
HYPERMENU:

INTEGRATING FUNCTION ACCESS AND WORK
OBJECT REPRESENTATION IN GRAPHICS

APPLICATIONS

Albert Chan

B.S.E.E., University of Texas at Austin, 1992

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the School
of

Engineering Science

O Albert Chan 1996
SIMON FRASER UNIVERSITY

November 1996

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the pennission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Albert Chan

Master of Applied Science

HYPERMENU: INTEGRATING FUNCTION ACCESS

AND WORK OBJECT REPRESENTATION IN

GRAPHICS APPLICATIONS

Examining Committee: Dr. Paul Ho
Associate Professor, Engineering Science, SFU
Chairman

Date Approved:

D ~ T O ~ Calvert
Professor, Engineering Science, S N
Supervisor

gineering Science, SFU
Senior Supervisor

Dr. John Jones
Associate Professor, Engineering Science, SFU
Examiner

November 15, 1996

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project or extended essay (the title of which is shown below) to users of the
Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its usrs. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed without
my written permission.

Title of ThesiflrojectlExtended Essay

11 ermenu: Inte~ratinp Function Access And Work Object - -
Representation in Graphics Applications"

Author:
(signature)

Albert Chan
(name)

September 20.1994
(date)

ABSTRACT

Traditionally, interactive computer programs consist of a set of functions to be applied to an

underlying "work object". The user interfaces of these programs thus consist of

mechanisms for accessing functions and some kind of visual representation of the

underlying work object. Indeed, many user interfaces function like "menu applications".

Unfortunately, traditional menu applications quickly become limited and difficult to use as

the number of functions and complexity of the work object increases.

To facilitate interaction and preserve the user's orientation, this thesis proposes a new

menu mechanism, called hypermenu, designed for hierarchical work objects. It uses a

hierarchy and a context management scheme. Each component in the hierarchy is a

combined representation of function access mechanism and a corresponding component in

the work object representation. The context management scheme uses visualization

techniques to organize the on-screen layout and appearance of all the components in the

hierarchy. Ideally, our hypermenu approach turns an application into its own menu, and

lets the user see details in context and access application functions via direct manipulation.

We have implemented two hypermenu applications for evaluation, one for a computer-

aided-design tool based on Group Technology, the other for the user interface of a

telecommunication network testing system.

To my church and family

ACKNOWLEDGMENTS

I am grateful to my Lord and personal saviour Jesus Christ for providing excellent faculties

and facilities at Simon Fraser University.

I would especially like to thank my supervisor Dr. John C. Dill for providing me the

opportunity to work on this challenging and interesting project, for his many valuable

advice and suggestions, and tremendous help in revising this thesis.

I would like to thank Frank Henigman for his kind help, and Mark Leonard for allowing

me to include material related to their telecommunication network test system in this thesis.

Also, many thanks to the graduate secretary, Brigitte Rabold, for her kind help.

I am very grateful to my committee members, Dr. Tom Calvert , Dr. John Jones for their

assistance and help.

CONTENTS

... .. ABSTRACT LII

.. ACKNOWLEDGMENTS v

... LIST OF FIGURES ix

.. VARIABLES .xi

.. 1 INTRODUCTION 1

.. 2 LITERATURE REVIEW 6

Explicit Menu Systems .. 7

2.1.1 Partial Screen Approach .. 8

... 2.1.2 Full Screen Approach -10

... On-Demand Menu Systems 11

... See-Through Menu System 14

Embedded Menu Systems ... 15

... 2.4.1 Embedded Menus 16

.. 2.4.2 Documents As Menus 18

.. Hierarchical Information Visualization 19

.. Hypermenu: A New Mechanism 23

... 3 THE HYPERMENU CONCEFT 24

.. 3.1 Hypermenu Concepts 24

.. 3.1 . 1 Hierarchical Organization 24

3.1.2 Definitions And Traditional Menu Systems 26

.. 3.1.3 Hypermenu Overview 27

.. 3 . 1.4 Hypermenu Components 29

3.1.5 The Context Management Scheme Of Our Hypermenu
... Approach 31

................................... 3.1.5.1 Discrete Zoom Algorithm 32

... 3 . l . 5.2 Outline Animation 36

3.1.5.3 Work-Object-Constraint Controlled Hypermenu
... Hierarchy 38

.. 3.2 Navigation And Function Access 39

...................................... 3.3 Construction Of Hypermenu Applications 40

.. 4 HYPERMENU LLLUSTRATIONS 42

.. 4.1 Introduction -42

.................................. 4.2 Hypermenu Approach To Group Technology 43

.................................. 4.2.1 Introduction To Group Technology 43

4.2.2 Constructing A GT Database Hypermenu Application 46

.......................... 4.2.3 Behaviors Of The Hypermenu Application 49

............ 4.2.3.1 Search for a mechanical part in browse mode 50

4.2.3.2 Defining and fine-tuning a mechanical part in
.. design mode 56

.............................. 4.3 A Hypermenu Interface To An Equipment Tester 60

4.3.1 Background .. 60

................ 4.3.2 The Hypermenu Approach- An Improved Interface 61

... 4.4 Implementation 64

.. 5 DISCUSSION 65

....................................... 5.1 Evaluation Of The Hypermenu Approach 65

5.2 Discrete Zoom verses Continuous Zoom .. 68

... 6 SUMMARY 70

vii

6.1 Summary For Our Hypermenu Approach 70

6.2 Further Research Directions .. 72

A The Hypermenu Approach To The User Interface Of HP's Test System 74

A.l Introduction to HP's test equipment ... 74

A . 1 . 1 Telecommunication network Concepts 74

A . 1.2 HP Test Equipment Concepts ... 75

... A . 1.3 Existing BSTS User Interface 76

A.2 Hypermenu Prototype for HP's Test Equipment 78

............................ A.2.1 Design Objectives Of The User Interface 79

A.2.2 Constructing A Hypermenu Prototype for HP's Test
... Equipment 80

A . 2.3 Behaviors Of The Hypermenu Interface 87

................ A .2. 3.1 Defining And Configuring An Instrument 87

4.2.3.2 Examining And Comparing Hypermenu
.. Components 92

... REFERENCES -94

viii

LIST OF FIGURES

............................... 1.1 Typical user interface for hierarchical systems 2

1.2 Traditional menu systems such as nested pull-down menus are
... popular -3

.. A taxonomy of menu systems 7

An Autocad application [Autodesk 911. 8

.. The main menu for MARC [Tullis 851 10

...................................... An example of pie menus [Callahan 881 13

....................................... A Toolglass sheet of widgets [Bier 931 14

.................................. Examples of Embedded Menus [Koved 861 17

.................................... Examples of EmbeddedButtons [Bier 911 19

.. Cone Tree [Robertson 9 11 22

Hierarchical organization and representation for an on-line reference
... manual 25

............................... Tree structure for an on-line reference manual 25

Example of a hypermenu layout .. 28

Example of opening a hypermenu component 29

.................... Example of zooming and size-dependent representation 31

.. Magnification example 32

Sample three node hierarchy. initial size 34

Node C zoomed out from Figure 3.7 .. 35

Example of zooming in a hypermenu application 37

Example of opening in a hypermenu application 37

Example of work-object-constraint controlled hypermenu behavior 39

MDSI code structure ... 45

MDSI code specification .. 45

Hierarchical abstraction and size-dependent representation of a
... defined mechanical part 48

Hierarchical abstraction and corresponding part family 48

Hierarchical abstraction and size-dependent representation of an
undefined mechanical part .. 49

.......... Search for a defined mechanical part in a hypermenu application 51

.. Pulley to be designed 57

Example of defining a new mechanical part at second digit level 57

Organization of the hypermenu hierarchy for HP's test system 61

Illustrations of our hypermenu application for HP's test system 63

... Logical entities in HP's BSTS 76

Dialog boxes representing some entities of HP's test equipment 77

The hypermenu hierarchy constructed for HP's test equipment 81

... Abstraction representations 82

Abstraction representations ... 84

Abstraction representations ... 85

............................... A .2.3. 1 .1 Configuration using the hypermenu interface -89

... A .2.3. 2.1 Examine system components 93

VARIABLES

Scale factor of a node.

Final size of a node.

Initial size of a node.

Total amount of space requested by a cluster in the X direction.

Normal length of the ith interval.

the scale factor of the ith interval.

The length of an intermediate node.

the kh step during zooming.

the total number of steps during zooming.

CHAPTER 1

INTRODUCTION

Traditionally, interactive computer programs consist of a set of functions to be applied to an

underlying "work object". User interfaces of these programs thus consist of mechanisms

for accessing functions and some kind of visual representation of the underlying work

object. For example, modern word processors provide menus for the user to apply

application functions to their document representations. A portion of these programs

contains hierarchically organized work objects or hierarchical systems.

As technology advances, hierarchical systems, from automated teller machines to

complex computer aided design packages, have become a part of our lives. Consider for

example a microprocessor consisting of cache, arithmetic logic unit, and a floating point

unit. The arithmetic logic unit is made up of flip flops; flip flops in turn are made up of

logic gates, and each logic gate is also made up of transistors, resistors, and capacitors.

Hierarchical organization facilitates management of complex systems and is widely used

nowadays. Equally significant, the user interface of hierarchical systems directly affects

the efficiency of user interactions.

Figure 1 . I illustrates the user interface of a modem hierarchical system taken from a

telecommunication network testing system. The user interface comprises over twenty

dialog boxes, where each dialog box represents a functional part of the system. In this

example, the user interface is essentially a menu mechanism providing access to different

parts of the underlying system. Indeed, user interfaces of many hierarchical systems

function like "menu applications".

Though the complexity level of hierarchical systems has increased rapidly, screen space

has not. As a result, it is important to develop user interfaces meeting the following

criteria:

1 . provides a comprehensive representation of the work object and preserves the

user's orientation.

2 . facilitates interactions and navigation within the application.

In this thesis, we focus on developing a new menu mechanism that can be used effectively

in hierarch ,ical systems.

Figure 1 .l: Typical user interface for hierarchical systems.

Problem Statement: Often, the primary job of a hierarchical system is to allow

management, configuration and visualization of a work object. Traditional user interfaces

require users to remember each configuration step and the purpose of every window as

well as its position. Such a mental load violates the well-known human memory capacity

limitation of no more than seven plus or minus two "chunks" [Miller 561 and therefore

handicaps navigation. For example, random placement of windows indicates no intuitive

relationship among the component objects they represent and becomes disorienting to the

users. Overlapping windows and dialog boxes induce significant user interface overhead

and hinder user interaction. Furthermore, it is difficult for the user to form a full picture of

the work object by mentally integrating dialog boxes and windows.

On the other hand, a menu system can at best present a subset of information in detail to

the user at any given time. Very often, individual menu items are organized into a one-

dimensional hierarchical menu system [Callahan 881, i.e. single linear list, because of

insufficient screen space. Organized menu hierarchies have been proven to improve user

performance [Miller 8 1] [Barnard 771. Figure 1.2 shows a menu mechanism widely used

Figure 1.2: Traditional menu systems such as nested pull-down menus are popular

by today's applications and operating systems. Unfortunately, as the number of menu

items grows, it will be much more difficult for the user to locate and access individual

menu items even with hierarchical menu systems. Instead of aiding the user, complex

menu systems may prevent the user from accessing functions quickly and accurately [Kiger

841. Most traditional menu systems suffer from the following weaknesses:

1 . It is separate from the work object. This requires the user to track the menu system

separately and thus increases the cognitive load of the user. One must access

functions through a separate menu mechanism that links the functions and the work

object representations.

2. Very often, selecting a menu item brings up a separate dialog box that provides the

user with no immediate hints on its relationship with the menu item or the

application.

3 . The menu system gives the user no overview of its organization. Providing the

global context of the menu system is important when there is a large number of

menu items.

4. A separate menu system consumes screen space, processor cycles to display, and is

very likely to obscure the work object and thus become disruptive [Kurtenbach 931.

5. It is impossible for the user to simultaneously look at and compare two menu items

from different substructures of the menu hierarchy.

6. Traditional menu systems are limited to represent only functions, not other objects

in the system.

In modern systems, menu mechanisms have become even more vital to the speed and

effectiveness with which users navigate and access system functions. Many menu

mechanism variations have been developed to facilitate function access. Improving menu

5

mechanisms continues to be a focus for many researchers, and new strategies continue to

be investigated [Landauer 871 [Hopkins 911.

Based on previous research in the IGI project [Schaffer 93, Dill 94, Bartram 951, this

thesis develops a new menu mechanism, called a hypermenu, which utilizes the

continuous zoom [Dill 941, to facilitate accessing functions and work objects in large

hierarchical systems.

Our hypermenu approach integrates the menu mechanism with the work object

representation, and uses visualization techniques to let the user see details in context. In

addition, the hypermenu approach allows navigation and function access via direct

manipulation. This new mechanism has been developed for general hierarchical systems

and may be applied to a range of application domains.

Thesis Organization: This thesis is organized as follows: Chapter 2 reviews current

technologies on menu systems and hierarchical information visualizations. Chapter 3

describes general hypermenu concepts. Chapter 4 describes two illustrative applications to

which our hypermenu approach was applied: a Group Technology design aid, and a

telecommunication network test system. Chapter 5 analyzes our hypermenu approach and

describes its strengths and weaknesses, and Chapter 6 summarizes our hypermenu

approach and discuss further research directions.

CHAPTER 2

LITERATURE REVIEW

The main reason for the success of menus is allowing users to work with recognition

memory, where visual images (text or iconic menu items) are associated with already-

familiar words and meanings [Foley 901. Generally speaking, approaches to menus can be

categorized into four classes: (I) explicit menu; (2) on-demand menu; (3) see-through

menu; and (4) embedded menu mechanisms (see Figure 2.1). This taxonomy emphasizes

the embedded menu mechanism category, which is closely related to our new mechanism.

This chapter first describes and reviews these menu systems. Then, we review some

recent research on hierarchical visualization and navigation to provide the necessary

background for our approach. Lastly, we briefly introduce our new mechanism which

solves some problems in previous methods and may be applied to a variety of applications.

-

H See-Through I

Partial Screen

Linear Menu

Documents as Ul 1

-

Hypermenu n

-
Explicit

- Pie Menu
Menu Systems -

On-Demand

Embedded -~

Figure 2.1 : A taxonomy of menu systems.

Full Screen

r 1

-

-

. Embedded Menus

2.1 Explicit Menu Systems

The inherent limitations of human memory combined with the current information

explosion increasingly force users to rely on their abilities to navigate to an item rather than

memorizing its exact location [Barnard 771. For this reason, menu systems have been

developed to facilitate locating individual items among a very large set of functions.

Today, most menu systems display available functions as input choices and are separate

and distinct from the work object representation. Explicit menu systems [Koved 861

occupy fixed locations and use fixed amount of screen space on the display. They have the

advantage of being visible to the user at all times. Explicit menu systems usually supply an

explicitly enumerated list of items from which the user selects. In the following

subsections, we describe two variations: partial screen approach, and full screen approach.

2.1 . 1 Partial Screen Approach

This approach is widely used today, with variations including toolbars, palettes in graphics

applications, and tear-off menus. They usually accommodate frequently accessed

functions. Many explicit menus are only one level deep and may accommodate a limited

number of items to reduce effort spent on tracking. To accommodate a large number of

menu items, menu designers have employed hierarchical schemes. Autocad [Autodesk 891

is such an example. Nevertheless, modem menu design attempts to reduce the number of

levels in the hierarchy to facilitate tracking and navigation.

Figure 2.2 shows a screen shot of Autocad. Residing on one side of the screen, the

' File Edit .
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.

Messages:

Menu List

UP
tine
Rectangle
Ellipse
Circle
Square
Polygon
Triangle

Figure 2.2: An Autocad application. The work object is displayed on the top-left display
area, and the menu system is located on the top-right display area [Autodesk 911.

menu can accommodate only a few items at a time. With this approach, the work object

and the menu system each have their own non-overlapping display areas. A menu item is

represented by a text string in the menu area. Because of the limited menu display area,

menu items belonging to the same level in the menu hierarchy are organized into groups.

The user accesses functions by traversing the menu hierarchy. Selecting the top-most

menu item brings the user back to the top level of the menu hierarchy. Selecting other

menu items either executes the corresponding function or displays menu items one level

down in the hierarchy. Finally, the user may switch between menu groups in the same

level.

The major advantage of the partial screen approach is allowing relatively quick access to

menu items. In addition, the hierarchical version allows a virtually unlimited number of

menu items. Also, the user always has a working set of functions on screen. However,

the main disadvantage of this approach is the permanent consumption of screen space. For

the hierarchical approach found in Autocad, there are two more disadvantages. First, it can

be disorienting to the user because there is no indication of current path. Second, it can be

distractive and confusing to the user because of the additional memory load required to

track and navigate a menu system with many hierarchical levels. Users tend to lose track of

the target they seek. As one moves through deeper levels of a hierarchy, the ability and

time taken to make a correct selection depends on remembering the previous selection

[Snowberry 831.

Short-term memory capacity for young adults averages seven plus or minus two digits

[Miller 561. If each choice in a hierarchy requires a unit of short-term memory, six levels

of hierarchy is pushing a user's short-term memory capacity to the limits [Snowberry 831.

Our new menu mechanism, in contrast, takes context into consideration to reduce the user's

tracking effort and attempts to increase the number of levels in the hierarchy without

inducing disorientation.

2.1.2 Full Screen Approach

With this approach, the menu system takes up the entire screen. An example is the Menu-

Assisted Resource Control System (MARC) designed to help both new and experienced

users access any of the features provided by an operating system [Tullis 851. In designing

MARC, researchers attempted to answer two questions: (I) how to determine the user's

view of the relationships among the large number of functions in an operating system; and

(2) how to reflect those relationships in a menu hierarchy.

MARC is a very large text-based hierarchical menu system in which available system

commands are sorted into logically related groups, and then inserted into the menu

hierarchy. The main menu of MARC is shown in Figure 2.3. MARC is a two-level deep

multi-column menu system. All functions available from the operating system can be

HOME - OPERATOR SELECTIONS MARC
Action: [1

Home PArent GO PRevious Quit Press SPCFY for Help

JQ Job Queues

PK
PS Print System DK

DT
CON System Config MT
SM System Mngmt
DUMP Dumps LP
DlAG Diagnostics IP

USER

Disk Pack PRIV
Fixed Disk
Diskette DISK
Magnetic Tape TAPE

ACC
Line Printer LIB

Image Printer

DJ Display Jobs CR Card Reader HLI H/L & lntrinsics
CJ Control Jobs CP Card Punch SP Special Prog's

Usercodes
Privilege

Disk File Mngmt
Tape File Mngmt
Access Structure

Lib's, Subsystem

LOG Logging DC Datacomm Control
SWAP Swapper MM Memory Modules NET BNA Control
MCP MCP Control PROC Processors COMS COMS Information
DATE Date and Time SC System Console SESS Session Control

OTHER Other Devices SEND Send Message

Choice: { I
--

Figure 2.3: The main menu for MARC [Tullis 851.

accomplished by viewing only two menus. To navigate within MARC, the user types the

index of a selectable item. Then, a new screen of menus replaces the previous menu.

Other full screen applications such as m, a UNIX news reading program, require the

user to switch back and forth between the work object and a full screen menu system.

A full screen menu system has three main advantages over command-line driven

interface. First, it improves user performance by allowing the user to type an index rather

than the entire command. Second, it helps the user to make fewer mistakes by providing

available options on screen. Third, it reduces users' memory load by constantly reminding

the user what is available to him or her. However, it also shares some disadvantages with

the partial screen approach. First, it can be disorienting to the user because there is no

indication of current path. Second, a deep menu system is difficult to navigate because of

limitations on human memory [Snowberry 831. Third, the full screen approach becomes

very disruptive by forcing the user to switch back and forth between the work object and

menu System.

2.2 On-Demand Menu Systems

Unfortunately, explicit menu systems require their own display area and must contend with

the work object for screen space. To minimize screen space usage, on-demand menu

systems such as pull-down menus from Apple Macintosh, based primarily on pioneering

work at Xerox in the mid 1970's [Foley 901, have been developed, and much research

effort has been spent on menu organization, format and physical layout [Perlman 841

[Callahan 881 [Landauer 851 [Snowberry 831 [McDonald 831 [Barnard 771. In the

following subsections, we wil1,describe two different menu layouts: (1) rectilinear layout,

which is widely used, and (2) circular layout, which is still being investigated.

In general, on-demand menu systems appear temporarily when activated by the user.

They have been designed to occupy a minimum amount of screen space when not activated.

On-demand rectilinear menus have many advantages: (a) they conserve screen space,

(b) they reduce user memory load, (c) they are strictly organized; thus predictable to

users, and (d) they may easily be applied to most applications. However, they also have

drawbacks. First, on-demand menus obscure the application object and may become

disruptive [Kurtenbach 931. Second, it takes processor time to display the menu and hence

reduces performance [~urtenbach 931. Third, the effectiveness of the menu format

depends highly on the intended user [Barnard 771. Finally, seek time increases

proportionally to the distance of the target from the initial cursor location [Callahan 881 and

list length also has a linear effect on the time a user takes to find an item [Perlman 851.

Seek time is the time it takes to reach the target after initiating a search for it.

In presenting a list of choices to the user, most computer systems use a rectilinear

format because of available hardware and software limitations. With a rectilinear format,

menu items are listed horizontally or vertically, sometimes with a keyboard equivalent for

each item. Hierarchical schemes have also been employed, but most menu systems are

essentially one dimensional, i.e. simple linear lists of items. The essential idea of

hierarchical scheme is allowing the user to bring up a sub menu list from an existing menu

item. The look-aside or cascade menu, (Figure 1.2), is an example of such a scheme.

Most on-demand menu systems are activated from mouse actions in two formats: pull-

down or pop-up. As mentioned before, the menu system itself appears to be separated

from the work object representation and activated by users. To navigate within the menu

system, the user only needs to activate the menu system and select the desired item. In case

of a hierarchical or cascading menu system, the user may recursively select menu items that

eventually lead to the desired item.

A variant of the rectilinear approach is the so called "pie menu" (Figure 2.4) whose goal

is to allow quicker menu selection and to minimize mistakes made during menu selection

[Hopkins 911. Items in the pie menu are placed at equal radial distances around the

circumference of a circle. Users typically accesses pie menus via the traditional pop-up

method. However, the starting cursor position is at the center of the pie menu instead of

being at the menu title or the first item in the traditional pull-down menus. Since items are

placed at equal radial distances from the center of the menu, the user only needs to move

the cursor by the same amount in different directions to select. Pie menus support

hierarchical schemes with menu item selection bringing up another pie menu centered at that

menu item. Thus, the user navigates the menu system by recursively selecting and

activating desired items.

Pie menus offer advantages such as decreased selection distance and increased target

size; therefore, it keeps the seek time fairly constant. However, pie menus also have some

disadvantages in addition to those shared by rectilinear menus. Pie menus consume more

screen space and become polynomially larger than rectilinear menus with increased item

size and number of items [Callahan 881.

Tie Insert I
Figure 2.4: An example of pie menus [Callahan 881.

See-Through Menu System

A more recent innovation uses semi-transparent, often icon-like, menus that appear as

though on a transparent sheet of glass, between an application and a traditional cursor [Bier

931. This method can provide context-dependent feedback and the ability to view details

and context simultaneously. Bier's Toolglass and Magic Lenses [Bier 931 is an example of

a See-Through interface. It is intended to be used with graphics-oriented applications such

as image editing. Their approach makes use of semi-transparent interactive tools, called

Toolglass widgets, that sit between the application and a cursor. These widgets can

provide a customized view of the underlying application object using viewing filters called

Magic Lenses. Each lens is a screen region with an embedded function or command such

as "magnify" and "apply color". The user positions a Toolglass sheet over desired objects

and then points and clicks through the widgets and lenses. These tools create spatial modes

that can replace temporal modes in user interface systems [Bier 931.

Figure 2.5 shows a set of simple widgets called click-through buttons, which can be

used to change the color of objects below them. The user first positions the button on top

of the object to be colored and then clicks "through" the button.

r

Figure 2.5: A Toolglass sheet of widgets. Clockwise from upper left: color palette, shape
palette, clipboard, grid, delete button, and buttons that navigate to additional widgets [Bier
931.

There are three approaches to support navigation within the See-Through menu system.

The first approach is to put all widgets on a single sheet that can be navigated by scrolling.

The second approach is to employ a hierarchical scheme that allows a master toolglass sheet

to generate other sheets. The third approach is to allow a single toolglass sheet to display

different sets of widgets at different times. For example, the user can click on a special

widget to navigate to another set of widgets.

See-Through interface brings four major advantages. First, it consumes little screen

space because it can be dragged off the screen any time. Second, using a spatial mode to

access functions or commands avoids confusion brought by temporal modes. Third,

providing instant feedback on button functions further minimizes memorization of

commands. Finally, all alternative representations of the underlying application are limited

within lenses when viewed through them; thus, the See-Through interface preserves the

work context with minimal disruption.

Unfortunately, See-Through Menu and the work object representation are still separate

entities in the user's mind and requires extra effort on tracking and manipulation.

2.4 Embedded Menu Systems

In early 19801s, Koved coined the term "embedded menus" and applied it to text-based

applications in [Koved 861. Other researchers later extended the concept and applied to

other application domains. Despite the differences in these embedded menu systems, they

share some common goals. First, designers of embedded menu systems attempt to embed

the menu system into the application or document object. Doing so reduces the need for a

separate menu system. Without a separate menu system, distraction can be reduced.

Second, designers of embedded menu systems attempt to use the application or document

object itself to provide global context for the menu system. Doing so reduces the chance of

disorienting the user during navigation. Third, embedded menu systems allow users to

access application functions via direct manipulation. In the following subsections, we

describe two different embedded menu applications: Embedded Menus, designed for text

editors and database retrieval systems, and Documents as User Interfaces, designed for text

and graphics editors.

2.4.1 Embedded Menus

[Koved 861 describes Embedded Menus, targeted at text-based applications such as text

editors, database and on-line manual systems. Embedded Menus allow menu items to be

embedded within the information displayed on the screen. This information thus provides

context for the menu items. In embedded menu, highlighted or underlined words or

phrases within the text become the menu items and are selectable using any pointing device.

Figure 2.6(a) shows a screen shot of a spell checker used as one of the examples in

[Koved 861. Instead of extracting and displaying the list of incorrect spellings in an explicit

menu, the spell checker underlines them directly in the document. With a pointing device,

the user can select them individually which brings up a closely positioned explicit menu

suggesting correct spellings. The user can then select the correct spelling from the explicit

menu.

Embedded Menus have been applied to history databases (Figure 2.6(b)) and on-line

manual systems [Koved 861. Selecting a menu item retrieves the corresponding article.

Today's hypertext links [Nielsen 901, where menu items were embedded in the on-line

documents but distinguished in appearance by being bolded or italicized, closely resemble

Embedded Menus.

Two experiments were conducted to evalate
two stvles of on-line documents. One exper- k
iment compared two methods of
on-line information that allowd
to specify the direction of the
search. The first manual
the reader's decisions
The second manual did not record the deci-
sions, and had to ask the reader for the
same information several tims in order to
complete the task. The manual that recorded

1 the &formation allowed people to work over
twice as fast and was pr6ferr;?d over the other
manual.

Events: ANSCHLUSS Page 2 of 7

The victorious Allies disapproved of such
a union and specifically forbade it in
both the Treaty of Versailles and the
Treaty of S t . German-en-Laye . Austrian
nationalism remained weak throughout
the interwar period (1918-1939). During
these years, Austria like Germany, gave
rise to a number of right-wing and
fascist political movements. Indeed,
Adolph Hitler's own Nazi party had
a sizable Austrian branch. In 1934,

Engelbert Dollfiss , a member of the
Christian Social Party, destroyed the
First Republic's fragile parliamentary
democracy and established a right-wing
dictatorship.

Next Page Previous Page Return t o FREUD

Figure 2.6: Examples of Embedded Menus. (a) Misspelled words are highlighted in the
Embedded Menus. (b) Example from Interactive Encyclopedia System. Bold italic words
are buttons of Embedded Menus [Koved 861.

There are three advantages to the Embedded Menus method. First, it allows the user to

navigate and access application functions via direct manipulation. Second, it provides

context for each menu item with the surrounding document. Third, it conserves screen

space by using a combination of pop-up menus and highlighted items. However, when

applied to on-line document systems as shown in Figure 2.6(b), Embedded Menus provide

no clue on orientation. For example, there is no indication of user location in the system,

how one arrived at the current page, nor relationships between previous pages and the

current page. As a result, it becomes disorienting to the users.

2.4.2 Documents As Menus

In [Bier 901, the authors describe a framework that embeds menu systems into the work

object (mainly documents) representation. Each document in turn provides a context for its

embedded menu items. Later, [Bier 9 11 described their approach, called EmbeddedButtons

in more detail. When designing EmbeddedButtons, the authors extended the embedded

menus concept to support both text and graphics editors. In addition, the authors attempted

to provide user interface layout tools along with active documents. An active document

contains both information and embedded buttons which the user selects to execute the

corresponding functions.

EmbeddedButtons is an architecture that allows arbitrary document objects to become

buttons. Documents can be linked to an application to serve as control panels or menu

palettes. Furthermore, EmbeddedButtons also support pop-up menus, multi-state buttons

and radio buttons.

When applied to graphic applications, EmbeddedButtons allows the user to build a

sheet of embedded buttons with a graphics editor and use the sheet as a menu palette.

Figure 2.7 shows a palette of embedded buttons for a graphics editor. A text or graphics

Filled hollow border

- Palatino Cour ie r New York Chicago Monaco

Figure 2.7: EmbeddedButtons example: A menu palette that is itself a picture and is
created with the same graphics editor [Bier 911.

editor is said to be in active mode when all mouse motion and mouse button events are

delivered to EmbeddedButtons; otherwise, all such events are treated as normal editor

operations. When a button is in active mode, it is enclosed by a rectangular box.

EmbeddedButtons has three major advantages. First, it reduces the chance of

disorientation by providing context for menu items using the application or document

object. Second, it allows direct manipulation on the underlying application through

interacting with the embedded menus and buttons. Third, embedding buttons and menus

may be used to conserve screen space. However, when applied to graphics editors, a

palette of embedded buttons is still separate from the work object representation and

inherits the disadvantages of explicit menu systems.

2.5 Hierarchical Information Visualization

Since we can consider a hierarchical menu system itself to be an information system, it is

relevant to review some recent research on visualizing hierarchical information systems.

[Card 911 described some observations on human information processing. Humans

attempt to simplify voluminous information through aggregation, abstraction and selective

omission, which facilitates pattern recognition. For this reason, human beings have used

hierarchical schemes in structuring complex systems to facilitate information absorption.

[Furnas 861 described a fisheye technique to display hierarchical structures. It was

designed to provide a balance of local detail and global context. This technique can show

an area of interest, called the focus, in great detail while still showing remote regions in

successively less detail. Early prototypes were designed to be used on text-based

applications. The major drawback to this method is the fact that components are either

present or absent. It is impossible to vary size and level of detail.

In 1993, [Schaffer 931 described the Variable Zoom which evolved from Furnas'

fisheye technique. The Variable Zoom was designed to display large hierarchical

structures. Zooming is the fundamental interaction technique. The Variable Zoom

supports multiple foci and preserves the global context at any given time. However,

zooming induces size changes in a single step, and destroys visual continuity.

Shortly after, [Dill 941 described the Continuous Zoom which is an extension to the

Variable Zoom. The Continuous Zoom offers fine control over the size of an object during

zooming, and preserves visual continuity. Unfortunately, the user also has to track the

object size constantly during zooming. Consequently, zooming requires a certain amount

of cognitive effort from the user.

Later, Graphical Fisheye Views [Sarkar 941 is another extension of Furnas' work to

visualize graph structures. The size and position of an object varies based on its distance

from the focus. It is an improvement on Furnas' original fisheye technique, but does not

support hierarchical abstraction.

More recently, [Lamping 951 described a new focus+context (fisheye) scheme for

visualizing and manipulating large hierarchies by laying out an hierarchy uniformly on a

hyperbolic surface and then mapping it onto a circular display region. The center of the

circular region becomes the focus. Because in a hyperbolic surface, parallel lines diverge

from one another, there is exponentially more space with increasing circumference of the

circular display region. With this scheme, hierarchies that tend to expand exponentially

with depth can be laid out easily on the display. Unfortunately, this method also suffers

from two drawbacks. First, it supports only one focus. Second, a circular display format

also makes it difficult to use screen space efficiently.

In 199 1 , Perspective Wall [Mackinlay 911 was developed at Xerox PARC corporation

to visualize linear information. It divides a 2D layout into three sections and then folds the

two side sections away from the viewer, leaving the center section for detail and the rest for

context. The user may move any item to the central section for a detailed view. However,

the Perspective Wall supports only one focus at a time, which becomes a limitation during

investigation of multiple areas of interest. The shape of Perspective Wall also makes it

difficult to use screen space efficiently. Finally, it is difficult to display hierarchical

structures with Perspective Wall.

At the same place and approximately the same time, the Cone Tree [Robertson 911 was

also developed to display hierarchical information in three dimensions with coloring and

perspective distortion (Figure 2.8). The hierarchy can be placed like an inverted tree. Each

component in the hierarchy is rendered transparent so that it does not obscure other

components. However, Cone Trees are not as effective in displaying balanced hierarchical

structures as unbalanced hierarchical structures. Moreover, rendering complex three-

dimensional structures in real time may be time-consuming.

Figure 2.8: Cone Tree [Robertson 9 11.

To display hierarchical file structures, [Johnson 911 developed a new method called a

tree-map. This method works by representing each node in the hierarchical file structure as

a rectangle. Nodes representing directories are divided into 'sub rectangles', one for each

directory member. At successive levels in the hierarchy, the direction of the subdivision

alternates between horizontal and vertical. The lack of support for emphasizing areas of

. interest becomes the major drawback of this approach.

Similarly, Pad++ [Bederson 941 was designed to facilitate visualization and navigation

within large hierarchical information spaces. Zooming is a fundamental interaction

technique for Pad++. In addition to size difference, Pad++ also employs semantic

zooming and animation. Semantic zooming means displaying a different abstract

representation of the same object at different sizes. Instead of simply displaying a scaled

down version of an object, a simplified abstraction is displayed. In addition, animation is

used to preserve visual continuity during zooming. To create a work context, Pad++ rates

information in a way to make the most highly rated information the largest and most

obvious, while placing less important information nearby and smaller. The viewer double

clicks on an object of interest to see further details. Viewers can recursively zoom in and

zoom out on any Pad++ work objects. However, the global context may not be entirely

available to the viewer at all times.

Hypermenu: A New Mechanism

The approaches described in previous sections have met with varying degrees of success,

but suffer drawbacks as noted. We seek a new menu mechanism to facilitate navigation

and function access within hierarchical systems.

This thesis develops a new menu mechanism, which we called the hypermenu

method, to optimize interactions between user and application. It addresses some of the

problems with existing methods by providing support in the following areas:

hierarchical abstraction and management of the work object;

tightly integrates menu mechanism with work object and accurately reflects logical

relationships of all components;

direct manipulation of system components rather than using a separate menu

mechanism;

preserves global context and user orientation at all times;

displays size-dependent representation;

multiple foci visualization for the multiple areas of interest.

In the next chapter, we describe our hypermenu method in more detail. We then

evaluate the achievements and weaknesses of the hypermenu method.

CHAPTER 3

THE HYPERMENU CONCEPT

In this chapter, we first discuss the concepts underlying our hypermenu interface method.

Following this we describe navigation and function access issues, and hypermenu

construction.

3.1 Hypermenu Concepts

3.1.1 Hierarchical Organization

Hierarchical organization is a common practice in managing complex systems. For

example, books and manuals are organized hierarchically using titles, chapters and sections

as shown in Figure 3.1. In the figure, entities belonging to the same abstract level are

indented by the same amount. Hierarchical abstractions allow omission of lower level

details that are not of interest, and greatly simplify the representation of the entire object.

C++ Language Reference

C++ Language Reference
lntroduction
Chapter 1 Lexical Conventions
Chapter 2 Basic Concepts

- -

C++ Language Reference
Introduction

Scope and Organization
Document Conventions

Chapter 1 Lexical Conventions
1.1 Tokens
1.2 Comments
1.3 ldentifiers

Chapter 2 Basic Concepts
2.1 Terms
2.2 Declarations and Definitions
2.3 Scope

Figure 3.1 : Hierarchical organization and representation for an on-line reference manual,
showing three different levels of abstractions. (a) Highest abstract level: Book title. (b)
Chapter level. (c) Section level.

r -+ Scope and Organization of This Manual
Document Conventions

1.1 Tokens

C++ Language Reference ,j Chapter 1 *+ 1.2 Comments
1.3 ldentifiers

I r 2.1 Terms

Chapter 2 ,+
2.2 Declarations and Definitions
2.3 Scope

Figure 3.2: Tree structure for an on-line reference manual.

Often, we use tree structures to express hierarchical relationships. Figure 3.2 is the tree

structure of the on-line manual shown in Figure 3.1. The ability to organize a system into a

hierarchical structure is essential to constructing a hypermenu.

3.1.2 Definitions And Traditional Menu Systems

Generally, an application program consists of some work object representations and a set

of functions. The work object representation is an on-screen representation of an

underlying work object; e.g., a text document in a text editor. Availability of the

application functions is governed by a set of rules in the application program, called work

object constraints. For example, a work object constraint in a word processor suppresses

"spell checking" from the application menu when a graphics object is selected. Application

functions are accessed from a function access mechanism; e.g., menus are a currently

popular function access mechanism. In this thesis, application space refers to the screen

space occupied by an application program.

As mentioned in previous chapters, traditional user interfaces provide separate work

object representations and function access mechanisms. Modem word processors, for

example, provide menus and dialog boxes with which users invoke application functions.

Unfortunately, switching between a work object representation and a large menu space

requires extra effort from the user. Moreover, menus usually display only a subset of all

available functions due to menu space shortage. Very often, the work object representation

is displayed in a separate window apart from the menus, and large work object

representations are often broken up to be displayed in multiple windows. Furthermore,

applications such as the front-end software of an automatic teller machine often have large

menu spaces. Here, the work object representation contains text descriptions at the top of

each menu screen. The menu space contains all the banking options that are menu items

themselves.

27

Similarly, the purposes of many applications resemble those of a menu system. For

example, a control application allows access to functions belonging to different parts of an

underlying system. Many of these applications are indeed "menu applications".

Unfortunately, because of the inherent shortcomings of traditional user interfaces and

the increases of functions in modem systems, we need a more advanced menu mechanism

to facilitate function access and, at the same time, allow users to remain focused on their

tasks. This is our motivation for the present work to develop an improved menu

mechanism which we refer to as a "hypermenu". This approach has evolved in part from

the continuous zoom, which was developed as part of the Intelligent Graphic Interface

[Bartram et a1 951. In the rest of this thesis, we refer to applications using the hypermenu

concept as hypermenu applications.

3.1.3 Hypermenu Overview

The hypermenu method is a general approach for building applications with hierarchical

work object representations so that we can combine them with function access mechanisms

into hypermenu hierarchies. Our hypermenu approach thus integrates the menu mechanism

with the work object representation, reducing the interaction overhead caused by switching

between the two. Consequently, the user interacts directly with the integrated menu

mechanism to access application functions and the underlying system. The hypermenu

hierarchy follows the structure of the work object representation.

The hypermenu approach provides the following features to facilitate navigation and

function access. First, it allows control over the amount of detail on screen. The user may

eliminate distracting and irrelevant details from the screen by interactively navigating up and

down the hypermenu hierarchy. Second, the hypermenu approach allows magnification of

areas of interest and demagnification of irrelevant areas. Further, instead of a mere

Figure 3.3: Example of a hypermenu layout. (a) Tree structure of a hierarchy. (b)
Hypermenu rendering of the same hierarchy, which is implied by geometric enclosure.

scaling up or down version, it can provide different representations depending on the needs

of the application and the work object constraints. This is equivalent to providing semantic

zooming [Bederson 941 or semantic scaling [ZiZi 941. Since the hypermenu approach

allows multiple areas to be viewed simultaneously, the user may examine and compare

multiple areas of interest, a facility not possible with traditional menu mechanisms. Third

and perhaps most importantly, it allows the user to access application functions by

interacting directly with the work object representation. In other words, the application is

the menu. Finally, the hypermenu approach preserves the global context of the work object

representation, which, in turn, provides context for the integrated menu mechanism,

thereby allowing function access via direct manipulation.

To provide the above features, our hypermenu approach uses a hierarchy and a context

management scheme. Each hypermenu component in the hierarchy is a combined

representation of function access mechanism and a corresponding component in the work

object representation. The context management scheme organizes the on-screen layout and

appearance of every hypermenu component. The hypermenu hierarchy is reflected in

geometric enclosure (Figure 3.3). Lastly, work object constraints are integrated into the

context management scheme to reflect the work context which includes the global context

of the work object representation and the application state. In the next subsections, we

discuss properties of hypermenu components and the hypermenu's context management

scheme.

3.1.4 Hypermenu Components

A hypermenu hierarchy consists of leaves, clusters, and a root. A leaf contains no child

component; a cluster contains one or more child components. The top-most cluster is

called the root. Normally, clusters provide higher-level abstractions or hierarchical

abstractions for their child components. Each hypermenu component has open, close and

zero or more zoom states.

In general, opening a cluster makes visible its child components, thereby providing

increased detail (See Figure 3.4). When a cluster is opened, all its child components are

initially closed. Closing a cluster also closes all its descendant components and therefore

hides lower level details. A leaf is always closed.

Often, details away from focus areas in the work object representation may need to be

suppressed in order to display the focus areas in greater detail, and to avoid distracting the

Figure 3.4: Example of opening a hypermenu component. (a) Initially, all hypermenu
components are closed. (b) Opening hypermenu component B makes visible its child
components .

viewer. In a hypermenu application, the user may interactively open and close hypermenu

components to obtain details on demand and to hide details not of current interest. Opening

and closing allows the user to see multiple components in different levels of detail

simultaneously, thereby providing a degree of control over the amount of context on

screen.

Hierarchical abstractions summarize lower-level detail and contribute to the overall

work context. Closed clusters are represented by hierarchical abstractions which are

dynamically updated to reflect proper component status. Therefore, a hypermenu

component is allowed to have multiple hierarchical abstractions depending on the state of

the underlying object. For example, a battery may have two hierarchical abstractions with

the first representing a fully charged battery and the second representing a dead battery.

Hierarchical abstractions are usually symbolic representations of the underlying system

components.

Very often, information on the screen needs to be controlled and filtered [Noik 941.

Filtering means eliminating unnecessary data from the screen. Typically, only a subset of

data about an object is needed at any given time. To achieve filtering, each closed

hypermenu component has multiple zoom states to accommodate multiple representations

with different sizes. Switching from one zoom state to another is achieved by zooming.

Zooming involves changing the sizes and representations of hypermenu components.

Instead of supplying a mere scaled version, supporting multiple representations allows

displaying a more appropriate and informative representation during zooming.

Furthermore, object attributes to be displayed and the screen space required for each zoom

state can be pre-determined, hence facilitating efficient use of screen space. For example,

the first zoom state may be an output-only functional representation displaying the most up-

to-date status of the underlying object, and the second zoom state may be a functional

representation allowing both input and output.

P.M. 02:OO:OO

Figure 3.5: Example of zooming and size-dependent representation. (a) A clock symbol.
(b) A functional representation of the clock. (c) A functional representation of the clock
with time adjustment mechanism.

Zoom states are also called size-dependent representations. They provide combined

representations of function access mechanisms and the underlying system component.

Therefore, each size-dependent representation maintains a set of user interface elements that

serves as a function-access mechanism capable of displaying appropriate component status

and accepting user input. Conceptually, size-dependent representations let the user feel he

is interacting with the underlying system component directly. Figure 3.5 shows an

example of zooming in on a hypermenu component representing a clock. Initially, a clock-

like icon, which is a static symbol, represents the clock in its closed state (Figure 3.5(a)).

When zoomed in, the hypermenu displays a functional representation of the clock showing

the up-to-date time (Figure 3.5(b)). When zoomed in further, the time adjustment

mechanism is also displayed, allowing the user to adjust the time interactively (Figure

3 3 ~)) . To provide all the above features, the hypermenu approach relies heavily on its

context management scheme, described next.

3.1.5 The Context Management Scheme Of Our Hypermenu Approach

Context proved to be vital to user orientation when navigating and accessing functions in

complex systems [Schaffer 931. The goal of the context management scheme is to maintain

an intuitive work context. It is responsible for rendering the visible portion of the

hypermenu hierarchy onto the screen. It consists of the discrete zoom algorithm and

domain-specific logic to support proper hierarchical abstractions, size-dependent

32

representations and restructuring of the hypermenu hierarchy according to the work object

constraints.

3.1.5.1 Discrete Zoom Algorithm

This is a variation of the global version of the continuous zoom algorithm [Dill 941. In

both algorithms, the magnification or scale factor changes the size of a hypermenu

component without affecting its openlclose state (Figure 3.6). Both zoom algorithms

control only the sizes and positions of hypermenu components according to their open,

close and zoom states. In general, the scale factor is controlled by mapping functions in

these algorithms. The mapping function maps a magnification factor to a corresponding

size and is controlled by the user.

As its name implies, the continuous zoom algorithm provides a feeling of continuous

change during zooming. To achieve this, it uses a smooth continuous mapping function in

controlling the size of a rectangular object. More precisely, the rectangular bounding box

of each hierarchical component is controlled by a monotonically increasing function. For

example:

New size = f(Magnification factor) x Initial size

Figure 3.6: Magnification example. (a) The hypermenu layout before magnification. (b)
Magnifying hypermenu component B enlarges its size without changing the openklose
state.

where f is a continuous function [Dill 941. An advantage of the continuous zoom algorithm

is allowing continuous control over the size of each hierarchical component. This can,

however, result in increased cognitive effort to magnify or demagnify a hypermenu

component to a specific size because the user must continuously monitor the size of

components being zoomed.

The discrete zoom algorithm, on the other hand, is designed to support hypermenu

components with multiple fixed-size representations as discussed in the previous

subsection. To facilitate achieving specific fixed size goals, the discrete zoom also

supports a finite number of sizes instead of supporting a continuous size change. This is

equivalent to using a step function as the mapping function. In the context of the discrete

zoom, a zoom state is simply a fixed size allocated from the available screen space for a

hypermenu component. The major drawback to sudden changes in size is the fact that it

induces visual discontinuity. To alleviate this problem, size change is achieved in a number

of steps. The major advantage of the discrete zoom is minimizing the interaction needed to

switch from one size to another, regardless of how much they differ. It also requires

significantly less cognitive effort from the user during zooming.

In overview, the discrete zoom algorithm accepts the initial layout of a hierarchy, which

we call the normal geometry, and the sizes of all closed and zoom states when program

execution starts. The initial layout of a hierarchy describes the size and position of

hierarchical components by geometric enclosure. For example, a cluster is described by its

location, open size, and closed size. Descriptions for leaves are similar except that sizes of

all possible zoom states are included. Each component, also called a node, is assigned a

scale factor. The scale factor used in calculating component size is S = Lf/Li, where Lf is

the final size and Li is the initial size of a component. The zoom algorithm combines the

normal geometry and the scale factors to produce the zoomed geometry, which is

displayed. Unlike the continuous zoom algorithm, users do not change the scale factor

directly during interaction; rather, scale factors for each node are derived dynamically

during opening, closing and zooming according to the pre-specified sizes.

Like the global continuous zoom, the discreet zoom works on X and Y axes separately.

The first step is to project all node boundaries into the X and Y axes. The algorithm then

works with the one-dimensional intervals between adjacent projections (Figure 3.7). Each

interval is either a projection of one or more nodes, or is a gap interval such as XI, X3 and

X5. Intervals are assigned the maximum scale factor of all nodes that project into them.

This prevents the size of the node from exceeding the sum of the sizes of the intervals that

contain it.

Given the scale factors of all the nodes within a cluster, the total amount of space

requested by a cluster (in the X direction) is:

where xi is the normal length of the ith interval and si is its scale factor. Space in the Y

direction is calculated similarly. Intervals are used instead of node widths because the

former never overlap.

The intersections of the lengths of the intervals containing the edges of a node in both X

and Y directions constitute the total space available to the node. This space is rectangular in

Figure 3.7: Sample three-node hierarchy, initial size.

shape and is called a zoom hole. After computing the sizes of the intervals and nodes, the

nodes are repositioned according to the location of their center points. Note that as the size

of its containing interval changes, a node's center stays at the same relative position in its

zoom hole (Figure 3 3).

Calculations for the scale factors and space requests propagate only upward in the

hierarchy until the root node is reached. If the total requested size is less than or equal to

the available screen space, the discrete zoom algorithm grants the size change requests;

otherwise, it denies the size changes requests and signals the hypermenu application to

notify its user.

To divide the size changes into a number of steps, the discrete zoom algorithm

calculates a number of intermediate sizes. The starting size is equal to the initial size and

the ending size is equal to the final size of the node. If a size change involves n steps, the

kth intermediate size is:

where

edge.

Figure 3.8: Node C zoomed out from Figure 3.7.

3.1.5.2 Outline Animation

The global context is so important to the user during navigation because it provides a sense

of orientation in the system. It is equally important to help the user perceive and follow all

the changes in the context. Opening, closing, and zooming changes the global context of

the work object representation. For instance, zooming in on a component changes its size

and shifts all the components from their previous positions. As mentioned before, sudden

changes in size and position cause visual discontinuity. In order to let the user follow the

changes mentally, we need to minimize visual discontinuity. Ideally, morphing yields a

smooth transition one can easily follow. However, it quickly becomes computationally

intensive and impractical when applied to complex work object representations. Instead,

we use "outline animation", a planar (2D) animation, in our hypermenu approach. Outline

animation consists of three steps. First, all the visible hypermenu components are changed

into filled rectangles. Each filled rectangle is color-coded to indicate its depth in the

hierarchy. Second, it divides the open, close and zoom operations into several steps. At

each step, the intermediate size and position of the changing component is calculated and

drawn as a color-filled rectangle. The same process is also carried out on all other visible

components. Third, when the changing component reaches its final size, the appropriate

hierarchical abstractions and size-dependent representations are drawn for all visible

components. Outline animation is much less computationally intensive than morphing.

The following paragraphs provide illustrations on zooming and opening.

In the case of zooming, the context management scheme first verifies that there is

enough screen space available. If there is, the existing representation (Figure 3.9(a))

changes into a filled rectangle. Then, intermediate sizes and positions are repeatedly

calculated for the changing component and rendered as rectangles (Figure 3.9(b)). Once

the hypermenu component has reached its final size, the rectangle changes into the final

Figure 3.9: Example of zooming in a hypermenu application. (a) Initial hypermenu
component. (b) A set of intermediate rectangles belonging to outline animation. (c) Final
hypermenu component appearance.

Figure 3.10: Example of opening in a hypermenu application. (a) Initial hypermenu
component. (b) A set of intermediate rectangles belonging to outline animation. (c) Final
hypermenu component appearance.

representation (Figure 3.9(c)). The entire process (Figure 3.9(a) to Figure 3.9(c)) is

referred to as outline animation.

Opening works similarly; the new sizes and positions for all hypermenu components

are calculated to verify that there is enough screen space. If there is, the existing

hierarchical abstraction (Figure 3.10(a)) changes into a filled rectangle with intermediate

rectangles drawn as in zooming (Figure 3.10(b)). Once the hypermenu component has

reached its fully opened size, the hierarchical abstractions of its children are displayed

(Figure 3.10(c)). Closing is done similarly except that it reverses the open operation.

3.1.5.3 Work-Object-Constraint Controlled Hypermenu Hierarchy

As described earlier, work object constraints are rules that govern the availability of

functions and application states. Integrating them into the context management scheme

enables a hypermenu application to display proper functional representations and provide

necessary functions according to the application states. For instance, a hypermenu

application may need to dynamically suppress various components representing unneeded

functions to comply with work object constraints. Figure 3.1 1 provides an abstract

example. In this example, when the application is in state 1, hypermenu components ABA,

ABB, and ABC are not displayed when AA is opened. When the application is in state 2,

only hypermenu component AAA is displayed when AA is opened. Finally, when the

application is in state 3, only hypermenu components AAA and AAB are displayed when

AA is opened. The work object constraints state that when hypermenu component AA is

opened the second time, the application changes from state 1 to state 2, when it is opened

the third time, the application changes from state 2 to state 3, and when it is opened the

third time, the application changes from state 3 back to state 1. In this way, a hypermenu

application can dynamically restructure and re-render its hierarchy using the work object

constraints. We provide examples based on real-world applications in the next chapter.

(State 1)

AA is opened AA is opened
the second time.

Figure 3.1 1 : Example of work-object-constraint controlled hypermenu behavior. When
the application is in state 1, hypermenu components ABA, ABB, and ABC are not
displayed even if component AA is opened. When the application is in state 2, only
hypermenu component AAA is displayed when component AA is opened. Finally, when
the application is in state 3, only hypermenu components AAA and AAB are displayed
when component AA is opened.

3.2 Navigation And Function Access

To navigate within a hypermenu application, the user interactively opens and closes

hypermenu components. Support for direct manipulation preserves continuity of the user's

mental model for the work object representation without depending on separate navigation

mechanisms. Opening and closing hypermenu item corresponds to navigating down and

up the hypermenu hierarchy to a lowerlhigher level abstraction. Outline animation is

provided during opening, closing and zooming to preserve the visual continuity of the

work context during the transition. Most importantly, navigation depends on available

screen space. As long as there is enough screen space, the user can open and zoom in any

component. However, if there is not enough screen space, the user must close or zoom out

less important components to make room for the component to be opened or zoomed in.

Zooming allows control over the type and amount of data to be displayed. Opening allows

the user to see lower level details. Closing shrinks a component into a more concise

abstraction and fuses it to the work context. The work context, in turn, serves as a vital aid

to orient the user during navigation. Moreover, the hypermenu's context management

scheme facilitates visual searching which benefits random browsing and serendipitous

searching.

To access embedded functions, the user zooms in a hypermenu component to bring up

a functional representation of the underlying object. Then, the user interacts directly with

the functional representation to access functions in the underlying object. The hypermenu

approach brings two major advantages to function access. First, it allows navigation and

function access via direct manipulation such as point and click. Second, the hypermenu's

context management allows function access in context.

3.3 Construction Of Hypermenu Applications

In addition to conventional design approach, constructing a hypermenu application involves

three extra steps:

1 . Define an appropriate hierarchical structure for the system, consistent with its

functions. If this is not possible, the system may not be suitable for a hypermenu

approach.

2 . Identify the availability of functions and corresponding hypermenu components for

each application state. For example, at each application state, only a subset of the

hierarchy should be available to the user.

3 . Define open, close and zoom states for individual hypermenu components.

Determine appropriate hierarchical abstractions and size-dependent representations

according to the work object constraints.

The following chapter presents two hypermenu applications designed using the above

guidelines. The first example applies the hypermenu approach to a Group Technology

database browser and designer. The second example illustrates the use of our hypermenu

approach in designing a user interface for a complex piece of telecommunication network

test equipmentl. In these examples, we illustrate: (I) constructing hypermenu

applications, (2) the look and feel of hypermenu applications, and (3) visualization,

navigation, and function access enhancements brought by them.

The second example is based on Hewlett Packard's Broadband Series Test System.

CHAPTER 4

HYPERMENU ILLUSTRATIONS

4.1 Introduction

The hypermenu concept is a general user interface approach and may be applied to a range

of application domains. In this chapter, we illustrate the potential of this technology by

applying it to two different areas. We first illustrate its application to computer-aided-

design by introducing a new approach for designing mechanical parts with group

technology. We then apply the hypermenu concept to the user interface of a testing

controller for telecommunication networks and show that it facilitates user interactions and

prevents cluttering resulting from a small display area.

Hypermenu Approach To Group Technology

4.2.1 Introduction To Group Technology

As manufacturing companies strive to enhance their competitiveness in the global

marketplace, they are constantly exploring for new technologies. An approach increasingly

useful in helping achieve a higher level of integration between design and manufacturing is

that of Group Technology (GT). Group Technology is an approach to design and

manufacture in which parts are grouped into families according to their general shape, the

material they are made of, the series of steps needed to manufacture them, etc. Parts

belonging to the same families exhibit similar characteristics and features.

Coding parts and grouping them into families is the essence of group technology and

has many advantages for a manufacturer. First, the manufacturer no longer has to deal

with thousands of parts and processes, but can focus on a small number of part families

and processes. Second, group technology provides a basis for a company to switch from

inefficient job-shop manufacturing methods to modern.cellular manufacturing. Third,

design engineers can finally stop "reinventing the wheel": when faced with designing a

new part, the engineer first assigns a group-technology code to the part, then checks the

computer database for the same or similar parts. Often, he ends up using an existing part,

preventing needless and costly parts proliferation and freeing up design time.

Finally, Group Technology greatly simplifies new-part process planning. The

designer codes, then classifies the new part into the appropriate existing family. Since all

the parts in that family are made by the same process, the manufacturing process for the

new part already exists: it is merely a matter of fine-tuning it [Snead 891.

Group Technology relies significantly on classification and coding. Classification is

the process of grouping together similar things. Coding is a technique of allocating

predetermined symbols to describe and communicate the classification. Coding describes a

physical object in a notation that is easy for computers to store and retrieve [Snead 891.

In this section, we use MDSI CODE as an example from which we build our

hypermenu application. The reason for choosing MDSI CODE is because a detailed

description was easily available. CODE is the name of the classification and coding system

provided by Manufacturing Data Systems, Incorporated (MDSI). It is an eight-digit

hexadecimal-based code used primarily to classify and code mechanical parts. The code

structure is shown in Figure 4.1. The first digit of the code is used to identify the major

divisions and was set to one by MDSI due to the company's internal structure. The

remaining seven digits are division-specific codes used to describe the shape, features and

dimensions of a part. Some examples are shown in Figure 4.2.

Once the mechanical parts have been classified and coded, they are stored into a group

technology database for retrieval. The objectives of a group technology database include:

(1) facilitate serendipitous searching for an existing or similar mechanical part, (2)

facilitate defining a new part or part family in the group technology database according to

the classification used. Most of the time, geometry properties such as shape are used to

identify a mechanical part.

To facilitate serendipitous searching and random browsing, the hypermenu approach

offers the following advantages. First, it stores all the mechanical parts in a similar manner

to many hierarchical classification and coding systems such as MDSI CODE. Each digit in

MDSI CODE corresponds to a level in the hypermenu hierarchy, which is called a digit

level. Second, the hypermenu approach allows searching for a mechanical part in the

group technology database with direct manipulation as one would with physical storage

bins. Third, the hypermenu approach displays the shape of mechanical parts and part

M D S I CODE

M A J O R CATEGORY SHAPE A N D FEATURES D I M E N S I O N S

Figure 4.1 : MDSI code structure.

Fifth

Grooves
threads

Fourth
Holes
(other
then

center)

Other than
or none

Sixth

Misc.

Seventh

MAX O.D.
or section
across flats

Eighth

MAX.
overall
length

Other than
or none

Other than
or none

Concentric
variations

Longitudinal
other than
bolt circle

Groove(S)
external

Multi- Single

2 concave t hru

cylinder going
hole

Protrusions
from main

shape

Groove(s)
internal

Radial
round

Single

cylinder

Concentric
variations

&
protrusions
from main

shape

a

Longitudina
and radial
round

a
a
a

Groove(s)
external &
internal

a
a
a

Figure 4.2: MDSI code specification.

families in the database to support visual searching. Allowing visual searching is an

advantage of our hypermenu approach because it does not require the user to manually

translate a mechanical part into a part code and then have the computer match it in the

database. Rather, the user can search the parts database directly based on the geometric

attributes illustrated in the drawings. Fourth, the hypermenu approach helps the user

visualize characteristics of part families that are not physical entities. Fifth, it clearly

indicates hierarchical relationships between parts and part families according to the

classification and coding system used. Therefore, we believe that the hypermenu approach

is a powerful and appropriate interface to group technology databases.

Our hypermenu approach also offers the following advantages to facilitate defining a

new part in a group technology database. First, it helps the user visualizes relationships

between existing parts and the new part to be design. Second, the hypermenu approach

allows the user to define a new part in context with instant feedback on its characteristics.

Third, it offers a preview of the to-be-designed item at each digit level. Finally, the

hypermenu approach supports the idea of incremental fine-tuning. For example, the user

may only fine-tune attributes allowed by each digit level.

4.2.2 Constructing A GT Database Hypermenu Application

Following the guidelines for constructing hypermenu applications in chapter 3, we first

identify the work object constraints for the front-end software of the GT database

application. The application should provide a browse mode and a design mode. In browse

mode, the hypermenu application displays only defined parts and part families in the GT

database. Defined or existing parts and part families have their features completely

specified and are stored in the GT database. In design mode, the application displays all

possible parts and part families supported by the classification and coding system. Parts

and part families not in the GT database but supported by the classification and coding

system are called undefined parts and undefined part families.

Parts in the GT database become leaves, and part families become clusters. Defined

parts represented by leaves are always closed and have only one zoom state. The

hierarchical abstraction for the closed state displays the shape and the part code of the

corresponding mechanical part. The size-dependent representation for the zoom state

displays a dialog box containing the part drawing, and text labels showing all the attributes.

Part families represented by clusters need open and closed states only. The hierarchical

abstraction for the closed state also displays the shape and part code of the corresponding

part family. Note that a part family does not have a complete part encoding; for example, a

part family with the second and third digits equal to two and four might have part code

124XXXXX, where "X" is any valid character in the range of the underlying classification

and coding system.

Opening a defined part family exposes members of the part family one level below, and

zooming in on defined parts provides further details on the object parameters.

We illustrate with an example. Figure 4.3(a) shows a bolt. The hierarchical abstraction

of the corresponding hypermenu component shows the shape and part code after

classification and coding (Figure 4.3(b)). The size-dependent representation of the zoom-

in state contains the drawing and text labels displaying the object attributes (Figure 4.3(c)).

Similarly, the hierarchical abstraction corresponding to a defined part family shows the

shape and the partial part code (Figure 4.4(a)). Note that defined part families are

represented by clusters that do not have zoom states, only open and close states. Opening

defined part families shows members of the part family one level below (Figure 4.4(b)).

Max O.D.:.l crn Color:silver
Length: 1 crn Material: Fe
No.Cyl: 2 Quantity: 50

Figure 4.3: Hierarchical abstraction and size-dependent representation of a defined
mechanical part. (a) Bolt to be represented. (b) Hierarchical abstraction of the bolt. (c)
The size-dependent representation of the bolt is a dialog box containing a drawing and
description about the bolt.

Figure 4.4: Hierarchical abstraction and corresponding part family. (a) Cluster
representing hierarchical abstraction of a part family. (b) Cluster of (a) opened to show
members of the part family one level below.

Concavity: 10.21 Cyl Max
Diameter: 0 cyl Mi"
Thickness:

loefinel

Figure 4.5: Hierarchical abstraction and size-dependent representation of an undefined
mechanical part. (a) Hierarchical abstraction of an incompletely defined pulley. (b) Size-
dependent representation of the pulley contains text boxes requesting pulley-related
information.

To distinguish undefined parts and families from defined parts and families, the former

are highlighted (Figure 43a)) . When an undefined part family is opened, the hypermenu

application displays a dialog box for the user to adjust object parameters according to the

digit level. For example, the dialog box in Figure 4.5(b) allows the user to fine-tune

parameters like pulley width, length and concavity. Undefined parts are represented by

leaves. A single part, not a part family, may be zoomed-in. The result is a dialog box

similar to Figure 4.5(b).

4.2.3 Behaviors Of The Hypermenu Application

To illustrate our hypermenu approach, we show how to search a GT database for a

mechanical part, and how one would design a new part using a hypermenu-based GT

system.

4.2.3.1 Search for a mechanical part in browse mode

Suppose we would like to search for the bolt shown in Figure 4.3(a). To start searching,

we first put the hypermenu application into browse mode to display only defined parts and

part families, thus reducing distraction. The first-digit level in the hypermenu hierarchy

contains only one component because the first digit in MDSI CODE is always one. The

root hypermenu component could display the logo of the classification and coding system

when it is closed.

Opening the first-digit-level component exposes closed components belonging to the

second digit level (Figure 4.6(a)), and, we say that we are in the second digit-level. At this

level, we can search visually by geometric properties or part code. Following the

hierarchical abstractions, we navigate through the seven digit levels as shown in Figure

4.6(b) to 4.6(g). In general, we say that we are in (n+l)th digit level after opening a

component or part family belonging to nth digit level. Opening part families from the

second to the seventh digit level exposes more detailed part families. Opening part families

in the eighth level exposes defined mechanical parts. Once we are inside the eighth digit

level (Figure 4.6(g)), we can zoom in any mechanical part to see a detailed description of

its attributes (Figure 4.6(h)).

As implied by our illustration, screen space required to display the GT database is

proportional to the depth of the hypermenu hierarchy and the number of items within each

level. Opening and zooming in a hypermenu component enlarges all its ancestors so that

they are able to hold both the enlarged component and its siblings. For deep and large GT

databases, screen space runs out quickly as one navigates downward in the hierarchies.

When the hypermenu application runs out of screen space, the user will not be able to

navigate further down the hierarchy or zoom in item of interest any more. To alleviate this

Figure 4.6: Searching for a defined mechanical part in a hypermenu application. (a)
Second digit level. (b) Third digit level. Note that we have opened the 14XXXXXX
hypermenu component to show its members (141XXXXX, 142XXXXX, 143XXXXX
and 144XXXXX).

C

Application
!

Window :

Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu
application. (c) Fourth digit level. (d) Fifth digit level.

Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu
application. (e) Sixth digit level. (f) Seventh digit level.

Application Window

Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu
application. (g) Eighth digit level.

Application I Window

Figure 4.6 (Continued): Searching for a defined mechanical part in a hypermenu
application. (h) Eight digit level.

problem, designers might reduce the size of hierarchical abstractions by using more concise

descriptions. In addition, clusters can have multiple zoom states. For example, the

hierarchical abstraction might show only the part code. The first zoom-in state shows only

the shape and the second zoom-in state shows both the shape and the part code.

In MDSI CODE, each of the last two digits denote ranges rather than an exact value.

Therefore, it is possible to have more than one mechanical part with the same part code.

For example, a mechanical part with overall length between 1 and 1.6 units has a MDSI

code ending in "2". There are two ways to support this in our hypermenu application.

First, each mechanical part can be made into hypermenu components belonging to the ninth

level in the hierarchy. Second, we can provide mechanisms in the size-dependent

representation for the user to cycle through all the mechanical parts at the eight digit level.

4.2.3.2 Defining and fine-tuning a mechanical part in design mode

Defining a part code for a new part is equivalent to selecting and defining a design path in

the hierarchical classification and coding system. For demonstration purposes, we limit the

range of the second digit from one to eight, and the remaining digits except the first digit

from one to four.

Suppose we wish to design the pulley shown in Figure 4.7. First, we enter design

mode to display both existing and undefined parts and part families. Hierarchical

abstractions for undefined parts and part families are highlighted and become design

options in the hypermenu application. It is necessary to display defined part families to let

the user choose a similar part for fine-tuning. To start, we navigate to the second digit level

(Figure 4.8(a)). In this case, no defined part family resembles the pulley we want to

design. Therefore, we define a new part family by choosing available design options in the

Figure 4.7: Pulley to be designed.

Figure 4.8: Example of defining a new mechanical part at second digit level. (a) In design
mode, representations of undefined mechanical parts are highlighted using reverse video.

/

;
Application /

Window J

'
:
: '.

8

Figure 4.8 (Continued): (b) Opening part family 18XXXXXX brings up a dialog box for
the user to define attributes for the current digit level. (c) The hierarchical abstraction of
the part family changes to that of a defined part family after the attributes have been
defined.

second digit level. According to the hierarchical abstractions, part family 18XXXXXX

resembles the mechanical part we are designing.

Opening the undefined part family brings up a dialog box for adjusting the parameters

(Figure 4.8(b)). Once we have filled in the information and click the "Define" button, the

hypermenu component closes itself and updates the hierarchical abstraction to reflect the

proper attributes and the existence of the new part family (Figure 4.8(c)). Similarly, we

define attributes for the next six levels. Once we have defined all digit levels, a new

mechanical part is defined, and it can be viewed just like other existing mechanical parts in

the GT database.

The hypermenu approach brings the following benefits to GT database systems. The

context management scheme supports visual searching at each level during parts retrieval.

Neighboring items are available on screen and the viewer may search in context. Most

importantly, the hypermenu approach provides an easily navigable visual representation of

the GT database and provides full access to all the items within. Therefore, the user may

interactively control items in the GT database to be displayed, and easily zoom in on areas

of interest. Direct manipulation also reduces navigation overhead. Finally, the hypermenu

approach allows simultaneous viewing of multiple components which facilitates comparing

different parts in the GT database.

During design, the hypermenu approach helps the user to visualize how one selects

design paths. At each digit level, visual representations of design options are displayed,

therefore allowing the user to rely on recognition memory in choosing a similar part for

fine-tuning. Lastly, the user may simultaneously display and reference any other defined

parts, which is extremely important during fine-tuning.

A Hypermenu Interface To An Equipment Tester

4.3.1 Background

To test our approach in a quite different type of application, we developed a hypermenu

interface for a complex test controller used to set up, execute and monitor the performance

of very high speed (Broadband) telecommunication equipment (HP Broadband Series Test

System).

High speed information transfer is a complex multilevel process [Vetter 951. In simplified

form, at the highest level, information is passed from an end-to-end application, such as

Local Area Network management software, to a service layer. The service layer attaches

additional information depending on the type of service requested, and then passes the

information to the adaptation layer for transmission. The adaptation layer breaks down the

information and packages it into cells. A convergence layer accepts the cells and maps

them to the physical layer which encodes the data into electrical waveforms for

transmission. Each layer provides a variety of options to choose from. The combination

of all the layers and the communication format of the end-to-end application defines a

network transmission protocol.

The test system in question (BSTS) is designed to evaluate the network performance on

transmitting data from one node to another using a variety of protocols. BSTS's user

interface is responsible for providing access to the underlying equipment. Our goals for

improving the quality of BSTS's user interface were: (1) preserve the user's work context

and orientation, (2) reflect relationships among system components, (3) allow hierarchical

management of the user interface and work context, (4) provide effective screen layout for

the work context, especially components of interest, (5) reduce user interface overhead to

increase user throughput, (6) permit quick and accurate component access, and (7)

indicate configuration sequence.

The original user interface of BSTS provides a traditional window environment

primarily made up of dialog boxes and menus. Each device is represented by a collection

of dialog boxes containing all available function, and the resulting interface is quite

complex. Unfortunately, overlapping dialog boxes significantly increase user interface

overhead and tend to disorient the user quickly.

4.3.2 The Hypermenu Approach- An Improved Interface

We begin by outlining the overall task of a typical BSTS user. Then, we briefly describe

our hypermenu interface built for the BSTS.

To conduct a test with the BSTS, the user first defines a session. A session refers to

the process of setting up the BSTS for a test and running the test. Once a session has been

defined, the user builds an instrument. Building an instrument requires the user to specify

the protocol and devices to be used for the test. At the present, the user can choose a

maximum number of two devices for each instrument. Then, the user specifies device

parameters for each device belong to an instrument. Test manager and testers are logical

entities added to the BSTS to form a hierarchy (Figure 4.9).

Test Manager Ez

Figure 4.9: Organization of the hypermenu hierarchy for HP's test system.

Naturally, the test manager maps to the root in the hypermenu hierarchy, the testers

map to the second-level components and so on. In addition to all the entities mentioned,

we include a hypermenu component to represent the selected protocol at the same level as

the devices for each defined instrument to indicate which protocol the instrument is set up

for. All the clusters have only open/close states, and the leaves (except the protocol

representation) have two zoom states. All system entities have static hierarchical

abstractions, while each instrument has two different hierarchical abstractions to indicate

whether or not it is defined. Devices have two size-dependent representations with which

the user can interact.

Tasks the user must frequently undertake include: (1) set up test equipment, (2)

examine test results, and (3) compare results from different devices. Defining and

configuring an instrument is a very tedious decision-making process. Thus, preserving the

configuration sequence is important in order to avoid confusion and disorientation. An

advantage of the hypermenu approach is its context management scheme which assists the

user in visualizing the entire sequence while focusing on one part of the system. For

example, configuring an instrument is easily accomplished by navigating downwards in the

hypermenu hierarchy. The hypermenu approach significantly benefits examining test

results and comparing devices. Figure 4.10 shows the look-and-feel of our hypermenu

application for HP's BSTS. For a detailed description of the hypermenu application for the

BSTS, please refer to the appendix.

Opened Opened
Opening an undefined instrument session tester

I
Closed

I
Closed &

tester undefined

instrument

Closed
protocol

map

Closed
device

Opened
device

Closed &
' defined
instrument

Figure 4.10: Illustrations of our hypermenu application for HP's test system.

4.4 Implementation

The heart of our hypermenu applications is the context management scheme. It consists of

the discrete zoom algorithm and domain-specific logic to support proper hierarchical

abstractions, size-dependent representations and restructuring of the hypermenu hierarchy

according to the work object constraints. For instance, in our GT hypermenu application,

children of undefined part families are temporarily removed from their parents and later

restored when they have been defined. Proper hierarchical abstractions are rendered

dynamically according to the work object constraints.

Both applications have been designed to run under the XtWindows system using Motif.

Opened clusters are drawn as a color-filled rectangle. A closed hypermenu component is

represented by a Motif push button.

The hypermenu hierarchies are specified in external files which contain the sizes and

positions of all hypermenu components. In addition, each file contains closed sizes for all

the hypermenu components and size-dependent representations for all the leaves.

Finally, our hypermenu applications currently run on Silicon Graphics and Hewlett

Packard workstations and may be ported to any other XIMotif system.

CHAPTER 5

DISCUSSION

In this section, we discuss the hypermenu approach in the following order: (I) evaluate

the strengths and weaknesses of our hypermenu approach as illustrated by the two

hypermenu applications, (2) compare the use of discrete zoom with continuous zoom as

the hypermenu's context management scheme.

5.1 Evaluation Of The Hypermenu Approach

Both our hypermenu applications were evaluated by domain experts. Our GT application

was demonstrated to two CAD operators. We asked one of them to act as a user of the GT

application to get a direct feeling of the user interface. The other CAD operator watched

closely. Both operators are involved in mechanical design and one of them has been using

CAD packages for eight years. Their experience is primarily with Autocad, though they

have used other commercial systems as well. Similarly, we demonstrated our BSTS

application to the BSTS developers; we also supplied them a copy of the software for

evaluation and for demonstration to other groups within the company. In the paragraphs

below, we f ~ s t present the evaluations of the GT application, then evaluations of the BSTS

application from the domain experts.

According to the CAD operators, the hypermenu user interface gives the following

advantages. First, they felt that the hierarchical abstraction showing the shape and the part

code of an object family made browsing easier. The reason they gave was that the graphics

representations made it more clear which objects were available. In contrast, some of the

design software with which they are familiar required parameter specification before any

part became visible. Second, they liked the direct manipulation approach to selecting

objects in the GT database. They felt that it required less effort than specifying a set of

search parameters or criteria as required by other software they have used, although one of

them mentioned that he did not mind entering numbers. Third, they believed that

preserving the context facilitated navigation. In general, they felt that the context helped to

orient the user in a large system by showing the relationship between the current focus and

the remaining items. In addition, they said that the context helped them to visualize the GT

database. Fourth, one of the operators thought that it was very helpful to preserve the

spatial relationships of all the objects on screen. This helped him to get familiar with the

context layout more easily and navigate more quickly after he became familiar with the user

interface. Fifth, they greatly appreciated the support for multiple foci because it allowed

them to see multiple parts and part families simultaneously. For example, they felt that it

would be potentially helpful to see the part intended to be used with the one that the

operator is designing. One of the CAD operators said: "...seeing the dimensions on the

part makes things a little clearer, especially when looking at mating parts."

In addition to the above advantages, the CAD operators also provided us some

constructive suggestions on how we could improve the hypermenu user interface. As we

discussed in the previous chapter, there is a problem when available screen space is

exhausted. They agreed with the approach of using smaller representations to conserve

screen space. Therefore, we suggested providing each cluster a zoom state showing only

the part code. The user might shrink the part families far above the current level to show

only the part codes. The CAD operators' immediate response was they only need the

graphic representation at the current and the immediate parent level. They also felt that the

rest of the hierarchical abstraction could shrink into textual descriptions without degrading

the context. In addition, they told us that they seldom refer to objects far away from the

current foci. They would rather have bigger hierarchical abstractions for objects of current

interest and neighboring objects. Most importantly, they believe that omitting intermediate

levels in the hierarchy would not significantly degrade the context.

The developers of the original user interface for the BSTS gave evaluations analogous

to the CAD operators when they reviewed the BSTS application. In short, they too

appreciated the capability to see detail in context and the capability to help the user visualize

hierarchical structures with the hypermenu user interface. They also agreed that outline

animation was effective in letting the user follow changes in the context.

Similarly, the BSTS developer provided us some constructive suggestions on potential

improvements to the hypermenu user interface. First, he pointed out that context is needed

for navigation. However, when the user is focusing on problem solving, the context is no

longer needed. Unneeded context consumes screen space and tends to distract the user.

According to the BSTS developer, the user needs to see only the testers and sessions

during startup, the selected instrument and subsequent devices during configuration, and

the related devices during examination. This suggests the idea of "usage context". A usage

context would consist of task-specific context elements only. It could be achieved by

displaying only task-related components or omitting unneeded levels and items. To

provide this capability in the hypermenu approach, the usage context would need to be

encoded into the user interface so that it could display the proper task-dependent context.

68

Second, the user often needs to put objects of interest immediately side by side

regardless of how far apart they are located in hierarchy. In other words, the hypermenu

user interface should allow arbitrary repositioning of objects without altering the hierarchy.

Repositioning may also permit more efficient use of screen space since the size of a parent

depends on the positions of its child components. Third, the BSTS developers suggested

that it would be useful to allow hypermenu components to overlap as in the traditional

window environment. Combined with repositioning, the users could arbitrarily expose

information by controlling overlapping areas. It also takes less screen space to display

overlapped objects. The BSTS developers suggested that overlapping is permissible

because modem computer users are accustomed to deal with overlapping in traditional

windows environment. However, allowing repositioning and overlapping could reduce the

benefits of preserving the spatial relationships among on-screen objects and require more

work on the user's part which hypermenu has eliminated. Finally, it was reported that a

senior engineer and researcher in the company wondered if the dramatic differences

between the hypermenu user interface and the traditional window environment might hinder

its acceptance by change-resistant users.

To summarize, knowledgeable users in each of the two applications felt the hypermenu

approach was a useful improvement to navigational issues in the respective user interfaces.

Additionally, the evaluators suggested developing ways to reduce and/or eliminate

unneeded context, a recommendation we feel is worth investigating.

5.2 Discrete Zoom verses Continuous Zoom

For the context management scheme of our hypermenu approach, we could have used the

global version of continuous zoom. However, we developed the discrete zoom for the

following reasons. First, we would like to support hierarchical systems whose

69

components can be more efficiently represented by a fixed number of size-dependent

representations. BSTS belongs to this category. Switching among fixed-size

representations consumes significantly less computation than real-time scaling. The only

drawback is that the user has less control over sizing. The continuous zoom, in contrast,

allows the user to zoom a component to any arbitrary size. It is designed for hierarchical

systems whose components have a size range instead of a fixed number of sizes. Support

for arbitrary sizes requires significantly more computation than switching among fixed-size

representations, but it provides more control over sizing. Second, we would like to reduce

the cognitive effort during zooming. The discrete zoom takes only one step to zoom from

one size-dependent representation to another. Unlike the continuous zoom, the discrete

zoom requires no constant tracking on object size during zooming, thus reducing cognitive

effort. Finally, we do not want to affect the sizes of other components other than the one

being zoomed. Unfortunately, zooming a component in the global version of continuous

zoom affects the sizes of all other components in the hierarchy.

CHAPTER 6

SUMMARY

6.1 Summary For Our Hypermenu Approach

Computer applications are increasingly driven by graphical user interfaces; many of these

applications function like "menu applications", allowing user to access functions from the

underlying work object. As the complexity of hierarchical systems increases, traditional

user interface approaches become an interaction bottleneck.

Several new technologies have been proposed to improve the user interface, especially

the menu mechanism and the work object representation to facilitate interaction and

preserve user orientation. Improved menu mechanisms include pie menus, partial-screen

and full screen menus, see-through menus, documents as user interface, and embedded

menus. Improved screen layout technology includes fisheye, continuous zoom,

perspective wall, cone trees, hyperbolic surface, tree-map and Pad++. All of them have

met with varying degree of success. After reviewing and evaluating these current

technologies, we find that a new technique is needed to facilitate interaction for complex

hierarchical systems.

This thesis has described a new approach to integrate the function access mechanism

and the work object representation based on an extension to SFU's Intelligent Graphic

Interface research. Our new technology, called a hypermenu, addresses problems with

existing technologies and provides the following advantages:

It preserves the global context and user orientation at all time;

It facilitates visualization and hierarchical management of the underlying system by

letting the user control the amount of context.

It allows the user to interact with system components through direct manipulation.

It provides a transparent menu mechanism with minimum user interface overhead;

It provides hierarchical abstractions and size-dependent representations;

It allows simultaneous viewing of multiple areas of interest.

To offer the above advantages, our hypermenu approach uses a hierarchy and a context

management scheme. Each hypermenu component in the hierarchy is a combined

representation of function access mechanism and a corresponding component in the work

object representation. The context management scheme organizes the on-screen layout and

appearance of hypermenu components. By integrating the function access mechanism and

the work object representation, our hypermenu approach minimizes the need for a separate

menu mechanism and facilitates interaction. Ideally, the hypermenu approach turns an

application into its own menu.

We have implemented two hypermenu applications for evaluation. One was designed

for computer-aided-design software based on Group Technology. The other was designed

for the user interface of a telecommunication network testing system. Both are written in

C++ and run under standard XJWindows and Motif.

7 2

Our hypermenu approach reduces user interface overhead by integrating the work

object representation with the function access mechanism, so that the user can interact with

the underlying system via direct manipulation. In addition, it also provides a full view of

the work context to preserve the user's orientation and hence facilitates navigation.

Further Research Directions

In our future research to improve the hypermenu approach, we would focus on : (1)

providing support for dynamic determination of abstractions, (2) allowing simultaneous

display of hypermenu components belong to multiple hierarchies, and (3) exploring more

efficient zoom algorithms.

In many applications, abstractions for hypermenu components depend on a lot of

parameters. Dynamic determination of abstraction based on all these parameters may

produce a more meaningful and informative abstraction to the user.

The hypermenu components may be organized into different hierarchies depending on

the needs of an application. For example, mechanical parts belong to different hierarchies

when they are organized by shape, manufacturing process and other properties. Very

often, manufacturers need to look at these hierarchies simultaneously. Therefore, it would

be useful to display hypermenu components belonging to multiple hierarchies

simultaneously.

As illustrated in our hypermenu applications, screen space required to display the

underlying system is proportional to the depth of the hierarchy and the number of items

within each level. Navigation is limited by the amount of screen space available. At

present, the discrete zoom and the continuous zoom are interval-based algorithms and could

induce large zoom holes. The unoccupied portion of a zoom hole wastes screen space.

Continual search for more efficient zoom algorithms will be a focus of future researches.

APPENDIX

The Hypermenu Approach To The User
Interface Of HP's Test System

This appendix describes our second hypermenu approach to a user interface for the HP

telecommunication network testing system' in the following order: introduction to HP's

test e&ipment, and the hypermenu application for HP's test equipment.

Introduction to HP's test equipment

A. 1.1 Telecommunication network Concepts

A telecommunication network is used to transmit voice and data. A network is logically

represented by nodes and links. Voice and data may enter and leave a node. A node is the

only place in a network where voice and data may originate. A Iink connects two nodes.

Voice and data travel through a link from one node to another.

I S.F.U. researchers involved in the hypermenu interface include Dr. John Dill, Mr. Frank Henigman and Albert
Chan. In the beginning of the project, S.F.U. researchers worked with HP IDACOM personnel to become familiar
with the original BSTS user interface and to develop a framework for a hypermenu approach.

Transmitting information is a five step process [Vetter 951. First, hformation is sent

out from an end-to-end application, such as Local Area Network management software, to

a service layer. Second, the service layer passes the information to the adaptation layer for

transmission. Third, the adaptation layer breaks down the infomation and packages it into

cells, where a cell consists of a header and an information field, The header field contains

information on identification and destination. Fourth, a convergence layer accepts the cells

and maps them to the physical layer. Finally, the physical layer encodes the data into

electrical waveforms for transmission. Each layer provides a variety of options. For

example, the adaptation layer may package cells into ATM or SIP L2 f~ rma t s .

Combination of all the layers and the communication format of the end-to-end application

defines a network transmission protocol.

A. 1.2 HP Test Equipment Concepts

TO conduct a test, the user first defines a session, which is the process of setting up

instruments for a test and running the test. Once a session has been defined, the user next

specifies the instrument used to make the performance measure. To build an instrument,

the user specifies the protocol and one or two devices to be used for the test. To facilitate

building instruments, an instrument builder is provided. The instrument builder lets the

Session '7
Instrument Q Instrument

Builder

Figure A. 1.2.1: Logical entities in HP's BSTS.

user specify the protocol and device(s) to be used. Finally, the user specifies device

parameters for each device inside the instrument. Figure A.1.2.1 shows the relationships

among all entities. Tasks the user must frequently undertake include: (I) set up the test

equipment, (2) examine test results, and (3) compare results from different devices.

A. 1.3 Existing BSTS User Interface

BSTS adopts a graphical user interface that provides the user access to and control of its

hardware, which is the work object. In the existing graphical user interface, the work

object is represented by dialog boxes corresponding to session, instrument, instrument

builder, and devices. Collectively, they become the menu system for BSTS.

HP originally used traditional user interface components such as dialog boxes and pull-

down menus for its graphical user interface. Each device is represented by a collection of

dialog boxes containing all available functions. Figure A.1.3.1 shows two dialog boxes

that represent some of the entities shown in Figure A.1.2.1. Figure A.1.3.l(a) shows both

session and instrument builder in the same dialog box. Session names are displayed in the

File - Session System - -

I Physical

Module Selection
Slot 3 4 5 6 7 8 9 10

I Line: (AIS (FERF (LOCS (LOS (OOF I
I Path: AIS (YEL

I statistics I

I Receiver I I Transmitter I

I Configure Interface... I

Figure A.1.3.1: Dialog boxes representing some entities of HP's test equipment. (a)
Instrument builder dialog box includes session panel on upper-left corner. (b) First-level
dialog box for line interface module.

upper left opening of the dialog box. An instrument builder contains panels for both

protocol selection and module selection. All the entities inside the module selection panel

are devices. Labels for devices are truncated because of limited screen space. For

example, the label of a cell protocol processor is "Cell Protocol Proc" and the labels for

lines interfaces end with "L/F".

Figure A. 1.3.l(b) shows the first level dialog box for a cell protocol processor.

Buttons are grouped to represent function sets provided by different elements from the

device. Pressing some of the buttons brings up still other dialog boxes. A similar dialog

box is used to represent a line interface module.

To conduct a test, the user first gives the session a name in order to define it. Once

this is completed, the name of the session is displayed inside the session panel. Then the

user specifies an instrument from the instrument builder. To specify an instrument, the

user first selects an appropriate protocol path from the protocol selection panel. Then, he

or she selects appropriate devices from the module selection panel. Once an instrument is

specified, the instrument builder dialog dims out all irrelevant choices. To specify device

parameters, the user brings up corresponding dialog boxes by double clicking on the device

in the module selection panel.

A.2 Hypermenu Prototype for HP's Test Equipment

In this section, we discuss some major design objectives of HP's user interface and the

construction of the hypermenu prototype for HP's test equipment. Then, we describe in

detail how our hypermenu interface functions.

A.2.1 Design Objectives Of The User Interface

80

hypermenu hierarchy. Again, the hypermenu's context management scheme provides the

work context during the entire configuration process.

To further facilitate hierarchical management of BSTS's user interface, HP adds a test

manager and a tester in addition to the components shown in Figure A.1.2.1. A test

manager maintains two testers and each tester contains two sessions. Both entities are

designed solely for hierarchical management. Recall that a session accommodates a

maximum of two instruments, so that the user can test a link in a single session.

A.2.2 Constructing A Hypermenu Prototype for HP's Test Equipment

To construct a hypermenu for HP's test equipment, we first need to identify the work

object representation. The original work object representation is made up of the entities

shown in Figure A.1.2.1. Test manager, testers, sessions, and instruments become cluster

hypermenu components, while devices are leaf hypermenu components. In our

hypermenu prototype, we slightly modified the work object to take full advantage of the

hypermenu's features. First, we added a representation under each instrument to indicate

the selected protocol. Therefore, in addition to devices, an instrument also contains a

selected protocol map. Second, we replace the concept of an instrument builder with an

undefined instrument. Hereafter, an instrument is either defined or undefined. Opening a

defined instrument exposes all its devices and the selected protocol map. In contrast, an

undefined instrument is always closed and has one zoom state represented by a dialog box

that provides similar functions to an instrument builder.

Once we have completely identified the work object and all subsequent components, we

insert them into our hypermenu hierarchy. As shown in Figure A.2.2.1, test manager,

tester, and session are made into cluster hypermenu components. Figure A.2.2.2 shows

Test Manager n
Tester I Tester a

Session Session

I

I I
Defined Undefineda

Instrument Instrument

1

I I I Device I I Device I Protocol Map

Figure A.2.2.1: The hypermenu hierarchy constructed for HP's test equipment. Note that
the notion of "undefined instrument" replaces the previous instrument builder. Thus,
instruments are either defined or undefined.

Figure A.2.2.2: Abs ;traction representations. (a) A test manager, (b) A tester, (c) A
seision, note highlight, indicating some devices have been selected. (d) Instruments:
from left to right: an undefined instrument, an instrument with one device occupying slot
nine, an instnlment with two devices occupying slot six and eight. (e) From left to right:
a selected protocol map, a cell protocol processor, a line interface.

the closed representation for all the hypermenu components. The close abstractions for the

test manager, tester and session need to convey only their identification. Thus, they remain

unchanged at all times. However, this is not true for an instrument. When an instrument is

undefined, it is a leaf hypermenu component; but once an instrument is defined, it becomes

a cluster hypermenu component. Since an instrument is composed of either one or two

devices, different abstractions are needed to represent the number of devices. In fact, the

closed representation of an instrument also needs to report the number of devices and slot

numbers they occupied in the instrument. Figure A.2.2.2(d) shows a few sample

abstractions for an instrument.

Note that an instrument's closed representation needs to change dynamically to update

its status. When a cluster hypermenu component is opened, it is drawn as a filled

rectangle. Additionally, some leaf hypermenu components have only one zoom state.

Among them are the selected protocol map and the undefined instrument (See Figure

A.2.2.3).

Our hypermenu prototype supports size-dependent representations for all the devices.

Each device has two zoom states with different sizes and representations. According to

HP, a device only needs to be fully opened for configuration. Otherwise, it only needs to

display component status for examination. In general, it consumes less screen space to

display component status than the entire dialog for configuration. With support for size-

dependent representation, the hypermenu approach facilitates optimal use of screen space.

Figure A.2.2.4 shows all the size-dependent representations for the cell protocol processor

and line interface modules.

End-to-End

Services
mil

Adaptation
mEi
m

Cell m
Convergence Imm
Physical HmfI

Protocol Selection

End-to-End Wa

Module Selection

Slot 3 4 5 6 7 8 9 10

Figure A.2.2.3: Abstraction representations. (a) Open abstraction of a selected protocol
map. (b) Open abstraction of an undefined instrument.

File Heh

Capture Memory I

I C] Synchronized Capture I

File Help

Builders I

I Synchronized Capture I

Line Interface Module

Figure A.2.2.4: Abstraction (a) Initial open abstraction of a cell protocol
processor module.@) Fully opened abstraction for a cell protocol processor module.

File - View - Help -

I I Line: (AlS (FERF (LOCS (LOS (OOF I 1 I Path: (AIS (VEL

File - View - Help -

I Line: (AW (FERF (LOCS (LOS (OOF

I Path: (AIS (V U

I Statistics I

I Receiver I I Tnnsminer 1

Configure Interface...

Figure A.2.2.4 (continued): (c) Initial open abstraction for a line interface. (d) Fully
opened abstraction for a line interface.

A.2.3 Behaviors Of The Hypermenu Interface

To illustrate the hypermenu approach to a BSTS user interface, we show how a user can

perform the two most common tasks with the hypermenu interface. First, we will show

how a user can build an instrument and then interact with its components. Second, we will

show a scenario where the user examines and compares multiple devices simultaneously.

A .2.3.1 Defining And Configuring An Instrument

Defining and configuring an instrument is a very tedious decision-making process.

According to HP developers, users tend to be confused during the lengthy process. Thus,

preserving the configuration sequence is extremely important to avoid confusion and

disorientation. To define an instrument with our hypermenu prototype, the user takes the

following steps:

Launch the software. Initially, the hypermenu interface shows the closed test

manager, which can be the product logo (See Figure A.2.3.1.1 (a)).

Open the test manager. An opened hypermenu component is drawn as a filled

rectangle. Each level in the hypermenu hierarchy is assigned a unique color to

indicate the depth of a component in the hierarchy. In the context of configuration,

opening a hypermenu component immediately exposes all its sub-components

which correspond to the next set of choices. Opening the test manager exposes two

testers as shown in Figure A.2.3.1.1 (b). The hypermenu interface animates all size

changes during a basic operation to pr~vide~visual continuity. Throughout

configuration, the user selects a choice by opening or zooming it directly.

Selecting and opening a tester exposes two sessions within. (See Figure

A.2.3.1 .l(c)).

(4) Selecting and opening a session exposes two initially undefined instruments (See

Figure A.2.3.1.1 (d).

(5) Selecting and zooming in an undefined instrument (See Figure A.2.3.l. 1 (e)). At

this stage, the user selects proper parameters from the protocol and module

selection panels. Pressing "Define Instru" defines the instrument. Immediately

afterwards, the hypermenu interface zooms out the instrument and displays the

proper abstraction. Figure A.2.3.l .l(f) shows an example where the user has

selected two devices occupying slot six and eight. Defining an instrument involves

creating hypermenu components that contain the selected protocol map and the

composing devices.

(6) If further configuration is needed, the user can open an instrument and get into

lower levels of details. When a defined instrument is opened, all its components

are initially in closed state (See Figure A.2.3.l .l(g)). To configure a device, the

user needs to zoom it in fully in order to access all details. Figure A.2.3.1 .l(h)

shows a fully zoomed-in cell protocol processor module.

If a mistake is discovered after defining an instrument, the user can delete the

instrument and start over again (See Figure A.2.3.l . l (d)).

(a) A closed test manager.

(b) Open a test manager to see two testers.

(c) Open a tester to see two sessions.

Figure A L 3 . l . 1 : Configuration using the hypermenu interface.

(d) Open a session to see two undefined instruments.

(e) Open undefined instrument to select protocol and modules.

(f) Devices in slots 6 and 8 defined in the leftmost instrument.

Figure A.2.3. l . l : (continued).

(g) Opening a defined instrument shows the selected protocol map and device(s) within.

(h) Instrument cpp opened for parameter adjustment.

Figure A .2.3.1.1: (continued).

4.2.3.2 Examining And Comparing Hypermenu Components

There are times when the user needs to examine and compare components in different

testers or 'test sessions. Such situations arise when multiple instruments are needed to test

different parts of a network. During configuration, the user may want to place components

side by side for identical settings. During examination, the user may need to look at

multiple components simultaneously. In both situations, displaying all the components of

interest is a primary concern of the user.

Since the discrete zoom algorithm supports multiple foci, the hypermenu interface is

capable of displaying multiple components in detail as long as there is enough screen space.

To examine a device, the user only needs to zoom into it. Figure A.2.3.2.l(a) shows a

scenario where two devices have been zoomed in. All other components and filled

rectangles constitute the work context, which reflects relationships among components and

the entire system. With the work context in full view, the user can identify where a

component belongs and the chance of confusion is reduced. Moreover, since hypermenu

components do not overlap one another, every component on the display is fully visible to

the user. In case of insufficient screen space to display a component in detail, the user can

zoom out or close other components to increase available screen space. Alternatively, the

user may enlarge the hypermenu's application window as much as the display allows.

Figure A.2.3.2.l(b) shows a scenario where four devices and three protocol maps are

simultaneously zoomed in. When shrinking its application window, the hypermenu

interface automatically closes all hypermenu components to prevent any of them from lying

outside the application window.

(b)

Figure A.2.3.2.1: Examine system components.

REFERENCES

[Autodesk 9 11 Autocad Reference Manual.

[Barnard 771 Barnard, P.J., Morton, J., Long, J. and Ottley, E.A. Planning Menus For
Display: Some Effects of Their Structure on User Performance.
International Conference on Displays for Man-Machine Systems, pp. 130-
133, April 1977.

[Bartram 951 Bartram, L., Henigman, F. and Dill, J. The Intelligent Zoom as Metaphor
and Navigation Tool in a MultiScreen Interface for Network Control
Systems. IEEE International Conference on Systems, Man and
Cybernetics, Oct. 22-25, pp.3 122-3 127, 1995

[Bederson 941 Bederson, B. and Hollan, J. Pad++: A Zooming Graphical Interface for
Exploring Alternate Interface Physics. Proceedings of the ACM
Symposium on User Interface Software and Technology, pp.45-53, 1994.

[Bier 901 Bier, E.A. and Goodisman A. Documents as user interfaces. Proceedings
of the International Conference on Electronic Publishing, Document
Manipulation and Typography, pp.249-262,1990

[Bier 9 11 Bier, E.A. EmbeddedButtons: Documents as User Interfaces.
Proceedings of the ACM Symposium on User Interface Software and
Technology, pp.45-53, 1991.

[Bier 931 Bier, E.A., Stone M.C., Pier, K., Buxton, W. and DeRose, T. D.
Toolglass and Magic Lenses: The See-Through Interface. COMPUTER
GRAPHICS Proceedings, pp .73-80, 1993.

[Callahan 881 Callahan, J., Hopkins, D ., Weiser, M. and Shneiderman, B . An empirical
comparison of pie vs. linear menus. Proceedings of Computer Human
Interaction, pp.95- 100, 1988.

[Card 911 Card, S.K., Robertson, G.G. and Mackinlay, J.D. The Information
Visualizer, an Information Workspace. Proceedings of Computer Human
Interaction, pp.181-188, 1991.

[Dill 941 Dill, J., Bartram, L., Ho, A. and Henigman, F. A Continuously Variable
Zoom for Navigating Large Hierarchical Networks. IEEE International
Conference on Systems, Man, and Cybernetics, pp.387-390, 1994.

[Foley 901

[Furnas 861

[Groover 801

[Hopkins 911

[HP 931

[Johnson 911

[Kiger 841

[Koved 861

Foley, J., van Dam, A., Feiner, S. and Hughes, J. Computer Graphics
PRINCIPLES AND PRACTICE, second edition, 1990.

Furnas, G.W. Generalized Fisheye Views., Proceedings of Computer
Human Interaction, pp. 16-23, 1986.

Groover, M.P. Automation, Production Systems, and Computer-Aided
Manufacturing, 1980.

Hopkins, D. The Design and Implementation of Pie Menus. Dr. Dobb's
Journal, pp. 16-26, 199 1 .

Hewlett Packard 75000 Broadband Series Test System brochure .

Johnson, B. and Shneiderman, B. Tree-Maps: A Space-Filling Approach
to the Visualization of Hierarchical Information Structures. IEEE
Conference on Visualization, Oct .22-25, pp .284-29 1 , 199 1 .

Kiger, J.I. The depthhreadth trade-off in the design of menu-driven user
interfaces. International Journal of Man-Machine Studies, 20, pp.20 1-2 13,
1984.

Koved, L. and Shneiderman, B . Embedded Menus: selecting items in
context. Communications of the ACM, Vol. 29, No. 4, pp.3 12-3 18, April
1986.

[Kurtenbach 931 Kurtenbach, G. and Buxton, W. The limits of Expert Performance
Using Hierarchical Marking Menus. Proceedings of Computer Human
Interaction, pp ,482-487, 1993.

[Lamping 951 Lamping, J., Rao, R. and Pirdli, P. A Focus+Context Technique Based on
Hyperbolic Geometry for Visualizing Large Hierarchies. Proceedings of
Computer Human Interaction, pp.40 1-408, 1995.

[Landauer 851 Landauer, T. Selection from alphabetic and numeric menu trees using a
touch screen: Breadth, depth and width. Proceedings of Computer Human
Interaction, pp.73-78, 1985.

[Landauer 871 Landauer, T. Relations between Cognitive Psychology and Computer
System Design. Interfacing Thought: Cognitive Aspects of Human-
Computer Interaction. pp.1-25, 1987.

[Mackinlay 9 11 Mackinlay , J .D., Robertson, G.G. and Card, S .K. The Perspective
Wall: Detail and Context Smoothly Integrated. Proceedings of Computer
Human Interaction, pp. 173- 179, 199 1.

[McDonald 831 McDonald, J., Stone, J. and Liebelt, L. Searching for items in menus:
The effects of organization and type of target. Proceedings of the 27th
Annual Meeting of the Human Factors Society, pp.834-837, 1983.

[Miller 811 Miller, D.P. The depth-breath tradeoff in hierarchical computer menus.
Proceedings of the 25th Annual Meeting of the Human Factors Society,
pp.296-300, 198 1 .

[Miller 561

[Nielsen 901

[Noik 941

[Perlman 841

Miller, G.A. The Magic Number seven, Plus or Minus Two, Psychological
Review, 63, pp.8 1-97, 1956.

Nielsen, J. The Art of Navigating HYPERTEXT. Communications of the
ACM, Vol. 33, No. 3, pp.296-3 10, March 1990.

Noik, E. A Space of Presentation Emphasis Techniques for Visualizing
Graphs, Graphics Interface '94, pp.225-233, 1994.

Perlman, G. Making the Right Choices with Menus. Proceedings of
INTERACT 84, pp.3 17-321, 1984.

[Robertson 911 Robertson, G.G., Mackinlay, J.D. and Card, S.K. Cone trees: animated
3D visualizations of hierarchical information. Proceedings of Computer
Human Interaction, pp. 189- 194, 199 1.

[Sarkar 941 Sarkar, M. and Brown M.H. Graphical Fisheye Views of Graphics.
Proceedings of Computer Human Interaction, pp.73-84, 1994.

[Schaffer 931 Schaffer, D., Zuo, Z., Bartram, L., Dill, J., Dubs, S., Greenberg, S. and
Roseman, M. Comparing Fisheye and Full-Zoom Techniques for
Navigation of Hierarchically Clustered Networks. Graphics Interface '93,
pp.87-96, 1993.

[Snead 891 Snead, C. S. Group Technology Foundation for Competitive
Manufacturing, 1989.

[Snowberry 831 Snowberry, K., Parkinson, S .R. and Sisson, N. Computer display
menus. Ergonomics, v .26, pp.699-7 12, 1983.

[Tullis 851 Tullis, T., Designing a Menu-based Interface to an Operating System,
Proceedings of Computer Human Interaction, pp.79-84,1985.

[Vetter 951 Vetter, Ronald J. and Du, David H.C. Issues and Challenges in ATM
Networks. Communications of the ACM. Vol. 38, No. 2, pp.3 1-38,
February 1995.

[ZiZi 941 ZiZi, Mountaz and Beaudouin-Lafon, Michel. Accessing Hyperdocuments
through Interactive Dynamic Maps. ECHT '94 Proceedings. pp.126- 135,
September 1994.

