders likely
to occur in practice are unlikely to possess any of the above forms. Intuitively, a large
partial order will probably have some regions that are very sparse while others that
are dense; some regions may possess certain properties, while others possess different
properties. One technique that can be used to encode such hierarchies is modulation
[2, 49], which decomposes a partial order into suborders that can be independently
encoded. Modulation can be a powerful technique provided the order is not too
dense. Although we generalized modulation to handle denser orders in Chapter 5,
and a linear modulation algorithm now exists [76], it may not be appropriate for all

dynamic taxonomies.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 138

To demonstrate the power of sparse terms, we encoded two large empirically ob-
tained taxonomies, using transitive closure and compact algorithms. The resulting
sparse terms were not optimized in the sense that no relative or interval indices were
used. Also, for the compact encoding, no integer sorts were used - this accounts
for poorer behaviour in some cases compared with the transitive closure algorithm.
If integer sorts are incorporated, more dramatic results may be achieved. We show
the resulting space requirement of the encodings, as well as the required space for
bit-vector encodings. Here too, the results are skewed against sparse terms. The
sparse term space requirement was the actual memory used to store all codes; for
bit-vectors, however, the space requirement does not consider memory padding. Still,
the improvement that sparse terms offer over bit-vectors is remarkable.

The first taxonomy was obtained from a chess learning program [95], in which
each node is a board position. There are 1,815 nodes (590 meet irreducible elements
and 1,425 join irreducibles) and 8,227 links in the transitive reduction. As shown in
Table 6.2, sparse terms require one quarter of the spa,cé for bit-vectors in the top-down
transitive closure algorithm, and three quarters for the compact algorithm. Similar
space improvements are made for the bottom-up algorithms. Thus, we not only gain
the improved flexibility of sparse terms over bit-vectors, but this shows that even for

moderate size taxonomies, the asymptotic advantage of sparse terms pays off.

Table 6.2: Empirical results (in bits) for chess learning system [16]

Top-Down Top-Down Bottom-Up Bottom-Up

Trans. Closure | Compact | Trans. Closure | Compact

Bit-Vectors total 3,294,225 1,070,850 3,294,225 2,586,375
bits/code 1,815 590 1,815 1,425

Sparse Terms total 820,872 803,056 966,920 1,007,104
bits/code 452 442 533 555

Sparse Term/

Bit-Vector ratio 0.25 0.75 0.29 0.39

The second taxonomy was obtained from a terminological medical knowledge

base!. Nodes are medical terms, and the partial order is subsorting. There are

!Thanks to lan Horrocks, Medical Informatics Group at the Univ. of Manchester.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 139

2,717 terms (2,640 meet irreducible elements and 2,187 join irreducibles), and 4,766
links in the transitive reduction. This taxonomy is less dense than the previous one
(more nodes, less links), and most of the elements are irreducible. In this situation,
compact encoding provides very little benefit for the additional cost. However, the
benefits of sparse term encoding are even more marked: about 10 times more efficient

than bit-vectors.

Table 6.3: Empirical results (in bits) for medical ontology

Top-Down Top-Down Bottom-Up Bottom-Up

Trans. Closure | Compact | Trans. Closure | Compact

Bit-Vectors total 7,382,089 7,172,880 7,382,089 5,942,079
bits/code 2,717 2,640 2,717 2,187

Sparse Terms total 690,432 812,768 812,064 812,064
bits/code 254 299 299 299

Sparse Term/

Bit-Vector ratio 0.09 0.11 0.11 0.14

6.8 Conclusion

Our goal in this chapter is twofold. First, we presented sparse terms as a universal
implementation for encoding, generalizing the basic form of sparse terms [51] and ex-
tending previous work on logical term encoding [35]. Second, we argued that for large
dynamic taxonomies, simple and fast encoding algorithms are necessary. These two
claims are backed up by theoretical and empirical evidence. Furthermore, either claim
could be taken independently. In particular, sparse terms could be exploited in any
encoding algorithm with a potentially large decrease in space. Finally, although logi-
cal term encoding has been extensively studied [35, 43, 47, 102], this chapter presents
the first published description of algorithms for encoding with terms. The results
presented are important in contexts such as conceptual structures, where taxonomic

knowledge is likely to change frequently.

Part II:

Applications and Extensions

of

Reasoning with Taxonomies

“Then he was told: Remember what you have seen,
because everything forgotten returns to the circling winds”

~ Lines from a Navajo chant

140

Chapter 7

Extending Partial Orders for Sort

Reasoning

“Reason, alas, does not move mountains. It only tries to walk around them

and see what is on the other side”

- G. W. Russel-

The mathematical basis of partial orders has been exploited in taxonomic knowl-
edge representation and reasoning, and research on taxonomic encoding has provided
techniques for the efficient management of partial orders. Unfortunately, the simple
structure of a partial order limits the taxonomic knowledge that can be represented.
At the other extreme are description logics (e.g. the KL-ONE family [19, 159]) in
which taxonomic relationships among sorts are specified using a formal language, but
the taxonomy itself must be derived through classification (which may or may not be
NP-Hard, depending on the logic). We feel that explicit maintenance of a taxonomy is
important for efficiency. In this chapter, we formally extend partial orders to permit

incorporation of additional taxonomic information.

7.1 Introduction

Research on integrating additional forms of taxonomic knowledge into partial orders

is scarce. Most notable, work by Cohn [28] proposed a generalized form of taxonomic

141

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 142

specification within a sorted-logic framework. In [53] we proposed some extensions to
partial orders to integrate machine learning [103] and systemic classification [20, 101].
We extend these proposals in this chapter in an attempt to develop a taxonomic
knowledge representation system that is both flexible and parsimonious.

We may wish, for example, to define an element to be the intersection (union)
of another set of elements (e.g. woman = human N female). Although this may
hold coincidentally through meets (joins), such a restriction ensures that any changes
must also respect this constraint. As another example, every element in a taxonomy
must normally be specified, but there may be cases when this is both unnecessary
and inefficient. Suppose we wish, e.g., to view people along lines of religicn (e.g.
Catholic, Jewish, Muslim, etc.), nationality (e.g. Canadian, Belgian) and occupation
(e.g. student, prof, miner). Currently, we need to specify all possible combinations
(i.e. the cross-product) of these facets to produce all sorts of people (e.g. a Beigian
Catholic student). It would be cleaner if we could specify these lines separately, and
infer the cross-product when needed.

After providing some background on sorted logic and sorted logic programming, we
formalize sorts and sort hierarchies, and identify the relation between lattice and set
operations. We then propose the sort reasoning problem as the fundamental problem
for a sort reasoner, and discuss how sort relations can be specified in two expressive,
but equivalent ways. In section 7.4 we develop a three-valued propositional logic for
sort reasoning and introduce the notion of a sort contezt. Using this logic, we show
that, although resolution provides a sound and complete mechanism for sort reasoning,
it is NP-Complete. The focus of section 7.5 is to identify tractable subcases of sort

reasoning. IFinally, we discuss some implementation issues.

7.2 Background

First-order logic is unsorted in the sense that the domain of discourse (i.e. the uni-
verse) is treated as a single undivided set. A sort can be viewed as a subset of the
domain of discourse, and is generally a group of objects related in some way (e.g. the

set of dogs). Sorts can be mimicked using special sort predicates, but many sorted

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 143

logics move sorts into the forefront as ﬁrst-cla.sslobjects. This allows specification of
the non-logical symbols as belonging to certain sorts, and provides a simple syntactic
mechanism to state semantic constraints. Thus, in a many-sorted logic, a set of sorts
can be specified that divide the domain of discourse. Although in some logics, sorts
must be disjoint, most permit overlap between sorts, in which case the subset relation
forms an order on sorts.

There are a number of advantages to using sorts in logic, particularly the reduction
in the length of certain proofs by eliminating futile branches of the search space. See
[27] for specific coverage of the benefits of many-sorted logic.

Sorted logic programming is simply the logic programming analog to sorted logic.
Prolog is unsorted, and so the unification to two unequal atoms results in failure.
LIFE [4], on the other hand, permits the specification of a sort hierarchy P. In the
event of unification of unequal atoms a; and a,, the sort hierarchy is used to determine
the result. If ¢; Mp a; = L then failure results. If @, Mp a; = b, then the result of the
unification is b. Since the sort hierarchy does not need to be a lattice, a; Mp a, may be
{b1,b2,...,bc}. In this case, processing proceeds with the result b,, and subsequent

sorts from this set are attempted in turn on backtracking.

7.3 Sort Reasoning

Sorts represent sets of individuals grouped according to common features. Intuitively,
a sort p is a subsort of p, provided that every individual in p, is also in py (e.g. collie
is a subsort of dog). We don’t require that sorts denote unique sets of individualg, so
two sorts p; and p; may be aliases for the same set (e.g. car and autormobile), or that
a sort be non-empty (e.g. unicorn is an empty sort). As we describe below, subset

information on sets of aliases forms a partial order.

e Let U be the domain of discourse (i.e. the set of individuals).

e Let P be a set of base sorts, notated using letters p and ¢. Vp € P, p represents

a subset of Y. P contains an implicit element: Tp, representing .

e Then C forms a preorder relation on P (i.e. C is reflexive and transitive).

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 144

From P we can specify the literal sorts: P; = {p,—p|lp € P,—-p = U\p}, notated
using greek letters a, 3, etc. We can derive an implicit literal sort Lp = = Tp that

represents). We can also extract two relations:

e The sort equivalence relation, =p: for py,p2 € P, p1 =p p2 if and only if p; C p,
and p; C p;. We denote the set of equivalence classes of P as P-, and each

equivalence class as [p], where p is a representative for the class.

o The sort (partial) order, (P=,<p): for [pl,[q] € P-, [p] <p [q] if and only if
Vp: € [pl,q; € [q], pi C g;- Clearly <p is reflexive and transitive. To show
anti-symmetry, consider two classes [p] and [q]. If [p] <p [q] and [q] <p [p], and
p: € [pl,q; € [q], then p; C ¢; and ¢; C p;. Thus, p; =p gj, so it must be the
case that [p] = [q].

For simplicity of notation, we omit the brackets surrounding alias classes. We now

describe the relationship between taxonomic and set operations.

e If p; M p; = p3, then p; N p; O ps. For example, if p; Mp; = L, we cannot infer
that there is no element in & that is in both p; and p,. We can only infer that
there is no known sort that represents such elements. However, if we know that
P1 N p2 = p3 then we can infer p; M p, = p3. For non-singleton meet crests, if

P1Mp2a={q, - ,qk}, then Vg;,1 <i < k,py Np; D g.

e If p; U p; = ps, then p; U p; C p3. However, if we know that p; U p; = ps then
we can infer p; U p; = ps. For non-singleton join bases, if py Up; = {q1, -+, qx},

then Vg;,1 <1< k,p1 Up, C ¢q;.

Thus, it is not always possible to perform sort inferences using taxonomic oper-
ations. This issue was the focus of the lattice completion proposed in [28]. Figure
7.1 shows the above relationships using Venn diagrams. Qur goal is to exploit both
the complete and incomplete knowledge in a sort hierarchy for a sort reasoning sys-
tem. This requires a general means of specifying, maintaining and reasoning with

information that relates sorts.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 145

@ @ @ O

Bsp a —all'laz B=a;nay =0 0y
Bca Calﬁaz ﬁ:aluaz B=aj Uy

Figure 7.1: Relation between taxonomic and set operations

7.3.1 Generalizing sort reasoning
Definition 7.1 Suppose we have a set P of n base sorts.

o An atomic sort is a sort s obtained by intersecting, for every sort p € P, either

p or its complement —p.
o A derived sort is a set of atomic sorts.
e A conjunctive sort is the intersection (conjunction) of a set of literal sorts.

e A conjunctive sort s is consistent if and only if it does not contain both a base

sort and its complement. A consistent conjunctive sort is a derived sort.

In a Venn diagram of all possible combinations of sorts, each distinct region is an
atomic sort of which there are 2". Taxonomic information may reduce the number
of non-empty atomic sorts (e.g. if p; < p, then an atomic sort with p; but not
P2 is empty). A derived sort is obtained by selecting 0 or more atomic sorts, and
corresponds to the union of distinct regions in a Venn diagram. In the worst case (no
taxonomic constraints) there are 22" non-empty derived sorts.

To illustrate, consider the specifications: (i) francophone < person and (ii)
canadian < person. Although sorts francophone and canadian are incomparable,
there is no information that indicates they are disjoint. Combining them results in
the derived sort canadian_francophone. In general, conjunctive sorts can be denoted
by juxtaposing their constituent sort labels (lexicographically to ensure uniqueness,
although any total order on the sort labels could be used). Automatic derivation of
conjunctive sorts can be contrasted with LIFE in which the same combination will

result in failure, since their coincidental meet is L.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 146

For conjunctive sorts, we can specify an intrinsic ordering (=<): for two conjunctive
sorts s; and s5, we know that s; C s9 if s; contains a superset of the literals in s;. For
example, p; A =py A p3 <X —p, A p3. Taxonomic information provides further extrinsic
ordering among conjunctive sorts. Thus, for conjunctive sorts s; and s, 51 <X 83
implies that s; C s,, but not necessarily the converse.

Clearly there is potential for a combinatorial explosion in the number and size of
derived sorts. In [28], completeness in a many-sorted logic setting is required, and
so the entire derived sort space must be handled. Unfortunately, this leads to the
possibility of a sort structure of exponential size. Qur goal is to produce a general
sort reasoner that minimally retains polynomial space, and so we choose to restrict
the set of derived sorts to conjunctive sorts.

Conjunctive sorts are natural in that they group together individuals in ¢ that
share attributes. They provide for monotonic sort reasoning, since the set of individu-
als denoted by a partially specified sort cannot increase as new constraints are applied.
These are the types of sorts produced in LIFE [4] through unification. Conjunctive
sorts have a natural representation using a three-valued logic by selecting for each
base sort p € P either true (include sort p), false (exclude sort p) or uncertain. Thus,
there are at most 3" different consistent conjunctive sorts, although constraints may
reduce this number. Conjunctive sorts have a simple and efficient implementation
using logical terms (see section 7.6).

Our problem can now be described succinctly as follows:

Definition 7.2 Sort Reasoning Problem (abstract): Given a set of base sorts
P, a set of assertions A that specify the emptiness or non-emptiness of zero or more
conjunctive sorts, and a conjunctive sort s. Can we infer that s is emply or non-

empty?

We show that interesting sort reasoning problems can be characterized as special
cases of this problem, and we describe general methods of specifying the assertions.
We develop a sort logic (not a sorted-logic, but a logic for sort reasoning) that has
a sound and complete reasoning strategy. We also show that this problem is NP-

Complete, so we explore tractable subsets of sort reasoning.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 147

The assertions A partition the conjunctive sorts into three groups: empty sorts,
non-empty sorts and possibly empty sorts. If a conjunctive sort s; is empty, and
s2 =X 51, then s, must also be empty. Dually, if s; is non-empty, and s; < s;, then
s2 must be non-empty. Thus, sort reasoning can be viewed as classifying conjunctive

sorts into these groups based on the current set of assertions.

7.3.2 Clausal taxonomic specification

In [28], a suggestion is made for clausal specification of taxonomies: Vz,pi(z)V -V
Pm()V 2qi(2) V- - -V =gn(z), where the p; and g; are base sorts. A number of special
cases are worth noting:

m = 0,n = 2: ¢; and ¢, are incompatible.

m=0,n>2: q,---,¢, cannot simultaneously hold.

Radi

m=1n=1: ¢ Cp.
4. m>1,n=0: p,---,pm decompose T (i.e. U{p1, - Pm} =T).

The usefulness of these clausal specifications is not explored in [28]. In light of
the sort reasoning problem, such a specification can be viewed as asserting that a
certain conjunctive sort is empty. The universally quantified form is equivalent to
Az, -pr(e) AN - A pn(z) Aq(z) A - A go(z) (i.e. conjunctive sort —py A~ -+ A =p,, A
g1 A---A\gy, is empty). We propose to also allow dual specifications: 3z, ~p;(z)A--- A
“Pm(z) A q1(x) A--- A gu(z), which permit asserting that a certain conjunctive sort is
not empty. Duals of the above special cases are:

1. m=0,n=2: ¢; and ¢, are compatible.

2. m=0,n>2: q,---,q, can simultaneously hold.
3. m=1ln=1q ¥ pn.

4. m>1,n=0: p1,--+,pm do not decompose T.

With these two forms, we have the ability to fully specify any instance of the sort
reasoning problem, so we can dispense with the quantification, and limit our {ocus to
propositiona’ logic. Universally quantified assertions (or universal sorts) are global in
that they must all simultaneously hold, but not existentially quantified assertions (or
ezistential sorts), which may specify different individuals in ¢/. Figure 7.2 shows the

set relationships imposed by these specifications.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 148

B—(oyap o)

o &
ov—B v—fv—PB; ovopvosv—B —~(ov—P;v—B,v—P3) —(oty vopvozv—f)

Figure 7.2: Venn diagrams of clausal taxonomy specification

7.3.3 Definitional specifications

As an alternative to clausal specifications, a number of natural relationships can be
constructed using sort definitions. Some possibilities are described below and shown

in Figure 7.3, and formed the basis of extended description spaces [53].

Conjoined Sort Definition: We may want to define a sort as precisely the intersec-
tion of a set of other sorts. For example, we may want to define woman as the
intersection of person and female. We can denote this using set intersection:
p = a;N---Nayg, where the a; are sort literals. Such definitions are equivalent to
the clauses: (1) pV —ay V---V —ay; and (i) ~pV o; for 1 < ¢ < k. Partial orders

only permit the second set of clauses, and so we may only say: p C a; N---Nay.

Sort Decomposition: Sometimes we know that a set {ay,---, ax} of (possibly over-
lapping) sorts decomposes another sort p. That is, p = oy U --- U a4. for
example, we may wish to define a sort university course = grad_course U

undergrad_course (where some courses may be cross-listed as both). Sort de-
composition is analogous to generalization in the entity-relationship model [92].
Such a declaration is equivalent to the clausal specifications: (i) =pVa,; V- --Vay;
and (ii) pV —eq, for 1 <: < k. Every conjoined sort definition p = a; N---Nay

i

induces a dual sort decomposition —p = —a; U - - - U —ay, and vice versa.

Sort Partitioning: We may have even stronger information that a set) decomposes
a supersort p and every pair of elements in @ is disjoint. For example, we may
want to say that the sort person is partitioned into woman and man. We can
denote this using disjoint set union: p = a; + - - - + ax, where + is inferpreted
as union with the constraint that each pair of sorts on the right-hand side must
be disjoint. Such assertions are equivalent to the clauses: (i) "pVa; V---V ay;

(i1 pV —a; for 1 <1< k; and (iil) ~o; V—aj, for 1 <i< 3 <k

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 149

oy

o =pnPrnBs 1 =0 Uy U oy Bi=o;+0y+03

Figure 7.3: Aggregate specifications

We can specify the dual of these assertions, by replacing equal signs by strict
subsets. We may, e.g., state that wild and canine is insufficient to define wolf as
wol f C wild N canine (i.e. the sort ~wolf A wild A canine is non-empty).

Interestingly, definitional and clausal specifications are equivalent. A universal
assertion: py V-~V pn Vg V -+ V g, can be specified as: (i) ¢ = ¢ N Nqy;

" (or ¢ < p'). An existential assertion:

(ii) p' = ppU---Upm; and (iii) ¢ Np’ = ¢
~(pr V- Vpm Vg V-V g,) can be specified as: (i) ¢ = ¢ N -+ U qyn; (ii)

pP=p1U---Upy;and (iii) ¢ Np’ C ¢ (or ¢' £ p).

7.4 Sort Logic
Definition 7.3 A sort context is a triple & = (P,E,N), where

e P is a set of sort symbols, and P, is the corresponding set of sort literals.

® £ is a set of universal sort assertions, where for everye € £, e = oy V--- V
and each o;, 1 <1 < k, is a sort literal. Conjunctive sort —e is in the same sort

equivalence class as Lp (i.e. —€ is an empty sort).

e N is a set of existential sort assertions, for everyn € N, 53 =ay A--- ANy and
each a;, 1 <1 < k, is a sort literal. Conjunctive sort n is in a different sort

equivalence class from Lp (i.e. 1 is a non-empty sort).

Since existential sort clauses are local (i.e. they implicitly existentially quantify
an individual), we cannot use them indiscriminately: we only allow at most one to
appear in a proof. Our sort logic has three truth values: T (true), F' (false) and U
(unknown or uncertain). For example, the answer to the query dogAcat = 7 may be

true, whereas the answer to the query student A plumber = 7 may be uncertain. We

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 150

also have one rule of inference, resolution, which we can formalize as follows (where

the a; and f; are sort literals, and =—p = p):
(YVaaV---Vaj) A(-y VA V- VB)FEayV--- Vo VB V-V B

Using a standard resolution process, we finish whken either the empty clause is
derived, or no more resolution is applicable. The empty clause is derived only if both
o and —a can be derived, which clearly indicates inconsistency.

A sort context T is consistent if for every conjunctive sort s resulting from Pg,
we cannot infer that s is both empty and non-empty. Since resolution is sound and
refutation complete [72], determining if a sort context is inconsistent using resolution
is sound and complete. We do not assume complete knowledge, however, so it may
be the case that we cannot infer that s is empty or non-empty. In this case, following
Cohn [28], we call s possibly-empty.

Queries can be dealt with as follows:

Empty Sorts: To check if a conjunctive sort s = a3 A --+ A «; 1s empty, we assert
that it is not empty by adding s as an existential sort, and attempt to derive
the empty clause through resolution. If we derive the empty clause, then s must
be empty, and —s must be a universal sort (i.e. the sort context (P,&, {s}) is
inconsistent). If not, then s may be either non-empty or possibly-empty. Note

that we only use elements of £, but not of A, for this.

Inferring Sorts: We may be interested in the sorts that can be inferred from s.
These can be produced as a side product of the above resolution process. If s

1s an empty sort, then every sort is derivable.

Non-empty Sorts: To check if s is non-empty, we assert that it is empty (i.e. add —s
as a universal sort), and attempt to derive the empty clause through resolution.
We do this by finding a non-empty sort 7 € A with which we can derive the
empty sort (i.e. the sort context (P,€ U {—s},{n}) is inconsistent). Note that

this is akin to skolemizing the existential sort 7.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 151

We can now restate the sort reasoning problem in more definite terms.

Definition 7.4 Sort Reasoning Problem (concrete): Given a sort context © =
(P,E,{s}). Is & consistent?

The Sort Reasoning Problem is NP-Complete, as we prove formally in the following
subsection. This can be demonstrated by modeling an instance of 3-SAT using sort
definitions, as shown in Figure 7.4, where a conjunctive normal form formula with
ternary clauses f = ¢; A---Acg, where ¢; = ;1 V063V, 1 <1 < k can be represented
using one intersection definition for f and one union definition for each of the clauses.
In diagrams, we denote intersection (resp. union) definitions by connecting the parent
(resp. child) subsumption arcs with a horizontal line. Answering the query “Is f an

empty sort?” is clearly NP-Complete.

€ - Gk G

~—~"7 T

f Ly Lz L

Figure 7.4: Using sort definitions to represent an instance of 3-SAT: f =¢ A+ A¢y, -
where ¢; = ;1 V06V 1<:<k . :

From a logical standpoint, intractability is of no concern, provided the logic is
sound and complete. Also, some systems may prefer to retain expressiveness and
assume that the worst-case will rarely, if ever, occur. Even so, there is some sort
structure maintenance that we may perform to reduce the cost of sort reasoning. If
we determine that a sort s is empty or non-empty, then we can assert this information
in the sort context. We refer to this as sort memoing, since it is akin to memoing in
OTDT resolution [125]. If sort reasoning is performed in localized areas of the sort
structure, then this enhancement may result in improved performance at the cost of

additional storage (in the worst-case, one conjunctive sort is added to the context for

any query).

7.4.1 Complexity of Sort Reasoning

We now prove that sort reasoning is NP-Complete. Note that context £ = (P, &, {s})

is consistent if and only if s is not provably empty.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 152

Lemma 7.1 Ifs is an empty conjunctive sort and s’ contains a superset of the literals

of s (i.e. s' X s), then sort resolution can show that s’ is empty.

Proof: Suppose s is an empty sort: s = a3 A---Aay (S0 ~ap V- - -V —ay is a universal sort),
and s’ contains a superset of the components of s: s’ = a; A---Aap APy A...ABj. Further
suppose that s’ is not empty: assert oq,...,ax, f,...,03;. Clearly, through resolution we

can derive the empty clause. Thus, sort resolution can show that s’ must be empty.q

Lemma 7.2 If s is an atomic sort (i.e. s= a1 A--- A ay), then s is provably empty
if and only if 3-s' € € for which s < s'.

Proof: = Suppose A-s’ € € for which s < s’. The only way to ir £~ that s may be empty
from £ is to find a decomposition of s, each element of which is provably empty. But since
s is atomic, no decompositions exist.

< Suppose 3-¢' € £ for which s < s'. By Lemma 7.1, clearly s is provably empty.q

Theorem 7.1 The Sort Reasoning Problem is NP-Complete.

Proof: Given a conjunctive sort s, if s is not provably empty, then there exists an atomic
sort s’ subsumed by s that is not provably empty. By Lemma 7.2, checking if s’ is not
provably empty and checking if s’ < s can botk be done in polynomial time. Thus, the sort
reasoning problem is in NP.

To show that this problem is NP-Complete, we show a transformation to sort reasoning
from 3-SAT [69]. The 3-SAT problem can be specified as follows: Given a set of n variables
¥y, ++, U and a formula F' that is a conjunction of k clauses, each of which is a disjunction
of precisely 3 literals, is there a truth assignment to the variables for which F is true?

Suppose we have an instance of the 3-SAT problem: V = {v;,---,v,}, F = C1A---AC}
and C; = ;1 VI o Vi3, 1 < i<k, where each of the [;; is either a positive or negated
variable from V. Let us define a sort context trivially as £ = (V U {¢},{¢,C1,-- -, Ct}, 0).
Clearly this can be done in polynomial time. Note that the sort g must subsume all the
other sorts (i.e. it is in the same sort equivalence class as T). Each atomic sort corresponds
to a truth assignment.

Claim: there is a solution to the 3-SAT problem if and only if we cannot infer that ¢ is

empty.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 153

= Suppose formula F' is satisfiable. Take any satisfying truth assignment, and define
an atomic sort s as: s = a1 A ---A ay, where a; = v;, if v; = true and o; = —v; otherwise
(for 1 < i < n). If sis provably empty, then 3 a clause C; = {;; V l;2 V {3 for which
-C; = -l;1 A-lig A —l; 3 subsumes s by Lemma 7.2. But at least one of [; 1,1 2,1; 3 is true,
so no such clause exists. Therefore, s is not provably empty, which implies that ¢ is not
provably empty. So, if F' is satisfiable then ¢ is not provably empty.

< Suppose that ¢ is not provably empty. Then 3 an atomic sort s that is not provably
empty. Define a truth assignment as follows: if v; is a component of s then set v; = true
and if —w; is a component of s then set v; = false. Consider any clause C; = ;1 V2V i3
for which none of the literals are true. Then —l;, -l; o and —/; 3 are all components of s.
But then s must be empty, so no such clause exists, and this truth assignment satisfies F'.

So, if g is not provably empty then F is satisfiable.q

7.5 Tractable subcases

Many knowledge representation systems are concerned with tractable reasoning strate-
gies, so it is important to identify subcases of the sort reasoning problem with poly-
nomial solutions. As intractability results from empty sort assertions (i.e. universal

sorts) and queries, there is no need to restrict the form of non-empty sort assertions.

Positive literal sorts. A simple way to achieve tractability is to avoid negated sorts
by only allowing assertions that involve positive literals. In LIFE [4], only
subsumption (i.e. p < g) assertions are permitted in specifying a sort hierarchy.
However, if the mee? crest p; M --- N p; happens to be {qi,...,¢.}, there is an

implicit assertion of the form py A---Ap, =q1 V-V gpn.

Horn sorts. Anothe, possibility is to restrict specification to Horn clauses (clauses
- with at most one positive literal). This leads to tractable resolution if we restrict
each base sort to be a positive literal of at most one clause. This restriction

may be relaxed somewhat using the notion of ORD-Horn clauses described in

[113] for finding a maximal tractable subclass of Allen’s Interval Algebra [7] for

temporal reasoning.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 154

7.5.1 Containing sort reasoning complexity

Both cases above impose unnecessarily strict limitations on the expression of tax-
onomic knowledge. To achieve more flexibility while retaining tractability, we can
either restrict the form of assertions or the form of queries. We choose a combination.
The basic form of universal sort assertions we allow are (i) binary clauses, which can
define a partial order among the literal sorts (i.e. pV g,p V =g or =p V —g); (ii) in-
tersection (conjoined sort) definitions: p = a3 A -+ A ay; and (iii) union definitions
(sort decomposition): p=a3 V- -V ap.

Sort contexts can be described as (P, A,N), where A is a set of definitional
assertions that satisfies the above forms. Such assertions could be reduced to clausal
form, but these definitional assertions can be maintained in a partial order structure
on the literal sorts, augmented with notation for the intersection and union definitions.
N is a set of existential conjunctive sort assertions as before.

Note that asserting a binary clause imposes two constraints: aV § asserts ~a < 3
and - < a. Asserting an intersection or union definition, also asserts the dual. The
intersection definition, p = a3 A --- A a,, also asserts -p = —a; V ---V —a,,. The
union definition p = a; V - -- V oy, also asserts =p = —a; A -+ A Day,.

Without restrictions, of course, we have full sort reasoning power with the above
assertion forms. Even limiting sorts to have at most one definition may lead to
intractable behaviour, as shown in Figure 7.4. Our solution is to limit the extent of

intractability. First we need to define several notions.

Definition 7.5 Let s = a3 A --- A ap be a conjunctive sort. The expanded form s*
of s is the fizpoint of the following construction (i.e. there exists a k > 0 for which
Skpr = Sk = §*): (i) so = {a1,...;ak}; (i) sip1 = 8; U {B € Pr|Iy € s; such that
¥<BYU{BEPL|B=mNA--- ANy is an assertion in A and v; € s;,1 < j <m}

" Thus, given a conjunctive sort s, its expanded form is the set of all sort literals

that may be directly inferred from s.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 155

Definition 7.6 Let s = a; A --- A ai be a conjunctive sort, and s* be its expanded
form. The set of potential conjunctive inferences C(s) associated with s is defined
recursively as the fizpoint of the following construction (i.e. there exists a k > 0 for
which sg41 = sk = C(8)): (i) so = s*; (i1) sip1 = ;i U{BIB=7m A Aym is an

assertion in A, and v; € s; for somel < j <m}

Definition 7.7 Let s = a3 A --- A ax be a conjunctive sort, and s* be its expanded
form. The set of unresolved disjunctions D(s) associated with s is defined as: D(s) =
{{B1V---VBH(E)a= p1V---V By is an assertion in A; (11) a € s*; and (i1i)Fy € s*
such that v < B; for some t,1 <1 < k}.

Thus, D(s) is the set of union definitions for which the left-hand side sort, but none
of the right-hand side sorts, is in s* (so the disjunction is implied but not satisfied by

s).

Definition 7.8 Let s = ay A --- A ax be a conjunctive sort. A locally consistent
selection of literals from the unresolved disjunctions D(s) is a set Q = {P1,...,Pm}
of at least one sort literal from each disjunction in D(s), where the expanded sort s}

(ss=a1A---ANarAB1--- A Pm) is consistent.

The existence of a locally consistent selection is necessary but not sufficient to
show that sort s is not provably empty. Unresolved disjunctions may cascade due to
a locally consistent selection - D(s;) may contain unresolved disjunctions.

In order to determine if s is provably empty or not (provided s* is consistent), we
need to show that every possible way of resolving the set of disjunctions D(s) leads
to inconsistency. This problem may be intractable in two dimensions. First, even
making a locally consistent selection from D(s) may be NP-Complete (cfr. 3-SAT
problem). Second, the potential cascading effect of unresolved disjunctions may lead
to an exponential search space, even if determining locally consistent selections can
be done in polynomial time. The following set of restrictions attempts to curtail both
of these sources of intractability, while retaining a degree of power that makes sort

reasoning useful:

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 156

1. Positive literal sorts may not subsume negative literal sorts, and no set contain-
ing negative literals may imply a positive literal. This is achieved by enforcing
the following syntactic constraints on assertions: (i) Subsumption assertions
must have the form pV —¢q (i.e. ¢ < pand —-p < ~¢) or —=pV ¢ (i.e. p < ¢
and ¢ < —p); (ii) The sorts on the right-hand side of intersection and union

definitions must be positive literals.

2. For a given conjunctive sort s = a3 A -+ - A ¢, limit the number of unresolved
disjunctions (union definitions) containing positive literals associated with s to
a constant ny. This ensures that we can determine in polynomial time if there is
a locally consistent selection of literals from the unresolved disjunctions D(s). If
D(s) is empty or contains only disjunctions with negative literals, then a locally

consistent selection can be done in linear time.

3. Limit the cascade of unresolved disjunctions by imposing constraints on the
relation of positive sorts involved in one union definition p = ¢ V -+ V ¢
to other union definitions. If s; € C(¢), 1 < i < k, then D(s;) can only
contain disjunctions with negative literals. Note that if ¢; is not subsumed by
any sorts on the right-hand side of an intersection definition, then this reduces
to the constraint: D(g;) can only contain disjunctions with negative literals.
This restriction ensures that, for a conjunctive sort s, any locally consistent
selection from D(s) can be checked for global consistency in polynomial time
since cascading disjunctions can only contain negative literals (and no selection

of negative literals can result in a positive literal being derived).

The first and third restrictions are purely syntactic. The second affects both as-
sertions (i.e. the conjunctive sorts on the right-hand side of intersection definitions)
and queries, and depends largely on the current sort structure. It can, however, be
- checked quickly given any conjunctive sort. If it is not satisfied in a query, we can no-
tify the client and provide the option to attempt a potentially costly answer. Together
these restrictions permit us to specify a polynomial time algorithm for determining if

a conjunctive sort s is provably empty:

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 157

i. Construct s*. If s* is inconsistent then s is provably empty.

ii. Determine D(s) and check if there is a locally consistent selection. If none
exists, then s is provably empty.

iii. Attempt to expand each locally consistent selection to a globally consistent

selection. If this is not possible, then s is provably empty.

The first step of the algorithm is performed automatically and efliciently using
lattice operations and the logical term implementation described in the next section.
Due to the second restriction above, step (ii) can be accomplished in polynomial time,
and due to the third restriction, checking if there exists at least one globally consistent

selection (in which case s is not provably empty) also takes polynomial time.

7.6 Implementing Conjunctive Sorts

For a simple logical term encoding of sort orders, that is fast to compute and flexible
to update, we assign terms in which each element has one position and use a variant
of top-down transitive closure encoding [2]. For any element p € P, position ¢ of the
code 7(p) may have one of three values: (i) If p < p; then position 7 will contain a 1;
(ii) If p < —p; then position ¢ will contain a 0; (iii) Otherwise position ¢ will contain
an anonymous variable (denoted “.").

We can extend our logic and implementation to four values: true (1), false (0),
uncertain (_) and inconsistent (!). Inconsistency in a sort position could be used
as an explanatory feature to identify the base sort at the root of an inconsistency.
It could also be used as a basis for extending our sort logic to include default and
non-monotonic reasoning - an inconsistent value for a base sort p would indicate that
somehow both p and —p have been acquired. OQur approach does not provide a means
of resolving this inconsistency, but does give a framework upon which a default or

non-monotonic logic system can be built.

7.7 Conclusion

Taxonomic knowledge representation is a complex, yet intuitive and pervasive prob-

lem. By separating sort constraints into a sort reasoner, specialized techniques can

“CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 158

be used to manage the sort relations arising in a system. We argued that, although
mathematically elegant, partial orders are unwieldy for representing all the relations
desired in a system. Although sort reasoning can be plunged into a partial order
(in fact, a Boolean lattice), the size of this partial order is extraordinary - given n
base sorts, the lattice can be as large as 22". The typical use of partial orders for
sort reasoning, in which each base sort 1s an atom (i.e. plunging the sort structure
in a Boolean lattice of size 2), leads to either the inability to state certain relations
(e.g. sort woman is the intersection of sorts person and female) or to unjustifiable
conclusions.

We extended partial orders to more efficiently handle sort processing. By restrict-
ing attention to conjunctive sorts (sorts that consist of conjunctions of positive and
negative base sorts), the scope of the problem is reduced to the interesting case that
is most apparent in current logic programming systems (e.g. LIFE [4]). We extended
a clausal sort specification notation introduced in [28] to include the specification of
existential sort assertions, the dual of universal sort constraints. We also developed a
definitional specification notation, in which many important taxonomic relations can
be asserted (e.g. sort university_student is defined as the union of sorts grad_student
and undergrad_student). Although the two forms are equivalent in power, the latter
may be more intuitive for some constraints.

Using the set of base sorts, and the existential and universal sort relations, we
defined a sort contest, and formalized the sort reasoning problem as the problem of
inferring whether a given conjunctive sort s is provably empty, provably non-empty
or neither, given a particular sort context. Sort reasoning is NP-Complete in general,
and for many-sorted logics this is of little concern, since sound and complete resolution
strategies can be used. A main contribution of this chapter is the identification of
a tractable subcase of sort reasoning, which is important for practical many-sorted
systems. We identified a number of restrictions that achieve a polynomial-time sort
. reasoning algorithm, while retaining a relatively high-level of expressive power. This
goal is not easily obtained, due to the many ways in which intractability may creep

nto a sort structure.

Chapter 8

Reference Constraints in Logic

Programming

“Man stays wise as long as he searches for wisdom; as soon as he thinks

he has found it, he becomes a fool”
— Talmud

Equality constraints that arise through unification partition logical variables into
coreference classes, each of which denotes an individual in a domain of discourse.
These classes, however, are unrelated to each other. We develop reference constraints
as a generalization of equality constraints, allowing the specification of a partial order-
ing among coreference classes. This leads to the notion of individual level inheritance,
where an individual denoted by a variable may inherit properties from another indi-
vidual denoted by a subsuming variable in the partial order. A variety of systems,
especially systems that reason in ambiguous domains, can benefit from an efficient,

formally based implementation of reference constraints.

8.1 Introduction

Sort (or class) level inheritance permits the declaration of properties for a sort, which
are automatically propagated to all of its sub-sorts. A sort represents a conjunctive

set of individuals (the subset of the universe that belongs to the sort), whereas a

159

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 160

variable represents a disjunctive set of individuals (the subset of the universe that
contains the individual). Each individual (or instance) inherits the combination of
properties of its ancestors in the sort hierarchy. For multiple-inheritance hierarchies
(i.e. general partial orders, not just trees), research has focused on resolving conflicts
among the inherited properties (e.g. [22, 85, 143]).

There are, however, applications in which inheritance among individuals (instance
level inheritance) is useful. If an individual « inherits from another individual g,
then any additional properties acquired by § must also be dynamically acquired by
a. Such constraints may have use, for example, in systems that explore alternatives
in ambiguous situations. During a line of exploration, we may determine properties of
the solution we seek that must be propagated to all lines of exploration. Systems that
exhibit such characteristics include natural language processing systems, automatic
configuration systems, dynamic programming, and non-monotonic reasoning systems.

An unsatisfactory way of achieving this is to allow instances to be maximally
specific (or leaf) sorts. The problems of mixing class and instance (i.e. subset vs.
element) links in hierarchies were clearly identified by Woods [158] and Brachman
[16]. Another unsatisfactory solution is to create new sorts that denote single elements,
because sorts are declarative in nature whereas individuals are assertional. Reference
constraints provide a formal means of instance level inheritance.

Logical variables denote individuals. This is true even for a universally quantified
variable; it may range over a set of individuals, but can only denote one of these at
any instant. Although variables may be sorted, the key difference between the sets
represented by variables and sorts is that sorts are conjunctive (e.g. every instance
in the set denotea .y dog is a dog) and variables are disjunctive (e.g. X:dog denotes
some instance in the set denoted by dog). We show how the symmetric coreference
constraints imposed by equality among variables can be decoupled into two asymmet-
ric, unidirectional reference constraints. Although individual level inheritance and
reference constraints may be applied to a general many-sorted logic setting, we focus
on logic programming. We use Prolog and LIFE [4] for examples, and discuss how
reference constraints can be efficiently implemented using attributed variables [86].

After providing some background, we describe our decoupling of coreference in

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 161

logical variables. This includes a discussion of the syntax and semantics of reference
constraints, maintenance of the reference order, an extended example, a comparison
with sort hierarchies, and how reference constraints may be efficiently implemented
in a logic programming language. Section 8.4 develops and justifies instance level

inheritance, including a number of potential applications.

8.2 Background

The entity to which a logical variable refers to may be unspecified or partially specified.
In logic programming, each variable X has an associated term 7(X) that contains
information regarding the entity that it denotes. In case there is no information,
7(X) = _. When two variables X and Y are unified (i.e. X = Y'), then we are saying
that the entities to which X and Y refer are the same (i.e. X and Y corefer). Any

change to X is reflected in Y and vice versa (i.e. 7(X) = 7(Y)). Naturally, to ensure
this property, any rational implementation will store only one term for X and Y. Such
a constraint is called an equality or coreference constraint, and is a fundamental basis
for some logic programming languages such as Prolog. Equality constraints partition

variables into a set of unrelated coreference classes.

8.3 Decoupling Coreference via Reference Con-

straints

Suppose we decouple coreference and permit reference constraints. That is, suppose
we can say that X refers to Y without saying the converse. To do this, we add a
reference (or semi-unification or subsumption) operator <. The constraint X < Y
states that 7(X) must be subsumed by 7(Y) (but not necessarily the converse). Any
property holding for the entity to which Y refers must also hold for the entity to which
X refers (i.e. information in 7(Y') implies that this same information, and possibly
more, must be in 7(X)). The pair of constraints X XY and Y < X is equivalent to

coreference/unification (i.e. X =Y). Since the term associated with a variable is just

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 162

an approximation of an entity, X <Y implies differing degrees of knowledge (i.e. the
range of variable X is a subset of the range of Y). In Prolog, an entity denoted by
a variable is only fully specified when the associated term is ground. LIFE, however,
is based upon approximation — terms have unbound arity (i.e. the arity of terms is
not fixed), and so the notion of a ground term has no meaning.

What are the consequences of reference constraints? Reference forms a preorder on
the set of variables in a clause. That is, reference is transitive and reflexive. However,
it also forms a partial order among coreference equivalence classes. If X <Y and
Y < X, then X and Y are in the same equivalence class. Note that in order theory
[38], we can always form a partial order from such classes for any preorder. Logical
‘variables in logic programming languages such as Prolog or LIFE create a set of
coreference equivalence classes, but there is no connection among these classes. With
our treatment of reference constrains, we can construct a relation among these classes.

If X <Y and we further instantiate 7(Y), then we must similarly update 7(X)
(and the terms for all variables subsumed by the class of X). For example, the output
for the code: X XY, X = f(_,,b), Y = f(a,_) will be: X = f(a,d),Y = f(a,-).

More formally, we can define a set of reference constraints as a state in a logic
program. We sketch the formal details here. We first define some relevant static
aspects of a program:

¢ Let U be the domain of discourse (i.e. the set of individuals).

e Let X be a set of variables. This may be infinite, or viewed as the variables

mentioned in the logic program.

e Let GAF be the lattice of logical ierms, or generalized atomic formulae [121].

We now define the state (relevant to reference constraints) of a logic program:

o Let 72X — GAF be a function mapping variables to terms. Initially, VX € X,
(X)) =_

e Let the reference constraints, <, be a preorder relation on X such that, for
XY € X, X <Y implies 7(X) <gar 7(Y) (i-e. the term of X is subsumed by
the term of Y in GAF).

From =< we can extract two relations:

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 163

® The coreference equivalence relation, =, 1s defined as: for XY € &', X =Y
if and only if X X Y and ¥ < X. We denote the set of equivalence classes
as P. For each equivalence class in P, we identify one member element X as
a representative for the class, and denote the equivalence class as [X]. We can
extend the function 7 to reference classes: 7([X]) = 7(X).

e The reference (partial) order, (P,=<p): for [X],[Y] € P, [X] Xp [Y] if and only
ifVX; € [X],Y; € [Y], Xi Y. Clearly <p is reflexive and trausitive. To show
anti-symmetry, consider two coreference classes [X] and [Y]. If [X] <p [¥] and
[Y] <p [X], and X; € [X],Y; € [Y], then X; < Y] and ¥; <X X,. Thus, X; =Y],
so it must be the case that [X] = [Y].

In this framework, we can identify two state changes that may occur during the
processing of a logic program: updates to < and updates to 7. These updates are
caused by explicit reference and coreference constraints, and through unification, as
we discuss in section 8.3.2. We assume initially that both are monotonic (we can
only add new reference constraints, and further instantiate terms). That is, suppose
(=i, 1) and (=i41,Tig1) are two subsequent states of X and 7 in the program. Then
<iC=ip and VX € X, 7:1(X) <gar 7(X). This condition holds in Prolog, but may

be invalidated in LIFE by destructive variable assignment.

8.3.i Notational considerations

There are two ways in which coreference can be noted in a logic program: explic-
itly through an equality constraint (e.g. X = Y'), or implicitly by using the same
variable name at two or more locations in a clause (e.g. f(X,X) in Prolog or
person(mother => X:person,bestFriend => X) in LIFE). Although the implicit
notation is important to keep clauses concise and clear, it can be viewed as a con-
venience; we could replace all occurrences of a variable X by unique names, and
explicitly state the coreference constraints among this set of variables.

Reference constraints can be noted in clauses explicitly (e.g. X <Y could be
noted using ASCII as X <~ Y). Imuiicit notation for reference constraints may be

confusing, and we do not consider this possibility.

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 164

8.3.2 Maintaining and satisfying the reference order

In a logic programming language, such as Prolog, the scope of a variable is the clause.
Due to the coreference constraints on variables in the head of a clause when a predicate
is called, the initial coreference classes may not all be singletons. For example, if we
call the predicate f/2 with f(X, X), then the two variables in the head will already be
in the same coreference class upon entry to the clause. Similarly, a predicate may alter
the coreference classes of calling clauses. For example, if the predicate ¢g/2 unifies its
two head variables (e.g. if the head clause is g(X, X)), then the coreference classes of
the two variables in any calling clause will be combined. Thus, from the perspective
of a clause, we start with a given set of coreference classes containing the variables in
the head, which may be modified (monotonically) in either the head or the body of
the clause. With reference constraints, the reference order will similarly be modified.

At any stage in the processing of a clause, we have a current reference order

(P, =2p), where P is the set of coreference classes. For efficiency, we only maintain

the representative for each coreference class in P, and the association of variables

with their representative (e.g. via union-find). In this way, reference constraints are
constructed on top of standard coreference. There are three situations we need to
consider.

Explicit reference constraints Suppose we encounter an explicit reference con-

straint X <Y, where the representatives for X and Y are X’ and Y’, respec-
tively. If [X'] <p [Y"], then nothing need be done. Otherwise we must update
the reference order and propagate changes to new descendants.
If [Y'] <p [X'], then we collapse the suborder between [X’] and [Y"], completing
the coreference between X and Y: for any class [Z] for which [Y'] <p [Z] <p
[X'], we merge [Z] with [Y’]. After all such classes have been merged, we
propagate the term associated with [Y’}], which will be at least as instantiated
as the term associated with [X], to all new descendants of [Y’]. These will be
the coreference classes [@] for which, prior to the hierarchy update, [Q] <p [X7],
but [Q] Zp [Y'].

if [X’] and [Y”] are incomparable, then we simply add this new constraint to

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 165

the order. Classes below [X’] will now also be below [Y’], so new descendants

of [Y'] (including [X']) need the term associated with [Y”] propagated to them.

Explicit equality constraints Suppose we encounter a variable unification X = Y,
where the representatives for X and Y are X' and Y”, respectively. We could
handle this as two separate reference constraints X <Y and ¥ < X, but it may
be more efficient to handle the coreference directly. If X’ = Y’ then nothing need
be done. If either [X'] <p [Y'] or [Y’] <p [X"], then we handle the completion
of this coreference as above. If, however, [X'] and [Y’] are incomparable, then
we menrge these reference classes, and propagate the term associated with [X]

to the descendants of [Y’] (that are not also descendants of [X’]) and vice versa.

Term unification Additional coreference class updates and term propagation may
result from implicit constraints arising in unification. During the unification of
two terms, if we unify a variable X with another variable Y, then the situation

is as above.

Suppose, however, we unify a variable X with a term 7 (e.g. X = f(a,Z)). In
this case we find the representative X’ for X, unify r; and 7(X’), and propagate
this unified term to all descendants of [X’] in the reference hierarchy. Although
this operation does not directly modify the hierarchy, the unification of 7, and

7(X') may result in further coreference class mergings, as described above.

8.3.3 Example

We now show an example with which we hope to elucidate the nuances of reference

constraints. Consider the following predicates:

p(G,H,I) :~- G <" H, G < J, I <" H, K<™ G,
G =1f(g(),_,.), H=£(_,h,), K=1£(_,_,k),
q(J3,K,H).

q(A,B,C) :- A = £(g(a),_,_), C <~ B.

Now consider the results of the predicate call p(X,Y,Z). Initially, there are three

separate, incomparable coreference classes, as shown in the first reference order in

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 166

Figure 8.1, where T represents an implicit top element. The second reference order
in the figure results after processing the body of p before the call to predicate q
(where the associated terms are shown below the variables). The structure arises
from the reference constraints. For example, the constraints G <~ H and G <~ J set
input variable X (unified with G) to be subsumed by variables J and Y (unified with
H). The associated terms arise from the explicit unifications in the predicate and the
flow of information in the reference order. For example, the term a3sociated with X
is formed from the unification G = £(g(_),_,_) and the inheritance of information
from J and Y.

The third reference order results after processing the first predicate in the body
of q. The order itself did not change, but propagation from J to X and K occurs.
The next reference order is the final order after variables X, Y and K merge to form

one coreference class, with representative Y. The last order shows the returned state

after the local variable J is removed.

T T T T T
|]
XY Z J J Y b Y
- f(_h,) f(g(a),_.) f(_h,) f(g(a),_._) f(g(a),h.k)
L——"1 L—1 I I

X Z X A Y Z
f(g(.l_),h._) i_h) f(g(a).h.) f_h.) flg@)hk) f(g(a)hk)
! |

K K Z
fgO) k) f(g(a).hK) (g @00
Figure 8.1: State of the reference order at various points in a predicate evaluation

8.3.4 Comparison with sort hierarchies

There are a number of similarities, but also many important differences between our
reference hierarchy and sort hierarchies in many-sorted logics [28] and sorted logic
programming languages (e.g. LIFE [4]). The two are compatible, but independent

uses of partial orders.

Semantics: As mentioned above, a sort represents a conjunctive set of individu-

als, whereas a variable represents a disjunctive set of individuals. If the exact

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 167

individual denoted by a variable is unknown, the set represented by it is nei-
ther empty nor a singleton. The distinctions between sorts and individuals (or
declarational vs. assertional relations) are described in [16], and the need to
distinguish between subsort (i.e. isa subsort of) relations and member (i.e. isa
instance of) relations is justified. Thus, we cannot intermix the sort hierarchy
and individuals (where individuals might be seen as minimal sorts or leaves of
the hierarchy). In a sense, reference constraints add another relation “is more

specified than” among instances.

Scope: There is a fundamental difference between the scopes of sorts and variables.
A sort hierarchy is intrinsically global (declarational) in scope. In many systems
(e.g. imperative objected-oriented languages such as C++), the sort hierarchy is
specified at compile time. In LIFE, the sort hierarchy may be modified during
run-time, but in a limited way. New sorts may be added, and sorts may be
redefined (e.g. to have new attributes), but these changes are not propagated

to existing individuals that are subsorts of those modified.

The scope of a variable in logic is well-defined. In logic programming languages,
the scope of a variable is not global to a program, but local to a clause. Thus, all
variable changes are during run time, which we would expect to be more frequent,
than changes to sort hierarchies. In our approach, any change to the reference

hierarchy is reflected in the instances represented by the variables affected.

Dynamic Behaviour: A key difference between sort hierarchies and reference con-
straints is with unification. In sorted logic programming, unification does not
modify the hierarchy; rather the unification of two sorts is generally their great-
est lower bound. Witn reference constraints, however, unification may actually
change the structure of the reference hierarchy, which in turn may modify termns

associated with affected variables. This was exemplified in section 8.3.3.

Thus, we conclude that sort and reference hierarchies share some similarities,
but are fundamentally different and independent. However, they are not mutually

exclusive, and we feel that systems should provide both features.

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 168

8.3.5 Implementation

Can reference constraints be efficiently implemented? If only coreference is used, then
the reference order is an anti-chain (i.e. each pair of coreference classes is incompara-
ble). In this case there is little or no overhead when permitting reference constraints.
If reference is used, then we must maintain the partial order among coreference classes,
and propagate changes in a class to all of its subclasses. This could be achieved effi-
ciently through attributed variables [86], where the cover (child) relation is stored with
variables, and may be implemented at the WAM level. Thus, a modified variable will
have knowledge of its immediate descendants in the reference order, and so changes
can easily be propagated. Initially, the set of children for a variable will be empty.
For changes to the reference order, the only lattice operation that we need to perform
is comparability (i.e. X <p Y?). This could be achieved in time linear in size of
the descendant cover relation for ¥ with a (parallelizable) marker passing algorithm.
Sucl: an algorithm would be efficient as long as the size of reference order did not
become too large, in which case taxonomic encoding techniques could be exploited.
To facilitate backtracking, the state of the reference order would have to be saved,
along with the standard trail information, at choice points. Reference constraints also
merge well with memoing techniques [152]. Instead of tabling only predicate call and
return value information, we also need to store the relevant aspects of the reference
order prior to the predicate call, and upon return from the call. The relevant portion
of the reference order P for a predicate invocation is simply the suborder of P that
contains only the variables mentioned in the predicate call. When a look-up matches
an entry in the table (i.e. both the predicate call and reference constraints on variables
in the call match), then we simply use the result information, which will provide both

variable values and updates to the current reference order.

8.4 Individual Level Inheritance

What are the benefits and uses of reference constraints? Ironically, although large

reference orders may benefit from taxonomic encoding, it was in the development

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 169

of our constraint-based view of encoding that the need for reference constraints was
first identified [47]. Encoding is, however, a limited domain of utility for this general
mechanism. More interesting applications arise with the notion of individual level
inheritance (inheritance among individuals as opposed to classes). A sort hierarchy
provides a partial order among sets of entities, whereas reference constraints construct
a partial order among individual entities. Thus sort hierarchies and object-oriented
class hierarchies permit class to class and class to individual inberitance.

There are several reasons why we may want individual level inheritance. In an
ambiguous domain, we may want to separate the known information about an entity
from hypothetical or speculative information. In complex scenarios, we may want to
separate information related to an entity in different contexts. We may even want
to relate different entities that must share some common, but dynamically changing
properties. In all these cases, reference constraints permit the separation of informa-
tion, while retaining a close structural relation. We now describe some properties of
applications that may benefit from individual level inheritance.

In an ambiguous setting, we may have some information regarding an entity that
we are certain of, and we may have other information that we are uncertain of. In
an exploratory fashion, we can analyze this other information, perhaps in a breadth-
first manner. If we discover new information with certainty, we can apply it to the
original entity, and it will be propagated down all paths of exploration. Any paths
that become inconsistent will be pruned, requiring a different processing strategy than
Prolog: instead of backtracking when the term of a variable X becomes inconsistent,
we can simply mark X as inconsistent (e.g. 7(X) = 1) and prune it from the reference
order.

Another case arises if we want to retain information for a single entity, but
in separate conterts. For example, suppose we have a variable John which rep-
resents general aspects of a person named John. We may have additional vari-
ables Father_John < John and Pilot_John < John which represent fuller infor-
mation related to John in the context of his being a father or a pilot. This situa-
tion is shown in Figure 8.2. We could combine these two contexts with a variable
Father_Pilot_John < Father_John, Father _Pilot_John <X Pilot_John. In this way,

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 170

we maintain the information related to John in a hierarchically structured way; all
information is accessible, but the information within any context will not be cluttered
by irrelevant information. In addition, any updates at higher levels (e.g. adding gen-
eral information about John, such as his age) will be propagated to all lower levels.
Such a scheme may also be used for analyzing aliases, particularly if we allow infor-
mation introduced at a descendant to override that introduced at an ancestor (i.e.

local information having precedence over inherited information).

person(ﬁ'aorgg:ﬁohn)
Pilot_John . Father_John
person(name=>john, occupation->pilot, person{name=>john,
position=>captain, yearsExperience=>16) children->{ person(name=>lucas, age=>5),

person(name=>mia, age=>7)})

Figure 8.2: Reference order for separating the contexts for a person named John

The above outlines properties of applications that would benefit from individual

level inheritance. We next describe some concrete applications.

Automatic configuration: Suppose we have a system that automatically designs
a system configuration given a set of constraints among components and a set
of specification constraints (e.g. [37]). At any point, we may be certain about
some properties of our system BaseSys, but uncertain about others. Through
exploratory reasoning, we could try a number of possibilities simultaneously,

each of which must conform to BaseSys.

For each possibility, we could assign a variable, say Sys;, and make the constraint
Sys; X BaseSys. We could then add additional, hypothesized components to
Sys;. Of course, this could be done recursively, creating an entire hierarchy
of possibilities, with BaseSys as the root. If we also detect relations among
hypothetical systems, then this hierarchy may be a general partial order, not
Just a tree (e.g. if we detect that Sys;, where Sys; < Sys;, is an enhanced

system of Sysg, we can add Sys; < Sysg).

During processing, we may determine the necessity of components in a higher

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 171

system, resulting from analysis or additional user input. For example, if we real-
ize the need for a certain component in the base system, we add it toc BaseSys
(via unification) and it will be automatically propagated to all of its descen-
dants. This propagation may detect inconsistency of one or more hypothetical

systems, which will then be pruned from the search space.

Of course, this system may be incorporated as part of a larger constraint solving
system, and reference constraints can be viewed as one more form of constraint

in constraint logic programming.

Natural Language Processing: Computational linguistics systems must be robust,

due to the high level of ambiguity in human languages. As examples, consider
phrase parsing and discourse processing. A number of techniques, such as chart
parsing [70, 6, 119, 134}, have been designed to minimize the effort involved in

analyzing a sentence that may have multiple parses.

For a simple example, suppose a variable X represents what is known about a
phrase, and variables Y; (where Y; < X) represent the investigation of various
ambiguous parses (i.e. for each Y; some decision has been made regarding the
interpretation of an opaque word or phrase). During the parse, if something
becomes known about the entire sentence X {or about some sub-parse higher
than the current level), this must be propagated down from X to the Y; (and re-
cursively to their descendants). This idea can be extended from single sentences

to entire discourses.

In the sentence “Jack saw a dog on his way home”, the prepositional phrase “on
his way home” may apply to either the dog or to Jack. We may have semantic
preference rules that would select the latter reading, but the context of this
sentence may override such rules. Thus, we may explore both possibilities, but
focus on the most likely reading given the current information available. In
either case, we know that Jack saw a dog, so we may assert this as known,
and place the two readings in relation to this using reference constraints. Later
processing may incorporate additional certain information, which may prune

one of the possibilities.

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 172

To achieve this using reference constraints, we must use a representation for
parsed sentences in which ambiguity can be resolved via further instantiation of
terms. Figure 8.3 shows one possibility in which prepositional phrases are stored
in a list as the last argument of the main predicate!. In the term for variable X,
we denote the ambiguity as to whether Jack or the dog is on his way home using
the disjunctive set notation {Y’; Z} (where, for example, {jack; dog} unified with
dog results in dog). Although Prolog does not support such notation directly,
it can be specified in LIFE and with sparse logical terms [51].

X
saw(Y:jack,Z:dog.lon_way({Y;Z},home)])

/\\

X 1 X2
saw(Y jack,Z:dog,[on_way(Y,home))]) saw(Y:jack,Z:dog,[on_way(Z,home)})

Figure 8.3: Reference order for ambiguous parses of “Jack saw a dog on his way home”

As another example, the word “chair” is ambiguous in the sentence “When
Sherry saw the chair, she shook her hand”. The default reading may be as a
piece of furniture, but it may also refer to the chairperson of a meeting. By
maintaining both possibilities, backtracking may be aveidad as further infor-
mation 1s discovered. Figure 8.4 shows how this may be represented using an
interaction between reference constraints and a sort hierarchy. The first di-
agram 1in the figure shows a portion of a sort hierarchy for word meanings,
in which furniture_chair and meeting_chair are both subsorts of chair, and
meeting_chair is a subsort of person. The second diagram shows the reference
order after the sentence has been parsed. The pronouns she and her have not
yet been resolved, and the disjunctive set notation indicates that both must
refer to either “Sherry” or “the chair” (although the default may be that “she”
refers to “Sherry” and “her” refers to “the chair”). In the interpretation where
“the chair” is a piece of furniture, we apply the semantic constraint that hand
shaking is done by persons, leading to a parse in which Sherry is shaking her

own hand.

!More linguistically motivated possibilities also exist, but their development is beyond the scope
of this thesis.

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 173

chair person X
when(saw(Y :sherry,Z:chair),

| shook({ Y.Z},hand_of({ Y;Z})))
furniture _chair meeting_chair

1 X,
when(saw(Y :sherry, Z:furniture_chair), when(saw(Y :sherry,Z:meeting_chair).
shook(Y ,hand_of(Y))) shook({ Y;Z},hand_of({Y:Z})))

Figure 8.4: Reference order during parse of the sentence “ When Sherry saw the chair,

she shook her hand”

Chart parsing can be viewed as an instance of dynamic programming. It is
generally bottom-up in that it starts with words, which coalesce into larger and
larger phrases, until one phrase (often a sentence) spans the entire iput. The
benefit of saving intermediate results is a reduction in redundant processing
(which is also the basis of, and motivation for, memoing {152]). Reference con-
straints can be used as an automatic aid to dynamic programming systems in
which information that applies to a node in the search space can be automati-

cally propagated, with inconsistencies corresponding to pruning.

Reference constraints may also aid in the integration of top-down and bottom-
up techniques of discourse processing by providing a structure for relating in-
termediate results. By maintaining ambiguity using reference during top-down
parsing, needless backtracking may be avoided. If bottom-up results are stored
in a form that is unifiable with the final result, then they too can be coalesced
using reference. Thus, both forms of processing create additional entities below
existing entities; certainty is added higher up in the reference order, and un-
certainty 1s added at lower levels. When the entire structure coalesces into onc

coreference class, all ambiguity has been resolved.

Non-monotonic and Default Reasoning: Although default properties are speci-
fied in sort hierarchies, reference censtraints may be exploited to enhance the
efficiency of default reasoning by allowing a clean way of separating known from
assumed properties. When a variable X is constrained to be of sort s (e.g. via
an assertion of the form X:s), we can unify X with all the strict properties of
s, and create an implicit default variable X,;, where X; < X, with which we

unify all the default properties of s. In order to maintain the default variable,

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 174

new properties of X are unified with X, using what we call c-unification [141].
In c-unification, one of the terms is dominant and the other is subordinate. If a
conflict arises during unification, instead of failing, only the information in the
dominant term is kept. Thus, when updating X, after a change to X, we c-unify
7(X) with 7(X,), where 7(X) dominates 7(Xgy). In this way Xy retains only
those default properties that may still be applicable to X. Additional default
reasoning strategies (as in e.g. [22, 85, 143]) may be built into c-unification. The
importance of using reference constraints in this way is that monotonic aspects

of reasoning can be separated from, but still related to, non-monotonic aspects.

To illustrate, we use the standard flying birds example. Suppose that bird
is a sort with default properties feathered=>true and fly=>true, and that
penguin is a subsort of bird with a strict property fly=>false and a default
property home=>antarctica. The first diagram in Figure 8.5 shows the situa-
tion after initializing a variable Opus to be of sort bird (e.g. after an assertion of
the form Opus:bird). The second diagram shows the situation after we specialize

Opus to be of sort penguin.

Opus Opus

bgd penguinl:()ﬂy=>fajse)

Opusy ~ Opusy
bird(feathered=>true, penguin(feathered=>true,

fly=>true) fly=>false

home=>antarctica)
Figure 8.5: Reference constraints for default reasoning

The hypothetical reasoning systems we described add uncertain assertions as
children of a node. In this way, certainty can be incorporated as it is deter-
mined, and removal of assertions corresponds to pruning children. However,
there may be systems in which assertions must be explicitly withdrawn with-
out pruning the node. In this case, additional work must be performed since
branches of the reference order may have been pruned using the information to
be withdrawn. One pdssible solution is to mark, but not prune, inconsistent
nodes of the reference order. These nodes would be treated as pruned unless
an assertion they contain is removed, in which case they may change state from

inconsistent to consistent.

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 175

Individual level inheritance is certainly possible without reference constraints, and
in fact many systems appear to be already doing this. However, we can apply the
same arguments as for sort hierarchies in many-sorted logics, and for inheritance in
object-oriented systems. By making this process explicit, declarative and automatic,
the programmer (or logician) is freed of the burden of performing this task, and
can instead focus on higher-level aspects of the problem. Due to the formal basis of
reference constraints as a generalization of equality constraints, we ensure a consistent

semantics when individual level inheritance is exploited.

8.5 Conclusion

We have proposed two notions in this chapter: reference constraints and individual
level inheritance. Reference constraints are a generalization of equality constraints
among logical variables. Equality constraints form equivalence classes based on coref-
erence. Reference constraints decouple the symmetry of coreference, and permit the
construction of a partial order of coreference classes. We have shown that, due to the
semantic differences between sorts and variables, the reference order is quite distinct
from a sort hierarchy in many-sorted legics and sorted logic programming languages.
We believe, however, that both are compatible and desirable in a system, although
we did not deeply explore the interaction between the two. In this inquiry, we focused
on reference constraints in logic programming languages such as Prolog or LIFI [4].
A full model theoretic analysis in a logic system is required.

Reference constraints lead to individual level inheritance, which permits inher-
itance from one individual to another. This is distinct from the ordinary notion of
inheritance which is from a sort (or class) to another sort or to an individual. Through
a general outline of the types of applications that may benefit from automating indi-
vidual level inheritance, and descriptions of its use in automatic configuration (and
constraint logic programming), natural language processing (and dynamic program-
ming) and default reasoning, we investigated the potential benefits of our work in

logic programming and artificial intelligence systems.

Chapter 9

Organizing the Hierarchy of
Conceptual Graphs

“When nothing is done, nothing is left undone”

- Lao Tsu

"“Who really invented nothing
- Walt Kelly

Conceptual structures is a graphical knowledge representation formalism that is equiv-
alent in expressive power to first order logic. There are two main forms of hierarchies
used in the formalism: defined and derived. Defined (declarative) hierarchies, such as
sort and class hierarchies, have an explicit partial order relation. In conceptual struc-
tures, the type and relation lattices are defined. A derived hierarchy is a partial order
that is induced by internal structural relations among componeunts. Two conceptual
graphs can be compared using the subsumption relation, where graph ¢, subsumes
graph g, if it contains a subset of the information in g;. Derived partial orders are
employed in other knowledge representation systems, most notably for classification
in the KL-ONE family of terminological systems [18].

To organize derived hierarchies such as these, which are highly dynamic and ex-
pensive to construct, a number of techniques have been proposed, including encoding
[42] and multi-level indexing [94]. In this chapter, we develop a novel approach to

organizing derived hierarchies using graph normalization and spanning trees.

176

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 177

After providing a brief overview of conceptual structures, we introduce some nor-
malization techniques for conceptual graphs, leading to spanning tree normal form
(STNF). In [50], we show how an integration of sparse terms and order-sorted feaiure
terms, called sparse feature terms, can be used to implement graphs in STNF, and
how some operations on graphs in STNF can exploit unification and enhance opera-
tional efficiency. Starting with graphs in STNF, we develop a generalization hierarchy
normal form (GHNF) with which we organize the derived hierarchy of graphs, called
the generalization hierarchy, into a spanning tree. We show how searches in this

hierarchy can be performed efficiently using this spanning tree organization.

9.1 Background and Motivation

Since details of conceptual structures are not necessary for the following, for brevity we
choose to limit detailed background on the subject, which can be found in [136]. Es-
“sentially, a conceptual graph (CG) is a connected bipartite graph consisting of labeled
relation nodes and conceptual type nodes. Conceptual types are standard ontological
objects, such as “person”, “cat” or “eat”, and conceptual relations are basic relations
among types, such as “agent” and “object”. A standard example graph is shown in

Figure 9.1 [136], and represents the declarative statement “a cat sitting on a mat”.

@1
CAT SIT MAT

@]

AGNT

Figure 9.1: Conceptual graph representing “a cat sitting on a mat”

For our research, there are three ordered sets that are important: the conceptual
- types (the type lattice), the conceptual relations (the relation lattice), and the graphs
themselves (the generalization hierarchy). The formalism requires both the types and
relations to form lattices, which we have argued is overly strict, and that only ordered
sets are required [50]. These two ordered sets are definitional, in that the user imposes

the partial order relation. Since previous chapters have dealt with encoding defined

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 17

o

taxonomies, we omit further discussion of the type and relation lattices.

The generalization hierarchy, on the other hand, is derived using a set of canonical
formation rules that define how graphs relate. If graph ¢, can be derived from graph
g2 using the canonical formation rules, then g; must contain at least as much infor-
mation as g;. A conceptual graph system begins with a set of given graphs, called
the canonical basis. All other valid graphs used by the system must be derivable from
the canonical basis.

Spanning trees are a valuable tool for improving the operational efficiency ol graphs
and the generalization hierarchy. We only deal with atomic conceptual graphs in
which all relations are both dyadic and invertible. Atomic conceptual graphs contain
no logical connectives (i.e. they are connected), no logical quantifiers (other than
the implicit existential), and no nesting (i.e. there is only one context) [26, 11].
The inverse of a dyadic conceptual relation R is a relation R~! that is semantically
identical to R with the direction of the arrows reversed. For example, the inverses of
AGNT and PARENT are AGNT_OF and CHILD, respectively. Similar assumptions
have been made in [41, 107, 111, 160].

We first discuss the notions of cardinality constraints and functional relations.
Although cardinality can be expressed using sets or complex nesting of contexts, it
1s important to have the ability to express such constraints simply and declaratively.
Graph normalization techniques introduced in [107) are expanded upon in section 9.3
to prepare for constructing the spanning tree normal form that we introduce in section
9.4. Of particular importance tc operational efficiency is the elucidation of functional
relations in graphs. We then explore their use in the generalization hierarchy to
specify a generalization hierarchy normal form, to enhance search operations such as

matching and retrieval, and to efficiently perform topological traversals.

9.2 Cardinality Constraints

Although some conceptual relations are functional in character, CG theory provides
no simple way to represent these and other forms of cardinality constraints declar-

atively, without resorting to the use of actors, sets or complex nesting of contexts.

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 179

Actors imply computation of dependent concepts from independent concepts, while
sets do not restrict the number of relations of a particular type, which can be a valu-
able constraint for normalization and matching. For example, the canonical graph:
[EAT]—(AGNT)—[ANIMATE] does not tell us whether an act of eating must have
exactly one agent or may have multiple agents (i.e. if AGNT is a functional relation
of EAT). Another example is: [PERSON]—(SPOUSE)—[PERSON], which says that
the spouse of a person must be person, but does not constrain a person to have at

most one spouse. For illustration, we assume that both of these cases are functional.

Definition 9.1 A cardinality constraint, @n (n € Z%), between a concept ¢ and a

relation r states that at most n relations of type r may be connected to c.

A cardinality constraint is denoted on the arc between the concept and the relation.
Thus, the above example becomes: [EAT]-@1—(AGNT)—[ANIMATE]. Restricting
a relation to one occurrence for a concept (i.e. n = 1) is a functional cardinality con-
straint, and it is these constraints that we focus on. The connection to logic is simple:
if the variable representing the independent concept appears in two instances of the
relation, then the variables representing the dependent concepts must be equal. This
provides a sort of uniqueness constraint. OQur example translates to: Jzy (EAT(x)
A ANIMATE(y) A AGNT(z,y) AVz, AGNT(z,z) D z = y). We do not suggest that
all functional dependencies can or should be expressed in this way. Rather, we feel
that by notating functional relations, normal forms for CGs will be more distinct and
easier to determine.

Cardinality constraints blend well with set cardinality [63, 136]. For set coercion,
a cardinality constraint can be moved into the set notation. On expansion, the set
cardinality can be moved out to a cardinality constraint. To ensure set joins, we make
concept sets functional. As an example, for: [DANCE]—(AGNT)—[PERSON: Liz],
set coercion on PERSON results in: [DANCE]-Q1—(AGNT)—[PERSON: {Liz}],
whereas set expansion on: [DANCE]-@1—(AGNT)—[PERSON: {Liz,Kirby}@2] re-
sults in: [PERSON:Liz]«(AGNT)«@2-[DANCE]-@2—(AGNT)—{PERSON:Kirby].

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 180

9.3 Normalization

Normalization is important to enhance the similarity among graphs and can be
achieved via transformation rules [107]. We assume that all relations are invertible
5o, e.g., the inverse of WORKS_FOR is EMPLOYS, whereas the inverse of SPOUSE
is itself (i.e. it is symmetric). In [50], we show how our representation automatically
performs some simplification, reducing redundancy that can arise during joins.

Explicitly representing functional relations can be exploited to determine a prece-
dence between a relation R and its inverse R~'. Priority is given to functional
relations. Thus, assuming a world in which a person has at most one national-
ity. we would prefer the graph: [PERSON]-@1—(CITIZENSHIP)—[COUNTRY] to:
[COUNTRY]—(CITIZEN)-@1—[PERSON]. If both R and R™! are functional, we in-
corporate both (i.e. we perform symmetry completion [107]). By doing this, we can
traverse all functional relations in the direction of their arcs. If neither R nor R™! are
functional, other preference schemes need to be specified.

Normalization will also incorporate selectional constraints related to the graph,
particularly those which add functional relations between concepts. To illustrate, the
well-known example in Figure 9.1 shows a normalized version of the CG, in which the

concept SIT imposes the selectional constraint that it has exactly one agent.

9.4 Spanning Tree Normal Form

It is easy to specify a spanning tree for any conceptual graph, with coreference linking
identical concepts as in the linear form. Any traversal of a graph that visits every
concept and relation defines a spanning tree: the first node visited is the root and
cycles are broken by introducing coreference. Our goal is to specify a spanning Irec
normal form (STNF) that can be used to improve the efficiency of CG operations,
by exposing functional relations, as well as to organize and search the generalization
hierarchy. In [160] there is also a proposal for a normal form that is a spanning tree,
but the tree is determined in an ad hoc manner (alphabetical order is used to select

the root and relations to expand partial trees).

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 181

Definition 9.2 A spanning tree T for a conceptual graph G is a connected acyclic
subgraph of G containing all the concepts of G (but not necessarily all the relations).

For each spanning tree, one concept is designated the root.

In the linear form [136], concepts and relations form the nodes of a spanning tree,
and arcs are labeled with directional arrows. For STNF, only concepts are nodes while
relations are arc labels. The direction of arcs is implicitly downward. Although this
format is suitable for binary relations, which form the majority of conceptual relations
[123], it may be possible to accommodate monadic arnd higher-order relations; we do
not explore this here. We assume that our graph is normalized as described in section
9.3 and that we have linear extensions 7 and p of the type and relation hierarchies,
respectively. Since some graphs may require multiple root elements, we actually
construct a spanning forest. We maintain the individual trees in a list ordered by the
type of the root concepts (according to 7). When drawing forests, we add an untyped
dummy root to connect the trees together. '

We give below an algorithm that takes as input a normalized conceptual graph
(G, and outputs a spanning forest F' that represents G in STNF. The concepts and
relations of G are the ordered lists C and K, respectively. Each node in the forest is a
concept ¢ to which a (possibly empty) list of children is associated (via children(c)).
Each child contains a pair: the child concept and the connecting relation. The root

of the tree containing a concept c is obtained by calling tree(c, F').

Algorithm 3 STNF(input: G =< C, R >; output: F)

I. F:=C

2. for each concept ¢ € C,children(c) := 0

3. for each relation r(ci,c;) € R (taken in order)

4. if (tree(c;, F') = ¢; AND tree(c;, F') # tree(c;, F)) then

5 children(c;) := children(c;) U {< r,¢; >}

6 F:=F—~{¢}

7. else

8 children(c;) := children(c;) U {< r,coref(c;) >}

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 182

First, we start with a forest consisting of each concept in the graph G as a tree
(lines 1 and 2). We consider relations one at a time and update the forest as necessary.
A node is always placed below the entering concept ¢;, labeled with the relation type.
If the exiting concept, c;, is the root of a different tree in the forest from ¢; simply
connect this tree below ¢; (lines 5 and 6). We do this by adding the relation/concept
pair to the children list of ¢; and removing the tree rooted at ¢; from the forest. If,
however, ¢; is not a root or is in the same tree as ¢;, the node below ¢; will contain
a coreference label linking to ¢; (line 8). Once we have visited all relations, we have
a spanning forest for our graph. The time complexity of this algorithm is near lincar
in the number of concepts and relations in the input graph if the tree function is
implemented using a union-find algorithm.

The order in which we visit relations (line 3) is important. We consider all func-
tional relations, before any non-functional ones. Within these groups, the order de-
pends on the types of the relation and twe incident concepts. The order of precedence
is the relation, followed by the entering concept and lastly the exiting concept. Explor-
ing the consequences of choosing different precedence orderings is a topic for further
research. It may still be possible for there to be two or more arcs with precisely the
same relation and incident concept types. In this case, contextual information may
be needed for selection. In this preliminary analysis, we simply select one arbitrarily,
and this is the only place where non-uniqueness can entec: into the process. Thus, our
construction computes a spanning tree normal form that is nearly unique for normal-
ized graphs. As an example of this construction, Fig. 9.2 shows the STNF of the
graph in Fig. 9.1. Note that both AGNT and LOC are functional relations of SIT.
The last relation visited is STAT, which is added using coreference. In diagrams, we

notate functional relations using thick lines and non-functionai cnes with thin lines.

SIT:*x

AGNy\LoC

CAT MAT
STAT

*x

Figure 9.2: Spanning tree normal form

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 133

Another well-known example, with a cycle, is: @ monkey eating a walnut using the
walnut’s shell as a spoon [136). Figure 9.3 shows the normalized graph as well as its
STNF. For illustrative purposes, we assume that an entity can only be (intransitively)
a part of at most one other entity, and that an instance of eating has one agent and
one object. Thus the relation PART is inverted to PART_OF. We assume that the
linear ordering of relations is AGNT < OBJ < PART.OF < INST < MATR. We
first add MONKEY and WALNUT as children of EAT, then a coreference link to
WALNUT as a child of SHELL, and finally we add the non-functional relations INST
and MATR in the tree rooted at EAT.

EAT
AGNT B INST

MONKEY WALNUT:*y SPOON

MATR
SHELL
PART_OF
*y

Figure 9.3: A cyclic graph and a tree representation

For a more complicated example, consider the statement: ¢ woman eating a dinner
cooked by her husband, which is shown in Figure 9.4. In this case, we end up with two
trees since both EAT and COOK only have exiting relations in the normalized form.
Assuming the types are ordered by COOK < EAT < WOMAN < MAN, we obtain
the STNF as shown.

'WOMAN <__@4@_1 E AT /\
COOK AT
A

@l

GANy\ NBJ
@ SPOUSE DINI\ER N:*x DINNER:*y WOMAN:*z *y

@ SPOUSE ISPOUSE

* X
MAN 4——@4@1&0 @l *

Figure 9.4: A woman eating a dinner cooked by her husband

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 1384

In [50], we describe more fully the advantages of STNF. Graphs in STNF admit
a direct implementation using order sorted feature structures {4, 5]; we developed a
variant of sparse terms for this purpose. We demonstrate how the canonical formation
rules can be performed on graphs in STNF, in particular how unification can be
exploited to efficiently implement these rules by observing the constraints imposed by
functional relations. Since these issues are outside the scope of this thesis, we choose

to omit details.

9.4.1 Pivoting

Given a graph in STNF, we may need a certain concept to be the root of one of the
trees in the forest in order to perform graph matching, to obtain different viewpoints
of a graph, or to further normalize the spanning tree for storage in the knowledge basc.
We call this process pivoting. Although there are several possibilities for pivoting, we
have chosen one that is particularly simple, yet useful for organizing the knowledge
base. We call the node of a concept in a spanning forest that maintains the type
information (and possibly has a subtree) the dominant node. All other, coreferring
nodes are called subordinate. Basically, to pivot a concept that is not already a root is
accomplished by replacing the dominant node for the concept by a subordinate node
and adding the subtree rooted at this node as a top level tree in the forest. Pivoting

can easily be carried out, as shown in the following figure which shows pivoting of the

STNF form of the graph in Fig. 9.3 on the concepts “WALNUT” and “SHELL”.

/\ T~

EAT WALNUT:*y EAT SHELL:*z
AGNT/@]NST AGNT~Gp; INST FPART_OF
MONKEY *y SPOON MONKEY SPOON *¥

[MATR WALNUT:*y |MATR

S L *z

Pll;::;uzT_OF

*y

Figure 9.5: Examples of pivoting the graph in Figure 3

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 185

9.5 Representing the Generalization Hierarchy

A CG database contains of some of the (infinitely many) canonical graphs that can
be obtained from the canonical basis B using the canonical formation rules. The
generalization hierarchy organizes graphs into a partially ordered set of equivalence
classes [41, 111], where each graph in a class is canonically derivable from all others
in the class, and one class subsumes another if each graph in the latter is derivable
from each graph in the former. The generalization hierarchy consists of both the
canonical basis (which represents things thut could exist) and the database graphs
(which represent things that do exist). Although B may not form an anti-chain, there
1s a subset By of B that forms the initial level, or co-atoms, of the generalization
hierarchy. Our goal is to use STNF to assist in the organization and search of this
hierarchy. The advantages of explicitly maintaining the generalization hierarchy are
described more fully in [42]. This hierarchy can be encoded so that many operations
among graphs in the hierarchy can be performed efficiently using only taxonomic
operations, avoiding matching altogether. In our case; we maintain the full hierarchy,
but mark one parent of each graph as dominant, to identify a spanning tree.

We first describe the process of constructing the spanning tree for the general-
ization hierarchy incrementally, leading to another normal form. We start with an
empty generalization hierarchy consisting only of [T] and [1]. We need to order the
children of any element, so we define a total order on graphs (perhaps based on the
linear extensions of the type and relation hierarchies, and the form of the graphs).
The method used to specify this ordering is not important to the following discussion.

Suppose we have a generalization hierarchy organized with an underlying spanning
tree T and we wish to add a graph @ in STNF. We essentially use the algorithm of
[42] to search the hierarchy and find the immediate predecessors (IP) and immediate
successors (IS) of Q. We store graphs so that every STNF graph G is a simple
specialization of its parent G’ in Tg. That is, G and G’ have a direct matching (i.e.
their feature term implementations are unifiable, and the term of G’ subsumes that
of G). This cannot be achieved for all ancestors of GG, but if it holds for all ancestors

in T¢ (i.e. graphs on the path from G to the root [T]), then we can improve search

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 186

and matching operations. The position of Q) in T 1s below the leftmost 1P

As we find each predecessor £’ of) in T, we modify the form of (). Since both
C' and @Q are in STNF, the spanning trees in *the forest ' will be contained in the
trees of () (modulo symmetric relations and coreference). For each tree of " whose
root is not a root of (J, we pivot. Pivoting does not destroy the STNF properties, but
creates additional trees, so we essentially flatten @) until C' is more evident in its {orest.
When all the ancestors of) in T¢ have been processed, @ will be in generalization
hierarchy normal form (GHNF). The advantage of a storing graphs in GHNF is that
if we have graphs) and @’ for which @ subsumes @’ in Tg, then @ and ' have a
direct and simple matching. That is, not only is ()’ a specialization of @), the feature

terms representing () and @)’ are related by term subsumption.

9.5.1 Depth-first topological traversals

The spanning tree T underlying the generalization hierarchy can be viewed as repre-
senting a left-to-right (LR) depth first (DF) traversal of the generalization hierarchy.
We show here a relation between LR-DF traversals and DF topological traversals,
where a topological traversal is any traversal that obeys the topological property
that a node cannot be visited until all of its parents have been visitcd. In [42], the
advantages of searching the hierarchy for IP and IS topologically are described.

We make the distinction between breadth first (BF) and depth first topological
traversals. In BF traversals, we visit nodes by level. The level in an ordinary BI°
traversal is the length of the shortest path to the root, since we place an element in
the search queue when it is first accessible. The level for a topological BI" traversal,
however, is the length of the longest path to the root because we place an element in
the search queue only when last accessible (when the last parent has been visited).
DF traversals, on the other hand, select the next candidate node to visit with the
longest leftmost path to the root (in a LR traversal), where conflicts are resolved by
choosing the leftmost element. For ordinary DF traversal, a candidate is any unvisited
node that is connected by an arc to the tree traversed so far. When observing the

topological property, the only candidates are those whose parents have all been visited.

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 187

It should be clear that BF and DF topological traversals are implemented differ-
ently (using a queue in the former and a stack in the latter) and may visit nodes in
different orders. The proposal in [42] performs a BF topological search of the gener-
alization hierarchy to perform updates and retrievals. We feel that it is interesting to
explore DF topological searches for several reasons. First, such a search would result
in finding the first member of IP earlier than a BF topological search. Second, we
show how the spanning tree T; can be used to perform a DF topological traversal
without needing to mark elements as visited. Third, we can utilize GHNF more fully
to improve the efficiency of graph comparisons.

Although we cannot use the LR-DF traversal suggested by 7 in the search algo-
rithm, there is an interesting connection between DF traversals and DF topological
traversals. If T represents a LR-DF traversal of a hierarchy P, then a right-to-left
(RL) DF traversal of T¢; 1s a RL-DF topological traversal of P.

Theorem 9.1 Suppose GG is a rooted directed acyclic graph and T¢ s the tree resulting
from a LR-DF traversal of G. Then a RL-DF traversal of Tg is a RL-DF topological
traversal of G.

Proof: Consider any point in a traversal of Tg. Suppose the next node to visit, v, with
parent p in T, has an unvisited parent p;. Since p; is unvisited, it must be to the left of p
in T, but then during the initial DF traversa! p; would have been visited before p, and so

v would be below p; not pin Tg.o

Thus, a simple RL-DF traversal of 7 performs a DF topological traversal of the
ordered set without the overhead of checking when all parents have been visited.

In order to fully utilize the spanning tree structure of the generalization hierarchy
and the GHNF form of graphs, we describe a modification of the search algorithm of
[42]. The problem is to find the immediate predecessors (IP) and then the immediate
successors (IS) of a graph @, which may or may not be in the hierarchy. We assume
that after a comparison between @ and a graph u in which u > @, it is desirable to
compare the children of u with Q so that we can benefit from the result of the match

(while still obeying the topological property). By following the depth first topological

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS 188

traversal described above, this can be achieved with very little effort: we don’t even
need to mark elements as visited. By marking only those which successfully match @,
we can perform the search with a minimum amount of administration. Furthermore,
since graphs are in GHNF, we will successively compare graphs whose GHNI forms
most closely match until a subtree is traversed or until a graph is found which doesn’t
match Q. Another advantage of this approach is that by performing a DI topological
search, the focus (as described in [42]) becomes restricted more quickly, providing a

more constrained target for guiding the search.

9.6 Conclusion

We have explored the use of spanning tree representations of graphs and the general-
ization hierarchy in conceptual structures. We first proposed a means of declaratively
representing cardinality constraints. Of particular interest are functional relations,
which restrict the number of occurrences of a particular relation type to one. These
constraints are important for improving the efficiency of matching and other graph op-
erations. We extended and refined CG normalization, as introduced in [107], through
the use of functional relations. We developed a spanning tree representation of C(s,
leading to a spanning tree normal form (STNF) that is based on semantic content
and is less ad hoc than some previous proposals. Graphs represented in STNI" have
a natural implementation using a variation of order-sortcd feature structures, pro-
viding a scheme in which graph operations can benefit from the efficiency of feature
term unification. Finally, we showed how identifying an underlying spanning tree for
the generalization hierarchy can benefit both storage and traversals. A spanning tree
can assist in a further refinement of STNF to generalization hierarchy normal formn
(GHNF) in which all graphs on the same path to the root are unifiable. Furthermore,
by traversing this left-to-right depth first tree in a right-to-left depth first manner, we
achieve a depth first topological traversal that can be used as an aiternative search
procedure of [42]. An advantage of this search, in addition to its efficiency and sim-
plicity, is that graphs which are closely related have a higher chance of heing compared

successively, so we can take advantage of the results of previous matches.

Chapter 10

A Hierarchical Organization of
Landscape Models

“No man can reveal to you aught but that which already lies half asleep
in the dawning of your knowledge”™
- Kahlil Gibran

Due to the spatial scale at which most empirical landscape studies are performed,
replication is rarely feasible, and experimenters may require artificial replication through
the use of landscape models that are synthetically generated. In our view, a land-
scape is a heterogeneous region on the surface of the earth, and a landscape model
is a simplified representation {e.g. as a digital map) of a landscape of interest. A
generator of landscape models is a procedure for producing landscape models.

Artificial generation of landscape models is becoming increasingly prevalent in
landscape ecology and is useful for a variety of purposes, including comparison with
real data, testing general theoretical hypotheses, and providing input to simulation
models. However, the number of generators of landscape models is increasing and
there is no framework within which generators can be analyzed, compared and or-
ganized. In this chapter, we propose a hierarchical framework that unifies landscape
medels within a formal organizational system. A landscape model that is artificially
generated using a simple random process is called a neutral model. Generators of neu-

tral models produce instances of landscape models with two or more patch types, and

189

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 190

constrain the patterns generated by specifying the proportion of the model covered
by each patch type. We develop a generalization of neutral models, where landscape
models are generated according to a set of constraints on possible patterns. A set of
constraints is a landscape model prototype.

Different landscape model prototypes can be compared according to the number
and type of restrictions, where a prototype is considered “less neutral” or “more re-
stricted” than another if the former has a superset of the constraints of the latter.
This relation produces a hierarchy that captures gradients of neutrality among proto-
types. The hierarchy thus formalizes, in a mathematically elegant manner, a multi-
dimensional transition from neutral models that impose few restrictions on pattern
generation to predictive models that impose a variety of more ecologically motivated
constraints on the generation of landscape models. In a more practical context, this
hierarchy may be used to guide the development of landscape model generators, to
aid selection of appropriate existing generators, and to assist in the analysis of models

derived from real landscapes through the use of landscape model prototypes.

10.1 Introduction

A landscape is a heterogeneous region of the earth that is composed of a mosaic of
different patches, and generally contains a few interacting ecosystems {10]. Landscapes
may be defined from the viewpoint of a particular organism, although a common
viewpoint is from the human perspective, where a landscape is generally in the range
of 10% to 10°® ha (e.g. [150]). A landscape model is a simplified representation (e.g.
as a digital raster map) of a landscape of interest, either real or theoretical, and is
produced from natural (e.g. remote sensing) or artificial (e.g. simulation modeling)
sources. We must distinguish between three things, each of which may be viewed as
a model: an instance of a landscape model refers to a particular map that represents
a landscape, a prototype of a landscape model refers to a set of constraints on the
generation of landscape models, and a generator of landscape models is a procedure

for synthetically producing model instances from model prototypes.

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 191

The spatial scale of many landscape studies limits the ability to perform experi-
ments in a traditional way: it is difficult to exert the required control for manipulative
experiments, and hard, if not impossible, to find true replicates. With the increase
in modeling related technology and techniques, many studies have used computer-
generated landscapes both for artificial replication and for studying theoretical prop-
erties of idealized landscapes.

Research on the generation of landscape models can be classified in two main
groups. The goal of one group has been to produce accurate prediction or duplication
of the patterns seen in real landscapes (e.g. [59]). We refer to such model generators as
predictive. The goal of the other group has been to generate landscape patterns that
exhibit a simplified, but known, structure, and are generated by a random process.
These types of generators have been termed neutral models since they are neutral with
respect to ecological processes responsible for patterns observed in real landscapes [66].
The patterns that emerge in neutral models are the patterns expected in the absence
of any ecological effects. Thus, neutral models can form a null hypothesis for testing
for the effect of ecological processes on natural landscape patterns. A potential focus
for hypotheses that relate ecological process and pattern is to explain the difference
between neutral model patterns and patterns observed in real landscapes.

Work on neutral models has proceeded steadily over the last few years (e.g. [25,
66, 67, 148]), but is now rapidly expanding, as the number of presentations that
focused on neutral models at a recent landscape ecology symposium testifies (e.g.
[64, 73, 83, 100, 157]). However, although the development and use of neutral models
and neutral model generators has proliferated, no unifying framework for organizing
and categorizing models has emerged. Even the notion of a neutral model is becoming
vague as neutral model generators are enriched with new features (e.g. [64, 65]).

We develop a general, and formal, view for artificial generation of landscape mod-
els. We define a landscape model prototype to be a set of constraints that restricts
the generation of landscape models. Intuitively, a landscape model prototype is an
abstract ideal of a landscape model, and can be viewed as specifying some character-
istics of landscape models that are generated using this prototype. For example, a

prototype may include restrictions to landscape indices (e.g. richness or contagion)

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 192

or may be more complex, involving non-trivial spatial or temporal relations. Special-
1zed generators must be developed to produce landscape models for different types
of constraints. A variety of such generators already exist, and more are continually
being developed.

Prototypes separate processes on landscapes into those aspects that account for
the resulting pattern (i.e. the processes embodied in the consiraints) from those
that are not considered. The patterns that emerge from landscape model prototypes
are the expected patterns in the absence of all ecological effects not incorporated
into the set of constraints. Landscape model prototypes also form a null hypothesis
for landscape patterns, and can be used for testing the effect of ecological processes
acting on patterns in natural landscapes that are not accounted for in the constraints.
Hypotheses may attempt to explain the difference between the patterns observed in
the prototype instances and real landscapes.

A given set of constraints will generate a distribution of landscape models with
expected characteristics, and may be deterministic or stochastically distributed. As
the number of constraints increase, the expected pattern generated becomes more re-
stricted, providing a gradient from simple models to more complex, predictive models.
This relation forms a hierarchy, or partial order [38], on landscape model prototypes.
The highest element of the hierarchy imposes no constraints on landscape structure
and hence all landscape patterns have equal probability. We develop a framework
within which this hierarchy of landscape models can be constructed, and describe its
utility to landscape ecology for managing and analyzing sets of landscape models,
landscape model prototypes and model generators.

Our framework provides a number of significant contributions to landscape ecol-
ogy. First, by formalizing the abstract notion of a prototype, we provide a common
ground upon which different generators can be compared. This not only may avoid
re-developing existing generators, but provides a structure within which generators
can be contrasted, and gaps identified. In addition, the resulting hierarchy provides a
means for a common organization of landscape model generators, producing a struc-
ture for access to existing generators. Finally, the prototype hierarchy can be used

to guide the analysis of data sets of landscape models, assisting the identification of

"HAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 193

characteristics for which the data set deviates from random.

The next section develops the notion of neutral models, as introduced by Garder
et al. [66]. This is followed by a definition of landscape model prototypes. Section
10.4 uses this formal description to construct a hierarchy of prototypes. Finally, we
describe the potential uses of landscape model prototypes and the prototype hierarchy

for landscape ecology.

10.2 Background: Neutral models

Landscape patterns may be represented using a two-dimensional array of cells, where
each cell is occupied by some value, which we call a landscape feature. A patch is
formed where adjacent cells are occupied by the same landscape feature. The neutral
models introduced in Gardner et al. [66] are whole mosaic models [10] that are con-
structed using methods derived from percolation theory [137]. In their simplest form,
each cell in the model is occupied by one of two distinct landscape features, which
may differentiate, for example, community types that are susceptible or unsusceptible

to disturbance. These models are specified by two parameters:

p : the fraction of the landscape occupied by one of the features

m : the linear dimension of the map (i.e. the length of one side)

By a simple random process, cells are occupied by feature 1 with a probability p,
and feature 2 with a probability of (1 — p). These models are similar to landscape
maps that have been classified into two categories, but are “neutral” with regard to
the physical and biological processes that create real landscape patterns. Figure 10.1
shows three example neutral models for various values of p.

Garduner et al. [66] used such simple neutral models to examine the effect of varying
model size on patch size and shape in order to define appropriate scales for landscape
analysis, and later Gardner et al. [68] examined effects on animal movements. Turner
et al. [148] simulated disturbances on neutral landscapes with different proportions of
susceptible habitat. The disturbances were modeled as random events that occur with

a given frequency (probability of initiating) and intensity (probability of spreading

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 194

T A

|_|l .|. ._..F__,

"'I-l;-'

Figure 10.1: Example neutral models. Each instance was generated on a 30 x 30 grid
(m=30), with varying proportions of the white feature (p = 0.4, 0.6 and 0.8).

to neighboring cells). They showed that the disturbance characteristic (frequency
vs. intensity) primarily responsible for the propagation and extent of a disturbance
depends on landscape connectivity (i.e. the value of p). In this last study, significant
changes in model behaviour were detected near the percolation threshold (i.e. the
value of p at which a patch of type feature 1 traverses the landscape model). In these
simple neutral models, the percolation threshold occurs at a value of p = 0.5928 for
very large models.

Gardner and O’Neill [67] introduced a contagion factor (see section 10.3) that can
be used to create landscape models with larger contiguous patches while retaining
the same relative proportion of features in the model. They used these contagious
landscapes to study the potential for movement and resource use by species living in
patchy landscapes. They found that the percolation threshold varies inversely with
contagion. Turner et al. [149] compared the results of simulating natural distur-
bance on real landscape models (Yellowstone National Park) with results from the
same simulations run on neutral models that have an equivalent proportion of the firc
susceptible community type. A number of these studies propose that significant de-
partures by real landscapes from the expected patterns generated by a neutral model
may be used to form and test hypotheses about the relationship between the observed
patterns and ecological processes [66, 149].

Neutral models have a number of important uses ir landscape ecology, some of

which are mentioned below.

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 195

Comparison with real data. This is the main use endorsed by Gardner et al. [66]
and Caswell [25]. Here, a neutral model is used as an ideal against which to compare
real landscape data. Using a landscape statistics tool such as FRAGSTAT [99, 126],
we can compute statistics that may differentiate between landscape patterns (e.g.
average patch size, number of patches, patch adjacency, fractal dimension, contagion,
etc.) [146]. Deviations from the neutral model permit an estimate of the effect of
ecological interactions on the pattern observed in nature, and may lead to hypotheses

regarding ecological processes responsible for these differences in pattern.

Testing broad-scale landscape hypotheses. Neutral models can be used to test
hypotheses about landscape phenomena, such as the spread of disturbance and animal
movements. The simplified structure of neutral models permit a clear analysis of
how changing the parameter p effects the characteristics of interest. This is how
neutral models were exploited in [68, 148]. Another use in this context is to analyze
properties of neutral models themselves, using tools such as FRAGSTAT [99], in order

to determine how the value of p affects the value of different landscape indices, such

as average patch size.

Comparison with output from predictive models. Since we know the char-
acteristics of neutral models, they are useful for comparison with the output from
predictive models of landscapes. The difference between real landscape data and
the predictions of a model are one measure of a model’s ability to predict landscape
patterns [66]. Neuatral models provide a baseline that can be used to measure the im-
provement in predictability that is achieved by modeling geomorphological, climatic,

biotic and other ecological effects.

Input to simulation models. Replication of landscapes is a difficult problem in
landscape ecology. By specifying certain constraints, generation using neutral models
provides a means of approximating replicates of landscapes with some specific char-
acteristics (e.g. a fixed contagion). These artificial replicates can be used as input to
landscape simulation models that generate new landscape models from a given input

model (e.g. SELES [56]).

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 196

10.3 Landscape Model Prototypes

Our objective is to extend the core ideas of neutral models into a general framework for
reasoning with landscape models that are artificially generated. The loose definition
of a neutral model given by Caswell [25] is: “a neutral model is an expected pattern
in the absence of specific ecological processes”. Rather than focus on the absence
(i.e. neutrality) of specific processes, we feel that models should be defined in terms

“a landscape model prototype is an

of the presence of specific processes. That is,
expected pattern in the presence of specific constraints on that pattern”. These
pattern constraints, which we describe in detail below, dictate the expected pattern.

We now give a formal definition:

Definition 10.1 A landscape model prototype is a set of pattern constrainls that
restrict the possible generation of landscape models. An instance of a prototype is a

landscape model generated under the set of constraints.

Thus a landscape model prototype describes the expected pattern of a landscape
and in essence gives a distribution of possible instances, which are particular landscape

patterns generated using the given set of constraints.

10.3.1 Pattern constraints

There are many ways in which ecological information may be incorporated into land-
scape model prototypes. We have already seen two pattern constraints, as used in the
simplest neutral models [66]: the model size m and the landscape area ratio (where
landscape feature 1 had a relaiive distribution of p, and feature 2 had a distribution
of 1 —p). In addition, these models restrict richness to the interval [1,2]. Thus, these
models are random with respect to pattern, but always have a maximum richness
of 2 and a landscape area ratio (LAR) for feature 1 normally distributed around p.
The RULE program [65] permits the generation of models that precisely satisfy p.
Richness, model size and LAR can be viewed as constraints on the patterns generated

by these neutral models (i.e. they are not completely random). That is, a neutral

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 197

model with p = 0.4 and m = 30 can be represented as a landscape model prototype
with the constraints: {LAR = (0.4,0.6), szze = 30 x 30, richness € [1,2]}.
Additional constraints may be specified by restricting values of other landscape
indices (e.g. contagion or average patch size), or by incorporating feature responses to
spatially explicit landscape parameters such as elevation or soil type. We now discuss
a number of constraints that can be imposed on the generation of landscape pattern.
This list is not intended to be exhaustive. The example instances were generated

using the spatially explicit landscape dynamics simulator SELES [56].

Constraints on bounds: Since a landscape model must be represented in a finite
amount of memory, bounds on the grid size and maximum number of cell values
are important. Restricting the grid size (i.e. the number of cells) is a fundamental
constraint, and is related to the extent (i.e. the physical area represented by the entire
model) and the grain (i.e. the physical area represented by each cell in the model) of
the landscape of interest, where extent = number of cells x grain.

Normally, each cell is represented by an integer, and so the number of potential cell
values is bounded by the maximum size of integer that can be represented. In the case
of the neutral models of Gardner et al. [66], each cell could be represented by a single
bit, limiting the number of cel! values to two (0 and 1). For instances generated from
prototypes that specify only bound constraints, there will be no expected pattern; the
feature in each cell is completely independent of all other cells, and hence no expected

value (or expected distribution) can be predicted.

Constraints on landscape indices: In the literature to date, neutral models have
been restricted to two landscape features (i.e. patch type richness is < 2). We can
extend this to any number of features, permitting richness in a range of values (e.g.
richness € [1,5]). For a particular zpplication, each feature can be assigned different
characteristics (e.g. to describe differential effects of a particular disturbance). In the
context of percolation theory [137], instead of restricting each cell to either percolate
or not percolate, varying degrees of percolation properties can be assigned to different
cell types. For studies of the spread of disturbance in neutral models (e.g. [148]),

this corresponds to permitting varying susceptibility to disturbance spread (e.g. fires

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 198

or insect outbreaks) for each feature, as opposed to the simple binary properties of
susceptible vs. unsusceptible. In the absence of contagion, this is very simple: for &
features, we need to specify k relative abundance probabilities (which must sum to
1). A model containing at most k features can easily be generated.

We mentioned above that Gardner and O’Neill [67] propose contagion as a land-
scape index that may be used to constrain pattern generation for the two feature
neutral models. However, when combined with an arbitrary richness constraint, the
notion of contagion becomes more complex. In the two feature model, only one num-
ber was needed to represent contagion: an index indicating the probability that two
adjacent cells will have the same feature. Now, in addition, we can specify contagion
among different features.

To take a more concrete example, suppose our features are tree species. For a cell
of type Douglas-fir (Pseudotsuga menziesii), we may specify not only the probability
that an adjacent cell is Douglas-fir, but also the probability that it is Western hemlock
(Tsuga heterophylla), Red alder (Alnus rubra), etc. Thus we have k* contagion values
to specify. In some situations, it may be difficult to have precise ecological data to
specify this accurately. We can simplify matters by only requiring one contagion value
c that specifies the probability that adjacent cells will have the same feature. That is,
for each pair of identical features (e.g. Douglas-fir next to Douglas-fir), the contagion
value is ¢, and for each pair of different features, no contagion is specified.

Simultaneously preserving the probability distribution (i.e. LAR) and contagion 1s
not trivial, but can be accomplished by a formal generalization of contagion, which we
develop in the appendix at the end of this chapter. Examples of landscape instances
generated using different values for contagion are shown in Figure 10.2. All three
models have four features with equal relative proportions (0.25).

Although contagion is an intuitive and common index for landscapes, there is
nothing ecologically inherent that distinguishes it from other indices. We could, in
theory, restrict the value of any landscape index to constrain possible landscapes. For
example, we could set Shannon’s diversity index or edge fractal dimension, and only
generate landscapes that have a particular expected value for these indices. Further-

more, we could specify restrictions to more than one landscape index simultaneously,

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 199

(a) (b) (©)
Figure 10.2: Instances of landscape model prototypes produced on a 100 x 100 grid.
Each model has four features with equal landscape area ratios (i.e. equal relative
proportions). The value of contagion differs for each model instance, taking on the
values 0.6, 0.8 and 0.99, respectively. The prototype for instance (a) is therefore
{LAR = (0.25,0.25,0.25,0.25), size = 100 x 100, richness € [1,4], contagion = 0.6}.

and generate landscapes that satisfy all the values of these indices. In this way, we
view landscape model prototypes as models that are not neutral with respect to a
given set of explicit constraints (landscape indices in this case), but neutral with

respect to everything else.

Spatial constraints: There is no mechanism in the models of Gardner et al. [66]
to incorporate the effects of physiography when generating landscape models. The
distribution of real landscape features may be strongly influenced by some physical
characteristics of the landscape, and we may want to integrate them into model gen-
eration. We can incorporate responses to spatial parameters (e.g. topography, soil
type, slope, etc.) as constraints on the probability distributions of features, providing
a spatial context for pattern generation. Such parameters affect both the relative
proportion and spatial distribution of the features in the model. We call such models
sile specific due to the local effect of parameter values at a given site. This use of
spatial parameters essentially replaces a statistical approach to spatial distribution
with a more empirical based, process oriented approach.

These parameters can be derived from real data, or can themselves be artificially
generated. For example, a topography parameter can be derived from a real landscape

through cartographic techniques, or it may represent a theoretical topography derived

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 200

through fractal model generation (e.g. [56, 116, 117]). Spatial parameters are matched
to the landscape model, so that each cell in the landscape model has a correspounding
value in the parameter model.

Generating a site specific model involves calculating, for each cell, the relative
probability of occurrence for each feature. This is akin to deriving a local LAR. This
information 1s then used to either randomly determine a feature for the cell, based
on this distribution or it can be further constrained (e.g. with contagion). Note that
as prototypes become “less” neutral, the significance of contagion in forming patches
decreases. Contagion can be viewed as the aggregation of ecological processes that
explain why features are often grouped into patches. As these ecological processes are
integrated into a model through spatial constraints, the need for a contagion factor
decreases, since features wiil become more naturally aggregated.

These site specific models can range from more neutral models (i.e. site inde-
pendent, aspatial distributions of landscape features) to complex models that specify
relationships for many parameters. This extends our notion of gradients'of neutral-
ity, from prototypes that specify aspatial constraints, to prototypes that incorporate
a spatial context that influences pattern generation, taking one more step towards
predictive models

Figure 10.3 shows an instance of a site specific model for which features vary
with altitude. Each of the five features differs in its response to elevation. The darker
features respond “better” to lower elevation, while lighter features respond “better” to
higher elevation. That is, at low elevations, the relative probability of darker features
is higher than lighter features, and vice versa at high elevations.

The model instance is draped over the elevation map that was used to create
it, providing a contextuai view of the instance. Note that using the same set of
constraints, but a different elevation map, would produce a different model instance.

In this example, no contagion was used.

Temporal constraints: We can also constrain pattern generation temporally through
the use of an existing model instance. If we view the existing instance as a previ-

ous state of the landscape, this creates a temporal context for pattern generation.

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 201

Figure 10.3: Geometric view of an instance of a landscape model prototype with
spatial constraints. The instance is overlaid on the elevation model used to create
it. The model size of this instance is 100 x 100, and the number of features is 5.
The underlying elevation model provides a context in which spatial constraints, in
the form of elevation responses, affect pattern generation. Thus, the prototype for
instance (a) is {stze = 100 x 100, richness € [1,5], spatial responses to elevation}.

Using a combination of the input landscape model, and temporal change sequences
(e.g. modeling succession or disturbance), a landscape simulator may attempt to
mimic ecological and/or abiotic processes in the production of landscape pattern in
the output model.

Specifying temporal constraints may be as simple as providing a Markov chain [10]
(i.e. a transition matrix, where entry (z, ;) specifies the probability that a cell with
feature 7 in the input model will have feature j in the output model). At the other
extreme, temporal constraints may determine the features of the output model based
on an analysis of the input pattern, and possibly other information such as spatial
parameters. Depending on the complexity of the constraints on temporal sequences,
these prototypes may also provide a gradient from models that are a small step beyond
neutral models to more predictive models.

Figure 10.4 shows an instance of a prototype (pattern (b)) generated using tempo-
ra1 constraints and an input model (pattern (a)). The temporal sequence is stochastic,
and most of the cells obtained their feature from th- previous state; some of the cells

(most notably in the centre left of the pattern) obtained different values. In general,

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 202

such sequences may model a successional trajectory. the elfect of a disturbance event,
or some other dvnamic landscape process. The specification of temporal constraints,
and the generation of sequences of models based on these constraints is the heart of
landscape dynamics simulators. such as SELES [56]. Note that the only constraints
involved i1 the generation of this model instance are richness, model size and temporal

responses: the resulting pattern is largely dependent on the input landscape.

(a) (b)
Figure 10.4: Instance of a landscape model prototype (b) generated using stochastic
temporal constraints and input pattern (a). The model size is 30 x 30, and richness is
4. The prototype for instance (b) is therefore {size = 30 x 30, richness = 4, lemporal
responses}.

10.4 A Hierarchy of Landscape Model Prototypes

Different combinations of constraints lead to different landscape model prototypes,
and the relation among these prototypes forms a hierarchy. For two prototypes,
P, and P,, if Py 1s defined by a superset of the constraints of P,, then iustances
generated by P, are more restricted than those generated by P,. In this case, we
place P; “lower” in the hierarchy than P,. The most general prototype, denoted
T, is the one that imposes no constraints on pattern generation. Although such a

prototype may have limited practical utility. it does serve as a common starting point

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 203

for all other prototypes. The prototype hierarchy forms a general partial order not
just a tree shaped hierarchy, since a prototype may have multiple parents.

This hierarchy provides a framework for systematically cataloging and analyzing
landscape pattern. A prototype can be used to generate a set of instances with an
expected pattern under known constraints. Deviations from this expected pattern in
real landscapes, or simulation results, can help us identify components of pattern not
explained by the constraints of the prototype.

Figure 10.5 shows a sample fragment from this hierarchy. Each node in the hier-
archy includes the set of constraints imposed by all nodes above it. Thus, the lowest
node represents the prototype with the constraints: {richness = 4, model size = 100,
LAR = (0.1,0.2,0.3,0.4), contagion = 0.8, spatial responses to elevational data}. The

other nodes in the example contain various subsets of these constraints.

T

Richness =4 Modél Size = 100

S

Landscape Area Ratio = L Elevational
(0.1,0.2,0.3,04) Contagion =0.8 Responses

Figure 10.5: Sample fragment of the hierarchy of landscape model prototypes. Each
node represents a prototype that consists of the constraints labeling the node and all
higher nodes in the hierarchy.

The prototype hierarchy organizes work on neutral models and landscape model
prototypes both for developers and users of model generators. Some of the potential

applications of the hierarchy are described below.

Development of landscape model generators: Landscape model generators are
procedures for the synthetic production of instances of landscape models. In gen-
eral, they permit the specification of prototypes via parameter values. Once a set

of parameters (constraints) has been provided, landscape instances satisfying those

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 204

constraints can be produced. Thus, generators are more abstract than prototypes
in that they only restrict which constraints may be specified, while prototypes also
restrict the value of the constraints. OQur framework provides a structure within which
landscape model generators can be systematically developed and compared. Not only
can two generators be contrasted as to which constraints may be specified, but gaps
in the suite of existing generators can be identified. In this viewpoint, the hierarchy
does not specify values for constraints. The constraints that may be imposed by a
generator determine its position in the hierarchy, and its relation to other generators.

A sample fragment of the generator hierarchy is shown in Figure 10.6. Each node
represents a generator that allows specification of the constraints attached to that
node and all nodes above it in the hierarchy. For example, the node labeled Fdge
Fractal Dimension permits specification of richness, model size, landscape area ratio,
and edge fractal dimension. The node below Richness and Model Size reprssents
a “totally neutral model”, where only bound constraints are specified. Note this
fragment is incomplete, and is not intended to suggest any particular relations among
constraints. Thus, for example, there may be another node above the one labeled
Edge Fractal Dimension that permit specification of edge fractal dimension, but does

not require landscape area ratio.

T
Richness Model Size
Temporal Landscape Area Ratio Contagion Elevational
Sequences WHSCS
Edge Fractal /\
Dimension

Figure 10.6: Sample fragment of the hierarchy of landscape model generators. FEach
node represents a generator that permits specification of the constraints labeling the
node and all higher nodes in the hierarchy.

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 205

A common organization of landscape model generators: Access to existing
tools is a prevalent problem. Currently, developers of landscape model generators have
no source of information as to which generators already exist, and so run the risk of
re-inventing the wheel. Similarly, potential users of generators have no systematized
way of searching for generators. The prototype hierarchy has the potential to alleviate
these problems as a common organization of model generators. A site on the Internet
could be established to maintain the hierarchy, and nodes could have links to sites
from which the corresponding generator can be accessed. Thus, once the desired
set of constraints has been identified, the hierarchy could be traversed, and if the
node corresponding to these constraints could be found, then the landscape model
generator exists and can be accessed.

With time, this hierarchy may potentially grow to a size where access becomes
cumbersome. In this case, the encoding techniques developed previously in this thesis
for efficiently storing and traversing hierarchies could be utilized. A user could enter
the desired set of constraints, and the system would automatically find the desired
node if it exists. If no such generator exists, then the set of most closely related nodes
could be returned.

We envision the prototype hierarchy as providing a cooperative resource for land-
scape ecologists to share landscape model generators, to find desired generators, and

to identify gaps in the current state of landscape model generation.

Analysis of landscape pattern: Landscape ecologists benefit directly from the hi-
erarchy of landscape model prototypes. Given a data set of one or more landscapes,
the hierarchy can guide hypothesis testing to determine the level of neutrality of the
data set. That is, we can find the node P in the hierarchy for which the models
generated by prototype P are not significantly different from the models in the data
set. We provide below a theoretical example of how this can be accomplished. The
process of arriving at P may identify deviations from random, or neutral, characteris-
tics. This in turn may lead to hypotheses to explain these differences. The node itself
is also of interest, since it is the most general prototype that captures the pattern

exhibited in the data set, establishing the “level of neutrality” of the data set. That

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 206

is, this prototype serves as a predictive model for the data set, and is the most general
such prototype.

For example, suppose we have a data set X of landscape models with size m and
richness k. Starting near the top of the hierarchy, we can take a basic prototype with
constraints only on model size and maximum richness. Using this prototype, we can
generate a number of model instances, which can be used as a random sample of the
prototype. Now we can compare an attribute of the data set, such as the average
contagion, with that of the sample. Note that the contagion for the sample provides
an expected value for contagion in the absence of additional ecological information.

If no significant difference can be detected between the contagion of the data set
and that of the sample from the prototype, then the data set has a contagion value
that is indistinguishable from random. This isn’t to say that there is no process in
these landscapes acting on this attribute, but rather that we cannot distinguish from
pattern that is random with respect to this attribute. We can continue by selecting
another attribute, such as LAR or elevation responses.

If, however, we find that the attribute value for X differs significantly from the
expected value of the attribute, then there is some process responsible for this diver-
gence. The identification of this deviation may lead to hypotheses for explaining the
difference. For example, if the average contagion for the data set A’ is greater than
the average contagion for the sample from the prototype, then this indicates that
there is some ecological process responsible for the higher degree of aggregation in the
data set than is expected from random. This may lead to a hypothesis to explain the
aggregation seen in the data set.

We can now continue this process by taking a more constrained landscape model
prototype that restricts model size, maximum richness and contagion. In this way we
are able to systematically exploit the model generators availabie in order to classify a
landscape on the neutrality gradient, and generate hypotheses to explain deviations
from random. If we find a prototype P for which all attributes of the data set, are
indistinguishable from the instances produced by P, then this prototype not only
identifies the level of neutrality for the data set, but it can also serve as ~ predictive

generator for the data set {at least for the attributes tested during this analysis).

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 207

10.5 Conclusion

We have formalized landscape model generators using the notion of a landscape model
prototype, which is a set of constraints that restricts the generation of pattern. These
prototypes induce a hierarchy that provides a formal framework within which model
generators can be constructed, compared and accessed. This hierarchy can be used
to guide the analysis of pattern from a data set of landscape models, and captures
the idea of “gradients of neutrality”. That is, prototypes provide some measure of
distance from neutrality, and the hierarchy embodies the variety of ways in which
models can diverge from random in a multi-dimensional space of possible constraints
on pattern generation. Analysis of data sets of landscape models can exploit this
hierarchy to guide identification of differences between the data set and random. In
addition, we described how one can determine the node in the hierarchy for which
there are no significant differences between the models generated by the prototype
represented by this node and the models in the data set. This not only establishes
the level of neutrality for the data set, but alsc the prototype at this node acts as a

predictive model for the data set.

Chapter Appendix: Formal Basis for Landscape
Model Generators that Permit General Richness,
LAR and Contagion Constraints

In this appendix, we provide a mathematical derivation for landscape model gen-
erators that can satisfy general constraints on richness, landscape area ratio and
contagion. Gardner and O’Neill [67] provided the mathematical basis for combining
landscape area ratio (LAR) and contagion for models with a richness of 2. However,
their results do not permit a direct generalization to an arbitrary number of landscape
features. Our goal is to provide a means of generating landscape models that satisfy
constraints on richness, LAR and contagion. Clearly, not all possible combinations

of constraints are satisfiable. For example, the constraints richness = 2 and LAR

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS

[
o
o

= (1.0,0.0) imply that contagion must be 1. Even though these constraints are not
completely independent, we can attempt to satisfy the contagion constraint while
maintaining the richness and LAR constraints. Here, we provide a formal derivation
for this landscape model generator.

In general, for k features, there can be up to k* contagion factors, where contagion
factor ¢;; can be viewed as a probability index that a cell of feature 2 is next to a cell
of feature 7. This can be specified using a k x % array Cir. Each contagion factor
¢;; may take on any value in [—1,1], where a value greater (less than) than 0 denctes
that a cell of feature z is more (less) likely to be next to one of feature j than random.
A value of 0 denotes that a cells of feature 7z and ;7 are juxtaposed randomly. That is,
the probability that feature 7 is next to feature 7 is the same as the relative abundance
of feature j in the entire model. We minimally require one contagion factor ¢ that is
assumed to be the contagion for adjacent cells of the same type. This is the situation
we used in section 10.3 for examples. We generalize this somewhat, and permit a
vector of k contagion factors Cy, where ¢; denotes the probability index that a cell
of feature 7 will be next to another cell of feature :. The other contagion values (i.e.
cij,t # 7) are assumed to be 0.

The relative abundance vector Py (1.e. LAR for each of the k features) must clearly
sum to 1 (i.e. £, P[s] = 1). Our algorithm for constructing the contagion matrix
takes as input the relative abundance vector P, and a contagion factor vector C. Our
goal is to generate a contagion matrix xx, where each element ¢;; is the probability
of feature j being adjacent to feature 7, and Qir somehow satisfies the LAR FP;. In
the case of no contagion, each row of Qi will be identical to P,. As contagion is
changed (either increasing or decreasing clumping), we must change the entries of
Qxx to reflect this change while still satisfying the relative abundance requirements in
Py over the entire landscape. Note that if ¢;; = p;, then feature ¢ will not be directly
affected by contagion. If ¢;; > p;, then feature ¢ will be more clumped than random
and if g;; < p;, feature ¢ will be less clumped.

In the two feature case, changing contagion while maintaining P, was simple to
achieve, and the mathematics is given in [67]. Their specification of the problem was

difficult to generalize, so we look at it slightly differently. First, we need to formalize

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 209

what we mean when we say that a contagion matrix Qx; “satisfies” P;. Our algorithm
for constructing a contagion matrix Qi starts with each row of @z identical to Px.
Clearly, using this matrix to generate a landscape will be the same as using P; alone.
We then transform Qi so that P; is always satisfied and at the end, Qi reflects the

desired contagion factors.

Definition 10.2 Suppose we have k features and a relative abundance vector Pj.

Then a contagion matriz Qi satisfies Py if and only if B%_ p; * q;; = pi.

If this equation 1s satisfied, then the overall probability that a cell will have feature
7 (i.e. p;) will be the same as the sum of the probabilities that an adjacent cell will have
feature ; times the probability that feature ¢ will be next to feature j. One property
that we require of any contagion matrix (as we do for the relative abundance vector)
is that the sum of the probabilities in any row must be 1 and that all probabilities

must be non-negative.

Lemma 10.1 Suppose we have we have k features and a relative abundance vector

Py. Then a contagion matriz Qxx satisfies Py if, for all 1 <1,7 <k, p;*qij = pj *q;i.

Proof: Suppose the above property is satisfied. Consider any feature ;. Then Ele Dj*qji =

Ef:lp,- * Gij = Pi* Ef___lq,-j = p;, since any row of (Jxx must always sum to 1.g

In the initial state ¢;; = p;, so this property is satisfied. We now show that we

can perform transformations on @k that preserve this property.

Theorem 10.1 Suppose we have we have k features, a relative abundance vector P
and e contagion matriz Qi that satisfies Py. Given some 1 < i,j < k and a factor
a such that max(—q.i/qi;, —q;;/4;:) < @ <1, then after the following transformation,
Qxk still satisfies Py: |

Qii = Qii +a * g;;

G = ¢y —a*gi; =(1—a)*q;

95i = ¢ + a* g

@i = @i —axg;i = (1 —a) xg;i

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 210

Proof: Since only the above four entries are modified, we need only ensure that the property
of the above lemma is satisfied. For the diagonal elements, this is trivially satisfied: p;*¢;; =
Di % gii and p; ¥ g;; = Pj * Gjj-

For the other two elements, we must satisfy: p; * ¢i; = p; * ¢;;. By our assumption, this
property holds before the transformation. After the transformation, we have: p; * ((1 — o) *

¢ij) = p; * ((1 — @) * ¢;;). Dividing both sides by (1 —) yields the desired result.q

The proof does not depend on the restriction to the value of . This restriction
ensures that the entries in Q4 remain non-negative. If « > 1, then ¢;; and ¢;; become
negative and if o < —¢;;/qi; or @ < —g;;/q;i then one of g;; or ¢;; becomes negative.

Given a relative abundance vector P and a contagion factor vector Ci (both of
size k), the contagion matrix Qk« can be computed as follows: Start with each row
of Qux equal to P,. For each contagion factor, ¢; perform the above transformation
on @ (where a becomes ¢;). Once we have Qx4, the landscape model instance N,

can be easily generated as follows:

1. For the first cell ngo, select a feature randomly using F.

2. For each cell njg in rest of the first row, select a feature randomly using the row

of Qx corresponding to the left neighbour.
3. For each subsequent row:

(a) For the first cell ng;, select a feature randomly using the row of Qrk corre-
sponding to the neighbour above in the map.
b) For each remaining cell n;; in the row, using the average of the rows of ()«
g 3 g g

corresponding to the neighbour left and above.

This algorithm will tend to have a diagonal bies, which can be partially alleviated
by alternately traversing rows left and right. This will still leave a slight vertical
bias, but not very pronounced except at high values of contagion. Other generation
techniques may be possible to generate maps using the contagion matrix, but without
any bias. The model instances shown in [67] have a clear horizontal bias, and must

have been computed without considering the vertical neighbours.

Chapter 11

Conclusion

“There is in nalure what is within reach and what is beyond reach”

— Goethe

Reasoning is a fundamental problem in a variety of human intellectual endeavors. Tax-
onomies assist the reasoning process by clarifying and categorizing knowledge. This
thesis is an attempt to bring taxonomic reasoning to centre stage, and to push forth
some of the frontiers of research. From a pragmatic viewpoint, we have formalized
research on managing large taxonomies, a task known as tazonomic encoding. Our
formal framework encapsulates the essence of encoding and we are able to characterize
all known encoding techniques within it.

During our analysis of encoding, we developed sparse logical terms as a universal
implementation for encoding. We explored the utility of sparse terms for encoding,
both theoretically and empirically.

Although partial orders are an elegant and mathematically formal basis for rep-
resenting taxonomic knowledge, we became dissatisfied with their limited expressive
ability. Rather than shift to the other extreme, where te xonomic information is hidden
within a description logic (such as KL-ONE) and can only be extracted via classi-
fication, we feel that explicit maintenance of taxonomic knowledge is essential for
taxonomic reasoning. To pﬁrsue this line of thought, we formally extended partial
orders to incorporate additional information, and developed a sort logic for reason-
ing within this more expressive framework. To maintain tractable reasoning, we also

derived a restricted form of the logic.

211

CHAPTER 11. CONCLUSION

| £
—
| £

In the course of this thesis, it became apparent that taxonomies were prevalent
in almost every field. We followed shallow explorations of a number of applications,
such as natural language processing, and delved deeper into three of the fields that
are rich with possibilities.

Research on using logical terms for encoding led to a viewpoint that coreference in
logical variables imposes requirements that are too strict. By viewing the symnetry
of coreference as the product of two asymmetric reference constraints, a taxonomy
may be constructed, where each node represents an equivalence class of variables (i.e.
variables that corefer). In current logic programming systems, variable coreference
classes are constructed, but cannot be related to one another.

Conceptual structures was the first field to which our initial research on encoding
was applied. It became apparent that encoding has a great potential impact on the
field due to the variety of (potentially large) taxonomies that are used in the formalism.
In addition, our research led us to further application of sparse terms to implement
normalized conceptual graphs.

The final area of application for this thesis is ecological modeling. Although hier-
archies have been used in a number of domains, we applied taxonomic reasoning to
unbroken ground in landscape ecology. By formalizing a hierarchy of landscape mod-
els, we have been able to bridge the gap between predictive and theoretical models of
landscapes, to provide a framework within which generators of landscape models can

be designed, compared and accessed, and to guide analysis of sets of landscape data.

11.1 Significance of Research

The overall goal of this thesis was to forge ahead with research on reasoning with
taxonomies, to develop a formal foundation upon which systems that use taxonomies
can rest, and to apply the theory to a variety of applications. The rescarch that

comprises this thesis has had a number of impacts on several fields, as outlined below:

1. The theoretical work on encoding has provided a foundation on which different,

encoding algorithms and techniques can be compared and critiqued. Prior to

CHAPTER 11. CONCLUSION 213

9’1

this development, encoding research was somewhat ad hoc, with no context or
means to critically evaluate advances in the field. The notion of a spanning set
for separating the information content of an encoding from the implementational
details provides a yardstick for the addition of new techniques, and avoids the

potential problem of re-inventing the wheel.

Our contributions to modulation provide the potential to improve further the
efficiency gained from using this technique. Furthermore, our generalization
of modulation extends the elegance of modulated encoding into the realm of
practical encoding with dynamic and irregular taxonomies. By relaxing the no-
tion of a module, the effort involved in modulation can degrade gracefully over
time, rather that break in brittle mathematical precision. We have also pro-
vided proven algorithms that permit the computation of taxonomic operations

in generalized modules.

Our constraint based view of encoding provides a guideline for the use of coref-
erence (i.e. logical variables) in encoding. By providing a formal analysis of
encoding in terms of constraints, we have shed light on the advantages and

pitfalls of going beyond tree terms for logical term encodings.

The theoretical and empirical results of sparse term encodings place sparse terms
as a universal encoding implementation. The general form of sparse term devel-
oped for encoding directly subsumes most other encoding implementations (e.g.
integer vectors, logical terms, interval sets), with the exception of bit-vectors.
The empirical evidence provided by encoding two medium size taxonomies from
existing applications, however, shows how sparse terms let us have our cake and
eat 1t too. Sparse terms used significantly less space than bit-vectors, while
providing the flexibility required for dynamic updates to encodings (i.e. partial

re-encoding).

Our work on extending partisl orders separates the task of taxonomic, or sort,
reasoning from applications that use taxonomic information. The sort reasoner

is provided with taxonomic knowledge in the form of assertions, and can be

CHAPTER 11. CONCLUSION 214

-1

called upon to answer queries regarding the taxonomic structure specified. We
developed a sound and complete sort logic as a logic for reasoning about sorts (as
contrasted with sorted logic for reasoning with sorts). To find utility in practical
systems, sort reasoning must be efficient. One of our main contributions is
the development of a tractable restriction of the sort reasoning problem that
retains enough expressive power to capture many common forms ol taxonomic

knowledge.

Our development of reference constraints as a generalization of equality con-
straints in logic and logic programming is a novel application ol reasoning with
taxonomies. Although equality constraints form equivalence classes of logical
variables, reference constraints induce a partial order among these coreference
classes. We provided a formal description of how reference constraints may
be specified in a logic program, and how the resulting reference order can be

maintained and satisfied.

Since variables denote individuals, reference constraints lead to the notion of
individual level inheritance, where an individual denoted by a variable may
inherit properties from another individual which is denoted by a subsuming
variable in the partial order. A variety of systems, especially systems reasoning
in ambiguous domains, can potentially benefit from an efficient, formally based

implementation of reference constraints and individual level inheritance.

The issues involved in maintaining derived hierarchies, such as the generalization
hierarchy of conceptual graphs. differ from encoding issues for defined hierar-
chies, such as class or sort hierarchies. Derived hierarchies may be induced
by the set of data (graphs) in a knowledge base; they are highly dynamic and
expensive to compute. Focusing on the field of conceptual structures, we devel-
oped an approach to normalize graph knowledge bases and store the graphs in
a spanning tree of the underlying partial order. The advantages of normalizing
within this spanning tree are twofold: (i) the normalization of a graph can de-
pend on its parent in the tree, so that traversals within the tree can be much

more efficient than traversals in the general partial order; (ii) there are a number

CHAPTER 11. CONCLUSION 215

of benefits of traversing such hierarchies in a topological fashion (e.g. more rapid
retrieval of a target graph), as covered in [42]. However, there are a variety of
topological traversals; the one described in [42] is breadth-first. We argued that
there are benefits to depth-first topological traversals, and we showed that if
the spanning tree is formed as a left-to-right depth-first traversal of the original
partial order, then a right-to-left depth-first traversal of this tree corresponds

to a right-to-left depth-first topological traversal of the partial order.

8. Artificial generation of landscape models is becoming increasingly prevalent in
landscape ecology. Due to the spatial scale at which most landscape studies are
performed, replication is rarely feasible and experimenters may require artificial
replication. Artificial generation of landscape models can be used for a variety
of purposes, including comparison with real data, testing general theoretical hy-
potheses, and providing inputs to simulation models. However, the number of
generators is increasing and there is no framework within which generators can
be analyzed, compared and organized. We proposed a hierarchical framework
that unifies landscape models within a formal organizational system. By gen-
eralizing neutral landscape models, we proposed landscape model prototypes
that induce a hierarchy that represents gradients of neutrality. We described
how this hierarchy may be used to guide the development of landscape model
generators, to aid selection of appropriate existing model generators, and to
assist in the analysis of models derived from real landscapes through the use of

landscape model prototypes.

11.2 Future Research Directions

“The solution to every problem is another problem”
- Goethe

The research presented in this thesis has contributed to a number of disciplines and
made a variety of connections among fields. It has also opened many doors and

identified unexplored pathways which were beyond the scope of a single thesis. This

CHAPTER 11. CONCLUSION 216

final section of the thesis identifies some promising areas in which research can be

continued.

Encoding. Using our notion of spanning sets, further theoretical work should be
carried out on the limits of taxonomic encoding. Research continues to push
the frontiers in the quest for minimal size encodings (e.g. [79]), and we maintain
that the framework provided in this thesis 1s an appropriate common ground on
which new techniques should be evaluated. More emp rical testing of different
encoding algorithms and implementations should be done. As more taxonomies

from real applications become available, this will become easier to perform.

Modulation. Although the advantages of modulation are iutuitive, there is a real
need for empirical testing of its actual benefit, and for determining at what size
of taxonomy should modulation be attempted. We expect that the benefits of
modulation will not show up until taxonomies are quite large, but that this
technique will address issues of scaling encoding up to much larger taxonomies
than are currently encountered. Finally, to address issues of efficiency, there
is a need to integrate the linear time modulation algorithm of [76] with our
techniques, which may require changes to this fast algorithm to accommodate

our generalized forms of modules.

Sparse Term Encoding. Further theoretical and empirical testing of different en-
coding techniques is required to provide a strong basis for comparison of sparse
term encoding with other implementation schemes. Also, additional work on
sparse term encoding should be researched to implement and test the utility of

encoding in highly dynamic environments.

In the theoretical arena, there are a number of dimensions along which com-
parisons can be made. We selected two techniques that we felt appropriate for
encoding dynamically changing taxonomies (transitive clesure and compact),
and compared the effects of different implementations on these techniques. One
advantage of our framework for encoding is that it makes possible such compar-

isons. Another approach, taken in [43], is to compare different algorithms (that

CHAPTER 11. CONCLUSION 217

mix technique with implementation). There is a great need for more compar-
1isons of these kinds, to identify the types of taxonomies that are best suited for

different approaches to encoding.

Extending Partial Orders. Although we have developed a theoretical foundation
for tractable sort reasoning in Chapter 7, this work needs to be implemented, and
empirical testing can identify the utility of our restrictions to obtain tractability.
Other sets of restrictions can also be developed and contrasted with our proposal

to develop an efficient sort reasoner.

Also, more efficient encoding techniques that take advantage of the structure
of extended partial orders should be developed. For example, two incompatible
sorts can share the same position within a term, leading to unification failure
if an object is postulated to belong to both sorts. This opens a whole area
of research for generalizing our spanning set framework for encoding extended

partial orders.

Data Mining. Tree-shaped conceptual hierarchies have been proposed for use in
data mining {13, 81, 82]. There exisis a great potential for generalizing these

techniques to use partial orders, and even extended partial orders.

Reference Constraints. To fully demonstrate the utility of individual-level inheri-
tance, reference constraints must be implemented in a logic programming sys-
tem. Possibilities include implementation in sparse terms or another logic pro-
gramming language. such as LIFE [4] or Bin Prolog [140]. A variant of sparse
terms has been implemented that includes coreference akin to that in LIFE [4].
This variant could be extended in a straightforward manner to handle reference
constraints. In addition, the effects and advantages of different control strategies

as mentioned in Chapt~r 8 should be explored.

Also, applications of aypothetical reasoning such as those outlined in this the-
sis need to be more thoroughly developed and implemented. The application
of individual-level inheritance as a means to integrate top-down hypothetical

analysis and bottom-up chart parsing in discourse processing appears to be

CHAPTER 11. CONCLUSION

o
—
’-J

a promising area to pursue in this direction. In addition, the incorporation
of reference constraints into Assumption Grammars [142] for natural language

processing should be studied.

Conceptual Structures. Asimplementation of the Peirce workbench [44] and other
systems for reasoning with conceptual graphs proceeds, there will be opportuni-
ties to implement ai.d compare the various approaches to handling taxonomies
of complex and dynamically changing information, such as graph knowledge
bases. Empirical testing of the advantages of the spanning tree organization for
the generalization hierarchy compared to other organizations of complex data

(e.g. [42]) must be performed.

Landscape Model Prototypes. Using the hierarchy of landscape model proto-
types, existing model generators can be placed in relation to each other. The
next step is to use this hierarchy to provide a common organization for model
generators, and to organize existing and future generators for simple access by
users. The internet is a natural location to place such a hierarchy; a proposal

in this direction is in progress.

Landscape studies need to attempt to use the hierarchical techniques proposed
to guide the analysis of data sets of landscape models. Studies that compare
data sets against landscape prototypes will identify gaps in the suite of available

generators.

Analysis of Landscape Models using Formal Concept Analysis. The hierar-
chy of landscape model prototypes developed in Chapter 10 permits analysis
of the properties of an entire data set in comparison with artificially generated
models. Other techniques are necessary for the analysis of the properties of
individual models in comparison with other models in a giver data set. The
issues addressed here are quite different, and focus more on how the models in
a data set can be differentiated and/or grouped. Such analysis is complex, and
researchers have proposed a multitude of indices for the comparison of landscape

models in a data set [126]. An attempt to select a core subset from this array of

"HAPTER 11. CONCLUSION 219

indices has been explored in Riitters et al. [122]. However, attempts to derive
a core set of indices that is independent from a data set fail to recognize that

different sets of landscapes have inherently different properties.

We propose an alternate approach for reducing the set of potential indices
through the use of formal concept analysis [153]. Formal concept analysis is
based on a mathematical, set-theoretic model of concepts and conceptual hier-
archies [62, 155). It was developed as a new approach to data analysis that
permits structural analysis of data without reducing the data. Concept analysis
provides a formal, objective, data-driven technique for automatically construct-
ing a hierarchy of relationships from a set of objects (e.g. landscape models) and
a set of attributes (e.g. landscape indices). This hierarchy, known as the formal
concept lattice, elucidates relationships inherent in the data, and can aid in the
selection of key indices for a given set of landscape models. Formal concept
analysis has been applied to a variety of domains with many nice results (e.g.
analysis of Rembrant paintings [155], comparison of recreation opportunities in

national parks [139], and information retrieval [29]).

In general, a concept lattice provides a hierarchical conceptual clustering of
the objects, and also represents all the implications among the attributes [155].
Using the techniques of formal concept analysis, we can automatically generate
a concept lattice that illuminates subtle dependencies contained in the data
such as: dependencies among landscape indices; index groupings that cluster
or differentiate subsets of landscape models; and gradients of complexity within
the data set. The concept lattice, if properly drawn, elucidates many of the
nuances and implications contained in the data set that are not apparent by
inspecting the data only. Producing good diagrams of concept lattices is an art

in itself, although some progress in automating this task has been made [154].

Concept analysis is related to cluster analysis [46, 88, 89], although it differs in
its ability to graphically illustrate subtle properties of the data. A primary dis-
tinction between traditional cluster analysis and formal concept analysis is that

the former produces a tree of clusters grouped according to similarity criteria

CHAPTER 11. CONCLUSION 220

[127], while the latter forms a lattice. This not only involves a novel application
of reasoning with taxonomies, but permits the detection of subtle relationships
as well as general trends in the data. A wide avenue for future research is to
pursue the use of formal concept analysis 1in landscape ecology by studying its

utility for the analysis of one or more sets of landscape models.

Bibliography

[1] R. Agrawal, A. Borgida, and H. Jagadish. Efficient management of transitive
relationships in large data bases, including is-a hierarchies. In Proceedings of

ACM SIGMOD, 1989.

[2] H. Ait-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Efficient implementation of
lattice operations. ACM Transactions on Programming Languages, 11(1):115-
146, 1989.

[3] H. Ait-Kaci and R. Nasr. Login: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185-215, 1986.

[4] H. Ait-Kaci and A. Podelski. Towards a meaning of LIFE. Journal of Logic
Programming, 16(3/4):195, 1993.

[6]) H. Ait-Kaci, A. Podelski, and S. C. Goldstein. Order-sorted feature theory
unification. Technical Report 32, Digital Paris Research Lab, Paris, France,
May 1993.

[6] J. Allen. Natural Language Understanding. Benjamin/Cummings Pub. Co,
Redwood City, CA, 2nd edition, 1995.

[7] J. F. Allen. Maintaining knowledge about temporal intervals. Communications

of the ACM, 26(11):832-843, 1983.

[8] T. F. H. Allen and E. P. Wyleto. A hierachical model for the complexity of
plant communities. Journal of Theoretical Biology, 101:529-540, 1983.

221

BIBLIOGRAPHY

)
o
[

[9] N. Asher. Reference to Abstract Objects in Discourse, volume 50 of Studies in
Linguistics and Philosophy. Kluwer, 1993.

[10] W. L. Baker. A review of models of landscape change. Landscape Ecology,
2(2):111-133, 1989.

[11] G. L. Ball and R. Gimblett. Spatial dynamic emergent hierarchies simulation
and assessment system. Ecological Modelling, 62:107-121, 1992.

[12] B. Banaschewski and G. Bruns. The fundamental duality of partially ordered
sets. Order, 5:61-74, 1988.

[13] D. B. Barber and H. J. Hamilton. Attribute selection strategies for attribute-
oriented generalization. In Proc. of the FEleventh Biennial Conference of the
Canadian Society for Computational Studies of Intelligence, pages 429-441,
Toronto, Canada, 1996. Springer-Verlag.

[14] J. M. Baveco and R. Lingeman. An object-oriented tool for individual-oriented
simulation: Host-parasitoid system application. FEecological Modelling, 61:267-
286, 1992.

[15] G. Birkhoff. Lattice Theory. Volume 25 of Colloquium Publications. American
Mathematical Society, Providence, RI, 3rd edition, 1979.

[16] R. J. Brachman. What IS-A is and isn’t: An analysis of taxonomic links in
semantic networks. [EFEE Computer, 16:30-36, 1983.

[17] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-
based description languages. In Proceedings of American Association of Arlifi-

cial Intelligence, pages 34-37, Austin, TX, 1984.

[18] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171-216, 1985.

[19] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive

description logics: A preliminary report. In Proc. First International Symposium

BIBLIOGRAPHY 223

on Knowledge Representation, Use and Storage for Efficiency (KRUSE’95),
Santa Cruz, CA, 1995.

[20] C. Brew. Systemic classification and its efficiency. Computational Linguistics,

17(4):375-408, 1991.

[21] A. Bundy, L. Byrd, and C. Mellish. Special purpose, but domain independent,
inference mechanisms. In Proc. European Conference on Artificial Intelligence,

pages 67-74, Orsay, France, 1982.

[22] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen,
and G. Plotkin, editors, Semantics of Data Types. Springer Verlag, Berlin, 1984.

[23] B. Carpenter. The Logic of Typed Feature Structures. Cambridge University
Press, London, England, 1992.

[24] Y. Caseau. Efficient handling of multiple inheritance hierarchies. ACM SIG-
PLAN Notices, 8(28):271, October 1993.

[25] H. Caswell. Community structure: A neutral model analysis. Ecological Mono-

graphs, 46:327-354, 1976.

[26] M. Chein and M. Mugnier. Specialization: Where do the difficulties occur? In
H. Pfeiffer and T. Nagle, editors, Conceptual Structures: Theory and Implemen-
tation. Proc. Tth Annual Workshop, Las Cruces, NM, 1992. Springer-Verlag.

[27) A. G. Cohn. Many sorted logic = unsorted logic + control? In M. Bramer,
editor, Research and Development in Ezpert Systems III, pages 184-194. Cam-
bridge University Press, New York, 1987.

[28] A. G. Cohn. Completing sort hierarchies. Computers and Mathematics with Ap-
plications, 23(2-9):477-491, 1992. Reprinted in Semantic Networks in Artificial
Intelligence, Fritz Lehmann, editor, Pergamon Press, Oxford, 1992.

[29] R. J. Cole and P. W. Eklund. Application of formal concept analysis to infor-

mation retrieval using a hierarchically structured thesaurus. In Proc. Fourth

BIBLIOGRAPHY

[30]

[31]

[32]

[33]

[34]

[35]

[37]

[38]

[39]

2]
3]
g

International Conference on Conceptual Structures (to appear), Sydney, Aus-

tralia, 1996. Springer-Verlag.

A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-A. Tarnlund,

editors, Logic Programming. Academic Press, 1982.

A. Cournier and M. Habib. A new linear algorithm for modular decomposition.
In Proc. CAAAP’94, Lecture Notes in Computer Science, No. 787, pages 6884,
1994.

V. Dahl. Translating spanish into logic through logic. American Journal of
Computational Linguistics, 13:149-164, 1981.

V. Dahl. On database systems development through logic. ACM Transactions
on Database Systems, 7(1), 1982.

V. Dahl. Incomplete types for logic databases. Applied Math. Letters, 4(3):25~
28, 1991.

V. Dahl and A. Fall. Logical encoding of conceptual graph type lattices. In
First International Conference on Conceptual Structures, pages 216-224, Que-
bec, Canada, 1993. Also available as SFU CSS/LCCR Technical Report 93-3.

V. Dahl, A. Fall, S. Rochefort, and P. Tarau. A hypothetical reasoning frame-
work for natural language processing. In 8th [EEFE International Conference on
Tools with Artificial Intelligence (ICTAI’96), Toulouse, France, 1996.

V. Dahl, G. Sidebottom, and J. Ueberla. Expert systems for automatic config-
uration. International Journal of Ezpert Systems, 6(4):561-579, 1993.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, England, 1990.

R. Dawkins. Hierarchical organisation: a candidate for ethology. In P. P. G.
Bateson and R. A. Hinde, editors, Growing Points in Ethology. Cambridge Uni-
versity Press, Cambridge, 1976.

BIBLIOGRAPHY 225

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[a9]

J. Dunning, D. Stewart, B. Danielson, B. Noon, T. Root, R. Lamberson, and
E. Stevens. Spatially explicit population models: Current forms and future uses.

Ecological Applications, 5(1):3-11, 1995.

G. Ellis. Compiled hierarchical retrieval. In T. Nagle, J. Nagle, L.. Gerholz, and
P. Eklund, editors, Conceptual Structures: Current Research and Practice. Ellis
Horwood, New York, 1992.

G. Ellis. Efficient retrieval from hierarchies of objects using lattice operations.
In Conceptual Graphs for Knowledge Representation. Proc. First International
Conference on Conceptual Structures, Quebec, Canada, 1993. Springer-Verlag.

G. Ellis. Managing Complex Objects. PhD thesis, The University of Queensland,
Queensland, Australia, 1995.

G. Ellis and R. Levinson. The birth of peirce: A conceptual graph workbench.
In H. Pfeiffer and T. Nagle, editors, Conceptual Structures: Theory and Imple-
mentation. Proceedings of Seventh Annual Workshop, Las Cruces, New Mexico,

1992. Springer-Verlag.

J. Eusterbrock. Efficient knowledge base reasoning with transitive dags. In Proc.
First International Symposium on Knowledge Representation, Use and Storage

for Efficiency (KRUSE’95), Santa Cruz, CA, 1995.
B. S. Everitt. Cluster Analysis. Halsted Press, New York, 1993.

A. Fall. The foundations of taxonomic encoding. Technical Report 94-20, Simon
Fraser University CSS/LCCR, 1994.

A. Fall. An abstract framework for taxonomic encoding. In Proc. First Inter-
national Symposium on Knowledge Retrieval, Use and Storage for Efficiency,
Santa Cruz, CA, 1995.

A. Fall. Heterogeneous encoding. In Proc. First International Symposium on
Knowledge Retrieval, Use and Storage for Efficiency, Santa Cruz, CA, 1995.

BIBLIOGRAPHY 226

[50]

[51]

[52]

[56]

[57]

[58]

[59]

A. Fall. Spanning tree representations of graphs and orders in conceptual struc-
tures. In Proc. Third International Conference on Conceptual Structures, pages
232-246, Santa Cruz, CA, 1995. Springer-Verlag.

A. Fall. Sparse logical terms. Applied Mathematics Letters, 8(5):11-16, 1995.

A. Fall. Sparse term encoding for dynamic taxonomies. In Fourth International

Conference on Conceptual Structures, Sydney, Australia, 1996. Springer-Verlag.

A. Fall and V. Dahl. Integrating description identification and systemic classi-
fication. Technical Report 93-12, Simon Fraser University CSS/LCCR, 1993.

A. Fall, V. Dahl, and P. Tarau. Resolving co-specification in contexts. In Proc.

Workshop on Context in Natural Language Processing, Montreal, Canada, 1995.

A. Fall and J. Fall. A hierarchical organization of neutral landscape models. In

Proc. International Association of Landscape Ecology Symposium, Galveston,
Texas, 1996.

J. Fall and A. Fall. SELES: A spatially explicit landscape event sim-
ulator. In Proc. GIS/Environmental Modeling Conference, Santa Ie,
New Mexico, 1996. National Center for Geographic Information and
Analysis, Santa Barbara. Available on CD and the Internet at:

/ /www.ncgia.ucsb.edu/conf/santa_fe.html.

L. J. Folse, J. M. Packard, and W. E. Grant. Al modelling of animal movements
in a heterogeneous habitat. Ecological Modelling, 46:57-72, 1989.

R. T. T. Forman and M. Gordon. Landscape Ecology. John Wiley and Sons,
New York, 1986. |

J. S. Fralish. Predicting potential stand compositicn from site characteristics in
the Shawnee Hills forest of Illinois. The American Midland Naturalist, 120:79-
101, 1988.

BIBLIOGRAPHY 227

[60]

[61]

[62]

63

[64]

[65]

[66]

[67]

[68]

T. Gallai. Transitiv orientierbare graphen. In Acta Math, Tom 18, pages 25-66.
Acad. Sci. Hung, 1967.

D. Ganguly, C. Mohan, and S. Ranka. A space-and-time-efficient coding al-
gorithm for lattice computations. IEEE Transactions on Knowledge and Data

Engineering, 6(5):819-829, Oct 1994.

B. Ganter and R. Wille. Conceptual scaling. In F. Roberts, editor, Applications
of Combinatorics and Graph Theory to the Biological Sciences, volume 17, pages
139-167. Springer- Verlag, New York, 1989.

D. Gardiner, B. Tjan, and J. Slagle. Extending conceptual structures: Repre-
sentation issues and reasoning operations. In T. Nagle, J. Nagle, L. Gerholz,
and P. Eklund, editors, Conceptual Structures: Current Research and Practice.

Ellis Horweod, New York, 1992.

R. H. Gardner. The generation and analysis of neutral models. In Spatial
Analysis Techniques Workshop. International Association of Landscape Ecology

Symposium, Galveston, Texas, 1996.

R. H. Gardner. RULE: A program for the generation and analysis of landscape
patterns, Unpublished draft report, 1996.

R. H. Gardner, B. T. Milne, M. G. Turner, and R. V. O’Neill. Neutral models for
the analysis of broad-scale landscape pattern. Landscape Ecology, 1(1):19-28,
1987.

R. H. Gardner and R. V. O’Neill. Pattern, process and predictability: the use of
neutral models for landscape analysis. In M. G. Turner and R. H. Gardner, ed-
itors, Quantitative Methods in Landscape Ecology, Ecological Studies 82, pages
289-307, New York, 1991. Springer-Verlag.

R. H. Gardner, R. V. O’Neill, M. G. Turner, and V. H. Dale. Quantifying
scale-dependent effects of animal movement with simple percolation models.
Landscape Ecology, 3(3/4):217-227, 1989.

BIBLIOGRAPHY

I
[
s

[69] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

[70] G. Gazdar and C. Mellish. Natural Language Processing in Prolog: An [ntroduc-
tion to Computational Linguistics. Addison-Weslel Publishing Company, Menlo

Park, CA, 1989.

[71] G. Gazdar, G. Pullum, R. Carpenter, E. Klein, T. Hukari, and R. Levine.
Category structures. Computational Linguistics, 14(1), 1988.

[72] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufmann Publishers, Palo Alto, CA, 1987.

[73] S. M. Glenn and S. L. Collins. Modelling the effects of competition on species
percolating through landscapes. In Proc. International Association of Landscape

Ecology Symposium, Galveston, Texas, 1996.

[74] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press Inc., San Diego, CA, 1980.

[75] W. E. Grant and N. R. French. Response of alpine tundra to a changing climate:
a hierarchical simulation model. Ecological Modelling, 49:205-227, 1990.

[76] M. Habib, M. Huchard, and J. Spinrad. A linear algorithm to decomposc in-
heritance graphs. Algorithmica (to appear), 1995.

[77] M. Habib and L. Nourine. Bit-vector encoding for partially ordered sets. In
Proceedings of ORDAL. Lecture Notes in Computer Science. Springer-Verlag,
1994.

[78] M. Habib and L. Nourine. Tree structure for distributive lattices and its ap-
plications. Technical Report R.R. LIRMM 94036, Université de Montpellier 11,
Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpel-
lier, 1994.

BIBLIOGRAPHY 229

[79] M. Habib and L. Nourine. Embedding partially ordered sets into product of
chains. In Proc. First International Symposium on Knowledge Representation,

Use and Storage for Efficiency (KRUSE’95), Santa Cruz, CA, 1995.

[80] M. A. K. Ha'liday and J. R. Martin, editors. Readings in Systemic Linguistics.
Batsford Academic and Educational Press, London, 1981.

[81] J. Han and Y. Fu. Dynamic generation and refinement of concept hierarchies
for knowledge discovery in databases. In AAAI’9) Workshop on Knowledge
Discovery in Databases (KDD’94), pages 157-168, Seattle, WA, 1994.

[82] J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proc. Int’l Conf. on Very Large Data Bases (VLDB’95), pages
420-431, Zirich, Switzerland, 1995.

[83] G. M. Henebry. A spatio-temporal neutral model for ecological dynamics. In
Proc. International Association of Landscape Fcology Symposium, Galveston,

Texas, 1996.

[84] J. Hobbs. Resolving pronoun references. In Readings in Natural Language

Processing, pages 339-352. Morgan Kaufmann Publishers, Inc., 1986.

[85] J. F. Horty, R. H. Thomason, and D. S. Touretzky. A skeptical theory of
inheritance in nonmonotonic semantic networks. Artificial Intelligence, 42:311-

348, 1990.

[86] S. Le Huitouze. A new data structure for implementing extensions to Prolog. In
International Workshop on Programming Language Implementation and Logic
Programming (PLILP30), LNCS 456, 1990.

[87] T. Imielinski. Intelligent query answering in rule based systems. Logic Program-

ming Journal, 4(1), 1987.

(88] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, N.J., 1988.

BIBLIOGRAPHY 230

[89]

[95]

[96]

[98]

R. H. G. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren. Data Analysis
in Community and Landscape Ecology. Cambridge University Press, Cambridge,
1995.

D. Kelly. Comparability graphs. In L. Rival, editor, Graphs and Order. 1). Reidel
Publishing Co., Dordrecht, 1985.

S. Kodric, F. Popowich, and C. Vogel. The HPSG-PL system. version 1.2
Technical Report CSS-1S TR 92-05, SFU, 1992.

] H. Korth and A. Silberschatz, editors. Database System Concepts. McGraw-Hill,

New York, 1991.

H. Krieger. Classification and representation of types in TDL. In Proc. I'irst
International Symposium on Knowledge Representation, Use and Slorage for

Efficiency (KRUSE’95), Santa Cruz, CA, 1995.

R. Levinson. Pattern associativity and the retrieval of semantic networks. Clom-
puters and Mathematics with Applications, 23(2-9):573-600, 1992. Reprinted in
Semantic Networks in Artificial Intelligence, Fritz Lehmann, editor, Pergamon
Press, Oxford, 1992.

R. Levinson. Towards domain independent machine intelligence. In Conceptual
Graphs for Knowledge Representation. Proc. First International Confercnce on

Conceptual Structures, Quebec, Canada, 1993. Springer-Verlag.

P. Massicotte and V. Dahl. Handling concept-type hierarchies through logic
programming. In Proceedings of the Third Annual Workshop on Conceplual
Graphs, St. Paul, MN, 1988.

F. Mattern. Virtual t" ne and global states of distributed systems. In Parallel
and Distributed Algorithms, pages 215-226. Elsevier/North-Holland, 1989.

M. C. McCord. Design of a Prolog-based machine translation system. In Pro-
ceedings of the Third International Conference on Logic Programining. Springer

Verlag, 1986.

BIBLIOGRAPHY 231

[99]

(100]

f101]

(102]

(103]

[104]

[105]

[106]

[107]

[168]

K. McGarigal and B. Marks. Fragstat: A spatial pattern analysis program for
quantifying landscape structure, Unpublished software, Oregon State Univer-

sity, Department of Forest Sciences, Corvelis, Oregon, 1993.

J. E. Meisel and M. G. Turner. Application of semivariogram analysis to sim-
ulated and real landscapes. In Proc. International Association of Landscape

Ecology Symposium, Galveston, Texas, 1996.

C. Mellish. Implementing systemic classification by unification. Computational

Linguistics, 14(1):40-51, 1988.

C. Mellish. Term-encodable description spaces. In Logic Programming 1990
Pre-Conference Proceedings, pages 1-15. Association of Logic Programming,

UK Branch, 1990.

C. Mellish. The description identification problem. Artificial Intelligence,
52(2):151-167, 1991.

C. Mellish. Graph-encodable description spaces. Technical Report ESPRIT
Basic Research Action DYANA Deliverable R3.2.B, University of Edinburgh,
Scotland, 1991.

G. V. Merkuryeva and Y. A. Merkuryev. Knowledge based simulation systems

- a review. Simulation, 62(2):74-89, 1994.

R. Milner. A theory of type polymorphism in programming. Journel of Com-
puter and System Science, 17, 1978.

G. Mineau. Normalizing conceptual graphs. In T. Nagle, J. Nagle, L. Gerholz,
and P. Eklund, editors, Conceptual Structures: Current Research and Practice.
Ellis Horwood, New York. 1992.

7% 1

T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226,

1982.

BIBLIOGRAPHY 232

(109] R. H. Mohring. Algorithmic aspects of comparability graphs and interval graphs.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

In L. Rival, editor, Graphs and Order. D. Reidel Publishing Co., Dordrecht, 1985.

R. Muetzelfeldt, D. Robertson, A. Bundy, and M. Uschold. The use of Prolog
for improving the rigour and accessibility of ecological modelling. FEcological
Modelling, 46:9-34, 1989.

M. Mugnier and M. Chein. Polynomial algorithms for projections and matching,.
In H. Pfeiffer and T. Nagie, editors, Conceptual Structures: Theory and Imple-
mentation. Proceedings of Seventh Annual Workshop, Las Cruces, New Mexico,

1992. Springer-Verlag.

J. Muller and J. Spinrad. Incremental modular decomposition. Journal of the
ACM, 19:257-356, 1989.

B. Nebel and H. Burckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. In Twelfth National Conference
on Artifical Intelligence, Seattle, Washington, 1994.

L. Nourine. Quelques Propriétés Algorithmiques des Treillis. PhD thesis,
Académie de Montpellier, Université de Montpellier, 1993.

R. V. O'Neill, D. L. DeAngelis, J. B. Waide, and T. F. H. Allen. A Hierarchical
Concept of Ecosystems. Princeton University Press, Princeton, New Jersey,
1986.

A. P. Pentland. Fractal-based description of natu:al scenes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6(6):661-674, 1984.

L. Polidori, J. Chorowicz, and R. Guillande. Description of terrain as a fractal
surface, and application to digital elevation model quality assessment. Pho-

togrammetric Engineering and Remote Sensing, 57:1329-32, 1991.

C. Pollard and I. Sag. Information-Based Syntaz and Semantics. CSLI Lecture
Notes No. 13. Center for the Study of Language and Information, Stanford
University, Stanford, CA, 1987.

BIBLIOGRAPHY 233

[119] F. Popowich and C. Vogel. A logic based implementation of head-driven phrase
structure grammar. In Natural Languaege Understanding and Logic Programming

III, pages 227-245. Elsevier Science Publishers, Netherlands, 1991.

[120] A. Porto. A framework for deducing useful answers to queries. Technical Report

DI/UNL-16/88, Universidade Nova de Lisboa, Lisbon, Portugal, 1988.

[121] J. C. Reynolds. Transformational systems and the algebraic structure of atomic

formulas. In Machine Intelligence 5. Edinburgh University Press, Edinburgh,
UK, 1970.

[122] K. H. Riitters, R. V. O’Neill, C. T. Hunsaker, J. D. Wickham, D. H. Yankee,
S. P. Timmins, K. B. Jones, and B. L. Jackson. A factor analysis of landscape
pattern and structure metrics. Landscape Ecology, 10(1):23-39, 1995.

[123] L. Roberts, R. Levinson, and R. Hughey. Issues in parallel hardware for graph
retrieval. In First International Conference on Conceptual Structures, Theory

and Applications, Quebec, Canada, 1993.

[124] D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, and M. Uschold. Eco-
logic: Logic-based Approaches to Ecological Modelling. MIT Press, Cambridge,
Massachusetts, 1991.

[125] J. A. Robinson. Logic and logic programming. Communications of the ACM,
35(3):40-65, March 1992.

[126] C. Rogers. Indices of landscape structure, School of Resource and Environmental

Management 699 project, Simon Fraser University, 1993.

[127] H. C. Romesburg. Cluster Analysis for Researchers. Krieger Publishing, Mal-
abar, Florida, 1984.

[128] B. Russell. Mathematical logic as based on the theory of types. In Logic and
Knowledge. George Allen and Unwin Ltd., London, 1956.

BIBLIOGRAPHY 234

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

E. Rykiel. Artificial intelligence and expert systems in ecology and natural

resource management. Ecological Modelling, 46:3-8, 1989.

H. Saarenmaa, N. D. Stone, L. J. Folse, J. M. Packard, W. K. Grant, M. E.
Makela, and R. N. Coulson. An artificial intelligence modelling approach to

simulating animal/habitat interactions. Ecological Modelling, 44:125-141, 1988.

S. M. Shieber. An Introduction to Unification-Based Approaches te Grammar.
Center for the Study of Language and Information, Stanford University, Stan-
ford, CA, 1986.

S. M. Shieber. Constraint-Based Grammar Formalisms: Parsing and Type In-
ference for Natural and Computer Languages. MIT Press, Cambridge, Mass.,
1992.

C. Sidner. Focussing for interpretation of pronouns. American Journal for

Computational Linguistics, 7(4):217-231, 1981.

N. K. Simpkins and P. Hancox. Chart parsing in Prolog. New Generation
Computing, 8(2):113-138, 1990.

F. H. Sklar and R. Costanza. The development of dynamic spatial models for
landscape ecology: A review and prognosis. In M. G. Turner and R. H. Gard-
ner, editors, Quantitative Methods in Landscape Ecology, Ecological Studies 82,
pages 239-288, New York, 1991. Springer-Verlag.

J. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, 1984.

D. Stauffer. An Introduction to Percolation Theory. Taylor and Francis, London,
1985.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mass.,
1994.

BIBLIOGRAPHY 235

[139] G. Stumme. Knowledge acquisition by distributive concept exploration. In

Third International Conference on Conceptual Structures, pages 98-111, Santa

Cruz, CA, 1995.

[140] P. Tarau. BinProlog 3.30 User Guide. Technical Report 95-1, Département
d’Informatique, Université de Moncton, February 1995. Available by ftp from

clement.info.umoncton.ca.

[141] P. Tarau, V. Dahl, and A. Fall. Backtrackable state with linear assumptions,
continuations and hidden accumulator grammars. In Workshop on the Future
of Logic Programming, International Logic Programming Symposium (ILPS’95),
Portland, Oregon, 1995.

[142] P. Tarau, V. Dahl, and A. Fall. Assumption grammars. In Submitted to In-
ternational Symposium, on Programming Language Implementation and Logic

Programming (PLILP’96), 1996.

[143] D. S. Touretzky. The Mathematics of Inheritance Systems. Pitman/Morgan
Kaufmann, London, 1986.

[144] W. Trotter. Combinatorics and Partially Ordered Sets. The Johns Hopkins
University Press, Baltimore, 1992.

[145] M. G. Turner. Landscape ecology: the effect of pattern on process. Annual
Review of Ecological Systems, 20:171-197, 1989.

[146] M. G. Turner, R. Costanza, and F. H. Sklar. Methods to evaluate the perfor-
mance of spatial simulation models. Ecological Modeling, 48:1-18, 1989.

[147] M. G. Turner and V. H. Dale. Modeling landscape disturbance. In M. G.
Turner and R. H. Gardner, editors, Quantitative Methods in Landscape Ecology,
Ecological Studies 82, pages 323-351, New York, 1991. Springer-Verlag.

[148] M. G. Turner, R. H. Gardner, V. H. Dale, and R. V. O’Neill. Predicting the
spread of disturbance across heterogeneous landscapes. OIKOS, 55:121-129,

1989.

BIBLIOGRAPHY 236

[149] M. G. Turner, W. H. Romme, and R. H. Gardner. Landscape disturbance
models and the long-term dynamics of natural-areas. Natural Areas Jouwrnal,

14(1):3-11, 1994.

[150] M. G. Turner, W. H. Romme, R. H. Gardner, R. V. O’Neill, and T. K. Kratz.
A revised concept of landscape equilibrium: Disturbance and stability on scaled
landscapes. Landscape Ecology, 8(3):213-227, 1993.

[151} C. Vogel, F. Popowich, and N. Cercone. Logic based inheritance reasoning. lu
Prospects for Artificial Intelligence. 10S Press, Burke, VA, 1993.

[152] D. S. Warren. Memoing for logic programs. Communications of the ACM,
35(3):93-111, March 1992.

[153] R. Wille. Restructuring lattice theory. In Ordered Sets. NATO ASI Series C83,
Reidel, Dordecht, Holland, 1982.

[154] R. Wille. Lattices in data analysis: How to draw them with a computer. In
Algorithms and Order. Reidel, Boston, 1989.

[155] R. Wille. Concept lattices and conceptual knowledge systems. Computers and
Mathematics with Applications, 23(2-9):493-515, 1992. Reprinted in Seman-
tic Networks in Artificial Intelligence, Fritz Lehmann, editor, Pergamon Press,

Oxford, 1992.

[156] P. H. Winston. Learning structural descriptions from examples. In The Psy-
chology of Computer Vision. McGraw-Hill, New York, NY, 1975.

[157] K. With and A. W. King. Toward the development of a generalized, spatially ex-
plicit theory of species’ responses to landscape structure. In Proc. International

Association of Landscape Ecology Symposium, Galveston, Texas, 1996.

[158] W. A. Woods. What’s in a link: Foundations for semantic networks. In
Representation and Understanding. Academic Press, Orlando, Florida, 1975.
Reprinted in Readings in Knowledge Representation, R. J. Brachman and H. J.
Levesque (Eds.), Morgan Kaufmann, Los Altos, CA, 1985.

BIBLIOGRAPHY 237

[159] W. A. Woods and J. G. Schmolze. The KL-ONE family. Computers and Math-
ematics with Applications, 23(2-5):133-177, 1992. Reprinted in Semantic Net-

works in Artificial Intelligence, Fritz Lehmann, editor, Pergamon Press, Oxford,

1992.

[160] G. Yang, Y. Choi, and J. Oh. CGMA: A novel conceptual graph matching algo-
rithm. In H. Pfeiffer and T. Nagle, editors, Conceptual Structures: Theory and

Implementation. Proceedings of Seventh Annual Workshop, Las Cruces, New

Mexico, 1992. Springer-Verlag.

[161] R. Young, G. Plotkin, and R. Linz. Analysis of an extended concept-learning
task. In Proceedings of the International Joint Conference on Artificial Intelli-
gence, Cambridge, MA, 1977.

