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ABSTRACT 

Traditionally, interactive computer programs consist of a set of functions to be applied to an 

underlying "work object". The user interfaces of these programs thus consist of 

mechanisms for accessing functions and some kind of visual representation of the 

underlying work object. Indeed, many user interfaces function like "menu applications". 

Unfortunately, traditional menu applications quickly become limited and difficult to use as 

the number of functions and complexity of the work object increases. 

To facilitate interaction and preserve the user's orientation, this thesis proposes a new 

menu mechanism, called hypermenu, designed for hierarchical work objects. It uses a 

hierarchy and a context management scheme. Each component in the hierarchy is a 

combined representation of function access mechanism and a corresponding component in 

the work object representation. The context management scheme uses visualization 

techniques to organize the on-screen layout and appearance of all the components in the 

hierarchy. Ideally, our hypermenu approach turns an application into its own menu, and 

lets the user see details in context and access application functions via direct manipulation. 

We have implemented two hypermenu applications for evaluation, one for a computer- 

aided-design tool based on Group Technology, the other for the user interface of a 

telecommunication network testing system. 
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CHAPTER 1 

INTRODUCTION 

Traditionally, interactive computer programs consist of a set of functions to be applied to an 

underlying "work object". User interfaces of these programs thus consist of mechanisms 

for accessing functions and some kind of visual representation of the underlying work 

object. For example, modern word processors provide menus for the user to apply 

application functions to their document representations. A portion of these programs 

contains hierarchically organized work objects or hierarchical systems. 

As technology advances, hierarchical systems, from automated teller machines to 

complex computer aided design packages, have become a part of our lives. Consider for 

example a microprocessor consisting of cache, arithmetic logic unit, and a floating point 

unit. The arithmetic logic unit is made up of flip flops; flip flops in turn are made up of 

logic gates, and each logic gate is also made up of transistors, resistors, and capacitors. 

Hierarchical organization facilitates management of complex systems and is widely used 

nowadays. Equally significant, the user interface of hierarchical systems directly affects 

the efficiency of user interactions. 



Figure 1 . I  illustrates the user interface of a modem hierarchical system taken from a 

telecommunication network testing system. The user interface comprises over twenty 

dialog boxes, where each dialog box represents a functional part of the system. In this 

example, the user interface is essentially a menu mechanism providing access to different 

parts of the underlying system. Indeed, user interfaces of many hierarchical systems 

function like "menu applications". 

Though the complexity level of hierarchical systems has increased rapidly, screen space 

has not. As a result, it is important to develop user interfaces meeting the following 

criteria: 

1 .  provides a comprehensive representation of the work object and preserves the 

user's orientation. 

2 .  facilitates interactions and navigation within the application. 

In this thesis, we focus on developing a new menu mechanism that can be used effectively 

in hierarch ,ical systems. 

Figure 1 .l: Typical user interface for hierarchical systems. 



Problem Statement: Often, the primary job of a hierarchical system is to allow 

management, configuration and visualization of a work object. Traditional user interfaces 

require users to remember each configuration step and the purpose of every window as 

well as its position. Such a mental load violates the well-known human memory capacity 

limitation of no more than seven plus or minus two "chunks" [Miller 561 and therefore 

handicaps navigation. For example, random placement of windows indicates no intuitive 

relationship among the component objects they represent and becomes disorienting to the 

users. Overlapping windows and dialog boxes induce significant user interface overhead 

and hinder user interaction. Furthermore, it is difficult for the user to form a full picture of 

the work object by mentally integrating dialog boxes and windows. 

On the other hand, a menu system can at best present a subset of information in detail to 

the user at any given time. Very often, individual menu items are organized into a one- 

dimensional hierarchical menu system [Callahan 881, i.e. single linear list, because of 

insufficient screen space. Organized menu hierarchies have been proven to improve user 

performance [Miller 8 1 ] [Barnard 771. Figure 1.2 shows a menu mechanism widely used 

Figure 1.2: Traditional menu systems such as nested pull-down menus are popular 



by today's applications and operating systems. Unfortunately, as the number of menu 

items grows, it will be much more difficult for the user to locate and access individual 

menu items even with hierarchical menu systems. Instead of aiding the user, complex 

menu systems may prevent the user from accessing functions quickly and accurately [Kiger 

841. Most traditional menu systems suffer from the following weaknesses: 

1 . It is separate from the work object. This requires the user to track the menu system 

separately and thus increases the cognitive load of the user. One must access 

functions through a separate menu mechanism that links the functions and the work 

object representations. 

2. Very often, selecting a menu item brings up a separate dialog box that provides the 

user with no immediate hints on its relationship with the menu item or the 

application. 

3 .  The menu system gives the user no overview of its organization. Providing the 

global context of the menu system is important when there is a large number of 

menu items. 

4. A separate menu system consumes screen space, processor cycles to display, and is 

very likely to obscure the work object and thus become disruptive [Kurtenbach 931. 

5.  It is impossible for the user to simultaneously look at and compare two menu items 

from different substructures of the menu hierarchy. 

6. Traditional menu systems are limited to represent only functions, not other objects 

in the system. 

In modern systems, menu mechanisms have become even more vital to the speed and 

effectiveness with which users navigate and access system functions. Many menu 

mechanism variations have been developed to facilitate function access. Improving menu 
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mechanisms continues to be a focus for many researchers, and new strategies continue to 

be investigated [Landauer 871 [Hopkins 911. 

Based on previous research in the IGI project [Schaffer 93, Dill 94, Bartram 951, this 

thesis develops a new menu mechanism, called a hypermenu, which utilizes the 

continuous zoom [Dill 941, to facilitate accessing functions and work objects in large 

hierarchical systems. 

Our hypermenu approach integrates the menu mechanism with the work object 

representation, and uses visualization techniques to let the user see details in context. In 

addition, the hypermenu approach allows navigation and function access via direct 

manipulation. This new mechanism has been developed for general hierarchical systems 

and may be applied to a range of application domains. 

Thesis Organization: This thesis is organized as follows: Chapter 2 reviews current 

technologies on menu systems and hierarchical information visualizations. Chapter 3 

describes general hypermenu concepts. Chapter 4 describes two illustrative applications to 

which our hypermenu approach was applied: a Group Technology design aid, and a 

telecommunication network test system. Chapter 5 analyzes our hypermenu approach and 

describes its strengths and weaknesses, and Chapter 6 summarizes our hypermenu 

approach and discuss further research directions. 



CHAPTER 2 

LITERATURE REVIEW 

The main reason for the success of menus is allowing users to work with recognition 

memory, where visual images (text or iconic menu items) are associated with already- 

familiar words and meanings [Foley 901. Generally speaking, approaches to menus can be 

categorized into four classes: ( I )  explicit menu; (2) on-demand menu; (3) see-through 

menu; and (4) embedded menu mechanisms (see Figure 2.1). This taxonomy emphasizes 

the embedded menu mechanism category, which is closely related to our new mechanism. 

This chapter first describes and reviews these menu systems. Then, we review some 

recent research on hierarchical visualization and navigation to provide the necessary 

background for our approach. Lastly, we briefly introduce our new mechanism which 

solves some problems in previous methods and may be applied to a variety of applications. 
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2.1 Explicit Menu Systems 

The inherent limitations of human memory combined with the current information 

explosion increasingly force users to rely on their abilities to navigate to an item rather than 

memorizing its exact location [Barnard 771. For this reason, menu systems have been 

developed to facilitate locating individual items among a very large set of functions. 

Today, most menu systems display available functions as input choices and are separate 

and distinct from the work object representation. Explicit menu systems [Koved 861 

occupy fixed locations and use fixed amount of screen space on the display. They have the 

advantage of being visible to the user at all times. Explicit menu systems usually supply an 



explicitly enumerated list of items from which the user selects. In the following 

subsections, we describe two variations: partial screen approach, and full screen approach. 

2.1 . 1  Partial Screen Approach 

This approach is widely used today, with variations including toolbars, palettes in graphics 

applications, and tear-off menus. They usually accommodate frequently accessed 

functions. Many explicit menus are only one level deep and may accommodate a limited 

number of items to reduce effort spent on tracking. To accommodate a large number of 

menu items, menu designers have employed hierarchical schemes. Autocad [Autodesk 891 

is such an example. Nevertheless, modem menu design attempts to reduce the number of 

levels in the hierarchy to facilitate tracking and navigation. 

Figure 2.2 shows a screen shot of Autocad. Residing on one side of the screen, the 
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Figure 2.2: An Autocad application. The work object is displayed on the top-left display 
area, and the menu system is located on the top-right display area [Autodesk 911. 



menu can accommodate only a few items at a time. With this approach, the work object 

and the menu system each have their own non-overlapping display areas. A menu item is 

represented by a text string in the menu area. Because of the limited menu display area, 

menu items belonging to the same level in the menu hierarchy are organized into groups. 

The user accesses functions by traversing the menu hierarchy. Selecting the top-most 

menu item brings the user back to the top level of the menu hierarchy. Selecting other 

menu items either executes the corresponding function or displays menu items one level 

down in the hierarchy. Finally, the user may switch between menu groups in the same 

level. 

The major advantage of the partial screen approach is allowing relatively quick access to 

menu items. In addition, the hierarchical version allows a virtually unlimited number of 

menu items. Also, the user always has a working set of functions on screen. However, 

the main disadvantage of this approach is the permanent consumption of screen space. For 

the hierarchical approach found in Autocad, there are two more disadvantages. First, it can 

be disorienting to the user because there is no indication of current path. Second, it can be 

distractive and confusing to the user because of the additional memory load required to 

track and navigate a menu system with many hierarchical levels. Users tend to lose track of 

the target they seek. As one moves through deeper levels of a hierarchy, the ability and 

time taken to make a correct selection depends on remembering the previous selection 

[Snowberry 831. 

Short-term memory capacity for young adults averages seven plus or minus two digits 

[Miller 561. If each choice in a hierarchy requires a unit of short-term memory, six levels 

of hierarchy is pushing a user's short-term memory capacity to the limits [Snowberry 831. 

Our new menu mechanism, in contrast, takes context into consideration to reduce the user's 

tracking effort and attempts to increase the number of levels in the hierarchy without 

inducing disorientation. 



2.1.2 Full Screen Approach 

With this approach, the menu system takes up the entire screen. An example is the Menu- 

Assisted Resource Control System (MARC) designed to help both new and experienced 

users access any of the features provided by an operating system [Tullis 851. In designing 

MARC, researchers attempted to answer two questions: ( I )  how to determine the user's 

view of the relationships among the large number of functions in an operating system; and 

(2) how to reflect those relationships in a menu hierarchy. 

MARC is a very large text-based hierarchical menu system in which available system 

commands are sorted into logically related groups, and then inserted into the menu 

hierarchy. The main menu of MARC is shown in Figure 2.3. MARC is a two-level deep 

multi-column menu system. All functions available from the operating system can be 

HOME - OPERATOR SELECTIONS MARC 
Action: [ 1 

Home PArent GO PRevious Quit Press SPCFY for Help 

JQ Job Queues 

PK 
PS Print System DK 

DT 
CON System Config MT 
SM System Mngmt 
DUMP Dumps LP 
DlAG Diagnostics IP 

USER 

Disk Pack PRIV 
Fixed Disk 
Diskette DISK 
Magnetic Tape TAPE 

ACC 
Line Printer LIB 

Image Printer 

DJ Display Jobs CR Card Reader HLI H/L & lntrinsics 
CJ Control Jobs CP Card Punch SP Special Prog's 

Usercodes 
Privilege 

Disk File Mngmt 
Tape File Mngmt 
Access Structure 

Lib's, Subsystem 

LOG Logging DC Datacomm Control 
SWAP Swapper MM Memory Modules NET BNA Control 
MCP MCP Control PROC Processors COMS COMS Information 
DATE Date and Time SC System Console SESS Session Control 

OTHER Other Devices SEND Send Message 

Choice: { I 
-- 

Figure 2.3: The main menu for MARC [Tullis 851. 



accomplished by viewing only two menus. To navigate within MARC, the user types the 

index of a selectable item. Then, a new screen of menus replaces the previous menu. 

Other full screen applications such as m, a UNIX news reading program, require the 

user to switch back and forth between the work object and a full screen menu system. 

A full screen menu system has three main advantages over command-line driven 

interface. First, it improves user performance by allowing the user to type an index rather 

than the entire command. Second, it helps the user to make fewer mistakes by providing 

available options on screen. Third, it reduces users' memory load by constantly reminding 

the user what is available to him or her. However, it also shares some disadvantages with 

the partial screen approach. First, it can be disorienting to the user because there is no 

indication of current path. Second, a deep menu system is difficult to navigate because of 

limitations on human memory [Snowberry 831. Third, the full screen approach becomes 

very disruptive by forcing the user to switch back and forth between the work object and 

menu System. 

2.2 On-Demand Menu Systems 

Unfortunately, explicit menu systems require their own display area and must contend with 

the work object for screen space. To minimize screen space usage, on-demand menu 

systems such as pull-down menus from Apple Macintosh, based primarily on pioneering 

work at Xerox in the mid 1970's [Foley 901, have been developed, and much research 

effort has been spent on menu organization, format and physical layout [Perlman 841 

[Callahan 881 [Landauer 851 [Snowberry 831 [McDonald 831 [Barnard 771. In the 

following subsections, we wil1,describe two different menu layouts: (1) rectilinear layout, 

which is widely used, and (2) circular layout, which is still being investigated. 



In general, on-demand menu systems appear temporarily when activated by the user. 

They have been designed to occupy a minimum amount of screen space when not activated. 

On-demand rectilinear menus have many advantages: (a) they conserve screen space, 

(b) they reduce user memory load, (c) they are strictly organized; thus predictable to 

users, and (d) they may easily be applied to most applications. However, they also have 

drawbacks. First, on-demand menus obscure the application object and may become 

disruptive [Kurtenbach 931. Second, it takes processor time to display the menu and hence 

reduces performance [~urtenbach 931. Third, the effectiveness of the menu format 

depends highly on the intended user [Barnard 771. Finally, seek time increases 

proportionally to the distance of the target from the initial cursor location [Callahan 881 and 

list length also has a linear effect on the time a user takes to find an item [Perlman 851. 

Seek time is the time it takes to reach the target after initiating a search for it. 

In presenting a list of choices to the user, most computer systems use a rectilinear 

format because of available hardware and software limitations. With a rectilinear format, 

menu items are listed horizontally or vertically, sometimes with a keyboard equivalent for 

each item. Hierarchical schemes have also been employed, but most menu systems are 

essentially one dimensional, i.e. simple linear lists of items. The essential idea of 

hierarchical scheme is allowing the user to bring up a sub menu list from an existing menu 

item. The look-aside or cascade menu, (Figure 1.2), is an example of such a scheme. 

Most on-demand menu systems are activated from mouse actions in two formats: pull- 

down or pop-up. As mentioned before, the menu system itself appears to be separated 

from the work object representation and activated by users. To navigate within the menu 

system, the user only needs to activate the menu system and select the desired item. In case 

of a hierarchical or cascading menu system, the user may recursively select menu items that 

eventually lead to the desired item. 



A variant of the rectilinear approach is the so called "pie menu" (Figure 2.4) whose goal 

is to allow quicker menu selection and to minimize mistakes made during menu selection 

[Hopkins 911. Items in the pie menu are placed at equal radial distances around the 

circumference of a circle. Users typically accesses pie menus via the traditional pop-up 

method. However, the starting cursor position is at the center of the pie menu instead of 

being at the menu title or the first item in the traditional pull-down menus. Since items are 

placed at equal radial distances from the center of the menu, the user only needs to move 

the cursor by the same amount in different directions to select. Pie menus support 

hierarchical schemes with menu item selection bringing up another pie menu centered at that 

menu item. Thus, the user navigates the menu system by recursively selecting and 

activating desired items. 

Pie menus offer advantages such as decreased selection distance and increased target 

size; therefore, it keeps the seek time fairly constant. However, pie menus also have some 

disadvantages in addition to those shared by rectilinear menus. Pie menus consume more 

screen space and become polynomially larger than rectilinear menus with increased item 

size and number of items [Callahan 881. 

Tie Insert I 
Figure 2.4: An example of pie menus [Callahan 881. 



See-Through Menu System 

A more recent innovation uses semi-transparent, often icon-like, menus that appear as 

though on a transparent sheet of glass, between an application and a traditional cursor [Bier 

931. This method can provide context-dependent feedback and the ability to view details 

and context simultaneously. Bier's Toolglass and Magic Lenses [Bier 931 is an example of 

a See-Through interface. It is intended to be used with graphics-oriented applications such 

as image editing. Their approach makes use of semi-transparent interactive tools, called 

Toolglass widgets, that sit between the application and a cursor. These widgets can 

provide a customized view of the underlying application object using viewing filters called 

Magic Lenses. Each lens is a screen region with an embedded function or command such 

as "magnify" and "apply color". The user positions a Toolglass sheet over desired objects 

and then points and clicks through the widgets and lenses. These tools create spatial modes 

that can replace temporal modes in user interface systems [Bier 931. 

Figure 2.5 shows a set of simple widgets called click-through buttons, which can be 

used to change the color of objects below them. The user first positions the button on top 

of the object to be colored and then clicks "through" the button. 

r 

Figure 2.5: A Toolglass sheet of widgets. Clockwise from upper left: color palette, shape 
palette, clipboard, grid, delete button, and buttons that navigate to additional widgets [Bier 
931. 



There are three approaches to support navigation within the See-Through menu system. 

The first approach is to put all widgets on a single sheet that can be navigated by scrolling. 

The second approach is to employ a hierarchical scheme that allows a master toolglass sheet 

to generate other sheets. The third approach is to allow a single toolglass sheet to display 

different sets of widgets at different times. For example, the user can click on a special 

widget to navigate to another set of widgets. 

See-Through interface brings four major advantages. First, it consumes little screen 

space because it can be dragged off the screen any time. Second, using a spatial mode to 

access functions or commands avoids confusion brought by temporal modes. Third, 

providing instant feedback on button functions further minimizes memorization of 

commands. Finally, all alternative representations of the underlying application are limited 

within lenses when viewed through them; thus, the See-Through interface preserves the 

work context with minimal disruption. 

Unfortunately, See-Through Menu and the work object representation are still separate 

entities in the user's mind and requires extra effort on tracking and manipulation. 

2.4 Embedded Menu Systems 

In early 19801s, Koved coined the term "embedded menus" and applied it to text-based 

applications in [Koved 861. Other researchers later extended the concept and applied to 

other application domains. Despite the differences in these embedded menu systems, they 

share some common goals. First, designers of embedded menu systems attempt to embed 

the menu system into the application or document object. Doing so reduces the need for a 

separate menu system. Without a separate menu system, distraction can be reduced. 

Second, designers of embedded menu systems attempt to use the application or document 

object itself to provide global context for the menu system. Doing so reduces the chance of 



disorienting the user during navigation. Third, embedded menu systems allow users to 

access application functions via direct manipulation. In the following subsections, we 

describe two different embedded menu applications: Embedded Menus, designed for text 

editors and database retrieval systems, and Documents as User Interfaces, designed for text 

and graphics editors. 

2.4.1 Embedded Menus 

[Koved 861 describes Embedded Menus, targeted at text-based applications such as text 

editors, database and on-line manual systems. Embedded Menus allow menu items to be 

embedded within the information displayed on the screen. This information thus provides 

context for the menu items. In embedded menu, highlighted or underlined words or 

phrases within the text become the menu items and are selectable using any pointing device. 

Figure 2.6(a) shows a screen shot of a spell checker used as one of the examples in 

[Koved 861. Instead of extracting and displaying the list of incorrect spellings in an explicit 

menu, the spell checker underlines them directly in the document. With a pointing device, 

the user can select them individually which brings up a closely positioned explicit menu 

suggesting correct spellings. The user can then select the correct spelling from the explicit 

menu. 

Embedded Menus have been applied to history databases (Figure 2.6(b)) and on-line 

manual systems [Koved 861. Selecting a menu item retrieves the corresponding article. 

Today's hypertext links [Nielsen 901, where menu items were embedded in the on-line 

documents but distinguished in appearance by being bolded or italicized, closely resemble 

Embedded Menus. 



Two experiments were conducted to evalate 
two stvles of on-line documents. One exper- k 
iment compared two methods of 
on-line information that allowd 
to specify the direction of the 
search. The first manual 
the reader's decisions 
The second manual did not record the deci- 
sions, and had to ask the reader for the 
same information several tims in order to 
complete the task. The manual that recorded 

1 the &formation allowed people to work over 
twice as fast and was pr6ferr;?d over the other 
manual. 
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The victorious Allies disapproved of such 
a union and specifically forbade it in 
both the Treaty of Versailles and the 
Treaty of S t .  German-en-Laye . Austrian 
nationalism remained weak throughout 
the interwar period (1918-1939). During 
these years, Austria like Germany, gave 
rise to a number of right-wing and 
fascist political movements. Indeed, 
Adolph Hitler's own Nazi party had 
a sizable Austrian branch. In 1934, 

Engelbert Dollfiss , a member of the 
Christian Social Party, destroyed the 
First Republic's fragile parliamentary 
democracy and established a right-wing 
dictatorship. 
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Figure 2.6: Examples of Embedded Menus. (a) Misspelled words are highlighted in the 
Embedded Menus. (b) Example from Interactive Encyclopedia System. Bold italic words 
are buttons of Embedded Menus [Koved 861. 



There are three advantages to the Embedded Menus method. First, it allows the user to 

navigate and access application functions via direct manipulation. Second, it provides 

context for each menu item with the surrounding document. Third, it conserves screen 

space by using a combination of pop-up menus and highlighted items. However, when 

applied to on-line document systems as shown in Figure 2.6(b), Embedded Menus provide 

no clue on orientation. For example, there is no indication of user location in the system, 

how one arrived at the current page, nor relationships between previous pages and the 

current page. As a result, it becomes disorienting to the users. 

2.4.2 Documents As Menus 

In [Bier 901, the authors describe a framework that embeds menu systems into the work 

object (mainly documents) representation. Each document in turn provides a context for its 

embedded menu items. Later, [Bier 9 11 described their approach, called EmbeddedButtons 

in more detail. When designing EmbeddedButtons, the authors extended the embedded 

menus concept to support both text and graphics editors. In addition, the authors attempted 

to provide user interface layout tools along with active documents. An active document 

contains both information and embedded buttons which the user selects to execute the 

corresponding functions. 

EmbeddedButtons is an architecture that allows arbitrary document objects to become 

buttons. Documents can be linked to an application to serve as control panels or menu 

palettes. Furthermore, EmbeddedButtons also support pop-up menus, multi-state buttons 

and radio buttons. 

When applied to graphic applications, EmbeddedButtons allows the user to build a 

sheet of embedded buttons with a graphics editor and use the sheet as a menu palette. 

Figure 2.7 shows a palette of embedded buttons for a graphics editor. A text or graphics 
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Figure 2.7: EmbeddedButtons example: A menu palette that is itself a picture and is 
created with the same graphics editor [Bier 911. 

editor is said to be in active mode when all mouse motion and mouse button events are 

delivered to EmbeddedButtons; otherwise, all such events are treated as normal editor 

operations. When a button is in active mode, it is enclosed by a rectangular box. 

EmbeddedButtons has three major advantages. First, it reduces the chance of 

disorientation by providing context for menu items using the application or document 

object. Second, it allows direct manipulation on the underlying application through 

interacting with the embedded menus and buttons. Third, embedding buttons and menus 

may be used to conserve screen space. However, when applied to graphics editors, a 

palette of embedded buttons is still separate from the work object representation and 

inherits the disadvantages of explicit menu systems. 

2.5 Hierarchical Information Visualization 

Since we can consider a hierarchical menu system itself to be an information system, it is 

relevant to review some recent research on visualizing hierarchical information systems. 



[Card 911 described some observations on human information processing. Humans 

attempt to simplify voluminous information through aggregation, abstraction and selective 

omission, which facilitates pattern recognition. For this reason, human beings have used 

hierarchical schemes in structuring complex systems to facilitate information absorption. 

[Furnas 861 described a fisheye technique to display hierarchical structures. It was 

designed to provide a balance of local detail and global context. This technique can show 

an area of interest, called the focus, in great detail while still showing remote regions in 

successively less detail. Early prototypes were designed to be used on text-based 

applications. The major drawback to this method is the fact that components are either 

present or absent. It is impossible to vary size and level of detail. 

In 1993, [Schaffer 931 described the Variable Zoom which evolved from Furnas' 

fisheye technique. The Variable Zoom was designed to display large hierarchical 

structures. Zooming is the fundamental interaction technique. The Variable Zoom 

supports multiple foci and preserves the global context at any given time. However, 

zooming induces size changes in a single step, and destroys visual continuity. 

Shortly after, [Dill 941 described the Continuous Zoom which is an extension to the 

Variable Zoom. The Continuous Zoom offers fine control over the size of an object during 

zooming, and preserves visual continuity. Unfortunately, the user also has to track the 

object size constantly during zooming. Consequently, zooming requires a certain amount 

of cognitive effort from the user. 

Later, Graphical Fisheye Views [Sarkar 941 is another extension of Furnas' work to 

visualize graph structures. The size and position of an object varies based on its distance 

from the focus. It is an improvement on Furnas' original fisheye technique, but does not 

support hierarchical abstraction. 



More recently, [Lamping 951 described a new focus+context (fisheye) scheme for 

visualizing and manipulating large hierarchies by laying out an hierarchy uniformly on a 

hyperbolic surface and then mapping it onto a circular display region. The center of the 

circular region becomes the focus. Because in a hyperbolic surface, parallel lines diverge 

from one another, there is exponentially more space with increasing circumference of the 

circular display region. With this scheme, hierarchies that tend to expand exponentially 

with depth can be laid out easily on the display. Unfortunately, this method also suffers 

from two drawbacks. First, it supports only one focus. Second, a circular display format 

also makes it difficult to use screen space efficiently. 

In 199 1 ,  Perspective Wall [Mackinlay 911 was developed at Xerox PARC corporation 

to visualize linear information. It divides a 2D layout into three sections and then folds the 

two side sections away from the viewer, leaving the center section for detail and the rest for 

context. The user may move any item to the central section for a detailed view. However, 

the Perspective Wall supports only one focus at a time, which becomes a limitation during 

investigation of multiple areas of interest. The shape of Perspective Wall also makes it 

difficult to use screen space efficiently. Finally, it is difficult to display hierarchical 

structures with Perspective Wall. 

At the same place and approximately the same time, the Cone Tree [Robertson 911 was 

also developed to display hierarchical information in three dimensions with coloring and 

perspective distortion (Figure 2.8). The hierarchy can be placed like an inverted tree. Each 

component in the hierarchy is rendered transparent so that it does not obscure other 

components. However, Cone Trees are not as effective in displaying balanced hierarchical 

structures as unbalanced hierarchical structures. Moreover, rendering complex three- 

dimensional structures in real time may be time-consuming. 



Figure 2.8: Cone Tree [Robertson 9 11. 

To display hierarchical file structures, [Johnson 911 developed a new method called a 

tree-map. This method works by representing each node in the hierarchical file structure as 

a rectangle. Nodes representing directories are divided into 'sub rectangles', one for each 

directory member. At successive levels in the hierarchy, the direction of the subdivision 

alternates between horizontal and vertical. The lack of support for emphasizing areas of 

. interest becomes the major drawback of this approach. 

Similarly, Pad++ [Bederson 941 was designed to facilitate visualization and navigation 

within large hierarchical information spaces. Zooming is a fundamental interaction 

technique for Pad++. In addition to size difference, Pad++ also employs semantic 

zooming and animation. Semantic zooming means displaying a different abstract 

representation of the same object at different sizes. Instead of simply displaying a scaled 

down version of an object, a simplified abstraction is displayed. In addition, animation is 

used to preserve visual continuity during zooming. To create a work context, Pad++ rates 

information in a way to make the most highly rated information the largest and most 

obvious, while placing less important information nearby and smaller. The viewer double 

clicks on an object of interest to see further details. Viewers can recursively zoom in and 

zoom out on any Pad++ work objects. However, the global context may not be entirely 

available to the viewer at all times. 



Hypermenu: A New Mechanism 

The approaches described in previous sections have met with varying degrees of success, 

but suffer drawbacks as noted. We seek a new menu mechanism to facilitate navigation 

and function access within hierarchical systems. 

This thesis develops a new menu mechanism, which we called the hypermenu 

method, to optimize interactions between user and application. It addresses some of the 

problems with existing methods by providing support in the following areas: 

hierarchical abstraction and management of the work object; 

tightly integrates menu mechanism with work object and accurately reflects logical 

relationships of all components; 

direct manipulation of system components rather than using a separate menu 

mechanism; 

preserves global context and user orientation at all times; 

displays size-dependent representation; 

multiple foci visualization for the multiple areas of interest. 

In the next chapter, we describe our hypermenu method in more detail. We then 

evaluate the achievements and weaknesses of the hypermenu method. 



CHAPTER 3 

THE HYPERMENU CONCEPT 

In this chapter, we first discuss the concepts underlying our hypermenu interface method. 

Following this we describe navigation and function access issues, and hypermenu 

construction. 

3.1 Hypermenu Concepts 

3.1.1 Hierarchical Organization 

Hierarchical organization is a common practice in managing complex systems. For 

example, books and manuals are organized hierarchically using titles, chapters and sections 

as shown in Figure 3.1. In the figure, entities belonging to the same abstract level are 

indented by the same amount. Hierarchical abstractions allow omission of lower level 

details that are not of interest, and greatly simplify the representation of the entire object. 
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Figure 3.1 : Hierarchical organization and representation for an on-line reference manual, 
showing three different levels of abstractions. (a) Highest abstract level: Book title. (b) 
Chapter level. (c) Section level. 
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Figure 3.2: Tree structure for an on-line reference manual. 



Often, we use tree structures to express hierarchical relationships. Figure 3.2 is the tree 

structure of the on-line manual shown in Figure 3.1. The ability to organize a system into a 

hierarchical structure is essential to constructing a hypermenu. 

3.1.2 Definitions And Traditional Menu Systems 

Generally, an application program consists of some work object representations and a set 

of functions. The work object representation is an on-screen representation of an 

underlying work object; e.g., a text document in a text editor. Availability of the 

application functions is governed by a set of rules in the application program, called work 

object constraints. For example, a work object constraint in a word processor suppresses 

"spell checking" from the application menu when a graphics object is selected. Application 

functions are accessed from a function access mechanism; e.g., menus are a currently 

popular function access mechanism. In this thesis, application space refers to the screen 

space occupied by an application program. 

As mentioned in previous chapters, traditional user interfaces provide separate work 

object representations and function access mechanisms. Modem word processors, for 

example, provide menus and dialog boxes with which users invoke application functions. 

Unfortunately, switching between a work object representation and a large menu space 

requires extra effort from the user. Moreover, menus usually display only a subset of all 

available functions due to menu space shortage. Very often, the work object representation 

is displayed in a separate window apart from the menus, and large work object 

representations are often broken up to be displayed in multiple windows. Furthermore, 

applications such as the front-end software of an automatic teller machine often have large 

menu spaces. Here, the work object representation contains text descriptions at the top of 

each menu screen. The menu space contains all the banking options that are menu items 

themselves. 
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Similarly, the purposes of many applications resemble those of a menu system. For 

example, a control application allows access to functions belonging to different parts of an 

underlying system. Many of these applications are indeed "menu applications". 

Unfortunately, because of the inherent shortcomings of traditional user interfaces and 

the increases of functions in modem systems, we need a more advanced menu mechanism 

to facilitate function access and, at the same time, allow users to remain focused on their 

tasks. This is our motivation for the present work to develop an improved menu 

mechanism which we refer to as a "hypermenu". This approach has evolved in part from 

the continuous zoom, which was developed as part of the Intelligent Graphic Interface 

[Bartram et a1 951. In the rest of this thesis, we refer to applications using the hypermenu 

concept as hypermenu applications. 

3.1.3 Hypermenu Overview 

The hypermenu method is a general approach for building applications with hierarchical 

work object representations so that we can combine them with function access mechanisms 

into hypermenu hierarchies. Our hypermenu approach thus integrates the menu mechanism 

with the work object representation, reducing the interaction overhead caused by switching 

between the two. Consequently, the user interacts directly with the integrated menu 

mechanism to access application functions and the underlying system. The hypermenu 

hierarchy follows the structure of the work object representation. 

The hypermenu approach provides the following features to facilitate navigation and 

function access. First, it allows control over the amount of detail on screen. The user may 

eliminate distracting and irrelevant details from the screen by interactively navigating up and 

down the hypermenu hierarchy. Second, the hypermenu approach allows magnification of 

areas of interest and demagnification of irrelevant areas. Further, instead of a mere 



Figure 3.3: Example of a hypermenu layout. (a) Tree structure of a hierarchy. (b) 
Hypermenu rendering of the same hierarchy, which is implied by geometric enclosure. 

scaling up or down version, it can provide different representations depending on the needs 

of the application and the work object constraints. This is equivalent to providing semantic 

zooming [Bederson 941 or semantic scaling [ZiZi 941. Since the hypermenu approach 

allows multiple areas to be viewed simultaneously, the user may examine and compare 

multiple areas of interest, a facility not possible with traditional menu mechanisms. Third 

and perhaps most importantly, it allows the user to access application functions by 

interacting directly with the work object representation. In other words, the application is 

the menu. Finally, the hypermenu approach preserves the global context of the work object 

representation, which, in turn, provides context for the integrated menu mechanism, 

thereby allowing function access via direct manipulation. 

To provide the above features, our hypermenu approach uses a hierarchy and a context 

management scheme. Each hypermenu component in the hierarchy is a combined 

representation of function access mechanism and a corresponding component in the work 

object representation. The context management scheme organizes the on-screen layout and 

appearance of every hypermenu component. The hypermenu hierarchy is reflected in 

geometric enclosure (Figure 3.3). Lastly, work object constraints are integrated into the 



context management scheme to reflect the work context which includes the global context 

of the work object representation and the application state. In the next subsections, we 

discuss properties of hypermenu components and the hypermenu's context management 

scheme. 

3.1.4 Hypermenu Components 

A hypermenu hierarchy consists of leaves, clusters, and a root. A leaf contains no child 

component; a cluster contains one or more child components. The top-most cluster is 

called the root. Normally, clusters provide higher-level abstractions or hierarchical 

abstractions for their child components. Each hypermenu component has open, close and 

zero or more zoom states. 

In general, opening a cluster makes visible its child components, thereby providing 

increased detail (See Figure 3.4). When a cluster is opened, all its child components are 

initially closed. Closing a cluster also closes all its descendant components and therefore 

hides lower level details. A leaf is always closed. 

Often, details away from focus areas in the work object representation may need to be 

suppressed in order to display the focus areas in greater detail, and to avoid distracting the 

Figure 3.4: Example of opening a hypermenu component. (a) Initially, all hypermenu 
components are closed. (b) Opening hypermenu component B makes visible its child 
components . 



viewer. In a hypermenu application, the user may interactively open and close hypermenu 

components to obtain details on demand and to hide details not of current interest. Opening 

and closing allows the user to see multiple components in different levels of detail 

simultaneously, thereby providing a degree of control over the amount of context on 

screen. 

Hierarchical abstractions summarize lower-level detail and contribute to the overall 

work context. Closed clusters are represented by hierarchical abstractions which are 

dynamically updated to reflect proper component status. Therefore, a hypermenu 

component is allowed to have multiple hierarchical abstractions depending on the state of 

the underlying object. For example, a battery may have two hierarchical abstractions with 

the first representing a fully charged battery and the second representing a dead battery. 

Hierarchical abstractions are usually symbolic representations of the underlying system 

components. 

Very often, information on the screen needs to be controlled and filtered [Noik 941. 

Filtering means eliminating unnecessary data from the screen. Typically, only a subset of 

data about an object is needed at any given time. To achieve filtering, each closed 

hypermenu component has multiple zoom states to accommodate multiple representations 

with different sizes. Switching from one zoom state to another is achieved by zooming. 

Zooming involves changing the sizes and representations of hypermenu components. 

Instead of supplying a mere scaled version, supporting multiple representations allows 

displaying a more appropriate and informative representation during zooming. 

Furthermore, object attributes to be displayed and the screen space required for each zoom 

state can be pre-determined, hence facilitating efficient use of screen space. For example, 

the first zoom state may be an output-only functional representation displaying the most up- 

to-date status of the underlying object, and the second zoom state may be a functional 

representation allowing both input and output. 
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Figure 3.5: Example of zooming and size-dependent representation. (a) A clock symbol. 
(b) A functional representation of the clock. (c) A functional representation of the clock 
with time adjustment mechanism. 

Zoom states are also called size-dependent representations. They provide combined 

representations of function access mechanisms and the underlying system component. 

Therefore, each size-dependent representation maintains a set of user interface elements that 

serves as a function-access mechanism capable of displaying appropriate component status 

and accepting user input. Conceptually, size-dependent representations let the user feel he 

is interacting with the underlying system component directly. Figure 3.5 shows an 

example of zooming in on a hypermenu component representing a clock. Initially, a clock- 

like icon, which is a static symbol, represents the clock in its closed state (Figure 3.5(a)). 

When zoomed in, the hypermenu displays a functional representation of the clock showing 

the up-to-date time (Figure 3.5(b)). When zoomed in further, the time adjustment 

mechanism is also displayed, allowing the user to adjust the time interactively (Figure 

3 3 ~ ) ) .  To provide all the above features, the hypermenu approach relies heavily on its 

context management scheme, described next. 

3.1.5 The Context Management Scheme Of Our Hypermenu Approach 

Context proved to be vital to user orientation when navigating and accessing functions in 

complex systems [Schaffer 931. The goal of the context management scheme is to maintain 

an intuitive work context. It is responsible for rendering the visible portion of the 

hypermenu hierarchy onto the screen. It consists of the discrete zoom algorithm and 

domain-specific logic to support proper hierarchical abstractions, size-dependent 



32 

representations and restructuring of the hypermenu hierarchy according to the work object 

constraints. 

3.1.5.1 Discrete Zoom Algorithm 

This is a variation of the global version of the continuous zoom algorithm [Dill 941. In 

both algorithms, the magnification or scale factor changes the size of a hypermenu 

component without affecting its openlclose state (Figure 3.6). Both zoom algorithms 

control only the sizes and positions of hypermenu components according to their open, 

close and zoom states. In general, the scale factor is controlled by mapping functions in 

these algorithms. The mapping function maps a magnification factor to a corresponding 

size and is controlled by the user. 

As its name implies, the continuous zoom algorithm provides a feeling of continuous 

change during zooming. To achieve this, it uses a smooth continuous mapping function in 

controlling the size of a rectangular object. More precisely, the rectangular bounding box 

of each hierarchical component is controlled by a monotonically increasing function. For 

example: 

New size = f(Magnification factor) x Initial size 

Figure 3.6: Magnification example. (a) The hypermenu layout before magnification. (b) 
Magnifying hypermenu component B enlarges its size without changing the openklose 
state. 



where f is a continuous function [Dill 941. An advantage of the continuous zoom algorithm 

is allowing continuous control over the size of each hierarchical component. This can, 

however, result in increased cognitive effort to magnify or demagnify a hypermenu 

component to a specific size because the user must continuously monitor the size of 

components being zoomed. 

The discrete zoom algorithm, on the other hand, is designed to support hypermenu 

components with multiple fixed-size representations as discussed in the previous 

subsection. To facilitate achieving specific fixed size goals, the discrete zoom also 

supports a finite number of sizes instead of supporting a continuous size change. This is 

equivalent to using a step function as the mapping function. In the context of the discrete 

zoom, a zoom state is simply a fixed size allocated from the available screen space for a 

hypermenu component. The major drawback to sudden changes in size is the fact that it 

induces visual discontinuity. To alleviate this problem, size change is achieved in a number 

of steps. The major advantage of the discrete zoom is minimizing the interaction needed to 

switch from one size to another, regardless of how much they differ. It also requires 

significantly less cognitive effort from the user during zooming. 

In overview, the discrete zoom algorithm accepts the initial layout of a hierarchy, which 

we call the normal geometry, and the sizes of all closed and zoom states when program 

execution starts. The initial layout of a hierarchy describes the size and position of 

hierarchical components by geometric enclosure. For example, a cluster is described by its 

location, open size, and closed size. Descriptions for leaves are similar except that sizes of 

all possible zoom states are included. Each component, also called a node, is assigned a 

scale factor. The scale factor used in calculating component size is S = Lf/Li, where Lf is 

the final size and Li is the initial size of a component. The zoom algorithm combines the 

normal geometry and the scale factors to produce the zoomed geometry, which is 

displayed. Unlike the continuous zoom algorithm, users do not change the scale factor 



directly during interaction; rather, scale factors for each node are derived dynamically 

during opening, closing and zooming according to the pre-specified sizes. 

Like the global continuous zoom, the discreet zoom works on X and Y axes separately. 

The first step is to project all node boundaries into the X and Y axes. The algorithm then 

works with the one-dimensional intervals between adjacent projections (Figure 3.7). Each 

interval is either a projection of one or more nodes, or is a gap interval such as XI, X3 and 

X5. Intervals are assigned the maximum scale factor of all nodes that project into them. 

This prevents the size of the node from exceeding the sum of the sizes of the intervals that 

contain it. 

Given the scale factors of all the nodes within a cluster, the total amount of space 

requested by a cluster (in the X direction) is: 

where xi is the normal length of the ith interval and si is its scale factor. Space in the Y 

direction is calculated similarly. Intervals are used instead of node widths because the 

former never overlap. 

The intersections of the lengths of the intervals containing the edges of a node in both X 

and Y directions constitute the total space available to the node. This space is rectangular in 



Figure 3.7: Sample three-node hierarchy, initial size. 

shape and is called a zoom hole. After computing the sizes of the intervals and nodes, the 

nodes are repositioned according to the location of their center points. Note that as the size 

of its containing interval changes, a node's center stays at the same relative position in its 

zoom hole (Figure 3 3). 

Calculations for the scale factors and space requests propagate only upward in the 

hierarchy until the root node is reached. If the total requested size is less than or equal to 

the available screen space, the discrete zoom algorithm grants the size change requests; 

otherwise, it denies the size changes requests and signals the hypermenu application to 

notify its user. 

To divide the size changes into a number of steps, the discrete zoom algorithm 

calculates a number of intermediate sizes. The starting size is equal to the initial size and 

the ending size is equal to the final size of the node. If a size change involves n steps, the 

kth intermediate size is: 

where 

edge. 



Figure 3.8: Node C zoomed out from Figure 3.7. 

3.1.5.2 Outline Animation 

The global context is so important to the user during navigation because it provides a sense 

of orientation in the system. It is equally important to help the user perceive and follow all 

the changes in the context. Opening, closing, and zooming changes the global context of 

the work object representation. For instance, zooming in on a component changes its size 

and shifts all the components from their previous positions. As mentioned before, sudden 

changes in size and position cause visual discontinuity. In order to let the user follow the 

changes mentally, we need to minimize visual discontinuity. Ideally, morphing yields a 

smooth transition one can easily follow. However, it quickly becomes computationally 

intensive and impractical when applied to complex work object representations. Instead, 

we use "outline animation", a planar (2D) animation, in our hypermenu approach. Outline 

animation consists of three steps. First, all the visible hypermenu components are changed 

into filled rectangles. Each filled rectangle is color-coded to indicate its depth in the 

hierarchy. Second, it divides the open, close and zoom operations into several steps. At 

each step, the intermediate size and position of the changing component is calculated and 

drawn as a color-filled rectangle. The same process is also carried out on all other visible 

components. Third, when the changing component reaches its final size, the appropriate 

hierarchical abstractions and size-dependent representations are drawn for all visible 

components. Outline animation is much less computationally intensive than morphing. 

The following paragraphs provide illustrations on zooming and opening. 

In the case of zooming, the context management scheme first verifies that there is 

enough screen space available. If there is, the existing representation (Figure 3.9(a)) 

changes into a filled rectangle. Then, intermediate sizes and positions are repeatedly 

calculated for the changing component and rendered as rectangles (Figure 3.9(b)). Once 

the hypermenu component has reached its final size, the rectangle changes into the final 



Figure 3.9: Example of zooming in a hypermenu application. (a) Initial hypermenu 
component. (b) A set of intermediate rectangles belonging to outline animation. (c) Final 
hypermenu component appearance. 

Figure 3.10: Example of opening in a hypermenu application. (a) Initial hypermenu 
component. (b) A set of intermediate rectangles belonging to outline animation. (c) Final 
hypermenu component appearance. 



representation (Figure 3.9(c)). The entire process (Figure 3.9(a) to Figure 3.9(c)) is 

referred to as outline animation. 

Opening works similarly; the new sizes and positions for all hypermenu components 

are calculated to verify that there is enough screen space. If there is, the existing 

hierarchical abstraction (Figure 3.10(a)) changes into a filled rectangle with intermediate 

rectangles drawn as in zooming (Figure 3.10(b)). Once the hypermenu component has 

reached its fully opened size, the hierarchical abstractions of its children are displayed 

(Figure 3.10(c)). Closing is done similarly except that it reverses the open operation. 

3.1.5.3 Work-Object-Constraint Controlled Hypermenu Hierarchy 

As described earlier, work object constraints are rules that govern the availability of 

functions and application states. Integrating them into the context management scheme 

enables a hypermenu application to display proper functional representations and provide 

necessary functions according to the application states. For instance, a hypermenu 

application may need to dynamically suppress various components representing unneeded 

functions to comply with work object constraints. Figure 3.1 1 provides an abstract 

example. In this example, when the application is in state 1, hypermenu components ABA, 

ABB, and ABC are not displayed when AA is opened. When the application is in state 2, 

only hypermenu component AAA is displayed when AA is opened. Finally, when the 

application is in state 3, only hypermenu components AAA and AAB are displayed when 

AA is opened. The work object constraints state that when hypermenu component AA is 

opened the second time, the application changes from state 1 to state 2, when it is opened 

the third time, the application changes from state 2 to state 3, and when it is opened the 

third time, the application changes from state 3 back to state 1. In this way, a hypermenu 

application can dynamically restructure and re-render its hierarchy using the work object 

constraints. We provide examples based on real-world applications in the next chapter. 



( State 1 ) 

AA is opened AA is opened 
the second time. 

Figure 3.1 1 : Example of work-object-constraint controlled hypermenu behavior. When 
the application is in state 1, hypermenu components ABA, ABB, and ABC are not 
displayed even if component AA is opened. When the application is in state 2, only 
hypermenu component AAA is displayed when component AA is opened. Finally, when 
the application is in state 3, only hypermenu components AAA and AAB are displayed 
when component AA is opened. 

3.2 Navigation And Function Access 

To navigate within a hypermenu application, the user interactively opens and closes 

hypermenu components. Support for direct manipulation preserves continuity of the user's 

mental model for the work object representation without depending on separate navigation 

mechanisms. Opening and closing hypermenu item corresponds to navigating down and 

up the hypermenu hierarchy to a lowerlhigher level abstraction. Outline animation is 

provided during opening, closing and zooming to preserve the visual continuity of the 

work context during the transition. Most importantly, navigation depends on available 

screen space. As long as there is enough screen space, the user can open and zoom in any 

component. However, if there is not enough screen space, the user must close or zoom out 

less important components to make room for the component to be opened or zoomed in. 

Zooming allows control over the type and amount of data to be displayed. Opening allows 

the user to see lower level details. Closing shrinks a component into a more concise 



abstraction and fuses it to the work context. The work context, in turn, serves as a vital aid 

to orient the user during navigation. Moreover, the hypermenu's context management 

scheme facilitates visual searching which benefits random browsing and serendipitous 

searching. 

To access embedded functions, the user zooms in a hypermenu component to bring up 

a functional representation of the underlying object. Then, the user interacts directly with 

the functional representation to access functions in the underlying object. The hypermenu 

approach brings two major advantages to function access. First, it allows navigation and 

function access via direct manipulation such as point and click. Second, the hypermenu's 

context management allows function access in context. 

3.3 Construction Of Hypermenu Applications 

In addition to conventional design approach, constructing a hypermenu application involves 

three extra steps: 

1 . Define an appropriate hierarchical structure for the system, consistent with its 

functions. If this is not possible, the system may not be suitable for a hypermenu 

approach. 

2 .  Identify the availability of functions and corresponding hypermenu components for 

each application state. For example, at each application state, only a subset of the 

hierarchy should be available to the user. 

3 .  Define open, close and zoom states for individual hypermenu components. 

Determine appropriate hierarchical abstractions and size-dependent representations 

according to the work object constraints. 



The following chapter presents two hypermenu applications designed using the above 

guidelines. The first example applies the hypermenu approach to a Group Technology 

database browser and designer. The second example illustrates the use of our hypermenu 

approach in designing a user interface for a complex piece of telecommunication network 

test equipmentl. In these examples, we illustrate: ( I )  constructing hypermenu 

applications, (2) the look and feel of hypermenu applications, and (3) visualization, 

navigation, and function access enhancements brought by them. 

The second example is based on Hewlett Packard's Broadband Series Test System. 



CHAPTER 4 

HYPERMENU ILLUSTRATIONS 

4.1 Introduction 

The hypermenu concept is a general user interface approach and may be applied to a range 

of application domains. In this chapter, we illustrate the potential of this technology by 

applying it to two different areas. We first illustrate its application to computer-aided- 

design by introducing a new approach for designing mechanical parts with group 

technology. We then apply the hypermenu concept to the user interface of a testing 

controller for telecommunication networks and show that it facilitates user interactions and 

prevents cluttering resulting from a small display area. 



Hypermenu Approach To Group Technology 

4.2.1 Introduction To Group Technology 

As manufacturing companies strive to enhance their competitiveness in the global 

marketplace, they are constantly exploring for new technologies. An approach increasingly 

useful in helping achieve a higher level of integration between design and manufacturing is 

that of Group Technology (GT). Group Technology is an approach to design and 

manufacture in which parts are grouped into families according to their general shape, the 

material they are made of, the series of steps needed to manufacture them, etc. Parts 

belonging to the same families exhibit similar characteristics and features. 

Coding parts and grouping them into families is the essence of group technology and 

has many advantages for a manufacturer. First, the manufacturer no longer has to deal 

with thousands of parts and processes, but can focus on a small number of part families 

and processes. Second, group technology provides a basis for a company to switch from 

inefficient job-shop manufacturing methods to modern.cellular manufacturing. Third, 

design engineers can finally stop "reinventing the wheel": when faced with designing a 

new part, the engineer first assigns a group-technology code to the part, then checks the 

computer database for the same or similar parts. Often, he ends up using an existing part, 

preventing needless and costly parts proliferation and freeing up design time. 

Finally, Group Technology greatly simplifies new-part process planning. The 

designer codes, then classifies the new part into the appropriate existing family. Since all 

the parts in that family are made by the same process, the manufacturing process for the 

new part already exists: it is merely a matter of fine-tuning it [Snead 891. 

Group Technology relies significantly on classification and coding. Classification is 

the process of grouping together similar things. Coding is a technique of allocating 



predetermined symbols to describe and communicate the classification. Coding describes a 

physical object in a notation that is easy for computers to store and retrieve [Snead 891. 

In this section, we use MDSI CODE as an example from which we build our 

hypermenu application. The reason for choosing MDSI CODE is because a detailed 

description was easily available. CODE is the name of the classification and coding system 

provided by Manufacturing Data Systems, Incorporated (MDSI). It is an eight-digit 

hexadecimal-based code used primarily to classify and code mechanical parts. The code 

structure is shown in Figure 4.1. The first digit of the code is used to identify the major 

divisions and was set to one by MDSI due to the company's internal structure. The 

remaining seven digits are division-specific codes used to describe the shape, features and 

dimensions of a part. Some examples are shown in Figure 4.2. 

Once the mechanical parts have been classified and coded, they are stored into a group 

technology database for retrieval. The objectives of a group technology database include: 

(1) facilitate serendipitous searching for an existing or similar mechanical part, (2) 

facilitate defining a new part or part family in the group technology database according to 

the classification used. Most of the time, geometry properties such as shape are used to 

identify a mechanical part. 

To facilitate serendipitous searching and random browsing, the hypermenu approach 

offers the following advantages. First, it stores all the mechanical parts in a similar manner 

to many hierarchical classification and coding systems such as MDSI CODE. Each digit in 

MDSI CODE corresponds to a level in the hypermenu hierarchy, which is called a digit 

level. Second, the hypermenu approach allows searching for a mechanical part in the 

group technology database with direct manipulation as one would with physical storage 

bins. Third, the hypermenu approach displays the shape of mechanical parts and part 
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Figure 4.1 : MDSI code structure. 
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families in the database to support visual searching. Allowing visual searching is an 

advantage of our hypermenu approach because it does not require the user to manually 

translate a mechanical part into a part code and then have the computer match it in the 

database. Rather, the user can search the parts database directly based on the geometric 

attributes illustrated in the drawings. Fourth, the hypermenu approach helps the user 

visualize characteristics of part families that are not physical entities. Fifth, it clearly 

indicates hierarchical relationships between parts and part families according to the 

classification and coding system used. Therefore, we believe that the hypermenu approach 

is a powerful and appropriate interface to group technology databases. 

Our hypermenu approach also offers the following advantages to facilitate defining a 

new part in a group technology database. First, it helps the user visualizes relationships 

between existing parts and the new part to be design. Second, the hypermenu approach 

allows the user to define a new part in context with instant feedback on its characteristics. 

Third, it offers a preview of the to-be-designed item at each digit level. Finally, the 

hypermenu approach supports the idea of incremental fine-tuning. For example, the user 

may only fine-tune attributes allowed by each digit level. 

4.2.2 Constructing A GT Database Hypermenu Application 

Following the guidelines for constructing hypermenu applications in chapter 3,  we first 

identify the work object constraints for the front-end software of the GT database 

application. The application should provide a browse mode and a design mode. In browse 

mode, the hypermenu application displays only defined parts and part families in the GT 

database. Defined or existing parts and part families have their features completely 

specified and are stored in the GT database. In design mode, the application displays all 

possible parts and part families supported by the classification and coding system. Parts 



and part families not in the GT database but supported by the classification and coding 

system are called undefined parts and undefined part families. 

Parts in the GT database become leaves, and part families become clusters. Defined 

parts represented by leaves are always closed and have only one zoom state. The 

hierarchical abstraction for the closed state displays the shape and the part code of the 

corresponding mechanical part. The size-dependent representation for the zoom state 

displays a dialog box containing the part drawing, and text labels showing all the attributes. 

Part families represented by clusters need open and closed states only. The hierarchical 

abstraction for the closed state also displays the shape and part code of the corresponding 

part family. Note that a part family does not have a complete part encoding; for example, a 

part family with the second and third digits equal to two and four might have part code 

124XXXXX, where "X" is any valid character in the range of the underlying classification 

and coding system. 

Opening a defined part family exposes members of the part family one level below, and 

zooming in on defined parts provides further details on the object parameters. 

We illustrate with an example. Figure 4.3(a) shows a bolt. The hierarchical abstraction 

of the corresponding hypermenu component shows the shape and part code after 

classification and coding (Figure 4.3(b)). The size-dependent representation of the zoom- 

in state contains the drawing and text labels displaying the object attributes (Figure 4.3(c)). 

Similarly, the hierarchical abstraction corresponding to a defined part family shows the 

shape and the partial part code (Figure 4.4(a)). Note that defined part families are 

represented by clusters that do not have zoom states, only open and close states. Opening 

defined part families shows members of the part family one level below (Figure 4.4(b)). 



Max O.D.:.l crn Color:silver 
Length: 1 crn Material: Fe 
No.Cyl: 2 Quantity: 50 

Figure 4.3: Hierarchical abstraction and size-dependent representation of a defined 
mechanical part. (a) Bolt to be represented. (b) Hierarchical abstraction of the bolt. (c) 
The size-dependent representation of the bolt is a dialog box containing a drawing and 
description about the bolt. 

Figure 4.4: Hierarchical abstraction and corresponding part family. (a) Cluster 
representing hierarchical abstraction of a part family. (b) Cluster of (a) opened to show 
members of the part family one level below. 
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Figure 4.5: Hierarchical abstraction and size-dependent representation of an undefined 
mechanical part. (a) Hierarchical abstraction of an incompletely defined pulley. (b) Size- 
dependent representation of the pulley contains text boxes requesting pulley-related 
information. 

To distinguish undefined parts and families from defined parts and families, the former 

are highlighted (Figure 43a ) ) .  When an undefined part family is opened, the hypermenu 

application displays a dialog box for the user to adjust object parameters according to the 

digit level. For example, the dialog box in Figure 4.5(b) allows the user to fine-tune 

parameters like pulley width, length and concavity. Undefined parts are represented by 

leaves. A single part, not a part family, may be zoomed-in. The result is a dialog box 

similar to Figure 4.5(b). 

4.2.3 Behaviors Of The Hypermenu Application 

To illustrate our hypermenu approach, we show how to search a GT database for a 

mechanical part, and how one would design a new part using a hypermenu-based GT 

system. 



4.2.3.1 Search for a mechanical part in browse mode 

Suppose we would like to search for the bolt shown in Figure 4.3(a). To start searching, 

we first put the hypermenu application into browse mode to display only defined parts and 

part families, thus reducing distraction. The first-digit level in the hypermenu hierarchy 

contains only one component because the first digit in MDSI CODE is always one. The 

root hypermenu component could display the logo of the classification and coding system 

when it is closed. 

Opening the first-digit-level component exposes closed components belonging to the 

second digit level (Figure 4.6(a)), and, we say that we are in the second digit-level. At this 

level, we can search visually by geometric properties or part code. Following the 

hierarchical abstractions, we navigate through the seven digit levels as shown in Figure 

4.6(b) to 4.6(g). In general, we say that we are in (n+l)th digit level after opening a 

component or part family belonging to nth digit level. Opening part families from the 

second to the seventh digit level exposes more detailed part families. Opening part families 

in the eighth level exposes defined mechanical parts. Once we are inside the eighth digit 

level (Figure 4.6(g)), we can zoom in any mechanical part to see a detailed description of 

its attributes (Figure 4.6(h)). 

As implied by our illustration, screen space required to display the GT database is 

proportional to the depth of the hypermenu hierarchy and the number of items within each 

level. Opening and zooming in a hypermenu component enlarges all its ancestors so that 

they are able to hold both the enlarged component and its siblings. For deep and large GT 

databases, screen space runs out quickly as one navigates downward in the hierarchies. 

When the hypermenu application runs out of screen space, the user will not be able to 

navigate further down the hierarchy or zoom in item of interest any more. To alleviate this 



Figure 4.6: Searching for a defined mechanical part in a hypermenu application. (a) 
Second digit level. (b) Third digit level. Note that we have opened the 14XXXXXX 
hypermenu component to show its members (141XXXXX, 142XXXXX, 143XXXXX 
and 144XXXXX). 
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Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu 
application. (c) Fourth digit level. (d) Fifth digit level. 



Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu 
application. (e) Sixth digit level. (f) Seventh digit level. 



Application Window 

Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu 
application. (g) Eighth digit level. 
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Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu 
application. (h) Eight digit level. 



problem, designers might reduce the size of hierarchical abstractions by using more concise 

descriptions. In addition, clusters can have multiple zoom states. For example, the 

hierarchical abstraction might show only the part code. The first zoom-in state shows only 

the shape and the second zoom-in state shows both the shape and the part code. 

In MDSI CODE, each of the last two digits denote ranges rather than an exact value. 

Therefore, it is possible to have more than one mechanical part with the same part code. 

For example, a mechanical part with overall length between 1 and 1.6 units has a MDSI 

code ending in "2". There are two ways to support this in our hypermenu application. 

First, each mechanical part can be made into hypermenu components belonging to the ninth 

level in the hierarchy. Second, we can provide mechanisms in the size-dependent 

representation for the user to cycle through all the mechanical parts at the eight digit level. 

4.2.3.2 Defining and fine-tuning a mechanical part in design mode 

Defining a part code for a new part is equivalent to selecting and defining a design path in 

the hierarchical classification and coding system. For demonstration purposes, we limit the 

range of the second digit from one to eight, and the remaining digits except the first digit 

from one to four. 

Suppose we wish to design the pulley shown in Figure 4.7. First, we enter design 

mode to display both existing and undefined parts and part families. Hierarchical 

abstractions for undefined parts and part families are highlighted and become design 

options in the hypermenu application. It is necessary to display defined part families to let 

the user choose a similar part for fine-tuning. To start, we navigate to the second digit level 

(Figure 4.8(a)). In this case, no defined part family resembles the pulley we want to 

design. Therefore, we define a new part family by choosing available design options in the 



Figure 4.7: Pulley to be designed. 

Figure 4.8: Example of defining a new mechanical part at second digit level. (a) In design 
mode, representations of undefined mechanical parts are highlighted using reverse video. 
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Figure 4.8 (Continued): (b) Opening part family 18XXXXXX brings up a dialog box for 
the user to define attributes for the current digit level. (c) The hierarchical abstraction of 
the part family changes to that of a defined part family after the attributes have been 
defined. 



second digit level. According to the hierarchical abstractions, part family 18XXXXXX 

resembles the mechanical part we are designing. 

Opening the undefined part family brings up a dialog box for adjusting the parameters 

(Figure 4.8(b)). Once we have filled in the information and click the "Define" button, the 

hypermenu component closes itself and updates the hierarchical abstraction to reflect the 

proper attributes and the existence of the new part family (Figure 4.8(c)). Similarly, we 

define attributes for the next six levels. Once we have defined all digit levels, a new 

mechanical part is defined, and it can be viewed just like other existing mechanical parts in 

the GT database. 

The hypermenu approach brings the following benefits to GT database systems. The 

context management scheme supports visual searching at each level during parts retrieval. 

Neighboring items are available on screen and the viewer may search in context. Most 

importantly, the hypermenu approach provides an easily navigable visual representation of 

the GT database and provides full access to all the items within. Therefore, the user may 

interactively control items in the GT database to be displayed, and easily zoom in on areas 

of interest. Direct manipulation also reduces navigation overhead. Finally, the hypermenu 

approach allows simultaneous viewing of multiple components which facilitates comparing 

different parts in the GT database. 

During design, the hypermenu approach helps the user to visualize how one selects 

design paths. At each digit level, visual representations of design options are displayed, 

therefore allowing the user to rely on recognition memory in choosing a similar part for 

fine-tuning. Lastly, the user may simultaneously display and reference any other defined 

parts, which is extremely important during fine-tuning. 



A Hypermenu Interface To An Equipment Tester 

4.3.1 Background 

To test our approach in a quite different type of application, we developed a hypermenu 

interface for a complex test controller used to set up, execute and monitor the performance 

of very high speed (Broadband) telecommunication equipment (HP Broadband Series Test 

System). 

High speed information transfer is a complex multilevel process [Vetter 951. In simplified 

form, at the highest level, information is passed from an end-to-end application, such as 

Local Area Network management software, to a service layer. The service layer attaches 

additional information depending on the type of service requested, and then passes the 

information to the adaptation layer for transmission. The adaptation layer breaks down the 

information and packages it into cells. A convergence layer accepts the cells and maps 

them to the physical layer which encodes the data into electrical waveforms for 

transmission. Each layer provides a variety of options to choose from. The combination 

of all the layers and the communication format of the end-to-end application defines a 

network transmission protocol. 

The test system in question (BSTS) is designed to evaluate the network performance on 

transmitting data from one node to another using a variety of protocols. BSTS's user 

interface is responsible for providing access to the underlying equipment. Our goals for 

improving the quality of BSTS's user interface were: (1) preserve the user's work context 

and orientation, (2) reflect relationships among system components, (3) allow hierarchical 

management of the user interface and work context, (4) provide effective screen layout for 

the work context, especially components of interest, (5) reduce user interface overhead to 



increase user throughput, (6) permit quick and accurate component access, and (7) 

indicate configuration sequence. 

The original user interface of BSTS provides a traditional window environment 

primarily made up of dialog boxes and menus. Each device is represented by a collection 

of dialog boxes containing all available function, and the resulting interface is quite 

complex. Unfortunately, overlapping dialog boxes significantly increase user interface 

overhead and tend to disorient the user quickly. 

4.3.2 The Hypermenu Approach- An Improved Interface 

We begin by outlining the overall task of a typical BSTS user. Then, we briefly describe 

our hypermenu interface built for the BSTS. 

To conduct a test with the BSTS, the user first defines a session. A session refers to 

the process of setting up the BSTS for a test and running the test. Once a session has been 

defined, the user builds an instrument. Building an instrument requires the user to specify 

the protocol and devices to be used for the test. At the present, the user can choose a 

maximum number of two devices for each instrument. Then, the user specifies device 

parameters for each device belong to an instrument. Test manager and testers are logical 

entities added to the BSTS to form a hierarchy (Figure 4.9). 

Test Manager Ez 

Figure 4.9: Organization of the hypermenu hierarchy for HP's test system. 



Naturally, the test manager maps to the root in the hypermenu hierarchy, the testers 

map to the second-level components and so on. In addition to all the entities mentioned, 

we include a hypermenu component to represent the selected protocol at the same level as 

the devices for each defined instrument to indicate which protocol the instrument is set up 

for. All the clusters have only open/close states, and the leaves (except the protocol 

representation) have two zoom states. All system entities have static hierarchical 

abstractions, while each instrument has two different hierarchical abstractions to indicate 

whether or not it is defined. Devices have two size-dependent representations with which 

the user can interact. 

Tasks the user must frequently undertake include: (1) set up test equipment, (2) 

examine test results, and (3) compare results from different devices. Defining and 

configuring an instrument is a very tedious decision-making process. Thus, preserving the 

configuration sequence is important in order to avoid confusion and disorientation. An 

advantage of the hypermenu approach is its context management scheme which assists the 

user in visualizing the entire sequence while focusing on one part of the system. For 

example, configuring an instrument is easily accomplished by navigating downwards in the 

hypermenu hierarchy. The hypermenu approach significantly benefits examining test 

results and comparing devices. Figure 4.10 shows the look-and-feel of our hypermenu 

application for HP's BSTS. For a detailed description of the hypermenu application for the 

BSTS, please refer to the appendix. 
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Figure 4.10: Illustrations of our hypermenu application for HP's test system. 



4.4 Implementation 

The heart of our hypermenu applications is the context management scheme. It consists of 

the discrete zoom algorithm and domain-specific logic to support proper hierarchical 

abstractions, size-dependent representations and restructuring of the hypermenu hierarchy 

according to the work object constraints. For instance, in our GT hypermenu application, 

children of undefined part families are temporarily removed from their parents and later 

restored when they have been defined. Proper hierarchical abstractions are rendered 

dynamically according to the work object constraints. 

Both applications have been designed to run under the XtWindows system using Motif. 

Opened clusters are drawn as a color-filled rectangle. A closed hypermenu component is 

represented by a Motif push button. 

The hypermenu hierarchies are specified in external files which contain the sizes and 

positions of all hypermenu components. In addition, each file contains closed sizes for all 

the hypermenu components and size-dependent representations for all the leaves. 

Finally, our hypermenu applications currently run on Silicon Graphics and Hewlett 

Packard workstations and may be ported to any other XIMotif system. 



CHAPTER 5 

DISCUSSION 

In this section, we discuss the hypermenu approach in the following order: ( I )  evaluate 

the strengths and weaknesses of our hypermenu approach as illustrated by the two 

hypermenu applications, (2) compare the use of discrete zoom with continuous zoom as 

the hypermenu's context management scheme. 

5.1 Evaluation Of The Hypermenu Approach 

Both our hypermenu applications were evaluated by domain experts. Our GT application 

was demonstrated to two CAD operators. We asked one of them to act as a user of the GT 

application to get a direct feeling of the user interface. The other CAD operator watched 

closely. Both operators are involved in mechanical design and one of them has been using 

CAD packages for eight years. Their experience is primarily with Autocad, though they 

have used other commercial systems as well. Similarly, we demonstrated our BSTS 

application to the BSTS developers; we also supplied them a copy of the software for 



evaluation and for demonstration to other groups within the company. In the paragraphs 

below, we f ~ s t  present the evaluations of the GT application, then evaluations of the BSTS 

application from the domain experts. 

According to the CAD operators, the hypermenu user interface gives the following 

advantages. First, they felt that the hierarchical abstraction showing the shape and the part 

code of an object family made browsing easier. The reason they gave was that the graphics 

representations made it more clear which objects were available. In contrast, some of the 

design software with which they are familiar required parameter specification before any 

part became visible. Second, they liked the direct manipulation approach to selecting 

objects in the GT database. They felt that it required less effort than specifying a set of 

search parameters or criteria as required by other software they have used, although one of 

them mentioned that he did not mind entering numbers. Third, they believed that 

preserving the context facilitated navigation. In general, they felt that the context helped to 

orient the user in a large system by showing the relationship between the current focus and 

the remaining items. In addition, they said that the context helped them to visualize the GT 

database. Fourth, one of the operators thought that it was very helpful to preserve the 

spatial relationships of all the objects on screen. This helped him to get familiar with the 

context layout more easily and navigate more quickly after he became familiar with the user 

interface. Fifth, they greatly appreciated the support for multiple foci because it allowed 

them to see multiple parts and part families simultaneously. For example, they felt that it 

would be potentially helpful to see the part intended to be used with the one that the 

operator is designing. One of the CAD operators said: "...seeing the dimensions on the 

part makes things a little clearer, especially when looking at mating parts." 

In addition to the above advantages, the CAD operators also provided us some 

constructive suggestions on how we could improve the hypermenu user interface. As we 

discussed in the previous chapter, there is a problem when available screen space is 



exhausted. They agreed with the approach of using smaller representations to conserve 

screen space. Therefore, we suggested providing each cluster a zoom state showing only 

the part code. The user might shrink the part families far above the current level to show 

only the part codes. The CAD operators' immediate response was they only need the 

graphic representation at the current and the immediate parent level. They also felt that the 

rest of the hierarchical abstraction could shrink into textual descriptions without degrading 

the context. In addition, they told us that they seldom refer to objects far away from the 

current foci. They would rather have bigger hierarchical abstractions for objects of current 

interest and neighboring objects. Most importantly, they believe that omitting intermediate 

levels in the hierarchy would not significantly degrade the context. 

The developers of the original user interface for the BSTS gave evaluations analogous 

to the CAD operators when they reviewed the BSTS application. In short, they too 

appreciated the capability to see detail in context and the capability to help the user visualize 

hierarchical structures with the hypermenu user interface. They also agreed that outline 

animation was effective in letting the user follow changes in the context. 

Similarly, the BSTS developer provided us some constructive suggestions on potential 

improvements to the hypermenu user interface. First, he pointed out that context is needed 

for navigation. However, when the user is focusing on problem solving, the context is no 

longer needed. Unneeded context consumes screen space and tends to distract the user. 

According to the BSTS developer, the user needs to see only the testers and sessions 

during startup, the selected instrument and subsequent devices during configuration, and 

the related devices during examination. This suggests the idea of "usage context". A usage 

context would consist of task-specific context elements only. It could be achieved by 

displaying only task-related components or omitting unneeded levels and items. To 

provide this capability in the hypermenu approach, the usage context would need to be 

encoded into the user interface so that it could display the proper task-dependent context. 
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Second, the user often needs to put objects of interest immediately side by side 

regardless of how far apart they are located in hierarchy. In other words, the hypermenu 

user interface should allow arbitrary repositioning of objects without altering the hierarchy. 

Repositioning may also permit more efficient use of screen space since the size of a parent 

depends on the positions of its child components. Third, the BSTS developers suggested 

that it would be useful to allow hypermenu components to overlap as in the traditional 

window environment. Combined with repositioning, the users could arbitrarily expose 

information by controlling overlapping areas. It also takes less screen space to display 

overlapped objects. The BSTS developers suggested that overlapping is permissible 

because modem computer users are accustomed to deal with overlapping in traditional 

windows environment. However, allowing repositioning and overlapping could reduce the 

benefits of preserving the spatial relationships among on-screen objects and require more 

work on the user's part which hypermenu has eliminated. Finally, it was reported that a 

senior engineer and researcher in the company wondered if the dramatic differences 

between the hypermenu user interface and the traditional window environment might hinder 

its acceptance by change-resistant users. 

To summarize, knowledgeable users in each of the two applications felt the hypermenu 

approach was a useful improvement to navigational issues in the respective user interfaces. 

Additionally, the evaluators suggested developing ways to reduce and/or eliminate 

unneeded context, a recommendation we feel is worth investigating. 

5.2 Discrete Zoom verses Continuous Zoom 

For the context management scheme of our hypermenu approach, we could have used the 

global version of continuous zoom. However, we developed the discrete zoom for the 

following reasons. First, we would like to support hierarchical systems whose 
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components can be more efficiently represented by a fixed number of size-dependent 

representations. BSTS belongs to this category. Switching among fixed-size 

representations consumes significantly less computation than real-time scaling. The only 

drawback is that the user has less control over sizing. The continuous zoom, in contrast, 

allows the user to zoom a component to any arbitrary size. It is designed for hierarchical 

systems whose components have a size range instead of a fixed number of sizes. Support 

for arbitrary sizes requires significantly more computation than switching among fixed-size 

representations, but it provides more control over sizing. Second, we would like to reduce 

the cognitive effort during zooming. The discrete zoom takes only one step to zoom from 

one size-dependent representation to another. Unlike the continuous zoom, the discrete 

zoom requires no constant tracking on object size during zooming, thus reducing cognitive 

effort. Finally, we do not want to affect the sizes of other components other than the one 

being zoomed. Unfortunately, zooming a component in the global version of continuous 

zoom affects the sizes of all other components in the hierarchy. 



CHAPTER 6 

SUMMARY 

6.1 Summary For Our Hypermenu Approach 

Computer applications are increasingly driven by graphical user interfaces; many of these 

applications function like "menu applications", allowing user to access functions from the 

underlying work object. As the complexity of hierarchical systems increases, traditional 

user interface approaches become an interaction bottleneck. 

Several new technologies have been proposed to improve the user interface, especially 

the menu mechanism and the work object representation to facilitate interaction and 

preserve user orientation. Improved menu mechanisms include pie menus, partial-screen 

and full screen menus, see-through menus, documents as user interface, and embedded 

menus. Improved screen layout technology includes fisheye, continuous zoom, 

perspective wall, cone trees, hyperbolic surface, tree-map and Pad++. All of them have 

met with varying degree of success. After reviewing and evaluating these current 

technologies, we find that a new technique is needed to facilitate interaction for complex 

hierarchical systems. 



This thesis has described a new approach to integrate the function access mechanism 

and the work object representation based on an extension to SFU's Intelligent Graphic 

Interface research. Our new technology, called a hypermenu, addresses problems with 

existing technologies and provides the following advantages: 

It preserves the global context and user orientation at all time; 

It facilitates visualization and hierarchical management of the underlying system by 

letting the user control the amount of context. 

It allows the user to interact with system components through direct manipulation. 

It provides a transparent menu mechanism with minimum user interface overhead; 

It provides hierarchical abstractions and size-dependent representations; 

It allows simultaneous viewing of multiple areas of interest. 

To offer the above advantages, our hypermenu approach uses a hierarchy and a context 

management scheme. Each hypermenu component in the hierarchy is a combined 

representation of function access mechanism and a corresponding component in the work 

object representation. The context management scheme organizes the on-screen layout and 

appearance of hypermenu components. By integrating the function access mechanism and 

the work object representation, our hypermenu approach minimizes the need for a separate 

menu mechanism and facilitates interaction. Ideally, the hypermenu approach turns an 

application into its own menu. 

We have implemented two hypermenu applications for evaluation. One was designed 

for computer-aided-design software based on Group Technology. The other was designed 

for the user interface of a telecommunication network testing system. Both are written in 

C++ and run under standard XJWindows and Motif. 
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Our hypermenu approach reduces user interface overhead by integrating the work 

object representation with the function access mechanism, so that the user can interact with 

the underlying system via direct manipulation. In addition, it also provides a full view of 

the work context to preserve the user's orientation and hence facilitates navigation. 

Further Research Directions 

In our future research to improve the hypermenu approach, we would focus on : (1) 

providing support for dynamic determination of abstractions, (2) allowing simultaneous 

display of hypermenu components belong to multiple hierarchies, and (3) exploring more 

efficient zoom algorithms. 

In many applications, abstractions for hypermenu components depend on a lot of 

parameters. Dynamic determination of abstraction based on all these parameters may 

produce a more meaningful and informative abstraction to the user. 

The hypermenu components may be organized into different hierarchies depending on 

the needs of an application. For example, mechanical parts belong to different hierarchies 

when they are organized by shape, manufacturing process and other properties. Very 

often, manufacturers need to look at these hierarchies simultaneously. Therefore, it would 

be useful to display hypermenu components belonging to multiple hierarchies 

simultaneously. 

As illustrated in our hypermenu applications, screen space required to display the 

underlying system is proportional to the depth of the hierarchy and the number of items 

within each level. Navigation is limited by the amount of screen space available. At 

present, the discrete zoom and the continuous zoom are interval-based algorithms and could 



induce large zoom holes. The unoccupied portion of a zoom hole wastes screen space. 

Continual search for more efficient zoom algorithms will be a focus of future researches. 



APPENDIX 

The Hypermenu Approach To The User 
Interface Of HP's Test System 

This appendix describes our second hypermenu approach to a user interface for the HP 

telecommunication network testing system' in the following order: introduction to HP's 

test e&ipment, and the hypermenu application for HP's test equipment. 

Introduction to HP's test equipment 

A. 1.1 Telecommunication network Concepts 

A telecommunication network is used to transmit voice and data. A network is logically 

represented by nodes and links. Voice and data may enter and leave a node. A node is the 

only place in a network where voice and data may originate. A Iink connects two nodes. 

Voice and data travel through a link from one node to another. 

I S.F.U. researchers involved in the hypermenu interface include Dr. John Dill, Mr. Frank Henigman and Albert 
Chan. In the beginning of the project, S.F.U. researchers worked with HP IDACOM personnel to become familiar 
with the original BSTS user interface and to develop a framework for a hypermenu approach. 



Transmitting information is a five step process [Vetter 951. First, hformation is sent 

out from an end-to-end application, such as Local Area Network management software, to 

a service layer. Second, the service layer passes the information to the adaptation layer for 

transmission. Third, the adaptation layer breaks down the infomation and packages it into 

cells, where a cell consists of a header and an information field, The header field contains 

information on identification and destination. Fourth, a convergence layer accepts the cells 

and maps them to the physical layer. Finally, the physical layer encodes the data into 

electrical waveforms for transmission. Each layer provides a variety of options. For 

example, the adaptation layer may package cells into ATM or SIP L2 f~ rma t s .  

Combination of all the layers and the communication format of the end-to-end application 

defines a network transmission protocol. 

A. 1.2 HP Test Equipment Concepts 

TO conduct a test, the user first defines a session, which is the process of setting up 

instruments for a test and running the test. Once a session has been defined, the user next 

specifies the instrument used to make the performance measure. To build an instrument, 

the user specifies the protocol and one or two devices to be used for the test. To facilitate 

building instruments, an instrument builder is provided. The instrument builder lets the 
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Figure A. 1.2.1: Logical entities in HP's BSTS. 

user specify the protocol and device(s) to be used. Finally, the user specifies device 

parameters for each device inside the instrument. Figure A.1.2.1 shows the relationships 

among all entities. Tasks the user must frequently undertake include: (I) set up the test 

equipment, (2) examine test results, and (3) compare results from different devices. 

A. 1.3 Existing BSTS User Interface 

BSTS adopts a graphical user interface that provides the user access to and control of its 

hardware, which is the work object. In the existing graphical user interface, the work 

object is represented by dialog boxes corresponding to session, instrument, instrument 

builder, and devices. Collectively, they become the menu system for BSTS. 

HP originally used traditional user interface components such as dialog boxes and pull- 

down menus for its graphical user interface. Each device is represented by a collection of 

dialog boxes containing all available functions. Figure A.1.3.1 shows two dialog boxes 

that represent some of the entities shown in Figure A.1.2.1. Figure A.1.3.l(a) shows both 

session and instrument builder in the same dialog box. Session names are displayed in the 
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Figure A.1.3.1: Dialog boxes representing some entities of HP's test equipment. (a) 
Instrument builder dialog box includes session panel on upper-left corner. (b) First-level 
dialog box for line interface module. 



upper left opening of the dialog box. An instrument builder contains panels for both 

protocol selection and module selection. All the entities inside the module selection panel 

are devices. Labels for devices are truncated because of limited screen space. For 

example, the label of a cell protocol processor is "Cell Protocol Proc" and the labels for 

lines interfaces end with "L/F". 

Figure A. 1.3.l(b) shows the first level dialog box for a cell protocol processor. 

Buttons are grouped to represent function sets provided by different elements from the 

device. Pressing some of the buttons brings up still other dialog boxes. A similar dialog 

box is used to represent a line interface module. 

To conduct a test, the user first gives the session a name in order to define it. Once 

this is completed, the name of the session is displayed inside the session panel. Then the 

user specifies an instrument from the instrument builder. To specify an instrument, the 

user first selects an appropriate protocol path from the protocol selection panel. Then, he 

or she selects appropriate devices from the module selection panel. Once an instrument is 

specified, the instrument builder dialog dims out all irrelevant choices. To specify device 

parameters, the user brings up corresponding dialog boxes by double clicking on the device 

in the module selection panel. 

A.2 Hypermenu Prototype for HP's Test Equipment 

In this section, we discuss some major design objectives of HP's user interface and the 

construction of the hypermenu prototype for HP's test equipment. Then, we describe in 

detail how our hypermenu interface functions. 



A.2.1 Design Objectives Of The User Interface 
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hypermenu hierarchy. Again, the hypermenu's context management scheme provides the 

work context during the entire configuration process. 

To further facilitate hierarchical management of BSTS's user interface, HP adds a test 

manager and a tester in addition to the components shown in Figure A.1.2.1. A test 

manager maintains two testers and each tester contains two sessions. Both entities are 

designed solely for hierarchical management. Recall that a session accommodates a 

maximum of two instruments, so that the user can test a link in a single session. 

A.2.2 Constructing A Hypermenu Prototype for HP's Test Equipment 

To construct a hypermenu for HP's test equipment, we first need to identify the work 

object representation. The original work object representation is made up of the entities 

shown in Figure A.1.2.1. Test manager, testers, sessions, and instruments become cluster 

hypermenu components, while devices are leaf hypermenu components. In our 

hypermenu prototype, we slightly modified the work object to take full advantage of the 

hypermenu's features. First, we added a representation under each instrument to indicate 

the selected protocol. Therefore, in addition to devices, an instrument also contains a 

selected protocol map. Second, we replace the concept of an instrument builder with an 

undefined instrument. Hereafter, an instrument is either defined or undefined. Opening a 

defined instrument exposes all its devices and the selected protocol map. In contrast, an 

undefined instrument is always closed and has one zoom state represented by a dialog box 

that provides similar functions to an instrument builder. 

Once we have completely identified the work object and all subsequent components, we 

insert them into our hypermenu hierarchy. As shown in Figure A.2.2.1, test manager, 

tester, and session are made into cluster hypermenu components. Figure A.2.2.2 shows 
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Figure A.2.2.1: The hypermenu hierarchy constructed for HP's test equipment. Note that 
the notion of "undefined instrument" replaces the previous instrument builder. Thus, 
instruments are either defined or undefined. 



Figure A.2.2.2: Abs ;traction representations. (a) A test manager, (b) A tester, (c) A 
seision, note highlight, indicating some devices have been selected. (d) Instruments: 
from left to right: an undefined instrument, an instrument with one device occupying slot 
nine, an instnlment with two devices occupying slot six and eight. (e) From left to right: 
a selected protocol map, a cell protocol processor, a line interface. 



the closed representation for all the hypermenu components. The close abstractions for the 

test manager, tester and session need to convey only their identification. Thus, they remain 

unchanged at all times. However, this is not true for an instrument. When an instrument is 

undefined, it is a leaf hypermenu component; but once an instrument is defined, it becomes 

a cluster hypermenu component. Since an instrument is composed of either one or two 

devices, different abstractions are needed to represent the number of devices. In fact, the 

closed representation of an instrument also needs to report the number of devices and slot 

numbers they occupied in the instrument. Figure A.2.2.2(d) shows a few sample 

abstractions for an instrument. 

Note that an instrument's closed representation needs to change dynamically to update 

its status. When a cluster hypermenu component is opened, it is drawn as a filled 

rectangle. Additionally, some leaf hypermenu components have only one zoom state. 

Among them are the selected protocol map and the undefined instrument (See Figure 

A.2.2.3). 

Our hypermenu prototype supports size-dependent representations for all the devices. 

Each device has two zoom states with different sizes and representations. According to 

HP, a device only needs to be fully opened for configuration. Otherwise, it only needs to 

display component status for examination. In general, it consumes less screen space to 

display component status than the entire dialog for configuration. With support for size- 

dependent representation, the hypermenu approach facilitates optimal use of screen space. 

Figure A.2.2.4 shows all the size-dependent representations for the cell protocol processor 

and line interface modules. 



End-to-End 

Services 
mil 

Adaptation 
mEi 
m 

Cell m 
Convergence Imm 
Physical HmfI  

Protocol Selection 

End-to-End Wa 

Module Selection 

Slot 3 4 5 6 7 8 9 10 

Figure A.2.2.3: Abstraction representations. (a) Open abstraction of a selected protocol 
map. (b) Open abstraction of an undefined instrument. 
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Figure A.2.2.4: Abstraction (a) Initial open abstraction of a cell protocol 
processor module.@) Fully opened abstraction for a cell protocol processor module. 
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Figure A.2.2.4 (continued): (c) Initial open abstraction for a line interface. (d) Fully 
opened abstraction for a line interface. 



A.2.3 Behaviors Of The Hypermenu Interface 

To illustrate the hypermenu approach to a BSTS user interface, we show how a user can 

perform the two most common tasks with the hypermenu interface. First, we will show 

how a user can build an instrument and then interact with its components. Second, we will 

show a scenario where the user examines and compares multiple devices simultaneously. 

A .2.3.1 Defining And Configuring An Instrument 

Defining and configuring an instrument is a very tedious decision-making process. 

According to HP developers, users tend to be confused during the lengthy process. Thus, 

preserving the configuration sequence is extremely important to avoid confusion and 

disorientation. To define an instrument with our hypermenu prototype, the user takes the 

following steps: 

Launch the software. Initially, the hypermenu interface shows the closed test 

manager, which can be the product logo (See Figure A.2.3.1.1 (a)). 

Open the test manager. An opened hypermenu component is drawn as a filled 

rectangle. Each level in the hypermenu hierarchy is assigned a unique color to 

indicate the depth of a component in the hierarchy. In the context of configuration, 

opening a hypermenu component immediately exposes all its sub-components 

which correspond to the next set of choices. Opening the test manager exposes two 

testers as shown in Figure A.2.3.1.1 (b). The hypermenu interface animates all size 

changes during a basic operation to pr~vide~visual  continuity. Throughout 

configuration, the user selects a choice by opening or zooming it directly. 

Selecting and opening a tester exposes two sessions within. (See Figure 

A.2.3.1 .l(c)). 



(4) Selecting and opening a session exposes two initially undefined instruments (See 

Figure A.2.3.1.1 (d). 

( 5 )  Selecting and zooming in an undefined instrument (See Figure A.2.3.l. 1 (e)). At 

this stage, the user selects proper parameters from the protocol and module 

selection panels. Pressing "Define Instru" defines the instrument. Immediately 

afterwards, the hypermenu interface zooms out the instrument and displays the 

proper abstraction. Figure A.2.3.l .l(f) shows an example where the user has 

selected two devices occupying slot six and eight. Defining an instrument involves 

creating hypermenu components that contain the selected protocol map and the 

composing devices. 

(6)  If further configuration is needed, the user can open an instrument and get into 

lower levels of details. When a defined instrument is opened, all its components 

are initially in closed state (See Figure A.2.3.l .l(g)). To configure a device, the 

user needs to zoom it in fully in order to access all details. Figure A.2.3.1 .l(h) 

shows a fully zoomed-in cell protocol processor module. 

If a mistake is discovered after defining an instrument, the user can delete the 

instrument and start over again (See Figure A.2.3.l . l  (d)). 



(a) A closed test manager. 

(b) Open a test manager to see two testers. 

(c) Open a tester to see two sessions. 

Figure A L 3 . l .  1 : Configuration using the hypermenu interface. 



(d) Open a session to see two undefined instruments. 

(e) Open undefined instrument to select protocol and modules. 

(f) Devices in slots 6 and 8 defined in the leftmost instrument. 

Figure A.2.3. l . l :  (continued). 



(g) Opening a defined instrument shows the selected protocol map and device(s) within. 

(h) Instrument cpp opened for parameter adjustment. 

Figure A .2.3.1.1: (continued). 



4.2.3.2 Examining And Comparing Hypermenu Components 

There are times when the user needs to examine and compare components in different 

testers or 'test sessions. Such situations arise when multiple instruments are needed to test 

different parts of a network. During configuration, the user may want to place components 

side by side for identical settings. During examination, the user may need to look at 

multiple components simultaneously. In both situations, displaying all the components of 

interest is a primary concern of the user. 

Since the discrete zoom algorithm supports multiple foci, the hypermenu interface is 

capable of displaying multiple components in detail as long as there is enough screen space. 

To examine a device, the user only needs to zoom into it. Figure A.2.3.2.l(a) shows a 

scenario where two devices have been zoomed in. All other components and filled 

rectangles constitute the work context, which reflects relationships among components and 

the entire system. With the work context in full view, the user can identify where a 

component belongs and the chance of confusion is reduced. Moreover, since hypermenu 

components do not overlap one another, every component on the display is fully visible to 

the user. In case of insufficient screen space to display a component in detail, the user can 

zoom out or close other components to increase available screen space. Alternatively, the 

user may enlarge the hypermenu's application window as much as the display allows. 

Figure A.2.3.2.l(b) shows a scenario where four devices and three protocol maps are 

simultaneously zoomed in. When shrinking its application window, the hypermenu 

interface automatically closes all hypermenu components to prevent any of them from lying 

outside the application window. 



(b) 

Figure A.2.3.2.1: Examine system components. 
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