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Abstract

The aim of the present study was to investigate the actions of college algebra
students attempting to solve non-routine problems, either alone or in dyads. Problem
solving interviews with the individual subjects and with pairs, each one hour long, were
videotaped and transcripts made from the tapes were analyzed. Subjects also completed
exit interviews.

In exit interviews all but one subject stated a strong preference for working alone.
However, they all cited the provision of a second point of view as being the major benefit
of working with a partner. The literature would also lead one to expect that working in
dyads would require that the students attempt to construct an agreed upon representation
of the problem and then decide upon the approach to be taken to solve it. However, this
1s not what happened. There was little discussion of the structure of the problem and
almost no analysis of proposed strategies. Constructive controversy was almost entirely
absent.

Nevertheless, pairs were much more successful in solving the problems. This
increased success arose from four factors: an increase in persistence, the more able partner
leading the pair, an increased opportunity for oral rehearsal, and, to a lesser extent, the
correction of minor errors. The particular character of any problem session depended on
both the academic and social interactions of the partners and five categories of pairs
emerged from the study: socializers, tutor/pupil pairs, partners, individuals and hostile
pairs.

The students, whether working alone or in pairs, exhibited a wide variety of
mathematical skills and strategies in their attempts to solve the problems. Despite this,
they were not successful in solving many of the problems. Several factors contributed
to their lack of success. They were generally so fixated upon finding an answer that little
effort was put into analyzing the structure of the problem or generating and comparing
various strategies. Another factor in their lack of success was that while the problems
given them often required a structural approach, the students were generally working at
an operational level for this matenal. :
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CHAPTER I NATURE AND PURPOSE OF THE STUDY

INTRODUCTION

Two important themes in research in mathematics education which have emerged
in recent years are problem solving and small group processes. The 1980 Agenda for
Action of the National Council of Teachers of Mathematics (NCTM) stated that "problem
solving must be the focus of school mathematics in the 1980's." [p.1] They reiterated this
view in 1989 by saying that "problem solving should be the central focus of the
mathematics curriculum." [NCTM 1989, p. 23] In their Standards for Introductory
College Mathematics before Calculus, [Cohen, 1995] the American Mathematical
Association of Two-Year Colleges (AMATYC) gives as their first standard for intellectual
development, "Students will engage in substantial mathematical problem solving." [p.10]
The NCTM 1991 Professional Standards for Teaching Mathematics promotes cooperative
work as a means to develop students' mathematical power. Similarly, the National
Research Council, in Everybody Counts [1989], said that students "must learn to work
cooperatively in small teams to solve problems as well as to argue convincingly for their
approach amid conflicting ideas and strategies." [p.61] The second of AMATYC's
standards for pedagogy is "Mathematics faculty will foster interactive learning through
student writing, reading, sbeaking, and collaborative activities so that students can learn
to work effectively in groups and communicate about mathematics both orally and in
writing." [Cohen, 1995, p. 16]

Cooperative work is becoming increasingly popular in teaching mathematics,



especially in teaching probi...1 solving. Slavin [1987] has said, "The Age of Cooperation
is approaching." However, as the literature review will show, although both problem
solving and cooperative work have been extensively researched, both processes are very
complex and neither is fully understood. Thus, I propose; to explore the problem solving
skills used by average college algebra students working singly and in dyads. In this
study, I analyze and compare the problem solving processes exhibited by these students
as they work alone and in pairs. A better understanding of these processes has
implications for the understanding of the process of mathematical problem solving itself

and for the place of group work in problem solving instruction.

RATIONALE

Central to any question regarding problem solving is understanding what actually
goés on when a student or group of students attempt to solve a non-routine problefn.
While much is already known, there are important gaps in the literature. Silver [1985b]
has discussed "raw" heuristics used by fifth and sixth grade students, and Sowder [1988]
has produced a list of inappropriate strategies used by sixth and eighth grade students.
However, most of the studies done of college students have been of the
treatment/comparison type or have concentrated their analysis on regulatory behaviour.
As well, many of them have concentrated on very able, r.ather than average, students, It
would be valuable to know just what skills and untaught, and sometimes unintended,
strategies average college students use in the attempt to solve a difficult problem.

Collaborative, small group processes in general, and in mathematics education in



particular, are not well understood and there is no well developed theory. In their
Overview of Research on Cooperative Learning related to Mathematics, Davidson and
Kroll [1991] have called for research into just what occurs during cooperative learning,
stating that, "To date, a relatively small percent of the studies have attempted to study the
interactions that take place during cooperative work to determine how various academic,
social, or psychological erfects are produced.” [p.363] Silver [1985b] sees the study of
small groups in mathematical problem solving as important for two reasons: (1) Small
groups are commonly advocated in the popular literature and yet we know little about
their effects and (2) small groups are a way to study externalized internal dialogue,
providing some insight into thinking processes during problem solving. This study will
add to available knowledge in this area by exploring the contrasts and similarities between
problem solving behaviour exhibited by students working alone and in pairs.

Good, Mulryan and McCaslin [1992] have said, "Problems of learning are
complex, and we need more process studies that illustrate how groups of students attempt

to reduce ambiguity and risk when faced with difficult problems requiring creative

thought". [p. 193]

RESEARCH QUESTIONS

The research is intended to address the following interrelated questions:
1. In attempting to solve non-routine problems what basic skills and particular
strategies do average college algebra students use?

2. Is there a difference in quantity or type between the skills and strategies used by



students working alone and by students working in pairs?
3. What factors might account for any differences in the problem solving process as

seen in individuals and in pairs?

OVERVIEW

In order to address these questions, I recruited several college students to
participate in problem solving sessions. The students were studying at the college algebra
and precalculus levels and were generally average to slightly above average in their
mathematics achievement. I videotaped them while they attempted to solve nonroutine
mathematics problems, first working alone and then later in pairs. A detailed framework
of analysis was developed as I reviewed the taped sessions. Skills, strategies, beliefs and
pair interactions were analyzed in detail and with reference to the research literature. As .
themes emerged from the analysis, the framework was modified. In the end, a detailed
picture developed of what actually occurred while these average college students worked

on mathematics problems.



CHAPTER 2 LITERATURE REVIEW

To provide a better understanding of the ways in which the proposed research has
been designed, the review of literature will begin with a summary of research about
problem solving in general and then link that with a summary of research about classroom
culture and small group processes as they relate to mathematical problem solving. A
short discussion of Sfard's concepts of operational and structural understanding will help

to provide a understanding of strategy choices students make when solving problems.

WHAT IS A PROBLEM?

"Problems have occupied a central place in the school mathematics curriculum
since antiquity, but problem solving has not." [Stanic & Kilpatrick, 1988, p.1] As
problem solving comes to the fore in discussions of mathematics education, the multiple
interpretations of the term problem have become apparent. Many of the problems referred
to by Stanic and Kilpatrick and which they illustrate by examples taken from various text
books, are routine exercises which simply require the student to substitute the given data
into an already familiar solution pattern or to follow a previously taught algorithm.
Halmos [1980], on the other hand, says that, "The major part of every meaningful life is
the solution of problems" [p.523] and that, "what mathematics really consists of is
problems and solutions." [p.519] Halmos' position, and that illustrated by Stanic and
Kilpatrick's examples, are at opposite ends of the spectrum of definitions given to the
term problem, which stretches from "routine exercises” to "the heart of mathematics."

Perhaps the most useful distinction is that made by Schoenfeld who distinguishes between



exercises, which are routine for the solver, and problems, in which the solver "does not
have ready access to a (more or less) prepackaged means of solution." [1985b, p. 54]
Good, Mulryan and McCaslin {1992] view problem solving as "adaptive learning
in a social setting." [p.173] They propose a three part psychological definition of
problem-solving: "(1) maintaining the intention to learn (2) while enacting alternative task
strategies (3) in the face of uncertainty." [p.173] They argue that this definition integrates
motivation, affect, and cognition. Like Schoenfeld, they place the solver in the centre of
their definition. Brown [1984 & Brown and Walter 1990] also puts the learner at the
centre, but would replace problem solving with the concept of a "situation". Giving the
student a situation to investigate rather than a problem to solve leads to problem posing
b3'/ the student. [See also Silver 1994] This idea will be revisited in the next section of
this review.
Stanic and Kilpatrick [1988] have identified three themes which characterize the
place of problem solving in the mathematics curriqulum:
(1) Problem solving as context,
(a) as justification,
(b) as motivation,
(c) as recreation,
(d) as a vehicle to introduce a skill or concept,
(e) as practice,
(ii) Problem solving as a skill, and

(iii) Problem solving as art. [pp. 13-15]



The results of a survey of problem solving courses reported by Schoenfeld [1983b] appear
to fit into themes (i) and (ii) rather than (ii). Almost all problems presented in
mathematics textbooks are traditionally of themes (i) and (ii) as well. Stanic and
Kilpatrick see the last theme, problem solving as art, as a deeper and more comprehensive
view which has emerged from the work of George Polya.

Problem solving researchers have been greatly influenced by the work of Polya,
whose 1945 How to Solve It has become a much cited classic. The theme of problem
solving as art is clear in his preface, "Having tasted the pleasure in mathematics he will
not forget it easily and then there is a good chance that mathematics will become
something for him: a hobby, or a tool of his profession, or his profession, or a great
ambition." [1973, pp.v-vi] Polya emphasized that mathematics consists mostly of
observations and experiments, of building mental pictures, of guessing and trying to feel
what is true, and then of puiting forth and testing hypotheses. He presented a four part
framework for problem solving and then used specific examples to introduce a dictionary
of heuristics, or rules of thumb, that can be used to assist in solving mathematical

problems. I will return to these heuristics below.

THEORETICAL FRAMEWORKS

Four types of theoretical frameworks for problem solving research will be
discussed in this section: Frameworks based on the process, frameworks based on the
cognitive and non-cognitive resources used, a framework which is a combination of these,

and a framework based on schema acquisition and rule automation.



Frameworks based on process vary in the number of steps identified. Many of
them can be traced back to John Dewey's 1933 basic plan, given by Noddings [1985] as:
1. Undergoing a feeling of lack -- identifyixig a problematic situation.
2. Defining the problem.
3. Engaging in means-ends analysis; devising a plan.
4. Executing; carrying out the plan.
5. Undergoing or living through the consequences.
6. Evaluating: looking back to assess whether the result satisfies the initial
conditions; looking ahead to generalization of both methods and results.
[p. 346]
This framework differs from those which follow by including both the posing of a
problem (steps 1 and 2) and undergoing the consequences of it (step 5). This framework
is really about a situation to investigate [see Brown 1984] rather than a problem to solve.
Polya's four step plan collapses Dewey's first two steps into one and eliminates his

step five. Thus Polya obtains:

1. Understanding the problem.
2. Devising a plan.
3. Carrying out the plan.

4. Looking back. [1973, pp.xvi-xvii]
This framework will no longer fit a situation to be investigated but is more reflective of
the procedure for solving (non-routine) textbook or instructor posed problems. Polya

emphasises the importance of carrying out step one before beginning steps two and three,




and that step four is essential since "(s)ome of the best effects may be lost if the student
fails to reexamine and to reconsider the completed solution.” [p.6]

Mason, Burton and Stacey [1982] collapse the framework even further to only

three steps:
1. Entry: read, formulate the question precisely and decide what to do.
2. Attack: implement plans.
3 Review: check, reflect and extend.

Another three step procedure is given by Noddings [1985] as typical of an approach based

on routine story problems and an "observables only" approach to theory:

1. Translating words to mathematical expressions.
2. Executing; that is, calculating.
3. Checking results 1n initial equations. [p. 347]

If we accept Schoenfeld's definition of problem (see above) then this clearly impoverished
procedure cannot even be considered, for it will only be applicable to routine textbook
exercises.

Noddings has created a four step framework based on ideas from cognitive
psychology and the work of Mayer, Silver and others. In her plan, Polya's first two steps

are collapsed into one step, representation, while Dewey's step five is included to create:

1. Creation of a representation.
2. Executing a plan based on the representation.
3. Undergoing the consequences.

4. Evaluating the results. [1985, p.349]



She believes that step three is crucially important in order to avoid the deadly artificiality
of school problems. However, Dewey's plan was devised for real world situations and
it 1s difficult to see what exactly Noddings means by undergoing the consequences in
classroom situations. She proposes debriefing sessions at the end of problem solving
periods. Correct answers are handed out and the students are encouraged to discuss what
they may have done wrong and how they could get the correct answer. Her step four
involves checking and evaluating solutions with reference to the problem and the student's
representation of it.

Garofalo and Lester [1985] suggest another four step framework, similar to Polya's

but with each step more broadly defined:

1. Orientation: Strategic behaviour to assess and understand a problem.

2. Organization: Planning of behaviour and choice of actions.

3. Execution: Regulation of behaviour to conform to plans.

4. Verification: Evaluation of decisions made and of outcomes of executed

plans. [p.171]
They emphasize that there are both cognitive and metacognitive (see below) behaviours
at each stage and that their framework makes this clear. The stages where metacognitive
behaviour occurs most often will vary with the problem situation.
Frameworks based on resources necessary for solving problems attempt to
categorize these resources in various ways. Resnick and Ford [1981] categorize
knowledge into two classes: (1) algorithmic routines; (2) and strategies for assessing

knowledge, detecting relationships and choosing paths of action. They identify three

10



aspects of problem solving strategies: "(1) how the problems are represented; (2) how
features of the task environment interact with an individual's knowledge; and (3) how
problems are analyzed and knowledge structures are searched to bring initially unrelated
information to bear on a task." [p.214] However, this analysis deals only with the
cognitive aspects of problem solving.

Throughout the 1980's researchers became more aware of the crucial part played
by non-cognitive and metacognitive factors in mathematical problem solving, leading them
to create theoretical frameworks which incorporate these factors. Schoenfeld, in 1983,
asserted that the cognitive behaviours of problem solvers are embedded in, and are shaped
by, social and metacognitive factors. The problem solver's beliefs about the task, about
the social environment of the task, and about herself or himself in relationship to the task
and the environment, Schoenfeld said, are as important as any cognitive factors [1983a].
He suggested three separate categories of analysis, later [1985b] modified to four:

1. Resources: Mathematical knowledge possessed by the individual that can

be brought to bear on the problem at hand.

2. Heuristics: Strategies and techniques for making progress on unfamiliar

problems; rules of thumb for effective problem solving.

3. Control: Global decisions regarding the selection and implementation of

resources and strategies.

4, Belief Systems: One's "mathematical ;vorld view", the set of (not

necessarily conscious) determinants of an individual's behaviour. [p.15]

Schoenfeld argues strongly for the crucial importance of the last two categories for

11



researchers in mathematical problem solving. I will examine the last three categories in
more detail in the following section.

Another theoretical framework, which is complimentary to, rather than opposed
to, Schoenfeld's, has been developed by Perkins and Simmons (1988) as a model for
knowledge 1n science, mathematics, and computer programming. They identify four

categories that distinguish important types of knowledge, and these they call frames of

knowledge.

1. The content frame: facts, definitions, and algorithms of the subject matter
along with content-oriented metacognitive knowledge such as strategies for
monitoring the execution of an algorithm, memorization and recall
strategies.

2. The problem solving frame: specific and general problem solving strategies
and beliefs about problem solving; processes to keep organized during
problem solving.

3. The epistemic frame: specific and general norms and strategies regarding
claims of validity within the domain.

4. The inquiry frame: specific and general beliefs and strategies to extend and

challenge the knowledge within a domain. [p. 305]
Perkins and Simmons say that their model is "ortﬁogonal" to Schoenfeld's, that
Schoenfeld's model addresses the form of knowledge while their own addresses "what the
knowledge in question concems.” [p.314] Each of Schoenfeld's four categories would

appear in each of their four frames, although possibly in varying proportions. Perkins and

12



Simmons address ways in which each frame could be faulty and patterns of
misunderstanding that cross all frames. One of their major concerns is that most
instruction concerns only the first two frames. All four, they assert, need to be taught and
taught in relation to each other. When Perkins and Simmons' knowledge framework is
viewed in conjunction with Schoenfeld's four part problem solving analysis, a richer
picture of the problem solving process becomes available.

Through several years of teaching remedial mathematics at the college level,
Clement and Konold [1989] developed a classification of basic problem solving skills that
includes both cognitive and non-cognitive skills and classifies these as either general or
stage-specific.

L Stage-Specific skills
A. Comprehending and representing
1. Viewing representation as a solution step
2. Finding the goal and the givens
3. Drawing and modifying diagrams
B. Planning, Assembling and Implementing a Solution

1. Breaking the problem intc parts (setting subgoals)
2. Organizing chains of operations or inferences in multistep problems

C. Verifying the Solution
1. Viewing verification as a solution step
2. Assessing the reasonableness of the answer in terms of initial estimates

II. General Skills and Attitudes

A. Altemnately Generating and Evaluating Ideas (as opposed to recalling
algorithms)

B. Stnving for Precision in the Use of:
1. Inferences
2. Verbal expressions
3. Symbols and diagrams

13



4. Algorithms
C. Monitoring Progress

1. Making written records to keep track of and organize solution elements

and partial results

2. Using confusion as a signal to rethink part of the solution

3. Proceeding slowly in the expectation of making ard needing to correct

errors [p.27]
They assert that this classification reflects the skills and attitudes actually possessed by
their students, making it a more useful tool for analyzing problem solving activity than
etther Schoenfeld's framework or Polya's heuristics. This framework has the benefit of
including cognitive skills, monitoring behaviour and beliefs, as well as a classification of
the stages of the problem solving process (which is analogous to Schoenfeld's original
three step plan).

Sweller [1989 & 1990) and Owen and Sweller [1989] suggest a theoretical
framework for mathematical learning and problem solving which has a very different
perspective than do those already discussed. Their framework is based on rule-
automation, schema acquisition, and the domain specificity of problem solving skills.
Their theory has six points: (1) Problem solving skill is f.‘lependent upon domain specific
knowledge; (2) this knowledge base largely consists of schema and automated rules; (3)
strategies chosen are generally dependent on available schema; (4) means-ends analysis,
although an efficient problem solving strategy, interferes with schema acquisition; (5)
learning is facilitated when means-ends analysis is avoided by the use of goal free
problems and worked examples; (6) in order to reduce cognitive load and allow for

schema acquisition, the format of instructional materials must minimize the need for

learners to integrate disparate sources of information. [Sweller 1989, p.457] Although

14



the framework is theoretically detailed and they are able to produce a great deal of

evidence to support it [see also Sweller, Mawer & Ward 1983 and Owen & Sweller
1985], their theory has the major drawback of dealing only with relatively routine
exercises where activated schema save time and effort. Problem solving, as studied by
Polya or Schoenfeld, involves acting even when schema are not available. Sweller's
attention, however, is entirely on schema acquisition, to the point where he would
eliminate some problem solving strategies (see point 4 above) and minimize exposure to
an important problem solving skill (see point 6). The conflict here is really due to

different conceptions of problems and problem solving.

COGNITIVE AND NON-COGNITIVE RESOURCES

In this section I will first discuss problem solving strategies and heuristics,
followed by metacognition and finally metacognitive knowledge, control and belief.
Hearistics

The use of problem solving heuristics did not begin with Polya, but since the
appearance of How to Solve It in 1945, Polya's heuristics have been a focus for those
teaching and researching problem solving. His Short Dictionary of Heuristic takes up
almost 200 pages of the 1973 edition of How to Solve It, and includes such entries as:
Did you use all the data?, Draw a figure, Generalization, Induction and mathematical
induction. Expert problem solvers immediately recogniie strategies that they commonly
use. Numerous problem solving courses have been taught using Polya's heuristics and

numerous studies of their effectiveness have been undertaken with mixed results. Lucas

15



[1974], with umiversity students, and Kantowski [1977], with grade nine students, obtained
small positive effects. However, by 1979, Begle, in a survey of research to that date,
could only say that a lot of effort had gone into studying heuristic instruction with no
clear results [as cited in Schoenfeld 1992].

Schoenfeld began teaching problem solving courses using Polya's heuristics in the
late 197C's, but he realized that the heuristics were descriptive rather than prescriptive and
needed to be much more detailed to be effective. He aﬂalyzed the most frequently used
heuristics in order to characterize them in sufficient detail and to provide the appropriate
amount and kind of training in their use. This seemed very successful until he began to
look at videotapes of students actually solving problems. What he saw was not the
systematic and creative use of heuristics that he expected. Instead, the students failed to
consider alternatives or to monitor their activities, often spending most of a session on a
"wild goose chase." [Schoenfeld 1985a & 1987a] Schoenfeld went on to study the
importance to the problem solving process of metacognition and beliefs (discussed below).

In an investigation of fifth and sixth grade students, Silver [1985b] noted the
existence of untaught (or at least not intentionally taught) heuristics such as the tendency
to draw a diagram, examine special cases or generalize from specific cases. These he
called "raw" heuristics. There were significant differences in the heuristics shown by
different students. Silver speculated that the existence of these "raw" heuristics may be
crucial to the success or lack of success of research into teaching of heuristic processes.
If Polya's heuristics are descriptive, as Schoenfeld has said, then the "raw" heuristics

which Silver saw may be simply a step in a natural process of acquiring heuristics.
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While useful "raw" heuristics may appear in many students, inappropriate or
erroneous strategies also appear. Sowder [1988] observed that students who correctly
solve routine story problems may be using strategies which are of little value. He
provides a representative list of strategies for sixth and eighth grade students: (1) Find the
numbers and add (or subtract, whatever is your favourite operation), (2) guess at the
operation to be used, (3) look at the numbers and they will tell you the operation, (4) try
all the operators and choose the most reasonable answer, (5) look for key words, (6)
decide if the answer is to be larger or smaller then the givens and then choose the
operation accordingly (e.g. multiplication makes bigger), (7) choose the operator whose
meaning fits the story. Strategy seven, he says, is rarely seen. Bell, Greer, Grimson and
Mangan [1989] obtained similar results. Unfortunately, no equivalent list of strategies
actually in use has been created for non-routine problems or for more advanced students.

The heuristic most studied is "Can you think of a similar problem?" Sweller
[1989], Owen and Sweller [1985 & 1989] and Sweller, Mawer and Ward [1983] began
their investigations of schema acquisition by looking at expert-novice comparisons. They
found that experts exhibited a better memory than novices, classified problems by the
underlying mathematical structure rather than the surface structure, and, more often than
the novices, worked forward rather than using a means-ends analysis. This led them to
fheir studies of schema acquisition and rule automation ar:ld the development of the theory
discussed in the last section. Studying problem solving from a schema based theory led
Reed and Bolstad [1991] to compare student learning of algebraic rate problems through

the use of examples, or rules, or a combination of both. They found that the combination
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of both examples and rules was most successful. Unfortunately, all of these studies suffer
from the use of routine textbook exercises, often single step problems, and so tell us little
about the place of schema acquisition in non-routine problem solving. More interesting
are studies carried out on problem classification. Krutetskii's [1976] long term studies
carried out in the Soviet Union showed that capable students seemed to grasp the pattern
of a problem whole, while average students were able.to classify problems into types
"only after appropriate analytic-synthetic orienting activity.” [p.232] Similar results were
obtained by Silver [1979], Schoenfeld and Herrmann [1982], Gliner [1989] and Ross
[1989], all of whom showed that experts classified problems based on the underlying
mathematical structure, while novices tended to classify them by surface structure.
Schoenfeld and Herrmann additionally showed that, after a course in problem solving,
students' classifications were closer to those of the experts.
Metacognition

Since about 1960, the phenomenon of consciousness has been gaining favour with
researchers and theorists, and more recently there has been an increased interest in the
consciousness of consciousness and, with that, an interest in what is generally called
metacognition [Kilpatrick 1985]. The term metacognition, however, has various
interpretations, even within the scope of mathematics education. Schoenfeld [1987b]
identified three categories of behaviour that are seen as within the scope of metacognition,
Knowledge of one's own thought processes, control and regulation of one's thought
processes, and beliefs and intuition. By grouping knowledge and belief together, Garofalo

and Lester [1985] developed two categories which contain the same phenomena as
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Schoenfeld's three. They further divided metacognitive knowledge and beliefs into
knowledge and beliefs about person (oneself and other), about the task at hand (its scope
and requirements), and about strategies. Metacognitive regulation includes planning one's
course of action, evaluating outcomes, and monitoring the implementation of all of these.
Garofalo, Lester, and Schoenfeld all emphasized that beliefs have a strong influence upon
what knowledge is used and what control enacted. Other researchers [McLeod 1989 &
Campione, Brown and Connell 1988] separated beliefs from metacognition and so
considered only two categories of metacognitive behaviour, knowledge of cognition and
executive or regulatory processes. Campione, Brown kand Connell saw the first category
as including "conscious and stable knowledge about cognition, about themselves as
learners, about the resources they have available to them and about the structure of
knowledge in the domains in which they work" [p.94], while the second category included
self-regulation, monitoring and organization. Whether beliefs are considered as part of
metacognition or not, it is clear that beliefs are very important and that often it is very
difficult to disentangle effects due to beliefs from those‘ due to knowledge or control.
Metacognitive Knowledge
There is little research bearing directly on students' knowledge of their cognition
during mathematical problem solving. Broekman and Susyn-van Zade [1992] gave a
puzzling problem to adults to solve and found several different strategies in use. Most
subjects, though, had great difficulty in explaining why they chose the strategy they did,
nd in explaining the methods they used. In their Agenda for Metacognitive Research in

the Next Decade, Gamer and Alexander [1989] placed metacognitive knowledge first.
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They suggested that this is very important since self reporting is often used to determine
the cognitive activities of adults and children. Fortunato, Hecht, Tittle and Alvarez [1991]
suggested another reason for increased research into metacognitive kno&ledge. They
suggest that classroom discussions of strategy choice and task knowledge can be used as
an aid in developing students' metacognitive awareness and control.
Regulation

That students are very weak in the area of metacognitive regulation, that is, control
and monitoring, has been demonstrated by Garofalo and Lester [1985] and especially by
Schoenfeld [1985b, 1987a&b, 1988b, 1989b, 1992]. Schoenfeld videotaped both students
and experts as they worked on non-routine problems and then analyzed the resulting
protocols. He produced charts which showed how long an individual stayed at each of
six levels (read, analyze, explore, plan, implement, and verify) during a session. While
students spent almost their entire time at a single level, e;cplore or implement, the experts
spent time on all levels and made many more transitions between levels. In particular,
they spent more time analyzing, planning, and verifying. While students would often
spend an entire problem solving session on a single "wild goose chase", the experts
monitored their progress and took corrective action if they did not appear to be making
progress after a reasonable length of time. It was often, Schoenfeld concluded, simply
this lack of monitoring and control that caused the students not to succeed. Goos and
Galbraith [1996] found very similar result in their study of two sixteen year olds working

on nonroutine mathematics problems. The biggest limitation of all these studies is that
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the subjects were almost all very able mathematics students. One would expect, though,

that the results could only be worse if less able students were studied.

Beliefs

Student's metacognitive skills are poor, Schoenfeld said. "Their perception is that
their minds are essentially autonomous with regard to problem solving: they just do 'what
comes to mind'." [1985a p. 372] And so the students' beliefs about their own minds are
seen to be very important to their problem solving behaviour. While contextual factors,
control, beliefs, attitudes and affect all interact during problem solving, Lester, Garofalo
and Kroll [1989] conjectured that beliefs may play the dominant, even overpowering role.
Beliefs about the task at hand, about mathematics itself, about schooling, about oneself
and one's relationship to each of these, all affect how one approaches a mathematical
problem, and what cognitive and metacognitive resources one makes use of. Students,
Schoenfeld asserted, develop their beliefs about mathematics from their experiences in the
classroom and these beliefs have a powerful influence on their behaviour [1992]. The
beliefs students learn in the classroom are often very negative. Typical of these are: Math
problems have one and only one right answer; there is only one correct way to solve any
math problem; ordinary students shouldn't expect to understand math, rather they should
memorize, mathematics is done alone; assigned problems can be solved in five minutes
or less by any student who has studied the material; school math has nothing to do with
the rest of the world; proof is irrelevant to discovery and .invention [p.359]. Davis [1989]
asserted that the typical student's understanding of his or her job as a student was just as

negative: They are to come to school, come on time, be quiet, do what they are told, do
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it in the way they are told to do it, and stay out of trouble. While Schoenfeld's list
described students' beliefs about the content to be learned, Davis' list described students'
beliefs about the relationship between themselves, the content to be learned, and the
teacher. Students' beliefs about themselves can also be crucially important. McLeod
[1985] linked such beliefs with metacognitive control, stating that, "(o)ne's locus of
control, then, is a system of beliefs about whether the rewards and successes of life ... can
be attributed to causes that are internal or external." [p.275] This is confirmed by
Dweck's study of motivation [1986]. She contrasted the entity theory of intelligence with
the incremental theory and showed that belief in the former ied to performance goals
rather than learning goals. Learning goals led to a mastery orientation, while performance
goals could lead to avoidance of challenge, low persistence and learned helplessness. All
these beliefs, about mathematics, about the classroom, and about themselves, shape the
students' problem solving behaviour. To the extent that beliefs are leamed in the
classroom, it is only through change in classroom practice that a change in beliefs will

come about.

CLASSROOM CULTURE

Schoenfeld [1988a] reported on a well taught grade ten geometry class. The class
was well organized, the presentation was clear, and the s’;udents did well on standardized
tests. However, the students developed a fragmented view of the subject matter and
perspectives regarding mathematics itself that were likely to impede their future

mathematical growth. Elsholz and Elsholz (1989) reported on a kindergarten pupil who
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had already learned that the classroom has different rules than the rest of the world. This
child had learned that when you divide five items between 2 children, each receives two
and a half. While this worked well for cookies, his partner was quite dismayed when he
cut the fifth balloon in half. These two examples are part of an emerging trend in
research that views mathematics learning as inherently social, and places the cognitive and
metacognitive processes solidly in a context. Cobb [1986] asserted that all "cognition is
necessarily contextually bounded." [p.2] Actions that may seem irrational (cutting a
perfectly good balloon in half) usually turn out to be rational when considered in their full
context.

The view that cognition is a social phenomenon leads to a view of education as
socialization rather than instruction. This view of mathematics education leads to
classrooms where there is discussion and debate, socially shared problem solving, and a
shift from presentation to discovery and from product to process. This, Resnick [1988]
called "teaching mathematics as an ill structured discipline” and at its heart "lies the
proposal that talk about mathematical ideas should become a much more central part of
students' mathematics experience than it is now." [p.53] Lampert's grade five
mathematics class contained just these kinds of debates and discussions [1990]. Students
were not told how to solve problems and were expected to answer questions about their
assumptions and strategies. Problems were used to engage students in making conjectures
and testing those conjectures. Lampert made the comparison between how mathematics

is experienced by students and how it is known by mathematicians and asserted that
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central to this comparison is intellectual authority. In her class, authority shifted around
and was shared through the centrality of debates and di.';‘.cussions.

Apprenticeship among tailors in Liberia served Lave, Smith and Butler [1988] as
a model for cognitive apprenticeship, which focused on day by day engagement in
learning and doing. The strength of the apprenticeship model is its view of learning as
a process where the line between teaching and content disappears. Brown, Collins and
Duguid [1989], basing their ideas on the work of Vygotsky, Leontiev and others, argued
that "(t)he activity in which knowledge is developed and deployed ... is not separable
from or ancillary to learning and cognition. Nor is it neutral. Rather, it is an integral part
of what is learned." [p.32] This theory they called "situated cognition" and they linked
it with the educational approach of cognitive apprenticeship. They saw cognitive
apprenticeship as enculturating students through activity and social interaction. Learning,
they asserted, "advances through collaborative social interaction and the social
construction of knowledge." [p.40]

Teaching mathematics as an ill structured discipline, cognitive apprenticeship, and
situated cognition are all part of an emerging trend (for example, Alibert 1988, Baxter
1993, The Cognition and Technology Group at Vanderbilt 1990, Davis 1989, 1987,
Rogers 1990 ) that draws upon constructivism and the work of Vygotsky. Mathematics
education is viewed as a complex whole in which content cannot be separated from
teaching, and learning is seen as social, interactive, and constructive rather than
absorptive. The emphasis is on activity, on doing mathematics. Davis [1989] called this

"experiential education” and said that it is more effective because learning a culture is
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more important than learning dead facts. A major theme that appears in these studies
is a linkage between epistemology and pedagogy. Mathematics itself is seen as a
collaborative, sense making activity and, from this, it follows that the mathematics

classroom should reflect this view.

SMALL GROUP PROCESSES

Collaborative activities emerge as a major theme in the studies discussed in the
last section. Collaboration is seen as natural to mathematics and, therefore, as crucial to
mathematics education. Schoenfeld [1989b] believes that small groups are the point
where students enter the world of mathematical discourse; the point where they begin to
enter the community of mathematicians. In practice, collaboration in the classroom often
appears in the form of small groups working together on a problem or a project, or group
members helping each other while working on individual worksheets. There are three
major questions to be addressed abou* collaborative small group processes in the
classroom: What are the outcomes desired, why should small groups be used to achieve
these outcomes, and how can collaborative work be structured to achieve these outcomes?

There are several non-academic reasons for promoting small group work. Cohen
[1994] cited cooperative learning as a strategy to promote positive social behaviour and
interracial acceptance as well as a way to manage hete;ogeneity in diverse classrooms.
Sapon-Shevin and Schniedewind [1990] said that communicating, sharing, and finding
common goals are central values in education, which can be realized through cooperative

leamning.
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However, increased academic achievement is the.most cited reason for the use of
small groups in mathematics education. There is much evidence that small groups can
increase achievement, especially, but not entirely, with regard to basic skills. [Davidson
1985, Dees 1991, Good, Mulryan and McCaslin 1992, Hart 1993, Johnson & Johnson
1985, Slavin 1989/90, Treisman 1992]. Kromrey and Purdom [1995] asserted that
cooperative learning allows for active and meaningful learning and promotes long term
retention. Noddings [1989] identified two general academic purposes for the use of small
groups in mathematics education: to strengthen learning outcomes, especially basic skills,
and to contribute to the development of higher order thinking. The conflict in purposes
1s based on philosophical differences, with those citing the first pointing to the
métivational structure of small groups and those citing the latter approaching small group
processes from a Dewey-Vygotskian perspective.

Foremost among current researchers in the first group is Slavin, who calls his
method STAD or Student teams-achievement divisipn [1987]. His small, mixed ability
groups work as teams, competing for points and recognition with other teams in the class,
in such away that even lower ability students can contribute to their team. He has
reported many positive results for achievement gain in basic skills [Slavin 1987, 1989/90]
and he noted that this achievement depends upon the existence of both group goals and
individual accountability.

Many researchers in the second philosophical groﬁp reject Slavin's team model due
to the competition inherent in it and due to their commitment to the development of

higher order thinking [Good, Mulryan and McCaslin 1992]. Collaborative groups, rather
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than competitive teams, were the subject of a study by Phelps and Damen [1989] of grade
four mathematics students. They found significantly greater gains in understanding of
basic concepts amongst collaborative pairs. This was in contrast to simple skill
achievement where they found the collaboration ineffective. Much of the theory used to
explain collaborative small group processes is based on the work of Vygotsky, Luria and
Leontiev [Schoenfeld 1987b & Good Mulrayan and McCaslin 1992]. In Vygotsky's
psychology, the individual and the social are seen as interactive elements of a single
system. By working 1n collaboration with a peer or a teacher, a learner may be able to
function at a higher level than he or she could achieve working alone. This level, above
the student's actual development but where he or she is able to function, Vygotsky calls
the "zone of proximal development” and it is here that higher order thinking is learned
[Cole 1985].

Four processes, identified by Good, Mulryan and McCaslin, [1992] that might
account for the success of small groups in enhancing higher level thinking are: (1) The
exchange of reasoning strategies, (2) constructive controversy, (3) the need to verbalize
one's cognitive processes, (4) the encouragement of one's peers. Bossert [1988/89] also
noted four factors that could account for the success of cooperative methods: (1)
Stimulation of higher order thinking, (2) constructive controversy promoting problem
solving skills, (3) increased opportunities to rehearsé information orally, (4) peer
encouragement and involvement leading to friendship, acceptance and an increase in
cognitive processing skills. Rosenthal's [1995] study of advanced university mathematics

classes led him also to four ways in which small groups could prove beneficial: (1)
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Students are better able to learn and retain concepts when they are actively involved, (2)
students can leamn from each other and from teaching each other, (3) students get practice
in working and communicating with others, (4) students sense a warmer, more welcoming
and more caring atmosphere. This last factor, he said, may be especially helpful to
women students.

Dees [1985] asserted that the benefits of cooperative work in complex tasks such
as concept learning and problem solving may derive from three factors: (1) Working
cooperatively forces students to attend to the problem at hand, (2) discussing the problem
leads to clarification for both the speaker and listener, (3) working together increases
confidence. Later [1991], she conjectured that it is dealing with controversy that may be
responsible for improvement in higher level thinking. ;I‘he cognitive rehearsal of one's
own position and the attempt to understand others' positions may result in a high level of
mastery. However, she notes [1985] that students need instruction on how to work
together.

Noddings [1985] postulated three factors that may be important in small group
processes: (1) When students encounter challenge and disbelief this may lead them to
examine their own beliefs and strategies more closely, (2) the collective may supply
background information that the individual may not have, (3) students, in taking charge
of their own actions, may internalize orderly approaches to problematic situations. Phelps
and Damon [1989] conjectured that the major reason for the success of their pairs of
fourth grade students in learning basic concepts was due in great measure to the necessity

for parmers to "publicly recapitulate their own emerging understanding of the task”
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forcing them to "bring to consciousness the ideas that they are just beginning to grasp
intuitively.” [p.645] Webb [1991] studied verbal interactions in small groups studying
mathematics. She conjectured three features of optimal group work that make it
potentially effective for learning mathematics: (1) Immediate feedback and explanation,
(2) the use of language that fellow students understand, and (3) a shared understanding
of difficulties. Stacey [1992] cited three possible reasons for use of small groups in
problem solving: (1) The opportunity for pooling ideas, (2) the need to explain and
express ideas clearly, (3) the reduction of anxiety.
Thus a summary list of important mediating factors that might account for the
success of small groups is:
I An increased focus on the task at hand.
2. Increased opnortunities to rehearse information orally leading to greater integration
of the information.
3. Constructive controversy, in which students encounter challenge and disbelief, in

which they challenge others and then use discussion to examine beliefs and

strategies more closely.

4. The pooling of 1deas and strategies and background information.
5 Reduction of anxiety and corresponding increase in confidence.
6. Encouragement from peers, a warmer, welcoming and supportive atmosphere.

These factors are still in the nature of conjectures, as the internal workings of
small groups are still not well understood. This 1s partly due to the focus of much

research being, until recently, on the product, achievement, rather than on the process, and
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it 1s partly due to the complexity of the factors involved. However there have been
findings of interest with regard to factors 1, 2, and 3 Webb [1991] reviewed and
analyzed research regarding verbal interactions in small groups in mathematics
classrooms. She found that the most consistent indicator of success is the giving of
detailed explanations. The mechanism accounting for this may, she asserted, be that the
helper must clarify and organize his or her thinking, often giving explanations in new or
different ways. Webb also found that, while off-task discussion was negatively correlated
with achievement, a simple count of interactions was not a good predictor. However,
Cohen [1994] found that a count of interactions was a good predictor of achievement.
The difference in the two results may be due to the different nature of the tasks involved.
Cohen's were inherently group tasks while Webb's tasks could have been accomplished
individually.

Zook and Di Vesta [1989] studied students of an educational psychology class
working at mathematics problems. Those who were required to supply overt verbalization
before making decisions required more time but made fewer errors and worked forward
on more problems. These studies indicate that rehearsal is a factor in the success of
groups. Studies of constructive controversy are rarer. Smith, Johnson, and Johnson
[1981] compared grade six students studying controversial social subjects in conditions
requiring controversy, consensus, or individual thought and found that the controversy
condition led to higher achievement and retention, a greater search for information and

a more accurate understanding of two perspectives.
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The underlying mechanisms that could lead to the success of small group
collaboration are clearly very complex, involving not only cognitive and metacognitive
factors but psychological and social factors as well. It is not surprising, then, that while
results have been generally positive, there have been some mixed results.

Good, Reys, Grouws and Mulryan [1990], through classroom observation, found
that small, mixed ability work groups displayed both stllengths and weaknesses. Active
learning, interesting activities, and an enhanced opportunity for mathematical thinking
contrasted with curriculum discontinuity, inadequate pacing and student passivity.
Cooperative group work is usually expected to increase the engagement of students.
However, as Salomon and Globerson [1989] report, this is not always the case. In small
reading/writing work groups they found several negative social-psychological effects.
Free riders are less able members of a group who leave the work to the more able. The
sucker effect takes place when a more able member of a group puts in less work in order
that others not take advantage of him or her. In the status differential effect we see
higher status members dominating the group. Ganging up on the task involves expending
effort to avoid actually doing the task. They note that research in this area is scant so
that empirically based recommendations are not available.

Stacey [1992] also found negative effects from group work. In a written test of
problem solving she noted that pairs and triples did no better than individuals. In order
to try to uncover the reasons for this she videotaped small groups of seventh, eighth and
ninth grade students solving three non-routine problems. All groups had produced many

possible strategies and all but one produced at least one correct strategy. However, in
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many cases a correct strategy was bypassed in favour of a simpler but erroneous one.
Chosen strategies were usually easier to carry out and easier to understand than those not
chosen. Groups that persisted with an incorrect strategy showed a marked absence of
checking behaviour. These observations seem to indicate that collaborative groups cannot
be counted on to pr.ovide external monitoring and control while a student is learning to
internalize this behaviour.

Although discussion is seen as central to cooperative small group work, some
researchers have been disappointed in the level of discourse observed within small groups
working on mathematical tasks. Cohen [1994] found that if students are not taught
differently they operate on the most concrete level. Pirie and Schwarzenberger [1988]
defined mathematical discussion as purposeful talk on a mathematical subject in which
there are genuine pupil contributions and interactions. However in a longitudinal study
of classroom discussion they found few instances which fitted their definition. More often
one pupil would talk while others showed no signs of reaction so that there was no real
interaction. In other cases, the goals of the talk were not well defined, so that while it
was interactive, it was not truly purposeful.

In her 1994 conceptual review of small group research, Cohen [Cohen, 1994]
proposed that the variability of results suggests that the theoretical advantages of
cooperative learning may actually only be obtained ﬁnder certain conditions. She
reviewed cooperative leamning in general, not specifically in the context of mathematics
education, and she focused on the character of interactions and their relationship to

achievement. The problem of motivating members to work as a group was seen to be of
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critical importance and might be addressed by including both goal and resource
interdependence. Goal interdependence exists when each student can only achieve his or
her goal if all other members also achieve their goals. Slavin's [1987] STAD is a good
example of this. Resource independence exists when a student can only achieve his or
her goal if others provide needed resources. Jigsaw is an example of resource
interdependence [Aronson et al, 1978]. However, these two factors might not always
result in the sought for interaction. The type of itask and amount and type of structuring
of the interaction is also critical. Cohen found that a key distinction is whether the task
is a true group task or a problem that could as easily be done by an individual. As well,
she found that for relatively low level outcomes a limited and highly structured interaction
was adequate and often superior, while for higher order thinking skills the interaction
must be less constrained and more elaborate.

Another factor in the performance of small groups is the makeup of the groups.
Here both social and cognitive aspects must be considered. Peterson, Janicki, and Swing
[1981] and Swing and Peterson [1982] found that, in mixed ability groups, both high and
low ability students benefitted from time spent explaining, while medium ability students
in these groups spent less time explaining and benefited less. Webb's findings [1982,
1991] support these results, indicating that medium ability students may do better in
homogeneous groups while high and low ability students do better in heterogeneous
groups. In her review of the research, Noddings [1989] noted that most researchers using
small groups in mathematics have chosen mixed ability groups to study, and she

speculates that both high and low ability students might perform well in homogeneous
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groups if the tasks were designed appropriately. Webb [1991] found that in mixed ability
groups with a smaller range of abilities, for example, medium and high ability or medium
and low ability, all students tended to be active participants. Perceived status of the
individuals in a group also affects the interactions within the group. Cohen [1984, 1994]
found that differences in perceived expertise, in attractiveness or popularity, and in race
all affect the nature and extent of interactions within a group. Webb [1991] noted that
there is little research that examines the role of personality factors in mathematics groups.
She found mixed results with respect to gender. In mixed groups with equal numbers of
boys and girls, they did not differ in their interactions t?ut in groups with a majority of
boys, girls were less likely than boys to receive answers to their questions. In groups
with a majority of girls, the girls tended to direct questions to the boy who often ignored
their requests. Boys outperformed girls in both unbalanced groups but not in the balanced
group. Hoyles said that group work cannot be seen as a panacea, as their "effects may
depend on so many elusive and subtle conditions" [1985, p.212].

Noddings [1985] has said that, in theory, cooperative small groups provide a
learning environment that i1s useful for developing problem solving abilities. However,
despite much research evidence supporting the use of small groups, there is still much that
is not well understood about what happens when small groups are used to facilitate
mathematical problem solving. Indeed, Good, Mulryan and McCaslin state that their
major task, in their analysis of research on small group process in mathematics [1992],
is to argue for more research, especially process-oriented and interview research. [p.167-

168]
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OPERATIONAL AND STRUCTURAL UNDERSTANDING

Anna Sfard has, for several years, been developing a theoretical framework that
involves a duality of understanding in mathematics. She believes that mathematical
notions can be conceived of in two complementary ways: structurally, as objects; and
operationally, as processes. Applying Sfard's framework to the actions of the students
helps to make understandable their approaches to the problems and their choices of
strategies. Abstract mathematical notions, Sfard argues [Sfard, 1991], can be conceived
of in two distinct but complementary ways. They can be conceived of structurally; that
is as objects that can somehow be "seen" in the mind's eye and manipulated as wholes.
They can also be conceived of operationally; as processes, or as algorithms, operations,
or actions. Thus, a function can be seen structurally as a set of ordered pairs or
operationally, as a computational process. Structural conceptions can be characterized as
static, instantaneous, and integrative while operational conceptions are dynamic,
sequential, and detailed. While Sfard acknowledges that the division of mathematical
concepts into two categories similar to hers is not new [see, for example Hiebert and
Lefevre, 1986], she notes that her theory is different in two important ways: firstly, it
combines both philosophical and psychological perspectives and, secondly, it is conceived
as a complementary duality rather than as a dichotomy tSfard, 1991, pp. 7-9].

While she asserts that her two ways of understanding mathematical concepts are
not opposed and are in fact "inseparable, though dramatically different, facets of the same
thing" [1991, p. 9], she sees operational conceptions as generally preceding structural

ones. This is a particulary important point which she justifies both historically and
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psychologically. The transition from an operational understanding of a concept to a
structural one involves three stages [1991, p. 18-19] and can be lengthy, painful and
uncertain. The first of these stages is interiorization, in which the learner becomes
acquainted with a process which will eventually lead to the new concept. The second
stage 1s condensation, in which lengthy processes are squeezed into more manageable
units. The learner becomes more able to think of the process as a whole and perhaps
combine it with other processes within a larger procedure. The final stage is reification,
where the learner is finally able to see the notion as an object. This is an ontological
shift and is generally a sudden leap. This difficult transition, from operational to
structural understanding, needs to happen over and over again during the iearning of
mathematics. As procedures become reified they become the objects of another set of
procedures, which then will also need to be reified. It is these transitions in the process
of understanding which may prove to be of crucial importance. Freudenthal [1991, p.98]
refers to the importance of the discontinuities in the learning process; the jumps where
the operational matter on one level becomes the subject matter of a higher level.

Pirie and Kieren [1992] have criticized Sfard's model on the grounds that she
portrays the growth of understanding as linear. They have proposed a model of concept
formation [1989, 1992] which involves eight levels and is essentially recursive, with the
learner moving backward as well as forward between the levels. While their model offers
a detailed picture of the growth of understanding, I will not undertake a full review of it
here since the present study is not centrally concerned with how understanding comes

about but rather involves the structure of the students' understanding.
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Sfard asserts that the idea of duality, as opposed to dichotomy, is central to her
model. While theoretically 1t would be possible to approach all of mathematics
operationally, structural understanding has great advantages over operational in "that it is
more integrative, more economical, and manipulable, more amenable to holistic
treatment." [Sfard, 1994, p.53] Operational conceptions are sequential and each step in
the procedure must be remembered in correct order if the procedure is to be carried out.
This can create a very heavy cognitive load and can lead to a feeling of only local
understanding. Structural conceptions, on the other hand, are holistic, can be understood
in terms of metaphors or visual images [1994, p. 53], and allow for parallel, rather than
sequential, processing. Fuzzy images can be unfolded to reveal the details when they are
needed. This allows for a more global understanding.

Sfard is careful to note that, although it appears that operational understanding is
more easily acquired than structural, and that structural understanding offers important
advantages, these conceptions are really complementary, and both are necessary parts of
mathematical knowledge. She says, "almost any mathematical activity may be seen as
aﬁ intricate interplay between the operational and structural versions of the same
mathematical ideas: when a complex problem is being tackled, the solver would
repeatedly switch from one approach to the other in order to use his knowledge as
proficiently as possible." [Sfard, 1991, p.28] There a.lle also times when a structural
conception may precede its operational counterpart. Geometric ideas, Sfard notes, may
be an example of this. The visual image of a circle will certainly precede the operational

idea, that is, the algorithm for creating a circle. [Sfard 1991, p.10] It may also be that
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professional mathematicians are able to read definitions and reify the concepts defined
without the interiorization and condensation phases [Sfard, 1994]. What does appear
clear, from her work and the investigations of others, is that, for school and college
mathematics students, a procedural understanding, especially with regard to algebra, is
primary and the transition to a structural understanding is inherently difficult and
problematic.

Carolyn Kieran, in her survey of research on the teaching and learning of school
algebra, [Kieran, 1992] uses Sfard's structural-procedural duality as an organizing theme.
The major problematic transition she considers is that from arithmetic to algebra, which
requires that the student learn to operate on algebraic expressions rather than on numbers.
"Until a student is able to conceive of an algebraic expression as a mathematical object
rather than a process, algebraic manipulation can be a source of conflict." [Kieran, 1992,
p.393] This is confirmed by Herscovics and Linchevski who, in a study of grade seven
students, explored an important cognitive gap between arithmetic and algebra. They
characterized it as the "inability to operate with or on the unknown" [Herscovics and
Linchevski, 1994, p.75]. Lee and Wheeler's [1989] study of grade 10 students points to
a dissociation between algebra and arithmetic which suggests that the students lack a
structural conception of algebra. While the students do see algebra as different from
arithmetic, they appear to view it simply as a set of procedures to be carried out on
letters rather than numbers. That the student's versions of these rules are sometimes
different from those they know for arithmetic, clearly indicates that they do not see

algebra as generalized arithmetic. A structural conception of algebra is particularly
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important in problem solving, where the construction of equations involves the ability to
represent numerical relationships symbolicly. As part of the transition to algebra, students
must make the change from an arithmetic to an algebraic approach to solving word
problems. The arithmetic approach involves "working backwards using a linear,
sequential approach involving a string of inverse operations" [Kieran, 1992, p.393], while
an algebraic approach requires the student to think in terms of forward operations and of
relationships amongst numerical quantities. Lesh, Post, and Behr describe this as the need

to first describe and then calculate {Lesh, Post and Behr, 1987, p.657].

SUMMARY

This review of the research literature has led from problem solving as a cognitive
process, through metacognition and belief systems, to a view of mathematics education,
and so also of mathematical problem solving, as embedded in its social context. This is
a view in which the content, in this case problem solving, cannot be separated from the
way in which it is taught. An incr-easingly common way for problem solving to be taught
1s through collaborative groups. Both of these themes, problem solving and small group
processes, have been extensively researched. However, the process of learning to solve
non-routine mathematical problems is still not well understood. As more of the factors
involved are studied, the complexity of the issues involved becomes apparent. Small
group processes, which explicitly involve social and psychological factors, are even less
well understood. Although results of studies of small group interactions seem generally

positive, the literature has shown that there can be negative effects as well. The concepts
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of operational and structural understanding may contribute to an understanding of the

problem solving process for both individuals and pairs.
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CHAPTER Il METHODOLOGY

METHODOLOGY

Schoenfeld has said that "any particular approach to studying intellectual behavior
is likely to illuminate some aspects of that behavior, to obscure other aspects, and to
distort some beyond recognition." [Schoenfeld, 1985b, p.283] Thus, the choice of
methodology will depend upon the behaviour to be studied and the intended focus of the
study. The field of mathematics education, lying as it does at the crossroads of many
established fields, encompasses a wide variety of research methodologies. Although
research methodologies can be adopted from disciplines as diverse as psychology,
sociology, epistemology and cognitive science, mathematics education does have its own
aims and its own specific problems. Howe and Eisenhart state that mathematics education
is a field of study rather than a discipline and as such adopts methods from overlapping
disciplines. Thus, methodologies multiply and, in the end, "a methodology must be
judged by how well it informs research purposes.” [Howe and Eisenhart, 1990, pp.4-5]

The major division in methodologies is between quantitative and qualitative
methods. Each method uses different techniques, is based on a different paradigm and
holds different assumptions about the world. Four major differences have been identified
by Firestone [1987]. (1) Assumptions about the world differ, with quantitative research
accepting a positivist philosophy, while qualitative research embraces a phenomenological
paradigm. (2) Purposes are different, with quantitative research seeking to explain
changes primarily through objective measurement, whileiualitaﬁve research is concerned
with understanding from the actors’ perspective. (3) The approach to research differs,
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with quantitative research being usually experimental or correlational, while the
prototypical qualitative study is an ethnographic study. (4) The role of the researcher
differs. Quantitative researchers generally aim at detachment, while the qualitative
researcher may become immersed in the study. [Firestone, 1987] These two major
research methodologies are not opposed but rather, give different kinds of information and
can be used together to give a more complete picture of the phenomena under study.
While a quantitative study will assess the magnitude of .a relationship or a change more
precisely, qualitative studies are stronger in depiction of detail, in description of detail,
and in attention to the point of view of those being studied [Firestone, 1987].

In the present study, it is the process of finding a solution to a problem that 1s
under investigation. This gives rise to a qualitative approach since it involves detailed,
close up observation of the process, rather than the final product. Krutetskii [1976] found
that qualitative study was particularly useful in studying students’ individual differences
in the process of problem solving. Marshall and Rossman [1989] assert that qualitative
research methods are appropriate when the research questions are exploratory, explanatory
or descriptive. In the present study the questions are exploratory and descriptive, and so
the qualitative paradigm is appropnate.

The present study relies heavily on verbal reports as data. Genest and Turk [1981]
identified four methods of obtaining verbal reports: Th;e continuous monologue, often
electronically recorded; random sampling of thoughts, often in response to a signal or bell;
event recording, in which the subject is asked to report whenever a particular cognitive

event takes place; and vanious reconstructive procedures. Ericson and Simon [1980]
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developed a three part classification. The first category is talk/think aloud, in which the
subject is asked to report everything they are thinking at the same time as they carry out
a task. The second category is concurrent probing in which the subject is asked to report
on specific aspects of their cognition. This requires intermediate processing such as
scanning or analyzing before reporting. The third category is retrospective probing, in
which the subject is asked to recall cognitive events. The present study used primarily

think aloud methodology.

I have chosen to adopt a non-interventionist strategy. In order to documernt the
whole problem solving process in as naturalistic a way as possible, it was necessary to
allow each session to proceed without intervention. I wished to avoid any training effect
that interviewer comments or questions might have had on the session, or on future
sesstons. That this non-interventionist strategy does have limitations 1s pointed out by
Schoenfeld [1985b]). At times it may serve simply to document phenomena without
shedding light on their workings. However, choosing a methodology is a matter of
weighing trade offs and in the present case non interference is required in order to
investigate the independent problem solving processes of the students. I wish to
investigate what they do without guidance or assistance, to see what strategies they
choose and what skills they bring to bear on the problem. Any intervention by an
interviewer could easily redirect the attention of the student and so disrupt the problem
solving process.

The use of verbal reports as data is not new. Introspection and retrospection

have a long history but by the middle of this century they came into disrepute as they
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were shown to be unreliable. At the other end of the spectrum was behavioursim, which
tried to be scientifically pure. By the 1970's the dominance of behavioursim was waning
as protocol analysis proved useful in artificial intelligence research and as Piaget's work
showed that the clinical interview could provide reliable and interesting results. The work
of Soviet researchers also began to make an impact. The limitations of pure empirical
studies became apparent and exploratory methodologies, such as the clinical interview and
think-aloud protocols became commoner. [Schoenfeld, 1985b, Ginsburg et al, 1983]
When one's interest is in eliciting cognitive activities in an unbiased fashion, a naturalistic
form of enquiry would seem ideal. However, as Ginsburg et al [1983] point out,
"naturalistic observation is usually not practical as a technique and must be replaced by
the protocol methods." [p. 17] Standardized testing is also of limited value when the aims
of research are exploration and description of a complex phenomenon such as problem
solving.

However, there are several limitations that must be considered with regard to using
verbal reports as data; reactivity of the subject to the experimental environment,
incompleteness of verbal reports, inconsistency with other observations, idiosyncrasy, and
the influence of researcher bias on interpretations [Ericspn and Simon, 1980, Genest and
Turk, 1981]. Reactivity will arise when the research setting is essentially atypical for the
subjects. Schoenfeld [1985b] sought to reduce reactivity by having his subjects work in
pairs, where dialogue is more natural and performance stress is lowered. However, for
the present study, this presents a difficulty; we wish to compare the problem solving

process when students work alone with the process when they work in pairs. However,
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in their review, Ericson and Simon [1980] assert that appropriate types of talk aloud
instructions, specifically asking for verbalization without explanation, do not seem to
interfere with performance. Asking the subjects to verbalize their reasoning did have an
effect; better solutions to problems were obtained bu‘t more time was taken. Thus,
reactivity, in the present study, although not eliminated, was reduced by -careful
instructions.

Incompieteness of think aloud verbal reports can stem from two sources;
unavailability of information to the subject, and failure to report all information. For
example, processes which are so often repeated as to become automated are less often and
less fully reported, and heavy cognitive loads produce less, or less complete, verbalization
[Ericson and Simon, 1980]. While the incompleteness of reports may make some
information unavailable, it does not invalidate the information which is obtained.

Ericson and Simon [1980] reported that the inconsistency of verbal reports with
other data can stem from two sources: The retrieval of information which, while not
identical to the information sought, is related to it; and the generalization and filling out
of incomplete memories. Furthermore, they asserted, this inconsistency is not generally
found in concurrent reporting. If verbal reports are accompanied by other reports of
behaviour, it becomes possible to check the consistency of the reports with the other data
sources. In the present study information is obtained from several distinct sources;
verbatim transcripts of think aloud problem sessions, the written work produced during
these sessions, ionger term workbook problems and informal exit interviews.

The last two limitations are less significant. While individual verbal reports will
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be idiosyncratic, multiple subjects can be used to lessen the importance of this factor. In
this study there were 14 subjects working on a variety of problems. Researcher
subjectivity may be present in any form of research, and the significance of the data will
need to be judged with respect to the researcher's implicit or explicit theoretical
assumptions.

Schoenfeld has noted that evidence from think-aloud protocols may reasonably be
considered suspect, serving to illustrate a perspective but perhaps not to document it in
a rigorous fashion [1985b]. Schoenfeld states that, "Issues regarding the validity and
generality of verbal methods are, however, singularly complex and subtle." [1985¢, p.174]
Any method of gathering and analyzing verbal data will illuminate some aspects of the
pr§b1em solving process and obscure others. There are trade offs to be made. Ginsburg,
Kossan, Swartz and Swanson [1983] concur that there are serious questions to be
answered if researchers are to accept verbal protocol methods (both think-aloud sessions
and clinical interviews) as legitimate research methqdologies. However, they say, "the
fact remains that, over a wide range of conditions and situations, people are reasonably
good at telling what they believe, want, and expect.” [pb. 26-27] They believe that it is
reasonable to rely on subjects' reporting of some of their cognitive processes. Thus, they
"believe that introspective reports can provide useful information and protocol methods
have a place in research.” [p.27]

Nevertheless, Ginsburg et al [1983] do identify some issues of concern. The first
is that only in those domains to which the subjects have access can their reports of mental

states and processes be expected to be accurate. However, Ginsburg et al report that it
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is an empirical fact that subjects can accurately report on aspects of their activities in
some areas, and mathematics is the example they use. The second issue they identify is
selectivity. Subjects must select a level or aspect of the phenomenon to describe. "What
a subject reports will always involve selectivity and interpretation. Introspective
descriptions are not representations of an unconceptualized mental given, but, of necessity,
reflect the subject's skills and habits of categorization." [p. 29] However, they point out,
there 1s an unbounded number of descriptions; a complete characterization is thus not
possible with any methodology. Researchers who use a non-interventionist think aloud
procedure must be especially careful in that they must rely on the context and task
structure to inform the subjects of the level of report expected. Another issue is that of
report interference, that is, the concern that reporting on mental states and process might
in itself change those states or processes. This has been at least partially addressed by
Ericson and Simon [1980] as discussed previously. Ginsburg et al assert that if we allow
for "the possibility of error, there seems to be no reason. to reject all process reports out
of hand." [pp.30-31] Ambiguity is a fourth issue of concern. Potential ambiguity of
subjects' responses can be a feature of protocol methods. Non-interventionist techniques
such as the think aloud process of the present study can be particularly prone to problems
of ambiguity. Thus its effects must be taken into account when analyzing the verbal
protocols produced. Despite these concerns Ginsburg et. al conclude that "[t]o evaluate
the fruitfulness of verbal data would be to see what its payoff has been or is likely to be.

And in the case of research on mathematical thinking, we believe the payoff has already

been significant." [p.35]
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Qualitative methodology is an appropriate methodology for the present study with
its aims of discovery and descriptior of complex phenomena. The particular choice of
a noninterventionist, think aloud problem session is justified by the nature of the

phenomena being studied.

PILOT STUDIES

To investigate the possibilities and limitations of the intended study, its setting,
the interview procedures, and the appropriateness of the problems to be used, two pilot
studies were conducted prior to the main study.

The first pilot study

The first pilot study was conducted in the fall semester of 1993. I was teaching
a Math 190 course, Mathematics for Elementary School Teachers, at Kwantlen College's
Richmond campus. As part of their course work, students were asked to work in pairs
on an opened ended problem. It was expected that they would work on the problem all
semester, keeping a record of their work and their ideas and feelings about it, in a
notebook kept for that purpose. At the end of the semester the notebooks were collected
to be evaluated and at that time I asked for volunteers who would allow me to use their
notebooks as part of my research. Two pairs and one individual (her partner had
withdrawn from the course) volunteered.

The purpose of this pilot study was threefold, tc; see if such long term problem
solving could shed light on the problem solving process, to determine if the students

would record their thoughts and feelings as well as their work, and to ascertain if the
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problems were rich enough to elicit substantial work but not so difficult as to be
intimidating.

All the volunteers, and indeed everyore in the class, put a substantial amount of
effort into solving the problems, and the volunteers all made substantial progress on their
problems. The most notable difference between these long term problem sessions and the
short, one hour sessions of the second pilot study, was the amount of effort that was put
into keeping clear and detailed records of all work done. Notebooks were neat and
organized, reflecting, I believe, both the lack of time pressure involved and the necessity
for keeping clear records when a problem was to be returned to in a few days or a week's
time. Colour coding was used by one pair to help them see patterns in their geometric
problem. Another student neatly cut out’and pasted in the drawings that were the essence
of her solution attempt. One student listed the supplies she thought she would need to
do the problem and then carefully listed possible strategies: "The methods we intend to
use to come to our solution are: 1, Guess and test, 2, look for a pattern, 3, draw a picture,
4, draw a diagram, 5, use direct réasoning, 6, identify subgoals." The students had been
told not to expect to solve their problems quickly, and the problems themselves were open
ended so they were approached with a different attitude than were the problems given in
the second pilot study. Although the students expressed some frustration, they were
generally relaxed, orderly, and willing to follow up an idea about which they were not
antirely sure.

Although the students did not write a great deal about their feelings in the

notebooks, they did sometimes record their frustration, puzzlement, or disappointment
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when a idea turned out not to be useful. The student who worked alone began to paste
stickers with sayings such as "Yes!" and "I'm proud of you!" into her notebook when she
had completed a days work or had come to an interesﬁng result. While none of the
students wrote any substantial entries about their feelings, or attempted to analyze how
they felt, many did make brief entries about their feelings of frustration or triumph,

All the problems given elicited a substantial amount of work and at least some
progress was made by all the students. None of the problems appeared to intimidate the
students with its apparent difficulty and none was so easy that the students were able to
"complete" it before the semester was over.

I concluded that the long term problem notebooks could supply a perspective on
the problem solving procedures of college students that might be different from that seen
from short term problem sessions alone. It also appeared that the notebooks might
provide some information about the feelings and attitudes of the students as they worked
on the problems. Further, the problem set appeared to be appropriate.

The second pilot study

The second pilot study also took place during the fall of 1993. Six students,
working at the precalculus level in mathematics at Kwantlen College's Richmond campus,
took part. The study consisted of a videotaped problem solving session with each student.
There were four main purposes to this pilot study: to test the thinking aloud procedure for
the problem sessions, to evaluate the appropriateness of the problems chosen, to determine
such details as the best placement of the camera, the size of the work paper and so on,

and, finally, to develop a framework for analysis of the sessions.
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Each interview lasted approximately 50 minutes and the students were given three
problems to attempt to solve during that time. The problems were giveri one at a time
and up to 15 minutes was allowed for each problem. The students were instructed to try
to think out loud, that is, to say aloud what they were thinking without explaining what
they were doing. They were told to talk aloud as though they were talking to themselves
as they worked. They were further told that they could ask me for formulae that they did
not remember but, otherwise, they were expected to work on their own. Several sheets
of paper, pens, and a calculator were placed on the table.

It quickly became apparent that several changss were necessary in the mechanics
of the problem session. In order to be able to follow the videotaped sessions, large sheets
of paper needed to be substituted for the smaller sheets and the pens replaced by felt
pens in a variety of colours. A ruler was also supplied. Audio taping was added to the
video taping in order to insure that quieter voices were recorded, and the interview room
was changed to a quieter location. Since all the subjgcts asked to know if their solutions
were correct and what the correct solutions were, I decided to tell them the results at the
end of each complete session and also to explain to them how to solve the problems they
had been unable to solve. Although in the main study, where students took part in more
than one session, this could lead to some training effect, I decided that this reassurance
was a necessity as it appeared very important to the students.

None of the students in the pilot study showed any real discomfort with the think
aloud procedure. They occasionally had to be reminded to think aloud and one student

spoke very quietly, mumbling a great deal of what she said. I found that, if I had them
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start each session by reading the question aloud, this prompted them to speak as they
worked. At first I found it difficult to tell when a student had actually finished with a
problem, rather than simply become frustrated. I modified my instructions to include a
statement that if they finished before the time was up they were to explicitly tell me that
they were done.

Few of the problems were actually solved correctly. One student solved two of
three problems, two more solved one each, and the remziining three solved none of their
questions. However, none of the problems was so difficult that the students were unable
to make any headway, and most elicited a serious solution attempt. Too many problems
of the "brain teaser" type had been included. The students recognized them as of this
type and then tried to find the "trick" rather than trying to solve the problem. One
problem in particular led to misinterpretations and a great deal of consternation. Another
problem was dropped as it was very difficult to follow the solution attempts. It involved
counting paths through a grid and the students simply traced paths with their fingers.
This was very difficult to follow on the videotape. It was decided to include in the main
study more problems that required algebraic modelling, as these led to richer problem
solving sessions involving the handling of variables and the construction of equations.
Since the students in the main study were to be college precalculus and algebra students,
these wez: the type of problems they were studying. It w:as also decided to included more
geometric problems, as these also led to richer problem solving sessions.

One of the main tasks of this second pilot study was to develop a framework for

the analysis of the problem session. The framework of Clement and Konold (se2 chapter
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two) was developed during their work with remedial college students and so was an
appropriate starting place for the present study. All tapes of the pilot study were reviewed
with this framework in mind, and it worked well as a.starting point but needed to be
filled in with more detailed questions. The framework involves both cognitive and
noncognitive skills and it divides these into two main categories: stage specific skills and
general skill= I retained Cement and Konold's stage specific skills, just adding more
specific questions. However, I found that for my purposes, it was necessary to modify
the subcategories of the general skills category. The original three categories of
generating and evaluating ideas, striving for precision, and monitoring progress were
modified to four; strategy selection, precision, monitoring, and belief and affect. I made
this modification as I was specifically interested in the strategies that the students used
and how they chose them, as well as how their beliefs and emotions affected the problem
solving process. From this pilot study I was able to dévelop specific questions to ask
under each category and I used this elaborated framework as a starting point for the main
study. (See the main study for the final framework.)

This second pilot study provided me with some insight into the students' problem
solving process. The subjects were all volunteers and so I had expected that they would
be relatively comfortable with mathematical problems. This turned out to be so. Only
one student exhibited a great deal of frustration and this student would not even attempt
one of the problems given her. The problem involved deciding how to fold a sheet of
paper so as to obtain the box with largest volume. She read the problem and immediately

gave up, saying that she had never been able to do problems that involved spatial
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relationships. Another student became quite frustrated on one particular problem. It was
an algebraic problem of a type he had seen in class and so was familiar to him. He knew
that he ought to be able to do the problem and was very frustrated when he was unable
to remember how. "I can't remember this simple problem and I have a major math test
coming up,” he said. There was little record keeping by any of the students. They drew
diagrams and graphs and wrote down calculations and ﬁr‘m.l answers but made no attempt
at systematically recording their work. There was also a noticeable lack of planning.
Schoenfeld has noted this in his studies of problem solving activities by more advanced
university students [1985b] and so this was expected. "Now, why have I done that?" one
student asked after completing an unnecessary calculation. Perhaps the most noticeable
characteristic exhibited by these algebra students was their inability to use variables
appropriately and to construct algebraic models. Variables were never defined and were
often used as a kind of shorthand to translate information from the problem rather than
as representing some quantity. One student used letters as subscripts on numbers to
indicate where the numbers came from but never saw that she could use a letter to
construct an equation which would represent the same process. This lack of fluency in

the use of variables led me to include more algebraic problems in the main study.

THE MAIN STUDY

The subjects
Subjects were recruited from Kwantlen College's Richmond and Surrey campuses.

Kwantlen College is a two year community college with four campuses serving the
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southem and eastern suburbs of Vancouver. The Surrey and Richmond campuses offer
university transfer courses, business courses, and other two year career programs. While
many students come directly from high schocl, a significant number are mature students
returning to school after an absence of up to several years. Many students are married
and may have children, and many work full or part time while attending college. A
significant number of these students require preparatory or remedial mathematics courses
and between one third and one half of the mathematics department's offerings are at this
level. The usual sequence of courses at this level begins with Math 092, Fundamental
Mathematics, followed by Math 093, Intermediate Algebra, and Math 112, College
Mathematics (precalculus), with students entering at différent levels depending upon their
backgrounds and their results on an assessment test.

It was decided to conduct the study with students at the Math 093 and Math 112
level. Students at the fundamental level, Math 092, were considered unsuitable as their
exposure to algebra and geometry was minimal, and so a different set of problems would
have been needed. Thus, subjects were recruited by announcements given in Math 093
and Math 112 classes during the spring semester of 1994 (see Appendix A). This was
mitially done on the Richmond campus only, but when two students from the Surrey
campus volunteered they were included also. 1 also accepted students from Math 190,
Mathematics for Elementary School Teachers, and Math 115, Elementary Statistics, as
these two courses are considered to be at the same level as Math 112. The
announcements emphasized that I was looking for average students rather than just the

best students. Subjects were told that they would take part in three video taped problem
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solving sessions, would complete a longer workbook problem, and would participate in
a short interview after all the problem sessions were complsted. They were offered a
stipend of $10 for each problem session and $20 for completing the whole study,
submitting the completed workbook and completing the exit interview. Fourteen subjects
were recruited in this manner. (See Appendix B for subject consent forms.)
The problems

Eighteen problem were used for the videotaped problem sessions. It was hoped
that all of these should be true problems, in Schoenfeld's sense, that 1s, problems for
which the solver does not possess a more or less complete algorithm. [1985b, p.54] On
the other hand, it was also necessary to choose problems for which the subjects did have
the necessary algebraic and geometric knowledge and skills. This meant, for example,
avoiding the use cf trigonometry, as the students in Math 093 were often not introduced
to trigonometry until near the end of their course. Also, formal geometiry was avoided,
as most of the students would have had little, if any, exposure to 1t. Within this context,
I wanted to choose problems that would elicit a wide range of strategies and skills from
the participants, but which one might reasonably expe& could be completed within the
15 minute time period which was allowed. It was not intended that the subjects should
be able to solve all the problems with ease. Rather the problems were intended to be
difficult enough to possibly produce some frustration, while not so difficult that the
subjects would be unable to make any headway. Most of the problems were at the level
of difficulty of the more difficult problems the students might see in their college

mathematics text books.
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Since I wished to compare the problem solving activities of the pairs and the

individuals it was necessary to ensure that the students -did not see similar problems in
more than one session. If they had the problems would no longer be true problems for
them. Thus it was necessary to have a variety of problems. Guided by the results of the
second pilot study, I choose eighteen problems in three broad categories, choosing one
problem from each category for each session. The three categories were: Familiar
problems, generally algebraic in nature, similar to, although generally more difficult than,
most of the applications problems the students might see in their text books; problems of
geometry and analytic geometry; and unfamiliar problems, generally logic and counting
problems of a type most of the students would not have seen before. It was hoped that
the familiar problems would focus on the subjects' strategies for constructing algebraic
models and their skills in the use of vanables. There‘were two problems of analytic
geometryvand four focusing on more general geometric ideas. These problems were
intended to focus on geometric and spatial reasoning, as well as the use and modification
of diagrams. There was also an algebraic component to several of these geometric
problems. The unfamiliar problem class was included to ascertain how the subjects would
apply therr skills to novel situations. The problems were chosen not just to focus on
specific strategies but also because they were rich enough to elicit a variety of general

problem solving behaviours. They were generally multi-stepped problems that required

planning as well as calculation. The complete text of all problems is included in

Appendix C.
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Problem sessions

Problem sessions were conducted in an interview room on the Richmond campus.
Students were seated at a table and furnished with large sheets of paper, felt pens in
various colours, a calculator, and a ruler. A video camera was placed across from the
subject or behind pairs of subjects and focused on the paper in front of them. An audio
tape recorder was also placed on the table.

Each session lasted approxirnately 50 minutes. Most sessions consisted of three
problems and fifteen minutes was allowed for each problem. A few students finished
their problems so quickly that they were given a fourth problem. While a fifteen minute
time constraint may seem artificial, it is consistent with the situation in which the students
generally find themselves in their classrooms. Whether working on problems during class
or while wrting an exam, the students usually face relatively rigid time constraints. Thus,
fifteen minutes per problem is consistent with what they might expect under classroom
conditions.

Individual problem sessions

During individual problem sessions students were seated at the interview table with
pens and paper in front of them and the video camera focused on the paper. The students
worked on three problems, one from each category, during each session. They were given
one problem at a time with up to fifteen minutes to work on that problem. Before the
interview began the problems had been divided into the three groups and then one
problem had been randomly selected from each group. They were then presented in

random order.
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The students were instructed to "think aloud" as they worked through the
problems. They were told not to explain what they were doing so much as to speak aloud
as though they were talking to themselves while they worked. They were asked to begin
each problem by reading it aloud and, if they finished béfore the time was up, to tell me
clearly that they were finished with that problem. They were further told that they might
ask me for formulae that they did not remember (such as the area of a circle) but were
otherwise to work alone. At the end of each complete session subjects were told which
problems they had answered correctly and were given a solution outline for any problem
they had not solved.

Most students seemed able to follow the think aloud protocol with reasonable
comfort, although many had to be reminded at times to think aloud. One, Carl, was
extremely nervous during the first problem of his session and he noted that it was
affecting his concentration. However, he seemed able to relax after that and did not
display any further discomfort. Another student, Cand);, found it extremely difficult to
work on her own. I remained in the room during the sessions and she repeatedly turned
to me for assistance. As a result, it required two 50 minute sessions to obtain 3
independently completed problems. It was planned that each subject would take part in
just one individual problem solving session. Candy, however, had two individual sessions
since her partners did not turn up at the appointed time.

Paired problem sessions
After all of the individual problem sessions were completed dyads were formed

and subjects were asked to work together on problems. The physical set up for these
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interviews was similar to that for the individual sessions. Subjects were seated, one on
the end and one on the side of the table, and the paper,. pens, calculator and ruler were
place diagonally between them. The camera was again focused on the paper and an audio
recorder was also used. They were asked to begin each session by reading the problem
and then to think aloud as they worked. No directions were given as to how they should
work together, who should read the problem, who should write and so on. This was left
entirely up to them.

Problems were chosen by first eliminating any problems wnat had been attempted
by either partner, and then randomly choosing one from within each category. Once
again, they were presented in random order.

Most subjects took part in two paired problem sessions, the first held about two
weeks after their individual sessions and the second about two weeks later. Pairings were
made based on availability for appointment times. No effort was made to match partners
by ability, course level, sex or personality. Only two pairs knew each other before the
study, one pair only slightly and the other pair were friends. As a result most problem
sessions began with my introducing the partners. There were no problems with the think
aloud protocol for pairs and, as one might expect, none had to be reminded to think aloud
in the more natural situation of talking to a partner.

Workbooks

When they volunteered to be part of the study each subject was given an open

ended problem and a notebook in which to record théir work. They were given the

following written directions:
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“You have been given a problem to work on over the next two months.
You should plan on working on this problem for about one hour a week, more if
you wish. Please do all your work in the workbook and do not erase or tear out
anything that you do, even if you later decide that it was not getting you
anywhere. Please date each entry that you make in the book. If you do any work
on separate pieces of paper, please date them and attach them to the book.

Record not just your working steps but also your guesses and ideas, even
if you do not follow them up. Also record your thoughts and feelings about the
problem solving process as you go along. Anything that seems at all relevant can
be recorded.

The problem you have been given is a complex problem. It may be quite
difficult or there may be many steps to it. You may not be able to solve it during
the two month time limit. Do your best. If, before the semester is over, you are
sure you have solved the problem completely, then attempt to generalize it, to go
beyond the original question to other related questions. I expect that you will
work on the problem alone. However if you do not understand the problem or
find that you are completely stuck you may ask me about 1t."

No attempt was made to monrtcs the progress that the subjects were making on
the workbooks during the time that they had them. The notebooks were returned to me
after the final pair interview, generally during the exit interview. It was hoped that the
workbooks would provide a different perspective on the process of problem solving, one
in which time constaints did not play a part, and where the problem did not have any
single right answer or set finishing point.

Exit Interview

At the end of the study, interviews were conducted with each subject. These
audio taped interviews were informal and open ended. Although I had prepared a set of
general questions, I allowed the subjects to direct the interview in whatever directions
they wished. The questions I had prepared were:

1. Please give me a short history of your study of mathematics. I am

interested in how much mathematics you have studied in high school and in
college and why you made the choices you did.
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2. What have been the most important influences on your attitude towards
mathematics and on your achievement in mathematics?

3. What do you think is central to achievement in mathematics?
4. What are your feelings about solving mathematical problems?
5. When studying mathematics, do you usually work alone or with another

person or a group? Why?

6. During this study you were asked to work on problems alone and in pairs,
Do you have any comments on the similarities or differences between the two
experiences?

7. Do you have any additional comments yéu wish to make?

These questions were used as quidelines only.

METHOD OF DATA ANALYSIS

Marshall and Rossman state that "data analysis is the process of bringing order,
structure, and meaning to the mass of collected data." [1989, p.112] The data for this
study comes from five sources; the individual task-centred interviews, the paired task
centred interviews, the workbooks, the exit interviews, and field notes made during and
after each interview.

I began the analysis by creating complete verbatim transcripts of all the problem
sessions and of the exit interviews. Then I reviewed the individual and pair video tapes
and transcripts with the aid of the analytic framework I had created during the second
pilot study. In these early stages of analysis I was simply trying to make sense of the
problem sessions; to become familiar with exactly what had happened during each

session. At the same time I was assessing and expanding my framework as common

62



themes and patterns emerged. While I kept the same basic outline as I had developed
during the pilot study, I refined the questions, making them more detailed and complete,
and I added complete sections relating to Sfard's structural/operational duality and to pair
interactions. The final analytical framework is as follows.

STAGE SPECIFIC SKILLS |

I Comprehension

1. Does the subject view understanding the problem as'part of the solution process?

2. Does the subject draw or modify diagrams, where appropriate?

3. Does the subject note the goals and given information, noting all the conditions of the
problem?

4. Does the subject differentiate between mathematically relevant and irrelevant details?
5. Does the subject make appropriate or inappropriate assumptions?

II Planning, Assembling and Implementing a Solution

1. Does the subject explore the problem (using examples, extreme cases and so on)? Are
the results of the exploration used appropriately?

2. Does the subject make a systematic analysis of the problem, organizing chains of
inference? |

3. Does the analysis or exploration lead to a plan or directly to a solution?

4. Does the subject create (implicitly or explicitly) a plan? Is the plan appropriate to the
problem? Is it carried out? Completely or in part?

5. Does the subject identify goals and subgoals, breaking the problem into parts?

6. Are diagrams used or modified?
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7. Does the subject rely on general principles?
8. Does the subject attempt to carry out an algorithm? Is it appropriate? Was it carried
out correctly?
9. Are operations and calculations carried out correctly?
I Verification
1. Daoes the subject treat verification as part of the solution process?
2. Does the subject view verification as something within his or her grasp or as an
ultimately external process?
3. During verification, does the subject:

1) check calculations,

(1)  assess the reasonableness of his/her answer in the context of

the original question,
(i)  venfy the logical validity of the solution method?

4. Does the subject's confidence in his/her solution affect the process of verification?

GENERAL SKILLS AND ATTITUDES

I Strategy Selection

1. What general and specific strategies are used or considered for use?

2. Does the subject evaluate sﬁaiegies before implementation?

3. What criteria does the subject use to select a strategy?

4. Does the subject switch strategies? What criteria are used in the decision to switch?

Is the switch useful?
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I Precision
1. Does the subject strive for precision in the use of:
(1) inferences,
()  wverbal expressions,
(iii)  symbols,
(iv)  diagrams,
(v) algorithms?

2. How does precision or lack of precision affect the solution attempt?

m Monitoring

1. Does the subject write down or otherwise record the information from the problem
statement?

2. Does the subject keep written records to organize his/her solution steps?

3. Does the subject stop and reread or reflect on the problem periodically?

4. Does the subject monitor his or her progress?

5. Does the subject monitor his or her mental state?

6. Does the subject proceed at a rate appropriate to his or her competence?

v Belief and Affect

1. What is the students' general attitude to mathematics? To problem solving?

2. What specific beliefs appear either explicitly or implicitly?

3. How does the subject react to confusion and frustration? Is there persistence in the

face of frustration?
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4. Does the subject attempt to get an answer at any cost?

5. Does the subject rely on, or wait for, inspiration?

6. Does the subject show confidence in his or her problem solving procedure and
solution?

7. Are there indications that the subject views mathematical problem solving from within
the context of a classroom culture?

A% Structural/operational strategies

1. Does the subject choose structural or operational methods?

2. Is there an apparent reason for this choice?

PAIR INTERACTIONS

1. How cooperative is the pair?

2. Is there a clearly dominant partner? @ What appears to be the reason for that
dominance?

3. Are partners willing to openly challenge each other?

4. Do partners support each other? Do they support each other even when they do not
appear to understand?

5. Do both partners generate ideas and suggest strategies?

6. Do both partners evaluate suggested strategies?

7. How is a decision about strategy selection made?

8. How is the decision that they have finished the problem made?

9. Is there evidence that one partner's persistence keeps them both on task? Is there
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evidence that one partner's confusion or frustration creates confusion or frustration in the
other?
10. Do they monitor each other in:
(1) exploration and analysts,
(i1) planning,
(iii)  calculation?
11. Do they discuss their mental states, beliefs and attitudes?

I then reviewed each transcript using this final framework. For each problem
session I created a separate file in which I summarized £he problem solving process and
then answered each applicable question in the analytic framework.

I next reviewed the exit interviews and basic information sheets filled out by each
subject. I first summarized the interviews based on the main interview questions. Then,
I returned to them to analyze their content with respect to how they might relate to the
questions in the analytic framework. Here, I especially concentrated on the categories of
belief and affect, and pair interactions.

The workbooks were not approached seriously by many of the students and so the
results were disappointing. However, I did review each notebook in the light of
applicable items from the analytic framework.

At this point, I had a file for each subject conta:ining the analysis of his or her
information sheet, exit interview, and workbook as well as any relevant information from
my field notes. I also had a file for each problem session, both individual and pair. I

then summarized these files under the categories listed in the framework. As the theme
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of a structural/operational duality emerged from this analysis, I reviewed the files again
and added that category to my framework.

The data anlysis methods used are part of a well established tradition in qualitative
research, in which themes and categories of analysis emerge during the process of
analysis. Marshall and Rossman state that "data collection and analysis go hand in hand,
to promote the emergence of sustantive theory grounded in empirical data." [1989, p.113]
They go on to suggest five modes into which qualitativ'e data analysis falls: organizing
the data; generating categories, themes, and patterns; testing the emergent hypothesis
against the data; searching for alternate explanations; and writing the report. Glaser and
Strauss discuss the constant comparison method of data analysis which is "concerned with
generating and plausibly suggesting (but not provisionally testing) many categories,
properties, and hypotheses about general problems." [1967, p.104] In the constant
comparison method the researcher may be guided by initial concepts and hypotheses but
these may be changed or discarded as data is collected and analyzed. McMillan and
Schumacher discuss inductive analysis which "means the patterns, themes and categories
of analysis emerge from the data rather than being imposed on the pata prior to data
collection" [1989, p415]. A constant redesigning of categories of analysis is thus a well

known technique in qualitative research.

TRUSTWORTHINESS

Qualitative research has often been attacked as sloppy, unsophisticated and

subjective. This has led to an ongoing debate regarding the trustworthiness of qualitative
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research. The initial debate regarding the legitimacy of qualitative research in education
was in terms of a choice between the entrenched quantitative methodology and the new
qualitative methods. [Howe and Eisenhart, 1990] Lincoln and Guba [1985] refined this
debate by distinguishing between research methods and epistemologies. They noted that
quantitative research is based on a positivist‘ or naive rea'list philosophy while qualitative
research is based on a phenomenological approach which seeks to understand actions from
the actors’ perspectives. They explained that different research paradigms require different
criteria for trustworthiness. However this does not mean that there are no canons that

stand as criteria for qualitative research. They pose four questions:

1. How can one establish confidence in the truth of the findings in a particular
inquiry?
2. How applicable are the findings of a particular enquiry to another setting or

another group of people?

3. How can one be reasonably sure whether the findings of an inquiry would be
repeated if the study were conducted with the same or similar participants in the same or
a similar setting?

3. How can one be sure that the findings of an inquiry are determined by the inquiry
itself and are not the product of the researcher's biases or interests?

[p. 290]

In the conventional paradigm these criteria are referred to in terms of internal validity,
external validity, reliability and objectivity. They replace these with four constructs for

qualitative research; credibility, transferability, dependability, and confirmability.
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To ensure credibility, 1t is necessary to de'nonstrafe that the inquiry was conducted
in such a way that conclusions can be drawn in confidence. Reviewing a number of
relevant studies [Clement and Konold, 1989, Ginsburg, 1981, Posner and Gertzog, 1982,
Schoenfeid, 1985b] led to the development of the methodology in the present study so
that the data collection and analytic methods fit into a well established tradition in
research in mathematics education. As well, the appropriateness of the data collection and
analysis techniques was confirmed by the pilot studies. Results of the present study are
based on several sources of data; individual and pair interviews, workbooks, and personal
interviews. Taking data from these differing sources produces a triangulation that
enhances the credibility of the results. Additionally, all claims in the analysis are
supported by data from one or more of the sources listed above.

Transferability refers to the generalizability of the study to other populations,
settings and treatment arrangements. To ensure transferability the researcher must provide
a sufficiently rich description to enable a person interested in making a transfer to reach
a conclusion about the adwvisability of so doing. The purpose of this chapter has been to
give as complete a picture as possible of the subjects and the setting, as well as the data
collection techniques used.

Dependability refers to the extent to which other researchers, using the same data,
would come to the same results. Accessibility of the data and procedures leads to
dependability. In the present study, dependability is enhanced by the use of mechanically
recorded data (video and audio taped interviews) and low inference descriptors (verbatim

interview transcripts), as well as clear descriptions of data collection and analysis
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methods.

Confirmability refers to whether the finding of the study could be confirmed by
another. This can be enhanced by making explicit several important aspects of the
design; the role of the researcher, selection of subjects, social context, data collection and
analysis techniques, and analytical premises. This has been done in the present and
subsequent chapters.

Howe and Eisenhart [1990] see Lincoln and Guba as representing only one
position in the debate about the trustworthiness of qualitative studies. Others [Erickson,
1986, Goetz & LeCompie 1984] focused instead on the particulars of the various research
methodologies rather than on epistemology. Howe and Eisenhart take a position
supporting this second position. They claim that "a variety of specific standards are
legitimate, because standards must be linked to the different - and legitimate - disciplines,
interests, purposes, and expertise that fall under the rubric of qualitative research." [p.3]
They propose five standards for qualitative research, four of which relate to
trustworthiness. (The fifth relates to ethics and value.)

First, there should be a fit between research qﬁestions and data collection and
analysis techniques. The present study is intended to be exploratory and thus the
techniques used are exploratory in nature. Collection techniques include think aloud
problem sessions, open ended work book problems and exit interviews. None of these
presupposes the behaviour that may be witnessed. Data analysis is similarly exploratory
m nature with the analytic framework evolving as the analysis proceeds.

Second, techniques must be competently applied. This chapter has given a
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detailed description of the techniques used, allowing the reader to judge the competency
of their application. The legitimacy of the techniques used has been discussed elsewhere
in this chapter. Data from the analysis are embedded in the results reported in chapter
four.

Third, studies must be judged against a background of existent knowledge. The
literature review, chapter two, has placed this study clearly in the context of current
research on the relevant topics.

Fourth is overall warrant. This encompasses the first three standards but also
requires that conclusions are those drawn after respected theoretical explanations have
been tentatively applied to the data. This study draws on results and theory from many
current researchers in the field and attempts to build on existent theory. Chapters four
and five not only report the findings but attempt to place them 1n a theoretical framework.

Howe and Eisenhart [1990] argue that "standards must be anchored wholly within
the process of enquiry” [p.3] and that "legitimate research methodologies may and should
proliferate.” [p.4] They argue that research, quantitative or qualitative, should be judged

in terms of its success in addressing educational problems.

SUMMARY

This chapter has provided a description of the methodology of this study and its
theoretical justification. As wel! it has included a full description of the methods of data
analysis applied and how these methods were developed. The construction of the analytic

framework was continuous throughout the study, being developed and added to as new
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themes emerged.
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CHAPTER IV FINDINGS

SUMMARY OF DATA
Demographic description of participants

Participants were recruited from Kwantlen College, Richmond and Surrey
campuses. There were fourteen participants, eight women and six men. Two subjects did
not complete the full study, one for medical reasons and the other for lack of interest.
The mean age of the subjects was 27.5, with the oldest being 44 and the youngest 18.
Nine subjects were full time students, four worked full time and 5 more had part time
jobs. Four were married, one man and three women, and three women were parents, two
of these were raising children alone. The subjects’ intentions in attending college were
vaned. Ten planned on transferring to university, six in science and engineering, one in
education and three had not decided on a major as yet. One subject was in a college
diploma program and one planned on transferring to the British Columbia Institute of
Technology. Two students were interested in personal enrichment. Most of the subjects
were currently enrolled in oneof two of the college's three preparation level courses: Math
093, Intermediate Algebra with Trigonometry; and Math 112, College Mathematics. Math
093 is a prerequisite for Math 112 which is the college’s precalculus course. One student
had recently completed Math 190, Mathematics for Elementary School Teachers, and one
subject had completed Math 120, Calculus, several years previously. Two had also
completed Math 115, Introductory Statistics. This set of students is quite representative

of precalculus level mathematics students at the college, both in the diversity of
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mathematical backgrounds and in their personal demographics.
Results of problem sessions

Each problem was scored as correct, incorrect or incomplete. A problem was
considered incomplete if either the student quit before the time was up or the student ran
out of time. Additionally, incomplete and incorrect problems were also evaluated to see
if substantial progress towards a soluiion had been achieved. Substantial progress was
considered to have been made if the student had been able to develop a strategy or plan
that could lead to a solution and had sttempted to put that plan into effect. For example,
when Carl attempted problem 4, the spider and the fly, he drew a diagram of the room
as though it were a box opened out and then attempted to find the shortest straight line
route between the spider and the fly. He forgot to consider one of the possible routes and
so did not find the soiution. However, he was classified as having made substantial
progress on the problem.

The fourteen individuals did three problems each, except for two who each
completed 4 problems. Of these 44 problems, 9 were done correctly, 24 were incorrect,
11 were incomplete and on 7 substantial progress had been made. The eleven pairs did
three problems each except for one pair which completed four. Of these 34 problems, 18
were correct, 8 incorrect, 8 incomplete and on 3 substantial progress had been made.
Thus the percentage correct for individuals was 20.5, while the percentage correct for
pairs was 53. Table 1 gives the results organized by problem. Table 2 gives the results

of individual problem sessions for each student and Table 3 gives the results for pairs.
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Table 1

Results of problem sessions by problem

{Problem Problem
2
Result—
1 Single 2 O §10Single |2 {1 |1 |0
Pair 1 /0]01}0O Pair 21041070
2 Single 0 {2 {2 {2 §gllSingle |0 |3 |0 |0
Pair 0011 }0 Pair 1 |1 10 |1
3 Single 212100 g12Single |0 |0 |0 |O
Pair 1 {0 [0 1O Pair 2101010
4 Single 0171011 13 Single |0 |2 |2 |2
Pair 01241070 Pair 0010 ]O
5 Single 0|1 |1 1}1 14 Single |0 {0 {1 |O
Pair 0 {0 |2 |1 Pair 310010
6 Single 211 12 |1 15 Single |0 |0 [0 | O
Pair 0 {0 |00 Pair 1 10]2 {0
7 Single [0 |0 |1 |0 §16Single |2 |1 |0 |O
Pair 31041140 Pair 1 {0110
|| 8 Single 1 {0 |0 {0 §17Single {0 {2 |0 |O
L Pair 1 {1 ]07}]0 Pair 1 {0 }]0 |0
£-9 Single 0 |0 |0 0 RFi8Single [0 |0 jJO |O
H Pair 1 {01 }0O Pair 0 {3 (01

C: correct, X: incorrect, I'incomplete, S: substantial progress made (these are also counted
in incorrect or incomplete category)
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Table 2 Results of individual problem sessions
T F | :
Name l Question Result Name Question Result
Diane 13
1 X 17 X
4 X 11 X
Carl 3 X 4 X
{ 16 C Simon 6 IS
4 X S 17 X
Randy 3 C 4 X
1 I Cecil 3 C
i 4 X 2 I
Karen 13 X 10 X
5 X S Shelly 6 I
11 X | 2 X S
Candy 14 I 8 C
7 I Janet 13 X S
4 X 2 I
Karla 6 C 11 X
5 I Carol 3 X
10 C 16 X
Sam 13 IS 10 I
16 C 1 X
10 C Kevin 6 C
2 X S
4 X

L
C: correct, X: incorrect, I: incomplete, S: substantial progress made.
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Table 3

Results of pair problem sessions

¥
Names Problem Result B Names Problem Result
Sam & 7 C Kevin & 7 C
Simon Cecil
2 1 5 I
12 C 8 X
Karen and 7 I Janet & 14 C
Karla Carl
18 X 18
4 X 8 C
Carol & 14 C l Diane & 15
Shelly Sam
17 C 18
11 X S 11 C
Carl & 7 C Carol & 15 C
Randy Shelly (#2)
5 I 18 X
9 C 4 X
Karen & 15 I Kevin & 3 C
Candy Janet
! 16 C 1 C
10 C 10 C
Karla & 14 C 12 C
| Diane
i 16 1
| ) 1
C correct, X: incorrect, I: incomplete, S: substantial progress made.
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Results of workbooks

Eleven of the twelve students who remained in fhe study turned in notebooks at
the end, but only three of these had done any substantial amount of work on their
problems. One completed only half a page of work and several did only two or three
pages in the approximately two months that they had the notebooks. Most of the students
apologized, saying that they simply had too many more pressing projects to work on. All
the questions contained several parts and were open ended, asking for generalizations and
extensions, and as such cannot be evaluated as simply correct or incorrect. Four students
were not able to answer even the first question posed on their problem sheet. Of the
seven who could complete at least the first step, three were able to make at least some
progress on the following questions, and three more made substantial progress in
answering the extension problems. Carl and Kevin put in significant amounts of work
on their problems. Carl worked on problem 2, map colouring, and was able to determine
minimum numbers for several configurations although, of course, without proof, and he
seemed to feel no need for proof. Kevin worked on problem 5, the secret numbers and
quickly saw that each figure led to a system of simultaneous equations. He then spent
a great deal of time trying to find general solution methods for these systems. He was
successful for the triangle and made some progress for larger systems. It is significant
that he realized that, although trial and error might work, it would not lead him to a
generalizable solution and so he avoided it.

The poor effort put into the notebooks by most of the students limited their

significance to the study. While some students may have been intimidated by the open
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ended nature of the problems, it is equally likely that they were simply too busy with
assignments, labs, and exams to spend the time required to understand and make progress
on the problems. This is in contrast with the students in the pilot study who completed
notebook problems as part of their assigned course work. In the pilot study, all students

put substantial effort into the problems.

PORTRAITS OF REPRESENTATIVE PARTICIPANTS

In this section I will give a brief description of four of the participants in the
study. The information used to form these portraits was obtained from a brief information
sheet each volunteer was asked to fill out, and from exit interviews conducted at the end
of the study.

Kevin was 21 years old at the time cf the study, and was taking four college
courses while working part time. His aim in attending college was to transfer to
university, but he was not as yet sure of his intended field of study. Although he had
completed Math 12 two years previously, Kevin was enrolled in Math 093, College
Algebra, where he had been placed by the college placement test. He was finding the
course fairly easy, but thought that it was important that he "have it solid" before going
on. Kevin said that the most important influences on his attitude toward mathematics
were his teacher and his own motivation, which he saw as springing from his career
goals. Of central importance to achievement in mathematics is, Kevin thought, the ability
to remain constantly focused. Kevin said that he found probiems, especiaily those with

practical applications, far more interesting than sets of routine questions. Kevin was one
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of only two students who put substantial work into their workbooks, and he made
significant progress on the problem assigned, number 5, the secret numbers. Kevin
arrived at all his interviews on time and remained fccused on the problems throughout
each session. Kevin was the leader in his problem session with Janet, but in his second
pair session deferred to Cecil who was several years older. Overall, he gave the
impression of a cooperative, serious and able student.

At eighteen, Candy was the youngest subject in the study. She entered college
directly from high school, and the semester in which the study took place was her first
at the college. She had completed Math 12 but was enrolled in Math 112, precalculus,
because she couldn't just “jump into calculus and know everything." Candy planned on
transferring to university in the sciences, perhaps in bio-resource engineering. The most
important factor shaping her attitude to, and achievement in, mathematics was, she said,
her teachers and the ways in which they taught. Her favourite teacher, who had taught her
grade eleven math class, explained everything and wrote everything down on overheads.
"He'd slap them down and we had to learn to write very fast." She believed that it was
important to ask questions in math class, and to have the questions answered completely.
Candy wanted to have everything explained to her, and believed that that was how she
learned best. She was finding that her college math course kept a very fast pace. She
thought problem solving was a new way of thinking which "no one can, like, think like
that right off the bat. They have to learn a new method." Candy completed two
mdividual problem sessions, rather than the usual single session, as one of her partners

failed to turn up. During both sessions, she found it very difficult to work on her own.
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She constantly looked to me for direction and to help her out when she got stuck, so that
the two sessions only provided three truly independently worked problems, two of which
she was unable to complete. She made no real effort to solve her workbook problem,
writing less than half a page in over two months. In her one pair session, Candy was
cooperative but was easily distracted by extraneous details.

Carl was 31 years old at the time of the study and a full time student at the
college, planning to transfer to medical radiography at B.C.1.T. Carl attended a private
secondary school in Vancouver, from which he graduated in 1981, having completed
Math 12. However B.C.1.T. required that he have Math 12 or equivalent within the past
five years, so he was enrolled in the coilege's Math 112 at the time of the study. Carl
believed that the most important influence on his attitude to, and achievement in,
mathematics had been his experiences in school. Part way through grade nine, he was
promoted from one mathematics stream to another, and he found it very difficult to catch
up. Even so, he received good marks which he felt he did not deserve, and which did not
encourage him to work harder. He missed portions of his high school courses due to
participation in the school band, and he felt that, even when in class, he did not put in
sufficient effort. He believed that he had returned to math, and to his studies in general,
with a much more mature attitude. Carl was one of the two students who put substantial
work into his workbook problem, number 2, the map colo‘uring problem, and he too i"~de
substantial progress. Puzzles, he said, had always intrigued him, and when he found an
interesting problem he liked to follow it up. Although often very nervous, Carl was an

enthusiastic and cooperative student. He often stopped by my office to discuss extensions
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or generalizations of problems he was doing in class.

At the age of 28, Diane was a single parent with one school-aged child. At the
time of the study, she was taking three college courses with the intention of transferring
to university to study occupational therapy. She had completed Math 12 in 1982, and
then had taken Math 093 during her first semester in college, one year before this study
took place. After that, she enrolled in Math 112 and recetved a C; she was retaking the
course to obtain a higher mark. She had always had difficulty with math, and had
recently been tested and found to be below average in spatial ability. As she said, "When
someone says stand a swimming pool on end and flip it over I go ieeegh!"” She said that
attitude is the most important factor in achievement in mathematics. Especially important
1s one's willingness to persevere. "You've got to keep going," she said. “And I think
that's really the whole thing. 'Cause I, for me, the easiest thing to do is just to give up,
to walk away from it if I can't figure it out. So if I keep doing it I, eventually, I might
get it" She found problem solving difficult but once she could "get a handle on it" she
found that she often enjoyed it. Diane was finding going to school along with caring for
her child to be very stressful, even overwhelming at times, and said that, as the semester
neared its end, she was having fantasies of running away to somewhere else.
Nevertheless, she turned up to all of her appointments on time and worked seriously on
the problems given her. Her second session with a partner turned out to be very stressful,
as there was a great deal of hostility between the two of them. Diane attributed this to
the different communication styles of men and women. Diane did minimal work on her

workbook problem.
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No student in the study was typical but these four could be said to be
| representative of the diversity in the group and in the college student body itself. The one
clear difference between the study group and the general student body was that all
parficipants were Canadian born, and all had English as a first language. This does not

reflect the student body of the college.

DESCRIPTIONS OF PROBLEM SOLUTIONS

The eighteen problems used for the video taped problem sessions were divided
into three general categories: familiar problems, generally algebra problems or what the
students see as word problems in their textbooks; geometric problems and problems of
analytic geometry; and logic and counting problems which would generally be unfamiliar
to the students. In this section I will provide brief descriptions of the kinds of solutions
the students provided to each problem. The full text of each problem, with solution, is
provided in Appendix C.

The familiar problems in;:luded problems 3, 6, 7, 13, 14, and 15. Although
classified as of a familiar type, with the exception of problem 6, the automatic washer,
the students were not expected to have algorithms for any of these problems. This turned
out to be the case and the students had a great deal of difficulty with most of the
problems in this category.

Problem 3, the shopping trip, was solved by 3 of 5 who attempted it. In each of
these cases it was done by tnial and error, beginning with guesses of $10 or $20. In one

of the incorrect atterapts, the student constructed and solved an incorrect equation and i
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the other the student used a single step arithmetic operation.

Problem 6, the automatic washer, was approached algorithmically by four of the
five who attempted to solve it. In two cases the algorithm was not completely
remembered. The one student who had no algorithm for this problem attempted to
construct an equation but quickly became very confused, using and changing variables
several times. She was unable to construct a useful eqliation.

None of the students who attempted to solve problem 7, the ski trip, had an
available algorithm, and all attempted to construct and solve an equation. It is notable
that no student began with the relationships in the problem and tried to construct an
algebraic model of them. Rather, all began by naming variables and then constructing
expressions for the various quantities in the problem. Although they were all able to
create the necessary algebraic expressions, in only two attempts were they then able to
construct a correct equation from these expressions. In one case the problem was
answered by guess and check.

The students found problems 13, the tanks in the desert, and 15, the commuter,
particularly difficult. There were no correct solutions to problem 13 and only one to
problem 15. In problem 13, diagrams were drawn but were not accurate, failing to
consider the movement of the tanks. This led to wrong assumptions, and consequently,
to a great deal of confusion. Only one student attempted to construct an equation and he
was clearly trying to implement an inaccurately remembered algorithm. Constructing an
equation was seen as the solution method for problem 135, but none of the students was

able to produce an appropriate equation. All subjects confused time and distance, and
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generally failed to shift their points of view from the commuter to the husband. Both of
these problems led to a great d=3! of confusion and frustration.

While all those who attempted problem 14, the cistern, found the problem
statement intimidating, three of four were able to solve it by breaking it into parts. The
only part in which they sutsequently experienced any difficulty was the last hour, for
which they could not direcdy calculate the result.

The geometric problems were numbers 4, 8, 9, 10, 11 and 12. These problems
required knowledge of basic geometry and analytic geometry including Pythagoras'
theorem and the condition for perpendicularity of lines in the plane. None required
trigonometry, a topic which students in Math 093 might not yet have studied.

Problem 4, the spider and the fly, was not solved by any student in the study,
although one did make substantial progress. The genergl approach to the problem was
to draw and calculate several routes, until one appeared shortest. There was no attempt
to set up any kind of decision criteria, although some did attempt to justify their choice
as being the most direct. The student who raade substantial progress flattened out the box
and then considered only straight lines. Unfortunately, he missed one of the possible
ines.

Problems 8 and 9, the triangle and the tangent circle, were both begun by graphing
the appropriate lines. The only difficulty in problem 8 was in finding the intersection
pomt. One pair knew how to do this and another did it by guess and check. The third
pair was unable to find it and 1instead attempted to use trigonometry, but made serious

errors. Only two pairs attempted problem 9, and one pair was able to use the
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perpendicularity condition and special triangles to solve it verv quickly. The other pair
forgot to consider perpendicularity and made an erroneous assumption leading them into
some confusion.

Problem 10, the four circles, was solved in four of six attempts. One student
seemed to see the complete solution immediately, while the others took varying lengths
of time and modifications of the diagram to find the idea. One student's diagram was so
inaccurate that, although he had a wviable solution method, he obtained an incorrect
answer. One simply gave up very quickly.

Problem 11, .»e two circles, gave the students considerably more difficulty. Here
1t was necessary to assign variables to the radn and construct and simplify an algebraic
expression, in contrast to problem 10, where the answer could be calculated directly.
Only in two of five solution attempts were letters used to represent the unknown radii,
and one of these was correct while the other pair made substantial progress towards a
solution. Two of the others made the erroneous assumption that the radius of the inner
circle was equal to 1. The other one attempted to measure the lengths from the diagram
and then use them in inappropnate formulae.

Problem 12, the folded paper, was solved by both pairs who attempted it, but in
each case they solved it using trigonometry. This allowed them to solve it in an
operational, forward calculating method. To solve it v;/ithout the use of trigonometry
requires one to name variables and work with algebraic expressions.

The rematining problems, 1, 2, 5, 16, 17, and 18, were logic and counting

problems. It was thought that these problems would likely be unfamiliar to the students.
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Two, numbers 16 and 17, required counting, one, number 18, required a knowledge of
factorization, one, number 5, would likely have resulted in an infinite series (although a
closed answer was possible without the techniques of calculus), one, number 2, required
an explanation, and the last one, number 1, simply required a logical analysis.

Only one of four attempts to solve problem 1, the sleepy passenger, was
successful. The successful student found the answer almost immediately. To obtain the
correct answer, one has to reason backward to see that the time slept is two thirds of the
second half of the journey. Two of those who obtained a wrong answer calculated
forward, and incorrectly obtained one quarter. The final student made the incorrect
assumption that the passenger could not travel while sleeping.

There were no successful solutions to problem 2, division by nine. This problem
required the students to provide an explanation for the rule they were given and it was
clear that they did not understand how one could do this. They all began with several
examples and then most confinued by looking for a pattern. Two went beyond this to
consider the effect on the remainders obtained when dividing by nine, of nine being one
less than ten . One of the two came very close to providing an acceptable explanation.

All of the students who attempted to solve problem 5, the squares, constructed the
first few terms in an infinite series. For two of these, the first three terms of the series
were correct. They had broken the problem down into steps and added the additional
fraction shaded at each step. Two students made errors in this process. One student
abandoned this attempt and attempted to fit an exponential or logarithmic function to the

problem, apparently recalling the iterative nature of some of the interest problems he had
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seen In class.

Three of the five attempts to solve problem 16, making change, were successful.
In these cases, the students began by listing several examples, then decided upon some
organizational scheme for their combinations. One student attempted to count without
such a scheme, and obtained an incorrect answer. The final pair did not try to directly
count the combinations, but attempted to set up a system of simultaneous equations. It
is clear that they did not really consider how this might give them an answer, but were
simply trying something that looked famihiar.

The three who attempted problem 17, handshakes, each used a different method.
One simply did a one step calculation, with inadequate analysis. One tried to use tree
diagrams which, although used for counting, were inappropnate for this problem. The
third solution was correct, and was achieved by drawing a diagram to illustrate the
situation. It appeared that this student had a ready made algorithm for the problem.

There were no correct solutions to problem 18, factorial, although one pair made
substantial progress. One pair s'imply guessed, and one pair spent most of their time
trying to find pattems in the incorrectly interpreted calculator output. The others

considered the factors that would contribute zeros to the product, but none was careful

enough in this analysis to obtain the correct answer.

OPERATIONAL/STRUCTURAL ANALYSIS

Sfard's operational-structural model adds a great deal to the understanding of the

solution attempts displayed by many of the students in the present study. Many of the
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problems presented to the students required a structural, describe first, calculate later,
approach, while most of the students approached the problems operationally. Even some
of the apparently arbitrary strategy choices can be understood now as the attempts of
students who cannot see the mathematical structure of a problem to, nevertheless, find a
solution.

The students in the study showed an overwhelming preference for operational
solutions over structural ones. This becomes quite clear when one considers those
problems which allow for solutions of either type. All those who solved the shopping trip
problem, number 3, did so by trial and error, a method which in this case involved only
direct calculations. Only one subject, Carl, attempted initially to construct an equation
for this problem, and his solution attempt was unsuccessful as he did not take into
account the iterative nature of the problem. None of ‘those who solved this problem
showed any awareness that they could replace their trial numbers with a variable and so
construct an equation. This is particularly notable in the case of Karen, who had to make
several trials before arriving at the correct answer. It is, however, interesting to note that
few of the students were entirely happy with a trial and error solution, and in one case
the student never even submitted his answer, but spent the rest of the time allotment
attempting to fit an equation to his solution. "Okay. 17.50. The answer is 17.50. But
we've got to figure a way to do it without guessing.” [Randy] It was very clear that they
all believed that there was an algebraic method of solution, and that it was preferred.
However, they had no 1dea how to obtain 1t.

Another problem which allowed for both an operational and a structural approach
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was problem 12, the folded paper. This problem could be solved in an operational mode
with the use of trigonometry, or with a structural approach that avoided trigonometry and
used only Pythagoras' theorem. This second method, however, required the solver to use
a vanable and to work forward, creating and solving an equation in which the variable
appeared twice. Kieran has noted, following Filloy and 'Rojano, that it is with equations
of this type that algebra students must make the transition from arithmetic to algebraic
thinking, that is, from an operational to a structural apprcach [Kieran, 1992, p.393]. Both
of the pairs who solved this problem (Simon and Sam, and Kevin and Janet) did so by
the trigonometric, operational method. In the case of the second pair, Janet knew no
trigonometry, and therefore Kevin had to provide a concise explanation of trigonometry
before he could go ahead and solve the problem. Despite this, and despite having been
told that trigonometry was not needed, this was the approach they choose.

Probiem 14, the cistern, while having a long and apparently quite complex
problem statement, can be solved almost entirely by operational means. Only during the
final step, calculating the fraction of an hour after 3 p.m. for the cistern to fill, did any
of the pairs who attempted it have any difficulty at all. And it is only for this final step
that anything other than a direct calculation need be considered. Karen and Diane had
a particularly difficult time trying to construct an equation for this final step:

K 1/8 of job is done

D We need to set up an equation.
K in 1/6 of t.
D

t is equal to time, ok.
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K 1/8 of job needs to be done in 1/6 time. .. Hum, hum, hum, hum, hum.
Yeah we need an equation here. [unclear]with respect of.

D Well 1/8 of t. Would 1t be 1/8 of t? ..

K Well, not really 1/8 of time. We need 1/8 of the job, because the job here.

D Right.

K We need, it has to be done in 1/6 of the time, er, in 1/6 of Well, this is
done. It does 1/6.

D 1/6

K of the job.

D Yes.

K So we need 1/6 times what equais 1/8.

[Karen and Diane] They did finally construct and solve an equation which gave them the
correct answer to the problem, but even then they had little confidence in it and did not
see its place in the structure of the problem. This became clear when, in attempting to
venify their answer, they, without realizing it, redid calculations that they had already
done. The other two pairs which solved this problem (Carl and Janet, and Shelly and
Carol) calculated this last step directly, never using algebra at all. "Alright, so, the end
of the third hour we have, ah, 3/24 left to fill up. And if we go another full hour we'll
have filled it another 4/24. ... So it's 3/4 of an hour.” [Shelly and Carol] This problem,
because of its length and apparent complexity, initially i-ntimidated all who attempted it.
It was, however, successfully solved in three of the four sessions when it was presented
(the one individual who attempted it, Candy, gave up ve-ry early on), I believe, because

the students were able to use an operational approach.
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While for the cistern problem an operational approach was appropriate, in problem
13, the column of tanks, a structural approach, involving construction of an algebraic
model of the problem, was necessary. None of the four students who attempted this
problem was able to solve it, and two of thern made no attempt at all to use a vanable.
One of those who did use a vaniable, Sam, was clearly attempting to reconstruct a poorly
remembered algorithm. The other, Janet, only considered it briefly and, not being able
to see how to use letters, abandoned the idea.
J Try something totally different. IfI take speed plus speed times, one times is the

same time .3 time .3 equals. That's time 1, time 2 equals distance 1 plus distance

2. But what would that tell me if I did that? That would tell me the total

distance. I already know the total distance. I can just add these two 'cause that
would be what 22, 32, 37 and a haif km. ...[Janet]

— < T —
S, 1S, (.3 ‘2,3 :B'-\—bz. ‘

) ’ S>- T:b_

Figure 1 Janet, problem 13

Janet was not considering the mathematical structure of the problem, but was simply
trying to use her formal understanding that rate times time will give distance. Since she
already knew the distance, she could not see how this would be of any help and she made
no further attempt to use a variable. For most of her session, Janet tried to find an
answer by calculating whichever times or distances could be calculated from the given

numerical information. The other two students who attempted this problem took 2 similar
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approach, making no attempt at all to construct an equation. They drew diagrams, created
tables, and calculated whatever quantities could be directly calculated, but did not appear
to even consider the possibility of constructing an algebraic model, of "describing firs:,
calculating after.”

Three of the five attempts to solve problem 7, the ski trip, were successful. One
of these was done by guess and check and the other two were completed with the use of
equations which were constructed with difficulty. In no case did the student or students
begin with the relationships amongst the quantities in the problem. and use these as the
‘basis for an algebraic model. Rather, they named one o.r more variables and then began
to see what quantities could be constructed with these variables. Only then did they
attempt to put these expressions into some sort of relationship to each other. This was
generally a very unsure process and confidence in the result was proportionately low. The
pair, Kevin and Cecil, who solved the problem by guess and check had created an
erroneous equation in just this manner, but were too intimidated by its complexity to try
to solve it. The students who were unable to solve the problem had approached it in a
similar manner. One of these pairs, Karen and Karla, was able, with some difficulty, to
create correct expressions for all the important quantities in the problem but then was
unable to construct an equation from them. Although they clearly knew the relationship
between the original fare and the reduced fare, they were unable to use this information
to construct an equation. This was the difficulty for all those who attempted to solve this
problem.

The two problems involving areas of circles, problems 10 and 11, clearly
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demonstrate the difference between a structural and an operational solution. Both
problems involve adding one or more lines to the existing drawing, then calculating two
areas, and finally subfracting one area from the other. However, in problem 10, the four
circles, the solution can be obtained by direct calculation, while in problem 11, two
circles, it is necessary to assign variables to unknown lengths, use Pythagoras' theorem,
and simplify the resulting expression to remove the variables. Problem 10 was solved in
four of six attempts, while problem 11 was solved correctly in only one of five attempts.

All but one of the students who attempted problem 10, the four circles, constructed
the appropriate lines quite quickly after seeing the problem. In one case, Sam's solution,
this led to an immediate solution, as though Sam had instantly seen the solution whole.
The others spent some time fitting the pieces together and one, Cecil, got confused by his
inaccurate diagram, counted the small pieces incorrectly, arid so came up with an incorrect
answer. However, all but Carol realized that they needed only to calculate the area of the
constructed square and then subtract the areas of the sectors from it. At this point the
problem became simply operational, and most were able to carry out the necessary
arithmetic operations.

The two circle problem involved drawing in the one radius and then subtracting
the area of one circle from the other. However, in this case the radii of both circles were
unknown, so that it was necessary to construct an algebraic expression for the area and
then simplify that expression. All but one of those who attempted this problem drew in
the required line and realized that they must subtract one area from the other, but only

the two pairs, Shelly and Carol, and Sam and Diane, went on to use letters to represent
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unknown lengths. Even then, both these pairs had a great deal of difficulty with the
resulting algebra. While they seemed to have a clear idea of the geometry involved, each
step in the algebra appeared isolated and was not understood as part of an overall plar.
Sam and Diane drew 1n several more lines and chose vanables in such a way that their
algebraic simplification became quite complicated. They were, however, able to solve the
problem in the end. Shelly and Carol chose more appropriate variables, calling one radius
a and the other c, but then wrote both a in terms of ¢ and ¢ in terms of a. Substituting
both expressions into the expression for area, they forgot to square the radii. They kept
clear records and appeared to understand each step but seemed unable to see the overall

picture and, in the end, were unable to solve the broblem:

Figure 2 Shelly and Carol, problem 11

S That's the area.
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Figure 3 Shelly and Carol, probiem 11

Now because there's a pi squared on both of these ... we can do

A - w(TEnEte)

Figure 4 Shelly and Carol, problem 11
I don't know 1f it makes any difference. Opps. And that's our area ...
That's as good as I can get it. I don't know about you. (laugh)

C Yeah, ah, I don't know.
S There's got to be some other way. But, I mean, at least we, algebraically
we can get it to that point. And I can't. I don't know about, how, whether
you've got any other ideas.
C Nope.
{Shelly and Carol] Shelly and Carol, as well as two of the other students who attempted
this problem, originally made the assumption that the radius of the inner circle was equal
to o;le, as 1t seemed to be on the diagram. Tanya did .tllis and when, at the end of the
session, before being given the answeis ¢ the problems, she was asked if she could solve

this problem without this assumption, she was certain that the problem could not be

solved in that case. Karla began the problem without assuming that this radius was of
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length one but later, when at an apparent dead end, decided to explore this possibility and
then never returned to the more general problem. This simplifying assumption transforms
the problem into one that can be solved by operational means only, and a correct answer
was obtained in this manner, although the solutions were deemed incorrect. Janet, the
other student to attempt this problem, did not draw iq the required radius, but made
several attempts to measure different lengths on the drawing until she believed that she
had obtained the width of the annular region. She then tried to use this for the radius in
the area formula for a circle. Her procedure does not seem entirely unreasonable if one
assumes that she was simply looking for some operational way to find an answer. The
procedure for finding an area which she seemed to be carrying out, was to find a length
and use 1t in an area formula to calculate the required quantity.

The contrast in success rates and frustration levels between these two problems is
a further illustration of the students' preference for, and competence in, problems that can
be solved by direct, operational means as compared to problems that require a structural
understanding. It is also interesting to note that most of the students were able to
immediately see the geometric structure of both problems, and yet none were able to see
the overall algebraic structure of the second problem, adding support to Sfard's
observation that geometry may be more commonly understood structurally. [Sfard, 1991.
p-10]

We have seen that, where possible, subjects chose an operational over a structural
approach to the problems. Problems that could be solved by either approach were

generally solved by an operational, direct calculation approach; in these cases a structural
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approach was never even considered. Subjects were often unsuccessful at solving

problems that required a describe first, calculate later, structural approach.

STAGE SPECIFIC SKILLS

Stage specific skills are those skills involved in a particular stage of the solution
attempt. Following Clement and Konold [Clement and Konold, 1989] I consider three
stages: (I) comprehension, (IT) planning, assembling and implementing a solution, and (III)
verification. I will discuss the findings from both individual and pair sessions within these
categories.

Comprehension

Most students appeared to view understanding the problem as an integral part of
the solution process. They had been asked to read the problem statement aloud and most
reread i1t a second or even a third time, more slowly and often with long pauses. They
did i:ot, however, generally make explicit note of the givens and the goal. The exception
to this was problem 6, the washer, in which several subjects explicitly noted that the time
for the cold water and for the cold and hot water together had been given, and the time
for the hot water was needed. In most cases, they transferred the information from the
problem sheet to their working paper. This was done with the aid of a diagram or
drawing whenever possible. The drawings were usually quite simple, and often used only
to organize information from the problem statement. However, they were occasionally
more elaborate than was necessary for the problem. The drawing below created by

Candy, when she and Karla were starting problem 15, the commuter, contains no useful
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information.

{
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Figure § Candy, problem 15

One student, Karen, highlighted important information on the question sheet. Almost all
students redrew, on their working sheet, any diagram that was given on the question sheet.
On the two questions, problems 8 and 9, where equations of lines were involved, all
subjects immediately graphed the lines and then returned to the problem statement before
going further. It was clear, in these cases, that they saw the construction of a graph as
integral to really understanding the problem.

However, at least two students were willing to aftempt to solve a problem which
they clearly did not understand. Janet worked with Carl on problem 18, factorial. She
was not familiar with the 1dea of the factorial and read the two examples carefully before
tuming to the definition of n!. "I'm just trying to get through that n one," she said,
"'cause that would be the key, wouldn't it? To figure out that one?” However, she made
no effort to do this, despite the fact-that it was clear that Carl had seen factorials before
and she could call on him. Instead, she wanted to use the definition as an equation to be

solved. She had clearly misread the multiplication symbols as x's and, seeing an equation,
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abandoned her attempt to come to grips with the definition of factorial. Another student,
Karla, was clear that she did not understand the key point of problem 5, squares. She
said "I think there's something I'm not quite picking up. ... If the process continues
forever? See, I don't, don't really see how that process can continue forever. ... I think
the key 1s, if the process continues forever." She then attempted to answer the question,
without having clarified what she clearly knew to be the key 1dea. These two students
were willing to attempt to solve a problem when they clearly knew that they did not
understant concepts central to the problem and so it appears that they did not see
understanding the problem as crucial to solving the problem.

To solve the problems given, it was necessary to sort relevant from irrelevant
details, and to make certain assumptions. Often, the students made the wrong
assumptions. They assumed things that were not necessarily true and, more rarely, did
not make other assumptions that were necessary to the solution of the problem.
Occasionally, they were concerned with details that were irrelevant mathematically.

The two probiems involving circles, problems 10 and 11, each involve assumptions
about radii. To solve problem 10, it is necessary to assume that all the radii are equal and
the circles are tangent. Although these assumptions are not given in the problem
statement, all subjects who attempted this problem made these assumptions, generally
without explicitly saying that they were doing so. Subjects had much more difficuity with
problem 11. Here one cannot assume that the lines are.in the proportions in which the
appear on the diagram. However, this convention was not clear to ali the students. In

all but two solution attempts, the assumption was made that the radius of the inner circle



was equal in length to the tangent line given, as it appeared on the diagram. In two of
three solutions where this assumption was made, it was made explicitly and the subjects
were aware that they might be incorrect. This was in sharp contrast to problem 10, where
the (correct) assumption was generally made unconsciously and no doubt at all was
expressed.

Other problems also required conventional assumptions and, in several cases, the
subjects made these assumptions explicit. In problem 4, the spider and the fly, it was
necessary to assume that the fly does not move. Randy was concerned enough about this
convention that he presented two answers, one valid if the fly could not move and the
otﬁer if 1t could. Shelly noted that to solve problem 6, the washer, it was necessary to
assume that the flow of hot water did not affect the flow of cold water, and vice versa,
even when both were operating at the same time. In solving problem 16, making change,
Cari asked for confirmation that all coins of any denomination were to be considered
identical, a necessary convention. Karen and Karla explicitly discussed assumptions to
be made in solving problem 7, the ski trip. They noted that they needed to assume that
everyone pays the same fare, and that the club does not make any profit on the trip.
Karla and Candy noted that, to solve problem 15, the commuter, it is necessary to assume
that the commuter has not telephoned her husband to tell him of the change in trains.

Incorrect assumptions led some students into difficulties. In his analysis of
problem 1, the sleepy passenger, Randy made the erroneous assumption that the passenger
cannot travel while sleeping. This made the problem impossible to solve, and led Randy

into great confusion. However, he at no time reconsidered this assumption. Attempting
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to sclve problem 13, the tanks in the dessert, led both Diane and Karen, but not Janet or
Sam, to assume that the times for the two parts of the messenger's journey were equal.
This led both Diane and Karen to contradictory calculations but, like Randy, they never
questioned their assumption. Carl assumed that in problem 3, the shopping trip, the
amount lent was the same each time. Although it was possible to check this assumption,
he made no attempt to do so. Cecil, on the other hand, having made the assumption that
the rule for division by nine (problem 2) only worked for numbers under 100, checked
this assumption and found that he was wrong. In this problem it was easy to check,
something not generally true.
Planning, Assembling and Implementing a Solution

Little planning was evident in most problem solving sessions. Solutions were
more generally attempted through exploration and analysis, or the application of a known
algorithm. A notable exception to this was Kevin's explicit plan to solve problem 12, the
folded paper, by the use of trigonometry. Since his partuer, Janet, knew ne trigonometry,
he had first to explain what trigonometry could tell them about a triangle. He went on
from there to present a complete solution plan.
K I was thinking, if we could find that. This is 90, or is it? I'm assuming it

1s. Well, it is, 'cause it's the corner. Okay. This is 90 degrees. This is

15. ... See, 1f we could find this then we could subtract. The whole. This

whole angle here is 180, right?
J Right, yup.

K Okay, so we could subtfract. So what's left 1s 90. These two things, these
two angles here

J Are going to be 90.
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K Add up to 90.

J Yeah.

K So, if we figure out this one, subtract it from 90 to find out this one
J Um hum.

K And then this 1s also a right angle, so we can figure out this side.

J From this?

<X

'

<.
-

&l 206>

Figure 6 Kevin and Janet, problem 12

K From this, from using one of the things [trigonometric functions], I can't remember
which one, you can figure out, if you have this side 20 and this angle, you can figure out

what this side 1s.
J Um, cool! Okay.
K Shall I try that?

J Go for it.
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[Kevin and Janet] It is clear that Kevin had not figured out every detail but was
confident of his ability to carry out his plan. This was the only example in the study of
such extensive explicit planning. There were, however, several examples where implicit
planning was apparent. Both Carl, working with Janet, and Shelly, working alone,
appeared to have devised complete plans for solving problem 8, the triangle, with only
the details to be filled in. There appeared to be no stage in which they constructed their
plans. Rather, they seem to have seen them whole once they had understood the problem
sufficiently well. This was the case also for Sam's solution to the four circles problem,
number 10, and for Carl, working with Randy on problem 9, the tangent circle. This is
consistent with results of Krutetskii {1976] in which he found that capable students were
often able to grasp a problem whole. All of these problems are geometric, supporting
Sfard's [1991] conjecture that a structural orientation may be easier to achieve in geometry
than in algebra.

Problems were seldom broken down into parts, with goals and subgoals. Problem
15, the cistern, lent itself to being divided up by time with each hour being calculated
separately. This was the technique used by all who solved it. Problem 8, the triangle,
was also generally broken down into 3 or 4 steps: grapﬁ the lines and find the length of
the base; find the intersection point; and find the area. This was never done explicitly but
was always done implicitly. The trial and error solutions to problem 3, the shopping trip,
were also done step by step, usually by systematically taking the midpoint between the
two previous guesses at each step. Again, this was not explicitly planned. Kevin's plan

for the solution to number 12, the folded paper, provided him with clear steps to follow.
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As stated above, this extensive planning occurred only in this one case.

By exploration I mean use of examples or of extreme cases to further one's
understanding or analysis of the problem. Certain problems were far more likely to
provoke exploratory activity than others. Exploration was used extensively in solution
attempts for problem 3, the shopping trip. In each case, the use of examples led to a trial
and error solution to the problem. Most students who attempted problem 2, division by
9, did so by trying numerous examples to confirm that the rule given actually worked, and
then by looking for patterns in the result. Kevin went further and tried examples using
7 and 8 in place of 9, to see if there was a similar rule for these numbers. Problem 18,
factorial, also provoked exploration by exampie in m.ost of those who attempted it.
However, the limitations of the calculator soon ended the exploration for those who
understood how to read it's output. Karen and Karla erroneously assumed that all digits
that did not appear on the calculator screen in scientific notation were zeros. As a result
they spent most of their session looking for patterns in this output. All of those who
attempted problem 9, making change, began by constructing several possible
combinations. Most soon realized that they needed some organizational scheme if they
hoped to find all the possibilities. In a similar manner, most who attempted problem 4,
the spider and the fly, began by tracing several routes. However, in this case this strategy
did not lead tc any organizational plan for the routes, .or any decision criteria for the
shortest route. Rather, most simply tried several routes until one appeared to be the
shortest. Some then attempted to justify their {(erroneous) decisions on the basis that the

chosen route appeared to be the most direct. In their attempt to clarify the situation in

106




the commuter problem, number 15, Karla and Candy tried an example using particular
times of arnval. However, they did not analyze their example in sufficient detail for it
to be of help to them. Explorations, then, were of value in finding a solution to some

problems, but not for others.

Many problems led to a great deal of time being spent on analysis. However, the
analysis was often disorganized and unsystematic. Chains of inference were usually
limited to two steps at most, and ideas and results were seldom recorded clearly enough
to be of use. The most successful analyses were those involving geometric problems.
Sam and Diane approached the two circle problem, number 11, by modifying the drawing
extensively and analyzing the resulting figures. They added a rectangle with diagonals
and analyzed the relationships of the line segments in that diagram. This was not directly
helpful but they were finally able to use the complicated diagram to solve the problem,
Similarly, both Karen and Cecil made extensive use of diagrams in analyzing problem 10,
the four circles. Karen progressively simplified the problem of which area to subtract
from which other area, through a series of seven different modifications of the given
diagram. Cecil made fewer diagrams and his drawings were very imprecise, so that,
while he had a viable idea he did not obtain a correct solution.

Most of the time spent trying to solve problem 15, the commuter, was spent in an
attempt to analyze the situation, using drawings to represent the route travelled. These
analyses were generally unsystematic and hampered by a tendency to confuse time and
distance, or to confuse clock time and elapsed time. All those who attempted this

problem showed much confusion and frustration, and were hindered by concentrating their
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analyses on what happened to the commuter, while ignoring what happened to the
husband. Only Shelly, working with Carol, seemed able to shift her focus from the goal,
the commuter's walking time, to an analysis of the husband's activity. Those who
attempted to analyze problem 13, the tanks in the desert, also found themselves confused.
Karla and Diane were both hampered 1n their analyses by the assumption that the time
the messenger spent travelling to the end of the column would be equal to the time spent
returning to the front of the column. But, even those who did not make this assumption,
had difficulty with this problem, in part because they did not draw a sufficiently precise
diagram to aid them.

Problem 2, division by nine, proved to be a puzzle for all those who tried it. They
did not understand how to tell why something was true, and so most spent all of their
time trying examples and looking for patterns. Shelly and Kevin were exceptions. Each
attempted to analyze the problem based on remainders and the fact that nine was one less
than ten. While neither was entirely successful in providing a clear explanation, their
realization that the key lay in nine being one less than ten allowed them to come closer
to providing an explanation for the phenomenon rather than just a description of it.

Several problems were generally approached with insufficient analysis. This was
true for some of those who attempted to solve problem 1, the sleepy passenger. A time
line was generally drawn and an answer given almost immediately afterwards. However,
in several cases the answer of one quarter was obtained by a single erroneous inference.
Problem 17, shaking hands, also generally received insufficient analysis, leading to a

variety of simple, single step solutions. Only one pair solved this question correctly, and
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in this case it was clear that one of the partners had an available algorithm for problems
of this type. Although most of those who attempted problem 18, factorial, spent a
significant amount of time on their solutions, most of that time was spent on examples,
rather than on analysis. In the end, all came to a consideration of factors which would
produce zeros, but spent little time on this analysis. No one obtained the correct solution.

Diagrams were commonly used and could be crucial to the solution. Besides the
geometric examples described above, drawings were also created for several problems.
Shelly produces a simple drawing to help her to count the number of handshakes in
problem 17. See figure 7. Most of those who attempted problem 14, the cistern, or
problem 6, the automatic washer, drew pictures to help them organize the information.
Similarly, Janet drew pictures of the items to be purchased in problem 3, and labelled
each with its cost.

General principles were seldom called upon in attempting to solve the problems.
Exceptions to this occur with problems 4, the spider and the fly, and problem 12, the
folded paper. In problem 4, several students tried to use the principle that the length of
a hypotenuse of a right triangle is shorter than the sum of th:e lengths of its sides. Kevin,
and Shelly and Carol relied on this principle, and were shocked when it did not lead them
to a shorter route. In the same problem, Carl appeared to have been guided by the
principle that the shortest route between two points is a straight line in his decision to
redraw the room flattened out in order to be able to dra\a;r straight lines. Kevin explicitly
used the general principle that, using trigonometry, one need only know one (non-right)

angle and one side of a right triangie to be able to find all the other measurements on the
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Figure 7 Shelly and Carol, problem 17

triangle, to guide his solution to problem 12.

Algorithms were used frequently. One of the most frequent algorithmic
approaches appeared in all problems that involved time, rate (speed), and quantity
(distance). Here it was common to use the formular x t = d, or to create a table giving
rates, times, and distances for two or more objects. This occurred even when it was not

appropriate, such as in problem 13, the tanks in the desert, and problem 15, the commuter.
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Sam attempted to use a different algonthm for the tank problem. While his choice of
using relative speeds was appropriate to the problem, he 1-nembered the algorithm
incorrectly, and was unable to see or correct his error. Most of those who attempted
problem 6, the automatic washer, did so algorithmically. For Karen this was successful,
as she clearly knew the algorithm well, but both Simon and Tanya could not remember
their methods correctly. This led to some frustration for Simon. "Damn it," he said "I've
done these before.” Shelly and Simon also approached problem 17, the handshakes,
algorithmically. Shelly used an appropnate and correctly reniembered algorithm while
Simon used tree diagrams, a technique not appropriate to this question but used in other
counting probiems that he had seen.

Problems requiring an algebraic solution were n.ot well done. Students usually
recognized that they needed to construct and solve an equation, but lacked the skills to
carry out the appropriate analysis. In no case did the students begin with a relationship
central to the problem, and then attempt to construct an algebraic model of it. Instead,
they named variables, constructed what quantities they could with those variables, and
then attempted to set these expressions equal to something. Carl and Randy had
constructed the expression 520/(x+5) to represent (correctly) the price of the trip per skier
in problem 7, and then they wondered, "Ah, this equals something, right? I think that the
problem is we don't have anything that it equals to." In the same problem Karen and
Diane, were able to construct all of the expressions needed but were unable to put them
together into a valid equation. Simon and Sam were able to arrive at a valid equation for

this problem by using two variables, and then constructing two expressions, each equal
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10 520. They were then able to solve the resulting system of equations. In general,

however, most of the students were left in great confusion when they needed to construct
an equation. They named and renamed vanables, calculated quantities and constructed
expressions without being able to put together an equation which could lead them to a

solution. After having failed in one attempt to construct an equation for problem 6, the

automatic washer, Shelly tried a second time:

od B min pues V
cod + hat 5 min %\\1&5 \/
het = V- cold

S0
Cald +(V-cold) = V (5 min)

cold = V (g'm\'n)

Figare 8 Shelly, problem 6

S - Okay, I'll ry this. Eight minutes gives volume for cold. For cold and hot, 5
minutes gives the same vclume. And so hot is just, total volume minus the cold.
So cold plus Y minus cold gives the volume. And that takes 5 minutes and cold
gives the volume. Takes eight minutes. (Pause) I don’t know what I would do
now.

[Shelly] Shelly saw that she was not getting anywhere here, but she did not see what else
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she could do.

There were very few errors in the mechanics of arithmetic, algebra or geometry.
Almost all calculation errors that were made were noticed and corrected. Several students
did not know the formulae for the area and circumference of a circle but only one, Janet,
was unable to use the formula correctly once it was given to her. Kevin made several
major errors in trigonometry while working on the triangle problem with Cecil. However,
he made no such errors when he worked with Janet on the folded paper problem. Serious
errors of manipulative algebra were made by Simon in his attempt to solve problem 6.
While Kevin and Cecil made no algebraic errors in attempting to solve their equation in
problem 7, they failed to simplify and the resulting equation became so complicated that
both were greatly intimidated and ceased to attempt to solve it, settling instead for a trial
and error solution.

Verification

Ten of fourteen individuals and eight of eleven pairs made some attempt at
verification, but none were consistent, generally checking only one or sometimes two of
their problems. Reasonableness of the solution, correctness of calculations and logical
validity of the solution were all checked at various times but never were all three checked
on the same problem. When Shelly and Carol had solved problem 17, handshakes, Shelly
checked the reasonableness and logical validity of the answer and then wanted to check
the calculations. Carol objected vehemently to this, possibly as this had been her only
contribution to the solution, and Shelly did not insist.

On several problems, the solution method was seen whole by the student
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and then carried out with ease. This was true of Janet and Kevin, and Sam on the four
circle problem; of Shelly and of Carl on the triangle; and of Carl and Randy on the
tangent circles. In each of these cases, no verification attempt was made. It was as
though the logic of the problem was so clear that they had no doubt whatsoever. In each
of these cases the calculations were also very simple. There also was no attempt to verify
any of the solutions obtained by trial and error. In one case, Karla and Candy solving
problem 16, the same answer was obtained in two different ways and this was taken to
be "proof” that it must be correct.

The subjects did not generally view verification as part of the solution process and
they used it only some of the time. However, there were several instances where
verification was integral to the process. In two problems, the shopping trip and the spider
and the fly, Carl made estimations of quantities before calculating them. Unfortunately,
in the case where his answer lay outside of the estimated interval, he never rechecked this
quantity. In only two cases was the logical validity of an equation checked before the
equation was solved. Both involved problem 7, the ski trip, and in one case, that of
Karen and Karla, the equation was incorrect, but they we;'e unable to see this. When they
solved the equation, they recognized that their answer was unreasonable, but they had
used up all of their time.

Karla noted that it was necessary to verify that the radius equalled one in problem
11, the two circles:

K Wait a sec, here. How would I know that this line, going from the centre to the
end of the inner circle would be equal to the line that is perpendicular to the

oniginal one? There's got to be some rule that tells us something like that. If I
take for granted that that one's equal, just to see what happens, if I took for
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granted that was equal. We put one unit.

[Karla] Karla then marked one beside the questioned line segment and went on the solve
the problem using that assumption, although she clearly knew that she must justify it.
Later in the solution attempt, she appeared to have forgotten entirely that this was an
assumption. Kevin was doubtful of several of his calculations during his solution of
problem 12 but he too never returned to check them.  During their attempt to solve
problem 8, the triangle, Cecil and Kevin became very unhappy that their calculations did
not match the drawing they had made. They began to redraw the graph, this time to scale
and then abandoned this attempt, apparently because it appeared to be too much work.
Karen and Diane were similarly disturbed by their graph of the tangent circle problem,
number 9, but they redrew their graph and corrected their error. Unfortunately, they went
on to make further errors. For most of these students, finding an answer to the question
was central. Verification was used only occasionally.

There was no simple link between confidence in a solution and verification.
Tanya was confident that all four of her erroneous answers were correct and she attempted
no verification at all, while Janet checked the reasonabler;ess of two of the three problems
she did, discovered in both cases that the answers obtained could not be correct, but
submitted them anyway. Karen and Karla spent most of their time on problem 18,
factorial, on a wild goose chase, and only saw another approach to the problem in the last
few minutes of the allowed time. When they obtained a (incorrect) solution with this new
approach, they were so relieved that they submitted it immediately, with no

reconsideration at all.
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GENERAL SKILLS AND ATTITUDES

General skills refers to skills that may be used in any phase of the problem
solution, and include strategies and strategy selection, precision, and monitoring of the
process. Attitudes include beliefs about mathematics in general and about problem
solving in particular, and reactions to confusion or frustration.

Strategies and Strategy Selection

The students exhibited a wide variety of specific strategies during their attempts
to solve the problems. What follows is an inventory of the strategies used with some
examples of their use.

Draw and label a picture. In problems which involved a considerable amount
of information or confusing information, most of the subjects immediately drew some
kind of picture and labelled it with the information from the problem statement. In some
cases, further information was added as it was discovered. Candy's drawing of the cistern,
problem 15, is more elaborate than most (see figure 9).

Redraw a given diagram’ without modification. In almost every case where a
diagram was given as part of the problem statement it was immediately redrawn. In some
cases the diagram was not modified or used any furtber. This was done by Karen in her
attempt to solve problem 5, squares, and by Tanya who redrew the diagram given in
problem 4, the spider and fly, but made no further use of her drawing, choosing instead
to trace her routes on the original diagram. Several other students redrew the diagram
from the spider and the fly and then used it only to trac;e out possible routes.

Draw a new diagram or modify an existing diagram. In all of the geometric
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problems the diagrams were drawn, or redrawn, and modified. In problems 8 and 9, the
triangle and the tangent circle, subjects began their solution attempts by graphing the
given line(s). The diagrams from problems 10 and 11, the circle problems, were always
redrawn and modified toc some extent, often extensively.

Draw a line to represent distance and/or time. All of those who attempted
problem 1, the sleepy passenger, drew a line to represent the passenger's journey. A
similar strategy was used by those working on the commuter, problem 15. In this case
it was often unclear whether the line was meant to represent time or distance and the
students often confused these dimensions of the problem.

Use trigonometry when right triangles are involved. This strategy was used by
all’who solved problem 12, folded paper, despite the fact that trigonometry is not needed
to solve this problem. Kevin and Cecil attempted, unsuccessfully, to use it to solve the
triangle problem.

Consider symmetry. Symmetry was used to limit the possible routes for most
Vof those who worked on the spider and the ﬂy-,v problem 4. Symmetry was also
considered by Karla in her analysis of problem 11, the two circles.

Use Pythagoras' theorem. Pythagoras' theorem was used during solution attempts
for the two circles and for the spider and the fly. However it was not generally used in
the solutions to problem 12, the folded paper, where trigonometric approaches were
preferred.

Measure a given diagram. Although she was warned that the diagram of the two

circles in problem 11 was not to scale, Janet chose to measure it and use the
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measurements in her solution attempt. She also attempted to measure the position of the
intersection point in the triangle problem, but was prevented by her partner, Carl.

Break a figure into triangles. Janet suggested breaking up the sheet of paper into
various triangles when she was working with Kevin on the folded paper problem. Carol
would have liked to use triangles to solve the four circles problem, but did not do so
because the shapes were all curved and so not quite triangles.

Remember the algorithm. This appears to be a preferred strategy, used whenever
an algorithm is available. When the algorithm was appropriate and clearly remembered,
this strategy provided quick solutions. However in many cases the algorithm was not
appropriate to the problem. Simon attempted to use a tree diagram to solve problem 17,
handshakes, possibly because this was a counting problem and tree diagrams are used to
count. In other cases, the algorithm was appropriate, but was not applied correctly, or
was not well remembered. Sam attempted to use relative speeds to solve problem 13, the
tanks in the desert, but he added the reciprocals of times, rather than the times.

Try a similar problem. This technique was used by several students in their
attempts to solve problem 2, division by nine. They tried examples using 7 or 8 to
ascertain if a similar rule held for these numbers. Simon‘attempted to confirm his answer
to the handshakes problem by trying to solve the same problem for 3 rather than 20
people.

Make an assumption. Several students consciously made assumptions in order
to make a problem simpler. This was true for Karla, and for Shelly and Carol, in their

attempts to solve the two circles problem. We have seen that they assumed, incorrectly,
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that the radius of the inner circle was of length one unit.

Make an estimate. One student, Carl, made use' of estimates during the solution
process. In one case, he did this in order to limit the range of his answer, and, in the
other, in order to see if it would be worth the time needed to carry out an exact
calculation.

Use trial and error, or guess and check. These techniques were used on several
problems, including problem 3, the shopping trip, and problem 7, the ski trip. However,
most of those who found solutions this way did not consider this technique to be
legitimate. Randy never submitted his trial and error solution to the shopping trip, but
tried to find an equation that would give him the same answer. Shelly, and Kevin and
Janet, however, showed no reluctance to accept trial and error solutions.

Make a table. This was generally done for problems such as number 6, the
automatic washer, and number 13, the tanks in the desert, which involve time, rate and
amount (distance).

Look for a pattern. This was the general technique used in attempts to solve
problem 2, division by nine, and problem 5, the squares, and was also used for problem
18, factonal.

Break the problem into steps. This was tried only on the problems which clearly
required it; the cistern, squares, and, to lesser extent, the triangle and the folded paper.

Rely on a general principle. General principles were occasionally used to guide
analysis on problems such as the folded paper and, espécially, the spider and the fly.

Use a variable, an equation or a formula. This was a preferred strategy and was
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used whenever possible, even when it was not applicablé. Several subjects assumed that
there were always formulae available, even if they did not know them. Cecil was starting
his attempt to solve the four circle problem, when he said, "This is much trickier than the
last one, definitely. (pause) I'm thinking that this is a trick question, um. If you know
the area of each circle there must be a formula for the space in between." Similarly, Carl
assumed that there must be some sort of functior involved in the solution to problem 5,
the squares. "I'm sure it's a log function. I'm, I'm just not sure exactly how to apply it."
[Carl and Randy] Simon and Sam found problem 2, division by nine, very confusing.
They knew that they were being asked for a proof but had no idea how to go about
constructing one. "How would they make a proof in calculus or maybe a proof in algebra
or whatever?" Simon said, "They always start with an equation. An equation with letters
and symbols and ...." He went on to try to construct such an equation.

Eliminate most of the information and do a single step calculation. Carol
applied this strategy to two of her problems and attempted to use it again when working
with Shelly. "I hate these kind of questions," she said. "They have so much superfluous
information in there I never know what to extract."

Calculate everything you can. Most of those who attempted problem 13, the
tanks in the dessert, began by calculating everything that they could in the apparent hope
that that would somehow lead them to an answer. Janet did this as well in her attempt
to solve problem 11, the two circles.

Guess or guess which operation to use. Shelly and Carol were very clear that

they had no idea how to soive problem 18, factorial, and were simply guessing. Others,
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faced with two or more possible operations to perform, sometimes simply guessed which

one to do.

Write a potentially infinite series. This was attempted by Karla when trying to
solve problem 5, squares.

Use a physical model. When Janet became confused abouﬁt the relative
movements of the tanks and the messenger in problem 13, she picked up“ two of the felt

pens on the table and used them to mode! the situation.

Use a coordinate system. Simon placed the room in the spider and the fly in an
x-y-z coordinate system. However, he made no real use of it.

The students, then, have a broad range of strategies available, most of them
potentially quite useful if appropriately applied. However, they lacked skill in deciding
which strategy to apply. There was generally little or no consideration of alternate
strategies, and no evaluation of strategies. Most often, they followed the first strategy to
come to mind until it was clear that it was leading nowhere, or until they became
sufficiently confused. As there was little overt strategy evaluation, it was difficult to
determine on what basis a particular strategy was chosen. However, a few criteria could
be determined.

Algorithm. If an algorithm was known it was the first choice. If an algorithm
failed to provide an answer or provided an unreasoﬁable answer, it was generally
abandoned.

Ease of use. Ease of use was another important quality in strategy choice.

Shelly, for example, chose guess and check to find the intersection point in problem 8,
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the triangle, because it looked easier.

Leads to immediate partial results. A strategy which led to an immediate partial
result was also preferred. This is clearly seen in the choice of trigonometry to solve
problem 12, the folded paper. Trigonometry generated a series of partial results, while
the use of Pythagoras' theorem did not provide a numerical answer until the last step.

Not a legitimate method. Tral and error and guess and check were rejected or
questioned by several students because they were not seen to be legitimate mathematical
techniques. Cecil solved problem 7, the ski trip, by guess and check but then wanted to
work backward to create an equation. "So we can, I know that's sort of cheating," he
said. "We shouldn't be allowed calculators here. (Pause) Well, there's 20 club members
gding on the trip. (Laugh) So we got to work back to this somehow." [Cecil and Kevin]

It is more mathematical. Karla and Candy began problem 16, making change,
by trying a few combinations but then they began to doubt that this approach was the
right one. "Do we have to use any mathematical formula?" Candy asked. Karla
answered, "Like, we're cupposed to, but it doesn't matter how we solve it. (laughter) We
have 15 minutes. That should give us enough time. Or, do you know a mathematical
way to solve 1t?" This led them to spend some time attempting to create an equation.

I always do it that way. Carol hoped to find the area between the four circles
by using triangles, because she always finds areas using triangles.

Unable to see how to implement the strategy. Often an approach was rejected
because the student was unable to see how to implement it. Both Karla and Karen

wanted to use a variable in their attempts to solve problem 5, the squares. But both
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rejected this strategy when they could not see how to define a variable in a reasonable

manner.

Looks familiar. As Shelly and Carol worked on problem 18, factorial, Carol
suggested that it might have to do with the fact that 100 is 10 squared. When Shelly
questioned this, Carol replied that she had seen this before but she just could not
remember.

You are incorrect. Occasionally one partner of a pair would reject the suggestion
of the other partner, because he or she believed it to be incorrect. This was not always
helpful, as, for example, when Cecil rejected a suggestion by Kevin to use simultaneous
equations to find the intersection point of two lines, because he did not believe that that
was the purpose of simultaneous equations.

Not clear enough. Diane twice suggested forming a right triangle with the radii
of.the two circles and tangent line segment in problem 11. The first time Sam rejected
her idea since they did not know the length of the radii. The second time, however, Sam
followed her suggestion. This time she presented it with a diagram and the suggestion
to use Pythagoras' theorem. Her suggestion was much more complete.

Precision

Calculations were generally carried out correctly and precisely. The one notable
exception to this was in Cecil's attempt to solve probleﬁl 10, the four circles. He chose
to use 3.14 for = rather than using the key for 7 on the c?.lculaxor. He then multiplied by
4, rounded the result to 12.5 and used this in further calculations. He recognized that his

result would be inaccurate, referring to it as a rough estimate, but appeared to see this as
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of no importance. He willingly submitted his inaccurate result as his final answer to the
problem. This attitude was an exception and most students aimed for accuracy in
calculations, presenting exact answers such as 4 - &, or carrying as many decimal places
as the calculator would allow.

Occasionally formulae were remembered incorrectly or not at all, but in all such
cases the students asked for and received the correct formulae. They were then generally
able to use them correctly. Algorithms were often not remembered correctly. When Sam
attempted to use relative speed to solve problem 13, the tanks in the desert, he added the
reciprocals of the times rather than the times themselves. On the other hand, when Simon
attempted to solve problem 6, the automatic washer, he remembered the algorithm
correctly, and constructed an appropriate equation. However, he made significant
algebraic errors in attempting to solve the equation.

Inferences were often too imprecise to be of use in solving the problem at hand.
Problem 5, squares, was puzzling to Carl and Randy. While Carl felt that the problem
could be solved by fitting some sort of function to the situation, Randy attempted to
engage him in a process of reasoning through the implications of an infinite process.

R If this process continues forever it would even@ly reach all of it, wouldn't it?
C Ah, it's getting smaller, the amount that gets shaded each time is getting smaller.

It's like the question, when does the, ah, it, it gets to, ah. Every time there's a

smaller and smaller space but at some point it reaches nil.

R Yeah. But, it says, if the process continues forever. So if we did it like that,

assuming that it, it would never end wouldn't the answer still come out.

[Randy and Carl] They were unfamiliar with infinite processes, and unable to develop
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sufficient precision in their thinking about these processes. A similar imprecision in

L i | e =

inference was evident in most of the attempts to solve problem 2, division by nine.
Although on the factorial problem, most subjects eventually came to consider the factors
of 100!, they all omitted at least one of the required factors, due to their imprecise
thinking about factonzation. Here also, their lack of familiarity with the correct
terminology made 1t difficult for them to express or discuss their ideas, further hindering
them in their attempts to solve the problem. A lack of precision in the use of vocabulary
was evident throughout. Equation, function and formula were used interchangeably,
usually to refer to equations or algebraic expressions of any kind. The subjects found it
especially difficult to express their ideas in problems where the concepts were less
familiar, such as squares, division by nine and factorial; they appeared to lack the
requisite vocabulary.

Diagrams were used extensively and were often crucial to finding a viable solution
method. However, there was great vanety in the precision of the diagrams constructed.
In her attempt to solve problem 8, the triangle, Shelly created a clear and precise graph
of the two lhines. The precision of her graph allowed her to guess the intersection point
of the two lines, thus saving her a calculation of which she was unsure. Sam's drawing
of the four circles, problem 10, allowed him to see immediately that the radii could be
drawn to create a square that would just enclose the shaded area. As noted, when
working on the same problem, Karen began with a quite rough sketch, but as her solution
progressed, she redrew and modified her diagram seven times, the important details

becoming more precise with each redrawing. In contrast, Cecil’'s sketch for the same
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problem was so imprecise that he was unable to correctly divide it into smaller pieces.
Thus, although he had developed a viable solution strategy his answer was, in the end,
incorrect.

Cecil worked with Kevin on problem 8, the triangle, and together they produced
a rough sketch of the two lines. When their later work produced results that contradicted
their sketch they considered, but never actually carried out, redrawing the sketch to scale
and using a ruler. Their resulting erroneous calculations led them to a wrong answer.
In similar circumstances, Diane and Karen redrew their sketch for problem 9, the tangent
circle. This helped them to discover their error. All those who attempted to solve
problem 13, the tanks in the desert, began by drawing a sketch of the column of tanks and
the messenger. However, none included on their drawings the movement of the column
of tanks. This missing detail was crucial to their lack of success in solving this problem.
It led two individuals to assume that the time the messenger spent travelling backward
was equal to the time spent travelling forward.

Particularly in the area of algebra, subjects exhibited a lack of awareness of the
usefulness of precision. A few students defined variables precisely, and in writing, but
most made no attempt to do this, and some changed the meaning of a single variable
several times during a single problem. Definitions, when given, were generally imprecise.
Consider Tanya's attempt to solve problem 6, the automatic washer.

T Okay, so with the cold water valve open it takes 8 minutes, So, x equals cold
water. Ah, okay, so it takes 8 minutes, for the cold valve. With both hot and
cold water valves open, it takes only 5 minutes to fill the tub. So, x plus, we say

y is the hot water, equals 5 minutes.

... So x, say x is the amount of cold water it takes and y is the amount of hot
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water it takes. Times the time so the amount of cold water over 8 minutes. x
over 8, x, 8, 8 minutes.the hot and cold takes 5. That's 3 minutes less, with, 3
minutes less with the hot water as well. '

L i 3 i
DCf\j c 5 ruhuis

S—

3

I*ﬁ ol & puninko
~ 3 nndts (17 wbh
th  hot wallr & welt,

Figure 10 Tanya, problem 6.

[Tanya] We see that she began by simply using x and y' as a kind of shorthand and then
implied, by setting their sum equal to 5 minutes, that they represented times. However,
she then redefined them to represent amounts. Further on in her solution she constructed
and solved an equation for x, in which it appeared, once again, to represent time. This
confusion in the use of variables has been well documented by Kiichemann [1978]. The
equals sign is also used imprecisely and with several apparent meanings. It is commonly
used to designate definition in the naming of variables. It also appears to be used to
mean "now calculate”. A good example of this use is provided by Kevin and Janet in
their trial and error solution to problem 3, the shopping trip. After trying $20 and $15

they decided to try $17.50:
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Figure 11 Janet and Kevin, problem 3
[Kevin and Janet]

Equations are also understood imprecisely, with quantities of different dimensions
added together or set equal to each other. In the attempt by Diane and Sam to solve
problem 15, the commuter, they had set x to be the time spent driving by the husband and
v to be the distance which the commuter travels. The time saved by the husband is 1/6
of an hour. They put these quantities together to form the statement:

y + x - 1/6 = distance.
This problem elicited similar confusion of time and distance in most of those who
a;tempted it. Confusion of time and quantity was common in solution attempts for
problem 6, the automatic washer. Errors and misinterpretations in the use of algebraic
notation has been analyzed in detail by several researchers. [See Kiichemann, 1978 or
Rosnick, 1981.]
Monitoring

Complete written records were not commonly. kept. Most commonly, records
consisted of diagrams and calculations only, sometimes with the answer given in a
sentence, underlined or circled. Some went a step further and labelled the steps in a

ionger problem such as number 14, the cistern. Karen also did this in her attempt to
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solve problem 5, squares. Only a few subjects kept more extensive notes, including notes
of their reasoning. One was Shelly, and it was particulary evident in her solution to
problem 2, division by nine. Not only did she write down her examples, she wrote down
her ideas using full sentences. She also, after asking me what exactly was required to
"answer why," wrote down her understanding of my reply, "Explain why it works." Lack
of written notes proved to be important in cases where assumptions were made. Karla
decided to try problem 11, the two circles, using an assumption. She was quite explicit
that this was simply an exploration, but did not write this down at all. What she did,
instead, was to label the inner radius on her diagram as one unit long. Later, when she
returned to the diagram again, she made use of this length, apparently forgetting that it
was simply an assumption. Karen and Diane made a similar error in their attempt to
solve problem 9, the tangent circle.

With complex problem statements, it was common to make a drawing and transfer
as much information as possible from the problem statement to the drawing. This was
common on problems 6, 13, 14, and 15, the automatic washer, the tanks, the cistern and
the commuter. Janet even did this for the shopping trip. Some made no attempt at all
to organize their solutions. This was true of Carol on problem 16, making change, and
of most of those who attempted to solve problem 4, the spider and the fly. Most who
tried this latter problem simply traced out several routes with no clear record kept. An
exception was one pair, Karen and Karla, who traced out‘ their routes in different colours.
But they made no further attempt to organize the possible routes in some other way.

Most students did not rush through their problems, and did take some time for
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reflection. However, this was not true of Carol and Tanya, both of whom completed four
problems in less time than most of the students took for three. Neither got any of their
questions correct. Karla worked at a comfortable pace for about ten minutes on each
problem and then, ceasing her analysis of the problem, submitted an answer which she
called a guess and in which she expressed little confidence.

Generally, there was little monitoring of progress or of states of mind during
individual problem sessions. However, Cecil and Carol both noted their states of mind
often, even when working alone. Carol, for example, noted that she often chose an
obvious answer, only to find that it was wrong, and later she reported that she had
"worked herself up" and would now probably get the wrong answer. Janet often
monitored her progress closely, asking herself if her work made sense and noting when
she had gone as far as she thought she could. Shelly also occasionally noted her progress.
When the subjects worked with partners there was rﬁore overt monitoring activity,
especially of their states of mind. They often admitted to confusion when working with
a partner. When Kevin and Cecil were faced with solving a complicated looking
equation, they were both intimidated. "I don't even want to try it," Kevin said. Cecil
replied, "I know, I was getting scared when I saw all this stuff up here.” Karla and
Candy also discussed their confusion which, during the solution to problem 6, led them
to organize their count of the various ways to make change for a quarter. Janet was a
notable exception to the trend towards more monitoring activity with partners than alone.
She monitored her progress when working alone, but ceased doing this entirely with both

her partmers, Kevin and Carl.
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Partners were no more likely than individuals to keep written notes. Individuals
who kept more extensive notes when working alone, did not necessarily do so when
working with a partner. Randy kept more notes than most when working alone, but kept
almost none when working with Carl. Shelly, whose more extensive records are
discussed above, continued to keep written notes during one pair interview, but not during
the other. Partners did monitor each other's calculations, and occasionally, were able to
spot errors. But, since calculation errors were not a major problem, this did not lead to
any great advantage.

In general, monitoring, other than of state of mind, was not common and was often
superficial. Written notes, adequate to the problems at hand, were not generally kept.
Beliefs

In this section, I will consider the subjects' specific beliefs about mathematics and
problem solving.

There are rules to the game of mathematics. Many of the subjects appeared to
believe that there are fixed rules to follow when doing mathematics, especially rules about
how to present one's work and one's answer. Several students asked if I required written
answers, and others asked how they should present their working steps. Candy was
particularly concerned to know exactly what I required. When asked to read the question
aloud, she asked if she should read the question number as well. Later, she wanted to
know if she could write things down as well as say them aloud, and whether she could
use a second sheet of paper. Felt pens and several sheets of paper had been placed on

the table in front of her.
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Several students appeared to believe that it was necessary to submit an answer
whether one believed it correct or not. Carol, Karla and Janet all submitted answers in
which they clearly had no confidence. Janet explained ﬁer decision to submit an answer
that she thought was incorrect in this way, "So at this point, say, for example, I was
writing a test, I would say, 'forget it." This is my answer, 7.5 km long and I have no
idea if that's right or wrong."

They may try to trick you. Several subjects believed that math problems w'ere
often constructed to trick the student. Carol saw the process of solving complex problems
as one of removing all the superfluous information to find the single arithmetic calculation
required to obtain an answer. Randy thought that problem 1, the sleepy passenger, was
"just like those other questions, during the summer. The five minute mysteries." Diane,
working with Karen, wondered if one of their problems was really a nddle, and whether
another one might be "one of those weirdo calculus things."

Only some techniques are acceptable. At one point ia their solution to problem
9, the tangent circle, Carl and Randy considered the use of Pythagoras' theorem but Carl
rejected this, saying that it would be a form of cheating. Many students appeared to view
trial and error solutions as unacceptable, and after finding an answer in this manner,
would try to create an equation that would give them the same answer. Solutions
involving equations were generally seen as preferable and as more mathematical. Karla
and Candy solved problem 16, making change, by creating an organized list of all the
possible combinations. However they viewed this as a "loser's way" since it did not

involve an equation. They saw their solution as one in which they "didn't need to use
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math,” clearly identifying mathematics with the use of equations. Karen and Diane were
unable to solve this same problem, as they never attempted to count the combinations at
all, but spent the whole of the allotted time trying to create a system of simultaneous
equations that they hoped would give them the answer.

There is a formula for everything. Many students appeared to view mathematics
as simply the application of the correct formﬁla for the particular situation. Some students
were so certain that a formula of some kind was required that they would find one even
where one did not exist. While they saw the x's in the definition of 5! and 10! as
multiplication symbols, Janet and Carol both misinterpreted the x's in the definition of n!
as variables and wanted to use the definition as an equation to be solved. Similarly, Carl
was so certain that there was some sort of logarithmic or exponential function which
would give him the solution to problem 5, squares, that he could not be persuaded by his
partner, Randy, to try any other approach. Cecil was certain that there must be some
formula to give the required area in problem 10, four circles, and did not seem to see that,
in essence, he was being asked to construct that formula himself.

There always is a solutien. Many subjects clearly believed that all math
questions have answers. If it is a math problem then the only question is, "How do you
solve 1t?" not whether it has a solution. [Randy] And the answer cannot be too easy. "I
always worry," Janet said, "If we get the answer right away." Furthermore, the answer
should look right and this often means it will be a whole number, or end in a 5 or 0.

It is very difficult or impossible to do a problem you have not seen before.

"Okay, so, I don't know how to approach this problem, as we haven't done anything on
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triangles or anything like that" Janet said to Carl as they began problem 8, the triangle.
Cecil was similarly confused when asked to solve problem 10, the four circles, since he
had never attempted a problem like that before. Both Cecil and Janet did go on to do
substantial work on their problems, Janet with Carl's help, but both were initially
intimidated by the unfamiliarity of the problems. Shelly and Carol, however, gave up and
guessed on problem 18, factorial. Shelly said, "I think I was sick in school when we did
this," and Carol added, "Shit! I've seen this before and I just can't remember." In her exit
interview, Candy indicated that her favourite mathematics teacher had been her grade
eleven teacher who explained everything and wrote extensive notes on overheads. As
soon as she did not know what to do during any of her problem sessions, Candy
immediately turned to me with questions or abandoned her attempt.

Some things are beyond the ordinary person's understanding. Several subjects
seemed to believe that mathematics was somehow different from ordinary understanding.
After trying a few examples of multiples of nine for problem 2, Cecil commented, "That's
really strange. Hum, I'd probably have to ask a mathematician about this one." And,
later in the same problem session, he indicated that he hoped I would give him the answer
after the session and "I hope I can understand the answer for this one." Commenting on
the same problem Janet said, "Because whoever invented math wanted it that way. How
on earth could you explain that? It's a neat trick, though." Immediately after this she
gave up her attempt at this problem.

One has to have a brain for marh. Some subjects saw math as a special ability

that you either have or do not have. Upon completing the solution to problem 10, four
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circles, Candy commented to her partner, Karla, "My brain kind of works that way."
During his exit interview, Cecil stated that, "Unless you have a math brain, good study
habits and a logical sense of reasoning would be of the greatest importance to success in
math.” Clearly he sees mathematical ability as something quite separate from ordinary
logical reasoning, which is resorted to only in the absence of a special mathematical
ability.

Sudden inspiration can be important in mathematics. A few subjects appeared
to believe that sudden inspiration is important in solving problems. Karen and Diane felt
that if they did not immediately follow up on such "brainstorms" they would forget them,
clearly indicating that they do not see problem solving as being under their conscious
control. "Yeah, if we both get a brainstorm at the same time we lose it," Karen said
during a discussion with Karla about the difficulty of wo_rking with a partner. In her exit
interview, she added, "I wish I did know that switch, you know, like when the light
comes on suddenly.”

When in doubt, use technology. During their session working on probiem 18,
factorial, Diane repeatedly turned to the calculator despite the fact that Sam told her it
was of no help. She finally replied to Sam, "When in doubt, use technology." Others
appeared to feel the same way, including Cecil who, when unable to solve problem 18,
squares, wondered, "maybe it has something to do with this button [on the calculator]
here.”

Math can be intriguing. Several students found the problems intriguing even

when they could not solve them. In particular, Janet and Cecil found some of their

136



questions to be intriguing or "cool.” And Karla reacted to problem $, squares by noting,

"Oh, this is a neat question.”" Carl and Shelly both said that they liked puzzles and

problems, and found them fun. Several subjects, in exit interviews, noted that they liked

problem solving, once they could "get a handle on it." [Diane, exit interview]

Reactions to Confusion and Frustration
Confusion was very common during all problem solving sessions in which the

subjects did not have a solution method immediately available to them. Generally,

confusion initially led to a rereading of the problem, or part of the problem, or a long
silent pause. Occasionally, a student reacted by rereading or reassessing the steps that he
or she had already taken. An example of such reassessment of work completed is when

Karen, confused by the diagram, questioned Diane's as;umpﬁon that, in problem 9, the

tangent circle, the centre of the circle is above the x-intercept. Cecil became quite

confused by what was wanted in question 2, division by nine, and after a length of time
he also reviewed what he had discovered:

C Well, we have discovered that any numbers that add up to 9 are divisible by 9.
We have also discovered that when we're multiplying the two. Um, if
multiplication occurs, we subtract... If you subtract the number being multiplied
by 9 from 9 you get the first digit of the number. And the number you're
multiplying by becomes the last digit of the number. And they add up to nine.

[Cecil]] More generally, confusion led to the abandonment of the particular line of

reasoning being followed, without any attempt to see why this method might be flawed.

In some problems, such as number 2, division by 9, co;lfusion Ied most subjects to try

more examples. If confusion continued for long, it generally led to some degree of

frustration.
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Reactions to frustration were varied. Many students simply gave up, especially
when working alone. Others did not give up but submitted answers they clearly knew
were wrong, apparently in an attempt to end the frustration and confusion. After spending
a substantial amount of time trying to figure out a solution, Karla, on each of her
problems, appeared to hit a point where she could tolerate the tension no longer, and she
almost immediately submitted an answer in which she had no confidence at all.

When working with partners, there was no instance where a pair gave up before
their time was up, and only one pair willingly submitted an answer which was clearly an
attempt to end the problem session. Carol and Shelly were working on problem 18,
factorial, when Carol asked Shelly, "Alnght, are we ready to accede to this one?" Shelly
replied, "I think we should guess 20 zeros." They immediately presented this answer,
without any form of evaluation at all. A few students showed little sign of frustration.
Sam was one of these. When his attempt to algorithmically solve the tanks in the desert
problem failed, he immediately began a second solution attempt from scratch. His only
frustration came when he was forced to leave the problem unsolved as time had run out.

In exit interviews, several students mentioned béing frustrated with mathematics
problems. Returning to school after a long absence, Diane found her first math course
so frustrating at times that she almost cried in class. Karla and Karen both said that, if
they were unable to get an answer very quickly, they became extremely frustrated and
quit trying. Karen described her feelings, "I'm so impatient.... If it's not coming to me
right away, forget it. I'm not going to work on it any more.” Both Simon and Janet said

that they found applied problems to be interesting, but that manipulative algebra was
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boring and very frustrating.

PAIR INTERACTIONS

Ideally, one might expect that working in dyads would require that the subjects
attempt to construct an agreed upon representation of the problem and then decide upon
the approach to be taken to solve the problem. However, the analysis shows that this is
not what happened. Rather, they were generally so fixated upon finding an answer that
little effort was put into analyzing the structure of the problem, or in.o generating and
comparing various strategies. As well, concern about social interaction often worked
against a rigorous analysis.

Skills and Strategies

Pairs tended to spend a little longer than individuals on the comprehension phase
of the problem sessions. There was some more discussion of the particulars of a problem,
and especially, of any assumptions made. Shelly and Carol, for example, made a
conscious decision to solve probiem 11, the two circles, under the assumption that the
radius of the inner circle was equal to one. Even after they solved the problem in that
manner, they noted that their answer was correct only under that assumption. Similarly,
in two of three pair attempts to solve problem 15, the commuter, one parmer had to be
reminded of the convention that the 8 km/h from the second part of the question could
not be used to solve the first pari. However, the third pair broke this pattern, and both
partmers made use of the speed prematurely. Misunderstandings were also sometimes

avoided in pair sessions. This is especially noticeable in two attempts by pairs to solve
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problem 18, factorial. In both cases, when one partner misinterpreted the definition as
an equation the other partner corrected the misunderstanding.

The phase of planning, assembling and implementing a solution did not differ
much from that of individuals. Despite the expectation that the necessity to explain one's
actions to one's partner would lead to more planning, little planning was apparent.
Discussions were generally limited to one step or one idea at a time. The only exception
was the case of Kevin and Janet's solution to problem 12, folded paper, quoted previously.
Here Kevin described to Janet a complete plan to solve the problem using trigonometry,
a topic with which Janet was unfamiliar. Attempts at analysis generally followed the
pattern of the more able student, so that, for example, when Kevin and Janet solved
problem 1, the sleepy passenger, it was essentially Kevin who solved the problem,
explaining his reasoning to Janet. Similarly, attempts to construct equations usually
followed the pattern used by the more able partner.

Pairs were just as likely, having chosen an inappropriate strategy, to stick with it
even when 1t was not leading to a solution. This was especially evident when Karen and
Diane attempted to solve problem 16, making change, by setting up a system of
equations. Although neither of them appeared to have any idea how such a system would
give them a count of different combinations, they stayed with it until their time was up.
However, working with a partner did appear to help prevent some minor calculation or
mechanical errors.

There was little difference in the use of verification between individuals and pairs.

There were 14 venfication attempts by individuals and 12 for pairs. It is interesting to
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recall that when Shelly attempted to check Carol's calculation in problem 17, handshakes,
Carol objected very strongly and the check was not caﬁied out. This calculation was
Carol's one contribution to this problem.

The variety of strategies used to try to solve problems was as great for pairs as for
individuals. However, strategy selection was more accessible to study. There was little
evaluation of possible strategies, and decisions about the choice of strategy generally
depended more on the personal interactions between the partners, than on any
mathematical criteria. This will be discussed in more detail below.

Students showed no greater tendency for precision when working in pairs than
when working alone. Variables were still not clearly defined and diagrams were often too
messy for their purposes. Students often lacked the vocabulary to discuss the problems,
and their own ideas, in detail. This is particulary true in problem 18, factorial, where no
student used the term factor. This made discussions imprecise and awkward.

As has been discussed previously, subjects working with partners exhibited more
monitoring of their states of mind than did subjects working alone. Unfortunately, the
monitoring was generally superficial and did not lead to changes in behaviour. Partners
made no more written notes of their progress than did individuals and in some cases,
Randy and Shelly, for example, individuals kept fewer notes when working with a partner.
Partners did however monitor each other's work and calculations. As a result there were
no uncorrected caiculation errors amongst partners and few algebraic errors. A notable
exception was Shelly's error in not squaring the radii -in problem 11, the two circles.

Neither she nor Carol saw this mistake, which was crucial in preventing the simplification
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of the expression for the area.
Advantages of working in pairs

In discussing the advantages of working in pairs I limit myself, here, to discussing
the advantages in problem solving efficiency and do not consider learning outcomes for
individual students. Direct advantages of pair work appeared to come primarily from an
increase in persistence, from the more able student leading the pair, and from monitoring
of calculations.

There was a significant increase in persistence exhibited by pairs over individuals.
When students worked alone there were a total of five problems in which the student
simply gave up his or her attempt. There were no instances of quitting before the time
was up amongst pairs. In only one case, the attempt by Shelly and Carol to solve the
factorial problem, number 18, did a pair present a solution in which they had no
confidence, clearly using this as a method to end the p;oblem session without quitting.
This behaviour was more common amongst individuals. In all three of her problems,
Karla presented solutions in which she had little confidence. In each case she worked for
at least ten minutes and then suddenly, as though she could endure the frustration no
longer, she submitted a quick answer. "I guess. T guess that's the best I can do with that
one," she said. Both Carol and Tanya, when working alone, completed four problems
during a single problem session. It was planned that each student should attempt 3
problems per session, allowing approximately 15 minutes per problem. However, in these
two cases they spent approximately five minutes on each problem and so there was time

for each student to attempt a fourth problem. Seven of the eight problems were done
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incorrectly and in the eighth problem the student, Carol, quit. In both cases, but in
Carol's work especially, the solution attempts were simplistic and no real attempt at
understanding the structure of the problem was made. There was no case amongst the
pairs where completing a problem, or a complete probler‘n session, proceeded so quickly.

Candy was the only individual subject to attempt the cistern problem, number 14,
and she quickly gave up. After spending some time drawing an elaborate picture and
transferring the information from the problem statement to the picture, she quit, wath no
further steps taken towards solving the problem. While the three pairs which were given
this problem were also initially overwhelmed by its apparent complexity, all of them were
able to solve the problem correctly.

A major advantage for pairs arose from the pairing of a more able student with
a less able student. The more able student often led the way to a solution that the less
able student would not have seen. Subjects working in pairs were successful in 18 of the
34 solution attempts. However, 10 of these 18 problems were essentially solved by just
one of the partners alone, with the second partner making no substantial contribution to
the solution.

Shelly had a complete and correct strategy for solving problem 17, shaking hands.
As Shelly explained it to Carol, Carol admitted that she would not have done it that way.
"I just, I just want to automatically go, oh well, 20 people. Well, if each person shakes
one person's hand that should mean there's, if you count the two that should be 10.
[laughter] Half the class shakes the other half's hand, right? So yeah, 10." The situation

was similar when Kevin and Cecil attempted to solve the ski trip problem, number 7.
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Kevin was attempting to construct an equation when Cecil said, "The way I'd be doing
it, I'd probably be just stumbling around and writing, drawing little pictures, pretty well,
doing [laughter].” While Kevin was unsuccessful in his endeavour he greatly advanced
their attempt toward an algebraic solution to the problem. When Carl and Janet attempted
to solve problem 14, the cistern, it was Carl who broke the problem down into parts and
knew to use the reciprocals of the times to obtain rates. In each of these cases, and in
several others, a more able student knew, or was able to construct, an overall strategy to
solve the problem.

In other cases a more able student, while not having a complete plan available,
was able to correct the errors or misunderstandings of a less able student. During their
attempt to solve the factorial problem, number 18, Carl corrected Janet's misunderstanding
of the definition of n!. Similarly, in their attempt to solve the same problem, Sam
prevented Diane from misinterpreting the calculator output and so from falling into the
same error that Karen and Karla had made in their attempt to solve the problem.

In only a few cases did both students contribute parts of a complete solution that
it 1s likely neither would have been able to find alone. Carl was able to see a general
solution outline for problem 8, the triangle, but did not know how to find the point of
intersection of the two lines. However, Janet was familiar with an algorithm to complete
this step in the solution and together they were able to solve the problem. When Simon
and Sam attempted io solve problem 7, the ski trip, it was Sam who was able to construct
two equations in two unknowns while it was Simon who knew a technique to solve this

system of equations. However, this balance of contributions leading to a successful
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solution was not common.

Pairs also benefitted by the monitoring, by one partner, of calculations performed
by the other partner. As part of their solution to problem 7, the ski trip, Simon and Sam
needed to solve a quadratic equation which they did using the quadratic formula. It was
Simon who carried out the calculations, and he missed a negative sign which Sam noticed

immediately:

$.20x* + U x «2006:0-

Figure 12 Sam and Simon, problem 7
Sa Sure, we can plug it into the quadratic formula.

Si Negative twenty six plus minus the square root of twenty six squared
minus 4 times five point two zero times twenty six hundred

A JZ-Zz, ﬁ, 20)(2400)

Figure 13 Sam and Simon, problem 7

Sa Minus twenty six hundred.

Si Minus twenty six hundred all over two times five point two zero.

[Simon and Sam). Karen and Diane were on the last step of the cisten problem when
Diane forgot to multiply by 3/4. Karen corrected her. There are several other examples.
While one cannot know whether such errors would have been caught by an individual,
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it is clear that finding the error immediately increased the efficiency of the problem
solving process.

In exit interviews, the students did not generally attribute many benefits to
working with a partner. Most said that working with a partner brought a second
perspective to the problem, but they were not specific as to how this actually helped them.
One student, Simon, noted that with a partner there was more information available. It,
Simon said, "is like a data base. The more data you can enter into it the more accurate
that data is going to be.”

Disadvantages of working in pairs

Having a partner was at times disadvantageous. When Karen and Diane attempted
to solve problem 9, the tangent circle, Diane made the assumption that the centre must
be on a vertical line with the point where the line intersects the x axis. Karen questioned
this erroneous assumption but did not pursue her doubts in the face of Diane's certainty.

K Does that necess, that doesn't necessarily mean that that's the centre of
the circle, now does it? See, I didn't really draw this to scale. ...

D You don't have to, really, draw this to scale, just, you just know that this
length will be 5.

K Um hum

D Because, in any, the radius is always the, the same length, any, at any
point on the circle, right?

K Um hum

D So any point I draw from here to the centre will be the radius, will always
be 5.

K Okay.
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[Karen and Diane] In this case it is not clear that Karen would have been able to solve
the problem on her own. However, when Cecil and Kevin attempted to solve problem
8, the triangle, it appeared that Kevin would have been able to solve the problem if he
had stuck with his own plan and not listened to Cecil. Kevin realized thét all that was
required to solve the problem was to find the intersection point of the two lines.

K I think we can do that with, ah, did you do that solving systems of equations?
Wherse you have the two and then you, ah, like this, this, and then you subtract

C Um hum.
K one ftom the other and then you find the intersection?
C Subtraction and addition methods of
K Yeah. .., Use that to find the intersection point?
C Um ... I think it was just to find, to find the value of y, given two equations that
relate to each other. You're supposed to find the value of y that works for both
equafious. I think that's what that was for. Um ... We just did that, ah, like three
weeks ago (Inaudible). ... Ah. .. Well, it's a good question anyways. We know
what the triangle looks like.
[Cecil and Ke¢vin] They then abandoned the idea of solving the equations simultaneously
and began an efroneous trigonometric analysis that led them far from any solution.
Another possible disadvantage of working in pairs is the lack of time to simply
reflect. This 15 immediately apparent in viewing the video tapes. During almost all
sessions with pairs, there was little silent time on the tapes, while during most sessions
with individuals there were significant times when nothing was said.

In exit interviews several students noted that it was difficult to work with a parmer

because they became distracted from their trains of thought. Most of the students

expressed a preference for working alone, and found working with a partner
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disadvantageous because of the necessity to focus on the social interaction to the
detriment of mathematical reasoning. Diane expressed her feelings clearly, "There's
politics involved in any kind of group situation. You know, you have to be more aware
of what's going on, more sensitive to what the other person is feeling. Don't stomp all
over their ego.” Karen found working with a partner to be restraining, "Well, you want
to be diplomatic and you want to let the other person have their say and things like that
and if you both get an idea at the same time, you know, you both want to run with it and,
I don't know, maybe it was me, I sort of want to take off on my own." [Karen, exit
interview] Cecil found working with a stranger especially stressful as he was concerned
with "not being on a par" mathematically with the oth;er pezson. This, he said, "took
away my ability to reason the way I wanted to reason." [Cecil, exit interview] Kevin
found that he had to slow down in order to explain to his partner what he was doing,
before moving on to the next step. Carol said that it was simply easier to concentrate
when working alone.
Personal interactions

A two dimensional framework categorizing pair interactions emerged from the data
collection and analysis. The first dimension is social interaction, beginning with very
socially cooperative pairs and leading to those that were very uncooperative. The second
dimension i1s mathematical interaction and is characterized by similarity or difference in
mathematical background and ability. These two dimensions interact to create five
categories. These categories may overlap somewhat and should not be conceived as rigid.

While most pairs remained in a single category throughout their problem session, two
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moved between adjacent categories on different pr blems. As one might expect, such
category switching depended upon the partners' relative mastery of the relevant

mathematical material.

Table 4 Pair Categories
mathematical — similar different
social 4
cooperative Socializers
Partners Tutor/pupil
Individuals Individuals
uncooperative Hostile pairs

Socializers. Socializers are generally of similar mathematical background and
ability, and are very cooperative. For these pairs, éocia] interaction is of central
importance. They are very polite and non-assertive, seldom criticizing, and softening
what cniticisms they have by presenting them in the form of questions or by adding
apologies. Dialogues contain a large number of supportive interjections. Strategic
decisions are often made on the basis of social, rather than mathematical criteria. Pairs
in this category were Karla and Karen, Karla and Candy, and Kevin and Cecil.

Karla and Karen's interactions are typical. They began their problem session with
a show of politeness:

L Read the problem out loud and then start on it.
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Would you like tc or shall 1?
Whatever you wish.
I'll go ahead.

Would you like to?

[Karen and Karla] They continue with this polite interaction throughout the session and,

as well, they support each other with an almost constant stream of supportive

interjections. They were both enthusiastic and talked very quickly, often both talking at

once. These were not interruptions, but more in the character of completing the other's

thoughts, or offering enthusiastic support. As a result the transcript of their problem

session ran to 41 pages while the average length of pair transcripts was 20 pages. They

generally suggested ideas in the form of questions, and did not challenge each other at

all. Near the beginning of their attempt to solve problem 7, the ski trip, Karen wondered

if they should look at the problem from the point of view of profit and loss. Although

Karla appeared to have little enthusiasm for this line of thought, she did not prevent

Karen from following it through. Neither did she ask for any justification.

Kn

Ka

Ka

Kn

Is this a profit and loss thing? No, the profit is zero. Maybe it's a profit? You
know the profit equals, er, profit equals revenue minus cost equation? Have you
seen that before? It's just P equals R minus C.

Yeah, I have seen that before.

And if the profii i3 zero, the revenue would be y minus five twenty times x plus
five.

Well, do you want to go off on that tangent for a second?

Yeah.
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Ka I wouldn't have thought of that but maybe we can look at this idea.

Kn  Let's see where we can go.

[Karen and Karla] This is entirely typical of each change in direction they made during
their problem sessions. They never challenged each other and there was no attempt to
evaluate ideas. When one wanted to change the direction of the work the other always
acquiesced. Often they went off on a long tangent together. This happened in their
attempt to solve problem 18, factorial. They decided to use the factorial button on the
calculator to look for a pattern. Unfortunately, Karen misinterpreted the calculator display
which gave the answer in scientific notation. Karla asked if the nondisplayed digits were
all zero's, and when Karen replied that she thought so, Karla accepted this. They went
forward under this assumption, leading them on a nonproductive, ten minute, tangent.
While both Karen and Karla appeared enthusiastic and there was a great deal of
comradery and laughter during their session they failed to get any of their questions
correct. The other pairs in this category were more successful: Kevin and Cecil got one
problem correct and Karla and Candy got two correct.

Partners. Partners have generally similar skill levels, but are not as concerned
with social interaction as the Socializers. Their central focus is the problem. They may
or may not be polite and supportive, but they are not hostile at all. They work together
on the problem, both contributing ideas; these ideas are often evaluated and sometimes
rejected. They question each other, asking for clarification or justification. One may do
all the writing or all the drawing, but both are actively engaged in all steps of the problem

solving process.
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Representative of this category are Karen and Diane. Karen and Diane are polite

and supportive, but direct. Decisions are made jointly, with discussion taking place. For

example, during their attempt to solve problem 16, making change, they had constructed

an equation in three variables when Diane decided that she would like to change that to

a single varniable.

D

N O

R U

D

I was thinking. Up here, what if we made these all x's? No?

Yeah, okay. Make them all one variable? So that, the, if we made dimes equal
x the pennies would be x minus 9. And nickels would be x minus S.

Oh, I see what you're saying. You're, now, like
So we have one variable for everything.

Yeah, or, hum.

If we let pennies equal x then dimes would be 10x and nickels would be 5x.

That's better.

[Diane and Karen] A short while later Diane realized that what they were doing was not

going to work and she had no hesitation in saying this.

D

A O R

D

So, let's just take a number, stick a number in. It's not going to work. You know
why?

Why?
25 pennies.
Um hum.

So (inaudible). Um. It doesn't work. I think you're right.

[Diane and Karen] They worked together throughout, often monitoring and correcting

each other's errors. While they were friendly, they were generally direct rather than
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overly polite.

Other pairs in this category were Shelly and Carol in the second session together
and Simon and Sam on two of their three questions. Together the three pairs got four of
eight questions correct.

Tutor/pupil. Tutor/pupil pairs have quite different mathematical skills, but are
very, to moderately, cooperative. One student, the 'tutor', does most or all of the work
on the problem, making most of the crucial decisions. This 'tutor’ explains to his or her
partner, the 'pupil’, what is being done and may also explain why. The ‘pupil' carefully
follows the work of the 'tutor’, sometimes asking for clarification. The 'tutor' may be very
careful to include the partner and may even assign to him or her work that he or she is
able to do.

Shelly and Carol, during their first interview together, were typical of the category,
with Shelly playing the role of tutor and Carol that of pupil. Shelly took the lead
immediately as she had an algorithm available for their first problem, number 17, shaking
hands. She was however very careful to explain what she was doing and to ask Carol's
opinion before proceeding. After describing the diagram ;:hat she would construct to solve
the problem, Shelly asked, "Do you have any other suggestions? Shall we do it that
way?" Carol watched what Shelly was doing carefully, added supportive interjections and
did the calculations. Throughout all three problems Shelly led, while Carol followed
closely, occasionally asked questions, and assisted with calculations. But Carol never
took the initiative. When she did ask questions, they were requests for explanations rather

than challenges to what Shelly had chosen to do. Shelly gave explanations without any
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apparent impatience. The following dialogue took place during the solving of problem 11,
two circles. The radius of the inner circle had been named a and that of the outer circle
¢ and Pythagoras’ theorem had then been used to show that a equals the square root of
¢ minus 1.

C How do we know small a is that?

S Because it's this, a squared equals ¢ squared minus 1. So you take the square off

of that and you make that a square root. (Pause) So we started out with this,
which is Pythagoran's. And we know that b squared is 1.

C Um hum.
S That one.
C Um hum, so that's 1.

S Therefore, that means that ¢ squared equals a squared plus 1. Just, we just
substituted that 1 in there.

C Yup. Okay.

[Shelly and Carol] Shelly was always careful to include Carol, suggesting that she
complete certain tasks. At the beginning of the cistern problem, number 14, Shelly asked
if Carol wanted to do the drawing, and then Shelly read the information to Carol who
transferred it to the drawing she had created.

Other tutor/pupil pairs were Carl and Janet and Janet and Kevin. Together the
three pairs got 8 of 10 questions correct and made substantial progress on the remaining
two.

Individuals. Individuals may be of similar or of different mathematical
background and skill but, in either case, they do not work cooperatively. While they may

read the question together and begin working together, they spend most of the time
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pursuing separate lines of thought. They may take turns commenting on what they are
doing, or one may provide a running commentary on his or her own work while the other
works silently. They generally choose separate pens and may work on separate sheets of
paper. At times, one may unsuccessfully attempt to get the other to cooperate on a
solution.

Carl and Randy are representative of this category. The first problem they
attempted was number 7, the ski trip. They began working together, attempting to
construct algebraic expressions for the various quantities in the problem, and then to put
these quantities into some kind of relationship to each other. At one point Randy
believed that he had a correct equation, but Carl disagreed. "I don't think so," he said,
but he offered no further critique. Randy decided to go ahead and solve the equation
anyway, which he did with Carl looking on. When he obtained his (incorrect) answer,
Carl simply did not acknowledge it and constructed and solved his own equation. Randy
acknowledged that Carl was correct, and Carl replied that Randy was "awfully close, I
think." In no way did they show hostility to each other. Rather, each simply worked
on his own ideas separately from the other. This was particularly apparent in their third
question, problem 5, squares. Once again, they began by discussing the problem together,
and were able to construct the first three terms in an iqfinite series which, if extended
would have represented the desired area. However, Carl immediately abandoned this line
of thought and instead tried to fit some kind of exponential or logarithmic function to the
problem. Randy attempted to try to further their original analysis of the situation.

Throughout the rest of the session they took turns, each leading the discussion along his
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own particular line of thought, but listening to the other. In the end they ran out of time.

The only other pair in this category was Simon and Sam, and then only for the last
of their three questions. Together the two pairs correctly solved two of four questions.

Hostile pair. Hostile pairs occupy the uncoopera;tive end of the social dimension
and are of different mathematical background and skill. One student, the more able, does
most or all of the work on the problem, making most or all of the decisions. No attempt
is made to include the less able student, and his or her participation may even be actively
discouraged. As well, the dominant student makes no effort to explain strategies or
techniques to his or her partner. There is no attempt to soften criticism, and they may
openly show signs of frustration with each other. They may be rude or use a hostile tone
of voice.

There was only one pair in this category, Sam and Diane. Sam was the more able
and he dominated the problem session, becoming more impatient with Diane as the
session went on. Sam took possession of the pens gnd paper for almost all of the session
and he made all the decisions of strategy. Diane phrased most of her suggestions as
questions, which Sam often ignored, or to which he often replied with a curt "No" and
no further explanation. During their work on problem 15, the commuter, Diane hesitantly
put forward an idea, summarily rejected by Sam:

D Armnving ten minutes early. On route. 'Cause he drove back again. 'Cause
whatever time he's taken travelling is going to be divided by 2, because it's going
to be 2 different directions.

S I don't think it's as simple as that. (takes a fresh sheet of paper.)

[Diane and Sam]
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In their first problem, number 11, two circles, Diane almost immediately suggested
drawing a triangle and using Pythagoras' theorem, but Sam rejected this since they only
knew one side of the triangle. Diane made no attempt to pursue this idea for some time,
during which the pair were involved in an extended exploration involving modifying
diagrams. Finally, when the exploration led nowhere, Diane's idea was accepte 4 by Sam
when she explained it more completely. But it was Sam who made the decision to
implement the idea, and Sam who carried it out. As the session went on, Sam became
increasingly short with Diane, especially when she repeatedly tried to use the calculator
for problem 18, factorial. "The calculator won't work," he told her, the impatience clear
in his tone, but he never took the time to explain fully why the calculator was not useful
in this case. As Sam became shorter and more impatient, Diane became visibly frustrated
with him. She often put forward undeveloped ideas, while Sam appeared to see them as
serious suggestions that Diane should be able to justify. "I'm just thinking out loud,"
Diane explained to Sam. Diane and Sam got one of their three questions correct.

Table 3 summarizes the results in each category. While one might expect that the
partners would be the most successful category, since in this case two individuals are
working together to solve a problem, this was not the case for this study. Rather the
pupil/tutor pairs were far more successful than any other category, with 8 out of 10
correct. In this category, one partner led the solutions a.nd essentially solved the problems
alone. Partners were the next most successful category, with half of their questions
correct. Eighteen problems were solved by pairs in all categories, but in only 8 of them

did both parmers contribute substantially to the solution. In the other 10, one partner
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solved the problem essentially alone.

Table S Problem results by category

‘ CATEGORY RESULTS _
Socializers 5X, 3C, 1S
Partners 4X, 4C
Tutor/pupil | 8C, 28
Individuals 1X%, 2C, 1S
Hostile 2X, 1C

X: incorrect or incomplete, S: incorrect but substantial progress made. C: correct

Interactions between pairs ar: highly varied and it is these interactions, rather than
any mathematical criteria, that detesiaine strategy selection. Socializers made no attempt
to evaluate potential strategies based on mathematical validity but made choices, instead,
on the basis of social interaction, often following any line of thought either partner
brought to the fore. Sometimes one partner made most of the decisions. This is seen in
the case of Kevin and Cecil. In all cases, Kevin went along with whatever Cecil wanted
to do and did not question his decisions. As we have seen, at one point this led them to
abandon the appropnate strategy of using s:multaneous equations to find the intersection
point of two lines, because Cecil did not believe this is what the technique would

accomplish. Cecil i1s several years older than Kevin and this may have contributed to
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Kevin's willingness to agree easily. The one hostile pair in this study also did not
generally make strategy decisions based on a rational critique of the suggested strategy.
Rather, most of what the less able partner suggested was dismissed out of hand.

Members of pairs in the individual category each followed his own line of thought.
Strategy decisions were not discussed or critiqued. In their parallel work on problem S5,
squares, both Carl and Randy monitored each other's work, but they never even
acknowledged that they were following different strategies, and certainly made no attempt
to evaluate the two approaches and decide which would be more useful. In the tutor/pupil
pairs, the more able student explained his or her choices to the less able student, thus
having to provide a justification for his or her strategy choice. In each case, the less able
student asked questions that the more able student had to answer before going on. These
were certainly the most successful pairs. Pairs in the partners category had to come to
mutual decisions, so that justifications for strategy choice were often provided. This was
the second most successful category. |
Gender issues.

In Table 4 we see that there are twelve women to six men in the top, more
cooperative, half of the table and one woman to five men in the bottom, less cooperative
half of the table. It is also notable that all of the mixed sex pairs are either in tutor/pupil
pairs or are hostile, and in each of the mixed pupil/tutor pairs the man fills the role of
tutor. In general, the men were less likely to be cooperative than the women. The one
pair of men in the partners category overlapped the individuals category on one of their

problems. The women appeared more cooperative, but were often unable to openly
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challenge each other or to evaluate ideas freely. While the sample is small, the results

are suggestive.

Table 6 Categories by sex
mathematical — similar different
social {
cooperative FF FF MM
FF FF MM FF FM FM
MM MM
uncooperative MF

Diane, the woman who was in the hostile pair, had strong opinions on the

differences between her experience when working with Karen and when working with

Sam.

D One thing I did notice was working with [Karen] as another woman was much
easier. There was a lot more flow and a lot of give and take than working with
[Sam], because he was a male, um, this is my own perception, from my
experience with relationships in life, is with men it's a little more different.
Because, immediately [Sam] wanted to be in control of the situation which men
normally want to and that's okay, like, I don't have a problem with that. But it
makes, it made it a little more difficult, for like I felt to, like, get it across, some
of what I was saying.... 'Cause I was feeling we were going around in a big circle
and it was getting too complicated on that one problem we were doing. And,

finally, I got him to do the Pythagorean theorem and we solved it.

[Diane, exit interview]
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Subjects' reactions.

All but one subject expressed reservations about working with a partner. They all
usually worked alone when studying for their mathematics courses, and this was generally
by choice, but also because getting a group together could be difficult. Too many
distractions was cited as the biggest disadvantage of working on homework or studying
with others. It was simply easier to concentrate on the work when working alone. The
biggest advantage to working with a partner was seen as the provision of a second point
of view.

With regard to their experiences in working with a partner during the study most
students said it was more difficult in most ways. Kevin thought that working alone was
rﬁuch faster, since you did not have to take time to explain what you were doing before
moving on. With a partner there was a greater need for communicatior skills. Cecil
found working with a stranger to be especially stressful. He was concerned with how he
would compare with his partner and this, he said, interfered with his ability to think
rationally. Janet felt inadequate when someone had to tell her what was going on. Shelly
also preferred to work alone since, when she is with a partner, she is reluctant to argue,
holds back so as not to take over, defers to more assertive people and gets annoyed by
others inability to see what she sees. Karla felt that the problem with the pairs was that
they were both talking and neither was really listening. She found that the necessity to
persuade another person held her back from pursuing her own ideas. Diane noted that
sometimes, when working with a partner, one becomes more concerned with what that

partner is thinking and feeling, than with the mathematics that is being done. Carl was
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concerned that, when working with a partnier, one might not realize where one is having
difficulty. Karen held a similar opinion:
If you get truly stuck it is really, or not even truly stuck but just a little bit stuck,
it 1s really easy to ask the person who is sitting across from you. Oh, this way.
Okay. And it's back to the same thing. I've had that one thing explained to me.
Whereas if you're alone and really don't have anything to fall back on other than
your own resources, yourself, that's the only way to really learn. Because you
have reasoned it through yourself and you have, I like to think of it as I've made
a new pathway in my brain.
[Karen, exit interview] Karen also found that working with a partner was restraining as
she felt that she had to be diplomatic. Sam found that working with a partner was
interesting and more problems were solved that way, but he was certain that he could
have solved them all on his own, given enough time. Simon was the one person who had
no negative feelings about working with a partner. He felt that the feedback that one gets
from a partner, whether negative or positive, makes one really think about the problem.
It 1s worth noting that, generally, those in the most cooperative pairs mentioned
most often that they felt restrained by the necessity to take the social interactions into

consideration. Sam, Simon and Carl made no mention of the social dimensions of their

experiences in dyads.

SOME SUBJECTS' REACTIONS TO THE STUDY

Three subjects commented that their participatic;n in the study was beneficial to
them. Sitting with a mathematical problem in front of a video camera for 15 minutes
forced them to concentrate and not to give up. For all three, this was the first time they

had been ablc to work with such persistence and they discovered that it was possible to
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persevere and therefore succeed in solving at least some of the probiems. Janet said, "I

had fun and it made me realize that I can do it. Maybe I should set up a video camera

and tape recorder when I study." Karen went further:

It has helped me with my Physics and Chemistry and all of my problem solving
things so much. And I mean it's only been, like I'said, three or four sessions, fifty
minutes time, and it's amazing how much more tolerance I have, how much more
patience I have to sit down and figure this stuff out. I feel better about even
getting a part of something down and understanding it and knowing that at least
that part is right. Whereas, before if I couldn't get the whole concept on the page
immediately, [ was, forget it.

[Karen, exit interview] Cecil also enjoyed the sessions and expressed his preference for

now learning in the experimental situation rather than the usual classroom setting.

“Working in a closed room with a time limit gave me the ability to focus much more.

Thank you for the chance to do this."
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CHAPTER V DISCUSSION AND CONCLUSION

Mathematics education researchers have been interested in problem solving for a
number of years. Central to the investigation of problem solving is the question of what
people actually do when they solve problems. In this study I have looked at what
fourteen average college algebra students did when they attempted to solve problems
alone and in dyads. I have focused on the skills, strategiés, beliefs and attitudes that these
college students displayed as they tried to solve nonroutine problems, and on what
differences there were in the process when the students worked in pairs rather than alone.

This chapter gives a conclusion to the study, including addressing the research

questions, looking at the limitations of the study and implications for further research.

PAIR INTERACTIONS

In exit interviews all the students in the study stated that the main benefit of
working with another person, or ,persons, was the provision of a different point of view
and the pooling of information. The literature mentions several factors which could

account for the efficacy of group problem solving:

1. An increased focus on the task at hand. [Bossert, 1988/89, Dees, 1985, Rosenthal,
1995]
2. Increased opportunities to rehearse information orally leading to greater integration

of the information. [Bossert, 1988/89, p.234, Dees, 1985, 1991, Stacey, 1992,

Webb, 1991]

164




3. Constructive controversy, in which students encounter challenge and disbelief, in
which they challenge others and then use discussion to examine beliefs and
strategies more closely. [Bossert, 1988/89, Noddings, 1985,]

4, The pooling of ideas and strategies and background information. [Noddings, 1985,
Stacey, 1992]

5. Reduction of anxiety and corresponding increase in confidence. [Dees, 1985,
Stacey, 1992]

6. Encouragement from peers, a warmer, welcoming and supportive atmosphere.
[Bossert, 1988/89, Rosenthal, 1995]

Ideally, then, what we would expect from small groups is a discussion of the
problem, possibly including background information, leading to an agreed upon
understanding of the problem. This would then lead to suggestions of possible strategies
to follow, challenges leading to more constructive discussion and a rational decision about
what strategy to follow. As the solution attempt proceeded partners would encourage and
assist each other, ask for explanations and give explanations, and challenge and evaluate
each other's ideas. This would, ideally, lead to a clear solution to the problem.

However this is not at all what I saw. There was generally little discussion of
individual interpretations of the problem. Only in a very few cases (the meaning of
factorial and the use of speed in the first part of the commuter problem) did one partner
supply necessary background information that the other lacked. The students did not
generally spend any time advancing ideas for solution methods and then discussing the

relative merits of the various methods. That is, strategies and ideas were not pooled and
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then evaluated. Instead, the first strategy that appeared to lead towards a solution was
generally followed immediately.

Constructive controversy was almost entirely absent. In most cases there was no
controversy at all. In those cases where there was controversy it was generally not
resolved constructively. What happened during each session was determined in great part
by the social interactions of the pairs. Pairs in the socializer category exhibited no
controversy at all. The students were so focused on maintaining a smooth social
interaction that they never challenged each other. Rather, when either student suggested
a direction his or her partner would acquiesce immediately and then supply support and
encouragement. Each student in the individuals category simply followed his or her own
strategy alone rather than trying to convince his or her partner that it was a viable solution
method.

In the case of tutor/pupil pairs, the strategy followed was that of the tutor. While
the pupil might ask for explanations, she or he never challenged the tutor's decision and
seldom made suggestions of her or his own. There was controversy between the partners
in the hostile pair, but it was not resolved constructively. When Sam did not agree with
Diane he simply ignored her or overruled her, but without any discussion or explanation.
It i1s amongst the pairs in the partners category that we V\./ould expect to find constructive
controversy playing a part, and here it is more evident, although still in a minor role.
There was some discussion of ideas and proposed strategies, but few direct challenges that
led to a defence or a real controversy. Diane and Karen are typical here. When they

worked on the tangent circle problem, Karen was not comfortable with Diane's placement
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of the centre of the circle. While she expressed her doubts and they were discussed, she
did not challenge Diane to defend her assumption. Thus, the discussion was not as
helpful as it might have been.

Real encouragement from peers was not generally present. While partners often
made supportive interjections ("yes", "umm", "go for it"), it was much rarer to hear
positive evaluative statements from one partner to another. When it was seen, it was
usually within socializer pairs or tutor/pupil pairs. Karla, for example, praised Candy
after she was able to solve the four circle problem. This, however, must be seen as
contributing more to a positive social exchange than to the solution of the problem, since
the praise was given after the problem was complete.

For some students, working with a partner reduced anxiety and increased
confidence, tut for others working with a partner increased their anxiety levels. For
example, Cecil stated that when working with someone else he was distracted by worry
about how he would compare with his partner.

In this study, I did not see an increase in focus on the task at hand. However, the
experimental situation may account for this. Even when they worked as individuals, the
students were aware thai their work was being recorded, and this awareness kept them
focused on the task. Several students commented, in exit interviews, that they found that
participation in the study had helped them to focus. I‘n a more natural situation, it is
possible that the students would have been more focused during pair problems sessions
than they would be aloie. However, I have no evidence for this.

Only for some of the students in this study did the pair sessions provide increased
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opportunities to rehearse infermation orally. This was so for the students playing the part
of tutor in the tutor/pupil pairs. These students described what they were attempting to
do and explained to their partners why they wanted to do this. However, students in other
categories did not spend much time explaining what they understood or why they wanted
to follow a certain strategy. Ideas and strategies were often introduced with no
explanation at all. Since partners seldom challenged each other, there was little call to
explain choices.

Thus, the study does not support the hypothesis that it is the six factors listed
above that provide substantial benefits to pairs a&empﬁng to solve non-routine
mathematical problems. Nevertheless, this study shows that the pairs did significantly
better at solving the problems than did the individuals. Individuals correctly solved 9 of
44 problems, or about 20%, while pairs solved 18 of 34 problems, or about 53%. In
order to determine what characteristics of pair work contributed to this increase in
success, we need to examine the pair interactions in some detail. I will begin by
discussing some factors that seem not to have contributed significantly to the increased
success of pairs in problem solving.

There was only a slight increase over individuals in the time spent on the
comprehension phase of the process. Assumptions and conveniions were more explicitly
noted. In some cases one partner used his or her understanding to explain an aspect of
the question to the other pariner. For example, Carl explained the concept of factorial to
Janet, while Karla ensured that Candy did not use the 8 km/h from the second part of the

commuter problem during the first part.
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The planning phase differed little from that seen with individuals. There was very
little planning at all. The notable exception to this was Kevin's detailed plan for a
solution to the folded paper problem. Since he had seen that he could use trigonometry
to solve the problem, and since Janet had not studied trigonometry, he gave a very brief
description of what trigonometry could tell him and then explained how he planned to
solve the problem. It is possible that Kevin or other subjects do prepare such plans when
working alone, but simply do not verbalize them. However, there is no evidence of this
extensive planning and the solution attempts implemented by both pairs and individuals
do not generally reflect such planning.

There was also little difference in verification. Pairs were no more likely to
attempt to verify any aspect of their solutions than were individuals. In fact, in one case,
Shelly and Carol, one partner vetoed the other's attempt to check a calculation. Stacey
[1992] had noticed this lack of checking behaviour with groups of younger students.

Pairs generally displayed very similar strategies to those displayed by individuals,
with a few important exceptions. The less useful strategies of guessing, of guessing a
single operation, and of eliminating most of the information in order to simplify the
problem, disappeared almost entirely for partners. These strategies had generally been
displayed by the weaker students and when they were paired with more capable students
it appeared that the more capable partner had other strategies available. Strategy choice
was more open to observation with pairs than with individuals. However, there was
generally little more analysis. Just as with individuals, the first idea to come to mind was

usually the idea that was pursued. Stacey [1992] noted that, with small groups of
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seventh, eighth and ninth grade students, chosen strategies were often those that were
easier to understand or easier to carry out. This was often the case with the college
students in the present study. Another important criterion was whether the method was
"mathematical,” that is, generally, whether it involved an equation.

Pairs made more comments on their states of mind. They were more likely to
verbalize their confusion and frustration. However, they still did not generally use
confusion as a signal for the need to reconsider their approach. Rather, the verbalization
of frustration was more likely to be part of a social interaction than of a mathematical
one.

There were also, in certain cases, some clear disadvantages to working with a
partner. In three different pairs, there were disagreements in which a useful strategy was
not followed because a partner rejected it. In two of these cases, the partner rejecting the
useful strategy was the more socially dominant partner. Some subjects noted, in their exit
mterviews, that they felt they were held back by their concem not to hurt their partners
feelings. Others mentioned a lack of time for reflection as an impediment to solving a
problem while working with a partner.

Nevertheless, the pairs were significantly more successful. I contend that this
study points to four factors which contnbuted to the increased success of the pairs. These
are:

1. an increase in persistence.

)

the more able pariner leading the pair,

3. oral rehearsal of ideas,
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4. the correction of minor errors.

There was a significant increase in persistence: Most pairs either solved the
problem correctly or used the full 15 minutes in the attempt. In only one case did a pair
submit a solution which had been guessed and in which they had little confidence. There
were 10 cases of quitting or guessing amongst the individuals. This increase in
persistence appears to come about by a combination of three factors; the pair working at
the persistence level of the more persistent partner, the sharing of frustration and
confusion lowering the overall frustration, and the need for both partners to agree in order
to quit. This increase in persistence can be credited, I believe, with much of the increase
1n success rate.

Another benefit came from a more able partner leading the solution process. Cf
18 problems solved correctly by pairs, 10 were solved c;,ssentia.lly by one partner alone.
This can be most clearly seen in the pairs in the tutor/pupil category. For example Shelly
solved the handshake problem almost entirely on her own. Carol only assisted by doing
the calculations suggested to her by Shelly. Also, Kevin solved the folded paper problem
essentially alone since he did 1t using trigonometry and Janet knew no trigonometry. In
other cases, while a more able partner led the solution attempt, the less able partner did
contribute to parts of the solution.

While oral rehearsal of ideas and strategies was limited almost entirely to those
in the tutor/pupil pairs, it is also these pairs who were the most successful. In each case,
the tutor explained to his or her partner what he or she.was doing. It is likely that the

necessity of explaining caused the student to think more precisely about what he or she
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wished to do or that the act of explaining brought about clarification of the prcess. Adlso,

in the pupil/tutor pairs the pupil often asked questions which the partner then had to

answer, leading to another opportunity for clarification and perception of possible errors.

Pairs in other categories did not go through this rehearsal process and so did not have this

opportunity to confirm or extend their understanding of the situation. The greater success

of the tutor/pupil pairs adds strength to my contention that oral rehearsal is an important
contributing factor to the increased success of the pa.irs.'

Monitoring of calculations also contributed to correct solution attempts. Often one
partner was able to see simple arithmetic or algebraic errors made by the other partner.
In some cases conceptual errors were also prevented. This was true for two of the three
pairs who attempted the factorial problem. In each case, one partner understood the
concept of factorial and corrected the other's misunderstanding.

Researchers have speculated that group work provides social and affective benefits
to students. The following list is a summary of such benefits:

1. Enhanced enjoyment of mathematics and mathematics classes. Students sense a
warmer, more welcoming and more caring atmosphere. [Good, Mulryan and
McCaslin, 1992, Rosenthal, 1995]

2. Enhancement of self esteem and self confidence. [Dees, 1985]

3. Increased practice in learning to work and communicate with others. [Good,
Mulryan and McCaslin, 1997, Rosenthal, 1995]

In exit interviews, all students stated clearly that they did not usually work with

someone else and all but one stated that they preferred to work alone. Many said that,
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when working with another person, they had to spend too much time and energy
focussing on the social interaction to the detriment of pursuing the mathematical goal.
Some cited worry over hurting the other person's feelings, while others worried about how
they would compare mathematically with their paritners. One student felt that, when
working with a partner, she would not learn as much as she would working on her own,
since she would not have to work through all the details herself. Being shown by a
partner was not, she asserted, as effective or satisfying as figuring it out oneself. This
almost universal negative attitude to group work certainly does not indicate an enhanced
enjoyment of solving mathematical problems or an enhancement of self esteem and self
confidence. While, in some of the pair sessions, there was a friendly and positive
atmosphere, in the case of the pairs in the individuals category and the hostile category
this was not the case. Certainly, 1t is clear that simply pairing students will not ensure
a positive experience for all, or even for most.

Finally, these students clearly did not know how to work together constructively
at mathematical problem solving. It would seem that any experience they have had in the
past with cooperative work has not led them to develop the skills needed to benefit from
the experience of working with another person. It is also clear that simply assigning them
to pairs to work on a problem did not lead to practice of positive communication skills.
The socializers were too fixated on maintaining social harmony to make any attempts at
developing skiils in communicating mathematical ideas. Most of the others were too
fixated on finding the right answers to expend any effort in talking with a partner about

problem solving strategies. Communication was most effective in the tutor/pupil pairs,
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but there the communication was mostly one way.

In summary, pair problem solving sessions did not work at all as one might expect
and hope they would. Benefits did not arise from the factors generally cited in the
literature, but came from an increase in persistence, the pair working at the level of the
more able partner, from oral rehearsal of ideas, and, to a lesser extent, from the correction
of minor errors. The expected social benefits of the small group process are also not
present. In fact most of the subjects of this study reported negative reactions to working

with others.

ANALYSIS OF PROBLEM SOLVING SESSIONS

The students in this study generally had available to them a wide variety of
specific strategies for problem solving. Twenty four distinct strategies were identified in
chapter four. These strategies are, as one would expect, far more diverse and potentially
more useful than the seven strategies identified by Sowder [1988] in use by sixth and
eighth grade students (see chapter 2). Most of the strategies seen in the present study are
potentially useful; however a few were detrimental. These inappropriate strategies are
very similar to the inappropniate strategies identified in Sowder's study of younger
students, where they generally involved some kind of guessing or looking for clues, as
opposed to analyzing the meaning of the problem. Similar strategies exhibited by the
college students included; calculate everything you can, guess, guess which operation to
use, and elirﬁinate most of the information in order to do a single step calculation.

Positive strategies included such things as: draw and modify a diagram, try a similar
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problem, make an estimate, look for a pattern, and use a physical model. These are all
useful heuristics that might be taught in a problem solving course. While not all students
exhibited all, or even most, of these positive strategies, most exhibited a good variety of
strategies. [Exceptions to this were Carol and Tanya, both of whom predominantly
displayed the negative strategies such as guessing or simplifying the problem down to a
single step.

One important strategy was noticeably rare. This.was to analyze the mathematical
structure of the problem; especially to analyze relationships amongst various quantities
in the problem. The subjects would often write expressions for various quantities in the
problem, but were seldom able to focus on the relationships amongst these quantities.
They did not appear to see an equation as an algebraic model of a relationship.
Schoenfeld [1985b] has identified four cognitive and metacognitive factors important in
problem solving. Two of these are resources and heuristics. It seems that while these
students knew the important heuristic of writing an equation, they may have lacked the
mathematical resources to carry it out, that is, they did not know how to construct the
equation.

With the variety of strategies available to therr;, one might have expected the
subjects to have been able to make substantial progress towards solving most of the
problems. This was not the case. They were held back by several factors.

Polya [1973] put particular emphasis on the first step, understanding the problem,
of his four step problem solving plan. However, the students generally spent very little

time attempting to understand the problem. While they often reread the problem several
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times, they did not appear to have many skills in analysis. The comprehension phase of
the problem solving process usually consisted of reading and rereading the problem,
noting the knowns and unknowns, and often drawing a picture or a diagram. However,
if that did not lead to an apparent solution method, they did not have many tools for
further analysis. They occasionally tried some examples in an attempt to understand what
was going on and, in geometric problems, they often modified diagrams. What many
seemed unable to do, was to analyze the structure of the problem. Especially in algebraic
problems, this often left them without any way to construct an appropriate equation. Most
students focused entirely on the goal of finding a solution to the exclusion of trying to
fully understand the problem.

Most students spent little, if any, time planning a solution. There were notable
exceptions to this. Carl planned and estimated before going on to calculate in his solution
to the spider and the fly. Kevin had planned his solution to the folded paper problem in
detail and explained it to his partner before implementing it. But these occasions stand
out for their rarity. Most of the students, after a very shc;rt comprehension phase jumped
immediately into calculations of some kind.

The students generally saw little need to verify their answers, but wanted to be
told by me whether they were right or wrong. I had not originally planned to do this, but
the students in the pilot study were clear that they wanted to know how well they had
done, as well as the correct answers. The validation of their solutions had to come from
an external source. I see this as part of an overall attitude of not really being responsible

for the solution process; of seeing mathematics as being something that someone else
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must teach you how to do.

The students generally lacked good strategy selection criteria. Often they did not
know when a particular strategy might prove useful, and they seldom evaluated strategies
before implementing them. Strategy selection often came down to following the first idea
that came to mind. This confirms what Schoenfeld had noted in his research [1985a,
p.372]. While some strategy choices were based on the mathematical structure of the
problem, for example, the use of diagrams in geometric problems, this was often not the
case. The students' beliefs about mathematics were very important in their choice of a
strategy. Some methods, such as trial and error, were considered illegitimate, while
others, such as writing an equation or system of equations, were seen as more
mathematical and hence to be preferred. Familiarity and ease of use were important
criteria in the choice of what method to follow.

Even when strategies were evaluated this did not necessarily lead to an appropriate
choice. This was clearly seen when Kevin and Cecil worked on the triangle problem and
Kevin suggested that they solve the pair of equations simultaneously to find the
intersection point. Cecil rejected this, believing that the purpose of solving simultaneous
equations was not to find an intersection point. Similarly, Sam originally rejected Diane's
suggestion of using Pythagoras' theorem to solve the two circle problem. In both these
cases, the rejection of an appropriate strategy was essentially for interpersonal reasons
rather than mathematical ones. The more assertive student rejected the suggestion of the
less assertive one.

Once a strategy was chosen its use was seldom reviewed. Rather, it was generally
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followed until it led to a clear dead end. Then the next strategy to come to mind was
similarly followed. One notable exception to this was Candy and Karla's solution to the
making change problem. They began by counting combinations, then switched to trying
to write an equation since that was seen as more mathematical, and then they re-evaluated
that and returned to counting, devising a system to organize the count. This behaviour,
however, was the exception rather than the rule. There was generally very little
monitoring behaviour at all. Few written notes were kept, meaning that it would have
been difficult to review their progress on a problem had they decided to do so.

A lack of precision, including a lack of appreciation for the value of precision, was
clearly detrimental to the problem solving process. Inferences were often very general
and not well considered. This was clearly seen in the simplifying misinterpretation of the
sleepy traveller problem, which led to an incorrect solution of one quarter, and also in the
vague interpretations of "continues forever” in the squares in squares problem. Diagrams
were also often very imprecise and this sometimes leti to incorrect solutions. Cecil's
messy drawing in the four circles problem led him to miscount the number of regions to
be subtracted, and Karen and Diane's rough graph in the tangent circle problem led them
to assume, incorrectly, that the centre of the circle was in a particular location.

Lack of precision in the use of variables was an important contributor to incorrect
solutions. Variables were seldom formally defined, and sometimes their meanings were
changed part way through a solution attempt. Often letters were simply used as a kind
of shorthand for recording the information from the problem statement. Although this

might be a legitimate use of letters in some situations, it leads to confusion when this
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shorthand is then converted to variables. Sometimes it was clear that the student had not
even considered whether the variable represented time or distance. This was particularly
evident in Candy and Karla's attempt to solve the co;nmuter problem. Most of the
students appeared to feel no need to be more precise. Cecil, for example, was quite aware
that his answer to the four circle problem was inaccurate, but seemed to see no problem
with that.

Schoenfeld [1983a] has noted that the cognitive behaviours of problem solvers are
embedded in and shaped by metacognitive and social factors. In the present study, we
can see that the students' attitudes and beliefs contributed to their inability to solve the
problems given them. This is especially notable since all these students were volunteers
and so would not be expected to have particularly negative attitudes toward mathematics.
Often the attitudes that held them back were not necessarily negative but were simply not
useful.

Some students displayed a belief that there must be a formula or algorithm for any
problem. If they did not know the formula, or had not seen a similar problem before,
then they did not believe that they would be able to solve the problem they were given.
They did not see mathematics as something that they were able to generate, but only as
something that they must leam from someone else. Cecil demonstrated this attitude
clearly during his attempt to solve the division by nine‘ problem. He simply hoped he
would be able to understand the solution when I showed it to him later. This attitude
hampered many of the students, leaving them at a loss for what to do when faced with

a unfamiliar problem.
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Other students seemed to have a strong belief in inspiration, and when inspiration
failed to appear, they had no idea what to do next. Others were hampered by their belief
that only certain techniques were acceptable in solving a mathematics problem. The
problem not only had to be solved but it also had to be solved "mathematically." This
led Randy to decide not to present his correct solution to one problem.

The students in this study generally knew all of the mathematical techniques
necessary to solve the problems they were given. They also had a wide variety of
specific strategies available to them. Based on content knowledge alone, they ought to
have been able to solve most of these problems. However, they lacked the general skills
and attitudes necessary to use the knowledge that they had. They often did not see
comprehension as an essential part of the problem solving process, they did not monitor
their progress and assess their strategies, they believed that mathematics comes from
outside of them and that there are acceptable and unacceptable solution methods, and they
did not understand the need for precision in inference, calculations, and diagrams. All

of this hampered them in trying to solve unfamiliar problems.

IMPLICATIONS FROM THE OPERATION/STRUCTURAL

ANALYSIS

I believe that the analysis of the solution attempts .n the light of Sfard's theory
of the dual operation/structural nature of mathemai cal understanding deepens our
understanding of the students' actions. It is a crucial factor in making sense of their

attempts.
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The students often did not spend time trying to understand the mathematical
structure of the problems because they were still working at an operational level with
regard to algebraic problems. They lacked the crucial skill of seeing the relationships in
the problems as algebraic relationships. We have seen that more substantially correct
solutions were produced for problems that could be approached operationally than for
those that required a describe first, calculate later, structural approach. A clear example
of this was the difference in success between the two different circle problems. In the
four circle problem, they needed only to see the geometric relationship and then calculate
an answer. In the two circle problem, they had first to see the geometric relationship and
then model it algebraically. This they found much more difficult. We have seen 1:at fo:
problems, like the folded paper problem, which could be done operationally or
structurally, the operational approach was chosen.

Problems that required the construction of equations were particulary difficult,
something that should be surprising when we consider that these are all aigebra students.
However, the students did not see the structures of the problems that were presented to
them because, I believe, they did not yet possess the necessary mathematical structures.
The structure they lacked was algebraic. They did not yet see, for example, that distance
divided by time can be conceived of as a single entity,-speed, which they can relate to
other speeds in a problem. They had nct fully made the transition from arithmetic to
algebra and still saw expressions such as 520/(x+5) as directions to do certain arithmetic
operations, rather than as a single quantity that itself can be operated upon. That is, they

could not operate on or with the unknown. Many were still at the level of seeing algebra
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only as operation or as processes. As Gray and Tall have said, "The les. able child who
1s fixed 1n process can only solve problems at the next level up by coordinating sequential
processes. This is, for them, an extremely difficult process" [1994, p.135]

In this study, the subjects were often faced with problems requiring structural
approaches while they were only prepared to attempt the problems in an operational
manner. We have seen that this may lead a student to attempt to solve a problem without
the use of algebra when it is needed. Several other consequences which became apparent
during the study, were lack of direction, reliance on (often incorrectly memorized)
algorithms, the separation of solving the problem from understanding the problem, and
the belief in mathematics as a kind of magic.

When faced with a problem whose structure they were unable to see, the students
appeared to lack any strategy that would give them direction. This often led them to "go
around in circles” or to become distracted by extraneous details. Karla and Candy were
in this situation in trying to solve problem 15, the commuter. The first part of this
problem can be solved in a single step once the structure of the problem is understood.
However, they were unable to see this structure and could find no strategy to follow.
They drew an elaborate picture of a train station and train and they repeatedly got
sidetracked by unimportant details such as the hair colour of the commuter.

C A nice spectacular question ... It's a trick question. Um ...
K She took a taxi.

(Laughter)

C What if she walks really fast?
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K 8 km, ah, that's pretty fast. Yeah, that's a pretty brisk clip.
C Yeah.

K But we dorn't know that for the first part.

C Chopping along.

K A redhead too. Fiery red hair. (pointing back to their drawing)

C Pretty good, eh?
K Okay.

[Karla and Candy] They came back to the problem between episodes of this kind, but
were unable to make any headway at all. ’

When the students could not understand the structure of a problem, they often
resorted to the application of algorithms, sometimes incorrectly memorized or
inappropriate to the problem. Working on problem 5, squares in the square, with Randy,
Carl began by analyzing the structure of the problem and was able to construct the first
three terms of the series. However, he did not _recognize a series as an acceptable
solution type, or even as an initial step towards a solution, and so he dropped this
strategy. The series appeared to remind him of his recent study of interest rates and the
development of exponential functions. Abandbning any attempt to understand the
problem, he spent the rest of the session trying to fit an exponential equation to the
situation. It appears that, in the absence of any .~cognized strategy to understand the
structure of the problem, Carl's recognition of the iterative nature of the problem had led
him to the only other iterative function he knew, the compound interest function.

Janet correctly decided that the way to solve problem 11, the two circles, was to
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find the areas of the two circles and then subtract the area of the inner one from the area
of the outer one. But, since neither radius was given directly, she was unable to discern
how to carry out this plan and she concluded, "that must be wrong 'cause it's, you can't
do it that way.” In fact, she needed to assign variables to the radii and then construct an
algebraic expression for the difference of the two areas. Janet was acting at an
operational level on this problem and did not see this structural solution. At an impasse,
she resorted to using the area and length formulae that she had available. She attempted
to measure both radii but then did not use these measurements in the formulae for the
areas of the circles. She appeared to have forgotten her original strategy when she was
unable to carry it out immediately. Instead she calculated both circumferences and then
subtracted one from the other, using the result as a radius in the formula for the area of
a circle. She appeared to be applying a heuristic that suggests that one can use length
formulae for lengths and area formulae for areas, without any reference to the geometric
structure of the problem.

Students were sometimes quite willing to attempt to solve problems which they
knew they did not understand. This is clearly seen in Karla's attempt to solve problem
5, the squares in the square. She read and reread the problem, trying to understand what
it meant for the process to continue forever. "If the process continues forever. See, I
don't, don't really see how that process can continue fore\}er, What fraction of the original
square? .. Hum. What I have to do is come up with some formula that's going to tell
me." As though it was common to attempt to solve problems she did not understand,

Karla then attempted to find a solution, initially guessing the one operation answer of one
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ninth. She rejected this and continued to try to find a formula. She had no doubt that
she did not understand, stating, "I think the key 1s, if the process continues forever."
Eventually Karla admitted defeat, clearly aware that she was missing the central idea.
Several students misinterpreted part of the problem statement of problem 18,
factorial. They read the x’s used to signify multiplication in the definition of n factorial
as a variable x rather than as the symbol x. This happened with Janet when she worked on the
problem with Carl. Carl read the problem and was clearly familiar with factorials.
Nevertheless he read the definition of n! as "n factorial is x to the n minus 1 by n" and this
may have contributed to Janet's confusion.
J Okay, I understand the first two. [referring to the definiticns of 5! and
10!] I'm just trying to get through the n one, yeah. 'Cause that would be
the key, wouldn't it? To figure out that one?
C Yeah, for n number
J Yeah ... So ...
C Well, it's going to have, ah,
J Would this be the equation then? Like 100, bracket, ... no, that would

[inaudible]. Could you just solve for x? Plug the 100 where all the n's are
and then solve for x and that would be the answer. Would that work? You

think?
[Janet and Carl] It is clear that Janet had not understood the definition and that she was not
attempting to do so. Rather, she was looking for a solution method without having first
understood the problem, as though the two processes, understanding and solving, were quite
unrelated.

Good, Mulryan and McCaslin [1992, p.173] see problem solving as adaptive learning in

a social setting. Thus, to fully understand these actions and attitudes, we need to consider
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how the students may have adapted to the situations in which they have learned mathematics.

Studenis in algebra class are often presented with problems which they are unable to solve.

This is then generally followed by a demonstration of the “correct” solution by the instructor.

If the students are repeatedly presented with structural methods and solutions for material
that they view only procedurally, they may be unable to see where the solutions have come from.
Rather, it will be as though the teacher had some magical formula that allowed her to conjure
a solution out of emptiness. Repeated exposure to such a situation might easily lead to a
belief in mathematics as magic and not as rational problem solving. Thus, when [ presented
these students with problems for which they had no ready made solutions, their first reaction
was often not to analyze the problem but to reach for their inventory of "magic tricks" and hope
that they would find one that works. The skill, then, is to know what particular trick to grab
in any situation. So much time is spent on this that they often did not even look at the
meaning and structure of the problem. Mathematics, then, appears to come from outside and to
be validated from outside. It is not something that one can expect to generate oneself or to
really own.

Sfard's theory of the operational/structural duality, the realization tha: the students
have not fully completed the transition to algebra, and an understanding of the attitudes
developed in the mathematics classroom all help to clarify much of what was seen in the
student’s attempts to solve problems. Although these students were studying algebra, and had
studied algebra in the past, they had not yet arrived at the point where they were able to use
algebra to analyze the structure of these unfamiliar problems. In giving them problems which

required a structural approach when they were only able to proceed operationally, I had
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presented them with an extremely difficult task. This not only led to their inability to solve
the problems, but also led to a lack of direction, mappropriate use of algorithms, and

detachment from meaning.

LIMITATIONS OF THE STUDY

A qualitative study is, by its very nature, not generalizable. The intent of the
study, however, was not to produce general results, but to explore the problem solving
process in detail, and, thus, to point the direction for further research. The results of this
study have come from a small group of students, at one particular community college, at
one particular time. The sample size was small, only fourteen subjects, and these were
all volunteers. The students were generally average, to somewhat above average, in their
mathematical achievement. This was expected, as below average students would likely
be more reluctant to volunteer_for a study of this nature. Self selection would also be
expected to produce a bias in favour of those who had more positive experiences with,
and attitudes toward, mathematics. While in many characteristics such as age, educational
background, family and employment status, this group is representative of the diversity
of algebra students at Kwantlen College, in other characteristics, such as cultural
background and English fluency they are not representative. With a different group of
students, from the same or a different institute, the results might have been different. This
means that results must be seen as tentative, until confirmed by further study. This 1s
especially true of the classification of the pairs developed in chapter four. While I believe

it is a useful tool for understanding the problem solving process amongst the pairs, with
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the small sample size it must remain tentative.

Limtations of scope relate to the problem statement. The focus of this study was
to examine what actually happened during problem solving sessions. There was no
attempt at intervention, or at teaching problem solving. What was examined was the
strategies, skills and attitudes of the subjects and their interactions when working in pairs.
There was no attempt to look at leamning outcomes. That is, I made no attempt to
examine whether the students learned any new skilis, or developed new attitudes, due to
taking part in the study. Specifically, while I looked at how the sessions with pairs
differed from those with individuals I did not attempt to look at whether students learned
more or learned something different when working in pairs, as compared to when working
as individuals. Thus, while this study allows for tentative conclusions about how the
process and results differ between individuals and pairs, it does not allow for any

conclusions about whether working in pairs may produce beneficial learning outcomes.

FURTHER RESEARCH

This study suggests two main avenues for further research: Research with larger
groups needed to confirm tentative results, and research which could extend the scope of
the study.

With a group of only fourteen students, results must be considered suggestive and
tentative. There is a need to repeat the research with a larger group of students, to see
whether the same set of strategies appears, the same general skills are displayed, and the

same attitudes and emotional reactions are apparent. It has been seen, in this study, that
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poor strategy selection, lack of precision, and lack of perseverance were important factors
contnbuting to the inability to solve many of the problems. Further studies focusing on
each of these areas could be useful. The examination of the differences between the
problem solving processes of individuals and those of pairs needs to be extended by a
larger study. It is necessary to confirm whether the two way classification system for
dyads developed in chapter four is valid in general, and to determine what percentage of
pairs would fit into each category. If it is confirmed, this classification system can help
to explain the different experiences that different subjects have working in pairs. It would
also be very useful to extend the analysis of this study to groups of three or more.
Clearly, even pairs present a very complex phenomenon to study. Larger groups involve
many more interactions, both mathematical and social. It is necessary to understand these
interactions in order to determine how group work can most profitably fit into the
mathematics classroom.

The research questions that guided this study, while in some ways quite broad,
were, in other ways, quite focused. There is a need for further research to extend the
scope of the questions and to extend results. The students in this study focused almost
exclusively on the goal of obtaining an answer to the gi\{en problem. While this was the
goal they were given, they were often so focused on obtaining an answer, any answer,
that they put little effort into really understanding the pro.blem. It is possible that this was
an effect of the experimental situation, but I believe it is more common than that, and that
students often do not see understanding the problem as part of the solution process.

Research needs to be designed to focus on this aspect of students' problem solving.
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Another factor contributing to the failure to solve many of the problems was a lack of
understanding of the importance of precision. It would be valuable to understand this
attitude 1n greater detail. In light of the comments by several students that participation
in this study helped them in their general problem solving by helping them to focus and
persevere, it would be especially important to investigate on this aspect.

An important theme to emerge from this study is the importance of the
operational/structural duality. The idea of action or process becoming understood as
mental objects or structures has appeared often in the literature. The process is discussed
by Freudenthal [1991], by Harel and Kaput [1991] where it is called entification, by
Dubinsky [1991] where it is discussed as encapsulation, and by Sfard [1994] where it is
called reification. Yet, strangely, discussion of this dimension is often missing from the
investigation of problem solving. More commonly, it appears in the discussion of the
acquisition of new concepts, or of transitions, such as that from arithmetic to algebra. I
feel it would be especially useful to extend problem solving research in this direction, to
focus on students' actions as they try to solve problems that have been spescifically
designed to focus on this theme. This is especially important for algebra students who
need to be able to see equations as algebraic models for §elaﬁonships that arise in various
situations.

Group work is becoming a regular part of many mathematics classrooms.
However, the students in this study were almost unanimous in their dislike of group work.
The immediate questions are: Why do they dislike it? What negative experiences have

they had? Why have these experiences been negative? One possible explanation comes
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from the students’ focus on finding the answer rather than on improving learning
outcomes. Group work at college level often consists of group projects on which the
students will all receive the same grade. Since they are being graded, they may be more
focused on obtaining acceptzble solutions than on increasing learning. In this case,
working with others can be seen as requiring an extra effort to maintain social relations,
an effort that i1s diverted from the process of creating an acceptable project for the
instructor to grade. If group work is to continue to be a part of the college mathematics
classroom, it is necessary to design studies that address the question of why students are
not more positive about it. If students are expected to work in pairs despite the fact that
they do not like doing so, then there needs to be sufficient evidence that working in pairs
produces positive leaming outcomes. We need more studies which explore learning
outcomes from group work in mathematics at the college level. This study has indicated
that social interactions may be just as important as mathematical interactions in both the
success of group problem solving and in the type of experiences the students have. This
suggests the need for studies that would focus on both the social and mathematical

Iinteractions amongst students working in groups.

PERSONAL BENEFITS

As a college instructor, I generally see only the results of a problem solving
session as presented to me on assignments and examinations. What I do not see is the
process that the students go through to produce the work they submit to me. This

research has increased my understanding of the complexity of this process. It has led me
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to realize that while my students often have a reasonably good grasp of the mathematical
techniques needed to solve a particular problem, there are many conditions that may make
it difficult or impossible for them to apply the techniques they know. In my algebra and
precalculus classes, I now spend a significantly larger portion of the time concentrating
on solving problems. Specifically, I spend a lot more time on the part of an algebraic
problem that comes before the step of "write an equation.” I have begun to include, in
my lesson plans, more problems that do not call for a‘ solution, but rather require an
algebraic description of a situation.

I am much more aware of the importance of perseverance in learning to solve
problems. I am moving towards assignments with fewer, but more complex, problems
so that I send the message to my students that they can expect to spend a reasonable
length of time on any one problem. I am continuing to increase the amount of classtime
that I allow for the students to work on problems while I have a chance to circulate
around the room, keeping the students focussed on the task at hand.

I have also become much more aware of the complexities of group work. I am
aware that many of my students strongly resent being asked to work in groups and being
marked as a group, and I am aware that they can have very negative experiences if the
situation is not well planned. In assigning students to groups, much more than just
academic considerations come into play. I generally do not have access to enough
information about the particular social interactions in my classroom to make group
selections in which I am confident the experience will be positive for all concerned.

Thus, I now allow the students to chose their own groups, and they appear somewhat
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happier with this. Group work in mathematics class is much more that just assigning
students to groups and handing out assignments. For it to work well, the instructor has

to be prepared to act as facilitator, monitor, coach and role model.

CONCLUSION

For this study I have drawn heavily on the seminal work of Schoenfeld, both for
background and for methodology. While my data analysis methods were different than
his, my think aloud problem sessions were modelled or; his similar sessions with more
advanced and more able university students. Schoenfeld concentrated his studies on the
executive behaviour of his subjects and I found that my less advanced and less able
subjects exhibited many of the same behaviours as his more advanced students. My
students failed to evaluate strategies before implementing them, they spent a lot of time
on "wild goose chases” and they did not monitor their progress or ask where a particular
calculation might lead them. Schoenfeld has generally chosen to have his subjects work
in pairs in order to lessen their reactivity to the experimental situation. It is simply more
natural to talk to a partner than to speak aloud when working alone. He has
acknowledged that there is a risk that the behaviours seen will not necessarily be the same
as those that might have been seen if the students worked alone. [Schoenfeld 1985b] The
present study has specifically looked at this issue. I have found that there is little
difference in the strategies brought to bear on the problems by pairs or by individuals, and
the decision points in a session are more open to study with pairs. However, I have seen

that the character of the problem session when students work with a partner, is greatly
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determined by the social interactions of the pair. Useful strategies, for example may be
rejected for essentially social reasons. Schoenfeld [1985b] cited the reduction anxiety as
another reason to choose pairs. However, I found that this was not always the case for
pairs, and for many students anxiety actually increased. Some worried about how they
would appear to their partmers while other felt they had to hold back in order to appear
considerate of their partners self esteem. Thus, while speak aloud problem sessions with
pairs may be used to infer general student behaviour, it must be done with caution when
generalizing to the behaviour to individuals.

The aim of this study was to investigate the actfions of average college algebra
students working alone and in pairs. While all but one of the subjects stated that they
preferred to work alone they did cite the provision of a second point of view as being of
major benefit when working with a partner. The research literature would also lead one
to expect that working in pairs would require that the students would attempt to construct
an agreed upon representation of the problem and then decide upon the approach to be
taken to solve it. However, this is not what happened. There was little discussion of the
structure of the problem and almost no analysis of proposed strategies. Constructive
controversy was almost entirely absent. Nevertheless, the pairs were substantially more
successful in solving the problems. This increased success arose from four factors: an
increase in persistence, the more able partner leading th-'e pair, an Increased opportunity
for oral rehearsal, and the correction of minor errors. The particular character of any
problem sessior: depended on both tie academic and social interactions of the partners.

Five categories of pairs emerged from the study: socializers, tutor/pupil pairs, partners,
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individuals and hostile pairs. The students, whether working alone or in pairs, exhibited
a wide variety of mathematical skills and strategies 1n their attempts to solve the problems
given them. Despite this, they were not successful in solving many of the problems.
Several factors contributed to their lack of success. They were generally so fixated upon
finding an answer that little effort was put into analyzing the structure of the problem or
generating and comparing various strategies. A major factor in their lack of success was
that while the problems given them often required a structural approach, the students were
generally working at an operational level for this material.

In conclusion, [ see problem solving as central to the college algebra curriculum,
but there 1s still a great deal to be learned about what students actually do when solving

problems and what they leamn by solving problems.
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APPENDIX A
REQUEST FOR VOLUNTEERS

Research Project Description
Problem Solving in College Algebra Students

by
Lin Hammill

I am doing a study on problem solving amongst college algebra students. This
study is being conducted as part of my dissertation for the doctoral degree in mathematics,
through the Department of Mathematics and Statistics of Simon Fraser University.

I am currently looking for students who would like to take part in this study.
There will be a small remuneration for each volunteer. I need 12-16 students currently
enrolled in Math 112. The volunteers need not be especially good students. I am as
interested in C students as I am in A or B students. Could you please announce this to
your Math 112 classes. If any students are interested they can find me in office 3335 or
call 599-2556 (V.M. 9606). If you like, I could visit your classes to explain the project
to them 1n person. This would take no more than 5 minutes. Thanks for your help.
Below 1s a more detailed description of the study.

* * * * * * *

The study consists of two parts. One part consists in subjects working, over a
period of about two months, to attempt to solve a complex mathematical problem. The
record of this work is to be kept in a notebook to be given to the researcher at the end
of the time period. The second part consists of a series of task oriented interviews, each
of which will be videotaped. Interviews will be conducted first with a single subject and
then with small groups of subjects working together. Subjects will be asked to attempt
to solve a series of mathematical problems during the interviews. It is expected that each
subject will be asked to participate in at least three interviews, held at approximately two
week intervals.

If you agree to take part in this study you will be asked to take part in the entire
series of interviews and to submit the problem-solving record described above. You may,
however, decide to withdraw your participation at any time. Participation or non-
participation in this study is voluntary and will not affect your marks in any mathematics
course in which you are enrolled at Kwantlen College.

If you agree to participate in this study you will bs paid a stipend of $10.00 for

each interview in which you iake part and a stipend of $20.00 for completion of the
problem solving notebook.
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The data obtained in this study will be kept strnictly confidential. Videotapes and
written material will be kept only until analysis of them is complete They will then be
destroyed by erasure (for videotapes) or shredding (for documents). Pseudonyms will be
used in any report of the study.
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APPENDIX B
CONSENT LETTER FROM PARTICIPANTS

Simon Fraser University and those conducting this study subscribe to the ethical
conduct of research and to the protection at all times of the interests, comfort, and
safety of subjects. This form and the information it contains are given to you for
yvour protection and full understanding of the procedures involved. Your signature
on this form will signify that you have received the document described below
regarding this study, that you have received an adequate opportunity to consider
the information in the document, and that you voluntarily agree to participate in
this study.

Having been asked by Lin Hammill to participate in the research study
descnibed in the document entitled, "Research Project Description, Problem
Solving in College Algebra Students,” I understand the procedures to be used in
this study. '

I understand that I may withdraw my participation from this study at any
time.

I also understand that if I have any concerns or complaints I may register
them with Ms. Hammill or with Dr. K Heinrich, Chair, Department of
Mathematics and Statistics, Simon Fraser University.

I agree to participate in this study by giving permission for my written
work to be used as data for this study and by taking part in the task oriented
interviews as described in the above named document. I understand that I will be
videotaped during these interviews.

Name

Address

Signature

Witness

Date

Once signed, a copy of this consent form and a subject feedback form will be
provided to you
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APPENDIX C
PROBLEMS AND SOLUTIONS
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1. A passenger who had travelled half of his journey fell asleep. When he
awoke, he still had to travel half the distance that he had travelled while

sleeping. For what part of the entire journey had he been sleeping?

Solution:

Let x be the fraction of the total distance during which he slept. Then when
he awoke he still had a distance of 1/2 x left to travel. Thus the distance from
when he fell asleep to the end of the journey was 3/2 x. This is one half of the

total distance. Thus we have:

rofw
N

L
T
Wlirwlpnlek
X
o]

Thus he slept for one third of the journey.
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2. There is a rule regarding division by nine that you may know. It says that
a number is divisible by nine if the sum of its digits is divisible by nine. Can
you show why this rule works?

Sclution:

We will demonstrate for a three digit number. Let abc be any three digit
number. Then:

"abc" =100a+10b+c¢c
(99+1)a+ (9+1)b+c
(99a+9b) +a+b+c
9(lla+b) +(a+b+c)

The first term is divisible by 9. Thus the integer abc is divisible by 9 if and
only if the second term, a + b + ¢, is also divisible by 9.
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3. A boy went shopping with his father. He found a hat he wanted for $20.
He said to his father, "If you will lend me as much money as I have in my
wallet, I will buy the hat." His father agreed. They then did it again with a
$20 shirt and with a $20 belt. The boy was finally out of money. How much

had he started with?

Solution:

Let x be the amount of money (in dollars) that the boy started with. Then his .

father lent him x more dollars so that he had a total of 2x dollars.

spent $20 on the hat leaving him with:
2x-20

His father then lent him as much as he already had so that he then had:

2(2x-20)

He then bought the $20 shirt, leaving him with:
2(2x-20) -20

His father doubled that giving him:
2(2(2x-20) -20)

He spent $20 more and had no money left. Thus we have:

2(2(2x-20) -20) -20=0
Bx~140=0
8x=140
x=17.5

Thus the boy started out with $17.50.

Of this he
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4. Suppose a spider and a fly are
on opposite walls of a rectangular

room, as shown in the drawing.

The spider wants to get to the fly
and must do so by travelling on
What is

the surfaces of the room.

the shortest path the spider can

4
take?
Solution:
.
e —— - == Ty T y ———— et Satiuted e ‘.
i 1 * H 1 '
! [ 3 t t '
[ 3 ' ' 11 i '
-,
P T T -
(S n : ll t b
1 “ 51 ! ; 1 8 * ]
[ ¢ 3 ' g '
[ PRt SERE -_1__‘1__.L ______
" 7
. H J ;
2 1] ’ ,
1 H 7
) H J /
S H !
. H K
3 ¥ ¢
T H J
\ H ’
S H H
Ay
v H C f’
Al n ,’ ’
: B ;S
\
30 A i 7
. l ;
x ; ! u
) H s g =
1 ) s
; ]S
" ' 3 s
1 r
X ' 5
' Fe
. 1 i L
* 1 s 17
A} s « ¥
1 v f 4
L
L [l
A 4
L
P
RN/
Y
2 18y 2 12

The shortest distance
between two points on a
plane surface is a
straight line. Thus we
open the room out to
form a plane surface as
shown in the diagram
below. Note that there
are four ways in which
the back side of the
room may be attached to
the rest, as shown by
the dotted lines. Then
there are 4 possible
straight line routes
from the spider to the
fly, as indicated by the
dashed lines. We need
only calculate the
lengths of these lines.
Routes A and C are the
same length, which is

\/172+375=40.7 .
Route B is

1+30+11=42 .

Route D is 244+32%=40 . Thus route D is the shortest route.
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5. A square is divided into nine smaller squares and the centre square is
shaded, as in the drawing. Each of the eight unshaded squares is then
divided into nine smaller squares and the centre of each is shaded. If the
precess continues forever, what fraction of the original square will be shaded?

ZRRZENYZ
/, /} /
ZRI1IRY
A
// // /)

Soluton:

Let x be the fraction of the whole square which is shaded. The large shaded
square at the centre in 1/9 of the whole square. Each of the eight sqares of
the same size surrounding it is a 1/9 size copy of the whole square. Thus:

1 1
X==+8(=—=Xx
5 (9)
8 1
X-=X==
9 9
lx:l
] 9
x=1

Thus all of the square is shaded.
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6. With only the cold water valve open, it takes eight minutes to fill the tub
of an automatic washer. With both hot and cold water valves open, it takes
only 5 minutes to fill the tub. How long will it take to fill the tub with only the
hot water valve open?

Solution:

It is clear that with both valves open:

water from water from
+ = one tub full
hot water valve cold water valve
Then:
rate of rate of
x time + x time = one tub full
hot water cold water

The time to fill when both valves are open is 5 minutes. We need to find
expressions for the rates. But the rate of flow of water is the volumn divided
by the time. We will measure in tubs per minute.

Then the rate of the cold water is 1/8 tubs per minute.

Let x be the time (in minutes) it would take the hot water valve alone to fill the
"tub. The the rate for the hot water is 1/x tubs per minutes.

Thus we have:
_].:5+_]_'.5 =1
X 8

5+§x=x
8

S olw

5 X

0

X=—
3

It takes the hot water valve thirteen and one third minutes to fill the tub.
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7. A ski club chartered a bus for a ski trip at a cost of $520. In an attempt to
lower the bus fare per skier, the club invited nonmembers to go along. After
five nonmembers joined the trip, the fare per skier decreased by $5.20. How
many club members are going on the bus?

Solution:
We see that:
Cost per skier Cost per skier
= - $5.20
after before

Cost per skier is in each case equal to $520 divided by the number of skiers.
Let x be the number of club members. Then x + 5 is the number of skiers who
actually went on the trip. Thus:

520 _ 520 _¢ ,

X+5 X
520x=520(x+5) -5.2x(x+5)
0=5.2x%+26x-2600
0=x%+5x-500
0=(x-20) (x+25)
x=20, x=-25

X = =25 is rejected. There were 20 club members.
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8 . Find the area of the triangle bounded by the y-axis and the two lines given
by:
x - 3y = -2and

5x + 3y = 17.
Solution:
We begin by graphing the lines.
.y To find the area of the triangle
e we let the base be along the y-

axis. Thus to find the length of

the base we must find the y

, - intercepts and to find the height

e we must find the x coordinate of

T . the intersection point of the
-1 1 ? ERE s lines.

To find the y intercept of the line
with equation x - 3y = ~2 wa set x
=0 and find y = 2/3.

To find the y intercept of the line with equation 5x + 3y = 17 we set x = 0 and
find y = 17/3.

Thus the length of the base of the triangle is 17/3 - 2/3 = 15/3 = 5.

To find the x coordinate of the intersection point of the two lines we add the
two equations together to obtain 6x = 15 or x = 5/2.

25

Thus the area of the triangle is -.2]: x5 x—g- = < The area is 25/4 square

units.
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9. A circle of radius 5 is tangent at the point (3,2) to the line given by

y = ——g‘-xv‘-é

Find the centre of the circle. (Note: a line is tangent to a

circle if it touches the circle in only one point and if it forms a right angle with

a radius of the circle.)

Solution:
Y 4
6 \ (h.k)
//",“\\\\
(3,2 \’/

")

We now draw and label another
diagram.

Then we see that since the slope of
the radius is 3/4, a =3/4 b. Also
a® + b = 25, by Pythagoras'
theorem. Thus:

(2b)2+b2=25
2 _b2+p2=25
16

23 p2=35
16

b?2=16
b=4
So a = 3. Thus the x coordinate of
the centre is 3 + 4 = 7 and the y
coordinate of the centreis 2 + 3 =5.

The centre is at (7,5).

We begin by graphing the line
and sketching the circle.

We note that there are two circles
which could satisfy the conditions
of the problem. We will find the
centre of the upper one.

Since the circle is tangent to the
line the radius of the circle
joining its centre to the point of
intersection, (3,2), will be
perpendicular to the given line.
The slope of the given line is ~
4/3, so the slope of the line
formed by the radius is 3/4.

Using the same method, it can be shown that the centre of the other circle is

at
(-1,-1).
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10. Find the area of the shaded region.

Solution:

If we draw the radii from the
centres of the circles to the
points of tangency of the circles
a square is formed as in the
diagram. Then the area of the
shaded region is equal to the area
of the square minus the combined
areas of the sectors of the circles

" that are within the square. Since

each sector is a quarter circle we
have

Area = 2%-x(1?) =4-n square
units.
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11. Find the area of the shaded region.

Solution:

To find the area of the shaded region we need to subtract the area of the
smaller circle from the area of the larger circle. Complete the triangle by
drawing in the line as shown. Then the raddii of the two circles are r and R.

Then the required area is:

nTR2-nr?=n(R%*-r?)

Now we consider the relationship
between the two radii by applying
Pythagoras' theorem to the
triangle:

I2+12 = RZ
1=R23-r?

Thus the area is:

n(R2%-r%) =n(1) ==
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12. A 60cm by 20cm rectangular piece of paper is folded as shown. Find L.

Solution:

s ek AR e 8 et s At
/
/

[ " ——

Draw a horizontal line and label the diagram
as shown. Note that the horizontal part of
the top of the paper is of length 5 cm and
the added horizontal line is of length 20 cm. v P
Note also that each of the corners of the
paper is a right angle. Thus each of the
triangles formed is a right triangle.

Apply Pythagoras' theorem to the small
tHiangle in the upper left hand corner to obtain:

a2z+52=152
a%=152-52
az=200
a=4200

Now notice that a+b = ¢ so that b = c-a. Thus b=c-y/200 - Now apply
Pythagoras' theorem to the lower triangle to obtain:
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b2+20%2=¢c2
{c-J/200)3+400 =¢c3
c4-24/200c+200+400=c*
-2y200c+600=0
o= 300

v200

Finally, applying Pythagoras' theorem to the last triangle, we obtain:

L2=152+c?

i 2
L=Q152+-399}
/200

L=y675

Thus the folded side is approximately 25.98 cm long.
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13. A column of tanks is moving across the desert at a steady speed of 50 km
per hour. A messenger travels from the front of the column to the rear of the
column and then immediately returns to the front. If the messenger travels
at a constant speed of 75 km per hour and the round trip takes 18 minutes,
how long is the column?

Solution:
We see that:
time to the back time to the front
+ = 18/60 h.
of column of column

The speed of the messenger relative to the column of tanks is 75 + 50 = 125
km/h when moving to the back of the column and 75 - 50 = 25 km/h when
moving from the back to the front. The time for each part of the round trip
is the length of the column divided by the relative speed. Let d be the length
of the column. Then: ,

d +_£.=.:.1.'_8_
125 25 60
6d _ 18
125 60

18

=125-==

6d 5 )
d=6.25

Thus, the column is 6.25 km long.
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14. A cistern used to collect rainwater has 3 inlets that channel water into it
and two outlet drains. If the cistern is full, the smaller outlet can empty it in
24 hours by itself, while the larger outlet can empty it in 12 hours working by
itself. In a severe rainstorm with both outlets closed, either the right or the
left inlet, working alone, can fill the cistern in 8 hours, while it would take
the centre inlet only 6 hours to fill the cistern it the other two were closed.
A long hard rainstorm hits at noon when the cistern is empty, both outlets are
closed, and all the inlets are open. At 1:00 p.m. both outlets are opened. At
2:00 p.m. the right inlet becomes clogged with leaves and fails to work. At
what time will the cistern be full?

Solution:

We will consider the level of water in the cistern hour by hour. First, we will
find the flow rates of each inlet and outlet.

smaller outlet: -1/24 cistern/h
larger outlet: ~-1/12 cistern/h
right inlet: 1/8 cistern/h
left inlet: 1/8 cistern/h
centre inlet: 1/6 cistern/h.
Time Rate Accumulation

noon -1 pm1/8+1/8+1/6 =10/24 10/24
1 pm-2pm 10/24 - 3/24 = 7/24 17/24
2pm-? 7/24 -1/8 = 4/24 24/24

From 2 pm on the rate of filling is 4/24 cistern/h and there is 7/24 cistern left
to fill. If t is the time (in hours) after 2 pm until the cistern is full, then we

have

The cistern will be full at 3:45 pm.
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15. A commuter is picked up by her husband at the train station every
afterncon. Her husband leaves the house at the same time every day, always
drives at the same speed, and regularly arrives at the station just as his
wife's train pulls in. One day she takes a different train and arrives at the
station one hour earlier than usual. She starts immediately to walk home at a
constant speed. Her husband meets her along the way, picks her up and
drives back home. They arrive there 10 minutes earlier that usual. How long
did she spend walking? If she walks at 8 kms per hour, how fast does he
drive?

Solution:

Since the husband's trip is 10 minutes less than usual, it is 5 minutes less
each way and he picks her up 5 minutes earlier than usual. Since she started
walking 60 minutes before he was to pick her up, she must have walked for 55
minutes.

The distance she walked is the distance that he could have driven in 5
minutes. She walked for 55 minutes at 8 km/h, so she walked

23 xg8=22 km.

60 3
Thus he could drive 22/3 km in 5 minutes, so his speed was
22
_3 -88 km/h.
2
60
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16. How many ways are there to make change for a quarter, using dimes,

nickles and pennies?

Solution:

We will set up a table to list all the possible ways to make change for a quarter

using dimes, nickles, and pennies.

dimes nickles | pennies I
0 5 0
4 5 i
3 10
2 15
1 20
0 25
1 3 0
| 2 5
1 10
0 15
2 1 0
0

Thus we see that there are 12 possible ways to make change.
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17. On the first day of math class 20 people are present in the rcom. To
become acquainted with one another, each person shakes hands just once with
every one else. How many handshakes take place?

Solution:

The first person in the class shakes hands with everyone else, that is, with
19 people.

The second person in the class has already shaken hands with the first person
and must shake hands with everyone else, that is, with 18 people.

The third person in the class has already shaken hands with the first two and
must shake hands with everyone else, that is, with 17 people.

This continues in this manner until the second to last person shakes hands
with the last person.

Thus the number of handshakes is:

19+18+17+ ... +2+1=190.




18. 5!=1x2x3x4x5=120
10l =1 x2x3x4x5x6x7x8x9x10=23628800
n'=1x2x...x(n-1)xn

How many zeros are at the end of the number

100! =1 x2x3x...x98x99 x100°?

Solution:

The zeros at the end of the number are produced by factors which are equal
to multiples of ten.

100! has factors 10, 20, 30, 40 50, 60, 70, 80, and 90, each of which
contributes one 0 to 100!. That makes 9 zeros.

Each even number contributes at least one 2 as a factor. Whenever these 2's

are matched with 5's we have another 10. Thus we get zeros for 5, 15, 25, 35,
45, 55, 65, 75, 85, and 95. There are three additional 5's contributed by 25,

50 and 75. That makes 13 more zeros.
100 is a factor of 100!. 100 contributes 2 more zeros.

None of the other factors of 100! contributes a zero.

Thus there are 24 zeros at the end of 100!
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APPENDIX D
WORKBOOK PROBLEMS -
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1. How many squares are there on a rectangular grid? Consider different
sizes of grids.

How many equilateral triangles are there on an eightfold triangular grid?
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2. Take a square and draw a straight line across it. Draw several more
lines in any arrangement you like, so that all the lines cross the square,
dividing it into several regions. The task is tc colour the regions in such a
way that adjacent regions are never ccloured the same. (Regions having only
one point in common are not considered adjacent.}) How few colours are
needed to colour any such arrangement?

\

\

/
\

Now allow the lines tc be curves and loops and remove the restriction
that they go right across the square. Now how many colours will it take?
Can you change the square into the surface of a three dimensional

object?
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3. A number which can be represented as the number of dots in a
triangular array is called triangular.

A number which can be represented as the number of dots in a square array
is called square.

Similarly, the following represent pentagonal numbers.

Which numbers are triangular, which square, which pentagonal? Generally
which are P-polygonal?
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4. How many different cubes can be made such that each face has a single
line joining the midpoints of a pair of opposite edges? Same question for a
diagonal stripe. Try a tetrahedron?

1//7@
—

5. A secret number is assigned to each vertex of a triangle. On each side
of the triangle is written the sum of the secret numbers at its ends. Find a
simple rule for revealing the secret numbers. For example secret numbers 1,
10, 17 produce:

o\

Generalize to other polygons. Consider more
general arrangements of vertices and edges. For

27 example:
5
g
3 1 3
Y
PN
N,
5

Consider operations other than adding.

234



5. Amongst nine apparently identical tennis balls, one is lighter than the
others which all have the same weight. How gquickly can you guarantee to find
the light ball using only a simple balance?

What if there are more than nine balls?

What if you know only that one ball has a different weight?

What if there are two kinds of balls, heavy and light, but unknown
numbers of each?

What if the bails are all of different weights, and you wish to iine them

up in order of weight?
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APPENDIX E
TRANSCRIPTS OF TWO PROBLEM SESSIONS

... indicates a pause of up to four seconds.

PAUSE indicates a pause of more than four seconds.

Interview 10 Tape 2

Cecil alone, Problems3 10 2

Problem 3 Father and son

So here's your first question.

Okay. A boy went shopping with his father. He found a hat he wanted for $20.
He said to his father, "If you will lend me as much money as I have in my wallet,
I will buy the hat." His father agreed. They then did 1t again with a $20 shirt and
a $20 belt. The boy was finally out of money. How much had he started with?
Let's see here ... hum _._ It's going to be a tricky question ... Well, I think I could
probably figure it out in my head but I don't know if I know any formulas to
figure it out....

Okay, so the hat, the hat was 20 dollars ... and ... he borrowed as much money as
he had. He borrowed as much money off his dad as he had in his wallet, to buy
the hat. So, ... he spent the 20 dollars ... spent, and, ah, ... and was left with 40.
... And he did it again. And they they did it again with a 20 dollar shirt and a
twenty dollar belt. They did the same thing over and over.

PAUSE
Hum, I am stumped on this question ... Let's see, ... I am not too sure exactly what
I'm doing m this.

PAUSE
Okay. Total money spent, 60 dollars. And, hum.

PAUSE

Well, I'm not too sure about the formula for it but if he started out with ... 40
bucks and his father lent him 40, that would put him over the limit. So, he started
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out with fess than 40 dollars.

If he started, if he staried with 20, with 20 dollars he would have had 40 before
he bought the hat. 20 borrowed and we've got the 20 dollars again. ... And if he
borrowed the 20 again, so he, if he borrowed the 20 dollars again he would have
40 all over again. After the shirt was bought he'd be down to 20. And then if he
borrowed 20 dollars again he would be left with 20 dollars left over at the end of
it. But he 1s broke so 20 dollars is wrong.

PAUSE
So if we let x equal initial amount, initial amount of money ... Hum
PAUSE

I'm thinking of some sort of exponential idea here, but, uh, I could be wrong. ...
So ... well, what if 15 dollars for the initial amount. His dad lent him 15. After
buying the hat for 20 he has 10 dollars left over. If he borrowed 10 dollars off
his dad to buy the shirt, he would be broke. ... hum ...

I'm thinking it has to be between 15 and 20 dollars. We know that, for sure. ...

So let's try 18. Okay, 18, 18, 36. (unclear) buying the hat. Left with 16 dollars
left over. ... Borrows 16 off his dad. After buying, that's 32 ... So we know that
this 1s not going to work out. ... 'Cause 20 off, from the shirt. Let's see, the shirt,
that's 12. If he borrowed 12, that would be 24, which would leave him 4 dollars
left over after buying the belt. ...

Oh, boy, well, I'm doing.this the tnal method, the trial and error method, but
what's it (unclear). I'm sure there's got to be a formula in here somewhere but I
really don't know it. Um, okay, well, it's not 18. ...

It's probably 17.50 something, yup. ...Okay, we'll go with this here. 17 ... Okay,
... buying the hat for 20. ... Is 14 , and borrowing 14. Which leaves us with 28.
... That's the hat We took the shirt out of there. Leaves us with 8. ... Oh,
borrows 8. He's 4 dollars shy.

So, the answer is, the answer is 17.50. We aren't sure about that so we're just
going to check it. Go back over here again. 17.50, 50, that's 35. And after the
hat for 20, it's 15. And after the shirt of 20, ... That leaves us with 10 dollars
after he buys the shirt. So he borrows 10 dollars from his dad. Okay, good, we
know 1t 1s 17.50.

Answer. .. Good thing it wasn't complicated, otherwise I would have never
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0o o0

figured it out. (laugh) Now look at all my writing here, my goodness. Um, so
I have solved this one, but I didn't do it by formula. I just did it by a bunch of
scribbling and trial and error.

Well, we are just looking for the solution, not necessarily with a formula.

Okay, well, we found the formula. Or we didn't find the formula, we just found
the answer.

Okay.

Problem 10  Four circles
Okay, so, here's the next problem.

Okay. Find the area of the shaded region. Woo hoo. Okay.

PAUSE
So the area of each circle is, it's right here, pi, where's that hiding? (looking for
the button the calculator)
Here 1t is.
Oh, I'm sure I can find 1t here somewhere. ...
Um, the pi's the second, no, third, and there.
Oh, here, okay.
PAUSE
hum ... Okay ... So when you hit this, ah, pi. Does it, 1t multiply it automatically?
No, you'll have to put the multiply in.

Okay ... times ... clear ... times ... pi r squared. Equals. Decimal points, how far
you want me to go to?
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Oh, you can give the answer in
any form you like.

QOkay, well, I'll say the area of
each of these is 3.14, whatever
units that may be. Um, I
should know that anyways. ...
Here we go. 1 2 3 4, shaded
region, um ... hum ... This is
much trickier that the iast one,

definitely l 2 5 .
[

PAUSE

I'm thinking that, ah, this is a
trick question, um, ... If you
know the area of each circle
there must be a formula for the A
space in between. ... And it doesn't matter how big the area is, that space in
between 4 circles will always be the same percentage per area. ... So if the area
1s 3.14 ... That area has to be something like half of one circle ... or if you know
the area of the circle you should be able to figure out the circumference of a
circle. ...And the circumference of the shaded is exactly, or should be exactly one
quarter, one quarter of the circumference of the circle. ... C of circle

PAUSE

Hum ... This one has got me really good. ... Okay, the area of the 4 circles is ...
12.5.

PAUSE

The shaded region 1s still going to fit inside one of the circles completely ... and
touch, touch the edge on each 4 points. ...

I've never done a question like this one before.
PAUSE

(unclear) ... circumference is 2 pi r ... circumference i1s equal to 2 .. hum, ...
alnght ... 2 times ... (unclear) circumference is 6.3

PAUSE
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Now, I den't think I'm heading in the right direction here. Ooh.
PAUSE
Must be some sort of inverted formula or something. Um.

PAUSE

If the circumference is 6.3 ... the length of each of these, sides of the shaded area
would be 2 divided by 4 which is 1.6. 1.6, that's length of each side ... which, I'm
sure has nothing to do with it, but we could pursue it, 1.6.

PAUSE

Or, ... aha, okay, so, if the radius is 1, we could make a square out of this and it
would be exactly 4 units by 4, 4 units by 4, which is equal to 16. And the shaded
area, the area of the shaded area would be exactly the same as the area of each
of these points here. My diagram is not very good. So, area of this shaded area
is the same as point here, point here, point there, point there, point there. The
area of the square 1s 16 and the area of each circle is 3.14, which we rounded to
be 12.5 from the 16, which leaves 3.5. Divided that by half because there's two
areas which we are going for here. Which is 1.75.

1.75 and that's going to give us sort of a rough estimate because I was, wasn't too
accurate with my decimal points. I did round the up at the 100ths.

So area of shaded area is 1.75 give or take a couple hundredths of units. Hah.
Pretty proud of myself on that one.

Okay, next, huh.

Okay.

Problem 2 division by 9

There you go.

Thanks. There's a rule regarding division by nine that you may know. Rings
bells, but I can't remember it. It says that a number is divisible by nine if the sum
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of the digits is divisible. Okay, a number is divisible by nine if the sum of the
digits is divisible by 9. Can you show why this rule works? (laugh)

I remember this one. I have no idea. Oh, ... Okay, if the sum of it's digits is
divisible by 9. So if I have 27, that's divisible by 9 and it says ... hum ... some
examples.

Hum, 18 and of course 9. Let's go backwards here for a change. Ah, 27, ... is,
ah, 9 times 4 is what? ... Oh, my goodness, yup 36, knew it was there somewhere.
Um, so why does it work? ...

That's really strange. Hum, I'd probably have to ask a mathematician about this
one. Um, okay, ... um,

PAUSE

It wouldn't have anything to do with the thing we're multiplying. It has noting to
do with, like 3 times 6 which would be 18, 2 times 7 which is 14 there. 8 and
just 9. Hum. Why is it? ... 3 and 6 ... so that's 4 nines. 3 nines, nines. So, if I
have 5 nines ... 45, 54,63, 72,9,8,7,6,5,4,3,2. Ineed l. That's really wierd.
81, hum, and then back to 90. ... Got a definite pattern here. Um

PAUSE
But if you have 99, adds up to 18, hah.

Anyways, I guess you have to stay within, ah, under 10, under 10 times 9. ...
Unless, say, if you had 100 and , 144, is not divisible by 9, so I guess it doesn't
work with anything over the hundreds bracket, Say you have 9 and, well, let's
see. 144 divided by 9, 16. It does work. Okay, then, so. We have 1, 4, 3, 1.
1,4,3,1, 159, 159, hum 159 times 9. We got 14 there. ... Still looks strange,
hum. ... You had to pick this question for me didn't you? (laugh) ...

Not too sure where to start on this. Except, um, ... well, there has to be some sort
of formula to show this. ... But what is it? Actually, there doesn't have to be. But
knowing math there probably is. Um.

PAUSE

So 4 nines ... times 9. You can think of that as ... (unclear) there and 4 off there
... No ... 1 off there (unclear) 1 off there and 3 off there. Let's see what happens
if we take (unclear) 36 perhaps and 27 which is 3 times, 3 times 9. If we take 1
off here and 2 off. Okay, we take 1 off here, leaves this with a 2. So that means
we want to take 2 off this 9, which leaves us with a 7. Okay, try 63 here. 63 is
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... 6 times 9, so we don't take any off there, hum. It was a neat theory but it
didn't work.

63, 7 times 9 1s 72. 63 .. 6 times 9, 63. So we're not taking any off here. So
we're taking 6 off there. Which is why it works. Okay....

So, we've, we're working on a formula for why it works. We don't know why it
works. Okay. ..So any number, so, we have 5 times 9 ... That's 45 .. Why?
Why does it work that way? ... Subtract 1 up here (unclear) that's 4. That leaves
us with 4 there. So if we take the 4 off the 9 that leaves us with 5. ..

And why does it only work with nines? ... (unclear) me. I don't know that, so, uh,
... Okay ... So 45 ... We could say that it works because it does and some things
you just can't change. Um, 45, it's got to be something to do with this.

Oh, maybe this 1s just it in reverse. ... 5 times 9 is 45. So I take the 1 off here
... and ... any number times 9 ... (unclear) the difference i1s 4 ... between these two.
4, 5 ... So that's reversed and 4 minus (unclear) ..Nope, uh. Let's try the ... 18
which is 9 times 2. Okay, so we know that the first digit is 1. ... (unclear)
subtract 1 from there which leaves us 1. | nine here is 1, oh, boy.

Okay, why does that work? ... Probably got something to do with square roots or
something. 1 don't know. Um ...

Well, I really wanted to go 3 for 3 today if possible but it doesn't look like it's
going to happen here. Um, hum. Okay, I hope I get the answer, answer for this
one, once, if I don't figure it out myself. ... I hope I can understand the answer for
this, if I don't figure it out. ... |

Okay, 5 times 9 is, the difference between these two is 4. ... So we take the
difference of 4 (unclear) ... Is that coincidence? No, no ... (unclear) 45 ...

Well, we have discovered that any numbers that add up to 9 are divisible by 9.
We have also discovered that when we're multiplying the two .. Um, if
multiplication occurs ... we subtract ... (unclear) if you subtract ...the number being
multipiied by 9 from 9 you get the first digit of the number. ... And the number
you're multiplying by becomes the last digit of the number. ... and they add up to
9.

Hum, hu, hum. And why does it work? I don't know. .. Hum ... When we did 72
which is 7 times ... 9, subtract the 2. 2 (unclear) 2 there and 7 comes (unclear)

so that's wrong. Forget all that stuff I just said. I think 1t is wrong.

Um, I think I'm stuck on this one.
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Okay.

Yup. That's a hard one, for me.
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Interview 18 Tape 7
Karla and Candy Problems 16 15 10

Problem 16 Making change
Here's your question.
(gestures to K to read)

How many ways are there to make change for a quarter, using dimes, nickels and
pennies?

How many ways? Yeah, okay. So we've got our quarter.
25 cents.

Right, and of course the first one is what? We could actually do this by thinking
all the different ways.

Um

If you wanted to.

(drawing)

Okay, good, good, ah, 25 pennies. Which I wouldn't draw all of them, just
Oh, we've got pennies, here?

Yeah, yeah, tricky, yeah.

Yeah, okay, so 25 pennies.

(laugh)

How about 2 dimes and 5 pennies?

2 dimes (unclear) er, nickels and dimes and pennies (unclear)
Yeah, it's going to get confused, though. |

Opps, yeah.
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K It's just that once we get like 10 of them written down or whatever, or 105,
however many different ways.

Oh, how about a dime aﬁd three nickels?
C A dime and
K Or 5 nickels, too. 3 nickels, 5 nickels.
C Do we have to like use any mathematical formula?
K Like, we're supposed to, but it doesn't matter how we solve it.

(laughter)

We have 15 minutes. That should give us enough time. Or, do you know a
mathematical way to solve it?

247




R O R O R 0O

A0

o R 0O

No.

Okay, good, so (laugh) what else?
Well, maybe if got technical. a equals
Yeah

b

Do you really want to do that?

(laughter)

That's true, that's true too. If we could think of an equation.

We could try.
We're taking the loser's way out, eh?
Let's try it. You want to try?
Okay
Okay
(laughter)

Um. Look how many variables we have.

a=10¢
b=5¢
c=l¢
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Yeah, that those are
But, if you can go
So

2 a b (unclear)

That would be 2 of these and 2 of these which would be 30 cents.
wouldn't.

No.

It wouldbe 2aandb

T 2a (b )

QR 36

Yeah

Sorry about that.

Geeze, you confuse me.

Yeah, sorry. ... ‘Cause you didn't bracket it. Okay.
That's 1it. Put brackets in.

Good, good.

How's that?

Okay.

Um, a, b, just keeping my own brain, um, ah

Ah, no it
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How many ways are there? How many ways, sounds like a

Lots.

combinations and permutations question. How many ways are there?
I liked our old way.

Yeah.

'‘Cause I think, I think we were almost there.

I think that was easier.

Yeah, yeah, yeah. Okay, what about a dime and 15 pennies?

A dime (C begins to record their ideas)

Okay and how about a nickel and twenty pennies?

Okay, let's see. Oh, 5 nickels... 5 nickels ... 2 nickels and 15 pennies.

o 10 §
10 1sx)
35 x |

S a;x!

10 013 3xS

5x9

Just a sec.
Oh, sorry.

I'll just be (unclear)
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Yeah. 2 nickels and 15 pennies.

2 nickels

A nickel, a dime and 10 pennies. Or do we have
No

10 pennies

Not any 10 times 1.

Oh, okay, so in that case we can also have 3 nickels and 10 pennies. Any time
you can do a dime you can do a couple of nickels, anyhow.

Maybe, if we started making this smaller (unclear)
Yeah, yeah.

Just

I think we're almost out of possibilities. ... 5 nickels.

What else 1s there?

Do you think we have 2 nickels and 15 pennies? We have a dime and 15
pennies.

Oh, that's 3 nickels.

Dime and 15 pennies.

Yeah

25 pennies, um ... Oh, 2 dimes and 5 pennies. Do we have that? ...
2 dimes and 5 pennies. No.

I thought we'd know that.

We've got 2 dimes and a nickel.

Okay. 2 dimes and 5 pennies. ... A dime, 2 nickels and 5 pennies. Did we do
that?
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(laughter)
4 nickels and 5 pennies (laugh)
I'm glad I'm writing. (laugh)

Um, that's a lot of ways. But I'm sure we're missing some. With pennies it's like
endless.

Um hum
5 5 1sx)
5§ 10 10x)
5§ 68 s lo x )
o 10 sx1
10 5§ § Sx|
59 ST sx]

You know? Ah, this is hard to keep track of, isn't 1t?

Um hum.

Very hard.

It would help if we have pennies and nickels anq dimes (laugh).

Yeah, where are the props? (laugh) Hum.

(laugh) I'll just get some sissors. (C is lifting paper to look under) (laugh)
(laugh) How about, did we do, 3 nickels and 10 pennies? Yes, right there.
Yeah.

3 nickels and 10 pennies, Okay. Did we do, we did a dime, 2 nickels and 10
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pennies, eh?
Ah

A dime, 2 nickels and 10 pennies? I mean, no, it would be a dime, 2 nickels and,
ah, 5 pennies.

Right there.

Oh, yeah, okay.

Elimination kind of thing.

Yeah ... So, maybe if we think of it from the penny angle.

The penny angle?

Using dimes and nickels. If we're going to do, it has to be in, 1n groups of 5. It
always has to be, so we can dot of thinking of pennies. Like we either have 25

pennies or we have 20 pennies.

Yeah

And a nickel. 'Cause we can only have a, it'll always be groups of 5. Otherwise
it won't work.

Um (writing)

[o]

IS & :
§ & Jo Ih pennies

Or zero. We don't even have to have any pennies.
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Ah, so there we go. And we can branch out because within each of these there's
a few possibilities too.

(unclear)

So there's only one way we can have 25 pennies. We can have 25 pennies.
That's 1it. So that's it. There's just 1.

(unclear) 1 nickel, 5

I thought of so.aething. Maybe if we wrote how many ways, like there's only 1
way, on this side you can write 1. 'Cause we know there's only 1 way.

(C writes 0,5, .. 25 down the side of paper)

On, on this side, on this side we can write how to do them and on this side how
many ways.

If you want?

1 way.

Just 1.

Okay, that's 0 on this side.

Yup. And then, and, ah, to have 20 pennies there's only one way. It has to be
a nickel and 20 pennies.

We could have 5 more pennies. No, that would be that. We've done that.

Yeah, yeah, so there's a, now it gets interesting. With 15 pennies, we can have
2, 2 nickels and 15 pennies or a dime and 15 pennies. 2 ways.

(unclear)

Can you think of another one? No.

Not immediately.

No. And then this one we can have a couple more ways.

Yeah, 10and 15 ... §5, 5, 5.
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Well, that's to have, oh, right. 'Cause we need 15 cents. [ see what you mean.
Just got to be 25.

Yup

(unclear)

10, is that it. I thought there was more ways we could.

10 cents, §, 25, 25

So just 2 ways, I guess. But then we're going to have more for this one.
Yeah.

For this one we can have 2 dimes.

2 dimes

Or we can have 4, opps

2 dimes

nickels ... or 1 dime and 2 nickels.

That is a §, hah!

Oh, yeah, okay. So just 3 ways?

Um

We need to make 20 cents. How can we do that?

(C writes)...

It seems like doing this we're getting less ways than we did here, That's ... so,
just, so ...

I don't know.
So, 3 ways.
Is that 1t?
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Yeah ... 'Cause we're only working with nickels and dimes 3 ways. And then to
have absolutely no pennies we could have 5 nickels ...

Yeah
And we can have 2 dimes and a nickel or we could have 2 nickels. No.

3

3 nickels and a dime.

O -3
[5‘._
0 -3

A0 — |
S —

Um

PAUSE

That's
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1, 1, 2, 2, 3, 3, a pattern.
Um, yeah. So so, it's 12 ways.

Um hum. 3,4,5,6,7,8,9,10,11, 12

So we thought of 12 and we proved it. 12 ways.

Ta da!

Ta da! 12 ways.
(laughter)

Okay.

That was a neat question.

Yeah

'‘Cause we didn't have to use math.

(laughter)

Problem 10 four circles
Number 10

Okay

I'll read.

Go ahead, I'm listening.

Find the area of the shaded region.
Geometry, oh.

I'm afraid so.

Oh.

Try to figure it out. Can I draw?
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Oh, by all means.
Thank you.
Geeze, I really wanted to, but if you have your heart set on it (said jokingly).

(unclear)

No (unclear) ... Okay, very nice!

I'm trying.

And this 1s
the area we
want.

Radius of 1,
oop.

Okay, radius
s 1.

What's the
area of a
circle?

pi r squared.
... That's my
contribution.

(laughter)

That's the area of one?

Yeah. ... So basically all these areas will be, pi?
Um, 1. How are you supposed to get that?
Yeah, I know. Good question.

What's this (pointing to the shaded region) in relation to all of these (pointing to
the circles)? Is there, is there any relation, like that ...
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Maybe if we had an outside

Yeah that's what I was thinking, eh? If we found the square. Yeah, you thought
of that too, eh?

We could do a big circle. I don't know.
That would confuse us.

Yeah, it would.

But, it's a good thought. Um, well, wait a second. If we did a big circle all these
areas put together would equal this, wouldn't it (indicating areas outside the
circles)?

Well, if you minus the area of the big circle from the area of the four small circles
you would have all of that.

Yeah, yeah.

I don't know how you would. But maybe.

But, then wouldn't 4 of these equal this thing.

I don't know.

Because it's all, it's all sort of

I don't know how you'd prove it.

I can't (laugh)

(laugh)

It's just a thought.

Area of. We have 4 pi for all the areas. And then what's this thing?
Maybe if we played with some radius in here. (begins to draw the inner square)
Ah, what about this circle?

What circle?
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We could do a circle around the diamond. Or a square.

That worked. (looking at the drawing) 1,1, 1,1, 1,1, ..

Ah.

I think vou. Geeze, I'm confusing myself. Okay, a quarter of the area.
Hay, that's, that's good.

1/4, this would be

pi over 4

pi over 4
And this 1s, this is, ah, the area's
The rest of it.

Yeah. So it's this minus this.
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I think you want (unclear) the circle and the square. I know what we're talking

about, see.

Yeah.

It would be minus those 4. That would equal 1 circle.
How, how do you get that?

A quarter of 4 circles i1s 1.

Oh, oh, you mean these would equal 1, see.

Yeah.

Yeah, yeah.

So you minus the pi, huh! From the area of that one.

o

2 2 7

o Arca °6' Aquone -'-‘F]

= Q-7

Yeah.

That would be the square.

Oh, yeah, because 4 of these is pi anyways. That's right.

The area of a square, or the area of the square equals 4.

Yup, yeah, 4.
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It would be 4 minus pi.

Yeah, 4 minus p1. Hay that's great. I don't know if it's right but it looks really
good.

My brain kind of works that way.
Yeah, that's good. 4 minus pi.

pi over 4, p1 over 4, that's p1. (labelling the drawing) pi over 4 times 4 equals p
equals one circle.

I think that's right.

Okay, prove me wrong.

I think it's right.

I think we're right.

Yeah.

4 minus pi. (said to I)

Hay, that was good.

Yeah.

Except I wanted to draw a circle around that but you had the right 1dea.
Well I didn't see how.

No, I didn't.

I mean, you still can if you want.

No, that's okay.

Problem 15 the commuter
A commuter is picked up by her husband at the train station every afternoon. Her

husband leaves the house at the same time every day, always drives at the same
speed, and regularly arrives at the train station just as his wife's train pulls in.
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One dzay she takes a different train and arrives at the station one hour earlier than
usual. She starts immediately to walk home at a constant speed. Her husband
meets her along the way, picks her up and drives back home. They arrive 10
minutes earlier than usnal. How long did she spend walking? If she walks at 8
km per hour, how fast does he drive?

This is a double question. Okay, so why don't we do one of those, like, distance,
rate

Can I draw a train station?

Yeah

Cool. Wow. Are we supposed to use all of these or what? (gesturing to the
different coloured felt pens)

Use as many as you like.
(unclear) (laughter)

Okay

A commuter is picked up by her husband at the train station every afternoon.
Train station, from where? His house?

Her husband leaves the house at the same time. Okay. We, we'll put the house.
At the same time every day, always drives at the same speed, regularly arrives at
the station just as his wife's train pulls in. So we can have, like, the train coming
in here or something. (indicates a direction perpendicular to the line of car travel
drawn) So we know that it happens at the same time. Yeah, that's good. ... Gee,
I like that. That's good.

Okay, so then, so then, as this is happening, this happens. (using hand gestures
to indicate perpendicular motions meeting at the station) It all, this is the same,
like. Um, 1t takes the same time.

We need to know, the train?

Her husband leaves the house at the same time, always drives at the same speed,

regularly arnves at the station just as his wife's train pulls in. One day she takes
a different train and arrives at the station one hour earlier than usual. She starts
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immediately to walk home at a constant speed.

At a constant speed. So he'll drive over here from here at the same time the train
comes.

Yeah, but they'll

Does it say how long it'll take him? No.
No.

We need to know.

That'd be too easy. (laugh) One day she takes a different train and arrives at the
station an hour earlier than usual.

So can we, like, do, now how?

(moan)

Okay, so this is

Distance, ime, yeah.

Okay, he got in the car.

And we don't even know that these distances are the same, ‘cause we don't know
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how fast the train's going. It may not be the same distance.
Arrival time, dniving time

They arrive 10 minutes earlier than usual. 10 minutes earlier than usual. How
long did she spend walking?

See, the thing I don't get 1s, she takes a different train and arrives at the station
an hour earlier. But

How much?

is that different train going the same speed as the other train was? Does that
matter?

Does he have to go over there then? Um.

(unclear)

If we did, like, he drives there at that same time this train comes in.
Yup.

If we just do it something,

Yeah

to confuse ourselves more,

Yeah

we just put his arrival time, we take a hours, whatever, and the train arrival time
would take a, a, if you know what I mean

Yeah, yeah, I do, okay, yeah.

So, like, if the train arrival time, the other train, ... a minus 10
a minus 10?

1 don't know. 10 minutes off of the time ‘cause she got there early, right?
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No, no. What happens is, she was there an hour earlier than usual and then she
starts walking home. Her husband picks, intercepts her.

No, but, this is before, this is the other train.

Yeah, it's an hour.

The time when it's early.

An hour earlier, arnives at the station an hour earlier.

Okay, an hour.

So she takes an hour.

An hour, yeah, opps.

Except the arrival imes isn’t 2 minus an hour because she could have taken a train
that, that was just an hour earlier. The time could be the same. You know what
I mean? Instead of the 10 o’clock train she took a 9 o'clock tramn. It's the time,
the actual arrival time could change.

Yeah, that's whar, that's what they mean. Yeah.

Yeah. ... 'Cause it isn't It's not the, ah

Well, she arnves ah hour earher.
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Yeah, yeah.

‘Cause a was the time that train came. Now, if this train comes in earlier, it'd be
a minus 1 hour, right? Because

How does this relate to the distance?

I don't know that. I'm just trying to (laugh) trying to make sense ...

So then ... how long did she spend walking? So this time plus the time she
spends walking is going to equal a time that's 10 minutes earlier than the time
they usually get home. So whatever this time is plus whatever time she walks ...
Meets her along the way. Right where does he meet her? Maybe we should
draw, what, what happened, like, where, the wife's walking home and the husband

intercepts her, so we can put a label on the distances.

She's had an hour to walk. (unclear) (drawing)

Just on the way. We don't know where is that.

PAUSE

So, this is home. She starts walking and he meets her. She starts walking this
way. ...

8 km per hour

That's only after, though.

After what?

That's the second question. Here we don’t know that.

Oh, yeah.

Yeah. We don't know what speed she's walking at here.

How are you supposed to do this is there's no numbers? (laugh)

Yeah, um, okay, so then, so then the train's here. It's an hour early, Iike you say,
t,
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let's say times minus an hour, t minus an hour, right? Husband starts driving and
he meets her part way. So they continue the rest of the drive and get there 10
minutes earlier than usual. We don't have a clue where he picked her up. We
don't know how long she was walking.

What are we looking for?

We're looking for how long she was walking. Ah, we're looking for this distance.
Let's say that this is the point, that, opps, well, okay, it's convenient, half way, but
let's just say

Okay, sure

that this 1s where the husband's car and she meet. Right there. Okay, so what we
want to know is this time.

Um hum
How long was she walking before the husband picked her up? He was driving

this way, picks her up, drives back and they arrive home together 10 minutes
earlier.

™ o

Well, we don't want to say t though, again do we?
You didn’t make anything from it.

Yeah. Well this, the distance, no the distance. It's not the distance. It's not the
distance.
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Maybe we should (unclear)

Yeah, we suould put distance, put distance in thgre.

What if we made this into distance?

From the home to the train station.

Like (unclear)

Right, 'cause that's constant. It's always going to be the same.
Yeah. I guess we can't give it a number.

d, distance.

Yeah .. d. We should give how long she went, like, another variable, just to
really confuse us.

Right, right, right, and all we know is they were back 10 minutes earlier that
usual. But we also know she was an hour earlier and she walked for part of the

time.

Um hum. She's got to be walking for awhile.

Yeah ... He drives. It doesn't say at all how long it takes?

No.

The husband leaves the house the same time every day 2nd always drives and
regularly arrives at the station just as his wife's train pulls in. Just as his wife's

train pulls in. So, okay. This guy here, Mr Husband.

Um hum

Okay, with his, ah, with his briefcase (draws), that's the husband. And, ah, ...
(unclear)

She looks pretty naked (draws a dress on wife figure).

That's true. So, he doesn't know. He just left the same time as usual. He starts
his drive. She's already walking. ..

She would be somewhere on this line then, isn't she?

269



Yup.
So, while he's driving she's still walking.

Yeah, she's already been walking for at least an hour. Because didn't he just leave
at the same time. Does it say, unknown to her husband?

Oh, you sneaky one! Yeah, she would be walking for an hour.
One day she catches an earlier train.
(unclear) he isn't leaving. Oh, maybe, (unclear)
It doesn't say if he know or not. It doesn't say if he knows she left an hour
earlier. Because he'd, if he knew that, he'd have driven and maybe met her just
as she started. If he doesn't know he's going to leave at the same time.
How long does he usually drive?
Yeah.
(laughter)
'‘Cause he, he leaves
I say she had to have been walking at least an hour plus whatever.
(unclear)
It has to be.
She was in an hour early, right?
Yeah.
And he would pick her up at that end of the hour so he, whatever long he drives
takes, it would be minus that if she'd been walking. Do you understand? And a

little less. 'Cause he would have left before that hour was up.

Yeah, yeah, that's what we don't know. Ah, okay, so one hour minus whatever
time if takes him to pick her up, is where they meet, is what you're saying.

Yeah, I think, no, I don't know. An hour, ’ F 4
€2
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Well, why don't we put a time on it just to make it clear what our. Let's say, he
usually leaves at 6 p.m. to pick her up. Let's make this so we can, in our minds,

get it clear.
Right, ah.

Yeah. So she usually takes. She, let's say, she's usually on her train that gets her
there for 7 p.m. and let's just say that it takes an hour for him to drive and pick

her up, so
Okay

bang, 7 p.m. Everything's, she's happy, there he is, 7 p.m. This time, let's say he
still leaves at 6 ‘cause he doesn't know

Um hum

that this time though her train got there at 5 instead of 6.

5

Yeah, I mean 6 instead of 7.

Yeah

So they leave at, ah, so the train's getting there as he's leaving.

So she walks for an hour and he drives for an hour. If she's going 8 km per hour
she'll have gone 8 km and he would pick her up at whatever 8 is. If it takes an
hour,

Yeah, we're just, we're just kind of saying that.

(laugh)

Okay, so, so, if she got there at 6 and she started walking home and he left at 6
as usual, then it takes an hour to, Ah ah ah eeee (throws hands up)

(laughs)

There's at least 3 numbers that aren't written here, eh?

(laugh) Ah, you kill me.
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Ah, ah.
A nice spectacular question ... It's a trick question. Um ..
She took the taxi.
(laughter)
What if she walks really (unclear)
8 km, ah, that's pretty fast. Yeah, that's a pretty brisk clip.
Yeah.
But we don't know that for the first part.
Chopping along.
A redhead too, fiery red hair.(referring back to their drawing)
Pretty good, eh?
Okay.
Um. Do we get any hints from the comer (indicating I)

(laughter)

Um. Well, we got to, okéy, let's try and make an equation out of this mess and
try. I know that we should make an equation out of this.

Sure

Okay, so what are they asking? How long was she walking? Variable, how long,
it's time, we want to know the time it takes her to walk. That's what, that's what

we're

How long did she walk? She's walking at 8 km per hour. She was walking under
an hour.

But, we don't know the 8 km yet. You, you can't say that yet. We can't.

I keep it 1n there.
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Yeah, I know. It's just so nice to have it in there.

It's another number, you know.

Yeah. Okay, so we'll let t equal the time it takes her, time to walk.
t?

Okay? Whatever time it takes her to walk before the husband picks her up. (takes
a fresh sheet of paper) Keep this (the old sheet) here so we know what we've

done.

t equals time.

How much time do we have left?
Lots of time.

We do?

Um hum.

We do? No kidding? (laugh)
We have lots of time. Okay.
Time to walk. What?

The time it takes her to walk between the train station and where the husband
intercepts.

To walk (writing)
From train station to where husband picks up.
Station to pickup.

'‘Cause that's what we want to know, so time to walk from the station to pickup.
... Well, she had under an hour to do it.

'Cause we use that thing that she gets here at, she's supposed to get there at 7, but
she gets there at 6.

Yeah, yeah.
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And he leaves at 6.

You know that's confusing us, 'cause it's an hour. Why don't we say it only takes
him half an hour. Then we can get it better in our mind. 'Cause that hour's
confusing us.

What does he leave later?

Yeah, let's say he leaves at 6:30, ah, 5:50. If we say he leaves at 5:30 and 1t takes
him half an hour to pick her up and her train comes in at 6.

Yeah, that'll work.

Yeah.

And, then she'd be an hour early.

Right. So, let's say

She'll come at 5.

Let's say she'd come at 5 and, ah, he's only, see, he's only leaving at 5:30.

So, she's got half an hour to walk plus the time it would take him to drive the
distance that she hasn't walked. And that she's walking while he's driving. (l2ugh)

Yup.
Ah, let's try it in another language. It'll be easier, I think, ah ..

Unm, so it takes him half an hour to get there and he leaves at 5:30. Well if he's
leaving at 5:30 she's walked at least a half an hour already...

Yup.

At least, plus, like you say, plus wherevei, however more time it takes him to
drive to wherever she is.

Yeah.
Yeah.

I don't know.
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So that's what we want to know. That's what we want to know.

Well, we want to know that, too. We want to know this and we want to know
We want to know, yeah. Ah, so, why don't we call this distance d.

Distance? Where?

This will be distance d. (indicates distance from station to home) Yeah,

Yeah.

So this is distance d. Ah, therefore, wait a second, this 1s d minus t.

d minus t

Right? d minus t and that's t. Now what does all of that equal? What is all that
going to equal?

And how are we going to relate it to rates?

Yeah, that's the thing, yeah, yeah.

So, we want t and

So rate, rate and distance and time, how about?
d and d minus t.
Rate. Isn't rate distance over time? Is that what it is?

Um hum, rate, km per hour.
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Right, right, so that's what we have to do really. 'Cause we've got a lot of
distance and time and if we know that rate at which she was walking and the rate
at which he was driving.

How do we say what distance she moved? d minus d minus t?

Well, okay. We know that the husband drove d minus t. We know that, okay,
so that's the actual distance he drove. We know it's d minus t. The distance over

the time will give that rate at which he's driving How can we use that? ... Oh,
ah! ... oh, 1t vanished.

(laugh)

Well, we should use that one hour that we were given because she's been walking
for part of that one hour, for. Actually, hasn't she been walking for the, the whole
hour?

Are we doing the half hour or the hour?

She, as soon as the train got in and it was an hour early.

Train came at S.

Yeah, well.

Not really, we were just

That we just, that we just

Yeah

sort of arbitrarily assigned, yeah.

And he, you said he left at 5:30.

Yeah. But basically the time she was walking plus the distance minus time, right,
because whatever time she was walking plus this distance will give us like the
meeting point. That's what that would give us. What?

I'm trying to think but my brain is going blueee ueeee.

Yeah, I know. That's not night

So if we used half an hour he'd drive half an hour. She's an hour early. She's got
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half an hour to walk before he leaves. Half an hour. To garage.

Total distance would be distance minus time plus t. Which we know because
that's going to cancel out and give us just the d.

A A- V1067

Right? So whatever the entire distance is is going to be her walking time plus his
driving time, ...

huh
Her walking time 1s going to be his driving time plus an hour, right?

Since she got there an hour earlier. Wouldn't, would that make sense? ...

No, but it depends on when he leaves.
It depends when he leaves. So actually
her walking time might be an hour
minus whatever time i1t takes him to, to

pick her up. 0{ f / ﬂ, /
How long would it take her to walk
home?

That's the thing we don't know, yeah. ...
Like, does he leave before the hour is
up or nct? That's what we don't know.

But if we substitute this for her walking time we're saying that the d minus t is
an hour minus. It doesn’t make sense.

(laugh)
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1 Well, your time 1s up.
K Okay, good.

(laughter)
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