
DATABASE AND PERSISTENT STORAGE 

@ Sanjay Gupta 

_1 

B.Tech.. Indian Institute of Technology, Delhi, 1989 . 

A T H E S I S  S U B M I T T E D  I N  P A R T I A ~  E U L F I L L M E N T  

' O F  T H E  R E Q U I R E M E N T S  F O R  T H E  D E G R E E  O F  

.in the School 
> 

of 

C o m h t i n g  Science 

@ Sanjay Gupta 1996 

SIMON FRASER UNIVERSITY 

November 1996 

B 

All rights reserved. TI& work may not be 

reproduced in whole or in part, by photocopy . 

or other means, without the permission of the author. 



National Library I of Canada 
< 

Acquisitions and 
" Bibliographic Senrices 

395 Wellington Street 
Ottawa ON K1 A ON4 a 

Canada 

Bibliotheque nationale 
du Cpnada 

Acquisitions et 
services bibliographiques 
395. rue Wellington 
Ottawa ON K1 A ON4 
Canada 

, 
Your line Vme dWrenar 

Our fihg Nofre retdreoce 

The author has granted a non- 
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of thls thesis in microform, 
paper or electronic formats. 

Q 

1 

- 

The author retains ownership of the 
copyright in h s  thesis.,Neither.tbe 
thesis nor substantial extracts fiom it 
may be printed or otherwise 
reproduced without the author's - 

permission. 

L'auteur a accord6 une lickce non 
exclusive permettant a la - 

Bibliotheque hationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, dd 
reproduction sur papier ou sur format 
electronique . 

~ ' a u t &  conserve la propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des exki ts  substantiels 
de celle-ci ne doivent Stre imprimes 
ou autrement . . reproduits sans son 
autorisation. 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Sanjay Gupta 

Master of Science 

A system for interfacing .LIFE with d a t a b a s  

and persistent storage 

Examining Committee: Dr. Rob Camergn 

Professor 

Computing Science, Chairman 

Date Approved: 

Dr. Hassan Ai ' t -Kd,  Senior Supervisor 

. - 

Dr. Jiawei Hlin, Supervisor 

- 

Dr. Frederick P. Popocvich, Examiner 



Abstract 

LIFE is a functional logic programming language extended with object-oriented 

concebts(sub-typing and inheritance). The objects in LIFE are extensible, 
/ 

complex, and partially ordered. LIFE can be viewed as a combination of 

functional, logical and imperative programming paradigms. The combislation 

of these three different programming paradigms in LIFE provides powerful 

high-level expressions and facilitates specificatiorr of complex constraints on * 

\ 
datb-objects. Therefore it is ideally suited for applications in natural language 

processing, document-preparation, expert systems, and so on. These applica- 

tions rely on large amounts of data and will require database 'technology for 

efficient s t o r a ~ e  and retrieval of data. Keeping this in mind, we extend LIFE 

, with database interfaces for object-oriented and relatibnal data. 

These interfaces are used to store LIFE facts and persistent terms. The 

reverse problem, conversion of relational data into LIFE as $-terms, has also . 
' 

been addressed in this thesis. We give an* algorithm to generate LIFE facts 

from relational data. Effltacy of these approaches has been studied using real 

word problems arising in Geographic Information Systems and Information 

Retrieval Systems. 



dedicated to my parents Sh. Ramautar Gupta and Shmt. I\'Qusha/ya Gupta 



5 

It is with my deepest appreciation that  I acknowledge my advisor, Professor 
F 

Hassan Ai't-Kaci for his financial support, advice and continued encourage- 

ment. He has *always made himself available to  answer my questions and 
, . 

discussion of my ideas. I a m  grateful to  him for his guidance, patience and 

encouragement in my research in making it a most rewarding experience. It 

has been a privilege t o  have been his student. 

I would also like to  thank th'e members of my committee who all made 
.A 

useful comments a b h t  my work. Special thanks t o  Hassan Ait-Kaci, Jiawei 

Han and Fred Popowich for patiently reading my thesis and providing helpful 

suggestions. 

My heartfelt thanks to Dayaram Gaur for reading through several of my 

thesis drafts providing meaningful suggestions to improve the legibility of the 

thesis. He also deserves credit for som; of the research work in this thesis. 

I a m  alsb grateful to  Pattabhiraman for proof reading the first draft of the 

thesis. Martin Vorheck provided help in the initial technical discusion of this 

research. 

I also would like t o  acknowledge many of my houselmates, office-mates and 

friends who have made Vancouver a special place to live: Sumeet Bawa, Pinaki 

Mitra, Dayaram Gaur, Vikas Gupta, Pattabhiraman Thyagarajan, Latha Thya- 
4 

garajan, Martin Vorbeck, Harry Grewal, Roman Bachik, Subho Chatterjee, 

Ajay Srivastav, Ashish Pimplapure, Mark Mezofenyi, Graham Finlayson, Aamir 

Hussain and Taranjit Singh. My former room-mates Sumeet Bawa and Pinaki 

Mitra made my initial days in Vancouver much happier - Sumeet Bawa for his 



% true friendship, watching movies with him, numerous trips to pub for coffee 

with him, his drinking sessions and jokes, and Pinaki Mitra for his humor. 

Martin Vorbeck and Ashish Pimplapure provided good company as my office 

mates and diversion from work. Patkabhiraman's one liners about life was 
N 

a good source of entertainment and Latha's cooking of idlees and dosais re- 

minded me of my hometown Madras. My current room-mates Dayararp Gaur 

and Vikas Gupta I;rovided good company and made the writing process enjoy- 

able - for t,heir cooking, for playing snooker when the stress of thesis writing 

was too much and for Vikas for bearing with me to  watch star trek on TV. 

Special thanks to Dayaram Gaur for his encouragement in making the process 

of writing the thesis easier. 

Special appreciation to my brother Ra L- sh and sisters Madhu and Vinu for 

their confidence in my abilities, for their encouragement to get on with my 

life and my work in my difficult times. Finally I wish to express the deepest 

gratitude to my parents for the love and affection best,owed on me and their 

moral support.   his thesis is dedicated to my parents. 



Contents 

Approval 

Abstract 

Dedication 
3 

i v 

Acknowledgements 

Lict of Tables 

List of Figures - xi 

1 Introduction - J 
*1 

1.1 LIFE overview. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

1.1.1 +-term Data Structure . : . . . . . . . . . . . . . . . . .  4 

1.1.2 Types and Inheritance . . . . . . . . . . . . . . . . . . . .  6 

1 :1.3 Unification of +terms . . . . . . . . . . . . . . . . . . .  8 

1.1.4 LIFE Program . . . . . . . . . . . . . . . . . . . . . . .  9 

1.2 LIFE: A Knowledge-and Dat,aba.se Manipulation Language . . .  12 
8 

1.3 'Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . .  15 

1.3.1 LIFE to RDBMS Interface . . . . . . . . . . . . . . . . .  16 

1.3.2 Persistent Terms in LIFE . . . . . . . . . . . . . . . . .  17 

1.3.3 Reverse Compiler . . . . . . . . . . . . . . . . . . . . . .  19 

vii 



' 2 Combining DBMS and P L  22 . 
8 . 2.1 1ntroduct:o; . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . .  22 

. . . . . . . . . . . . . . . . . . . . . .  2.1.1 Database Systems 22 

2.1.2 Programming Languages . . . . . . . . . . . . . . . . . .  23 

2.2 Alternative? in Design : . . . . . . . . . . . . . . . . . . . . . . .  24 

2.2.1 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

2.2.2 Integration . . .  . . . . . . . . . . . . . . . . . . . . .  26 

. . . . . . . . . . . . . . . . . . . . .  2.3  Design choices for LIFE \ 27 

. . . . . . . . . . . . . . . . . . . . .  I 2.3.1 couplin; Approach 28 

2.3.2 LIFE as a Persistent Programming Language . . . . . .  29 . . 

3 ~ o u ~ l i n & ~ ~ ~  to a Relational Database 30 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . .  30 

3.2 . Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

3.2.1 Program Analyzer . . . . . . . . . . . . . . . . . . . . . .  34 

. . . . . . . . . . . . . . . . . . . . . .  3.2.2 Meta-interpreter 35 

3.2.3 Communication Module . . . . . . . . . . . . . . . . . .  41 

3.3 Storing and Retrieving LIFE Facts . . . . . . . . . . . . . . . . .  42 

. . . . . . . . . . . . . . . . . . . . . . .  3.3.1 Sample Program 42 

. . . . . .  3.3.2 Representat. ion of Facts in a ~e la t . io i a1  Model 44 

3.3.3 Data Ret. rieval . . . . . . . . . . . . . . . . . . . . . . .  48 

. . . . . . . . . . . . . . . . . . . . . . .  3.3.4 Improvisations 53 ' 

3.4 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T3 56 
* 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

4 Persistent Programming 57 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Introduction 57 

. 4.2 Issues in Persistent Languages- . . . . . . . . . . . . . . . . . . .  58 - 
. . . . . . . . . . . . . . .  4.2.1 Identifying Persistent Objects 59 

. . .  . . . . . . .  4.2.2 Object Faults and Residency Checking ' 59 

4.2.3 Pointer Swizzling . . . . .  ' . .  . . . . . . . . . . . . . .  60 
a 6 



- 
4.3 Persistency in LIFE . . . . . . . . . . . . . . . . . . . . . . . . . 62 

1 ,  
4.3.1 Deiign Goals . . . . . . . .. . . . . . . . . . . . . . . . . 63 

4.3.2 System Architecture . . . . .. . . . . . . . . . . . . . . . 65 

4.4 Conclusion . . . . . . . . : . . . . . . . 

5 Reverse Compiler I- 73 

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

5.2 Concept Generation. . . . . . . . . . . . . . . . . . . . . . . : . 74 

5.3 Reverse Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . 78 ' 

5.4 Conclusion . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . 80 
8 

6 Applications 
C 

81 

6.1 Geographic Information 'Systems . . . . . . . . . . . . . . . . . . 81 

6.1.1 Hierarchical Data Compression . . . . . . . . . . . . . . 82 

6.1.2 Performance of the Persistent Database . . . . . . . . . . 88 . 
6.2 ~nformation'~et,rieval Systems . . . . . . . . . . . : . . . . . . . 92. 

6.2.1 Bibliography Database . . . . . . . . . . . . . . . . . . . 93 . 
6.2.2 Knowledge representation using conceptual hierarchy . . 94 

6.2.3 Performa'nce Analysis . . . . . . . . . . . . . . . . . . . . 94. 

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

7 Conclusion 97 

7.1 Overview of the System" . . . . . . . . . . . . . . . . . . . . . . 97 

7.1.1 LIFE-RBBMS System . . . . . . . . . . . . . . . . . . . 97 

7.1.2 Persistent Programming in LIFE . . . . . . . . . . . . . 98 

7 2  Reverse C'ompiler . . . . . . . . . . . . . . . . . . . . . . . . . . 99 

7.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . .? . . 100 a. 

7.4 Performance . . . . . . . . . . . . . . . . . . . . . . , . . . . . . 100 

, 7.5 Limitations and Directions for Further Research . . . . . . . . ., 101 . 
7.5.1 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . 102 

. 7.5.2 Heterogeneous Knowledge Bases . . . . . . . . . . . . . . 103 



List of Tables 

1.1 . An address database . . . . . . . . . . . . . . . . . . . . . . . . .  13 

1.2 Sample query output . . . . . . . . . . . . .  ... . . . . . . . . .  15 

- 
3.1 A vehicle database . . . . . . . . . . . . . . . . . . . . . . . . .  47 

. . . . . . . . . . . . . . . . .  5.1 Matrix representation of relation R 74 

6.1 Performance of LIFE-RDBMS Interface us Standalone LIFE . . 95 

6.2 Performance of Caching in LIFE-RDBMS interface . . . . . . .  96 



List of Figures ' 

1 

1.1 Graph representation of the $-term in example 1.2 . . . . . . .  5 

1.3 Type hierarchy in LIFE . . . . . . . . . . . . . . . . . . . . . .  6 

1.3 ~ u i l t - i n s  type hierarchy in LIFE . . . . . . . . . . . . . . . . . . .  7 

1.4 Concept hierarchy for address d. atabase . . . . . . . . . . . . . .  14 

1.S Structure sharing between two persistent $-terms . . . . . . . .  19 
I 

1.6 Rectangular decomposition of relation rel of example 1.8 . . . .  20 

. . . . .  1.7 Hierachical categorization of relation. re1 of example 1.8. 20 

2.1 Dynamic updates of persistent terms . . . . . . . . . . . . . . .  29 

3.1 Interface architecture . . . . . . . . . . . . . . . . . . . . . . . .  33 

. 3.2 Failure rule for Unification of Database Facts . . . . . . . . . . .  38 

. . . . . . . . . . . . . . . . . .  3.3 Type hierarchy for example 3.1 33 

3.4 Type hierarchy for example 3.11 . . . . . . . . . . : . . . . . . . .  5.5 

4.1 Persistent store architecture for LIFE . . . . . . . . . . . . . . .  63 

4.2 Slot . page data structure . . . .  

4.3 ,Objec t.Id structure . . . . . . . .  

-2.4 Object structure . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

' 4 ..5 Pointer swizzling . . . . . . . . . . . . . . .  ! . . . . . .  " . . . . .  69 

4.6 Object cache . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

1 
. .  5.1 Row Convex Algorithm . . . . . . . . . . . . . . . . . . . . . .  '. 75 

5.2 hlerge Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

5.3 Overlap of New and Old Maximal Rectangles . . .  : . . . . . .  78 



Compression obtained on the road map database . . . . .  : 
-9 t 86 Performance gain of the compressed map 

4 

. . . .  . . . . . . . . . .  
Frequency distribution of compression of map . . . . . . . . . .  86 . 

w 

Frequency distribution of performance' gain of the compressed 

map . . . . . .  ; . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 - 
Startup times of-map . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

Garbage Collection (GC) times in LIFE . . . . . . . . . . . . .  89 
Q 

Performance of Route Finding Algorithm . . . . . . . . . . . . .  90. 
* 5 

GC times in Route Finding Algorithm . . . . . . . . . . . . . . . .  91 

.. '6.9 Performance ,of Route Finding Algorithm with larger virtual 
' . 

memory . .  :+i.t. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 
- ,  

. . 6.10 Concept hierarchy for bibliographic da t&pe  93 , . . . . . . . . . . . . .  * .  
1 

I - 

xii 



Chapter 1 

Introduction 

Considerable research effort has been directed recently towards combining 
I 

databases and programming languages [14, 21, 23, 271. While 

systems on their-own provides considerable utility in their respe~t ive  applica- 

tion domains, a'large number of applications exists that  need the functionality 

provihed by both the systems. From a programming language perspective the 

need was felt because 

Application programmers would benefit enormously from being able to  

manipulate persistent da ta  [21] (da ta  that outlived the execution of the 

program) just as they manipulate non-persistent data, rem6ving ad hoc 

facilities for da ta  translation and long term storale. ' . 

Applications typically work on large sets of da ta  that do not fit in main 

memory and cannot be efficiently handled by the programming language. 

Furthermore existing databases need to  be accessed by a programming 

language. 

An application handling large amount of data uses only a small part of 

it during a program run. Files are generally read and written as a unit; 

therefore access and updates for large files is slower. Performance can be 

improved i f  only data is retrieved and updated increrlentally as needed. 



CHAPTER 1. INTRODUCTION 

In the database community, the need was felt because 

0 Programming languages like C++, LIFE, offer alternative data-modeling [ l ,  

11, 14, 35, 331 capabilities for systems like NLP, CAD, document retrieval 

systems, software engineering, hypertext data, etc, which deal +it h com- * 
plex object structures. 

It is recognized that ~b jec t~or ien ted  ~rogramming languages enable ap- 

propriate modeling of problem domains and reduce the effort involved 

in tra&lating the application model to t,he podel of the implementation . 
language. 

Logic programming as a database query language [14] offers greater ex- 
1 4 

pressivity for queries and constraints than other languages. It is widely 

-recognized that we need to combine the query processing part of logic 

programming systems with the efficient access techniques of DRhlS's. 

Ait-Kaci et.al [6] have conceived a new programming language, LIFE (logic, 

inheritance. functions and equations), that combines three different program- 

ming paradigms: logic %programming, functional programming and object- 

oriented programming, providing a powerful formalism for many different ap- 

plications [lo, 111 that include natural language processing, expert systems, 

intelligent document retrieval systems, etc. LIFE provides a basic data struc- 

ture called the psi-term, which neatly supports frame-style knowledge struc- 

tures [ 1 3 ] .  The knowledge-base can be structured as an inheritance hicrarchy 

in LIFE [3, 101 and together with the $1-term unification algorithm, provides 

group-related processing tasks such as answering set queries, discriminating 

between objects, finding similarities between objects. etc. In addition. thb in- 

termingling of relational and functional expressions in LIFE (8, 91 in a declar- 

ative manner allows powerful high-level expressions and complex constraints 

on data-objects. 



CHAPTER 1. INTRODUCTION 3 

Moreover the +-term data-model can represent arbitrarily complex objects, 

with no constraints on the size or the structure. This is especially useful for ap- - 

plications which manipulate large sets of data, where the types of data-elements 

in a set need qot be the same (for example, docbment retrieval systems, hy- 

pertext data, etc). 

LIFE cannot deal with the size, amount or th"e.distributed nature of the 

data in such advanced information systems, and will need extensions to manage 

the secondary storage requirements and communication needs of the applica- 

tion. 

The objective of this thesis is: 

to provide database management facilities for LIFE, combining them 

in as iiseamless" a manner as possible. The sfstem should be efficient 

enough to avoid having an adverse effect *on perform.ance. 

to demonstrate LIFE'S capabilities as ilknowledge and database manip- 

ulation language.. Two applications are described and their performance* 

analyzed. 

provide t.he abilit,y to *use data stored in a relational database from a 

LIFE p;ogram. 

After a brief introductioil of LIFE's basic data-structure and unification 
ir - algorithm, we will illustrate with some of the advantages of LIFE's knowledge 

and database modeling capabilities-and the data-objects in LIFE that have to 

he stored in an external database. 

1.1 LIFE overview 

In this section, the inain concepts of LIFE will be summarized. The h s i c  

data-structure in LIFE is called the cl-term, which is a useful extension to the 

first order term as in Prolog [12]. A first-order term inI'rolog consists of either 

a constant, a variable or a term of form s ( a l , .  . . ,a,), where s is the Junctor, - 



L 

B 
and a;'s (which are arguments of the term) are first-order terms. A first-order 

termswith no arguments is called a constant. Variables are denoted by strings 

beginning with - or an uppercase letter, while a functor symbol starts with a 
. , 

lowercase letter. 

One of the main drawbacks in the above representation of Prolog term is 

that argumentsjn the term need to be identified by the position a t  which they 

occur in the term. In a +-term, symbols called labels or features are used to 

identify the arguments. This extension helps make writing programs easier, 

avoid programming errors and improve the readability of the programs. The 

order of the arguments in a $-term is immaterial and the arity of the term ' 

(number of arguments in the term) is not fixed. 

,1 .1 .1  $-term Data Structure - 

Informally, a $-term is characterized by specifying a type constructor, called 

the roo,KCort and a set of at tributes((labe1, value) pairs), where the order of 

these pairs is immaterial. An attribute is defined by specifying its name and 

domain. The attribute-values can be other +-terms, both primitive (such as 

integer, real, boolean, sorts or string) and non-primitive ones. 

Example 1.1 , 4 7 1  example of n $-term is: 

researcher  ( l a s t n a m e  + s t r i n g ,  

date-of-bir th  + d a t e  $ day + i n t e g e r ,  

month + i n t e g e r ,  

year + i n t e g e r  

s p e c i a l i z a t i o n  + research-area,  

works-at + organizat  ionname 

1 .  



CHAPTER 1.  INTRODUCTION 

This is an example of a researcher type, consisting of a root sort researcher and 

four sub-11,- terms denoted by attribute labels last-name, ddte-of-birth, special- 

ization and works-at. This $-term describes an object researcher consisting of 

four record fields. 

Variables and Tags in $-terms: 
4 

Unlike a Prolog term, a LIFE term can be conceived as a n  arbitrary graph . 
structure which may include cycles. This is made possible by using variables 

as tags (references) to  structures within a $-term. In a Prolog term, a variable 

can appear only a t  the  leaf node of a term. However in a LIFE term, variables 

can appear anywhere in the $-term structure. This allows variables t o  be used 

as tag symbol for structure sharing (called core ference constraint) wit Bin a 

$,-term. 
\ 

Figure 1.1: Graph representation of the $-term in example 1.2 

Example 1.2  A n  ernrnyle of n dl-term using lags for coreference constraint 

P:person ( name + "maryJ1, 
father + X:person(name + "harryJIJ, 
guardian + X ,  

spouse + person(name + "Tom", spouse + P 
P 

1.  



The  tag symbol X refers toqthe fact the father and the  guardian of the above 

person is the same, while the tag P defines a cyclic coreference constraint that  

the spouse of a spouse of a person is the same person. - 
LIFE provides a powerful type mechanism and extends first-order terms 

with d subtype relation on the symbols occurring in. the terms. The following 

subsection explains the  notion of subtyping in LIFE. 

1.1.2 . Types and Inheritance 
s- 

/ \ land-veh~cle <-vehicle 
student employee 

car 

Figure 1.2: Type hierarchy in LIFE 

The  type symbols in a LIFE program are partially ordered with the relat,ion 5.  

. Fig 1.2 shows an example of the partial order on the type symbols in a LIFE 
-> 

program. For instance it defines that 'the researcher is a subtype'of employee 

(defined in LIFE program as: researcher 5 employee.) which in turn is 
* 

a subtype of person. The type hierarchy includes two special types T ( top  

, symbol) encompassing all the types and I (bottom symbol, not shown in the 

figure) encompassed by all other types in LIFE. 



CHAPTER 1.  INTRODUCTION, 7 

We can also define multiple type relations in a single s ta tement  such as  ' 

person := {student ;researcher). This is equivalent t o  stating student < 
* 

person and researcher 5 person in LIFE. 

In LIFE, no distinction is made between types and  values. Thus  all integer 

values such as 1 are  treated as  subtype of a built-in type int.  Another example 

of built-in type is string, and all strings s are  subtype of string. Figure 1.3 

shows the  builtin t ~ p e s  and t.he subtype relationship between them in LIFE. 

-r 
I 

built-in 
/ 

"P1 string 

c o n s  C 7 i n t  fa1 se 

Figure 1.3:  Built-ins type hierarchy in LIFE 

We car1 also define new types and attach properties to  it such as attributes 

and constraints. For example: 

: : book(tit1e + string). 
states tha t  a book has a title at t r ibute  which should be a string. Any $-term 

instance in a LIFE program whose root sort is a book is unified (unification 

is explained in section 1.1.3) with the above definition. T h e  a t t r ibu te  val- 

ues could he functional expressions as well (functions in LIFE are explained 

in section 1 .1 .4 ) ,  in which case these functions are evaluated before unification. 

We could also at tach constraints to  the gorts. An example of constraints a t -  , 

tached to  a sort is: 

: : s (name=>X : string) I print (X). 

T h e  symbol '' - " is pronounced as "slich that" and the  constraint tha t  follows 

is of the form of a definite clause body. 
, 



CHAPTER 1. INTROD UCTIOiV 

T h e  subtype relation 'and ai t r ibute  specification can be done in a single defi- 

nition such as: 

employee 5 person , ( sa la ry  j i n t ) .  

which states tha t  an  employee is a person with an additional a t t r ibu te  salary. 

Each subtype inherits the attributes of its parents. For example if t he  defini- ; 
tions of person and employee are: 

: :pe r son  ( l a s t  name + s t r i n g ,  

da te -o f -b i r th  j d a t e  ( day + i n t e g e r ,  

month + i n t e g e r ,  

yea r  + i n t e g e r )  

>,  and 

e h p l o ~ e e  5 p e r s o n ( w o r k s a t  =+ organ iza t ionname) .  

T h e  researcher type of example 1.1 can be redefined as: researcher 5 em-  

ployee(specialization + research-area) inheriting the at t r ibutes  identified by 

the  labels last-name, date-of-birth and works-at from person and employee class 

definitions. 

1.1.3 Unification of $1-terms 
1 

I@ 
1 

W 

To make usc of the inheritance mechanism in LIFE. the  unification algorithm 
1 

of first-order terms is generalized. Two $-term; p and q are  ~ ~ n i f i a b l e  iff: 

0 the  corresponding root sorts have a common sub-t.ype in t,he type hier- 

archy. 

their sub-terms (identified by same label name in both the te rms)  unify 

recursively. v 

Xlissing attributes do not prevent unification. If  a label is present only 

in one of the terms i.e an at t r ibute  present in one term is missing in 

t hc second te rm,  t h e  at t r ibute  value for the second term defaults t o  the 



C H A P T E R  I .  INTRODl1CTION 

student( studentid a int, 

fname + A:string, 

special symbol T ( the  least defined type). T subsumes all other type 

symbols in a LIFE program and unifies with all type symbols. a 

Example 1.3 Consider fhe type hierarchy in Fig 1.2. In this example we 

have the yeatest  common subtype of employee and student is john, the greatest . '  

common subtype of researcher and faculty is richards, and the grtjatest common 

subtype of land-vehicle and motor-vehicle is car. 

Now given the two terms: 

lname + A:string, - 
su.pervisor + researcher, 

owns + motor-vehicle) 

unifying the two terms results in  

john( studentid + int, 

salary + int, 

fname + A:joe, 

lname + A:joc, 

supervisor + richards, 

owns ? car). 

and 

employee( salary 3 int, 
I 

fname + joe 

lname + joe 

supervisor '3 faculty, 

owns + land-vehicle) 

1.1.4 LIFE Program 

A LIFE program is a collection of 2,-terms denoting rit her: 

$ 1 .  a dcJinltzon terminated by a period, and can he either a: 

( a )  pwdzcate dcfinztlon: H : - B I , .  . ., N,. 

( 1 ) )  function definition H -+ B. 

( c )  t y p c  dtfirlition: reseacher < employee. 



CHAPTER 1. INTRODUCTION 

A 

Here H,  B and B; are $-terms. 

3. a query terminat,ed by a question mark such as: R1, - . ., B,?. A LIFE 

query is a list of goals Bi's to  prove. A goal is a L I F E  $-t,errn whose 

root symbol is a predicate name. A top-downlleft-right SLD resolution 

is used to  prove a goal. 

The  names of functions,* predicates and types in LIFE begin with a lower- a 

case letter, while variables begin with - or an uppercase letter. Such variables 

are local to the clause in which they occur. 

Predicate Definition 

A LIFE predicate is of the form H : - BIl - . ., B,. LIFE predicates are defined' 

in the same way as in Prolog comprising of one or more clauses. Clauses 

comprise of a head and a body. Head H consists of a single +term, and t h e q  

body B, comprises of multiple $-terms, and either the junctor '.," (logical rind) 
or ";"(logical o r ) .  A single clause predicate containjng only hcad and n,o body 

is a fact. A rulc comprises of head and a body, where the head succeeds i f  the 

body succeeds. 

Function Definition 

.Another major extension to I'rolog is the addition of functional capabilities in 

LIFE. A function definition in LIFE is of the form H -+ H. It comprises of a 

head 2'-term H and a bod! L,-term H. B is the value returned i f  the function 

e~a lua t ion  succeeds. 

Functions can bc built-in functions such as (+, -, * )  or user defined func- 

tions illustrated in the nest example. 

Example 1.4 I+'( define a function fact that computes factorial of a number .  

f ac t (0 )  --+ 1 .  

f a c t  (N : l n t )  --+ N*f act  (N- 1) . 



CHAPTER 1.  INTROD IICTION 

A function definition is a collection of functional rules. T h e  rules of a func- a 

Z 

tion a re  evaluated in t he  order in which they are  asserted. Unlike predicates, 

if any one of the  rules of a function fires ( t he  first functional rule whose head 

. -+term unifies with t h e  query) there is no backtracking t o  the  next rule. T h e  

first functional rule t o  fire is one whose head $-term unifies with the  query 

.4 functional rule whose head $-term unifies with the  query then is eval- 

uated if the  arguments of the  functions are  sufficiently instantiated, i.e if  the  

arguments of the  function call are  subtype of arguments in function definition. 

It residuates (delays the  evaluation of function) if t he  arguments a r e  not suf- 

ficiently instantiated. The  residuating function keeps track of its arguments,  

arid evaluates when all arguments are  sufficiently instantiated. T h e  concept of 

functional residuation provides a form of concurren't prograrhming in LIFE. 

Type Definition 

We saw the  type definition concept in section 1.1.2. We can also at tach coref- 

.ererice constraints or functional constraints t.0 types. For example t o  s ta te  tha t  

a square is a rectangle whose length and widt,h are equal, we can write it as: 

square < rectangle(1ength + X:int, Vidth + X ) .  

and an  example of type  definition with functional constraint is: 

::rectangle(length + X:int, width + Y:int, area + X*Y) 

Disjunctive Terms 

I t  is also possible t o  concisely represent $-terms in LIFE, by means of dis- 

junctive terms. A disjunctive t e r ~ n  is an expression of the form { A , ; .  . . ;  A,), 

where A,'s are  L.-terms. I t  creates a choice point returning the  value Al on the 

first instance. On backtracking it returns the next value A2 and so on. For 

, example the predicate #assertion likes(sam, (app1es;oranges;peaches)) is equiv- 

alent t o  assert irig the predicates l i  kes(sam, apples), l i  kes(sam, oranges) and 

likes(sam, peaches). In both the cases the query likes(sam,X) will result in 

,';=apples, and on successive backtracking give X=orariges and >(=peaches. 



CHAPTER 1 .  INTRODlJCTION 

Global variables 

LIFE also provides t he  concept of global variable A global variable in LIFE is a 

variable which is accessible throughout the  program, unlike a* normal variable 

whose scope is limited t o  the  clauses in which they occur. Global variable 

names begin in lowercase letter and share the same name space as t ha t  of 

predicates, functions and types. An example of global variable declaration 

is global(count)?. The  symbol glpbal is a built-in predicate which declares 

count t o  be a global variable. Global variables behave like normal variables, 

except tha t  they a re  visible throughout the  program. 

LIFE: A Knowledge and Database Manip- 

ulat ion Language 

Large scale knowledge bases require more intelligent processing than  current 

Data  Base Management Systems (DBMS) offer. LIFE as  a pure logic pro- 

gramming language constitutes an  attractive-query language. However, LIFE 

is mere than just a logic programming language, since it offers features and i? 

embodies a da t a  model turning it into an  intelligent information processing 

system. This stems from the fact tha t  the da t a  model can he represented as a 

v9-term. In this section we give an informal presentation of how LIFE can be 

used as a knowledge-base and database manipulation language. 

T h e  knowledge component can be described in LIFE by different knowledge . 
representation techniques: 

0 Fact.$ and Rules represent declarative knowledge, which may be factual, 

for example faye is the child of sue ( child(faye, sue) ), or inferred from 

rules, such as X is a parent of Y ,  i f  Y is a child of X ( parent(X,Y) 

:- chi ld( lV,X)  ) .  

0 Frame style: Frames describe a collection of objects with common prop- 

erties. consisting of a list of attributes((labe1, t ~ n l u c )  pairs). For example: 



CHAPTER 1. INTRODUCTION 

f vikranth(type + sportscar,roof =+- convertible,doors =+- 2,  wheels + 
. ,, 4 )  encodes the knowledge that vikranth is a sports car with a convertible 

roof and two doors. 

Inheritance refers to the concept that an object takes on the properties 

characterizing its paren object. It is a powerful mechanism for encoding i 
and storing knowledge economically.  he common information and be- 

havior can be captured at. the topmost node in a classification hierarchy, 

rather than at  every single relevant node. 
, 

The inheritance mechanism in LIFE together with its $-term unificatio~ 

mechanism provide efficient expression of set-theoretic operations [lo]. To 

illustrate this, we consider a simple example of an e-mail address database 

relation of persons, the organization they work in and their area of expertise: 

Table 1 . l :  Ah address database 

This example (Table 1.1) focuses on one particular advantage of L I E ,  

that of inheritance structure in LIFE, a powerful mechanism to encode * 

knowledge very economically. 

Xame 

viraj bais 
sand meyer 
joe peter 
steve rich. 

Example 1.5 The e-mail address relation in Table 1 . 1  can be repre- 

sented as facts in LIFE as follows: 

Organization 

sfu . 
ubc 
ubc 
sfu 

Status 

post -doc 
student researcher 

student e 

stident 

a d d r e s s  ( name J~ (fname 3 " v i r a j  " , lname + ' b d i s  ' ' ) , 
* s t a t u s ,  + post -doc ,  o r g a n i z a t i o n  + s f u ,  

s p e c i a l i z a t i o n  + c g ;  a i  , e x a i l  + "vbaiscSsfu. caJ  ' 

Specialization 

cg,ai 
ai 

database 
mathematics 

e-mail 

vb@sfu.ca 
sm@ubc.ca 
jp@ubc.ca 

' sz@sfu.ca 



CHAPTER 1. ~NTRODUCTION 

A knowledge-base for the database, enc~ded  as a type-hierarchy, is shown 

in Fig 1.4 using the set-inclusion relationship between types. For exam- 

ple the types researcher, faculty, consultant are classified as sub-types of 

employee. Multiple inheritance is also supported: for example professor 

is a sub-concept of both researcher and faculty. 
1 

C\ 

Figure 1.4: Concept hierarchy for address database 

Sample query 

Given the set of address facts and the  knowledge-base coded as inheri- 

tance hierarchy, consider the following query: 

"Retrieve from the database, the names and the emai l -  

addresses of the researchers working in the computing science 

field." 

The query could be posed in LIFE as 

a d d r e s s  ( name + (fname + X ,  lname + Y) , 
s t a t u s  + r e s e a r c h e r ,  s p e c i a l i z a t i o n  + cs ,  

e a a i l  + Z 



CHAPTER 1.  INTRODUCTION 

- - 

output h 

For the sample query above, we get the tuples in table 1.2 

Table 1.2: Sample query output 

The knowledge-base of Fig 1.4 enables intelligent retrieval of information. 

Although the address dakbase  did not literally contain the word cs, 

N a m e  

owiag t.0 the fact that cg, a i  are classified as sub-types of cs, the query 

retrieved e-mail addresses of persons working in cg, a i  as well. 

e-mai l  

1.3 Thesis Organization 

. 

. 7  

Chapter 2 provides an overview of efforts aimed a t  applying database technol- 

ogy to  programming languages, and identifies the techniques best suited for 

the LIFE system. Chapter 3 contains a description of LIFE-RDBMS interface 

we  have implemented. Theinterface takes a coupling approach to store LIFE 

facts in SQL databases. LIFE also supports data objects (persistent $-terms) 

which can contain references to other data objects. In chapter 4 we, explore 

the issues related to storing these inter-object references. We also describe 
s . the architecture of the long term storage of persistent terms in LIFE that was a 

. , 

implemented. We also address the issue of accessing data stored in a rela-' 

tional database. In chapter 5 a clustering algorithm is presented that extracts 

a hierachical categorization of relational facts in LIFE. Chapter 6 presents 

two applications in LIFE and thgir DBMS store performance and results. We 

conclude this dissertation with a discussion in chapter 7. 



In the  following sections \be will introduce the next three chapters, relational 

database interface to  LIFE, storage of persistent data and the  reverse problem: 

that  of translating relational da ta  into $-terms. 

1.3.1 LIFE te RDBMS Interface 

X typical LIFE program will consists of a large set of facts, such as the  address 

database in the example l..?. The  size of da ta  renders the use of main mem- 

ory as a storage .device impractical. The data has to  be stored on t,he disk. 

For this reason, we have implemented a system coupling LIFE with relational 

databases, representing arbitrarily complex objects in LIFE as flat relations to 

be stored in the external database. In contrast to systems offering predicates 

for storage and retrieval of facts from an external database, in our system the 

access to  the da ta  in the DBMS and the existence of a database under LIFE 

is transparent to the user. 

The implementation is based on the theory proposed by Holsheimer in [ I ] .  

E3ascti on the theory [ l ]  a clustering mechanism based on the type hierarchy 

of LIFE for clustering the fac ts  (localization of data)  has been implemented 

to improve access time. The theory [ l ]  also provides a sound mechanism for 

selective data retrieval of the facts stored in the database. We make use of this 

mechanism for retrieval of facts from RDBhlS in LIFE. This provides a filtering 
' <  

cffect. retrieving all potentially unifiable facts with the query and providing 

a small resolution-set for full unification. The information about the past 

interaction w i t h  the relational databas$is cached in'a compact and efficient 

iva!.. This reduces the number of calls to the database, as it never repeats any 

qllery. s ~ ~ b s u n i e d  by the queries in the past. Techniques for optimization of 

clata rctr i t~.al  t,. means of dealing with o\.erlapping queries, and with intelligent 

detect ion of in'tersect ions ha\.e been implemented. 

The above mentioned theory can only handle types of single inheritance. In 

t h c  i~nplcmentation modifications kvere made to this theory to  handle multiply 

inhc,ritcd tJ.pes in LIFE. The t h e o r  [ l ]  also cannot handle facts containing 



0 

CHAPTER 1.  INTRODUCTION 

coreference constraints. Such coreference constraints are common in appli- 

cations like NLP. We also show how to  handle such coreference constraints. 

Another shortcoming in the theory [l] was handling of variables in goal. We 

present a solution for it and further optimize the data  retrieval by exploit- 

ing the  type information stored in the relational schema, 'Chapter 3 reports 
. ~- 

on our implementation o f a  LIFE-RDBMS interface. As an example applica- 

tion t o  test this interface, a bibliographic database was implemented and its 

performance results are presented in chapter 6. 

1.3.2 Persistent Terms in LIFE 

hlanipulating the identity of objects is natural in a language with pointer types 

such as C++. Persistent $- terms in LIFE provide a similar effect by extending 

the "value-based" semantics of Prolog with the ability to  access the  identity 

of da ta  objects. 

A persistent $!-term (example 1.6 and example 1.7)  unlike a 'normal' $-term 

retains its value on backtracking, undergoing an unrestricted update similar, 

to  assignment in an imperative language. It is changed by a nonbacktrackable 

infix assignment operator 4 -  and cannot he modified through unification. 

The terms can he viewed as a global database ( a  set 01 graphs) with handles 

on certain nodes. % 

:I persistent term can be assigned to a local/global variable using the as- 

signment +-. Any further modification of the term persists on backtracking, 

except when one backtracks before the point at which the variable was as- 

signed a persistent term. In that case the variable retains its old value, and 

the persistent term is no longer accessible through this variable. 

Persistent terms can also be assigned to a persistent tvariable, in which case 

the term is always accessible (unlike persistent term assignment to  local and 

global variables). .A persistent variable declaration is like a global variable, 

and its scope too extends throughout the program. T h e  built-in predicate 

pcrsi.stt-nt is used to declare a persistent variable. Only a persistent term can 



CHAPTER I .  INTRODUCTION 

r 

be. assigned to  a persistent variable. 

Example 1.6 This example illustrates persistent variables. 

persistent (libraryiXt em-)? 

libraryitem -+-book(tit1e + ) 'computer graphics) , 

author =+ "rlchard")? 

If a new assignment is made to  the variable l ibraryi tem, the  new value is 

retained on backtracking. 

X persistent $-term can contain references to  other persistent $-terms as 

well. In life the subterms of a ~ 1 -  term are accessed using the "." operator. For 

example library-itern.title gives access to the subterm "computer graphics" in 

the term assigned to  l ibraryi tem in  example 1.6. The next example illustrates 

the  structure sharing between two persistent terms. 

Example 1..7 A n  &mpk of sharing references betuleen persistent t crrns: 

persistent(bookl01, bookl02)? - 
book101 4 -  book ( title ' 'computer graphics' ' . 

author + person(name + richard, 
e-mail + richQsfu.ca))? 

book102 44- book(t;tle + "computer algorithms)))? 

bookl02.author +4- booklOl.author? 
. 

Figure l. .i  shows the two persistent terms assigned to. the persistent variables 
C 

book101 and book102 in a graph form and the structure sharing occurring 

bet ween them. 

This graph data model represent's complex object structures in a natural 

\yay. modeling objects as nodes (with attributes representing their properties) 

and relations between them as edges. But the notion of persistency in  LIFE is 

limited to  a program life-time. ~ o n g - t e r h  persistency is needed for LIFE. In 

chapter 1. wr explore the issues relating to  persistency of da ta  in prdgramming 

languages, describe our implementation of the persistent LI-terms in LIFE, 



CHAPTER 1.  INTRODUCTION B 

* 

B 

Figure l.r>: Structure sharing between two persistent $-terms 

and present performance results. An application in Geographic Information 

Systems (GIS)  was implemented using persistent terms in LIFE. Chapter  6 

contains a description of the G I s  application along with performance results 

of long term persistency in LIFE. 

1.3.3 Reverse Compiler 

We would also like t o  provide the  ability t o  use d a t a  available in existing 

relational database from LIFE A simple solution for t,his would be 

to  provide a predicate tha t  takes in an SQL string and  returns t he  results as 

L+-terms. T h e  relational database provide simple da t a  structures,  which take 

up  large storage space in primary and secondary memories. LIFE provides an 

elegant type- mechanism, which can be used to  represent the  relational facts 

economically and improve the performance. 

Example 1.8 ' 4 s  an erample u7t conszd f r  a  bznary relatzon re1 contalnlng 

m l ( a , r ) ,  r f l ( a , s ) ,  r ~ l ( a , t ) #  rc l (b ,r ) .  

r f l ( b , s ) ,  rc l (b , t ) ,  rc l (d ,q) ,  r t l ( d , r ) .  

rcl(d.s) ,  r e l (d , t ) ,  re l (c ,q) ,  rc l (c ,r ) .  

l - € l ( € , $ ) ,  r d ( f  , t ) .  

T h e  relations arc decomposed into t\vo rectangles (Kect l  and Kect'L) As 

shown in figure 1.6. T h e  tivo rectangles of this decomposed relation could then 



CHAPTER 1 .  INTRODUCTION 20 

R e c t  1 R e c t 2  

Figure 1.6: Rectangular decomposition of relation re/ of example l . t  

he concisely represented in LIFE as facts: 

rel(ca1, r a l ) .  '% Rectl  in figure 1.6 

- re1 (ca2, ra2). %# Rect2 in figure 1.6 

Figure 1 .7: IIierachical categorization of relation re1 of example 1 .t 

A type hirrarchy for the sorts r a l .  c a i ,  ra2  and c a 2  and for the symbols in 

the relation r f l  i s  shoivn in figure 1.7. T h e  constraints attached t o  these sorts 



CHAPTER 1.  lhrTRODUCTION 
I 
-. 

-\ 

are: 

: X :  r a l  .I X=rbl. --- 

: :  X :  ca l  1 X=cbl. 

T h e  constraints force the  enumeration of relation re1 facts in LIFE. T h e  search 

space for the relation re1 is reduced in LIFE ( 2  as opposed t o  14 in t he  original 

database)  and would result in significant performance gain. 

T h e  algorithm t o  decompose binary relations as rectangles is given in chap- 

ter  ,5. This will provide us with a hierarchical categorization of relat,ions in 

LIFE. 



Chapter 2 

Combining DBMS and P L  

2.1 Introduction 

In recent years considerable research has been directed a t  combining pro- 

gramming languages and databases. The combined use of object-oriented lan- 

guages, logic programming languages, etc and database management systems 

offers a powerful problem solving architecture for a wide range of applications. 

Database systems provide an environment offering facilities for creation and 

maintenance of large, long-lived collections of data; these facilities include effi- 

cient access, da ta  security and transaction processing. However, the expressive 

power of the languages provided.within database systems is limited. Program- 

ming languages on the other hand provide facilities for procedural control, data 

and functional abstraction, but lack built-in support for any of the  database 

features. Thus, a coupling of programming languages and DBMS is natural. 

2.1.1 Database Systems 

Programming languages such as object-oriented languages and logic languages 

have been used to  enhance the 'capabilities of databases. Such languages are 

a n  at tractive proposition for several reasons: 



CH'4PTER 2. COMBINING DBMS AND PL 23 

Alterna t ive  d a t a  model :  Complex data modeling capabilities are required 

by systems like NLP, CAD, document retrieval system;, software engi- 

neering, hypertext data etc, which cannot be done easily in relational 

databases. Programming languages sych as C++ provide appropriate 

modeling of problem domains and ease the effort involved in translating 

the resulting application model to animplementation. 
# 

Q u e r y  language: Logic programming as a database query language [14] 

offers a greater power for expressing queries (such as recursive queries) 

and constraints t,han SQL used in relational databases. These languages 

provide the ability to make inferences over large volumes of data. DBMS 

users such as managers and specialists, have a high degree of domain 

knowledge but little patience to familiarize with programming language 

concepts. For such users high level languages offer a better model to 

interact with the database. 

Opt imiza t ion :  Declarative languages like LIFE and Prolog provide a pow- 

erful formalisms to implement a flexible query optimization component. 

The declarative nature of such languages enables rapid prototyping and 

testing of an idea too. 

2.1.2 Programming Languages 

Languages like C++ and Prolog Tjften need the support of database features. 

There are several reasons why such languages need database features: 

Pers i s ten t  d a t a :  Sometime programmers need the capability to manipulate 

persistent data (data that outlived the execution of the program) just as 

they manipulate non-persistent data. This will reduce the effort involved 

by the programmer for data translation. Such systems can also support, 

sharing large amounts of data among niultiple users in distributed com- 

puting environments. 



CHAPTER 2. COMBINING DBMS A N D  PL 24 

Efficiency: An application handling large collections of data,  uses only a 

small part of it during a program run. Since files are generally read and 

written as a unit,  access and updates are slower for larger files. DBMS 

on the other hand offer powerful and efficient features for access and 

modification of large volumes of data. Performance can be improved, 

if  data can be off-loaded to  the database system-for more efficient, a d 

possibly parallel access. 
P 

Handling large data sets: Applications typically work on large sets of da ta  

that  do not fit in main memory, and cannot be handled by the  language. 

Accessing existing databases: Sometimes existing databases need to  be 

accessed by the  programming language. 

Heterogeneous databases: There is always the need to  couple existing 

heterogeneous systems into a cohesive environment without sacrificing 

the privacy and/or independence of the participating systems. High level 

languages like LIFE have the capability to provide a common,conceptual 
f i  

view of the distributed data in heterogeneous databases. 
B 

-% 

2.2 Alternatives in Design 

There have been several approaches to integrat,e database and programming 

languages, all of which provide a synergist,ic combination of the t.wo technolo- ' 

gies. The two major approaches are: 

1. Coupling stand alone database management systems and programming 

languages (mainly logic programming systems). The overall architecture 

combines a general-purpose programming language as the front end with 

a DBhlS back end. It preserves the independence of the end systems. 

2. In t~gra t ion  constitutes designing a single system in which the  database 

functionality is incorporated. In such systems no clear distinction exists 

between front and back end components. 



C H A P T E R  2. COMBINING DBMS A N D  PL 

2.2.1 Coupling 

This approach [2, 141 tends t o  maintain the identity of each component. The  

front-end is a general-purpose programming language and a DBMS is the back 

end containing facts for front-end reasoning. The programming system is es- 

sentially devoted to  da ta  manipulation tasks, while the  DBMS acts as a server 

supplying the data  t o  the front end for further processing. Both the  database 

management system and the programming language environment run as sep- - 
arate processes communicating through some channel. 

There have been many proposed and implemented systems for coupling a 

logic programming language (such as Prolog) with a relational DBMS [15: 191. 

These systems have been broadly divided into two categories, based on the 

degree of coupling (loose. tight) [2]: 

. W 

Loosely-coupled systems 

In a loosely-coupled system, the required data  is fetched from the  external 

database into the active memory in a prior phase (at  program load time) before 

the work begins on a set of related problems. The DBMS interacts with the 

programming system PS in a "batch" fashion: maps the required data  from 

the DBMS to  the PS data structures at the beginning of a session, and copies 

back the modified data a t  the end of a session. The identification of the da ta  

required is done for example in Prolog, by providing a meta-interpreter for 

determining the queries to be evaluated and evaluating them before running 

the Prolog interpreter. 

I 

Tig tly-coupled systems P 
In a tightly coupled architecture, the data is fetched on an as-needed basis. 

'% 

The pr~gramrning~sys tem (PS)+nay interact with the LIBMS at  any moment ' 
during the proble~n solving process. The actual computation process activates 

the interface, dynamically generating database queries and retrieving data  for 

the PS to  proceed further. The  main issues in such a system is how much data 



CHAPTER 2. COMBINING DBMS AND PL 

to  fetch (prefetching) and whether to  cache the data. 

A tightly coupled system is generally preferred over loosely coupled systems 

as it can make use of the actual computation process, to  anticipate the da ta  

needs of the application better. This is especially true for large systems, which 

requires less pollution of main memory for better performance. On the other 

hand for small systems, it may be better t o  load the data  in one-shot, being 
b 

as selective as possible during data  retrieval. This will avoid the  overhead of 

frequent database access of tightly coupled system;. 

2.2.2 Integration 

An integrated system consists of designing a single system in which some or 

all of the database functionality is incorporated. In such systems no clear 

distinction exists between front and back end components. 

There are two possibilities: an existing programming language system is 

incorporated with database functionality, or new systems are designed from 

scratch. 

Persistent programming languages 

.A persistent programming language ( P P L )  is a programming language that  

provides for data to  exist beyond the life-time of a program. PPL incorporates 

the database concept of persistency into its programming model, and provides 

the ability to  manipulate persistent data (data used in successive executions 

of the  program) just as they manipulate transient data. Different programs 

could also access the persistent data. 

Database programming languages 

.A database programming language (DBPL) is simiPar t o  a PPL hut incorporates 

additional database features beyond persistency such as bulk data  (sets or 

relations) arid object-content based retrievals (queries). 



CHAPTER 2. COMBIlVING DBMS AND PL 

I 

New databases 

New databases are  designed such as deductive databases and  object-oriented 

databases. T h e  systems are  built from scratch, without depending on previ- 

- ously built software, with no previous bad decisions affecting th; new design. 

They typically need developing new da ta  models and algorithms. 

2.3 Design choices for LIFE 

For the  approaches presented in the  previous section, the  ma in  problems are, 

how can a system be a t  the same time: 

reasonably cheap (requiring little or no modification t o  either LIFE or 

the  DBMS source code if any) ,  

user friendly (transparency of the da t a  distribution),  

and  efficient. 

T h e  integration of DBMS into LIFE can take either the  coupled approach 

or the  integrated approach. Both would have major differences in complexity, 

performance and the  ease  of design and use. 

Developmental effort of coupwd systems is snlall and the  resulting product 

has the  potential of providing adequate functionality and performance. Effi- 

cient integration of the systems is the  only issue that  needs t o  be focused upon 

in such systems. 

On the other hand, in an integrated system one can directly use low level 

functionalities of the  DBl IS ,  like relation management in secondary memory, 

and d a t a  access via indices. It is possible to  let both tools access the inter- 

nal structures of the  other in ways that  coupling cannot allow, offering more 

opportunities for optimizing and fine-tuning the system. Furthermore, trans- 

lation t o  different da t a  formats is avoided, providing a superior performricc 

over coupled s~ , s t ems .  The  price that  must be paid is a need for extensive 

modification to  one or both of the tools to  get them t o  work with each other.  



, 

CHAPTER 2. COhlBl!VING DBMS AND PL 28 

An attractive feature of coupled systems'is tha t  they can utilize the  ex- 

isting system with little or no modification a factor critical t o  t he  portability - 
of the  system. Another factor is the  need t o  use an existing database. As 

there is always the  need to  couple existing heterogeneous systems into a cohe- 

sive environment withdut sjlcrificing the privacy and/or independence of the  

participating systems. 

In the  next subsections we evaluate the  questions posed so 'h in the  iontext  

of LIFE. 

2.3.1 Coupling Approach % 

We choose t'o use relational database systems for long term storage of LIFE 

facts. Al thoughLIFE facts are  compl~x'objects  con~is t ing  af cycles and struc- 

tu re  sharing (see sectiorr 1.1.1), t,he structure sharing is local t o  t he  facts (i.e 

there is no da t a  sharing between facts). A grouping of facts can be defined, 

as t he  facts in LIFE generally constitute identically structured objects. These 

then can be represented as flat tuples in a relational table (explained in sec- 

tion 3 . 3 ) .  

An object-oriented dat%ba& could be a better alternative, as it provides 

similar complex dbjects and ingeritance structures found in LIFE reducing the 

semantic mismatch between the two. But the theory [ l ]  developed behind LIFE 

facts storage and retrieval does not make use of any of the  features provided 

object-oriented databases. 
a r 

4 coupling approach is used because standard.relationa1 databases exist and 

are '6 ide lv  used. They provide for free transaction management and concur- 
I 

r e n q  control facilities to  ensure da t a  integrity: allowing s h x i n g  of information 

in a multiuser environment and having a recovery mechanism for stable storage 
, a  1 

in the  event of a crash. In addition t o  the use of an  existing databases, the 

interface can easily be ported to  other RDBMS sykerns as well. 



CHAPTER 2. COMB1hTING DBMS AhrD PL 

2.3.2 LIFE as a Persistent Programming Language* 

For the  persistent terms in LIFE, relational database technology is inadequate. 

As shown previously in section 1.3.2, a major characterist.ic of such data  is 

that  the  terms may contain references to other terms. Such references can be 

dynamically created too, and an attribute zlalue may change to  a reference to  

another term as shown in example 3.1.. 

Figure 2.1: , Dynamic updates of persistent terms 

Example 2.1 An erarnplc of two persistent zmriables - p , q .  In this eratnple 

the z d u e  of b changes from ;I to a reference to p's vnlue. 

prrszstenf (p,q) '? 

p 4 -  objcct (zlalue + 3) '? 

q  44-object(tlalue + I )?  

p.va/ut 4 - q .  tlalue? 

Figure 2.1 shows the change done in example 2.1 graphically. 

~ h & e  inter-object references are difficult for relational database to han- 

dle. An OODBMS is natural for such terms, providing both objectcid based 

retrieval of single object and set-oriented operations. We decided to  huild an 

object-store on top of file system provided by the operating system for the sake 

of portability. 



Chapter 3 

Coupling LIFE to a Relational - 
P 

Database 

3.1 Introduction 

.As shown previously in section 1.1.4 a typical LIFE program consists of 

i 

unit clausf  (Fact ) :  H .  

Herc H and B's are LI-terms. 

The log~cal facts and rules in the form of Horn-clauses, can he separated 

into Extc~isional Database ( E D H )  and Intensional database (IDH) facts. The 

EDB is sirnpl~. a large collection of facts, while. the I D B  is built from the EDB 

1)). applying rules to it. X fundamental assumption in LIFE has heen that 

thc facts rcside in main memory; for small problems this assuniption is not a 

restrict ion. Ilowc\,er for applications handling large sets of facts. IJIFI<'s abilit? 

is Iirnitcd. 'bpica l  database applications handle large data sets coritainirig a 



CHAPTER 3. CO C'PLING LIFE TO A RELATIONAL DATABASE .31 

million facts or more. With such large data  sets secondary storage has to  be 

relied upon for processing data, providing an environment where rules (and 

possibly small sets of facts) are stored in LIFE and (large sets of)  facts are 

stored in a database. 

The  objective of the LIFE-RDBhIS interface is to  provide, as efficiently as 

possible: 

the  support for decomposition of conlplex facts into flat relations. 

transparent retrieval of data-items into LIFE from relational DBMS, us- 

ing several optimizing techniques. 
3 

A LIFE system, which makes use of a relational database for storing and 

ret&eving facts, has been built. The  interactiorl betwe6n LIFE system and the 
& 

database objects is independent of any user support. The  interface supports 

programs written in pure LIFE, and the existence of a database under LIFE 

is transparent t o  the user. This is made possible by a program analyzer which 

compiles the original LIFE program into a modified LIFE program, incorporat- 

ing the original rules and a data d~ctlonary. miqus the facts which are asserted 

into the external database. The data  dictionary provides transparent retrieval 

of the facts stored in t he external database. The compiled code can also be 
r linked to other applications written in LIFE, requiring rio special support. 

A relation consists of identically formed objects, and in order to  store the 

Jncis an flat n~lations, wr group the facts into ideniically formed facts. A group- 
s 

ing of facts-can he defined, as the facts in LIFE generally constitute identically 

structured objects. In order to  do so, a subtype order 5 is defined on the facts 

as wcll, based on the subtype ordering on type symbols that  make up  these 

facts. The facts with similar subtype relationships are grouped together,,and 

stored in a relation. These groups, called qualified segments, contain identi- 
I '  

(-alIj. forrned facts. These concepts will bc explained and illustrated later in 

sect ion 3.3.2. 

For data retrieval. we rise a tight coupling, where facts are loaded on de- 
r > 

~ n a n d .  I h t  interface accepts arbitrarily complex goals and return all facts 



CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 32 

unifying with the goal. The system is based on a two-stage filtering process 

shown in figure. 3.1. A qualifier (data-definition) is defined for each qualified 

segment (contains facts with similar subtype relationships), which is a gener- 

alization of all the facts in the segment. The qualifier provides a filtering effect 

retrieving all potentially unifiable facts for queries and providing a smaller 

resolutioh-set for full unification, thereby improving the efficiency of the  uni- 

fication languages. The loading mechanism keeps track of information about 
9 

the past interactions with the database. Previous queries t o  the database are 

cached in a compact and efficient way. This ,provides a second stage filtering 

effect mininlizing the number of accesses to the database, as it avoids repeating 

queries., subsumed by past queries to  the database. 

LIFE memory gets polluted when the retrieved databases facts are cached 

in main memory. Automatic eviction of database facts is provided when LIFE 

memory becomes full. An LRIJ (least recently used fact name) ~ o l i c y  is used 

when evicting database facts from LIFE memory. 

3.2 Architecture 

The interface between LIFE system and the database can be provided at var- 

ious levels of transparency [13]: 

No transparency In this approach the programmer uses t hc data  manip- 

ulation language of the database engine to manipulates objects in the 

external database. PROSQL [41] takes this approach, providing a spe- 

cial built-in predicate. which takes an SQL qu,ery in the form of a Prolog 

string as its argument. This has the advantage that no translation is 

'needed. and the full extent of SQL can be utilized. A major weakness 

is that the responsibility of the interaction between the two systems is 

left to the user. In addition, access optimization options are limited, and 

also the programmer has to  cope with two different languages. 



C H . ~ ~ T E R  3. COIJPLIIL'G LIFE TO A RELATIONAL.DATABASE 33 

Dau Definltmn 

- 2 

Figure 3.1: Interface akhitecture 
* .  

(Lp) 
LlFE c n k  

hterrnediate transparency Data access, whether they are in main memory 

R 
1 

or disk-resident, is transparent to  the user; there is no need for translat- 

ing from one representation to another. But the user has to  explicitly 

declare database predicatds, which provide the relationship between the 

two representations. 

Full transparency The interaction between the programming system and 

the database is done, without requiring any user support. The  existence 

of a database is transparent to the user. 

\iVe shall use the third approach as it insulates the user from the interaction 

hctwcen LIFE system and the external database. This approach provides 

support for pure LIFE programs, and the impression given to the user is that 

of interacting with the LIFE system. This is made possible with the help of 

a program nnn lyz t r  translating the20riginal program into a modified program, 

which can 'recognize database pred'icates and acts accordinglj,. 



\ 

' CHAPTER 3. COUPLING LIFE TO .4 RELATIONAL DATABASE 33 

For the rest of ihe  chapter, database predicates ( facts in LIFE ) are LIFE L 

predicates tha t  are  stored in the  external database. In t he  forthcoming exam- - 
8 e 

ples of LIFE programs, the ith database predicate is denoted by dbp;. 

T h e  design makes t,hree assumptions. 

T h e  subtype relations definkd on the  symbols appearing in t he  dbp's is 

fixed. 

T h e  storage order of tuples in the database relations is not relevant. 

This stems from the feet thdt order of dbp's is not important in LIFE 

for unification. This assumption is needed to  improve performance using 

different optimization techniques on the database predicates. 

T h e  functor name denoting dbp (facts) is not allowed t o  appear on the  

left hand side of a rule. This does not in any way limit the  computational 

power of LIFE. 

T h e  interface can be divided into three layers consisting of a LIFE meta- 

programming part for the program analyzer PA, m~ta-znterprcter  hII, and a 

communzccl~on module CL! for physical communication with the database. 

- 3.2.1 Program Analyzer 

T h e  program analyzer takes as input pure LIFE code and rewrites it into a 

modified LIFE code, containing the original rules and meta-rules of the  Meta- 

interpreter in place of the fact base. It analyzes the  LIFE code, identifying 

the  facts that  arc to  be stored in the database and partitions them into non- 

overlapping segments (qualzficd s t g m t n t s )  based on the  type-hierarchy. Each 

such partition of the fact base is stored as a separate relation in the database 
r* 

and replaced in the  modified LIFE code by the meta-rules. T h c  meta-rules 

include a database-schema (qual i jcr)  for each relation stored in the  database 
d 

for interaction between ~ f i s y s t e m  and database. 

Statistical profiles of each relation are also computed and stored in the 

appropriate qualifier. Such profiles are necessary: for instance, the  cardinality 



CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 35 

of each relation can be  used t o  infer tha t  all dbp's from the relation are  in main- 

memory requiring no  further interaction with the database for this relation. 

T h e  user can then s tar t  a LIFE session by executing t h e  compiled programs. 

T h e  Meta-interpreter provides a tight coupling, retrieving dbp's from the  ex- 

ternal database on demand.  It include rules for matching the  database, pred- 

icates (LIFE predicates .that are  stored in the external database)  with the  

main-memory resident facts and facts in the relational database. T h e  MI is 

activated whenever an  a t tempt  is made t o  resolve a particular dbp g, called 

the g oal. 

It first checks the  core-resident database facts, unifying the  first fact with 

the goal g. On successive backtracking, the inference engine examines the next 

possible fact in the internal database for unification. If no further facts in 

main-memory are  available, the MI  activates the CM for retrieving unifiable 

facts from the external database. 

Crossing the boundary from LIFE to database is an expensive operation. 

To achieve the goal of efficiency, the MI keeps track of the  past interaction 

with the  database, reducing the number of calls'to the database, as  it never 

repeats any query, subsumed by past queries. In this process it also ensures 

tha t  no da t a  item is retrieved twice. 

T h e  basic algorithm of the meta-interpreter can he informally described as 

consisting of following stages: 

1 .  .\latch main-memory facts: For a goal g, we examine the facts in main- 

memory that  can unify with g. If the internal database is exhausted we 

go to  the next stage. 

2. Ezanline thc restrictol- set: It'e examine a new data-definition (qualifier) 

whose name does not appear in the restrictor set. T h e  restrictor set 

contains names of relations, for which all the tuples have been retrieved. 



# 

CHAPTER 3. COllPLING LIFE T O  A RELATIONAL DATABASE 36 

3. Generate a new candidate: T h e  qualifier contains meta-information about  
4 

t he  contents of i ts relation (qualified segrpent). A candidate C is gen- 

erated if the  qualified segment contains unifiable dbp's with the  goal g; 

otherwise we go back t o  step 2 t o  examine the next qualifier for g. T h e  

candidate C contains all the information for selective retrieval of dbp's. 

4. Check for subsumption: This stage checks if the candidate for t he  current 

goal is subsumed by candidates generated by previous queries. If so: the  

dbp7s from the  relation have been fetched for this goal and  we go back t o  

s tep 2 t o  process the next qualifier for g. 

Fi. Gcncmte ncgative candidates: T h e  answer needed by the  current query 

can overlap with previous queries. Negative candidates are  generated 

so tha t  proper SQL query can be generated, which only loads the dbp's 

once. 

6 .  Load nful dbp ' s  and resume unification: The  last stage loads the dbp's 

from the  external database. T h e  newly asserted dbp's are  unified with 

the  goal g. arid i f  further da t a  items are needed we go back t o  s tep 2. 

Two main issues in the design'of MI are: 

Problernl: activating the  C'IZI to  retrieving new facts from the  external 
C 

database, whenever the active memory is exhausted of matching facts. 

Problcrrz,': when the loading process is done, the  hl I  should enable the  

continuation of unification of the current dbp, with the  newly asserted 

facts. 

T h e  LIFE system maintains predicates with the same furictor name in a 

linked list. Any retrieved facts from the external database have t o  be added 

to  this list. .An active instance of a database predicate may need t o  access the 

database several times. hlultiple occurrences of the same dbp, can be active at 

the  same t ime accessing' the database. This could lead to  potential problems 

and inconsistencies [16]. 



CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 37 

Problem 1 and Solution 

Suppose we have a set of facts named dbp; in our original program tha t  needs t o  

be stored in the  external database. These are  asserted in the  external database, 

the  transformed LIFE code containing meta  rules of the same functor dbp,  for 

d a t a  retrieval from the  database. 

T h e  MI provides tight coupling loading dbp; from the external database on 

demand.  Any new database facts dbp, retrieved from the EDB are asserted a t  

the end of chain of facts dbp; .  In the  beginning, t,he database predicates with 

t,he same functor consists of meta-rules of the form: 

( 1 )  persis tent  ( qpo in t e r )?  ' 
1.. 

(2a) F : dbp, :- 

have- to-se t -dbm,! ,  

s t t - d b m ( d b p  + F ) .  

(2b) F : dbp, :- load-facts(qpoin, ter ,  dbp + F ) ,  fail. 

( 2 c )  dbp,  :- jail. 

T h e  rule (2.3) stays at the start  of the chain of dbp,.  Its purpose will he 

explained later. Rule (2b)  called d b m  rule always stays a t  the end of dbp, chain. 

It activates the comrnunzcnt~or l  module  ('hl and inserts the  retrieved facts a t  

t lie end of dbp,  chain. The  dbnl rule (2b)  is retracted and reasserted a t  the  end 

of the  chain. Since the  dbm rule is always placed a t  the end of the  chain, this 

rule is only considered when all instances of the facts in the active memory 

have been at tempted t o  resolve the current goal dbp,. T h e  forced failure of this 

rulr,  a t  the end of database retrieval, enables the inference engine t o  continue 

unification of current goal ~v i th  the newly asserted f a a s .  

At the end of loading process, a fazlure rule (2c)  needs to  be asserted a t  

the end of the predicate chain to  ensure the correctness of the hacktracking 

'The  predicate perststent is a built-in LIFE predicate, which declares qpointer t o  be a per- 
s ~ s t e n t  variable. 'The notion of persistent variables and terms are explained in section 1 .3 .2 .  



CHAPTER 3. COUPLING LIFE T O  A RELATIONAL DATABASE 38 

next pointer=NULL 

(4 next pointer 

F:dbp; :- set-dbm(dbp + F), fail. 

F:dbp; :- loadfacts(dbp +- F), fail. 
dbp; :- fail. 

Figure 3.2: Failure rule for Unification of Database Facts 

mechanism of the LIFE interpreter. The LIFE system maintains predicates 

with the same functor name in a linked list (Figure 3.2 shows three clauses of 

the same functor name in a chain). The unification process keeps a pointer to 

the current unified element, and a pointer to the next element in the list for 

optimization purpose. 

This presents a problem when the loading process is done and the inference 

engine needs to continue with the unification of the current dbp; with the newly 

asserted facts. Suppose the current dbp; is unified with the last element in its 

chain (Node C in the chain of clause dbp; in figure 3.2) (which is the dbm rule 

for it), the next pointer for it points to nil. The activation of dbm rule could 

retrieve facts from the EDB and assert the retrieved facts at the end of the 

predicate chain. On backtracking from the dbm rule, the inference engine is 



CHAPTER 3. COLIPLING LIFE TO A RELATIONAL DATABASE 39 

unaware of new facts retrieved from the EDB, as its next pointer is not &set 

t o  point t o  the  newly retrieved facts. 

This  problem is avoided by asserting a failure rule (dbp, :- fail) whenever 

the  dbm rule is asserted a t  the  end of the  predicate chain. This ensures tha t  

the next pointer points to  t he  failure rulk (figure 3.2) rather than  being nil for 

any activation of a database predicate. T h e  retrieved facts are  appended after 

the  failure rulg and on backtracking, the  inference engine can access these 

facts. 

(3) have-to-set-dbm :- 

(access-main-memory-facts,!, 

retract(access-main-memory-facts), fail; 

asscrt (access-main-memory-facts)). 

( 4 )  set-dbm(dbp + Dbp) :- 

Old = qpointer, 
I 

data-definition(dbp + Dbp, qpoinfer),  

resolz!e-dbp(Old, dbp + Dbp). 

(5a) resolzle-dbp(dbp + Dbp) :- Dbp. 
1 

(5b) r~solw-dbp(O1d) :- qpointer 3- Old, fail. 

Problem 2 and Solution 

A second problem arises when nlultiple instances of the  same database predi- 

cate  dbp, a r t  active a t  the same time. The  multiple data definztions for each 

dbp, are  maintained as a list of elements in LIFE. If we access a single relation 

a t  a t ime,  each activation of dbp, needs to  maintain a pointer qpointer t o  the  

next data dcfinztton it is going t o  access when the dbm rule is fired for it. 

\+'henever a new instance of dbp, is activated, rule (2a)  saves the  qpoznter, 

and sets qpolnter to  the  start  of data-definition list for the current instance. I t  

'resets qpolnter to  the value stored in Old, when the current (i.e., new) instante  

is t o  backtrack. 



CHAPTER 3. COlIPLING LlFE TO A RELATIONAL DATABASE 40 

-\, 

(6a) load-facts([Qual I Tazl], dbp 3 Dbp) :- 

not-zn(restrzctor(Qual)), 

candzdate(C, dbp + Dhp, qualzjer + Qual) ,  

retrzezle-facts(C),!, 

qpoznter ++- Tad ,  

retract-dbnz, 

assert-dbm. 

(6b) l ~ a d - f a c t s ( ~  I Tail], dbp + Dbp) :- 

load-facts(Tai1). 

T h e  predicate (Ga) is activated by the dbm rule when a match for core- 

memory resident fact fails. I t  looks up  a new data definltlon for t he  database 

predicate dbp, .  A list of restr ic tedset  of relations is maintaih+d, whose entire 

set of tuples has been retrieved and asserted in the  main-memory. If the 

rclation name for the data-definition is found in this set no further interaction 

with the  database is needed for this relation. The  clause fails, and backtracks 

to  examine the  next data-definition (qualzfier) for dbp , .  

T h e  quol~f icr  contains meta-information about the  contents of its relation 

('qualified segment).  A candidate C is generated if the  relation ( q u a l z j ~ d  seg- 

rntnt)  contains potential for containing clauses which can unify with the  current 

database predicate d b p , ,  otherwise wr backtrack to  examine the next qualifier 

for clbp,. 'The candidate (' provides a selection condition rvtri@ving subset of 

tuples from the relation that can unify with dhp,.  , 

The next phasc consists of checking whether the candidate C' is subsumed 

hy candidates generated by previous queries. If so the  facts from the  relation 

have heen fetched b ~ .  a more general query, and the relation contains no new 

facts which neeti to  be fetched, tha t  can unify with dbp, .  T h e  clause fails arid 

goes to  examine the next d n i n  d ~ f i n l t ~ o n .  1 



CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE. 41 

(7b) retrieve-facts(C) :- assert-candidate(C),  overlap-candidates(C, NCI), 

read '_ fac t s (~ ,  NC) 

T h e  last phase accesses the  database, asserting the  retrieved facts as well as  

maintaining meta-information about the current query. T h e  answers needed 

by the  current query can overlap with previous queries. T h e  over lap-candzdat~s  

predicate identifies any such overlap so tha t  proper SQL query can be gener- 
s 

ated. which only loads the facts once. T h e  candidate generated for t he  current . 

query is cached as welJ to  avoid sending the  same or subsumed database query 

t o  t he  external database in future.. T h e  generated candidates a re  compacted 

and stored in an efficient mannef. Compaction is done as follows: It first checks 

if the  current candidate subsumes any previous candidate. If tha t  is the case 

then the  past candidate list is pruned by removing the  subsumed candidate,  as 

the current candidate is more general. A second compaction is done, removing 

the candidates generated on a relation, if  all the tuples from the  relation are 

in main mernory. The, names of such relations are kept in a restrictor set.  

When the loading process is done, the MI enables the continuation of oni- 

fication of the  current dbp, with the  newly a.sserted facts. 

/-\ 

3.2.3 Communication Module 

T h e  communzcatzon module ( C M )  establishes the physical communication be- 

tween LIFE and the database. The  communication module is written in C++ 

providing new predicates for interacting with the databasas Both PA and MI 

can call the C ' l l .  From the information passed on by these two modules, it 

constructs an  appropriate SQL query, executes' the query, and cohverts the  

da t a  from one format to  the  other. T h e  C'h? is built in an modular fashion t o  

enhance portability t o  other database systems. It contains two modules, the 

f o r m a f t e r  and the DBAIIS znterface lzbrary. T h e  former translates queries and 

da t a  between the two  different representation, while the latter is used for com- 

munication with the DR!iIS, submitting queries and collecting answers. T h e  

behavior of the two  modules is encapsulated in a C'++ abstract base classes, 



CHAPTER 3. COUPLING LIFE T O  A RELATIOIL'AL DATABASE 42 

a?! appropriate derived classes can be provided t o  interact with a different 

abase system. 

3.3 Storing and Retrieving LIFE Facts 

In this section we present the' theory [ I ]  developed t o  store and  retrieve LIFE 

facts in an external database. 

T h e  complex data-structure of facts cannot be straightaway translated t o  

a relational database. ,Therefore an intermediate representation is provided 

tha t  maps LIFE facts t o  relational tuples and vice-versa. Meta-information (in 

the  form of candidates)  on the  relations, provides selective retrieval of tuples. 

which can unify with the  current LIFE goal. The  queries and their answers 

are  cached, so tha t  t he  facts are retrieved only once. 

T h e  theory proposed in (11 is for variable free facts only. Moreover it re- 

stricts facts, for which the symbols occurring in these facts are involved in 

single inheritance only. We generalize the technique t o  store facts containing 

variables and type symbols involved in multiple-inheritance. T h e  solution pre- - 
sented for the  da t a  retrieval in the paper [ l ]  is extended, as it cannot, handle 

variables in a LIFE query. 'We present a solution for it and further optimize 
' 

the  da t a  retrieval by exploiting the type information stored in the  qualifier. 
, 

3.3.1 Sample Program 

IVc show a sample program, the facts in which are to  be stored in an external 

database. 

Example 3.1 This cxamplc shouls iz small samplt  LIFE program, consisting 
G 

T % %  Facts ( I 'n i t  clauses): 

1 ', : t~ hick-db(oumc I- adarns, item 3 car(make =+ nissan, model *' '68022 7). 
1;: t.chicle-db(ou9ner * virnj, item + car(make * ford, model + aerostar)). 



CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE , 43 

student- employee 

vehlcle 

automobtle 

Joe john peter 

Figure 3.3: Type  hierarchy for example 3.1 

I/>: vehicle-db(ou1ner =. sandy, i tem + car(make 3 hero, model =. jet)). 

I L>: z*ehicledb(oumcr =. joe, item + uan(make * panther, model + ghia)). 

I;: tlehicle-db(ou1ner * john, item 3 car(make 3 maruti,  model + xlr)). 

1,k: uehicle-db(oumer + john, item + van(make panther, model + cdx)). 

%%% T y p e  definitions 

person := { student; employee ) 

student := { riraj; adarns; joe; john)  

student := { sandy; k irmani)  

researcher := { joe; john}  

consultant := { sunil; peter; richards) 

rmployee := { rcsearchcr; consdtant  ) 

IY h i ~ l c  := { automobile; uwter-vehicle) 

.. 
nutomobilc := { car; (,an; t ruck )  

% a student as well an employee is a person. 

% zn'ruj, adanzs. joe and john ure students. 

% sandy, kirmani are also students. 

% joe and john are researchers as well 

% sunil; peter; richards uwrk as consultants 

$5 an employee could be a researcher or (L 

% consultant. 

55 CL vehicle could tw cr automobile or n 

$6 water-vehicle. 

% an automobile could bc a car, van, or rr 

% truck. 



CHAPTER 3. COtTPLING LIFE TO A REL,4TIONAL DATABASE 44 

Figure 3.3 shows the  type  hierarchy for this program representing partial order 

on the  type symbols { person, student,  employee, researcher, consultant, viraj, 

adams. joe. john, sandy. kirmani, sunil, richards, peter, vehicle, automobile, 

water-vehicle, car, van, truck ). It is assumed tha t  t he  type hierarchy is fixed. 

3.3.2 Representation of Facts in a Relational Model 

Intermediate representation 

.+I L I F E  fact is a complex object containing cycles and s t ructure sharing by 

means of coreference constraints (using variables, explained in section 1.1.1 ). 

In [ I ]  an equivalent mathematical constrcct for the  (variable free) complex 

structured facts is shown, which can then be represented in a relation. m7e call 

this equivalent mathematical construct as the flattened (.-term. 

The  facts in LIFE are based on the ?,')-term data-structure of LIFE, consist- 

ing of type symbols and labfls. Example 3.2 shows a (?-term and the  flattened 

LI- te rm T, for it. 

Example 3.2 For t h t  c - f e r n ) :  

T h f  vchiclc ~ - - t f r , m  c a n  bc r f p r f s r n t t d  a s  a rclatzonal tuple 71, = { ( :  mhzcle-db, 

o u s i ~ f i ~ :  john. ~ t t i n :  car. ~ t f i n . r n a k t :  fo rd ,  ~tc~n.rrlodcl  : a f r o s t a r ) ,  

Qualified segments 

Each flattened c3-term can he stored as a relation irr the database, hut this Icads 

to a large number of relations in the database. M'e can exploit the  s u b t y p e  



CHAPTER 3. COlJPLlMG LIFE TO A RELATIONAL DATABASE 45 

information present in the type hierarchy to  club items together t o  be stored as 

one relation. All  the items grouped together have the same structure. Given a 

flattened +term we replace each entry by its parent, the resulting structure is 
9 

called a qualifier. The facts having the same qualifiers are stored as tuples'of 

a relation. All the facts stored under one relation are referred to  as a qualified 

segment. Associated with each qualified segment Q is a qualifier denoted by 

q u 4 Q  1. 

Example 3.3 For the type hzerarchy zn F'zg 3.3 the type symbols parents are: * 

' par(person) = par(z7ehzcle) = { T )  

par(studenf) = par(cntp1oyte) = {person)' 

par(researcher) = par(consu1tant) = {employee) 

par(z1iraj) = par(ndams) = par(sandy) = par(kirmani) = {s tudent )  

par(john) = par(joe) = {student ,  researcher) 
& 

par(sun11) = par(richards) = par(peter) = {consul fant)  

par(car) = par(ran) = par(truck) = {nutomobile) 

From the parent dcfinztzons, the qual~fier for the predzcate cxamplt 9.6 is then 

constructfd as: 

Recall from section 1.1  .L' that T is a special symbol in LIFE which subsumes 

e\.ery other s y r ~ ~ b o l .  I f  a symbol's parent is not explicitly stated i t  defaults to  

'The facts are grouped together in a qualified segment Q. where all facts .in 

the segment have the same qualifier. One can easily see that the structure of 

facts in  the qualififd segrnf nt is the same, since for any two (.-terms ( f ,  f ' )  in 

Q, \ve have qua17 f )  = quai( f'). - 
The f l a t t end  representation of facts i r l  a qualzfifd scgintnt Q a y  s t ~ r e d  in 

a relation as tuples. 



CHAPTER 3. COUPLlNG LlFE T O  A RELATIONAL DATABASE 46 

@ Example 3.4 Example 3.1 shows d LIFE program containing six facts. The 

type hierarchy for the symbols occurring in these facts is shown in figure 3.3 

The parents of the type symbols occurring in the first three facts are the same. ' 

So is the case for the remaining three facts. These facts then can b~ represented 

in the two qualifier segments: 
B 

Q I  =[& : {name: adams, item: car, item.make: nissan, item-model: '280~2').  

C$: {name: viraj, item: car, item-make: ford, item.mode1: aerostar). 

V3: {name: sandy, item: car. item.make: hero, item.mode1: jet)]. 

Q2= [CG: {name: joe, item: van, item.make: panther, item.model:.ghia), 

I,;: {name: john. item: car, item--make: maruti item.mode1: xlr) 

I/;;: {name: john, item: van, item-make: panther itern~model:~cdx)]. 

The qualifiers being 

qual(Q1) =. {name: student, item: automobile, item.make: T, item.rnodel: T) 

qual(Qz) = { name: [student, researcher], item: automobile; it>m.make: T,  

item.mode1: T )  

The qualifying segments Q1. Q2 can be stored as  two relations ( R , ,  R2)  in the 
t 

database. The mapping between LIFE facts and tuples in the relation is shown 

in the next example, using the concept of data definztron. 

On a closer inspection of the relation R1 in table 3.1, we find redundancy 

in the representation of the vehicle database. In particular the ztem occurrence 

(column c2) has the same symbol car occurring in all their tuples. Such 

symbols can be best represented in the qualifier itself reducing the size of 

the table. The relational table R1 is compacted by removing the column c2 

and the type symbol stored in the modified qualifier called data drf in~t lon.  

For each qualified segment Q. a d n t a  dt.finition is constructed, which handles , 

the transformation of data between a LIFE ql-term and relational tuple. The 

next example illustrates how this can be done by means of coreference con- 

straints in LIFE. 



CHAPTER 3. COIIPLING LIFE T O  A RELATIONAL DATABASE ' 47 

Table 3.1 : A vehicle da tabase  

(R1) 

V 
b 

Example 3.5 For the esample program 3.1, the d a t a  definitions for the vehicle 

database qualifiers .3.4 can be represented in  LIFE m :  
38 

( R 2 )  

Dl = , 

data-definition( 

structure + vehicl+db( name + A ,  item + car(make + (', model + D ) ) ,  

tuple + R l (  c l  + A.  c3 + C', c4 + D) ,  

qualifier + R1( c l  + student. c3 + T ,  c 3  + T )  ). 

a d a m s  
virai 

LG 
b 
v6 

LIZ = I 

data-definit ion( 

structure 3 vehicle-db( name + A ,  item + B(make + C, model 3 D ) ) ,  

tuple + R 2 ( c l + . 4 , c 2 + B , c 3 + C , c 4 + D ) ,  

qualifier 3 R2( c l  + [student, researcher], c2 + automobilt~, c 3  + T ,  c 3  3 T )  ). , 

T h e  suh tc rm denoted by t h e  structure label in t h e  d a t a .  definition pro- 

car  
car  

vides t h e  data-structure of t h e  $?-terms stored in t h e  relational da tabase .  T h e  

coreference constraint  between t h e  subterm's denoted by structure and  tuple 

c l  

joe 
john 
john 

nissan 
ford 

c 3 
panther  
m a r u t i  
panther  

c 2  
van 
car  
van 

28&z 
aerostar 

c4 
ghia  
xl r  

. cdx 



CHAPTER 3. COIfPLlhrG LIFE T O  A RELATIONAL DATABASE 48 

labels provides t he  translation between the  data-representation of LIFE and 

relational database. 

Column c2 in the  relational table R1 is removed and the  symbol car is 

represented in the data definition Dl (in the subterm denoted by the label 

s tructure)  itself. 

Assume a goal g = vehicledb(owner + researcher, i tem + vehicle(make 

+ panther)) .  We unify with the subterm denoted by the s t ructure label in 

the  data-definitions, constructing a simple query (subterm denoted by tuple 

label). We call this the  SQL goal for g. For this goal g, the  SQL goals generated 

are: Rl ( c l  + researcher, c3' + panther, c4 + T) ,  R2(c l  + researcher, c2 + 
vehicle, c3 panther, c3 + T) .  

Similarly. any tuple  retrieved by the  CM of the interface, is of the  form 

of subterm denoted by the tuple label, and on unification of the  retrieved 

tuple with this subterrn, i t  is translated t o  LIFE format (subterm denoted by 

s t ructure label). 

3.3.3 Data Retrieval 

T h e  LIFE database interface accepts arbitrarily complex goals and returns all A 

potentially unifiable facts with the goal from the  external database. Whcncver 

a goal g cannot be resolved by the  facts in the internal LIFE database, the 

interpreter ntcds t o  fetch the facts from the database. This is done using the 

concept of candidates as explained below. 

Candidate 

\Ve can use a brute-force technique, hy retrieving the  facts ont-by-one from 

the database, until we get a fact which unifies with the goal. However, since 

this is highly inefficient, optimization is done by retrieving only a su l~se t  of 
\ 

facts from a qualififd a ~ g r n t n t  Q,, which can ~inify with the current goal g. 

In order to  do so, a c a n d ~ d a t e  C is constructed for each relation: based 

on the  S Q L  goal constructed for the goal g and the qualzJrr defined on the  



CHAPTER 3. COUPLIIL'G LIFE T O  A RELATIONAL DATABASE 49 

relations. 

The candidate C has identical structure as that of the SQL goal and the 

qualifier, consisting of T symbols and immediate subtypes of symbols in the 

qualifier (which are also the symbols that appear in the qualified segment). 
. x  

If the  symbol in the qualifier for label c, is a subtype of the  symbol 

referenced by the label c, in SQL goal, the candidate consists of T symbol for 

the label c , .  The T symbols in C are wild card entries " sirice the goal symbol 

subsumes (and thus unifies with) the symbols occurring a t  this label for all the 

facts in the qualified segment. 

If the SQL goal symhol does not subsume the qualifier symbol, the  symbol 

referenced by the label c, in the candidate C contains a non-empty list of 

q m b o l s  (immediate subtypes of the synlbol referenced by the label c; in the 

qualifier) which can unify with the corresponding symbol in the SQL goal. ' 

Since the immediate subtypes of symbols in the qualifier are same as symbols 

that appear in the facts in the qualified segment, fhe  non-top symbols in C thus 

provide for selective retrieval of tuples for the relation that cah help resolve .+ 

the goal g. 

Example 3.6 Given thc vehicle database i n  example 3.4, consider the follow- 

~ n g  query: gl : z~ehzcle-db(oulner + researcher, itcrn + van) .  

From t h f  data-dtf inl tzons ( D l ,  D 2 )  s h o u v  zn ernrnplc 3.,5 for whzrlr-db,  only 

112 1 ~ ~ 1 1  g f n t r a t t  a candzdatt .  

7'hf cnndzdntc constructed for D2  I S :  C' = candzda te (R2(c l  + T ,  c 2  + [van], 

c 3  T ,  c4 + T ) ) .  l ' h t  T in (' is a wild card aryunzent ( indicating that there 

is no  scl tct ion condition for c, i n  the relation for wtr ieval  of tuples as  al l  of 

t.ht syinbols for c, i n  the . rda t ion  ~ ~ l i l l  unify with the goal symbol)  and non- top 

syinbo1.u arc the selection arguments for tuples in  relation T h e  selection 
'I - 
-if ft is a list of symbols,  an$ one of the symbols in the  list 
%ndicating that  there is no selection condition for c, in t.he 
4For multiple inheritance it *is a subset of immediate 

r~fercnced t)y the  label c, in t h r  qualifier, whose parents are the  same as  the  list of symbols 
S. 



>CHAPTER 3. COUPLlNG LIFE T O  A RELATIONAL DAT.4BASE 50 

condition for (7 is S(C)  = (c2=[zwn])(as the relation contain immediate sub- 
% 

types of the type automobile for  c2). Ute select the tuples with a s i m p l ~  SQL 

query: 

select c l ,  c2, c.9, c4 

from R2 

ulh c re S(C' ) 

For the sample query. we get the  tuples in table 
4 

which is then transformed to  t.he facts 

L4: vehicle-db(owner =+ joe, item + van(make + panther, model + ghia) ) ,  

I f :  vehicle-dhlowner + john, item + van(make + panther,  model 3 cdx)) .  

Caching queries and answers 

T h e  backtracking mechanism of LIFE may result in seriding the same query 

to the  database. 

Example 3.7 For fxamplr, cons7der n LIFE program that has to ccnluate thr 

follo uvng clnus f s: 

l~ rcd , (A) : -  . . . , prfdJ( ,4 ,  13). dbp,(B, ('), . . . . 

prcd, (b .  a ) .  

prcd, (c ,  a ) .  

prcd, (:I)'! 

It is clear that the database prrdicate "dbp,(n, r)" will be executed twice. 

once when prcd, is resoli.cd with its first ground clause "pred,(b, a)'' arid a 
4 



C H A P T E R  3. COlrPLING LIFE T O  A RELATION'9L D A T A B A S E  51 

second t ime when on backtracking pred, matches i ts second ground clause 

"pred,  (c. a ) " .  In order to  minimize the interaction with database, and avoid 

repeating the same query, the  candidates for the queries and their answers 

are  cached in the  active memory. This  technique known as  caching queriesis 

described in [14] for Prolog, and is generalized for $-terms in LIFE. 

In fact we need t o  avoid sending a subsumed query to  t he  database again, 

i.e., we check whether the candidate for the query is going t o  result in fetching 

the  subset of facts which have been retrieved by a previously generated candi- 
A date.  Subsumption of queries can be easily checked in LIFE, as it corresponds 

t o  checking the sub-type relations on the, type symbols in t he  candidates gen- 

erated for the queries for the  same re la tgn .  Recall tha t  from the definition of 

a candidate the at t r ibute  values of a candidate is either T or a list of symbols 

other than T. A candidate C, is subsumed by a candidate C; (both candidates 

are  for thc  same relation), i f  for each feature in C;, o n e  of the  followi~ig is true: 

T h e  feature value is T, i f  not,  

the corresponding at t r ibute  value in candidate C', is not T, and the list 

of symbols in C', for this feature is a subset of the list of sYm\>ds  in C, 
from the same feature. 

Example 3.8 A s s u m e  the goal g,  = whzclc-db(ou1ntr + researcher, ?tern + 
r a n ) ,  and the qualzfied s ~ g m e n t s  ~n examplt  3.4. From thc data-definltlons 

(11,. D l )  for vehicle-db, w r  construct the candzdatc C,: candzdate(R2 ( c l  + 
T ,  c,' +  an], c 3  + T,  ~4 j T ) ,  ulhzch returns the fact { C j ,  I;). 

f i r  goal g . ~  = ~ h i c l c d b ( o u ~ n e r  + john,  i tem + t u n ) ,  nvc construct cundidate 

= c a n d i d n t e ( R 2 ( c l  + [John],  c 2  +  an]. c 3  + T. c4 + T). 

C', subsunzcs ('2, the symbol john zn C 2 ,  prozvdzng a further s c l t c t l c ~  conditzon 

on tuples I R  R 2 .  The  fact.< gozng to  be fetched by  (12 ullll b t  a subset of facts 

nlrcady re tr~trec i  by C', and need not be loaded agazn. 



CHAPTER 3. C!OliPLlNG LIFE TO A RELATION.4L DATABASE 52 

Negative candidates 

A query need not be subsumed by previous queries, but there could be an  

overlap of facts tha t  needs t o  he retrieved by the current query and facts 

already loaded by the  previous queries. Let the set of candidates S, represent 

parts of a relation R, already loaded. C is the candidate constructed for the  

current query on the  relation R,. and is not subsumed by any of the  candidates 

C, in S,. 

We retrieve the  facts for the  candidate C, but exclude the  facts already 

loaded by the  previous set of candidates S,. We need to  consider a candidate 
@ 4 

C', from S; only i f  it ha; loaded facts which can overlap with the  facts needed 

by C'. 

A s  mentioned earlier the arguments of a candidate are either T symbol or 

a list of symbols without the  top. T h e  intersection (overlap) of the  set of facts 

loaded hy C' slid C', is nori~ernpty i f  for all corresponding arguments in the two 

candidates, either of the argument value in C, C', is T or the intersection of 

the  two lists is non-empty. , 

Example 3.9 Suppose uqt  have alrcady loaded some  facts from relation R2 

 sing the cand tda t f s ,  (((', = candzda te (R2(c l  + [John],  c 2  + [car.], c 3  + T ,  
I 

c4 + T ) ,  C2 = c a n d ~ d a t t ( R ~ ( c 1  + jjohn], c," + [twn], c.3 3 T ,  c4 3 T ) ) .  

The facts r f t r ~ c v t d  ar t  { \ ; I ,  and {I;}. 

7b ; v t r i e w  all the fnct,s for the goal y = vehicle-db(ou1ner + rtsenrcher,  ltem 

+ c a r ) ,  wc cnon,ctruct t h f  candidaf t  C = candit late(R2 ( c l  + T, c 2  + car,  c 3  

3 T ,  c4 + T). 

The tnterscction of C' a n d  C', ~s non-crnpfy,  as the corresponding symbols in  

t h e m  arc y u a l ,  or o n t  of t h r m  is T ,  u'hzlf C' and ( ' 2  do not load n n y  c o m m o n  

facts. 

II't s t l f c t  t h e  tuplrs with an  S'QL query: 

s t l t  ct c l ,  c.', c.1, c4 



CHAPTER 3. COUPLING LlFE TO A RELATIOFA L DATABASE 53 . 

f rom R2 

where S ( C )  and not  S ( C I ) .  

S(C) = (c2=car) is  the  selection condition for C, and S ( C 1 )  = ( c l  = j o h n  and 

c2=car) is  the selection condit ion for C 1 .  

Candidate optimization 

To minimize the  interaction with the  database, we assert the  retrieved facts 

in the  internal database of LIFE, and also cache the candidates generated. 

T h e  storage of candidates is expensive. We reduce the  number of candidates, 

whenever a new candidate is"added t o  the set of candidates, by removing the 

candidates which are  subsumed by the new candidate. 

3.3.4 Improvisations 

Variables in $-terms 

Variables in $-terms are used t o  denote coreference constraints  (strnctu'ring 

sharing) between subterms in it. In [ l ]  the theory presented is for zlet&nble free 

facts. W'c feel tha t  the  constraint tha t  the term should contain no variables is' 

too restrictive for database applications (like NLP). LVe will demonstrate with 

an  example how t o  handle such constraints and store the facts containing such 

constraints in the relational database. 

Example 3.10 IZ'e conszd f r  an example of a p n r ~ n f  database contnznzng the 
d r  2 

nnrnts  of t h f  p a r ~ n t  and thc chzld, and the addresses where they  lzve. If the chzld - * 6 b  

I 
. 1 "  

l z ~ t s  uv fh  h13 pnrrnf thzs can be reflectfci by means of corcftr.cr~cr c o n s t r a ~ n t  on  -8 d 

-g *&*i - 4 

- d.~,* the nddr f s ses  of thc parent and chzld. Thc  t yp f  hierarchy for thzs csarnple zs + 
i< 4 

Y%% Facts: 
P1 : parcnt ( son + vii~nj(addr.css + .Y:addrrsa-s tr lngl ) ,  

f n t h f r  + rzchards(addr.css + S ) ) .  



CHAPTER 3. COUPLING LIFE TO A RELATlONAL DATABASE 54 

P2: parent(son * sandy(address 3 X:address-string2), 

father =+ sunil(address + .Y)). 

P3: parent (son + adams(nddress + address-string,), 

father + peter(nddress + a,ddress-string4)). 

P4: parent (son + kir.mani(address + address-strings),  

father + richards(address + address-string6)).  

T h e  constraint tha t  the addresses of parent and child in (PI, P2) are same 

can be represented in the  data-definition itself. 

T h e  two facts ( P I ,  P2) can be grouped t,ogether in the same qualified seg- 

ment Q3, and the data-definition for it is: 

D3 = 

data-definition( 

structure + parent(son 3 A(address + X ) ,  father + B(address 3 X ) )  

tuple + R 3 ( c l + A , c 2 + B , c 3 + X ) ,  

qualifier + R:3( cl 3 student, c2 =+ consultant, c3 + string) ). 

T h e  facts ( &  and P4) have the  same qualifier as  the  two facts (PI and 

&), hut  do not belong t,o the segment Q3, since the coreferencc constra.int in 

them does not niatch with Pl and P2. Wc store P3, P4 in a separate qualified 

segment, the  data-definition for Q4 is: 

v4 = 

dat a-definition( 

structure 3 parent(son + A(address =+ X ) ,  father + B(addrcss + Y ) )  

tuple 3 vehicle-db( c l  + A ,  c2 + B,  c3 + X ,  c3 3 Y ) ,  .. 
qualifier + R4( cl + student, c.2 + consultant, c3 + &ring, c4 3 string) ). 

/' 

Variables in goals 

T h e  retrieval algorithm presented in [ l ]  retrieves more facts than is needed. In 

this section we augment the algorithm so that it handles variables in goal in a 

, more efficient manner.  



CHAPTER 3. COrlPLlNG LIFE TO A RELATIONAL DATAABASE 55 

Figure 3.4: Type hierarchy for example 3.1 1 

Example 3.1 1 For r samyle ,  conszdcr thc two f a c t s  { p r e d ( y , r ) ,  p red(q . s ) ) .  

Tho  type hzerarchyfor  zt zs shown zn jigure 3.4. The  data  definition constructed 

for thc two facts zs  data-deJinztzon( structure j p r e d ( A , B ) ,  tuple + Rel(c1 + 
A ,  c 2  B ) ,  qualifier + Rel(c1 + 6,  c 2  + c ) ) .  

Assurnc a query pred(S:a .  S ) ,  the SQL goal /or zt is ilel(c?=+ .Y:a. c? + 
.Y). and thc candzdate constructed for i t  zs candzdnte(c1 =+ T ,  c 2  + T ) .  

/ 

This ~ v i l l  fetch the set of two facts {prcd(p,r) .  p r ~ d ( ~ , s ) ) .  The result is incor- 

rect. as neither fact can unify with the goal. 

.411 obs tr l~2t lon we make here is that i f  there is any fact in a qualified 

segment that can unify with a goal, then the qualifier for the segment will 

have to unify with the goal. TPis provides a coarse filter to  see i f  the qualifier 

needs to be further processed to generate a candidate for the goal. The  same 

mechanism provides a partial solution for goals containing variables. For the 

above query, the candidate is not generated at all, as the qualifier fails to unify 

with the SQI, goal. This wi l l  not result in any database access for the goal 

no\v. 



CHAPTER 3. COUPLING LIFE TO 14 RELATIONAL DAT.~BASE.  56 

3.4 Garbage Collection 
9 

LIFE memory becomes polluted when the retrieved database fact,s are cached 

in memory. If the database size is large, LIFE memory may become full when a 

large chunk of database facts have been retrieved preventing further computa- 

tion. When this happens the cached database facts are automatically evicted 

to free up space. An LRLT policy is used, where the least recently used fact 

name is retracted from the main memory. The number of facts to evict is a 

percentage of the retrieved database facts set by the user. 

3.5 Conclusion 

\ l e  have described the design and implementation of 

LIFE. This interface provides for storage of complex 

relational database. lVe have extended the approach 

a database interface for 

facts as flat tuples in a 

provided in [ I ]  to store 

facts containing coreference constraints and multiply inherited types. The 

theory [ l ]  could not handle variables in queries very well. ll'e provided a 

solution to handle the case where variables occur in a LIFE goal. 

The tightly coupled approach provides an efficient cache mechanism which 

cnahles applications to retriev?a smaller working data set in its main mem- 

ory. 'The interface insulates the user from database operations. The compiled 

programs can he used dircctly hy other user programs, requiring no additional 

support. The only limitations on the LIFg programs is not to contain as.sert 

or 1.r f rncf operations on the database predicates. 



Chapter 4 

.Persistent Programming 

Over the  past tcn years much research effort has been directed a t  at  tempts  

t o  build persistent programming languages [21, 27, 33, 3 5 ,  601, incorporating 

database functionality into their programming models. T h e  basic idea behind 

such systems is the  concept of orthogonal persistence ['Ll, 221. Perszstfnce is 
8 

defined as the length of time, for which the  da t a  lives and is  isa able. T h e  two 

basic principles behind orthogonal persistericc are: 

0 any object may exist for as long, or as short, a period as the object is 

required 

0 an object may be manipulated in an  uniform rnanner'regardlcss of the  

length of t ime it persists. 

In this sense persistent systems provide uniform abstraction over the  storage. 

Data in LIFE like other conventional programming languages, is short term 

(csist  for a program lifetime). Storage for long lived objects is usually prolrided 

by a file system or a database interface. This results in long lived d a t a  being 

t r rated in fnndarnentally different manner frbm short lived da ta .  A main 

drawback is the need by the programmers for code that  translates between disk- 
* 

resident representation of da t a  and the representation used during execution. - 



CIIA P TEE- 4. PERSISTENT PROGRA hlMIIVG 
e9 

5 8 

This mapping of da ta  between long and short term storage results in penalty 

in terms of programmer design time a.nd program run time. In a language 

with persistence, manipulation of data, whether they are short lived or meant 

to  exist between program runs, is transparent to the user; there is no need 

for mapping from one representation td  anot her. The  advantages of persistent 

programming are: 

rn improving programming productivity and easing the programmer's task, 

when sharing of arbitrary data  structures between inv0ca.t ion of programs 

and even between many different programs. 

rn avoiding ad hoc arrangements for storage of long-lived object and data  

convei-sion from one format to  another. 

In the next section we will address how to identify persistent objects and 

different techniques for loading them into virtual memory. 

4.2 Issues in persistent Languages 

Long term data  storage in persistent programming systems are generally pro- 

vided by an object store, a conceptually infinite repository in which objects \ 

&side. The objects in such a repository cannot be directly addressed by the 

user programs. To manipulate these they must be moved from the object 

store into virtual memory in a manner that is .transparent to  the application 

programmer. \.i7hile dealing with persistent objects an identifier (Persistent 

zdcntlfirr-PID) hy which the object is referred to in the store iselikely to  dif- 

fer from an identifier ( l i rfunl  zdentlfier-VID) by which the same object is 

addressed in the virtual memory. This is due to the fact that PID maybe ar- 

bitrarily long (typically 128 bits or more) in order to assign world-wide unique 

names and to deal ~vitli large number of objects compared to  a virtual identifier 

which is t>.pically 32 bits long. 



CHAPTER 4. PERSISTENT PROGRAMMING 

4.2.1 Identifying ~ & s i s t e n t  Objects 

A key design issue in supporting the existence of both temporary and long-lived 

objects, is identifying what objects should be persistent. Different systems 

employ different techniques [47, 431 and include 

A class type is marked explicitly persistent. All instances belmging to  

this class are then made persistent. T h e  0++ [35] language extends 

C++ language using this approach. 

0 T h e  transient or  persistent nature of an object is decided when the  object 

is created regardless of t,he t,ype to  which it belongs. An example of this 

approach is Object St.ore [46]. . A third approach is to  make data-objects persistent if  they can be reached 

from a set of specified roots. PS-algol [22] takes this approach. 

"4.2.2 Object Faults and Residency Checking 

T h e  a t tempt  to  use persistent objects that  are not currently resident in virtual 

memory is termed as object-fault [47], involving identification of reference type 

(residency check) and the transfer of object contents. 

T h e  residency checking can be classified into two categories [42] (edge mark- 

lrzg and node ntarkzng): , 

Edge marking: In the  edge marking scheme, the object references are  tagged 

as swizzled (notion of swizzling explained in 4.2.3) or not. A disadyantage 

of the edge marking scheme is tha t  multiple copies of the references could 

be made, before loading the referenced objects. A costly mechanism is 

Reeded to  identify copies of such references and swizzle them. Another 

Lvay is to  swizzle-the reference, as soon as it is discovered. This may 

result in some unnecessary swizzling. , 

.Yodc marking: In the node marking scheme, all references in a resident object 

t o  non-resident objects are changed to  point t o  a proxy-object. 'The 



proxy-object contains a persist,ent pointer to  locate the object on the  . 

disk. When the   on-resident object is loaded the  proxy-object persistent 

pointer is changed t o  the virtual memory pointer of the loaded object 

Subsequent references incur the cost of an indirection. At some point, 

the  proxy-objects are scanned to  check if they are swizzled and bypassed, 

t o  remove the overhead of indirection. 

\ 
Residency checks can be implemented explicitly in software, or performed 

implicitly in hardware using some kind of hardware trap for non-resident ob- 

jects. If proxy-objects (node marking scheme) are used, they can be allocated 

in a protected memory region to t rap the references t o  them and handle object- 

faulting. 

For da ta  retrieval, various techniques a re  employed. The  next subsection 

gives an overview of the techniques in use, and their relative advantages and 

disadvantages. 

4.2.3 Pointer Swizzling 

The technique of changing a persistent identifier to a virtual memory address 

has becorne known as pointer swizzling, and can be approached in a number 

of ways: 

1 .  Map the entire obj&t store into virtual memory. This suffers from some . 

of the same disadvantages as the use of file systems. Thi's is only pos- 

sible i f  persistent stores are small enough to be contained within the 

virtual memory. The advantage of this approach is that it eliminates the 

overhead for residency checking, to distiriguish swizzled and unswizzled 

pointers. 

2. An object's virtual address is of the same size as its persistent identifier. 

If the object's identifier is synonymous to its virtual memory address, 

no address translation is needed and the object contents are copied into 

the appropriate location in the virtual memory from the disk. However 



* 

C H A P T E R  4. PERSlSTENT PROGRAMMING - 6 1 

3 

i f  the  needed region is already in use, swizzling is performed. Like above 

this limits thz size of persistent stores t o  that of the virtual memory. 
- 

3. Translate the  PID to  a virtual address on each dereference via a lookup 

in a resident object-table. This approach does no pointer swizzling at. all, 

but  will involve a relatively expensive search of the  resident object-table 

each t ime the  object is.accessed. 

-1. Perform the translation from PID-to-VID only once, by replacing the  per- 

sistent pointer in the virtual address space with a main memory point% 

to  the object. This  is done the first t ime an object is referenced by the  

process so tha t  subsequent deref~rencing incurs no translation penalty. 

Among the options discussed above, the last option seems tb  provide an 

efficient large object store and is most often used to  implement persistent object 

stores. Pnlnter  szcuzzllng [43, 341 in this case may be approached in various 

ways 

Eager and Lazy swizzling 

Pointer swizzling can be done a t  different times, swizzling a t  the earliest pos- 

sible as in pur.6 tnger  suvzzlzng where all the references in main memory are 

swizzled in advance. In contrast jn pure lazy swizzling, swizzling is performed 
9 

when a pointer is being dereferenced. Pure lazy swizzling provides an incre- 

mental approach, using software checks t.o swizzle pointers on dereferencing by 

thc  application program a t  run-time. In between the two extremes we could 

have wide variety of swizzling techniques. 

Pure  eager swizzling has few a advantages that  it avoids ,the overhead of 

testing the s tate  of reference (swizzled or not swizzled), but reyuires the da ta  

set be identified before using it ,  or atleast bounding it. On the negative side 

i t  involves some computational expense of swizzling pointers tha t  are  never 

used. Thc da t a  retrieved is less selective, requiring more memory than  in pure 

lazy swizzling technique. Lazy swizzling on the other hand swizzles references 



CHAPTER 4. PERSISTENT PROGRAMMING 62 

on demand and avoids reference tha t  is not read and therefore cannot be 

dereferenced by the  application. It has the disadvantage of a software check 

t o  test whether a reference is a PID or a virtual identifier every t ime an object 

is accessed. Lazy swizzling can be done a t  various granularity levels: pointer- 
% 

at-a-time, recursively swizzling pointers in an object upto a certain depth or 

swizzling all pointers in the page at once. 

Hardware and Software based swizzling 

Recently, a class of swizzIing schemes [45]  have been proposed tha t  use vir- 

tual memory access protection technique t o  trigger t he  detection and transfer . 

of non-resident persistent objects. T h e  basic strategy is t o  allocate a page 

of virtual memory (access protected) to  a non-resident object reference (vir- 

tual memory page maps to  the page in the persistent store tha t  contains the 

object) .  Accessing the  object triggers a virtual memory t rap,  reading in the 

persistent page into the  previously reserved virtual page. This approach avoids . 
the  overhead of residency checks incurred by soft*are approaches, which makes 

the access to  resident persistent objects as efficient as  access t o  non-persist,ent 

objects. 

In the next section we will use the concepts presented so far for the  stor- 

age and retrieval of persistent da t a  in LIFE in an object-store. Techniques 

like catching da ta ,  prefetching data ,  and clustering da t a  in the  database were 

studied for their impact on performance. 

Persistency in LIFE 

From the above discussion it is clear that there is a need for storing persistent 

 terms in LIFE in a database. Recall that  a persistent $)-term unlike 'nor- 

mal' L,-term retain its value on backtracking, and can be viewed as a set of 

graphs with handles on certain nodes. The  persistent terms are stored in an 

object store implemented on top of the file system of the operating system. As 



CHAPTER 4. PERSISTENT PROGRAMMING 6 3 

Cache 
Management 

get heap 

page 

LIFE 
1 nterpreter 

. 

Object 
Store - 

get psi-term 

w 
LIFE heap 

Store 
Manager 

Mapping & 
Swizzling 
Module 

Figure 4.1: Persistent store architecture for LIFE. 

find 
objects 

mentioned previouslj- this was done for portability reasons. T h e  architecture 

of the  system is depicted in Fig. 4.1. Portions of t he  LIFE interpreter have 
4 

heen rewritten so tha t  when persistent da t a  is encountered, special routines 

can be executed tha t  will handle the  persistent data .  

A n  additional interface written in LIFE, compiles the original LIFE pro- 

gram into a modified LIFE program, storing the persistent terms in the  object 

store. It  provides transparent retrieval of the 111-terms in the  object store, and 

supports orthogonality, manipulating persistent and transient terms using the 

same compiled code. The  interface supports programs written in pure LIFE, 

and the  existence of a store under LIFE is made transparent t o  the  user. T h e  

compiled code can also be linked to  other applications written in LIFE, req;ir- 

ing no special support.  

T h e  following sections discuss each part of this system in detail. 

4.3.1 Design Goals . 

0 \+.hen designing a persistent systern, a primary goal should be ease-of- 

use for the intended users. If allocation and manipulation of persistent 



CHAPTER 4. PERSISTENT PROGRAMMING 

objects is no different from manipulation of short-lived objects, the pro- 

gram will be easier to write. This also allows for existing applications to - 

make use of compiled code in t,he persistent store. 

0. There should be little run-time penalty for code that does not deal with 

persistent objects. 

0 1,IFE interpreter changes should be kept to a minimum. 

0 The prototype is to be built in a modular fashion so that  different fetch- 

ing and storing alternatives can be explored. This will enable different 

strategies to  be tested to  determine which one gives a better performance. 

Al l  of these goals entail making persistent data easy to use, -easy t o  extend, ' 

and easy to tune. The  implementation consequences in meeting the design 
' t 

goals are discussed in the following paragraphs. 

-B 

Physlcnl I/O: Given that the persistent objects of the program reside on 

secondary storage, a mechanism is needed to retrieve these objects au- 

tomatically from the database to achieve transparency. When an object - . 
is referenced by the program the system needs to  identify whether the 

object is already in main memory or not, and if not fetch it from thc 

database. To determine this, each reference to  non-resident persistent 

object in virtual memory is associated with a proxy object that  specifies 

location of the database object and whether the object has been fetched 

from the database yct. 

C'nching: To reduce the performance cost, of a persistent system, the object 

faulted into main memory is cached. This pointer will no longqr cause an 

object fault, although every reference is still subject to  a runtime check. 

This reduces the cost of a database fetch over a period of time, but may 

clutter the virtual memory over a period of time. 

Sul ix l ing:  The cached objects can be accessed via a lookup in a resident 

object-table. To reduce the dereferencing cost of persistent objects, the 



CHAPTER 4.  PERSISTENT PROGRAiZ/lhfING 

object faulted into-main memory is swizzled (figure 4.5) '  i.e., t he  objects' 

external addresses is mapped t o  an internal address pointing t o  the  object 

value. This  will avoid a relatively expensive search of the  resident object- 

table each t ime the  object is accessed. 

Prefetching: Upon an  object reference, the system must also determine how 

much da t a  t o  fetch. Fetching only the da t a  needed t o  execute the  current 

operation will save t ime and will lessen the cluttering of memory. 

4.3.2 System Architecture 

Object store 

Persistent programming systems are generally supported by an object store [31, 

301, a conceptually infinite repository in which objects reside. T h e  LIFE per- 

sistent object store provides storage and retrieval of objects, where an  object 

is an  uninterpreted byte sequence of virtually unlimited size. T h e  store is de- 

signed t o  be efficient and extensible. Objects are grouped together into the  

files supported by the operating system. 

Access t o  these objects is via unique object identifiers (OIDs) .  An object's 

identifier is unique only within the file it is contained in; however an  applica- 

tion can have multiple files opened simultaneously, as the object identifiers are 

mapped to  globally unique-id values when the objects are referenced in the 

virtual memory. 

T h e  basic unit of da t a  transfer between disk and main memory is a page. 

LIFE objects are physically grouped together and stored in fixed size pages 

within a file. Support for sophisticated buffer management is provided. A hash 

table is provided which takes an object identifier and efficiently determines i f  

the  object is resident in main memory. The  implementation of the  store is 

similar t o  the one in [30]. 

Pages: 

X page is the unit of da t a  transferred between disk and main memory. 



CHAPTER 4. PERSISTENT PROGRAMMING 

A page is of fixed size, consisting of page type and the  data in it. 

Objects + f-- Slots 

Space freed as objects grow and shrink on the page 

Ob~ect 
Header 

Figure 4.2: Slot page data structure. 

The page types are: 

ii I 

\t 

File headcr page: a single page containing meta-information about the 

file. 

Free Space 

Slot pages: a slot page contains objects that can fit intJo i t ,  header for 

large objects and meta-information about the page. 

Large object page: page containing large object and meta-information 

for it pertaining to the actual layout of the large object. 

Slot page contains the small objects and header for large objects. Slots 

are used i o  index and find the actual object. The  is laid out with 

the slots at the end of page, growing upwards as more objects are added 

to  it. The objects are allocated a t  the high end of the page following the 

page header, with the object region growing downwards toward the slot 

region. The slot page structure is illustrated in Fig. 4.2. , 

0bjec.t: 

A n  object is stored on slot pages and associated with it is a system 

generated unique object id (OID), which allows the object to  be located 

and accessed. The object id is an 8-byte quantity consisting of a 4-byte 



CHAPTER 4. PERSISTENT PROGRA MMIA'G . 

Figure 4.3: Object-Id structure. 

I 

page number,  a 2-byte slot within the  page and a number to  approximate 

unique ids when the slot space is re-used. 

File ID 

T h e  2-byte slot number provides a pointer to  the  actual location of the 

object in the page, allowing an object t o  be placed anywhere within 

the  page. T h e  corresponding slot is updated when the  object is moved 
J 

around as it grows and shrinks in the  page. T h e  unzqu~-zd number is for 

re-use of slot space. When a slot is used for the first t ime the  unique-id 

number is set t o  one. When an  object in the page is deleted this slot 

is reused and its unique-id number is incremented by one t o  avoid any 

dangling references to it. The  freed slots are maintained in a linked list, 

by having the slot-number refer t o  the next freed slot and the page header 

containing the  first and the last freed slot. 

An object's identifier is unique only within the objects file, the  page ID 

and the slot nu~nbc r  toget h t r  specifying the physical location d t he  object 

in the file. However object identifiers are mapped t o  globally unique 

identifiers (consisting of File ID too) when the objects are accessed. T h e  - // 

format of an in-memory OID is shown in Fig. 4.3. 

8. 

At  the store level each object is an uninterpreted container of bytes with 

an object header attached to  i t ,  intended for indicating such properties 

as the object's length, whether it is small or large object, ctc. Fig. 4.4 

shows the object format for the storagc level. 

. \ 
I>, 

B 
%I' Page number 

Internally, the store keeps track of two types of objects- small objects, 

which can fit entirely in a single page, and large objects, which are  too 

Slot in page 



CHAPTER 4. P E R S I S T E N T  P R O G R A M M I N G  6 8 

Object type 1 Object length I Data contents I 

Figure 4.4: Object structure. 

large to  fit on a single disk page. Small objects a re  stored in the  disk 

a t  the location pointed t o  by the object-id of the small object,  while 

the object-id of a large object refers to  a kind of directory called a large 

object descriptor. T h e  contents of a large object descriptor contain meta- 

information t o  access the pages holding the object's da ta .  

A page contains a number of objects. An object can grow too big for 

the page it resides on even though it can still fit into a single page. T h e  

object is then moved to  another page and a forwarding address pointing 

to  the new location, is left behind in place of the  object's original location 

(object's birth-page). When the object again outgrows its new location, 

there is 110 necessity to  leave a forwarding address behind a t  the  current 

physical location. Only the  object's birth page contains a reference t o  

its current physical location; all other references point t o  t he  object's 

page. It is this marker that  is updated with the  new forwarding address 

reflecting the new location of the object. 

It ;an also happen tha t  a small object grows t o  the point where it can 

no longer be contained in a single page. In such a case it is made  into a 

large object,  leaving a large-object header on the  object's birth-page. 

Pointer swizzling in LIFE 

The persistent terms in LIFE are stored in an object store. Two address spaces 

are managed: virtual address space in which objects 'are directly accessible by 

the applications and persistent address space of the object store. Objects are  

transparently moved from one to  another on demand. 



CHAPTER 4. PERSISTENT PROGRAMMING 69 

Figure 4.5: Pointer swizzling. 

Initially a reference to non-resident object coniists-of a proxy object (object 

descriptor, figure 4.5). The  proxy object contains a pointer t o  i ts persistent. 

objects in the secondary storage, and is distinguishable from other objects by 

its type  field. 

To speed up access along inter-object references for main mernory resident 

persistent objects, the reference t o  the proxy object  is swizzled into a pointer 

t o  the object in main memory. Among the'options discussed previously in 

sect ion 4.2.3, we use lazy swizzling, which swizzles references on demand.  This 

option 'provides an efficient implementation [42] and is most often used. For 

portability reason, a software swizzling scheme is uscd, instead of a hardware 

scheme. 



CHAPTER 4.  PERSISTENT PROGRAMMING 70 

Page-objects hash table 

Object hash table Objects on LIFE heap 
\ 

i 

Figure 4.6: Object cache 

Buffer management 

Performance of persistent applications can be significantly improved, if main 

memory acts as a cache for disk-based data .  Caching da t a  is successful, due 

t o  the property of locality which has two aspects: ' 

tcrnporal: The  current da t a  item in use will probably be needed by the appli- 

cation again sometime in future. 

spatial: When related da ta  items are physically located together (clustering) 

on disk and brought i n  as a unit into the main-memory, it is expected 

tha t  the next data-item is already in main-memory, saving an  access t o  

the database. 

The buffer manager maintains a page buffer, and an object cache to  make 

use of the property of locality in an application, reducing the swizzling ovffshead 

and minimizing disk access. 

Page manager: % 

The unit of da t a  transfer between disk and main memory is a page. 'The 



CHAPTER 4. PERSISTENT PROGRAMMING; 

page manager maintains a n  in-memory chain (page buffer) of memory- 

,resident disk pages, indexed by a hash table (page-table) on the  page-id. 

Any new page brought in is placed in the middle of the  chain. If the  page 

is referenced again it is promoted t o  the top of the  chain. For eviction 

the  pages at, t he  bottom of the chain are chosen. 

Whenever a request is made  by the object manager t o  fetch a n  object 

€3 
from the disk, it looks up  the page-table to  check first if t he  page in 

which the  object resides is in-memory. If not on the  basis of the  OID, 

- the page from the  disk is located and loaded into the page buffer pool. A 

_ pointer t o  the object location in the page is then return6d t o  the  object 

manager. 

Object manager: 

Initially the  object manager maintains a chain of object descriptors, in- 

dexed by a hash table (resident object-table) on the  object-id. ' When 

an application accesses a non-swizzled persistent reference (OID of the . 
object) ,  the  persistent pointer is passed to  the object manager. T h e  ob- 

- 
ject manager consults the resident object-table, to  see i f  the  object is 

'C 

resident in main memory. If not resident, the persistent object is t o  be 

made resident. it gets the reference to  the object from the  page man- 
* 

' 
ager. The  object is converted into an internal LIFE format and stored 

in the LIFE heap, and the mapping from OID t o  main memory pointer 

is registered in the object-table. The  persistent reference is swizzled t o  

the main memory address of resident objects, t o  avoid the overhead of 

consulting the  object-table on subsequent access to  this reference by the  

. application. 

For eviction, the  objects a t  the bottom of the chain are selected. T h e  

object descriptors arc also chained together on a second hash table ac- 

cording to  the disk pages in which the objects lie. This allows updates 

to  objects residing on the same page to  be written back t o  the disk at  

the  same time. Figure 4.6 shows-three objects stored on the same disk 



CHAPTER 4. - PERSISTENT PROGRAMMING 

4.4 Conclusion 

We presented an orthogonal persistent LIFE system starting from motivation 

for the need for it and design principles. A simple lightweight object store 

was built on top of file systems, as opposed to using a commercial OODBMS. 

This would meet our design goals of portability, high performance and mod- 

ularity. The persistent object store caters for object identity, for the  storage 

and retrieval of persistent terms in LIFE. 

Besides the orthogonal persistency, another design goal was that  perfor- 

mance should compare favorably with non persistent LIFE data. Performance 

critical issues of detecting database reference, pointer swizzling and caching 

were addressed. In section 6.1 we have presented a G I s  (geographic infor- 

mat.ion systems) application as a natural application for the  persistent terms. 

Performance analysis of the application was done to  compare database persis- 

tent LIFE with a stand alone LIFE system. The performance of the  database 

persistent LIFE was found to be comparable with stand alone LIFE system 

and in fact performed better for larger CIS database. The results are shown 

in section 6.1.2. 

A prototype of it has already been implemented and an initial version of 
~. 
' ~ t  is fully operational except for stor?ge of large objects. The implementation 

was done partly in C++ language a n k p a r t l y  in LIFE and runs on various 

flaxrors of UNIX (Solaris, IRIX, Linux, Ultrix and SunOs). The advantages of 

the database persistency in LIFE can be obtained without any modifications - - ,. , . 
a d  i' -> to existing LIFE programs. 

' I 



Chapter 5 

Reverse Compiler 

In this chapter, a clustering method is proposed to extract hierarchical cate- 

gorization of binary relational facts in LIFE. The method gives a polynomial 

time algorithm for translating a binary relational database into LIFE facts. 

The  algorithm can also be used for: 

w 

0 concept generation in knowledge systems 1571. 

0 determini~ation and the minimization of finite-state word and tree au- 

tomata [58]. 

This problem was posed by Ait-Kaci [SO] and this work is a joint effort of 

Ai't-Iiaci [50], Gaur [49] and myself. 

1 5.1 Introduction 
a 

Given a binary relational database R = ( A ,  T)  where A is the set of attributes 

and T denotes the tuples over A. If cardinality of A is two, tbe database can 

be visualized as a matrix. Let us consider the following example: 

= b ) ,  { { c l , ~ 5 ) ,  { ~ 2 , ~ 6 ) 1  { ~ 3 1 ~ 7 ) ,  { c I , % ) ) .  

R can be represented by a matrix whose rows correspond to  the entries in 

the  first column of T and whose columns are the entries in the second column 



CHAPTER 5. REVERSE COMPILER, 74 

Table 5.1: Matrix representation of relation R 

t 

of T. If the pair (c;, c,) is in T then the  corresponding entry in t,he matrix is 
* 

1 else it is 0: The mat.rix corresponding to R is shown in Table 1. 

Given a 011 matrix M ,  a rectangle of 1s is sub-matrix of M composed of 

all I s  which can be  obtained by permuting rows/ columns of M. A rectangle 

is maximal if it is not contained in any other rectangle of 1s obtained by 

permutation of rows and columns. 

As the  number of attributes in the relational table is 2, we can represent 

the database as a matrix. Given a relatioAa1 matrix hf, we are interested in 

the following questions: 

3 Problem 1: Partition hf into maximal rectangles of 1s such that  the 

number of rectangles in the partition is minimal. 

Problem 2: Given M ,  find all t hehax ima1  rectangles of 1s in M. 
\ 

We are free to permute the rows and the columns of M. Each rectangle in 

the  output to  Problem 2 is a concept [57] .  

5.2 Concept Generat ion 

6 e  will describe an algorithm for solving Problem 2 and show how the  merge 

step in the algorithm3can he modified to solve Problem 1. To describe the al- 

gorithm we will study a particular class of matrices called rowconvex matrices 

and show that  there exists a linear time algorithm for both Problems 1 and 

2 when the input is restricted to this class. This class forms the.base case of 

our algorithm (figure .5.2). An informal recursive definition of the algorithm 

is: If the input is row-conoex (algorithm t o  generate rectangles for row-covex 

matrix is shown in figure 5.2) stop, else split the input into two equal sized 



CHAPTER 5. REVERSE COMPILER 7.5 

halves and call the  t op  level routine on the  both the parts. T h e  output  from 

both the  decompositions is iombined using a function called merge. 

start  point: For each row it refers to  the column position of 
the  first 1 in each row. 

0 end point: For each row it refers to  the column position of 
the last 1. in each row. 

0 S = { S 1 , .  . . , S,) is a sorted list of unique s tar t  points of 
each row.' 

For each S, in S get a list of rows E whose s tar t  point is < 
than startpoint of S;. 

- T h e  rows in E are sorted on t.heir end points from 
largest t o  smallest 4p 

- For each row with unique E, in E, a rectangle is gen- 
erated consisting of all rows in E whose end point is < 
than end point of E,. 

Figure 5.1: Row Convex Algorithm 

A 011 matrix hl  is called row-convex if there exists a permutation of the 

columns of h.1 such tha t  all the ones in every row are consecutive. 

Lemma 1 The number of nzaxirnal rectangles in  a row-convex matr ix  M < n2.  

Proof.  Let i he  set of n  intervals ( I)  be sorted by their s tar t  points, lo denote 

the  first interval. We remove I. from I, the number of rectangles in (I,-1 is 

denoted by T ( n  - 1 ) .  If lo is added we add a t  most n niaximal rectangles. 

Therefore for the  recurrence relation is T ( n )  = T ( n  - 1 )  + n. Hence the  

number of maximal rectangles 5 n2.  rn 



CHAPTER 5.  REVERSE COMPILER 

Lemma 1 gives us an algorithm for finding all the maximal rectangles in a 

row-convex matrix M. The algorithm is linear in the number of rectangles out- 
* 

putted. Figure 5.2 shows an informal description of the row convex algorithm 

coded in LIFE. 

Swap columns to make the matrix M row convex as far as 
possible. 

If the matrix is row convex we g e  done (Row convex algo- 
rithm generates all the rectangles), else 

Rows which have contiguous sequence of 1's is pushed to top 
of the matrix. 

Split the matrix M into two such that 

- the matrix M1 is a row convex matrix. Row convex 
algorithm generates all the rectangles for MI. 

- Generate the rectangles for M2. 

- hlerge the rectangles generated by M1 and M2. 

\ 
Figure 5.2: Merge Step 

3 

In this section we will describe a divide and conquerc algorithmfor solving 

Problem 2. Figure 5.2 shows an informal description of the algorithm coded 

in LIFE. If the input matrix M is row-conver we use Lemma 1 to output all 

the maximal rectangles. It is easy to determine whether the matrix M is row- 
a, 

Y # 

convex or not. If hf is not row-convex then we partition M into two matrices 

MI and hf2 such that MI is row-convex. This is can be achieved by picking the 

rows which do not have any zeros embedded inside the ones. Next we call the 

main predicate on hf2 and the output is merged with the maximal rectangles 

of MI. 

Let R, denote the set of all maximal rectangles of M,. Union of M, possibly 



CHAPTER 5. REVERSE COMPILER 77 

contains more maximal rectangles than the union of Rp,. We now characterize 

the  new maximal rectangles in the union of M,I,. 

# 

Definition 1 Overlap of two Rectangles: Given maximal rectangles R1 and 

R2 overlap is defined to be the new maximal rectangle R such that rows of 

R = r o w s ( R 1 )  U r o w s ( R 2 )  and columns of R = coEumns(Rl)  n c o l u m n s ( R 2 ) .  

Lemma 2 Union of M1  and hf2 .contains maximal rectangles which can be 

obtained by Overlapping rl, r ,  I r ,  E R,,r,, E ~ R ,  and these are the only 

maximal rectangles which can be added. 

Proof: R1 and R2 do not have any rows in common therefore by overlapping 

them we get a new maximal rectangle C .  We will now show that  C cannot 

interact with any r ,  E R,, R,. Without any loss of generality, assume that  r ,  

belongs to M I .  R can pictorially be represented as shown in Figure 5.3. The 

only new concepts generated are C1 and C2.  Cl can again be divided into 

upper and lower halfs. T.he upper half of C1 is already a maximal concept 

in R1 which when combined with some r,  E R2 will give C 1 .  C 2  is already 

in R1 because it is the overlap of two maximal rectangles T and T2 in the 

Figure. We have shownethat any new maximal rectangle cannot interact with 

an old maximal rectangle to  generate a new maximal rectangle. From this it 

follows that no two new maximal rectangles can interact to  generate another 

new maximal rectangle. H 

Next we will-give an upper bound on the number of maximal rectangles 

generated by Lemma 2. We will show that the upper bound is tight. - 
Lemma 3 Giuen a matrix M ,  the number of maximal rectangles is 5 '2" - 1. 

Proof: Assume that  the merge step, partitions hl into two matrices of size 

1 and n a 1. Let T ( n  - 1 )  denote the number of maximal rectangles in the 

matrix of size ( n  - 1). Another T(n - 1)  maximal rectangles can be added in 

the merge step. Therefore the total number of maximal rectangles is given by 



., - CHAPTER 5. REVERSE COMPILER 

/ 
/- 

Figure 5.3: Ovvlap  of New andsold Maximal Rectangles 

the recurrence relation: T ( n )  = 2 c T ( n  - 1) + 1. Hence the number of maximal 

rectangles is 5 2" - 1. rn 
Observe that the bound given in Lemma 3 is tight. Let M be a matrix of 

1s except for the diagonal entries which are' 0. For this input the  number of 

maximal rectangles are 2" - 1. 

In the next section we will show how Lemma 1 and Lemma 2 can be used 

to  cover a mat,rix by maximal rectangles. This will give us a way of translating 

a binary relational database into LIFE facts (Problem 1). An example of such 

a translation was provided in section 1.3.3. 

5.3 Reverse Compiler 

In this section we give a polynomial time algorithm for covering a matrix with 

maximal rectangles. We now characterize the number of maximal rectangles 

needed to  cover a row-convex matrix. It is easy t o  observe that  covering a 

. bipartite graph with minimum number of complete bipartite subgraphs Ir',,, 

can be redhced to  coveriag a matrix M with minimum number of maximal 

rectangles. Hence the problem of minimizing the size of the covering is N P - 



C H A P T E R  5. REI 'ERSE COMPILER 

' ,  

Comple te .  Therefore we will restrict our attention to a greedy covering which 

is minimd'in size. 

Now we will show that finding the cover of :kf with minimum number of 
- rectangles is equivalent to covering a graph with minimum number of maximal 

cliques. Since the former problem is equivalent to graph coloring it is hard 

to approximate covering of M [59]: This reduction is stronger than standard 

KP-Completeness reduction as it tells us about how hard approximating the 

problem is whereas standard reductbn offers no such clue. 

We use CR to denote minimum cover of a matrix M (with maximal rect- 

angles). CC: denotes a minihum clique cover of a graph G. 

Theorem 1 CR e CC 

Prdoj: 

===+ Let the vertices 04 G be (i, j) where i, j are the rows and columns of hl. 

Two vertices ( i ,  j), (1,m) ( ls ' in M )  are connected by an edge if (i = 1% (j = 

m )  or ( i ?  m )  $ (1, j) are 1's in d l .  It is easy to seethat  each maximal rectangle 
t 

in M corresponds to a clique in- G,  -therefore if we have a .minimum cover of 

M we have a minimum cover of G by cliques. 

+== Given a graph G we now construct hl(. Each vertex i of G is placed 

on the diagonal (i,i) of iM. If (i,j) is an edge in G then we mark ( i ,  j) and 

(j, i )  as l,s in M else the ent,ries are 0. Also, all the diagonal entries of M are 

Is .  With this construction, if we can find a minimum clique cover G we have 

a minimum cover of hl.  

The chromatic number of a graph can be determined by covering t ts  com- 

plement with cliques. As Approximate coloring a graph is hard 1591, we have 

approximate covering of a matrix with rectangles is also hard. 
6,- 

Given a row-convex matrix hi. Let S = ~,(r,,,,r,,,) I s.t. r,,, is the 

first occurrence of a 1 in row r and r,,, is the last occurrence of a 1 in row r .  

Lerfirna 4 The  nirnber o j  marimal rectangles required to cover row-conaez M 

is equd to the number of distinct elements in S .  



CHAPTER 5. REVERSE COMPILER 

Lemma 4. gives us the minimum number of maximal rectangles required to 

cover a row-convex matrix. It takes 0 ( n 2 )  time to cover a row-convex matrix 

M with maximal rectangles where n is the size of the row/ column. We can 

now modify the merge step to produce a cover of M with maximal rectangles. 

Assume that we recursively found the cover of MI and 1Zf2 ( the upper and the . 
lower half of M). We now have to check whether each rectangle in the cover of 

S 

MI and M2 is maximal or not. If it is not maximal then we extend the current 

rectangle to the maximal rectangle containing it. Thereby generating a cover 

with maximal rectangles. Observe that the number of maximal rectangles 

required ti, cover a matrix M is at most n, where n is the number of rows in 

the ill. Also, this bound is attained for a matrix of all 1's with 0's on the 

diagonal. 

I .  

In this chapter, we a8dressed the issue of converting binary relational dJa into' 

LIFE as $-terms. We provided a polynomial time algorithm for translhing the 

database into LIFE facts. The algorithm was tested on binary relations and a . 
ii 

- GUI interface was built to visually verify the correcfiess of the algorithm. . ). 

,. 

9 
-4 . 

> - 



Chapter 6 

Applications 

e .  

6.1 Geographic Information Systems , 
1 .  

Digitiza.tion of maps [52, 511 is being currently ptirsued for effective,&ilization', 

of the information in various fields: vehicle routing applications, route finding 
# 

applications, business listings etc. There is lot of f ~ c u s  on digital r6ad maps 

for vehicle navigation systems. $-termas are flexible and useful for representing a 

8 .  spatial data in geographic information s y s t e m s ( ~ 1 s 9 . ' ~ h e  functional and-the ' u o  
0 

relational component of LIFE can be used to to express descpl-gtive data  and . 

constraints in GIs .  It also provides the user with a high level ditta manipulation SF 

language. In this section we consider digital road maps: as example G I s  
d 

application in LIFE. The road network is modeled as a persistent $-term where 

BQ edges correspond to  road segments and nodes' representing ro intersectiops 

and dead ends. In this way, the spatial relationship between road segments 
' . 

are explicitly retained and can be used tor analy&. 

In such road networks route finding is a majfr  operation. Displa$ng of 

routes for navigation.ofsystems is also needed. A major concern here is degra- 

dation of the performance with the increase in network size. In  the next'sectidh 
. - 

a compression technique is ,proposed *which allows A. reduction in the number . 

"B, of odes and edges in the road network. This reduces the search space size in 
'0 

route finding and display of route. The algorithm fi"n"ds a near-optimal route 
i-i 

B . +. 



CHAPTER 6. APPLICATIONS 

a from a startipg point to  the  destination point, while improving the  efficiency 

df the routedfFding algorithm. This problem was communicated t o  us by G: 

In section 6.1.2 we report on the performance of long-term persistency for 
h 

'these terms. 

6.1.1 Hierarchical Data Compression 

Typically G I s  da ta  is in order of Gigabytes, computing shbrtest path t h e  

actual data can be computationallydntensive. In this section we study a com- 

pression algorithm for the GIS network which guarantees that  the topology of 

tl& road network is preserved and routes are approxi 

The c ~ r s e n t  and anticipated increase in the 

' . revealed two very basic problems in handling the G I s  data, namely: 

0 Visual display of the map: User interfaces are B, fundamental component 

of digital road maps applications, a s  it  would play adtitical role in'their 
7 .  

adoption and success. Effective presentatiowof roude guidance and navi- ' 

gation maps is a non-trivial task due to l ipi ted color, small display area 
, *: 

and-the very nature and size of the data that needs to  be' dealt with. , 

3 '  Performance: Digital road maps are the basis for many functions such as 

positioning, pre-mission route planning, route guidance, map matching 

etc. Performance of these functions will be a crucial factor with increasing - 

size of the network. . 
4 

i - \  
The  mad network suitably compressed can help improve the visual display 

of road maps. The map then can be displayed at differegt levels-of details, 

presenting portions of the map of current interest to  the user a t  a higher 

reso1ution:This would improve the user's ability to visually discern the relevant P 

information. 9 

T h e  compression of the network would also help ,in improving the perfor- 

Gance of the queries on the road map such a s ~ o u t e  finding, which is a frequent 



B 

CHAPTER 6; APPLICATIONS 

operation in such applications. 

In this section we provide a hierarchical compressio'n technique to improve 

the performance of route finding in the road network. The technique is based 

on a triangle-based edge approximation (observe t,hat other reductions are' 

possible), replacing two adjacent edges (edges having at least one common , 

node) in the graph by a edge ( which forms the .third side of the triangle 

) of apprmimate length. This method for compression of spatial data gives 

us a hierarchy of triangle-based edge approximations, by applying recursive 

refinement at each level. For display purpose we have to ensure that the 

topology of the road network is preserved. For example if there were no cross 

overs in the original data then the compressed data should also preserve the 

non-cross ovef property. 

, - 

Hierarchical Compression Algorithm 

Th: hierarchical structute is built by selecting a set of adjacent edges in the 

graph at a giv n level and applying a recursive compression based on the f 
triangle-based edge approximation. 

We number the hierarchical levels from 0 to N ,  where 0 corresponds to 

the uncompressed road-map and successive refinements are labeled from 1 

onwards. ~ d ~ e s  and Nodes in the graph will be capital letters. Edges are 

also given nukerical indices, indicating the level in which the edge is present 

and- considered. A road map is described by a graph G = (V, Eo),  where V 

are the vertices of the graph corresponding to road intersections and Eo are 
+- 

the edges in the graph corresponding to road segments present at level 0 (i.e 

uncompressed graph). 

, Following is then a recursive defidtion of the compression algorithm. To 

generate the next level i from level i - 1, consider the edges labeled i - 1 (i.e 

present only at level i - 1). To begin with all the edges of level i - 1 are added 

to l&el i. rNow consider any two rdges A, and B,. If the edges A, and Bi are 

adjacent, the two edges are compressed and replacedby a new edge C,. The 



CHAPTER 6, '4 P PLICfl TIONS 84 

, two,adjaceni edges are compressed, only if the newly generated edge C, does 
1 

not result in a cross over of the edges in level i and the~esul t ing graph remains 
3 

cdnnected. The new edge C, length is the distance between the vert ick~of the 

edge, which should be a close approximat;on to the s u p  of lengths of the edges 
' 8 

compressed. 

This scheme will give us hierarchical structure, with some nodes not 

belonging to higher levels ( this happens when all the edges incident on the node' 

are removed ). To determine the shortest route between any two vertices of the '- . 

' hierarchical road network, we find the highest level .z in which both the vertices ~ - 
are found. We then compute the shortest path between the two vertices, 

considering the graph of level i and using t h e  A* algorithm described in the 

next section. This gives us a near optimal shortest path: More sophisticated , . 

schemes for route finding are also pogsible. \ 

Route Finding 

Optimal path planning in a network of road map is one of the basic tasks in 

the transport industry. FOE example, to deliver goods from a warehouse to a 

customer, we need t o  find the least cost path among the possible set of paths 

between the two locations. TEe cost functioh to be minimized could be any of 
+~ 

T 

the parameters such as-time, distance et.c. . 

An A* algoriihm [53] iB used tofind the optimal path between any two 

given points. In this algorithm, a heuristic 'search functi6n is used to prune 

the search space, expanding fewer nodes than the popular Dijkstra's shortest 
a * ... 

pa th  algorithm. The road network 'consists of nodes and edges. For each node, 

we associate a cost of reaching the  destination from the source. The cost is 
1 

computed as the sum of the 2ost to reach a'nodk frdm the Source no& (via 

a particular path) and an %timat; of cost to* feach the destination from this 

node. The algorithm to cornbute the shortest past i's as! follows: ' 

'I. Place the start node on the stack. 

2. Pop the first node from the stack. ~. 

. . 



3. If this nodtx .is same as the  destirratiorl rrotfc, we are  done arrd the  cost 

assigned t o  this nodc is the  srnallest cost. 

d -  

4 .  Find theneighboring nodesof the node rer~lovedfrorri thes tack .  -Estimate 

t he  cost for each neighbor nodc to  the destination node. The neighbor 

rioties are  then added t o  t he  stack as follocvs: . . 
i - 

( a )  If t he  rreighbo~ node% found on the stack, the current cost estimate 

of'thc node is compared with the  previous cost es t imate of the nodc. 

If the  current cost es t imatc~ is smallt~r,  update  the  cost of the node. 

If the  node is not on the  stack insert the node in the  stack. 

( b )  Sort the  nodese in' the  stack in the irrcreasing order of their cost 

estimat c .  
. 

5 .  Repeat steps 2-.5. 

-0 8 I 
0 500 lo00 lsoo 2000 2500 3000 3500 4d00 4 5 0 0 ' 5 0 0 0  

All Pair Paths 



~ L. -All Pair Paths 

Figure 6.2: Performance gain of the compressed map 

All rou paths snor frequency dmblbubon (4560) - 

L 
- 1  -0 B -0 6 -0 4 -0 2 0 0 2 0 4 0 6 0 8 1 

Error Rabo d~fierence In compubng shortest path 



Figure 6.3: Frequency distribution of performance gain of the  compressed map  

2500 

2000 

1 5 0 0  
z- 
0 c 

J 
F 
LL 

loo0 

500 

0 - 

Performance of the Algorithm 

i - 
111 this section we examine the  performance of the  hierarchical conipresdion 

. algorithm or1 the  real world da t a  of Royken area i r i  Oslo provided by G.  hlis- 

Ratlo speed lrnprovernent In oompuhng shortest path 

t 
, , 

All route p a h  bme frequency dlsttbubcm (4560) - 

und [38]. Two factors to  be observed are  the cornpressiori achieved a n d ,  the 

variance in shortest paths computed using original and  corripressed da ta .  We 

,- 

- 

- 

- 

- I 

limit ourselves t o  the  smaller da t a  set. This enables us t o  gcrlerate numbers 

,-- 

2 

for all pair shortest paths in original data .  

1 -08 -06 -04 -02 0 0 2 0 4  0 6 0 8 1 

The corr~pressiori algorithrri was applicd to  a road map  consistirig of- 100 

edgtbs and 97 nodes. .A simple greedy scheme gave a corriprt4ori of 30% . 
r m ~ o v i r ~ g  a total of 38 edges. Next we cornputtd the  approxirriatv shortest 

paths b y t w t w  all pairs of n0dt.s in t h r  corripresstd graph. a r ~ d  cor~ipart.d it 
* 

wit t i  all pair shortest pat ti on uriconiprcsst~d graph. Figurc 6.1 shows thtb ratio 

difftwr~cta bt3t wtrw ttlv t w o  pat 11s for all pair of rlodt1s. Thtl ptwtmt agt. sptwl 



CfZA PTER 6. A PPLIC.J,TIO,\I'S 

distribution of percentage error differerice and percentage speed irriprovenic~~t 
\ 

are plotted in fig .3  and 6.4. XIore than 909% of t he  route paths w t w  

, computed with an error difference of less than 20%. while JOW of the  route - 

~ a t h s  showed speed improvement of more thap 30%. 

6.1.2 Performance of the Persistent Database 

T h e  performance of long-term persistency far the road map,da tabase  above 

has beer1 evaluated a n d  the  results a re  presented in this section. Tt tegoal  of 

t,his study is t o  analyze the  cost associated with persistent da t a  arid contrast 

it with application performance when the entire application database is t o  bc 

in t he  virtual merriory. For our performance study the  system corifiguratiori 

used for the tests is a Dec alpha with 128 Mb of RAM, and 5 G b  of disk space 

running the OSF  3.0 version of the  operating system. 

- \ -  

1sOs - lloabon c 

1609 - 
persistent appllcabon (fetch depWml5) - - 

1403 - 

120s - 

E 100s - + 

809 - 
609 - 

409 - 
* * X - * u  

* I * -  

209 - 

0s 
0 4000 6000 8000 loo00 12000 14000 16000 18000 20000 

Nodes + Edges 

Figure 6..i: St art up t i rws  o f  rriap 



Cff.4 P T E R  6. .4PPL1('.4TI01L'S 

of nodes and edges. Once the  data  is stored in the database. the application 

is run by retrieving only the  data currently needed. For the case where the 

application data  can be only in virtual memory, the virtual application needs 

t o  build the  entire road map database, every time it needs to  run. When the 

user starts a query session, it is important that the application start quickly. 

If the database is pe;sistent, one has to  load only the  source code needed for 

querying and not the  entire database from the disk. Thus persistent database 

has the advantage that  the road map need not be generated again, every time 

some computation is t o  be done on the database. The startup times for the 

two systems are shown in figure 6.5. The depth of the (7-term retrieved is 

varied from 1 to  15 for the persistcwt application. The system with database 

persistency starts quickly, regardless of the size of the da ta  when the depth 

of the $-term retrieved is small. For the  virtual system. as expected the load 

time is large ( the  start time increases rapidly) and worse for the construction 

of the  road map converting raw data  to  internal mernory reperesentation. 

.' * 
GC wlthwt data t - 

GC wrth 3/4 of memory R I M  wrth data +-- *- ,- 
I' - - 

I' 
/= 

.- 
.' .' .' .- ,. 

,/- 

/@ 
.- 

I- 

,/- > 

*' 
.- 

/ 
,' 

-- *#I- 

., /- - 
<- - - 

-- -I-- ___---  
___----  __-- _---- 

-4. - 



LIFE allocates a fixed amount of virtual nlerrior?; for the  application data  to  

be manipulated. Garbage collection (GC') is done when ttir. allocat'ed memory 

is used up. Garbage collectiori in LIFE could constitute a significant portion 

of user time. especially if LIFE is started wit ti large virtual memory. The plots 

for G C  are shown in figure 6.6 for both with very little da ta  in LIFE memory 

and 311 of it filled up with data. In a persistent application. there should be 

less frequent garbage collection as the  applicatiori works on a smaller data set, 

althoq$ the database4 may be large. 
a 

- 8 
.w$rmtk 

Fetching Objects 

To test retrieval time. we performed a set of queries on how t o  get from one 

point of the road map to  another in the shortest possible time using the al- 

gorithm described in section 6.1.1. A series of performance tests were run on 

different size da ta  sets on both the systerns. The number of edges of the data 

set being loaded was varied from 50 t o  8.50. 



0 100000 200000 300000 400000 500000 800000 700000 
N o d e s  x Edges 

i 

Figure 6.8: GC times in Route Finding Algorithm 

Larger Virtual Memory used (ensurtng no garbage cdlecnon) 

Vlraral apprrcauam c 
Pwsrsmnt apglkation +-. 

Figure 6.9: Pt~rforr~iarice of Route Fir~dir~g Algorithm with larger t.irtua.1 rrlcrlr- 

or- 



CHAPTER 6. APPLICATIONS 92 

T h e  plot in figure 6.7 shows the  average t ime taken t o  execute t he  set of 

queries for databases of different sizes ranging from 50 to  1000 edges. All times 

are  a n  average of 5 readings. 

T h e  virtual application performs quiet well, when the  da t a  set size is smaller 

than  the  LIFE memory size. However as the da t a  set size increases,' it s tar ts  

thrashing due to  garbage collection. T h e  t ime used by the  garbage collection 

is separated out and  shown in figure 6.8. Figure 6.9 shows plots of both 

the  system when using a large enough virtual memory t o  avoid any garbage 

collections. 

6.2 Informat ion Retrieval Systems 

In the  past several years, there has been a flood of information available over 

the  world wide web. This has resulted in development of many new sys- 

tems [ 5 5 ,  561 tha t  allow users to  search for and access these resources. This 

rapid growth in the  number and size of bibliographic, full text and  other elec- 

tronic information sources, has led t o  a new problem associated with the  search 

and retrieval these resources: finding information whiehAeis of interest t o  the  

user. Traditional information retrieval ( IR)  systems use simple string matching 

for finding the  documents, relying on methods such as  statistical measures t o  

define relevance. These systems are  quiet effective for me kinds of searching 

for example known item searching, but when given imprecise information t o  

search for, they may not get truly relevant information. As men-tioned earlier, 

an approach to  improve the effectiveness of the information retrieval system is 

t o  express the conceptual content of text in a knowledge representation tech- 

nique [ lo] .  T h e  conceptual representation enables the user t o  find information, 

tha t  a user has not named explicitly, but neverthless its relevant t o  the  user. 

As an example application, we examine the organizing and searching of bib- 

liographic databases. A knowledge base of bibliographic databases constructed 

and represented as type hierarchy in LIFE is shown in figure 6.10. T h e  main 

focus will he on testing the implementation of the LIFE-SQL interface, which 



CHAPTER 6. APPLICATIONS 

has been designed for such large databases: 

/ 
mathematics computer-sclence 

Ilnglushcs 
computer_graph~cs 

arufinal-~ntelligence 

natural-language neural genetic 
processmg expert 

networks algorithms spatlal 
'5' 

- 

d a t a b a s e  - ' systems relational 
database I 

object-onented 
database 

Figure 6.10: Concept hierarchy for bibliographic database 

6.2.1 Bibliography Database 

For our experiments we got a large collection of bibliographies of scientific lit- 

erature in c~m~ute r sc i ench  from [54]. The collection contains journal articles, 

conference papers- and technical reports in BibTeX format. 

A BibTex entry contains information about title, author, keywords, etc. 

Each entry is represented in LIFE as a $-term as: 

document ( titlc + "Types and Persistence in Database programming", - 
author + (fname + 'hlalcolm', lname + 'Atkinson'), 

subject + 'Database', 

containedin + journal(acs87), 

keywords + ['Atkinson', 'Persistence'] 

). 

journal ( acs87, 



CHAPTER 6. APPLICATIONS 

name + "ACM Computing Surveys", 

publisher + 'ACM' 

date + date(month + 'June', year 3 1987) 

). 

The  bibliographic database is compiled into the external database based 

on the concept hierarchy of symbols in the database. 

-6.2.2 Knowledge representation using conceptual hier- 

archy 
t 

>e knowledge base cdntains a conceptual hierarchy (figure 6.10, a slightly 

modified version of figure in [lo] on page 258) of the subject matter of the 

bibliographic entries. The  bibliographic entries are frequently searched by 

their subject matter.  The conceptual relationship between subject types of 

the bibliography database can be represented as a type hierarchy in LIFE. 

For example the subtype relation database < computerscience encodes the 

knowledge that databases is a'subfield of computer-science. 

The main advantage of such a representation is that  we can handle impre- 

cise information in user queries. For example if the user requests documents 

in linguistics, it will retrieve all documents in nat urallanguage-processing. 

6.2.3 Performance Analysis * 
The results of a series of experiments on the performance of LIFE-RDBMS 

interface is presented in this section. For all these experiments a tightly coupled 

architecture is used where the database facts are dynamically retrieved as and 

when needed by the application. The performance of LIFE-RDMS has been 

measured on a Dec alpha with 128 Mb of RAM,-  and 5 Gb  of disk space 

running the OSF 3.0 version of the 'coperating system. A LRu (least recently 

used) policy was used in eviction of database facts when LIFE.mernory was 

full. 



i CHAPTER 6. APPLICATIONS 95 

The experiments were divided into three categories, evaluating the perfor- 

mance of: 

Stand alone LIFE with LIFE-ROBMS interface. 

Caching. 

# 

Stand alone LIFE with LIFE-RDBMS .~nterface 

One of the main problems in a stand alone LIFE is that the unification mech- 

anism in LIFE forces matching with all the clauses of the fact. If the database 

is large this could constitute a considerable proportion of processing time, as 

a result of which the performance would be intolerable. A chief advantage of 

a tightly coupled LIFE-RDBMS system would be that the working set of facts 

would be small, resulting in a performance gain. 

For the storage of LIFE facts in the database, we had partitioned the 

facts (see section 3.3) based on the type hierarchy df the symbols occurring in 

these facts. Each such partition was then stored in a separate relation. This 

mechanism provides a concept based clustering of facts into a.single relation. . 

The concepf based clustering would improve perforrnance as typically t'he 'user 

is interested in retrieving facts of similar concepts. 

We tested the retrieval time's of Stand alone LIFE and LIFE-RDBMS in- . . 
terface for single queries. We ran the shallow and deep backtracking queries 

, -  

. > 
I - 

for both the cases. The shallow and deep backtracking results (in table 6.1) 

indicate how quickly LIFE unification-process can generate answers to a query 

(LIFE indexes clauses by the functor name of the clause). 

Table 6.1: Performance of LIFE-RDBMS Interface us Standalone LIFE 

1 &uer?4 ] LIFE-RDBMS 1 Standalone LIFE I Cardinality I 
- - \  I query2(deep back track) 

I 

0.183333s , I  1.71667s 10397 



. : 

Caching , 

Caching queries and their answers was done to prevent sending the same queries 

t o  the  database again. A source of such queries is the backtracking mechanism 
'I in LIFE. To avoid this wecached both the queries and their ans ers. Although P 

initially there would be several interactions with the database, caching data  

could get the working set (which is usually much smaller than the  database) 

running in main memory. 

To estimate the  speedup that could be achieved we also implemented a 
' system without any caching. We then tested the performance when individual 

queries are submitted t o  both the systems.*Table6.2 show the results of cached 

and non cached systems. 

Table 6.2: Performance of Caching in LIFE-RDBMS interface 

Conclusion 

Query 
query1 
query2 

We presented two applications in this chapter to  analyze the performance of 

database interfaces for L1FE:The performance of the persistent store for LIFE 

was comparable to  the stand alone LIFE system. The performance was better 

for large databases, as there were fewer calls to garbage collection routines. . . 
Also the startup times of theapplications are'small if the database interfaces 

are used for large applications. The deep backtracking in LIFE resulted in 

poor performance for large applications. The performance improved when the 

facts are stored, in the database as now the LIFE unification engineChad to  

deal with a smaller set of clauses. Caching the database facts improved the 

perforrfiance by reducing the number of calls to the database. 

Caching 

0.25s 
0.183333s 

No Caching 

0.416667s 
0.316667s 

Cardinality 

10397 
10397 



Chapter 7 

Conclusion 

7.1 Overview of the System 
I 

In this thesis we have presented the details of the implementation of database 

interfaces for relational and object oriented data in LIFE. The design of the 

interfaces was motivated by a need for simple and efficient database facilities. 

for LIFE for large applications. For the storage and retrieval of LIFE facts 

an external RDBMS (SYBASE) was used. As standard SQL-statements are 
d 

used for the interface, the system is portable and any relational database can 

he used which provides SQL. For long term persistency of persistent terms 

an object store was built on top of the operating system's file system. The 

advantages of these underlying databases can be obtained with n,o changes to 

the user programs. A prototype of the two interfaces is working and has been 

tested on two real world applications. 

7.1.1 LIFE-RDBMS System 

In Chapter 3 the implementation of a tightly codpled LIFE 2nd a relational 

DBMS wasqesrribed. The design enhances the execution speed of LIFE when 

dealing with large clause sets. We have provided a transparent interface be- 

tween LIFE and RDBMS. This will allow the user to write whole application 



2 
-4 

CHAPTER 7. COiVCL USION 

. . 
in LIFE, without the need t o  know the RDBMS system. The main problem * .a 

. P g  encountered here was t o  handle two separate unification environments (before 

and after retrieval of database facts). We needed to  ensure correct backtrack- 

ing ovei. old and new facts (for example: for efficiency reason LIFE keeps a 

pointer to  the nex t ru le  its going t o  execute). 

The  intetface prpvides for efficient storage and retrieval of complex objects 

as flat relations.& concept based clustering of these facts into relations was 

implemented tb improve access time. The database schema generated provided 

a filtering e k t ,  which then retrieved a smaller resolution set from the database , 

thus reducing a number of unnecesSai# unifications. The past queries and 

their answers were also cached in a compact way. This reduced the  number 
I 

of calls to the external RDBMS system and also avoided loading the facts 

twice. Automatic eviction of cached database facts is also provided when main 

memory becomes full. 

Implementation Improvements 

Sevei-a1 aspects of the  theory (see section 3.3) upon which this implementation 

is based upon which were either suboptimal or incomplete were improved upon. 

We extended the approach to  handle multiply inherited types as well. In 

applications like NLP, coreference constraints in facts occur frequently. We 

demonstrated how t o  handle such constraints and store the facts containing 

such constraints in the relational database. Another aspect of the  interface 

that  was improved upon was occurrefice of varia.bles in goals. 

7.1.2 Persistent Programming in LIFE 

We have presented the design and implementation of long term persistency -. 
of 4-t.erms in chapter 4 .  It supports the main requirements of ort,hogonal 

persistericy namely: 

persistency as an ab~t~ract ion  over storag%% 
f 



CHAPTER 7. CONCLUSION 
I 

I 

reliable and transparent transfer of persistent terms between long and 

sho'rt t'erm memory. - 
For &rage purposes. a simple lightweight object-store was designed and irn- 

plemented on top of the  unix file system, as opposed to  using a commercial 

* OODBMS. This meets our design goals of portability, high performance and 

modularity. The store caters for storage and retrieval of objects, as an uninter- 

preted byte sequence. Object-identity is a key concept here in the,description 

of database instances. 

We also met our second design goal, namely that the performance of persis- 

tent LIFE should be comparable to non-persistent LIFE. The efficiency%sues 

we dealt with here were: P 

t 

,Identifying database persistent objects 

Pointer swizzling 

Cache management 

For hetecting database persistent objects, a software scheme was used. 

Hardware based schemes were avoided mainly  for portability reasons. Also 

previous studies have shown that performance of software based schemes are 

comparable to hardware based schemes, if not better. Pointer swizzling was 

employed to minimize the overhead cost of a lookup table when the object 

is referenced again. .This would amortize the cost of swizzling over several 

references to  the same object. 

7.2 Reverse Compiler 

The problem of converting relational data into LIFE as $-terms, was addressed 

in chapter 5 .  A clustering method was given to  extract hierarchical categoriza- 

tion of relational facts in LIFE. The method gave a polyno~nial time algorithm 

for tcanslating a relational database into LIFE facts . The algorithm was tested 



CHAPTER 7. CONCLUSIOIV 

on binary relations and a GUI interface was built $0 visually verify the  correct- 

ness of the algorithm. This translation buys us compact representation of the  

relational da ta  using t,he expressive power of $-terms (section 1.3.3). Further 

research needs to  be done to  extend our approach t o  n-ary relations. 

7.3 Applications 
* 

We believe that the combination of LIFE and database systems has definite 

advantages. As stated earlier, declarative style of programming (mixing func- 

tional and relational expression) ih LIFE, flexible $-term data  model and pow- 

erful type mechanism of LIFE provide a good platform for applications which 

require complex data  and rd&oning power. In order to test the effectiveness 

of the database interfaces two applications were designed. Our experiments 

with practical systems show that LIFE is an excellent*tool for building real 

world applications. The  GIs  application showed that  $-terms in LIFE provide 

a flexi hle data model. The bibliographic database application showed that our 

system can be used to  construct an "intelligent information retrieval systems" 

7.4 Performance 

Wc analyzed the database interfaces using these two applications in chapter 6. 

LVe meas6red the performance for various aspects of these interfaces for the 

two applications, the results of which can be found in section 6.1.2 and 6.2.3. 

Our main conclusions of these experiments are as follows: 

-7 
1.  LIFE persistent object store offers good performance. The performance 

of a very data intensive G I s  application on the database persistent LIFE 

was comparable to  that  on the stand alone LIFE system. The  perfor- 

mance for the database persistent LIFE irnproved for larger databases. 

It is obvious that  the gain was mainly due to the fact that there were 

fewer calls to  GC' routines in this case. 



C H A P T E R  7. CONCL USION 

2. As expected for both interfaces the start up times of the applicat-ions 

were reduced. 

3. For the LIFE-RDBMS interface it was expected that the stand alone 

LIFE would perform badly for deep backtracking unification. LIFE in- 

dexes clauses on the clause functor name, as a result of the linear search 

it gives poor for>eep backtracking. Performance improved 

if the data is stored in an external RDBMS and selectively retrieved. 

4. The LIFE-RDBMS interface performance is very good if the retrieved 
I 

facts are cached. There would be a performance penalty if large number 

of facts are cached in main memory, This would result from the slow 

unification of LIFE for deep backtracking.queries. This can be reduced by 

fixing how many database facts are to be in main memory (The interface 

automatically evicts database facts if the retrieved. facts number more 

than a percentage of total database facts). 

7.5 Limitations and Directions for Further Re- 

search 

The current implementation has a number of limitations and unimplernented B 
% . features. 

0 Performance: Further detailed experimental study of the database in- 

terfaces is required. For instance, the lookup table maintained in LIFE- 

KDBMS interface for cached facts could be an expensive overhead. A 

large size lookup table would be generated i f  the queries to the database 

return a large number of small sets of tuples. A combination of cached 

and non-cached facts would give better performance in this case. Com- 

parision to other systems similar to LIFE also needs to be done. 

Assert and Retract: The current system cannot handle assert and 
' 

retract of database facts. The semantics of assert is not well defined, as 



CHAPTER 7. CONCLUSION . 

Q 

the user normally does not specify where the facts are to be inseded. 

The interface associates each qualified segment with a particular file. A 

solution would be to create qualified segments on the fly. For updates 

and retracts, a unique id needs be associated with every database fact. 

While retraction is then straight forwaid, updates will require to  find the 

appropriate qualified segment to move into from its previous qualified ' 

segment. This would require dynamically changing the schema. 

0 Object Clustering: Object Clustering is important, so as to  co-locate 

objects that are referenced together and thus attempt to  avoid perfor- 

mance penalty in disk I IO .  This would also improve memory usage 

(as less database pages need to  be buffered). The persistent $-terms in 

LIFE provide for explicit representation of links among objects, allow- 

ing navigation through these links for data retrieval. Naturally for better 

performance reasons its crucial that the clustering.algorithms be designed 

based on the graph structure of the $-terms (Breadth First Search, Depth 

First Search). Various other techniques of clustering based on inheritance , 

and structure semantics, gathering statistical information from workload 

traces, etc needs to be investigated to find a technique most suitable for 

persistent @-terms. 

Other database concepts such as transaction control, data security and 

recovery, indexing, etc would need further research expecially in the context of 

persistency in LIFE. 

7.5.1 Data Mining 
.(b 

Data mining extracts knowledge from databases, an application LIFE is suited 

for. An inheritance hierarchy of classes constructed on the basis of the con- 

tents of the objects offers a powerful system for representing knowledge. The 

reverse compiler technique automatically extracts concepts as an inheritance 

hierarchy from relations by searching for regularities among the unclassified 



CHAPTER 7. CONCLUSION 103 - 

objects. While this technique can be used by itself providing automatic knowi- 

edge extraction, it should be possible to combine it with information stored 

in the relational schema, functional dependencies and other constraints on the 

database. Existing data mining techniques such as learning from examples 

could be used along with the ieverse compiler technique to provide fo:a better 

understanding a,nd design of algorithms to search for knowledge in databases. 

7.5.2 Heterogeneous Knowledge Bases 

LIFE provides for several knowledge representation techniques. A direction of 
\ 

research that could be considered is to provide a common interface to existing 

knowledge bases. Knowledge Interchange Format (KIF) is a formal language 

for interchange of knowledge between disparate programs. A LIFE interface 

to EilF could then provid6 for combining heterogeneous knowldge bases. 



References 

[I]  Marcel Holsheimer, Rolf A.de By and H. Ai't-Kaci. A Database Interface 

for Complex Objects. Logic Programming - Proceedings of the Eleventh 

International Conference on Logic Programming, pp. 437-455, 1994. 

[2] Marcel Holsheimer. LIFE- WISDOM, a &&base interface for the LIFE 

system. Master's thesis, Computer Science, University of Twente, En- 

schede, The Netherlands, 1992. - 

e 

[3] H.  Ai't-Kaci and R. Nasr. LOGIN: a logic programminj language with 

built-in inheritance. Journal of Logic Programming, 3($, pp. 185-2 15, 

[4] H .  Ait-Kaci. An algebraic semantics approach to  the eflective resolution 

of type equations. Theoretical Computer Science, 4F;, pp. 293-351, 1986. 

[5] H. Ai't-Iiaci and A. Podelski. Towards a meaning of LIFE. -BRL Research 

Report 11, Digital Equipment Corporation, Paris Research Laboratory, 

France. 1991. 

-- [6] H.  Ait-Kaci, Richard Meyer and Peter Van Roy. Wild LIFE, Azlailable at 

IIRL: http://uiu~u~.i~y.sfu.ca. 

[7] 11. Ait-Kaci, R .  Nasr. Le Fun: Logic, equations, and Functions. Pro- 

ceedings of the ACM Symposium on Logic Programming, pp. 17-23, San 

Francisco, September 1987. 



REFERENCES 105 

[8] )H., Ait-Kaci and R. Nasr. Integrating Logic and Functional Programming. - 
Lisp and Symbolic Computation 2, pp, 51-89, 1989. 

[9] H. Ai't-Kaci and A. Podelski. Functions as passive constraints in  LIFE. 

PRL Research Report 11, Digital Equipment Corporation, Paris Research 

Laboratory, France( 1992). 

[lo] H. Ait-Kaci and R. Nasr et al. Implementing a hnowledge-Based Library 

Information System with Typed Horn Logic. Information Processing & 

Management, 26(2), pp.249-268, 1990. 

[l 11 H.  Ait-Kaci, Patrick Lincoln. LIFE, a fiaturla Language for Natural Lan- 

gu.age. T.A. Informations, revue interntationale du traitement automatique 

du language, 30(1-2), pp. 37-67, 1989. 
t 

[12] Richard O'Keefe. The Craft of Prolog. The MIT Press, Cambridge, MA, 

1990. 

[13] M. Minsky. "A framework for representing knowledge". In The Psychology 

of Computer Vision, P. Winston, editor. McGraw Hill pp.211-277, ,1975. 

[14] Stefano Ceri, Georg Gottlob, and Cio Wiederhold. Logic Programming 

and Databases. Springer Verlag, Berlin, Germany, 1990. 

[15] F. Gozzi, M .  Lugli and Stefano Ceri. A n  O z ~ e r v i ~ w  of PRIMO: A Portable 

Interface betureen Prolog and Relational Databases. Inforrnation Systems, 

Vol 15, No 5, pp. 543-553, 1990. 

[16] Stefano Ceri, Ckorg Gottloh, and Gio Wiederhold. Interfacing Rehtional 

D'atabases and Prolog Eficiently. Proc. of the 1st I-nternational Conference 

on Expert Database Systems, pp. 141-153, April 1986. 

[17] Stefano Ceri, Georg Gottlob, and Gio Wiederhold. Eficient Databa,se 

Acess from Prolog. I E E E  Transactions on Software Engineering, pp. 153- 

164, February 1689. 



REFERENCES 

[IS] Matthias Jarke, J im Clifford, and Yannis Vassiliou. An  Optimizing Front- 

'.' End to a Relational Query System. ACM sigmod, pp 296-306, June 1984. 

[19] Shalom Tsur. LDL - A Technology for the Realization of Tigh.tly Coupled 

Expert Database Systems. IEEE Expert, 1988. 

[20] S. Ghosh, C.C. Lin and T. Sellis. Implementation of a P ~ ~ ~ ~ ~ - I N G R E S  

Interface. SIGMOD Record, Vol 17, No 2, june 1988. 

[21] Malcolm P. Atkinson and 0. Peter Buneman. Types and Persistence in 
i 

Database programming Languages. ACM Computing Surveys, Vol. 19, 

No.2, June 1987. 

[22] M. P. Atkinson, K .  Chisholm and P. Cockshott PS-Algol: An Algol with 
3 

a Persistent Heap. ACM SIGPLAN Notices, Vol 17(7), July 1982. 

[23] W. P. Cockshot, M. P. Atkinson, K. J .  Chisholm, P. J. Bailey and R. 

Morrison. Persistent Object Management System. Software Practice and 

Experience, ACM CR 8408-0627, Vol 14(1), January 1984. 

[23] A .  Dearle, R. C. H. Connor, A. L. Brown, R. Morrison. Nupier88 - 
A Database Programming Language?. 2nd Int.ernationa1 Workshop yn 

Dat,ahase Programming Languages, Morgan Kaufmann, Salishan Lodge, 

[25] A. Dearle, A .  L .  Brown. Safe Browsing in a Strongly Typed Persistent 

Enuironm~nt .  Computer Journal 31(6), pp 540-544. 1988. 
--_ 

[26] R. Morrison, R .  C. H.  Connor, Q.  I .  C'utts, C ; .  N.  C. Kirby. Persistent Pos- 

sibilities for Software Environments. The Intersection between Databases 

and Software Engineering, pp 78-87, IEEE Computer Society Press, 1994. 

[27] Joel E. Richardson and Michael J .  Carey. Persistence in E Languages: Is- 

sues and lrnplernentation. Soft,ware-Practice and Experience, Vol. 19( 12), 

pp  1 1 1 Fj- 1 1 FjO, Dec 1989. 



REFERENCES 107 

[28] J o e l E .  Richardson, Michael J.  Carey and Daniel T .  South. The Design 

of the-E Programming Language. acm toplas, pp 494-534, Vol 15(3), July 

1993. 
, 

[29] M. J. Carey and D. J .  DeWitt and S. L. Vandenburg. A Data -Model and 

Query Language for EXODUS. ACM sigmod, pp 413-423, June  1988. 

[30] M. J .  Carey, D. J.  DeWitt and Joel E. Richardson. Storage Management 

for Objects in EXODUS. Proceedings of the 12th international conference 

on very lage databases, 1986. 

[31] Eugene J .  Shekita, Michael J. Zwilling. Cricket: A Mapped, Persistent 
-5 

Object Store. Tech-report 956, Computer Sciences Department, University 

of Wisconsin-Madison, August 1990. 

[32] Paul Adams, Marvin H. Solomon. An Overview of the C A P I T L  Software 

Dez~elopment Environment. Tech-report 1143, Computer Science Depart- 

ment, University of Wisconsin-Madison, April 1993. 

11 

[33] Paul Adams, Marvin H. Solomon. POL: Persistent Objects with 

Logic. Tech-report 1158, Computer Science Department, University of 

Wisconsin-Madison. June 1993. 

[33] Seth Joh11 White. Pointer Swizzling Techniques for Object-oriented 

Database systems. Phd Thesis, 1993, Universisty of Wisconsin Madison. 

-_ 
[:3.5] R. Agrawal and N .  1-1. Gehani. Rationale for the Design of Persistence 

and Query Processing Facilities in the Database Programming Language 

0++. 2nd Int'l Workshop on Database Programming Languages, june 

1989. 

[:36] R .  Agrawal and N .  H.  Gehani. ODE (Object Database and Environment): 

77)e Language and the Data Model. ACM SIGMOD RECORD, Vol 18(2), 



REFERENCES 108 + 

A. Biliris, N. Gehani, and S. Dar. Making C++ Objects Persistent:  idd den 
Pointers. Software Practice and Experience, 1993. 

A. DeGle. On the Construction of Persistent Programming Environments. 

PhdThesis, University of St Andrew, 1988. d 

A. Albano and G. Ghelli and R. Orsini. Thc Implementation of Galileo 's . 

Persistent Ifakues Data Types and Persistence, Springer-Verlag, pp 253- 

263, 1988.' 

P. O'Brien and B. Bullis and C. Schaffert. Persistent and Shared Objects 

in Trellis/Owl. Proc. Int'l Workshop on Object-Oriented Database Sys, 

sep 1986. 

C.L. Chang and A. Walker. PROSQL: A Prolog programminy interface 

with SQL/DS. Proceedings Firs& Int'l Conference on Expert Database 

Systems, 1986. 

Antony L.Hosking and J. E. B. Moss. Object Fault Handling for Per- 

sistent Programming Languages: A' Performance Evaluation. OOPSLA 

93, Eighth Annual Conference on Object-oriented Programming systems, 

Languages, and Applications, Vol28, Oct 1993. 

J .  E. B. Moss. CZ'orking with Persistent Objects: To stuizde or Not to 

,9wizle. IEEE Transactions on Software Engineering, 18(8), pp. 657-673, 

August 1992. 

J .  E. 'B.  Moss and Anthony L. Hosking. Expressing Object Residency 

Optimization L'sing Pointer Type Annotations Persistent Object Systems, 

pp. 3-1.5, Tarascon 1994. 

Vivek Singhal, Sheetal V.  Iiakkad, and Paul R. Wilson. Texas: An Effi- 

cient, Portable Persistent Store. In Proceedings of the Fifth International 

Workshop on Persistent Object Systems, pp. 11-33, September 1992. 



REFERENCES 109 

[46] C. Lamb, G. Landis, J.orenstein and D. Weinreb. The ObjectStore 

Database System. Comm. ACM 34, 10, pp. 50-63, October 1991. 

[47] Shinji Suzuki, Masaru Kitsuregawa and Mikio Takagi. An Eficient 

Pointer Swizzling Method for Navigation Intensive applications. Persis- 

tent Object Systems, pp. 79-95, Tarascan 1994. 

[38] Gunnar Misund. Personal Comm~.unication SINTEF Informatics, e-mail: 

gmi@si.sintef.co. 

[49] Dayaram Gaur. Personal Communication Simon Fraser University, e- 

mail: gaur@cs.sfu.ca. 

[50] Hassan Ait-Kaci. Personal Communication Simon Fraser Ilniversity, e- 

mail: hak@ccsfu.ca. 4 

[.51] Hirafumi Ohnishi, I sm Ogawa and Fuminori Morisue. Map Database Gen- 

eration System for In- Vehicle ~ i ~ i ~ a t i o n  System Vehicle Navigation and 

Information Systems Conference Proceedings, IEEE, pp. 607-612, 1994. d 

[.52] Masao Shibata and Yasuomi Fujita. Current Status and Future Plans for 

Digital Map Databases in JAPAN Vehicle Navigation and Information 

Systems Conference Proceedings, Ottawa, IEEE, pp. 29-37, 1993. 

1511 T. A. Yang, S.Shekhar, B.Hamidzadzh and @.A. Elanrock. Path Planning 

and Evaluation in IVHS Databases. Intl. Conf. on Vehicle Navigation h 

Information Systems, IEEE, pp. 283-290, October 1991. 

[54] AlfChristian Achilles. Bibliographic Databases. Available at (JRI,: 

http:liinwww.ira.uka.de/bibliography/index.ht1n1. 

[ 5 5 ]  GLIMPSE. '4 tool to search entire file systems. Available at IJRL: 

.http:liinwww.ira.uka.de/bit~liography/index.html. 

[56] )'shoo. Available a t  URL: http://www.yahoo.com/. 



REFERENCES 

Rudolf Wille. Concept Lattices and Conceptual Knowledge Systems. Com- 

puter Math. Applic. Vol 23, no. 6-9, pp. 493-515, 1992. 
% 

Bruno Courcelle, Damian Niwinski and Andreas Podelski. A Geometrical 

View of the Determinization and Minimization of Finite-State Automata. 

Mathematical Systems Theory 24, 117-146, 1991: 
1 

Sanjeev Arora. Probabilistic Checking of Proofs and Hardness of Approxi- 

mation Problems. CS-TR-476-94, CS Division, UC Berkeley, August 1994. 

Stewart h4. Clamen. Data Persistence in Programming Languages A Sur- 

vey Tech Report, CMU-CS-91-155, School of Computer Science, Carnegie 

Mellon Universisty, Pittsburgh, 1991. 


