
Andrew Fall

B.Sc. Simon Fraser University 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ Andrew Fall 1996

SIMON FRASER UNIVERSITY

December 1996

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

National Library 1*1 of Canada
Bibiiotheque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibiiographic Sewices Branch des sewices bibliqraphiques

395 Wellington Street 395, rue Wellington
Ottawa. Ontario Ottawa (Ontario)
KIA ON4 K I A W4

Your Irk? Votre r&&ence

Our lile Notre r @ i & ~ c e

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L'auteur a accorde une licence
irrevocable et non exclusive
permettant 6 la Bibliotheque
nationale du Canada de
reproduire, pr&ter, distribuer ou -
vendre des copies de sa these
de quelque maniere et scus
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intbressbes.

The author retains ownership of L'auteur conserve la propriete du
the copyright in his/her thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial these. Ni la t h h e ni des extraits
extracts from it may be printed or substantiels de celle-ci ne
otherwise reproduced without doivent &re imprimes ou
hlc/her permission. autrement reproduits sans son

autorisation.

ISBN 0-612-16875-1

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended c s s q (thc

title of which is shown below) to users of the Simon Fraser University Library, and to make partial or

single copies only for such users or in responsz to a request from the library of any other university, or

other educational institution, on its own behalf or for one of its users. I further agrcc that permission

for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate

Studies. It is understood that copying or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

Reasoning with Taxonomies

Author:

(signature)

Stewart Andrew Fall

(name)

December 1 1,1996

APPROVAL

Name: Andrew Fall

Degree: Doctor of Philosophy

Title of thesis: Reasoning with Taxonomies

Examining Committee: Dr. David Fracchia

Chair

v Dr. Veronlca Dahl, ~ e n i d ~ u ~ e r v i s o r

I Dr. Ken Lertman, Supervisor

Dr. Fred Popowich, Supervisor

Dr. Hipsan ~ f i k a c i , SFU Examiner

Dr. Nick Cercone, External Examiner

--5.

Date Approved: jq, 4qq.C
I

ii

Dedicated to M o m and Dad

Elizabeth Anne Fall and Stewart Temple Fall

Abstract

"We journey to learn, yet in trovelling grow each day

1urthe.r and further from where we began"

- Wade Davis

Taxonomies are prevalent in a multitude of fields, including ecology, linguistics, pro-

gramming languages, databases, and artificial intelligence. In this thesis, we focus

on several aspects of reasoning with taxonomies, including the management of tax-

onomies in computers, extensions of partial orders to enhance the taxonomic infor-

mation that can be represent.ed, and novel uses of taxonomies in several applications.

The first part of the thesis deals with theoretical and implementational aspects of

representing, or encoding, taxonomies. Our contributions include (i) a formal abstrac-

tion of encoding that encompasses all current techniques; (ii) a generalization of the

technique of modulation that enhances the efficiency of this strategy for encoding and

reduces its brittleness for dynamic taxonomies; (iii) the development of sparse logical

terns as a universal implementation for encoding that is supported by a theoretical

and empirical analysis demonstrating their efficiency and flexibility.

The second part explores our contributions to the application and extension of tax-

onomic reasoning in knowledge representation, logic programming, conceptual struc-

tures and ecological modeling. We formalize extensions to partial orders that increase

the ability of systems to express taxonomic knowledge. We develop a generaliza-

tion of equality constraints among logic variables that i~duces a partial order among

equivalence classes of variables. For graphic knowledge representation formalisms, we

develop techniques for orgafiizing the derived hierarchy among graphs in the knowl-

edge base. Finally, we organize abstract models of landscapes in a taxonomy that

provides a framework for systematically cataloging and analyzing landscape patterns.

Acknowledgements

"No matter how much we seek, we never find anythi~zg but ourselves"

- Anatole France

My first thanks are to Marie-Ange, for tolerating my incessant drive to achieve m y

goals, for patiently listening to my explanations in various diatects of martian, and for

enduring many lonely times while I was away at conferences. Our kitten Ash a11t1 rr~y

long-time companion lovebird Milk kept her company during my absences. One of rny

dreams has been to make my parents proud of my achievements. Even if they are no

longer here, they share their love in my heart. They also live on in my brother Joseph,

with whom I have been fortunate to have worked with on some of my research.

I wish to express gratitude to my supervisor, Veronica Dahl, without whotn I

would not have had the courage to let my ideas see the light of day. She has providwl

inspiration both professionally and personally during the course of my degree. I would

also like to thank my conmittee, Hassan Ait-Kaci, Nick Cercone, Ken Lertzman and

Fred Pclpowich, as well as Paul Tarau, for many enlightening conversations, and for

encouraging me to pursue some of the routes I explored during my research. Thanks

to all my friends and family, and to Mother Nature, who walked beside me along my

path, diverting my attention to other important aspects of life.

Support for this research was initially funded by NSERC PCS-A and PGS-B
Postgraduate Scholarships, and later by an ECO-Research Doctoral Fellowship. Addi-

tional support was made by Veronica's NSERC Research Grant 31-61 1024 and NSERC
Infrastructure and Equipment Grant given to the Logic and Functional Programrnirtg

Lab, where this work was primarily developed. Thanks for the use of facilities are

also due to the School of Computing Science, and to the Forest Ecology Lab in the

School of Resource and EnvironmentaI Management, at Simon Franrer University.

-'-
"The human race is challenged more than ever before to demonstrate

our mustery - not over nature - but of our.selves"

- Rachel Carson

It is the author's wish that no military benefit

be derived from any results in this thesis.

Notation

"Once you miss the buttonhole you'll never manage to button up"

- Goethe

I3ele-z are descriptions of the intended meaning of some of the symbols used ill t,Iw

thesis.

Partial order theory:

n
!J

5, c, 5

Set theory:

n, n
u, U
G
f

Predicate logic:

A

meet (greatest lower bound) and meet crest

join (least upper bound) and join base

partial order relations

intersection

union

subset (which is also a partial order relation)

set membership

conjunct ion

V disjunction

-l negation

+ impiication

+ logical equivalence

vii

Contents

Acknowiedgements

Notation vii

1 Introduction 1

1.1 Motivation and Summary of Thesis Results 3

1.2 Organization of Thesis . 9

2 Background and Mathematical Preliminaries 10

. 2.1 Partial Order Theory 12

. 2.1.1 Properties of ordered sets 13
. 2.1.2 Lattices 15

. 2.1.3 Order mappings and lattice completions 17

. 2.1.4 Lattice corilpletions 17

Part I: Taxonomic Encoding 20

3 The Evolution of Taxonomic Encoding 2 1
. 3.1 Introduction 21

. 3.2 Encoding tree-shaped hierarchies 22

. 3.3 Extending trees to graphs 24

. 3.4 Characterizing term encodable hierarchies 25

. 3.5 Bit-vector encodings 28

. 3.6 Discussion 33

4 The Foundations of Taxonomic Encoding 34

. 4.1 Setting the Stage 36
. 4.2 Spanning Sets 39

. 4.2.1 Taxonomic operations using spanning sets 40

. 4.2.2 Represent.at.ion theory and encoding I2

. 4.3 Efficient Implementations of Component Mappings 4 3

. 4.3.1 Unordered implementations 4

. 4.3.2 Tree representations and code sharing 45
. 4.3.3 Logical terms . .. -18

. 4.3.4 Sparse logical terms 49

. 4.3.5 Integer vectors

. 4.4 Infinite Suborders 51'

. 4.5 Spanning Sets of Principal Down-sets and Up-sets 53
. 4.5.1 All principal down-sets 53

. 4.5.2 Principal down-sets of meet irreducible elements 55

. 4.6 Spanning Sets of Prime Down-sets and Up-sets 58

. 4.7 Spanning Sets of Compound Down-sets and Up-sets 60

4.7.1 Finding a minimal subsumption preserving spanning set is N1'-

. Hard 61

. 4.7.2 Multiple occurrences of factors fi6

. 4.8 Spanning Set Decomposition 71

. 4.8.1 Chain decomposition 72

. 4.8.2 Meet incompatible decomposition 75

4.8.3 Meet homogeneous decomposition 79

. 4.9 Constraints and Coreference 81

. 4.9.1 Types of constraints 81
. 4.9.2 Augmented spanning sets 83

. 4.9.3 Integrating spanning sets and constraints 86

. 4.9.4 Guarded constraints 88

. 4.9.5 Coreference 89

4.9.6 Coreference, decomposition and meet incompatibility constraints 91
. . 4.9 7 Encoding algorithms 94

. 4.9.8 Variations 95
. 4.10 Discussion and Conclusion 95

5 Modulated Encoding 99

. 5.1 Order Intervals and Modules i O O

. 5.2 Order 103
. 5.3 Modulation 104

. 5.4 Extending modulation 107

. 5.4.1 Lower and Upper Semi-Modules 107
. 5.4.2 Generalized Modules 109

. 5.4.3 Non-overlapping Modulation 110
. 5.4.4 Overlapping Modulation 112

. 5.4.5 Extending Modulation Algorithms 115
. 5.5 Conclusion 116

G Encoding with Sparse Logical Terms 117
. 6.1 Introduction 118

. 6.2 Basic Sparse Terms 119

. 6.2.1 Space re~uirements 120

. 6.2.2 Unification and Implementatiorz 121

. 62.3 Variations 122

. 6.3 Generalizing Sparse Terms for Encoding 194

. 6.3.1 Explicit and canonical forms for sparse terms 126

. 6.3.2 Sparse term subsumption 128

. 6.4 Encoding with Sparse Terms 129

6.5 Sparse Term Encoding . . 131

. 6.6 Theoretical Justification 133

. 6.7 Empiricd Evidence 137

. 6.8 Conclusion 1;N

Part 11: Applications a n d Extensions of Reasoning with Taxonomies 140

7 Extending Part ial Orders for Sor t Reasoning 141

. 7.1 Introduction I -11

. 7.2 Background 1-12
. 7.3 Sort Reasoning 143

. 7.3.1 Generalizing sort reasoning 145

. 7.3.2 Clausal taxonomic specification 147

. 7.3.3 Definitional specifications I48
. 7.4 Sort Logic 149

. 7.4.1 Complexity of Sort Reasoning 151

. 7.5 Tractable subcases I XI

. 7.5.1 Containing sort reasoning complexity 151

. 7.6 Implenienting Conjunctive Sorts 157
. 7.7 Conclusion I57

8 Reference Constraints in Logic Programming 159
. 8.1 Int. roduction 159
. 8.2 Background 161

. 8.3 Decoupling Coreference via Reference Constraints 161

. 8.3.1 Notational considerations 163

. 8.3.2 Maintaining and satisfying the reference order 164

. 8.3.3 Example l(i5

. 8.3.4 Comparison with sort hierarchies 166
. 8.3.5 Implementation 168

. 8.4 Individual Level Inheritance 1 f iX
. 8.5 Conclusion 175

9 Organizing the Bierarchy of Conceptual Graphs 176
. 9.1 Backgrouiid and Motivation 177

. 9.2 Cardinality Constraints 178
. 9.3 Xcirmalization 180

. 9.4 Spanning Tree Xormal Form 180
. 9.1.1 Pivoting 184

. 9.5 Representing the Generalization Hierarchy 185

. 93.1 Depth-first topological traversals 186
. (3.6 Conclusion 188

10 A Hierarchical Organization of Landscape Models 189
. 10.1 Introduction 190

. 10.2 Background: Neutral models 193

. 10.3 Landscape Model Prototypes 196

. 10.3.1 Pattern constraints 196

. 10.4 A Hierarchy of Landscape Model Prototypes 202
. 10.5 Conclusion 207

Chapter Appendix: Formal Basis for Landscape Model Generators that Per-

. mit General Richness, LAR and Contagion Constraints 207

I1 Conclusion 211
. 11 -1 Significance of Research 212

. 1 i -2 Future Research Directions 215

Bibliography 221

xii

List of Tables

. 3.1 Assigning bits to elements from Figure 3.2 2S

4.1 Characterization of encoding schemes in terms of spanning set of down-

. sets 9G

. 6.1 Asymptotic encoding results for theoretical orders 137

. 6.2 Empirical results (in bits) for chess learning system [16] 138

. 6.3 Empirical results (in hits) for medical ontology 139

...
Xlll

List of Figures

. Research overview

. Sample ordered sets

. Example ordered set

Example order mappings . The first (centre) mapping is order-preserving

. and the second (right-hand) mapping is an order.embedding

Example lattice mappings . Both mappings are (0, 1)-homomorphisms

and the second (right-hand) mapping is also order.embedding
. Minimal completion of the ordered set in Figure 2.2

. A tree-shaped hierarchy

. Taxonomy showing tree prefix

. Logical term encoding of a tree-shaped hierarchy

. Encoding of type hierarchy in Figure 3.2

Bottom-up bit-vector encoding of taxonomy in Figure 3.2
. Compact bit-vector encoding of taxonomy in Figure 3.2

A modulated taxonomy and its encoding
. A subsumptio~l only encoding

. Diamond lattice and two spanning sets

Tree represent at ion .
Chain partition of the ordered set in Figure 2.2
Meet incompatible anti-chain partition cf the ordered set in Figure 2.2

Principal down-set encoding .

xiv

4.6 Cover tree. preorder numbering and interval encoding for the lattice iu

. Figure 4.5

. 4.7 Meet irreducible encoding

. 4.S Principal up-set and prime down-set encodings

. 4.9 Elements that cannot be in the same down-set

. 4.10 Subsumption preserving encoding

. 4.11 Transformation of a graph to a lattice

. 4.12 Subsumption preserving encoding

. 4.13 Violation of subsumption

4.14 Example encodings that discriminate non-meet irreducible elemcnts .
. 4.15 Distributed virtual time encoding

. 4.16 Meet incompatible decomposition

4.1 7 Logical term implementation of meet incompatible deconrposit ion . .
. 4.18 Transformation of a graph to a lattice

. 4.19 Meet homogeneous decomposition

. 4.20 Term encoding for diamond and cube lattices

4.21 Lattice for which no augmented spanning set of down-sets can preserve

. meets and joins

. 5.1 Types of modules

. 5.2 A modulated lattice and its containment tree

. 5.3 Lower semi-modules

5.4 Generalized modulation . Lower surrogates (left) are (a : e, 1) and upper

. surrogates (centre) are { b , e. f. n)

6.1 Encoding implementations: sparse terms generalize other tech ri iq ucs .
. 6.2 Sparse logical terms

. 6.3 Binding arity in sparse terms

. 6.4 Anonymous functors in sparse terms

. 6.5 Attribute-value matrix using sparse terms

. 6.6 Chain and anti-chain encodings

. 6.7 Binary tree encoding

6.8 Square lattice transitive closure and compact encodings 136

. 6.9 Transitive closure encoding of a crown S5

. 7.1 Relation between taxonomic and set operations

. 7.2 Venn diagrams of clausal taxonomy specification

. 7.3 Aggregate specifications

7.4 Using sort definitions to represent an iustance of 3-SAT: f = c l A - . .Ack,

where c; = V li. V Zi.3, 1 -< i k

8.1 State of the reference order at various points in a predicate evaluation

8.2 Reference order for separating the contexts for a person named John .
8.3 Reference order for ambiguous parses of "Jack saw a dog on his way

home" .
8.4 Reference order during parse of the sentence " When Sherry saw the

chair, she shook her handP' .
8.5 Reference constraints for default reasoning

. 9.1 Conceptual graph representing "a cat sitting on a mat"

. 9.2 Spanning tree normal form

9.3 A cyclic graph and a tree representation
9.4 4 woman eating a dinner cooked by her husband
9.5 Examples of pivoting the graph in Figure 3

10.1 Example neutral models . Each instance was generated on a 30 x 30

grid (rn=30). with varying proportions of the white feature (p = 0.4,

. 0.6 and 0.8).

10.2 Instances of landscape model prototypes produced on a 100 x 100 grid .
Each model has four features with equal landscape area ratios (i.e.

equal relative proportions) . The value of contagion differs for each

model instance, taking on the values 0.6, 0.8 and 0.99, respectively . The

prototype for instance (a) is therefore {LAR = (0.25,0.25,0.25,0.25),

size = 100 x 100, richness E [I, 41, contagion = 0.6).

10.3 Geometric view of an instance of a landscape model prototype witmh

spatial constraints. The instance is overlaid on the elevation model used

to create it. The model size of this instance is 100 x 100, and the number

of features is 5. The underlying elevation model provides a contest in

which spatial constraints, in the form of elevation responses, aff~ct,

pattern generation. Thus, the prototype for instance (a) is { s i z e --

100 x 100, richness E [1,5], spatial responses to elevation}. 201

10.4 Instance of a landscape model prototype (b) generated using stochastic

temporal constraints and input pattern (a). The model size is 30 x 30,

and richness is 4. The prototype for instance (b) is therefore {size =

. 30 x 30, richness = 4, temporal responses}. 202

10.5 Sample fragment of the hierarchy of landscape model prototypes. Each

node represents a prototype that consists of the constraints labeling the

. node and all higher nodes in the hierarchy. 203

10.6 Sample fragment of the hierarchy of landscape model generators. Each

node represents a generator that permits specification of the constraints

labeling the node and all higher nodes in the hierarchy. 204

Chapter 1

Introduction

"In all things of nature, there is something of the marvelous"

- Aristotle

The drive to categorize and crgauize knowledge has been ubiquitous throughout hu-

man intellectual development. Taxonomic knowledge was first formalized by Aristotle,

who proposed to define the intention of a complex concept in terms of its genus, or

general type, and digerentia, or specific properties. It is therefore natural that a

large portion of current howledge is taxonomically related, and that taxonomies are

prevalent in a multitude of fields.

In this thesis, we are concerned with research on the efficient representation and

use of taxonomies, extending partial orders for taxonomic knowledge representation

and reasoning, and applying taxonomies to a variety of applications. Central to this

research is the partial order (Figure 1 .I).

The motivation for this thesis is based on the following observation:

Observation Taxonomic knowledge i s a useful artifact for organizing many aspects

o j hvman thought, much of which can be captured i n a mathematically elegant way

with partial orders. The capability of automated systems depends o n the identification,

appla'cation and ef icient organization of taxonomic information.

CHAPTER 1. IXTROD UCTION

Representation: I
Theory and
Implementation (Encoding)

Figure 1.1: Research overview

Due to the multi-disciplinary nature of this thesis, we pose a number. of specific:

theses to explore this observation:

Thesis 1 (Taxonomic encoding) : There exists a formal characterixation Jar Ihc

representation, or encoding, of partial orders in computers as the expression 01 cer-

tain aspects of taxonomic information that is distinct from the manner in u)h.ich thal

information is implemented.

Thesis 2 (Modulation) : Concepts naturally groujri into related, but not necessarily

independent, partitions, and this can be exploited to decompose large taxonomies into

manageable units.

Thesis 3 (Sparse term encoding) : There exists a universal mcodiny irnplernen-

tation that combines the advantages of other implementation techniq~cs.

Thesis 4 (Extending partial orders) : Partial orders can be extended with taxo-

aornic infornzation beyond mbsumption, and this can enrich the expressive power and

consistency of a taxonomic reasoner.

CHAPTER I . INTROD UCTfON

Thesis 5 (Reference constraints) : The symmetry of equality constraints can be

decoupled into two asymmetric reference constraints that induce a novel and practical

hierarchy on equivalence classes of logical variables.

Thesis 6 (Conceptual graph generalization hierarchy) : Knowledge-bases of

graphs that exhibit a derived hierarchical structure can be organized as a spanning tree

that permits improved traversal efficiency fcr operations on that hierarchy.

Thesis 7 (Landscape ecology: hierarchy of landscape models) :

Generators of landscape models can be viewed as imposing sets of constraints on pat-

tern generation. These sets of constraints induce a hierarchy on landscape models that

serves as an organizational framework for model generators and for the analysis of

landscape patterns.

1.1 Motivation and Summary of Thesis Results

We motivate the thesis by discussing a number of open problems that we focused

our research efforts on, and some of the significant results that we obtained. This

thesis crosses a number of disciplinary boundaries, and advances the state of the art

in several different fields. The list below follows somewhat the structure of this thesis.

1. Encoding: Mellish [I021 studied the use of logical terms for encoding lattices. He

characterized the classes of lattices for which term encodings were possible for

different forms of terms (e.g. flat terms). However, no algorithm was presented,

and so no constructive solution to the problem of encoding was proposed.

On the other hand, researchers advocating the use of bit-vectors and related

approaches have applied encoding in real applications (e.g. object-oriented pro-

gramming [24], operating systems [97]). However, these approaches have been

ad hoc, and no formal apparatus has emerged to permit objective comparison

and evaluation of the different techniques.

We develop a formal apparatus for objectively characterizing all encoding algo-

rithms. Our framework permits the separation of the informational content of

CHAPTER I. IXTROD UCTION 4

an encoding from its implementational details, and allows comparison a t am ab-

stract level of different encoding techniques. Furthermore, the advantages and

disadvantages of various approaches for implementing encodings can be a~lalyzed

for their effect on space and time efficiency, and their dynamic behaviour.

2. Modulation: Modulation is a well-known technique for the analysis of pa,st,ial

orders in discrete mathematics (e.g. [60]), but it wasn't until the seminal work

of Ai't-Kaci et at. (21 that its use for encoding was proposed. The algorith~n

proposed in this paper produces an approximate modulation in a, time efficiellt,

manner. Researchers on partial order theory, on the other hand, have workcd 0x1

exact modulation algorithms, but it was only recently that an efficient (lincar)

algorithm was developed [76]. Even with the ability to decompose taxonon~ics

into modules, however, the ability to take advantage of modulated taxonosnies

has received limited attention beyond the proposal in [2].

An additional issue, and perhaps more important, is that modules are rigidly clc-

fined constructs. Even if adequate modulations are possible in real taxonornics,

dynamic updates have the patential to invalidate much of the work involved in

modulation. Prior to our research, no proposal had been made to address this

serious issue that undermines the potential advantages of modulated encoding

by making modules too brittle for real applications.

Taking advantage of the decomposition tree of a modulation, we develop a8

technique for modulated encoding that reduces the size of codes, and the time t,a

compute taxonomic operations, beyond that proposed in [2]. Furthermore, o u r

abstract treatment of modulation permits a direct generalization to s relaxed

definition of moduies that degrade gracefully under dynamic updates. We desigrl

algorithms for operations on generalized modules, which we prove to be correct.

3. Logical term encoding: The viewpoint taken in the analysis of Mellish [I 02,

1041 is: given a technique for implementing encodings, what forms of taxononlies

can be encoded? We feel that, for real-world problems, this viewpoint is flawed,

In applications that require encoding, we may not have the luxury to restrict

CHAPTER 1. IiVTROD UCTfOiY

the form of a taxonomy to encode. Thus, we believe that a better viewpoint

is: given a taxonomy, what is the best approach to encode this taxonomy? This

stance makes it easier for people to describe things naturally, and does not overly

constrain their expressive power. We highlight "best", since there are a number

of criteria by which we may evaluate encoding. The most prevalent criterion is

the size of the resulting codes, although we discuss others later.

Due to the structural potential and flexibility of logical terms, we feel that term

er codings are the most promising form of implementation. For example, logical

terms may permit dynamic updates to a portion of a taxonomy without requir-

ing a full re-encoding, while any change to the length of a bit-vector encoding

requires updating every code. However, prior to research conducted for this

thesis, no algorithms for encoding with logical terms had been proposed.

Our early attempts at logical term encoding using Prolog terms were unsuccess-

ful due to the vast number of anonymous variables that produced excessively

large terms. For this reason, we developed and implemented sparse logical terms

for the specific task of logical term encoding, although we later found other uses

for them. Sparse terms vastly improved our term encoding results, but we later

discovered how the benefits of encoding with logical terms, integer vectors and

interval sets could be integrated into an extended form of sparse term.

In this thesis, we propose these extended sparse terms as a universal encoding

implement ation that encompasses (in terms of efficiency) most other approaches

to implementing encodings, and we devise and implement the first published log-

ical term encoding algorithms. This claim is backed up by theoretical compar-

isons of sparse terms with other approaches to encoding, as well as an empirical

comparison between bit-vectors and sparse terms for encoding two medium size

taxonomies from existing applications. Even though each item of information in

a sparse term uses more space in an absolute sense (i.e. one atom vs. one bit),

sparse terms outperformed bit-vectors by nearly an order of magnitude. This

result is strengthened by the improved flexibility obtained by the use of logical

terms over more rigid implementations such as bit-vectors.

CHAPTER 1. INTROD UCTION 6

4. Extending partial orders: The maintenance of taxonon~ic knowlcdgc has t)t\crl

polarized. 4 t one extreme, systems use mathematically pure, but lirni ted, par-

tial orders for representing taxonomic information. ,4t the other cxtre~nc, k-

minological systems provide rich formalisms for specifying knowledge, and tasu-

nomic information is derived through the expensive (and potentially intract,ablt>)

operation of classification 118, 19, 1591. In order to gain efficiency, some iesnli-

nological systems limit expressive power to obtain tractable classification. 1 tow-

ever, there has been no corresponding push in the other direction, tlamely to

embellish partial orders with further power to incorporate additional forrrls of

taxonomic knowledge other than simple subset information.

One of the dangers of this situation is that taxonomic operations, such as meets,

have been interpreted as equivalent to conceptual, or set- theoretic operat,ions,

such as intersection. Although this correspondence appears natural, it may lead

to invalid inferences, as pointed out in [28] in the context 0.f many-sorted logic,

The solution to this problem suggested in [28] is to embed the taxonomy i n

a special Boolean lattice that provides consistent inferences. This is adequate

for logic, but inadequate for applications that must reason efficientJy with taxo-

nomic knowledge, due to a potentially exponential increase in space. We analyzc

sort reasoning as a distinct reasoning task, and suggest the inclusion of s sort

reasoner in applications that utilize taxonomic knowledge. By developing a

sound and complete sort logic (not a sorted logic for reasoning with sorts, but, a

logic for reasoning about sorts), we clearly identify the task required as the sort

reasoning problem. We prove that this problem is NP-Hard, but analyze tht:

sources of intractability. By limiting certain forms of taxonomic declarations

and queries, we show that intractability can be bounded, resulting in a sort

reasoning procedure that only requires polynomial time.

5. Reference constraints: During the development of a constraint based view of

encoding, we identified the utility of constructing a hierarchy of logical variahlcs

(actually, of equivalence classes of variables). In this way, unification can kc

split into two uni-directional components that allows, for example, updates to

CHAPTER 1. TNTRODT/'CTION

a variable X to he automatically unified with variable Y, but not vice versa.

This form of relation among logical variables has not been previously proposed.

We develop a formal description of reference constraints, and show how they may

he specified in a logic program. We also explain how the resulting hierarchy of

equivalence classes is maintained and satisfied during the processing of a logic

program. Finally, we discuss how reference constraints can be implemented, and

propose potential modifications to the control strategy of logic programming

languages that may take fuller advantage of this new form of constraint.

While working out the details of reference constraints among logical variables, we

identified a broad area of application in hypothetical reasoning systems. Refer-

ence constraints naturally lead to the notion of individual-level inheritance. The

classical nation of inheritance involves inheritance of properties among classes

je.g. the class cat inherits properties from the class mammal) and from classes to

individuals (e.g. the cat Ash inherits properties from the class cat). Individual-

level inheritance is a novel and distinct form of inheritance among individuals,

which are apprevimat.ed by terms in logic programming. If individual A inher-

its from individual B, then the term that approximates A must be more fully

specified than the term that approximates B. This notion has applications in

systems that reason with uncertainty, to separate, but relate, hypothetical from

known information in a given context.

6. Conceptual structures: Conceptual structures is a graph-based formalism for

knowledge representation that relies heavily on taxonomies. The type and re-

lation lattices are declarational structures to which encoding techniques are

directly applicable. The generalization hierarchy, however, is a partial order

formed by graphs using the complex operation of projection, which is akin to

classification in terminological representations such as KL-ONE [la]. Essen-

tially, one graph subsumes another if the former contains a subset of the infor-

mation of the latter. However, the computation of this derived taxonomy is ex-

pensive, and the taxonomy itself is highly dynamic as changes to the knowledge

base transpire. To organize this hierarchy, a number of techniques, including

encodicg [42], have been proposed, although research on this proble~n is ongoiug.

We develop a solution that takes hdvantage of the information content of gra 1'11s

to organize the generalization hierarchy. Graphs are preproctwx~d using sottw

n,ormsrc7izatio~ techniques tc prodxe a standclrd form, caiieci s p a n n i q ~ I W I I O I , -

mal form due to the representation of a graph as a tree with coreference links.

The generalization hierarchy itself is also organized as a tree, and graphs arc fur-

ther normalized into generalization hierarchy normal fom2 as they are itisertcd

into the tree. The advantage of this tree form is that the projection operatio11

between a node and its parent in the tree is greatly simplified, so travcrsnls

down branches are less costly than general traversals in the hierarchy. Further-

more, in [42] it is argued that the most efficient traversals of the generalization

hierarchy are topological. We show that, given a spanning tree produced frwii

z, left-to-right depth first traversal of a partial order, a right-to left depth Crst,

traversal of this tree corresponds to a depth first topological t,raversnl of t11~

partial order.

7'- Landscape ecology: model generation Work on theoretical rnoctels of l a d

scapes, known as neutral models, has proceeded steadily over the last few ycnars

(e-g. [25, 66, 67, 148]), but is now rapidly expanding, as the number of preswta-

tions that focused on neutral models at a recent landscape ecology symposiutil

testifies (e.g. [64, 73, 83, 100, 1571). However, although the development and

use of neutral models and neutral model generators has proliferated, no unifying

framework for organizing and categorizing models has emerged.

By defining the general notion of a landscape model pmtotype, wc provide a for-

mal framework for describing and comparing t heoretical landscape rnotfels arid

model generators. A landscape model prototype describes an ezpected p t l f : ~ ~ ~

in the absence of additional ecological information, and so defines a distribution

of landscape patterns in a multi-dimensional space of possibilities. Using this

notion; a hierarchy of prototypes is induced; near the top are general prototypes

that correspond to neutral models, while lower down are more predictive rnrtdeis.

Overall, the hierarchy clarifies gradients of neutrality in landscape models, and

can he used to aid selection of existing landscape model generators, in guid-

irig the development of new model generators, and for analyzing data sets of

landscape models wj th respect to the degree of neutrality.

Organization of Thesis

T h e thesis is divided into two major parts. In Part I we look at some theoretical and

irnpiernentational issues for representing taxonomies, while part I1 considers several

apy lications and extensions of reasoning with taxonomies. The following chapter

provides relevant background information for the thesis. In particular, some basic

partial order theory is presented as well as deviations from standard theory that we

found important for our research. Due to the diversity of topics covered, each chapter

will also present background material and related work important to the chapter.

Part I, taxonomic encoding. is divided into four chapters that contain research

on various aspects of this topic. Historical developments in taxonomic encoding are

described in Chapter 3. In Chapter 4. we provide an in-depth study of encoding and

develop our framework for formalizing encoding. We describe our generalizations of

modulation in Chapter 5. In Chapter 6 we develop sparse logical terms as a universal

encoding implementation. Theoretical and empirical evidence is presented to support

this position.

Part I1 is divided into four chapters pertaining to research on extensions to, or

applications of. reasoning with taxonomies. In Chapter 7, we present results on ex-

tending the mathematical notion of a partial order to enhance the ability tLo represent

taxonomic knowledge. In chapter 8, we describe an application of partial orders in

logic programming for generalizing equality constraints among logical variables. We

present the use of taxonomies in conceptual structures in Chapter 9. In particular,

we focus on techniques for organizing the generalization hierarchy induced by concep-

tuai graphs, inciuding graph normalizat,ion and a spanning tree representation of this

hierarchy. fin all^. we shots- in Chapter 10 how a partial order can be defined among

abstract models of landscapes in order to enhance the organization and specification

of generators of landscape models, and the analysis of data sets of landscape models.

Chapter 2

Background and Mat hemat ical

Preliminaries

"From here on down, it's uphill all the wayr

- Walt Kelly

The cohesive theme of this thesis is the partial order, a simple yet elegant and powcrful

mathematical concept to which a lot of attention has been devoted (e.g. [15, 38, 1441).

Partial orders underlie central aspects of many domains, such as rnathernitticai logic

[128], sorted logic [27, 28, 931 and logic programming [3, 4, 931, type syst,crns [lOG],

natural language processing (e.g. typed feature structures [23, 7 1, 1 181, systernic

networks [80, loll) , object-orientation (e.g. databases [I], languages [24]), knawlcdgc

representat ion (e.g. conceptual structures 142, 1361, knowledge bases [45j, dcscri pt ion

logics f17, 18, 1591, default inheritance and non-monotonic reasoning [22, 85, 1.13,

1.51]), machine learning (e.g. description idectification [103] and conccpt learuing

[log: 156, 161]), formal concept analysis 1153, :%I, distributed systems [97], arid

ecology and ecological modeling [8, 11, 39, 75, 1151.

As the size of partial orders increases, it becomes important to find representatio~~s

that are both space efficient, and suppo1.t fast execution of desired operations (c.g.

greatest lower bounds). Suitable encoding techniques wili depend on the iiature of

these partial orders (e-g. whether they can change dynamically, whcther cc!rtain

properties such as distributivity dr bounded width are satisfied) and the operatior~s to

CIIA PTER 2. BACKGROUND AAiD MATHEMATICAL PRELIiMINARIES 11

be supported. Research on taxonomic encoding has explored a variety of possibilities

(e.g. [2, 24, 34, 35, 43, 45, 61, 77, 78, 79, 93, 97, 101, 102, 104, 1141).

In order to empower logical terms for encoding, we developed sparse terms [51],

based on an analogy to sparse matrices. There are many similarities, but also some

important differences: between sparse terms and $-terms in LIFE 141, as well as sorted

feature structures [23, 1181.

Although mathematically clean, partial orders limit the representation of taxo-

nomic knowledge to subsort-supersort (or isa) relationships. We cannot, for example,

directly state that two sorts are incompatible or define one sort as the intersection

of a set of other sorts. This poses problems for specifying more complete taxonomic

relationships as well as for denotational semantics in sorted logic [28]. Research on

many sorted logics has addressed this issue by expanding the expressive power of re-

lationships among sorts. In simple many sorted logics the sorts simply partition the

domain oi discourse, while more complicated logics permit much more expression [28].

The potential applications in which we could explore reasoning with taxonomies

are many. We choose to focus on logic programming, conceptual structures and ecolog-

ical modeling. An important application that we only explore superficially is natural

language processing, where important uses of taxonomies include lexical specification

and typed feature structures (e.g. [23, 1181). We have also used taxonomies in the

resolution of anaphora and co-specification in discourse processing [54] (synthesizing

and extending research in [9, 84, 133]), and for hypothetical reasoning [36].

Equality constraints partition logical variables into coreference classes, each of

which denotes an individual (which may be unspecified or partially specified) in a

domain of discourse. These constraints form a basis for a number of logic programming

languages, such as Prolog [I381 and LIFE [4]. However, the resulting classes are

unrelated to each other. Our application is the exploration of a generalization of

equality constraints that induces a partial ordering among coreference classes.

Conceptual structures [136] is a rich application for taxonomies. Taxonomic en-

coding has been proposed for the type lattice [35], and for the generalization hierarchy

of graphs [a, 421. Other research has analyzed normalization techniques for concep-

tual graphs [107? 1601. Our focus is on the use of normalization techniques for a novel

and efficient organization of the generalization hierarchy.

Landscape ecology [58] and ecological modeling are also prime applicatio~i arcas for

taxonomies, particularly for spatially explicit population models [40], ethology (a ~ ~ i -

ma1 behaviour) models [39]? individual-based modeling 114, 57, 1301, and intelligent,

simulation [105, 110, 124, 1291. Our focus is on spatially explicit models of litndscnyc~s

[lo, 135, 1461. Work on theoretical landscapes has shown that models which contain

no or very little ecological information, known as neutral models, provide a null hy-

pothesis for landscape pattern and change 166, 67, 148, 145, 147, 150, 1-19]. We 1la.w

extended this notion to provide an incremental path from neutral models to landscape

models that incorporate ecological information, and possibly real data (e.g. from a

GIS), inducing a partial ordering among landscape models [55, 561.

2.1 Partial Order Theory

Since the core of this thesis revolves around the partial order, it is important Lo have a

clear understanding of the underlying mathematics upon which much of this research

rests. In this section, we present some basic partial order theory, as can be li-,unct i n

[38], or any other lattice theory text. Definitions and theorems that introduce our

additions to, or deviations from, standard theory will be followed by an astcsisk.

A (partially) ordered set is a pair (P, 5) where P is a set and < is a reflcxivc,

transitive and anti-symmetric binary relation defined on P. Often, we leave 5 implicit

and simply call P an ordered set. We call 5 subsumption, and use subscripts (c.g

<p) to disambiguate different orders. If x 5 y or y 5 x, then we say that, z and y art: -

comparable. We denote that x and y are incomparable by xll y. If x 5 y but z $ y,

we write x < y. We say that. x is covered by y, or y covers x, if x < y and x 5 z < y
implies that x = z. Genealogical terms are also used: if x 5 y , then we say s is a

descendant of y, or y is an ancestor of x. If x is covered by y, then we say z is a child

of y, or y is a parent of x.

An ordered set P is a chain (or total order) if Vx, y E P either x 5 y or y 5 z; 1'

is an anti-chain if Vx, y E P x 5 y implies that x = y (i.e. if x # y then slly). Any

subset & of P is a szcbo~der i f , for any s, y E Q, x SQ y if and only if a: f y.

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 13

Examples of ordered sets include families of subsets of some domain X ordered by

set inclusion (i.e. A 5 B if and only if A B), sets of integers ordered by divisibility

(i.e. x 5 y if and only if x is a factor of y) , and logical term spaces ordered by term

instantiation. An example of a total order is the set of integers ordered by relative

magnitude. Ordered sets can be shown diagrammatically (in Hasse diagrams) by

placing subsuming elements above subsumed elements and only drawing arcs in the

transitive reduction? as shown in the samples below.

Figure 2.1: Sample ordered sets

2.1.1 Properties of ordered sets

We define the dual Pa of an ordered set P by reversing 5. We similarly define the

dual of a statement regarding ordered sets. The Duality Principle allows us to deduce

the dual of a statement once the statement itself is proven.

Suppose we have a subset Q of an ordered set P. Then q E Q is a maximal element

of Q if q 5 x E Q implies that q = x, and q is the greatest (or maximum) element of

Q if q 2 x for every x f Q. Minimal and least elements are defined dually. The set of

maximal (minimal) elements of a set Q is denoted as [Q] (LQj). If P has a greatest

(least) element, we call it top (bottom), denoted by T (I). If P has both T and I,

then we call P bounded. An element x E P is an upper (lower) bound of Q if q < x

(z 5 q) for every q E Q. The set of all upper (lower) bounds of Q is denoted QU (Q1).

Definition 2.1 Let P be an ordered set and Q a subset of P . If Qu has a least

element. x, then x is called the join or least upper bound of Q, denoted UQ. If Q' has

n greatest element x, then a: is the meet or greatest lower bound of Q, denotod nQ1.

'Some order theory texts use A and V to denote meets and joins. (e.g. [38]). These symbols, how-
ever, conflict with the symbols traditionally used in predicate logic for conjunction and disjunction.
The sy~nbols ft and U are also used in order theory, and provide a more consistent notation.

If Q has exactly two elements, x and y, then ~ { s , y) and n(.~, y } rimy tx written

x U y and x n y, respectively. The join x U y may fail to exist because r and y have

no common upper bound or because they have no least upper bound (i .e. L(.T , y) "1 is

not a singleton). In the former case we call x and y join incompatible, and if: ,r and !I

have no common lower bound they are called meet incompatible. Note that in a finite

ordered set, there exists a non-unique meet if and only if there exists a non-unique

join. In the ordered set in Figure 2.2, we can see that dog U wild doesn't exist, while

dog fl wild = f era1 dog.

domestic canine wild social

Figure 2.2: Example ordered set

Definition 2.2 (*) Let P be a n ordered set and & a subset of P. Thc set of minimal

upper bounds of Q i s called the join base of Q and the masimak lower hounds o j Q is

the meet crest of Q.

By abuse of notation, we denote lower bound, or meet, crests the same as meets

(and upper bound, or join, bases the same as joins), although the result is a set,, not

a single element. Thus, in Figure 2.2, neither dog fl fox nor dog U wi ld exist, but,

wild n social = {wolf, african wild dog) and fox U wolf = { c a n i n e , w i l d) .

Definition 2.3 Let P be a n ordered set and Q a subset of P. Then Q is a dawrl-set

i f f o r x E Q and y E P , y < x implies y E Q. Up-sets are defined dually.

We can construct the smallest down-set containing a set Q as id[! = {y E Pl3r: E

Q,y < x). If Q consists of the single element z, we write Jx. Note that Q is a

' 1 ure down-set if and only if Q = LQ. As an example, in the second ordered set in r'g

2.1, 16 = {6,3,2,1). The family of a11 down-sets of an ordered set P is dermted by

O(P) , and is ordered by set-inclusion. A down-set with a single maximal elernerit is

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 15

called principal, otherwise it is compound. Compound down-sets can be viewed as the

union of a set of principal down-sets. Note that if P is an anti-chain, then O(P) = 2'

(the power set of P). In general, O(P) C 2P and is much smaller for most ordered

sets.

There is a complementary correspondence between down-sets and up-sets, as for-

malized in the next theorem. Note that we use the symbol "\" for the set difference

operator.

Theorem 2.1 (*) If J.Q is a down-set in an ordered set P then P\ JQ is an up-set.

Proof: If e is not in the down-set, then it is not subsumed by any element in Q. So every

ancestor of e is also not in the down-set. Thus, this complement is an up-set.o

When P is finite, every non-empty set LQ E O (P) can be characterized by its

maximal elements, called the factors of the down-set. In a canonical down-set JQ,

every pair of elements in Q is incomparable (i.e. they form an anti-chain) and is thus

the set of factors of J.Q. Hereafter, we assume that all down-sets are canonical.

2.1.2 Lattices

Definition 2.4 Let L be a non-empty ordered set. If joins and meets exist for every

z, y E L, then L is a lattice. If the join and meet exists for every subset S C L, then

L is a complete lattice.

Every complete lattice must be bounded and every finite lattice is complete 1381

(since the meet of any set can be expressed as the successive meets of pairs of ele-

ments). An example of a lattice is 2X for a set X, ordered by set inclusion. Also, if

P is an ordered set, O(P) is a complete lattice ordered by set inclusion. All of the

examples in Figure 2.1 are lattices, but the example in Figure 2.2 is not. Note that

the dual of a statement regarding lattices is obtained by interchanging n and U in

addition to reversing the order relation.

Definition 2.5 A non-empty down-set J.Q of a lattice L is an ideal if a , b E J.Q

implies a U b E J.Q.

CHAPTER 2. BACKGROUND AND itfATHEItIATICA L PRELIIMINAiiRIES 16

Thus, an ideal is a down-set that is closed under join. A dual ideal is called a,

filter. An ideal LQ is called proper if Q c L. For each a E L, Ja is an ideal and ta i s

a filter, respectively called the principal ideal and principal iilter iuduced by a. Thus,

every principal. down-set is an ideal. Also, in a finite lattice, every ideal or filter' is

principal [38].

Definition 2.6 Let L be a lattice and Q a proper ideal in L. Then Q is a prime ideal

i f a , b E L and a f l b E Q implies a E Q or b E Q . A prime filter (ultrafilter) is clejinetl

dually.

Definition 2.7 Let P be an ordered set and e E P, e # T . Then e is meet irreducible

if x f l y = e implies that x = e or y = e .

Thus, e is meet irreducible if it is not the (unique) meet of any set of clerner~ts

not containing e. Join irreducible elements are defined dually. We represent the set

of meet and join irreducible elements by ,iZ/f(Y) and J(F), respectively. In a lattice

L, the meet (join) irreducible elements are the elements that have exactly one parerit

(child). For ordered sets, however, the set of meet (join) irreducible elements is not

as easily identified.

Theorem 2.2 (*) Let P be an ordered set. Then an element a: E P is mee t irre-

ducible if and only if the set of parents A of x is a singleton or has a non-singleton

meet crest.

Proof: Let x be an element of P and let A be the set of parents of x.

3 If A is not a singleton and has a singleton meet crest, then the meet i s z, so x is not

meet irreducible.

e Suppose A is a singleton or has a non-singleton meet crest. In the former, x is clearly

meet irreducible. For the latter case, suppose x is non-meet irredncible. Tiler1 there is s set

of elements Q for which ng = x. Let A' be the elements of A subsumed by some element,

of Q . It follows that nA' = x. Clearly x E flA. Consider any lower bound b of A. Since b

is also a lower bound of A', b 5 z. Thus x is the greatest lower bound, so A h a a unique

meet .a

CHAPTER 2. EACKGROUND AND MATHEMATICAL PRELIMINARIES 17

2.1.3 Order mappings and lattice completions

Definition 2.8 Let P and Q be ordered sets. A map cp : P -+ Q is

i. order-preserving (or monotone) if x 5 y in P implies cp(x) 5 c p (~) in Q.

ii. an order-embedding if x < y in P if and only if y(x) 5 cp(y) in Q .

iii. an order-isomorphism if it is an order-embedding mapping P onto Q (denoted

as P Q).

Note that if cp is an order-embedding, then cp(P) E P. Also, an order-embedding

is one-to-one, so its inverse is a partial function, and an order-isomorphism is bijective,

so its inverse is a total function. Figure 2.3 shows an ordered set and example order-

preserving and order-embedding mappings. Two order-isomorphic sets must have

isomorphic diagrams.

Figure 2.3: Example order mappings. The first (centre) mapping is order-preserving
and the second (right-hand) mapping is an order-embedding.

Definition 2.9 Let K and L be lattices. A map cp : L -+ K is a homomorphism if 9

is join and meet-preserving. That is, c p (a ~ b) = cp(a)~cp(b) and cp(afl b) = ~ (a) np(b).

A bijective homomorphism is a lattice isomorphism. If cp is one-to-one, then the

sublattice cp(L) of K is isomorphic to L and cp is an embedding ~f L into K. If

cp(I) = I and cp(T) = T, then it is called a (0,l)-homomorphism. Figure 2.4

shows a simple lattice and two homomorphisms, both of which happen to be {0,1)-

homomorphisms. The second is also an order-embedding.

2.1.4 Lattice completions

Since many results depend on a lattice structure, we now describe how to form a

lattice from an arbitrary ordered set using an order-embedding. This is know^ as

lattice completion.

CHAPTER 2. BACKGROUND AND MATHEMATICAL PRELIMINARIES 18

Figure 2.4: Example lattice mappings. Both mappings are {O,l)-homomorphisms a,nd
the second (right-hand) mapping is also order-embedding.

Definition 2.10 Let P be an ordered set and L a complete lattice. I 'cp :P 4 1, is

an order-embedding, then L is a completion of P (via 9) .

For example, the mapping ~ (x) = j.x embeds P into the complete lattice 0(17) .

Other completions include the Boolean lattice completion of Cohn [28]. It is, howcver,

possible to specify a completion of minimal size. The following definition is isomorphic

to the Dedekind-MacNeille completion [38, 771 (which maps into a su blat tice oS O(P))

and the completion described in [2] (which maps into a sublattice of 2'). Recall that

for ordered sets, we define the "fl" operation to return the set of maxirnal lower

bounds (as opposed to a single meet element).

Definition 2.11 Let P be an ordered set and L p E 2P be a lattice deJined as follo,ius:

A E L p i f and only if 3a, b E P for which A = a np b. For A, B E Lp, A SL, N if

and only if Va E A, 3b E B such that a S p b. The minimal lattice completion t,f P is

the order-embedding y : P + Lp , where for a E P, cp(a) = {a).

This lattice completion can be constructed simply by checking each pair of elerrtents

in P. If their meet is not unique, then create a new element that represents this mcet.

Clearly, L p E P if and only if P is already a lattice. We could also define a mininlal

completion in terms of joins, which is isomorphic for finite lattices. As an example,

Figure 2.5 shows a minimal completion of the lattice in Figure 2.2, where puck cloy =
(wol f , a f rican wild dog) and wild dog = { f era1 dog, f oz, wolf , a f ricar~ wild cloy).

A minimal completion can be viewed in two ways. The first is as an abstract

construct that gives formal meaning to meet crests within P (by adding new node3

to stand as proxies for noc-singleton meet crests). In this context, we work with the

original ordered set. When computing meets, we may obtain a non-singleton meet

CHAPTER 2- BACKGROUND AND MATHEMATICAL PRELIMINARIES 19

I Figure 2.5: Minimal completion of the ordered set in Figure 2.2

crest, which requires additional search in the ordered set. This is the approach taken

in [2] and is useful when many lattice operations are performed before output to the

user is required. The second viewpoint, taken in [24, 1021, is to realize the completion.

Working with a lattice leads to simpler encoding algorithms and decoding schemes.

Unfortunately, completion may result in adding an exponential number of elements

to our original set. This problem can be alleviated somewhat using the technique of

lazy completion in [77], where elements representing non-unique meets and joins are

only added as they are computed.

An ordered set P that does not possess a I element is called I-unbounded. For

a lattice L, every meet in L \{ I) exists, except those that result in I. All finite

lattices must be bounded, otherwise they would not be closed under joins and meets.

In many real lattices, however, I is only implicit (e.g. as an absurd element). There

are several ways that we can handle I. First, we can treat it as any other element,

which is simple but may not be very satisfactory, particularly for orders that are wide

or that may change dynamically. A second approach (espoused in [102]) is to treat I

as meet failure. That is, if a n b = I, then the meet operation must fail. We can also

treat it as decode failure - if the code computed for a meet has not been assigned to

any element, then assume it is i. These latter two approaches essentially treat the

lattice as I-unbounded.

Part I:

Taxonomic Encoding

"Discovery consists of looking at the same thing as everyone else

and thinking something difle4.entn

- Albert Szent-Goygyi

Chapter 3

The Evolution of Taxonomic

Encoding

"In rivers, the water you touch is the last of what has passed and

the first of that which comes: so with time present"

- Leonardo da Vinci

Leibniz (in [136]) initiated the quest for representations, or encodings, of lattices and

partial orders that could be used to efficiently compute operations, such as greatest

lower bound and comparability. This quest continues today, and has been an active

area of research in the past few years. In this chapter, we review the developmental

history of taxonomic encodin_-.

3.1 Introduction

Taxonomies appear in a multitude of guises and in many fields. As the size of these

taxonomies increases, there is a growing need to represent them in a form that is

amenable to performing operations, such as meets, efficiently. Encoding taxonomies

in a manner that permits quick execution of such operations has been a goal in logic

programming, and in other areas computer science, for some time now. Although

many encoding schemes have been successful, research in this area is ongoing in the

quest for general purpose, compact, flexible and efficient encoding techniques.

In logic programming. encodicgs have been used to reduce the length of the proofs

needed to deduce some kinds of facts, to facilitate intensional replies and to achieve

partial execution of some queries (e.g. 133, 34, 87]) , and to integrate marry-sorted

logic [4]. In natural language processing, they have been used to permit quick sc-

mantic agreement verifications on queries, to calculate domain intersections through

unification, and for incremental description refinement (e.g. [32, 981). In systemic

linguistics, these techniques have been used for representing and making inferences

from systemic networks [loll.

The evolution of taxonomic encoding has involved interactions among resea~llers

working with both the logic programming and bit-vector approaches. Other tech-

niques are introduced within our formal framework for encoding in the following

chapter. The early work in the logic programming [32, 3-2; and bit-vector ['2] dircc-

tions has been expanded within [24, 961 and between [101, 1021 research lines.

Schemes for encoding taxonomies so that the basic operations can be perforntecl

through unification have been studied, e-g., in 134, 98, 101, 1201- Alternative ap-

proac' zs involfe rewriting the logic programming interpreter or compiler tto extend

unification to facilitate efficient encodings [52], or to encompass type operations di-

rectly 135. Bit-vector encoding techniques can be applied using logical terms, hi,

logical terms may possess structure not easily mimicked with bit-vectors, so the con-

verse may not be as apparent. In general, most schemes can be abstracted from the

particular space used for the codes (e.g. terms or bit-vectors) to analyze the actual

taxonomic information encapsulated in the encoding.

The following sections of this chapter outline early research on encoding. 7'hc

viewpoints are expressed in the form of the original research. In the next chapter,

some of these approaches and other techniques are re-cast in our formal framework.

3.2 Encoding tree-shaped hierarchies

One of the early encoding techniques 133, 341 dealt efficiently with tree-shaped hier-

archies (i-e. hierarchies that do not allow multiple inheritance). It was inspired by

the simple observation that by representing a type t as a term &il& ... kt,, where we

C'EfAPrf'ER 3. T H E E1-*'OLtTIOi'L' OF TAXONOMIC ENCODING

assume that the relationships t c tl, tl c tS, . . . , tk-1 c tk hold, we can also represent

partially known types by similar terms in which a variable stands for the unknown se-

quence of set inclusions, and then check for operations, such as set inclusion, through

unification. By extending Horn-clause terms, a simple representation of taxonomic

information is obtained. Essentially, a type in a such a hierarchy can be represented

as the (unique) path from the root node to the type. As meets are always I in a

tree-shaped hierarch_v, we are only concerned with joins and subsumption checking.

As an example, the elements chameleon and dog in Figure 3.1 can be encoded as

the paths [animal, reptile, chameleon] and [animal, mammal, dog], respectively.

animal

Figure 3.1: A tree-shaped hierarchy

Checking subsumption in this representation can be done by checking if the path

of the subsuming label is a prefix of the path of the subsumed label. So, for exam-

ple, the path of mammal, [animal, rnammaq, is a prefix of that of dog, as mammal

subsumes dog. By representing the paths as difference lists1, this operation can be

perforr7ed with a single unification. Thus, mammal and dog would actually be rep-

resented by [animal, mamma:JXf\X and [animal, mammal, dog(YJ \Y, respectively.

]If this unification fails. then the two elements are incompatible. The join operation

can be achieved by simply retaining the longest common prefix of the two paths.

Thus, dog U c ~ t will find the longest common prefix of [animal, mammal, dog] and

[animal, mammal. cat] which is [animal, mammal]. Decoding is done by finding the

Iabel with this path. which is mammal. Since each element has no more than one

parent, joins will dways be unique,

'A difference list is a list representation that allows for appends to execute in one unification
step. To achieve this, a list is viewed as the difference between two other lists. For example, the
list [l. 2,3] can be viewed as the diierence between [I, 2,3,4,5] and [4,5]. By using a variable as the
second Iist fe-g. representing [1,2,3] as [1,2,31X]\X), we can append any l i t to it simply by giving
a value to X ahrough unification.

With the difference list representation of paths, we can express incomyletc types.

That is, we store a path from the root to the most specific type known, with tjlw

possibility of extending this path as more information is obtairled. For esanqdc,

if we all know about an object is that it is a mammal, the code for manantal,

[animal, mammaEIX]\X, can be extended as more information is discovered.

This technique permits us to formulate intensional replies, to perform quick se-

mantic agreement verifications on natural 1a.nguage queries and t,o achieve partial ex-

ecution of some queries. For example, we can state that all reptiles crawl: crawl(A E

[animal, reptilelX]\X). Now we can ask which animals crawl (e.g. ?- animal(A) ,
c r a w l (A) .). This will quickly reply with reptile. If we desire further information, we

can backtrack to find more specific elements in our hierarchy which crawl.

This approach has the advantage of being simpie, efficient and entirely within the

framework of Prolog terms. However, limiting taxonomies to being trees imposes a

severe restriction on the types of inheritance and operations that can be performed.

3.3 Extending trees to graphs

Extending the above method to deal with general partial orders, Massicot te [96] par-

titions the nodes into two sets: nodes with a unique path from t'he root (deteminislic

nodes) aod nodes multiple paths from the root (non-deterministic nodes). Non-

deterministic nodes are a result of one or more ankestors having multiple inheritance.

In essence, the maximal tree portion of the hierarchy (the tree prefix), starting

at the root, is treated in the same way as above. Thus, a deterministic node is

represented by a path, expressed as a difference list, from the root to the node. T?or a

nondeterministic node, the paths from the closest ancestors with multiple in heri tancc

are explicitlyrepresented, and the paths from the root to these ancestors are implicitly

represented (through a predicate call associated with each such path). If a node has

multiple parents, then multiple paths are associated with it, one from each clovest

ancestor with multiple inheritance, or from the root if no such ancestors exist.

To demonstrate, Figure 3.2 shows a hierarchy in which we have emphasized the t rcc

prefix. The deterministic nodes are {T, persun, adult, child, butter f 12, laruu) and the

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING 25

non-deterministic nodes are {teenager, caterpillar, I). To represent adult requires

only storing the path [T,person, adult], but to store teenager requires the paths

[adult, teenager] and [child, teenager]. To find all paths from T to teenager requires

appending the path [adult,teenager] to each path from T to adult and appending

[child, teenager] to each path from T to child. This can be achieved via unification;

the recursive nature of the implicit paths ensures that all paths will be found.
T

I
Figure 3.2: Taxonomy showing tree prefix

To test whether a label, el, subsumes another label, e ~ , now requires checking if

there exists a path from the root to el which is a prefix of some path from the root

to ez. If both el and ez are deterministic nodes, then this operation can be achieved

in one unification. If either one is a non-deterministic node, this will require one

unification for each possibility in the worst case. Provided the taxonomy is a join

semi-lattice, joins may also be formulated in a recursive manner. There is, however,

no simple way to use this approach for meets, or for finding join crests in non-lattices.

This approach enjoys the simplicity of Dahl's encoding, and it also remains within

the scope of Prolog. However, it cannot tolerate many multiple inheritances before

its recursive nature will limit its efficiency.

3.4 Characterizing term encodable hierarchies

The technique of using unification to perform hierarchical operations can be gener-

alized to use logical terms as codes, rather than difference lists. We first note that

the approach of [34] for encoding tree-shaped hierarchies, can also be achieved by

representing the partial paths as nested, unary function symbols (as pointed out in

CHAPTER 3. THE EVOL UI;ION OF Ti4XOXOMfC ENCODING 26

[loll). So, for example, the taxonomy in Figure 3.1 can be represented usirlg ternts

as shown in Figure 3.3. Checking subsumption still requires one unif cat,ion. If the

unification succeeds, then the term that was further instantiated subsumes thc t m n ~

that was not. If the unification fails, then the two elements are incompatible. Joins

can be achieved through anti-unification, the dual of unification. For example, to

compute the join dog U cat , we anti-unify the terms a n i m a l (n L a m n , nE(dog(-))) and

animal(rnammal(cat(-))), resulting in animal(rnarnmal(-)) which is the term asso-

ciated with m a m m a l .

Figure 3.3: Logical term encoding of a tree-shaped hierarchy

With this scheme, it is possible to utilize functions with more than one argurnerlt.

The technique in [21] is direct extension of [33] that allows a set of tree shaped hi-

erarchies, leading to multi-argument terms where a subterm has one argument, per

tree rooted at that node. This can be taken even further to encode more general tax-

onomies, by permitting logical variables. As an example, consider the term e~icodi rig

shown in Figure 3.4 of our example hierarchy from Figure 3.2.

L-L)

I
Figure 3.4: Encoding of type hierarchy in Figure 3.2

Mellish (in [102]), provides a characterization of lower semi-lattice taxonornics

(i-e. unique meets exist) for which a particular type of term encoding exists. Such

encodings are targeted at determining meets and checking subsumption. Essentially,

CHAPTER 3. THE EVOL UTION OF TAXONOMIC ENCODING 2 7

a term encoding, in Mellish's sense, requires that the meet of two elements can be

determined by unifying the terms associated with these elemects, If the unification

fails, then the result is bottom. Otherwise, the resulting term is exactly the term

associated with the unique meet element. This is defined more formally as follows:

Definition 3.1 A hierarchy H = (C , 5) is term encodable i f i for some t e r m space

G, there is a mapping T : C-+G satisfying:
1. If r (e l) = r(e2) then el = e2

2. T(L) = L

*3. r(el n e2) = r(el) fl 7-(e2)
where el and ez are elements of C , and fl represents the t e r m unification operation.

The first condition ensures that the mapping is invertible, which is necessary for

decoding if we are to support meets. The third condition requires that T not only

preserves subsumption, but also that the unification of the terms of two elements is

exactly the term of the meet of those elements. The second condition guarantees that

if this meet is I, the unification fails. Therefore, if we can find a term encoding for

our taxonomy, meets can be determined using one unification step.

Although no algorithm for constructing term encodings is given, Mellish does

categorize taxonomies according to the complexity of the types of terms required for

such encodings. The simplest encodings require only tree terms (i.e. terms in which

all variables are singletons). Such terms can always be drawn as trees. At the next

level, flat terms are studied (i.e. terms in which variables may corefer, but the depth

is restricted to one). Flat terms can then be generalized to the set of all terms. Going

beyond terms leads us to the use of rational trees in encodings [30].

Unfortunately, determining which type of terms are required for encoding a given

taxonomy appears to be difficult. Also, constructing encodings that employ terms

more complex than simple tree terms may be non-trivial, and limits the possibility

of exploiting parallelism in unification. Even some simple taxonomies turn out to

be non-tree term encodable, according to the above definition of encodability. We

provide exarriples of this in the next chapter. Furthermore, a change to the taxonomy

may require recomputation of the entire, or a significant portion of, the encoding.

In 11041, Mellish extends his characterization to taxonomies encodable by graphs.

CHAPTER 3. THE E W L UTION OF T.AXOIVOA,l/C EhrCODING

3.5 Bit-vector encodings

A number of researchers have explored the possibility of encoding taxonomies using

bit-vectors, using the operations of logical (bit-wise) AND and OR t,o compute ~ncets

and joins. The founding research on using bit-vectors was by Ai't-kaci et id. [2] for

use in the logic programming language LIFE 141. The definition of encoding used

assumes that the taxonomy is a lower semi-lattice. In order to achieve this, a rnini~lal

semi-lattice completion is presented. It is important to note that this semi-lattice

construction is not actually computed, but rather is used to provide a sernat~t~ics for

computing meets that are not unique. This contrasts with the approaches by Mellish,

above, and Caseau, below, which actually require the taxonomy to be a lower setni-

lattice. Performing this construction may be exponential in the worst-case.

Transitive closure. A simple bit-vector encoding, called transit.ive closwe, ca,tl be

achieved by associating one position in the hit-string with each element iu ;z tax-

onomy (except I). Let us call e l emen t ji) the element associated with posi ti011 2

in this bit-vector. For each element e, position i is a 1 if e subsumes e l emer~ l (2)

and a 0 otherwise. Thus, each code for an element incorporates all of the lower

bounds of that element. To demonstrate, consider the taxonorny of Figure 3.2.

Table 3.1 associates one bit with each element, and Figure 3.5 shows the triln-

sitive closure of the table according to subsumption (in a hot, tom-up tnanncr).

Table 3.1: Assigning bits to elements from Figure 3.2
T person butterfly larva adult child teenager caterpillar '

T 1 0 0 0 0 0 0 0
person 0 1 0 0 0 0 0 0
butterfly 0 0 1 0 0 0 0 0
larva 0 0 0 1 0 0 0 0

1

I adult 0 0 0 0 1 0 0 0 I
child 0 0 0 0 0 1 0 0
teenager 0 0 0 0 0 0 1 0
caterpillar 0 0 0 0 0 0 0 1

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING

Figure 3.5: Bottom-up bit-vector encoding of taxonomy in Figure 3.2

Both subsumption checking and meet operations can be performed using logical

AND operations. That is, el 5 e2 if and only if r (e l) AND r (e 2) = r (e l) . Also,

e l fl e2 is computed by 7 (e l) AND r (e2) . If the meet is unique, this will be the

code of that element. If not, this code will represent the crown and additional

decoding must be done to extract the elements comprising this crown.

Compact encoding. The above approach requires one bit for every element except

I. Thus, a taxonomy with n elements requi~es n - 1 bits per code. By analyzing

the structure of the taxonomy, it is possible to reduce this number. When an

element has exactly one child, we must use an additional bit to distinguish its

code from that of its child. But when an element has multiple children, it may

be possible to encode it simply using the OR of the codes of its children. The

compact encoding scheme optimistically assigns codes in such a way, and if this

leads to two incomparable elements having comparable codes, then additional

bits are added.. Thus, while transitive closure indiscriminately uses one bit per

element, compact encoding adds bits only as necessary, saving space on elements

that do not require a bit to maintain the encoding homomorphism. Subsumption

checking and meets are computed using logical AND, as before.

Consider our example taxonomy. We start with 0 for I. Then we assign 1

to teenager and 10 to caterpillar. Next adult is allotted 101 and child 1001.

B u t t e r f l y is given 10010 and larva 100010. Then person, since it has two

children is assigned 101 AND 1001 = 1101. Finally T, with three children, gets

1101 AND 10010 AND 100010 = 111111. In this simple example, we reduce the

CHAPTER 3. THE EVOLUTION O F TAXONOMIC ENCODING

code size from 8 bits to 6 bits. This compact encoding is shown in Figure 3.6.

Figure 3.6: Compact bit-vector encoding of taxonomy in Figure 3.2

Which elements require a bit? For a bottom-up compact encoding, it is precisely

the join irreducible elements. If this scheme was applied in a top-down man-

ner, it would be the meet irreducible elements. Therefore, unlike the tra,nsit,ive

closure approach, a compact encoding may require a different number of bits

depending on whether it is applied in a top-down or a bot tom-up fashion.

Illodulation Many objects naturally group themselves into relatively disjoint, densc

groups with few links between groups. This can be exploited by treating these

groups, or modules, as a single unit in the taxonomy [2]. Then the rnodificd

taxonomy (with one module node replacing all the elements of the module) can

be encoded separately from the elements in the module. Tb do this, the srlodulc

must itself have the form of a taxonomy. That is, modules have a top and

a bottom element, and every path from outside to lower elements inside the

module goes through the top node of the module, and every path from inside to

lower elements outside the module goes through the bottom node of the module.

Since modules are sub-taxonomies, this process can continue recursively, until

each module contains a small number of elements. The difficulty lies in finding

modules. The heuristic algorithm provided in [2] attempts to rnodulate a given

taxonomy, but is not guaranteed to find a maximal modulation. A fast (linear)

algorithm for modulation has recently been developed [76].

An element may now reside within a module, which is itself within a module

and so on. In [a], the code of such an element is the juxtaposition of the codes

CHAPTER 3. THE EVOLUTION OF TAXONOMIC ENCODING

of the containing modcles (starting with the maximal containing module) and

the code of the element, which was calculated in the least containing module.

The operations of subsumption checking and meet are complicated by modula-

tion and will be described only for one level of modulation. To check if element

el subsumes element e2, we must first check which modules they are in. If they

reside in the same module, we simply check if the code for el subsumes the

code for e2, as before. If they are in different modules, we check if the code

for the module containing el subsumes the code for the module containing e2.

Otherwise el does not subsume e2.

To determine the rneet of el and e2 involves a similar process. If they are in

the same module, then simply take the AND of their codes. If el subsumes e2,

then the meet is e2. If e2 subsumes el, then the meet is el. Otherwise, take

the logical AND of the containing module codes to obtain the meet module and

the meet element is the topmost element of this module. For non-unique meets,

crowns are found, as in the compact encoding method above.

To illustrate, we add an insect element above butterfly and larva in our example

taxonomy. Now, the portion of the hierarchy dealing with people can form one

module, and the portion dealing with insects can form another. These modules

can then be encoded using the compact encoding. This modified taxonomy and

its modulated encoding are shown in Figure 3.7, where the module codes have

been separated fram the element codes by a colon.

Figure 3.7: A modulated taxonomy and its encoding

CHAPTER 3. THE EVOLUTION OF TAX'ONOiVIfC ENCODING 3%

To find the meet adult fl child, we AND the element codes 01 AND 10, aud

prepend the module code 01 to get 01:00, which is the code of tecnngw. To

find adult fl butterfly, we AND the module codes 01 AND 10 to get 00, which

is the module code of I.

These operations can be extended in an obvious way for further levels of mod-

ulation. Since each level of modulation adds one more step in the process and

since there can be at most logN levels of modulation for a ta,xonomy of N ele-

ments, these operations take at most logN steps. So, although modulation has

the potential to reduce the size of the codes substantially, it also increases the

complexity of cdmputing operations. The assump tion is that most operations

will be within, not between, modules, so that only one step is required.

Also, the complexity of determining a modulated encoding is substantial. Mod-

ifications to the taxonomy can be either more or less costly than for non-

modulated tax on omit?^. Changes within a module restrict the extent of changes

to within that module. If, however, one or more modules are breached (e g a

link is added that enters or leaves a module at a mid-point), then we may have

to re-modulate a significant portion of the hierarchy.

In Chapter 5, we formally deal with and extend modulation.

Encoding for subsumption only If the only operation required is subsumption

checking, then it may be possible to reduce the length of codes further, without

resorting to modulation. In this situation no decoding is necessary and the

codes can be such that neither meets nor joins can be determined, as long as

the subsumption relation is maintained.

One such approach has been developed for the Laure object-oriented program-

ming language [24]. This scheme modifies a top-down version of cornpact encod-

ing, but is restricted to taxonomies that are lattices. The algorithm basically

assigns a bit position, or gene, to each meet irreducible element. Since the

taxonomy is a lattice, these are the elements with a unique parent. The code

for an element is the union of the genes (i.e. logical OR) of its ancestors, plus

CHAPTER 3. THE E W L U T f O N OF T A X O N O P C ENCODING 33

its gene, if it is meet irreducible. Since we are not concerned with computing

meets or joins, it is possible to assign the same gene for some elements, provided

this doesn't violate the subsumption relation. Caseau7s algorithm performs this

incrementally, in a top-down manner. As each meet irreducible element is pro-

cessed, an attempt is made to assign a gene already in use. For other elements,

a check is made to see if the union of the parent genes violates subsumption. If

so, mutations of ancestral genes are performed until subsumption is respected.

Using this algorithm, we encode the taxonomy in Figure 3.7 as shown in Figure

3.8. In the taxonomy at the left, we display the genes assigned to each meet

irreducible element. As can be seen the adult and butterfly elements share a

gene, as do child and larva. This reduces the code size to 4 bits, as achieved by

modulation. Checking for subsumption requires only one logical AND operation:

element el subsumes el if and only if r (e l) A N D r (e z) = r (e l) . We cannot,

however, compute meets or joins due to the polymorphic character of genes.

Figure 3.8: A subsumption only encoding

3.6 Discussion

In this chapter, we have attempted to describe the evolution of taxonomic encoding

in a general and intuitive manner. Where possible, we described techniques from

the viewpoint of the original research. Some of the techniques covered here, and

additional techniques, are described in the following chapter, where the emphasis is

on characterizing techniques using our formal framework.

Chapter 4

The Foundations of Taxonomic

Encoding

"Everything is simpler than you think and at the same time

more complex than you imagine"

- Goethe

Most of the research on encoding has focused on algorithmic and implemcrtiational

details of encoding, and has largely ignored or left unstated the informational content,

of the technique. In this chapter, we explore a fundamental structure underlying

encoding. By characterizing encoding using spanning sets we are able to provide a

concise framework in which all schemes can be compared, regardless of the actual

implementation. This analysis permits a separation of the informational content of

an encoding scheme from the implementational details, and allows us to see how both

of these aspects affect time and space requirements. This exploration expands and

formalizes our introduction of spanning sets for encoding that appeared in a short

workshop paper [48].

In addition to the theoretical appeal of our framework, we also develop several

important results. We show a correspondence among several existing encoding tech-

niques (sections 4.5 and 4.6). We prove two NP-Hardness results, which demonstrate

limitations to encoding algorithms and reveal avenues for approximat ion algorithms

(sections 4.7 and 4.8). Our abstraction also exposes a more comprehensive view of

CHAPTER 4. THE FOUNDATIOW OF TAXONOMIC ENCODING 35

some existing techniques, indicating directions for further research. We discuss in

more detail in section 4.10 our contributions to taxonomic encoding as well as specific

directions for future research.

In the following section, we motivate and define taxonomic encoding. We rely heav-

ily on the lattice theory concepts introduced in section 2.1, including our departures

from standard theory. In section 4.2 we characterize encoding as order-embedding

mappings induced by spanning sets. Since the result of these mappings is a set,

taxonomic operations reduce to set operations, independent of the implementation.

Section 4.3 introduces a variety of implementations of order subsets, specifically for

the implementation of spanning sets and section 4.4 describes how we can permit

portions of a taxonomy to be infinite while still benefiting from encoding techniques.

Using this framework, we analyze the information content of various spanning set

types and develop formal techniques to reduce the representation cost of the span-

ning set mapping. Through much of this analysis, we introduce existing encoding

techniques, characterize them in terms of our spanning set framework, and then ab-

stract general properties and limitations of such spanning sets. We first characterize

some simple encodings in terms of spanning sets of principal down-sets in section 4.5.

This includes the transitive closure and compact encodings of [2]. We then show a

correspondence between principal down-sets and prime zip-sets, providing a direct link

to the approach of [77]. Section 4.7 explores and characterizes spanning sets that pre-

serve only subsumption, aid we prove that determining a minimal such spanning set

is NP-Hard. The approach of [24] is shown to be an approximation of the optimum.

We next consider how decomposing a spanning set can achieve more concise results,

as in the proposals of [97] and [102]. We also prove that, for certain forms of decom-

position, finding the optimal is NP-Hard. Section 4.9 views partial orders as systems

of constraints, and encodings as preserving certain properties by representing a subset

of these constraints. Using coreference, more expressive encodings are possible. Fi-

ndly, we discuss areas for future research, including expanding the theory presented,

exploring implementationd issues and designing approximation algorithms.

4.1 Settingthe Stage

The general problem we wish to address is as follows: given an ordered s r t P, how

do we represent P to provide fast con~putation of subsumptiom, and possibly tiwcts

and/or joins? We focus on encoding finite ordered sets, although we later tlcscribc

how these can be augmented with certain forms of infinite orders. Sornc ordercd

sets, such as families of subsets ordered by set inclusion, sets of i~itegtm orricmd

by divisibility (i.e. x 5 y if and only if z is a factor of y), and loglcal term spaces

ordered by term instantiation, have in common the simplicity of element, comparisons;

J~termining if x 5 y can be done locally (i.e. using only information dirwtly r t~la td

to x and y) and efficiently. This is not true, however, of many others, s:ich as sets

of graphs ordered by subgraph isomorphism and multiple inheritance hierarchics in

object-oriented systems. In the former case, local information can be uscd to c h c ~ k

subsumption, but this is costly- In the latter case, only the intransitive, irrefkxive

portion of the partial order is maintained (i.e. the transitive reductiori), so there is no

local information to determine if s 5 y. It is in contexts such as these that cncoclirig

is beneficial.

We will assume that we are given an ordered set P as a graph G' = (I", E) ,

where E is either the transitive closure (i.e, (x, y) E E if and only if rc 5 y) o r

the transitive reduction of P. We need a way to implement P that is both spwc

efficient and facilitates fast computation of operations. Directly implernentirig P iisirig

standard graph representation techniques is straightforward (where (I' = (I1 , El) ; two

common techniques are adjacency matrices, which take O(1 P 1 2) space, and ltdjacc~l~cyj

lists, which take O(IEllog(PI + IY I) space. If G is the transitive reduction graph of

P, then adjacency list representation corresponds to maintaining the list of parents

(or children) for each element. Subsumption, meets and joins can he determined irr

O(!E(j time for either implementation. If G' is the transitive cIosure graph of P, t h e n

subsumption can he computed in constant time for adjacency matrices, and O(I PI)

time for adjacency iists. In both cases, meets and joins take O([P1) time.

Before defining encoding, we recall our generalizations of meet and join: for a

subset Q of an ordered set P, we caIl the set of minimal upper bounds of dL) thc join

M A Y 'TER 4. THE FO bT~YDATIOiVS OF TAXONOMIC ENCODING 3 7

base and the maximal lower bounds of Q the meet crest1. A join (meet) is simply a

singleton join base (meet crest). We use the same notation for joins and join bases

(and meets and meet crests). Thus, in Figure 2.2, f o z U wolf = {canine, wi ld) and

wild 17 social = (wo l f : african wild dog}, whereas dog n wild = {feral dog).

Definition 4.1 Let P and Q be ordered sets, and T an order mapping T : P -+ Q .

Then T is

a (siihsumptionj encoding for P if T is an order-embedding (i.e. x S p y if and

0.19 if.(.) SQ "-(Y))-
e a meet encoding for P i f T is meet-crest-preserving: if a , b E P then a np b =

--I I i I i a) n Q ~ (b)) , f -[where r-' is the irtverse o f r 2 .

a join encoding for P i f T is join-base-preserving: i f a, b E P then a Up b =

T- ' (~ (a) UQ ~ (b)) .

Although LQ defines a partial order on Q, determining if x <Q y may be accom-

plished in a number of ways: as we discuss in section 4.3. The intent of an encoding is

that taxonomic operations in Q can be performed more efficiently than in P. There

are several forms of encoding that have appeared in the literature; the trademark

of encoding is the pre-computation of the encoding function r and the association

with each element x E P the value, or code, ~ (x) . Thus encoding trades the cost of

explicitf y storing T for improved time to compute taxonomic operations.

In most schemes: the target space Q has the property that elements are inde-

pendent. That is? the order relation is somehow encoded in the elements themselves.

Examples of this include bit-vectors and Iagical terms. In the tree encoding scheme of

[78], however, Q is a tree data structure, and T maps elements of P to nodes of the

tree. Operations in P are translated to operations on this data structure.

'The set of upper bounds (lower bounds) is an upset (down-set). The join base (meet crest) is
precisely the set offactors for this set - its base (crest). Join bases and meet crests are anti-chains.

'In general, ~ (a) n9 r (b) is a set of elements in Q, so T-' must map this set back to the meet
Crest io p. %---A- - ,,.,,ing on the ;est;-;&;-e of Q, however, 7-' is normally treated in one of two ways:

(i) If Q is a lattice, then r (a) fig r t b) reduces to a single element of Q. In this case, Q embeds a
minimal completion of P, and the inverse T-' must map back to the meet crest in P; (ii) If T is an
order isomorphism (i-e. it maps P onto Q), then r (a) n9 r (b) reduces to the set of elements in Q
car~apsmcfiag m the meet crest in P. Here, 7-' must map each element in this set back to P. Note
that if P and Q are both lattices, then T must be meet-preserving in the lattice-theoretic sense.

In this chapter, it is our goal to develop a unified framework that separates tdhc

content (semantics) of the encoding map from its implementation (syntax). We do this

using a structure called a spanning set, which we introduce in section 4.2. Through

this sepsration we provide a common ground on which different encoding schemes can

be compared, analyze the effect on time and space of different implementations, and

study the semantic content that encodings must possess in order to preserve certain

properties of an ordered set. We also strive to provide a principled basis on which

to select or design encoding algorithms for particular taxonomic applications, and to

expose some of the limitations and restrictions to encoding.

There are several aspects by which we can characterize encoding algorithms:

0 The taxonomic operations supported.

0 The time and space complexity of the encoding algorithm.

0 The space requirements of resulting encodings.

0 The time complexity of performing operations using resulting encodings.

0 The complexity of modifying an encoding.

0 The complexity of decoding (i.e. computing T-I).

We show how various encoding techniques and implementations affect these char-

acteristics. Since the focus and requirements of particular taxonomic applications may

differ, it is apparent that there may be no best encoding algorithm to satisfy all nccds,

Rather, the designer of an encoding algorithm must take into account the needs of

the application, and the form of the taxonomies to encode, in order to deterrrli~le thc

relative importance of the above characteristics. Using our framework, appropriate

techniques and implementations can be selected, Ieading to existing algorithms, or

the need to design new algorithms.

Our framework would be improved with empirical results that den~onstrate t hc

behaviour of various encoding algorithms with respect to the above characteristics.

In order to be useful, however, such testing would have to be extensive and this is

beyond the scope of this thesis. Our research, however, provides an organimtiorml

basis with which such testing could be carried out. Some empirical results on thc

space efficiency of different encoding algorithms is available in [43].

CHAPTER 4. THE FOUNDATIONS OF T A X O N O M K ENCODING

4.2 Spanning Sets

Now we present spanning sets as a basis for encoding, generalized from [102].

Definition 4.2 Let P be an ordered set. A family of subsets S of P is called a

spanning set if the function C : P -t 2' defined by C(s) = {s E SIX E s) is one-to-

one.

A spanning set S is ordered under set inclusion (where, for s l , s2 E S, sl Ls s2 if

and only if sl E s2), and the function C is an order mapping, called the component

mapping (where elements of S can be regarded as components from which P is con-

structed). In the next subsection we describe some structural restrictions that enable

us to use spanning sets to perform taxonomic operations locally. Encoding can then

be viewed as computing a spanning set that preserves the desired properties of an or-

der P, and tken efficiently representing the component mapping. As an example, the

figure below shows a simple lattice and two spanning sets: Sl = {sl = {a, I), s2 =

{b, L),s3 = {c, I)), and Sz = {sl = { a , b, c), s2 = { b , I), s3 = {T, b, c)). It can

easiiy be verified that component mappings for both of these are one-to-one. For Sl,

we have C(a) = {sl), C(T) = 0 and C(1) = {sl, sz, s3).

A Sl

s1 3

a+ 1 s2s1+

Figure 4.1: Diamon two spanning sets

In 1121, a variation of spanning sets was studied to produce a number of funda-

mental duality results. It is also worth noting the similarity between spanning sets

and reduced or minimal bases in Wille's concept lattices [155], where lattice elements

and spanning set components correspond to objects and attributes, respectively, in

Wille's terminology.

We are primarily concerned with spanning sets of down-sets (and up-sets), where

S O(P) and C : P -t 2•‹(P). What makes these interesting components is that they

encapsulate much of the order information. In Chapter 5, we introduce the concept.

of a spanning set of order intervals.

We hypothesize that all encodings can be characterized as computing a spanniug

set of down-sets, up-sets or intervals, possibly augmented with constraints, axel i ~ n -

plementing its associated component mapping. Rat her than trying to establish this

claim, we portray all the encodings we are aware of by using spanning sets. Thesc

portrayals are supported by a number of formal results. We later discuss augmenting

spanning sets with constraints (such as coreference constraints as provided by logical

variables) (section 4.9) and spanning sets of intervals (Chapter 5). Viewing encoding

in terms of spanning sets allows us to separate the implementation details of arly pau-

ticular encoding algorithm from the structural properties of the spanning set being

constructed. The spanning set embodies the content (semantics) of an encoding and

the implement ation embodies the form (syntax).

4.2.1 Taxonomic operat ions using spanning sets

We now demonstrate how spanning sets that satisfy certain restrictions reduce taxo-

nomic operations to set operations.

Definition 4.3 A spanning set S on an ordered set P preserves subsumption if either

(i) for all a , b E P, a 5 b if and only if C(a) C C(b), or (ii) for all a , b E P, a 5 6 if

and only if C(a) _> C(b).

Equivalently, this requires the component mapping to be an order-embedding.

Although order-preserving mappings maintain comparability, we need to also preserve

1.e. a incomparability. We say that subsumption is preserved with subsets i n case (i) ('

is subsumed by b if and only if C(a) is a subset of C(b)) and with supersets in case (ii).

If S is a spanning set of down-sets, then the component mapping is monotonically

increasing as we descend the order (since if x E J.Q then any descendant of s is also in

LQ). In this case, subsurnption may only be preserved with supersets. Conversely, if

S preserves subsumption with supersets, then S must be a spanning set of down-sets.

Thus, not all spanning sets preserve subsumption. In the above example, Sz preserves

CHAPTER 4. THE FO CTNDkTlONS OF TAXONOMIC ENCODING 41

subsumption (with supersets) but not S2, since C(a) = {sl) C {s1,s3) = C(C) yet

a1 lc.

Definition 4.4 A spanning set S on a lattice L preserves meets if either (i) for all

a, b E L, C(a fl b) = C(a) n C(b), or (ii) for all a, b E L, C(a n b) = C(a) U C(b). S

preserves joins if either (i) for all a , b E L, C(a LI b) = C(a) n C(b), or (ii) for all

a, b E L, C(a U b) = C(a) U C(b)3.

If a spanning set preserves meets or joins, then it preserves subsumption, because

a 5 b if and only if a n b = a and a U b = b. Also, a spanning set of down-sets can pre-

serve joins only with intersection and meets only with union. In general, if a spanning

set S preserves subsumption with supersets (i.e. S is a spanning set of down-sets)

then C(a) u C(b) C(a l l b) and C(a U b) E C(a) n C(b). Unfortunately, it is not always

possible for a spanning set to preserve both meets and joins (unless the ordered set

is distributive4, as discussed in section 4.2.2). Consider again the non-distributive

ordered set in Figure 4.1. The spanning set {la, l b , &, J{a, c)) preserves subsump-

tion, but not joins or meets, since a n c = I, but C(a) U C(c) = {la, LC, l{a, c)) #
{la, 56, Jc, J{a, c)) = C(L). Also, a Uc = T, but C(a) nC(c) = {l{a, c)) # 8 = C(T).

The spanning set {la, Jb, lc) preserves joins with intersection but not meets, while

(1 {a, b) , l{b, c), J{b, c)) preserves meets with union but not joins. Suppose we have

a spanning set S that preserves joins with intersection. Since the join of any pair of

a, b, c is T, the intersection of any pair of their component mappings must be C(T).

Further, each must be in at least one component different from the others. But then

the union of any pair cannot possibly be C(L).

Theorem 4.1 Spanning Set Duality Theorem. Let L be a lattice and S a span-

ning set of down-sets for L. Let 3 be the set of up-sets defined as 3 = {L\JQ I JQ E

S) . Then (i) S preserves subsumption with supersets if and only if 3 preserves sub-

sgmption with subsets and (ii) S preserves joins with intersection if and only if 3
preserves joins with anion.

3To generalize this definition to an ordered set P, we say S preserves meet crests if either (i) for
all a , b E P , a n b = C-'(C(a) n C(b)), or (ii) for all a , b E L, a fl b = CV1(C(a) U C(b)).

4A lattice L is distribdive if tla, b, c E L, a n (b LI c) = (a n b) u (a n c).

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 42

Proof: Consider the component mapping for 3: c(z) = (L\IQ E 31%~ E L\jQ). But

x E L\LQ i f and only if x 6 I & , so is isomorphic to the converse mapping of C: Cc(:e) =

UQ E SIX 4 iQ1.
(i) Suppose S preserves subsumption with supersets. Consider aay two elemeuts, a, b E

L . The converse mapping maps these elements as follows: Cc(a) = S\C(a) and CC(b) =

S\C(b). If a < b then C (a) _> C (b) , so clearly C C (a) 5 CC(b) . If a $ b then C (a) 2 C (b) , and

so CC(a) CC(b) . The case when 3 preserves subsumption with subsets is similarly proved.

(i i) Consider the join of any two elements a, b E L. If S preserves joins with intersection

then C (a) n C (b) = C (a U b) . The converse mapping maps these as: C C (a) = S\C(a),

Cc(b) = S\C(b) and Cc(a LI b) = S\(C(a) n C (b)) = S\C(a) U S\C(b) = C C (a) U Cc(b). Now,

if 3 preserves joins with union then C c (a) U Cc(b) = Cc(a U b). The component mapping

for S maps these as: C (a) = S\Cc(a), C (b) = S\CC(b) and C (a U b) = S\(Cc(a) u C c (b)) =

S\Cc(a) n S\Cc(b) = C (a) n C(b).o

This theorem demonstrates that for every spanning set of down-sets that preserves

joins with intersection, there is a spanning set of up-sets that preserves joins with

union. Since this construction is invertible, the converse is also true. Together with

the dual, this shows we can characterize all spanning sets that preserve joins or meets

with intersection or union by analyzing only those that preserve joins with intersect ion.

We require an efficient means to evaluate the component mapping C. A key feature

of encoding is that C is calculated a priori, or incrementally, and sttored in a form

amenable to efficient computation. This amousts to associating with each element x

of the taxonomy the set representing C(tc), as we describe in section 4.3.

4.2.2 Representation theory and encoding

Representation theory attempts to identify a small suborder Q of a lattice L from

which the entire lattice can be constructed easily and uniquely. In 1381, it is shown

that this can be done satisfactorily in the finite case for distributive lattices, In this

case t is uniquely identified by its set of join (or meet) irreducible elements, where

Q = g (L) and L E O(J(L)) . The general case for lattices and partial orders is not

so amenable to such an analysis.

CHAPTER 4. THE FOUIVDATIONS OF TAXONOMIC' ENCODING 43

Although encoding can benefit from the results of representation theory, there are

a number of important differences. First, although we associate with an ordered set

P a small set (i.e. the spanning set), we want a subset S 5 2', not Q C P. Second,

we are interested in representing P in order to facilitate efficient computation. To

this end, we associate a code with each element of P. This contrasts with the above

goal of uniquely representing P by the set Q. We do not want to reconstruct P, but

rather we wish to associate with it a spanning set S from which codes can be formed.

There are, however, some results from representation theory that are fundamen-

tal to encoding, particularly the identification of join and meet irreducible elements

as basic elements from which all other elements in an ordered set can be defined.

This conclusion is also found in section 4.5, but doesn't require the ordered set to

be a distributive lattice (as in Birkhoff's representation theorem [38]), so we can

view spanning sets as partial representations of ordered sets (only preserving certain

properties such as meets).

Since we are given an arbitrary ordered set P, we may not have the luxury to

ensure that certain properties are satisfied (e.g. that P is a lattice or is distributive)

- maintaining certain properties may entail adding an inordinate number of elements

to P (e.g. the minimal lattice completion for a standard example S, [144], which

has 272 elements, contains 2" elements [38]). If we can be sure that our set observes

certain properties, or that the addition of a small (or bounded) number of elements

can achieve these properties, then our encoding scheme can utilize this structure

to generate more concise and/or flexible codes. For example, if we are guaranteed to

have a distributive lattice, then we can specify spanning sets that preserve both meets

and joins, although in genera1 this is not possible [153]. In fact, every distributive

lattice is isomorphic to a lattice of sets 1381 (i.e. where meets and joins are computed

by intersections and unions, respectively). This suggests a fundamental connection

between representation theory and spanning sets. For a- detailed analysis of properties

of distributive and simplicial lattices related to encoding see [78]. In our presentation,

we focus on the problem of encoding genera1 partial orders and lattices and make no

further structural assumptions regarding the given ordered set, although our analysis

should apply to techniques designed for more constrained orders.

CHAPTER 4. THE FO UhTDATIONS OF TAXONOMIC EATCODIN G -14

4.3 Efficient Implementat ions of Component Map-

In this section we describe some approaches to implementing subsets of ordered sets,

particularly down-sets and up-sets, as returned by component mappings. This list, is

by no means exhaustive, but includes all the implementations that have been used

for encoding. We are interested in implementing subsets within the order induced by

a spanning set S, not in our original order P. This order is isomorphic to a suborder

of P for spanning sets of principal down-sets, but not for more complicated spanr~ing

sets. Note that for any spanning set S, the subset C(x) is an up-set in S.

Given a spanning set S for an ordered set P, our goal is to represent, for each

x E P, the mapping C(x). In general C can be viewed as a relation: for x E P, s E S ,

(x, s) E C if and only if s E C(x). We may, however, be able to exploit the structure

of the order induced by S.

4.3.1 Unordered implementat ions

By treating Cfx) as an unordered subset of the domain S (i.e. by treating C as an

unordered relation) we can realize implementations that do not utilize the hierarchical

structure of the ordered set S. Such representations employ existing techniques for

implementing sets. In the representations we describe below, the elements of S arc

given a linear order (which is not necessarily a linear extension of S) .

Characteristic vectors In a characteristic (or bit) vector implementation, we rep-

resent a subset Q C S using a bit-vector of length n = 15'1, essentially embedding

S into the Boolean lattice of bit-vectors of length n. We place a 1 in position 1:

if element i (in the chain 5) is a member of the subset and a 0 otherwise. This

approach is analogous to adjacency matrix representations of graphs? Set union

and intersection are computed xising bitwise OR and AND, respectively. For two

subsets Q1 and Q2, Q1 Q2 if and only if QlnQz = Q1 (or Q1UQ2 = Q2). AS an

51f !PI = m, then an adjacency matrix requires si,%its, whereas here we require n * m bits.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 45

example, suppose S = {sl, s z , ss, sq, s5). We can represent the subsets {sl, s4)

and is2, s g , s4) by the strings 10010 and 01 110, respectively. The advantages of

this representation include minimal storage requirements for each position (one

bit) and immediate hardware implementation of set operations. Disadvantages

include the need to store unfilled positions (i.e. every subset has length n) , and

more cornplicsted processing required for large domains (asymptotically, the set

operations grow linearly with the size of the domain).

Interval sets An alternative (proposed in [I]) is to represent a subset Q with a set of

intervals, where each contiguous sequence of elements (in 5) is represented by an

interval. For example, the above subsets would be represented as { [l , 11, [4,4])

and {[2,4]). Although this scheme alleviates the need to store unfilled positions,

the set operations become more complex. Unlike the bit-vector approach, the

order 5 may have a significant effect on the size of resulting codes. We discuss

in section 4.5 how the approach in [l] finds optimal orderings.

Adjacency lists and hashing Analogous to adjacency list graph implementations,

we can maintain for yach element x E P the list of the elements C(x). This is

space efficient for cases when C(x) is relatively small (i.e. the spanning set is

large, but the component mapping only maps each element to a small number

of elements), but becomes unwieldy as the size of C (x) increases. To speed up

access to particular elements, we can hash C(x) for each x E P (i.e. for a given

x E P, s E S , we can quickly determine if s E C(x)). Using this technique, there

is no direct support for union and intersection operations.

4.3.2 Tree representations and code sharing

Using a linear ordering 5 of a spanning set S , we can implement the component

mapping in a labeled tree form that permits some sharing of common subsets. We

propose a generalization of the tree encodings in 177, 78, 1141, which apply only to

distributive lattices. In fact, this technique can be used to implement any family of

finite subsets from the same domain. The basic structure of such a tree representation

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC EINCODPNG 46

is as follows. The elements in the original ordered set P are nodes in the tree (dthough

there may be additional empty nodes, as discussed below). Each label is a subset of

elements of S , and the union of all labels on the path from an element x E P to the

root forms the set C(x).
There are several ways that we can build this tree. If our original ordered set is

a distributive lattice L, then the approach of [78, 1141 builds a very efficient tree for

the spanning set S = (1 x 1 ~ E M(L)). Every node of the tree is an element of L and

each label is a single element from S. Thus, the size of the tree is linear with respect

to the size of L. Furthermore, the labels on all paths from a node to the root are

monotonically increasing according to the linear extension 5 of S, and paths are joined

at common suffixes. By ordering the children of each node according to 5 , operations

can be performed in O([SI) time, using the algorithms in [78, 1141. Decoding (i.e. the

inverse of the component mapping) is achieved for free as a by-product of computing

operations in these trees.

We can apply this technique to a general ordered set P, although we can no lo~lger.

guarantee that labels will be singletons, or that there will be no empty nodes. We

order the results of C according to 5 , and form the tree by joining elements at common

prefixes (or suffixes). If a common prefix is not the code of any element, this results in

the creation of an empty node. As above, the code for x E P is the union of all label6

on the path from x to the root. To illustrate, consider the lattice in Figure 4.2. This

latticeis not distributive since an(bUc) = a n T = a, but (anb)u(anc) = I U c = c. The

tree TI implements the spanning set Sl = {la, Jb, Jc, Jd, Je, lf) , where 5 is the given

order of Sl and elements are assigned numeric values according to 5. In this case, no

empty nodes are created, but there is one edge with a non-singleton label. The second

tree, T2, implements the spanning set S2 = (Jib, d), l i b , c), Jb, J{a, f), J { u , e) , Jn),

where 5 is the given order of S2. Here, two empty nodes were created as well as edges

with non-singleton labels.

Performing unions, intersections, and subset checking is accomplished by locating

the position of the two elements in the tree and comparing the labels along the paths

from these elements to the root. To be more concrete, consider the above spanning set

S2 that preserves meets with union (and thus subsumption with subsets). To check if

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

Figure 4.2: Tree representation

x 5 y, we incrementally compare the set of labels C(x) and C(y) on the paths from x

and y to the root, respectively. From the structure of the spanning set, we know that

s: _< y if and only if C(z) _> C(y). Since the components in labels are monotonically

ordered within labels and along these paths, this comparison is linear in the size of

the label sets. For example, C(g) = {1,2,4,5,6) > {1,4,5,6) = C(d), so g 5 d, but

C(g) 2 0,273, 4,5) = C(h), so g I! h.

To compute x n y = z , we incrementally union the labels on the two paths from

x and y to the root. Then we descend the tree using this union to find the meet

element. For example, to find c n d, we find C(c) U C(d) = {1,2,4,5,6), and descend

to find that this set is C(g). Thus, c fl d = g.

Operations can be further optimized by finding the node in the tree at which

the two paths converge, and only considering the portions of the paths below this

point (which is how the algorithm in [77] works). We can avoid further comparisons

above this point, since the remainders of the two paths coincide. For details of the

tree traversal algorithms that compute subsumption, meets and joins for distributive

lattices, see f77, 781. The modifications required to handle our generalization of this

tree representation are trivial.

Determining the space complexity of these trees is not as simple as before. Since

empty nodes must have at least two children, the number created will be bounded by

1PI. Non-singleton labels cause these trees to be non-linear in the size of the ordered

set, but the code sharing can still greatly reduce the overall space requirements.

Operations are no longer bounded by the depth of the tree, but rather by the number

of labels on a path to the root. This is also true in the distributive case, but there each

edge has a singleton label. As before, children of nodes are ordered lexicographically

CHAPTER 4. T H E FOUNDATIOIVS OF TAXONOMIC ENCODfLVC:

by edge labels. Since the labels from ail element to the root are in strictly decreasing

It 1011 lexicographic order, operations are linear in the size of the codes using an adapt t'

of the algorithms in [7S, 1141, and decoding can still be achieved efficiently. Clea,rly,

the tree constructed will depend on the ordering 5 of S (which is usually a linear

extension of S) , so algorithms need to be developed that find orderings for which

optimal trees can be found or approximated.

4.3.3 Logical terms

We can also implement sets using logical terms, embedding our order intoo t,hc Ist-

tice of generalized atomic formulae [121]. Terms with no structure ca,n btb used i n

a manner similar to bit-vectors using anonymous variables in place of 0. For exarn-

ple, 11010 can be represented as p(1, 1, -, 1. -) for an arbitrary predicate p. However,

terms can also be used to capture some structural information. Set union and intcr-

section correspond to unification and anti-unification, respectively. Subset checlcing

becomes term subsumption checking. We can also exploit the hierarchical structurc!

of an up-set to reduce storage requirements. It is important to note that logical

terms also provide the ability to implement unions that produce the entire donlain

(e.g. I) by unification failure. To illustrate, consider the ordered set in Figurc

2.2. We may represent the up-set f kit fox by the term p(canine(f ox(k f ox)) , wi ld , -)

and Tcolbie by p(canine(dog(collie)), -, domestic). Their intersection is o btai~ml by

anti-unification: p(canine(-), -, -) (representing fcanine). If we represent fdog by

p(canine(dog(-) j, -, c'omestic) and fwol f by p(canine(wolf), wi ld , social), we capt,urc

the fact that clog rl wolf = I with unification failure. Although desirable, wc shall

see that this is not always easy to achieve. We show in section 4.8 how compact

tree terms (terms in which all variables are anonymous) can be derived from spanning

sets. In section 4.9 we discuss the use of coreference constraints, as provided by logical

variables, in encoding.

A disadvantage of logical terms is that specifying filled positions (with an atom

or functor) requires more space than the 1 bit required for the bit-vector approach.

An advantage is that not all unfilled positions need to be specified. In our example,

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

the subset for fcanine, p(canine(-), -, -1, only reserves three additional spaces (via

anonymous variables); additional spaces become available dynamically through in-

stantiation at these positions. It is also possible to implement parallel algorithms in

hardware for unification and anti-unification of tree terms.

4.3.4 Sparse logical terms

Sparse terms [51] allow an efficient and direct implementation of hierarchical sets

by providing the tree-shaped structure of ordinary terms as well as several other

key features. They are similar to the directed acyclic graphs (DAGs) and feature

structures used in natural language processing systems (e.g. [118]). In [104], the use

of DAGs to implement encodings is explored in detail. In Chapter 6 , we develop

sparse terms in detail as a universal implementation for encoding.

4.3.5 Integer vectors

Natural numbers can be used to implement chains or anti-chains. All finite total

orders of size n are isomorphic to the interval [I, n], providing a simple and efficient

binary number implementation using only logn space for each element. We find it

convenient to use the dual of the natural order, so that 1 is the top of the chain. Each

integer then represents all the preceding elements in the chain (i.e. k, 1 5 k 5 n

represents the interval [I, k]). Subsets can be checked in an obvious way (a C b if and

only if a < b) , while a U b = max(a, b) and a n b = min(a, b).

Every anti-chain of size n is isomorphic to the flat lattice of the natural numbers

[I, n]. In this lattice, each pair of unequal i~:egers is treated as meet and join incom-

pati ble. To represent an anti-chain, we assign each element a unique number in [I, n] ,
and use 0 to represent the empty set. The set operations are defined as follows:

subsets: i & j * i = j o r i = O .

union: i U j failsif i # O , j # O and i # j. Otherwise i b j = max(i,j).
intersection: i n j = i if i = j, otherwise i n j = 0.

By viewing an ordered set as being composed of a number of chains or anti-chains,

we can use integer vectars to represent up-sets.

Definition 4.5 Let P be an ordered set. 4 partition Q = { P I ? Pz; m e , E',,,) of I' is

called a chain (anti-chain) partition if the suborder defined on each. of the Pi is (1 chaiut

(anti-chain).

An anti-chain Q is called meet (join) incompafible if every pair of elements in Ct)

is meet (join) incompatible. In essence, the above partitions view a partial ordm as a

number of parallel interconnected chains or anti chains. As an example, considcr thc

chain and meet incompatible anti-chain partitions of the ordered set of Figure 2.2,

shown in Figures 4.3 (where each chain is represented vertically) and 4.4 (where each

anti-chain is represented horizontally).

Figure 4.3: Chain partition of the ordered set in Figure 2.2

domestic social

I canine / I

Figure 4.4: Meet incompatible anti-chain partition of the ordered set in Figure 2.2

Integer vectors can be used to represent up-sets using chain or incompatible an t i

chain partitions by assigning one position in the vector to each chain or anti-chain,

since we only need to represent at most one element of each. The integer vector

encoding in [971 uses a chain partition. A ?artition of size k requires vectors of Iengt, h

k. We need to have a specid integer (we use 0) to place in a position when the up-set

does not contain any element from the corresponding chain or anti-chain. For chain

partitions, an entry represents d l preceding elements in the corresponding chain. f i r

CHAPTER 4. THE FO tiiWATIOf\iS OF TAXOATOMIC ENCODING 51

meet incompatible anti-chain partitions, at most one element from each anti-chain

can be present, so a non-zero entry represents an element plus the absence of all

other elements in the anti-chain. The entire vector then represents the union of the

information represented in its entries. We denote each entry of a vector V of size k

as Vfi], 1 5 i < k. The set operations for chain partitions are defined as follows:

intersection: n & = V tj V l < i 5 k, V[i] = min(& [i], &[i]).

In our example, we represeat fkit fox by [0,0,0,0,3,0,1,0] and Tterrier by

[2,0,1,0, l t 0,0,O]. Their intersection is the code for teanine: [O, 0,0,0,1,0,0, 01. We

now consider the set operations for meet incompatible anti-chain partitions:

subsets: r/; c & + V l < i < k', l.i[i] = &[i] or &[i] = 0.

union: V1 < i < k, t;Ur/12 = Vfailsif &[i] # 0,V2[i] # 0 and &[i] # V2[i].

Otherwise V ji] = max(& [i], G[i]).

intersection: n V2 = V + V1 5 -i _< k, V[i] = & [i] when Vl [i] = Vz [i]

Otherwise V[i] = 0.

In our example, we represent Tkit fox by [0,1,1,2,5] and f terrier by [I, 1,0,1,3].

The intersection of these is [O, 1,0,0, OJ (f canine) but their union fails.

Bit-vectors can be viewed as a special case of both forms of integer vectors, where

an ordered set is seen as a set of n chains or anti-chains of size 1. Note that any

singleton anti-chain is T~XUOUS~Y meet incompatible. For both cases, 0 represents that

no element of the corresponding chain or anti-chain is in the subset, and 1 represents

that the first, and only, element is in the subset. The logical operations of AND and

OR compute the set operations. Also, flat logical terms (i-e. terms with no functors or

nesting) provide a direct logical realization of inco~~patible anti-chain vectors, using

anonymous variables instead of 0 a d atomic symbols instead of integers. For example,

the above vectors could be represented as P(-, 1,1,2,5) and p(l , l , -? 1,3), respectively.

Note that we can apply sparse representations to integer vectors (ie. introduce indices

for non-zero elements, and eliminate the zero entries), as we show in Chapter 6.

C H A P T E R 4. T H E FOUNDATIONS OF TAXONOkIIC EiVCOD.hVG

4.4 Infinite Suborders

Our analysis of encoding assumes that the original ordered set is finite. For 111c2ny

applications we require the integration of a finite order with one or more infinitcl orders

such as real numbers, integers, strings, intervals, etc. Clearly, we cannot comput,c

codes for the elements of an infinite suborder a priori, so we need lo be atbit: t o

perform taxonomic operations involving one or more elements in an infinitc suborder

dynamically. Provided certain restrictions are obeyed, we can permit portions of our

set to be infinite while still benefiting from encoding. As far as wc know, such a

formulation has not previously been described.

Suppose we have an ordered set P with an infinite suborder Q. We can encode the

finite portion of P using the techniques described in this chapter provided Q obeys

the following:

Classification Given any element x in Q, we must be able to ascertain that in fact

x E Q. Note that one infinite suborder may be a suborder of another infinite

suborder (e.g. integers and reals). Thus, we must be able to classify elements

correctly (e.g. checking if 1 < 3/2, we must classify 1 as a rational nurnber).

Locality The order relation within Q must be locally determined and efficient. 'l'his

is required for operations involving only elements of Q, so that encoding is not

necessary. For example, it is easy to locally determine order between intcgcrs,

strings or intervals of real ncmbers. If meets or joins must also be preserved is

Q , then these operations must also be locally computable.

Encapsulation In order to compute operations involving one element in & and an-

other not in Q, Q must he bounded (i.e. it must have top and bottom ele-

ments, TQ and IQ)6. In a sense, these elements provide entry and exit points

to the infinite suborder and can be incorporated into the finite portion of the

ordered set. Normally, the bottom will simply be the bottom of the ordered

"t may be possible to relax this restriction to require a finite number of maximal and ntininral
elements of the infinite suborder. This, however, complicates taxonomic operations. For example,
the meet of two elements not in an infinite suborder Q may result in any element in Q, not juel one
of the maximal elements.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

set. We also require that Q be closed. That is, Q = JTQ\JLQ U {LQ) and

Q = 1 I Q \ f T Q U (TQ) , This requires that the bounds of Q must provide the

only entry and exit points. We show in Chapter 5 that bounding and closure

implies that Q must be a module within P.

These requirements allow us to encode the finite portions of an ordered set, in-

cluding the hounds of any infinite suborder, as though the entire set was finite. For

operations involving elements within an infinite suborder, we use locality to compute

the operation. In the case of meets and joins, the result will also be in the infinite

suborder. For operations involving one element in an infinite suborder Q and another

not in Q, we can use the one of the bounds in place of this elemeh. If the result of

a meet or join is this bound, it can be replaced by the original element. We provide

more details of how this may be achieved when we discuss modulation in Chapter 5.

4.5 Spanning Sets of Principal Down-sets and Up-

sets

4.5.1 All principal down-sets

The transitive closure encoding introduced in [2] and described in section 3.5 encodes

a partial order with k elements using bit-vectors of length k - 1 as follows. Each

element a, E P (except I) is assigned a unique integer i in [I, k - 11. For any element

aj E P, bit i, 1 < i < k will be 1 if and only if a; 5 aj. The actual procedure given

in [2] produces this encoding in a bottom-up manner, starting at I and propagating

codes upwards towards T.

In terms of our framework, this procedure simply computes the spanning set S1

consisting of every principal up-set for the bottom-up case described, or the spanning

set of every principal down-set for the top-down case. The encoding is the charac-

teristic vector implementation of these component mappings. The orders induced by

these spanning sets are isomorphic to the original order. As an example, the following

figure shows a lattice? a component mapping, and its bit-vector implementation.

CHAPTER 4. THE FO LTNDATIONS OF TL4XONOkIIC EiY COD.ING

/'b. a b c -
0000001 0000010 0000100

v
1
-
{la,lb,lc,ld,Le,$f,ll}

d e f { L a , ~ b , ~ . ~ c . L f }

'-4,-'+
1111111

Figure 4.5: Principal down-set encoding

The interval encoding in [I] is closely related, and is based on the sane sparirtirlg

set Sl, but iaplemented using sets of integer intervals. Recall from section 4.3 that,

under a total order 5 of Sl, any set of components can be implemented using the

corresponding set of intervals in 5. In [I], an algorithm for finding an optimal ordering

is described. A cover tree T for the ordered set P is identified by choosing, for each

element s E P, the parent that has the most ancestors. The authors show that the

total order 5 defined by the postorder traversal of T produces interval set codes that

minimize the overall space requirements of the encoding (i.e. the total number of

intervals for all codesI7. In case P is a tree, for each element x E P, C (x) will be

exactly one interval. To illustrate, Figure 4.6 shows a cover tree T, the preorcler

number of T , and an interval implementation of the lattice in Figure 4,5.

Figure 4.6: Cover tree, preorder numbering and interval encoding for the lattice in
Figure 4.5

Theorem 4.2 Let L be a lattice. The set of principal down-sets of L forms a ~pannirq

set Sl that preserves jo,,as through intersection.

7 ~ h i s optimum in fact only holds when we do not consider merging two adjacent intervals (e , g
[il, i2] and lit, jz] where jl = i2 + 1 could be replaced by [il, jz]) - When merging is performed, the
total order identified may not be optimal. However, adjacent intervals in the codes raulting from 5
may be merged to provide an approximation to the optimal.

C H A P T E R 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 55

Proof: We need to show that el U ez = e if and only if C(el) n C(e2) = C(e). Suppose that

el U e2 = e. Consider any principal down-set Ja E C(el) n C(e2). Then el _< a and ez 5 a.

By the definition of join, e < a, so l a E C(e). Consider any principal down-set La E C(e).

Then e f a. Since el 5 e and e2 f e , la E C(el) n C(e2). Therefore, C(el) f l C(e2) = C(e).

Assume that C(el) n C(e2) = C(e). Since l e E C(e), el 5 e and e2 < e . So e is an upper

bound of el and e2. Now if el U e2 = a then Ja E C(el) n C(e2), so Ja E C(e) and e < a,

implying e = a.a

The dual of the above theorem shows that the set of principal up-sets forms a

spanning set that preserves meets through intersection.

Such spanning sets lead to a particularly time eBcient implementation using a

Boolean matrix in which entry (i, j) = 1 if i j and 0 otherwise [114]: checking

subsumption can be accomplished in constant time8. In [93], the encodings of [2] are

used in the typed feature logic programming language T D L , and in [45], a transitive

closure encoding implemented using tree terms is proposed.

4.5.2 Principal down-sets of meet irreducible elements

Since a focus of encoding is space and time efficiency, we are interested in finding

spanning sets with a minimal number of elements. In [2] it is recognized that not all

principal down-sets are required to maintain joins. This led to the compact encoding

algorithm described in section 3.5. Let us denote the set of meet irreducible ancestors

of an element e as p(e). It is easy to show that p is monotonically increasing as we

descend the taxonomy from parents to children (i.e. if el 5 e2 then p(e2) & p(el)).

We now show that in a lattice, p also preserves joins.

Lemma 4.1 Let L be a lattice. Then for el, e2 E L, el 5 e2 if and only if p(e2) 2

Proof: + By the monotonicity of p, if el 5 e2, p(e2) C p(el).

'This is simply the adjacency matrix implementationof the transitive closure graph of the ordered
set.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

-e Suppose p(e2) 5 p(e l) and el ez. Clearly, any ancestor of e2 that does not subsume

el must not be meet irreducible. So e2 cannot be meet irreducible. If two of the parents of

e2 subsume e l , then the meet of these two parents is not unique. Thus, at least one parent

p of e2 does not subsume el . Since p cannot be meet irreducible, we can continue until we

have an ancestor of e2 that is a child of T and does not subsume el . But all children of T

are meet irreducible.0

Theorem 4.3 The set of principal down-sets for the meet irreducible elements of n

lattice L, SJM(~) = (Jele M (L)) , forms a spanning set that preserves joins bhmugh

intersection.

Proof: The component mapping for the set of principal down-sets of meet irreducible el-

ements is defined as C (x) = (le le E p(x)} . Consider any two elements el and e2. If

C(el) = C(e2) then p(el) = p(ez) and so p(e l) C p(e2) and p(e2) & p(el). By the above

lemma, e2 5 el and el 5 e2, so el = ez. Thus, C is one-to-one and so SJM(L) forms a

spanning set.

We need to show that el U e2 = e if and only if C(e l) n C(e2) = C(e). This is equivalent

to showing that el U e2 = e if and only if p(e l) n p(e2) = p(e).

j Suppose that el U e2 = e. Consider any meet irreducible x E p(e l) n p(ez) . Then

el 5 x and e2 5 x. By the definition of join, e < x , so x E p(e). Consider any meet

irreducible x E p(e). Then e 5 x. Since el 5 e and e2 5 e , z E p(e l) n p(e2). Therefore,

~ f e l > n 4 e 2) = p(e).

t= Assume that p(el) n p(e2) = p(e). Then e is an upper bound of el and e2, since

p(e) p(el) and p(e) C p(e2) imply that el < e and e2 5 e, by the above lemma. For any

p(2) p(el) n p(e2). From our assumption and the lemma, we deduce that p (x) C p(e)

and e < x, implying el U e2 = e.0

The dual of this theorem states that the set of principal up-sets for the join ir-

reducible elements of a lattice L, S3(~) = (f ele E Jf L)}, forms a spanning set that

preserves meets through intersection. Also note that the order induced by SM(L),

for a lattice L, is isomorphic to the suborder obtained by restricting L to the meet

irreducible elements M (L) .

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

The compact encoding in 121 for a lattice L implements the component mapping

of SJ(L), for the bottom-up case described, and SM(L) for the top-down case, using

characteristic vectors. We again use the lattice in Figure 4.5 to illustrate. Figure 4.7

shows the component mapping for SM(~) and its bit-vector implement ation.

Figure 4.7: Meet irreducible encoding

For distributive lattices, the ideal tree in [78, 1141 encodes SM(L) in a tree data

structure (see section 4.3.2) that permits computation of both meets and joins in

O(IM(L) I) time. We now demonstrate that SM(~) and S3(L) are the smallest span-

ning sets of principal down-sets or up-sets that preserve not only joins and meets,

respectively, but also subsumption.

Lemma 4.2 Let L be a lattice. Then every meet irreducible element of L must be a

fact03 of at least one down-set in a spanning set of down-sets.

Proof: If not, it has the same component mapping as its parent.o

Theorem 4.4 Let L be a lattice. If (M(L)I = m, then any spanning set of principal

dourn-sets that preserves subsumption with supersets must have at least m down-sets.

This theorem is a direct consequence of the above lemma. Thus, for subsumption

preservation, the smallest size spanning set of principal down-sets or up-sets has

min! IM(L)/, !,Tf L)!) elements.

Theorem 4.5 Let L be a lattice and S a spanning set of down-sets on L that preserves

j&as By set iatersrrcti~fc- Then e u e q wmpnent- of S must be a principal doum-set.

'Recall that a factor is a maximal element of a down-set.

CHAPTER 4. THE FO trNDL4TIOfVS OF TAXONOMIC ENCODPNG

Proof: Suppose there is a component Q = J{ql,qz,-- -,q,) E S that is not principal (i.e.

n 2 2). Consider the join of any two of the maximal elements, say ql and qz. Clearly the

join must properly subsume both of these elements (since q111q2, and so Q 4 C(qr U q2)) .

But Q E C(q1) and Q E C(qz), so Q E C(q1) n C(q2). Thus, S does not preserve joins by

intersecti0n.o

This last theorem, along with the Spanning Set Duality theorem, shows us r,hat.

ISM(L)I (IS3(L) 1) is the minimum size of any spanning set that preserves joins (meets).

Much of the above discussion assumes that we are encoding a lattice. For a general

ordered set P, the spanning set of all principal down-sets preserves subsumption, as

does SM(*), provided we recognize the meet irreducible elements of the order, which

do not necessarily have a single parent as shown by Theorem 2.2. Both techniques,

however, can be used to encode for join bases (meet crests) instead of joins (mects).

When computing a join base a U 6, the intersection of the two component mappings

C(a) n C(b) = CaUb will result in a component set that represents the join base. If the

join base is a singleton (i-e. a join: a U b = c), then C(c) = Carib; otherwise, we need

to find the maximal elements whose component mappings are subsets sf Caub.

4.6 Spanning Sets of Prime Down-sets and Up-

set s

This section describes spanning sets of prime down and up-sets and shows a direct

correspondence with spanning sets of principal up-sets and down-sets, respectively.

Although not standard in lattice theory, we define prime down-sets analogously to

prime ideals: a down-set J.Q of a lattice L is prime, if when x fl y E LQ, either s E J,Q

or y E JQ. That is, we cannot get into J.Q from two elements not in JQ. For an

ordered set P: we generalize this definition: a down-set J.Q of P is prime, i f when

x n y E LQ, either x E JQ or y E J.Q.

Lemma 4-3 Let L be a bttice. If e is an element and Je i s its principal down-ael

then tL\JeJ (i e . the principal factors of the ztp-set L\Je) are all join irreducible.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

Proof Suppose f is a minimal element in L\le and is not join irreducible. Then it has at

least two children, a: and y. Both s and y must be in J e or else f is not minimal. Since

both x and y are subsumed by e (by the definition of down-set), e is an upper bound of x, y.

But f -$ e and f clearly must be the join of s and y, so we don't have a l a t t i ~ e . ~

Theorem 4.6 Let L be a lattice. Then TQ i s principal if and only if L\TQ is prime.

Proof: Suppose an up-set f Q is principal, Q = {e) . Let JQF = L\.re. By the dual of the

above lemma, the factors of this down-set must all be meet irreducible. Suppose 3 el and

e2 such that el n ez E l Q F but el $ l Q F and e2 4 JQF. By the construction of I&, el E. Te,

so e 5 el . Similarly, e < e2. Therefore e 5 el n e2. But then el n e2 E fe.

e Suppose an up-set TQ is not principal. Consider any two factors el and e2 of 16).
Since el n e2 4 TQ, L\tQ is not a prime down-set.0

We say that. L\re is the prime down-set induced by e, the elements not in its

principal up-set. In [102], Mellish shows that if we have a spanning set of prime down-

sets, we can guarantee that the meet of two elements can be found with unification

(down-set union). With the Spanning Set Duality Theorem (Theorem 4.1)) we can

see that a spanning set of down-sets that preserves meets with union can be easily

constructed from the join irreducible elements. The above theorem shows that this is

a spanning set of prime down-sets and the final result of the previous section shows

that this is the smallest such spanning set. Naturally, for an ordered set P, the order

induced by a spanning set of prime down-sets is dually isomorphic to that produced

by a %(P).

As an example, in Figure 4.8, 3 (P) = {d,e,a,c). The first encoding shows a

bit-vector implementation of the spanning set S3(P) = { f d, re, f a , Tc) where meets

are preserved with intersection. The spanning set of prime down-sets associated with

these join irreducible elements is Srtp1 = t ic , l a , l{ b, cJ, J{a, b)), preserving meets

with union. The second encoding shows the implementation of this spaming set.

The encoding of [77] represents each element by the set Q of join irreducible

elements that it doesn't subsume, which is equivalent to the set of prime down-sets

induced by elements in Q. The underlying spanning set therefore consists of the

CHAPTER 4. THE FOUNDATIONS OF TAXONOrVfIC ENCODING

Figure 4.8: Principal up-set and prime down-set encodings

prime down-sets induced by 3 (P) , and so preserves meets with union. The bi t-vector

implementation of such a spanning set is identical to the bitwise negation of trhc

bit-vector implementation of S3p), as can be seen in the above example.

We have now shown a correspondence between the compact encoding of [2] based

on set intersection (e.g. bitwise AND), and prime down-set encodings of [77, 1021

based on set union (e.g. bitwise OR and logical term unification). There is, however,

one important distinction to make for the approach of Melllsh [102]. In the above

construction, if the meet of two elements is I, set union will produce the entire

domain (i.e. the entire spanning set S) because i is treated as any other element.

It is also possible (as Mellish's approach requires) to implement me& incompatibility

as failure (e.g. with unification failure). This strict requirement essentially treats the

ordered set as I-unbounded. We discuss in sections 4.8 and 4.9 how incompatibility

as failure may be achieved.

4.7 Spanning Sets of Compound Down-sets and

Up-set s

So far, we have studied spanning sets of principal down-sets that preserve joins with

intersection, and spanning sets of prime (possibly compound) down-sets that preserve

meets with union. We showed that the latter case is equivalent to spanning sets

of principal up-sets that preserve meets with intersection. Between these extremes

lie spanning sets that preserve subsumption, but neither meets nor joins. We now

consider such spanning sets, which may contain down-sets with multiple factors. Re-

call that the factors of a down-set 1Q is the set of maximal elements of 1Q (which

is an anti-chain). hitidlyf we focus on spanning sets that do not permit multiple

CHAPTER 4. THE FOb7NL3ATI0,RJS OF TAXONOMIC ENCODING 61

occurrences of factors. Tha t is, elements that are factors of several spanning set,

components. Later in the section, we relax this restriction.

Our first theorem shows that , for any spanning set S of down-sets, there is a

spanning set containing only meet irreducible factors which is no larger than S. This

means that, as in section 4.5, we need only be concerned with irreducible elements

when constructing minimal size spanning sets.

Theorem 4.7 Let S be a spanning set for a lattice L that preserves subsumption.

Then there exists another spanning set S' that (i) contains no more down-sets than S

(ii) preserves subsumption and (iii) has only meet irreducible factors in all down-sets.

Proof: Suppose we have a subsumption preserving spanning set S for which there exists

a down-set /Q = i{ql, q2,. . -, q,} where qi is not meet irreducible, for some 1 < i 5 m.

Further suppose we remove qi f w m Q (this may reduce the number of components in the

spanning set if Q becomes empty or equivalent to another down-set in S). This produces

a new spanning set S' that is identical to S except that Q' = {ql, . - , q;-1, q;+l, - . . , qn}

has fewer elements than Q (and so J.Q' C JQ) and S' = S\{iQ) U {/Q1). The component

mapping for St will be denoted by C'. The only difference between C and C' (modulo the

name change of Q to Q') is that the mapping of elements in /&\JQ1 does not contain Q'

(i.e. descendants of q; not subsumed by some qj E Q, i + j and 1 5 j 5 m, are not in JQ').

If S' does not preserve subsumption, then 3el, e2 E L for which e2 el and CJ(el) C
Ct(e2) (due to the monotonicity of the component mapping for spanning sets of down-

sets, the case e2 < el but C1(e2) C1(el) cannot occur). Since C(el) C(e2), C1(el) =

C(el)\{J,Q} S C(e2) = C1(e2). This situation is only possible if el < q; but el 9 J,Q1 and

e, & JQ, otherwise C(el) C(e2).

Let p~,pz,- . . ,p, , n 2 2 be the parents of q;. Since qi E Q, none of its parents are in

1Q7 so .lQ 4 C(pi) and C(pi) C C(qi) C C(ei), C(pi) C C(e2). Thus, e2 5 pi. Similarly,

ez 5 n r - --,1~r;. Also el $ qi, since ez # LQ. This implies that L is not a lattice, since q;

must be the meet of its parents, but e2 is a lower bound of these parents not subsumed by

q;. Therefore St must preserve subsumption. Clearly, we can similarly remove a l l non-meet

irreducible elements from S to produce a subsumption preserving spanning set that has no

more components than S.o

CHAPTER 4. THE FOUNDATIONS OF TAXONOiWC ENCODNC 62

Hereafter, we assume that the components of all spanning sets have only rncct,

irreducible factors. We have already shown that no spanning set S of compot~ttd down-

sets can preserve joins by intersection. Can S preserve meets with union? If it, dotxs:

the Spanning Set Duality Theorem tells us that there is a corresponding spanning set,

St tha t preserves meets with intersection. Since St can have only principal ttp-sets for

components, S must be a spanning set of prime down-sets.

We now focus on how compound down-sets can reduce the size of a spanriirig set,

tha t preserves only subsumption. First let us consider when two elements can he

factors of the same down-set.

Theorem 4.8 Let P be an ordered set and S be a spanning set of down-sets for P

with no multiple occurrences of factors. Then S preserves sub sump ti or^ if and o d y if,

for every compound down-set JQ E S with factors e l , ez, p an element that is (2 ') a

descendant of the parent of el, but not of el itself and (ii) a descendant c?f e2.

Proof: + Suppose el and e2 are factors of the same down-set JQ of S, and 3 an element,

q that is (i) a descendant of the parent p of el, but not of el and (ii) a descendant of ez.

Since el is a factor of no down-set in S other than LQ, C(el) = C(p) U { 1Q). Also q < - p

and q 5 ea, so C(p) C C(q) and Q E C(q). Therefore, C(el) C C(q), but q $ el, so ,S tlot:s

not preserve subsumption.

+ Suppose for every down-set JQ E S, if el,e2 are factors of LQ then p an elarrier~t

that is (i) a descendant of the parent p of el , but not of el itself and (ii) a descendant of ez .

So if el , ez are factors of JQ then for every element q, if q < p and q < ez, then q I: e l . If S

does not preserve subsumption, then 3x, y E P for which C(y) C(x), but z $ y. I,et el t)c

a maximal ancestor of y for which x $ el and C(el) C(x). If el is r~on-meet irredrtcihlc,

then the meet of the parents Q of el is unique. Clearly, this meet must be el . Also, every

parent of el must subsume x, otherwise it is not maximal, so x is a lower bound of Q . But

then x 5 el.

Thus el is meet irreducible, and so must be a factor of some down-set LC). Since

C(el) 5 C(x), JQ f C(x). Since x $ el, 1Q must have at least one other factor e2 for which

x ez. But then our assumption is violated, since el, ez E Q, x _< p where p is the parent

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 63

Figure 4.9 illustrates the case when el and e2 do not satisfy the constraints of

the theorem. If we put el and e2 as factors of the same component, the component

mapping for the descendant d will be a superset of that of el, and so we will incorrectly

conclude that d 5 el.

Y
Figure 4.9: Elements that cannot be in the same down-set

In [24], Caseau proposes an encoding scheme that preserves subsumptim. His

algorithm computes a subsumption preserving spanning set of down-sets, implemented

with bit vectors. Through his notion of "gene sharing", compound down-sets may be

formed. The algorithm proposed computes the spanning set incrementally as the

ordered set is constructed from top to bottom. When meet irreducible elements iLre

added, the algorithm adds the element as a factor of the first down-set permitted

according to the above theorem. When non-meet irreducible elements are added, a

check is made to see if the conditions of the theorem are violated. If they are, a factor

of some down-set contributing to this violation is moved to another down-set in a

process called "gene mutation".

Below is an example ordered set and the encoding that the algorithm determines

immediately before and after the addition of element i (which causes a gene mutation,

since i is (i) a descendant of the parent a of c, but not of c itself and (ii) a descen-

dant of e). The spanning sets prior to and following the mutation are respectively

{ la , l b , J{c, e), Lid, f)) azld {La, Lb, J.{r o) , Jd, J, f). The rightmost encoding shows a

more compact encoding than Caseau's that satisfies the above theorem, but which the

algorithm does not find. The spanning set for this encoding is {la, Jb, l{c, f}, l i d , e)).

Intuitively, it seems that subsumption preservation should not rely on the existence

of meets or joins. However, Caseau's incremental algorithm forms the minimal (i.e.

Dedekind-MacNeille) lattice completion of the given ordered set, which is potentially

costly.

CHAPTER 4. THE FOUlnJD4TTONS OF TAXONOMIC ENCODING

Figure 4.10: Subsumption preserving encoding

Theorem 4.9 Let P be an ordered ,et. Then the elements that must be represented as

factors of down-sets for a subsumption preserving spanning set are the meet irreduclible

elements of P.

It is easy to show that M (P) = M(Lp), where Lp is the minimal lattice com-

pletion of P. The proof of the above theorem follows from this fact and previous

theorems. Thus, we don't need to actually realize the lattice completion. Rat her, we

need only recognize which elements are meet irreducible.

4.7.1 Finding a minimal subsumption preserving spanning

set is NP-Hard

In Caseau's paper, a suggestioc. is made for the gene mutation process to atte:mpt,

to detect more compact ways to rectify a violation, once detected. Both the original

algorithm and this suggested improvement, however, provide approximat ions to t, tic

problem of finding a minimal spanning set of down-sets that preserves sul~urn ption .
Unfortunately, as we show through the next theorem, this problem is NP-Hard. This

result is related to one suggested in [77j regarding the bounded dimension of an ordcrt:d

set, dirnz(P).

Definition 4.6 Minimum Subsumption Preserving Spanning Set. Given a

l&t,ice L and a positive number k 5 ILI. IS there a spanning set o,f down-sels o j size

k that preserves subsumption?

Theorem 4-10 The Miaimam S~bsumption Preserving Spanning S e t problem is Nf'-

Complete.

CHAPTER 4. THE PO UiVDATiONS OF ':iZXONOMIC ENCODING

Proof: Consider the following problem, which is known to be NP-complete [69]:

Partition into Cliques* Given a graph G = (17, E) and a positive number k < IV1. Is

there a partition of G into k cliques?

We provide a polynomial transformation from this problem to our problem. Let us

construct a lattice I, from G = (I.': E) , where n = IVJ and e = IEl, a.s follows: (i) start with

a T element (I will be left implicit). (ii) Add n elements PI, P2, - - a , P,, where Pi < T.

(iii j Add n elements vl, vz? - - -, v,; where v; < Pi. (iv) Add m = n(n - 1)/2 - e elements as

follows: For each pair of vertices a;, vj? where i < j , that does not have a connecting edge

in E, add an e!ement (q, vj) where (vi, vj) 5 Pi and (v;, vj) < vj .
Claim: L has a subsumption preserving spanning set of size n + k if and only if G has

a partition into b cliques.

Suppose L has a subsumption preserving spanning set S of size n + k. First note

that, by theorem 4.8, S must contain n principal down-sets corresponding to the Pi meet

irreducibles. Since the (z;;, z;;) elements are not meet irreducible, all other hwn-sets must be

composed of the v; elements. Further, there must be exactly k of these down-sets. Consider

any one of t.hese down-sets .iQ. Claim: The corresponding vertices in G forms a clique.

Consider any pair of elements u;, % E Q. where i < j . Since they are factors of the same

down-set, /3 an element that is (i) a descendant of the parent of v;, but nat of v; itself

and (ii) a descendant of vj. By the above construction, the only possible element for which

this could occur is (pi, sj j). which only exists if vi, a j are not connected by an edge. Thus,

,ar;, vj have a connecting edge. Therefore, the corresponding vertices within each of these k

down-sets forms a clique in G.

% Suppose G has a partition into k cliqnes. Each of the Pi meet irreducibles must form

a down-set for any spanning set that. preserves subsumption on L. This makes n down-sets.

Consider any one of the k cliques, Q. Claim: The corresponding meet irreducibles in L can

be factors of the same down-set. By the theorem, any pair v;, vj, i < j , can be factors of the

same down-set- provided B an element that is (i) a descendant of the parent of v;, but not

of u; itself and (ii) a descendant of 3- By the above construction, the only possible element

for which this could occur is (v;, uj ?, which only exists if vi, vj are not connected by an edge.

But since B,, cj are in a clique. they are connected by an edge. Thus, the corresponding

meet irreducibles within each of these k cliques can be factors of the same down-set in a

spanning set that preserves subsumption on La

Figure 4.11 shows an example of this reduction. Elements a , b, c. d form a cliqw in

the graph and can also be factors of the same down-set in a subsun~ption preserving

spanning set for the lattice.

Figure 4.1 1: Transformation of a graph to a lattice

4.7.2 Multiple occurrences of factors

Although, it may seem unnecessary for an element to be a factor of more t hm

one down-set, more compact spanning sets may result by allowing multiple occur-

rences of factors. We characterize the general conditions such spanning sets must,

satisfy. In Figure 4.12, any spanning set without multiple occurrences of lactars

has at least ten elements. It is easy, however, to verify that the spanning set S =

{l{a,b,c,d,e,f3,.l(a,b,c,g,h,i),l{a,d,e7~,h,j)7l{b7c~,f7g?i,j)?l{c,e,f?fr.,.i,j))

preserves subsumption.

T 00000

a b c d e f g h i j 11

Y I

Figure 4.12: Subsumption preserving encoding

Theorem 4.11 Let P be an ordered set and S be a .spannir~g set i/f meet irreducztile

dmm-sefs for P . Then S pmsemes subswzption if and only ih for every meet irm-

dvcible element el E M (P) , ,El an element x for which (i) z is a descendant of th,c

parent of el, but not of el itself and (ii) VJQ E S where 6.1 is a factor of j,Q, 3 a

factor ez of JQ for which z is a descendant of e2.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING 6 7

The proof of this theorem is similar to that for Theorem 4.8. Figure 4.13 illustrates

the case when the constraints of the theorem are violated for an element el. If every

component for which el is a factor, has one of the f; as a factor, the component map-

ping for the descendant d will he a superset of that of el, and so we will incorrectly

conclude that d 5 el. Allowing multiple occurrences of factors provides greater flexi-

bility to subsumption encoding and permits more compact spanning sets. Finding a

minimal sized spanning set is undoubtedly NP-Hard, but it may be possible to design

an approximation algorithm (such as an extension to Caseau7s greedy algorit,hm) that

performs better than existing algorithms.

Figure 4.13: Violation of subsumption

There have been two encoding schemes ([GI, 791) that permit multiple factors in

compound spanning sets. Although the algokiilms are too detailed to describe fully

in this thesis, there are several issues of interest.

The algorithm in [613 constructs a bit-vedor encoding using two passes over a

lattice L: one upwards and one downwards. The resulting encoding preserves sub--

sumption with subsets, and thus implements a spanning set of up-sets. One of the

goals of this encoding is to provide efficient meet comput.ations (join computations

are described, but. are not efficiently handled). Meet computations are achieved in

this subsumption preserving encoding by using an interesting indexing method. Sup-

pose L is the lattice to encode, and S is the spanning set of up-sets generated by

the algorithm. With each non-meet irreducible element a: G L, x 4 M (L) , one of the

components s, f S is associated in the following way:

Definition 4.7 Let L be a lattice, and S be a spanning set of up-sets on L. Then S

discriminates the non-meet i'~~eHucilZe elements o f L if V x E L, x $ M (L) , 3s, E S

for which jij 2 E s , and jiij Sjy E L, y ff M (L) , and y E s,, then z 5 y ji.e. a: is

the unique minimum no=-meet irreducible element of s,).

CHAPTER 4. THE FOUNDATIONS OF TAXONOMC ENCODING 68

To compute a meet x fl y, we first check if x 5 y or y < x. If neither of these hold,

we know that, the meet must be a non-meet irreducible element. We then intersect,

the component mappings for x and y: Cans = C(x) n C(y). Using a linear ext.ensior-1

4 - of the lattice L, a linear ordering is formed for S ; the details of r,he particular

linear extension formed in [61] are unimportant, but what is essential is that,, for two

non-meet irreducible elements z, y f L, if z 5 y then s, 5 s,. By the manner in

which S is formed, the meet will correspond to either the first or second spanni~ig

set component in Carib corresponding to a non-meet irreducible elen~ent'~. Using a

bit-vector mask (which contains a 1 in each position corresponding to a, non-rneet,

irreducible component), these components can be identified. A table indexed by the

bit corresponding to these components is then used to decode the meet.

Note that this approach to decoding meets through a table lookup car1 be applied

to any spanning set that preserves subsumption with subsets and discriminat,es the

non-meet irreducible elements. In particular, the transitive closure met hod of [2] coil Id

use this indexing technique for efficient decoding.

Rather tha~l elaborate on the details of this algorithm, it will be more fruitful to

elucidate its importaat contributions. First, although this approach usually rtyriires

less space than the transitive closure method of 121, there are cases in which a spanning

set contains redundancy. By the dual of Theorem 4.7, subsumption preservation necds

only to deal with join irreducible elements. For the indexing method to funct,ion,

however, we need to keep those components associated with non-rnwt irred uciblc

elements (which may contain non-join irreducible factors). However, there are other

redundancies that may result from the algorithm in [61]: (i) it is possible to have a

factor that is meet irreducible but not join irreducible; such factors can be removed

(by Theorem 4.7). (ii) it is possible to have duplicate and redundant comporrents.

By remediating these problems in the resulting spanning set, the algorithm could be

improved.

As an example, consider the ordered set in Figure 4.14. The first encoding re-

sults from the algorithm in [61]. The spanning set that is irnplemer~ted is $5' =

(f (e , g), TT, f e, Tg, tf, l (e ,g)J . Note that the component f (e , f) appears twice (i n

1 0 ~ generalization of this property is proven below.

CHAPTER < ,THE FUUNDATIOiVS OF TAXONOMIC ENCODING 69

the first and last bit positions), which is clearly unnecessary. Secondly, this compo-

nent is reJu~dan;,, since it is not associated with any non-meet irreducible element,

and f e and f y are both components of S. A more efficient spanning set that preserves

the desired properties is S' = {f T, Te, Tg, T f); its bit-vector implementation is shown

on the right-hand side of Figure 4.14.

Figure 4.14: Example encudings that discriminate non-meet irreducible elements

We now formulate the encoding problem tackled by the algorithm in [61] in a gen-

eral manner, which may lead io the development of more efficient solutions. Suppose

we have a lattice L and we wish to construct a spanning set S that (i) preserves sub-

sumpt~on with subsets (i-e. x is subsumed by y (x < y) if and only if C(x) 2 C(y)), and

(ii) discriminates non-meet irreducible elements. For each element x 6 L, x $ M (L),

define the set R(xj = (y E Lly 5 x.Vz E L,z 4 M(L) ,y 5 z -+ x 5 z) . These

are the elements that are subsumed by x, but not by any other non-meet irreducible

element that is not an ancestor of x. Note that x E R(x). Now the problem can be

described as constructing a subsumption preserving spanning set of up-sets S with the

restriction that Vx E L , x 6 M(L) , 3.5, E S for which the factors of s, are a subset

of R(x) (i-e. I s,j C R(s)). This ensures that S discriminates non-meet irreducible

elements. The component s, will be caller! the component associated with x.

?Ve know from theorem 4.7 that to preserve subsumption, we need only be con-

cerned with the join irreducible elements J (L) . Thus, for optimality, we need only

consider the join irreducible elements of R(z); if there are none, then we can use

9, = TI.
The interesting result is as follows:

Theorem 4.12 Let L be a lattice and S be a spanning set of up-sets for .L such that

i. S preserves subsumption
. .
zz. S discriminates aon-meet irreducible elemejzts

iii. S is partitiond into those co,mponents that are associated with 11,on-nzcet ir-

reducible elements, Sl and those that are not, S2

iv. There is a linear extension 3 of Sl .

Then, for any meet a n b = c, consider Carib = C (a) n C(b) .

i. if Carib = C (a) , then a = c.

ii. i f Carib L- C(b) , then b = c.

iii. i f Carib = 0, then c = 1.

zv. if Carib n Sl = {s,), then: if a 2 a: (or b 5 x), then I = c , otherwise z = c.

v. if ICanbnSl I 2 2, then let s, and s, be the Jirst and second elements (accortliny

to 5) in Carib n sl. If a 5 z (or b 5 x), then y = c, otherwise x = c.

Proof: Let L be a lattice and S a spanning set of up-sets for L that satisfies thc ahow

conditions. Consider any meet a fl b = c and the set CUnb = C(a) n C(b). Since S preservcs

subsumption, cases (i-iii) hold.

Now suppose s, is the first component (according to 5) of Carib n S1. It is possible t tiat

a E R (x) and b E R(x), in which case a < x and b _< x (i.e. the factors of s, arc below a, b

and x). Since x subsumes every element in R (x) , either both a and b subsume z or both arc

subsumed by x . Since 5 is a linear extension, if both a and b subsume x, clearly z = a fl 6 .

Claim: For any component s, E Carib n S1, s, # s,, both a and b subsume y (or

conversely, it is impossible for y to subsume G and 6) . Suppose y subsumes a and 13. ?'bus,

a E R (y) and b E R (y) . Since 5 is a linear extension of S1, x must also subsurnc (L and 6,

and either y 5 x or xlly. In the first case, we can infer that x E R (y) , which is impossible,

since x is non-meet irreducible. In the secend case, we can infer that L is not a lattice.

Thus, in case x subsumes a and b, we can select the second element s, of CUnb n SI. if

no such element exists, then a i7 b = i, otherwise a n b = y.a

This theorem provides a general and efficient procedure for computing and dccod-

k g meets, which abstracts the algorithm in [GI]. Given a and 6, if neither subsumes

CHAPTE-R, 4. THE FOLfNDATIONS OF TAXONOMIC ENCODfNG 7 1

the other, and the intersection of their component mappings is non-emp~y, then we

can determine their meet simply by extracting the first component s, correspond-

ing to a non-meet irreducible element x. If x does not subsume either a or b, then

a n - x; otherwise extract the second component s, corresponding to a non-meet

irreducible element y. If no such component exists, a i l b = I; otherwise a fl b = y.

Another approach that implements spanning sets of compound down-sets, de-

scribed in [79], decomposes an ordered set P into co-atomic sublatticesl1. By grouping

elements together that have the same set of subsuming co-atoms, the authors show

thal the resulting order is a co-atomic lattice. If P is already a co-atomic lattice, then

the resulting order is isomorphic to Y. This partitioning is performed repeatedly on

each group of elements, forming a tree of co-atomic lattices that is used as the basis

for generating a bit-vector encoding of the original ordered set. Their algorithm can

also be viewed as computing a spanning set of compound up-sets, although the details

are beyond the scope of this thesis.

4.8 Spanning Set Decomposition

We have seen that with spanning sets of down-sets, we can only preserve joins with

principal down-sets (section 4.5) and meets with prime down-sets (section 4.6) 12. The

preceding section discussed combining principal down-sets i5to compound down-sets

while still preserving subsumption. In this section, we describe how decompositions

of spanning sets that satisfy certain restrictions can lead to some efficient implemen-

tations using, for example, integer vectors or logical terms.

Suppose a spanning set S for an ordered set P is decomposed into cul, 02,. . . , cuk

(ie. crl LJ a2 U - - U t ~ k = S). In order to use this decomposition, we modify the

component mapping to return, in addition to each component, the subset containing

it. We use the notation af s) to denote that component s is in subset a . For example,

if a(s) E C(e), thm e E s aad s is a member of the subset a, We say that an element

" h co-atomic lattice is a lattice in which every element is a meet of one or more co-atoms.
"Without the use of additional constraints, such as coieference, as discussed in section 4.9, and

in €102, 1041.

CHAPTER 4. THE FO tiiWATIONS OF TAXONOMIC ENCODING 72

of P is in a subset if it is in any of its constituent components. If we can guarantee

that subsets possess certain structure, we can implement them with space logarithmic

to the number of components, as opposed to the linear space required to represent

the components individually.

4.8.1 Chain decomposition

For a spanning set S on an ordered set P, a chain partition, as defined in section 4.3.5,

of the order induced by S is one form of chain decomposition. If the components of S

are principal down-sets, a chain partition of S is also isomorphic to a chain partition

of P. In general, if S is subsumption preserving, it corresponds to a chain product

embeddicg of P, as we discuss below.

The key feature of a chain decomposition S = a* U a2 U . . . U crk is that, giver] a

component si of a,, we can infer every component preceding s; in the chain. Thus,

we need not represent all components explicitly - the component mapping need only

return at most one for each subset. Integer vectors, described in section 4.3.5, provide

a direct and efficient implementation.

The virtual time proposal in i97], addressing the problem of global time in dis-

tributed systems, essentially performs a chain partition on a spanning set of pri~lci-

pal dovn-sets implemented using integer vectors. At each of k sites, transitions arc:

caused by internal state changes, and message sends and receives, foxming a partial

order based on precedence constraints among events (e.g. a send must precede its

corresponding receive). Note that this partial order is not necessarily a lattice, sir~cc

two sites may simultaneously send to each other. The transition events for each site

represent local clock advances. Possible combinations of the local clocks constrain

the possible global times. No global time is maintained in the system, but each site

zpproximates it using its local time plus the times obtained from other processes hy

messages received.

The transitions at each site form a chain, interconnected by message ser~ds and

receives, producing a natural chain partition that is represented by a vector of k

ktegers, Since the clock at each site is updated after each transition, the code of

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

an event for site i consists of the code of its parent at this site, with the ith entry

incremented and, if the event is a receive, the union is formed with the vector sent with

- this message. The underlying spanning set is thus the set of all principal down-sets,

so it preserves joins but not meets. As an example, a three site system is depicted in

Figure 4.15. A space reduction could be realized if down-sets were restricted to the

meet irreduci bles.
Site 1 Site 2 Site 3

[I ,o,ot [091 $1 [0,0,1 I
I

send [2 ,b1 1 infernal [0,0.2]

I receive [2,2,0] I - 1 send K%4.01 receive [2,3,3]

receive [3,4,0]
Figure 4.15: Distributed virtual time encoding

Generalizing this scheme requires partitioning an arbitrary spanning set S into the

minimlun number of chains, which is equivalent to finding the maximum sized anti-

chain of S [74]. The cardinality of this anti-chain, called the widih of S , determines

the minimum number of chains needed to represent S, and thus the minimum size

of a vector implementation. In the distributed system, the width is the number of

sites. In general, determining the width of S is possible in O(1SI3) time [74]. The

next theorem shows the space requirements for a balanced chain partition.

Theorem 4.13 Let S be an ordered set with n elements and width k . Further suppose

that therz is chain partition of S into ik ch.ains of size n / k . Then the integer vector

encoding for S on this partition regekes O(nk(Llog(n/k)J + 1)) space.

Since each element requires a vector of size k, and the maximum sized integer in

each vector is n/k (requiring O(log(n!E)) space), the result follows. Note: If k = 1,

then we have a total order and we require O(logn) space to represent each element.

If k = n, then we have an anti-chain and we require O (n) space for each element. In

both cases, bit-vectors require O(n) qace.

CHAPTER 4. THE FO U1VDATIONS OF T,4XONOMIC ENCODIRrG 74

Chain product embeddings

Chain partitions are in fact a specia.1 case of chain product embeddings.

Definition 4.8 Let P be an ordered st t , { C 1 , . . . , Ck) be a set of chains, rtnd T : P -+

x . - . x Ck be a function from P to the cross product of these cha.ins. Then. T is

a chain product embedding iS, for x, y E P, x 5 y if and only if T(Z) = (cf?. . . c i) ,

~ (y) = (c:, ... c i) a n d 6 LC, cy for 1 5 i 5 k.

We define element i of the vector T(X) as ~ (z) [i] (i.e. r (z) [i] = c:). A chain parti-

tion is the case when the Ci are chain suborders of P that partition P. Chain product

embeddings are closely related to order dimension 11441, and encoding dimension [Dl.

Theorem 4.14 Let P be an ordered set. Then every chain partition of a subsu?r;ptio~

preserving spanning set of up-sets S for P corresponds to a chain product embedding

of P, and every chain product embedding T of P corresponds to a chain partition o j

some spanning set of up-sets for P that preserves subsumption.

Proof: + Let S be a subsumption preserving spanning set of up-sets for P, and I d ,

(Cl, C 2 : . . . , C k } be a chain partition of S. Let us also define a special null component

sg $ S that subsumes every component of S. Define the mapping T : P -+ C1 x - . x (Ik

as T (X) = (c1 , c2 , . . . , c k) where, for 1 5 i < k , c, is the least element in C:. that is in C (z) .

If Ci n C (z) = 8 (i.e. there is no element in chain Ci that is in C (x)) , then c; = s* . 'I'hus,

ignoring the null components in this mapping, C (x) = Ticl, c2, . . . , ck)13-

Claim: T is a chain product embedding. If z 5 y, then C (z) IL_ C (y) . Clearly, for

1 5 i < k, we have ~ (x) [i] <c, ~ (~) [i] l ~ . Conversely, suppose for 1 5 i 5 k, we have

r (x) [i] <c, r (y) [i] . Then C (x) C (y) , so x 5 y.

e Let T be a chain product embedding of P into the set of chains (C1, Cz, . . . , C k) .
1 2 k k Define [C; = a;. Define the spanning set S = {si , . . . , snl , s: , . . . sn2 , . . . , s1, . . . s,'~), whew,

fm 1 5 i < k, 1 <I j 5 ~ q , we define S' 3 = (Z 6 4 f j SC, ~ (x) [i]) . Note that a, = {=$,.. .3:,),

for 1 5 i < it, d e f k ~ s a chain partition of S.

13Recall that for a spanning set S, C(z) = (s E Slr E s) is an up?set in .S.
''This holds wen if ~ (~ j [d or both r(y)fiJ and r f z) [i] are equal to sg.

CHAPTER 4. THE FOUND,d,TIO:VS OF TAXONOMIC ENCODING 75

Claim: S is a subsumption preserving spanning set of up-sets. If x < y, then for

1 < i 5 k , r (x) [i] sc, r (y) [i] . Suppose sf E C (x) . Since j <c, r (x) [i] and r (x) [i] <c,

r (y) [i] , j <c, r (y) [i] , and sj 6 C (y) . Thus, C (x) 5 C (y) . Conversely, if C (x) C (y) , then

r [x) [i] 5~ r (y) [i] , for a l l 1 < i 5 k. Thm x < y.0

Chain products have a natural implementation using integer vectors. A nice de-

scription of encoding by embedding ordered sets in products of chains is given in [79].

IJnfortunately, finding a minimal size product of chains into which an ordered set can

be em bedded is NP-Hard15.

4.8.2 Meet incompatible decomposition

A meet incompatible subset o.(sl, sz, - - - , sk) C S is a subset in which components are

pairwise meet incompatible. That is, if i # j then V a f s;, b f sj, a V b = I. If the

spanning set is composed of down-sets, this is equivalent to si n sj = {I). For a meet

incompatible subset a, any non-bottom element in a will be in exactly one of the

constituent components. So if a(s;) E C(z), then x E si and for all other components

s j of a, x 4 sj. Within this framework, subset checking, union and intersection are

 essential!^ the same as before. Now, however, if we are computing the union of two

component mappings and they contain a subset a with different components, the

union fails. This is facilitated by treating our lattice as I-unbounded.

A spanning set S of all principal down-sets of an ordered set P is isomorphic to

P. In this case, a meet incompatible partition of S is just a meet incompatible anti-

chain partition of P, as defined in section 4.3. This is the basis for the tree term

encoding in [34], which gives a logicai term encoding of tree shaped taxonomies. In

general, however, this does not hold. Note that a decomposition need not partition

the components of S. By allowing components to be members of more than one

subset. implementing meet incompatibility as union failure may be more viable. In

addition, even if we are not concerned with meet incompatibility, specifying that a

I 5 ~ h i s is called finding the encoding dimension in [79], and is closely related to the NP-Hard
problem of finding the dimension of an ordered set P (the minimum number k for which P can be
embedded in a product d t chains).

CHAPTER 4. THE FO UNDATIONS OF Td4XON0MlC ENCrODlNC.:

set of components is meet incompatible cam per~nit a large spa.ce savings, a.s sl~owll

for the following representations.

Bit-vectors Instead of representing a component in a subset of size 71, by onc. bit,

we assign Llogn] + 1 bits to the subset and assign a number from 1 . . . n. For

elements not in the subset, we place a 0 in these positions, as before. b'or :I,II

element in the subset, we place the number of the unique cornponcnt colltaining

this element. This derives the integer vector representation of scction 4.3.

Logical terms In a term, we use one position for each subset. I h r elernerit,~ not,

in the subset, we place an anonymous variable for ordinary tern~s and noth-

ing for sparse terms. For an element in the subset, we place a unique sy1111)ol

for the component containing this element. Unification and anti-unilicatiol~

operate as expected. We can exploit the hierarchical structure of terms by i l l -

troducing a subset o(sl , s2, - - ' . sk) at the functor for one of the co~t~po~lcnts

in u{sl, s2, - . . , ski . This can provide a significant space savings over integer

vector (or flat term) implementations. This is the form of tree tcrrr~ encod-

ings discussed in [102]. More general term encodings permit the use of logical

variables (coreference) , as discussed in section 4.9.

As an example, Figure 4.16 shows a meet incompatible anti-chain partition of the

spanning set S M p) (i.e. the principal down-sets associated with the meet irrccluciblc

elements) for the ordered set P in Figure 2.2. Note that since dog and f (m l dog arcb

not meet irreducible, they do not have corresponding elements in Figure 4. 16. Figure

4.17 then shows a logical term implementation of this partitioned sparlnixlg sct.

Figure 4-16: Meet incompatible decomposition

CHAPTER 4, THE FOIIWDATIONS O F TAXONOMIC ENCODING 7 7

Figure 4.17: Logical term implementation of meet incompatible decomposition

In section 4.6 we analyzed spanning sets of prime down-sets and showed a direct

correspondence with spanning sets of principal up-sets. We were able to then claim

that any finite lattice has a spanning set of prime down-sets that preserves meets

with union - this can easily be implemented using tree terms. In [102], an additional

constraint is imposed on such spanning sets: if a fl b = I then the C(a) U C(b) must

fail. As we saw above, this may be accomplished using decomposition, but this is

not always possible. Logical terms provide an impleaentation of this with unification

failure. For implementations using tree terms, this constraint is formulated as follows.

Theorem 4.15 [log] Let L be a lattice. Then L has a meet preseraing tree term

encoding i f and only if, for any a, b E L, a n b = I if and only if there are two meet

incompatible prime down-sets PI, P2 for which a E PI and b E P2.

Clearly, if there are two meet incompatible prime down-sets containing a and b,

respectively, aflb = I. Requiring the converse, however, means that many lattices are

not tree term encodable, according to Mellish's definition. Surprisingly, this includes

even the lattice shown in Figure 4.5. Encoding this lattice so that I is implemented

as unification failure requires coreference, as shown in [47, 1021. Determining if a

lattice is tree term encodable in this sense can be accomplished in polynomial time

since all meet incompatibility must be incorporated into a decomposition.

1x1 general, we wast to find the smallest decomposition of a spanning set. Unfor-

tunately, this is NP-Hard for the simpler case of partitioning an ordered set into meet

incompatible subsets.

CHAPTER 4. THE FOItTNDATIONS OF TA-XONObfK ENGODLVC;'

Definition 4.9 Meet Incompatible Ordered Set Partitioning. G i c w ~ ~ a l r or-

dered set P , and a positive number k < /PI. Is there a parfrfion of).' into h. t l , t ~ t

incompatible subsets?

Theorem 4.16 Meet Incom.patible Ordered Set Partitionin.g is NP-C!onrylt:tc.

Proof: We give a polynomial transformation from the Partition into Cliques problcw, dr-

scribed in section 4.7, to our problem. Let us construct an ordered set P from C as follows:

Let n = IVI ande = jEl. (i)Addn vertexelements v~,vz;-.,v,,. (ii) Add 9n = 9~(n-l) / 'L-e

non-edge elements as follows: For each pair of vertices u,, vJ, where i < j , which does tlot

have a connecting edge in E , add the element (v,, v,) where (v,, v3) < u, and (u,, vJ) < uJ .

Claim: P has a partition into k + 1 meet incompatible subsets if and only i f G has ;\

partition into k cliques.

+ Suppose P has a partition into j meet incompatible subsets. Select one subset 0' that

does not contain any vertex element. If no such subset exists, j = k and lct a' = Q) (;L trivial

meet-incompatible subset) to bring the number of subsets to k + 1; otherwise :, = k. f I .

Consider any subset a # a'. Claim: The vertices corresponding to the vertex elane~lts i n

a form a clique in G. Consider any pair of vertex elements v,, 23 E a, where i < j . Sincc

they are components of the same subset, they are incompatible. By the above constrtlct ion,

this could only occur if v,, u, have a connecting edge. Therefore, the corresporidirtg vcrt,ices

within each of these k subsets forms a clique in G.

e Suppose G has a partition into k cliques. Consider any one of the k clicl ues, tr. Clai 111 :

The corresponding elements in P can be components of the same subset. Any pair u,, uJ ,

i < j, can be components of the same subset provided they are in~ompat"~ ' 13y thc ahovcl

construction, this can only occur if v;, v, are connected by an edge. Sirice u,, 11, arc: in a,

clique, they are connected by an edge. Thus, the corresponding elernents within each of

these k cliques can be components of the same subset. One additional rnert incompat,ihlc

subset can be formed from all of the non-edge e1ements.o

The following figure shows a n example of the above trawformation. I t is easy to

see that the elements a , h, c, d form a clique in the graph and are meet incorn pa ? i blc

in the lattice.

Any meet incompatible decomposition of a spanning set S of an orderetl set I'

corresponds t o a meet incompatible decomposition of the induced subset order of S ,

a a b c d e f

Figure 4-13: Transformation of a graph to a lakticc

but not vice versa (since we may have two components sl, s2 f S for which v l fls $42 =

is, but sl # 0). However, we can add elements (s, , s,) for any pair of couiponcnt,~

in S that are incompatible with respect to the induced order of S, but compatiblr

with respect to the order of P. These elements would ensure equivalence Isct,ween t,lw

two forms of meet incompatibility among components in S. Thus, the more general

problem of finding a minimal meet incompatible decomposition of a spanning set is

also NP-Hard.

4.8.3 Meet homogeneous decomposition

We now generalize the notion of meet-incompatible subsets; we hope that this gen-

eralization caE be exploited in the development of new encoding algorithms. WC call

a subset cu(sl, s2, - . , s k) meet homogeneous (or simply homogeneous) i C for ally two

distinct components sl,s2 E a , a G s1 and b E s2 implies a fl b E s,Vs E a. rI'l~azt,

is, every element is either in 0, 1 or all the components of the subset. A mc3ct i l l -

compatible subset can be viewed as a special case of a homogeneous subset, wi t,h 1,hc.
added restriction that a n b = I. Since any element in the subset will eithcr hc i n

exactly one or all of the components, we need to associate a special symbol, I,, with

each subset indicating that every component is present. We redefine below the wi,

operations for meet homogeneous subsets.

subsets: C(el) c C (e 2) w Va(z) E C(el), either

i six) r C(e2) or
. .
11- a(& j E C(e2,).

union: C(e1) ti C(ez) = Q ej Va(z) E Q, either

i. a (z) E C(el! and e2 4 a,

ii. a(z) E C(e2) and el 6 cr or

iii. a (z) E C(el), a(y) E C(e2) and x 2:- y = z or z = 1,

intersection: C(q) ii C(ez) = Q f . ~ Va(z) E Q either

. a (~) f C(e1) and a(z) E C(e2),

ii. a (~ j E C(e1) and a(L,) E C(e2) or

iii. a(&) E C(e1) and a(z) E C(e2).

We can implement these operations with a modification to the sparse term or in-

teger vector representations. By partitioning a spanning set into meet homogeneous

subsets, we can achieve the benests of meet incompatible subsets. The generality

and flexibility of this structure, however, may permit more dense decomposition, de-

creasing the space requirements of an encoding, which may over-compensate for the

increased operational complexity. To illustrate these concepts, consider the ordered

set below. The minimal subsumption preserving spanning set of down-sets (with

no multiple occurrences of factors) is S = {Ja, Jb, Jc, Ld, Je, J f , Lh, JL) , which also

preserves joins. Since every pair of components is compatible, meet incompatible

decomposition provides no benefit. However, the following is one possible homoge-

neous decomposition of S: {crl (la , J f , Jh) , cr2(4b, Jc, Jd, Je), cr3(JL)). The component

mapping corresponding to this decomposition is also shown in the figure.

I al(~)&.),a3~

Figure 4.19: Meet homogeneous decomposition

4.9 Constraints and Coreference

We now develop a constraint-based examination of encoding, viewing bdtti ordtwd

sets and spanning sets as systems of constraints, and we fosn~ulate an i~ltegratiou of

spanning sets with other forms of constraints. In this contest, we are able to view t,hc

process of taxonomic encoding as a special case of constraint satisfaction. \UP first,

introduce the various types of constraints imposed by an ordered set. l'rescrving rer-

tain properties involves satisfying some of these. We next show how these constraints

can be incorporated into the components of any subsumption presesvir~g spatilting

set S of down-sets, through the use of guarded constraints, which are analogous to

Dijkstra's guarded commands. This involves restating the initial constraints in tcrrils

of the components of S, and may alter the properties of S with respect to joins and

meets. Many constraints can be implemented using techniques previously coverd,

such as chain partitions. We introduce coreference, such as that offered by logical

variables, as a c~mplernent~ary implementation tool, formalized through equivalence

classes of constraints. We also hypothesize about more general implementations.

4.9.1 Types of constraints

We will view constraints in a top-down manner as logical implications, denoted tlsirlg

the -+ symbol. Inferences on constraints are denoted using the i- symbol, and scts of

constraints are denoted using I?, Given a set of elements and a constraint involvi~lg

one or more of these elements, some consequence may follow through the applicnl,io~~

of modus ponens, where we use "A" to denote logical conjunction and "V" to de-

note logical disjunction. For example, given u, b and a A b -+ c we infer c, writ,t,cr~

a , b, aAb-w i- c. Different categories of constrai,lts are: distinguished by subscripting

the I' symbol. To be precise, we should also specify the partial order to which t h e

constraints apply, but this is usually obvious.

Order constrai~ts (I?<): - The constraint imposed by the relation a 5 h is simply

a 4 b. Thus, given element a and this constraint, we can infer elernent h. 7'hk

constraint has been implicit in our analysis, and is integral to any subsumption

CNA PTER 4. THE FO tfXDATIONS OF TAXONOMIC EXCODING

preserving spanning set of down-sets. The cover relation dictates a set of cover

constraints r<s. - Inferring T< - from the reflexive and transitive closure of -

follows.

Meet and jain constraints (rn, Tu): Su~pose we have al fl a2 n . . fl ak = b. In-

terpreting this logically, if we have all of the a;, we can infer b. The constraint

imposed by this relation is then a1 A a2 A . - - A ak +- b16. An important effect

of this constraint is that if b 5 c then a1 A a2 A - . . A ak +- c, even if none of

a l , a2, - . - , ak are comparable with c. From an encoding point of view, a meet

constraint is satisfied by deducing new information. We later show how certain

cases of meet constraints can be implemented using coreference.

Suppose we have a1 U a;? U - . U ak = b. Interpreting this logically, if we have at

least one of the a; , we can infer b. The constraint is then a1 V a2 V V ak t

b. Thus, from the uncertainty associated with a disjunction, we can infer a

consequent. Due to the difficulty in implementing join constraints except with

intersection, we will rely on previous techniques to satisfy ru.

Meet and join incompatibility constraints (rl,rT): Suppose we wish to im-

plement I as failure and we have a meet al n a2 fl - - fl ak = I that is minimal

in the sense that any subset of the a; is meet compatible. This results in k

constraints: a1 A - - . A a;-1 A a;+l A - . A ak -+ l a ; , 1 5 i 5 k. Join incompati-

bility constraints can he defined dually, although we do not discuss them. The

negation of an element a; is a logical construct, the purpose of which is to cause

an inconsistency in case we infer ai . We show later how these constructs can

be used to implement i as failure.

As indicated, we only explicitly deal with r<, rn and rL. Thus, the antecedent -
of every constraint will be a conjunction (or a singleton). Our only rule of inference

is modus ponens: A, A--+b I- b, where A is a conjunction of one or more elements.

This rule enables us to deduce new elements from a given base set. Rather than

16The generalization to meet-crest constraints is straightforward: if we have a1 fl a2 fl . . . n a k =
(b l , bar.. . , b j) , then the resulting constraint is a1 A a2 A - . A ak -+ bl V b2 V . . - V b, . To keep our
discussion clear, however, we will focus only ,m meet constraints and lattices.

allowing closure immediately7 me provide an incre~nental inference procedure. 'I'his

is important for encoding, since we need to hound the number of infereuc~ steps ill

a deduction for the sake of efficiency. The following rules describe this procedure

for a given initial set of constraints r, where represents one application of modus

ponens:

We say r I- A + b if there is sonre i 2 0 for which A --+ b E l7'. Sincc I' is

finite, there will be a number k 2 0 for which rkt' = l ? , giving a fixed-point for this

construction and I?* = rk. Of course. using the above rules, we could specify a niinirna,l

set of constraints from which all others could be obtained (e.g. the entire order rclatiorr

could be derived from the cover relation), and perform taxonomic operations wing

inference. However, to satisfy locality, every constraint we wish to satisfy rieeds to

be immediately accessible (i-e. in a constraint set) or derivable in a small nurnbcr of

steps. For the spanning sets we have studied, all constraints are local. Wc show la,tcr

how coreference may allow us to derive additional constraints in one inferericc step.

We will use the diamond lattice in Figure 4.1 to illustrate the specification ard

use of constraints. The cover constraints are J?<I - = {a- T , b+T, c-T, L-ia , I - + I] ,

I-w). The meet and join constraints are: rn = (a A b - + I , aAc-+l , ~ A C - L L) and

rU = { a ~ b - + T , aVc-T, b~c--+T) , respectively. Recall that we showed in sect,ion

4.2 that no spanning set exists that preserves both meets and joins for this lattice.

We later show how rn and Tu may be preserved using coreference.

4.9.2 Augmented spanning sets

Each component of a spanning set S can be viewed as encompassing a set of <:or)-

straints, and S preserves certain properties that we can infer from these constraints.

A down-set l { a l , a2, - - - , ak) represents the set of constraints Vx E J{(L~, a2, - . ? ~ l k) ,

x -+ al V a2 V - - - V a k . That is, given any element in the down-set, we can infer the

disjunction of the factors. In case the down-set is principal, l a , we have Vx E l a ,

z --+ a. An up-set T(al ; az7 - - - , ak) embodies the constraints: Va E f {al, a2, - - - , a k) ,

a1 /; a2 /'. - - - A ak - x. That. is. given all of the factors, we can infer any element in

the up-set. In case the up-set is principal, Ta, we have Vx E Ta, a -+ x. Our analysis

focuses on down-sets. We can also view a component itself as a set of constraints: the

coniponent s represents z -+ s for all x f .s.

Principal down-sets thus include a subset of I?< - and the spanning set of all principal

down-sets induces this entire set. We showed in Theorem 4.3 that the meet irreducible

elements embody the essence of joins, so Sn/l(L) preserves subsumption and joins while

retaining only a subset of I?<. - Compound down-sets, however, incorporate ambiguity.

By merging the constraints of two or more principal down-sets, uncertainty arises as to

which constraint is satisfied. Although we cannot preserve joins with such uncertainty

(as we have shown), we can possibly preserve subsumption and meets (sections 4.6

and 4.7). In general, if Cfxl) U C(x2) U . - . U C(xk) _> C(y) then XI A 2 2 A . . . A xk -+ y.

We denote the set of constraints of a spanning set S as I?(S). These can be expressed

dually in terms of components: if sl fl s 2 n . - . n sk C s then sl A s 2 A . . . A sk -+ s.

A decomposition S r= crl U . . . U a k represents additional constraints. A chain

decomposition induces the constraints V1 5 i < k, if sl, sz E at and sl <,, s2 then

sl -+ s2. For a meet incompatible decomposition we have: V l 5 i < k, if sl , sz E cri

and sl # s z then sl + 1 ~ 2 - For a meet homogeneous decomposition, V1 5 i < k, if

~ 1 , SZ, $3 E a; and sl # sz then sl A s 2 -+ s3.

To integrate constraints and spanning sets, we express const.raints in terms of

spanning set components. We now discuss how this affects the component mapping

and taxonomic operations.

Definition 4.10 A component constraint of an ordered set P is a constraint

sl A . . . sk-1 3 s k , where each of the antecedents and the conseqzlent are subsets of

P - 4 set of compon.ent consfrccints Sr of P is calked an augmented spanning set if the

function Cr : L -t 2'r defined by Cr(x) = (sl A s 2 A . . . A S ~ - I -+ SI; E Sr/3ir 1 < i <
k, I E s;) is one-fo-one.

Ordinary spanning sets are a special case, where k = 1 for every constraint. We as-

sociate a constraint with every element in its antecedent or consequent. An augmented

spanning set for our example is as follows: Sr = { l a , .lb, LC, l a AJ b-).lc., ~ a ~ J c - + . l . t ~ .

~b~.lc-).la). We say that Sr is an augmented spanning set of down-sets if ctwy tan-

tecedent and consequent is a down-set.

Although many constraints can be inferred from a base set, encoding essrwt.ially

performs all the desired inferences a priori, and then represents the conscqutwccs

of an element in a code. Using this code, we can perform operations locally, which

amounts to reducing inferences to one step. We shall see in Chapter 5 one approach

to relaxing this to allow inferences with a fixed number of steps. How can we perform

a one-step inference? Since we associate constraints with elements, we can perforr~~

set operations, as we have previously shown. We can also apply one lcvel of moclils

ponens (i.e. calculate r1 from I?') using coreference, as we describe later.

We must now redefine property preservation for an augmented spanning set SF of

down-set s:

Subsumption: x 5 y if and only if Cr(y) C Cr (z).

Meets: x fl y = z if and only if Cr(x), Cr(y)FCr(z).

Joins: z U y = z if and only if C r (s) n Cr(y) = Cr(z).

Note that when computing meets, we use the constraints to infer additional corn-

ponents. For efficiency, we will usually only perform one inference step. That, is, we

only infer components from the given components and inferences, and do not at,t,ernpt

further inferences usi~lg inferred components (i.e. we compute tI). After perfor~nirlg

the inference step of a meet, we can remove trivial ~onstra~ints (e.g. if wc already !.avc

s2: then s 1 - f ~ ~ is redundmt).

Our example preserves subsumption and meets, but not joins. For clcrnents a , b

and I:

i Cr(a) = {la, laAlb-+lc , JaAlc+J.b, .lb~Jc+.la}

ii. Cr(b) = (Jb, Ja~Jb--+.lc, JaAlc--+.lb, J b ~ J c j J . a }

We can see that Crfa) c Cr(i) . To compute a Il b, we cornpute the infcwrice

Cr(a),Cr(b) I- Jc using the constraint J a ~ l b - t J c . We can thus infer Cr (l) , and so

ugh = 1. Simplifying the constraints then yields the set (La, ib: LC). Since Cr(T) = 0,
but Cr(aj and Cr(bj are not disjcint, this spanning set does not preserve joins.

4.9.3 Integrating spanning sets and constraints

Suppose we have a set of constraints r we wish to satisfy and a spanning set S of

down-sets that may satisfy some of these constraints. In order to integrate S and

r, we need to transform r so that the antecedents and consequents are expressed in

terms of components.

How do we convert elements to components? This can easily be done for any

subssmption preserving spanning set S of down-sets. Using the original set r of

constraints (we assume that I' _> r(S) _> T<), - we construct an axgmented spanning set

Sr. The next theorem shows not only how these conversions can be accomplished, but

also proves that it can always be done in a sound and complete manner. For soundness

we require: Sr I- alAa2A- .~u~---tb implies r alAa2A. . .Aak-+b and for completeness

we require: r t al A a2 A - . - A ak+b implies Sr t- a1 A a2 A - . - A ak-+b. We need to

specify how we can infer a constraint on elements from a set of component constraints:

Sr I- a1 A a2 A - .. A ak+b if and only if (i) Q = UISiSk C(ai) and (ii) Sr I- Q-s for

every s E C(b) . That is, if we can infer every component of the consequent from

the components of the antecedents, then we can infer that the antecedents imply the

consequent.

Theorem 4.17 Let L, be a lattice, S a spanning set that preserves subsumption and

I' a set of constraints on L of the form a1 A a2 A . . . A ak+b (which contains I'(S)).

Then the avgmented spanning set Sr = SU(Q-sIA-+b E I?, Q = U,,, C(a), s E C(b))

is sound and complete.

Proof: Soundness: Suppose Sr I- A-b and Q = UaEA C(a). Then Sr I- Q-+Q1, where Q' _>

Cfb). Le% the sequence of constraints in Sr that were used to derive Q' be Q1+q1, . . . , Q,+qm,

where Q 2 Q1 a d Q1 C Q U (qlt . . qm). Each component constraint Qi-q must have

come from acolrstraint A;--b; E I?, where A _> A1. Thus, I',A I- b;, 15 i < m (i.e. each

inference step is justified). Since UaEaC(a) U Ub,EIbI,...,bn) C(bi) 2 C(b) and Sr preserves

strbsmption, we haveA hb1/ i . . . A b, + b e f(Sj C I?. Thus, r ,At- b.

CompEeteness: Suppose I'. A b. Let the sequence of constraints in t' that were used

to derive b be -41-bl,. . . . A,-+b,, where A 2 A1 and b = b,,. For each const r i t int ,-l,-.b,,

there is a set of constraints in ST: Q,-s, where Q, = UaEA, C(n) and s E C(b,). 'l'btls, wtb

can derive Sr, Q I- b,, where Q = UaEA C(a).a

We can now convert any constraint to a component constraint and t h the-ore111

shows that the resulting set will be sound and complete. The resulting constraints can

of course be simplified. Constraints with empty consequences, or for which a cortipo-

nent appears as both an antecedent and the consequent, can be eliminated. Contin-

uing with our example, if S = (Ja. Jb, Jc) and l7 = {u--+T, b-+T, c+T, (t ~ b - - + ~ ,

aAc-+b, bAc+a, l + a , I+b , 1-c), then the augmented spanning set, is: S',- =

{la, l b , Jc, JaAJ.b-+.ic, JuAJ,c--+J~, Jbr\J.c-+@). We can achieve a further reclrtc-

tion in this example, and still maintain order and meets, by eliminating the compo-

nents containing Ja in their consequents. This results in the augmented spanr~ing sot

Sf. = { J b , Jc, JaAJ.b-+Jc, J.ct~Jc-+Jb). Although it may be difficult to determine a

minims! augmented spanning set, approximation algorithms may be developed.

Our analysis above did not consider negated elements resulting from rnect incom-

patibility constraints. For this, we require the notion of a negated component, ~ s ,

which represents a logical barrier to the inference of a component s (i.c. s A 1 s is

inconsistent). The constraint a1 A a2 A . - - A ak-+lb, can be replaced hy C(u l) U

C(a2) U - - . C! C(ak) -+ is provided: (i) s E C(b) and (ii) td factors f of s, we have

a1 A a2 A - . - A a k - n f . Thus, we can replace a negated element by the negation of on(:

of its components provided the antecedents imply the negation of every factor. This is

required because incompatibility will be detected by inference failure and wc necrl to

be certain that all failures are justified. We can always accomplish this i f the negatc:cl

element is the factor of a principal down-set component. If no component satisfies

this constraint, we can add this principal down-set to the spanning set. We later show

how coreference and decomposition can be used to implement these constraints.

As an example, a spanning set for the rube lattice in Figure 4.5 is SJU = (l a , Jb, Jc)

and the meet incompatibility constraints are (an f =l, bne=l , cfld=l). The aug-

mented spanning set is Sr = (la , 1 ' 1 , l r , la~Jb-Jc, J.ur\J.c--+~+lb, ,lb~J.c--+lJa).

CHAPTER 4. THE POUNDATIONS OF TAXONOMICENCODING

To take the meet n j a , b,c): we first obtain the entire set above, from which we can

derive l a 7 fb, Jc, JaAJb---+7LctJc: which is inconsistent. We can again reduce the

number of components in the augmented spanning set, while still maintaining meets:

5'; = (Jb, LC, J , u A / ~ - + - ~ c , la~Jc-+-Jb).

4.9.4 Guarded constraints

Although constraints are global, for efficiency we want to selectively associate con-

straints with elements. We must do this in a way that ensures satisfaction, yet mini-

mizes the number of constraints associated with each element. A constraint could be

affiliated with each of its antecedents and its consequent, but to ensure satisfaction

only one antecedent, or the consequent in case there are no antecedents, needs to

be linked to it (since the antecedents are conjunctive). This leads to the notion of

guarded constraints, which are analogous to Dijkstra's guarded commands.

Definition 4.11 Let P be an ordered set. A guarded constraint for P is a constraint

of the form a : A-4, where AAa+b is a constraint in PI7. For any element a E P,

a : a is a trivial guarded con.straint.

The set of guarded constraints obtained from I? is denoted as rG. A constraint

with k antecedents may result In up 50 k: guarded constraints, but we may not need

to retain all of these: it may be possible to eliminate up to k - 1 of the constraints,

although we shall see that this cannot be done arbitrarily. In the diamond lattice

example (Figure 4.1), we can guard the meet constraints and still maintain meets as

follows: rG = (a:b-+l, a:c-+l, cb-+l).

Modus ponens can be revised to operate on guarded constraints: a , A, (a:A-+ b) t b.
Given a starting set of constraints r, constraint inference becomes:

i. r0= (a:A+b I I? ,a ,At l b (2 I')
ii. I"+' = {a:A+b I (T i , a, A t1 cl), - . . , (I", a, A I-, ck) and Ti? q, - - c k I-, b)

"ff A = 8, we write a : b.

For encoding, we will guard the constraints in augmented spanning sets; Thus -5':

will be a set of guarded component constraints from SF. We guard an elementary cow-

ponmt s as s : ~ (if we write s, this is assuming the implicit form s : ~) . 'l'he conlponr*11t

mapping is modified as follows: Cr(s) = Isl A . . . A S ~ - ~ - + S ~ ~ ~ + ~ : Y ~ A . . . A S ~ - ~ - - + S ~ E

SF, z E sg).

Taxonomic operations are performed as kiore. The reason t4 hat we don't includt:

the guard in the result of the augmented component m.upping is that the guard in-

dicates to which elements a constraint (or augmented conzponent) k associated, aucl

the rest of the constraint is conditional on t.he context of the guard (analogous to

conditional probability). Also, in order to implement a u g ~ e n ted spanning sets, we

require that, for every component of the form sg:slA.. . I \ s ~ - ~ - + s ~ , there arc elcmen-

tary components s i x ; for 1 5 i 5 k. Thus, down-sets involved in constrairlts (but not

necessarily guards) must be present as elementary components. We show later how

this property can be used to reduce encoding size.

In our example. SF = (lu, Jb, LC, La:lb-+, Ja:lc+Jb, lb:&+la). Meets,

and now also joins, are preserved. We can also reduce this spanning set to ,S[(: =

{Jb, LC, la:Jb-+Jc, Ja:j.c-+Jb).

4.9.5 Coreference

Logical terms provide coreference through named variables or labels. Two or mom po-

sitions in a term that corefer must hold identical values, called a coreference constrai~~t,.

If one is instantiated, then all are identically instantiated. We can characterize cciref-

erence as persistent or transient. Once a coreference point is instantiated, transient

coreference disappears (i.e. there is no recollection of the coreferring positions). '('his

is the form provided by Prolog. Although implementations may retain the coreferencc

constraint to reduce storage requirements, the surface form is transient. I'ersistcnt

coreference, as provided by LIFE [4], maint ains the coreference after instantiation .
&%ore generally, corefei-ence is an equivalence relation within a term. 'f hat is

coreference is (i) symmetric: if it is used to implement a - 4 , then it also irnj>lernents

b+a, and (ii) transitive (since we can only have one coreference label or variable at

CHAPTER 4. THE FB UL'flATIOA7S OF TAXONOMIC ENCODING 90

a position in a term): if we implement a-+b and b+c, then we are also implementing

61-C. By introducing coreference within a specific term, we implement s guarded

equivalence relation. For example, if we use coreference to implement the guarded

constraint s:.sl--isp, then the equivalence class sl ++ s;! is implemented for elements

in s. Meet incompatibility constraints (e.g. s:sl-+~s2) require the use of symbols,

as discussed in the next subsection. If we can decompose our meet inferences into

guarded equivalence classes, we can implement an augmented spanning set using

coreference in logical t,erms, as formalized below.

Theorem 4.18 Let L be a lattice: and SF be a guarded augmented spunning set on L.

th,at contains no negated components (i.e. no meet incompatibility constraints). Then

there is a logical term implementation (which may use coreference) of SF i f and only

if
i. If sg:s1As2A. - h k + s E SF then k 5 1

ii. 1f SF C sg:sl-ts2 then SF 1 sg:s2+sl

iii. ~f SF I- sg:sl*s2 and SF t sg:s2-+,s3 then SF I- sg:sl-+s3

The proof of this theorem follows from the fact that coreference cannot itself be

conditional (conditicn (i)) and it imposes a set of equivalence classes (conditions (ii)

and (iii)). Condition (iii) is actually unnecessary, since it follows from inference. It is

possible to take any constraint with more than one antecedent and split it into a num-

ber of constraints with two antecedents each. For the constraint alAa2A . . . Auk-+

we can create k - 2 additional elements 12,3, 13,47 - - I.E-l,X- and rewrite the constraint

as: n i A ~ 2 - + 1 2 , 3 , /2,3Aa3-+k,4, - - , lk-l,kAak+b.

Logical terms can be used to implement augmented spanning sets that satisfy the

above restrictions. A coreference equivalence class will be introduced by its guard by

placing a new variable in the positions assigned to each of the coreferring components.

We may also be able to implement coreference using integer vectors equipped with

pointers. For non-decomposed spanning sets, we can use the same symbol (e-g, 1)

for all components, or just record the presence of the component without a symbol

(as is possible with sparse terms). We describe additional restrictions for decomposed

spanning sets and meet incompatibility constraints in the next subsection. Using

coreference, we can impiement our example spanning set for the dimoud \at ticc as

shown in the first diagram in Figure 4.20. Meets are preserved with unification arid

joins with anti-unification.

Figure 4.20: Term encoding for diamond and cube lattices

There are lattices for which we cannot preserve both meets and joins with a q -

mented spanning sets of down-sets. As indicated, problems arise when we ca~iriot~

establish symmetry or transitivity of constrzints. Figure 4.21 shows such a 1a.ttic:e.

If we are to preserve joins, the component mappings for each of a, b, c must be dis-

joint. Thus all the down-sets must be principal, and in particular the guards must,

be principal down-sets. We must preserve the constraint aAc-b, but rteither nAb-+c

nor bAc+a holds, so there is no way to guard this constraint for implementation wi th

coreference.
T

Figure 4.21: Lattice for which no augmented spanning set of down-sets can preserve
meets and joins

4.9.6 Coreference, decomposition and meet incompatibility

constraints

Decomposition in augmented spanning sets only applies to eiernentary cornponcnts

(components of the form s:s); the other components will be irnpiemented as con-

straints between these. Meet-incompatible decomposition, in addition to reducing

space requirements, permits some meet incompatibility to be detected by uriion fail-

ure, and represents incompatibility constraints among pairs of elements. However,

CHAPTER 4. TEE FOUAKDD41;10XS OF TAXONOMIC ENCODING' 92

when the meet of three or more elements is 1, but every pair is compatible, we

cannot ensure incompatibility-as-failure using decomposition alone [102].

Since coreference imposes equality constraints between positions within terms,

and each subset in a decomposition is assigned a position within a term, we define a

pdrtial function symbol that. maps elementary component/subset pairs to the symbol

used to represent the elementary component within the subset. Thus symbol(s, a) ,

for s E a C S, returns the symbol used to discriminate component s from other

components within subset a. ?Ve specify the subset siilce components may be in

multiple su bsets. For non-decomposed spanning sets with no meet incompatibility

constraints this was unnecessary, as every component could be assigned the same

symbol. For a chain decomposition, the symbols must be ordered according to the

chain order. For meet homogeneous decomposition, we must have a I, symbol to put

in the position of a for elements in every component, but otherwise the restr; IC t ' ions are

similar to those for meet incompatible decomposition. We do not consider these cases

further. Integrating coreference with meet incompatible decomposition of spanning

sets requires different restrictions than in Theorem 4.18:

Theorem 4.19 Let L be a lottice, SF be a guarded ~vgmented spanning set on L, and

A = (al , . . . , ak) be a meet incompatible decomposition of the elementary components

o/SF. Then there is a logical t erm implementation (which may use coreference) of Sg

if and only i f (i) 'd .#:slAs2A - - - A S ~ ~ S E SF, k < 1 and (ii) 3 guarded equivalence

relations, =,gC A x A for each guard sg in Sg, and a symbol mapping that satisJy:

For every constraint sg:sl-+s2 we need to establish coreference between each sub-

set containing s 2 and some subset containing sl . For every constraint sg:s, -+7,s2, we

need to establish coreference between one subset containing st and one containing s a .

By ensuring equality or inequality of the symbols, we can satisfy the constraint in th t

context of sg. In the former case, we will infer s 2 given sl; in the latter case unification

will fail if we have both sl and s2. Thus, provisions (i), (ii) arid (iii) are necessary

conditions for implementation of the non trivial constraint,^ in SF with coreferetlcc.

Since coreference forms a guarded equivalence relation among subsets of thtb t1ecot11-

position A, not among components, the establishment of coreference constraints 1~11st

be consistent with other constraints pertaining to the coreferring subsets. Provisior~

(iv) ensures that no unsupported inferences are made. Note that the above conditiom

can be used when attempting to satisfy meet and meet incompatibility constraints

even if our spanning set is not decomposed by giving it the trivial decotnposition that

puts each component in its own subset.

Given a satisfying set of guarded coreference relations and symbol mapping, we

can easily construct the terms as before. Each subset will have a position, as discussed

in Section 4.8. When computing the term for an element x, start with tlre inlmit,cd

term (i.e. the unification of the parent terms). For each subset N for W I I I C I I 2 is a

factor of a component s E a, put syrnbol(s, a) in the position for a. For each guard

s9 for which z is a factor of sg, add coreference between all positions c q , a2 for which

a1 =ss a q .

As an example, consider again the lattice in Figure 4.5. Using principal down-scts,

we can derive the augmented spanning set SF = {Ju, Jb, Jc, Jb:Ja--t~Jc, Jb:Jc--+-~~a}.

,'ls in the previous case, we can notice that the elementary component Jb is unncces-

sary, so a reduced spanning set is S1F = {la, Jc, l b : J a + ~ J c , Jb:Jc-++a}. We can

now give the trivial meet-incompatible decomposition, and define the symbol map-

ping as follows: symbol(la, { l a)) = 1 symbok(.Lc, {Jc)) = 2. Since the coristraints

guarded by J.b are equivalent, we can easily implement this spanning set, as shown in

the second diagram in Figure 4.20.

CHAPTER 4. THE FOCTNDATIONS OF TAXONOMICENCODING

4.9.7 Encoding algorithms

In [I021 is an exploration of which forms of ordered sets can be encoded using logical

terms so that meets are preserved with union (i.e. unification) and meet incompati-

bility is detected with failure. In [lo41 this exploration is extended to general DAGs.

Our exploration of the use of constraints and coreference takes a different approach.

Mellish fixes on an implementation (e.g, terms or DAGs) and attempts to find the

class of ordered sets that can be encoded to preserve I'n and rl. In contrast, we take

the ordered set P to encode and the constraints to satisfy as input that we cannot

control. Our goal is to develop a variety of tools with which we can efficiently encode

P regardless of its fcrm (although we assume that P is finite, and Mellish does not). In

the above two papers, the form of encodable ordered sets is explored, but no encoding

algorithms are presented. The only encoding algorithm that exploits coreference that

we are aware of is the brute force algorithm in [101]. Unfortunately, this algorithm

may potentially produce terms that are of exponential size compared to the size of

the ordered set to encode.

We have not given any encoding algorithm, although a naive one may be specified:

i. Start with the constraints t.o satisfy (e.g. a subset of r< - LJ I'n LJ rL).
. .
11. Derive an augmented spanning set SF that satisfies these constraints (e.g.

the principal down-sets for meet-irreducible elements satisfy this).

iii. Form a meet-incompatible decomposition of the elementary components.

iv. Form guarded coreference relations and a symbol mapping that satisfy as

many of the constraints as possible, while obeying provisions (i) and (iv) of

Theorem 4.19.

v. Derive the logical term for each element using the component and symbol

mappings, and the guarded coreference relations.

Recall that finding a minimal meet-incompatible decomposition is NP-Hard. Thus,

i t seems likely that encoding algorithms that exploit logical terms and coreference

will be approximation algorithms. The above high-level algorithm will find a term

encoding that approximates the optimal in terms of space requirements and properties

satisfied. An area for future research is to design specific algorithms for term encoding.

4.9.8 Variations

In order to enhance implementations of augmented spanning sets, therc arc several

avenues worth considering. The first involves the preservation of joins. Given a

spanning set S M , which preserves jcins, when we augment this with constraints wtb

may lose joins because of constraints that are associated with each element of tho join,

but not with the result. This problem can be avoided by redef ning joins to consicler

only the elementary components.

Although coreference provides an efficient and available implementation of ccrttain

forms of constraints, its nature restricts its usage. Since logical inference is transitive,

this is a desirable property to implement constraints. Symmetry, on the other lli~11c1 IS

not always desired; it does not always hold in a set of constraints. What we requirc is

a way to implement arbitrary guarded constraints. One approach would be to use a

constraint logic programming language. This is viable only if the language cfficitmtly

implements such constraints. Another possibility is to use a "trigger" rncchanism

that invokes a constraint when the antecedents are satisfied, but ignores it O~,~ICPW~SG.

Coreference essentially allows the consequence to trigger the constraint as well as t,llcl

antecedent. This functionality is developed as reference constraints in Chapter 8.

4.10 Discussion and Conclusion

In this chapter, we have characterized encodings as implementations of spanning sct,~

that preserve subsumption and possibly meets and/or joins. We have thus provided

a framework in which to compare all approaches to encoding. Although irnplementa,-

tions may have a drastic effect on the size and efficiency of encodings, we can ahstmct

the fundamental aspects of a technique to the level of spanning sets.

Throughout our analysis: we classified current encoding techniques within this

structure. We showed how the transitive c!osure and compact encodbgs in [2], thc

tree encoding in 2771 and a simplified version of a tree term encoding defined i n [I 021

are all implementations (or equivalent to implementations) of spanning sets of prin-

cipd down-sets or up-sets. The compact hierarchical encoding of [24] implements it

CHAPTER 4. THE FO UNDATIONS OF TAXONOMIC ENCODING

spanning set of compound down-sets, which we showed to be an approximation to

the NP-Hard optimum. The integer vector encoding of 19'71 employs chain partition-

ing. More complex term encodings described in [I021 arise from meet incompatible

decornposi tion and coreference constraints induced by logical variables. Table 4.1

summarizes our characterization of these encoding schemes in terms of the opera-

tions satisfied, the types of components in the spanning set, whether decomposition

is utilized and the implementation of the spanning set. For comparison, we charac-

terize schemes using spanning sets of down-sets, which may be the dual of the actual

algorithm described. As can be seen, there are many possibilities open for exploration.

Table 4.1: Characterization of encoding schemes in terms of spanning set of down-sets
type of spanning set decomposition implement at ion

I
encoding components

transitive closure join principal - bit

PI SI vector
compact join principal - bit

f21 SM vector
interval join principal - integer

PI Sl intervals
virtual time join principal chain integer

1971 SI vector
tree encoding meet prime - bit

[771 ST vector
tree term [102] meet. prime meet tree

[lo21 ST incompatible term
term meet pseudo-prime18 meet logical
[10'2] - incompat i ble term
compact subsumption compound - bit -
hierarchical 6241 vector
indexed join compound - bit -

vector
co-atomic tree subsumption compound - bit
encoding (791 vector

-

In many of the our inquiries, the complexity of the problem has left open many

avenues for contimed research. The NP-Hard results for minimal spanning sets of

CHAPTER 4. THE FO LT1YDi4TIONS OF TAXONOMIC ENCODING

compound down-sets and meet incompatible decomposition warrant further csylo-

ration for approximation algorithms. In particular, we have indicated the utilit,y

of multiple occurrences of factors in compound down-sets, offering the potent,ial for

finding approximation algorithms resulting in more efficient subsumption crlcocfi~tgs

than in [24, 61, 793. Another area justifying more research is in the specification

and implementation of constraint-based spanning sets. Coreference provides a logical

implementation for certain forms of constraints. Mellish [lo l l provides a brute forcc

method for encoding any finite taxonomy using coreference.

A key factor affecting the design of encoding algorithms is whether the ordered

set is dynamic or static (i.5. the degree to which the ordered set may change during

run-time). The e~lcoding of a static order can be computed a priori. In this caw,

the speed of the encoding algorithm, and the feasibility of modifying codes is 1 1 o t

as important as the efficiency of the codes. For dynamic orders, however, we 1lc:cd

encoding schemes that efficiently generate encodings and are not brittle in the fare

of change. In this case, the modifications required for codes should be local to the

change in the ordered set and should not take too long to update. Of course the

underlying spanning set, will have a great impact on the scope of a change. Clorrlpou~~ii

components and decomposition both magnify the number of elements directly cffectcd.

Implementations also have a significant effect on scope. Those which require cvcry

element to be of the same length (e.g. bit-vectors and integer vectors), or which require

the specification of unfilled positions (e-g. bit-vectors and ordinary logical terrns),

cause the scope of change to extend beyond those elements directly affected. For

the interval encoding in [I], the authors describe how leaving gaps between differcnt

intervals can reduce the cost of updates (both inserts and deletes). As these gaps fi l l ,

it may become necessary to re-encode the ordered set. We argue in Chapter 6 that,

sparse terms may offer the flexibility required of dynamic environments.

One of the contributions of our analysis is that it may guide the development of

new encoding schexies. ,4 given encoding problem may dictate certain conutrahts,

such as sipuctural properties of the ordered sets to encode (eg . lattice, distribu-

tive, bounded width), operations required (order checking, meets, joins), if the ordcr

18see I1021 for a description of pseuduprime spanning sets.

CHAPTER 4. THE FOUNDATIONS OF TAXONOMIC ENCODING

changes dynamically and how (does it grow top-down? are the changes frequent?),

and so on. The application and available hardware may also suggest an implemen-

tation (e.g. parallel hardware may preclude the use of coreference). The problem

parameters will constrain the available techniques and may indicate the availability

or absence of existing algorithms to solve the problem. In the latter case, some of our

results may assist in the development of new algorithms.

There are several important topics that we did not cover in this chapter. We did

not discuss in detail the problem of decoding the result of a meet or join operation

to obtain the element(s) in the original order. The importance of this depends on

the application. Some applications (e.g. [2]) only rieed to perform a decode operation

after many meet operations, and so the efficiency of decoding is less significant. Other

applications, however, may need to decode after every operation. There are several

options to decode efiiciently. Efficient algorithms have been proposed in [61, 77, 78,

1141. The composition of sparse terms may be exploited in decoding. Depending

on the implementation, hashing may also be possible. Anothe~ area we ignored is

relative complements, which involves the association of negative, as well as positive,

information with elements. We hypothesize that the technique in [2] can be formalized

in terms of spanning sets and integrated with the techniques we have discussed.

We have proposed spanning sets as a foundationai framework in which taxonomic

encoding techniques can be classified. Our analysis exposes connections among ex-

isting schemes in terms ~f the information content of the resulting encodings and

the implementation techniques employed. We have also shown some of the limits of

encoding, especially our NP-Hardness results. The classification also reveals several

avenues for continued research on encoding, particularly for algorithms to approxi-

mate the NP-Hard problems (e-g. sections 4.7 and 4.8) and for exploration of some of

the generalizations and extensions that we have proposed. Additional exploration of

the use of constraints (such as coreference constraints provided by logical variables)

is also wuraated.

We feel that this work provides an important view on the field of iaxonomic encod-

ing, summaxizing current efforts and giving direction for its continuing development.

It is one step forward in the quest for efficiency in taxonomic reasoning.

Chapter 5

Modulated Encoding

"Thinking is sometimes injurious to health'?

- Aristotle

In the previous chapter, we considered encoding ordered sets in their entirety. Using

the techniques presented, many efficiency gains can be realized. However, il: we could

decompose our ordered set P into a number of smaller units, dramatic decreases in

space may be achieved1.

In this chapter, we examine ordered sets in terms of intervals. ,4 special type of

interval, called a module, leads to an t:fficient form of order partitioning called mocln-

lation [2] where each partition can be encoded, or further modulated, indepenclently.

This allows us to synthesize, with little overhead, different approaches to encoding,

by taking advantage of the most efficient techniques for portions of a taxonomy.

Modulation is related to modular decomposition of graphs, particularly carnpara-

bility graphs [90, 109, 1121'. Another form of partitioning for distributive latticcs is

described in [78]. We present a flexible scheme LO perform lattice operations on rnocl-

da ted taxonomies, and also lay some groundwork for generalizing modulation. This

chapter extends our research in [49], and provides correctness proofs for operations in

modulated t axoaomies.

lThe decomposition techniques described in section 4.8 of Chapter 4 are designed to decfirnposc
spanning sets to improve the space efficiency of implementation whereas in this chapter, decompo-
sition is a meta-level technique for subdividing an order to encode into two or more smaller ortiere.

2A graph Gp is the comparability graph of an ordered set P if Gp = (P , Ej and (z, y) E E if and
only if z < y or y < 2.

CHAPTER 5. MODULATED EXCODING

5.1 Order Intervals and Modules

Definition 5.1 Let P be an ordered set. A closed interval, denoted as

[{al,. - , a,), {bl, - , b,)], is a set of elements {x E PJ?ai, bj such that ai 5 J: < b,).

We can alternatively define a closed interval as the intersection of a down-set and

an up-set: [{al:-a-,am),(bl,...,bk)] = f{al,-..,a,) n J{bl,---,bk}. Intervals in

ordered sets are analogous to intervals in total orders, such as the integers, and are

also known as convex suborders. Open and half-open intervals can be similarly defined

using non-inclusive subsumption. If m = 1 and n = 1, then the interval is called

principah; otherwise it is compound. A canonical principal interval [a, b] requires a 5 b

and represents a unique, non-empty set of elements3. If A, B C P then the compound

interval [A , B] can be defined as a union of principal intervals: [A, B] = UaEA,bEB[a, b].

The notation for a compound interval must not contain any redundant information:

[A, B] is canonical if A and B are anti-chains, and Va E A, 3 b E B, a < b and dually.

This ensures that non-empty intervals are uniquely represented with this notation.

Since intervals are a restricted type of subset, a spanning set of intervals is simply

a set of intervals for which the component mapping is one-to-one. Rather than using

spanning sets of intervals directly, however, we will employ certain forms of intervals to

partition the ordered set into more manageable pieces that can then be encoded using

approaches described previously. Down and up-sets in these segments correspond to

intervals in the original ordered set.

Intervals are related by two partial orders: containment and subsumption. Since

intervals represent subsets of a lattice L, they can be related by set containment:

[a, b] C [c, dj if and only if c 5 a and b < d and [A, B] 2 [C, D] if and only if

Va E A, b E B, 3c E C, d E D where c 5 a and b 5 d. The subsumption ordering on

L can also specify subsumpt ion on intervals. We first define (absolute) subsumption:

[a, 6 j 5 [c, d] if and only if b < c, which is equivalent to: 'dx E [a, b], Vy E [c, d], x 5 y .
For compound intervals, [A,B] 5 [C? Dl if and only if Vb E B,Vc E C, b 5 c. We

now define partial subsumption among intervals: [a, b] 5 [c, 4 if and only if Vx E

31f a < 6 does not hold, then [a, 4 = 43.

CHAPTER 5. MODULATED ENCODING 101

[a, b], 3y E [c, 4, x L: y. This is equivalent to: b < d. Absolute subsumption and

interval containment can both be seen as special c.ases of this.

We are particularly interested in certain forms of intervds that permit us to parti-

tion an ordered set without incurring a loss of information or unreasonable addit,ional

cost to maintain order. Our analysis formalizes and extends an earlier proposd in [2].

Definition 5.2 Let P be an ordered set, a E P and Q 5 P. A surrogate fop a in Q

is an element b E P for which V x E Q , (i) a 5 x if and only if b 5 x and (i i) a 2 :c

i f and only if b 2 x.

An element b E P that satisfies only the first (second) condition is called an upper

(lower) surrogate for a in Q. Also, if a is a surrogate for 6 in Q? then b must also Be

a surrogate for a in Q.

Definition 5.3 Let P be an ordered set. A subset M C P is called a module i]

Vx, y E M, x is a surrogate for y in P\M.

That is, Vx, y E M and z f P\M, x 5 z if and only if y 5 z, and x 2 z if and

only if y 2 z. Modules are also called order autonomous sets [go], and the sets in the

comparability graph Gp that correspond to modules are called modubes, stable sets,

or clumps [log]. We now state some properties of modules.

Theorem 5.1 Let L be a lattice. Then M 5 L is a module if and only if UM = b i s

an upper surrogate and n M = a is a lower surrogate for M in L\M.

ProoE Suppose M is a module. Let b = UM and a = nM. Also, let t E L\M arrd

x E M. If z > b then z > x (by the definition of join). If z > x then z 2 y for all y E M

(by the definition of a module). Then z 2 b (by the definition of join). Thus b is an upper

surrogate for M in L\M. An analogous proof can show that a is a lower snrrogatr? for A4

in L\M.

e Suppose b is an upper surrogate, and a is a lower surrogate, for M in L\M. G1on~idt.r

any z E L\M and x,y E M . z 2 z if andonlyif z 2 bif andonlyif z 2 y, and z 5 x if

and only if z 5 a if and only if z 5 y. Thus every pair of elements in M are surrogates in

CHAPTER 5. MODULATED ENCODING

Corollary 5.1 Let L be a lattice. If a subset M E L is a module, then

i. There are no elements between the maximal (minimal) elements of A4 and

the join (meet) of M: [[w , uM] = 0 and [nM, LMJ] = 0,

ii. M is a closed interval: A4 = [[MJ, [MI] and
...
222. The only arcs entering (leaving) M are through the maximal (minimal) ele-

m.ents of M :

M = UW\L 1MJ u 1M.J = TlMJ\TTMl u [MI-

Proof: (i) Suppose 3a E L\M for which a < UM and z > y for some y € [M I . But

then LIM is not an upper surrogate for M in L\M. By the above theorem, M cannot be a

module.

(ii) If z E M, clearly a E [LMJ, [MI] . Let z E [[M J , [M I] . Then 3a E [M I , b E [M J

such that b < a < a . Suppose a 4 M . Then a and b cannot be surrogates for each other

with respect to a.

(iii) Suppose M is a module. By (ii) above, M = [[M f , [Mf 1. Let x E M . Clearly

x E J, [M I . x E 1 [M J if and only if x E [M I . In either case, x E I [MI \I [M J U LMJ. Let

x E J, [MI \J, LMJ u [M J . Then either x E I [MI and x $ 1 [&I] or x E [M I . In the latter

case, x E 1M. For the former case, 3a 6 [MI for which x 5 a and Vb E [M I , x $ b. If x 4 M

then M cannot be a module. We can analogously show that M =I [M J \ [MI u [MI

This corollary shows that a module is a special type of interval (item (ii) above).

The general forms of a module are shown in the following figure. In the first and third

b is a surrogate. In the first and second, a is a surrogate. In all cases, a is a lower

surrogate and b is an upper surrogate.

Figure 5.1: Types of modules

CHAPTER 5. 1ZifODLlLATED ENCODING

5.2 Order partitions

Definition 5.4 Let P be an. ordered set. An order partition is a partition of 1' irrto

two suborders Q and P\Q.

A partition basically loses the subsumption information between elentctnt,s in Q
and P\Q. We say that Q C P induces the partition Q and P\Q.

Definition 5.5 A partition of an ordered set P. into Q and P \ Q preserves subsump-

tion i f 3a, b E P \ Q such that a is a lower surrogate, and b an upper surrogate, SOIS 62

in P\Q.

Theorem 5.2 Let L be a lattice and Q L . Then Q is a module if and only if the

partition induced b y &\{UQ, nQ) preserves subsumption.

Proof: + Suppose Q is a module. Let b = UQ and a = nQ. By a previous theorem, b is

an upper surrogate, and a a lower surrogate, for Q in P\Q. Since Q\{uQ, nQ} 6) and

a, b 4 Q\{UQ, nQ}, this partition is subsumption preserving.

(I Suppose the partition induced by Q\{uQ, nQ) preserves subsumption.

Then 3, d E P\(Q\{UQ, nQ}) such that c is an upper surrogate, and d a lower surrogat,~,

for Q in P\(Q\{UQ, nQ}). Let x, y E Q and z E P\Q. Then x _< z if and only if c < z i f

and only if y < a and x 2 z if and only if d 2 a if and only if y 2 z. Thus, Q is a mod u1c.o

Note that UQ and n Q need not be in Q. Both are in Q only for principal rnodulcs.

In this case, only one of these need be left behind in the partitioning,

Theorem 5.3 Let L be a lattice and let Q be a module in L. Then the decomposilion

of L into Q and L\Q U {UQ, flQ) produces two lattices.

Proof: Clearly Q is a sub-lattice (i-e. it is closed under meets and joins). Consicler the

meet of any two elements in L\Q U {uQ, nQ}: x n y. The only way x TI y could be in I) is

if z n y = UQ, otherwise Q is not a module.^

CHAPTER 5. MODULATED ENCODING

5.3 Modulation

Modulation involves partitioning a lattice into two sublattices according to a mod-

ule, and successively repeating until only trivial or small modules remain, essentially

constructing a lexicographic decomposition [90]. In the comparability graph, this

corresponds to modular, tree or substitution decomposition [90, 1091.

At each step, the surrogates for the module inducing the partition are retained

and associated with this module, essentially creating the quotient graph induced b y

this module [log]. Due to the partitioning, the containment relation of the final set of

modules forms a tree, called the containment or decomposition tree and denoted as C7.

This tree corresponds to the decomposition graph of Gallai [60, 901. Subsumption,

meets and joins in the original lattice are maintained in the modulated lattice through

the i~ldividual modules? their surrogates and the containment tree. The orders induced

by the modules and C 7 will be distinguished using subscripts.

Let us define two functions mapping modules to their surrogates: SuppeT(M) and

SI,,,, (M) . To simplify our procedures for taxonomic operations in modulated lattices,

we define, for an element x E L, SuWeT(x) = x and SloweT(x) = x. Let us also define a

function mapping elements to their smallest containing module: M (x) . We can now

define the taxonomic operations in a modulated lattice L:

Meet x nL y = z if and only if

i . ~49contex2r &Ix, My are as above.

ii. If 5 rL y then z = y. If x LL y then z = x.

iii. If x1j.y then z = Sl ,,,, (A&) nm ,,,,, Sl,,,,(M,).

*If M (z) = M(y), then MCmt,,t will be a leaf of the containment tree. In this case, M, = 2: and
MY = y. Essentially, this treats elements as (atomic) modules.

Theorem 5.4 Let L, be a .modulated lattice. Then the above ~quinaler~ces for sub-

sumption, meets and joins hold.

Proof:
Subsumption Let x, y E L. Mz (My) is the largest module that contains x (y) but not, y

(x), and MCOntezt is the smallest module that contains both x and y. By the dehnitiou

of surrogates, z SL y if and only if Su ,,,, jMxj ~~~,,,,,,, y. Similarly, z < L y if and

only if x < M ~ ~ ~ ~ ~ ~ Slower(itiy). Putting these together, we arrive at our result.

Meet Let x, y E L and suppose xnr, y = z. Clearly, if x 21, y (x LL, y) then a = y (z = z).

Otherwise, z <r, z, z < L y. ,+Iz (My) is the largest module that contains z (y) t n ~ t

not y (x), and Kate& is the smallest module that contains both x ant1 y. Atso, by

the definition of modules, z must be an element of iC.PCcntexl.

By the definition of surrogates, z 5~ x if and only if z < M , , , , ~ , , ~ Si,,,,(hrl,). Similarly,

z < L y if and only if z <?Mconrert SloWerfM9). Putting these together, gives our result.

Join The proof is the dual of the praof for meets.

0

In an unmodulated encoding, subsumption requires one comparison of codes and

meets require one calculation followed by decoding. Here, subsurnptioli requires one

calculation in the containment tree to find the context module and one contparisor~ of

codes within this module- Meets require the calculation to find the context module,

one calculation within this module and decoding. Thus, although the number 01'

comparisons is greater, the size of each code can be drastically reduced, since the size of

the resulting modules and the containment tree will be much smaller than the origi r1a1

ordered set P. For the proposal in [2], the number of operations increases linearly

with the depth of the containment tree CT. The above operations are sirnplifitd if,

for each modde, upper and lower siin~g;ii= are the same element.

'lb encode a modulated lattice involves encoding each sublattice formed by the

partitioning as we13 as the containment tree. Any of the techniques previously cov-

ered can be used. although there are particularly simple and efficient techniques for

encoding trees (e-g, i341). Associated with each element is its smallest containing

rnodule M(z) and its code C M (x) within this module. Associated with each module

iW is a code for the containment tree and the surrogates SqP,,(M) and Sl,,,,(M).

The spanning set for the entire lattice is t~he union of the spanning sets for these

sublattices plus the intervals defined by the sublattices themselves. The component

mapping will compute the components of an element within its smallest containing

module plus the defining interval of this module. Thus, the above operations can be

efficiently implemented.

Since any technique can be used to encode a module, modulation opens the pos-

sibility of heterogeneous encoding 1491: different modules can be encoded using tech-

niques that are best suited to the form of the order within the module. For exam-

ple, modules that are chains may be encoded using integers, while modules that are

anti-chains may be encoded using logical terms. In both cases, the use of different

techniques can lead to optimal encodings. The only additional information required

for a module is the type of encoding technique utilized.

Figure 5.2 depicts a modulated lattice, where the modules are encircled by ovals

and named for illustrative purposes. In an implementation, they can be replaced by

their surrogate elements. The containment tree of this modulation is also shown. In

order to determine if z. 5 d. we first compute MC,,,,,, = A& UcT M5 = M . hPV = M3

and Md = -I%$, . Now. 54 LAf XI. so we conclude that v 5 d. To compute c fl d, we

find Afmtezt = M, = _If4 and -%Id = ME. Then 1V14 flnf, M5 = s- Similarly, c fl e

gives us the surrogate of which is u,

There still remains tbe problem of finding modules. Fortunately, we can take ad-

vmtage of results from comparabilit;. grzphs. In [109], afi algorithm that requires

O(f PI3) time and 0([Pf2) space is described for constructing tbe entire decomposi-

t ion t r e in a top-down manner. This paper aiso cites two other algorithms that have

time and space complefity of 0(1PI2), the latter of which constructs the decomposi-

t i m t-ice iinmmmidly. There exist more recent linear algorithms for producing the

CHH4PTER 5. MOD tfLiI;ATED ENCODING

Figure 5.2: A modulated lattice and its containment tree

entire containment tree [3l, '761. These algorithms may be adaptable to 1leterogt:-

neous encoding. Also, in (21, an efficient approximation algorithm for modulation is

described.

5.4 Extending modulation

The restrictive natiire of a nodule permits efficient partitioning as well as compu-

tation of lattice operations. Unfortunately, many lattices cannot take advantage of

modulation, particularly very dense lattices. Additionally, in a dynamic environrr~ent,

moduies are fragile and can be breached by the addition of a single arc entering or

leaving the middle of the module. W-e outline below one approach we have cleveloped

to make modules more flexible.

5.4.1 Lower and Upper Semi-Modules

Definition 5.6 Let P be an ordered set. A subset M C P is cakled a lower semi-

module i fVs , y f M, z is a dower surrogate for y in P\M,

Upper semi-modules are defined dually. For a subset M of a lattice L, we can show

that nM = a is a lower surrogate for M in M\L if and only if M is a lower semi-

module. For a lower semi-module, we only obtain a lower surrogate. Elements within

CHAPTER 5. MOD b7LATED ENCODING 108

the semi-module may have different upper surrogates, but we may still be able to split

our lattice on this semi-module, retaining only the surrogates in the original lattice.

Thus, instead of an order partition, we end up with an order decomposition and the

containment tree becomes a containment order. An example is shown in Figure 5.3.

The first diagram is a lower semi-module within the context of our lattice, where

element a is a lower surrogate. The second diagram shows a partition of this semi-

module (with the grey lines) according to upper surrogates, which are the greatest

elements within each partition. Only these elements need be retained in the original

lattice, as we modulate. The set of upper surrogates in a lower semi-module M is

the set obtained by the meet closure (within M) of the elements that breach M

from above. In this example, elements b, c and e breach M and the meet closure is

{b, c, e, i}, since e fl c = i.

Figure 5.3: Lower semi-modules

Lower modulation incurs some duplication of elements, since the 1a.ttice is not

partitioned (i.e. the upper surrogates are in both resulting lattices). Each element

must now have associated with it not only its smallest containing semi-module, but

also its upper surrogate in this semi-module (the lower surrogate is associated with the

semi-module). Within the semi-module, the duplicated elements are ghost elements

- they are no longer treated as other elements, but act as place holders for resolving

operations within the semi-module. We may, however, still achieve space savings if

we can decompose a lattice using lower semi-modules that do not have too many

upper surrogates. Upper semi-modules may be particularly useful for ordered sets

that grow dynamically downwards (such as those in [24]). In this case, once an upper

semi-module is identified, it will never be breached by later updates, although the

number of lower surrogates may change.

5.4.2 Generalized Modules

'CVe can generalize this technique one step further to decompose a lattice based on

any interval that is closed under meets and joins. Note that a trivial sublattice of an

ordered set P is a singleton set, P itself or the empty set.

Definition 5.7 A generalized module of a lattice L i s a non - t r i~ ia l sublattice of .L.

A number of upper and lower surrogates for the module may need to be left in the

parent lattice on decomposition. These elements can be determined as above, wl~e rc

the lower surrogates will be the join closure of elements that breach the module from

below. Now, in addition to the smallest containing module M , we need to associate

with every element its upper and lower surrogates within this module (as well as its

code in M) .

There are several consequences of modulation using generalized modules:

i. Modules may overlap: we may have MI M2, M2 Sf M I , but MI n M2 # 0.
The containment relation is no longer a tree, but a general partial order.

ii. Upper and lower surrogates are no longer associated with modules, but with

iiidividual elements.

iii. Ghost elements result in duplication of surrogate elements.

Consider the lattice fragment in Figure 5.4, where we have encircled a potential

module M . The left fragment partitions M according to lower surrogates and the

right fragment partitions M according to upper surrogates. Modulation on M will

remme all the elements that are neither upper nor lower surrogates in M , as shown

in the rightmost diagram in Figure 5.4. Each element has a unique upper arid lowcr

surrogate in these remaining elements. For elements that are removed (i-e. elcrnerits

that are neither upper nor lower surrogates for this module), no duplication occurs.

Both upper and lower surrogate elements are now duplicated: the element that is in

the module is a ghost element. We discuss the implications and handling of ghost

elements below. Once the decomposition has occurred for a module, we can continue

the process of modulation.

Ch'A PTER 5. MODULATED ENCODING

Figure 5.4: Generalized modulation. Lower surrogates (left) are { a , e , 1) and upper
surrogates (centre) are {b, e , f , n } .

5.4.3 Non-overlapping Modulation

We first consider generalized modulation for modules that do not overlap (i.e. for two

modules, either one contains the other, or they share no elements in common). In this

case, the containment relation is strictly a tree. In the example in Figure 5.4, further

modulation would either contain all or none or { a , b, e , f, 1, n}.

We associate with each module It{ its code in the containment tree CT. With

each element x we associate its least containing module M(x) , its upper and lower

surrogates Swe, (x) and S~ow,,(s) , and its code in this module.

The procedure for computing subsumption can now be extended with a modifica-

tion to use the surrogates associated with individual elements rather than modules.

A surrogate pathway will need to be followed through the containment tree from the

initial elements to the context interval.

Subsumption x sf, y if and only if

i - -ucontezt = ~ W (X) UCT M(y).
. .
11. 3 elements s,? s, in l%ICo,,ezt that can act - s surrogates for x and y (and

can be computed as follows, where ":=" denotes assignment.):

S x := 5; Sy := y;

while M(s,) # sX := Supper (s ~) ;

udde M (s,) # MCOntext: sy := Slower (s ~) .
*..
111. sz L M ~ ~ ~ , ~ sy.

A similarly modified procedure can be applied to compute meets. The procedure

for joins can easily be derived.

CHAPTER 5. MOD ULATEL) ENCODING

Meet a: f l L y = z if and only if

i. If x 2 y then z = y. If x 5 y then z = s

ii. If x11y then

ii.a. MCOntext = M(x) U c l M(y).
ii-b. 3 surrogate elements s,, s, in i\lcOnt,,t for x and y (and can bc

computed as follows):

In strict modulation, surrogates are associated with modules, so once we haw

found the contextual module McOntext, we can use the surrogates for the appropriate

children. Here, we must follow a path of surrogates from the initial elements to t hc

contextual module. Whether upper or lower surrogates are following depends on the

operation. The length of these paths depends on the depth of the containment trec,

which in turn depends on the sizes of module?^.

Note that when performing a meet a: fl y = z , the result z may be embedded wit h i tz

a module below (in the containment tree) the context McOntext. Due to the way gl~ost,

elements are dealt with (i.e. duplicating elements in the meet and join closure of

breaching elements), however, this element will be duplicated in both the context, and

this lower level module (in the latter, it will be a ghost element). Thus, the meet car]

be performed in McOntezt.

Theorem 5.5 Let L be a lattice that is modulated using generalized modules with no

overlapping modules. Then the above equivalences for subsumption and meets hold.

Proof:

Slabsumption Let z7 y E L. MCont,* is the smallest module that contains both z and y,

Let sl = x, sz, . . . , sk = s, be the path of surrogates followed from z to s, i n the

above procedure (i-e. s, = S,,,,(S,,e,(. - - (SVe,(x) -. a))) and M (s Z) = MCont&zt) .

By the definition of surrogates, z st, y if and only if s, <M,,,,,, y. Similarly, s f 1, r/

if and only if z LM-t,,t sy. Putting these together, we arrive at out result.

CK4PTER 5. MOD IIZATED ENCODING

Meet Let x, y E L and suppose z nL y = z. Clearly, if x >L y (x I L y) then z = y (z = x).

Otherwise, z <L x, z < L y . McOntext is the smallest module that contains both x and

y. Also, by the construction used in generalized modulation, z must be an element

of MmnteZt. This is because the meet closure of elements that breach any module are

duplicated (one is left in the containing module, and the other is retained as a ghost

element in the contained module). By the definition of surrogates, z x if and only

if z &con,,,t s, (as shown above). Similarly, z LL y if and only if z i~~~~~~~~ sy.

Putting these together, we arrive a t our result.
0

An area requiring a closer look is the treatment of ghost elements, which are

duplicated upon decomposition. A ghost element x, is created when an element z is

a surrogate for one or more elements in a module M. The element x remains in the

parent lattice, and its duplicate x, remains in the module. This ghost element only

needs to be present as an image of x so that operations within the module M which

result in x, can be resolved. Thus, the ghost needs to be encoded in M, but it does

not need any other associated information (i.e. the smallest containing module and

surrogates). A ghost element x, can be viewed as a place holder for the portion of

the code of x associated with module M.

5.4.4 Overlapping Modulation

In strict modulation, overlapping modules are not possible. In our generalization,

this may now occur - this will happen in the example in Figure 5.4 if a new module

contains some, but not all of (a , b, e, f , I, n). There are two complications that arise

from overlapping modules: (i) the containment information is no longer a simple tree,

but a general partial order, and (ii) determining the context McOntext of an operation,

and the surrogates in this context, is more difficult.

To deal with these problems, we no longer rely on the containment relation be-

tween modules. Instead, we use surrogate containment information, and the resulting

surrogate containment order SC: For two modules MI and M2, M2 covers MI in SC

if and only if M2 contains a surrogate for at least one element in MI (i-e. iff 3x E MI

such that S,-(z) E M2 or Slo,,(x) E M2).

CHAPTER 5. MODULATED ENCODING 113

Extending the taxonomic operations for overlapping modules requires following

surrogate pathways through SC to find the contextual module. Since we canrwta

easily identify the contextual module, rather than encoding SC, we associa.t,e witill

each module M a level, Eevel(A4), which is the length of the longest pat>h from kt to

the root of SC. The modified procedures for subsumption (for generalized modules)

and meets are given below.

Subsumption x LL y if and only if

i. 3 McOntext and elements s,, s, in McOntezt that can act as surrogates for

J: and y (and can be computed as follows):
S, := x; Sy := y ;

Lev := max(level(M(s,)), level(M(s,))) - 1;
while M(s,) # M(s,)

while kevel(M(s,)) > Lev: s, := SuPPe,(s,);
while Eevel(M(s,)) > Lev: s, := SrOwe,(s,);
Lev := max(level(M(s,)), level(M(s,))) - 1;

Meet x nL y = z if and only if

i. If x 2 y then z = y. If x 5 y then z = 2.

ii. If xlly then

ii.a. 3 McOntezt and elements s,, s, in McOntext that can act as surro-

gates for x and y (and can be computed as follows):

Sz := x; Sy := y;

Lev := maz(level(M(s,)), level(hf(sy))) - 1;
while M(s,) # M(s,)

while leveb(,U(s,)) > Lev: s, := St0,,,(s,);
while level(M(s,)) > Lev: S, := Stower(sy);
Lev := max(level(M(s,)), level(M(s,))) - 1;

end while;

Mcontert := M(sx)-

CHAPTER 5. MODULATED ENCODING 114

Theorem 5.6 Let L be a lattice that is modulated using generalized modules (with

possible overlapping modules). Then the above equivalences for subsumption and meets

hold.

Proof:
Subsumption Let x, y E L. We need to find McOntext as well as surrogates for x and y in

L W ~ ~ , ~ , , ~ . The level of modules decreases monotonically as we ascend the surrogate

containment order S C searching for Mcontext, s, and s,, but it may decrease in steps

greater than one.

Initially, we set Lev to one level above the lowest (maximum) level of x and y. This

ensures that the lowest of s,, S, (or both if they are at the same level in different

modules) will move up at least one level in the subsequent two loops. The outer

loop continues until we have found McOntezt (i.e. until M(s,) = M(s,)). The two

inner loops each continue until the level of s, (s,) is at or above Lev. Since we are

following upper (lower) surrogates for s, (s,), the subsumption relation between s,

and s, remains invariant. After both inner loops complete, we set Lev again as above.

At the end of the loops, M(sX) = M(s,) = Mcontext- Mcontezt is the smallest module

that contains both an upper surrogate for x and a lower surrogate for y. Since we

move up SC following upper (lower) surrogates for x (y), we find the first module that

contains appropriate surrogates for both.

Let sl = x, s2,. . . , sr, = s, be the path of surrogates followed from x to s, in the

above procedure (i-e. s, = Supper(SuppeT(' - - (SUppeT(x) - -1)) and M(s,) = kfcontext).

By the definition of surrogates, x <L y if and only if s, iMc0,,,,, y. Similarly, x i~ y

if and only if x <M~,,,,, s,. Putting these together, we arrive at our result.

Meet Let z, y E L and suppose x n~ y = z. Clearly, if x LL y (x < L y) then z = y (z = x).

Otherwise, z <L x, z < L y. We need to find Mcontext as well as surrogates for x and

y in MCmtezt, as above.

Initially, we set Lev to one level above the lowest (maximum) level of x and y. This

ensures that the lowest of s,,s, (or both if they are at the same level in different

modules) will move up at least one level in the subsequent two loops. The outer loop

continues until we have found McOntext (i.e. until M(s,) = M(sy)). The two inner

loops each continue until the level of s, (sy) is at or above Lev. Since we are following

CHAPTER 5. MODULATED ENCODING 115

lower surrogates for s, (s,), the subsumption relation between s, (s,) and .z rc~nainw

invariant. After both inner loops complete, we set Leu again as above.

At the end of the loops, M(sX) = M(sY) = Mcoqtezt. McolLtexi is the smal1et;t modulc

that contains a lower surrogate for both x and y. Since we move up S C following lower

surrogates for x (y), we find the first module that contains appropriate surrogates for

both.

By the construction used in generalized modulation, z must be an element of M,,,tcsl.

This is because the meet closure of elements that breach any module are duplicated

(one is left in the containing module, and the other is retained as a ghost element in

the contained module).

By the definition of surrogates, z <L x if and only if z < M ~ ~ ~ ~ , , ~ S, (as shown above).

Similarly, z LL y if and only if z <M,,,~,,~ s,. Putting these together, we arrive at

our result.

5.4.5 Extending Modulation Algorithms

We have outlined the properties and requirements of generalized modulation for encocl-

ing purposes, but we need algorithms that can find "good" decompositions. Perhaps

some of the algorithms for modulakion can be adapted to decompose an ordered set

into lower semi-modules or generalized modules for which the number of surrogates

(i.e. the degree of duplication) and the amount of overlap is minimized.

Although generalized modulation may not guarantee encoding efliciency, it does

offer many potential benefits. First, the fragility and stringent nature of strict rnod-

ules makes modulation impractical for many encoding environments, especially for

ordered sets that are dense. Although generalized modulation may still be inefficient

for very dense lattices, there is the opportunity to expand the utility of decornpor;it,ion

and heterogeneous encoding. Generalized modulation may also be ttsed in conjunc-

tion with strict modulztion in dynamic environments. Starting with a ~rtndulated

lattice, updates to the lattice that breach modules may be tolerated, while incurring

only a small overhead for updating the encoding, When the decomposition becomes

ineEcient, the new ordered set can be remodulated. Another benefit of generalized

CHAPTER 5. MOB ULATED ENCODING 116

niodulation is in distributed environments, in which a large ordered set may be spread

out over a number of sites. The portion of the ordered set at each site can be encoded

independently of the others, and duplication of information across sites may only be

necessary for the containment order.

Conclusion

Recent results in taxonomic encoding have identified various taxonomic forms for

which efficient encodings exist (e.g. distributive lattices, trees and bounded width

lattices). Through order partitioning techniques, a generalized heterogeneous en-

coding scheme can take advantage of these encoding schemes when such forms are

identified as suborders.

In this chapter, we formalized and extended lattice modulation for encoding, intro-

duced in [2]. Modulation partitions a lattice to encode into sublattices and offers the

possibility of greatly reducing encoding sizes regardless of implementation, and with-

out undue cost in performance. Generalized modules may increase the applicability

of modulation, even for dense, dynamic or distributed lattices. By maintaining (and

encoding) the containment information of the decomposition, we provide an efficient

framework in which modulated encoding is both feasible and efficient.

For dynamic taxonomies? modulation may confine the extent of change. The

strict nature of modules, however, makes them susceptible to violation as a result of

change. The generalized modules developed in section 5.4 are more impervious to

change. Finally, modulated encoding may aid in decoding, since we know in which

partition the result lies, greatly reducing the search space.

Chapter 6

Encoding with Sparse Logical

Terms
"Unless you expect the unexpected you will never find truth,

for it is hard to discover and hard to attain"

- Heraelitus

The purpose of the present chapter is to empirically apply the theory of encoding.

During our research, we developed sparse EogicaE terms as a varimt of logical terms that

are particularly suitable for encoding [5i]. Sparse terms are closely related to direct,ed

acyclic graphs (DAGs), which have also been studied for encoding [104]. Our focus,

however, is on developing an efficient implementation for encoding rather than taking

an existing technique. Sparse terms share a number of similarities with Prolog terrns,

$-terms in LIFE [4], feature structures [5, 23, 1181, the PATR I1 forrnalisrn [131, 1323,

etc. However, the focus of sparse terms as an efficient representation for encoding

endows them with a number of key distinctions from these other formalisms, as will

become clear. Since our aim is to use sparse terms as a contribution to encoding,

rather than as a contribution to the suite of logical formalisms, we chose to omit

in-depth coverage of these related formalisms.

After motivating our development of sparse terms, we introduce the basic form of

sparse term developed in 1511. In section 6.3, we develop extensions that make sparse

terms suitable as a universal encoding implementation. We then provide algorithms

that implement the transitive dusure and compact encoding techniques, which are

CHAPTER 6. ENCODING WfTH SPARSE LOGICAL TERMS

the first logical term algorithms to be published. Finally, we analyze some theoretical

properties of sparse terms in encoding, which we back up with an empirical study of

encoding using two taxonomies derived from existing applications.

6.1 Introduction

Compact representations for data structures are commonly used when certain proper-

ties can be exploited to significantly reduce the storage space required. As an example,

principles of locality are used in data compression techniques. For sparse matrices,

the assumption that the majority of elements are zero permits us to retain only the

nonzero elements, along with their coordinates. If this assumption holds true, the

savings accrued by not explicitly storing the zero elements outweighs the additional

cost of storing coordinates for nonzero entries.

We develop a similar representation for logical terms. A sparse term is a term in

which the majority of elements (i.e. functors, atoms and variables) are anonymous

variables. Named variables provide coreference between term positions, whereas the

only purpose of anonymous variables is to reserve positions, and so they do not con-

tribute to the information content of a term.

Applications that work with sparse terms can benefit from sparse terms both in

terms of space and time. Unification with an occurs check needs only to examine

the named variables. Unification without an occurs check is linear in the sum of the

number of atoms, functors and variables of the two terms. This will be more efficient,

as our sparse representation eliminates the storage of anonymous variables.

Sparse terms were, however, developed primarily to provide a form of logical term

adapted for encoding. In extending the basic sparse term, we incorporate integer sorts

(i.e. when unifying two different functors fl and fi, if both are integers, the result

is rnos(f i , f i) ; if at least one is not an integer, then unification fails). Integer sorts

come for "free", and can be used to generalize integer vectors: integer sorts provide a

form of sparse integer vector that permits the integration of integer vectors and logical

terms. This combination is powerful for encoding, since integer sorts are suited for

encoding chains, while ordinary fanctors axe suited for encoding anti-chains.

We also integrate more compact and flexible forms of subterm indexing. The basic

form of sparse terms a.re very compact, for terms with many anonymous variables.

However, as the terms become less sparse, the overhead of explicit subterm inclesi~~g

surpasses the savings of eliminating anonymous variables. In the expanded form, wc

permit "relative" indices which denote integer indices that are relative t~ preceding

integer indices in a term. In this more expressive form, as a term becomes mosc

dense, the sparse term representation can remain more compact, up to a point, thm

the corresponding ordinary terms or integer vectors.

We also permit grouping sequences of indices with identical subterms into intervals.

For encoding, this will normally only occur for unspecified subterms. Index intervals

in sparse terms provide a generalized implementation ctf sets of intervals, which have

also been used in encoding [I]. Figure 6.1 shows the relation of sparse terms tn ',he

encoding implementations of which we are aware.

sparse terms

b*c&q', I
flat terms integer vectors interval sets

Figure 6.1: Encoding implementations: sparse terms generalize other techniques

6.2 Basic Sparse Terms

Our representation is modeled after that of sparse matrices. An n x rn sparse matrix

may be stored as a list of coordinate/value pairs for the non-zero elements rather

than as an n x m array. For example, the following matrix can be stored as [(I ,2)- 1 ,

We avoid storing the zeros by using a more space-consuming representation for

the non-zero elements. By assuming that most of the elements are zeros we. predict a

net redudior; in storage space.

CHAPTER 6. ENCODIKG SPARSE LOGICAL TERMS -.

A sparse term representation relieves us from storing anonymous variables at the

expense of a more complex scheme for the named elements (i-e. atoms, predicates,

functors and named variables). We focus on the surface form of terms. Although

the internal representation may be quite different from this and is implementation

dependent: it is the surface form that users manipulate and store outside the system.

As for sparse matrices, we need to store the position, or index, of the named elements.

Using a rooted graph notation, we can do this by labeling arcs with the index of the

named elements and removing the anonymous variables (which are represented by

underscores in Prolog,). Consider the Prolog term: a(b(- c, d, -), -, -, e(-, f(-, -1, -1).
The ordinary and sparse forms are shown graphically below. The sparse t8erm can be

represented linearly as: ail- h.[2 - c, 3 - dl, 4 - e.[2 - f]]: where the argument lists

are ordered according to increasing index.

--

Figure 6.2: Sparse logical terms

To be more precise, we provide the hllowing definition of our representation:

Definition 6.1 A basic sparse terrn is either (i) an atom (ii) a named variable or (iii)

a ftrlsctor of the form a.L, where a is the functor symbol and L is a sparse argument

list. A sparse argument list is a list of elements of the form n-ST, where S T is a sparse

term and n. is the index of ST in the parent term. This fist is ordered by increasing

indices with no repetitions.

6.2.1 Space requirements

Piow that we have a sparse representation for logical terms, when is a term consid-

ered sparse? That is, when wilt this representation benefit an application? Since an

acctrrate account or' the space required to represent a logical term, for exampie in

Prolog, is implementation dependent, we restrict our analysis to the asymptotic time

and space behavior of the surface form.

CHAPTER 6. ENCODING W I T H SPARSE LOGICAL TERMS

Consider an ordinary term that has n named elements and 777 anonymolis variables.

Since there are n + 1 symbols, let us assume representing each requires O(1ogn) spacc.

For the sparse representation, 0 (logn) space is also required. Both rcpresen tatiox! s

require space for the n named elements, so we do not include this factor ixl our calcu-

lations. For punctuation marks (e.g. commas, parentheses, dashes), ordinary terrus

require O(n + m) space whereas sparse terms require O (n) space. Since punctuation

may not form part of the internal representation, we do not consider it further.

In addition to the above, ordinary terms require 0 (mlogn) space for anon y lnous

variables, whereas in the worst-case sparse terms require O(nlog(n + m)) space for

indices. Essentially, this means that the space benefits of our sparse representation

begin tso manifest when the ratio of anonymous variables to named elements is greater

than cine. Of course, due to the constants not included in this analysis, these benefits

may not become evident until this ratio is somex hat greater than this.

6.2.2 Unification and Implementation

Without an occurs check, ullification of both ordinary and sparse terms is linear i r k

the number of symbols involved. If the number of named elements in both terms is ?L

and the number of anonymous variables is rn, we have O(n + m) for ordinary terrns

vs. O(n) for sparse terms. For unification with an occurs check, we avoid needlessly

checking the anonymous variables. In both cases, we achieve asymptotically better

results. Thus, by using our sparse representation, applications involving sparse terrns

have potential benefit both in terms of time and space.

The straightforward nature of sparse terms permits a simple implementation of

the required algorithms (unification, subsumption, et c.) either in a logic languagc (e.g

Prolog) or as an extension to a logic language (written in, e.g., C). Our representation

shares some features with the +terms in LIFE 141, in particular attribute indexing

and unbound arity, but it also differs in several respects. Named variables in LIFE

use more generalized coreference labels (which can specify coreference between any

two locations in the graphical representation, not just hetween leaves). Although our

definition of sparse terrns implies the use of Prolog vzriables, we have also extended

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS

our implementation to provide both forms of coreference. Our representation also

deviates from $-terms in the use of anonymous and disjunctive functors, discussed

below. Another significant difference is that our representation is intended as an

enhancement to Prolog systems, not as a replacement.

6.2.3 Variations

Our sparse representation removes the burden of explicitly storing anonymous vari-

ables. We now explore some variations on this theme. Prolog is capable of expressing

uncertainty through variables, only for entire predicates, functors or atoms. We ana-

lyze how we may incorporate finer scale uncertainty into logical terms, specifically for

arity and functors. We also integrate an extension of argument indexing that permits

arbitrary labels, or at tributes, rather than just numerical indices. By blending these

variations, applications have the ability to incorporate varying degrees of uncertainty

and information into logical terms, while remaining concise and efficient.

Binding arity. The representation presented does not provide a one-to-one corre-

spondence between sparse and ordinary terms. For example, the following terms

correspond to the sparse term f .[1 -a]: f (a), f (a, -1, f (a, -, -), f (a(-), -), ... Any

sparse term has an infinite number of corresponding ordinary terms. The arity

of each functor and atom is not bound, so we can always append an arbitrary

number of anonymous variables as arguments of functors and atoms.

If we require the arity of terms to be bound, we must specify it explicitly. This

can be accomplished by extending part (iii) of our definition to allow functors

of the form a1iV.L where a is a functor, N is the arity of the functor and L is a

sparse argument list. For example, the term f (-, b(-, -), c, d(e, -), -) is completely

represented by f /5.[2 - b/2,3 - c /o , 4 - d/2.[1 - e/O]], and graphically as:

d o
Figure 6.3: Binding arity in sparse terms

CHAPTER 6. EXCODI,ITG WITH SPARSE LOGICAL TERMS

Anonymous functors. An interesting variation that we have found useful for en-

coding allows terms to specify only those argument positions that are occupied,

but not record the functor or atom in that position. This information, prc-

sumably, would be stored elsewhere. This greatly reduces space requiren~erlt~s

for cases when many terms are being formed from one set of data, which is

indeed the case for our logical term encodings where each element of a taxon-

omy is assigned a term that is a subgraph of the taxonomy itself. We can label

the original taxonomy with term positions and use it to decode our terms. Ti,

provide functorless terms, we simply remove the functor or atom from the el-

ements of the sparse argument list. The term f(-,b(-,-) 2-,c(d,-,e) !-) would thus

be represented as the term [2,4-[1,3]] and graphically as:

Figure 6.4: Anonymous functors in sparse terms

Attribute-value matrices. Attribute-Value Matrices (AVMs), or Feature Struc-

tures, are a tool used in several computational linguistic systems (e.g. [I 1 81).

Some implementations of AVMs using ordinary terms require prior knowledge

of all the attributes an AVM may contain in order to compile appropriate terrns

(e.g. [91, 1191). A simple modification to our scheme, allowing atomic, rather

than numeric, indices (for the attributes) and omitting fufictor names (a valuc:

is either an atom or another AVM), provides for efficient and dynamic AVMs.

A predicate can be provided to access the value of an attribute, or a sequence of

attributes. As an example, the sparse term [al-vl, a~-v2, a3-[bl-xl, b2-xZ], a4-v4]

represents the following AVM (shown in both its matrix and graphic forms):

Figure 6.5: Attribute-value matrix using sparse terms

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 124

Disjunctive functors. Thus far, we have permitted two levels of certainty regarding

a functor symbol: either it is unknown (i.e. it may be any atomic symbol) or it is

known. Between these extremes lies a range of increasingly focused information

as to the actual functor symbol. That is, we may know that it is one of a set

of possible symbols. When this set has cardinality one, we know which symbol

it must be. We nzme such functors disjunctive and represent them with a set

notation. For example, the term [model-{MacSE; MacII), memory-{1;2;4;8)]

may be used to represent a computer system whose model type is either a

MacSE or a MacII and with either 1, 2, 4 or 8 KB of memory.

Applications that permit and maintain uncertainty may find the flexibility of-

fered by disjunctive functors a valuable property. Examples include computa-

tional linguistics, for maintaining the uncertainty of the referent of a pronoun,

and automatic system configuration (e.g. [37]).

6.3 Generalizing Sparse Terms for Encoding

Basic sparse terms are based on the observation that anonymous variables only reserve

positions and do not contribute to the information content of a logical term. We now

extend the basic form to develop a universal encoding implementation. In addition to

the benefits of eliminating anonymous variables, there are some properties of extended

sparse terms that endow them with flexibility and conciseness required for encoding:

Unbound arity A sparse term can represent an infinite number of ordinary terms,

since arity is not bound. This permits flexibility for encoding updates since a

code may be extended with a subterm without affecting related codes.

Unspecified functors Positions in terms can be specified as filled, but the actual

symbol (predicate, atom or functor) occupying the position can be left unspec-

ified. Thus, [2,4 - [i, 313 represents a term in which the second position is

occupied by an unknown subterm, and the fourth position is occupied by a sub-

term in which the first and third positions are filled. Of course, unification can

only fail if there are different functors at the same location in two terms.

CHAPTER 6. ENCODllYG WITH SPARSE LOGICAL TERMS

Integer sorts Although sparse terms were designed for encoding, they share a n u u ~

ber of similarities with $-terms in LIFE [4], including unbound arity. A hicrax-

chy can be specified among functors in LIFE, which is used when two different

functors are unified. If cr and /3 are unified, the result will be a n /? or failure

if this results in I. One of the most influential papers on encoding was written

with the purpose of performing these operations efficiently [2] . However, tl~cre

is a very simple functor ordering that we can incorporate int.0 sparse terms for

free: the total order on integers. Unification of two functors will be as in Pro-

log, unless both are integers nl and nz, in which case unification will result in

max(nl, n2). This simple addition generalizes integer vectors, providing a form

of sparse integer vectors with the hierarchical advantages of logical terms.

Relative Indices As terms become less sparse, the advantages of explicit indcxiug

diminish until the costs outweigh the benefits. To overcome this, some in-

dices may be relative. Relative indices can be specified by preceding a positive

integer n by the "+" symbol, and represent the previous numerical index to

the left plus n. If there is no preceding numerical index, then the index is n.

For example, the sparse term [535,538,546,577,578] could be represented as

[535, +3, +8, +31, +I]. Although we must still provide an index, if the absolute

index is very large, a space saving may be realized.

Interval Indices As terms become even more compact, there may be situations

(particularly for encoding) in which we can benefit from denoting a sequence of

indices using a set. These interual indices provide a generalization of int,erval

sets, which have been used for encoding [I]. To illustrate, the sparse tmrn

[5,6,7,8,9,10,11,12,73,74,75,76,77] could be represented as [(5,12), (73,77)],

Relative indices can also be used in the interval bounds.

As we have mentioned, sparse terms generalize the various implementations that

have been used for encoding. The significance of this is that, not only can encoding

algorithms be adaptive and selected from existing encoding techniques, but mixtures

of techniques can take advantage of structures within taxonomies. The following

definition is based on the original definition, but extended with integer sorts, and

CHAPTER 6. ENCODING VVITH SPARSE LOGICAL TERMS 126

relative and interval indices. We do not provide any form of coreference, since it is

not necessary for our application, although this could be easily integrated.

Definition 6.2 A sparse term ST is defined as:

ST A Functor.ArgumentList I ArgumentList I Functor

Functor - Atom 1 NaturalNumber

Argument List = [Argument [Argument List] I [I
Argument - Index-ST I Index

Index A NurnericIndex 1 (Numericlndex, Numericlndex) / Atom

Numericlndex NaturalNumber I + NaturalNumber

where NaturalNurnber is any natural number. The notation [HeadlTail] denotes a

list, the first element of which is Head and the remainder of which is Tail, while []
denotes an empty list (as in Prolog).

6.3.1 Explicit and canonical forms for sparse terms

In order to simplify description of a canonical form, and for defining subsumption,

unification and anti-unification, we need to describe an explicit form for sparse terms.

The explicit form replaces all relative indices by their corresponding absolute values,

and all interval indices by their corresponding sequences. We also clarify terms that

have empty argument lists or no functors, where explicit sparse terms use anonymous

variables ("-") in place of unspecified functors.

Definition 6.3 An explicit sparse term ST, is defined as:

ST, Functor,.ArgumentList,

Functor, A Atom I NaturalNumber I -

ArgumentList, [Index,--ST I ArgumentList] I []
Index, NcaturaINurnber Atom

Given a sparse term S T , we can construct its explicit form as follows:

Empty Argument Lists If F is a subterm with an empty argument list (i.e. F is

just a functor), then replace it by F.[].

CHAPTER 6. ENCODING IVI TH SPARSE LOGICAL TERMS 127

Unspecified Functors If AL is a subterm with an unspecified functor (i.e. Al, is

just an argument list), then replace it by -.AL. Note that in sparse terms, the

anonymous variable can only be instantiated to a functor.

Relative Indices Suppose +n is the first relative index in an argument list (includ-

ing those that appear in interval indices): [. . . , +n - ST, . . .]. If there i s no

absolute numerical index to the left of this position, then replace +n - S'T

by n - ST. Otherwise, if the first absolute numerical index to the left of t,his

position is rn, then replace +n - ST by nl - ST, where nl = n + m.

Interval Indices Suppose we have an argument list containing an interval index:

[. . . , (nl,n2) - ST,. . .I. If nl > na, then sirriply remove (n1,n2) - ST from

the argument list (i.e. the interval is empty). Otherwise, replace it by the

sequence ml - ST, . . . , r n k - ST, where ml = nl, mi+l = mi + 1,1 < z' 5 k , and

k = n2 -n1 + 1.

Given an arbitrary sparse term, for efficiency we want to define a canonical or nor-

mal form. For terms in canonical form, subsumption, unification and anti-unification

algorithms can be designed much more efficiently than otherwise possible (i.e, linear

in term size). Below we define a canonical form for a term ST in terms of its explicit

form. We say that ST is in canonical form, if its explicit form is in canonical form.

Let ST be a sparse term, and ST, be its explicit form. We define the canonical

form ST, of ST as follows:

No duplicate indices If ST, has a duplicate index I in some argument list: [. . . , I -
5'7-1, . . . , I - ST2, . . .I, then remove I - STl and I - ST2 and add I - where

STlv2 is the unification of STl and ST2.

in increasing order For any subterm in ST,, if index II precedes index I2
then Il 5 12, where denotes a lexical ordering on indices.

CHA PTTER 6. ENCODIXG 'ilTI'.U SPARSE LOGICAL TERMS

6.3.2 Sparse term subsumption

We now describe how subsumption (5) is computed for explicit canonical sparse

terms. Unification and anti-unification can easily be derived in a standard way based

on subsumption. All three operations have been implemented in Sicstus Prolog. Con-

verting from an ordinary canonical sparse term to the explicit form can be done easily

during processing. First, some general properties are given below:

3 [] subsumes everything (i.e. ST 5 [I for any sparse term ST).

e If nl , n2 are integers and nl 5 n2 then n2 5 nl (note the role reversal).

0 If n is an integer and a is a non-integer atom, then nlla (i.e. n and a are

incomparable).

0 If al,az are non-integer atoms and a1 # a2, then al(ja2.

Definition 6.4 irf ST, and ST2 ore sparse terms, then STl 5 ST2 if and only if all

of the following hold:

I . STl = Fl.ArgListl and ST2 = F2.ArgList2

2. F1 5 F2

3. ArgListl 5 ArgList2

If Fl and F2 are functors, then Fl 5 F2 if and only if one of the following holds:

1. F2 = - (functorless terms)

2. Fl and F2 are non-integer atoms and Fl = F2 (atomic functors)

3. Fl and F2 are integers and F2 5 Fl (numeric functors)

i f ArgList1 and ArgList2 are argument lists, then ArgListl 5 ArgList2 if and only

a'f one of the following holds:

1, ArgList2 = []
2. ArgListl = [Indexl - STl I Restl], ArgList2 = [Index2 - ST2 1 Rest2] and one of

the following holds:

(a) Indexl = Index2, STl 5 ST2 and Restl Rest2

(b) Index* 5 Indexz and Restl 5 ArgList2

CHAPTER 6. ENCODING IWTH SPARSE LOGICAL TERMS

Encoding with Sparse Terms

The most well-studied implementation for encoding is the bit-vector f2, 24. 61, 7'91.

The available hardware implementation and minimal requirements for each itcli~ of

information (one bit) makes them attractive for encoding. However, there are a,

number of drawbacks to using bit-vectors for encoding very large, dynamic ordered

sets:

0 Codes in a bit-vector implementation all have the same size, so updates to the

encoding that require changing this length affect every code. This problem is

shared with integer vectors. Sparse terms, however, do not suffer from this, so

the scope of change can be contZined.

a Both logical terms and integer vectors generalize bit-vectors in different, dimcn-

sions (see Chapter 4). A bit-vector s of length k can be representcd with a

logical term T of arity k: if position i in s is a 1 (resp. O), then positiori i in r is

the functor 1 (resp. an anonymous variable). The translation from hit-vectors

to integer vectors is obvious. Thus, any bit-vector encoding can be translated to

use sparse terms and exhibit the same asymptotic behaviour; only the asyrnp-

totic constant changes. Since we are most concerned with asymptotic behaviour

for encoding large taxonomies, bit-vectors do not actually provide any real ben-

efit, although their inflexibility is certainly a drawback. In fact, we show later

how the hierarchical structure of sparse terms can provide a significant savings

over bit-vectors even for modest taxonomies of only several thousand riodcs.

As we showed in Chapter 4, all encoding algorithms we are aware of can be ah-

stracted into two components: (i) the underlying information stored in the encoding

(which can be characterized using what we call spanning sets) and (i i) the iniplerr.c~~-

tation details for storing this information in a computer. Some encoding algorithms

require a lot of effort to generate codes. This is understandable, given the complexity

of the problem (in [79], evidence for the NP-Hardness of finding optimal encodings

is discussed). For static taxonomies, it may be worthwhile spending a lot of energy

to construct compact, encodings. For dynamic taxonomies, however, this effort rn ay

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS

be wasted by changes to the hierarchy. In fact, the changes required for an encoding

after updates io the source taxonomy may be more extensive in complex cncodings,

due to the wider scope of analysis performed.

Encoding algorithms for dynamic taxonomies must be efficient, in addition to gen-

erating efficient codes. Two of t he earliest and most well-known, encoding algorithms

(transitive closure and compact [2]) satisfy the need for efficient computation of codes.

However, the algorithms described directly construct bit-vector implementations. As

we showed in Chapter 4, these basic algorithms form the basis of 3 number of encoding

techniques. We describe how sparse terms can implement these simple schemes. This

in itself does not contribute significantly, but we show in a s~bsequent section how

sparse terms equal or surpass other implementations for encoding a number of theo-

retical ordered sets. This is followed empirically, where two ordered sets taken from

existing applications are encoded using the transitive closure and compact algorithms.

These results are compared with the space requirement for bit-vectors.

Since we are concerned with large taxonomies, we must carefully count space

requirements (i.e. an integer of size n takes l o p , not constant, space). Two common

techniques for implementing a ,graph G = (P, E) are adjacency matrices, which take

O(IPI2) space, and adjacency lists, which take O(lElloglPI +]PI) space. Adjacency

list representation corresponds to maintaining the list of parents (or children) for each

element.

Both the encoding algorit hrn and the implementation affect these characteristics.

Since the requirements of particular taxonomic applications may differ, it is apparent

that there may be no best encoding algorithm to satisfy all. needs. Rather, the designer

of an encoding algorithm must take into account the needs of the application, and

the form of the taxonomies to encode, in order to determine the relative importance

of different characteristics.

Most existing algorithms concentrate on the resulting codes and have not been as

concerned with the complexity of the encoding algorithm or of dynamic updates. In

addition to the space requirement of the resulting codes, we focus on these two issues.

CHAPTER 6. ENCODI,tVG WITH SPARSE LOGIGA L T E R h S

6.5 Sparse Term Encoding

The simple transitive closure and compact encoding algorithms in [2] satisfy one of

our goals: the complexity of the encoding algorithm is minimal. Traasitive closure

has an additional advantage: decoding (i.e. determining the element(s) derloted by a

given code) can be done efficiently in both bit-vector [47, 611 and sparse term imple-

mentations. Sparse terms use a spanning tree of the order for decoding in time lincnr

in the depth of a code term. Research on complex encoding algorithms to find optimal

encodings (e.g. [79]) is important, but is of limited practical use in dynamic environ-

ments. Below we use the abstract versions sf these two simple encoding algorithrrls

described in Chapter 4 to specify versions that compute sparse term encodings. Notc

that we use these algorithms in a top-down manner (which preserve joins), while thc

dual bottom-up versions (which preserve meets) were described in [2].

The transitive closure algorithm for sparse term encoding is given below. Sevcral

variations were implemented in Sicstus Prolog, and were used to derive the empirical

results of section 6.7. A topographic traversal of the ordered set is done so that, when

processing an element p, the codes for all parents of p have already been constructed.

Associated with each element p is a "path" (a sequence of indices from the root of

the code ~ (p) to one of the leaves), and a "label" indicating how to cxtcr~cl ~ (p) .

The code for an element is built from the unification of the parent codes, plus an

extension of the path associated with one of its parents. The subroutine extend will

select one of the parents to extend, and either increment an integer sort (done through

extendintegersort) or add a new subterm (done through ex tend~rg l i s t) . Thcse two

straightforward functions are not described.

Algorithm 1 sparse-temencoding(input: P; output:^)

1. let < PI,. . . , p, > be a (top-down) topographic ordering of P, where pt = T

2. T(T) := []
3. path(T) := []
4. Eabel(T) := 1

5. for i = 2 to n do

6. .r(~i) := nqEpawnts(p,)~fq)n extend(pi)

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS

Algorithm 2 extend(input: p; output:a)

Global information: ordered ~ e t P (p E P), and path, lubel and pred information

1. zj 3 q E paren t s (p) such that label(q) > 0 then

2. cu := e x t e n d i n t e g e r s o r t (pa t h (q) , Eabel(q j)

3. p a t h (p) : = p a t h (q)

4 lnbeI(p) := label(q) + 1

5. if label(q) = 1 then

6. label(q) := -1

7. else

8. labeE(qj i label(pred(q))

9. endi j

10. e k e

I . s eEec tanyqEparen . t s (p)

12. n := -label(q)

13. a := e x t e n d x r g l i s t (p a t h (q) , n)

14. path(pj := a!

15. tabel(p) := 1

Note the polyn~orphic use of the predicate label. If label is a positive integer n,

then term extension is to be accomplished by setting the integer sort at the end of

the path specified in the path predicate to n. If label is a negative integer -n, then

term extension is to be accomplished by adding a new subterm at the end of path

with index n. Also note that we used ":=" to denote variable assignment, while the

symbol "4" is used to denote identity (i.e. in line 8, label(q) becomes identical to

the late1 of its predecessor prediq)). Essentially, if any parent q can be extending by

incrementing an integer sort, we select that parent (lines 1 to 9). The current element

p inherits the path of q (line 3) and increments the next integer sort extension (line

4). If the label for q is 1 then a new subtenn list is begun (line 51, otherwise subterm

expansion is done using its predecessor's sublist (line 8) so new subterm extensions

will be done correctly (since q and its predecessor have the same p a t h) . In hoth cases,

new extensions will be argument list extensions. If no parent can be extendcd with

integer sorts, we select one to extend by adding a new subterm (lines 11 to 17). Ttw

label is the negation of the new subterm index, which is used to extend the path of

q, and also becomes the new path of p (lines 12 to 14). Now p can be extwded I y

incrementing (the currently non-existent) integer sore functor (line 15), while tlic tiest

extension of q is updated (line 16). The last line sets up the predecessor information.

For compact encoding, we need only change line 6 of the sparse term encoding

algorithm to the following, so that only the codes for meet irreducible elenwnts arc

extended. The code for a non-meet irreducible element is simply the unification of

the parent codes.

Postprocessing can optimize codes to use relative and interval indices, whcrc a

space saving can be realized. For dynamic updates to the taxonomy, variations of

~hese algorithms can modify existing encodings by updating only codes below !,kc!

point of change, although we do not describe these here.

Theoretical Justification

We now justify, using a variety of theoretical taxonomies, that sparse tcrnls provide

the necessary flexibility md efficiency required for encoding. This analysis con ple-

=exts u: earlier thmret,icz! ccmpariscn of various encoding techniyuc3, i n d d i n g fiat

terms. on theoretical orders 1431, where the focus was on comparing different encod-

ing algorithms. We focus on comparing different implementations of two algorithms:

transitive closure and compact. There is o w deviation, however, for interval sc:ts,

where we used the results of the more complicated algorithm described in [l]. Al-

though the underlying information is the same, the resulting interval sets are more

compact (at the cost of more encoding effort).

Chains: Integers are we11 suited for encoding chains. Thus, sparse terms (using inte-

ger sorts), integer vectors and interval sets provide optimal encodings. However,

bit-vectors require linear space. Since every element is meet irreducible, bit-

vectors using the compact encoding algorithm also require linear space. Figure

6.6 shows a sparse term encoding for a chain.

Figure 6.6: Chain and anti-chain encodings

Anti-chains: Terms and interval sets optimally encode anti-chains. Bit-vectors and

integer vectors, however, require linear space. Figure 6.6 shows a sparse term

encoding for an anti-chain. The second anti-chain encoding shows how I could

be encoded as unification failure using atomic functors.

Complete Binary Trees: In this case, the combination of integer sorts and logical

terms permits optimal encoding using sparse terms (linear with respect to the

height of the tree). Integer vectors and sparse terms without integer sorts both

require linear code space, as do bit-vectors. With additional processing, bit-

vectors can achieve optimal code size, using modulation or other techniques

[2, 24, 491. Figure 6.7 shows a sparse term encoding for a complete binary tree.

Figure 6.7: Binary tree encoding

If we invert the tree. and add a top element, the space requirement for sparse

terms, bit-vectors and integer vectors does not change, but interval sets require

CHAPTER 6. EXCODING WITH SPARSE LOCIC.4L TERMS

For arbitrary binary trees, t.he code size for sparse terms remains linear wit.11

respect to the tree height. The worst-case occurs for a right-skewed binary trw

(ix. where the left branch is always a leaf), where the height is asymptotically

the same as n. However, all of the other implementations require linear coclc

space, except for interval sets which is optimal using the more cornpiex algo-

rithm. Also, if the tree is flipped left-right, then sparse terms achieve optimal

encoding. In general, due to the use integer sorts, sparse terms will perform bet-

ter if trees are organized so that the leftmost branch of a node has the largest,

subtree. In case two children have the same size subtree, the deepest should

be selected as the leftmost. These selection criteria are closely related to those

used in the interval sets approach [I].

For complete k-ary trees, bit and integer vectors remain linear. However, i f thc

tree has height h, then sparse terms require O(h1ogk). Since h < b C J k 7 l this is

bounded above by O(Zogkn * logk).

Square Lattices: A square lattice is a partial order resulting from the product of

two chains. An example is shown in Figure 6.8. For two chains of length A:,

their product has n = k2 elements.

Transitive closure bit-vectors require linear space. Integer vectors, i nterval sets

and sparse terms require O (f i l o g (f i)) = O (f i 1 o g n) which is ~ublinea~r, al-

though not optimal. This is primarily because the square iattice has width

k = fi. If additional work is performed to determine that this lattice is a

chain product, then space can be improved to 0 (2 1 0 g f i) = O(1ogn). In gen-

eral, however, finding the minimum number of chains that decompose a partial

order is NP-Hard[l44].

r l For compact encoding, there are 2k = 2 f i rxeet irreducible elements. I h u ~ ,

bit, vectors require O (A . Compact encoding for sparse terms, integer vectors

and interval sets, however, achieve optimal codes. Figure 6.8 shows a transitive

closure and compact sparse term encoding for a square lattice.

CBAPTEX 6. ENCODING WITH SPARSE LOGICAL TERMS

Figure 6.8: Square lattice transitive closure and compact encodings

Consider a product of m chains of length k each (so n = km). Optimally, if

we have an algorithm that can decompose this order, integer vectors require

O(m1og k). However, using the transitive closure algorithm, we can only detect
m-1

that the width of the order is km-' = n . 7 . Thus, integer vectors, interval sets

and sparse terms require O(km-'logk) = 0(nV$logn) which is still sublinear.

Using the compact algorithm, we again obtain optimal results.

Generalized Crowns: The preceding example orders are all somewhat sparse (and

of low dimeusion[144]). In lattice theory, generalized crowns are the standard

example used for minimal sized partial orders of high dimension. Figure 6.9

shows the generalized crown S5 of dimension 5. An important property of such

orders, is that the minimal size lattice into which the generalized crown Sn of

2n elements can be embedded has 2" elements.

Determining compact encodings for the generalized crown S, is a challenge.

Bit-vectors and integer vectors both require linear space, even for the compact

algorithm. Note that even if we can determine the dimension (which is NP-

Hard), we cannot improve on these results. However, interval sets and sparse

terms can encode Sn using optimal space (also shown in Figure 6.9).

Figure 6.9: Tramitive closure encoding of a crown Ss

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS

Table 6.1 summarizes these results, where n is the number of elenlents in the

ordered set. Unless indicated, results are for both transitive closure a11n compact

algorithms. Also, recall that the results for interval sets are somewhat biased as they

are based on the more complex algorithm in [I]; using this algorithm, sparse terms

can match or surpass these results, since they generalize interval sets.

Table 6.1 : Asymptotic encoding results for theoretical orders
1 Sparse Terms 1 Bit-Vector I

Chains
Anti-Chains
Complete Binary Tree

(inverted)
Arbitrary Binary Tree
Square Lattice

(transitive closure)
(compact)

Product of m chains
(transitive closure)
(compact)

Crown

logn
logn
logn
logn

n

n1I22ogn
logn

m-1
n m + Llogn m

logn
logn

Integer Vector

logn
n
n
72

n1I2logn
logn

rn-1
n- * klogn

logn
n

m- 1
n- * $ l o p

logn
10,q"

6.7 Empirical Evidence

The above clearly shows the power of sparse terms. However, the partial orders likely

to occur in practice are unlikely to possess any of the above forms. Intuitively, a large

partial order will probably have some regions that are very sparse while others thah

are dense; some regions may possess certain properties, while others possess different

properties. One technique that can be used to encode such hierarchies is modulation

[2, 491, which decomposes a partial order into suborders that can be independently

encoded. Modulation can be a powerful technique provided the order is not too

dense. Although we generalized modulation to handle denser orders in Chapter 5,

and a linear modulation algorithm now exists [XI, it may not be appropriate for ail

dynamic taxonomies.

CHAPTER 6. ENCODING WITH SPARSE LOGICAL TERMS 138

demonstrate the power of sparse terms, we encoded two large empirically ob-

tained taxonomies, using transitive closure and compact algorithms. The resulting

sparse terms were not optimized in the sense that no relative or interval indices were

used. Also, for the compact encoding, no integer sorts were used - this accounts

for poorer behaviour in some cases compared with the transitive closure algorithm.

If integer sorts are incorporated, more dramatic results may be achieved. We show

the resulting space requirement of the encodings, as well as the required space for

bit-vector encodings. Here too, the results are skewed against sparse terms. The

sparse term space requirement was the actual memory used to store all codes; for

bit-vectors, however, the space requirement does not consider memory padding. Still,

the improvement that sparse terms offer over bit-vectors is remarkable.

The first taxonomy was obtained from a chess learning program [95], in which

each node is a board position. There are 1,815 nodes (590 meet irreducible elements

and 1,425 join irreducibles) and 8,227 links in the transitive reduction. As shown in

Table 6.2, sparse terms require one quarter of the space for bit-vectors in the top-down

transitive closure algorithm, and three quarters for the compact algorithm. Similar

space improvements are made for the bottom-up algorithms. Thus, we not only gain

the improved flexibility of sparse terms over bit-vectors, but this shows that even for

moderate size taxonomies, the asymptotic advantage of sparse terms pays off.

Bit-Vectors total
bits/code

Sparse Terms total
bits/code

Sparse Term/
Bit-Vector ratio

Table 6.2: Empirical results (in bits) for chess learning system [16]

Trans. Closure

3,294,225 ! 1,815 ' 820,872
452

Top-Down
Compact 1
2,586,3751

Top-Down I Bot tom-Up
Compact

1,070,850
590

803,056
442

The second taxonomy was obtained from a terminological medical knowledge

~otto&-/
Trans. Closure

3,294,225
1,815

966,920
533

base1. Nodes are medical terms, and the partial order is subsorting. There are

'Thanks to Ian Horrocks, Medicd Informatics Group at the Univ. of Manchester.

CHAPTER 6. ENCODING WITH SPARSE LOGPCA L TE RAfi 139

2,717 terms (2,640 meet irreducible elements and 2,187 join irreducibles), and 4,766

links in the transitive reduction. This taxonomy is less dense t hm the previous one

(more nodes, less links), and most of the elements are irreducible. In this situation,

compact encoding provides very little benefit for the additional cost.. Howevcr, t lie

benefits of sparse term encoding are even more marked: about 10 times morc efficient

than bit-vectors.

Bit-Vectors total
bits/code

Sparse Terms total
bits/code

Sparse Term/
Bit-Vector ratio

Table 6.3: Empirical results (in bits) for medical ontolc

Trans. Closure
I Top-Down

Compact

7,172,880
2,640

812,768
299

0.11

Top-Down Bottom-Up
Trans. Closure

7,382,089
2,717

812,064
299

;Y
Bottom-LJp
Compact

Our goal in this chapter is twofold. First, we presented sparse terms as a imiversi~l

implementation for encoding, generalizing the basic form of sparse terms [51] arid ex-

tending previous work on logical term encoding [35]. Second, we argued that for large

dynamic taxonomies, simple and fast encoding algorithms are necessary. These two

claims are backed up by theoretical and empirical evidence. Furthermore, either clairrl

could be taken independently. In particular: sparse terms could be exploited in any

encodiag algorithm with a potentially large decrease in space. Finally, although lagi-

cd term encoding has been extensively studied [35,43, 47, 1021, this chapter prevents

the first published description of algorithms for encoding with terms. The results

presented are important in contexts such as conceptual structures, where taxonomic

knowledge is likely to change frequently.

Part 11:

Applications and Extensions

Reasoning with Taxonomies

"Then he was told: Remember whet you have seen,

because everything forgotten returns to the circling winds"

- Lines from a Navajo chant

Chapter 7

Extending Partial Orders for Sort

Reasoning

'(Reason, alas, does not move mountains. It only tries to walk around them

and see what is on the other siden

- G . W. Russel

The mathematical basis of partial orders has been exploited in taxonomic knowl-

edge representation and reasoning, and research on taxonomic encoding has provicied

techniques for the efficient management of partial orders. Unfortunately, the simple

structure of a partial order limits the taxonomic knowledge that can be represented.

At the other extreme are description logics (e.g. the KL-OXE farnily [19, 1591) i u

which taxonomic relationships among sorts are specified using a formal language, hut

the taxonomy itself must be derived through classi,fication (which may or rnay not, bc

NP-Hard, depending on the logic). We feel that, explicit maintenance of a taxonarny is

important for efficiency. In this chapter, we formally extend partial orders to permit,

incorporation of additional taxonomic information.

7.1 Introduction

Research on integrating additional forms of taxonomic knowledge into partial orders

is scarce. Most notable, work by Cohn 1281 proposed a generalized form of taxonomic

CflfAPT%;%t 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 142

specification within a sorted-logic framework. In [53] we proposed some extensions to

partial orders to integrate machine learning [103] and systemic classification [20, 1011.

We extend these proposals in this chapter in an attempt to develop a taxonomic

knowledge representation system that is both flexible and parsimonious.

We may wish, for example, to define an element to be the intersection (union)

of another set of elements (e.g. woman = human n female). Although this may

hold coincidentally through meets (joins), such a restriction ensures that any changes

must also respect this constraint. As acother example, every element in a taxonomy

must normally be specified, but there may be cases when this is both unnecessary

and inefficient. Suppose we wish, e.g., to view people along lines of religicrl (e.g.

Catholic, Jewish, Muslim, etc.), nationality (e.g. Canadian, Belgian) and occilpation

(e.g. student, prof, miner). Currently, we need to specify all possible combinations

(i.e. the cross-product) of these facets to produce all sorts of people (e.g. a Belgian

Catholic student). It would be cleaner if we could specify these lines separately, and

infer the cross-product when needed.

After providing some background on sorted logic and sorted logic programming, we

formalize sorts and sort hierarchies, and identify the relation between lattice and set

operations. We then propose the sort reasoning problem as the fundamental problem

for a sort reasoner, and discuss how sort relations can be specified in two expressive,

but equivalent ways. In section 7.3 we develop a three-valued propositional logic for

sort reasoning and introduce the notion of a sort context. Using this logic, we show

that, although resolution provides a sound and complete mechanism for sort reasoning,

it is NP-complete. The focus of section 7.5 is to identify tractable subcases of sort

reasoning. Finally, we discuss some implementation issues.

7.2 Background

First-order logic is unsorted in the sense that the domain of discourse (i.e. the uni-

verse) is treated as a single undivided set. A sort can be viewed as a subset of the

domain of discourse, and is generally a group of objects related in some way (e.g. the

set of dogs). Sorts can be mimicked using special sort predicates, but many sorted

CHAPTER 7. EXTENDING P,4RTIAL ORDERS FOR SORT REASONING 143

logics move sorts into the forefront as first-class objects. This allows specification of

the non-logical symbols as belonging to certain sorts, and provides a. simple syntactic:

mechanism to state semantic constraints. Thus, in a many-sorted logic, a. set of sort,s

can be specified that divide the domain of discourse. Although in some logics, sortLs

must be disjoint, most permit overlap between sorts, in which case the subsct rclation

forms an order on sorts.

There are a number of advantages to using sorts in logic, particularly the rduct,ioii

in the length of certain proofs by eliminating futile branches of the search spncc. Scc

[27] for specific coverage of the benefits of many-sorted logic.

Sorted logic programming is simply the logic programming analog to sorted logic.

Prolog is unsorted, and so the unification to two unequal atoms results in failure.

LIFE [4], on the other hand, permits the specification of a sort hierarchy P. In tho

event of unification of unequal atoms a1 and a2, the sort hierarchy is used to cleterrnine

the result. If a1 !-Ip a2 = I then failure results. If al f l p a2 = b, then the result, of the

unification is b. Since the sort hierarchy does not need to be a lattice, a1 TIp a2 may be

{bl, b2, . . . , bk). In this case, processing proceeds with the result bl, and si~hsequent

sorts from this set are attempted in turn on backtracking.

7.3 Sort Reasoning

Sorts represent sets of individuals grouped according to common features. Int,i~it ivcl y,

a sort pl is a subsort of p~ provided that every individual in pl is also in p.2 (e.g. collie

is a subsort of dog). We don't require that sorts denote unique sets of individuals, s o

two sorts pl and pz may be aliases for the same set (e.g. car and autmwbile), or that

a sort be non-empty (e.g. unicorn is an empty sort). As we describe bebw, subsct,

information on sets of aliases forms a partial order.

Let U be the domain of discourse (i.e. the set of individuals).

a Let P be a set of base sorts, notated using letters p and q. 'dp E P, p represents

a subset of U . P contains an implicit element: Tp, representing U .

Then C foms a preorder relation on P (i .e. C is reflexive and trarlsi ti ye).

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 144

From P we can specify the literal sorts: Pc = {p, iplp E P, l p = U\p), notated

using greek letters a ,P , etc. We can derive an implicit literal sort _Lp = 7Tp that

represents a. We can also extract two relations:

0 The sort equivalence relation, = p : for pl, p2 E P, pl = p p2 if and only if pl C p2

and p2 2 pl. We denote the set of equivalence classes of P as P,, and each

equivalence class as b], where p is a representative for the class.

0 The sort (~artial) order, (P=, S p) : for [p3, [q] E P=, b] <p Eq] if and only if

Vpi E [p],qj E [q], pi C qj- Clearly L p is reflexive and transitive. To show

anti-symmetry, consider two classes [p] and [q]. If b] L p [q] and [q] Lp Ip], and

pi E Lp], q j E [q], then pi E q j and q j E pi. Thus, pi =p qj, SO it must be the

case that [p] = [q].

For simplicity of notation, we omit the brackets surrounding alias classes. We now

describe the relationship between taxonomic and set operations.

If pl n p2 = p3, then pl n p2 -> p3. For example, if pl n p2 = I, we cannot infer

that there is no element in U that is in both pl and p2. We can only infer that

there is no known sort that represents such elements. However, if we know that

pl n p2 = PS then we can infer pl n p2 = p3. For non-singleton meet crests, if

pi np2 = {qi,.-.,qk}, then Vqi,1 L i L L,pl n p 2 > q;.

If pi U p2 = p3, then pl U p2 S p3. However, if we know that pl U pz = p3 then

we can infer pl U pa = p3. For non-singleton join bases, if pl LI p2 = iql, . . . , qk),

then Qqi, I L i 5 L, pl u pz E q;.

Thus, it is not always possible to perform sort inferences using taxonomic oper-

ations. This issue was the focus of the lattice completion proposed in 1281. Figure

7.i shows the above relationships using Venn diagrams. Our goal is to exploit both

the complete and incomplete knowledge in a sort hierarchy for a sort reasoning sys-

tem. This requires a general means of specifying, maintaining and reasoning with

information that relates sorts.

CHAPTER 7. EXTEIVDING PARTL4L ORDERSFOR SORT REx4SONING 145

Figure 7.1 : Relation between taxonomic and set operations

7.3.1 Generalizing sort reasoning

Definition 7.1 Suppose we have a set P of n base sorts.

A n atomic sort is a sort s obtained by intersecting, for every sort p E P , tibht3r

p or its complement ~ p .

A derived sort is a set of atomic sorts.

A conjunctive sort is the intersection (conjunction) of a set of literal sorts.

A conjunctive sort s is consistent if and only if it does n~ot contain both a burst?

sort and its complement. A consistent conjunctive sort is a derived sort.

In a Venn diagram of all possible combinations of sorts, each distmct region is an

atomic sort of which there are 2n. Taxonomic information may reduce the r ~ u m ber

of non-empty atomic sorts (e.g. if pl _< pz then an atomic sort with pl but not

pz is empty). A derived sort is obtained by selecting 0 or more atorriic sorts, arid

corresponds to the union of distinct regions in a Venn diagram. In the worst case (no

taxonomic constraints) there are 22n non-empty derived sorts.

To illustrate, consider the specifications: (i) francophone 5 person, arid (i i)

canadian 5 person. Although sorts francophone and cunadian are incomparable,

there is no information that indicates they are disjoint. Combining thcm results ir l

the derived sort canadian-francophone. In general, conjunctive sorts can he denat,ecl

by juxtaposink their constituent sort labels (lexicographically to ensure uniqueness,

although any total order on the sort labels cmld be used). Autornatic derivation of

conjunctive sorts can be contrasted with LIFE in which the same combination will

result in failure, since their coincidental meet is I.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 146

For conjunctive sorts, we can specify an intrinsic ordering (5): for two conjunctive

sorts sl and s2, we know that sl 2 s2 if sl contains a superset of the literals in s2. For

example, pl A 7p2 p3 5 7 2 2 A p3- Taxonomic information provides further extrinsic

ordering among conjunctive sorts. Thus, for conjunctive sorts sl and s2, sl 5 s:!

irnplies that sl C_ s2, but not necessarily the converse.

Clearly there is potential for a combinatorial explosion in the number and size of

derived sorts. In [28], completeness in a many-sorted logic setting is required, and

so the entire derived sort space must be handled. Unfortunately, this leads to the

possibility of a sort structure of exponential size. Our goal is to produce a general

sort reasoner that minimally retains polynomial space, and so we choose to restrict

the set of derived sorts to conjunctive sorts.

Conjunctive sorts are natural in that they group together individuals in U that

share attributes. They provide for monotonic sort reasoning, since the set of individu-

als denoted by a partially specified sort cannot increase as new constraints are applied.

These are the types of sorts produced in LIFE [4] through unification. Conjunctive

sorts have a natural representation using a three-valued logic by selecting for each

base sort p E P either true (include sort p), false (exclude sort p) or uncertain. Thus,

there are at most 3" different consistent conjunctive sorts, although constraints may

reduce this number. Conjunctive sorts have a simple and efficient implementation

using logical terms (see section 7.6).

Our problem can now be described succinctly as follows:

Definition 7.2 Sort Reasoning Problem (abstract): Given a set of base sorts

P, a set of assertions A that specify the emptiness or non-emptiness of zero or more

conjznctive sorts, and a conjunctive sort s . Can we infer that s is empty or non-

empty?

We show that interesting sort reasoning problems can be characterized as special

cases of this problem, and we describe general methods of specifying the assertions.

We develop a sort logic (not a sorted-logic, but a logic for sort reasoning) that has

a sound and complete reasoning strategy. We also show that this problem is NP-

Complete, so we explore tractable subsets of sort reasoning.

CHAPTER 7. EXTEihrD1NG PARTIAL ORDERS FOP, SORT RE.4 SONliVi: ! 4 7

The assertions A partition the conjunctive sorts into three groups: f i u p t y sorts,

non-empty sorts and possibly empty sorts. If a conjunctive sort sl is empty, attci

sz 3 sl? then s z must also be empty. Dually, if sl is non-empty, and sl 5 .s2. ttwn

sz must be non-empty. Thus, sort reasoning can be viewed as classifying conjunctive

sorts into these groups based on the current set of assertions.

7.3.2 Clausal taxonomic specification

In [28], a suggestion is made for clausal specification of taxonomies: Qx, pl (z) V . . . V

p, (x) V 7ql(zj V . . . V iqn(x j? where the p; and q j are base sorts. A number of special

cases are worth noting:

1 . m = 0, n = 2: q1 and q2 are incompatible.

2. m = 0 , n > 2: ql, - - - , q, cannot simultaneously hold.

3. m = l ,n = 1: ql C p,.

4- m > 1, n = 0: pl, - - . , pm decompose T (i.e. U{pl,. - - , p,) = T).

The usefulness of these clausal specifications is not explored in [28]. In light of

the sort reasoning problem, such a specification can be viewed a. asserting that ar
rnl certain conjunctive sort is empty. 1 ne universally quantified form is cquivalcnt to

fix, l p ~ (x) A - . - A -.p,(s) A ql(x) A - - A q,(x) (i.e. conjunctive sort 7 1 1 A . . A 1pTtL A

ql A - . - A qn is empty). We propose to also allow dual specifications: 32, - 7 p l (x) A - . . A

~P,(x) A ql(x) A - - , A qnlx), which permit asserting that a certain conj tmctive sort is

not empty. Duals of the above special cases are:

1. rn = 0 , n = 2: ql and qz are compatible.

2. rn = 0, n > 2: ql, - . , q, can simul~aneously hold.

3. r n = 1,n = 1: ql g p l .

4. rn > 1,n = 0: pl; - . , p , do not decompose T.

with these two f~rrns, we have the ability to fully specify any instance of the sort,

reasoning problem, so we can dispense with the quantification, and lirni t our focus to

propositions' logic. Universally quantified assertions for universal sorts) are global i n

that they must all simultaneously hold, but not existentially quantified assertions (or

existential sorts), which may specify different individuals in U. Figure 7.2 shows the

set relationships imposed by these specifications.

CHAPTER 7. EXTE!VDLYG' PARTIAL ORDERS FOR SORT REASONING 148

7.3.3 Definitional specificat ions

As an alternative to claasal specifications. a number of natural relationships can be

constructed using sort definitions. Some possibilities are described below and shown

in Figure 7.3, and formed the basis of extended description spaces [53].

Conjoined Sort Definition: ?Ye may rvmt to define a sort as precisely the intersec-

tion of a set of other sorts. For example. we may want to define woman as the

intersection of person and female. We can denote this using set. intersection:

p = al n- . -flak, where the a, are sort literals. Such definitions are equivalent to

the clauses: (i) pV la1 V - - - v ~ r k ; and (ii) - p V ai for 1 5 i 5 k. Partial orders

only permit the second set of clauses, and so we may only say: p 5 al n . n ak.

Sort Decomposition: Sometimes w e knox- trhat a set (al . - - - . ak) of (possibly over-

lapping) sorts Heciimpclaes anoiber sct~-i p. Thai is, y = U - - - U ak. For

example, we may wish to define a sort u n i ? x r s i t y m r s e = grad-course U

u-ndergrad-course (where some courses may be cross-listed as both). Sort de-

composition is analogous to generalization in the entity-relationship model [92].

Such a declaration is equivalent to the clausal specifications: (i) l p V a l V . - . V a k ;

and (ii) p V l a ; . for 1 5 i < E . Every conjoined sort definition p = a1 n . . . n a k

induces a dual sort decomposition l p = la1 U - - - U l a k , and vice versa.

Sort Partitioning: it+ may have even stronger information that a set Q decomposes

a supersort p and every pair of elements in Q is disjoint. For example, we may

wan? to say thzt the sort persm is partitioned into woman and man. We can

denote this using disjoint. set- union: p = 01 + - . - + ak , where $- is interpreted

as union with the constraint that each pair of sorts on the right-hand side must

be disjoint. Such assertions are equivalent to the clauses: (i) -p V a1 V - - V a k ;

(ii) p V Y C Z ~ for 1 5 i 5 k: and @) V 1aj7 for 1 5 2 < j 5 k.

Figure 7.3: Aggregatx specifications

We can specify the dual of these assertions, by replacing equd signs by strict,

subsets. We may, e-g., state that wild and canine is insufficient to defir~e wo1.f as

wolf c wild n canine (i.e. the sort iwo l f A wild A canine is non-empty).

Interestingly, definitional and clausal specifications are equivalent,. -4 universal

assertion: pl V - - V p, V 7ql V - - - V i q n can be specified as: (i) q' = ql n . . n qn;

(ii) p' = pl U - - - U pm; and (iii) q' n p' = q' (or q' 5 p'). An existential assertion:

i (p l V - - . V p, V i q l V . - - V i q ,) can be specified as: (i) q' = ql n . . . U qrL; (i i)

p' = pl U - - - U p,; and (iii) q' n p' c q' (or q' $ p').

7.4 Sort Logic

Definition 7.3 A sort context is a triple C = (P , I,JZ/), where

e P is a set of sort symbols, and 'PL is the corresponding set of sort 1z'lerul.s.

I is a set of universal sort assertions, where for every 6 E E , c = ol V . . . V cwk

and each a;, 1 5 i 5 k, is a sort literal. Conjunctive sort i t is in the sume sort

equivalence class as lp (i.e. Y E is an empty sort).

,u is a set of existential sort assertions, for every 7 E N , r, = a1 A . . . A rind

each a;, 1 5 i 5 kp is a sort literal. Conjunctive sort 7 is in a diflcrent sort

equi~alence class from ip (i.e. q~ is a non-empty sort).

Since existential sort clauses are local (i.e. they implicitly existentially quantify

an individual); cannot use them indiscriminately: we only allow at most o w to

appear in a proof. Our sort logic has three truth values: T (t rue) , k' (f a l s e) and IJ

(unknozun or zlncertain). For example, the answer to the y uery dqy A cat = 0:' may be

true, whereas the answer to the query student A plumber = 0? may be uncertain. We

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 150

also have one rule of inference, resolution, which we can formalize as follows (where

the a; and pj are sort literals, and l i p = p):

Using a standard resolution process, we finish when either the empty clause is

derived, or no more resolution is applicable. The empty clause is derived only if both

a and l a can be derived, which clearly indicates inconsistency.

A sort context C is consistent if for every conjunctive sort s resulting from PC,
we cannot infer that s is both empty and non-empty. Since resolution is sound and

refutation complete [72], determining if a sort context is inconsistent using resolution

is sound and complete. We do not assume complete knowledge,

be the case that we cannot infer that s is empty or non-empty. In

Cohn [28], we call s possibly-empty.

Queries can be dealt with as follows:

however, so it may

this case, following

Empty Sorts: To check if a conjunctive sort s = a1 A - . . A a k is empty, we assert

that it is not empty by adding s as an existential sort, and attempt to derive

the empty clause through resolution. If we derive the empty clause, then s must

be empty, and 7 s must be a universal sort (i.e. the sort context ('P, E, is)) is

inconsistent). If not, then s may be either non-empty or possibly-empty. Note

that we only use elements of E, but not of N , for this.

Inferring Sorts: We may be interested in the sorts that can be inferred from s.

These can be produced as a side product of the above resolution process. If s

is an empty sort, then every sort is derivable.

Non-empty Sorts: To check if s is non-empty, we assert that it is empty (i-e. add 1 s

as a universal sort), and attempt to derive the empty clause through resolution.

We do this by finding s non-empty sort 7 f ,V with which we can derive the

empty sort (i.e. the sort context (P, E U {ls), (9)) is inconsistent). Note that

this is akin to skolernizilag the existential sort 9.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONlNG 151

We can now restate the sort reasoning problem in more definite terms.

Definition 7.4 Sort Reasoning Problem (concrete): Gizwn a sort corrted S =

(P , I, {s)). Is C consistent?

The Sort Reasoning Problem is NP-complete, as we prove formally in the following

subsection. This can be demonstrated by modeling an instance of 3-SAT using sort

definitions, as shown in Figure 7.4, where a conjunctive normal for~n fortnula with

ternary clauses f = cl A - . - Ack, where c; = \11;,~ V li,3, 1 < i 5 k can be represented

using one intersection definition for f and one union definition for each of the clauses.

In diagrams, we denote intersection (resp. union) definitions by connecting the parent

(resp. child) subsumption arcs with a horizontal line. Answering the query "Is f an

empty sort?" is clearly NP-Complete.

Figure 7.4: Using sort definitions to represent an instance of 3-SAT: f = cl A - . A ck,
where C; = litl V li,2 V 1 I i I k

From a logical standpoint, intractability is of no concern, provided the logic is

sound and complete. Also, some systems may prefer to retain expressiveness and

assume that the worst-case will rarely, if ever, occur. Even so, there is some sort

structure maintenance that we may perform to reduce the cost of sort reasoning. If

u7e determine that a sort s is empty or non-empty, then we can assert this information

in the sort context. We refer to this as sort memoing, since it is akin to memoing in

OT DT resolution 11251. If sort reasoning is performed in localized areas of the sort

structure, then this enhancement may result in improved performance at the cost of

additional storage (in the worst-case, one conjunctive sort is added to the context far

any query).

7.4.1 Complexity of Sort Reasoning

We now prove that sort reasoning is NP-Complete. Note that context C = (P, 1: { 8))

is consistent if and only if s is not provably empty.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 152

Lemma 7.1 If s is an empty conjunctive sort and s f contains a superset of the literals

of s (i.e. s f 5 s), then sort resolution can show that s f is empty.

Proof: Suppose s is an empty sort: s = a1 A . - A a k (so -a1 V . . V ~ a k is a universal sort),

and st contains a superset of the components of s: st = a1 A - . - A a k A ,Bl A . . . A pj. Further

suppose that sf is not empty: assert al, . . . , a k , PI,. . .,pi. Clearly, through resolution we

can derive the empty clause. Thus, sort resolution can show that sf must be e r n p t ~ . ~

Lemma 7.2 If s is an atomic sort (i.e. s = al A . - . A a,), then s is provably empty

i f and only i f 37s' f & for which s 5 s f .

Proof: =+ Suppose B-Ts' E E for which s 5 sf. The only way t o irf-r that s may be empty

from E is to find a decomposition of s , each element of which is provably empty. But since

s is atomic, no decompositions exist.

+ Suppose 37s' E & for which s 5 sf. By Lemma 7.1, clearly s is provably ernpty.0

Theorem 7.1 The Sort Reasoning Problem is NP-Complete.

Proof: Given a conjunctive sort s, if s is not provably empty, then there exists an atomic

sort s' subsumed by s that is not provably empty. By Lemma 7.2, checking if s' is not

provably empty and checking if sf j s can botk be done in polynomial time. Thus, the sort

reasoning problem is in NP.

To show that this problem is NP-complete, we show a transformation to sort reasoning

from 3-SAT [69]. The 3-SAT problem can be specified as follows: Given a set of n variables

vl, ., v, and a formula F that is a conjunction of k clauses, each of which is a disjunction

of precisely 3 literals, is there a truth assignment to the variables for which F is true?

Suppose we have an instance of the 3-SAT problem: V = {q, - . . , v,}, F = Cl A - . . A Ck

and G; = 1 ; ~ V IiS2 V li,37 1 5 i 5 k, where each of the I i j is either a positive or negated

variable from V. Let us define a sort context trivially as C = (V U {q), {g, C1, - . , Ck}, 0).
Clearly this can be done in polynomial time. Note that the sort q must subsume all the

other sorts (i.e. it is in the same sort equivalence class as T). Each atomic sort corresponds

to a truth assignment.

Clzim: there is a solution to the SSAT problem if and only if we cannot infer that q is

empty.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONllVG 153

+ Suppose formula F is satisfiable. Take any satisfying truth assignment, and define

an atomic sort s as: s = ax A - - - A a,, where cri = v;, if v; = true and cri = yo; otherwise

(for 1 5 i 5 n). If s is provably empty, then 3 a clause Ci = V k i V 2 V bi ts for which

4'; = A ~ l ; , ~ A l l i , s subsumes s by Lemma 7.2. But a t least one of l ; ~ , l i 1 2 , l i ,3 is Iruc,

so no such clause exists. Therefore, s is not provably empty, which implies that q is not

provably empty. So, if F is satisfiable then q is not provably empty.

-e Suppose that q is not provably empty. Then 3 an atomic sort s thaft is not provably

empty. Defiue a truth assignment as follows: if v; is a component of s then set v; = t w ~ e

and if -v; is a component of s then set v; = false. Consider any clause C; = l;,r V til2 V li,:3

for which none of the literals are true. Then T L ; J , -d;,2 and ~ l ; , ~ are all components or s.

But then s must be empty, so no such clause exists, and this truth assignment satisfies F.

So, if q is not provably empty then F is satisfiab1e.o

Tractable subcases

Many knowledge representation systems are concerned with tractable reasoning strate-

gies, so it is important to identify subcases of the sort reasoning problem with poly-

nomial solutions. As intractability results from empty sort assertions (i.e. universal

sorts) and queries, there is no need to restrict the form of non-empty sort assertions.

Positive literal sorts. A simple way to achieve tractability is to avoid negated sorts

by only allowifig assertions that involve positive literals. In LIFE [4], only

subsumption (i.e. p 5 q) assertions are permitted in specifying a sort, hierarchy.

However, if the meet crest pl n - - . n pk happens to be {ql, . . . , q,), there is an

implicit assertion of the form pl A - - - A p, =: ql V . - . V q,.

Horn sorts. Anothe, possibility is to restrict specification to Horn clauses (clause8

with at most one positive literal). This leads to tractable resolution if we restrict

each base sort to be a positive literal of at most one clause. This restriction

may be relaxed somewhat using the notion of OED-Horn clauses described in

[113] for finding a maximal tractable subclass of Allen's Interval Algebra [?I for

temporal reasoning.

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 154

7.5.1 Containing sort reasoning complexity

Both cases above impose unnecessarily strict limitations on the expression of tax-

onomic knowledge. To achieve more flexibility while retaining tractability, we can

either restrict the form of assertions or the form of queries. We choose a combination.

The basic form of universal sort assertions we allow are (i) binary clauses, which can

define a partial order among the literal sorts (i.e. p V q,p V i q or i p V i q) ; (ii) in-

tersection (conjoined sort) definitions: p = a1 A .. . A a,; and (iii) union definitions

(sort decomposition) : p = ol V - - - V a,.

Sort contexts can be described as (P, A, N) , where A is a set of definitional

assertions that satisfies the above forms. Such assertions could be reduced to clausal

form, but these definitional assertions can be maintained in a partial order structure

on the literal sorts, augmented with notation for the intersection and union definitions.

JV is a set of existential conjunctive sort assertions as before.

Note that asserting a binary clause imposes two constraints: a V asserts l a 5 p
and ~p 5 a. Asserting an intersection or union definition, also asserts the dual. The

intersection definition, p = ol A . - A a, also asserts i p = l a l V . . . V la,. The

union definition p = crl V . - - v a, also asserts i p = l a l A . A la,.

Without restrictions, of course, we have full sort reasoning power with the above

assertion forms. Even limiting sorts to have at most one definition may lead to

intractable behaviour, as shown in Figure 7.4. Our solution is to limit the extent of

intractability. First we need to define several notions.

Definition 7.5 Let s = cyl A - . - A ak be a conjunctive sort. The expanded form s*

o f s is the fixpoint of the following construction (i.e. there ezists a k 2 0 for which

s k + l = sic = s*): (i) SO = (a1,. - . , ak); (ii) S;+Z = S; U { P E PL13y E s; such that

7 5 P) U (/? E PLlp = 71 A - - - A y, is an assertion in A and yj E s;, 1 5 j 5 m)

Thus, given a conjunctive sort s, its expanded form is the set of all sort literals

that may be directly inferred from s ,

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REAS0,VIiVG 155

Definition 7.6 Let s = ol A - - A a k be a conju?zctioe sort, and s* be its ezyaud~d

form. The set of potential conjunctive inferences C (s) associated with s is defied

recursively as the jixpoint of the following construction (2.e. there exists n k > O fov

which sk+l = sk = C(s)): (i) so = s*; (ii) s;+l = s; CJ {PIP = 7 1 A . . A y,,, is a n

assertion in A, and cyj E s; for some 1 5 j _< m)

Definition 7.7 Let s = a1 A - - A a k be a conjunctive sort, and s* be its expcznded

form. The set of unresolved disjunctions D (s) associated with s is defined as: D(s) =

{{PI V - - - V Pk)I(i)a = PI V - - V Pk is an assertion in A; (ii) o E s*; and (ii?:)$? E s*

such that y _< pi for some i, 1 5 i 5 k).

Thus, D(s) is the set of union definitions for which the left-hand side sort, but rlonc

of the right-hand side sorts, is in s* (so the disjunction is implied but not satisfied by

4-

Definition 7.8 Let s = cul A - - - A o k be a conjunctive sort. A locally consistent

selection of literals from the unresolved disjunctions V(s) is a set Q = {PI, . . . ,
of at least one sort literal from each disjunction in D(s), where the expanded sort si

(sl = a1 A - . - A a k A . - . h pmj is consistent.

The existence of a locally consistent selection is necessary but not sufficient t,o

show that sort s is not provably empty. Unresolved disjunctions may cascade due to

a locally consistent selection - V(sl) may contain unresolved disjunctions.

In order to determine if s is provably empty or not (provided s* is consistent), wc

need to show that every possible way of resolving the set of disjunctions D(s) leads

to inconsistency. This problem may be intractable in two dimensions. First, even

making a locally consistent selection from D(s) may be NP-complete (cfr. 3-SAT

problem). Second, the potential cascading effect of unresolved disjunctions may lead

to an exponential search space, even if determining locally consistent selections can

be done in poiynomid time. The foiiowing set of restrictions attempts to curtail both

of these sources of intractability, while retaining a degree of power that makes sort

reasoning useful:

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 156

1. Positive literal sorts may not subsume negative literal sorts, and no set contain-

ing negative literals may imply a positive literal. This is achieved by enforcing

the following syntactic constraints on assertions: (i) Subsumption assertions

must have the form p V i q (i.e. q 5 p and i p 5 7 q) or i p V i q (i.e. p < l q

and q 5 ip) ; (ii) The sorts on the right-hand side of intersection and union

definitions must be positive literals.

2. For a given conjunctive sort s = al A - . A a k , limit the number of unresolved

disjunctions (union definitions) containing positive literals associated with s to

a constant nu. This ensures that we can determine in polynomial time if there is

a locally consistent selection of literals from the unresolved disjunctions V(s) . If
D(s) is empty or contains only disjunctions with negative literals, then a locally

consistent selection can be done in linear time.

3. Limit the cascade of unresolved disjunctions by imposing constraints on the

relation of positive sorts involved in one union definition p = ql V . - . V q k

to other union definitions. If si E C(q;), 1 5 i 5 k, then D(s;) can only

contain disjunctions with negative literals. Note that if qi is not subsumed by

any sorts on the right-hand side of an intersection definition, then this reduces

to the constraint: D(qi) can only contain disjunctions with negative literals.

This restriction ensures that, for a conjunctive sort s, any locally consistent

selection from D(s) can be checked for global consistency in polynomial time

since cascading disjunctions can only contain negative literals (and no selection

of negative literals can result in a positive literal being derived).

The first and third restrictions are purely syntactic. The second affects both as-

sertions (i.e. the conjunctive sorts on the right-hand side of intersection definitions)

and queries, and depends largely on the current sort structure. It can, however, be

checked quickly given any conjunctive sort. If it is not satisfied in a query, we can no-

tify the client am! provide the option to a t t e ~ p t a potentially costly answer. Together

these restrictions permit us to specify a polynomial time algorithm for determining if

a, conjunctive sort s is provably empty:

CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 151

i. Construct s*. If s* is inconsistent then s is provably empty.
. .
11. Determine D(s) and check if there is a locally consistent selection. If none

exists, then s is provably empty.

iii. Attempt to expand each locally consistent selection to a globally c.onsist,ent

selection. If this is not possible, then s is provably empty.

The first step of the algorithm is performed automatically and eficiently using

lattice operations and the logical term implement ation described in the next sect ion.

Due to the second restriction above, step (ii) can be accomplished in polynomial tixnc,

and due to the third restriction, checking if there exists at least one globally consistent,

selection (in which case s is not provably empty) also takes polynomial time.

7.6 Implementing Conjunctive Sorts

For a simple logical term encoding of sort orders, that is fast to compute and flexible

to update, we assign terms in which each element has one position and use a vxiant

of top-down transitive closure encoding 121. For any element p E ?', position i of the

code T (~) may have one of three values: (i) If p 5 p; then position i will contaiu a 1 ;

(ii) If p 5 l p i then position i will contain a 0; (iii) Otherwise position i will contain

an anonymous variable (denoted "-").

We can extend our logic and implementation to four values: true (I) , false (0),

uncertain (-) and inconsistent (!). Inconsistency in a sort position could be used

as an explanatory feat-ure to identify the base s o ~ t at the root of an inconsisterlcy.

It could also be used as a basis for extending our sort logic to include default and

non-monotonic reasoning - an inconsistent value for a base sort p would indicate that

somehow both p and i p have been acquired. Our approach does not provide a nicans

of resolving this inconsistency, but does give a framework upon which a default or

non-monotonic logic system can be built.

Taxonomic knowledge representation is a complex, yet intuitive and pervavive prob

lem. By separating sort constraints into a sort reasoner, specialized techniques can

'. CHAPTER 7. EXTENDING PARTIAL ORDERS FOR SORT REASONING 158

be used to manage the sort relations arising in a system. We argued that, although

mathematically elegant, partial orders are unwieldy for representing all the relations

desired in a system. Although sort reasoning can be plunged into a partial order

(in fact, a Boolean lattice), the size of this partial order is extraordinary - given n

base sorts, the lattice can be as large as 22n. The typical use of partial orders for

sort reasoning, in which each base sort IS an atom (i.e. plunging the sort structure

in a Boolean lattice of size 2"), leads to either the inability to state certain relations

(e.g. sort woman is the intersection of sorts person and female) or to unjustifiable

conclusions.

We extended partial orders to more efficiently handle sort processing. By restrict-

ing attention to conjunctive sorts (sorts that consist of conjunctions of positive and

negative base sorts), the scope of the problem is reduced to the interesting case that

is most apparent in current logic programming systems (e.g. LIFE [4]). We extended

a clausal sort specification notation introduced in [28] to include the specification of

existential sort assertions, the dual of universal sort constraints. We also developed a

definitional specification notation, in which many important taxonomic relations can

be asserted (e.g. sort universitystudent is defined as the union of sorts grad-student

and undergrad-student). Although the two forms are equivalent in power, the latter

may be more intuitive for some constraints.

Using the set of base sorts, and the existential and universal sort relations, we

defined a sort context, and formalized the sort reasoning problem as the problem of

inferring whether a given conjunctive sort s is provably empty, provably non-empty

or neither, given a particular sort context. Sort reasoning is NP-Complete in general,

and for many-sorted logics this is of little concern, since sound and complete resolution

strategies can be csed. A main contribution of this chapter is the identification of

a tractable subcase of sort reasoning, which is important for practical many-sorted

systems. We identified a number of restrictions that achieve a polynomial-time sort

reasoning algorithm, while retainiag a relatively high-level of expressive power. This

goal is not easily obtained, due to the many ways in which intractability may creep

into a sort structure.

Chapter 8

Reference Constraints in Logic

"Man stays wise as long as he searches for wisdom; as soon as he thinks

he has found it, he becomes a fool"

- Talmud

Equality constraints that arise through unification partition logical variables into

coreference classes, each of which denotes an individual in a domain of discourse.

These classes, however, are unrelated to each other. We develop reference ~ o r ~ s t r ~ i n t ~

as a generalization of equality constraints, allowing the specification of a partial order-

ing among coreference classes. This leads to the notion of individual level i nhedunce ,

where an individual denoted by a variable may inherit properties from another indi-

vidual denoted by a subsuming variable in the partial order. A variety of syst,erris,

especially systems that reason in ambiguous domains, can benefit from an efficient,,

formally based implementation of reference constraints.

8.1 Introduction

Sort (or class) level inheritance permits the declaration of properties for a sort, which

are auiomaticalfy propagated to all of its sub-sorts. A sort represents a conjunctive

set of individuals (the subset of the universe that belongs to the sort), where&% a

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 160

variable represents a disjunctive set of individuals (the subset of the universe that

contains the individual). Each individual (or instance) inherits the combination of

properties of its ancestors in the sort hierarchy. For multiple-inheritance hieraxchies

(i.e. general partial orders, not just trees), research has focused on resolving conflicts

among the inherited properties (e.g. [22, 85, 1431).

There are, however, applications in which inheritance among individuals (instance

level inheritance) is useful. If an individual cu inherits from another individual P,
then any additional properties acquired by ,O must also be dynamically acquired by

a. Such constraints may have use, for example, in systems that explore alternatives

in ambiguous situations. During a line of exploration, we may determine properties of

the solution we seek that must be propagated to all lines of exploration. Systems that

exhi bit such characteristics include natural language processing systems, automatic

configuration systems, dynamic programming, and non-monotonic reasoning systerns.

An unsatisfactory way of achieving this is to allow instances to be maximally

specific (or leaf) sorts. The problems of mixing class and instance (i.e. subset vs.

element) links in hierarchies were clearly identified by Woods [I581 and Brachman

(161. Another unsatisfactory solution is to create new sorts that denote single elements,

because sorts are declarative in nature whereas individuals are assertional. Reference

constraints provide a formal means of instance level inheritance.

Logical variables denote individuals. This is true even for a universally quantified

variable; it may range over a set of individuals, but can only denote one of these at

any instant. Although variables may be sorted, the key difference between the sets

represented by variables and sorts is that sorts are conjunctive (e,g. every instance

in the set denotea ,y dog is a dog) and variables are disjunctive (e.g. X:dog denotes

some instance in the set denoted by dog). We show how the symmetric coreference

constraints imposed by equality among variables can be decoupled into two asymmet-

ric, unidirectional reference constraints. Although individual level inheritance and

reference constraints may be applied to a general many-sorted logic setting, we focus

on logic programming. We use Prolog and LIFE [4] for examples, and discuss how

reference constraints can be efficiently implemented using attributed variables [86].

After providing some background, we describe our decoupling of coreference in

logical variables. This includes a discussion of the syntax and semantics of refercncc\

constraints, maintenance of the reference order, an extended example, a comparison

with sort hierarchies, and how reference constraints may be efficiently imple~nentcd

in a logic programming language. Section 8.4 develops and justifies instance lcvcl

inheritance, including a number of potential applications.

The entity to which a logical variable refers to may be unspecified or partially spccifkd.

In logic programming, each variable X has an associated term r (X) that contains

information regarding the entity that it denotes. In case there is no information,

r (X) = -. When two variables X and Y are unified (i.e. X = Y) , then we are saying

that the entities to which X and Y refer are the same (i.e. X and Y corefer). Atiy

change to X is reflected in and vice versa (i.e. T (~) = T (Y)) . Naturally, to ensure

this property, any rational implementation will store only one term for X and Y. Such

a constraint is called an equality or coreference constraint, and is a fundamental basis

for some logic programming languages such as Prolog. Equality constraints part.ition

variables into a set of unrelated coreference classes.

8.3 Decoupling Coreference via Reference Con-

straints

Suppose we decouple coreference and permit reference constraints. That is, sup posc

we can say that X refers to Y without saying the converse. To do this, we acid a

reference (or semi-unification or sz~bsumption) operator 5. The corrstraint X 5 Y

states that r (X) must be subsumed by T (Y) (but not necessarily the converst:). Any

property holding for the entity to which Y refers must also hold for the en ti ty to w hicli

X refers ji-e. information in T (Y) implies that this same inforxnation, and poasihly

more, must be in T ~ X)) . The pair of constraints X -(Y and Y 5 X is ecjuiv&nt to

coreference/wlification (i-e. X = Y). Since the term associated with a variable is just

CHAPTER 8. REFERENCE C'OhTSTRL4IiVTS IiV LOGIC PROGRAMMING 162

an approximation of an entity: X 5 Y implies differing degrees of knowledge (i.e. the

range of variable X is a subset of the range of Y). In Prolog, an entity denoted by

a variable is only fully specified when the associated term is ground. LIFE, however,

is based upon approximation - terms have unbound arity (i-e. the arity of terms is

not fixed), and so the notion of a ground term has no meaning.

What are the consequences of reference constraints? Reference forms a preorder on

the set of variables in z clause. That is. reference is tran~it~ive and reflexive. However,

it also forms a partial order among coreference equivalence classes. If X 5 Y and

Y 5 X , then X and Y are in the same equivalence class. Note that in order theory

f38], we can always form a partial order from such classes for any preorder. Logical

variables in logic programming languages such as Prolog or LIFE create a set of

coreference equivalence classes, but there is no connection among these classes. With

our treatment of reference constrains, we can construct a relation among these classes.

If X 5 Y and we further instantiate T(Y), then we must similarly update r (X)

[and the terms for all variables subsumed by the class of X). For example, the output

for the code: X 5 Y, X = f (, b) , Y = f (a . -) will be: X' = f (a , b) , Y = f (a , -).

More formally, we can define a set of reference constraints as a state in a logic

program. We sketch the formal details here. We first define some relevant static

aspects of a program:

r Let U be the domain of discourse (i.e. the set of individuals).

r Let X be a set of variables. This may be infinite, or viewed as the variables

mentioned in the logic program.

r Let GAF be the lattice of logical terms, or generalized atomic formulae [121].

We now define the state fretexant to reference constraints) of a logic program:

0 Let T:X -+ GAF be a function mapping variables to terms. Initially, VX E X,

~ (x) = -.
r Let the reference constraints, 5. be a preorder relation on X such that, for

-Y.Y E X , 9 5 Y implies T (X) LGAF T(Y) (i.e. the term of X is subsumed by

the tern; of 1; in GAF).

From 5 we can extract two relations:

The coreference equivalence relation, =, is defined as: for S. Y E A', S = 1'

if and only if X 5 Y and Y 5 X. We denote the set of equivalertce classc~s

as P. For each equivalence class in P, we identify one ~nenlher element .Y as

a representative for the class. and denote the equivalence class as [[XI. We call

extend the function T to reference classes: T([X]> = T(-Y) .

The reference (partial) order, (P , +): for [XI, [Y] E P , [XI 5 p [I7] if and only

if VXz E [XI, Y , E [Eq, X', 3 Y,. Clearly ip is reflexive and transitive. To show

anti-symmetry, consider two coreference classes [XI and [Y] . If [,Y] 5 p [Y] and

[Yl sP [XI, and Xi E [.X],EI', E [Y], then X , 3 Y , and L; 5 St. Thus, X, = lj,

so it must be the case that [XI = [Yf.

In this framework, we can identify two state changes that may occur during thc

processing of a logic program: updates to 5 and updates to T. These updates are

caused by explicit reference and coreference constraints, and through unificatiol~, as

we discuss in section 8.3.2. We assume initially that both are monotonic (wc can

only add new reference constraints, and further instantiate terms). That is, st1 ppose

(5:~;) and (ii+l,~,+l) are two subsequent states of 5 and T in the program. 'L'IwII

siCsi+l and VX E X , T~+~(,Y) sG-4F T;(X). This condition holds in Prolog, hut may

be invalidated in LIFE by destructive variable assignment.

8.3.1 Notational considerations

There are two ways in which coreference can be noted in a logic program: explic-

itly through an equality constraint (e g X = Y), or implicitly by using the sa~nr

i-ariable name at two or more locations in a clause (e-g. f (X , x) irt Prolog or

persm(mdfte.r => Xf:persm, kstFriend => X) in LIFE). Although the impjici t

notation is important to keep clauses concise and clear, it can he viewed as a co~t-

vexkace; we codd replace all occurrences of a variable X by unique names, a d

explicitly state the coreference constraints among this set of variables.

Reference constraints can he noted in clauses explicitly fe-g. X 5 Y c:onld he

noted using ASCII as x <- Y). Impiic~t notation for reference r~nstraints may be

c,=f.-;fsiCg, m d we Oft not consider this possibiEty.

CHAPTER 8. REFEREXCE CONSTRAINTS IN LOGIC PROGR.4A7M7M7MING 164

8.3.2 Maintaining and satisfying the reference order

In a logic programming language, such as Prolog, the scope of a variable is the clause.

Due to the coreference constraints on variables in the head of a clause when a predicate

is called, the initial coreference classes may not all be singletons. For example, if we

call the predicate f /2 with f (X, X), then the two variables in the head will al~eady be

in the same coreference class upon entry to the clause. Similarly, a predicate may alter

the coreference classes of calling clauses. For example, if the predicate g / 2 unifies its

two head variables (e-g. if the head clause is g(X, X)), then the coreference classes of

the two variables in any calling clause will be combined. Thus, from the perspective

of a clause, we start wi bh a given set of coreference classes containing the variables in

the head, which may be modified (monotonically) in either the head or the body of

the clause. With reference constraints, the reference order will similarly be modified.

At any stage in the processing of a clause, we have a current reference order

(P , ip), where P is the set of coreference classes. For efficiency, we only maintain

the representative for each coreference class in P, and the wsociation of variables

with their representative fe-g. via union-find). In this way, reference constraints are

constructed on top of standard coreference. There are three situations we need to

consider.

Explicit reference constraints Suppose we encounter an explicit reference con-

straint X 5 Y , where the representatives for X and Y are X' znd y', respec-

tively. If [X'] Sip [Y1]> then nothing need be done. Otherwise we must update

the reference order and propagate changes to new descendants.

If [PI I p [X'j, then we coIIapsc the suborder between [Xq and [Y'], completing

t h e coreference between -7C and Y: for any class [Z] for which [Y1] 5p [Z] &

[S'i, we merge [Z] with [Y']. After ail such classes have been merged, we

propagate the term associated with [Y'], which will be at least as instantiated

as the term associated with [X'] , to aU new descendants of [Y3]. These will be

the coreference classes [Q] for which, prior to the hierarchy update, [Qj -& [X'] ,
but LC21 $P [Y'j-

CHAPTER 8. REFERENCE CONSTRA IXTS IN LOGIC PRO GR.UfMIIVG 1 65

the order. Classes below [X'] will now also be below [Y'], so npw descc211dittlt.s

of [Y'] (including [X']) need the term associated with [Y'] propaga,tecl. to them.

Explicit equality constraints Suppose we encounter a variable unificatioll S = l',

where the representatives for X' and El' are X' and Y', respectively. We could

handle this as two separate reference corlstraints X 5 Ir and 1'' 5 X, but it may

be more efficient to handle the coreference directly. If X' = Y' then nothi~lg ncctl

be done. If either [XI] ip [Y'] or [Y'j 5 p [XI], then we handle the completion

of this coreference as above. If, however, [X'] and [Y'] are iricomparablc, tlicn

we melge these reference classes, and propagate the term associated with [X']

to the descendants of [Y'] (that are not also descendants of [XI) and vice v ~ ~ s i t .

Term unification Additional coreference class updates and term propagation may

result from implicit constraints arising in unification. During the unification of

two terms, if we unify a variable X with another variable Y, then the si tua.t,ion

is as above.

Suppose, however, we unify a variable X with a term TI (e.g. = ! (a , %)). In

this case we find the representative X' for X, unify 7% and T (XI), and propagate

this unified term to all descendants of [XI] in the reference hierarchy. Although

this operation does not directly modify the hierarchy, the unification of TI arrrf

7 (X r) may- result in further coreference class mergings, as described above.

8.3.3 Example

We now show an example with which we hope to elucidate the nuances of referenct:

constraints. Consider the following predicates:

Now consider the results of the predicate call p(X,Y ,Z). Initially, there are thrce

separate, incomparable coreference classes, as shown in the first reference onler in

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PR0GRAL"dMING 166

Figure 8.1, where T represents an implicit top element. The second reference order

in the figure results after processing the body of p before the call to predicate q

(where the associated terms are shown below the variables). The structure arises

from the reference constraints. For example, the constraints G <" H and G <" J set

input variable X (unified with G) to be subsumed by variables J and Y (unified with

N). The associated terms arise from the explicit unifications in the predicate and the

flow of information in the reference order. For example, the term a~sociated with X

is formed from the unification G = f (g(-) , -, -) and the inheritance of information

from J and Y .

The third reference order results after processing the first predicate in the body

of q. The order itself did not change, but propagation from J to X and I< occurs.

The next reference order is the final order after variables X, Y and K merge to form

one coreference class, with representative Y . The last order shows the returned state

after the local variable J is removed.

Figure 8.1: State of the reference order at various points in a predicate evaluation

8.3.4 Comparison with sort hierarchies

There are a number of similarities, but also many important differences between our

reference hierarchy and sort hierarchies in many-sorted logics [28] and sorted logic

programming languages (e.g. LIFE 141). The two are compatible, but independent

uses of partial orders.

Semantics: As mentioned above, a sort represents a conjunctive set of individu-

als, whereas a variable represents a disjunctive set of individuals. If the exact

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROC=RAhIiI.IIi'I!G 167

individual denoted by a variable is unknown, the set represented by it is nei-

ther empty nor a singleton. The distinctions between sorts and individuals (or

declarational vs. assertional relations) are described in [lo], and t,he need to

distinguish between subsort (i.e. isa subsort 04 relations and member ji.e, isa

instance 04 relations is justified. Thus, we cannot intermix t.ht sort hierarchy

and individuals (where individuals might be seen as minimal sorts or leaves of

the hierarchy). In a sense, reference constraints add another relation "is inow

specified than" among instances.

Scope: There is a fundamental difference between the scopes of sorts arid yariablcs.

A 30rt hierarchy is intrinsically global (declarational) in scope. In many systems

(e.g. imperative objected-oriented languages such as C++), tLhe sort hierarchy is

specified at compile time. In LIFE, the sort hierarchy may be modified duri tig

run-time, but in a limited way. New sorts may be added, and sorts may hc

redefined (e.g. to have new attributes), but these changes axe not propagated

to existing individuals that are subsorts of those modified.

The scope of a variable in logic is well-defined. In logic programmirig languages,

the scope of a variable is not global to a program, but local to a clause. Thus, all

variable changes are during run tinre, which we would expect to be inore freyueitt,

than changes to sort hierarchies. In our approach, any change to the reference

hierarchy is reflected in the instances represented by the variables affected.

Dynamic Behaviour: A key difference between sort hierarchies and referencc coti-

straints is with unification. In sorted logic programming, unification docs not

modify the hierarchy; rather the unification of two sorts is generally their great-

est lower bound. With reference constraints, however, unification may actually

change the structure of the reference hierarchy, which in turn may modify terms

associated with affected variables. This was exemplified in section 8.3.3.

Thus, we conclude that sort arid reference hierarchies share some similari t ics ,
but are fundamentally diffefer~t and independent. However, they are not rriu t uall y

exclusive, and we feel that systems should provide both features.

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 168

8.3.5 Implementation

Can reference constraints be efficiently implemented? If only coreference is used, then

the reference order is an anti-chain (i.e. each pair of coreference classes is incompara-

blej. In this case there is little or no overhead when permitting reference constraints.

If reference is used, then we must maintain the partial order among coreference classes,

and propagate changes in a class to all of its subclasses. This could be achieved effi-

ciently through uttribzlted variables f86], where the couer (child) relation is stored with

variables, and may be implemented at the WAM level. Thus, a modified variable will

have knowledge of its immediate descendants in the reference order, and so changes

can easily be propagated. initially, the set of children for a variable will be empty.

For changes to the reference order, the only lattice operation that we need to perform

is comparability (i.e. X sp Y?). This could be achieved in time linear in size of

the descendant cover relation for Y with a (parallelizable) marker passing algorithm.

Sucl, an algorithm would be efficient as long as the size of reference order did not

become too large, in which case taxonomic encoding techniques could be exploited.

To facilitate backtracking, the state of the reference order would have to be saved,

along with the standard traii information, at choice points. Reference constraints aiso

merge well with memoing techniques [152]. Instead of tabling only predicate call and

return value information, we also need to store the relevant aspects of the reference

order prior to the predicate call, and upon return from the call. The relevant portion

of the reference order P for a predicate invocation is simply the suborder of P that

contains only the variables mentioned in the predicate call. When a look-up matches

an entry in the table (i-e. both the predicate call and reference constraints on variables

in the call match), then we simply use the result information, which will provide both

variable values and updates to the current reference order.

8,4 Individual Level Inheritance

What are the benefits and uses of reference constraints? Ironically, although large

reference orders may bene6t from taxonomic encoding, it was in the development

CHAPTER 8. REFERENCE CONSTRAINTS IiV LOGIC PROGR44A.1~Z,lltVC: 169

of our constraint-based view of encoding that the need for reference constraints was

first identified [47]. Encoding is, however. a limited domain of utility for this gcwral

mechanism. More interesting applications arise with the notion of individliczl Eccd

inheritance (inheritance among individuals as opposed to classes). A sort hicrarcliy

provides a partial order among sets of entities, whereas reference constraints const+ruct

a partial order among individual entities. Thus sort hierarchies and ob ject-oricntctl

class hierarchies permit class to class and class to individual in beritancc.

There are several reasons why we may want iadividual level inheritance. It1 all

ambiguous domain, we may want to separate the known information about an etltity

from hypothetical or speculative information. In complex scenarios, we may wanto t,o

separate information related to an entity in different contexts. We may cven want

to relate different entities that must share some cornmon, but, dynamically changi~~g

properties. In all these cases, reference constraints permit the separation of inforrria-

tion, while retaining a close structural relatiou. We now describe some propertics of

applications that may benefit from individual level inheritance.

In an ambiguous setting, we may have some information regarding an entity Chat

we are certain of, and we may have other information that we are uncertain of. I t1

an exploratory fashion, we can analyze this other information, perhaps in a brvadt, 11-

first manner. If we discover new information with certainty, we car1 apply it to the

original entity, and it will be propagated down all paths of exploration. Any paths

that become inconsistent will be pruned, requiring a different processing strategy t hall

Prolog: instead of backtracking when the term of a variahlc X becomes inconsistent ,
we can simply mark X as inconsistent (e-g. T (X) = I) and prune it from the refcrerm

order.

Another case arises if we want to retain information for a single entity, h i t

in separate contexts. For example, suppose we have a variable John which rep-

rese~ts general aspects of a person named John. We may have additional vari-

a5ks FatherJohn 5 John and PilotJohr, 5 John which represent fuller infor-

mation related to John in the context of his being a father or a pilot, This situa-

tion is shown in Figure 8.2. We could combine these two contexts with a variable

FetherSilotJohn 5 Father John, Fat her Pilot John 5 Pilot Job. In this way,

we maintain the information related to John in a hierarchically structured way; all

information is accessible, but the information within any context will not be cluttered

by irrqlevant information. In addition, any updates at higher levels (e.g. adding gen-

eral information about John, such as his age) will be propagated to all lower levels.

Such a scheme may also be used for analyzing aliases, particularly if we allow infor-

mation introduced at a descendant to override that introduced at an ancestor (i.e.

local information having precedence over inherited information).

John .
oersonfname=>iohn)

Figure 8.2: Reference order for separating the contexts for a person named John

The above outlines properties of applications that would benefit from individual

level inheritance. We next describe some concrete applications.

Automatic configuration: Suppose we have a system that automatically designs

a system configuration given a set of constraints among components and a set

of specification constraints (e.g. [37]). At any point, we may be certain about

some properties of our system BaseSys, but uncertain about others. Through

expIoratory reasoning, we could try a number of possibilities simultaneously,

each of which must conform to BaseSys.

For each possibility, we could assign a variable, say Sy s;, and make the constraint

Sys; 5 BaseSys. We could then add additional, hypothesized components to

Sysi. Of course, this could be done recursively, creating an entire hierarchy

of possibilities, with BeseSys as the root. If we also detect relations among

hypothetical systemst then this hierarchy may be a general partial order, not

just a tree (e.g. if we detect that Sysj, where Sysj 3 Sys;, is an enhanced

system of Sysk, we can add Sys, 3 Sysk).

During processing, we may determine the necessity of components in a higher

system, resulting from analysis or additional user input. For example, if we real-

ize the need for a certain component in the base system, we add i t to UnseSjs

(via unification) and it will be automatically propagated to all of i t s descen-

dants. This propagation may detect inconsistency of one or more hypotl~ct,icaI

systems, which will then be pruned from the search space.

Of course, this system may be incorporated as part of a larger constraint solviiig

system, and reference constraints can be viewed as one more form of constraint8

in constraint logic programming.

Natural Language Processing: Computational linguistics systems must be robust,

due to the high level of ambiguity in human languages. As examples, consider

phrase parsing and discourse processing. A number of techniques, sucll as chart,

parsing [70, 6, 119, 1341, have been designed to minimize the effort involved in

analyzing a sentence that may have multiple parses.

For a simple example, suppose a variable X represents what is known about a

phrase, and variables Y , (where Y , 5 X) represent the investigation of various

ambiguous parses (i-e. for each some decision has been made regarding thc

interpretation of an opaque word or phrase). During the parse, if sorncthing

becomes known about the entire sentence X (or about some sub-parsc higher

than the current level), this must be propagated down from X to the 'i/; (and re-

cursively to their descendants). This idea can be extended from single sentences

to entire discourses.

In the sentence "Jack saw a dog on his way home", the prepositional phrase " o n

his way homen may apply to either the dog or to Jack. We may have semantic

preference rules that would select the latter reading, but the context of this

sentence may override such rules. Thus, we may explore both possibilities, b u t

focus on the most likely reading given the current information available. In

either case, we know that Jack saw a dog, so we may assert this as known,

and place the two readings in relation to this using reference constraints. Latcr

processing may incorporate additional certain information, which may pru rxe

one of the possibilities.

C f f A P T E R 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 172

To achieve this using reference constraints, we must use a representation for

parsed sentences in which ambiguity can be resolved via further instantiation of

terms. Figure 8.3 shows one possibility in which prepositional phrases are stored

in a list as the last argument of the main predicate1. In the term for variable X,

we denote the ambiguity as to whether Jack or the dog is on his way home using

the disjunctive set notation {Y; Z } (where, for example, {jack; dog) unified with

dog results in dug). Although Prolog does not support such notation directly,

it can be specified in LIFE and with sparse logical terms [51].

Figure 8.3: Reference order for ambiguous parses of "Jack saw a dog on his way home"

As another example, the word "chair" is ambiguous in the sentence "When

Sherry saw the chair, she shook her hand". The default reading may be as a

piece of furniture, but it may also refer to the chairperson of a meeting. By

maintaining both possibilities, backtracking may be avoidzd as further infor-

mation is discovered. Figure 8.4 shows how this may be represented using an

interaction between reference constraints and a sort hierarchy. The first di-

agram in the figure shows a portion of a sort hierarchy for word meanings,

in which furniture-chair and rneetingzhair are both subsorts of chair, and

meetingxhair is a subsort of person. The second diagram shows the reference

order after the sentence has been parsed. The pronouns she and her have not

yet been resolved, and the disjunctive set notation indicates that both must

refer to either "Sherrym or "the chair" (although the default may be that "she"

refers to 5herry'' and "her" refers to "the chair"). In the interpretation where

"the chair'" is a piece of furniture, we apply the semantic constraint that hand

shaking is bme by perms, leading to a parse in which Sherry is shaking her

own hand.

 ore linguistically motivated possibilities also exist, but their development is beyond the scope
of this thesis.

chair person x
r-4 when(saw(Y:sheny.Z:chair),

shook((Y:Z),hand-of((Y;Z))))
furniture-chair meetingchair

e x ?
when(saw(Y:sherry,Z:furniture_chair), when(saw(Y:sherry,Z:~neeting-chuir).

shook(Y,hand-of(Y))) shook((Y;Z).hand-of((Y;Z))))

Figure 8.4: Reference order during parse of the sentence i' When Sherry saw the clrcrir.
she shook her hanci?

Chart parsing can be viewed as an instance of dynamic progra.mniing. I t is

generally bottom-up in that it starts with words, which coalesce into larger i ~ ~ d

larger phrases, until one phrase (often a sentence) spans the entire input. TIN*

benefit of saving intermediate results is a reduction in redundant processiilg

(which is also the basis of, and motivation for, menioing i! 521). Reference con-

straints can be used as an automatic aid to dynamic prograrnrnirig systems in

which information that applies to a node in the search space can bc automati-

cally propagated, with inconsistencies corresponding to pruning.

Reference constraints may also aid in the integration of top-dowrt and botrt,orn-

up techniques of discourse processing by providing a structure for relating i l l -

termediate results. By maintaining ambiguity using reference during top-dow 11

parsing, needless backtracking may be avoided. If bottom-up results arc storcd

in a form that is unifiable with the final result, then they too can he coalescctcl

using reference. Thus, both forms of processing create additional entities below

existing entities; certainty is added higher up in the reference order, and UII -

certainty is added at lower levels. When the entire structure coalesces into otic

coreference class, all ambiguity has been resolved.

Non-monotonic and Default Reasoning: Although default properties are sprci-

fied in sort hierarchies, reference constraints may be exploited to enlrance t lic

eEciency of default reasoning by allowing a clean way of separating known from

assumed properties. When a variable X is constrained to be of sort s (e.g. via

an assertion of the form X:s) , we can unify X with all the strict, properties of

s, and create an implicit default variable Xd, where Xd 5 X, with which we

unify a& the defadt properties of s. In order to maintain the default variable,

CHAPTER 8. REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING 174

new properties of X are unified with ;id using what we call c-unification [141].

In c-unification, one of the terms is dominant and the other is subordinate. If a

conflict arises during unification, instead of failing, only the information in the

dominant term is kept. Thus, when updating Xd after a change to X, we c-unify

r (X) with r(Xd), where r(X) dominates 7(Xd). In this way Xd retains only

those default properties that may still be applicable to X. Additional default

reasoning strategies (as in e.g. [22, 8.5, 1431) may be built into c-unification. The

importance of using reference constraints in this way is that monotonic aspects

of reasoning can be separated from, but still related to, non-monotonic aspects.

To illustrate, we use the standard flying birds example. Suppose that bird

is a sort with default properties feathered=>true and fZy=>true, and that

pen.guin is a subsort of bird with a strict property fly=> false and a default

property home=>untarctica.. The first diagram in Figure 8.5 shows the situa-

tion after initializing a variable Opus to be of sort bird (e.g. after an assertion of

the form O p s : bird). The second diagram shows the situation after we specialize

Opus to be of sort penguin.

Opus
b1rd

Figure 8.5: Reference constraints for default reasoning

The hypothetical reasoning systems we described add uncertain assertions as

children of a node. In this way, certainty can be incorporated as it is deter-

mined, and removal of assertions corresponds to pruning children. However,

there may be systems in which assertions must be explicitly withdrawn with-

out pruning the node. In this case, additional work must be performed since

branches of the reference order may have been pruned using the information to

be withdrawn. One possible solution is to mark, but not prune, inconsistent

nodes of the reference order. These nodes would be treated as pruned unless

an assertion they contain is removed, in which case they may change state from

inconsistent to consistent.

CHAPTER 8. REFERENCE CONSTRAINTS IAN LOGIC PROC:RAr14L4dlNC 175

Individual level inheritance is certainly possible without refercncc const,raints, and

in fact many systems appear to be already doing this. However, we call apply t,lw

same arguments as for sort hierarchies in many-sorted logics, and for inheritancc i n

object-oriented systems. By making this process explicit, declarative a11ct a~tomat~ic,

the programmer (or logician) is freed of the burden of performing this task, a.tltl

can instead focus on higher-level aspects of the problem. Due to the formal basis of

reference constraints as a generalization of equality constraints, we ensurc a ror~sis tiw t,

semantics when individual level inheritance is exploited.

Conclusion

We have proposed two notions in this chapter: reference constt.c~ints and indiaidunl

level inheritance. Reference constraints are a generalization of quality const1rairit,s

among logical variables. Equality constraints form equivalence classes based on cord-

erence. Reference constraints decouple the symmetry of coreference, and pcrrn i t t, t I (*

construction of a partial order of coreference classes. We have shown that, c l r ~ . to t, t ~ .

semantic differences between sorts and variables, the reference order is quit<. dist,i~~c.l~

from a sort hierarchy in many-sorted l~gics and sorted logic programming lauguages.

We believe, however, that both are compatible and desirable in a system, althol~gh

we did not deeply explore the interaction between the two. In this inquiry, wcb fo(:tlscvl

on reference constraints in logic programming languages such as Prolog or 1,114'15 141.

A full model theoretic analysis in a logic system is required.

Reference constraints lead to individual level inheritance, which permi t,s i IJ her-

itance from one individual to another. This is distinct from t h c ordinary notior1 id

inheritance which is from a sort for class) to another sort or to an individual. ' f ' t t rough

a general outline of the types of applications that may benefit from automating j r i d i -

vidual level inheritance, and descriptions of its use in automatic configuration (and

constraint logic programming), natural language processing (and dynamic program-

mingj and default reasoning, we investigated the potential benefits of our work i ~ i

logic programming and artificial intelligence systems.

Chapter 9

Organizing the Hierarchy of

Conceptual Graphs

"When nothing is done, nothing is left undone"

- Lao Tsu

""Who really invented nothing

- Walt Kelly

Conceptual structures is a graphical knowledge representation formalism that is cquiv-

alent in expressive power to first order logic. There are two main forms of hicrarchiw

used in the formalism: defined and derived. Defined (declarative) hierarchies, such a,s

sort and class hierarchies, have an explicit partial order relation. 111 conceptual st,ruc-

tures, the type and relation lattices are defined. A derived hierarchy is a partial order

that is induced by internal structural relations among components. T w o conceptual

graphs can be compared using the su bsumption relation, where graph gl sul-)su i r i c ? ~

graph g2 if it contains a subset of the information in gz. Derived partial orders art:

employed in other knowledge representation systems, most notably for ~k~ss . i f i~c~l ' ton

in the KL-ONE family of terminological systems [18].

To organize derived hierarchies such as these, which are highly dynamic and cx-

pensive to construct, a number of techniques have been proposed, inciuding cm:oil i r~g

[42] and multi-level indexing [94]. In this chapter, we develop a novel approach to

organizing derived hierarchies using graph normalization and spanning t rccs.

CHAPTER 9. ORGANIZING HIERARCHIES OF GRAPHS

After providing a brief overview of conceptual structures, we introduce some nor-

malization techniques for conceptual graphs, leading to spanning tree normal form

(STNF). In [fjO], we show how an integration of sparse terms and order-sorted feature

terns, called sparse feature terns, can be used to implement graphs in STNF, and

how some operations on graphs in STNF can exploit unification and enhance opera-

tional efficiency. Starting with graphs in STNF, we develop a generalization hierarchy

normal form (GHNF) with which we organize the derived hierarchy of graphs, called

the generalization hierarchy, into a spanning tree. We show how searches in this

hierarchy can be performed efficiently using this spanning tree organization.

9.1 Background and Motivation

Since details of conceptual structures are not necessary for the following, for brevity we

choose to limit detailed background cln the subject, which can be found in [136]. Es-

sentially, a conceptual graph (CG) is a connected bipartite graph consisting of labeled

relation nodes and conceptual type nodes. Conceptual types are standard ontological

objects, such as "person", LLcat" or "eat", and conceptual relations are basic relations

among types, such as "agent" and "object". A standard example graph is shown in

Figure 9.1 [136], and represents the declarative statement "a cat sitting on a mat".

@ 1
CAT SIT MAT

Figure 9.1: Conceptual graph representing "a cat sitting on a mat"

For our research, there are three ordered sets that are important: the conceptual

types (the type lattice), the conceptual relations (the relation lattice), and the graphs

themselves (the generalization hierarchjr). The formalism requires both the types and

relations to form lattices, which we have argued is overly strict, and that only ordered

sets are required [S O] . These two ordered sets are definitional, in that the user imposes

the partial order relation. Since previous chapters have dealt with encoding defined

CHAPTER 9. ORGANIZING HlERARCNIES OF GRAPHS

taxonomies, we omit further discussion of the type and relation lattices,

The generalizatior, hierarchy, on the other hand, is derived using a set of car~ontcizl

formation rules that define how graphs relate. If graph g, can be dt4ved from graph

gz using the canonical formation rules, then gl must contain a? least as 1 1 1 ~ ~ 1 1 illfor-

mation as g2. A conceptual graph system begins with a set of given graphs, callcct

the canonical basis. All other valid graphs used by the system must be dcrivablc from

the canonical basis.

Spanning trees are a valuable tool for improving the operational efficiency of graplis

and the generalization hierarchy. We only deal with utomic co~lceptual grzghs in

which all relations are both dyadic and invertible. Atornic conceptaal grapbs contain

no logical connectives (i.e. they are connected), no logical quantifiers (other tllart

the implicit existential), and no nesting (i.e. there is only one context) [Zi, 411.

The inverse of a dyadic conceptual relation R is a relation R-' that is semantically

identical to R with the direction of the arrows reversed. For example, tile inverses of

AGNT and PARENT are AGNT-OF and CHILD, respectively. Similar assumptions

have been made in [41, 107, 111, 1601.

We first discuss the notions of cardinality constraints and functional rclatioils.

Although cardinality can be expressed using sets or complex nesting of contexts, it,

is important to have the ability to express such constraints simply and declarat,ivcly.

Graph normalization techniques introduced in [? 071 are expanded upon in section 9.3

to prepare for constructing the spanning tree normal form that we introduce in st~rtion

9.4. Of particular importance to operational efficiency is the elucidation of func:t,iona,l

relations in graphs. We then explore their use in the generaliza.tior1 hierarchy to

specify a generalization hierarchy normal form, to enhance search operations such a.s

matching and retrieval, and to efficiently perfcrm topological traversals.

9.2 Cardinality Constraints

Although some conceptual relations are functional in character, CG theory providcs

no simple way to represent these and other forms of cardinality constraints declar-

ativejy, without resorting to the use of actors, sets or complex nesting of contexts.

Actors imply computation of dependent, concepts from independent concepts, while

sets do not restrict the number of relations of a particular type, which can be a valu-

able constraint for normalization and matching. For example, the canonical graph:

[EAT]+(AGNT)I[ANIM~~TE] does not tell us whether an act of eating must have

exactly one agent or may have multiple agents (i.e. if AGNT is a functional relation

of E A T) . Another example is: [PERSON]-+(SPOUSE)+ [PERSON] which says that

the spouse of a person must be person, but does not constrain a person to have at

most one s2ouse. For illustration, we assume that both of these cases are functional.

Definition 9.1 A cardinality constraint, & fiz E 2+), between a concept c and a

relation r states that at most n relations of type r may be connected to c .

A cardinality constraint is denoted on the arc between the concept and the relation.

Thus, the above example becomes: [EAT]-@l-+(AGNT)-+[ANIMATE]. Restricting

a relation to one occurrence for a concept (i.e. n = 1) is a functional cardinality con-

straint, and it is these constraints that we focus on. The connection to logic is simple:

if the variable representing the independent concept appears in two instances of the

relation, then the variables representing the dependent concepts must be equal. This

provides a sort of uniqueness constraint. Our example translates to: 3x3y (EAT(x)

/\ ANIMATE(y) A AGNT(s, y) AVz, AGNT(a, z) > z = y). We do not suggest that

all functional dependencies can or should be expressed in this way. Rather, we feel

that by notating functional relations, normal forms for CGs will be more distinct and

easier to determine.

Cardinality constraints blend well with set cardinality 163, 1361. For set coercion,

a cardinality constraint can be moved into the set notation. On expansion, the set

cardinality can be moved out to a cardinality constraint. To ensure set joins, we make

concept sets functional. As an example, for: [DANCE]+(AGNT)+ [PERSON: Liz],

set coercion oil PERSGN results in: [DANCE]-@l+(AGNT)+ [PERSON: (Liz)],

whereas set expansion on: [DANCE]-@l+(AGNT)-+[PEREON: (Liz,Kirby)@2] re-

s ~ d t s in: [PERSON:Liz]t(AGNT)t@2-[DANCE]-Q2+(AGNT)+[PERSON:Kirby].

Normalization

Normalization is importam to enhance the similarity among graphs arid can Ilc

achieved via transformation rules [lo?]. lye assume that d l relations arc i~ivt~t.til>lc

so, e.g., the inverse of WORKS-FOR is EMPLOYS, whereas tphe inverse of SPQlrSIC

is itself ji.e. it is symmetric). In [50]. we show how our representation automatically

performs some simplification, reducing redundancy that can arise during: joins.

Explicitly representing functional relations can be exploited to determine a, pr~cc-

dence between a relation R and its inverse Rdl. Priority is given to functioual

relations. Thus, assuming a world in which a person has at most one national-

ity. we would prefer the graph: [PERSON]-c@l+(CITIZENSHfP)-[COIiNTRk'] to:

[COUNTRY]-+(CITIZEN)-@l+[PERSON]. If both R and R-I are functional, wc in-

corporate both (i.e. we perform symmetry completion [107]). By doing this, wc

traverse all functional relations in the direction of their arcs. If neither R nor R-I are

functional, other preference schemes need to be specified.

Normalization will also incorporate selectional constraints related to the graph,

particularly those which add functional relations between concepts. To illustrate, thc

well-known example in Figure 9.1 shows a normalized version of the CC, i n which tho

concept SIT imposes the selectional constraint that it has exactly one agent.

9.4 Spanning Tree Normal Form

It is easy to specify a spanning tree for any conceptual graph, with corefcrcnce Iirikirig

identical concepts as in the linear form. Any traversal of a graph that visits ctvcry

concept and relation defines a spanning tree: the first node visited is the root arid

cycles are broken by introducing coreference. Our goal is to specify a spunniy h c

normal form (STNF) that can be used to improve the efficiency of CG opwations,

by exposing functional relations, as well as to organize and search the ger~eraiizatior~

hierarchy. In El601 there is also a proposal for a normal form that is a sparlni~rg tree,

but the tree is determined in an ad hoc manner (alphabetical order is used to select

the root and relations to expand partial trees).

Definition 9.2 A spanning tree T for a csnceptual graph G is a connected acyclic

subyraph of G' containing all the concepts of G (but not necessarily all the relations).

For each spanniny tree, one concept is designated the root.

In the linear form [136], concepts and relations form the nodes of a spanning tree,

and arcs are labeled with directional arrows. For STNF, only concepts are nodes while

relations are arc labels. The direction of arcs is implicitly downward. Although this

format is suitable for binary relations, which form the majority of conceptual relations

[I 231, it may be possible to accommodate monadic a ~ r l higher-order relations; we do

not explore this here. ?Ve assume that our graph is normalized as described in section

9.3 and that we have linear extensions T and p of the type and relation hierarchies,

respectively. Since some graphs may require multiple root elements, we actually

construct a spanning forest. We maintain the individual trees in a list ordered by the

type of the root concepts (according to T). When drawing forests, we add an untyped

dummy root to connect the trees together.

We give below an algorithm that takes as input a normalized conceptual graph

G, and outputs a spanning forest F that represents G in STNF. The concepts and

relations of G are the ordered lists C and R, respectively. Each node in the forest is a

concept c to which a (possibly empty) list of children is associated (via children(c)).

Each child contains a pair: the child concept and the connecting relation. The root

of the tree containing a concept c is obtained by calling tree(c, F).

Algorithm 3 STNF(input: G =< C, R >; output: F)

1. F':= C

2. for each concept c E C, children(c) := 8
3. for each relation r(c,. ~ j) f R (taken in order)

4. if @ee(cj, F) = cj AND tree(&, F) f tree(cj, F)) then

5. children(c;) := children(q) U {< r , cj >)
6. F := F - { e j)

7. else

8. ckz ' ldren(~) := eh%ldren(q) ti (< r, core f (c j) >)
9. end

CHAPTER 9. ORCA XIZING HIERA RCHTEC O F GRA PHs IS?

First, we start with a forest consisting of each concept in the graph C: as ;I t r ~

(lines 1 and 2). We consider relations one at a t-ime and update the forest as newssay,..

-4 node is always placed below the entering concept c,, labeled with the relation type.

If the exiting concept, c,, is the root of a different tree in the forest froin c., si~llplj.

connect this tree below c; (lines 5 and 6) . We do this by adding the rclation/conccpt

pair to the children list of c, and removing the tree rooted at c, from the forest. If ,

however, c, is not a root or is in the same tree as c,, the node below c, will cor1tai11

a coreference label linking to c, (line 8). Once we have visited all relations, wc havtl

a spanning forest for our graph. The time complexity of this algorithm is near l i J I C ~ I r

in the number of concepts and relations in the input graph if the t rcc function is

implemented using a union-find algorithm.

The order in which we visit relations (line 3) is important. \Ve consider all fnnc-

tional relations, before any non-functional ones. Within these groups, the order clc-

pends on the types of the relation and twc incident concepts. The order of prec:ctlcnc.r~

is the relation, followed by the entering concept and lastly the exiting concept. I3xplor-

ing the consequences of choosing different precedence orderings is a topic fcr furtlic~r

research. It may still be possible for there to be two or more arcs with precisely t11c

same relation and incident concept types. In this case, contextual information may

be needed for selection. In this preliminary analysis, we simply select one ar hi t rari l y,

and this is the only place where non-uniqueness can enttr- into the process. Thus , 0 1 1 r

construction computes a spanning tree normal form that is nearly unique for normal-

ized graphs. As an example of this construction, Fig. 9.2 shows the STNE' of the.

graph in Fig. 9.1. Note that both AGNT and LOC are functional relations of SIT.

The last relation visited is STAT, which is added using coreference. In diagrams, wc

notate functional relations using thick lines and non-functionai mes with thin lines.

CAT MAT

1 STAT

*x

Figure 9.2: Spanning tree normal form

CWA PTER 9. ORGANIZIiY G HIERARCHIES OF GRAPHS

Another well-known example, with a cycle, is: a monkey eating a walnut using the

walnut 'S .shell as a spoon 11363. Figure 9.3 shows the normalized graph as well as its

STNF. For illustrative purposes, we assume that an entity can only be (intransitiv~ly)

a part of at most one other entity, and that an instance of eating has one agent and

one object. Thus the relation PART is inverted to PART-OF. We assume that the

linear ordering of relations is AGNT < OBJ < PART-OF < INST < MATR. We

first add MONKEY and ?VALNUT as children of EAT, then a coreference link to

WALNUT as a child of SHELL, and finally we add the non-functional relations INST

and MATR in the tree rooted at EAT.

MONKEY WALNUT:*y S P ~ O N

M ATR 1
I

SHELL
PART-OF 1

*Y

Figure 9.3: A cyclic graph and a tree representation

For a more complicated example, consider the statement: a woman eating a dinner

cooked by her husband, which is shown in Figure 9.4. In this case, we end up with two

trees since both EAT and COOK only have exiting relations in the normalized form.

Assuming the types are ordered by COOK < EAT < WOMAN < MAN, we obtain

the STNF as shown.

OMAN

@ l l EAT
A G N ~ T

WOMAN:*z *y

l s p o u s e

*z *x

Figure 9.4: A woman eating a dinner cooked by her husband

In f-501, we describe more fully the advantages of STNF. Graphs in Srl'Nl' d u i t

a direct implementation using order sorted feature structures [4, 51; wc deve!oped a

variant of sparse terms for this purpose. We demonstrate how the canonical format ion

rules can be performed on graphs in STNF, in particular how unification call bc

exploited to efficiently implement t.hese rules by observing the co~lstraints imposed hy

functional relations. Since these issues are outside the scope of this tllcsis, wc chonw

to omit details.

9.4.1 Pivoting

Given a graph in STNF, we may need a certain concept to be the root of onc ol' tlw

trees in the forest in order to perform graph matching, to obtain different viewpoints

of a graph, or to further normalize the spanning tree for storage in the know ledge haw.

We call this process pivoting. Although there are several possibilities for pivot,ing, wc

have chosen one that is particularly simple, yet, useful for organizing the knowlecigc

base. We call the node of a concept in a spanning forest that maintains the typc

information (and possibly has a subtree) the dominant node. ,411 other, corderring

nodes are called subordinate. Basically, to pivot a concept that is not already a root, is

accomplished tj replacing the dominant node for the concept by a suborcli~latc rlodc

and adding the subtree rooted at this node as a# top level tree in the forest. Pivoting

can easily be carried out, as shown in the following figure which shows pivoting of' the

STNF form of the graph in Fig. 9.3 on the concepts "WALNUT" and '51-If-3LL".

A
EAT WALNUT:*y

A G N ~ T ST

MONKEY *Y SPOON
i
~MATR WALNUT:*^ IMPTR

*z
'VRT-oF

*Y

Figure 9.5: Examples of pivoting the graph in Figure 3

U i A PTER 9. ORGANIZING HIERARCHIEIS OF GRAPHS

9.5 Representing the Generalization Hierarchy

A CG database contains of some of the (infinitely many) canonical graphs that can

he obtained from the canonical basis B using the canonical formation rules. The

generalization hierarchy organizes graphs into a partially ordered set of equivalence

classes [41, 11 11: where each graph in a class is canonically derivable from all others

i n the class, and one class subsumes another if each graph in the latter is derivable

from each graph in the former. The generalization hierarchy consists of both the

canonical basis (which represents things t h t could exist) and the database graphs

(which represent things that do exist). Although B may not form an anti-chain, there

is a subset Bo of B that forms the initial level, or co-atoms, of the generalization

hierarchy. Our goal is to use STNF to assist in the organization and search of this

hierarchy. The advantages of explicitly maintaining the generalization hierarchy are

described more fully in 1421. This hierarchy can be encoded so that many operations

arnong graphs in the hierarchy can be performed efficiently using only taxonomic

operaiions, avoiding matching altogether. In our case, we maintain the full hierarchy,

but mark one parent of each graph as dominant, to identify a spanning tree.

We first describe the process of constructing the spanning tree for the general-

ization hierarchy incrementall_v, leading to another normal form. We start with an

empty generalization hierarchy consisting o d y of [TI and [l]. We need to order the

chilctren of any element, so we define a total order on graphs (perhaps based on the

linear extensions of the type and relation hierarchies, and the form of the graphs).

l'he method used to specify this ordering is not important to the following discussiors.

Suppose we have a generalization hierarchy organized with an underlying spanning

tree TG and we wish to add a graph Q in STNF. We essentially use the algorithm of

[112] to search the hierarchy and find the immediate predecessors (IP) and immediate

successors (IS) of Q. VITe store graphs so that every STNF graph G is a simple

specialization of its parent G' in TG. That is, G and G' have a direct matching (i.e.

their feature term implementations are unifiable, and the term of G" subsumes that

of G). This cannot be achieved for all ancestors of G, but if it holds for all ancestors

in TG (i-e. graphs on the path from G to the root [TI), then we can improve search

and matching operations. The position of & in TG is below the Icftnlost 11'.

As we find each predecessor C of Q in TG, we modifj- the form of Q. Since I w t 11

C and Q are in STNF. the spanning trees in +he forest C will be contaiucd in t lw

trees of Q (modulo symmetric relations and coreferencc). k'or each trcc of (' \vllos(~

root is not a root of Q, we pivot. Pivothg does not destroy the STNF properties, b ~ ~ t

creates additional trees, so we essentially flatten Q until C is more evident i l l its forclst.

When all the ancestors of Q in TG have been processed, Q will bc in g e n ~ t d t z t r t i o t ,

hierarchy normal form (GHNF). The advantage of a storing graphs in C:lINP' is t l~al

if we have graphs Q and &' for which Q subsumes Q' in Tc, then Q and 6)' h a w a

direct and sirrlyle matching. That is, not only is &' a specialization of Q , thc. fcatrtw

terms representing Q and Q' are related by term subsumption.

9.5.1 Depth-first topological traversals

The spanning tree TG underlying the generalization hierarchy c m be vicwcd as r t y r c 3 -

senting a left-to-right (LR) depth first (DF) traversal of the generalizatioll Iticrarcl~y.

\"vk show here a relation between LR-DF traversals and D F topologi ral travcrsitls,

vvhere a topological traversal is any traversai that obeys the topological propcrtry

that a node cannot be visited until all of its parents have bee11 visitcl. 111 [42], t h

advantages of searching the hierarchy for I P and IS topologically are clescril ~etl.

We make the distinction between breadth first (BF) and depth first tapologicd

traversals. In BF traversals, we visit nodes by level. The level in an ordinary 131:

traversal is the length of the shortest path to the root, since we place an clcrnc-rite I n

the search queue when it is first accessible. The level for a topological HI+' traversal,

however, is the length of the longest path to the root hecausc we placc a n elernc~rit, i t)

the search queue only when last accessible (when the last parent has hew visited).

DF traversals, on the other hand, select the next candidate node to visit with thc

longest leftmost path to the root (in a LR traversal), where confiicts arc reso1vt:cl by

choosing the leftmost element. For ordinary DF traversal, a candidate is any unvisi tecl

node that is connected by an arc to the tree traversed so far. When obscrvir~g the:

~opological pro pert^.; the only candidates are those whose pa~ents have all been visi teil.

CNA PTER 9. ORGANIZING HIERARCHIES OF GRA PHs 187

It should be clear that BF and DF topological traversals are implemented differ-

ently (using a queue in the fmmer and a stack in the latter) and may visit nodes in

r1iffc:rent orders. The proposal in [42] performs a BF topological search of the gener-

alization hierarchy to perform updates and retrievals. We feel that it is interesting to

explore DF topological searches for several reasons. First, such a search would result

in finding the first member of IP earlier than a BF topological search. Second, we

show how the spanning tree 'rc; can be used to perform a DF topological traversal

without needing to mark elements as visited. Third, we can ntiiize GHNF more fully

to improve the efficiency of graph comparisons.

Althoiigh we cannot use the LR-CF traversal suggested by TG in the search algo-

rithm, there is an interesting connection between DF traversals and D F topological

traversals. If TG represents a LR-DF traversal of a hierarchy P, then a right-to-left

(RL) DF traversal of TG is a RL-DF topological traversal of P.

Theorem 9.1 Suppose G is a rooted directed acyclic graph and TG is the tree resulting

from a LR-DF traversal of G. Then a RL-DF traversal of TG is a RL-DF topological

traversal o j G.

Proof: Consider any point in a t~aversal of TG. Suppose the next node to visit, v, with

parent p in TG, has an unvisited parent p l . Since p1 is unvisited, it must be to the left of p

in Tr;., but then during the initial DF traversal pl would have been visited before p, and so

v would be below pl not p in TG.rn

Thus, a simple RL-DF traversal of TG performs a DF topological traversal of the

ordered set without the overhead of checking when all parents have been visited.

In order to f-ally utilize the spanning tree structure of the generalization hierarchy

ar,d the GHNF form of graphs, we describe a modification of the search algorithm of

[lt2f. The problem is to find the immediate predecessors (IF) and then the immediate

successors (IS) of a graph Q, which may or may not be in the hierarchy. We assume

that after a comparison between Q and a graph u in which u > Q, it is desirable to

compare the children of u with Q so that we can benefit from the result of the match

(while still obeying the topological property). By following the depth first topological

traversal described ahow, this can be achieved with I-ery little effctst: wc rlon't ~ Y - C I ~

need to mark elements as risited. By marking only those which successfully t ~ m t ch C,),

we can perform the search -.\-ith a mininlum amount of aciministration. 12111-1 ht~s~norc~,

since graphs are in GKNF, we will successively compare graphs wllosc. (;TIN12 f o s t ~ ~ s

most closely match until a subtree is traversed or until a graph is found av1iic.h ctocw~'~

match Q. Another advantage of this approach is that by performing a 1)l: tol>ological

search, the focus (as described in f421) becomes restricted more quit-kly, pro~itfirlg a

more constrained target for guiding the search.

9=6 Conclusion

We have explored the use of spanning tree representations of graphs arlcl thch gc~ncral-

ization hierarchy in conceptual structures. We first proposed a means of tlcclasativt~ly

representing cardinality constraints. Of particular interest are flmctiorml reli~tiot~s,

which restrict the number of occurrences of a particular relation type to o w . 'I'l~csc~

constraints are important for improving the efficiency of matching and o t h (~ graph op-

erations. We extended and refined CG normalization, as int-roduced i l l [107], f l i r o ~ ~ g l ~

the use of functional relations. We developed a spanning tret. rtqxeserttatiori of CCh,

leading to a spanning tree normal form (STNF) thai is based on scrnarttic c.ontc+nt

and is less ad hoc than some previous proposals. Graphs reprcsentccl i r ~ SrI'NF tlizvc.

a natural implementation using a variation of order-sortr-d feat urc3 structures, pro-

viding a scheme in which graph operations can benefit from the efficiency of Scvtrurc

term unification. Finally, w7e showed how identifying an underlying spanrlirtg t rw for

the generalization hierarchy can benefit both storage and traversds. A sparinirlg tsccl

can assist in a further refinement of STNF to generalization hierarchy rlorrnal fortn

(GHNF) in which all graphs on the same path to the root are unifiable. I'urtf.rerrriorc,

by traversing this left-to-right depth first tree in a right-to-left depth first ntanrii:r, wrL

achieve a depth first topoiogica! travcrsaI that can be used as an d!ernatiw stwcb

procedure of [$2]. An advantage of this search, in addition to its efficiency arid sirn-

plicity, is that graphs which are closely related have a higher chance of being compart:d

successively, so we can take advantage of the results of previous matches.

Chapter 10

A Hierarchical Organization of

Landscape Models

"No man can reveal to you ought but that which already lies half asleep

in the darning of your knowledge'

- Kahlil Gibran

Due to the spatial scale at which most empirical landscape studies are performed,

replication is rarely feasible. and experimenters may require artificial replication through

the use of landscape models that are synthetically generated. In our view, a land-

scape is a heterogeneous region on the surface of the earth, and a landscape model

is a simplified representation fe.g. as a digital map) of a landscape of interest. A

generator of landscape models is a procedure for producing landscape models.

Artificial generation of landscape models is becoming incredingly prevalent in

landscape ecology and is useful for a variety of purposes, including comparison with

real data, testing general theoretical hypotheses, and providing input to simulation

models. However, the number of generators of landscape models is increasing and

tilere is no framework within which generators can be analyzed, compared and or-

ganized. fn this chapter, we propose a hierarchical framework that unifies landscape

mdek within a forma! er g- ~n;zational system. A landscape model that is artificially

generated using a simple random process is called a neutral model. Generators of neu-

t r d models produce instances of landscape models with two or more patch types, and

CHAPTER 10. A HIERARCHY OF LANDSCrAPE MODELS

constrain the patterns generated by specifying the proportion of t,hc 111odel co\:eretl

by each patch type. We develop a generalization of neutral models, where landscape

models are generated according to a set of constraints on possible patterns. A sct of

constraints is a landscape model prototype.

Different landscape model prototypes can be compared according to the nunrbel-

and type of restrictions, where a prototype is considered "less neutral" or "111orc rc-

stricted" than another if the former has a superset of the constraints of the lat,tcr.

This relation produces a hierarchy that captures gradients of nwdrality arno~lg psoto-

types. The hierarchy thus formalizes, in a nlathernatically elegant manner, a niulti-

dimensional transition from neutral models that impose few restrictions 011 paktcrn

generation to predictive models that impose a variety of more ecologically ~notivatecl

constraints on the generation of landscape models. In a more practical context, this

hierarchy may be used to guide the development of landscape model generators, to

aid selection of appropriate existing generators, and to assist in the analysis of n~odels

derived from real landscapes through the use of landscape model prototypes.

I . Introduction

A landscape is a heterogeneous region of the earth that is composed of a mosaic of

different patches, and generally contains a few interacting ecosystems [lo]. Lanctscapes

may be defined from the viewpoint of a particular organism, although a comxrion

viewpoint is from the human perspective, where a landscape is generally in the range

of lo3 to lo6 ha (e.g. [150]). A landscape model is a simplified represerltation (cg.

as a digital raster map) of a landscape of interest, either real or thcoret i~~l , and is

produced from natural (e.g. remote sensing) or artificial (e.g. simulatjon modeling)

sources. We must distinguish between three things, each of which may hc: viewed as

a model: an instance of a landscape model refers to a particular map that represents

a landscape, a pro-tutgpe of a landscape model refers to a set of constraints a n the

generation of landscape models, and a generator of landscape models is a proced~~re

for synthetically producing model instances from model prototypes.

CHAPTER 10. A IiIERARCHY OF LANDSCAPE MODELS

The spatial scale of many landscape studies limits the ability to perform experi-

ments in a traditional way: it is difficult to exert the required control for manipulative

experiments, and hard, if not impossible, to find true replicates. With the increase

in modeling related technology and techniques, many studies have used computer-

generated landscapes both for artificial replication and for studying theoretical prop-

erties of idealized landscapes.

Research on the generation of landscape models can be classified in two main

groups. The goal of one group has been to produce accurate prediction or duplication

of the patterns seen in real landscapes (e.g. [59]). We refer to such model generators as

predictive. The goal of the other group has been to generate landscape patterns that

exhibit a simplified, but known, structure, and are generated by a random process.

These types of generators have been termed neutral models since they are neutral with

respect to ecological processes responsible for patterns observed in real landscapes [66].

The patterns that emerge in neutral models are the patterns expected in the absence

of any ecological effects. Thus, neutral models can form a null hypothesis for testing

for the effect of ecologicill processes on natural landscape patterns. A potential focus

for hypotheses that relate ecological process and pattern is to explain the difference

between neutral model patterns and patterns observed in real landscapes.

Work on neutral models has proceeded steadily over the last few years (e.g. [25,

66, 67, 1481)) but is now rapidly expanding, as the number of presentations that

focused on neutral models at a recent landscape ecology symposium testifies (e.g.

[64, 73,83, 100, 1571). However, although the development and use of neutral models

and neutral model generators has proliferated, no unifying framework for organizing

and categorizing models has emerged. Even the notion of a neutral model is becoming

vague as neutral model generators are enriched with new features (e.g. [64, 651).

We develop a general, and formal, view for artificial generation of landscape mod-

els. We define a landscape model prototype to be a set of constraints that restricts

the generation of landscape models. Intuitively, a landscape model prototype is an

abstract ideal of a landscape model, and can be viewed as specifying some character-

istics of landscape models that are generated using this prototype. For example, a

prototype may include restrictions to landscape indices (e.g. richness or contagion)

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 192

or may be maie complex, involving non-trivial spatial or temporal relations. Special-

ized generators must be developed to produce landscape models for different t,ypes

of constraints. A variety of such generators already exist, and more are continually

being developed.

Prototypes separate processes on landscapes into those aspects that account t iw

the resulting pattern (i-e. the processes embodied in the consixaints) from those.

that are not considered. The patterns that emerge from landscape model prototypcls

are the expected patterns in the absence of all ecological effects not incorpomt~d

into the set of constraints. Landscape model prototypes also form a null hypothesis

for landscape patterns, and can be used for testing the effect of ecological processes

acting on patterns in natural landscapes that are not accounted for in the constraints.

Hypotheses may attempt to explain the difference between the patterns observed in

the prototype instances and real landscapes.

A given set of constraints will generate a distribution of landscape models with

expected characteristics, and may be deterministic or stochastically distributed. As

the immber of constraints increase, the expected pattern generated becomes morcb rc-

stricted, providing a gradient from simple models to more complex, predictive rnodcls.

This relation forms a hierarchy, or partial order [38], on landscape nod el prototypes.

The highest element of the hierarchy imposes no constraints on landscape structure

and hence all landscape patterns have equal probability. We develop a framework

within which this hierarchy of landscape models can be constructed, and describe its

utility to landscape ecology for managing and analyzing sets of landscape modcis,

landscape model prototypes and model generators.

Our framework provides a number of significant contributions to landscape ecol-

ogy. First, by formalizing the abstract notion of a prototype, we provide a corrlrnon

ground upon which different generators can be compared. This not only may avoid

re-deveIoping existing generators, but provides a structure within which generators

can be contrasted, and gaps identified. In addition, the resulting hierarchy nrovides a

means for a common organization of landscape model generators, producing a struc-

ture for access to existing generators. Finally, the prototype hierarchy can be used

to guide the analysis of data sets of landscape models, assisting the identification of

CHAPTER 10, A HIERARCHY OF LAAWSCAPE MODELS

characteristics for which the data set deviates from random.

The next section develops the notion of neutral models, as introduced by Garder

et. al. [66]. This is followed by a definition of landscape model prototypes. Section

10.4 uses this formal description to construct a hierarchy of prototypes. Finally, we

describe the potential uses of landscape model prototypes and the prototype hierarchy

for landscape ecology.

10.2 Background: Neutral models

Landscape patterns may be represented using a two-dimensional array of cells, where

each cell is occupied by some value, which we call a landscape feature. A patch is

formed where adjacent cells are occupied by the same landscape feature. The neutral

models introduced in Gardner et al. [66] are whole mosaic models [lo] that are con-

structed using methods derived from percolation theory [137]. In their simplest form,

each cell in the model is occupied by one of two distinct landscape features, which

may differentiate, for example, community types that are susceptible or unsusceptible

to disturbance. These models are specified by two parameters:

p : the fraction of the landscape occupied by one of the fea.tures

rn : the linear dimension of the map (i.e. the length of one side)

By a simple random process, cells are occupied by feature 1 with a probability p,

and feature 2 with a probability of (1 - p). These models are similar to landscape

maps that have been classified into two categories, but are "neutral" with regard to

the physical and biological processes that create real landscape patterns. Figure 10.1

shows three example neutral models for various values of p.

Gardner et a/. I663 used such simple neutral models to examine the effect of varying

model size on patch size and shape in order to define appropriate scales for landscape

analysis, and later Gardner et al. [68] examined effects on animal movements. Turner

et al. [I481 simulated disturbances on neutral landscapes with different proportions of

susceptible habitat. The disturbances were modeled as random events that occur with

a given frequency (probability of initiating) and intensity (probability of spreading

Figure 10.1: Example neutral models. Each instance was generated 011 a 30 x 30 grid
(rn=30), with varying proportions of the white feature (p = 0.4, 0.6 and 0.8).

to neighboring cells). They showed that the disturbance characteristic (frequency

vs. intensity) primarily responsible for the propagation and extent of a disturbanct?

depends on landscape connectivity (i.e. the value of p). In this last study, significar~t,

changes in model behaviour were detected near the percolation threshold (i.e. t l i t a

value of p at which a patch of type feature I traverses the landscape model). In thew

simple neutral models, the percolation threshold occurs at a value of p = 0.5928 for

very large models.

Gardner and O'Neill [67] introduced a contagion factor (see section 10.3) that (:ill1

be used to create landscape models with larger contiguous patches while retaini I lg

the same relative proportion of features in the model. They used these contagioi~s

landscapes to study the potential for movement and resource use by species living i r ~

patchy landscapes. They found that the percolation threshold varies inversely wit 11

contagion. Turner et a,!. [I491 compared the results of simulating natural distur-

bance on real landscape models (Yellowstone National Park) with results from t,hc

same simulations run on neutral models that have an eqriivalent proportior1 of the firct

susceptible community type. A number of these studies propose that significant dv-

pariures by real landscapes from the expected patterns generated by a neutral mock/

may be used to form and test hypotheses about the relationship between the observcvl

patterns and ecological processes 166, 1491.

Neutral models have a number of important uses ir_ landscape ecology, some of

which are mentioned below.

CHAPTER 10. A HIERARCHY OF LAILTDSCAYE MODELS 195

Comparison with real data. This is the main use endorsed by Gardner et al. [66]

and Caswell 1251. Here, a neutral model is used as an ideal against which to compare

real landscape data. Using a landscape statistics tool such as FRAGSTAT [99, 1261,

we can compute statistics that may differentiate between landscape patterns (e.g.

average patch size, number of patches, patch adjacency, fractal dimension, contagion,

etc.) [l46]. Deviations from the neutral model permit an estimate of the effect of

ecological interactions on the pattern observed in nature, and may lead to hypotheses

regarding ecological processes responsible for these differences in pattern.

Testing broad-scale landscape hypotheses. Neutral models can be used to test

hypotheses about laxdscape phenomena, such as the spread of disturbance and animal

movements. The simplified structure of neutral models permit a clear analysis of

how changing the parameter p effects the characteristics of interest. This is how

neutral models were exploited in [68, 1481. Another use in this context is to analyze

properties of neutral models themselves, using tools such as FRAGSTAT [99], in order

to determine how the value of p affects the value of different landscape indices, such

as average patch size.

Comparison with output from predictive models. Since we know the char-

acteristics of neutral models, they are useful for comparison with the output from

predictive models of landscapes. The difference between real landscape data and

the predictions of a model are one measure of a model's ability to predict landscape

patterns f66). Neutral models provide a baseline that can be used to measure the im-

provement in predictability that is achieved by modeling geomorphological, climatic,

biotic and other ecological effects.

Input to simulation models. Replication of landscapes is a diEcult problem in

landscape ecology By specfiing certain constraints, generation using neutral models

provides a means of approximating replicates of landscapes with some specific char-

acteristics (e-g. a fixed contagion). These artificial replicates can be used as input to

landscape simulation modejs that generate new landscape models from a given input

model (e-g. SE.LES [%I).

CK4 PTER 1 0. *4 HIERARCHY OF LANDSCAPE ASODELS

10.3 Landscape Model Prototypes

Our objective is to extend the core ideas of neutral models into a general framework for

reasoning with landscape models that are artificially generated. The loose defini t iolt

of a iieiitral model given by Casweil i25j is: "a neutrai model is an espccted pattcrn

in the absence of specific ecological processes". Rather than focus on t,he nbseact.

(i.e. neutrality) of specific processes, we feel that models should be defined in tesrns

of the presence of specific processes. That is, "a landscape model prototype is all

expected pattern in the presence of specific constraints on that pat terrl" . ' I ' i t c w

pattern constraints, which we describe in detail below, dictate the expect,ed paltern.

We now give a formal definition:

Definition 10.1 A landscape model prototype is a set of pattern con.struinb,s Ihui.

restrict the possible generation of landscape models. An instance of a p~ototypc is a

landscape model generated mder the set of constraints.

Thus a landscape model prototype describes the expected pattern of a 1ancIsca.pc~

and in essence gi~:es a distribution of possible instances, which are particular landsrape

patterns generated using the given set of constraints.

10.3.1 Pattern constraints

There are many ways in which ecological information may be incorporated into lallcl-

scape model prototypes. We have already seen two pat tern const raints, as usc(1 i l l t,h

simplest neutral models [66]: the model size m and the landscape areu rutio (whcrc

landscape feature 1 had a relaiive distribution of p, and feature 2 had a distrihtio~l

of 1 - p). In addition, these models restrict richness to the interval [l , 21. ' i 'h~~s, tilcsc

models are random with respect to pattern, but always have a maximum richness

of 2 and a landscape area ratio (LAR) for feature 1 normally distributed around 1).

The RULE program [65] permits the generation of models that precisely satisfy p.

Richness, model size and LAR can be viewed as constraints on the patterns generated

by these neutral models (i-e. they arc. not completely random j. That is, a neutral

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS

model with p = 0.4 and rn = 30 can be represented as a landscape model prototype

with the constraints: (L A R = (0.4,0.6), size = 30 x 30, richness E [I, 21).

Additional constraints may be specified by restricting values of other landscape

indices (e.g. contagion or average patch size), or by incorporating feature responses to

spatially explicit landscape parameters such as elevation or soil type. We now discuss

a number of constraints that can be imposed on the generation of landscape pattern.

This list is not intended to be exhaustive. The example instances were generated

using the spatially explicit landscape dynamics simulator SELES 1561.

Constraints on bounds: Since a landscape model must be represented in a finite

amount of memory, bounds on the grid size and maximum number of cell values

are important. Restricting the grid size (i.e. the number of cells) is a fundamental

constraint, and is related to the extent (i.e. the physical area represented by the entire

model) and the grain (i.e. the physical area represented by each cell in the model) of

the landscape of interest, where extent = number of cells x grain.

Normally, each cell is represented by an integer, and so the number of potential cell

values is bounded by the maximum size of integer that can be represented. In the case

of the neutral models of Gardner et al. [66] , each cell could be represented by a single

bit, limiting the number of cell values to two (0 and 1). For instances generated from

prototypes that specify only bound constraints, there will be no expected pattern; the

feature in each cell is completely independent of all other cells, and hence no expected

value (or expected distribution) can be predicted.

Constraints on landscape indices: In the literature to date, neutral models have

been restricted to two landscape features (i.e. patch type richness is 5 2). We can

extend this to any number of features, permitting richness in a range of values (e.g.

richness E [1,5]). For a particular ~pplication, each feature can be assigned different

characteristics (e.g. to describe differential effects of a particular disturbance). In the

context of percolation theory [137], instead of restricting each cell to either percolate

or not percolate, varying degrees of percolation properties can be assigned to different

cell types. For studies of the spread of disturbance in neutral models (e.g. [148]),

this corresponds to permitting varying susceptibility to disturbance spread (e.g. fires

CHAPTER 10. A HIERI4RCHY OF LANDSCAPE iMODELS

or insect outbreaks) for each feature, as opposed to the simple binary propcrtics of

susceptible vs. unsusceptible. In the absence of contagion, this is very siinplc: for k

features, we need to specify k relative abundance probabilities (which 11iust s tm to

1). A model containing at most k features can easily be generated.

We mentioned above that Gardner and 07Neill [67] propose contagion as a land-

scape index that. may be used to constrain pattern generation for the two fc.,1. CI llrci

neutral models. However, when combined with an arbitrary richness constritirrt,, tlw

notion of contagion becomes more complex. In the two feature model, orily one uurn-

ber was needed to represent contagion: an index indicating the probability that, two

adjacent cells will have the same feature. Now, in addition, we czn specify contngiou

among different features.

To take a more concrete example, suppose our features are tree species. For a ccll

of type Douglas-fir (Pseudotsuga menziesii), we may specify not only the probahili ty

that an adjacent cell is Douglas-fir, but also the probability that it is Western hemlock

(Tsuga heterophybla), Red alder (Alnus rubra), etc. Thus we have k 2 contagio~~ values

to specify. In some situations, it may be difficult to have precise ecological data to

specify this accurately. We can simplify matters by only requiring one coritagiori value

c that specifies the probability that adjacent cells will have the same feature. That, is,

for each pair of identical features (e.g. Douglas-fir next to Douglas-fir), the contagion

value is c, and for each pair of different features, no contagion is specified.

Simultaneously preserving the probability distribution (i .e. LAR) and contagion is

not trivial, but can be accomplished by a formal generalization of contagion, which we

develop in the appendix at the end of this chapter. Examples of landscape instances

generated using different values for contagion are shown in Figure 10.2. All thrce

models have four features with equal relative proportions (0.25).

Although contagion is an intuitive and common index for landscapes, t,here is

nothing ecologically inherent that distinguishes it from other indices. We could, in

theory, restrict the value of any landscape index to constrain possible landscapes. For

example, we could set Shannon's diversity index or edge fractal dimension, arid only

generate landscapes that have a particular expected value for these indices. Further-

more, we could specify restrictions to more than one landscape index simultaneously,

Figure 10.2: Instances of landscape model prototypes produced on a 100 x 100 grid.
Each model has four features with equal landscape area ratios (i.e. equal relative
proportioils). The value of contagion differs for each model instance, taking on the
vzlues 0.6, 0.8 and 0.99, respectively. The prototype for instance (a) is therefore
{LnR = (0.25,0.25,0.2.5,0.2.5). s ize = 100 x 100, richness E [I, 41, contagion = 0.6).

and generate landscapes that satisfy all the values of these indices. In this way, we

view landscape model prototypes as models that are not neutral with respect to a

given set of explicit constraints (landscape indices in this case), but neutral with

respect to everything else.

Spatial constraints: There is no mechanism in the models of Gardner et al. [66]

to incorporate the effects of physiography when generating landscape models. The

dist,ribution of real landscape features may be strongly influenced by some physical

characteristics of the landscape, and we may want to integrate them into model gen-

eration. We can incorporate responses to spatial parameters (e.g. topography, soil

type, slope, etc.) as constraints on the probability distributions of features, providing

a spatial context for pattern generation. Such parameters affect both the relative

proportion and spatial distribution of the features in the model. We call such models

site specific due to the local effect of parameter values at a given site. This use of

spatial parameters essential1 y replaces a statistical approach to spatial distribution

with a more e~npirical based. process oriected approach.

These parameters can be derived from real data, or can themselves be artificially

genera.ted. For example, a topography parameter can be derived from a real landscape

through cxtographic techniques, or it may represent a theoretical topography derived

CHAPTER 10. 4 HIERARCHY OF LANDSCAPE MODELS

through fractaE modelgeneration (e.g. [56, 116, 1171). Spatial parameters arc matched

to the landscape model, so that, each cell in the landscape model has a corrcsporiciing

value in the parameter model.

Generating a site specific model involves calculating, for each cell, t he relatiw

probability of occurrence for each feature. This is akin to deriving a local L A R . 'l'liis

information is then used to either randomly determine a feature for thc cell, bascd

on this distribution or it can be further constrained (e.g. with contagiori). Note that

as prototypes become "less" neutral, the significance of contagion in forrnitlg p;~tc.\ics

decreases. Contagion can be viewed as the aggregation of ecological processes t,ha,t,

explain why features are often grcuped into patches. As these ecological processes are

integrated into a model through spatial constraints, the need for a contagion factor

decreases, since features will become more naturally aggregated.

These site specific models can range from more neutral models (i.e. site ii~clc-

pendent, aspatial distributions of landscape features) to complex models that spcci fy

relationships for many parameters. This extends our notion of gradients of ncut,raI-

ity, from prototypes that specify aspatial constraints, to prototypes that iricorporatc~

a spatial context that influences pattern generation, taking one more skep towards

predictive models

Figure 10.3 shows an instance of a site specific model for which fcaturcs vary

with altitude Each of the five features differs in its response to elevation. ?'he darkw

features respond "better'90 lower elevation, while lighter features respond "bet, tern to

higher elevation. That is, at low elevations, the relative probability of darlxr fcaturc:~

is higher than lighter features, and vice versa at high elevations.

The model instance is draped over the elevation map that was usccl to crc:a.t,t*

it, providing a contextuai view of the instance. Note that using the sarrtc sct of'

constraints, but a different elevation map, would produce a different model instancc:.

Ih this example, no contagion was used.

Temporal constraints: We can also constrain pattern generation temporally through

the use of an existing model instance. If we view the existing instance as a previ-

ous state of the landscape, this creates a temporal context for pattern gencratiori.

Figure 10.3: Geometric view of an instance of a landscape model prototype with
spatial constraints. The instance is overlaid on the elevation model used to create
it. The model size of this instance is 100 x 100? and the number of features is 5.
The underlying elevatj on model provides a context in which spatial constraints, in
the form of elevation responses, affect pattern generation. Thus, the prototype for
instance (a) is {size = 100 x 100, richness E [l, 51, spatial responses t o elevation).

Using a combination of the input landscape model, and temporal change sequences

(e.g. modeling succession or disturbance), a landscape simulator may attempt to

mimic ecological and/or abiotic processes in the production of landscape pattern in

the output model.

Specifying temporal constraints may be as simple as providing a Markov chain [lo]

(i.e. a transition matrix, where entry (2 , j) specifies the probability thilt a cell with

feature i in the input model will have feature j in the output model). At the other

extreme, ternporal constraints may determine the features of the output model based

on an analysis of the input pattern, and possibly other information such as spatial

parameters. Depending on the complexity of the constraints on temporal sequences,

these prototypes Inax also provide a gradient from models that are a small step beyond

neutral models to more predictive models.

Figure 10.4 shows an instance of a prototype (pattern (b)) generated using tempo-

;;: constraints and an input model (pattern (a)). The temporal sequence is stochastic,

m d most of the cells obtained their feature from ill; previous state; some of the cells

(most notably in the centre left of the pattern) obtained different values. In general,

such sequences may rnodel a successional trajectory, t 11c t , t f (~ . ! 111 ;I (list rii~1~1rc.c event,,

or some other dynamic landscape proccss. l'11(. spei-ifii-atio11 of t t ~ l ~ ~ l ~ ~ > i . i i l c.t~rlst,ra.i!~ts,

and the generation of sequences of rnoctct? bastti o n t hew. coirsl raiirt s i b t f ~ i s heart, of

landscape dynamics simulators. such as SSEl,13 [Nj. 5ot)i. t frat t 11v oirly t~oilstra.ints

involved iii the generation of this model irwt.anct3 are ricltr~c,s..;. ri,otic 1 s/:t ; ~ r ~ c l / e m p o d

responses: the resulting pattern is largely depende~it, on t 11t. iil!j~i t. la~~tlsc.;i~)c..

Figure 10.4: Instance of a landscape model prototype (b) gerteratetl 11si11g st,ocliastic.
temporal constraints and input pattern (a) . The rnodel siac is 30 x 30, a I I ~ s ivh rress is
4. The prototype for instance (b) is therefore (szze = 30 x 30, rlchrtt S.S = if, l e ~ n y o ~ n l
responses}.

10.4 A Hierarchy of Landscape Model Prototypes

Different combinations of constraints lead to difTwcmt Iandscapc* rr~odvl prototypes,

and the relation among these prototype5 forms a hiwarc-hy. [lor I wo psototypes,

PI a d P2, if PI is defined b_v a superset of the constrair~t~; of P,. t hrr~ irkstances

gerierated by PI are more restricted than those generat;4 hji PL 111 ! l i i 5 :-we, we

place PI ..lower" in the 'hierarchy than P2. The most g c w d j)rototyprh. denoted

T, is the one that imposes no ronc;trajnt.; on pattern gtw.satior~. AItlro~~gil such a

prototype may h a w limited practical utility. it doe., servr. as a corn i i l o u i! ar: ing p ~ i n t

CIiAPTER 10. A HIERARCHY OF LAXDSCAPE MODELS 203

for all other prototypes. The prototype hierarchy forms a general partial order not

just, a tree shaped hierarchy7 since a prototype may have multiple parents.

This hierarchy provides a framework for systematically cataloging and analyzing

landscape pattern. A prot.otype can be used to generate a set of instances with an

expected pattern under known constraints. Deviations from this expected pattern in

real landscapes, or simulation results, can help us identify components of pattern not

explained by the constraints of the prototype.

Figure 10.5 shows a sample fragment from this hierarchy. Each node in the hier-

archy includes the set of constraints imposed by all nodes above it. Thus, the lowest

node represents the prototype with the constraints: {richness = 4, model size = 100,

LAR = (0.1,0.2,0.3,0.4), contagion = 0.8, spatial responses to elevational data). The

other nodes in the example contain various subsets of these constraints.

A
Richness = 4 Model Size = 100 -

s

Elevational
(0.1,0.2,0.3,0.4)

Figure 10.5: Sample fragment of the hierarchy of landscape model prototypes. Each
node represents a protot.ype that consists of the constraints labeling the node and all
higher nodes in the hierarchy

The prototype hierarchy organizes work oa neutral models and landscape model

prototypes both for developers aad users of model generators. Some of the potential

appiicrations of the hierarchy are described below.

Development of landscape model generators: Landscape model generators are

procedures for the synthetic production of instances of landscape models. In gen-

eral. they pennit the specification of prototypes via parameter values. Once a set

of parameters (constraints) has been provided, landscape instances satisfying those

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS

constraints can be produced. Thus, generators are more abstract t<haal prototypes

in that they only restrict which constraints may be specified, while pr~t~otypes also

restrict the value of the constraints. Our framework provides a structure within which

landscape model generators can be systematically developed and compared. Not only

can two generators be contrasted as to which constraints may be specified, but, gaps

in the suite of existing generators can be identified. In this viewpoint, the llicrarcliy

does not specify values for constraints. The constraints that may be imposed by a

generator determine its position in the hierarchy, and its relation to other genelx.tors.

A sample fragment of the generator hierarchy is shown in Figure 10.6. Each node

represents a generator that allows specification of the constraints at tacked to that

node and all nodes above it in the hierarchy. For example, the node labeled Edgr

Fractal Dimension permits specification of richness, model size, landscape area ratio,

and edge fractal dimension. The node below Richness and Modek Size represents

a "totally neutral model", where only bound constraints are specified. Note this

fragment is incomplete, and is not intended to suggest any particular relations amorlg

constraints. Thus, for example, there may be another node above the one labeled

Edge Fractal Dimension that permit specification of edge fractal dinenszon, but does

not require landscape area ratio.

A
Richness Model Size

C -
Temporal Landscape Area Ratio Contagion Elevzltional
Sequences Responses

Edge Fractal
Dimension

Figure 10.6: Sample fragment of the hierarchy of landscape model generators. Each
node represents a generator that permits specification of the constraints labeling the
node and all higher nodes in the hierarchy.

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS

A common organization of landscape model generators: Access to existing

tools is a prevalent problem. Currently, developers of landscape model generators have

no source of information as to which generators already exist, and so run the risk of

re-inventing the wheel. Similarly, potential users of generators have no systematized

way of searching for generators. The prototype hierarchy has the potential to alleviate

these problems as a common organization of model generators. A site on the Internet

could be established to maintain the hierarchy, and nodes could have links to sites

from which the corresponding generator cen be accessed. Thus, once the desired

set of constraints has been identified, the hierarchy could be traversed, and if the

node corresponding to these constraints could be found, then the landscape model

generator exists and can be accessed.

With time, this hierarchy may potentially grow to a size where access becomes

cumbersome. In this case, the encoding techniques developed previously in this thesis

for efficiently storing and traversing hierarchies could be utilized. A user could enter

the desired set of constraints, and the system would automatically find the desired

node if it exists. If no such generator exists, then the set of most closely related nodes

could be returned.

We envision the prototype hierarchy as providing a cooperative resource for land-

scape ecologists to share landscape modei generators, to find desired generators, and

to identify gaps in the current state of landscape model generation.

Analysis of landscape pattern: Landscape ecologists benefit directly from the hi-

erarchy of landscape model prototypes. Given a data set of one or more landscapes,

the hierarchy can guide hypothesis testing to determine the level of neutrality of the

data set. That is, we can find the node P in the hierarchy for which the models

generated by prototype P are not significantly different from the models in the data

set. We provide below a theoretical example of how this can be accomplished. The

process of arriving at P may identify deviations from random, or neutral, characteris-

tics. This in turn may lead to hypotheses to explain these differences. The node itself

is also of interest, since it is the most general prototype that captures the pattern

exhibited in the data set, establishing the "level of neutrality" of the data set. That

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS

is, this prototype serves as a predictive model for the data set, and is the rnost general

such prototype.

For example, suppose we have a data set X of landscape models with sizc 1 1 1 auci

richness k. Starting near the top of tlhe hierarchy, we can take a basic prototype with

constraints only on model size and maximum richness. Using this prototype, we can

generate a number of model instances, which can be used as a random sample of t.11~:

prototype. Now we can compare an attribute of the data set, such as the avcragr

contagion, with that of the sample. Note that the contagion for the sample provitfcs

an expected value for contagion in the absence of additional ecological informatiou.

If no significant difference can be detected between the contagion of the data set

and that of the sample from the prototype, then the data set has a contagion valut.

that is indistinguishable from random. This isn't to say that there is no process in

these landscapes acting on this attribute, but rather that we cannot distinguish horn

pattern that is random with respect to this attribute. We can continue hy selectiug

another attribute, such as LAR or elevation responses.

If, however, we find that the attribute value for X differs significantly from the

expected value of the attribute, then there is some process responsible for this cliver-

gence. The ideniification of this deviation may lead to hypotheses for expla,ining the

difference. For example, if the average contagion for the data set X is greater than

the average contagion for the sample from the prototype, then this indicates that

there is some ecological process responsible for the higher degree of aggregation in tht:

data set than is expected from random. This may lead to a hypothesis to explain tlie

aggregation seen in the data set.

We can now continue this process by taking a more constrained landscape model

prototype that restricts model size, maximum richness and contagion. In this way we

are able to systematically exploit the model generators available in order to classify a

landscape on the neutrality gradient, and generate hypotheses to explain deviatiorls

from random. If we find a prototype P for which all attributes of the data set are

indistinguishable from the instances produced by P , then this prototype not only

identifies the level of neutrality for the data set, but it can also serve as 9 predictive

generator for the data set (at least for the attributes tested during this analysis).

T,'HA PTER 10. A HIERARCHY OF LANDSCAPE -MODELS

10.5 Conclusion

We have formalized landscape model generators using the notion of a landscape model

prototype, which is a set of constraints that restricts the generation of pattern. These

prototypes induce a hierarchy that provides a formal framework within which model

generators can be constructed, compared and accessed. This hierarchy can be used

to guide the analysis of pattern from a data set of landscape models, and captures

the idea of "gradients of neutrality". That is, prototypes provide some measure of

distance from neutrality, and the hierarchy embodies the variety of ways in which

models can diverge from random in a multi-dimensional space of possible constraints

on paitern generation. Analysis of data sets of landscape models can exploit this

hierarchy to guide identification of differences between the data set and random. In

addition, we described how one can determine the node in the hierarchy for which

there are no significant differences between the models generated by the prototype

represented by this node and the models in the datd set. This not only establishes

the level of neutrality for the data set, but also the prototype at this node acts as a

predictive model for the data set.

Chapter Appendix: Formal Basis for Landscape

Model Generators that Permit General Richness,

LAR and Contagion Constraints

In this appendix, we provide a mathematical derivation for landscape model gen-

erators that can satisfy general constraints on richness, landscape area ratio and

contagion. Gardner and O'Neill [67] provided the mathematical basis for combining

landscape area ratio (LAR) a d contagion for models with a richness of 2. However,

their results do not permit a direct generalization to an arbitrary number of landscape

features. Our goal is to provide a means of generating landscape models that satisfy

constraints on richness, LAR and contagion. Clearly, not all possible combinations

of constrzi~ts are satisfiable. For example, the constraints richness = 2 and LAR

CHAPTER 10. A HIERARCHY OF LAIVDSCAPE A4ODErLS 20s

= (1.0,O.O) imply that contagion must be 1 . Even though these coristraitlts are not

completely independent, we can attempt to satisfy the cont.agion constrailit, while

maintaining the richness and LAR constraints. Here, we provide a formal clerivat~ioli

for this landscape model generator.

In general, for k features, there can be up to k2 contagion factors, where contzagiail

factor c;j can be viewed as a probability index that a cell of feature i is next to a cell

of feature j. This can be specified using a k x E array Ckk. Each contagion factor

c,j may take on any value in [-I, 11, where a value greater (less than) than 0 dewt,c>s

that a cell of feature i is more (less) likely to be next to one of feature j than random.

A value of 0 denotes that a cells of feature i and j are juxtaposed randomly. That, is,

the probability that feature j is next to feature i is the same as the relative abundanre

of feature j in the entire model. We minimally require one contagion factor c that is

assumed to be the contagion for adjacent cells of the same type. This is the si t,uation

we used in section 10.3 for examples. We generalize this somewhat, and pennit, a

vector of k contagion factors C k , where c, denotes the probability index that a cdl

of feature i will be next to another cell of feature i . The other contagion wd!les (i.e.

r,:,, i # j) are assumed to be 0.

The relative abundance vector Pk (i-e. LAR for each of the k features) must clcarly

sum to 1 (i.e. Xf=,Pk[i] = I). Our algorithm for constructing the contagion rriatrix

takes as input the relative abundance vector Pk and a contagion factor vector fi. O u r

goal is to generate a contagion matrix Qkk, where each element qiJ is the probahilit,y

of feature j being adjacent to feature i, and Qkk somehow satisfies the LAR Pk. 411

the case of no contagion, each row of Qkk will be identical to Pk. As contagion is

changed (either increasing or decreasing clumping), we must change the entries of

Qkk to reflect this change while still satisfying the relative abundance reyuirements in

Pk over the entire landscape. Note that if q;; = pi , then feature i will not be ciircctly

afFected by contagion. If q;; > p;, then feature i will be more cli~rnpec-1 than random

and if q;i < pi, feature i will be less clumped.

In the two feature case, changing contagion while maintaining Pk was simplr: to

achieve, and the mathematics is given in [67]. Their specification of the problem was

difficult to generalize, so we look at it slightly differently. First, we need to formalize

CHAPTER 10. A HIERARCHY OF LANDSCAPE MODELS 209

what we mean when we say that a contagion matrix Qkk %atisfies" Pk. Our algorithm

for constructing a contagion matrix Qkk starts with each row of Qkk identical to Pk.

Clearly, using this matrix to generate a landscape will he the same as using Pk alone.

We then transform Qkk SO that Pk is always satisfied and at the end, Qkk reflects the

desired contagion factors.

Definition 10.2 Suppose we have k features and a relative abundance vector Pk.

Then a contagion mat* Qkk satisfies Pk if and only if C:,,pj * qji = pi.

If this equation is satisfied, then the overall probability that a cell will have feature

i (i.e. pi) will be the same as the sum of the probabilities that an adjacent cell will have

feature j times the probability that feature i will he next to feature j . One property

that we require of any contagion matrix (as we do for the relative abundance vector)

is that the sum of the probabilities in any row must be 1 and that all probabilities

must be non-negative.

Lemma 10.1 Suppose we have we have k features and a relative abundance vector

Pk. Then a contagion matriz Qkk satisfies Pk if, for di 1 5 i, j 5 k , pi * q;j = pj * q - . . 3 2

Pmof: Suppose the above property is satisfied. Consider any feature i. Then c F = , ~ ~ * q j i =

 pi * 9ij = Pi * ~ $ = ~ q i ~ = p& since any row of Qkk must always sum to 1

In the initial state q;j = pj, so this propert?y is satisfied. We now show that we

can perform transformations on Gkk that preserve this property.

Theorem 10.1 Suppose we have we have k features, a relative abundance vector Pk

a d a contagion matrix Qkk that satisfies Pk. Given some 1 5 i, j 5 k and a factor

o svch that r n a ~ (- q , ~ / ~ ~ , ; , -qjj/gj;) 5 a 5 1, then after the following transformation,

Qkk still satisfies Pk:

qii = gii + a * ?ij

q;j = qi3 - Q * qjj = (1 - (11) * qij

q;ij = qjj + a * qj;

qj; = qj; - cx * qji = f 1 - tu) * qji

Proof: Since only the above four entries are modified, we need only ensure tha t the propert*y

of the above lemma is satisfied. For the diagonal elements, this is trivially sa.tisfied: pi + yi, =

pi * q;; and pj * q j j = pj * q j j .

For the other two elements, we must satisfy: pi * qij = pj * qj;. By our assumption, this

property holds before the transformation. After the transformation, we have: pi * ((1 - a) *
q . .) $3 = pj * ((1 - a) t q j ;) . Dividing both sides by (1 - a) yields the desired result

The proof does not depend on the restriction to the value of a. This restrictior~

ensures that the entries in Qkk remain non-negative. If a > 1, then q,, and q,, hecon~e

negative and if a < -q i i /q i j or a < - q j , / q j , then one of q;, or q,, becomes ncgat.ive.

Given a relative abundance vector Pk and a contagion factor vector Ck (both of

size k)) the contagion matrix Qkk can be computed as follows: Start with each row

of Qkk equal to Pk. For each contagion factor, c; perform the above trarcdor~natio~l

on Qkk (where a becomes ci). Once we have Q k k , the landscape model instancc N,,,,,

can be easily generated as follows:

1. For the first cell noo, select a feature randomly using Pk.

2. For each cell nio in rest of the first row, select a feature randornly using thc row

of Qkk corresponding to the left neighbour.

3. For each subsequent row:

(a) For the first cell noj, select a feature randomly using the row of Q k k corr(:-

sponding to the neighbour above in the map.

(b) For each remaining cell n;j in the row, using the average of the rows ol' Q k k

corresponding to the neighbour left and above.

This algorithm will tend to have a diagonal bias, which can be partially allcviatcd

by alternately traversing rows left and right. This wilI still leave a slight vertical

bias, but not very pronounced except at high values of contagion. Other generation

techniques may be possible to generate maps using the contagion matrix, hut without,

any bias. The model instances shown in [67] have a clear horizontal bias, and rnrixt

have been compqted without considering the vertical neighbouru.

Chapter 11

Conclusion

"There is in nulure what is within reach and what is beyond reachn

- Goethe

Reasoning is a fundamental problem in a variety of human intellectual endeavors. Tax-

onomies assist the reasoning process by clarifying and categorizing knowledge. This

thesis is an attempt to bring taxonomic reasoning to centre stage, and to push fortsh

some of the frontiers of research. From a pragmatic viewpoint, we have formalized

research on managing large taxonomies, a task known as taxonomic encoding. Our

formal framework encapsulates the essence of encoding and we are able to characterize

all known encoding techniques within it.

During our analysis of encoding, we developed sparse logical terms as a universal

implementation for encoding. We explored the utility of sparse terms for encoding,

hot h theoretically and empirically.

Although partial orders are an elegant and mathematically formal basis for rep-

resenting taxonomic knowledge, we became dissatisfied with their limited expressive

ability. Rather than shift to the other extreme, where trxonomic information is hidden

within a description logic (such as KL-ONE) and can only be extracted via classi-

fication, we feel that explicit maintenance of taxonomic knowledge is essential for

taxonomic reasoning. To pursue this line of thought, we formally extended partial

orders to incorporate additional information, and developed a sort logic for reason-

ing within this more expressive framework. To maintain tractable reasoning, we also

derived a restricted form of the logic.

CHAPTER 1 1. CONCL USION 21 2

In t,he course of this thesis, it became apparent that taxonomies were prevalent

in almost every field. We followed shallow explorations of a number of applicat,ions,

such as natural language processing, and delved deeper into tbhrec of thc~ fields that3

are rich with possibilities.

Research on using logical terms for encoding led to a viewpoint t,l~at c0rt4~rc1lcc~ i t 1

logical variables imposes requirements that are too strict. By viewing the synlrrwtry

of coreference as the product of two asymmetric reference constraints, a tasorlouly

may be constructed, where each node represents an equivalence class of variablvs (i.c.

variables that corefer). In current logic programming systems, variable corcfwviw

classes are constructed, but cannot be related to one another.

Conceptual structures was the first field to which our initial research o n cricoditlg

was applied. It became apparent that encoding has a great potential impact or1 tllc

field due to the variety of (potentially large) taxonomies that are used in t hc formitlisrt 1.

In addition, our research led us to further application of sparse terms to iniple~ricrrt

normalized conceptual graphs.

The final area of application for this thesis is ecological modeling. Although hiw-

archies have been used in a number of domains, we applied taxonomic reasoriirlg to

unbroken ground in landscape ecology. By formalizing a hierarchy of lantlscqw r n o t l -

els, we have been able to bridge the gap between predictive and theoretical rrmdcls of'

landscapes, to provide a framework within which generators of landscape rnociels can

be designed, compared and accessed, and to guide analysis of sets of la~idscape data.

Significance of Research

The overall goal of this thesis was to forge ahead with research on rt:asoriing with

taxonomies, to develop a formal foundation upon which systems that usc t,axoriolr~ir:s
r l can rest, and to apply the theory to a variety of applications. I he rcsearch that

' ow: comprises this thesis has had a number of impacts on several fields, as outlinctl 1x1

1. The theoretical work on encoding has provided a foundation or1 which difftmrit

encoding algorithms and techniques can be compared and critiqued. Prior to

CHAPTER 1 1. C'ONC'L USTON 213

this development, encoding research was somewhat ad hoc, with no context or

means to critically evaluate advances in the field. The notion of a spanning set

for separating the information content of an encoding from the implementational

details provides a yardstick for the addition of new techniques, and avoids the

potential problem of re-inventing the wheel.

2. Our contributions to modulation provide the potential to improve further the

efficiency gained from using this technique. Furthermore, our generalization

of modulation extends the elegance of modulated encoding into the realm of

practical encoding with dynamic and irregular taxonomies. By relaxing the no-

tion of a module, the effort involved in modulation can degrade gracefully over

time, rather that break in brittle mathematical precision. We have also pro-

vided proven algorithms that permit the computation of taxonomic operations

in generalized modules.

3. Our constraint based view of encoding provides a guideline for the use of coref-

erence (i.e. logical variables) in encoding. By providing a formal analysis of

encoding in terms of constraints? we have shed light on the advantages and

pitfalls of going beyond tree terms for logical term encodings.

4. The theoretical and empirical results of sparse term encodings place sparse terms

as a universal encoding implementation. The general form of sparse term devel-

oped for encoding directly subsumes most other encoding implementations (e-g.

integer vectors, logical terms, interval sets), with the exception of bit-vectors.

The empirical evidence provided by encoding two medium size taxonomies from

existing applications, however, shows how sparse terms let us have our cake and

eat it too. Sparse terms used significantly less space than bit-vectors, while

providing the flexibility required for dynamic updates to encodings (i.e. partial

re-encoding).

5. Our work on extending parti31 orders separates the task of taxonomic, or sort,

reasoning from applications that use taxonomic information. The sort reasoner

is provided with taxonomic knowledge in the form of assertions, and can be

CHAPTER I I . CONCL LiSION

called upon to answer queries regarding the taxonomic. stxucturc specified. \\it.

developed a sound and complete sort logic as a logic for reasoning about sorts (as

contrasted with sorted logic for reasoning with sorts). To find utility in practical

systems, sort reasoning must be efficient. One of our n~airl contril~ntions is

the development of a tractable restriction of the sort reasoning probltw~ t hat

retains enough expressive power to capture many common forms of t,axor~orllic.

knowledge.

6. Our development of reference constraints as a generalization of equality con-

straints in logic and logic programming is a novel application of reasoning wit,li

taxonomies. Although equality constraints form equivalence classes of logical

variables, reference constraints induce a partial order among thew cor~ft~rcr~c-t~

classes. We provided a formal description of how reference co~lst~railils rllay

be specified in a logic program, and how the resulting refclwice ordcr cil,Il I)c

maintained and satisfied.

Since variables denote individuals, reference constraints lead to the not iolt of

individual level inheritance, where an individual denoted by a variablc 111i~y

inherit properties from another individual which is denotccl by a sui.)stirrr i I I ~

variable in the partial order. A variety of systems, especially systems reasoning

in ambiguous domains, can potentially benefit from an efFicient,, formally basctl

implementation of reference constraints and individual level in hcr i tmc-e.

"
l . The issues involved in maintaining derived hierarchies, such as the ger~eralizat~io~r

hierarchy of conceptual graphs differ from encoding issues for clefinecl h i w a r -

chies, such as class or sort hierarchies. Derived hierarchies may hc inducc:tl

by the set of data (graphs) in a knowledge base; they are highly dyriarnic: a ~ ~ c l

expensive to compute. Focusing on the field of conceptual structures, we devcl-

oped an approach to normalize graph knowledge bases and stort: the graphs in

a spanning tree of the underlying partial order. The advantages of riorrri a1 ix ing

within this spanning t r ~ e are twofold: (i) the normalization of a graph can c l e -

pend on its parent in the tree, so that traversals within the tree can tiis mtsi:h

more efficient than traversals in the general partial order; (ii) there a,rc a r t l m hcr

CHAPTER 1 1. CONCL USION

of benefits of traversing such hierarchies in a topological fashion (e.g. more rapid

retrieval of a target graph), as covered in [42]. However, there are a variety of

topological traversals; the one described in [42] is breadth-first. We argued that

there are benefits to depth-first topological traversals, and we showed that if

the spanning tree is formed as a left-to-right depth-first traversal of the original

partial order, then a right- to-left depth-first traversal of this tree corresponds

to a right-to-left depth-first topological traversal of the partial order.

8. Artificial generation of landscape models is becoming increasingly prevalent in

landscape ecology. Due to the spatial scale at which most landscape studies are

performed, replication is rarely feasible and experimenters may require artificial

replication. Artificial generation of landscape models can be used for a variety

of purposes, including comparison with real data, testing general theoretical hy-

potheses, and providing inputs to simulation models. However, the number of

generators is increasing and there is no framework within which generators can

be analyzed, compared and organized. We proposed a hierarchical framework

that unifies landscape models within a formal organizational system. By gen-

eralizing neutral landscape models, we proposed landscape model prototypes

that induce a hierarchy that represents gradients of neutrality. We described

how this hierarchy may be used to guide the development of landscape model

geneiators, to aid selection of appropriate existing model generators, and to

assist in the analysis of models derived from real landscapes through the use of

landscape model prototypes.

11.2 Future Research Directions

"The solution to every problem is another problem"

- Goethe

The research presented in t.his thesis has contributed to a number of disciplines and

made a variet.y of connections among fields. It has also opened many doors and

identified unexplored pathways which were beyond the scope of a single thesis. This

final section of the thesis identifies some promising areas in which rescarrh car1 btl

continued.

Encoding. Using our notion of spanning sets, further thcorvtical work slior~ld b c -

carried out on the limits of t>axonomic encoding. Research continues to push

the frontiers in the quest for minimal size encodings (e.g. [797), and we tnailtt.ail~

that the framework prosided in this thesis is an appropriate comntori ground o r 1

which new techniques should be evaluated. More em; rical testing of tfifkrcnt

encoding algorithms and implementations should be done. As more taxo~ioii~it~s

from real applications become available, this will become easier to perfornt.

Modulation. Although the advantages of modulation are i l l t u i t i v~ , there is a rcd

need for empirical testing of its actual benefit, and for dcterrninillg at2 wliclt, size

of taxonomy should modulation be at tempted. We expect that t , l i t ~ 1,cwcfi t,s of'

modulation will not show up until taxonomies are quite large, but t,hat this

technique will address issues of scaling encoding up to much larger taxorio~ I 1 it.s

than are currently encountered. Finally, to address issues of dficicwcy, tlicw

is a need to integrate the linear time modulation algorithm of j76] wi tli our

techniques, which may require changes to this fast algorithm to accornrnoriatc:

our generalized forms of modules.

Sparse Term Encoding. Further theoretical and empirical testing of difft*rcrit en-

coding techniques is required to provide a strong basis for comparisori of sparsr.

term encoding with other implementation schemes. Also, acltlitiorial work 011

sparse term encoding should be researched to implement and t ~ s t the ut,ilit,y of

encoding in highly dynamic environments.

In the theoretical arena: there are a number of dimensions along which c-orrt-

parisons can be made. We selected two techniques that wr felt appropriatt* for

encoding dynamically changing taxonomies (transitive clcsure and cotnpact),

and compared the effects of different implementations on these techr~iyt~es, Onc:

advantage of our framework for encoding is that it makes possihlc: sudi corrtpilr-

isons. Another approach, taken in [S], is to compare different algorithms (that

mix technique with implementation). There is a great need for more rompar-

isms of these kinds, to ideniify the types of taxonomies that are best suited for

different approaches to encoding.

Extending Partial Orders. Although we have developed a theoretical foundation

for tractable sort reasoning in Chapter 7, this work needs to be implemented, and

empirical testing can identify the utility of our restrictions to obtain tractability.

Other sets of restrictions can also be developed and contrasted with our proposal

to develop a n efficient sort reasoner.

Also, more efficient encoding techniques that take advantage of the structure

of extended partial orders should he detdoped. For example, t.wo incompatible

sorts can share the same position within a term, leading to unification failure

if an object is postulated to belong to both sorts. This opens a whole area

of research for generalizing our spanning set framework for encoding extended

partial orders.

Data Mining. Tree-shaped conceptual hierarchies have been proposed for use in

data mining f13, 81, 823. There exists a great potential for generalizing these

techniques to use partial orders, and even extended partial orders.

Reference Constraints. To fully demonstrate the utility of individual-level inheri-

tance. reference constraints must be implemented in a logic programming sys-

tern. Possibilities include implementation in sparse terms or another logic pro-

gramming language. such as LIFE [4] or Bin Prolog 11401. A variant of sparse

terms has been implemented that includes coreference akin to that in LIFE [4].

This variant could be extended in a ~traight~forward manner to handle reference

constraints. In addit ion, the effects and advantages of different control strategies

as mentiorled in Chapter 8 should be explored.

Also. applications of hypothetical reasoning such as those outlined in this the-

sis need to be more thoroughly developed and implemented. The application

of individual-level inheritance as a means to integrate top-down hypothetical

analysis and bottom-up chart parsing in discourse processing appears to be

a promising area to pursue in this direction. In addit)iou, t,he irlcorporat,iotr

of reference constraints into ,4ssumptcion Grammars [I421 for ~la.t,ural 1a.ngungc

processing should be studied.

Conceptual Structures. As implementation of the Peirce workbench [44] and ot,ht"r

systems for reasoning with conceptual graphs proceeds, there will be opport,ur\i-

ties to implement. a ~ - d compare t8he various approaches to tla,ndli~ig taxoriortlic~s

of complex and dynamically changing information, such as graph knowlcdgc

bases. Empirical testing of the advantages of the spanning tree organizat,ioli for

the generalization hierarchy compared to other organizations of complcs data

(e-g. [42]) must be performed.

Landscape Model Prototypes. Using the hierarchy of landscape niodel proto-

types, existing model generators can be placed in relation to each 0 t h . rrhc

next step is to use this hierarchy to provide a common organizatioit for nlodel

generators, and to organize existing and future generators for simple access by

users. The internet is a natural location to place such a hierarchy; a proposd

in this direction is in progress.

Landscape studies need to attempt to use the hierarchical techniques pro~~osetl

to guide the analysis of data sets of landscape models. Studies that cornpan

data sets against landscape prototypes will identify gaps in the suite of availitblc~

generators.

Analysis of Landscape Models using Formal Concept Analysis. 'I'he Ilicras-

chy of landscape model prototypes developed in Chapter 10 pcrrni ts analysis

of the properties of an entire data set in comparison with artificially genc:rat,ed

models. Other techniques are necessary for the analysis of the propert,ics of

individual models in comparison with other models in a giver? data set. 'i'he

issues addressed here are quite different, and focus more on how the modcls in

a data set can be differentiated and/or grouped. Such analysis is complex, arrd

researchers have proposed a multitude of indices for the comparison of landscape

models in a data set j"r26j. An attempt to select a core subset from this army of

indices has been explored in Riitters et al. [122]. However, attempts to derive

a core set of indices that is independent from a data set fail to recognize that

different sets of landscapes have inherently different properties.

We propose an alternate approach for reducing the set of potential indices

through the use of formal concept analysis [153]. Formal concept analysis is

based on a mathematical, set-theoretic model of concepts and conceptual hier-

archies [62, 1551. It was developed as a new approach to data analysis that,

permits structural analysis of data without reducing the data. Concept analysis

provides a formal, objective, data-driven technique for automatically construct-

ing a hierarchy of relationships from a set of objects (e.g. landscape models) and

a set of attributes (e.g. landscape indices). This hierarchy, known as the formal

concept lattice, elucidates relationships inherent in the data, and can aid in the

selection of key indices for a given set of landscape models. Formal concept

analysis has been applied to a variety of domains with many nice results (e.g.

analysis of Rembrant paintings [155]: comparison of recreation opportunities in

national parks [139], and information retrieval [29]).

In general, a concept- lattice provides a hierarchical conceptual clustering of

the objects, and also represents all the implications among the attributes [155].

Using the techniques of formal concept analysis, we can automatically generate

a concept lattice that illurnmates subtle dependencies contained in the data

such as: dependencies among landscape indices; index groupings that cluster

or differentiate subsets of landscape models; anil gradients of complexity within

the data set. The concept latt.ice, if properly drawn, elucidates many of the

nuances and implications contained in the data set that are not apparent by

inspecting the data only. Producing good diagrams of concept lattices is an art

in itself, although some progress in automating this task has been made [154].

Concept analysis is related to cluster analysis 146, 88, 831, although it differs in

its ability to graphically illustrate subtle properties of the data. A primary dis-

tinction between traditional cluster analysis and formal concept analysis is that

the former produces a tree of clusters grouped according to similarity criteria

[127], while the latter forms a lattice. This not only involves a novel apylicatio~r

of reasoning with taxonomies, but permits the detection of subtle relationstlips

as well as general trends in the data. A wide avenue for future rcscarcI~ is t,o

pursue the use of formal concept analysis in landscape ecology by studying i t s

utility for the analysis of one or more sets of landscape models.

Bibliography

[I] R. Agrawal, A. Borgida, and H. Jagadish. Efficient management of transitive

relationships in large data bases, including is-a hierarchies. In Proceedings of

A CM SIGMOD, 1989.

[2] H. Ai't-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Efficient implementation of

lattice operations. ACM Transactions on Programming Languages, 11 (1): 115-

146, 1989.

[3] H. Ai't-Kaci and R. Nasr. Login: A logic programming language with built-in

inheritance. Journal of Logic Programming, 3: 185-215, 1986.

[4] H. Ai't-Kaci ar7d A. Podelski. Towards a meaning of LIFE. Journal of Logic

Programming, 16(3/4):195, 1993.

[5] H. Ai't-Kaci, A. Podelski, and S. C. Goldstein. Order-sorted feature theory

unification. Technical Report 32, Digital Paris Research Lab, Paris, France,

May 1993.

[6] J. Allen. Natural Language Understanding. Benj amin/Cummings Pub. Co,

Redwood City, CA, 2nd edition, 1995.

[7] J. F. Allen. Maintaining knowledge about temporal intervals. Communications

of the ACM, 26(11):832-843, 1983.

[a] T. F. H. Allen and E. P. Wyleto. A hierachical model for the complexity of

plant communities. Journal of Theoretical Biology, 101:529-540, 1983.

BIBLIOGRAPHY 6.. 3.22

[9] N. Asher. Reference to ilbstract Objects in Discourse, volume 50 of Studies irt

Linguistics and Philosophy. Kluwer, 1993.

[lo] W. L. Baker. A review of models of landscape change. Landscape Ecolocyy,

2(2):111-133, 1989.

[l l] G. L. Ball and R. Gimblett. Spatial dynamic emergent hierarc,hies sirnula.tiou

and assessment system. Ecological Modelling, 62: 107-121, 1992.

[12] B. Banaschewski and G. Bruns. The fundamental duality of partially ordered

sets. Order, 5:61-74, 1988.

[13] D. B. Barber and H. J. Hamilton. Attribute selection strategies for attribute-

oriented generalization. In Proc. of the Eleventh Biennia1 Conference of the

Canadian Society for C'omputational Studies of Intelligence, pages 429-44 1 ,

Toronto, Canada, 1996. Springer-Verlag.

[14] J. M. Baveco and R. Lingeman. An object-oriented tool for individual-oriented

simulation: Host-parasitoid system application. Ecological Modelling, 61:267-

286, 1992.

1151 G. Birkhoff. LaCtice Theory. Volume 25 of Colloquium Publications. Arncrica~i

Mathematical Society, Providence, RI, 3rd edition, 1979.

1161 R. J. Brachman. What IS-A is and isn't: An analysis of taxonomic links i r ~

semantic networks. IEEE Computer, 16:30-36, 1983.

[17] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-

based description languages. In Proceedings of American Association of A rliji-

cia1 Intelligence, pages 34-37, Austin, TX, 1984.

[18] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge

representation system. Cognitive Science, 9(2): 1 71-216, 1985.

[19] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing cxprcssivc:

description logics: A preliminary report. In Proc. First International Symposium

BIBLIOGRAPHY 223

on Knowledge Representation, Use and Storage for Eygiciency (KR USE '95),

Santa Cruz, CA, 1995.

[20] C. Brew. Systemic classification and its efficiency. Computational Linguistics,

1?(4):375-408, 1991.

2211 A. Bundy, L. Byrd, and C. Mellish. Special purpose, but domain independent,

inference mechanisms, In Proc. European Conference on Artificial Intelligence,

pages 67-74, Orsay, France, 1982.

[22] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. MacQueen,

and G. Plotkin, editors, Semantics of Data Types. Springer Verlag, Berlin, 1984.

(231 B. Carpenter. The Logic of Typed Feature Structures. Cambridge University

Press, London, England, 1992.

[24] Y. Caseau. Efficient handling of multiple inheritance hierarchies. A CM SIG-

PLAN Notices, 8(28):271, October 1993.

[25] H. Caswell. Community structure: A neutral model analysis. Ecological Mono-

graphs, 46:327-354, 1976.

[26] M. Chein and M. Mugnier. Specialization: Where do the difficulties occur? In

H. Pfeiffer and T. Nagle, editors, Conceptval Structures: Theory and Implemen-

tation. Proc. 7th Annual Workshop, Las Cruces, NM, 1992. Springer-Verlag.

f27] A. G. Cohn. Many sorted logic = unsorted logic + control? In M. Bramer,

editor, Research. an.d Development in Expert Systems 111, pages 184-194. Cam-

bridge University Press, New York, 1987.

1281 A. G. Cohn. Completing sort hierarchies. Computers and Mathematics with Ap-

plications, 23(2-9):477-491, 1992. Reprinted in Semantic Networks in Artificial

Intelligence, Fritz Lehmann, editor, Pergamon Press, Oxford, 1992.

[29] R. J. Cole and P. W. Eklund. Application of formal concept analysis to infor-

mation retrieval using a hierarchically structured thesaurus. In Proc. Fourth

BIBLIOGRAPHY 224

International Conference on Conceptual Structures (to appeiw), Sydney, Au8-

tralia, 1996. Springer-Verlag.

[30] A. Colmerauer. Prolog and infinite trees. In I<. L. Clark and S.-A. I'ar~ilu~ld,

editors, Logic Programming. Academic Press, 1982.

[31] A. Cournier and M. Habib. A new linear algorithm for modular decornposi tion.

In Proc. CAAAP79d, Lecture Notes in Computer Science, No. 787, pages 68 -8.1,

1994.

[32] V. Dahl. Translating spanish into logic through logic. American Journal of

Computational Linguistics, 13:149-164, 1981.

[33] V. Dahl. On database systems development through logic. ACM Trunsaclions

on Database ,!%/stems, 7(1), 1982.

[34] V. Dahl. Incomplete types for logic databases. Applied Math. Letters, 4(3):25--

28, 1991.

[35j V. Dahl and A. Fall. Logical encoding of conceptual graph type latt,ices. In
First International Conference on Conceptual Structures, pages 216-224, Quc-

bec, Canada, 1993. Also available as SFU CSS/IJCCR Technical Report 93-3.

[36] V. Dahl, A. Fall, S. Rochefort, and P. Tarau. A hypothetical reasoning frame-

work for natural language processing. In 8th IEEE International Con~erence orb

Tools with Artificial Intelligence (ICTAI'96), Toulouse, France, 1996.

[37] V. Dahl, G. Sidebottom, and J. Ueberla. Expert systems for automatic config-

uration. International Journal of Expert Systems, 6(4):561-579, 1993.

[38] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

'u'niversity Press, Cambridge, England, 1990.

[39] R. Dawkins. Hierarchical organisation: a candidate for ethology. In P. P, G.

Bateson and R. A. Xinde, editors, Growing Points in Ethology. Cambridge Uni-

versity Press, Cambridge, 1976.

BIBLIOGRAPHY 225

[40] J . Dunning, D. Stewart, B. Danielson, B. Noon, T. Root, R. Lamberson, and

E. Stevens. Spatially explicit population models: Current forms and future uses.

Ecological Applicationst 5(1):3-11, 1995.

[41] G. Ellis. Compiled hierarchical retrieval. In T. Nagle, J. Nagle, L. Gerholz, and

P. Eklund, editors, Conceptual Structures: Current Research and Practice. Ellis

Horwood, New York, 1992.

1421 G. Ellis. Efficient retrieval from hierarchies of objects using lattice operations.

In Conceptual Graphs for Knowledge Representation. Proc. First International

Conference on Conceptual Structures, Quebec, Canada, 1993. Springer-Verlag.

[43] G. Ellis. Managing Complex Objects. PhD thesis, The University of Queensland,

Queensland, Australia, 1995.

[44] G. Ellis and R. Levinson. The birth of peirce: A conceptual graph workbench.

In H. Pfeiffer and T. Nagle, editors, Conceptual Structures: Theory and Imple-

mentation. Proceedings of Seventh .4nnual Workshop, Las Cruces, New Mexico,

1992. Springer-Verlag.

[45] J. Eusterbrock. Efficient knowledge base reasoning with transitive dags. In Proc.

First International Symposium on Knowledge Representation, Use and Storage

for Eficiency (KRUSEJ95), Santa Cruz, CA, 1995.

[46] B. S. Everitt. Cluster Analysis. Halsted Press, New York, 1993.

[47] A. Fall. The foundations of taxonomic encoding. Technical Report 94-20, Sirno11

Fraser University CSS/LCCR, 1994.

[4S] A. Fall. An abstract framework for taxonomic encoding. In Proc. First Inter-

national Symposium on Knowledge Retrieval, Use and Storage for EfJiciency,

Santa Cruz, CA, 1995.

[49] A. h l l . Heterogeneous encoding. In Proc. First Internat ional Symposium on

hourledge Retrieval, Use and Storage for Eficiency, Santa Cruz, CA, 1995.

BIBLIOGRAPHY .I a '1 Cd 6

[50] A. Fall. Spanning tree representations of graphs and orders in conceptuill struc-

tures. In Proc. Third International Conference on Conctptud Sfrucftircs, yagm

232-246, Santa Crux, CA, 1995. Springer-Verlag.

[51] A. Fall. Sparse logical terms. Applied Mathenzatics Letters, S(5):ll- l f j2 1995.

[52] A. Fall. Sparse term encoding for dynamic taxonomies. Irl Fourth I n t r r n a / i o ~ ~ u l

Conference on Conceptual Structures, Sydney, Australia, 1996. Sprirtger-Verlag.

1531 A. Fall and V. Dahl. Integrating description identification and systemic classi-

fication. Technical Report 93-12, Simon Fraser University CSS/LCCW, 1993.

1541 A. Fall, V. Dahl, and P. Tarau. Resolving co-specification in contexts. I n /3r0(..

Workshop on Context in Natural Language Processing, Montreal, Canada, 1995.

[55] A. Fall and J. Fall. A hierarchical organization of neutral landscape n-~odcls. I n

Proc. International Association of Landscape Ecology Symposium, Galvest,or~,

Texas, 1996.

1561 J. Fall and A. Fall. SELES: A spatially explicit landscape event situ-

ulator. In Proc. GIS/Envzronmental Modeling C'onfemncc, Santa F'c,

New Mexico, 1996. National Center for Geographic Inforrni~tior~ a.nd

Analysis, Santa Barbara. Available on CD and the Intcrnc3t ak:

//www.ncgia.ucsb.edu/conf/santa~fe.html.

[57] L. J. Folse, J. M. Packard, and W. E. Grant. A1 modelling of animal rnovc?ments

in a heterogeneous habitat. Ecological Modelling, 46:57-72, 1989.

[58] R. T. T. Forman and M. Gordon. Landscape Ecology. John Wiley and Sons,

New York, 1986.

f591 J. S. Fralish. Predicting potential stand composition from site charact,cristic:s in

the Shawnee Eills forest of Illinois. The American Midland Naturalisl, 120:79-

101, 1988.

[GO] T. Callai. Transitiv orientierbare graphen. In Acta Math, Tom 18, pages 25-66.

Acad. Sci. Hung, 1967.

[GI] D. Ganguly, C. Mohan, and S. Ranka. A space-and-time-efficient coding al-

gorithm for lattice computations. IEEE Transactions on Knowledge and Data

Engineering, 6(5):819-829, Oct 1994.

[62] B. Ganter and R. Wille. Conceptual scaling. In F. Roberts, editor, Applications

of Cornbinatorics and Graph Theory to the Biological Sciences, volume 17, pages

139-167. Springer-Verlag, New York, 1989.

[63] D. Gardiner, B. Tjan, and J. Slagle. Extending conceptual structures: Repre-

sentation issues and reasoning operations. In T. Nagle, J. Nagle, L. Gerholz,

and P. Eklund, editors, Conceptual Structures: Current Research and Practice.

Ellis Horwosd, New York, 1992.

1641 R. H. Gardner. The generation and analysis of neutral models. In Spatial

Analysis Techniques Workshop. International Association of Landscape Ecology

Symposium, Galveston, Texas, 1996.

[65] R. H. Gardner. RULE: A program for the generation and analysis of landscape

patterns, Unpublished draft report, 1996.

[66] R. H. Gardner, B. T . Milne, M. G. Turner, and It. V. O'Neill. Neutral models for

the analysis of broad-scale landscape pattern. Landscape Ecology, l(1): 19-28,

1987.

[ti71 R.)I. Gardner and R. V. O'Neill. Pattern? process and predictability: the use of

neutral models for landscape analysis. In M. G. Turner and R. H. Gardner, ed-

itors, Quantitative Methods in Landscape Ecology, Ecological Studies 82, pages

289-307, New York, 1991. Springer-Verlag.

1681 R. H. Gardner, R. V. O'Neill, M. G. Turner, and V. H. Dale. Quantifying

scale-dependent effects of animal movement with simple percolation models.

Landscape Ecology7 33(3/4):217-227, 1989.

BfBLIO GRAPHY

1691 M. Carey and D. Johnson. Co?npu.te~s and Intractability: A Cr'widr to i h f 7't2c.org

of XP-Completeness. Mi. H . Freeman, San Fsa,ncisco, CA, 1979.

[70] G. Gazdar and C. Mellish. Natzlral Language Processing i?$ Prolog: A 11 I n f rociuc-

tion to Computational Lingvistics. Addison-Weslel Publishing Company, Menlo

Park, CA, 1989.

[71] G. Gazdar, G. Pullurn, R. Carpenter, E. Kleiri, T. I-lukari, arid I<. 1,cvinc.

Category structures. Computational Linguistics, 14(1), 1988.

[72] M. R. Genesereth and N. J . Nilsson. Logical Foundations of Altlficial 1~r le f l i -

gence. Morgan Kaufrnann Publishers, Palo Alto, CA, 1987.

1731 S. M. Glenn and S. L. Collins. Modelling the effects of competition on species

percolating through landscapes. In Proc. International Association of Landscape-

Ecology Symposium7 Galveston, Texas, 1996.

[74] M. C. Golurnbic. Algorithmic Graph Theory and Perfect C;ruph,s. Acadcrr: ic

Press Inc., San Diego, CA, 1980.

(751 W. E. Grant and N. R. French. Response of alpine tundra to a changing clirnat,c::

a hierarchical simulation model. Ecological illodelling, 49205 -227, 1990.

1761 M. Habib, M. Huchard, and J. Spinrad. A linear algorithni to deco~n~msc* i n -

heritance graphs. Algorithmica (to appear), 1995.

[17] M. Habib and L. Nourine. Bit-vector encoding for partially ordrrcci scts. In

Proceedings of ORDAL. Lecture Notes in Computer ,Science. Springer-Vwlag,

1994.

I781 M. Habib and L. Nouririe. Tree structure for distributive lattices and its ap-

plications. Technical Report R.R. LIRMM 94036, Universitd de Montpc4licr I I ,

Laboratoire d'hformatique, de Robotique et de Microelectronique tic: Moritpcl-

lier, 1994.

BIBLIOGRAPHY 229

[79] M. Habih and L. Nourjne. Embedding partially ordered sets into product of

chains. In Proc. First International Symposium on h'nowkedge Representation,

Use and Storage for Eficiency (KRtlSE'Y5), Santa Cruz, CA, 1995.

[80] M. A. K. Halliday and ,I. R. Martin, editors. Readings in Systemic Linguistics.

Batsford Academic and Educational Press, London, 1981.

[81] .7. Han and Y. Fu. Dynamic generation and refinement of concept hierarchies

for knowledge discovery in databases. In AAA1794 Workshop on Knowledge

Discovery in Databases fKDDJ94), pages 157-168, Seattle, WA, 1994.

[82] J . Han and Y. Fu. Discovery of multiple-level association rules from large

databases. In Proc. Int 7 Conf. on Very Large Data Bases (VLDB'95), pages

420-431, Ziirich, Switzerland, 1995.

1831 G . M. Henebry. A spatio-temporal neutral model for ecological dynamics. In

Proc. International Association of Landscape Ecology Symposium, Galveston,

Texas, 1996.

[84] J. Hobbs. Resolving pronoun references. In Readings in Natural Language

Processing, pages 339-352. Morgan Kaufmann Publishers, Inc., 1986.

[85] J. F. Horty, R. H. Thomason, and D. S. Touretzky. A skeptical theory of

inheritance in nonrnonotonic semantic networks. Artificial Intelligence, 42:3ll-

348, 1990.

[86] S. Le Huitouze. A new data structure for implementing extensions to Prolog. In

International Workshop on Programming Language Implementation and Logic

Programming (PLILPSO), LNCS 456, 1990.

[87] T. Imiclinski. Intelligent query answering in rule based systems. Logic Program-

ming Journal, 4(1), 1937.

[Sb] A. K. Jain and R. C . Dubes. Algorithms for Clustering Data. Prentice Hall,

Englewood Cliffs, N. J., 1938,

BIBLIOGRAPHY 230

[89] R. H. G . Jongman. C . J. F. ter Braak, and 0. F. R. van Tongeren. 1)ntn A ncttysis

in Community and Landscape Ecology. Cambridge 1Tniversit.y Press, C'ainl>ridsc.,

1995.

[go] D. Kelly. Comparability graphs. In I. Rival, editor, Graphs a n d Order.. 13. f lc4ctt4

Publishing Co., Dordrecht, 1985.

[91] S. Kodric, F. Popowich, and C. Vogel. The HPSCi-PL s y s t t . ~ ~ ~ . wrsio~r I .%.

Technical Report CSS-IS TR 92-05, SFU, 1992.

[92] H. Korth and A. Silberschatz, editors. Database System Concepts. McCraw- 11 i l l ,

New York, 1991.

f93] H. Krieger. Classification and representation of types in 1'111,. I n I'rot. I"it'~1

International Symposizcm on Knowledge Representation, U s e und Sfomgc for

Eficiency (KRtXSE795), Santa Cruz, CA, 1995.

1941 R. Levinson. Pattern associativity and the retrieval of sernnnt,ic rrrt works. (,'on,-

pzlters and Mathematics with AppIzcations, 23[2-9):573-600, 19'32. R t y > r i ~ ~ t d i l l

Semantic Networks in Artificial Intelligence, Fritz Lehmann, editor. fJcrgartmi

Press, Oxford, 1992.

[95] R. Levinson. Towards domain independent machine intelligence. In Chnrcpl r r d

Graphs for Knowledge Represen falion. Proc. First Intcrnutional Ici)r~jm(t m O I L

Conceptual Structures. Quebec, Canada, 1993. Springer-Vcrlag.

[96] P. Massicotte and V. Dahl. Handling concept-type hierarchies throtigh logic

programming, In Proceedings of the Third Annuctl Wor.k.s.hop on Conrcplud

Graphs, St. Paul, MK. 1988.

1971 F. Mattern. Virtual t' fie and global states of distributed systcrns. I n I'amllel

and Distributed Algorithms, pages 215-226. ElsevierJNorth- Holland, I fIX9-

[98] 1%. C. McCord. Design of a Prolog-based machine translatiorl systertr. I r t !'TO-

eeedings of the Third International Conft.rence on Logic Yroyrarnrr~iny. Sprir1gt.r

Verlag, 1986.

[W] K. McGarigal and B. Marks. Fragstat: A spatial pattern analysis program for

quantifying landscape structure, Gnpublished software, Oregon St ate Univer-

si ty, Department of Forest Sciences, Corvelis, Oregon, 1993.

[I001 J. E. Meisel and $1. G. Turner. Application of semivariogram analysis to sim-

ulated and real landscapes. In Proc. International Association of Landscape

Ecology Symposium, Galveston, Texas, 1996.

flOl] C . hletlish. Implemenxing systemic classification by unification. Computational

Linguistics, 14(1):40-51, 1988.

[I021 C. Meliish. Term-encodable description spaces. In Logic Programming 1990

Pre- Con jerence Proceedings, pages 1-1 5 . Association of Logic Programming,

UK Branch, 1990.

[I031 C. Mellish. The description identification problem. Artificial Intelligence,

52(2):151-167, 1991.

[I041 C. Mellish. Graph-encodable description spaces. Technical Report ESPRIT

Basic Research Action DYAWA Deliverable R3.2.B, University of Edinburgh,

Scotland, 1991.

11051 G . V. Merkurpa and Y . A. Merkuryev. Knowledge based simulation systems

- a review. Simulation, 62(2):74-89, 1994.

[f 061 R. Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Science, 17, 1978.

p07f G . Mineau. 8ormalizing conceptual graphs. In T. Nagle, J. Nagle, L. Gerholz,

and P. Eklund, editors, Gonceptssal Structures: Current Research and Practice.

Ellis Horwmd, Xew YO&, 1992.

f f W] T. M. MitcheK Zeneraiiaiion as search. Ariijiciai intelligence, 18:203-226,

1982.

BIBLIOGRAPHY 232

[log] R. H. Mohring. Algorithmic aspects of comparability graphs nnd iuterval graphs.

In I. Rival, editor: Graphs and Order. D. Reidel Publishing Co., Dordrecht, 1985.

[I101 R. Muetzelfeldt, D. Robertson, A. Bundy, and M. Uschold. The use of Psolog

for improving the rigour and accessibility of ecological modelling. Ecoloyical

Modelling, 46:9-34, 19139.

[lll] %I. Mugnier and M. Chein. Polynomial algorithms for projections and matching.

In H. Pfeiffer and T. Nzgie, editors, Con.ceptua1 Structures: Theory a7~d Imple-

mentation. Proceedings of Seventh Annual Workshop, Las Cruces, New Mexico,

1992. Springer-Verlag.

ill21 J. Muller and J. Spinrad. Incremental modular decomposition. Journal of 2lt c

ilCM, 19:257-356, 1939.

11131 B. Nebel and H. Burckert. Reasoning about temporal relations: A maximal

tractable subclass of Allen's interval algebra. In Twelfth National C'onferenc~

on Artifical Intelligence, Seattle, Washington, 1994.

[114] L. Nourine. Quelques Proprikte',~ Algorithmiques des Treillis. PbD tlmis,

Xcadkmie de Montpellier, UniversitC: de Montpellier, 1993.

[I151 R. V. 07Neill, D. L. DeAngelis, J. B. Waide, and 7'. F. H. Allen. A Hierarchicul

Concept of Ecosystems. Princeton University Press, Princeton, New Jersey,

1986.

El161 A. P. Pentland. Fractal-based description of natu; a1 scenes. It3E'E linnsactionv

on Pattern Analysis and Machine Intelligence, 6(6):661-674, 1984.

[117] L. Polidori, J. Chorowicz, and R. Guillande. Description of terrain as a fractal

surface, and application to digital elevation model quality assessment. Pho-

togrammetric Engineering and Remote Sensing, 57:1329-32, 1991.

[1181 C. Pollard and I. Sag. Information-Based Syntax and Semanties. CSLI J,ecture

Notes No. 13. Center for the Study of Language and Information, Stanford

University, Stanford, CA, 1987.

BIBLf OGRA PHY

El191 F. Popowich and C. Vogel. A logic based implementation of head-driven phrase

structure grammar. In Natural Language Understanding and Logic Programming

III, pages 227-245. Elsevier Science Publishers, Netherlands, 1991.

11201 A. Porto. A framework for deducing useful answers to queries. Technical Report

DI/UNL-16/88, Universidade Nova de Lisboa, Lisbon, Portugal, 1988.

(1211 J. C. Reynolds. Transformational systems and the algebraic structure of atomic

formulas. In Machine Inteltigence 5. Edinburgh University Press, Edinburgh,

UK, 1970.

[I221 K. H. Riitters, R. V . O'Neill, C. T. Hunsaker, J. D. Wickham, D. B. Yankee,

S. P. Timmins, K. B. Jones, and B. L. Jackson. A factor analysis of landscape

pattern and structure metrics. Landscape Ecology, 10(1):23-39, 1995.

[I231 L. Roberts, R. Levinson, and R. Hughey. Issues in parallel hardware for graph

retrieval. In First International Conference on Conceptual Structures, Theory

and Applications, Quebec, Canada, 1993.

[I241 D. Robertson, A. Bundy, R. Muetzelfeldt, M. Haggith, and M. Uschold. Eco-

logic: Logic-based Approaches to Ecological Modelling. MIT Press, Cambridge,

hilawachusetts, 1991.

[125] J. A. Robinson. Logic and logic programming. Communicrztions of the ACM,

35(3):40-65, March 1992.

11261 C. Rogers. Indices of landscape structure, School of Resource and Environmental

Management -699 project, Simon Fraser University, 1993.

[I271 H. C. Romesburg. Causter Analysis for Researchers. Krieger Publishing, Mal-

abar, Florida, 1984.

11281 B. Russell. Mathematical logic as based on the theory of types. In Logic and

Knowledge. George AlIen and Unwin Ltd., London, 1956.

BIBLIOGRAPHY 234

[I291 E. Rykiel. Artificial intelligence and expert systems in ecology atd nat urid

resource management. Ecological Modelling, 46:3-8, 1989.

[I301 H. Saarenmaa, N. D. Stone, L. J. Folse, J. M. Packad, Mr. E. Grant, M . E.

Makela, and R. N. Coulson. An artificial intelligence modelling approach to

simulating animal/habitat interactions. Ecological Modelling, 44: 125-1 4 1. 1988.

[131] S. M. Shieber. An Introduction to Unification-Based Approaches tr? Grurnntar

Center for the Study of Language and Information, Stanford TJniversi ty, Staw

ford, CA, 1986.

[I321 S. M. Shieber. Constraint-Based Grammar Formalisms: Parsing and Type 111-

ference for Natural and Computer Languages. M I T Press, Cambridge, Mass.,

1992.

[I331 C. Sidner. Focussing for interpretation of pronouns. American ,Journal JOT

Computational Linguistics, 7(4):217-231, 1981.

[134] N. K. Simpkins and P. Hancox. Chart parsing in Prolog. New Generation

Computing, 8(2): 113-138, 1990.

[I351 F. H. Sklar and R. Costanza. The development of dynamic spatial models for

landscape ecology: A review and prognosis. In M. G. Turner and I t , ti. Garcl-

ner, editors, Quantitative Methods in Landscape Ecology, Ecological Studics 82,

pages 239-288, New York, 1991. Springer-Verlag.

f136] J. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison- Wesley, 1984.

11371 D. Stauffer. An Introdzlction to Percolation Theory. Taylor and Francis, I_loadon,

1985.

[I381 L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge, Mass.,

1994-

[I391 G. Stumme. Knowledge acquisition by distributive concept exploration. In

Third International Conference on Conceptual Structures, pages 98-1 11, Santa

Cruz, CA, 1995.

[I401 P. Tarau. Binprolog 3.30 User Guide. Technical Report 95-1, Dkpartement

d71nformatique, Universite de Moncton, February 1995. Available by ftp from

element. info. umoncton.ca.

[I411 P. Tarau, V. Dahl, and A. Fall. Backtrackable state with linear assumptions,

continuations and hidden accumulator grammars. In Workshop on the Future

of Logic Programmirig, International Logic Programming Symposium (ILPS795),

Portland, Oregon, 1995.

[142] P. Tarau, V. Dahl, and A. Fall. Assumption grammars. In Submitted to In-

ternational Symposium, on Programming Language Implementation and Logic

Programming (PLILP'96), 1996.

[I431 D. S. Touretzky. The Mathematics of Inheritance Systems. Pitman/Morgan

Kaufmam, London, 1986.

[I441 W. Trotter. Combinatorics and Partiallp Ordered Sets. The Johns Hopkins

University Press, Baltimore, 1992.

[I451 M. G. Turner. Landscape ecology: the effect of pattern on process. Annual

Review of Ecological Sgstems, 20:171-197, 1989.

[146] M. G. Turner, R. Costanza, and F. H. Sklar. Methods to evaluate the perfor-

mance of spatial simulation models. Ecological Modeling, 48: 1-18, 1989.

[I471 bi. G. Turner and V. H. Dale. Modeling landscape disturbance. In M. G.

Turner and R. H. Gardner, editors, Quantitative Methods in Landscape Ecology,

Ecological Studies 82, pages 323-351, New York, 1991. Springer-Verlag.

fl.281 M. G. Turner, R. H. Gardner, V. H. Dale, and R. V. O'Neill. Predicting the

spread of disturbance across heterogeneous landscapes. OIKOS, 55:121-129,

1959.

BIBLIOGRAPHY 236

[I491 31. G. Turner, i?'. H. Romme, and R. H. Gardner. Tatdscape disturba1.rlc.e

models and the long-term dynamics of nat ural-areas. f i t uml :i reas Jotwnal,

14(1):3-11, 1994.

[I501 M. G. Turner, W. H. Romme, R. H. Gardner, R. V. OINeill, and T. li. Kratz.

'4 revised concept of landscape equilibrium: Disturbance m d stability on scaScd

landscapes. Landscape Ecology, 8(3):213-227, 1993.

[I513 C. Vogel, F. Popowich, and N. Cercone. Logic based inheritance reasoning. 111

Prospects for Artificial Intelligence. IOS Press, Burke, VA, 1993.

[I521 D. S. Warren. Memoing for logic programs. Co~mmunications of the ACM,

35(3):93-111, March 1992.

[I531 R. Wille. Restructuring lattice theory. In Ordered Sets. NATO AS1 Series (233,

Reidel, Dordecht, Holland, 1982.

[I541 R. Wille. Lattices in data analysis: How to draw them with a computer, In

Algorithms and Order. Reidel, Boston, 1989.

11551 R. Wille. Concept lattices and conceptual knowledge systems. Computers anti

Mathematics with Appiications, 23(2-9):493-5 15, 1992. Reprinted in Sernan-

tic Networks in Artificial Intelligence, Fritz Lehmann, editor, Pergarnon Press,

Oxford, 1992.

[156] P. H. Winston. Learning structural descriptions from examples. In The Psy-

chology of Computer Vision. McGraw-Hill, New York, NY, 1975.

[I571 K. With and A. W. King. Toward the development of a generalized, spatially ex-

plicit theory of species' responses to landscape structure. In Proc. Interncltional

Association of Landscape Ecology Symposiz~m, Gaiveston, Texas, 1996.

[I581 ;V. A. Woods. What's in a link: Foundations for semantic networks. ir!

Representation and Understanding. Academic Press, Orlando, Florida, 1975.

Reprinted in Readings in Knowledge Representation, R. J. Brachn~arl arid)I. ,I.
Levesque (Eds.), Morgan Kaufmann, Los Altos, CA, 1985.

BIBLIOGRAPHY 237

[l.59] W. A. Woods and J. G. Schmolze. The KL-ONE family. Computers and Math-

ematics with Applications, 23(2-5):133-177, 1992. Reprinted in Semantic Net-

works in Artificial Intelligence, Fritz Lehmann, editor, Pergamon Press, Oxford,

1992.

11601 G. Yang, Y. Choi, and J. Oh. CGMA: A novel conceptual graph matching algo-

rithm. In H. Pfeiffer and T. Nagle, editors, Conceptual Structures: Theory and

Implementation. Proceedings of Seventh Annual firlcshop, Las Cruces, New

Mexico, 1992. Springer-Verlag.

[1S?] R. Young, G. Plotkin, and R. Linz. Analysis of an extended concept-learning

task. In Proceedings of the International Joint Conference on Artificial Intelli-

gence, Cambridge, MA, 1977.

