=

. A

A SYSTEM FOR INTERFACING LIFE WITH
DATABASE AND PERSISTENT STORAGE

. ' Sanjay Gupta
B.Tech.. Indian Institute of Technology, Delhi, 1989 .

A THESIS SUBMITTED IN PARTIAL FULFILLMENTF
OF THE REQUIREMENTS FOR THE DEGREE OF
a MASTER OF SCIENCE
in the School
of

Computing Science

(© Sanjay Gupta 1996
SIMON FRASER UNIVERSITY
November 1996

Al righis reserved. This work may not be
reproduced in whole or in part, by photocopy -

or other means, without the permission of the author.

i+l

National Library

- of Canada du Canada

Acquisitions and ' Acquisitions et

* Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4 -

Canada Canada

“The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,

- - paper or electronic formats.

L]

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s -
permission.

services bibliographiques

395, ;ue Waellington
Ottawa ON K1A ON4

Bibliothéque nationale

4

Your file Votre réfdrence

Our file Notre référence

L’auteur a accordé une licerice non
exclusive permettant a la

- Bibliothéque nationale du Canada de

reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ja thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-24145-9

~ Canadd

APPROVAL

Name: Sanjay Gupta
Degree: ~ Master of Science
Title of thesis: A system for interfacing LIFE with database

and persistent storage

Examining Committee: Dr. Rob Camerqn
Professor

Computing Science, Chairman

Dr. Hassan Ait-Kael, Senior Supervisor

Dr. Jiawei Han, Supervisor

Dr. Frederick P. Popowich, Examiner

Date Approved: MVWM‘/‘Q /7fé .

i

C e
\\‘n
2
N

Abstract |

>

LIFE is a functional logic programming language extended with object-oriented
conce’pts(sub-typing and inherita.nce): The objects in LIFE are extensible,
complex, and parti/ally ordered. LIFE can be viewed as a combination of
functioﬁal, logical and imperative programming paradigms. The combination
of these three different programming paradigms in LIFE provides powerful
high-level expressions and facilitates specificatior of complex c—onstraints on

data-objects. Therefore it is ideally suited for applications in natural langu:age

~ processing, document-preparation, expert systems, and so on. These applica-

tions rely on large amounts of data and will require database technology for

efficient storage and retrieval of data. Keeping this in mind, we extend LIFE

. with database interfaces for object-oriented and relational data.

These interfaces are used to store LIFE facts and persistent terms. The
reverse problem, conversion of relational data into LIFE as ¢-terms, has also

been addressed in this thesis. We give an_algorithm to generate LIFE facts

" from relational data. Efficacy of these approaches has been studied using real

word problems arising in Geographic Information Systems and Information

Retrieval Systems.

-1

t -
dedicated to my parents Sh. Ramautar Gupta and Shmt. Kaushalya Gupta

v

Acknoévledgements |

S
It 1s with my déepest appreciation that I acknowledge my advisor, Professor
Hassan Ait-Kaci for his financial support, advice and continued encourage-
ment. He has:always made himself available to answer my questions and
discussion of my ideas. 1 am grateful to him for his guidance, patience and
encouragement in my research in making it a most rewarding experience. [t
has been a privilege to have been his student.

I would also like to thank the members of my committee who all made
useful comm::nts abdut my work. Special thanks to Hassan Ait-Kaci, Jiawei
Han and Fred Popowich for patiently reading my thesis and providing helpful
suggestions.

My heartfelt thanks to Dayaram Gaur for reading through several of my
thesis drafts providing meaningful suggestions to improve the legibility of the
thesis. He also deserves credit for some of the research work in this thesis.
[am also grateful to Pattabhiraman for proof reading the first draft of the
thesis. Martin Vorbeck provided help in the initial technical discusion of this
research.

[also would like to acknowledge many of my house‘mates, office-mates and
friends who Have made Vancouver a special place to live: Sumeet Bawa, Pinaki
Mitra, Dayaram Gz}ur, Vikas Gupta, Pattabhiraman Thyagarajan, Latha Thya-
garajan, Martin Vorbeck, Harry Grewal, Roman Bachik, Subho Chatterjee,
Ajay Sri.vasta,v, Ashish Pimplapure, Mark Mezofenyi, Graham Finlayson, Aamir
 Hussain and Taranjit Singh. My former room-mates Sumeet Bawa and Pinaki

Mitra made my initial days in Vancouver much happier - Sumeet Bawa for his

S~

true'friendship, watching movies with him, numerous trips to pub for coffee
with him, his drinking sessions and jokes, and Pinaki Mitra for his humor.
Martin Vorbeck and Ashish Pimplapure provided good company as my office
mates and diversion from work. Pattabhiraman’s one liners about life was
a good source of entertainment and Latha’s cooking of idlees and dosais re-
minded me of my hometown Madras. My current room-mates Dayaram Gaur
and Vikas Gupta provided good company and made the writing process enjoy-
able - for their cooking, for playing snooker when the stress of thesis writing
was too much and for Vikas for bearing with me to watch star trek on TV.
Special thanks to Dayaram Gaur for his encouragement in making the process
of writing the thesis easier. -

Special appreciation to my brother Raésh and sisters Madhu and Vinu for
their confidence in my abilities, for their encouragemént to get on with my
life and my work in my difficult times. Finally I wish to express the deepest

gratitude to my parents for the love and affection bestowed on me and their

moral support. "This thesis is dedicated to my parents.

vi

Contents

Appfoval | il

Abstract] o BT
Dedication A v
Acknowledgements ? . \%
List of Tables ' o X,
List of Figures ' . xi
1 Introduction _,'1
1.1 LIFE overview. [3
1.1.1 t-term Data Structure . . . e 4

1.1.2 Types and Inheritance 6

1.1.3 Unification of ¢-terms 8

1.1.4 LIFE Program 9

1.2 LIFE: A Knowledge and Database Manipulation Language . . . 12

1.3 Thesis Organization [P 15
1.3.1 LIFE to RDBMS Interface 16

1.3.2 Persistent Termsin LIFE 17

1.3.3 Reverse Compiler 19

vii

Combining DBMS and PL 22,
2.1 Introd‘uctior: el e e 22
2.1.1 Database Systems 22
2.1.2 Programming Languages 23
2.2 Alternative_s inDesign L. 24
221 Coupling. R 25
2.2.2 Integration . ..\.......... e 26
2.3 Design choices for LIFE 8 T 27
2.3.1 Coupling Approachl., .28
2.3.2 LIFE as a Persistent Programming Language 29
Coupling:iIFE to a Relational Database 30
3.1 Introduction D . { |
3.2 . Architecture B 32
3.2.1 Program Analyzer e 34
3.2.2 Meta-interpreter 35
3.2.3 Communication Module 41
3.3 Storing and Retrieving LIFE Facts <. 42
3.3.1 Sample Program S 42
3.3.2 Representation of Facts in a Relational Model 44
3.3.3 Data Retrieval 00, 48
3.3.4 Improvisations DR 53
3.4 Garbage Collection e 56
35 Conclusion 56
Persistent Programming - 57
4.1 Introduction e 57
4.2 TIssues in Persistent Languages 58
4.2.1 Ide’ntifying Persistent Objects . e, 59
4.2.2 Object Faults and Residency Checking 59
4.2.3 Pointer Swizzling N T . 60

4.3 PersisteI;cy imLIFE. e e e e 62
4.3.1 Design Goals e ... 63
4.3.2 System Architecture L 65

4.4 Conclusion-. [e T2

Reverse Compiler 5 . 73

51 Introduction 73

5.2 Concept Generation 78

5.3 Reverse Compiler 78

54 Conclusion e 80

Applications) 81

6.1 Geographic Information Systems. 81
6.1.1 Hierarchical Data Compresston, 82
6.1.2 Performance of the Persistent Database 88

6.2 Information Retrieval Systems e 92a
6.2.1 Bibliography Database . P R 93 .
6.2.2 Knowledge representation using conceptual hierarchy . . 94
6.2.3 Performance Analysis. T 94.

6.3 Conclusion 96

Conclusion ' 97

7.1 Overview of the System™ 97
711 LIFE-RDBMS System 97
7.1.2 Persistent Programming in LIFE I . 98

7:2 Reverse Compiler o o0 99

7.3 Applicationso oL oo oL 100

7.4 Performance e e 100

.5 Limitations and Directions for Further Research 101
751 DataMining. oL 102
7.5.2 Heterogeneous Knowledge Bases 103

\
.
List of Tables -
1.1 - An address database ’. e e A 13
1.2 Sample queryoutput 15
3.1 A'v_ehicle database oLLaT
5.1 Matrix representation of relation R, 4
6.1 Performance of LIFE-RDBMS Interface vs Standalone LIFE . . 95
6.2 Performance of Caching in LIFE-RDBMS interface 96
/
F) ~

V!

List of Figurés |

1.
1.
l.
4
9
.6
1.

1
1
1

2.

3.
3.
3.
3.

1.
4.

1
2

3

7

1

1
2
3
4

1
2

i

Graph representation of the i-term in example 1.2
Type hierarchy im LIFE

Built-ins type hierarchy in LIFE)

Concept hierarchy for address database
Structure sharing between two persistent ¢'-terms
Rectangular decomposition of relation rel of example 1.8

Hierachical categorization of relation’ rel of example 1.8-.
Dynamic updates of persistent terms L.

Interface architecture e
Failure rule for Unification of Database Facts
Type hierarchy for example 3.1

Type hierarchy for example 3.11 e o

Persistent store architecture for LIFE. :

Slot page data structure. P

.

4.3 Object-Id structure. S .

1.
* 4.
1.

ot

v O
[S]

4
5
6

(O]

Object structure. I e e .

Pointer swizzling.o L

Object cache o

Row Convex Aléor‘ithm e P
Merge Step
Overlap of New and Old Maximal Rectangles

X1

6:1 Cor.npression obtained on the road map database 85
6.2 Performance gain of the compressed map . T R e 86
6.3 Frequency distriibution‘of compreési(;n of map . .. R L. 86
6.4 Freauency distribution of p'erform‘ance' gain of the compressed

map D e e e e P R 87
6.5 Startup timesof-map R ... 88
'6.6 Garbage Collection (GC) timesin LIFE 89
-6.7 Performance of RouteoFinding Algorithrh s 90
6.8 GC times in Route Finding Algorithm91
6.9 Performance -of Route Finding Algorithm with larger virtual ‘

memeory . . @4 o . 91
6.10 Concept hierarchy for bibliographic dafa:?@s‘e 93

-

X1

Chapter 1
Introduct.ion

Considerable research effort has been directed recently towards combining

databases and programming languages [14, él, 23, 27]. WhileEfCh of the
systems on \their‘own provides considerable utility in their respective applica-
tion domains, a‘large number of applications exists that need the functiohalfty
provided by both the systems. From a programming language perspective the

need was felt because

o Application programmers would benefit enormously from being able to

manipulate persistent data [21] (data that outlived the execution of the

program) just as they manipulate non-persistent data, reméviﬁg ad hoc’

facilities for data translation and long term storage.

e Applications typically work on large sets of data that do not fit in main
memory and cannot be efficiently handled by the programming language.
Furthermore existing databases need to be accessed by a programming

language.

e An application handling large amount of data uses only a small part of
it during a program run. Files are generally read and written as a unit;
therefore access and updates for large files is slower. Performance can be

improved if only data is retrieved and updated increm@entally as needed.

“

CHAPTER 1. INTRODUCTION ' 2

In the database community, the need was felt because

‘e Programming languages like C++, LIFE, offer alternative data-modeling [1, -
11,14, 35,433] capabilities for systems like NLP, CAD, document retrieval
systems, software engineering, hypertext data, etc, which deal with com-,

plex object structures.

o It is recognized that object-oriented programming l‘a‘nguages enable ap-
propriate modeling of problem domains and reduce the effort involved
in translating the application model to the godel of the implementation

language.

e Logic programming as a database que}y language [14] offers greater ex-
] .

pressivity for queries and constraints than other languages. It is widely

‘recognized that we need to combine the query processing part of logic

programming systems with the efficient access techniques of DBMS’s.

Ait-Kaci et.al [6] have conceived a new programming language, LIFE (logic,
inheritance. functions and equations), that combines. three different program-
ming paradigms: logic programming, functional programming and object-
oriented programming, providing a powerful formalism for many different ap-
plications [10, 11] that include natural language processing, expert systems,
intelligent document retrieval systems, etc. LIFE provides a basic data struc-
ture called the psi~térm, whichk.neatly supports frame-style knowledge struc-
tures [13]. The knowledge-base can be structured as an inheritance hierarchy
in LIFE [3. 10] and together with the y-term unification algorithm, provides
group-related processing tasks such as answering set queries, discriminating
between objects, finding similarities between objects, etc. In addition, the in-
termingling of relational and functional expressions in LIFE [8, 9] in a declar-
ative manner allows powerful high-level expressions and complex constraints

on data-objects.

CHAPTER 1. INTRODUCTION ‘ -3

Moreover the y-term data-model can represent arbitrarily complex objects,
with no constraints on the size or the structure. This is’es;‘)ecially useful for ap- |
plications which manipulate large sets of data, where the types of data-elements
in a set need not be the same (for example, doctiment retrieval systems, hy-
pertext data, etc). . ,)

LIFE cannot deal with the size, amount or the. distributed nature of the
data in such advanced information systems, and will need extensions to manage
the seconda,ry\ storage requirements and communication needs of the applica-

tion.

The objective of this thesis is:

e to provide database management facilities for LIFE, combining them
in as “seamless” a manner as possible. The system should be efficient

«

enough to avoid having an adverse effect ‘on performance.

e to demonstrate LIFE’s capabilities as a knowledge and database manip-
ulation language. Two applications are described and their performances

analyzed.

‘e provide the ability to use data stored in a relational database from a

LIFE program.

After a brief introduction of LIFE’s basic data-structure and unification
algorithim, we will illustrate with some of the advantages of LIFE’s knowledge
and database modeling capabilities and the data-objects in LIFE that have to

be stored in an external database.

1.1 LIFE overview

In this section, the main concepts of LIFE will be summarized. The basic
data-structure in LIFE is called the ¥’-term, which is a useful extension to the
first order term as in Prolog [12). A first-order term in Prolog consists of either

a constant, a variable or a term of form s(a,,...,a,), where s is the functor,

A

1

: %TER 1. INTRODUCTION | B

(.

and a;’s (v:fghich are arguments of the term) are first-order terms. A first-order
term’with no arguments is called a constant. Variables are denoted by strings
beginning with _or an uppercase letter, while a functor symbol starts with a
lowercase letter. -

One of the main drawbacks in the above representation of Prolog term is
that arguments in ‘the term need to be identified by the bosition at which they
occur in the term. In a ¥-term, symbols called labels or features are used to
‘identify the arguments. This extension hélps make writing p>rogra,ms easier,

* avoid programming errors and improve the readability of the programs. The

order of the arguments in a i-term is immaterial and the arity of the term °

(number of arguments in the term) is not fixed.

.1.1.1 y-term Data Structure

Informally, a 1-term is characterized by specifying a type constructor, called
the rooysort and a set of attributes((label, value) pairs), where the order of
these pairs is immaterial. An attribute is defined by specifying its name and
domain. The attribute-values can be other #-terms, both primitive (such as

integer, real, boolean, sorts or string) and non-primitive ones.
Example 1.1 An erample of a ¢-term is:

researcher (last_name = string,
date_of birth = date (day = integer,
month = 1integer,

year = integer

s
@ specialization = research.area,
works_at = organization name

CHAPTER 1. INTRODUCTION 3

P

This is an example of a researcher type, consisting of a root sort researcher and
four sub-1-terms denoted by attribute labels last_name, ddte_of_birth, special-
ization and works_at. This 1-term describes an object researcher consisting of

four record fields.

Variables and Tags in dv-terfns:

Unlike a Prolog term, a LIFE terin can be conceived as an: arbitrary graph
structure which may fnclude cycles. This is made possible by using variables
as tags (references) to structures within a ¢-term. In a Prolog term, a variable
can appear only at the leaf node of a term. However in a LIFE term, variables
can appear anywhere in the ’-term str’u‘c.ture. This allows variables to be used
as tag symbol for structure sharing (called coreference constraint) within a

P-term. .

A}

Figure 1.1: Graph representation of the i'-term in example 1.2

Example 1.2 An erample of a v'-term using tags for coreference constraint
18!

P:person (name = °

‘mary’’,
father = X:person(name = ’’harry’’y,
guardian = X,

spouse = person(name = ‘‘Tom’’, spouse = P

CHAPTER 1. INTRODUCTION | 6

The tag symbol X refers tothe fact the father and the guardian of the above
person is the same, while the tag P defines a cyclic coreference constraint that
the spouse of a spouse of a person is the same person.

LIFE provides a powerful type mechanism and extends‘ first-order terms
with a subtype relation on the symbols occurring in. the terms. The following

subsection explains the notion of subtyping in LIFE.

1.1.2 - Types and Inheritance

T

A

entertainment) . v
physical_object . o

living mobile_entity ' non_living
. ///Y -
person /N
/\ land_vehicle motor_vehicle water_vehicle e
student employee \/ !
/\ car ’
researcher faculty
Jjohn richards

Figure 1.2: Type hierarchy in LIFE

The type symbols in a LIFE program are partially ordered with the relation <.
Fig 1.2 shows an example of the partial order on the type symbols in a LIFE
program. W;For instance it defines that the researcher is a subtype of employee
(defined in LIFE program as: résearcher < employee.) which in turn is
a sul;type of person. The type hierarchy includes two special types T (top
symbol) encompassing all the types and L (bottom symbol, not shown in the

figure) encompassed by all other types in LIFE.

-1

CHAPTER 1. INTRODUCTION,

We can also define multiple type relations in a single statement such as '
person := {student;researcher}. This is equivalent to stating student <
person and resear::her < person in LIFE.

In LIFE, no distinction is made between types and values. Thus all integer
values such as 1 are treated as subtype of a built-in type int. Another example
of built-in type is string, and all strings s are subtype of string. Figure 1.3
" shows the builtin types and the subtype relationship between them in LIFE.

T

built__in
)5t\ re[al i string b7ol\

cons C1 int true false

Figure 1.3: Built-ins type hierarchy in LIFE

We can also define new types and attach properties to it such as attributes
and constraints. For example:
: :book(title = string). '
states that a book has a title attribute which should be a string. Any ¥-term
instance in a LIFE prdgram whose root sort i1s a book is unified (unification
is explained in section 1.1.3) with the above definition. The attribute val-
ues could be functional expressions as well (fﬁnétions in LIFE are explainéd

in section 1.1.4), in which case these functions are evaluated before unification.

We could also attach constraints to the sorts. An example of constraints at-
tached to a sort is:

: :s(name=>X:string) | print(X).

The symbol * -— " is pronounced as “sych that” and the constraint that follows

is of the form of a definite clause body.

——

CHAPTER 1. INTRODUCTION ’ . 8

The subtype relation and aftribute specification can be done in a single defi-
nition such as: '
employee < person(salary = int).

which states that an employee is a person with an additional attribute salary.

Each subtype inherits the attributes of its parents. For example if the defini-

tions of person and employee are:

::person (last_name = string,
dateof birth = date (day = integer,
month = integer,
year = integer)
), and

employee < person(works_at = organization name).

The researcher type of example 1.1 can be redefined as: researcher < em-
ployee(specialization = research_area) inheriting the attributes identified by
the labels last_name, date_of_birth and works_at from person and employee class

definitions.

1.1.3 Unification of -terms
1

To make use of the inheritance mechanism in LIFE, the unification algorithm

of first-order terms is generalized. Two -terms p and ¢ are unifiable iff:

e the corresponding root sorts have a common sub-type in the type hier-

archy.

e their sub-terms (identified by same label name in both the terms) unify

recursively. . .

o Missing attributes do not.prevent unification. If a label is present only
in one of the terms i.e an attribute present in one term is missing in

the second term. the attribute value for the second term defaults to the

/

CHAPTER 1. INTRODUCTION | ‘ 9

special symbol T (the least defined type). T subsumes all other type

symbols in a LIFE program and unifies with all type symbols.

Example 1.3 Consider the type hierarchy in Fig 1.2. In this example we

have the greatest common subtype of employee and student is john, the greatest -

common subtype of researcher and faculty is richards, and the grgatest common

- subtype of land__vehicle and motor_vehicle is car.

Now given the two terms:

student(student_id = int, employee(salary = int,

fname = A:string, " ‘ fname = joe
Iname = A:string, = Iname = joe
supervisor = researcher, and supervisor = faculty,
owns = motor._vehicle) . owns = land_vehicle)

unifying the two terms results in

john(student'_id = int,
salary = int,
fname = A:joe,
Iname = A:joe,
supervisor = richards,-

OwWns = car).

1.1.4 LIFE Program
A LIFE program is a collection of i'-terms denoting cither:
. a definition terminated by a period, and can be either a:

(a) predicate definition: H = By, -, B,.
(b) function definition H — B.

(¢) type definition: reseacher < employee.

’

CHAPTER 1. INTRODUCTION 10

-t

Here H, B and B; are i»-terms.

bo

a query terminated by a question mark such as: B;,---, B,?. A LIFE
query is a list of goals B;’s to prove. A goal is a LIFE y-term whose
root symbol is a predicate name. A top-down/left-right SLD resolution

is used to prove a goal.

The names of functions, predicates and types in LIFE begin with a lower-
case letter, while variables begin with _or an uppercase letter. Such variables

are local to the clause in which they occur.

Predicate Definition

A LIFE predicate is of the form H :- By,---, B,,. LIFE predicates are deﬁned;‘
in the same way as in Prolog comprising of one or more clauses. Clauses
comprise of a head and a body. Head H consists of a single '-term, and the
body B; comprises of multiple i>-terms, and either the junctor *,” (logical a‘r‘zd’)
or “;"(logical or). A single clause predicate containing only head and no body
is a fact. A rule comprises of head and a body, where the head succeeds if the

body succeeds.

Function Definition

Another major extension to Prolog is the addition of functional capabilities in
LIFE. A function definition in LIFE is of the form H — B. It comprises of a
head ©*-term H and a body v*-term B. B is the value returned if the function
evaluation succeeds. |

Functions can be built-in functions such as (4. —.*) or user ;leﬁned func-

tions illustrated in the next example.

Example 1.4 We define a function fact that computes factorial of a number.
fact(0) — 1.
fact(N:int) — Nxfact(N-1).

CHAPTER 1. INTRODUCTION 11

A function Q}eﬁnition is a collection of functional rules. The rules of a func-
tion are evaluated in the order in which they are asserted. Unlike predicates,
if any one of the rules of a function fires (the first functional rulée whose head
. w-term unifies with the query) there is no backtracking to the next rule. The
first functional rule to fire is one whose head vy'-term unifies with the query.

A functional rule whose head 3'-term unifies with the query then is eval-
uated if the arguments of the functions are sufficiently instantiated, i.e if the
arguments of the function call are subtype of arguments in function definition.
It residuates (delays the evaluation of function) if the arguments are not suf-
ficiently instantiated. The residuating function keeps track of its arguments,
and evaluates when all arguments are sufficiently instantiated. The concept of

functional residuation provides a form of concurrent prograrf'lming in LIFE.

Type Definition

We saw the type definition concept in section 1.1.2. We can also attach coref-
-erence constraints or functional constraints to types. For example to state that
a square is a rectangle whose length and width are equal, we can write it as:
square < rectangle(length = X:int, width = X).

and an example of type definition with functional constraint is:

::rectangle(length = X:int, width = Y:int, area = Xx*Y).

Disjunctive Terms

It is also possible to concisely represent ¥-terms in LIFE, by means of dis-
junctive terms. A disjunctive term is an expression of the form {Ay;...; A.},
where A;’s are v*-terms. It creates a choice point returning the value A, on the
first instance. On backtracking it returns the next value A; and so on. For
example the predicate assertion likes(sam, {apples;oranges;peaches}) is equiv-
alent to asserting the predicates likes(sam, apples), likes(sam, oranges) and
likes(sam, peaches). In both the cases the query likes(sam,X) will result in

X=apples. and on successive backtracking give X=oranges and X=peaches.

CHAPTER 1. INTRODUCTION e | 12

Global variables

LIFE also provides the concept of global variable A global variable in LIFE is a
variable which is accessible throughout the program, unlike a normal variable
whose scope is limited to the clauses in which they occur. Global variable
names begin in lowercase letter and share the same name space as that of
predicates, functions and types. An example of global variable'declaration
is global(count)?. The symbol glpbal is a built-in predicate which declares
count to be a global variable. Global variables behave like normal variables,

except that they are visible throughout the program.

1.2 LIFE: A Knowledge and Database Manip-
ulation Language

Large scale knowledge bases require more intelligent processing than current
Data Base Management Systems (DBMS‘) offer. LIFE as a pure logic pro-
gramming language constitutes an attractive query language. However, LIFE
is mere than just a logic programming language, since it offers features and
émbodies a data model turning it into an intelligent information processing
system. This stems from the fact that the data model can be represented as a
v-term. In this section we give an informal presentation of how LIFE can be
used as a knowledge-base and database manipulation language.

The knowledge component can be described in LIFE by different knowledge

representation techniques:

e Facts and Rules represent declarative knowledge, which may be factual,
for éxample faye is the child of sue (child(faye, sue)), or inferred from
rules, such as X is a parent of Y. if Y i1s a child of X (parent(X,Y)
- child(Y,X)).

e Frame style: Frames describe a collection of objects with common prop-

erties. consisting of a list of attributes({label, value) pairs). For example:

CHAPTER 1. INTRODUCTION ; , 13

vikranth(type = sportscar,roof = convertible, doors = 2, wheels =
4) encodes the knowledge that vikranth is a sports car with a convertible

roof and two doors. <

Inheritance refers to the concept that an object takes on the properties
characterizing its paren& object. It isa pqwerful mechanism for encoding
and storing knowledge economically. The common information and be-
havior can be captured at the topmost node in a classification hierarchy,

I’

rather than at every single relevant node.

The inheritance mechanism in LIFE together with its 1-term unification

mechanism provide efficient expression of set-theoretic operations [10]. To

illustrate this, we consider a simple example of an e-mail address database

relation of persons, the organization they work in and their area of expertise:

Table 1.1: An address database

[- Name Status [Organization LSpecializationI e.matl
viraj bais post_doc sfu cg,ai vb@sfu.ca
sand meyer | student _researcher ubc ai sm@ubc.ca
joe peter student ubc database jp@ubc.ca
steve rich - student sfu mathematics | st@sfu.ca

This example (Table 1.1) focuses on one particular advantage of LIFE,
that of inheritance structure in LIFE, a powerful mechanism to encode

knowledge very economically.

Example 1.5 The e-mail address relation in Table 1.1 can be repre-

sented as facts in LIFE as follows:

address (name =, (fname = ‘‘viraj’’, lname = ‘‘bais’’),

status' = post_doc, organization = sfu,

(N1

specialization = cg;ail, email = '‘vbais@sfu.ca’’

CHAPTER 1. INTRODUCTION 14

A knowledge-base for the database, encaded as a type-hierarchy, is shown
in Fig 1.4 using the set-inclusion relationship between types. For exam-
ple the types researcher, faculty, consultant are classified as sub-types of
employee. Multiple inheritance is also supported: for example professor

o

is a sub-concept of both researcher and faculty. |

organization subject

person

/\ company school /\ .
student employee es firm pure_science
manufacturing_firm
mathematics
rescarcher !

computer_firm “universisty

consulant /\
student_reseancher sfu ube database
facuity a

~

post_doc professor

Figure 1.4: Concept hierarchy for address database

Sample query
Given the set of address facts and the knowledge-base coded as inheri-

tance hierarchy, consider the following query:

“Retrieve from the database, the names and the e_mail-

addresses of the researchers working in the computing science

field.”

The query could be posed in LIFE as

-

address (name = (fname = X, lname = Y),
status = researcher, specialization = cs,

emaill = Z

CHAPTER 1. INTRODUCTION 15

)?)

-

Output

For the sample query above, we get the tuples in table 1.2

Table 1.2: Sample query output

{ Name l e-mail]
viraj bais | vbais@sfu.ca ”
sand meyer | sm@ubc.ca p

The knowledge-base of Fig 1.4 enables intelligent retrieval of information.
‘Although the address database did not literally contain the word cs,
owing to the fact that cg, ai are classified as sub-types of cs, the query

retrieved e-mail addresses of persons working in cg, at as well.

1.3 Thesis Organization

Chapter 2 provides an overview of efforts aimed at. applying database technol-
ogy to programming languages, and identifies the techniques best suited for
the LIFE system. Chapter 3 contains a description of LIFE-RDBMS interface
we have implemented. The.interface takes a coupling approach to store LIFE
facts in SQL databases. LIFE also supports data objects (persistent -terms)
which can contain references to other data objects. In chapter 4 we explore
the issues related to storing these inter-object references. We also describe
. the architecture of the long term storage of persistent terms in LIFE that was
implemented. We also address the issue of accessing data stored in a rela-
tional database. In chapter 5 a elustering algorithm is presented that extracts
a hierachical categorization of relational facts in LIFE. Chapter 6 presents
two applications in LIFE and their DBMS store performance and results. We

conclude this dissertation with a discussion in chapter 7.

C\HAP?ER 1. INTRODUCTION 16

In the following sections we will introduce the next three chapters, relational
database interface to LIFE, storage of persistent data and the reverse problem:

that of translating relational data into ¥-terms.

1.3.1 LIFE te RDB‘MS Interface

A typical LIFE program will consists of a large set of facts, such as the address
database in the example 1.5. The size of data renders the use of main mem-
ory as a storage device impractical. The data has to be stored on the disk.
For this reason, we have implemented a system coupling LIFE with relational
databases, representing arbitrarily complex objects in LIFE as flat relations to
be stored in the external database. In contrast to systems offering predicates
for storage and retrieval of facts from an external database, in our system the
access to the data in the DBMS and the existence of a database under LIFE
is transparent to the user.)

The implementation is based on the theory proposed by Holsheimer in (1].
Based on the theory [1] a clustering mechanism based on the type hierarchy
of LIFE for clustering the facts (localization of data) has been implemented
to improve access time. The theory [1] also provides a sound mechanism for
selective data retrieval of the facts stored in the database. We make use of this
mechanism for retrieval of facts from RDBMS in LIFE. This provides a filtering
effect, retrieving all potentially unifiable facts with the query and providing
a small resolution-set for full unification. The information about the past
interaction with the relational databasedis cached in"a compact and efficient
way. This reduces the number of calls to the database, as it never repeats any
query. subsumed by the queries in the past. Techniques for optimization of
data retrieval by means of dealing with overlapping queries, and with intelligent
detection of intersections have been implemented. .

The above mentioned theory can only handle types of single inheritance. In
the implementation modifications were made to this theoryv to handle multiply

inherited types in LIFE. The theory [1] also cannot handle facts containing

(3

CHAPTER 1. INTRODUCTION 17

v

i

coreference constraints. Such coreference constraints are common in appli-
cations like NLP. We also show how to handle such coreference constraints.
Another shortcoming in the theory [1] was handling of variables in goal. We
present a solution for it and further optimize the data retrieval by exploit-
ing the type information stored in the relational schema, Chapter 3 reports
on our implementation of‘a, [;fFE-RDBMS interface. As an example applica-
tion to test this interface, a bibliographic database was implemented and its

performance results are presented in chapter 6.

1.3.2 Persistent Térms in LIFE

Manipulating the identity of objects is natural in a language with pointer types
such as C++. Persistent ¢'-termsin LIFE provide a similar effect by extending
the “value-based” semantics of Prolog with the ability to access the identity
of data objects.

A persistent '-term (example 1.6 and example 1.7) unlike a ‘normal’ ¥’-term
retains its value on backtracking, undergoing an unrestricted update similar.
to assignment in an imperative language. It is changed by a nonbacktrackable
infix assignment operator <<— and cannot be modified through unification.
The terms can be viewed as a global database (a set of graphs) with handles
on certain nodes. -

A persistent term can be assigned to a local/global variable using the as-
signment <<-. Any further modification of the term persists on backtracking,
except when one backtracks before the point at which the variable was as-
signed a persistent term. In that case the variable retains its old value, and
the persistent term is no longer accessible through this variable.

Persistent terms can also be assigned to a persistent variable, in which case
the term is always accessible (unlike persistent term assignment to local and
global variables). A persistent variable declaration is like a global variable,
and its scope too extends throughout the program. The built-in predicate

persistent 1s used to declare a persistent variable. Only a persistent term can

v

CHAPTER 1. INTRODUCTION S e

»

.
be. assigned to a persistent variable.

Example 1.6 This example illustrates persistent variables.
persistent(library_item)? F
library item <<-book(title = ’’computer graphics’’,

author = ’’richard’’)?

If a new assignment is made to the variable library_item, the new value is
retained on backtracking. ‘ _
A persistent i-term can contain references to other persistent i-terms as -

w

well. In life the subterms of a ¢-term are accessed using the operator. For
example library_item title gives access to the subterm "computer graphics” in
the term assigned to library item in example 1.6. The next example illustrates

the structure sharing between two persistent terms.
Example 1.7 An erample of sharing references between persistent terms:

persistent(book101, book102)?
book101 << book (title = ‘‘computer graphics’’
author = person(name = richard,
e-mail = rich@sfu.ca))”?
book102 << book(title = ‘‘computer algorithms’’)?
book102.author << book101.author?

Figure 1.5 shows the two persistent terms assigned to the persistent variables
book101 and bookl02 in a graph form and the structure sharing occurrring
between them. o

This graph data model represents complex objc;ct structures in a natural
way. modeling objects as nodes (with attributes representing their properties)
and relations between them as edges. But the notion of persistency in LIFE is
limited to a prograrﬁ life-time. Long-term persistency is needed for LIFE. In
chapter 1. we exploré the issues relating to persistency of data in programming

languages, describe our implementation of the persistent v'-terms in LIFE,

CHAPTER 1. INTRODUCTION , o | 19

oo hoak
- > ‘s -
computer algorithms
n
s, .
.

k
,‘(’1”
computer graphics perso
P

richard rich<sfu ca

2

Figure 1.5: Structure sharing between two persistent i’-terms

and present performance results. An application in Geographic Information
Systems (GIS) was implemented using persistent ferms in LIFE. Chapter 6
contains a description of the GIS application along with performance results

of long term persistency in LIFE.

1.3.3 Reverse Compiler

We would also like to provide the ability to use data available in existing
relational database from LIFE programs. A simple solution for this would be
to provide a predicate that takes in an SQL string and returns the results as
v-terms. The relational database provide simple data structures, which take
up large storage space in primary and secondary memories. LIFE provides an
elegant type. mejchanism. which can be used to represent the relational facts

economically and improve the performance.

Example 1.8 As an example we consider a binary relation rel containing’
rel{a.r), rel(a,s), rel(a,t). rel(b.r).

rel(b,s), rel(b.t), rel(d,q), rel(d,r).

rel(d.s), rel(d,t), rel(e.q). rel(e.r).

rel(e,s), rel(e.t). o

The relations are decomposed into two rectangles (Rectl and Rect2) as

shown in figure 1.6. The two rectangles of this decomposed relation could then

CHAPTER 1. INTRODUCTION 20

Rectl Rect2
t o o o o
7
o
s o o o
o o o o
r
o ,
q o
p
a b c d e f

Figure 1.6: Rectangular decomposition of relation rel of example 1.¢

be concisely represented in LIFE as facts:
~rel(cal, ral). % Rectl in figure 1.6
rel(ca2, ra2). % Rect2 in figure 1.6

ra2

cb2
. c
ral rb1l cal cbl
\ a b ¢

Figﬁre 1.7: Hierachical categofization of relation rel of example 1.¢

A type hierarchy for the sorts ral, cal, ra2 and ca2 and for the symbols in

the relation rel is shown in figure 1.7. The constraints attached to these sorts

/
CHAPTER 1. INTRODUCTION — v 21

. ' ~ ~
\/ “\‘\ﬂ
are: »
X: ral .| X=rbl. ’ —
X: ra2 | X=rb2.
X: cal | X=cbl.
X: ca2 | X=cb2.

The constraints force the enumeration of relation rel facts in LIFE. The search
space for the relation relis reduced in LIFE (2 as opposed to 14 in the original
database) and would result in significant performance gain.

The algorithm to decompose binary relations as rectangles is given in chap-
ter 5. This will provide us with a hierarchical categorization of relations in

LIFE.

Chapter 2

Combining DBMS and PL

2.1 Introduction

In recent years considerable research has been directed at combining pro-
gramming languages and databases. The combined use of object-oriented lan-
guages, logic programming languages, etc and database management systems
offers a powerful problem solving architecture for a wide range of applications.
Database systems provide an environment offering facilities for creation and
maintenance of large, long-lived collections of data; these facilities include effi-
cient access, data security and transaction processing. However, the expressive
power of the languages provided - within database systems is limited. Program-
ming languages on the other hand provide facilities for procedural control, data
and functional abstraction, but lack built-in support for any of the database

features. Thus, a coupling of programming languages and DBMS is natural.

2.1.1 Database Systems

Programming languages such as object-oriented languages and logic languages
have been used to enhance the capabilities of databases. Such languages are

an attractive proposition for several reasons:

o
S

CHAPTER 2. COMBINING DBMS AND PL 23

Alternative data model: Complex data modeling capabilities are required
by systems like NLP, CAD, document retrieval systems, software engi-
neering, hypertext data etc, which cannot be done easily in relational
databases. Programming languages such as C++ provide appropriate
modeling of problem domains and ease the effort involved in translating

the resulting application model to an.implementation.

L4

Query language: Logic programming as a database query language [14]
offers a greater power for expressing queries (such as recursive queries)
and constraints than SQL used in relational databases. These languages
provide the ability to make inferences over large volumes of data. DBMS
users such as managers and specialists, have a high degree of domain
knowledge but little patience to familiarize with programming language
concepts. For such users high level languages offer a better model to

interact with the database.

Optimization: Declarative languages like LIFE and Prolog provide a pow-
erful formalisms to implement a flexible query optimization component.
The declarative nature of such languages enables rapid prototyping and

testing of an idea too.

2.1.2 Programming Languages

Languages like C++ and Prolog often need the support of database features.

There are several reasons why such languages need database features:

Persistent data: Sometime programmers need the capability to nfanipulate
persistent data (data that outlived the execution of the program) just as
they manipulate non-persistent data. This will reduce the effort involved
by the programmer for data transiation. Such systems can also support,
sharing large amounts of data among nmultiple users in distributed com-

puting environments.

CHAPTER 2. COMBINING DBMS AND PL 24

Efficiency: An application handling large collections of data, uses only a

small part of it during a program run. Since files are generally read and
written as a unit, access and updates are slower for larger files. DBMS
on the other hand offer powerful and efficient features for access and
modification of large volumes of data. Performance can be improved,
if data can be off-loaded to the database system for more efficient, ax;*d

possibly parallel access. K

Handling large data sets: Applications typically work on large sets of data

that do not fit in main memory, and cannot be handled by the language.

Accessing existing databases: Sometimes existing databases need to be

accessed by the programming language.

Heterogeneous databases: There is always the need to couple existing

heterogeneous systems into a cohesive environment without sacrificing
the privacy and/or independence of the participating systems. High level
langu;ges like LIFE have the capability to provide a common conceptual

view of the distributed data in heterogeneous databases.
S

2.2 Alternatives in Design

There have been several approaches to integrate database and programming

languages. all of which provide a synergistic combination of the two technolo-

gies. The two major approaches are:

l.

Coupling stand alone database management systems and programming
languages (mainly logic programming systems). The overall architecture
combines a general-purpose programming language as the front end with

a DBMS back end. It preserves the independence of the end systems.

Integration constitutes designing a single system in which the database
functionality is incorporated. In such systems no clear distinction exists

between front and back end components.

CHAPTER 2. COMBINING DBMS AND PL 25

2.2.1 Coupling

This approach [2, 14] tends to maintain the identity of each component. The
front-end is a general-purpose programming language and a DBMS is the back
end containing facts for front-end reasoning. The programming system is es-
sentially devoted to data manipulation tasks, while the DBMS acts as a server
supplying the data to the front end for further processing. Both the database
management system and the programming ‘ianguage environment run as sep-
arate processes communicating through some channel.

There have been many proposed and impl§mented systems for coupling a
logic programming language (such as Prolog) with a relational DBMS [15, 19].
These systems have been broadly divided into two categories, based on the

degree of coupling (loose. tight) [2]:

Loosely-coupled systems

In a loosely-coupled system, the required data is fetched from the external
database into the active memory in a prior phase (at program load tirné) before
the work begins on a set of related problems. The DBMS interacts with the
programming system PS in a “batch”™ fashion: maps the required data from
the DBMS to the PS data structures at the beginning of a session, and copies
back the modified data at the end of a session. The identification of the data
required is done for example in Prolog, by providing a meta-interpreter for
determining the queries to be evaluated and evaluating them before running

the Prolog interpreter.

Tigzltly-coupled systems

In a tightly coupled architecture, the data is fetched on an as-needed basii.
The programming system (PS)gnay interact with the DBMS at any moment
during the problem solving process. The actual computation process activates
the interface, dvnamically generating database queries and retrieving data for

the PS to proceed further. The main issues in such a system is how much data

CHAPTER 2. COMBINING DBMS AND PL 26

to fetch (prefetching) and whether to cache the data.

A tightly coupled system is generally preferred over loosely coupled systems
as it can make use of the actual computation process, to anticipate the data
needs of the application better. This is especially true for large systems, which
requires less pollution of main memory for better performance; On the other
hand for small systems, it may be better to load the data in one-shot, being
as selective as possible during data retrieval. This will avoid the overhead of

frequent database access of tightly coupled system"s.

2.2.2 Integration

An integrated system consists of designing a single system in which some or
all of the database functionality is incorporated. In such systems no clear
distinction exists between front and back end components.

There are two possibilities: an existing programming language system is
incorporated with database functionality, or new systems are designed from

scratch.

Persistent programming languages

A persistent programming language (PPL) is a programming language that
provides for data to exist beyond the life-time of a program. PPL incorporates
the database concept of persistency into its programming model, and provides
the ability to manipulate persistent data (data used in successive executions
of the program) just as they manipulate transient data. Different programs

could also access the persistent data.

Database programming languages

A database programming language (DBPL) is sim#ar to a PPL but incorporates
additional database features beyond persistency such as bulk data (sets or

relations) and object-content based retrievals (queries).

-

CHAPTER 2. COMBINING DBMS AND PL ¢ 27

New databases

New databases are designed such as deductive databases and object-oriented

databases. The systems are built from scratch, without depending on previ-

_ously built software, with no previous bad decisions affecting the new design.

They typicdlly need developing new data models and algorithms.

2.3 Design choices for LIFE

For the approaches presented in the previous section, the main problems are,

how can a system be at the same time:

e reasonably cheap (requiring little or no modification to either LIFE or
the DBMS source code if any),

e user friendly (transparency of the data distribution),

e and efficient.

The integration of DBMS into LIFE can take either the coupled approach
or the integrated approach. Both would have major differences in complexity,
performance and the ease of design and use.

Developmental effort of coupld systems is small and the resulting product
has the potential of providing adequate functionality and performance. Efh-
cient integration of the svstems is the only issue that needs to be focused upon
in such systems.

On the other hand. in an integrated svstem one can directly use low level
functionalities of the DBMS, like relation management in secondary memory,
and data access via indices. It i1s possible to let both tools access the inter-
nal structures of the other in ways that coupling cannot allow, offering more
opportunities for optimizing and fine-tuning the system. Furthermore, trans-
lation to different data formats is avoided, providing a superior performance
over coupled svstems. The price that must be paid is a need for extensive

modification to one or both of the tools to get them to work with each other.

+

.CHAPTER 2; COMBINING DBMS AND PL 28

>

An attractive feature of coupled systems is that they can utilize the ex- .
isting system with little or no modification a facter critical to the portability -
of the system. Another factor is the need to use an existing database. As
there is always the need to couple existing heterogeneous systems into a cohe-
sive environment without sgcrificing the privacy and/or independence of the
participating system%. |

In t“he next subsections we evaluate the questions posed so far in the context

of LIFE.

2.3.1 Coupling Approach

1

We choose to use relational database systems for long term storage of LIFE
facts. Although LIFE facts are complex objects consisting of cycles and struc-
ture sharing (see sectiomr 1.1.1), the structure sharing is local to the facts (i.e
there is no data sharing between facts). A grouping of facts can be defined,
as the facts in LIFE generally constitute identically structured objects. These
then can be represented as flat tuples in a relational table (explained in sec-
tion 3.3).) A
An object-oriented dambaég could be a better alternative, as it provides
similar complex objects and infieritance structures found in LIFE reducing the
semantic mismatch between the two. But the theory [1] developed behind LIFE
facts storage and retrieval does not make use of any of the features provided
by object-oriented databases.
" A coupling approach is used because stand;rd_relational databases exist and
are widely used. They provide for free transaction management and concur-
rency control facilities to ensure data integrity:/allowing sharing of information
in a multiuser environment and having a recovery mechanism for stable storage
in the event of a crash. In addition to the use of an existing databases, the

interface can easily be ported to other RDBMS systems as well.

CHAPTER 2. COMBINING DBMS AND PL 29

2.3.2 LIFE as a Persistent Programming Language

For the persistent terms in LIFE, relational database technology is inadequate.
As shown previously in section 1.3.2, a major characteristic of such data is
that the terms may contain references to other terms. Such references can be
: dyn'amically created too, and an attribute value may change to a reference to

another term as shown in example 2.1.

> @ > e
1 1
+ ' .
i object object
; object —>
0:)Jccl . l , N &
l | -I; 'b
5
>
3
X 3

Figure 2.1: Dynamic updates of persistent terms

Example 2.1 An example of two persistent variables - p.q. In this example
the value of b changes from 3 to a reference to p's value.

persistent(p,q)? |

p <<—object(value = 3)?

q =<—object(value = 3)?

p.value <<—q.value?

Figure 2.1 shows the change done in example 2.1 graphically..

~ These inter-object references are difﬁcult for relational database to han-
dle. An OODBMS is natural for such terms, providing both object-id based
retrieval of single object and set-oriented operations. We decided to build an
object-store on top of file system provided by the operating system for the sake

of portability.

Chapter 3

; Coupling LIFE to a Relational
Database

3.1 Introduction

As shown previously in section 1.1.1 a typical LIFE program consists of
unit clause (Fact): H.

rule: H - By, ... B,.

Here H and B's are v-terms.

The logical facts and rules in the form of Horn-clauses, can be separated
into Extensional Database (EDB) and Intensional database (IDB) facts. The
EDB is simply a large collection of facts, while the IDB is built from the EDB
by applving rules to it. A fundamental assumption in LIFE has been that
the facts reside in main memory; for small problems this assumption is not a
restriction. However for applications handling large sets of facts. LIFE’s ability™

is limited. Typical database applications handle large data sets containing a

~

30

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE .31

million facts or more. With such large data sets secondary storage has.to be
relied upon for processing data, providing an environment where rules (and -
possibly small sets of facts) are stored in LIFE and.‘(la,rge sets of) facts are
stored in a database. .

The objective of the LIFE-RDBMS interface is to provide, as efficiently as

possible:

e the support for decomposition of complex facts into flat relations.

e transparent retrieval of data-items into LIFE from relational DBMS, us-

ing several optimizing techniques.
-
A LIFE system, which makes use of a relational database for storing and

retrieving facts, has been built. The interaction between LIFE system and the

database objects is independent of any user support. Thé interface supports

programs written in pure LIFE, and the existence of a database under LIFE

is transparent. to the user. This is made possible by a program analyzer wHich

compiles the original LIFE program into a modified LIFE program, incorporat-

ing the original rules and a data dictionary, minus the }acts which are asserted
into the external database. The data dictioﬁary provides transparent retrieval |
of the facts stored in the external database. The compiled code can also be

linked to other applications written in LIFE, requiring no special support.

A relation consists of identicall}; formed objects, and in order to store the
facts as flat relations, we group the facts int(; identically formed facts. A group-
ing of facts‘zan be defined, as the facts in LIFE generally constitute identically -
structured objects. In order to do so, a subtype order < is defined on the facts
as well, based on the subtype ordering on type symbols that make up these
facts. The facts with similar subtype relationships are grouped together and
~stored in a relation. These groups, called qualified segments, contain identi-
cally formed facts. These concepts will besexplained and illustrated later in
section 3.3.2. ~

For data retrieval, we use a tight Coupliﬁg, where facts are loaded on de-

mand. The interface accepts arbitrarily complex goals and return all facts

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 32

unifying with the goal. The system is based on a two-stage filtering process
shown in figure. 3.1. A qudliﬁer (data-definition) is defined for each qualified
segment (contains facts with similar subtype relationships), which is a gener-
alization of all the facts in the segment. The qualifier provides a filtering effect
retrieving all potentially unifiable facts for queries and providing a smaller
resolution-set for full unification, thereby improving the efficiency of the uni-
ﬁcatjon languages. The loading mechanism keeps track of information about
the past interactions with the database. Previous queries to the database are
cached in a compact and efficient way. This provides a second stage filtering
effect minimizing the number of accesses to the database, as it avoids repeating
queries, subsumed by past queries to the database.

LIFE memory gets polluted when the retrieved databases facts are cached
in main memory. Automatic eviction of database facts is provided when LIFE
memory becomes full. An LRU (least recently used fact name) policy is used

when evicting database facts from LIFE memory.

3.2 Architecture

The interface between LIFE system and the database can be provided at var-

ious levels of transparency [14]:

No transparency In this approach the programmer uses the data manip-
ulation language of the database engiﬁe to manipulates objects in the
external database. PROSQL [41] takes this approach, providing a spe-
cial built-in predicate. which takes an SQL query in the form of a Prolog
string as its argument. This has the advantage that no translation is
‘needed, and the full extent of SQL can be utilized. A major weakness
is that the responsibility of the interaction between the two systems is
left to the user. In addition, access optimization options are limited, and

also the programmer has to cope with two different languages.

CHAPTER 3. COUPLING LIFE TO A RELATIONAL-DATABASE 33

Modified : » Pure (LR}
- UFEcode ¥ Program analyzer UIFEcode %

EDB

User e _—
, MamnMemory \ LIFE [Y R
//_‘ LIFE interpreter ‘—HI Facts ™ Facs | Translator ¢
orals L , s
Tupics P
(LE) L H
! Y R T o g a4
Il;:fc u 1 Data defimtions Past Quenes :I S H
Cgram c L SO 4
A - Fle |0 @D
(LR ooy -
Modified Handler L p
LIFE ¢
Program Meta-Interpreier

Figure 3.1: Interface architecture

-

Intermediate transparency Data access, whether they are in main memory
or disk-resident, is transparent to the user; there is no need for translat-
ing from one representation to another. But the user has to explicitly
declare database predilcate’s, which provide the relationship between the

two representations.

Full transparency The interaction between the programming system and
the database is done. without requiring any user support. The existence

of a database is transparent to the user.

We shall use the third approach as it insulates the user from the interaction
between LIFE system and the external database. This approach provides
support for pure LIFE programs, and the impression given to the user is that -
of interacting with the LIFE system. This is made possible with the help of
a program analyzer translating the ‘original program into a modified program,

which can recognize database predicates and acts accordingly.

-

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 34

-

For the rest of ihe chapter, database predicates (facts in LIFE) are LIFE
predicates that are stored in the external database. In‘the forthcoming exam- -
ples of LIFE programs, the ith database predicate is denoted by dbp;.

The design makes three assumptions.

® The subtype refations defined on the symbols appearing in the dbp’s is
fixed.

® The storage order of tuples in the database relations is not relevant.
This stems from the fact that order of dbp’s is not important in LIFE
for unification. This assumption is needed to improve performance using

different optimization techniques on the database predicates.

e The functor name denoting dbp (facts) is not allowed to appear on the
left hand side of a rule. This does not in any way limit the computational

power of LIFE.

The interface can be divided into three layers consisting of a LIFE meta-
programming part for the program analyzer PA, meta-interpreter MI, and a

communication module CM for physical communication with the database.

3.2.1 Program Analyzer

The program analyzer takes as input pure LIFE code and rewrites it into a
modified LIFE code, containing the original rules and meta-rules of the Meta-
interpreter in place of the fact base. It analyzes the LIFE code, identifying
the facts that are to be stored in the database and partitions them into non-
overlapping segments (qualificd segments) based on the type-hierarchy. Each
such partition of the fact base is stored as a separate relation in the database
and replace‘:i in the modified LIFE code by the meta-rules. The meta-rules
include a database-schema (qualifier) for each relation stored in the database
for interaction between L}Ffsystem and database?

Statistical profiles of each relation are also computed and stored in the

appropriate qualifier. Such profiles are necessary: for instance, the cardinality

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 35

of each relation can be used to infer that all dbp’s from the relation are in main-
memory requiring no further interaction with the database for this relation.

The user can then start a LIF'E session by executing the compiled programs.

3.2.2 Meta-interpreter

The Meta-interpreter provides a tight coupling, retrieving dbp’s from the ex-
ternal database on demand. It include rules for matching the database pred-
icates (LIFE predicates that are stored in the external database) with the
main-memory resident facts and facts in the relational database. The MI is
activated whenever an attempt is made to resolve a particular dbp g, called
the goal.

It first checks the core-resident database facts, unifying the first fact with
the goal g. On successive backtracking, the inference engine examines the next
possible fact in the internal database for unification. If no further facts in
main-memory are available, the MI activates the CM for retrieving unifiable
facts from the external database.

Crossing the boundary from LIFE to database is an expensive operation.
To achieve the goal of efficiency, the MI keeps track of the past interaction
with the database, reducing the number of calls to the database, as it never
repeats any query, subsumed by past queries. In this process it also ensures
that no data item is retrieved twice.

The basic algorithm of the meta-interpreter can be informally described as

consisting of following stages:

1. Match main-memory facts: For a goal g, we examine the facts in main-
memory that can unify with g. If the internal database is exhausted we

go to the next stage.

o

Framine the restrictor set: We examine a new data-definition (qualifier)
whose name does not appear in the restrictor set. The restrictor set

contains names of relations, for which all the tuples have been retrieved.

@

0

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 36

3. Generate a new candidate: The qualifier con'tains mﬁeta-informat_ion about
the contents of its relation (qualified segment). "A candidate C is gen-
erated if the qualified segment contains unifiable dbp’s with the goal ¢;
otherwise we go back to step 2 to examine the next qualifier for g. The

candidate C contains all the information for selective retrieval of dbp’s.

4. Check for subsumption: This stage checks if the candidate for the current
goal is subsumeéd by candidates generated by previous queries. If so, the
dbp’s from the relation have been fetched for this goal and we go back to

step 2 to process the next qualifier for g.

5. Generate negative candidates: The answer needed by the current query
can overlap with previous queries. Negative candidates are generated
so that proper SQL query can be generated, which only loads the dbp’s

once.

6. Load new dbp’s and resume unification: The last stage loads the dbp's
from the external database. The newly asserted dbp’s are unified with

the goal g. and if further data items are needed we go back to step 2.
Two main issues in the design of MI are:

e Problem!: activating the (M to retrieving new facts from the external

database, whenever the active memory is exhausted of matching facts.

o Problem?2: when the loading process is done, the MI should enable the
continuation of unification of the current dbp, with the newly asserted

facts.

The LIFE system maintains predicates with the same functor name in a
linked list. Any retrieved facts from the external database have to be added
to this list. An active instance of a database predicate may need to access the
database several times. Multiple occurrences of the same dbp, can be active at
the same time accessing the database. This could lead to potential problems

and inconsistencies [16].

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 37

Problem 1 and Solution

Suppose we have a set of facts named dbp; in our original program that needs to
be stored in the external database. These are asserted in the external database,
the transformed LIFE code containing meta rules of the same functor dbp; for
data retrieval from the database.

The MI provides tight coupling loading dbp, from the external database on
demand. Any new database facts dbp; retrieved from the EDB are asserted at
the end of chain of facts dbp;. In the beginning, the database predicates with

the same functor consists of meta-rules of the form:

(1) persistent(gpointer)? !
i/
(2a) F:dbp, :-

have_to_set_dbm,!,

set_dbm(dbp = F).

(2b) F':dbp, :- load_facts(qpointer, dbp = F), fail.
(2¢) dbp; :- fail.

The rule (2a) stays at the start of the chain of dbp,. Its purpose will be
explained later. Rule (2b) called dbm rule always stays at the end of dbp; chain.
[t activates the communication module CM and inserts the retrieved facts at
the end of dbp, chain. The dbm rule (2b) is retracted and reasserted at the end
of the chain. Since the dbm rule i1s always placed at the end of the chain, this
rule i1s only considered when all instances of the facts in the active memory
have been attempted to resolve the current goal dbp;. The forced failure of this
rule, at the end of database retrieval, enables the inference engine to continue
unification of current goal with the newly asserted facts.

At the end of loading process, a failure rule (2c¢) needs to be asserted at

the end of the predicate chain to ensure the correctness of the backtracking

"The predicate persistent is a built-in LIFE predicate, which declares gpointer to be a per-
sistent variable. The notion of persistent variables and terms are explained in section 1.3.2.

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 38

next pointer=NULL

(a) next pointer

F:dbp; :- set_dbm(dbp = F), fail.

F:dbp; :- loa,d_fa,cfs(dbp = F), fail.
dbp; :- fail. A

Figure 3.2: Failure rule for Unification of Database Facts

mechanism of the LIFE interpreter. The LIFE system maintains predicates
with the same functor name in a linked list (Figure 3.2 shows three clauses of
the same functor name in a chain). The unification process keeps a pointer to
the current unified element, and a pointer to the next element in the list for
optimization purpose.

This presents a problem when the loading process is done and the inference
engine needs to continue with the unification of the current dbp; with the newly
asserted facts. Suppose the current dbp; is unified with the last element in its
chain (Node C in the chain of clause dbp; in figure 3.2) (which is the dbm rule
for it), the next pointer for it points to nil. The activation of dbm rule could
retrieve facts from the EDB and assert the retrieved facts at the end of the

predicate chain. On backtracking from the dbm rule, the inference engine is

[T

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 39

unaware of new facts retrieved from the EDB, as its next pointer is not reset
to point to the newly retrieved facts.

This problem is avoided by asserting a failure rule (dbp; :- fail) whenever
the dbm rule is asserted at the end of the predicate chain. This ensures that
the next pointer points to the failure rule (figure 3.2) rather than being nil for
any activation of a database predicate. The retrieved facts are appended after
the failure rulg and on backtracking, the inference engine can access these

facts.

(3) have_to_set_dbm -
| (access_main_memory_facts,!,
retract(access_main_.memory_facts), fail;

assert(access_main_memory_facts)).

(4) sel_dbm(dbp = Dbp) :-
“Old = gpointer, ‘
data_definition(dbp = Dbp, gqpoinler),
resolve_dbp(Old, dbp = Dbp).

(5a) rﬁsolve_(gbp(dbp = Dbp) :- Dbp.

(5b) resolve_dbp(Old) :- qpointer << Old, fail.

Problem 2 and Solution

A second problem arises when multiple instances of the same database predi-
cate dbp; are active at the same time. The multiple data definitions for each
dbp; are maintained as a list of elements in LIFE. If we access a single relation
at a time, each activation of dbp, needs to maintain a pointer gpointer to the
next data definition 1t is going to access when the dbm rule is fired for it.
Whenever a new instance of dbp, is activated, rule (2a) saves the gpointer,

and sets gpointer to the start of data-definition list for the current instance. It

resets gpointer to the value stored in Old, when the current (i.e., new) instance

1s to backtrack.

&

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 40

e

(6a) load_facts([Qual | Tail], dbp = Dbp)\:-
’ not_in(restrictor(Qual)),
candidate(C, dbp = Dbp, qualifier = Qual),
retrieve_facts(C),!,
gpointer << Tail,
retract_dbm, V

assert_dbm.

(6b) load_facts([- | Tail], dbp = Dbp) .-
load_facts(Tail).

The predicate (6a) is activated by the dbm rule when a match for core-
memory resident fact fails. It looks up a new data definition for the database
predicate dbp;. A list of restricted_set of relations is maintaified, whose entire
set of tuples has been retrieved and asserted in the main-memory. If the
relation name for the data-definition is found in this set no further interaction
with the database is needed for this relation. The clause fails, and backtracks
to examine the next data-definition (qualifier) for dbp;.

The qualifier contains meta-information about the contents of its relation
(qualified segment). A candidate C is generated if t};e relation (qualified seg-
ment) contains potential for containing clauses which can unify with the current
database predicaté dbp;, otherwise we backtrack to examine the next qualifier
for dbp;. The candidate (' provides a selection condition retrieving subset of

tuples from the relation that can unify with dbp;.

(7a) retrieve_facts(C') ;- subsumed_candidate(('),
! fail.

The next phase consists of checking whether the candidate (' is subsumed
by candidates generated by previous queries. If so the facts from the relation
have been fetched by a more general query, and the relation contains no new
facts which need to be fetched, that can unify with dbp;. The clause fails and

goes to examine the next data definition. ‘

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE. 41

(7b) retrieve_facts(C) :- assert_candidate(C), overlap_candidates(C, NC),
read_facts(C, NC)

The last phase accesses the database, asserting the retrieved facts as well as
maintaining meta-information about the current query. The answers needed
by the current query can overlap with previous queries. The overlap_candidates
predicate identifies any such overlap so that proper SQL query can be gener-
ated, which only loads the facts once. The candidate generated for the current
query is cached as well to avoid sending the same or subsumed database query
to the external database in future.. The generated candidates are compacted
and stored in an efficient manner. Compaction is done as follows: It first checks
if the current candidate subsumes any previous candidate. If that is the case
then the past candidate list is pruned by removing the subsumed candidate, as
the current candidate is,more general. A second compaction is done, removing
the candidates generated on a relation, if all the tuples from the relation are
in main memory. The names of such relations are kept in a restrictor set.

When the loading process is done, the MI enables the continuation of uni-

fication of the current dbp; with the newly asserted facts.

3.2.3 Communication Module

The communication module (CM) establishes the physical communication be-
tween LIFE and the database. The communication module is written in C++
providing new predicates for interacting with the databasa Both PA and MI
can call the CM. From the information passed on by these two modules, it
constructs an appropriate SQL query, executes the query, and converts the
data from one format to the other. The CM is built in an modular fashion to
enhance portability to other database systems. It contains two modules, the
formatter and the DBAMS interface library. The former translates queries and
data between the two different representation, while the latter is used for com-
munication with the DBMS, submitting queries and collecting answers. The

behavior of the two modules is encapsulated in a C++ abstract base classes,

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 42

and appropriate derived classes can be provided to interact with a different

database system. .

3.3 Storing and Retrieving LIFE Facts

In this section we present the theory [1] developed to store and retrieve LIFE
facts in an external database.

The complex data-structure of facts cannot be straightaway translated to
a relational database. . Therefore an intermediate representation is pfovided
that maps LIFE facts to relational tuples and vice-versa. Meta-information (in
the form of candidates) on the relations, i)rovides selective retrieval of tuples,
which can unify with the current LIFE goal. The queries and their answers
are cached, so that the facts are retrieved only once.

The theory proposed in (1] is for variable free facts only. Moreover it re-
stricts facts, for which the symbols occurring in these facts are involved in
single inheritance only. We generalize the technique to store facts containing
variables and type symbols involved in multiple-inheritance. The solution pre-
sented for the data retrieval in the paper [1] is extended, as it cannot handle
variables.in a LIFE query. ‘We present a solution for it and further optimize

the data retrieval by exploiting the type information stored in the qualifier.

-

1~3.3'.1 Sample Program

We show a sample program, the facts in which are to be stored in an external

database.

Example 3.1 This erample shows a small sample LIFE program, consisting

of:

i

F %% Facts (Unit clauses):
V1: vehicle_db(owner = adams, item = car(make = nissan, model =" '280:2°)).

Vy: vehicle_db(owner = viraj, item = car(make = ford. model = aerostar)).

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE , 13

x
3
T
person
/\ vehicle <
student employee /\

water_vehicle
automobile

_ researcher consultant /\ %
vira) car truck
. van
sandy sunil ,
nichards

joe john peter

Figure 3.3: Type hierarchy for example 3.1

Vy: vehicle_db(owner = sandy, item => car(make = hero, model = jet)).

=

Vi: vehicle_db(owner = joe, item = van(make = panther, model = ghia)).
Vs: vehicle_db(owner = john, item = car(make = maruti, model = rlr)).

Ve: vehicle_db(owner = john, item = van(make = panther, model = cdz)).

%% % Type definitions

person := { student; employee } % a student as well an employee is a person.
student ;= { viraj; adams; joe; john} % viraj, adams, joe and john are students.
student ;= { sandy; kirmani} _ % sandy, kirmani are also students.

researcher := { joe; john} % joe and john are researchers as well

consultant := { sunil; peter; richards } % sunil; peter; richards work as consultants .
employee := { researcher; consultant} % an employee could be a researcher or a

% consultant.

vehicle := { automobile; water_vehicle } % a vehicle could be a automobile or a
- % water_vehicle.
automobile := { car: van; truck} % an automobile could be a car, van, or a

% truck. t

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 44

Figure 3.3 shows the type hierarchy for this program representing partial order
~on the type symbols { person, student, employee, researcher, consulfant, viraj,
adams. joe, john, sandy, kirmani, sunil, richards, peter, vehicle, automobile,

water_vehicle, car, van, truck }. It is assumed that the type hierarchy is fixed.

3.3.2 Representation of Facts in a Relational Model
Intermediate representation

A LIFE fact 1s a complex object containing cycles and structure sharing by
means of coreference constraints (using variables, explained in section 1.1.1).
In [1] an equivalent mathematical construct for the (variable free) complex
structured facts is shown, which can then be represented in a relation. We call
this equivalent mathematical‘construct as the flattened l,’v—térm.

The factsin LIFE are based on the ¢'-term data-structure of LIFE, consist-
ing of type symbols and labels. Example 3.2 shows a i-term and the flattened

v-term T, for it.

-

Example 3.2 For the v-term:

vehicle_db (owner = john.
item = car { make = ford,

model = aerostar

The vehicle v-term can be feprrsentfd as a relational tuple T, = {c¢: vehicle_db,

owner: john. item: car. item-make: ford, item-model : aerostar},

Qualified segments

Fach flattened ¢-term can be stored as a relation i the database, but this leads

to a large number of relations in the database. We can exploit the sub-type

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 45

information present in the type hierarchy to club iterns together to be stored as
one relation. All the items grouped together have the same structure. Given a
flattened -term we replace each entry by its parént, the resuiting structure is
called a qualifier. The facts having the same qualifiers are stored as tuples’of
a relation. All the facts stored under one relation are referred to as a qualified

segment. Associated with each qualified segment Q is a qualifier denoted by

qual(Q).

Example 3.3 For the type hierarchy in Fig 3.3 the type symbols parénts are:
" par(person) = par(vehicle) = {T}

par(student) = par(employee) = {person}’

par(researcher) = par(consultant) = {employee} ‘

par(viraj) = par(adams) = par(sandy) = par(kirmani) = {student}

par(john) = par(joe) = {student, researcher})

par(sunil) = par(richards) = par(peter) = {con;'ztltant}

par(automobile) = par(water_vehicle) = {vehicle}

par(car) = par(van) = par(truck) = {automobile}

From the parent definitions, the qualifier for the predicate example 3.2 is then

constructed as:

{ «:T. owner:[student, researcher], itcm:automobile, item-make:T.

item- model:T}.

Recall from section 1.1.2 that T is a special symbol in LIFE which subsumes
every other symbol. If a symbol’s parent is not explicitly stated it defaults to
T. |

The facts are grouped together in a qualified segment (). where all facts in
the segment have the same qualifier. One can easily see that the structure of
facts in the qualified segment is the same, since for any two ¢"-terms (f, f') in

2, we have qual(f) = qual(f").

The flattened representation of facts in a qualified segment () arg stqred in

a relation as tuples.

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 46

Example 3.4 Erample 3.1 shows & LIFE program containing siz facts. The

type hierarchy for the symbbls occurring in these facts is shown in figure 3.3

The parents of the type symbols occurring in the first three facts are the same.
S0 1s the case for the remaining three facts. These facts then can be represented

‘in the two qualifier segments:
-

Q:1=[Vi: {name: adams, item:car, item-make: nissan, item-model: '280zz’}.
Vo: {name: viraj, item: car, item-make: ford, item-model: aerostar}.
, J g ,

r
7

3: {name:sandy, item: car, item-make: hero, item-model: jet}].

(Q=[Vi: {name:joe, item: van, item-make: panther, item-model:ghia},
Vs: {name:john. item: car, item-make: maruti item-model: xIr}

Ve: {name: john, item:van, item-make: panther item-model: cdx}].
The qualifiers being
qual(@Q,) = {name: student, item:automobile, item-make: T, item-model: T }

qual(Q2) = { name: [student, researcher], item: automobile; item-make: T,

8

item-model: T}

The qualifving segments @), ?, can be stored as fwo relatibns (Ry, B3)in the
databas;. The mapping between LIFE facts and tuples in the relation is shown

in the next.example, using the cpﬁce[)t of data definition.

On a closer inspection of the relation R; in table 3.1, we find redundancy

in the representation of the vehicle database. In particular the item occurrence

(column ¢2) has the same symbol car occurring in all their tuples. Such

symbols can be best represented in the qualifier itself reducing the size of

the table. The relational table R, is compacted by removing the column c¢2

and the type symbol stored in the modified qualifier called data definition.

For each qualified segment Q. a data definition is constructed, which handles
the transformation of data between a LIFE ¢-term and relational tuple. The
next example illustrates how this can be done by means of coreference con-

straints in LIFE.

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE = 47

- Table 3.1: A vehicle database

\ (R)

cl c2 c3 c4

Vi1 || adams | car | nissan | 280zz
Va || viraj | car| ford | aerostar

Vs | sandy | car | hero jet
(R;)
cl c? c3 c4

s+ || joe | van | panther | ghia

Vs || john | car | maruti | xlIr
Vs || Jjohn | van | panther | cdx

Example 3.5 For the example program 3.1, the data definitions for the vehicle

£l

database qualifiers 3.4 can be represented in LIFE as:

D, =

data_definition(
structure = vehicle.db(name = A, item = car(make = (', model = D)).
tuple = Ri(cl=>A,3=>C,c4d = D),

-

“qualifier = Ry(cl = student. ¢3 = T.c4 = T)).

_ D, =

data_definition(‘
structure => vehicle_.db(name = A, item = B(make = C, model = D)),
tuple = Ra(cl =2 A, c2=2B,c3= (C,cd = D),

qualifier = Ry(¢l = [student, researcher], ¢2 = automobile, c3 = T,cd = T)). |

The subterm denoted by the structure label in the data definition pro-
vides the data-structure of the i>-terms stored in the relational database. The

coreference constraint between the subterms denoted by structure and tuple

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 48

labels provides the translation between the data-representation of LIFE and
relational database.

Column ¢2 in the relational table R, is removed and the symbol car is
represented in the data definition D (in the subterm denoted by the label
structure) itself.

Assume a goal g = vehicle.db(owner = researcher, item = vehicle(make
= panther)). We unify with the subterm denoted by the structure label in
the data-definitions, constructing a simple query (subterm denoted by tuple
label). We call this the SQL goalfor g. For this goal g, the SQL goals generated
are: Ri(cl = reséarcher, c3'= panther, c4 = T), Ry(cl = researcher, ¢2 =
vehicle, ¢3 = panther, ¢4 = T). |

Similarly, any tuple retrieved by the CM of the interface, is of the form
of subterm denoted by the tuple label, and on unification of the retrieved
tuple with this subterm. it is translated to LIFE format (subterm denoted by

structure label).

3.3.3 Data Retrieval

The LIFE database interface accepts arbitrarily compler goals and returns all
potentially unifiable facts with the goal from the external database. Whenever
a goal g cannot be resolved by the facts in the internal LIFE database, the
interpreter needs to fetch the facts from the database. This is done using the

concept of candidates as explained below.

Candidate

We can use a brute-force technique, by retrieving the facts one-by-one from
the database, until we get a fact which unifies with the goal. However, since
this is highly inefficient, optimization is done by retrieving only a sulgset of
facts from a qualified segment Q);. which can unify with the current goal g.

In order to do so, a candidate C is constructed for each relation: based

on the SQL goal constructed for the goal g and the qualifier defined on the

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 49

relations.

The candidate C has identical stfucture as that of the SQL goal and the
qualifier, consisting of T symbols and immediate subtypes of symbols in the
qualifier (which are also the symbols that appear in the qualified segment).

If the symbol ? in the qualifier for label ¢; is a subtype of the symbol
 referenced by the label ¢; in SQL goal, the candidate consists of T symbol for
the label ¢;. The T symbols in C are wild card entries ?, since the goal symbol
subsumes (and thus unifies with) the symbols occurring at this label for all the
facts in the qualified segment. |

If the SQL goal symhol does not subsume the qualifier symbol, the symbol
referénced by the label ¢, in the candidate C contains a non-empty list of
symbols (immediate subtypes * of the symbol referenced by the label ¢; in the
qualifier) which can unify with the corresponding symbol in the SQL goal.
Since the immediate subtypes of symbols in the qualifier are same as symbols
that appear in the facts in the quafiﬁed segment, the non-top symbols in C thus
provide for selective retrieval of tuples for the relation that can help resolve

the goal g.

Example 3.6 Given the vehicle database in erample 3.4, consider the follow-

ing query: g,: vehicle_db(owner = researcher, item = van).

From the data-definitions (Dy. D;) shown in erample 3.5 for vehicle_db, only

D, will generate a candidate.

The candidate constructed for Dy is: ' = candidate(Ry(cl = T, ¢2 = [van],
3= T,c{=T)). The T in (" is a wild card argument (indicating that there
is no sclection condition for ¢; in the relation for retrieval of tuples as all of

the symbols for ¢; in the relation will unify with the goal symbol) and non-top

symbols are the selection arquments for tuples in relation K. The selection

“if it is a list of symbols, any one of the symbols in the list
Jindicating that there is no selection condition for ¢, in the relationXor retrieval of tuples
*For multiple inheritance it<is a subset of immediate subtypes of list df symbols (S)
referenced by the label ¢, in the qualifier, whose parents are the same as the list of symbols

»
f

‘CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 50

condition for C is S(C') = (c2=[van])(as the relation contain immediate sub-
®

types of the type automobile for ¢2). we select the tuples with a simple SQL

query:

select ¢, ¢2, ¢3, ¢4
from R,
where S(C')

For the sample query, we get the tuples in table

cl c2 c3 c4
Vi |l joe | van | panther | ghia
Vs || John | van | panther | cdx

(R2)

which i1s then transformed to the facts

Vi: vehicle.db(owner = joe, item = van(make = panther, model = ghia)),

Ve: vehicle db(owner = john, item = van(make = panther, model = cdx}).

Caching queries and answers

The backtracking mechanism of LIFE may result in sendiﬂng the same query

to the database.

Example 3.7 For erample, consider a LIFE program that has to evaluate the
following clauses:

pred,(A):- ..., pred,(A. B). dbp,'(’B, (@

pred;(b.a).

pred;(c,a).

2

pred;(A)?

It is clear that the database predicate “dbp;(a,(")" will be executed twice,
once when pred, is resolved with its first ground clause “pred;(b,a)” and a

A

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 51

second time when on backtracking pred; matches its second ground clause
“pred;(c.a)”. In order to minimize the interaction with database, and avoid
repeating the same query, the candidates for the queries and their answers
are cached in the active memory. This technique known as caching queries is
described in [14] for Prolog, and is generalized for i-terms in LIFE.

In fact we need to avoid sending a subsumed query to the database again,
i.e., we check whether the candidate for the query is going to result in fetching
the subset of facts which have been retrieved by a previously generated candi-
date. Subsumption of queries can be easily checked in LIFE, as it corresponds
to checking the sub-type relations on the type symbols in the candidates gen-
erated for the queries for the same relatjon. Recall that from the definition of
a candidate the attribute values of a candidate is either T or a list of symbols
other than T. A candidate C; is subsumed by a candidate C'; (both candidates

are for the same relation), if for each feature in C';, one of the following is true:
e The feature value is T, if not,

e the corresponding attribute value in candidate C'; i1s not T, and the list
of symbols in C; for this feature is a subset of the list of symbdls in

from the same feature.

Example 3.8 Assume the goal g, = vehicle_db(owner = researcher, item =
ran), and the qualified segments in erample 3.4{. From the data-definitions
(Dy. D3) for vehicle_db, we construct the candidate C,: candidate(Ry(cl =
T, 2= [van], ¢3 = T, cf = T), which returns the fact {V4. Vs}.

For goal g, = vchicle_db(owner = john, item = van), we construct candidate

(', = candidate(Ry(cl = [john], 2 = [van], ¢3 = T.cf = T).

(') subsumes Cy, the symbol john in 'y, providing a further selective condition
on tuples in Ry. The facts going to be fetched by C'; will be a subset of facts
already retrieved by 'y and need not be loaded again. '

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 52

Negative candidates

A query need not be subsumed by previous queries, but there could be an
overlap of facts that needs to be retrieved by the current query and facts

already loaded by the previous queries. Let the set of candidates S, represent

parts of a relation R; already loaded. C is the candidate constructed for the -

current query on the relation R;, and is not subsumed by any of the candidates
Ciin S.. (

We retrieve the facts for the candidate (', but exclude the facts already
Joaded by the previous set of candidates S.. V\/e need to consider a Candldate
(', from S. only if it has loaded facts which can overlap with the facts needed
by (.

As mentioned earlier the arguments of a candidate are either T symbol or
a list of symbols without the top. The intersection (overlap) of the set of facts
loaded by " and C; is non-empty if for all carresponding arguments in the two
candidates, either of the argument value in C', (; is T or the intersection of

the two lists is non-empty. .

Example 3.9 Suppose we have already loaded some facts from relation R,
using the candidates, ((Cy = candidate(Ry(cl = [john] ¢2 = [car], ¢3 = T,
c4d = T), ’C'g = candidate(Ry(cl = [john]. ¢2 = [van], ¢3 = T, ¢4 = T)).
The facts retrieved are {V5}, and {Vg}.

To retrieve all the facts for the goal ¢ = vehicle_db(owner = researcher, item
= car), we construct the candidate C' = candidate(Ry(cl = T, ¢2 = car, ¢3
= T.ci=T)

The intersection of (' and C'y is non-empty, as the corresponding symbols in
them are equal. or one of themn is T, while (" and (', do not load any common
facts.

We select the tuples with an SQL query:

select cl, ¢2, ¢3, ¢4

Ié'

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 53

from R,
where 5(C) and not S(C,).

S(C) = (c2=car) is the selection condition for C, and S(C,) = (cl = john and

c2=car) s the selection condition for (.

Candidate optimization

To minimize the interaction with the database, we assert the retrieved facts
in the internal database of LIFE, and also cache the candidates generated.
The storage of candidates is expensive. We reduce the number of candidates,
whenever a new candidate if added to the set of candidates, by removing the

candidates which are subsumed by the new candidate.

I3

3.3.4 Improvisations
Variables In i'-terms

Variables in '-terms are used to denote coreference constraints {structuring
sharing) between subterms in it. In [1] the theory presented is for vafiable free
facts. We feel that the constraint that the term should contain no variables is’
too restrictive for database applications (like NLP). We will demonstrate with
an example how to handle such constraints and store the facts containing such

constraints in the relational database.

Example 3.10 We consider an erample of a parent database containing the
names of the parent and the child, and the addresses where they live. If the child
lives with his parent this can be reflected by means of coreference constraint on
the addresses of the parent and child. The type hierarchy for this example 1s
shown in figure 3.3.

AT Facts:
Py parent(son = virajladdress = X:address_string,),

father = richards(address = X)).

P

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 54

P;: parent(son = sandy(address = X:address_string,),
father = sunil{address = X)).

Ps: parent(son = adams(address = address_strings),
father = peter(address = address_stringy)).

Py: parent(son = kirmani(address = address_strings),
father = richards(address = address_strings)).

The constraint that the addresses of parent and child in (P, P,) are same
can be represented in the data-definition itself.

The two facts (P, F2) can be grouped together in the same qualified seg-
ment ()3, and the data_definition for it is:
D3 =
data_definition(

structure = parent(son = A(address = X), father = B(address = X))

tuple = Ri(cl = A, 2= B,cd = X),

qualifier = R3(¢l = student, ¢2 = consultant, ¢c3 = string)).

The facts (P; and F;) have the same qualifier as the two facts (F; and
P,), but do not belong to the segment ()3, since the coreference constraint in
them does not match with P, and P,. We store P3, Py in a separate qualified
segment, the data_definition for Q4 is:

Dy =
data_definition(

structure = parent(son = A(address = X), father = B(address = Y))

tuple = vehicle.db(¢l = A, 2= B, 3 = X, cd = Y),

q>ualiﬁer = R4(¢l = student, ¢2 = consultant, ¢3 = étring, ct = string)).

7
Variables in goals
The retrieval algorithm presented in {1} retrieves more facts than is needed. In
this section we augment the algorithm so that it handles variables in goalin a

more efficient manner.

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE %)

AN

1

Figure 3.4: Type hierarchy for example 3.11

Example 3.11 For erample, consider the two facts: {pred(p,r), pred(q.s)}.
The type hierarchy for it is shown in figure 3.4. The data definition constructed
for the two facts is data_definition(structure = pred(A,B), tuple = Rel(cl =
A, c2 = B), qualifier = Rel(cl = b, ¢2= ¢)).

Assume a query pred(X:a, X), the SQL goal for it is Rel(d%::» X:a, c2 =
X). and the C(indidate constructed for it is candidate(cl = T, ¢2 = T).

This will fetch the set of two facts {pred(p,r), pred(q,s)}. The result is incor-
rect, as neither fact can unify with the goal.

An observation we make here is that if there is any fact in a qualified
segment that can unify with a goal, then the qualifier for the segment will
have to unify with the goal. This provides a coarse filter to see if the qualifier
needs to be further processed to generate a candidate for the goal. The same
mechanism provides a partial solution for goals containing variables. For the
above query, the candidate is not generated at all, as the qualifier fails to unify
with the SQL goal. This will not result in any database access for the goal

NOW.

CHAPTER 3. COUPLING LIFE TO A RELATIONAL DATABASE 56

3.4 Garbage Collection

LIFE memory becomes polluted when the retrieved database facts are cached
in memory. If the database size is large, LIFE memory may become full when a
large chunk of database facts have been retrieved preventing fufther computa-
tion. When this happens the cached database facts are automatically evicted
to free up space. An LRU policy is used, where the least recently used fact
name is retracted from the main memory. The number of facts to evict 1s a

percentage of the retrieved database facts set by the user.

3.5 Con(o:lusion

We have described the design and implementation of a database interface for
LIFE. This interface provides for storage of complex facts as flat tuples in a
relational database. We have extended the approach provided in [1] to store
facts containing coreference constraints and multiply inherited types. The
theory [1] could not handle variables in queries very well. We provided a
solution to handle the case where variables occur in a LIFE goal'.

The tightly coupled approach provides an efficient cache mechanism which
enables applications to retriev® a smaller working data set in its main mem-
ory. The interface insulates the user from database operations. The‘ compiled
programs can be used directly by other user programs, requiring no additional
support. The only limitations on the LIEE programs is not to contain assert

or retract operations on the database predicates.

Chapter 4

Persistent Programming

4.1 Introduction

Over the past ten years much research effort has been directed at attempts
to build persistent programming languages [21, 27, 33, 35. 60], incorporating
database functionality into their programming models. The basic idea behind
such systems is the concept of orthogonal persistence [21, 22]. Persistence is
defined as the length of time, for which the data lives and is usable. Th;? two

basic principles behind orthogonal persisterice are:

e any object may exist for as long, or as short, a period as the object is

required

e an object may be manipulated in an uniform manner regardless of the

length of time it persists.

In this sense persistent systems provide uniform abstraction over the storage.

Data in LIFE like other conventional programming languages, is short term
(exist for a program lifetime). Storage for long lived objects 1s usually provided
bv a file svstem or a database interface. This results in long lived data being
trcated in fundamentally different manner from short lived data. A main
drawback is the need by the programmers for code that translates between disk-

resident representation of data and the representation used during execution.

W1
=1

CHAPTER 4. PERSISTENT PROGRAMMING 58

This mapping of data between long and short term storage résults in penalty
in terms of programmer design time and program run time. In a language
with pérsistence, manipulation of data, whether they are short lived or meant
to exist between program runs, is transparent to the user; there is no need
for mapping from one representation to another. The advantages of persistent

programming are:

e improving programming productivity and easing the programmer’s task,
when sharing of arbitrary data structures between invocation of programs

and even between many different programs.

e avoiding ad hoc arrangements for storage of long-lived object and data

convetsion from one format to another.

In the next section we will address how to identify persistent objects and

different techniques for loading them into virtual memory.

4.2 Issues in Persistent Languages

Long term data storage in persistent programming systems are generally pro-
vided by an object store, a conceptually infinite repository in which objects
reside. The objects in such a repository cannot be directly addressed by the
user programs. To manipulate these they must be moved from the object
store into virtual memory in a manner that is.transparent to the application
programmer. While dealing with persistent objects an identifier (Persistent
identifier-PID) by which the object is referred to in the store is:likely to dif-
fer from an identifier { Virtual identifier-VID) by which the same object is
addressed in the virtual memory. This is due to the fact that PID maybe ar-
bitrarily long (typicallv 128 bits or more) in order to assign world-wide unique
names and to deal with large number of objects compared to a virtual identifier

which is typically 32 bits long.

CHAPTER 4. PERSISTENT PROGRAMMING ’ 59

4.2.1 Identifying P'g}sistent Objects

A key design issue in supporting the existence of both temporary and long-lived
objects, is identifying what objects should be persistent. Different systems

employ different techniques [47, 43] and include

e A class type is marked explicitly persistent. All instances belenging to
this class are then made persistent. The O++ [35] language extends
C++ language using this approach.

o The transient or persistent nature of an object is decided when the object
is created regardless of the type to which it belongs. An example of this

approach is ObjectStore [46].

e A third approach is to make data-objects persqlstent‘ if they can be reached

from a set of specified roots. PS-algol [22] takes this approach.

4.2.2 Object Faults and Residency Checking

The attempt to use persistent objects that are not currently resident in virtual
memory is termed as object-fault [47], involving identification of reference type
(residency check) and the transfer of object contents.

The residency checking can be classified into two categories [42] (edye mark-

ing and node marking):

Edge marking: In the edge marking scheme, the object references are tagged
as swizzled (notion of swizzling explained in 4.2.3) or not. A disadyantage
of the edge marking scheme is that multiple copies of the references could
be made, before loading the referenced objects. A costly mechanism is
needed to identify copies of such references and swizzle them. Another
way is to swizzle.the reference, as soon as it is discovered. This may

result in some unnecessary swizzling.

Node marking: In the node marking scheme, all references in a resident object

to non-resident objects are changed to point to a proxy-object. The

CHAPTER 4. PE-RSISTENT PROGRAMMING 60

proxy-object contains a persistent pointer to locate the object on the
disk. When the non-resident object is loaded the proxy-object persistent
pointer 1s changed to the virtual memory pointer of the loaded object.
Subsequent references incur the cost of an indirection. At some point,
the proxy-objects are scanned to check if they are swizzled and bypassed,

to remove the overhead of indirection.

Residency checks can be implemented explicitly in software, or performed

implicitly in hardware using some kind of hardware trap for non-resident ob-

jects. If proxy-objects (node marking scheme) are used, they can be allocated

in a protected memory region to trap the references to them and handle object-

faulting.

For data retrieval, various techniques are employed. The next subsection

gives an overview of the techniques in use, and their relative advantages and

disadvantages.

4.2.3 Pointer Swizzling

The technique of changing a persistent identifier to a virtual memory address

has become known as pointer swizzling, and can be approached in a number

of ways:

1.

o

Map the entire object store into virtual memory. This suffers from some
of the same disadvantages as the use of file systems. This is only pos-
sible if persistent stores are small enough to be contained within the
virtual memory. The advantage of this approach is that it eliminates the
overhead for residency checking, to distinguish swizzled and unswizzled

pointers.

8

An object’s virtual address is of the same size as its persistent identifier.
If the object’s identifier is synonymous to its virtual memory address,
no address translation is needed and the object contents are copied into

the appropriate location in the virtual memory from the disk. However

CHAPTER 4. PERSISTENT PROGRAMMING S 61

if the needed region is already in use, swizzling is performed. Like above

this limits the size of persistent stores to that of the virtual memory.

3. Translate the PID to a virtual address on each dereference via a lookup
in a resident object-table. This approach does no pointer swizzling at all,
but will involve a relatively expensive search of the resident object-table

each time the object is.accessed.

4. Perform the translation from PID-to-VID only once, by replacing the per-
sistent pointer in the virtual address space with a main memory point%rr
to the object. This is done the first time an object is referenced by the

process so that subsequent dereferencing incurs no translation penalty.

Among the options discussed above, the last option seems to provide an
efficient large object store and is most often used to implement persistent object
stores. Pointer swizzling [43, 34] in this case may be approached in various

ways

Eager and Lazy swizzling

Pointer swizzling can be done at different times, swizzling at the earliest pos- ‘
sible as in pure eager swizzling where all the references in main memory are
swizzled in advance. In contrast in pure lazy swi:zling: swizzling is performed
when a pointer is being dereferenced. Igure lazy swizzling provides an incre-
mental approach, using software checks to swizzle pointers on dereferencing by
the application program at run-time. In between the two extremes we could
have wide variety of swizzling techniques.

Pure eager swizzling has few a advantages that it avoids the overhead of
testing the state of reference (swizzled or not swizzled), but requires the data
set be identified before using it, or atleast bounding it. On the negative side
it involves some computational expense of swizzling pointers that are never
used. The data retrieved is less selective, requiring more memory than in pure

lazy swizzling technique. Lazy swizzling on the other hand swizzles references

CHAPTER 4. PERSISTENT PROGRAMMING 62

on demand and avoids reference that is not read and therefore cannot be
dereferenced by the application. It has the disadvantage of a software check
to test whether a reference is a PID or a virtual identifier every time an object
1s accessed. Lazy swizzling can be done at various granularity levels: pointer-
at-a-time, recursively swizzling pointers in an object upto a certain depth or

swizzling all pointers in the page at once.

Hardware and Software based swizzling

Recently, a class of swizzling schemes [45] have been proposed that use vir-
tual memory access protection technique to trigger the detection and transfer
of non-resident persistent objects. The basic strategy is to allocate a page
of virtual memory (access protected) to a non-r‘esident object reference (vir-
tual memory page maps to the page in the persistent store that contains the
object). Accessing the object triggers a virtual memory trap, reading in the
persistent page into the previously reserved virtual page. This approach avoids
the overhead of residency checks incurred by software approaches, which makes
the access to resident persistent objects as efficient as access to non-persistent
objects. .
In the next section we will use the concepts presented so far for the stor-
age and retrieval of persistent data in LIFE in an object-store. Techniq.ues
like catching data, prefetching data, and clﬁstering data in the database were

studied for their impact on performance.

4.3 Persistency in LIFE

From the above discussion it is clear that there is a need for storing persistent
v-terms in LIFE in a database. Recall that a persistent y-term unlike ‘nor-
mal’ v-term retain its value on backtracking, and can be viewed as a set of
graphs with handles on certain nodes. The persistent terms are stored in an

object store implemented on top of the file system of the operating system. As

CHAPTER 4. PERSISTENT PROGRAMMING 63

get psi<term Mapping & ,
LIFE Swizzling Object
Interpreter calls to Module Store
LIFE heap
find
objects
Cache get heap Store
Management page Manager

Figure 4.1: Persistent store architecture for LIFE.

mentioned previously this was done for portability reasons. The architecture
of the system is depicted in Fig. 4.1. Portions of the LIFE interpreter have
been rewritten so that when persistent data is encountered, special routines
can be executed that will handle the persistent data.

An additional interface written in LIFE, compiles the original LIFE pro-
gram into a modified LIFE program, storing the persistent terms in the object
store. It provides transparent retrieval of the 1’-terms in the object store, and
supports orthogonality, manipulating persistent and transient terms using the
same compiled code. The interface supports programs written in pure LIFE,
and the existence of a store under LIFE is made transparent to the user. The
- compiled code can also be linked to other applications written in LIFE, requir-
ing no special support. F

The following sections discuss each part of this system in detail.

»

4.3.1 Design Goals

o When designing a persistent systemn, a primary goal should be ease-of-

use for the intended users. If allocation and manipulation of persistent

CHAPTER 4. PERSISTENT PROGRAMMING 64

objects is no different from manipulation of short-lived objects, the pro-
gram will be easier to write. This also allows for existing applications to

make use of compiled code in the persistent store.

o There should be little run-time penalty for code that does not deal with

persistent objects. .
e LIFE interpreter changes should be kept to a minimum.

e The prototype is to be built in a modular fashion so that different fetch-
ing and storing alternatives can be explored. This will enable different

strategies to be tested to determine which one gives a better performance.

All of these goals entail making persistent data easy to use,easy to extend,’
and easy to tune. The implementation consequences in meeting the design
.

goals are discussed in the following paragraphs.

K

Physical 1/0: Given that the persistent objects of the program reside on
B secondary storage, a mechanism is needed to retrieve these objects au-
tomatically from the database to achieve transparency. When an object

is referenced by the program the system needs to identify whether the
object is already in main memory or not, and if not fetch it from the
database. To determine this, each reference to non-resident persistent
object in virtual memory is associated with a prory object that specifies
location of the database object and whether the object has been fetch;ed

from the database yet.

Caching: To reduce the performance cost of a persistent system, the object
faulted into main memory is cached. This pointer will no longer cause an
object fault, although every reference is still subject to a runtime check.
This reduces the cost of a database fetch over a period of time, but may

clutter the virtual memory over a period of time.

Swizzling: The cached objects can be accessed via a lookup in a resident

object-table. To reduce the dereferencing cost of persistent objects, the

CHAPTER 4. PERSISTENT PROGRAMMING 65

object faulted into main memory is swizzled (figure 4.5), i.e., the objects’
external addresses is mapped to an internal address pointing to the object
value. This will avoid a relatively expensive search of the resident object-

table each time the object is accessed.

Prefetching: Upon an object reference, the system must also determine how
much data to fetch. Fetching only the data needed to execute the current

operation will save time and will lessen the cluttering of memory.

4.3.2 System Architecture
Object store

Persistent programming systems are generally supported by an object store [31,
30], a conceptually infinite repository in which objects reside. The LIFE per-
sistent object store provides storage and retrieval of objects, where an object
is an uninterpreted byte sequence of virtually unlimited size. The store is de-
signed to be efficient and extensible. Objects are grouped together into the
files supported by the operating system.

Access to these objects is via unique object identifiers (OIDs). An object’s
identifier is Aunique only within the file it is contained in; however an applica-
tion can have multiple files opened simultaneously, as the object identifiers are
mapped to globally unique-id values when the objects are referenced in the
virtual memory.

The basic unit of data transfer between disk and main memory is a page.
LIFE objects are physically grouped together and stored in fixed size pages
within a file. Support for sophisticated buffer management is provided. A hash
table 1s provided which takes an object identifier and efficiently determines if
the object is resident in main memory. The implementation of the store is

similar to the one in [30].

Pages:

A page is the unit of data transferred between disk and main memory.

B

—

CHAPTER 4. PERSISTENT PROGRAMMING 66

A page is of fixed size, consisting of page type and the data in it.

Objects ——————> ’ <—— Slots

Object Free Space
Header P o e

Space freed as objects grow and shrink on the page

Figure 4.2: Slot page data structure.

The page types-are:

File header page: a single page containing meta-information about the
file.

Slot pages: a slot page contains objects that can fit into it, header for

large objects and meta-information about the page.

Large object page: page containing large object and meta-information

for it pertaining to the actual layout of the large object.

Slot page contains the small objects and header for large objects. Slots
are used to index and find the actual object. 'The page is laid out with
the slots at the end of page, growing upwards as more objects are added
to it. The objects are allocated at the high end of the page following the
page header, with the object region growing downwards toward the slot

region. The slot page structure is illustrated in Fig. 4.2.

Object:
An object is stored on slot pages and associated with it is a system
generated unique object id (OID), which allows the object to be located
and accessed. The object id is an 8-byte quantity consisting of a 4-byte

e

i

CHAPTER 4. PERSISTENT PROGRAMMING - 67w

File ID Page number Slot in page

Figure 4.3: Object-Id structure.

page number, a 2-byte slot within the page and a number to approximate

unique ids when the slot space is re-used.

The 2-byte slot number provides a pointer to the actual location of the
object in the page, allowing an object to be placed anywhere within
the page. The corresponding slot is updated when the object is moved
around as it grows and shrinks in the page. The unique-id number is for
re-use of slot space. When a slot is used for the first time the unique-id
number is set to one. When an object in the page is deleted this slot
is reused and its unique-id number is incremented by one to avoid any
dangling references to it. The freed slots are maintained in a linked list,
by having the slot-number refer to the next freed slot and the page header

containing the first and the last freed slot.

An object’s identifier is unique only within the objects file, the page ID

and the slot numbertogether specifying the physical location ef the object-

in the file. However object identifiers are mapped to globally unique
identifiers (consisting of File ID too) when the objects are accessed. The

format of an in-memory OID is shown in Fig. 4.3.

At the store level each object is an uninterpreted container of bytes with
an object header attached to it, intended for indicating such properties
as the object’s length, whether it is small or large object, etc. Fig. 4.4

shows the object format for the storage level.

Internally, the store keeps track of two types of objects- small objects,

which can fit entirely in a single page, and large objects, which are too

e
ok

2 . 2

Py

CHAPTER 4. PERSISTENT PROGRAMMING 68

Object type Object length Data contents

Figure 4.4: Object structure.

-~

large to fit on a single disk page. Small objects are stored in the disk
at the location pointed to by the object-id of the small object, while
the object-id of a large object refers to a kind of directory called a large
object descriptor. The contents of a large object descriptor contain meta-

information to access the pages holding the object’s data.

A page contains a number of objects. An object can grow too big for
the page it resides on even though it can still fit into a single page. The
object is then moved to another page and a forwarding address pointing
to the new location, is left behind in place of the object’s original location
(object’s birth-page). When the object again outgrows its new location,
there is no necessity to leave a forwarding address behind at the current
physical location. Only the object’s birth page contains a reference to
its current physical location; all other references point to the object’s
page. It is this marker that is updated with the new forwarding address

reflecting the new location of the object.

It can also happen that a small object grows to the point where it can
no longer be contained in a single page. In such a case it 1s made into a

large object, leaving a large-object header on the object’s birth-page.

Pointer swizzling in LIFE

The persistent terms in LIFE are stored in an object store. Two address spaces
are managed: virtual address space in which objects are directly accessible by
the applications and persistent address space of the object store. Objects are

transparently moved from one to another on demand.

CHAPTER 4. PERSISTENT PROGRAMMING 69

s fault block referring

1o non-resident object

restdent objects (virtual memory)

¥ non-resident objects (persistent store)

'~
e
: 4
o o
. c: .
>
Lk .
‘e ° f
e
~®" o

Figure 4.5: Pointer swizzling.

Initially a reference to non-resident object consists.of a proxy object (object
descriptor, figure 4.5). The proxy object contains a pointer to its persistent
objects in the secondary storage, and is distinguishable from other objects by
its type field.

To speed up access along inter-object references for main memory resident
persistent objects, the reference to the proxy object is swizzled into a pointer
to the object in main memory. Among the ‘options discussed previously in
section 4.2.3, we use lazy swizzling, which swizzles references on demand. This
option provides an efficient implementation [42] and is most often used. For
portab:llity reason, a software swizzling scheme is used, instead of a hardware

scheme.

CHAPTER 4. PERSISTENT PROGRAMMING ; 70

Page-objects hash table

/ Smmm—

FileID

PagelD _

Slot
\ J \ / /

Object-1D
Object hash table Objects on LIFE heap
T

i

|
Figure 4.6: Object cache

Buffer management

Performance of persistent applications can be significantly improved, if main
memory acts as a cache for disk-based data. Caching data is successful, due

to the property of locality which has two aspects:’

temporal: The current data item in use will probably be needed by the appli-

cation again sometime in future.

spatial: When related data items are physically located together (clustering)
on disk and brought in as a unit into the main-memory, it is expected
that the next data-item is already in main-memory, saving an access to

the database.

The buffer manager maintaius a page buffer, and an object cache to make
use of the property of locality in an application, reducing the swizzling overhead

and minimizing disk access.

Page manager:

»

The unit of data transfer between disk and main memory is a page. The

CHAPTER 4. PERSISTENT PROGRAMMING 71

page manager maintains an in-memory chain (page buffer) of memory-
resident disk pages, indexed by a hash tz;lble (page-table) on the page-id.
Any new page brought in is placed in the middle of the chain. If the page
1s referenced again it is promoted to the top of the chain. For eviction

the pages at the bottom of the chain are chosen.

Whenever a request is made by the object manager to fetch an object
from the disk, it looks up the page-table to check first if the page in
which the object resides is in-memory. If not on the basis of the OID,
the page from the disk is located and loaded into the page buffer pool. A
pointer to the object location in the page is then returned to the object

manager.

Object manager:
Initially the object manager maintains a chain of object descriptors, in-
dexed by a hash table (resident object-table) on the object-id.” When
an application’ accesses a non-swizzled persistent reference (OID of the
object), the persistent pointer is passed to the object manager. The ob-
ject manager consults the resident object-table, to see if the object is
resident in main memory. If not resident, the persistent obj;ct is to be
made resident. it gets the reference to the object from the page man-
ager. The object is converted into an internal LIFE format ;nd stored
in the LIFE heap, and the mapping from OID to main memory pointer
is registered in the object-table. The persistent reference is swizzled to
the; main memory addréss of resident objects, to avoid the overhead of
consulting the object-table on subsequent access to this reference by the

application.

For eviction, the objects at the bottom of the chain are selected. The
object descriptors are also chained together on a second hash table ac-
cording to the disk pages in which the objects lie. This allows updates
to objects residing on the same page to be written back to the disk at

the same time. Figure 4.6 shows-three objects stored on the same disk

2

CHAPTER 4.- PERSISTENT PROGRAMMING 72

page.

4.4 Conclu\sion

We presented an orthogonal persistent LIFE system starting from motivation
for the need for it and design principles. * A simple lightweight object store
was built on top of file systems, as opposed to using a commercial 0OODBMS.
This would meet our design goals of portability, high performance and mod-
ularity. The persistent object store caters for object identity, for the storage
and retrieval of per51stent terms in LIFE.

Besides the orthogonal persistency, another de51gn goal was that perfor-
mance should compare favorably with non persistent LIFE data. Performance
critical issues of detecting database reference, pointer swizzling and caching
were addressed. In section 6.1 we have presented a GIS (geographic infor-
mation 4syst’em's) application as a natural application for the persistent terms.
Performance analysis of the application was done to compare database persis-
tent LIFE with a stand alone LIFE system. The performance of the database
peréistent LIFE was found to be comparable with stand alone LIFE system

and in fact performed better for larger GIS database. The results are shown

- 1n section 6.1.2.

A prototype of it has already been implemented and an initial version of
'it is fully operational except for storage of large objects. The implementation
was done partly in C++4 language an(f“partly in LIFE and runs on various
flavors of UNIX (Solaris, IRIX, Linux, Ultrix and SunOs). The advantages of
the database persistency in LIFE can be obtained without any modifications

to existing LIFE programs.

-

c‘é; S

AP

B gl

Chapter 5)
Reverse Compiler

In this chapter, a clustering method is proposed to extract hierarchical cate-
gorization of binary relational facts in LIFE. The method gives a polynomial
time algorithm for translating a binary relational database into LIFE facts.

The algorithm can also be used for:

~

e concept generation in knowledge systems [57].

e determinization and the minimization of finite-state word and tree au-

tomata [58].

This problem was posed by Ait-Kaci [50] and this work is a joint effort of
Ait-Kaci [50], Gaur [49] and myself.

5.1 Introduction

Civen a binary relational database R = (A, T) where A is the set of attributes
and T denotes the tuples over A. If cardinality of A is two, the database can
be visualized as a matrix. Let us consider the following example:

R = ({a.b}, {{c1,es}, {c2,c6}, {5, e7}, {er, c6})

R can be represented by a matrix whose rows correspond to the entries in

the first column of T and whose columns are the entries in the second column

73

CHAPTER 5. REVERSE COMPILER 74

C5 | C6 | C7
cg| 1] 110
cl 0 110
sl 01 011

Table 5.1: Matrix representation of relation R

i

of T. If the pair (c;,c;) is in T then the corresponding entry in the matrix is
1 else it is 0. The matrix corresponding to R is shown i\n Table 1.:

Given a 0/1 matrix M, a rectangle of 1sis sub-matrix of M composed of
all 1s which can be obtained by permuting rows/ columns of M. A rectangle
is mazimal if it is not contained in any other rectangle of 1s obtained by
permutation of rows and columns.

As the number of attributes in the relational table is 2, we can represent
the database as a matrix. Given a relational matrix M, we are interested 1n
the following questions: ‘

Problem 1: Partition M into maximal rectangles of ls such that the
number of rectangles in the partition is minimal.

Problem 2: Given M, find all thelmaximal rectangles of 1s in M.

We are free to permute the rows and\the columns of M. Each rectangle in

the output to Problem 2 is a concept [57].

5.2 Concept Generation

{ve will describe an algorithm for solving Problem 2 and show how the merge
step in the algorithm®*can be modified to solve Problem 1. To describe the al-
gorithm we will study a particular class of matrices called row-conver matrices
and show that there exists a linear time algori{hm for both Problems 1 and
2 when the input is restricted to this class. This class forms the base case of
our algorithm (figure 5.2). An informal recursive definition of the algorithm
is: If the input is row-conver (algorithm to generate rectangles for row-covex

matrix is shown in figure 5.2) stop, else split the input into two equal sized

CHAPTER 5. REVERSE COMPILER : 75

halves and call the top level routine on the both the parts. The output from

both the decompositions is combined using a function called merge.

/

e start point: For each row it refers to the column position of
" the first 1 in each row.

e end point: For each row it refers to the column position of
the last 1 in each row.

e S = {Sl, ..., S,} is a sorted list of unique start points of
each row: ’

e For each 5; in S get a list of rows E whose start point is <
than startpoint of S;.

— The rows in E are sorted on their end points from

largest to smallest M

— For each row with unique E; in E, a rectangle is gen-
erated consisting of all rows in E whose end point is <
than end point of FE;. :

Figure 5.1: Row Convex Algorithm

N | R

A 0/1 matrix M is called row-convez if there exists a permutation of the

columns of M such that all the ones in every row are consecutive.
Lemma 1 The number of maximal rectangles in a row-conver matrir M < n?.

Proof: Let the set of n intervals (1) be sorted by their start points, Iy denote
the first interval. We remove Iy from I, the number of rectangles in (/,_; is
denoted by T'(n — 1). If Iy is added we add at most n maximal rectangles.
Therefore for the recurrence relation is T(n) = T(n — 1) + n. Hence the

number of maximal rectangles < n?. i [

CHAPTER 5. REVERSE COMPILER ' 76

Lemma 1 gives us an algorithm for finding all the maximal rectangles in a
row-convex matrix M. The algorithm is linear in the number of rectangles out-

putted. Figure 5.2 shows an informal description of the row convex algorithm

coded in LIFE.

ro Swap columns to make the matrix M row convex as far as \
possible.

e If the matrix is row convex we gre done (Row convex algo-
rithm generates all the rectangles), else '

e Rows which have contiguous sequence of 1’s is pushed to top
of the matrix.

e Split the matrix M into two such that

— the matrix M1 is a row convex matrix. Row convex
algorithm generates all the rectangles for M1.

— Generate the rectangles for M2.

— Merge the rectangles generated by M1 and M2.

\ Figure 5.2: Merge Step J

v

In this section we will describe a divide and conquer, algorithmfor solving
Problem 2. Figure 5.2 shows an informal description of the algorithm coded
in LIFE. If the input matrix M is row-conver we use Lemma 1 to output all
the maximal rectangles. It is easy to determine whether the matrix M is row-
convex or not. If M is not row-conve; then we partitionyM into two matrices
M, and M, such that M, is row-convex. This is can be achieved by picking the
rows which do not have any zeros embedded inside the ones. Next we call the
main predicate on M, and the output is merged with the maximal rectangles
of M,.

Let R; denote the set of all maximal rectangles of M;. Union of M; possibly

CHAPTER 5. REVERSE COMPILER 77
£
contains more maximal rectangles than the union of R,;;,. We now characterize

the new maximal rectangles in the union of M.

Definition 1 Overlap of two Rectangles: Given mazimal rectangles R, and
R, overlap s defined to be the new mazimal rectangle R such that rows of

R = rows(Ry) Urows(R,) and columns of R = columns(Ry) N columns(Ry).

Lemma 2 Union of M, and M, contains marimal rectangles which can be
obtained by Overlapping r,7m | 7 € Ri,r,n €\R, and these are the only

mazimal rectangles which can be added.

Proof: Ry and R, do not have any rows in common therefore by overlapping
them we get a new maximal rectangle C. We will now show that C' cannot
interact with any r; € R;, R;. Without any loss of generality, assume that r; -
belongs to M,. R can pictorially be represented as shown in Figure 5.3. The
only new concepts generated are 'y and C,. C) can again be divided into
upper and lower halfs. The upper half of C, is already a maximal concept
in R, which when combined with some r; € R, will give C;. C; is already
in Ry because it is the overlap of two maximal rectangles T and T, in the
Figure. We have shown.that any new maximal rectangle cannot interact with
an old maximal rectangle to generate a new maximal rectangle. From this it
follows that no two new maximal rectangles can interact to generate another
new maximal rectangle. [

Next we will-give an upper bound on the number of maximal rectangles

generated by Lemma 2. We will show that the upper bound is tight.
Lemma 3 Griven a matric M, the number of mazimal rectanyles 1s < 2™ — 1,

Proof: Assume that the merge step, partitions M into two matrices of size
1l and n = 1. Let T(n — 1) denote the number of maximal rectangles in the
matrix of size (n —:1). Another T'(n — 1) maximal rectangles can be added in

the merge step. Therefore the total number of maximal rectangles is given by

CHAPTER 5. REVERSE COMPILER 78

/

Figure 5.3: Overlap of New and-Old Maximal Rectangles

the recurrence relation: T(n) = 2+T(n—1)+1. Hence the number of maximal
rectangles 1s < 2" — 1. [

Observe that the bound given in Lemma 3 is tight. Let M be a matrix of
ls except for the diagonal entries which ar€ 0. For this input the number of
maximal rectangles are 2" — 1.

In the next section we will show how Lemma 1 and Lemma 2 can be used
to cover a matrix by maximal reeta,ngles. This will give us a way of translating
a binary relational database into LIFFE facts (Problem 1). An example of such

a translation was provided in section 1.3.3.

5.3 Reverse Compiler

In this section we glve a polynomial time algorithm for covering a matrix with
maximal rectangles We now characterize the number of maximal rectangles .
needed to cover a row-convex matrix. It is easy to observe that covering a
. bipartite graph with minimum number of complete bipartite subgraphs K., ..
can be reduced to coverimg a matrix M with minimum number of maximal

rectangles. Hence the problem of minimizing the size of the covering is NP —

CHAPTER 5. REVERSE COMPILER 79

Complete. Therefore we will restrict' our attention to a greedy covering which
is minimal in size.

Now we will show that finding the cover of M with minimum number of
reétangles is equivalent to covering a graph with rﬁinimum number of maximal
cliques. Since the former problem is equwalent to graph coloring it is hard
to approximate covering of M [59] This reduction is stronger than standard
NP-Completeness reduction as it tells us about how hard approximating the
problem is whereas standard reducton offers no such clue.

We use CR to denote minimum cover of a matrix M (with maximal rect-

angle CC denotes a minimum clique cover of a graph G.
Theorem 1 CR <= CC.

Prdof ;

— Let the vertices of ¢ be (z,7) where 1, j are the rows and columns of M.
Two vertices (z,7), ({, m) (ls in M) are connected by an edge if (1 = l/}br
m) or (i,m) & (l,j) are I's in M. ltis easy to see ‘that each maximal rectangl
in M corresponds to a chque in- GG, therefore if we have a mmlrnum cover of
M we have a minimum cover of G by cliques.

<= Given a graph GG we now construct M. Each vertex 7 of G is placed
on the diagonal (7,2) of M. If (z,7) is an edge in G then we mark (z,7) and
(j,1) as ls in M else the entries are 0. Also, all the diagonal entries of M are’
ls. With this construction, if we can find a minimum clique cover G we have
a minimum cover of M. : m

The chromatic number of a graph can be determined by covering its com-
plement with cliques. "As ApproximateA coloring a graph is hard [59], we have
approximate covering of a matrix with rectangles is a}sovhard.

Given a row-convex matrix M. Let § = U—,(rmm’,/rmr) | s.t. 70 is the

first occurrence of a 1 in row r and 7., is the last occurrence of a 1 in row 7.

Lerima 4 The number of maxrimal rectangles required to cover row-conver M

is equal to the number of distinct elements in S.

¥

CHAPTER 5. REVERSE COMPILER ‘ A 80

Lemma 4. gives us the minimum number of maximal rectangles required to
cover a row-convex matrix. It takes O(n?) time to cover a row-convex matrix
M with maximal rectangles where n is the size of the row/ column. We can

now modify the merge step to produce a cover of M with maximal rectangles.

Assume that we recursively found the cover of M; and M, (the upper and the

lower half of M). We now have to check whether each rectangle in the cover of
M; and M; is maximal or not. If it is not maximal then we extend the cu;rent
rectangle to the maximal rectangle containing it. Thereby generating a cover
with maximal rectangles. Observe that the number of maximal rectangles
required to cover a matrix M is at most n, where n is the number of rows in
the M. Also, this bound is attained for a matrix of all 1’s with 0’s on the

diagonal.

5.4 Conclusion

v

In this chaf)ter, we afldressed the issue of converting binary relational data into.

LIFE as-terins. We provided a polynomial time algorithm for translating the

database into LIFE facts. The algorithm was tested on binary relations and a .

GUI interface was built to visually verify the correcfiiess of the algorithm. -

= . >

,

#

“Txa,

Chapter 6

Applications

6.1 Geographic Information Systems

Digitization of maps [52, 511 is being currently pursued for effectiv_e‘u-i‘ilizatibn‘,

of the information in various fields: vehicle routing applications,f-route finding

applications, business listings etc. There is lot of fecus on digital road maps -

for vehicle navigation syst“‘ems. zb.-term"s‘ are flexible and useful for répresenting
spatial data in geographifc information systeins(GIS). The functlonal and-the

relational component of LIFE can be used to to express descr}ptlve data and
constraints in GIS. It also prov1des the user with a high level data manlpulatlon
language In this section we consider digital road maps, as am example GIS

application in LIFE. The road network is modeled as a pers1stent Y-term where

edges correspond to road segments and nodes representmg roa{mtersectlons

and dead ends. In this way, the spatial relatlonshlp between- road segments

are explicitly retained and can be used for analys1s

In such road networks route finding is a ma]gr operatlon Displaying of
routes for navigation. of,systems 1s also needed. A major concern here is degra-
dation of the performance with the increase in network size. In the next sectioh
a compressmn technique is ,proposed ‘which altows reductlon in the number

of&%odes and edges in the road network. This reduces the search space size in

route finding and display of route. The algorithm fiids a near-optimal. route

[\
k) X

81

w7

CHAPTER 6. APPLICATIONS 3 82

from a starting point to the destination point, while improving the efficiency
" of the route g‘ﬁ‘nding algorithm. This problem was communicated to us by G.
Misund [48]. S : : «

In section 6.1.2 we report on the performance of long-term persistency for

%

“these terms.

6.1.1 Hierarchical Data Compression

Typically GIS data is in order of Gigabytes, computing shortest péth on ‘the
- actual data can be computationally.intensive. In this sectlon we study a com-
pressmn algorlthm for the GIS network Wthh guarantees that the topology of .
the road network-is preserved arnd routes are approxi ated reasonably.

The cul:rent and ant1c1pated 1ncrease in the volu digital map have
revealed two very basic problems in handlmg the GIS data namely:
e Visual display of the map: 'User interfaces are a fur,ldamént/al component

of digita’l road maps applications, ‘.a's 1t would plav acritical role in‘their .
adoption and success.” Effective presentatlon of route guidance and navi- "
gation maps is a non-trivial task due to llguted volor, small dxsplay area .

and the very nature and size of the data that needs to be dealt with.

® Performance: Digital road maps are the basis for many functions sich as
positioning, pre-mission route planning, route guidance, map matching
etc: Performance of these functions will be a crucial factor with i m(:reasmg

size of the network

The road network switably compressed can help improve the visual display |
of road maps. The map then can be displayed at different tevels of details,
presenting portions of the map of current interest to the user at a higher
resol'utions’This would impfove the user’s ability to visually discern the relevant
information. ¥ o -

The compression of the network’ would also help'}in improving thé perfor-

mance of the queries on the road map such as route finding, which is a frequent

-

CHAPTER 6: APPLICATIONS | | 83

operation in such applications.

In this section we provide a hierarchical compression technique to improve
the performance of route finding in the road network. The technique is based
on a triangle-based edge approximation (observe that other reductions are’
possible), replacing two adjacent edges (edges having at least oné common
node) in the graph by a edge (which forms the third side of the triangle
) of apprdimate length. This method for compressig)n of spatial data gives
us a hierarchy of triangle-based edge approximations, by applying recursive
refinement at each level. For display purpose we have to ensure that the
topology of the road network is preserved. For example if there were no cross
overs in the original data then the compressed data should also preserve the

non-C£ross over property.

.

Hierarchical Corﬁpression Algorithm

The hierarchical structure is built by selecting a set of adjacent edges in the

~graph at a giv;n level and ‘applying a recursive compression based on the

.“triangle-based edge approximation.

We number the hierarchical levels from 0 to N, where 0 corresponds to

-~ the uncompressetl road map and successive refinements are labeled from 1

onwards. Edges and Nodes in the graph will be capital letters. Edges are
also given numerical indices, indicating the level in which the edge is present
and considered. A road map is described by a graph G = (V, Ey), where V
are the vertices of the graph‘corresi;onding to road interseciirons and .Eq are
the edges‘ in the graph corresponding to road segments present at level 0 (i.e
uncompressed graph). |

Following is then a recursive definition of the compression algorithm. To

-generate the next level i from level 1 — 1, consider the edges labeled : — 1 (i.e

present only at level 7 — 1). To begin with all the edges of level i — 1 are added
to level 7. Now consider any two edges A; and B;. If the edge}s A; and B; are

adjacent, the two edges are compressed and replaced by a new edge C,;. The -

4

CHAPTER 6, APPLICATIONS o ‘ T 84

twg, adjacent edges are compressed, only if the newly generated edge C; does
not result in a cross over of the edges in level tand the resulting graph remains
connectéd. The new edge C; length is the distance between the vertices of the
r
compressed.

R TR A ' . :
This scheme will give us a hierarchical structure, with some nodes not

belonging to higher levels (this happens when all the edges incident on the node’

edge, which should be a close approximation to the sum of lengths of the edges

are removed). To determine the shortest route between any two vertices of the *-

" hierarchical road network, we find the highest level ¢ in which both the vertices

are found. We then compute the shortest path between the two.ve‘rtices,

considering the graph of level i and using the A* algorithm described in. the

next section. This gives us a near optimal shortest path. More sophisticated

schemes for.route finding are also possible. , ’ \

E

Route Fmdmg

Optimal path plannmg in a network of road map is one of the basic tasks in
the transport industry. For example, to deliver goods from a warehouse to a
customer, we need to find the least cost path among the possible set of paths
between the two locations. The cost functioh to be minimized could be any of
the parameters such as t1me distance etc. ' _
An A* algorithm [53] 1¢ used to ﬁnd the optimal path between any two
given points‘ In this aigofithm’ a heuristic search function is used to prune
the search space, expandmg fewer nodes than the popular Dljkstra. s ,bhO{‘t(’St
path algorlthm The road network con51sts of nodes and edges For each node
we associate a cost of reachmg the destmatlon from the source. The cost is

computed as the sum of the Cost to reach a node frém the source node (Vla

a particular path) and an astlmate of cost to reach the destlna.tlon from this

node. The algorlthm to Compute the shortest past is ag follows: *

'I. Place the start node on the stack.

2. Pop the first node from the stack.

M

. CHAPTER 6. APPLICATIONS ‘ 83

3. If this noede is same as the destination node, we are done and the cost

assigned to this node is the smallest cost.

1. Find'the neighboring nodes of the node removed from the stack. Estimate
the cost for each neighbor node to the destination node. The neighbor

nodes are tfh'en added to the stack as follows:

v -

(a) If the neighbor nodeis found on the stack, the current cost estimate
of the node is compared with the previous cost estimate of the node.
- If the current cost estimate is smaller, update the cost of the node.

~ If the node is not on the stack insert the node in the stack.

(b) Sort the nodes”in” the stack in the increasing order of their cost

eStimate.

5. Repeat steps 2-5.

31 T T T v T Y T =T Lr PN
.
o ® °
08 ' * ’
s - ° B
. ;
.
L 4 b4 g
s, o ~ v
0.6 } ®e N . "y e
° °
‘0o & oo LA -
.0. > & Y
04 | . A O op 0 3 4
a . P %ce o
24 eoe® .. i [‘
Se®s0000 LK * o
oz kb 0e000eec00e s ° e
L 4
)

Error Ratio dfference in computing shontest path

08 i A n Il i e A i i

o] 500 1000 1500 2000 2500 3000 3500 4000 4500 ° 5000
. All Pair Paths

-

&

Figure 6.1: Compression obtaied on the road map database

v CHAPTER 6. APPLICATIONS

36

80 s888e008ess.
“3.."0 .

5)p

0“

5000

@
g
-4
-
=
-
=
©
o
-0.8 B Ratio Spesed Improvement for tho.Qompvessod Graph e *® -
. ° °
-1 A L " . 1 i 1 . A
o 500 1000 + 1800 2000 2500 3000 3500 4000 4500
) 2 & ~All Pair Paths
p ’
3
Figure 6.2: Performance gain of the compressed map
a(m L T T L T Ll LY LE Ll
All routs paths error frequency distrnibuton (4560) ——
2500 }- g
2000 } p
oy
[~
S 1500 }]
g
[V
1000 | -
500 |- -
o A I l L 1 A e,
-1 -0.8 -0.6 -0.4 -02 o 0.2 0.4 0.6 o8 1

Figure 6.3:

Error Rabo diterence in computng shortest path

Fregueney distribution of compression of map

" CHAPTER®. APPLICATIONS ' 87

4
2500 ey v r— Y — - r T
b All routs paths time frequency distribution (45680) ——
2000 4 -4
1500 }- -
ey
=
D
=]
g
[
1000 |- -
. ,Jr,‘
500 |- <
0 A - i L I l
-1 -0.8 -0.6 -0.4 -0.2 (o] 0.2 0.4 0.6 08 . 1

Ratio speed improvement in computng shortest path

-

Figure 6.1: Frequency distribution of performance gain of the campressed map

.Performance of the Algorithm

%

In this section we examine the performance of the hierarchiCaTc’ompression

“algorithm on the real world data of Royken area in Oslo provided by G. Mis-
und [48]: Two factors to be observed are the compression achieved and-the
variance in shortest paths comput;?d using original and compressed data. We
limit ourselves to the smaller data set. This enables us to generate numbers
for all pair shortest paths in original data.

The compression algorithm was applied to a road map consisting of 100
edges and 97 nodes.. A simple greedy scheme gave a compression of 30% .
removing a total of 38 edges. Next we computed the approximate shortest
paths between all pairs of nodes in the compressed graph. and compared it
with all pair shortest path on uncompressed graph. Figure 6.1 shows the ratio
difference between the two paths for all pair of nodes. The percentage speed

improvement for the compressed graph is shown in figure 6.2. The frequency

04“?“"“

CHAPTER 6. APPLICATIONS : : 38

distribution of percentage error difference and percentage speed improvement

are plotted in figure@®.3 and 6.4. More than 90% of the route pat\hs were

computed with an error difference of less than 20%. while 40% of the route

paths showed speed improvement of more than 50%. .

6.1.2 Performance of the Persistent Database

N
‘

‘The performance of long-term persistency for the road map database above
has been evaluated and the results are presented in this section. The goal of
this study is to analyze the cost associated with persistent data and contrast
it with application performance when the entire application database is to be
in the virtual memory. For our performance study the system configuration
used for the tests is a Dec alpha with 128 Mb of RAM, and 5 Gb of disk space

running the OSF 3.0 version of the operating system.

st‘ T T Y T T T T T T
180s }- virtual lication -e— B
persistent application (fetch depth=1) -+-- .
persistent aprlication fetch depth=5) -8--
160s | persistent application (fetch depth=10) - B
persistent application (fetch depth=15) - -
N - .) -~
140s |- ? -~ h
~
120s | P p
- "
E 100s |- B
_
80s |- 4
60s |- p
40s |
. » - = T
20s | 5 ~
R - R R A N S - EEPR SR ~ WU SRRl IS ~ RN -~
OS A A A i i A A ok A
(o] 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Nodes + Edges

Figure 6.5: Startup times of map

The road map is stored in the persistent database as a persistent v-term

%

ﬂ‘ .

CHAPTER 6. APPLICATIONS ' 89

<

of nodes and edges. Once the data is stored in the database. the application
is run by retrieving only the data currently needed. For the case where the
application data can be only in virtual memory, the virtual application needs
to build the entire road map database, every time it needs to run. When the
user starts a query session, it is important that the application start quickly.
If the database is persjstent, one has to load only the source code needed for
querying and not the entire database from the disk. Thus persistent database
has the advantage that the road map need not be generated again, every time
some computation is to be done on the database. The startup times for the
two systems are shown in figure 6.5. The depth of the i-term retrieved is
varied from 1 to 15 for the persistent application. The system with database
persistency starts quickly, regardless of the size of the data when the depth
of the ¥-term retrieved is small. For the virtual system. as expected the load
time is large (the start time increases rapidly) and worse for the construction

of the road map converting raw data to internal memory reperesentation.

45s T L Y T v

QC without data -e— e b
QC with 3/4 of memory filled with data ——-- g

§

25s } /) : §

GC Time

15s |- e e
10s _’_—-"-‘ ~

58 b~

Os I A i i A

60
LIFE data memory size in M8

Figure 6.6: Garbage Collection (GC) times in LIFFE

.

CHAPTER 6. APPLICATIONS , : 90

LIFE allocates a fixed amount of virtual memory for the application data to
be manipulated. Garbage collection (GC) is done when the allocated memory
is used up. Garbage collection in LIFE could constitute a significant portion ‘A
of user time. especially if LIFE is started with large virtual memory. The plots
for GC are shown in figure 6.6 for both with very little data in LIFE memory
and 3/4 of it filled up with data. In a persistent application. there should be
less frequent garbage collection as the application works on a smaller data set,

although the database' may be large.
; :
A

Fetching Objects

To test retrieval time, we performed a set of queries on how to get from one
point of the road map to another in the shortest possible time using the al-
gorithm described in section 6.1.1. A series of performance tests were run on
different size data sets on both the systems. The number of edges of the data

set being loaded was varied from 50 to 850.

sms ¥ T L] T L
+
500s |- Virtual application -e— .
Persistent application ——--
400s |- B
g 300s | e 4
— ___*__--'
T
e
200s | - 4
—”’
100s | e -
os A A A A A L
[¢] 100000 200000 300000 400000 500000 600000 700000

Nodes x Edges

Figure 6.7: Perforiance of Route Finding Algorithm

CHAPTER 6. APPLICATIONS 91

400s T T T T T T

3s0s | Garbage Colilection times : .

300s | Virtual applicaton -e— -
Persistent applicatton -+ -

250s .

!

150s |

100s |

700000

00000
Nodes x Edges

Q

Figure 6.8: GC times in Route Finding Algorithm

180s |-

140s |

1208

Time

:

¥

L Ll T L L) L
Larger Virtual Memory used (ensuring ho garbage coil@ction) §

Virtual application -e— N
Persistent application —+—--

A i A A " A

g

Figure 6.9:

ory

100000 200000 300000 4 500000 600000 700000
Nodes x Edges

Performance of Route Finding Algorithm with larger virtual mem-

CHAPTER 6. APPLICATIONS . 92

The plot in figure 6.7 shows the average time taken to execute the set of
queries for databases of different sizes ranging from 50 to 1000 edges. All times
are an average of 5 readings.

The virtual application performs quiet well, when the data set size is smaller
than the LIFE memory size. However as the data set size increasés,' it starts
thrashing due to garbage collection. The time used by the garbage collection
is separated out and shown in figure 6.8. Figure 6.9 shows plots of both
the system when using a large enough virtual memory to avoid any garbage

collections.

6.2 Information Retrieval Systems

In the past several years, there has been a flood of information available over
the world wide webh. This has resulted in development of many new sys-
tems [55, 56] that allow users to search for and access these resources. This
rapid growth in the number and size of bibliographic, full text and other elec-
tronic information sources, has led to a new problem associated with the search
and retrieval these resources: finding information which'is of interest to the
user. Traditional information retrieval (IR) systems use simple string matching
for finding the documents, relying on methods such as statistical measures to
define relevance. These systems are quiet effective forgome kinds of searching
for example known item searching, but when given imprecise information to
search for, they may not get truly relevant information. As mentioned earlier,
an approach to improve the effectiveness of the information retrieval system is
to express the conceptual content of text in a knowledge representation tech-
nique [10]. The conceptual representation enables the user to find information,
that a user has not named explicitly, but neverthless its relevant to the user.
As an example application, we examine the organizing and searching of bib-
liographic databases. A knowledge base of bibliographic databases constructed
and represented as type hierarchy in LIFE is shown in figure 6.10. The main
focus will be on testing the implementation of the LIFE-SQL interface, which

CHAPTER 6. APPLICATIONS ' 93

has been designed for such large databases:

T

philosopm\pure science
tanguage / \

mathematics computer_science

linguistics

computer_graphics
artificial _intelligence

dgtabase
neural i
enetic
natural_.language networks il ithms spatial
processing expert w gon d‘::mbase
systemns relational
database

object-onented
database —_——

Figure 6.10: Concept hierarchy for bibliographic database

6.2..1 Bibliography Database

For our experiments we got a large collection of bibliographies of scientific lit-
erature in computer science from [54]. The collection contains journal articles,
conference papers and technical reports in BibTeX format.

A BibTex entry contains information about title, author, keywords, etc.

Each entry is represented in LIFE as a 1-term as:

_document (title = “Types and Persistence in Database programming”,
author = (fname = 'Malcolm’, Iname = "Atkinson’),
subject = 'Database’, .
contained_in = journal(acs87),

keywords = ['Atkinson’, 'Persistence’]

journal (acs87.

CHAPTER 6. APPLICATIONS 94

name = “ACM Computing Surveys”,
publisher = '"ACM’
date = date(month = ’June’, year = 1987)

).

The bibliographic database is compiled into the external database based

on the concept hierarchy of symbols in the database.

6.2.2 Knowledge representation using conceptual hier-

archy

“he knowledge base contains a conceptual hierarchy (figure 6.10, a sl‘ightly
modified version of figure in [10] on page 258) of the subject matter of the
bibliographic entries. The bibliographic entries are frequently searched by
their subject matter. The conceptual relationship between subject types of
the bibliography database can be represented as a type hierarchy in LIFE.
For example the subtype relation database < computer_science encodes the
knowledge that databases is a subfield of computer_science.

The main advantage of such a representation is that we can handle impre-
cise information in user queries. For example if the user requests documents

in linguistics, it will retrieve all documents in natural_language_processing.

6.2.3 Performance Analysis

The results of a series of experimef;ts on the performance of LIFE-RDBMS
interface is presented in this section. For all these experiments a tightly coupled
architecture is used where the database facts are dynamically retrieved as and
when needed by the application. The perforrnan(ce of LIFE-RDBMS has been
measured on a Dec alpha with 128 Mb of RAM, and 5 Gb of disk space'
running the OSF 3.0 version of the operating system. A LRU (least recently

used) policy was used in eviction of database facts when LIFE.memory was

full.

CHAPTER 6. APPLICATIONS) 95

The experiments were divided into three categories, evaluating the perfor-

mance of:

e Stand alone LIEE with LIFE-RDBMS interface.

e Caching.

Stand alone LIFE with LIFE-RDBMS ‘Interface

One of the main problems in a stand alone LIFE is that the unification mech-
anism in LIFE forces matching with all the clauses of the fact. If the database
is large this could constitute a considerable proportion of processing time, as
a result of which the performance would be intolerable. A chief advantage of
a tightly coupled LIFE-RDBMS system would be that the working set of facts
would be smal, resulting in a performance gain. |

For the storage of LIFE facts in the database, we had partitioned the

facts (see section 3.3) based on the type hierarchy of the symbols occurring in

these facts. Each such partition was then stored in a separate relation. This

mechanism provides a concept based clustering of facts into a-single relation.
The concept based clustering would improve performance as typically the ‘user
is interested in retrieving facts of similar concepts.

We tested the retrieval timés of Stand alone LIFE and LIFE-RDBMS in-
terface for single queries. We ran the shallow and deep backtracking queries
for both the cases. The shallow and deep backtracking results (in table 6.1)
indicate how quickly LIFE unification-process can generate answers to a query

(LIFE indexes clauses by the functor name of the clause).

Table 6.1: Performance of LIFE-RDBMS Interface vs Standalone LIFE

EQuery j LIFE-RDBMSI Standalone LIFE] Cardinalitﬂ

queryl(shallow backtrack) 0.133333s 0.0333333s 10397
query?2(deep backtrack) 0.183333s | 1.71667s 10397

%

CHAPTER.6: #APPLICATIONS | 96

Caching

Caching queries and their answers was done to prevent sending the same queries
to the database again. A source of such queries is the backtracking mechanism
in LIFE. To avoid this we cached both the queries and their ansyers. Although
initially there would be several interactions with the database, caching data
could get the working set (which is usually much smaller than the database)
running in main memory. ’

To estimate the speedup that could be achieved we also implemented a
system without any caching. We thén tested the performance when individual
queries are submitted to both the systems. Table 6.2 show the results of cached

and non cached systems.

Table 6.2: Performance of Caching in LIFFE-RDBMS interface |

rQuery] Caching ‘ No Caching l Cardinaliti]
queryl 0.25s 0.416667s 10397
query2 | 0.183333s | 0.316667s 10397

6.3 Conclusion

7’

We presented two applications in this chapter to analyze the performance of
database interfaces for LIFE.The performance of the persistent store for LIFE
was comparable to the stand alone LIFE system. The performance was better
for large databases, as there were fewer calls to garbage collection routines.
Also the startup t’imps of the aﬁplications are small if the database interfaces
are used for large applications. The deep backtracking in LIFE resulted in
poor performance for large applications. The performance improved when the
facts are stored; in the database as now the LIFE unification engine, had to
deal with a smaller set of clauses. Caching the database facts improved the

performance by reducing the number of calls to the database.

Cﬁapter 7

Conclusion

7.1 Overview of the System

i

In this thesis we have presented the details of the implementation of database
interfaces for relational and object oriented data iI'] LIFE. The design of the
interfaces was motivated by a need for simple and efficient database facjlities
for LIFE for large applications. For the storage and retrieval of LIFE facts
an external RDBMS (SYBASE) was used. As standard SQL-statements are
used for th(; interface, the system is portable and any relational database can
be used which provides SQL. For long term persistency of persistent terms
an object store was built on top of the operating system’s file system. The
advantages of these underlying databases can be obtained with no changes to
the user programs. A prototype of the two interfaces is working and has been

tested on two real world applications.

7.1.1 LIFE-RDBMS System

In Chapter 3 the implementation of a tightly coupled LIFE ind a relational
DBMS was‘described. The design enhances the execution speed of LIFE when
dealing with large clause sets. We have provided a transparent interface be-

tween LIFE and RDBMS. This will allow the user to write whole application

97

LAk

CHAPTER 7. CONCLUSION ') ‘ 98

.

in LIFE, without the need to know the RDBMS system. The main problem
encountered here was to handle two separate unification environments (before
and after retrieval of database facts). We needed to ensure correct backtrack-
ing ovet old and new facts (for example: for efficiency reason LIFE keeps a
pointer to the next rule its going to execute).

The interface provides for efficient storage and retrieval of complex ob«jects
as flat relations.gA concept based clustering of these facts into relations was
implemented to improve access time. The database schema generated provided
a filtering effect, which then retrieved a smaller resolution set from the databa:se
thus réducing a number of unnecessfa;?g unifications. The past queries and
their answers were als,o cached in a compact way. This reduced the number
of calls to the external RDBMS system and also avoided loading the facts
twice. Automatic eviction of cached database facts is also provided when main

memory becomes full.

Implementation Improvements

Several aspects of the theory (see section 3.3) upon which this implementation
is based upon which were either suboptimal or incomplete were improved upon.
We extended the approach to handle multiply inherited types as well. In
applications like NLP, coreference constraints in facts occur frequently. We
demonstrated how to handle such constraints and store the facts containing
such constraints in the relational database. Another aspect of the interface

that was improved upon was occurrence of variables in goals.

7.1.2 Persistent Programfning in LIFE

We have presented the design and implementation of long term persistency
of y-terms in chapter 4. It supports the main requirements of orthogonal

persistency namely:

e persistency as an abstraction over storage,,

CHAPTFER 7. CONCLUSION . 99

F
e reliable and transparent transfer of persistent terms between long and

short term memory.

For stbrage purposes, a simple lightweight ok‘)ject-storel was designed and im- -
plemented on top of the unix file system, as opposed to using a commercial
OODBMS. This meets our design goals of portability, high performance and
modularity. The store caters for storage and retrieval of objects, as an uninter-
preted byte sequence. Object-identity is a key concept here in the,description
of database instances. ‘

We also met our second design goal, namely that the performance of persis-
tent LIFE should be comparable to non-persistent LIFE. The efﬁcie‘ncy‘issues

we dealt with here were: ¢

1

e Identifying database persistent objects
e Pointer swizzling
e Cache management

For aetecting database persistent objects, a software scheme was used.
Hardware based schemes were avoided mainly for portability reasons. Also
previous studies have shown that performance of software based schemes are
comparable to hardware based schemes, if not better. Pointer swizzling was
employed to minimize the overhead cost of a lookup table when the object
is referenced again. . This would amortize the cost of swizzling over several

references to the same object.

7.2 Reverse Compiler

The problem of converting relational data into LIFE as ¢>-terms, was addressed
in chapter 5. A clustering method was given to extract hierarchical categoriza-
tion of relational facts in LIFE. The method gave a polynomial time algorithm

for translating a relational database into LIFE facts . The algorithm was tested

CHAPTER 7. CONCLUSION 100

£

on binary relations and a GUI interface was built to visually verify the correct-
ness of the algorithm. This translation buys us compact representation of the
relational data using the expressive power of ¥-terms (section 1.3.3). Further

research needs to be done to extend our approach to n-ary rglations.

7.3 Applications

V(/e believe that the combination of LIFE and database systems has definite
advantages. As stated earlier, declarative style of programming (mixing func-
tional and relational expreésion) in LIFE, flexible 1-term data model and pow-
erful type mechanism of LIFE provide a good platform for applications which
require complex data and réasoning power. In order to test the effectiveness
of the database interfaces two applications were designed. Our experiments
with practical systems show that LIFE is an excellent -tool for building real
world applications. The GIS apblication showed that -terms in LIFE provide

a flexible data model. The bibliographic database a,pplic'ation showed that our

- system can be used to construct an “intelligent information retrieval systems”.

7.4 Perforjmance

2

We analyzed the database interfaces using these two applications in chapter 6.
We measured the performance for various aspects of these interfaces for the
two applications, the results of which can be found in section 6.1.2 and 6.2.3.

Our main conclusions of these experiments are as follows:

1. LIFE persistent object store offers good performance. The performance
of a very data intensive GIS application on the database persistent LIFE
was comparable to that on the stand alone LIFE system. The perfor-
mance for the database persistent LIFE improved for larger databases.
It 1s obvious that the gain was mainly due to the fact that there were

fewer calls to G routines in this case.

CHAPTER 7. CONCLUSION | | 101

-
2. As expected for both interfaces the start up times of the applications

were reduced.

3. For the LIFE-RDBMS interface it was ex;;ected that the stand alone
LIFE would perforxﬁ badly for deep backtracking unificatien. LIFE in-
dexes clauses on the clause functor name, as a result of the linear search
1t gives poor performance forﬁeep backtracking. Performance improved

if the data is stored in an external RDBMS and selectively retrieved.

4. The LIFE-RDBMS interface performance is very good if the retrieved
facts are cached. There would be a performance penalty if large number
of facts are cached in main memory. This would result from the slow
unification of LIFE for deep backtracking.queries. This can be reduced by
fixing how many database facts are to be in main memory (The interface
automatically evicts database facts if the retrieved facts number more

than a percentage of total database facts).

7.5 Limitations and Directions for Further Re-
search

The current implementation has a number of limitations and unimplemented

features.

¢ Performance: Further detailed experimental study of the database in-
terfaces is required. For instance, the lookup table maintained in LIFE-
RDBMS interface for cached facts could be an expensive overhead. A
large size lookup table would be generated if the queries to the database
return a large number of small sets of tuples. A combination of cached
and non-cached facts would give better performance in this case. Com-

parision to other systems similar to LIFE also needs to be done.

e Assert and Retract: The current system cannot handle assert and

retract of database facts. The semantics of assert is not well defined, as

CHAPTER 7. CONCLUSION . .) 102 °

the user normally does not specify where the facts are to be inserted.
The interface associates each qua_lviﬁed segment with a particular file. A
solution would be to create qualified segments on the fly. For updates
.and retracts, a unique id needs be associated with every database fact.
While retraction is then straight forward, updétes will require to find the
appropriate qualified segment to move into from its previous qualified

segment. This would require dynamically changing the schema.

omObject Clustering: Object Clustering is important, so as to co-locate
objects that are referenced together and thus attempt to avoid perfor-
mance penalty in disk //O. This would also improve memory usage
(as less database pages need to be buffered). The persistent v'-terms in
LIFE provide for explicit ;epresentation of links among objects, allow-
ing navigation through these links for data fetrieV'al. Naturally for better
performance reasons its crucial that the clusteringalgorithms be designed
based on the graph structure of the ¢)-terms (Breadth First Search, Depth
First Search)..Various other techniques of clustering based on inheritance
and structure semantics, gathering statistical information from workload
traces, etc needs to be investigated to find a technique most suitable for

persistent ’-terms.

Other database concepts such as transaction control, data security and
recovery, indexing, etc would need further research expecially in the context of

persistency in LIFE.

7.5.1 Data Mining

Data mining extracts knowledge from databases, an‘ application LIFE is suited
for. An inheritance hierarchy of classes constructed on the basis of the con-
tents of the objects offers a powerful system for representing knowledge. The
reverse compiler technique automatically extracts concepts as an inheritance

hierarchy from relations by searching for regularities among the unclassified

CHAPTER 7. CONCLUSION 103

objects. While this technique can be used by itself providing automatic knowl-
edge extraction, it should be possible to combine it with information stored
in the relational schema, functional dependencies and other constraints on the
database. Existing data mining techniques such as learning from examples
could be used along with the reverse compiler technique to provide for'a better

understanding and design of algorithms to search for knowledge in databases.

7.5.2 Heterogeneous Knowledge Bases

LIFE provides for several knowledge repre\sentation techniques. A direction of
research that could be considered is to provide a common interface to existing
knowledge bases. Knowledge Interchange Format (KIF) is a formal language
for interchange of knowledge between disparate programs. A LIFE interface

to KIF could then provide for combining heterogeneous knowldge bases.

References

1]

4]

Marcel Holsheimer, Rolf A.de By and H. Ait-Kaci. A Database Interface
for Complexr Objects. Logic Programming - Proceedings of the Eleventh
International Conference on Logic Programming, pp. 437-455, 1994.

Marcel Holsheimer. LIFE-WISDOM, a datibdse interface for the LIFE
system. Master’s thesis, Computer Science, University of Twente, En-
schede, The Netherlands, 1992. -

H. Ait-Kaci and R. Nasr. LOGIN: a logic programmi;ig language with
built-in inheritance. Journal of Logic Programming, 3(?), pp.185-215,
1986.

H. Ait-Kaci. An algebraic semantics approach to the effective resolution

of type equations. Theoretical Computer Science, 45, pp. 293-351, 1986.

H. Ait-Kaci and A. Podelski. Towards a meaning of LIFE. PRI Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory,
France, 1991.

H. Ait-Kaci, Richard Meyer and Peter Van Rby. Wild LIFE, Available at
URL: http://wwi.isg.sfu.ca.

H. Ait-Kaci, R. Nasr. Le Fun: Logic, equations, and Functions. Pro-
ceedings of the ACM Symposium on Logic Programming, pp. 17-23, San

Francisco, September 1987.

104

REFERENCES 105

8]

(9]

[11]

13]

[14]

15]

[16]

H., Ait-Kaci and R. Nasr. Integrating Logic and Functional Programming.

Lisp and Symbolic Computation 2, pp, 51-89, 1989.

H. Ait-Kaci and A. Podelski. Functions as passive constraints in LIFE.
PRL Research Report 11, Digital Equipment Corporation, Paris Research
Laboratory, France(1992).

H. Ait-Kaci and R. Nasr et al. Implementing a Knowledge-Based Library
Information System with Typed Horn Logic. Information Processing &
Management, 26(2), pp.249-268, 1990.

H. Ait-Kaci, Patrick Lincoln. LIFE, a Naturla Language for Natural Lan-
guage. T.A. Informations, revue intermfationale du traitement automatique
du language, 30(1-2), pp. 37-67, 1989.

Richard O’Keefe. The Craft of Prolog. The MIT Press, Cambridge, MA,
1990.

M. Minsky. “A framework for representing knowledge”. In The Psychology
of Computer Vision, P. Winston, editor. McGraw Hill pp.211-277, 1975.

Stefano Ceri, Georg Gottlob, and Gio Wiederhold. Logic Programming
and Databases. Springer Verlag, Berlin, Germany, 1990.

F. Gozzi, M. Lugli and Stefano Ceri. An Overview of PRIMO: A Portable
Interface between Prolog and Relational Databases. Information Systems,
Vol 15, No 5, pp. 543-553, 1990.

Stefano Ceri, Georg Gottlob, and Gio Wiederhold. Interfacing Relational
Databases and Prolog Efficiently. Proc. of the 1st knternational Conference
on Expert Database Systems, pp. 141-153, April 1986.

Stefano Ceri, Georg Gottlob, and Gio Wiederhold. Efficient Database
Acess from Prolog. IEEE Transactions on Software Engineering, pp. 153-
164, February 1839. »

REFERENCES 106

18]

26)

Matthias Jarke, Jlm Clifford, and Yannis Vassiliou. An Optimizing Front-

" End to a Relational Query System. ACM sigmod, pp 296-306, June 1984.

Shalom Tsur. LDL - A Technology for the Realization of Tightly Coupled
Ezpert Database Systems. IEEE Expert, 1988.)

S. Ghosh, CC Lin and T. Sellis. Implementation of a Prolog-INGRES
Interface. SIGMOD Record, Vol 17, No 2, june 1988.

Malcolm P. Atkinson and O. Peter Buneman. Types and Persistence in
Database programming Languages. ACM Computing Surveys, Vol. 19,
No.2, June 1987.

M. P. Atkinson, K. Chisholm and P. Cockshott PS-Algol: An Algol with
a Persistent Heap. ACM SIGPLAN Notices, Vol 17(7), July 1982.

W. P. Cockshot, M. P. Atkinson, K. J. Chisholm, P. J. Bailey and R.
Morrison. Persistent Object Management System. Software Practice and
Experience, ACM CR 8408-0627, Vol 14(1), January 1984.

A. Dearle, R. C. H. Connor, A. L. Brown, R. Morrison. Napier§8 -
A Database Programming Language?. 2nd International Workshop on
Database Programming Languages, Morgan Kaufmann, Salishan Lodge,

pp 179-195, 1989.

<

A. Dearle, A. L. Brown. Safe Browsing in a Strongly Typed Persistent
Environment. Computer Journal 31(6), pp 540-544. 1988.

R. Morrison, R. C. H. Connor, Q. I. Cutts, G. N. C. Kirby. Persistent Pos-
sibilities for Software Environments. The Intersection between Databases

and Software Engineering, pp 78-87, IEEE Computer Society Press, 1994.

Joel E. Richardson and Michael J. Carey. Persistence in F' Languages: Is-
sues and Implementation. Software-Practice and Experience, Vol. 19(12),

pp 1115-1150, Dec 1939.

REFERENCES : 107

28]

[29]

[30]

32]

33]

L2

Joel E. Richardson, Michael J. Carey and Daniel T. South. The Design
of thc?-E Programming Language. acm toplas, pp 494-534, Vol 15(3), July
1993.

’

M. J. Carey and D. J. DeWitt and S. L. Vandenburg. A Data Model and
Query Language for EXODUS. ACM sigmod, pp 413-423, June 1988.

M. J. Carey. D. J. DeWitt and Joel E. Richardson. Storage Management
for Objects in EXODUS. Proceedings of the 12th international conference
on very lage databases, 1986.

Eugene J. Shekita, Michael J. Zwilling. Cricket: A Mapped, Persistent
Object Store. Tech-report 956, Computer Sciences Department, University
of Wisconsin-Madison, August 1990.

Paul Adams, Marvin H. Solomon. An Overview of the CAPITL Software
Development Environment. Tech-report 1143, Computer Science Depart-

ment, University of Wisconsin-Madison, April 1993.

Paul Adams, Marvin H. Solomon. POL: Persistent Objects with
Logic. Tech-report 1158, Computer Science Department, University of
Wisconsin-Madison, June 1993.

Seth John White. Pointer Swizzling Techniques for Object-oriented
Database systems. Phd Thesis, 1994, Universisty of Wisconsin Madison.

R. Agrawal and N. H. Gehani. Rationale for the Design of Persistence
and Query Processing Facilities in the Database Programming Language

O++. 2nd Int’l Workshop on Database Programming Languages, june
1989.

R. Agrawal and N. H. Gehani. ODFE (Object Database and Environment):

The Language and the Data Model. ACM SIGMOD RECORD, Vol 18(2),
June 1989, \

REFERENCES o 108

[37]

[38]

39]

[40]

[41]

42]

[43]

[44]

A. Biliris, N. Gehani, and S. Dar. Making C++ Objects Persistent: Hidden

Pointers. Software Practice and Experience, 1993.

A. Dearle. On the Construction of Persistent Programming Environments.

PhdThesis, University of St Andrews, 1988.

A. Albano and G. Ghelli and R. Orsini. The Implementation of Galileo's .
Persistent Values Data Types and Persistence, Springer-Verlag, pp 253~
263, 1988.°

P. O’Brien and B. Bullis and C. Schaffert. Persistent and Shared Objects
in Trellis/Owl. Proc. Int’l Workshop on Object-Oriented Database Sys,
sep 1986. '

C.L. Chang and A. Walker. PROSQL: A Prolog programminyg interface
with SQL/DS. Proceedings First- Int’l Conference on Expert Database
Systems, 1986.

Antony L.Hosking and J. E. B. Moss. Object Fault Handling for Per-
sistent Programming Languages: A" Performance Evaluation. OOPSLA
93, Eighth Annual Conference on Object-oriented Programming systems,

Languages, and Applications, Vol28, Oct 1993.

J. E. B. Moss. Working with Persistent Objects: To swizzle or Not to
Swizzle. IEEE Transactions on Software Engineering, 18(8), pp. 657-673,
August 1992,

J. E. B. Moss and Anthony L. Hosking. FEzpressing Object Residency
Optimization Using Pointer Type Annotations Persistent Object Systems,
pp. 3-15, Tarascon 1994.

Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: An Effi-
cient, Portable Persistent Store. In Proceedings of the Fifth International

Workshop on Persistent Object Systems, pp. 11-33, September 1992,

REFERENCES 109

[46]

[49]

[50]

51)

55)

[56]

C. Lamb, G. Landis, J.orenstein and D. Weinreb. The ObjectStore
Database System. Comm. ACM 34, 10, pp. 50-63, October 1991.

Shinji Suzuki, Masaru Kitsuregawa and Mikio Takagi. An Efficient
Pointer Swizzling Method for Navigation Intensive applications. Persis-

tent Object Systems, pp. 79-95, Tarascan 1994.

Gunnar Misund. Personal Communication SINTEF Informatics, e-mail:

gmi@si.sintef.co.

Dayaram Gaur. Personal Communication Simon Fraser University, e-

mail: gaur@cs.sfu.ca.

Hassan Ait-Kaci. Personal Communication Simon Fraser University, e-

mail: hak@cs:sfu.ca. .

Hirafumi Ohnishi, Isao Ogawa and Fuminori Morisue. Map Database Gen-
cration System for In-Vehicle N;zvigation System Vehicle Navigation and

Information Systems Conference Proceedings, IEEE, pp. 607-612, 1994.

Masao Shibata and Yasuomi Fujita. Current Status and Future Plans for
Digital Map Databases in JAPAN Vehicle Navigation and Information
Systems Conference Proceedings, Ottawa, IEEE, pp. 29-37, 1993.

T.A. Yang, S.Shekhar, B.Hamidzadeh and P.A. Hancock. Path Planning
and Fvaluation in IVHS Databases. Intl. Conf. on Vehicle Navigation &
Information Systems, 1EEE, pp. 283-290, October 1991.

AlfChristian Achilles. Bibliographic Databases. Available at URL:
http:liinwww.ira.uka.de/bibliography /index.html.

GLIMPSE. A tool to search entire file systems. Available at URL:

http:liinwww.ira.uka.de/bibliography/index.html.

Yahoo. Available at URL: http://www.yahoo.com]/.

REFERENCES 110

[57] Rudolf Wille. Concept Lattices and Conceptual Knowledge Systems. Com-

puter Math. Applic. Vol 23, no. 6-9, pp. 493-513, 1992.
e

[58] Bruno Courcelle, Damian Niwinski and Andreas Podelski. A Geometrical
View of the Determinization and Minimization of Finite-State Automata.
Mathematical Systems Theory 24, 117-146, 1991:

A}

[59] Sanjeev Arora. Probabilistic Checking of Proofs and Hardness of Approzi-
mation Problems. CS-TR-476-94, CS Division, UC Berkeley, August 1994.

[60] Stewart M. Clamen. Data Persistence in Programming Languages A Sur-
vey Tech Report, CMU-CS-91-155, School of Computer Science, Carnegie
Mellon Universisty, Pittsburgh, 1991.

