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Abstract 

The treewidth of a graph is a nonnegative integer that measures how closely the graph 

resembles a tree. For constant k, the class of graphs with treewidth at  most k is also known 

as the class of partial k-trees. Dynamic-programming techniques can be used to solve many 

different problems in linear time over partial k-trees. For a decision problem of this sort, 

the corresponding linear-time algorithm can be modeled by a tree automaton-which is 

finite-state machine that recognizes the subclass of partial k-trees that are yes-instances 

of the decision problem. It is known that such a tree automaton exists to  recognize any 

subclass that can be defined by a statement of the Counting Monadic Second-order (or 

CMS) logic: i.e. CMS-definability implies recognizability. It remains an open question 

whether, conversely, recognizability implies CMS-definability. This converse implication 

was previously known to hold only over partial 1-trees and partial 2-trees. In this thesis, we 

show it also holds over partial 3-trees and k-connected partial k-trees. Hence, a subclass of 

the partial 3-trees and k-connected partial k-trees can be recognized by a tree automaton 

if and only if it can be defined by a statement of CMS logic. 

For many commonly-studied graph decision problems, the class (say 11) of yes-instances 

is CMS-definable. Thus, for any constant k, the intersection of 11 with the class Gk of partial 

k-trees can be recognized by a tree automaton. We define the complement-problem of ll to  

be the class that contains the graph-theoretic complement of each graph in II. For a 

CMS-definable class II, it is often the case that is also CMS-definable; in other cases, TI 
is not CMS-definable, but n Gk is CMS-definable. Either way, En Gk is recognizable by a 

tree automaton: This not only provides a linear-time decision algorithm for over the class 

of partial k-trees, but it also provides a linear-time algorithm for II over the class of partial 

k-tree complements. We will show, however, that ib Gk is not always CMS-definable when 

11 is CMS-definable. To obtain this result, we develop a pumping lemma-which can be 



applied to an arbitrary subclass of the partial k-trees to  (possibly) show that it cannot be 

recognized by a tree automaton, and hence, is not CMS-definable. 



To the moon . . . 

Art thou pale for weariness 

Of climbing heaven and gazing on the earth, 

Wandering companionless 

Among the stars that have a different birth,- 

And ever changing, like a joyless eye 

That finds no object worth its constancy? 

Thou chosen sister of the Spirit, 

That gazes on thee till in thee it pities . . 

"To The Moon" 

by Percy Bysshe Shelley, 1820 
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Chapter 1 

Introduction 

The treewidth of a graph is a nonnegative integer that measures how closely the graph 

resembles a tree. For constant k, the class of graphs with treewidth at most k is also known 

as the class of partial k-trees. These classes encompass many important graph families 

including trees and forests (k = I ) ,  series-parallel and outerplanar graphs (k = 2), Halin 

graphs (k = 3) and k-terminal recursive graphs. A partial k-tree on n vertices has a t  most 
k2 k kn - edges; k is generally taken to  be a constant. Dynamic programming techniques 

can be used to  solve many different problems over these graphs with time complexity that 

is linear in the number of vertices (but is often super-exponential in k). In fact, most of the 

standard NP-complete problems [GJ79] can be solved in linear time over partial k-trees in 

this way. See Arnborg [Am851 for a survey of early results in this area. 

Takamizawa, Nishizeki and Saito [TNS82] described a general technique for constructing 

linear-time algorithms for combinatorial problems over series-parallel graphs (a subclass of 

the partial 2-trees). A number of more general paradigms were later developed [AP89, 

BLW87, Bod88, MP941, including several based on the Monadic Second-order (or MS) logic 

[ALSSl, BPT92, CouSOb]: These provide linear-time algorithms over partial k-trees (for 

any constant k). Often, it is very easy to  define a graph decision problem with a statement 

of MS logic; and any such statement can be automatically translated into an algorithm to 

solve the problem over the class of partial k-trees [ALSSl, BPT92, CouSOb]. 

The MS logic is a predicate calculus over a universe comprised of the vertices and edges 

of a graph. Logical statements are written without using constants to  represent elements of 

the universe; hence, a statement can be evaluated over an arbitrary graph. A logical variable 

may represent either an individual vertex or edge, or a set of them; predicates can be defined 
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with any constant number of these variables as arguments. This is not, strictly speaking, 

a "second-order" predicate calculus-because variables may not be used to  represent the 

predicates. However, a variable representing a set is effectively a predicate with exactly 

one argument-hence the name Monadic Second-order logic. Arnborg, Lagergren and Seese 

[ALSSl] used this "ordinary" MS logic to develop a paradigm for solving many different 

graph decision problems in linear time over partial k-trees. Courcelle [CouSOb] and Borie, 

Parker and Tovie [BPT92] strengthened the MS logic by including predicates to determine 

the cardinality (modulo any fixed constant) of a set variable; this strengthened form of MS 

logic is called Counting Monadic Second-order (or CMS) logic. A CMS statement can be 

evaluated in linear time over any partial k-tree. The "counting" predicates do not come at  

any additional expense, and they do provide additional expressive power [CouSOb]. So we 

will not concern ourselves further with the "ordinary" MS logic. 

Arnborg, Lagergren and Seese [ALSSl] developed a much stronger version of MS logic, 

called Extended MS logic. Any statement written in this formalism can be evaluated in 

polynomial time over partial k-trees. Within the more general setting of weighted graphs, a 

statement can be evaluated in pseudopolynomial time over partial k-trees. This formalism 

strengthens MS logic by allowing logical statements to  compare the (weighted) cardinalities 

of set variables; but this comes at the expense of sacrificing the linear time complexity for 

evaluating statements over partial k-trees. This thesis is concerned with using MS logic to  

obtain linear-time algorithms over partial k-trees, so we will not be using the Extended MS 

logical formalism. 

CMS logic is well-suited to capture decision problems for which an instance consists of 

just a single graph. Any graph is either a yes-instance or a no-instance of such a prob- 

lem; hence, any class of graphs is the class of yes-instances of some such problem. A CMS 

statement is always interpreted over a given graph; and it evaluates to  either true or false. 

Hence, a CMS statement (say Q) defines the decision problem for which a graph G is a 

yes-instance iff Q is true when evaluated over G. If a decision problem can be defined in 

this way, then it can be solved over partial k-trees by evaluating the CMS statement. This 

evaluation can be performed in linear time by a finite-state machine called a tree automaton 

[GS84, Thogo]; the specifications of such a machine are inherent in the corresponding CMS 

statement [ALSSl, BPT92, CouSOb]. Thus, a CMS statement can be translated automat- 

ically into a tree automaton that solves the corresponding decision problem in linear time 

over partial k-trees. 
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Any partial k-tree can be decomposed into a tree-like hierarchy of basic graphs-each 

with k + 1 or fewer vertices. Arnborg, Corneil and Proskurowski [ACP87] showed how to  

construct such a tree decomposition in polynomial time; later, Bodlaender [Bod931 gave a 

linear-time algorithm to  do this. A tree decomposition can be represented by a rooted tree 

(say T )  for which each node has one of a constant number of labels-where the label of a 

node is determined by the structure of the corresponding basic graph. The tree T then forms 

the input to  a tree automaton-which processes T in much the same way as a string would 

be processed by a conventional finite-state automaton: Each node of T becomes assigned 

to  one of a constant number of states, computed as a function of the node's label and the 

states of its children; T is accepted iff its root is thus assigned to a designated accepting 

state. Only constant time is needed to  compute the state of each node; so a tree automaton 

decides in linear time whether or not t o  accept a given tree decomposition. 

A subclass of the partial k-trees is said t o  be recognizedby a tree automaton that accepts 

exactly the tree decompositions of graphs in that subclass. Courcelle [CouSOb] has shown 

that if a CMS statement defines a subclass (say II) of the partial k-trees, then there exists a 

tree automaton that recognizes II. Similar results were obtained independently by Arnborg, 

Lagergren and Seese [ALSSl], and by Borie, Parker and Tovie [BPT92]. This fundamental 

result can be restated as "CMS-definability implies recognizability of partial k-trees". It 

remains an open question whether, conversely, recognizability implies CMS-definability of 

partial k-trees. This converse was previously known to hold only for partial 1-trees [CouSOb] 

and partial 2-trees [CouSl]. In this thesis, we prove the converse for partial 3-trees and 

k-connected partial k-trees (these results are also available in [Kal96]). We use general 

techniques which may lead to  a proof of the conjectured equivalence-CMS-definability 

equals recognizability-over all partial k-trees. 

While proving that recognizability implies CMS-definability of partial 1-trees, Courcelle 

[CouSOb] showed that this result would also hold for partial k-trees-if one could only encode 

(in CMS logic) the structure of a fixed tree decomposition of any partial k-tree. This is easy 

for k = 1 because a tree is (roughly speaking) its own tree decomposition. The class of 

partial 2-trees can be characterized by one forbidden minor: namely, the clique on four 

vertices. (A minor of a graph G is a graph that can be obtained from a subgraph of G by a 

series of edge contractions.) This characterization imposes a regular structure on partial 2- 

trees; and Courcelle [CouSl] used that structure to show that CMS logic can encode a fixed 

tree decomposition for any partial 2-tree. The work of Robertson and Seymour [RS] has 
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established that partial k-trees (for any k) can be characterized with some finite number of 

forbidden minors. Unfortunately this number explodes with increasing k; and the forbidden 

minors are known only for k 5 3 [APCSO]. So it is difficult to use such a characterization 

in general to encode fixed tree decompositions of partial k-trees. 

In Chapter 2 we define tree decompositions and tree automata more precisely, and 

explain how CMS predicates encoding a tree decomposition can be used to write a CMS 

statement that evaluates to true on a partial k-tree iff it belongs to  the class that some 

tree automaton recognizes. We then show, in Chapter 3, that CMS predicates can indeed 

encode the structure of a fixed tree decomposition of any partial 3-tree (or k-connected 

partial k-tree). To do this, we begin with an arbitrary tree decomposition of a %connected 

partial 3-tree G, and then modify it to satisfy several special properties. The modified tree 

decomposition can be used to represent G with a collection of partial 3-paths (such a graph 

is a restricted type of partial k-tree). We show that CMS logic can independently encode a 

fixed tree decomposition for each of these partial k-paths, and the corresponding collection 

of tree decompositions can then be assembled into a fixed tree decomposition of G. For an 

arbitrary partial 3-tree, each of its 2-connected blocks can be decomposed separately in this 

way; and the resulting collection of tree decompositions can then be assembled together. 

Thus we conclude that CMS-definability equals recognizability of partial 3-trees. The proof 

generalizes to also give this result for k-connected partial k-trees. 

Under the conjecture that CMS-definability equals recognizability of partial k-trees, 

CMS logic would elegantly characterize which classes of partial k-trees can be recognized 

by tree automata-just as regular expressions [HU79] characterize the regular sets (of finite 

strings) that conventional finite-state automata can recognize. This characterization would 

provide a useful description of the decision problems that are amenable to the dynamic pro- 

gramming technique modeled by tree automata. Many commonly-studied decisions prob- 

lem can be (almost automatically) expressed as CMS statements, thus providing linear-time 

decision algorithms over partial k-trees. Furthermore, such a decision problem is often as- 

sociated with a corresponding search problem and optimization problem [GJ79]. Generally, 

with only minor modifications to the tree automaton (that solves the decision problem), one 

can obtain a linear-time algorithm for the corresponding search or optimization problem. 

Refer to Arnborg, Lagergren and Seese [ALSSl], or Courcelle and Mosbah [CM93] for a 

further discussion of this. 

Instead of focusing on decision problems within the confines of a logical formalism, 
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Bern, Lawler and Wong [BLW87] studied problems that can be defined by a class of graph- 

subgraph pairs: For each pair (G, S )  in such a class, S is a subgraph of G that satisfies 

certain problem-specific conditions. For example, the HAMILTONIAN CIRCUIT problem can 

be defined, in this way, by the class consisting of every pair (G, S )  for which G is a graph, S is 

a subgraph of G, and S consists of a single cycle on all the vertices of G. Bern et al. describe 

a general technique to obtain linear-time algorithms for such problems over partial k-trees. 

Such an algorithm recognizes a particular class (say C) of graph-subgraph pairs in which G 

is a partial k-tree for each (G, S )  E C. Provided C satisfies a certain notion of regularity, 

the technique of Bern et al. can be applied to obtain a linear-time algorithm to decide 

whether an input pair (G, S) belongs to  C. Such an algorithm can be modeled by a tree 

automaton whose input is formed from a tree decomposition (of G) that has been labeled 

to indicate the structure of the subgraph S. For many CMS-definable decision problems 

over partial k-trees, the corresponding search problem can be captured by a regular class 

of graph-subgraph pairs; hence, the technique of Bern et al. can be used to recognize (or 

to construct) any solution S for a partial k-tree G. There are, however, CMS-definable 

decision problems for which the corresponding search problem cannot be captured in this 

way: For example, it may be impossible to represent an arbitrary solution with a single 

subgraph (or even with any constant number of them). Also, it may be the case that a 

class C' of graph-subgraph pairs is not regular, despite the existence of a regular subclass C 

of C' such that {G I (G, S )  E C) = {G I (G, S )  E C'}. In this case, the yes-instances of the 

corresponding decision problem have a regular structure; "irregularity" is present only in 

some of the solutions: Although not every graph-subgraph pair in C' can be recognized by 

the technique of Bern et al., the corresponding decision problem can be solved by recognizing 

the graph-subgraph pairs in C. 

As mentioned above, a tree decomposition of a partial k-tree G is essentially a rooted 

tree T for which each node corresponds to a "basic subgraph" (with at most k + 1 ver- 

tices). For each node b of T ,  the subtree (say Tb) rooted at b corresponds to a collection of 

basic subgraphs-taken together, these basic graphs give a particular subgraph of G: This 

subgraph (say Gb) has k or fewer terminals-which are the only vertices of Gb that may 

belong to the basic subgraph corresponding to a node (of T )  that is not in the subtree Tb. 

Hence, the tree T provides a way to divide a problem on G into subproblems on subgraphs 

of G. After solving the subproblems recursively, the solutions can be combined quite easily 

(provided the notion of regularity is satisfied) because the solutions of distinct subproblems 
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can have at  most k vertices ( i e .  their terminals) in common. Thus T provides the structure 

for a "divide-and-conquer" (or dynamic-programming) algorithm to  construct a solution 

of some problem on G. The MS logical formalism de-emphasizes the requirement that a 

solution on G need be obtained by combining solutions of subproblems on subgraphs of 

G. A tree automaton (obtained from an MS statement) assigns each node b of T to one 

of a constant number of states: The state of b reflects whether or not the corresponding 

subgraph G~ has a solution for any of the subproblems; so any irregular solutions can be 

safely ignored-provided there also exists one or more regular solutions. 

Although many commonly-studied decision problems can be defined quite easily in CMS 

logic, there are others that cannot be readily expressed in this way. Some such problems can 

still be defined over partial k-trees by exploiting certain properties of those graphs (we give 

several examples of this in Chapter 4). Other problems provably cannot be encoded in CMS 

logic: A powerful tool for proving these negative results is given by Courcelle [Cou9Ob]: If 

II is a CMS-definable class of graphs, then it is a decidable problem to  ascertain whether II 

contains a graph that can be generated using any specified "context-free" graph grammar. 

Hence, if an undecidable problem (such as POST'S CORRESPONDENCE PROBLEM) can be 

reduced to  the question of whether a class II contains a graph generated by some "context- 

free" graph grammar, then II is not CMS-definable. This approach was used by Wanke and 

Wiegers [WW89] to  show that BANDWIDTH (Problem GT40 in [GJ79]) is not CMS-definable: 

i.e. a CMS statement cannot define the class of graphs with bandwidth at  most c (for any 

c 2 3). 

In this thesis, we develop a pumping lemma (analogous to  the pumping lemma for regular 

sets [HU79]) to  show that certain classes of graphs cannot be recognized by a tree automaton 

(and hence, cannot be defined by a CMS statement). The idea of applying a pumping lemma 

to graph problems is not new: Using the notion of regularity (as mentioned above [BLW87]), 

Mahajan and Peters [MP94] developed a pumping lemma to show that a certain "locality" 

condition must be satisfied by the graph-subgraph pairs constituting any regular class: Their 

pumping lemma says that if a certain graph-subgraph pair belongs to  a given regular class, 

then certain other graph-subgraph pairs must also belong to  it. In contrast, our pumping 

lemma says that if a certain graph belongs to a given CMS-definable class, then certain 

other graphs must also belong to  it. 

Any class (say II) of graphs corresponds to  the decision problem for which a graph is a 

yes-instance iff it belongs t o  II. We use the same symbol (TI) t o  refer t o  either the graph 
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class or the decision problem. We then define the complement-problem of II to  be the class 

(denoted by n )  comprised of the (graph-theoretic) complement of each graph in II. It is 

often the case that each of II and TI is an interesting problem on its own. For example, if 

II is the C L I Q U E  problem (i.e. the class of graphs containing a clique on, say, c vertices), 

then n is the I N D E P E N D E N T  SET problem (i.e. the class of graphs containing an independent 

set of c vertices). For this example (and many others), both II and TI can be defined by 

CMS statements, thus providing a linear-time algorithm for each of these problems over 

partial k-trees. From another perspective, a CMS statement defining II (or TI) provides an 

algorithm to solve n (respectively II) over the class of partial k-tree complements-with 

time complexity that is linear in the number of vertices. A partial k-tree complement (say 

G) on n vertices has 0 ( n 2 )  edges, but it can be represented in O(n) space with a list of its 

"non-edges": i.e. instead of storing the structure of G, we store the structure of its graph- 

theoretic complement (which is a partial k-tree). Hence, if a tree automaton recognizes 

whether belongs to II, then this can be interpreted as the decision of whether G belongs 

to n. 
In Chapter 4 we consider the question of whether CMS-definability is preserved under 

graph-theoretic complementation: i.e. if a decision problem 11 is CMS-definable, then is its 

complement-problem TI CMS-definable? We are interested in defining n in this way in order 

to obtain a linear-time algorithm over the class (denoted by Gk) of partial k-trees. So for 

practical purposes, we need only define the intersection n n Gk. We will see, however, that 
- 
II n Gk is not always CMS-definable when II is CMS-definable. In the case that II is itself 

a subclass of Gk, then En Gk is trivially CMS-definable: Such a class would contain only 

a constant number of graphs-each being a partial k-tree as well as as the complement of 

some (other) partial k-tree. Hence, each graph in TI n Gk would have O(k) vertices; a CMS 

statement could then explicitly encode the structure of each such graph. We will give an 

example, in Chapter 4, of a problem II that is CMS-definable (over all graphs); but, using 

the pumping lemma developed in Chapter 2, we will show that EnGk is not CMS-definable. 

We will also examine several problems that are themselves CMS-definable for any graph, 

but whose complement-problems can only be defined over Gk by exploiting the structure of 

partial k-trees. We use two different approaches, in Chapter 4, to define the complement 

of a problem II over the class Gk: The first approach is to directly define the class TI n Gk 
with a CMS statement. The second approach is to define II n6/, with a statement of the 

Complement CMS logic (where is the class of partial k-tree complements). 
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The Complement CMS (or CCMS) logic is virtually identical to the CMS logic, except 

that when a CCMS statement is evaluated over a graph G, the logical universe is comprised 

of the vertices and "non-edges" of G (ie. the edges of the graph-theoretic complement 

of G). If a problem II is CCMS-definable over the class of partial k-tree complements, 

then a tree automaton can be used to solve ll in linear time over c, and (equivalently) to 

solve n in linear time over Gk. So CCMS logic captures decision problems with linear time 

complexity over c, in the same way that CMS logic captures decision problems with linear 

time complexity over Gk. In fact, a CCMS statement being evaluated over a graph G E 

is nothing but a disguised CMS statement being evaluated over E Gk. 
The rest of this thesis is organized as follows: In Chapter 2 we review notation and 

terminology; we develop some preliminary results concerning tree decompositions, CMS logic 

and tree automata; we show that the conjecture "recognizability implies CMS-definability" 

can be proved by encoding in CMS logic a fixed tree decomposition of any partial k-tree; 

and we also present the pumping lemma in this chapter. Chapter 3 contains a proof that 

CMS logic can encode a fixed tree decomposition of any partial 3-tree or k-connected partial 

k-tree; thus we draw the conclusion that CMS-definability equals recognizability over those 

classes of graphs. The results of Chapter 3 can also be found in [Kal96]. In Chapter 4 

we discuss the idea of defining complement-problems with CMS logic, and we present the 

Complement CMS logic. We consider several different problems that are CMS-definable 

over all graphs; we show that their complement-problems are, in some cases, CMS-definable 

over partial k-trees, and in other cases, not CMS-definable over partial k-trees. Most of the 

results of Chapter 4 are contained in [KGS95a, KGS95b, GKMS961. Finally, in Chapter 5 

we make concluding remarks and discuss open problems. 



Chapter 2 

Preliminaries 

In this chapter we review the background material needed to develop the results of this 

thesis. We also present a few preliminary lemmas, so that their proofs need not disturb 

the flow of later chapters. In Sections 2.1 and 2.2 we describe our notation and give a few 

elementary definitions; in Sections 2.3 to  2.5 we briefly review some graph-theoretic results 

which will be needed later on; refer to  Berge [Ber76] or Bollobas [Bo178] for a more complete 

treatment of graph theory. In Section 2.6 we discuss tree decompositionswhich provide 

a useful representation of the graphs called partial k-trees (for k E N). In Section 2.7 we 

describe the Counting Monadic Second-order logic, and explain (with examples) how graph 

decision problems can be defined by logical statements in this language. Such a statement 

can be automatically translated into a linear-time dynamic-programming algorithm to solve 

the problem over the class of partial k-trees; and in Section 2.8 we discuss tree automata 

which implement these algorithms by deciding whether or not to accept any given tree 

decomposition of the input graph. Finally, in Section 2.9 we present a "pumping lemma" 

that can be used to  show certain problems cannot be solved over partial k-trees by a tree 

automaton. 

2.1 Graph-theoretic Notation 

This thesis is concerned only with graphs that are finite and simple; we will assume implicitly 

that any graph satisfies these properties. Furthermore, unless specifically stated otherwise, 

we assume that any graph is undirected. We will use directed graphs only as a tool for 

developing certain results over undirected graphs. 
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A graph is a pair (V, E )  where V is a finite set of vertices, and E is a set of edges-each 

edge being a subset of V with cardinality two. The vertex set of a graph G may be denoted 

by V(G), and its edge set may be denoted by E(G). The endpoints of an edge e are the 

vertices belonging to the set e = {u,v): We say that e is incident to u (and to v). Two 

vertices of G are said to be adjacent if they are the endpoints of a common edge. Similarly, 

if H and H' are vertex-disjoint subgraphs of G, and some edge of G has one endpoint in 

V(H) and the other endpoint in V(H1), then we say that H and H' are adjacent. The 

degree of a vertex v E V(G) is the number (denoted by bG(v)) of edges in E(G) that have 

v as an endpoint. The complement graph of G (denoted by c )  is the graph with vertex set 

V(G) = V(G) such that two distinct vertices are adjacent in c iff they are not adjacent 

in G. 

Suppose G and G' are graphs. We write G' E G to indicate that they are isomorphic. 

We write G' L G to indicate that G' is a subgraph of G. If G' is a subgraph of G such that 

V(G) = V(G1), then G' is called a factor of G. The union of G and G' (denoted by G U GI) 

is the graph with vertex set V(G) U V(G1) and edge set E(G) U E(G1); it is not necessarily 

the case here that G and G' are disjoint graphs. 

The subgraph of G induced by V' V(G) is denoted by G[vtl: this is the graph with 

vertex set V' such that two vertices are adjacent in G[vt1 iff they are adjacent in G (and 

both belong to V'). If V' is a maximal subset of V(G) such that G[vtl is connected, then 

G[vt1 is called a component of G. 

We use the symbol "\" to represent deletion of vertices or edges from a graph: If G' is 

a subgraph of G, and V' is a subset of V(G), then G1\V' is the subgraph of G' induced by 

V(G') - V'; it is not necessarily the case here that V' is a subset of V(G1). For a singleton 

set {v), we may write simply G\v for G\{v). For a subgraph G' of G, we may write simply 

G\G1 for G\V(G1). If E' is a subset of E(G), then G\E1 is the factor of G with edge set 

E(G) - El. We will not write G\e in place of G\{e), thus avoiding any possible confusion 

with the subgraph induced by V(G) - e. 

If G' is an induced subgraph of G, and V' is a subset of V(G), then GI + V' is the 

subgraph of G induced by V(G1) U V'. 
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2.2 Trees and Paths 

A tree is an acyclic connected graph; and a path is a tree in which no vertex is incident to  

more than two edges. If a vertex of a path P is incident to  fewer that two edges, then it is 

an endpoint of P ;  otherwise, it is an internal vertex of P. If P is a subgraph of a graph G, 

such that P is a path with endpoints u and v (where u = v iff P has exactly one vertex), 

then we say that P is a path in G between u and v. 

Suppose P and P' are paths in a graph G: If V(P)  n V(Pt) = 0, then P and P' are 

called vertex-disjoint paths. If v E V(P)  n V(P1) implies that v is an endpoint of both P 

and PI, then they are called internally-vertex-disjoint paths. 

A rooted tree is a tree T with a specially-designated vertex, called the root: Each non- 

root vertex v of T then has a unique parent-which is the vertex adjacent to  v on the unique 

path in T between v and the root. The terms "child", "ancestor", "descendant" etc. are 

defined analogously. A leaf of a rooted tree is either a degree-1 vertex other than the root, 

or a degree-0 vertex (which is the root): This definition is for the convenience of having a 

unique leaf in any path that is rooted at one of its endpoints. For a vertex v of a rooted 

tree T ,  the subtree of T rooted at  v (denoted by T,) is the connected subgraph of T whose 

vertex set is comprised of v and all descendants of v.  We will use the term "subtree" only 

to mean this special type of subgraph of a rooted tree. 

Definition 2.2.1. Suppose T is a rooted tree. A trunkin T is a rooted path P T between 

some vertex v of T and some leaf of T,; v is then taken to  be the root of P. 

2.3 Cut-sets and Separators 

A cut-set of a graph G is a subset V' of V(G) such that G has fewer components than G\V1. 

The unique element of a singleton cut-set is called a cut-vertex. A cut-set (or cut-vertex) V' 

is said to  separate any pair of vertices that are in the same component of G, but in different 

components of G\V1. 

We will adopt the following definition for the connectivity of a graph. 

Definition 2.3.1. An t-connected graph (for t E z+) is a graph for which there are t 
internally-vertex-disjoint paths between each pair of non-adjacent vertices. 

It is more usual to  define an !-connected graph, alternatively, as a graph from which at least 

! vertices must be removed in order to  obtain either a disconnected graph, or the graph 
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with a single vertex [Bo178]. Lemma 2.3.2 (first given by Menger [Men27]) shows that these 

two characterizations are equivalent for graphs with more than ! vertices. 

Lemma 2.3.2. Let ! E z+, and suppose G is a graph on !+ 1 or more vertices. G contains 

1 internally-vertex-disjoint paths between each pair of vertices ifl there is no cut-set of G 

with cardinality less than !. 

By Definition 2.3.1, a graph on ! or fewer vertices is !-connected iff it is a clique; by 

the alternative definition, no such graph would be !-connected. Note that Definition 2.3.1 

implies that a clique has infinite connectivity. 

2.4 Partial &Trees 

A k-tree is either a clique on k vertices, or a graph that can be obtained (recursively) from 

a k-tree G by adding a new vertex, and making it adjacent to any k distinct vertices that 

induce a clique in G. A partial k-tree is a subgraph of a k-tree. For example, a graph is 

a partial 0-tree iff its edge set is empty; a graph is a partial 1-tree iff it is a forest (i.e. 

a collection of trees). Series-parallel graphs and outerplanar graphs are subclasses of the 

partial 2-trees; Halin graphs [Hal711 form a subclass of the partial 3-trees. 

There are several other equivalent ways to characterize the class of partial k-trees (see 

e.g. Arnborg [Arn85]). For example, partial k-trees are subgraphs of those chordal graphs for 

which no minimal cut-set has cardinality exceeding k. The class of partial k-trees can also 

be characterized with a finite obstruction set (as explained in Section 2.5). Furthermore, 

a graph is a partial k-tree iff it admits a width-k tree decomposition (to be defined in 

Section 2.6). 

2.5 Graph Minors 

A minor of a graph G is a graph that can be obtained from a subgraph of G by a sequence 

of zero or more edge contractions: 

Definition 2.5.1. Suppose u and v are adjacent vertices of a graph H .  Let H' be the graph 

obtained from H\{u, v) by adding a new vertex (say w) with an edge between w and each 

vertex x E V(H) - {u, v) for which {x, u) E E(H)  or {x, v) E E(H) .  We say that H' is 

obtained by contracting {u, v) into w. 
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A class C of graphs is said to be minor-closed if G E C implies that every minor of G is 

also in C. Robertson and Seymour [RS] have shown that any minor-closed class of graphs 

has a finite set of forbidden minors; and this set-called the obstruction set-can be used 

to characterize the class of graphs: Thus G belongs to a minor-closed class of graphs iff no 

minor of G belongs to the corresponding obstruction set. Although the obstruction set is 

always finite, it is often quite large, and its graphs may be very difficult to identify. The 

following lemma is not hard to prove (see e.g. [APCSO]): 

Lemma 2.5.2. For k E N, the class of partial k-trees is minor-closed. 

The obstruction sets for partial 0-trees, partial 1-trees and partial 2-trees each consist of a 

single graph-the clique on two, three or four vertices (respectively). The obstruction set 

for partial 3-trees consists of four graphs, the largest of which has ten vertices [APCSO]. For 

k 2 4, the obstruction set for partial k-trees is not known. 

In Section 2.7 we will describe how a graph class can be defined by a statement of the 

Monadic Second-order (or MS) logic. If such a graph class (say C) is minor-closed, then the 

MS statement need only encode the requirement that no minor of a graph in C belong to  the 

(finite) obstruction set. Thus, from the obstruction set of a minor-closed graph class, one 

can easily derive a MS statement defining it. Arnborg et al. [APSSO] have also established 

the converse of this implication: i.e. from an MS definition of a minor-closed graph class, 

one can determine the graphs in its obstruction set. 

2.6 Tree Decompositions 

Definition 2.6.1. A tree decomposition of a graph G is a pair (T, X) where T is a tree and 

X = {Xa)aEV(T) is a collection of subsets of V(G), indexed by the nodes of T, for which 

the following three properties are satisfied: 

TI: UaEv(~)Xa = V(G)- 

T2: Each edge of G has both endpoints in some set X, E X. 

T3: If a, b, c E V(T) such that b lies on the path between a and c, then X, n X, Xb. 

We refer to the elements of V(T) as nodes, so as not to confuse them with the vertices of G. 

The set Xb is called the bag indexed by b E V(T). If no bag in X contains more than k + 1 
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vertices, then (T, X )  is called a width-k tree decomposition. If T' is a subgraph of T ,  then 

XTi is the collection of bags indexed by nodes of T'; and XTt is the the union of those bags: 

We refer to the subgraph of G that is induced by XTt as the subgraph underlying TI. 

Fact 2.6.2. If (T, X) is a width-k tree decomposition of a graph G, then V(G) can be 

partitioned into sets Vl, V2, . . . , Vk+l such that I V ,  n XI 5 1 for each X E X, 1 5 i 5 k + 1. 

Proof. Since no bag of a width-k tree decomposition contains mo+m k + 1 vertices, 

this fact follows easily from property T3 (Def. 2.6.1). \. 0 

It is clear that any graph on n vertices admits a width-(n - 1) tree decomposition. The 

treewidth of a graph G is the minimum k such that G admits a width-k tree decomposition. 

It is not hard to show (see e.g. [vL90]) that G admits a width-k tree decomposition iff G 

is a subgraph of a k-tree (as defined in Section 2.4). Hence, the class of partial k-trees is 

the class of graphs with treewidth bounded by k. It will be useful to designate k or fewer 

vertices of such a graph as terminals: 

Definition 2.6.3. A terminal set of a partial k-tree G is a proper subset V' of V(G), with 

cardinality IV'I 5 k, such that G admits a width-k tree decomposition in which V' is a 

subset of some bag. 

We assume that any graph G has a specially-designated (possibly empty) terminal set, 

denoted by &,,(G). We can then construct a tree decomposition such that these terminals 

all belong to the bag indexed by a designated root: 

Definition 2.6.4. A rooted tree decomposition of a graph G is a triple (T, r, X) where T is 

a rooted tree; r E V(T) is the root; (T, X) is a tree decomposition of G; and &,,(G) X,. 

If (T, r ,  X) is a rooted tree decomposition, then we may refer to X, as the root bag; and we 

may refer to any bag indexed by a leaf of T as a leaf bag. For ease of expression, if a E V(T) 

is the parent (or child, ancestor, descendant etc.) of b E V(T), then we may simply say that 

Xa  is the parent (or child, ancestor, descendant etc.) of Xb.  . 
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Definition 2.6.5. Suppose (T, r ,  X)  is a rooted tree decomposition of a graph G; and let 

b E V(T). If b = r ,  then each vertex of Xb - Vt,,(G) is called a drop vertex of b; otherwise, 

each vertex of Xb - Xp is called a drop vertex of b, where p E V(T) is the parent of b. If 

v E Xb is not a drop vertex of b, then v is called a non-drop vertex of b. 

We use the notion of a "drop" vertex to assign each bag of a width-k tree decomposition 

to  one of a constant number (dependent only on k )  of equivalence classes: 

Definition 2.6.6. A basic k-graph is a graph on k t  1 or fewer vertices-each labeled with a 

distinct integer between 1 and k + 1, and each designated as either a "drop" or a "non-drop" 

vertex. Two basic graphs B and B' are equivalent if B 2 B' where an isomorphism respects 

the labels and designations of each vertex. The collection of these equivalence classes is 

called the k-derivation alphabet. 

In Section 2.8 we will explain how graph problems can be solved over partial k-trees 

using finite-state machines called tree automata. The input to such a machine is a rooted 

tree for which each node is labeled with a symbol from the k-derivation alphabet. 

Proposition 2.6.7. Let Ck be the k-derivation alphabet; and suppose (T, r ,  X)  is a width-k 

rooted tree decomposition of a gmph G. There exists a function a : V(T) -+ Ck, such that 

each vertex of G can be labeled with an integer between 1 and k + 1, such that 

for each b E V(T), the subgraph Gfxbl is equivalent to a(b), where a vertex of GExbl is  

designated as "drop" vertex iff it is  a drop vertex of b. 

W e  say that a is a derivation function for G on T .  

Proof. Let each vertex of G be labeled with an integer between 1 and k + 1. Without 

loss of generality (by Fact 2.6.2), assume the vertices of Xb are labeled distinctly, for each 

b E V(T). The proposition follows easily. 0 

In Chapter 3 we will modify a given rooted tree decomposition by contracting edges and 

splitting nodes. We have already defined the operation that contracts an edge of a graph 

(Def. 2.5.1): We apply this operation to  a tree decomposition as follows: 

Definition 2.6.8. Suppose (T, r ,  X)  is a rooted tree decomposition such that b E V(T) is 

the parent of c E V ( T ) .  
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Let T' be the tree obtained from T by contracting {b, c) into a new node (say b'); 

b' if r E {b,c) 
let r' = 

r otherwise; 

let X' = X - {Xb, Xc) LI {Xbl), where Xbl = Xb U X,. 

We say that (TI, r', XI) is obtained from (T, r ,  X)  by contracting {b, c}. 

We will apply this operation to  a width-k tree decomposition only if IXb U Xc( 5 k + 1, so 

the width of the resulting tree decomposition shall also be k. 

Definition 2.6.9. Suppose (T, r ,  X)  is a rooted tree decomposition; and let b E V(T). 

Let T' be the tree obtained from T\b by adding two new nodes (say b' and b") and 

the edge {b', b") and also one edge (either {a, b') or { a ,  b")) whenever {a, b} E E(T); 

b' if r = b 
let r' = 

r otherwise; 

let X' = X - {Xb) U {Xb', Xb"}, where Xbl, Xb1l g Xb. 

We say that (TI, r', XI) is obtained from (T, r, X)  by splitting b. 

To use this operation, we must specify which of b' or b" becomes the parent of each child of b, 

and which becomes the child of the parent of b; and we must choose the bags corresponding 

to b' and b" so as not t o  violate Definition 2.6.1. In particular, the non-drop vertices of b 

cannot become drop vertices of either b' or b". 

2.7 Counting Monadic Second-Order Logic 

A graph G = (V, E )  can be interpreted as a logical structure over the universe V U E. The 

structure of G is described by a predicate Edge(e, v) which holds whenever v E V is an 

endpoint of e E E. Many different properties of graphs can then be expressed in any of 

several variations of the Monadic Second-order (or MS) logic [ALSSl, BPT92, CouSOb]. We 

follow Courcelle's Counting MS (or CMS) logic [CouSOb] which uses the following symbols: 

individual variables (to represent vertices or edges); set variables (to represent sets of vertices 

or edges); the equality (=) and membership (E) symbols; existential (3) and universal (V) 
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quantifiers; the logical operators A ("and"), V ("or"), 7 ("not"), ("implies") e ("if and 

only if"); the Edge predicate; and unary predicates carde,, for nonnegative integer constants 

t, c (with t < c). If S is a set, then carde,,(S) is true iff S has cardinality f (mod c). The 

inclusion of the carde,, predicates is what distinguishes CMS logic from the "ordinary" 

MS logic. Courcelle [CouSOb] has shown that these predicates do, in fact, give the logic 

additional expressive power. 

By a CMS "formula", we mean a string of the symbols listed above, constructed such 

that the usual syntactic rules of logic are observed; quantification is allowed over both 

individual and set variables. Such a formula is always interpreted on a given graph-called 

the evaluation graph. If every variable is quantified in a CMS formula, then it is called a 

CMS statement-which is either true or false on the evaluation graph. We write G to 

indicate that a CMS statement @ is true on a graph G. This statement defines a certain class 

(say II) of graphs: that is, G + iff G E II. The question of whether or not a given graph 

belongs to  a certain class is general enough to capture many commonly-studied decision 

problems; and a large number of these problems can be encoded as CMS statements-we 

give two examples below, and further examples in Chapter 4. Any CMS statement can be 

evaluated in linear time on a partial k-tree by a tree automaton-as discussed in Section 2.8. 

Thus, there is a linear-time algorithm to solve any CMS-definable decision problem over the 

class of partial k-trees. 

If @ is a CMS formula, then some number (say f )  of its unquantified variables may 

be designated as arguments: This defines a CMS predicatewhich we denote by the sym- 

bol "a" followed by an ordered sequence of its arguments. If every unquantified variable 

has been designated as an argument, then encodes a certain relation (say L): that is, 

(vl, v2,. . . , ve) E L iff @(vl, v2,. . . , ve) is true on the evaluation graph. The relation L is a 

set containing sequences of t elements-each of which is either a vertex, edge, vertex set 

or edge set (of the evaluation graph). We now generalize this notion by allowing to  be 

defined with unquantified variables that are not arguments: These are called free variables. 

Definition 2.7.1. Suppose @ is a CMS predicate defined with t arguments (and some 

number of free variables). Let each free variable assume some fixed value; then let L be the 

relation such that (vl, v2,. . . , ve) E L iff @(vl, v2,. . . , ve) is true on the evaluation graph. 

We say that @ is an existentially-defined predicate encoding L; or (more simply) that 

existentially encodes L. 
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If a relation L is existentially encoded by a CMS predicate a, then the free variables 

(say X I ,  22,. . . and xd) of can be existentially quantified at  the outermost level of a CMS 

statement as follows: 

( h X 2 ,  ., xd)(al) (2.7.2) 

Here, @' is a CMS formula that does not contain any unquantified variable other than 

X I ,  5 2 , .  . . and xd; so the predicate O can be used to  writing the CMS statement (2.7.2). 

It is clear that two (or more) existentially-defined predicates may be used together, in 

statements of this form, by quantifying all of their free variables at the outermost level. In 

Chapter 3 we will use this approach to  encode the structure of a rooted tree decomposition of 

the evaluation graph G. To do this, a subset of V(G) will be used as witnesses representing 

the bags (or nodes) of the tree decomposition. 

Definition 2.7.3. Suppose B a g  and Pa ren t  are binary CMS predicates. These predicates 

are said to  describe a rooted tree decomposition (T, r, X) of a graph G if there exists a 

one-to-one function f : X -t V(G), such that 

Bag(v, X )  holds iff v = f (X) ,  and 

Parent@, c) holds iff f -'(p) and f -'(c) exist, and f -'(p) is the parent of f -'(c). 

For b E V(T), we then refer to the vertex f (Xb) as the witness of b (or the witness of Xb). 

In Chapter 3 we will develop existentially-defined CMS predicates (Bag and Paren t )  

that describe a rooted tree decomposition (T, r, X)  of the evaluation graph G-provided it is 

a partial 3-tree or k-connected partial k-tree. These predicates can then be used to  encode 

a rooted tree (isomorphic to  T )  on the subset of V(G) comprised of the witnesses: 

In Section 2.8 we will show how the Bag  and Pa ren t  predicates can be used to  write a 

CMS statement (2.7.2), where a' encodes whether or not the described tree decomposition 

is accepted by a particular tree automaton. The validity of this CMS statement is, of course, 

dependent upon "correct" values having been chosen for the free variables. At the end of 

this section, we will show how @' can be written t o  ensure that the "correct" values are 

indeed chosen. 
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We now give a few examples showing how CMS predicates can be defined, beginning with 

a predicate (denoted by the infix operator "N") to encode the (symmetric and irreflexive) 

edge relation: 

U N V = ~ U  ( = v) A (3e)(Edge(e, u) A Edge(e, v)) (2.7.5) 

We write "N+" for the predicate encoding the transitive closure of the edge relation. So if 

u and v are distinct vertices of a graph G, then u N+ v holds iff G contains a path between 

u and v. The following lemma (see also [CougOb, Lemma 3.71) shows that "N+" is a CMS 

predicate. 

Lemma 2.7.6. If a CMSpredicate can encode a binary relation on the vertex set of a graph, 

then a CMSpredicate can encode the transitive closure of that relation. 

Proof. Suppose @ is a CMS predicate encoding a binary relation on the vertex set V. The 

transitive closure of this relation is encoded by a CMS predicate a+ such that, for u, v E V, 

@+(u, v) holds iff v belongs to  every set (say V') that contains u and is closed under a :  

Our next two examples show how graph problems can be defined by CMS statements. 

Our first problem-whether a graph G = (V, E )  is connected-can be encoded using the 

transitive closure of the edge relation (2.7.5). Alternatively, it can be encoded with a 

statement requiring there be an edge between any pair of nonempty vertex subsets (say X 

and Y) that cover the vertex set V. 

Example 2.7.7. The following statements are equivalent: 

G = (V, E )  is a connected graph. 

(Vu, v E V)((u = v) V (u  N+ v)). 

In our next example, we use a CMS predicate for connectedness to  encode the existence of 

a Hamiltonian circuit: i.e. a connected factor of the input graph in which exactly two edges 

are incident to each vertex. We also use the symbol "c", which can be translated into CMS 

logic as follows: X Y = (Vx)(x E X + x E Y ) .  
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Example 2.7.8. A graph G = (V, E )  has a Hamiltonian circuit iff the following CMS 

statement is satisfied: 

(3E1)( (El E )  A "(V, El) is connected" A 

(Vv E V)(3e, e' E El)( l ( e  = el) A Edge(e, v) A Edge(el, v)A 

1(3eU E E1)(l(el' = e) A 1(el1 = el) A Edge(eU, v)) 

1 1 

When writing CMS formulae in this thesis, we will often use high-level expressions (such 

as "G is connected") rather than providing a detailed translation into the low-level logical 

symbols of CMS. We will use such high-level expressions if we have already shown how to  

encode them; and we will also use them (without formality) if they are trivial to  encode. 

Refer t o  Courcelle [CouSOa, CouSOb] or Borie et al. [BPT92] for a further discussion of 

encoding such expressions. 

We will need the following lemmas in Chapter 3: 

Lemma 2.7.9. A CMS predicate can existentially encode edge directions over any subset 

of the edges of an (undirected) partial k-tree. 

Proof. Suppose G is a partial k-tree; and let El E(G). We can encode edge direc- 

tions over El with a binary CMS predicate @ that is defined with k + 2 free set variables 

Vl, V2,. . ., Vk+1 and El'. 

@(u, v) = (3e E El)( Edge(e, u) A Edge(e, v) A ~ ( u  = v ) ~  

((e E EM) u v:=~ v:::+,(u E V ,  A v E 5)) ) 

Suppose Vl, V2,. . . , Vk+1 are independent sets that partition V(G). It follows from Fact 2.6.2 

and property T2 (Def. 2.6.1) that such a partition exists. Thus, for any edge e E El, its 

endpoints (say u and v) belong to distinct sets: Without loss of generality, assume u E VF: 
and v E Ij where i < j. Thus, if e belongs to  the edge subset El1, then @(u, v) is true and 

Q(v, u) is false. Otherwise (if e does not belong to  El'), @(u, v) is false and @(v, u) is true. 

Therefore, @ encodes a unique direction for each edge in El: The set El1 consists of the 

edges directed from a vertex in a lower-indexed set V; to a vertex in a higher-indexed set Vj 

(i < j) .  Therefore, any choice of edge directions over El can be existentially encoded, by 

choosing a vertex partition (Vl, Vz, . . . , Vk+1) and an appropriate subset E" of El. 0 
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L e m m a  2.7.10. A CMS predicate can existentially encode a constant-length string of bits 

for each vertex and each edge of a graph. 

Proof. We need only provide t free set variables XI, X2, .  . . , Xe to represent a string of t 
bits for each vertex or edge (say x): The ith bit (1 5 i 5 t )  is turned on iff x E X;. 

The preceding lemmas will be used in Chapter 3 to obtain existentially-defined CMS 

predicates that describe (Def. 2.7.3) a rooted tree decomposition. Using the following 

lemma, we can then ensure that the free variables of those predicates are always instan- 

tiated "correctly". 

L e m m a  2.7.11. Suppose Bag and Parent  are existentially-defined CMS predicates with 

free variables X I ,  2 2 , .  . . , xd (in some fixed order). There exists a CMS predicate 9 with d 

arguments and zero free variables such that 9(cl,  c2,. . . , cd) is true iff Bag  and Pa ren t  

describe a width-k rooted tree decomposition of the evaluation graph when each free variable 

x; assumes the value c; (1 < i < d). 

Proof. Let G = (V, E) be the evaluation graph. Within the scope of the arguments 

xl, 2 2 ,  . . . , xd, the predicate 9 can identify a subset V(T) of V(G) comprised of the witnesses, 

as shown in equation (2.7.4). Now, 9 can verify the following: 

Bag(v, X )  A Bag(v, XI) * X = XI; and 

r there is exactly one witness r E V(T) such that (Vp E V(T)) lParent(r ,p) ;  and 

r for v E V(T) - {r), there is a unique witness p E V(T) such that Parent(v,p).  

By Lemma 2.7.6, a CMS predicate (say Ancestor) can encode the transitive closure of 

Parent .  Then 9 can test whether the Ancestor relation is irreflexive, antisymmetric and 

transitive. If so, the Pa ren t  predicate encodes the edges of a tree, on V(T) V(G), that 

is rooted at r. Now, 9 can verify that a rooted tree decomposition (T, r, X) is described by 
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Bag and Parent ,  as follows: 

(Vv E V)(3x,X)(Bag(x,X) A (v E X))  

(Ve E E)(3X, x, v, u)(Bag(x, X )  A Edge(e, v) A Edge(e, u) A (u, v E X )  A ~ ( u  = v)) 

Bag(x, X )  A Bag(y, Y) A Bag@, Z)A 

(VX, Y, Z, x, y, z, v)( Ancestor(x, y) A Ancestor(y, z )  A 

(V E X )  A (v E Z) 

Bag(x, X )  A Bag(y, Y) A Bag(z, Z)A 

(VX, Y, 2, x, y, z, v)( Ancestor(x, y) A Ancestor(x, z ) ~  =? (v E X )  ) 
( V  E Y) A (V E Z) 1 

The first two logical statements encode properties T1 and T2 (Def. 2.6.1), respectively. 

Property T3 is encoded by the conjunction of the last two logical statements. Now, to  

verify that a width-k tree decomposition is described, need only check that Bag(v, X) =? 

"1x1 5 k + 1". 0 

2.8 Tree Automata 

We assume the reader is familiar with conventional finite-state automata [HU79, Pergo]. 

Such a machine executes finite strings over some alphabet. An input string can be inter- 

preted as a path, rooted at one of its endpoints, for which each node is labeled with a symbol 

from the alphabet. The automaton then assigns each node (in order from the leaf to  the 

root) to one of a constant number of states: The state is computed as a binary function of 

the node's label and the state of its child. The string (path) is accepted iff the root is thus 

assigned to a designated accepting state. A tree automaton is defined by generalizing this 

conventional finite-state automaton to execute trees, instead of just paths [GS84, Thogo]. 

Definition 2.8.1. A tree automaton over an alphabet C is a quadruple d = (S, So,SA, f )  

where S is a finite set of states; So E S is the initial state; SA 5 S is the set of accepting 

states; and f : S x S x C + S is the transition function. 

The input to d is a rooted binary tree T ,  with a labeling function a : V(T) + C. 

Each leaf b of T is then assigned to the state f (So, So, a(b)); and each other node b of T is 

assigned to the state f(S, S', a(b)), where S, S' E S are the states to which the children of 
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b are (recursively) assigned. The tree T is accepted by A iff its root is thus assigned to  an 

accepting state. 

For our purposes, a tree automaton is used to  decide whether a partial k-tree G belongs 

to a certain class of graphs. The input is the tree T of a width-k rooted tree decomposition 

of G. The alphabet C is the k-derivation alphabet (Def. 2.6.6); and the labeling function 

u is nothing other than a derivation function for G on T (as defined by Proposition 2.6.7). 

We assume that any such input tree T is binary: This is no loss of generality, because any 

width-k tree decomposition can be quite easily modified into one with a binary tree-a 

construction is given in Definition 2.8.4. If we say that a tree automaton accepts a rooted 

tree decomposition (T, r ,  X),  we mean that it accepts the tree T with its vertices labeled by 

an appropriate derivation function. 

Suppose (T , r ,  X)  is a width-k rooted tree decomposition of a graph G: If T forms 

the input to  a tree automaton A (with, say, s states), then the nodes of T are effectively 

partitioned into s sets. Thus, for each b E V(T), the subgraph (say Gb) underlying Tb 

belongs to one of s equivalence classes-each corresponding to  some state of A. If Tb would 

be accepted by A, then G~ belongs to an equivalence class corresponding to  an accepting 

state. So the tree automaton computes the equivalence class of Gb as a function of the 

equivalence classes of the subgraphs underlying T, and T,, (where c and c' are the two 

children of b). This provides a model for a "divide-and-conquer7' (or dynamic-programming) 

algorithm to solve a certain decision problem over partial k-trees. We are only interested 

in those tree automata that accept either all of the (binary) tree decompositions of a given 

partial k-tree, or none of them. Any such tree automaton, then, recognizes a subclass of the 

partial k-trees. 

Definition 2.8.2. Let II be a subclass of the partial k-trees; and suppose A is a tree 

automaton over the k-derivation alphabet Ck. We say that A recognizes TI if the following 

statements are equivalent for any rooted binary tree T: 

a : V(T) -t Ck is a derivation function for some graph in TI. 

A accepts the tree T labeled with a. 

Courcelle [CouSOb] has shown that any CMS statement @ can be automatically trans- 

lated into a tree automaton that recognizes the subclass of partial k-tree over which @ 
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evaluates to  true. Similar results were obtained independently by Arnborg et al. [ALSSl], 

and by Borie et al. [BPT92]. These results provide the following: 

Theorem 2.8.3. If @ is a CMS statement, then (for each k E N) there exists a tree au- 

tomaton that recognizes the intersection of {G I G k a) with the class of partial k-trees. 

This theorem can be restated more tersely as follows: CMS-definability implies recogniz- 

ability over partial k-trees. So a tree automaton exists to  solve any CMS-definable decision 

problem over the class of partial k-trees. Every problem that is known to be amenable t o  

such an algorithm is also known to be CMS-definable; so it has been conjectured [CouSl] 

that recognizability implies CMS-definability over partial k-trees. This conjectured converse 

of Theorem 2.8.3 is known to hold over partial 1-trees [CouSOb] and partial 2-trees [CouSl]; 

in Chapter 3, we extend the result to  partial 3-trees and k-connected partial k-trees. To 

obtain this result, we will develop CMS predicates that describe (Def. 2.7.3) a rooted tree 

decomposition of any such graph. We can then write a CMS formula to  encode whether or 

not a tree automaton accepts a binary representation of that tree decomposition. 

Definition 2.8.4. Suppose (T, r ,  X)  is a rooted tree decomposition; and let TI be obtained 

from T as follows: If b E V(T) has exactly one child, then add a new node (say c) and the 

edge { b ,  c). If b E V(T) has n 2 3 children (say cl, cg, . . . and c,), then 

add n - 2 new nodes (say pl,  pg, . . . and p,-g), and 

delete the edges between b and n - 1 of its children (say cl, cz, . . . and c,-l), and 

add the following 2n - 3 edges: {b, pl), {pi, P i + l ) ~ ~ f ,  {pi, ci)y:f and {P,-~, cn-I}. 

We say that (TI, r, XI) is a binary representation of (T, r ,  X),  where XI contains each bag 

Xb E X (for b E V(T)), as well as a bag X, (for each node p of T1\T) that is identical t o  

the bag indexed by the parent of p. 

Figure 2.1 illustrates how a node b of T with n 2 3 children is converted into a path (say 

Pb) in T' that consists of n - 1 nodes: We say that this path Pb represents the node b. All 

the new nodes of P b \ b  are given the same label by any derivation function u : V(T1) + Ck. 

This label is different from u(b) if b has one or more drop vertices (because the new nodes 

do not have any drop vertices). We now describe how a CMS formula can represent the 

state of each node in V(T) & V(T1), when TI is input to  a tree automaton. 
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Figure 2.1: A binary representation of a tree decomposition 

L e m m a  2.8.5. Suppose a subclass 11 of the partial k-trees is recognized by some tree au- 

tomaton over Ck. Suppose further that there exist CMS predicates describing a width-k 

rooted tree decomposition of any partial k-tree. It follows that a CMS statement can be 

written such that G b iff G E II. 

Proof. Suppose A is a tree automaton over Ck that recognizes a subclass 11 of the partial 

k-trees. Suppose further that Bag  and Pa ren t  are CMS predicates that describe a width- 

k rooted tree decomposition of the evaluation graph-provided it is a partial k-tree. Let 

(T, r, X )  be the tree decomposition described by these predicates for some partial k-tree G; 

and let (TI, T, XI) be a binary representation of (T, r ,  X). Hence, A accepts (TI, r, XI) iff 

G E II. We now describe how a CMS statement can be written such that G iff 

(TI, T, XI) is accepted. 

A set V(T) V(G) can be identified within the CMS statement a, as shown in equa- 

tion (2.7.4). Then can say that V(T) is partitioned into sets S1, S2,. . . , S,, each repre- 

senting one of the (say s)  states of A. To encode whether (TI, r, XI) is accepted, then, 

need only verify that this state assignment is consistent with the transition function of A; 
and then test whether the witness of the root is thus assigned to a designated accepting 

state. 

To complete the proof, we need only show how can verify that the state of b E V(T) is 

consistent with the states of C 2 V(T), where (c E C) u Parent(b, c). Let Pb be the path 

in TI that represents b. Without loss of generality, assume that TI was constructed such 
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that the nodes corresponding to  each set C n S, (1 5 i 5 s )  are grouped together: i.e. their 

parents induce a connected subgraph (say Pi)  of Pb (see Figure 2.1). Since every node of 

Pb \b  is given the same label by any derivation function, it follows that the nodes of each Pbf 

(1  5 i 5 s )  will be assigned to  states in a cyclic manner-whose period is no greater than 

the number s of states. Of course, for 2 5 i 5 s,  the states of v ( P ~ )  will exhibit a different 

cyclic pattern depending upon the state to which the root of pi-' is assigned. Thus, the 

state of b can be computed as a function of its label and (for 1 5 i 5 s )  the residue of 

IS; n CI, modulo some constant (which is a t  most s). This can be encoded using the card 

predicates of CMS logic-see Courcelle [CougOb, Proposition 5.41 for details. 0 

It is clear that the transition function of a tree automaton can be implemented by looking 

up values in a finite-size table. Therefore, only constant work is required to  compute the 

state of each node. Since tree decompositions can be generated in linear time [Bod93], it 

follows that a tree automaton solves any CMS-definable graph decision problem in linear 

time over partial k-trees. If the converse of Theorem 2.8.3 holds, then CMS logic would 

elegantly characterize the class of problems that can be solved in linear time over partial 

k-trees with tree automata. To prove this converse, our work is now very clearly cut out: 

By Lemmas 2.7.11 and 2.8.5, we need only obtain existentially-defined CMS predicates that 

describe a tree decomposition of the evaluation graph. 

2.9 The Pumping Lemma 

In this section we develop a pumping lemma to show that tree automata cannot recognize 

certain subclasses of the partial k-trees; it also follows (by Theorem 2.8.3) that such a 

subclass cannot be defined by a CMS statement. This pumping lemma is a relatively 

straightforward generalization of the pumping lemma for conventional finite-state automata 

[HU79]. Although the author is unaware of a pumping lemma having previously been 

published in this particular form, the idea of applying a pumping lemma to graph problems 

is not new: Mahajan and Peters [MP94] used a pumping lemma to  show that graph-subgraph 

pairs (G, S) must satisfy a certain "locality" condition in order to  be recognized by a tree 

automaton. In this context, the input to  a tree automaton is formed from a partial k-tree G 

and a putative solution S C G to some search problem. Under our interpretation, however, 

a tree automaton is used directly to  solve a decision problem-which may be the question 

of whether G has a subgraph S satisfying some condition, but a putative solution does not 
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form part of the input. So we modify the pumping lemma accordingly. 

We assume the reader is familiar with the pumping lemma for conventional finite-state 

automata [HU79]. The input to such machine can be interpreted as a rooted path P (as 

discussed at the beginning of Section 2.8) with a labeling function a : V(P) -t C, for some 

finite alphabet C. The conventional pumping lemma is a consequence of the observation 

that-provided P is sufficiently long-two of its nodes (say b and d) must become assigned 

to the same state. Say b is an ancestor of d; let c be the parent of d; and let r be the 

root of P. The input string is thus [. . .o(d), a(c), . . . , a(b), . . . , a(r)]. Since the state of c is 

computed as a function of a(c) and the state of d (which is the same as the state of b), it 

follows that r will still be assigned to the same state if a second copy of the path between 

c and b is inserted, giving 

We wish to apply this idea in the situation where a is a derivation function (Prop. 2.6.7) 

on P for some graph G. It is not always permissible to have a node labeled a(c) become 

the parent of a node labeled a(b). So we require that, in addition to having the same state, 

the nodes b and d have the same label a(b) = a(d). In this situation, there is a rooted tree 

decomposition (P, r,  X) of G; each non-drop vertex of d belongs to X,; and Gixbl E G[x,l. 

So we can "pump" G into a new graph by fusing the non-drop vertices of b (in the subgraph 

underlying Pb) with the copies of the non-drop vertices of d (in a copy of G\Xpd). 

Recall that a terminal set (Def. 2.6.3) of a partial k-tree G is a set of k or fewer ver- 

tices that belong to a common bag of some tree decomposition of G; and Vt,,(G) is a 

specially-designated terminal set-which must be a subset of the root bag of any rooted 

tree decomposition of G. 

Proposition 2.9.1. Suppose GI and G2 are disjoint partial k-trees. Suppose further that 

Vl and V2 are terminal sets of G1 and G2 (respectively) such that S G2ivz1; and let 

f : Vl + V2 be a corresponding isomorphism. A partial k-tree (say G) is obtained from 

Gl U G2 by adding an edge {v, f(v)) for each v E Vl, and then contracting each such edge. 

We say that G is obtained by fusing Vl with V2. 

Proof. The fact that G is a partial k-tree follows easily from Lemma 2.5.2. 
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Figure 2.2: Pumping a decomposition tree 

Definition 2.9.2. Suppose (T,T,X) is a width-k rooted tree decomposition of a graph 

G; and let a : V ( T )  -t Ck be a derivation function for G (where Ck is the k-derivation 

alphabet). Suppose further that b E V(T) is an ancestor of d E V(T) such that a(b) = a(d); 

and let t E N. 

If b = r ,  then let Go be a copy of the subgraph induced by &,,(G); otherwise, let 

Go be a copy of the subgraph underlying T\Tb. Let Vo V(Go) be comprised of the 

copies of the non-drop vertices of b. 

For 1 5 i 5 t ,  let G; be a copy of the subgraph underlying Tb\Td. Let V, C V(Gi) be 

comprised of the copies of the non-drop vertices of d. Let Vt,,(G;) be comprised of 

the copies of the non-drop vertices of b. 

Let Ge+l be a copy of the subgraph underlying Td. Let &e,(Ge+l) be comprised of 

the copies of non-drop vertices of d. 

We define G[T\Tb - ( T ~ \ T ~ ) ~  - Td] to  be the graph obtained from Go U G1 U . . . U Ge+i by 

fusing V; with Vte,(Gi+l), for 0 < i < t. 
Figure 2.2 illustrates the idea behind Definition 2.9.2: Here, a and c are the parents of 

b and d (respectively). The diagram shows a tree decomposition of G being "pumped" into 

a tree decomposition of G[T\Tb - ( T ~ \ T ~ ) ~  . Td]. Note that if the subgraph underlying Tb\Td 

is the null graph, then the "pumped" graph is identical t o  G. We are now ready to  present 

the pumping lemma, using the notion of a trunk (Def. 2.2.1) in T: 
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Pumping Lemma 2.9.3. If a subclass II of the partial k-trees can be recognized by a tree 

automaton, then there exists a constant m such that the following is true: If (T, r ,  X)  is a 

rooted tree decomposition of G E II, and P is a trunk in T of length m (or more), then P 

contains nodes b and d (where b is an ancestor of d) such that G[T\Tb - (Tb\Td)' .Td] belongs 

to n, for anye  E N. 

Proof. Suppose 11 is recognized by a tree automaton A over the k-derivation alphabet Ck. 

Suppose further that (T, r, X) is a width-k rooted tree decomposition of a graph G E IT. Let 

(TI, r, XI) be a binary representation of (T, r ,  X), as constructed by Definition 2.8.4; and let 

u be a derivation function for G on TI. If T contains a trunk (say P )  with more than slCkl 

nodes, then all these nodes also belong to  some trunk in TI; hence, there exist two nodes 

b,d E V(P)  (say b is an ancestor of d) such that a(b) = u(d), and both b and d become 

assigned to  the same state when the binary tree T' is input to  A. It follows easily from 

Definition 2.9.2 that, for any t E N, 

Furthermore, a binary tree decomposition of this graph can easily be constructed from 

(TI, r, X') by splicing in ! - 1 extra copies of TL\T:. After doing this, each node will still be 

assigned to the same state as before; so this tree decomposition will also be accepted by A. 

Therefore, the constant required by the lemma is m = sl Ck 1 + 1. 0 
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Definability Equals 

Recognizability 

In this chapter we prove that a graph decision problem can be defined in CMS logic if the 

partial 3-trees (and k-connected partial k-trees) that are yes-instances can be recognized by a 

finite-state tree automaton. The converse-definability implies recognizability-is given by 

Theorem 2.8.3 over all partial k-trees. It has been conjectured [Cou91] that recognizability 

implies definability over partial k-trees; but a proof was previously known only for k 5 2. 

In this chapter we prove the conjecture-and hence the equivalence of definability and 

recognizability-over partial 3-trees and k-connected partial k-trees. These results are also 

available in [Ka196]. 

To prove recognizability implies definability of partial 3-trees, we suppose there exists 

a tree automaton A that accepts a width-3 tree decomposition iff the underlying graph 

belongs to some subclass (say II) of the partial 3-trees. Our goal is to  derive a CMS 

statement defining II. We proceed by showing that any partial 3-tree admits a particular tree 

decomposition that can be described (Def. 2.7.3) by existentially-defined CMS predicates 

Bag and Parent. Then, we apply Lemmas 2.7.11 and 2.8.5 to  conclude that a CMS 

statement can encode whether or not such a tree decomposition is accepted by A 
This chapter is organized as follows: In Section 3.1 we show that any connected partial 

k-tree admits a simple tree decomposition; and we describe how trunk-graphs are derived 

from such a tree decomposition. In Section 3.2 we decompose a 2-connected partial 3-tree G 

into a tree-like hierarchy of these trunk-graphs; and we develop several important properties 
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of the hierarchy. In Section 3.3 we show how those properties enable CMS predicates to  

encode the vertex set and edge set of each trunk-graph; and in Section 3.4 we show how 

they enable CMS predicates to encode a particular structure-called a pyramid-in each 

trunk-graph. These results are combined in Section 3.5 to  show that CMS predicates can 

describe a fixed tree decomposition for any 2-connected partial 3-tree. In Section 3.6 we 

generalize that result to  all partial 3-trees, and draw the conclusion that recognizability 

implies definability of partial 3-trees. Finally, in Section 3.7 we explain how the proof is 

generalized to k-connected partial k-trees. 

3.1 Simple Tree Decompositions 

To develop a canonical tree decomposition, we begin with a simple tree decomposition, and 

then modify it. In this section we show that any connected partial k-tree admits a simple 

tree decomposition-which is a rooted tree decomposition (T, r ,  X )  in which each node of T 

satisfies three special properties. We then discuss the structure of a trunk-graph-which is 

the graph obtained by adding certain edges to  the subgraph underlying a trunk (Def. 2.2.1) 

in T. We show that a trunk-graph can be represented by a pyramid consisting of k vertex 

sequences. 

Definition 3.1.1. A simple tree decomposition is a rooted tree decomposition (T, r ,  X )  for 

which each node b of T satisfies the following properties: 

PI: There is exactly one drop vertex of b. 

P2: The subgraph underlying Tb is connected. 

P3: If V' is a subset of the non-drop vertices of b, then V' is not a cut-set of the subgraph 

underlying Tb . 

We will need the following consequence of the above properties: 

Lemma 3.1.2. Suppose (T, r, X )  is a simple tree decomposition. If a E V(T) is the parent 

of b E V(T), then Xb contains the drop vertex of a .  

Proof. Suppose not, and let v be the drop vertex of a. So X, n Xb is a cut-set that 

separates v from the drop vertex of b (contradicting property P3 for node a). 0 
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We now show that any connected partial k-tree G admits a simple tree decomposition, 

provided no cut-set of G is comprised exclusively of designated terminals (Def. 2.6.3). For 

example, Vt,,(G) = 0 is suitable for this purpose; and provided G is !-connected with 

IV(G)I 2 ! + 1, it is easy to find a suitable terminal set of cardinality !. 

Lemma 3.1.3. If G is a connected partial k-tree for which no subset of Vte,(G) is a cut-set, 

then G admits a width-k rooted tree decomposition (T, r ,  X )  such that r satisfies properties 

PI, P 2  and P3. 

Proof. Suppose G is a connected partial k-tree for which no subset of &,,(G) is a cut-set; 

and let (T, X) be a width-k tree decomposition of G. Without loss of generality, assume 

&,,(G) is a subset of some bag in X;  and choose the root r of T such that &,,(G) 2 X,. 

For any child c of r ,  we can assume that X, is not a subset of X,; for otherwise we could 

contract the edge {r, c) (see Definition 2.6.8). Now, if %,,(G) = X, then we can augment 

X, with some vertex of X, - X,. Furthermore, if X, - &,,(G) contains more than one 

vertex, then we can split r into two nodes (see Definition 2.6.9) such that the bag indexed 

by the new root is &,,(G) u {v), for some vertex v E V(G) - Vte,(G). So without 

loss of generality, assume IX, - &,,(G)I = 1. Therefore, (T, r, X) is a width-k rooted 

tree decomposition of G such that r satisfies P I ;  r also satisfies P 2  and P3 because G is 

connected and no subset of Vte,(G) is a cut-set. 0 

Lemma 3.1.4. If G is a connected partial k-tree for which no subset of Vte,(G) is a cut- 

set, then G admits a width-k simple tree decomposition. 

Proof. By Lemma 3.1.3, G admits a width-k rooted tree decomposition (T, T ,  X) such that 

r satisfies PI, P 2  and P3. Assume, inductively, that T' is a connected subgraph of T for 

which r E V(Tt) and each node of T' satisfies PI, P 2  and P3. Suppose c is a child of 

some node b E V(Tt); and let GC be the subgraph underlying T,. Without loss of generality, 

assume GC\Xb is connected; for otherwise we could create a copy of (T,, c, XTc) for each 

component (say H )  of GC\Xb, restricting the bags in this copy to contain only the vertices 

of H + X,. Assume also that each vertex in X, n Xb is adjacent to  one or more vertices of 

GC\Xb; for otherwise we could delete the violating vertices of Xb n X, from each bag in XTc. 

Thus Gc is connected, and no subset of the non-drop vertices of c is a cut-set of GC. We can 

now assume, without loss of generality (by Lemma 3.1.3), that c satisfies P I ,  P 2  and P3. 
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It follows inductively that there exists a tree decomposition of G in which all nodes satisfy 

these properties. 

A tree decomposition (P, X) for which P is a path is sometimes called a path decompo- 

sition. For this to be a simple path decomposition, the path P must be rooted at one of its 

endpoints. 

Definition 3.1.5. A simple path decomposition is a simple tree decomposition (P, r ,  X )  for 

which P is a path, and r is an endpoint of P. A simple partial k-path is any graph that 

admits a width-k simple path decomposition. 

By Lemma 3.1.4, any connected partial k-tree admits a simple tree decomposition. The 

analogous statement, however, does not hold for connected partial k-paths: i.e. not every 

connected partial k-path is a simple partial k-path. In Section 3.2, we will decompose 

a partial k-tree into a collection of simple partial k-paths by recursively choosing trunks 

(Def. 2.2.1) in the tree of a simple tree decomposition. 

Definition 3.1.6. Suppose (T, r ,  X)  is a rooted tree decomposition of a graph G; and let 

P be a trunk in T .  The trunk-graph of P is obtained from Glxp1 as follows: Add an 

edge between each pair of vertices contained in the intersection X ,  n X,, for each child 

c E V(T\P)  of each node p E V(P).  The terminal set of this trunk-graph consists of the 

non-drop vertices of the root of P. 

If P is a trunk rooted at r', then it is not necessarily the case that (P, r', Xp) is a simple 

path decomposition of Gixpl, because the nodes of P do not necessarily satisfy properties 

P2 and P3 relative to the subgraph G[Xpl. However, each node of P does satisfy these 

properties relative to the trunk-graph of P :  

Lemma 3.1.7. Suppose (T, r, X)  is a simple tree decomposition; and let r' E V(T). If P 

is a trunk in T that is rooted at r', then (P, r', Xp) is a simple path decomposition of the 

trunk-graph of P. 

Proof. Let G be the graph underlying T ;  and let R be the trunk-graph of a trunk P rooted 

at r'. Since (P, r', Xp) is a path decomposition of GLxpl, and R is obtained from GixPl by 

adding edges only between pairs of vertices contained in a common bag of Xp, it follows 

that (P, r', Xp) is a path decomposition of R. To complete the proof, we need only show 

that each node of P satisfies properties PI, P2 and P3 relative to the trunk-graph R. 
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Since each node of T satisfies P 1  relative to  the graph G, each node of P has exactly 

one drop vertex; hence, P 1  is satisfied by each node relative to  R. If b is the leaf of P ,  then 

the subgraph (of R)  underlying Pb is identical to  the subgraph (of G) underlying Tb; so P2 

and P 3  are also satisfied by the leaf of P. Assume inductively that all three properties are 

satisfied by b E V(P), and let a be the parent of b. By Lemma 3.1.2, Xb contains the drop 

vertex (say v) of a. Suppose u E X, - Xb such that {u, v) 6 E(G). By property P 3  (relative 

to G), there is a path between u and v with one or more internal vertices in XTa - X,. It 

follows that a has a child c E V(T\P)  for which u,v E X,. So by Definition 3.1.6, u and 

v are adjacent in R. Therefore, v is adjacent to  each vertex of X, - Xb. The remaining 

vertices of the subgraph underlying Pa are the vertices in Xpb; and Xpb induces (inductively) 

a connected subgraph that is not cut by any subset of X, n Xb. Therefore, the subgraph 

underlying Pa is connected (hence, P2); and v belongs t o  every subset of X, that is cut-set 

of the subgraph underlying Pa (hence, P3). It follows inductively that (P, r', X p )  is a simple 

path decomposition of R. 0 

Corollary 3.1.8. R is a simple partial k-path ifl R is the trunk-graph of some trunk in the 

tree of some width-k simple tree decomposition. 

Proof. Suppose R is a simple partial k-path. Let (P , r ,  X) be a width-k simple path 

decomposition of R. So P is a trunk in P ,  and R is the trunk-graph of P. The converse has 

been established by Lemma 3.1.7. 0 

We now define a structure called a pyramid, and show that any simple partial k-path (i.e. 

any trunk-graph) contains such a structure. A pyramid consists of k vertex sequences. We 

use the pair (A, +) to  denote such a sequence, where "x + y" means that y E A immediate 

follows x E A. We use "++" to  denote the transitive closure of "+"; and we use "+"' t o  

denote its reflexive, transitive closure. 

Definition 3.1.9. Suppose R is a simple partial k-path. A pyramidin R consists of a vertex 

vl E V(R) and k vertex sequences (A1, +*), (A2, +2), . . . , (Ak, +k) with the following 

properties: 

D l :  {A1,A2,. . . ,Ak} is a partition of V(R) - {vl). 

D2: For 1 5 i 5 k: v E A; is adjacent t o  q only if v is the first vertex of (A;, +;). 
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I Model ( Forbidden Edge Configurations 

Figure 3.1: A pyramid in a simple partial 3-path 

D3: For 1 < i < k: v belongs to A; n &,,(R) only if v is the last vertex of (A;, +;). 

D4: For 1 < i < k: two vertices u, v E A; are adjacent (i.e. {u, v) E E(R))  only if u +; v. 

D5: For 2 < t < k: if i l , i2 , .  . . , ie  are distinct indices between 1 and k, and each AiJ 

(1 j j < !) contains two distinct vertices (say uiJ ++ uiJ), then not all of the 

following are edges of R: {u;, , ui2), {ui2, ui3), . . . , { u ~ ~ - ~ ,  uie), {uie, u:, ). 

The vertex vl is called the apex of the pyramid; and each sequence ( A ; ,  +;) is called an axis 

of the pyramid. An edge e E E(R)  is an apical edge if one of its endpoints is the apex; e is 

an axial edge if both endpoints belong to  the same axis; otherwise e is a cross edge. 

Figure 3.1 illustrates the structure of a pyramid in a simple partial 3-path with three 

terminals. If there are fewer terminals, then not every axis ends with one. The apex may 

be adjacent only to the first vertex of each axis. Axial edges exist only between consecutive 

vertices. Property D5 says that pairs and triples of cross edges are forbidden to "criss-cross" 

as illustrated. To construct a pyramid in any simple partial k-path, we will visit the bags of 

a simple path decomposition in order from the leaf to  the root. Each bag contains at most 

k + 1 vertices: A vertex being seen for the last time is called a drop vertex (Def. 2.6.5); and 

a vertex being seen for the first time is called an add vertex: 

Definition 3.1.10. Suppose (P, r, X) is a simple path decomposition; and let b E V(P). If 

b is the leaf of P, then each vertex of Xb is called an add vertex of b; otherwise, each vertex 

of Xb - Xc is called an add vertex of b, where c E V ( P )  is the child of b. If v E Xb is not an 

add vertex of b, then v is called a non-add vertex of b. 

Lemma 3.1.11. There exists a pyramid in any simple partial k-path. 
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Proof. Suppose R is a simple partial k-path; and let (P, T ,  X) be a width-k simple path 

decomposition of R. Choose the apex of the pyramid to be the drop vertex of the leaf of 

P ;  and let each non-drop vertex of the leaf become the first element of a distinct axis. This 

establishes the basis of the following 

Inductive Hypothesis. For b E V ( P ) ,  there is a pyramid in the trunk-graph (say R ~ )  of 

Pb, where &,,(R~) is comprised of the non-drop vertices of b. 

Suppose a is the parent of b. Since b has a drop vertex, let h 5 k such that h = IX, n Xbl. 

Inductively (by property D3), each vertex in X, n Xb is the last element of a distinct axis, 

say (A;, -ti) for 1 5 i 5 h. Without loss of generality, assume the last element of (Ah, - f h )  

is the drop vertex of a (see Lemma 3.1.2). There are no more than k + 1 - h add vertices 

of a ;  so a pyramid in Ra can be formed by putting each of these add vertices at  the end of 

a distinct axis (A;, +;), for h 5 i 5 k. It is clear that this pyramid satisfies properties D l ,  

D2 and D3. Furthermore, Ra has at  most one axial edge that does not also belong to R ~ :  

that is, a (possible) edge between the last two vertices of Ah. So property D4 is inductively 

satisfied. 

Suppose the pyramid in Ra does not satisfy property D5. So there exist t 2 2 edges 

{u1,  u } ,  { u ,  u } ,  . . . , { u 1 ,  u } ,  {u;,  u }  w e e  u + u (1 5 j 5 ) Inductively, 

not all of these edges exist in R ~ ;  so assume without loss of generality that uil is an add 

vertex of a.  Now, ui, belongs to no bag other than X,, and uil is adjacent to u;, . Therefore, 

a;, belongs to X,. Since u;, +: u;,, it follows that u:, also belongs to X,. Hence, (A;, , +;,) 
is the unique axis containing more than one vertex of X, (ie. the index it equals the index 

h from the previous paragraph). Now, ui, is an add vertex of a, but it is adjacent a vertex 

u;,-, $! X, (a contradiction). 0 

Each of the axes in a pyramid gives part of an elimination order for the vertices of the 

corresponding partial k-path. By interleaving these orders in a fixed manner, we can obtain 

a rooted path decomposition in which each bag contains four vertices: The leaf bag contains 

the apex as well as the first vertex of each axis; and each other bag contains, inductively, 

the k maximal vertices of the preceding (child) bag, and one additional vertex that is an 

immediate successor along one of the axes. In Section 3.5, we will show how this can be 

encoded in CMS logic. 
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3.2 A Trunk Hierarchy 

In this section we decompose a 2-connected partial 3-tree G into a tree-like hierarchy of 

trunk-graphs (Def. 3.1.6). We begin with a width-3 simple tree decomposition of G, and 

recursively partition its nodes into trunks, so that each corresponding trunk-graph satisfies 

three special properties. Later in this chapter we will use these properties to  show that 

CMS predicates can describe (Def. 2.7.3) a tree decomposition of each trunk-graph. 

Definition 3.2.1. Suppose (T, r ,  X)  is a rooted tree decomposition of a graph G. A trunk 

hierarchy of G is a collection R of trunk-graphs obtained by partitioning V(T) into a col- 

lection of trunks-then taking the trunk-graph of each one. We say that this hierarchy is 

admitted by (T, r ,  X). 

Suppose R is the trunk hierarchy obtained by partitioning the nodes of T into a collection 

P of trunks. Let TI be the tree obtained by contracting (Def. 2.5.1) each trunk in P into 

a single node. The trunk-graphs in R have an obvious one-to-one correspondence with the 

nodes of TI. We will use the terms "root", "child", "parent" etc., with implied reference to  

TI, when speaking of these trunk-graphs. 

Remark. The pair (T1,R) describes a structure similar to a tree decomposition: A trunk- 

graph Rb corresponds t o  each node b of TI; each vertex of G belongs to  at least one of these 

trunk-graphs; and each edge of G has both endpoints in some trunk-graph. Furthermore, if 

Rp is the parent of R,, then &,,(R,) = V(R,) n V(R,); and Rp has an edge (possibly not 

an edge of G though) between each pair of vertices that are terminals of R,. 

Throughout this section G is a 2-connected partial 3-tree with either two or three ter- 

minals. Without loss of generality, assume that no subset of the terminal set Vt,,(G) is a 

cut-set of G; hence, by Lemma 3.1.4, G admits a width-3 simple tree decomposition. We 

will show how this tree decomposition can be perturbed so that it admits a hierarchy R of 

trunk-graphs, each satisfying Properties 3.2.2,3.2.4 and 3.2.6. Our discussion describes how 

to obtain a simple tree decomposition (T, r, X)  with a trunk P between r and a leaf of T;  

the corresponding trunk-graph then becomes the root of R .  Following this, a trunk-graph 

can be chosen recursively from the subgraph underlying T,, for each child c E V(T\P)  of 

each node p E V(P). The terminal set X p  n X, of each such subgraph has cardinality 

two or three; and furthermore, the subgraph is a Lconnected partial 3-tree (under the as- 

sumption that Xp n X, induces a clique). All the results of this section would still carry 
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through should we renounce the assumption that G is 2-connected, and assume instead that 

a 2-connected graph be obtained from G by adding edges between each pair of non-adjacent 

terminals. Therefore, we can apply the techniques of this section recursively to obtain all 

of the trunk-graphs comprising R. 

The first property gives an order on the vertex set of each trunk-graph. In Section 3.3 

we will define a CMS predicate to identify each such vertex set, inductively, in this order: 

Property 3.2.2. The vertices of each trunk-graph R E R can be ordered vl, vz, . . . , v l v ( ~ ) ~  

such that, for each i = 2,3,. . ., IV(R)I, there is a non-terminal vertex vj of R (where 

1 5 j < i - 1) for which at least one of the following conditions is satisfied: 

C1: vi and vj are adjacent (in G). 

C2: R has a child R' E R for which &,,(R1) = {v;, vj). 

C3: R has a child R' E R for which &,,(R1) = {v;, vj, vjl), where j' 5 i - 1; and there is 

a path in G\{vj, V ~ I )  between v; and some terminal in &,,(G). 

In the proof of Theorem 3.2.9, we show that Property 3.2.2 is enforced by having each 

trunk-graph correspond to a centered trunk of a simple tree decomposition (T, r ,  X). This is 

a trunk P, rooted at r ,  for which each node satisfies two other properties in addition to PI, 

P 2  and P 3  (Def. 3.1.1). When we refer to a vertex v as an add vertex of p E V(P), we mean 

that Definition 3.1.10 is to be interpreted relative to the path decomposition (P, r, Xp): that 

is, v does not belong to the bag X, indexed by the child c E V(P) of p, but v may belong 

to the bag X,I indexed by any child c' E V(T\P).  

Proposition 3.2.3. G admits a width-3 simple tree decomposition (T, r ,  X) such that T 

contains a centered trunk P: this is defined as a trunk rooted at r in which each node 

b E V(P)  satisfies the following properties: 

P4: If b has children c E V(P)  and c' E V(T\P),  then X,I contains at most one vertex of 

Xb - Xc. 

P5: If v is an add vertex of b, then either v E &,,(G), or v is adjacent to some vertex of 

G\XT,. 

Proof. Suppose (T, T ,  X) is a simple tree decomposition of G. For any node b of T ,  each 

bag indexed by a child of b contains the drop vertex of b (see Lemma 3.1.2); and by property 



CHAPTER 3. DEFINABILITY EQ UA LS RECOGNIZABILITY 

Trunk Pi !Trunk P' j C)- contracted 

(a and a') 
: . I  
I . ,  
8 . ;  

Figure 3.2: Enforcing P 5  
("*" indicates there may be multiple similar subtrees) 

P1 (Def. 3.1.1), each of these bags contains a t  most three vertices of Xb. It follows that a 

trunk P C T whose nodes all satisfy P 4  can be found with a greedy search from the root 

of T. We now show how to perturb the tree decomposition so that P 5  is also satisfied by 

each node of the perturbed trunk. 

Suppose a node b of P fails to satisfy P 5 ;  so b has an add vertex (say v) that is not 

a terminal; and if u E V ( G )  is adjacent to  v, then both u and v belong to  a common bag 

in XTb. By Lemma 3.1.2, v is a non-drop vertex of b; so let a E V(P) be the ancestor of 

b such that v is the drop vertex of a. Let a' E V(P) be the child of a (possibly a' = b ) .  

The situation is illustrated in the left-hand-side of Figure 3.2. It follows from property P3 

(Def. 3.1.1) that a has no add vertex. Therefore X, X,I, and we can contract the edge 

{a, a') (see Definition 2.6.8) without violating P 2  or P3. The contracted node now has two 

drop vertices (including v); so we delete v from each bag indexed by T\Tb. At this point, b 

is the only node with two drop vertices. 

Now, we split b (see Definition 2.6.9) into two nodes b', b" (with b' the parent of b"). 

Let Xbr t Xb - {v); let Xbu t Xb; and for each child c of b, let its parent become b" if 

v E X,, and b' otherwise. Thus b' becomes the parent of the unique child belonging to P. It 

is not difficult t o  verify that each node of T continues to  satisfy PI, P 2  and P3 after this 

construction. Furthermore, P 4  is satisfied by each node of the trunk (say PI) obtained from 

P by contracting {a, a') and replacing b with b'. Since X p  contains fewer vertices than Xp, 

this operation can be applied repeatedly until each node of the trunk also satisfies P5 .  
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After choosing a centered trunk P, we modify the simple tree decomposition so that 

the trunk-graph of the (modified) centered trunk satisfies two additional properties. These 

modifications will be carried out such that P4 and P5 continue to hold for each node of 

the centered trunk, and the terminals of G are retained in the root bag. The first operation 

(Proposition 3.2.5) results in one additional vertex in the trunk-graph. This is used to  

enforce the following property: 

Property 3.2.4. If y and z are vertices of a trunk-graph R E R, then there is a path 

H 5 R between y and z that satisfies the following conditions: 

HI: No internal vertex of H is a terminal of R. 

H2: If u, v E V(H) such that {u, v )  E E(H) -  E(G), then G contains two internally-vertex- 

disjoint paths between u and v for which each internal vertex is a non-terminal of some 

descendant of R. 

Suppose (P, r ,  Xp) is a simple path decomposition of R. By Definition 3.1.1, there is 

a path H 5 R between any pair y,z  of vertices of R such that no internal vertex of H 

is a terminal (i.e. condition H1 is satisfied). If condition H2 is not satisfied, then there 

is a node b E V(P) such that Xb contains the endpoints (say u and v )  of some edge in 

E ( H )  - E(G), and there are not two internally-vertex-disjoint paths between u and v in the 

subgraph induced by V(G) - Xp U {u, v ) .  By Lemma 2.3.2, then, there is a cut-vertex x that 

separates u from v in that subgraph. The following proposition can be used to  "promote" 

x t o  a centered trunk of a perturbed simple tree decomposition (see Figure 3.3). It turns 

out that we need only consider those cases where v is an add vertex of b and u is the drop 

vertex of b. 

Proposition 3.2.5. Suppose P is a centered trunk of a width-3 simple tree decomposition 

(T, r ,  X )  of G; and let b E V(P). Suppose further that v is an add vertex of b; and let u 

be the drop vertex of b. Let G' be the subgraph of G induced by V(G) - Xp U {u, v ) .  If x 

is a cut-vertex of G' that separates u from v ,  then there exists a centered trunk P' of some 

width-3 simple tree decomposition of G, such that Xpt = Xp U { x ) .  

Proof. By property P 3  (Def. 3.1.1), b has a child c E V(T\P)  such that u, v E X,. If there 

is a cut-vertex x of G' that separates u from v ,  then this child c is unique (since G' contains 
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node b - 

Figure 3.3: Promoting a vertex 

a distinct path between u and v for each such child). Hence, the cut-vertex x belongs to  

XTc - Xb. Let the (say 1) components of the subgraph induced by XTc - Xb - {x) be 

enumerated Gi ,  Gi ,  . . . , G:. For 1 5 i < l ,  let G; = G: + where is the largest subset 

of Xb U {x) in which each vertex is adjacent to  one or more vertices of G:. Now a tree 

decomposition of G; (1 5 i 5 t )  is obtained from (T,, XTc) as follows: First, we delete from 

each bag all vertices not in V(G;); and then we add x to  each bag indexed by a node on the 

path between c and some node whose bag originally contained x (this is possible because 

at least one vertex, not in V(G;), was deleted from each of those bags). It follows from 

Lemma 3.1.4 that there exists a width-3 simple tree decomposition (Ti, r;, Xi) of G;, where 

&,,(G;) = v. (Note that V,' does not contain both u and v). 

To construct (TI, r', XI), we split b into two nodes b', b", where b' becomes the parent of 

b" (see Def. 2.6.9). Let P' be the trunk (in T') so derived from P. Let Xbl = Xb U {x) - {u); 

and let Xbn = Xb U {x) - {v}. For each child c' E V(T\T,) of b, the bag X,I contains u but 

not v: so let c' become a child of b". To complete the construction of (TI, r', XI), we let each 

T; (1 5 i 5 t )  become a child of either b' or b", depending upon whether v or u is contained 

in XTi. This construction performs only localized modifications to  (T, r, X): For each node 

a E V(T\T,) - {b), the bag X, is unchanged, the subgraph underlying T, is unchanged, 

and a has the same drop vertex. So a continues to  satisfy properties P1 to  P3 (Def. 3.1.1); 

and if a was a node of P, it continues to  satisfy properties P4 and P5 (Prop. 3.2.3). By 

Lemma 3.1.4, the nodes of each T; (1 5 i 5 t )  satisfy P1 to  P3. It is not difficult to  verify 

that the new nodes b' and b" also satisfy P1 to P5. 0 
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Figure 3.4: Demoting vertices 

One other property is needed for a CMS formula to  encode the axes of a fixed pyramid 

in each trunk-graph R E R. For each axis ( A , + ) ,  the induced subgraph RIAl consists of 

a collection of paths (by condition D4 of Def. 3.1.9). The following property ensures that 

there are enough cross-edges between maximal path in different axes, so that a CMS formula 

can determine their order within each axis. 

Property 3.2.6. Each trunk-graph R E R admits a simple path decomposition (P, r ,  Xp) 

for which the following statement is satisfied whenever a E V(P)  is an ancestor of b E V(P): 

If there are two internally-vertex-disjoint paths H, H1 L R between the drop vertex of b and 

some vertex in  X,, then either 

0 some internal vertex (of H or HI) is a non-drop vertex of a ,  or 

some internal vertex is  a non-add vertex of b, or 

0 some internal vertex is  adjacent to some vertex in  V(R) - V(H)  - V(H1). 

We can enforce this property by "demoting" vertices from a centered trunk P of a simple 

tree decomposition (T, r ,  X), as described in the following proposition. This operation yields 

a new centered trunk PI for which X p  has fewer vertices than X p .  Hence, the operation 

can be applied repeatedly until Property 3.2.6 is satisfied. 

Proposition 3.2.7. Suppose P is a centered trunk of a width-3 simple tree decomposition 

(T ,  r ,  X ) .  Suppose further that Proposition 3.2.5 cannot be applied to P. If (P, r ,  Xp) does 

not satisfy the statement of Property 3.2.6, then there exists a centered trunk P' of some 
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width-3 simple tree decomposition of G, such that Proposition 3.2.5 cannot be applied to P', 

and IXPII < IXpl. 

Proof. Let R be the trunk-graph of P ;  and suppose (P, r,  Xp) does not satisfy the statement 

of Property 3.2.6. So P has nodes a and b (where a is an ancestor of b) such that there are 

internally-vertex-disjoint paths H and H' between the drop vertex (say u) of b and some 

vertex (say w) in X ,  such that: 

no internal vertex (of H or HI) is adjacent to any vertex in V(R) - V(H)  - V(H1), 

no internal vertex belongs to &,,(R), and 

no internal vertex belongs to a bag indexed by a descendant of b or an ancestor of a. 

Figure 3.4 shows the paths H and H' with vertex sequences (u, x . . . y, w) and (u, x' . . . y', w). 

Possibly one of these paths has no internal vertices (in which case w E Xb). 

Let G' be the subgraph consisting of those components of G\{u, w) containing one or 

more vertices of H U HI. Let the (say !) components of G' be enumerated Gi,  GL, . . . , Gi. 

Using an argument similar to  that used in the proof of Proposition 3.2.5, we obtain a width-3 

simple tree decomposition (Ti, r;, Xi) of GI + {u, W) such that {u, w) is the terminal set. 

We can construct the tree decomposition (TI, r', XI) from (T, r ,  X) as follows: We delete 

those subtrees T, T whose bags contain only vertices of G' + {u, w); each such subtree 

is rooted at a child c of a node on the path (in T) between a and b. We then delete any 

vertices of G' from each bag of that path. Since at least one vertex is deleted from each of 

these bags, we can then add u to each of them, and let each r; (1 5 i 5 !) become a child 

of a. To complete the construction, we need only contract (Def. 2.6.8) each edge between a 

node p E V(P)  and its parent whenever p no longer has a drop vertex. It is not difficult to 

verify that each resulting node satisfies properties P1 to P5. Furthermore, this operation 

does not create any new instances where Proposition 3.2.5 can be applied-since there are 

two internally-vertex-disjoint paths between u and w whose internal vertices now belong to 

bags indexed by descendants of the modified trunk PI. 0 

Lemma 3.2.8. G admits a width-3 simple tree decomposition for which the trunk-graph 

corresponding to some centered trunk satisfies Properties 3.2.4 and 3.2.6. 
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Proof. Let (T, r ,X)  be a simple tree decomposition of G such that P T is a centered 

trunk (Prop. 3.2.3). Without loss of generality, assume neither Proposition 3.2.5 nor 3.2.7 

can be applied to  P. It follows immediately that Property 3.2.6 is satisfied by the corre- 

sponding trunk-graph (say R). Let vl be the drop vertex of the leaf of P. 

Claim. For v E V(R), there is a path H C R between vl and v that satisfies conditions 

H1 and H2 (of Property 3.2.4). 

Since vl is not a terminal, it follows that there is a path satisfying H1 and H2 between any 

pair of vertices in R. To prove the lemma, then, we need only prove the above claim. 

Since each vertex of the leaf bag is adjacent to  vl, the claim is satisfied for all those 

vertices. Suppose the claim is false, and let b be the closest node to  the leaf such that a 

vertex v E Xb violates the claim. By Lemma 3.1.2, the drop vertex (say u) of b is not 

an add vertex of b; so u is a non-terminal vertex of R that does satisfy the claim. Now 

v would also satisfy the claim if there were an edge of G between u and v. By property 

P3 (Def. 3.1.1), Xb - {u, v} does not separate u from v in the subgraph underlying Tb. So 

b has a child c E V(T\P)  for which u,v E X,. If two such children exist, then v would 

satisfy the claim--there being a path between u and v whose internal vertices belong to 

XTc - Xb for each child c. Hence, b has a unique child c whose bag contains both u and 

v. Since Proposition 3.2.5 cannot be applied, there is no cut-vertex separating u from v 

in the subgraph induced by XTc - Xb U {u, v}. Therefore, by Lemma 2.3.2, there are two 

internally-vertex-disjoint paths between u and v for which each internal vertex belongs to 

XTc - Xb (contradicting the supposition that v violates the claim). 0 

Theorem 3.2.9. If G is a ~ - ~ ~ ~ n e c t e d  partial 3-tree, then some width-3 simple tree de- 

composition of G admits a trunk hierarchy R such that each trunk-graph R E R satisfies 

Properties 3.2.2, 3.2.4 and 3.2.6. 

Proof. Let (T, r ,  X )  be a width-3 simple tree decomposition of G. Without loss of general- 

ity (by Lemma 3.2.8), assume that T contains a centered trunk whose trunk-graph satisfies 

Properties 3.2.4 and 3.2.6. Assume recursively, for each child c of each node of this centered 

trunk, that (T,, c, XTc) also contains a centered trunk whose trunk-graph satisfies Proper- 

ties 3.2.4 and 3.2.6. Let R be the collection of these trunk-graphs. To complete the proof, 

we need only show that, the of each trunk-graph can be placed in a sequence to 

satisfy Property 3.2.2. So suppose R E R is the trunk-graph of P C T. We choose the first 
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vertex vl of the sequence to be the drop vertex of the leaf of P. By property P3 (Def. 3.1.1), 

vl is adjacent to each other vertex of the leaf bag; hence, these vertices satisfy condition C 1  

(of Property 3.2.2) if they follow vl in any permutation. This establishes the basis of the 

following 

Inductive Hypothesis. For c E V(P), there is a sequence on Xpc in which each vertex 

satisfies condition C1,  C 2  or C3. 

Suppose b E V(P) is the parent of c; and let vj be the drop vertex of b. So vj is not a 

terminal of R,  and (by Lemma 3.1.2) vj belongs to X,. Since G is 2-connected, there are at 

most two vertices in Xb - X,. We will show that the vertex sequence on Xpb can be formed 

by placing these add vertices of b (in either order if there are two of them) at the end of the 

inductive sequence on Xp,. 

If v; is an add vertex (of b) that is adjacent to the drop vertex vj, then v; satisfies C 1  

when placed at the end of the sequence on Xpc. Suppose, then, that v; is an add vertex 

that is not adjacent to vj. By property P3, Xb - {vj, v;) does not separate vj from v; in 

the subgraph underlying Pb. It follows that b has a child c' for which vj, v; E Xb n X,I; and 

Xb n X,I yields the terminal set of some child of R. If Xb n X,I contains only the vertices 

vi and vj, then condition C 2  is satisfied. Otherwise, by property PI, Xb n X,I contains 

at most one other vertex (say vjl). By property P 4 ,  vjl E X,; so j' 5 i - 1. By property 

P 5 ,  either v; E &,,(R), or v; is adjacent (in R) to some vertex (say v) of R\Xpb. Such a 

vertex v is an add vertex of some ancestor of b; thus P 5  can be applied recursively to show 

that there is a path in G\{vj, vjl) between v; and some terminal in Vt,,(G). Therefore, 

condition C3 is satisfied. 0 

3.3 Encoding a Trunk Hierarchy 

In this section we develop CMS predicates to existentially encode the vertex set and edge set 

of each trunk-graph in a trunk hierarchy of a Zconnected partial 3-tree G. In Section 3.4, 

we will show that the structure of a pyramid in each trunk-graph can also be encoded; and 

in Section 3.5, we will combine these results to obtain CMS predicates describing a tree 

decomposition of G. 

Throughout this section G = (V, E) is a Zconnected partial 3-tree with either two or 

three terminals; and R is a trunk hierarchy admitted by a simple tree decomposition of 
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G. Without loss of generality (by Theorem 3.2.9), we assume each trunk-graph R E R has 

Properties 3.2.2 and 3.2.4. We will show that these properties enable CMS predicates to  

identify the sets V(R), &,,(R) and E(R). Note that each vertex in V(G) - Vt,,(G) is a 

non-terminal vertex of exactly one trunk-graph in R .  

Definition 3.3.1. If v is a non-terminal vertex of G, then R(v) denotes the unique trunk- 

graph in R such that v is a non-terminal vertex of R(v). 

By Lemma 2.7.10, a CMS predicate can existentially encode any constant amount of in- 

formation pertaining to  the role of each vertex v in the trunk-graph R(v). This allows a 

non-terminal vertex (say vl) to be designated for each trunk-graph. The other vertices of 

R(vl) will then be identified inductively, in the order given by Property 3.2.2. We will use 

a (non-proper) vertex coloring to  help identify the vertices in this way: 

Proposition 3.3.2. V(G) can be partitioned into thirteen color classes such that the non- 

terminal vertices of each trunk-graph R E R belong to a common color class (say C);  no 

terminal of R belongs to C; and i f  t E &,,(R) - &,,(G), then no vertex of R(t) belongs 

to C. 

Proof. First, we assign each terminal of G to any color class. Then, we repeatedly find 

some trunk-graph R E R whose terminals are already colored, but whose non-terminal 

vertices are not colored. For each terminal t E &,,(R), there are at most four color classes 

that cannot be used to color the non-terminal vertices of R: that is, if t 6 Vt,,(G), then 

the non-terminal vertices of R(t) all belong to one color class, and R(t) has at most three 

terminals. It follows that the non-terminal vertices of R can be legally assigned to one of 

the thirteen color classes. 0 

Suppose R E R ;  and let vl , vz, . . . V ~ ~ ( R ) I  be an order on V(R) given by Property 3.2.2. 

We will describe how each vertex v; (2 < i 5 IV(R)J) is inductively identified, with the help 

of a unique edge incident to  an already-identified non-terminal vertex vj (where j < i - 1). 

Property 3.2.2 gives three different conditions by which the vertex v; may be identified: In 

each case, the non-terminal vertex vj interacts with v; in some prescribed way: If condition 

C1 is satisfied, then {v;, vj) is an edge of G; so (by Lemma 2.7.10) it can be existentially 

encoded that the endpoints of this edge belong to the same trunk-graph. Otherwise, v; and 

vj are both terminals of some child (say R') of R(vl); and vi will be identified with the help 
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Figure 3.5: G' is not cut by any other vertex with the color of v; 

of a vertex (say v) adjacent to vj, where v is a non-terminal vertex of either R' or some 

descendant of R' (see Figure 3.5). We will need the following lemma to show that v; is the 

"first" vertex of the correct color that separates v from the terminals of G. 

Lemma 3.3.3. Suppose a trunk-graph R E R has a child R' E R; and let v; E Vte,(Rf), 

vj E &,,(R1) - &,,(R). Let U be the union of the non-terminal vertices over R' and all 

descendants of R'; and let G' be the subgraph of G induced by U U {v;). If u, v E U such 

that {vj, v) E E(G) and u belongs to the same color class as v;, then G1\u contains a path 

between v and v;. 

Proof. Suppose {vj,v) E E(G), for some vertex v E U .  Let Ro = R and R1 = R'; and 

let d > 1 such that Rd = R(v) and Re-1 is the parent of Re (1 5 l 5 d). Choose terminals 

te E &,,(Re) such that t i  = vi and (for 2 5 ! 5 d) te E &,,(Re) - Such 

vertices exist because R was admitted by a simple tree decomposition; so each trunk-graph 

Re has a terminal that is not a vertex of its parent Re-l. 

Since {vj, v) E E(G), it follows that vj is a terminal of each Re (1 5 l 5 d). By 

Proposition 3.3.2, the color class containing v; is distinct from the color class containing the 

non-terminal vertices of each Re (1 5 l 5 d). Suppose now that u E U has the same color as 

v;; so u is not a vertex of any Re (0 5 l 5 d). By Property 3.2.4, then, there is a path with 

endpoints v, td E V(Rd), such that each internal vertex is in U - {u); and, for 1 5 l 5 d - 1, 

there is a path with endpoints te+i, tq E V(Re), such that each internal vertex is in U - {u). 

By concatenating these paths, we obtain the required path between v and v; in G1\u. 
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We now show how CMS predicates can determine the structure of R(vl), for a designated 

vertex vl in each trunk-graph. The vertex set of R(vl) is the minimal set (say V') containing 

vl such that if vj E V' belongs to the same color class as vl, and there is an edge (say e) 

incident to vj, then certain other "correctly-colored" vertices are also in V', as specified by 

Property 3.2.2. The opposite endpoint of e is either another vertex v; of R(vl), or some 

non-terminal vertex v of a descendant of R(vl). In the latter case, another vertex vi of 

R(vl) is found with the help of Lemma 3.3.3. 

L e m m a  3.3.4. Binary CMS predicates t runk ,  trunk-edge and t e r m j  (1 5 j 5 3) can 

be existentially defined such that there is a subset A of V(G) - %,,(G) containing exactly 

one non-terminal vertex of each trunk-graph in R; and 

trunk(vl,  V') holds ifl vl E A, and V' is the vertex set of R(vl); and 

trunk-edge(u, v) holds iff {u, v) is an edge of some trunk-graph in R; and 

0 for vl E A: if t is a terminal of R(vl), then termj(vl, t)  holds for a unique index j ;  

and terml(vl,  t)  V term2(v1, t)  V term3(vl, t)  holds only if t is a terminal of R(vl). 

Note. If R(vl) has only two terminals, then say term3(vl, t) is never satisfied. 

Proof. Let A be comprised of the the first vertex vl of each trunk-graph in an order given 

by Property 3.2.2. Suppose V' is the vertex set of R(vl), for some vl E A. To encode 

trunk(vl,  V'), we first identify a superset V" of V', such that V" does not contain any 

non-terminal vertex of any descendant of R(vl). Each vertex of V" is identified inductively, 

using one of the three conditions of Property 3.2.2. Throughout this proof, vj E V" is a 

vertex belonging to the same color class as vl . Hence, either vj is a non-terminal vertex of 

R(vl), or vj is an extra vertex in V" - V' that can be weeded out later. In either case, the 

CMS formula can force any vertex v; to belong to V" if it interacts with vj to satisfy one of 

the conditions of Property 3.2.2. 

For each edge incident to vj, we encode (by Lemma 2.7.9) whether its opposite endpoint 

also belongs to R(vj). So if condition C 1  is satisfied for a vertex v;, then v; can easily 

be identified for membership in V". To implement conditions C 2  and C3,  we will use 

edges {v, vj) such that vj is a terminal of R(v). Suppose R1 E R is the child of R(vj) 

such that either R1 = R(v), or R1 is an ancestor of R(v); hence, vj is a terminal of R1. 

By Lemma 2.7.10, we encode (for the edge {v, vj)) whether R1 has two or three terminals 
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in total. If there are two, then condition C 2  may be applied to identify a vertex v; for 

membership in V". If there are three, then condition C 3  may be applied to  identify v;. 

Condition C2: Ke,(R1) = {v;,vj). If v; happens to be a terminal of G, then the CMS 

formula can easily identify the correct terminal, and require that v; E V1'. Otherwise, since 

G is 2-connected, it follows that v; is a cut-vertex of G\vj that separates v from Kem(G). 

Suppose u E V is a vertex distinct from v; that belongs to the same color class as v;. It 

follows from Lemma 3.3.3 that if u is a cut-vertex of G\vj separating v from &,,(G), then u 

is not a non-terminal vertex of any descendant of R(vj); hence, the component of G\{vj, v;) 

that contains v is a proper subgraph of the component of G\{vj, u) that contains v. This 

fact allows a CMS formula to identify v; as a cut-vertex that places v into a minimal-sized 

component. 

Condition C3: Ke,(R1) = {vi,vj,vj~) where j' 5 i - 1. This case is similar to C2. A 

CMS formula can encode the following: If vjt E V", and v; is a cut-vertex of G\{vj, vjt) that 

separates v from Ke,(G), and v belongs to a minimal-sized component of G\{v;, vj, vjt) 

(over all choices of v;), then v; also belongs to V". Extra vertices (of V" - V') may be 

identified in this way if the vertex vjt is not chosen "correctly". 

The vertex order of Property 3.2.2 provides an inductive argument that V" contains each 

vertex of R(vl). The CMS formula can state that V" is a minimal set satisfying the require- 

ments described above. Hence, if vi € V" - V1 was chosen by condition C 2  or C3,  then 

(by Property 3.2.4) v; cannot be a non-terminal vertex of any descendant of R(vl), unless 

either vj or vjt also is. The minimality of V", then, prevents this from happening. So V" 

does not contain any non-terminal vertex of any descendant of R(vl). 

Now, to identify the set V', we use the same approach (as used to identify V"), except 

we require that each inductively-identified vertex v; belongs to V"; and for condition C3,  we 

require that v; be the cut-vertex such that v is in a component of G\{vj, vjt) with minimal 

size over all choices of vjt E V". It follows from Lemma 3.3.3 that exactly the vertices of 

R(vl) will be identified in this way. 

To encode the predicates term;(vl,t), 1 5 i 5 3, we simply note that each vertex of 

R(vl) is identified with a unique edge. Hence, that edge can encode (by Lemma 2.7.10) the 

index of any terminal that it is used to identify. Then we can encode that trunk-edge(u, v) 

holds iff either 

{u, v) is an edge of G (as encoded by statement (2.7.5)), or 
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both u and v are terminals of a common trunk-graph. 

3.4 Encoding a Pyramid 

In this section we restrict our attention to a single trunk-graph R belonging to a trunk 

hierarchy of a 2-connected partial 3-tree G. We develop existentially-defined CMS predicates 

to encode the axial orders "-ti (1 5 i 5 3) of some pyramid (Def. 3.1.9) in R. These 

predicates shall be defined over the universe V(R) U E(R); and in Section 3.5, we will use 

these predicates to encode a fixed path decomposition of R over the universe V(G) U E(G). 

Although R may contain edges that are not edges of G, we will show (in Section 3.5) how 

such edges can be represented within a CMS formula. So there is no loss of generality in 

assuming that V(R) U E(R)  V(G) u E(G). 

Throughout this section R is a trunk-graph belonging to a trunk hierarchy of a 2- 

connected partial 3-tree. Assume that R satisfies Property 3.2.6, and let (P, T ,  Xp) be a 

width-3 simple path decomposition of R given by that property. Let (A;, +;), 1 5 i 5 3, be 

the axes of a pyramid in R. Without loss of generality, we assume the apex of the pyramid 

is the drop vertex of the leaf of P. 

Claim 3.4.1. For each b E V(P),  either b has no add vertex, or some add vertex of b 

belongs the the same axis as the drop vertex of b. 

Proof. As in the proof of Lemma 3.1.11, we construct a pyramid, using (P, r, Xp), by 

visiting each node b of P (in order from the leaf to the root), and assigning each add vertex 

of b to a distinct axis that does not already contain a non-drop vertex of b. To enforce the 

claim, we merely put an add vertex into the axis containing the drop vertex, before putting 

one into any other axis. 0 

By Lemma 3.3.4, a CMS predicate can determine the vertex set V(R), and can associate 

each terminal t E &,,(R) with a distinct index j (1 5 j 5 3). If v E V(R) - &,,(R), 

then there is no other trunk-graph R' in the hierarchy such that v is a non-terminal vertex 

of R'. So by Lemma 2.7.10, we can encode which axial set A; (1 5 i 5 3) contains each 

non-terminal vertex of R. Similarly, using the designated apex of R, we can encode which 

axis contains the terminal that is associated with each index (see Lemma 3.3.4). For the 

rest of this section, we assume that the sets &,,(R), A1, A2 and Ag are free set variables; 

and we use these sets to (existentially) encode the order "+;" of the vertices in each set Ai. 
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Figure 3.6: The bags of a simple path decomposition 
('111 is the drop vertex; ui and u;, when shown, are add vertices) 

Each non-leaf node of P has at most two add vertices (because the underlying graph 

is 2-connected). By property P3 (Def. 3.1.1), if ul is the drop vertex of b E V(P), then 

there is an edge of R between ul and each add vertex of b. By Claim 3.4.1, some such edge 

is axial-unless b has no add vertex. Figure 3.6 illustrates the three possible situations, 

depending on how many add vertices there are: 

0 add vertices: Hence, there are exactly two non-add, non-drop vertices. 

1 add vertex: There is a t  least one non-add, non-drop vertex-and possibly a second. 

2 add vertices: There is exactly one non-add, non-drop vertex. 

Each vertex in Figure 3.6 is named u; or u: (1 < i 5 3), where the subscript i indicates 

that the vertex belongs to A;. We assume without loss of generality that the drop vertex u1 

belongs to  A1. The figure shows edges (depicted by arrows) directed from ul to each add 

vertex. 

By property D4 (Def. 3.1.9), the subgraph of R induced by each axial set consists of a 

collection of paths (which we will call chains): 

Definition 3.4.2. For 1 5 i < 3, a chain in A; is a component (say H )  in the subgraph 

RiAil. If H does not contain a terminal of R, and no vertex of H is adjacent to the apex, 

then H is said to  be an internal chain in A;. 

By directing the axial edges (see Lemma 2.7.9), a CMS predicate can encode the vertex 

order within each chain. Therefore, we need only show how CMS can encode the order of 

the chains in each axial set. If a chain H is adjacent to the apex, then H precedes all other 

chains; if H contains a terminal, then H follows all other chains. It remains to be shown 

how a CMS predicate can determine the order of distinct internal chains. 
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Definition 3.4.3. For any vertex u of R, Add(u) denotes the unique bag in X p  such that 

u is an add vertex of Add(u). If u is a non-terminal vertex of R, then Drop(u) denotes the 

unique bag in X p  such that u is the drop vertex of Drop(u). 

For the rest of this section, we may refer to bags (say X,, Xb for a ,  b E V(P)) using the 

notation of Definition 3.4.3: We then say that a vertex v E V(R) is an add (drop) vertex of 

X, to  mean that v is an add (drop) vertex of a. We write Xb 4 X, to  mean that a is an 

ancestor of b; and we write Xb 5 X, to mean that either a = b or a is an ancestor of b. 

Definition 3.4.4. Let 1 5 i 5 3; and suppose H is a chain in A;. The first vertex of H 

(with respect to  the order "+;") is called the head of H ;  and the last vertex of H is called 

the tail of H. If u is the head of H ,  then the drop vertex of Add(u) is called the source 

of H .  

In the leftmost panel of Figure 3.6, u1 is the tail of some chain; in the rightmost panel, 

u$ is the head of some chain, and u1 is its source. 

Proposition 3.4.5. A binary CMS predicate P can be existentially defined such that 

if P(h, v), then h is the head of some chain, and Add(h) 5 Add(v); and 

if h and t are the head and tail (respectively) of some internal chain, then P(h, v) is 

true for some non-drop vertex v of Drop(t). 

Proof. Using Lemma 2.7.9, let a, A, p be binary CMS predicates that existentially encode 

edge directions as follows: 

a (u ,  v) 5 "{u, v) is an axial edge with u +; v" (for i = 1,2 or 3); 

A(u, v) = "u is the source of some chain whose head is v"; 

p(u, v) - "{u, v) is a cross edge and Add(h) 5 Add(v), where h is the head of the 

chain containing u" . 

By Lemma 2.7.6, the transitive closure (denoted a+) and the reflexive-transitive closure 

(denoted a*) of a are also encodable. We now define P as follows: 
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Figure 3.7: Proof of Proposition 3.4.5 

It is clear that P(h, v) is true only if Add(h) 5 Add(v) where h is the head of some chain. 

To complete the proof, we need only show that if hl and ul are the head and tail (re- 

spectively) of some internal chain (say HI), then P(hl, v) is true for some non-drop vertex 

v of Drop(ul). SO suppose P(hl,v) is false for each non-drop vertex v of Drop(ul). By 

Claim 3.4.1, Drop(ul) has no add vertex. Without loss of generality, assume ul E A1; 

let 212 E A2 and u3 E A3 be the non-drop vertices of Drop(ul). This is the type of bag 

illustrated by the leftmost panel of Figure 3.6. For 2 5 j 5 3, let H j  be the maximal axial 

path containing uj, and let hj  be the head of H j  (see Figure 3.7). 

Since P(hl, u2) is false and P(hl, u3) is false (by supposition), the source (say s) of H1 

cannot belong to  H2 or H3. Hence, either Add(hl) 4 Add(h2) or Add(hl) 4 Add(h3). 

Without loss of generality, we assume Add(hl) 4 Add(h2) and Add(h3) 4 Add(h2). There- 

fore, Add(h2) contains a vertex of H1 and a vertex of H3. It follows that the source 

(say s3) of Ha is a vertex of H3: s3 could not be a vertex of H1, because otherwise 

a*(hl,  s3) /\p(s3, ha) A a*(h2, u2) would be true, contradicting the supposition that ,f3(hl, u2) 

is false. 

Now Drop(s3) contains exactly two non-add vertices, namely s3 and some vertex (say xl ) 

of HI. Because the underlying graph is 2-connected, there are two vertex-disjoint paths 

between (53, xl) and {u2, us). It follows that there is a cross edge between a vertex (say x) 
+ of H1 and a vertex (say Y) of either H2 or H3, where x1 +; x and either h2 +;j y or s3 t3 y. 

Thus p(x, y) is true. Therefore, either P(h1, ua) or P(h1, us) is true (a contradiction). 

Proposition 3.4.7. For 1 5 i 5 3, a binary CMS predicate y can be existentially defined 

such that 
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a 
x (2 add vertices) 

Figure 3.8: Proof of Proposition 3.4.7 

a if y(h, v), then h is the head of some chain in A;, and h +f v; and 

a if H and H' are internal chains in A; such that H' immediately follows H ,  then y(h, v) 

is true for some vertex v of HI, where h is the head of H .  

Proof. Without loss of generality, we restrict our attention to  the case of i = 1. We begin 

by using the predicate /3 (of Proposition 3.4.5) to define a subset y' of y: 

y1(h, v) = (3u)( P(h, u) A "{u, v) E E" A (h, v E Al) ) 

By Proposition 3.4.5, P(h, u) is true only if h is the head of some chain, and Add(h) 5 
Add(u). Hence, if u is adjacent to  v (where h,v E A1), then h +; v. Therefore, the 

predicate y' is consistent with the first itemized statement of the proposition. To complete 

the proof, it may be necessary to  define additional ordered pairs in y ,  so that the second 

itemized statement is also satisfied. 

Suppose H1 and Hi  are internal chains in A1 such that Hi  immediately follows HI. 

Let hl , u1, hi ,  t i  be the head of HI,  tail of HI,  head of H i ,  tail of Hi ,  respectively (see 

Figure 3.8). Say Drop(ul) = {ul, u2, u3), where ua E A2 and us E As; and let Ha and H3 

be the chains containing u2 and us (respectively). Since the underlying graph is 2-connected, 

it follows that Add(h:) contains two non-add vertices, say x2 E V(H2) and x3 E V(H3). 

Without loss of generality (by Proposition 3.4.5), we assume /3(hl, us) is true. By for- 

mula (3.4.6), if u3 +: x , then /3(hl,x) is also true. If any such vertex x is adjacent to  a 

vertex (say v) of H1, then yl(hl, v) is true, and the proof is complete. 
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Claim. If yl(hl, v) is false for each v E V(Hi), then there exist vertices y2 E V(H2) and 

y3 E V(H3) such that: 

So whenever y' is insufficient to  satisfy the second itemized statement of the proposition, we 

choose some such edge {y2, y3). Using Lemma 2.7.9, CMS can encode a binary predicate 6 

to direct these edges: i.e. S(y3, y2). Now, CMS can encode the following subset y" of the y 

relation: 

It follows that the required predicate y(h, v) can be defined as yl(h, v)vytf(h, v). To complete 

the proof, we need only prove the above claim. So suppose the claim is false, and yet P(hl, u3) 

is true. Thus, there is no cross edge between H3 and Hi;  and x;! is the source of Hi.  We 

consider three cases: 

Case 1: Drop(ti) contains a vertex of H2 and a vertex of H3. Since the underlying graph is 

2-connected, and there is no edge between H i  and H3, it follows that t i  is adjacent to some 

vertex x of Hz such that x2 +: x. Without loss of generality, assume that t i  is not adjacent 

to any vertex that follows x in the axis (A2, -t2). It then follows from Property 3.2.6 that 

there is an edge between H3 and some internal vertex of one of the paths [x2 +: x, ti] and 

[x2, hi +; t i ]  (a  contradiction). 

Case 2: The tail (say t2) of H2 is a non-terminal vertex, and Drop(t2) contains a vertex of 

H: and a vertex of H3. Since the claim is false, there is no edge between t2 and H3. Since 

the underlying graph is 2-connected, it follows that t2 is adjacent to  some vertex (say vi) of 

Hi .  But by Property 3.2.6, then, there is an edge between H3 and some internal vertex of 

either the path [x2 -t: t2] or the path [x2, hi  -'; vi, t2] (a  contradiction). 

Case 3: The tail (say t3) of H3 is a non-terminal vertex, and Drop(t3) contains a vertex 

of H: and a vertex of H2. Since the claim is false, there is no edge between t3 and any 

vertex y2 such that x2 +: y2. Since the underlying graph is 2-connected, it follows that t3 

is adjacent to  some vertex of H i  (a  contradiction). 0 

Lemma 3.4.8. There is a pyramid in each trunk-graph in R for which each axis (A; ,  -ti), 

1 5 i 5 3, is existentially encodable by a CMS predicate. 
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Proof. The vertex order within each chain in A; is encoded by the a predicate (from the 

proof of Proposition 3.4.5). A CMS formula can easily determine if a given chain is adjacent 

to the apex (and hence, it precedes all other chains in A;) or if it contains a terminal 

(and hence it follows all other chains in A;). By Proposition 3.4.7, the CMS formula can 

determine the order of internal chains in A;. 0 

3.5 2-Connected Partial 3-Trees 

In this section we develop CMS predicates to  describe (Def. 2.7.3) a fixed tree decomposition 

of a 2-connected partial 3-tree G. To do this, we use a trunk hierarchy R, as constructed in 

Section 3.2. We have shown in Section 3.3 that CMS predicates can encode the structure of 

each trunk-graph in R ;  and in Section 3.4 we showed how to encode the structure of a fixed 

pyramid in each trunk-graph. In this section we will show how such a pyramid enables CMS 

predicates to  describe a path decomposition of the corresponding trunk-graph. The collec- 

tion of these path decompositions can then easily be assembled into a tree decomposition 

of G 

Throughout this section G = (V, E )  is a 2-connected partial 3-tree with either two or 

three terminals; and R is a trunk hierarchy admitted by a width-3 simple tree decomposition 

of G. Without loss of generality (by Theorem 3.2.9), we assume each trunk-graph in R E R 

has Properties 3.2.2,3.2.4 and 3.2.6. In Section 3.4 we used Property 3.2.6 to  show that the 

axes of a pyramid in R can be encoded in CMS logic over the universe V(R) U E(R): 

L e m m a  3.5.1. Any CMS-encodable predicate over the universe V(R) U E(R)  can be ex- 

pressed over the universe V U E. 

Proof. Since V(R) C V, we need only show how to represent edges of E (R)  - E(G), and 

how to represent sets of edges. After this is done, it is not difficult to express any predicate 

over V(R) U E(R) as a disjunction of predicates over V U E. 

Each edge in E(R)  - E(G) has endpoints that are terminals of a common child of R. By 

Lemma 3.3.4, a CMS predicate can determine that a vertex (say v) is the apex of a child of 

R: this is true iff V(R) contains each vertex t for which termj(v, t), 1 5 j 5 3. Each pair of 

these terminals are the endpoints of an edge of R. The apex v can be used to  represent each 

of the (at most three) edges between its terminals; and these edges can be distinguished by 

the corresponding indices. 
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To represent an edge subset El 5 E(R), we use a subset of E(G) and three vertex 

subsets: The edge subset contains the edges of El n E(G); and the vertex subsets contain 

apices that represent the edges of El - E(G). Each of these vertex subsets corresponds 

to a unique pair of distinct indices j, j' (1 5 j < j1 5 3). A vertex v belongs to the 

corresponding set iff v is the apex of some child of R, and termj(v, t )  A termjt(v,tl) for 

some edge { t ,  t ' )  E El - E (G). 0 

As explained at the end of Section 3.1, each axis of a pyramid in R gives part of an 

elimination order on V(R). By interleaving these elimination orders in a fixed manner, we 

can obtain a path decomposition of R for which the leaf bag contains the apex and the 

first vertex of each axis; each other bag contains, inductively, the k maximal vertices of 

the preceding (child) bag, as well as the immediate successor of one of them. Property 

D5 (Def. 3.1.9) guarantees that at least one of the maximal vertices has no cross edges 

extending beyond the others; so we can "advance" along the corresponding axis. These 

bags are well-defined if we impose an order on the axes, and adopt the convention that we 

inductively advance along lSt axis whenever possible, otherwise the 2nd axis if possible, and 

otherwise the 3rd. 

L e m m a  3.5.2. Each trunk-graph i n  R admits a width-3 path decomposition that can be 

described by existentially-defined CMS predicates Bag and Parent .  

Proof. Let R E R. By Lemma 3.4.8, the axes (A;, +;), 1 5 i 5 3, can be encoded for 

some pyramid in R. By Lemma 2.7.6, the transitive closures "+:" can also be encoded. We 

assume that each A; is non-empty-for otherwise, a simplification of the following argument 

carries through. We describe how to define the Bag predicate for a path decomposition in 

which each bag contains exactly four vertices; and the bags indexed by adjacent nodes 

intersect in exactly three vertices. So each non-root bag contains a unique drop vertex- 

which becomes its witness. The witness of the root bag can be chosen arbitrarily from 

among its (one or two) drop vertices. 

To identify the leaf bag, CMS encodes the fact that Bag(vl, X )  holds when X contains 

the designated apex vl as well as the first vertex in each axis. Each other bag X contains 

a unique pair of vertices u;, ui E A; (1 5 i 5 3) such that u; - t i  ui. The other two vertices 

u j  E Aj (1 5 j 5 3; j # i) in X can be identified as follows: Let ug E Aj be the last vertex 

(in the order ''-tjn) that is adjacent to u; or any vertex that precedes u; in the ith axis; if 
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uj' 

valid 
:- subsequenc 

uj J 

Figure 3.9: Choosing a bag of the CMS-encoded path decomposition 

there is no such adjacency, then we let u: be the first vertex of the jth axis (by default). 

Let uy E Aj be the first vertex that is adjacent to  u: or any vertex that follows ui (or, by 

default, uy is the last vertex of the jth axis). It is clear that a CMS formula can identify US 
and uy using the "if" predicates. It follows from property D5 (Def. 3.1.9) that ui -+J uy; 

and we refer to the subsequence of the jth axis between ug and uy as the valid subsequence 

(see the left-hand panel of Figure 3.9). It is clear that the vertex u j  E X must belong to 

the valid subsequence: otherwise, there would be a cross edge incident to  either US or uy 

without both endpoints in a common bag. 

In the case that no vertex of the valid subsequence is incident to  a cross edge, then any 

vertex in that subsequence can be chosen as uj. TO effect the precedence convention among 

the axes, we choose u j  = uy if j < i, and choose u j  = US if j > i. In the general case, 

we choose uj as close as possible to uy if j < i, and choose u j  as close as possible to ui if 

j > i. This choice can be encoded in CMS by considering only the cross edges that are not 

incident to  A;. Note that, by property D5 of Definition 3.1.9, there can be no cross edge 

between a vertex preceding one valid subsequence and a vertex following the other. 

Now, it is easy to  encode the P a r e n t  predicate: If Bag(c ,X)  and Bag(p,X1), where 

X + XI, then Parent(p,  c) holds iff XI contains all three maximal vertices that belong to 

X .  0 

The right-hand panel of Figure 3.9 illustrates the axes of a pyramid in a given partial 

3-path. In this example, we have u2 + z  ui. As explained in the proof of Lemma 3.5.2, 

the cross edges between the second and jth axis (for j = 1,3) are used to  identify the valid 

subsequence [ug, . . . , uy]. To identify the vertices u1, u3 for the bag {ul, u2, ui, us}, a CMS 

formula need only consider the cross edges between the first and third axes. Recall that 

these cross edges cannot "criss-cross" (as shown in Figure 3.1). From the valid subsequence 
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of the first axis, ul is selected as close as possible to  uy, under the constraint that there 

be no cross edge between a vertex preceding ul and a vertex following u$. From the valid 

subsequence of the third axis, u3 is selected as close as possible to  ui,  under the constraint 

that there be no cross edge between a vertex preceding ui and a vertex following us. By 

property D5 of a pyramid (see Definition 3.1.9), there exists no cross edge between a vertex 

preceding ui and a vertex following u!: therefore ul and us can be chosen to  satisfy these 

constraints. 

Lemma 3.5.3. Any 2-connected partial 3-tree admits a width-3 tree decomposition that can 

be described by existentially-defined CMS predicates Bag and Parent. 

Proof. Suppose G is a 2-connected partial 3-tree; and let R be a trunk hierarchy given by 

Theorem 3.2.9. We use Lemma 3.5.2 to encode a path decomposition for each trunk-graph 

R E R. To extend this to a tree decomposition of G, we need only encode parents for the 

roots of all but one of those path decompositions. By Lemma 3.3.4, a CMS predicate can 

determine each terminal set &,,(R). If &,,(R) = &,,(G), then R is the root of the 

trunk hierarchy. Otherwise, the parent of R is the unique trunk-graph R' E R for which 

&,,(R) c V(R1) and &,,(R) &,,(R1). CMS can encode this, and then  parent(^, c )  

can be defined for c the witness of the root of the path decomposition of R, and p the witness 

of the closest node to  the root of the path decomposition of R' such that &,,(R) X 

when Bag(p, X) is true. 0 

3.6 Partial 3-Trees 

In Section 3.5, we showed that existentially-defined CMS predicates Bag  and Parent can 

describe (Def. 2.7.3) a tree decomposition of any 2-connected partial 3-tree G. In this section 

we generalize this result by removing the requirement that G be 2-connected. 

Lemma 3.6.1. Any connected partial 3-tree admits a width-k rooted tree decomposition that 

can be described by existentially-defined CMS predicates. 

Proof. Let G be a connected partial 3-tree. A block of G is defined as a maximal 2- 

connected subgraph of G. By Definition 2.3.1, such a block may consist of a single vertex 

or a pair of adjacent vertices. A CMS predicate can easily be written to  encode whether a 

subgraph of G is a block. 
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Suppose G has l distinct blocks GI, G2, . . . , Ge. No pair of these blocks may intersect 

in more than one vertex-otherwise their union would also be 2-connected (and they would 

not be maximal 2-connected subgraphs). It follows that the l blocks can be arranged in a 

tree-like hierarchy such that G; is the parent of Gj only if IV(G;) n V(Gj)l = 1. Without 

loss of generality, we assume that if G; is the parent of Gj, then the vertex in V(G;) n V(Gj) 

is a designated terminal in Vtem(Gj). 

By Lemma 3.5.3, existentially-defined CMS ~redicates (Bag and Pa ren t )  can describe 

a tree decomposition of each block G;. Reviewing the proof of Lemma 3.5.3, we see that 

no designated terminal (in Vte,(Gi)) need be assigned to a free variable to encode these 

predicates. Hence, there is no conflict in simultaneously describing a tree decomposition of 

each block. The collection of these tree decompositions can easily be assembled into a tree 

decomposition of G. 0 

Theorem 3.6.2. Definability equals recognizability of partial 3-trees. 

Proof.  Suppose G is a partial 3-tree. By Lemma 3.6.1, a width-k tree decomposition can 

be described by CMS predicates for each component of G. We choose the root (say r )  of 

any one of these tree decompositions to be the root of a tree decomposition of G. CMS 

predicates can then encode that each other root becomes a child of r .  The theorem now 

follows from Lemmas 2.7.11 and 2.8.5. 0 

Theorem 3.6.2 gives further support to the following conjecture (see also [Cougl, Con- 

jecture 11). 

Conjecture 3.6.3. Definability equals recognizability of partial k-trees. 

In Section 3.7 we make further progress towards proving this conjecture, by showing 

that the proof of Theorem 3.6.2 generalizes to the case of k-connected partial k-trees. 

3.7 k-Connected Partial k-Trees 

We now generalize the results of this chapter to  show that CMS-definability equals recogniz- 

ability of k-connected partial k-trees. To do this, we need only show that CMS predicates 

can describe a width-k rooted tree decomposition of any such graph. The results of Sec- 

tion 3.1 show that any partial k-tree can be decomposed into a trunk hierarchy (Def. 3.2.1) 
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which is a collection of simple partial k-paths. The results of Sections 3.2 to 3.6 need to be 

generalized. 

Throughout this section G is a k-connected partial k-tree; and R is a trunk hierarchy 

admitted by a simple width-k tree decomposition of G. Since each trunk-graph has k 

terminals, Property 3.2.2 can be simplified to the following: 

Property 3.7.1. The vertices of each trunk-graph R E R can be ordered VI, vz, . . . , v l v ( ~ ) ~  

such that, for each i = 2,3,. . ., IV(R)I, there is a non-terminal vertex vj of R (where 

1 5 j 5 i - 1) for which at least one of the following two conditions is satisfied: 

C1: v; and vj are adjacent (in G). 

C3: R has a child R' E R for which v;, vj E Kem(R1), and j' 5 i for each v j ~  E Kem(R1). 

In Section 3.2 we enforced this property by choosing a centered trunk (Prop 3.2.3) in a 

simple width-k tree decomposition (T, r, X) of G. But now, since G is k-connected, we have 

IX, n Xbl 2 k whenever a and b are adjacent nodes of T. It follows that any trunk in T is 

a centered trunk. 

Property 3.2.4 can be enforced by a straightforward generalization of Proposition 3.2.5. 

Property 3.2.6 is always satisfied, because each axis of any pyramid in a trunk-graph R E R 

is a path between the apex and some terminal of G. Hence, a simplification of the proof of 

Theorem 3.2.9 provides the following: 

Theorem 3.7.2. If G is a k-connected partial k-tree, then some width-k simple tree de- 

composition of G admits a trunk hierarchy R such that each trunk-graph R E R satisfies 

Properties 3.7.1 and 3.2.4. 

The vertex set and edge set of each trunk-graph in R can now be encoded by CMS 

predicates (as in Section 3.3). Proposition 3.3.2 can easily be generalized as follows: 

Proposition 3.7.3. V(G) can be partitioned into 4k + 1 color classes such that the non- 

terminal vertices of each trunk-graph R E R belong to a common color class (say C); no 

terminal of R belongs to C; and if t E &,,(R) - K,,(G), then no vertex of R(t) belongs 

to C. 

The proof of Lemma 3.3.3 remains valid in the case of k-connected partial k-trees (pro- 

vided k 2 2). Using Lemma 3.3.3, the proof of Lemma 3.3.4 can be easily generalized, to 

give the following: 
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L e m m a  3.7.4. Binary C M S  predicates t r u n k ,  t r u n k - e d g e  and t e r m j  (1 5 j 5 k )  can 

be existentially defined such that there is a subset A of V ( G )  - &,,(G) containing exactly 

one non-terminal vertex of each trunk-graph in R; and 

t r u n k ( v l ,  V ' )  holds iff vl E A,  and V' is the vertex set of R ( v l ) ;  and 

0 t r u n k - e d g e ( u ,  v )  holds iff { u ,  v )  is an edge of some trunk-graph in R; and 

0 for vl E A: i f  t is a terminal of R ( v l ) ,  then t e r m j ( v l , t )  holds for a unique index 

j ;  and t e r m l ( v l ,  t )  V t e r m 2 ( v l ,  t )  V . . . V t e r m k ( v l ,  t )  holds only if t is a terminal of 

R(v1).  

We do not need the results of Section 3.4 to encode the axes of a pyramid in R, because 

each axis consists of a path between the apex and a distinct terminal: Lemma 3.4.8 becomes 

a trivial consequence of property D4 (Def 3.1.9). Now, the proof of Lemma 3.5.2 can be 

easily generalized to  prove the following: 

L e m m a  3.7.5. Any k-connected partial k-tree admits a width-k tree decomposition that can 

be described by existentially-defined CMS predicates Bag  and Paren t .  

Using Lemmas 2.7.11 and 2.8.5, we can draw the following conclusion: 

T h e o r e m  3.7.6. Definability equals recognizability of k-connected partial k-trees. 



Chapter 4 

The Complements of 

CMS-Definable Problems 

This chapter is concerned with decision problems for which an instance consists of just a 

single graph-which is either a yes-instance or a no-instance of the problem at hand. Most 

of the standard NP-complete graph problems [GJ79] can be captured in this way, after 

perhaps fixing some other parameters as part of the problem description (we give several 

examples of this in Section 4.2). A decision problem, then, can be represented by the class 

of graphs that are yes-instances. In fact, we will use the class of yes-instances to name the 

corresponding decision problem. 

Definition 4.0.1. A decision problem is a class of graphs. If II is a decision problem, then 

any graph in 11 is called a yes-instance of TI. 

A decision problem can be defined, in many cases, by a CMS statement (as explained in 

Section 2.7). Such a statement can be automatically translated into tree automaton that 

solves the problem in linear time over the class of partial k-trees (see Section 2.8). 

Definition 4.0.2. The class of partial k-trees is denoted by G k .  

So if 11 is a CMS-definable decision problem, then there exists a linear-time membership 

test (i.e. a tree automaton) to decide whether a given graph (the instance) belongs to 

11 n Gk. Tree automata are a generalization of the conventional finite-state automata which 

recognize regular sets; and the collection of regular sets has a number of closure properties 

[HU79]. Similar closure properties also exist for the collection of CMS-definable problems: 
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It is easy to  see that this collection is closed under set-theoretic union, intersection and 

complementation: i.e. if 11 and II' are defined by CMS statements and a', then 

11 U 11' is CMS-definable, because a graph G belongs to this class iff G k @ V at; and 

0 II n IIt is CMS-definable, because a graph G belongs to this class iff G k @ A at; and 

{G I G # 11) is CMS-definable, because a graph G belongs t o  this class iff G + la. 
The class {GIG $! II) is the set-theoretic complement of II. This chapter is mainly concerned 

with the graph- theoretic complement of a decision problem. 

Definition 4.0.3. Suppose II is a decision problem (i.e. a class of graphs). The complement- 

problem of 11 is the class n = {G I G E II). 

This conflicting terminology is perhaps unfortunate, but the term "complement" is used 

pervasively in both set-theoretic and graph-theoretic settings. We shall not concern ourselves 

further with problems of the form {G I G # II); and the term "complement-problem" 

shall be used only in the sense of Definition 4.0.3. If we wish to  stress this fact, we will 

write "graph-theoretic complement-problem". If the meaning is clear from the context, we 

will write simply "complement" to  mean either a complement-graph or a (graph-theoretic) 

complement-problem. 

Later in this chapter, we will see that the collection of CMS-definable problems is not 

closed under graph-theoretic complementation. If fact, we will give a negative answer to  the 

following weaker notion of "closure" under complementation: 

Question 4.0.4. Suppose 11 is a CMS-definable decision problem. Is nnGk CMS-definable? 

Should we weaken this question even further by requiring II itself be a subclass of Gk, then 

we could always give an affirmative answer: In this case, would be a subclass of (the 

class of partial k-tree complements). Hence, each yes-instance of TI n Gk would belong to 

the class Gk n z. The number of graphs in Gk n is dependent only on k; and each such 

graph has only O(k) vertices. A CMS statement, then, could explicitly encode the structure 

of each yes-instance of TI n Gk . 
In Section 2.5, we mentioned the work of Robertson and Seymour [RS], showing that the 

class Gk can be characterized by a finite number (dependent only on k) of forbidden minors. 

Since a CMS statement can encode whether or not the evaluation graph has a particular 
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minor, it follows that the class Gk is CMS-definable. So, under Conjecture 3.6.3, a decision 

problem 11 can be solved over Gk in linear time by a tree automaton iff II n Gk is CMS- 

definable. Such a tree automaton is automatically derived from a CMS statement defining 

II. Sometimes, II is not CMS-definable, but II n Gk can be defined by a CMS statement 

that takes advantage of the structure of partial k-trees-we will give several examples of 

this later in the chapter. 

We will consider several examples where a problem 11 can be defined quite easily by a 

CMS statement a ;  thus II = {G I G + a). The complement-problem (Def. 4.0.3) is then 
- 
II = {GIG + a). To define n, therefore, a CMS statement (say a') must encode whether or 

not would evaluate to true on G, given an evaluation graph G. Such a statement a' is to 

be evaluated over the universe V(G) U E(G), so it must be written without making reference 

to  any edge of G. Thus the complement-problem becomes defined TI = {G I G I= a'). In 

some cases, such a statement a' can be written by making only small modifications to  the 

statement that defines II. For other problems, however, it is difficult (or even impossible) 

to  find such a statement a'. We discuss this in more detail in Section 4.1. 

The rest of this chapter is organized as follows: In Section 4.1 we introduce the comple- 

ment of CMS logic-which is defined over the universe V(G) U E(G) for an evaluation graph 

G. This will be useful for defining n Gk in certain cases where II is CMS-definable. In 

Section 4.2 we consider two pairs of well-known decision problems-the complements of one 

another-to illustrate these ideas. Sections 4.3 to  4.5 deal with X ~ - C O L O R I N G - ~ ~ ~ C ~  is the 

problem of partitioning the vertices of a graph into independent sets of cardinality at most 

t (the results are also available in [KGS95a]). Sections 4.6 to 4.9 deal with the complement 

of the f-FACTOR problem-where a graph G is a yes-instance iff there exists a factor of ?? 
in which each vertex has degree f (the results are also available in [KGS95b]). For fixed 

t ,  f E N, we show that xt-COLORING and the complement of f-FACTOR are CMS-definable 

over Gk. These are the complements of problems that are CMS-definable over all graphs; 

hence Question 4.0.4 is answered affirmatively in these cases. In Section 4.10, however, 

we will give a negative answer to  that question: A yes-instance of PARTITION INTO FIXED 

ISOMORPHIC SUBGRAPHS is a graph whose vertex set can be partitioned into sets that each 

induce a subgraph isomorphic to  some pattern graph H. The complement of this problem 

is simply the version of PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS in which H i s  the 

pattern graph. For any connected pattern graph, the problem is CMS-definable over all 

graphs; but for some disconnected graphs, the problem is not CMS-definable over partial 
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b-trees. Since any graph H is connected if its ~om~lement-graph 2 is disconnected, this 

provides a negative answer to Question 4.0.4. 

4.1 Complement CMS 

For a CMS-definable problem II, we are interested (Question 4.0.4) in whether E n GI, is 
CMS-definable (where 6k is the class of partial b-tree complements). By Definition 4.0.3, a 

graph G belongs to TI n Gk iff its complement graph C belongs to II n G. The problem II 

may be more "natural" than the problem II; hence, it may be more convenient to consider 

the question of whether II n 6k can be defined in the complement CMS (or CCMS) logic. 

This is actually equivalent to defining E n Gk in CMS logic, but it may allow us the view 

the problem in a more intuitive way. 

Definition 4.1.1. The Complement CMS (or CCMS) logic is identical to the CMS logic, 

with the following exceptions: 

For an evaluation graph G, the universe is V(G) u ~ ( c ) ,  instead of V(G) U E(G). 

Instead of the Edge predicate, there is a Nonedge(e,v) predicate-which holds iff 

{v, u) E E(G) for some u E V(G). 

An individual variable represents an element of V(G) or E@); a set variable represents 

a subset of V(G) or E@). 

Equation (2.7.5) gives a CMS predicate ('N" encoding the edge relation of the evaluation 

graph. This relation can also be encoded by a CCMS predicate: 

21 - -(u = V) A i(3e)(Nonedge(e, u) A Nonedge(e, v)) (4.1.2) 

The CCMS predicate u N v indicates that {u, v) does not belong to the universe E(C) of 

non-edges. Any CMS statement that is written without using edge or edge-set variables 

(but possibly using the "N" predicate as a "macro") can, therefore, be interpreted as a 

CCMS statement. 

Lemma 4.1.3. Suppose II is a decision problem. If 11 n& is CCMS-definable, then E n  Gk 
is CMS-definable. 
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Proof. Suppose @ is a CCMS statement defining II n z: 

By Definition 4.0.3, G E II n & iff G E n Gk. Therefore, n n Gk is defined by the 

CMS statement obtained from @ by replacing each occurrence of "Nonedge(e, v)" with 

"Edge(e, v)", and interpreting this over the universe V(G) U E(G), rather than the universe 

V(G) U E(G), for any evaluation graph G. 0 

Corollary 4.1.4. If a decision problem II is CCMS-definable over partial k-tree comple- 

ments (on n vertices), then there is an O(n)-time algorithm to solve II for partial k-tree 

complements, and to solve for partial k-trees. 

Proof. If II is CCMS-definable over k-tree complements, then (by Lemma 4.1.3) 
- 
IInGk is CMS-definable; hence (by Theorem 2.8.3), there is a tree automaton that recognizes 
- 
II n Gk. This tree automaton is a linear-time algorithm to decide if a partial k-tree is a yes- 

instance of n. This algorithm can decide if the complement G of a partial Ic-tree is a 

yes-instance of II, by letting the partial k-tree G be the input. To obtain the O(n) time 

bound, we assume that G is given by representing the O(n) edges of c, rather than explicitly 

representing the 0 (n2 )  edges of G. 0 

4.2 For Example: Cliques and Independent Sets 

In this section we consider four well-known graph problems-two pairs of problems that are 

complements of one another. We adopt the numbering scheme of Garey and Johnson [GJ79] 

for these problems. 

Problem GT19. CLIQUE: For t E z+, a graph G is a yes-instance iff there is a subset V' 

of V(G) with cardinality IV'I = t such that each pair of vertices in V' are adjacent. 

Problem GT20. INDEPENDENT SET: For t E z+, a graph G is a yes-instance iff there is a 

subset V' of V(G) with cardinality IV'I = t such that no pair of vertices in V' are adjacent. 

CLIQUE can be defined for any graph G = (V, E )  as follows: 
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For any fixed t E N, the expression "IV'I 2 t" can be translated into either CMS or CCMS 

logic-by providing t individual variables, and encoding that they are pairwise distinct 

elements of V'. Furthermore, "u N v" is either a CMS predicate (2.7.5) or a CCMS predi- 

cate (4.1.2). So the above statement (4.2.1) can be interpreted as either a CMS statement or 

a CCMS statement defining CLIQUE. It follows from Lemma 4.1.3 that I N D E P E N D E N T  SET 

(which is the complement-problem of CLIQUE) is CMS-definable over Gk. In fact, a CMS 

statement defining the latter problem over all graphs is obtained from statement (4.2.1) by 

simply replacing "u N v" with " l ( u  N v)". 

Arnborg et al. [ALS91] discuss the idea of leaving some of the variables unquantified in 

a CMS formula, thus obtaining a "modified" tree automaton to  maximize or minimize any 

polynomial function of the cardinalities of those variables. Courcelle and Mosbah [CM93] 

show how more general optimization functions can be implemented in this way. This idea 

provides linear-time algorithms over partial k-trees for the optimization problems corre- 

sponding to many CMS-definable decision problems. For example, the size of a maximum 

clique in a graph G = (V, E )  is encoded by the following variation of statement (4.2.1) 

max IV'I : ( (V' C V )  (VU, v E v')((u = v) V (u N v)) ) (4.2.2) 

By replacing the subexpression "u N v" with " ~ ( u  N v)", we can also encode the size of the 

largest independent set in this way. The important feature of formula (4.2.2) is that it does 

not refer to  the parameter t fixed in the description of the CLIQUE problem. The formula 

can be evaluated by a "modified" tree automaton over any partial k-tree, thus computing 

the size of a maximum clique in linear time. 

We now shift our attention to  the following pair of problems: 

Problem GT15. PARTITION INTO CLIQUES: For r E z+, a graph G is a yes-instance iff 

V(G) can be partitioned into r sets that each induce a clique in G. 

Problem GT4. CHROMATIC NUMBER: For r E z+, a graph G is a yes-instance iff V(G) 

can be partitioned into r independent sets. 

Example 4.2.3. PARTITION INTO CLIQUES is defined for any graph G = (V, E )  by the 

following CMS statement: 

(W' ,  El)( (El E )  A "each component of (V, El) is a clique" A 

"V' contains exactly one vertex of each such componentVA 

L'lv'I 5 r" ) 
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If V' is left unquantified in the above statement, then a "modified" tree automaton is 

obtained to minimize IV'I, thus determining the minimum number of cliques required to 

partition the vertices of a partial k-tree. The above statement, however, cannot be inter- 

preted in CCMS logic; so Lemma 4.1.3 is not helpful to obtain a CMS statement defining 

the complement-problem, CHROMATIC N U M B E R .  However, a CMS formula can be written 

to optimize CHROMATIC N U M B E R  for a partial k-tree G = (V, E) as follows: 

min IV'I : (3h ,  V2,. . .Vk+1)( "{Vl, V2,. . .Vk+l) is a partition of V(G)" A 

"each V ,  is an independent set" A (4.2.4) 

(vv)((v E v,) "Iv '  n V,l = 1") ) 

The validity of this formula is a consequence of the fact that the vertices of a partial k- 

tree G can always be partitioned into k + 1 independent sets. These independent sets can, 

furthermore, be chosen so that a forest is induced in G by the union of any pair of them-we 

will make use of this fact later in this chapter. 

Proposition 4.2.5. If G is  a partial k-tree, then V(G) can be partitioned into k + 1 inde- 

pendent sets such that the subgraph of G induced by the union of any ! + 1 of these sets is 

a partial !-tree (for 0 5 ! 5 k). Such a collection of independent sets is called a standard 

partition of V(G). 

Proof. Suppose G is a partial k-tree; and let (T, X) be a width-k tree decomposition of 

G. By Fact 2.6.2, V(G) can be partitioned into k + 1 sets Vl,V2,. . .Vk+1 such that no 

bag in X contains more than one vertex of any set V ,  (1 5 i 5 k + 1). It follows from 

property T2 (Def. 2.6.1) that each set V ,  is independent. Let V' be the union of any 

! + 1 of these independent sets. Hence, (T, XI) is a tree decomposition of Gpq ,  where 

X' = {X, n V'IX, E X). Each bag of X' has at most t + 1 vertices. Therefore, Gpq is a 

partial !-tree. 0 

Corollary 4.2.6. If {Il, 12,.  . . Ik+l) is a standard partition of the vertex set of a partial 

k-tree G, then the subgraph of G induced by I, U Ij  (for 1 5 i, j 5 k + 1) is acyclic. 

Proof. By Proposition 4.2.5, the subgraph is a partial 1-tree, which is a forest. 0 
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4.3 The xt-COLORING Problem 

A xt-coloring of a graph G is a partition of V(G) into independent sets (or color classes) 

with cardinality at most t. This is said to  be an optimal xt-coloring if the minimum number 

(denoted by xt(G)) of color classes are used. Using this notation, the chromatic number 

of G can be written x(G) = x,(G), where (V(G)( = n.  We will only be concerned with 

xt-colorings for fixed (constant) t. The problem of finding an optimal xt-coloring is known 

to have polynomial time complexity for several classes of graphs, including cographs [BJ93], 

bipartite graphs [BJ93], and split graphs [Longl]. For interval graphs, the problem is NP- 

hard when t > 4 [BJ93]; and its complexity remains open when t = 3. We will use CMS 

logic to  encode the decision version of this problem (for fixed t E N) over partial k-trees, 

thereby proving the problem has linear time complexity for partial k-trees. 

The decision problem, xt-COLORING, can be defined by a CMS statement similar to 

the statement (4.2.4) defining CHROMATIC N U M B E R  (Problem GT4): We need only add the 

requirement that each independent set contains a t  most t vertices. For the reasons explained 

in Section 4.2, however, we wish to  define x~-cOLOR.ING with a CMS statement that does not 

depend upon the number of color classes in a solution. Thus we wish not to  represent each 

color class by a distinct set variable. In Sections 4.4 and 4.5 we will show that xt-COLORING 

can be defined over partial k-trees in such a way. 

A x2-coloring of a graph G is a matching in the complement graph c: that is, a set 

of edges of with pairwise disjoint endpoints. Such a matching is said to be perfect if 

it consists of edges, where n = IV(G)I = ] v ( ~ ) I  is even. By analogy, we say that a 

xt-coloring of G is perfect if it uses exactly ? color classes, where n = IV(G)J - 0 (mod t ) .  

Problem 4.3.1. PERFECT X~-COLORING: A graph G is a yes-instance iff V(G) can be 

partitioned into some number of independent sets, each with cardinality t .  

Since a maximal matching in any graph can be found in polynomial time (see e.g. Berge 

[Ber76]), it follows that PERFECT ~2-COLORING has polynomial time complexity over all 

graphs. For t > 3, however, PERFECT X~-COLORING is NP-complete: This result is obtained 

by restricting the problem PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS-in which a 

graph G is a yes-instance iff V(G) can be partitioned into sets that each induce a subgraph 

of G isomorphic t o  some fixed pattern graph. Kirkpatrick and Hell [KH78] have shown 

this problem to be NP-complete for any pattern graph with three or more vertices; and 
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the PERFECT xt-COLORING problem is equivalent to  this problem with a pattern graph 

consisting of t isolated vertices. 

PERFECT xt-COLORING is the complement-problem of PARTITION INTO t-CLIQUES-in 

which a yes-instance is a graph G whose vertex set can be partitioned into sets, each 

of cardinality t ,  and each inducing a clique in G. The latter problem can be defined in CMS 

logic by modifying Example 4.2.3 as follows: 

(3Vt, El)( (E' E )  A "each component of (V, E') is a clique" A 

"each component of (V, E') has exactly t vertices") 

Now, Question 4.0.4 asks whether PERFECT xt-COLORING can be defined in CMS logic over 

partial k-trees. We will show in Section 4.4 that this can be done; and in Section 4.5 we 

will use that result to  show that CMS statements can also capture the optimization version 

of xt-COLORING over partial k-trees. 

4.4 Encoding PERFECT xt-COLORING over Partial k-Trees 

In this section we develop a CMS statement to  encode Problem 4.3.1, PERFECT xt-COLORING, 

over the class of partial k-trees. This problem can be stated formally as follows: 

XI, C2,. . . , CT : "{Ci)r=l is a partition of V(G)" A 
(4.4.1) 

( ''C; is independent" A "1C;I = t" ) 

This length of this statement depends upon the size of G: that is, r = 4 .  We will show, how- 

ever, that if a partial k-tree G satisfies this statement, then the color classes C1, C2, . . . , C, 

can be chosen in such a way that they can be grouped together into a constant number of 

larger independent sets: Thus, the following CMS statement is satisfied iff statement (4.4.1) 

is satisfied (provided G is a big enough partial k-tree): 

301, D2,.  . . , D2k+1 : 'L{~i):Lfl is a partition of V(G)" A 
(4.4.2) 

A::;'( "Di is independent" A ~ a r d ~ , ~ ( D ; ) )  

It is clear that the former statement (4.4.1) is satisfied if the latter statement (4.4.2) 

is satisfied: An assignment of Dl ,  D2, .  . . , D2k+1 can be converted into an assignment of 

C1, C2,. . . , CT by breaking each Di into sets of t vertices (this is possible because 

I D;I G 0 (mod t)). We now state Lemma 4.4.3, which shows the converse (provided G is big 

enough). 
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Preconditions 

Iv(G)l 2 3(k + 1)t 

0 IV(G)l= 0 (mod t )  

Z = {Il, 12,. . .Ik+1} is a standard partition of V(G), with lIil > t (1 5 i 5 k + 1) 

--- - - 

1. For!=1,2 ,..., k: 

(a) Fix i such that Ii contains the minimum nonzero number of uncolored vertices. 
(b) Fix j + i such that Ij contains the maximum number of uncolored vertices. 
(c) Create 2 sets, D2e-1 and D2! (each of cardinality 0 (mod t ), using all of the 

uncolored vertices of Ii, and at  most t - 1 of the vertices of 2. 
2. Assign the remaining uncolored vertices to  D2k+1. 

Figure 4.1: Algorithm to construct a perfect xt-coloring of a partial k-tree G 

Lemma 4.4.3. If statement (4.4.1) is satisfied for a partial k-tree G, then CMS state- 

ment (4.4.2) is also satisfied, provided IV(G)I > (5k + 1)t .  

We will prove Lemma 4.4.3 first under a simplifying restriction (Lemma 4.4.5). Following 

this, we will give the technical details needed to obtain the general result. The proof is 

constructive: We show how a standard partition (Prop. 4.2.5) of V(G) can be converted into 

an assignment of the sets Dl, D2, .  . . , D2k+1 to satisfy CMS statement (4.4.2). Figure 4.1 

presents an algorithm to compute these sets for any partial k-tree G that satisfies several 

specified conditions. As we discuss this algorithm, we say that a vertex is "colored" after it 

has been assigned to  Dl,  D2, .  . . or D2k+1. Initially, no vertex of G is colored. 

Invariant 4.4.4. Before each iteration of step ( lc) ,  Ij contains at least 2t uncolored ver- 

tices, and I; contains at least t uncolored vertices. 

Proof. We will show, inductively, that at the start of the tth iteration (1 5 ! 5 k): 

C1: all vertices are colored in ! - 1 of the independent sets in 1 ,  and 

C2: the other k + 2 - 1 independent sets each contain at least t uncolored vertices, and 
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C3: there are (in total) a t  least 2(k + 2 - !)t + (k + 1 - !)t uncolored vertices 

The invariant then follows easily, since I; is one of the independent sets satisfying C2; and 

by the pigeonhole principle (PHP), Ij contains more than 2t uncolored vertices. 

The base case (! = 1) follows directly from the stated preconditions. Assume, induc- 

tively, that C1, C2 and C3 are satisfied at the start of the tth iteration (1 5 ! 5 k). During 

this iteration, all vertices in I; become colored (hence C1 will be satisfied at  the start of the 

next iteration). At most t - 1 vertices of Ij become colored, leaving at least 2t - (t  - 1) > t 
uncolored vertices of Ij at the start of the next iteration (hence C2 will be satisfied). Since 

I; contains the minimum nonzero number of uncolored vertices, there are a t  least 

uncolored vertices that are not in I; (by the PHP). So after coloring t - 1 (or fewer) vertices 

of Ij, we are left with at least 

- ( - 1) > 2(k + 1 - !)t + ((k+1-e)2-1)t 2(k + 1 - + ,+,-, ( k + l  -e)+l 
= 2(k + 1 - !)t + ((k + 1 - !) - l ) t  

= 2(k + 2 - (! + 1))t + (k + 1 - (1 + 1))t 

uncolored vertices; hence C3 will be satisfied at the start of the next iteration. 0 

Lemma 4.4.5. Suppose G is a partial k-tree for which IV(G)I 2 3(k + l ) t  and IV(G)I E 

0 (mod t). If there exists a standard partition of V(G) with at least t vertices in each 

independent set, then CMS statement (4.4.2) is satisfied. 

Proof. Suppose Z = {Il, 12,. . .Ik+l) is a standard partition of V(G) such that each I; 

(1 5 i 5 k + 1) contains at least t vertices. Let Dl, D2, . . . , D2k+1 be the sets computed by 

the algorithm of Figure 4.1. Since D2k+l is a subset of some set in Z, it is an independent 

set. We need only show that it is possible to form two independent sets (D2e-l and Dae) in 

each tth iteration (1 5 ! 5 k) of step (lc). 

Let i, j be the indices chosen in steps ( la )  and ( lb)  of iteration !. Let F be the subgraph 

of G that is induced by the uncolored vertices of I; U Ij. By Proposition 4.2.5, F is a forest. 

By Invariant 4.4.4, F contains at least 2t vertices of Ij and at least t vertices of I;. Let V' 

be a set o f t  - 1 uncolored vertices of I j ,  chosen with maximal degree in F. 

Fact. F\V' has at least t distinct trees that each contain at least one vertex of I;. 



CHAPTER 4. THE COMPLEMENTS OF CMS-DEFINABLE PROBLEMS 

Decreasing number of vertices of I - 

Ld - 
At least h vertices of I j More than t-h vertices of Ii 

Figure 4.2: The trees of F\V1 

To verify this fact, note that if bF(v) 5 1 for any v E V', then no two vertices of I; will be in 

the same tree of F\V1. Otherwise, bF(v) 2 2 for each v E V'; so by deleting v we increase 

the number of trees containing a vertex of I;. 

Suppose F \V1 has t' 2 t trees; and let them be denoted Tl,T2,. . .,Ttr such that Th 

(1 5 h 5 t' - 1) contains at least as many vertices of Ij as does Th+1. Suppose there are 

f uncolored vertices of I;; and let f' be the residue of f (modulo t). We form D2e-l with 

f - f' uncolored vertices of I;, chosen from the lowest-indexed trees of F\V1. We form Dze 

with the remaining f' uncolored vertices of I; (from the highest-indexed trees) and t - 1 or 

fewer vertices of Ij (chosen from the lowest-indexed trees) such that IDze[ equals t or 0. To 

complete the proof, we need only show that Dze is an independent set. 

Suppose Dze is not independent: hence, D2e contains a vertex of I; and a vertex of Ij 

that belong to the same tree (say Th) in F\V1 (see Figure 4.2). Since the vertices of Ij (I;) 

were chosen from the lowest-indexed (highest-indexed) trees, D2e contains all vertices of Ij 

that belong to Tl,T2,. . . ,Th-l and all vertices of I; that belong to Th+l, Th+2,. . .Tp. So 

D2e contains at least h vertices of Ij (one from each of TI, T2, . . . , Th). Suppose that some 

number h' < h of the trees TI, T2,. . . , Th-l each contain a vertex of I;. Hence (by the "fact" 

above), at  least t - h' of the trees Th,Th+l,.. .Ttt each contain a vertex of I;. Therefore, 

Dze contains at least t - h' vertices of I;, for a total of at  least h + t - h' > t vertices (a 

contradiction). 0 

It follows from Lemma 4.4.5 that if G is a (large enough) partial k-tree for which t 

divides (V(G)(, then G can fail to have a perfect xt-coloring only if every standard partition 

of V(G) contains at least one small independent set. We now give the general proof of 

Lemma 4.4.3, without the restriction used in Lemma 4.4.5. 

Proof of Lemma 4.4.3. Let G be a partial k-tree with n 2 (5k + l ) t  vertices; and suppose 
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C1, C2,. . .,Cr are sets that satisfy formula (4.4.1). Let Z = (11, 12,. . . Ik+1) be a standard 

partition of V(G) .  Thus, each vertex of G belongs to  some set I; (1 5 i 5 k + 1) and some 

set Cj  (1 5 j 5 T ) .  Without loss of generality, assume each set I; is nonempty; and let v; 

be a vertex in I; such that the degree 6 4 ~ ; )  is maximum. 

We now wish to  assign each vertex to one of the color classes Dl, D2, . . . , D2k+1 to  satisfy 

statement (4.4.2): We say that a vertex is "colored" after it has been assigned to  one of 

these. We begin by coloring l . t vertices (where 0 5 l 5 k) by letting {Dl, D2,.  . . De) 

be a maximal subset of {Cj I v; E Cj; 1 5 j 5 r ;  1 5 i 5 k + 1) such that for each D;, 

(1 5 i' 5 l ) ,  there is an index i (1 5 i 5 k + 1) for which the following are true: v; E I; n D;,; 
I; has fewer than t uncolored vertices; and v; has degree 6 ~ ( v ; )  2 3kt. Thus, without loss 

of generality, we assume the following for fixed indices ! and m (after possibly renumbering 

the sets of Z): 

For 1 i 5 l, the following conditions hold: 

C2: SG(v;) 2 3kt. 

C3: There are fewer than t uncolored vertices in I; 

For l + 1 5 i 5 m, C3 is satisfied; and if SG(v;) 2 3kt, then v; is colored with 

Dl ,  0 2 , .  . . or De. 

For m + 1 5 i 5 k + 1: C3 is not satisfied. 

Since IV(G)J 2 (5k + l ) t ,  some set in Z has more than t uncolored vertices; so m 5 k. 

Notice that when each set in Z has sufficiently many vertices, then C3 is never satisfied (so 

l = m = 0) and the proof of Lemma 4.4.5 carries through. 

We now consider each set I; in the order 1,2, . . . , k + 1. At the ith step, we assign all 

uncolored vertices of Ii to one or two new color classes. There are several cases to consider: 

In cases 1 and 3, we also color at most t - 1 of the vertices that are not in I;; in case 2, we 

color at most 2(t - 1) of the vertices that are not in I;. These additional vertices are always 

chosen from a set of Z that contains enough uncolored vertices so that at least t uncolored 

vertices remain after the ith step. 

Case 1: 1 5 i 5 !. Exactly ( l  + i - l ) t  vertices are already colored: i.e. Dl U D2 U . . . U Dl, 

plus t vertices colored in each previous iteration. The sets I;+1, . . . , Im each satisfy C3 
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and, hence, their union contains at most (m - i)(t - 1) uncolored vertices. We have already 

colored a vertex v; E I; that has at least 3kt neighbors. Since m 2 l and 1 5 i 5 m 5 k, 

the pigeonhole principle (PHP) shows that v; has at least 

uncolored neighbors in some Ij (m + 1 5 j 5 k + 1). By Corollary 4.2.6, each vertex of 

I; - {v;) can be adjacent to at most one of those neighbors of v;. This implies that we can 

form an color class of size t (or 0) that contains all of the uncolored vertices of I; and at 

most t - 1 of the neighbors of vi. 

Case 2: l + 1 5 i 5 m. At most 2(i - l ) t  vertices are already colored; and no more than 

(m - i + l)(t  - 1) uncolored vertices are in Ii U I;+1 U . . . U I,. Since 1 5 i 5 m 5 k, the 

PHP shows there are at least 

uncolored vertices in some Ij (m + 1 5 j 5 k + 1). 

Let V' be the set comprised of all uncolored vertices of I;. If the maximal degree JG(vi) 

of a vertex in I; is 3kt or greater, then v; E I; has already been colored; so we can form one 

color class that is a superset of V', as in Case 1. Otherwise, we choose a vertex v E V' with 

the maximum number of neighbors belonging to Ij. Since JG(v) 5 3kt - 1, it follows that 

there are at least 

uncolored vertices in some I ~ I  that are not adjacent to v (where m + 1 5 j' 5 k + 1; possibly 

j = j'). Now, we can color the vertices in V' in one of the following two ways. In each case, 

we also color at most 2(t - 1) vertices of Ij U Ijt: 

Firstly, suppose v has t or more uncolored neighbors belonging to Ij. By Corollary 4.2.6, 

each vertex of V' - {v) is adjacent to at  most one of those neighbors; so we can select 

t - (IV'I - 1) of those neighbors that are not adjacent to any vertex of V' - {v). Therefore, 

we can form one color class of size t (or 0) that contains at  most t - 1 of those neighbors, 

in addition to the vertices of V' - {v). We then form a second color class containing v and 

t - 1 of the uncolored vertices of I ~ I  that are not adjacent to v. 

Otherwise, no vertex of V' has more than t - 1 uncolored neighbors that belong to Ij. 

Since Ij contains at least 5t uncolored vertices, I; contains fewer than t uncolored vertices, 
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and I; U Ij induces a forest, we can easily form two color classes whose union contains all 

the uncolored vertices of I;, and some of the vertices of Ij. 

Case 3: m + 1 5 i 5 k. At most (m + i - l)(t  - 1) vertices in I;+l U U . . . U Ik+1 are 

already colored: i.e. while coloring each of 11, 1 2 , .  . . , I,, we colored at most 2(t - 1) vertices 

of Ij+1 U I;+2 U . . . U Ik+1 ; and while coloring each of . . . , Ii_l, we colored at most 

t - 1 of them. Since m < i 5 k, the PHP shows there are at least 

uncolored vertices in some Ij (i + 1 < j 5 k + 1). I; contains at least t uncolored vertices, 

and can be handled (as in the proof of Lemma 4.4.5) using two color classes. 

Case 4: i = k + 1. All uncolored vertices belong to  some set of the standard partition; 

hence, they can be assigned to one color class. 0 

Theorem 4.4.6. PERFECT xt-COLORING is CMS-definable over the class of partial k-trees 

as follows: 

ID1, D2, .  . . , DSk : ( ~ D ; ) ~ ~ ~  is a partition of V(G)" A 

l\5k a = 1  ( '(D; is an independent set" A cardott(D;)) 

Proof. It is clear that if the above statement is satisfied for a graph G, then (4.4.1) is also 

satisfied, since each set D; can be broken into 9 sets o f t  vertices. 

Suppose, conversely, that formula (4.4.1) is satisfied for a partial k-tree G: Thus V(G) 

is partitioned into independent sets C1, C2, . . . , C,, each of cardinality t. If T 5 5k, then 

the above statement is satisfied by D; = Ci for 1 < i < r ,  and D; = 0 for T + 1 5 i 5 5k. 

Otherwise, IV(G)I 2 (5k + l ) t ,  and Lemma 4.4.3 shows that only 2k + 1 nonempty sets D; 

are required. 0 

4.5 Optimization of xt-COLORING over Partial k-Trees 

In this section we are interested in finding the minimum number xt(G) of color classes in a xt- 

coloring of a partial k-tree G. A color class C will be called full if ICI = t, and will be called 

light if 1 5 ICI < t. After augmenting G with enough isolated vertices to fill all color classes, 

we can use the algorithm for PERFECT xt-COLORING (from Section 4.4) as a subroutine to 
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node c 

Figure 4.3: Recoloring vertices 

solve the optimization problem. A careful analysis of the proof of Lemma 4.4.3 shows that, 

by removing the requirement that the xt-coloring be perfect, the only color classes that need 

be light are Dl, D 2 . .  .Dl (where 0 5 .t 5 k) and the last color class to  be used: i.e. there 

are at most k + 1 light color classes-provided IV(G)I 2 (5k + 1)t. In this section we derive 

this bound directly (regardless of the size of G). It follows that the optimization problem 

can be solved by k + 1 calls to the algorithm for PERFECT xt-COLORING. 

Lemma 4.5.1. A partial k-tree can be optimally xt-colored such that no more than k + 1 

color classes are light. 

Proof. Suppose G is a partial k-tree for which every optimal xt-coloring has more than 

k + 1 light color classes. Let C1, C2,.  . . , CT be an optimal xt-coloring of G, chosen according 

to the following criteria: 

C1: As many color classes as ~ossible are full; and 1 5 IC;I 5 t - 1 for 1 5 i 5 k + 2. 

C2: ICk+21 is minimized among all xt-colorings that satisfy criterion C1. 

Let G' be the subgraph of G induced by Cl U C2 U . . . U Ck+2; and let H be any component 

of G' that contains at  least one vertex of Ck+2. Let (T , r ,  X) be a width-k rooted tree 

decomposition of H ;  we assume %,,(H) = 0, so that r does not have any non-drop vertex 

(Def. 2.6.5). Now, we may recolor the vertices of H ,  using only C1, C2,. . . and Ck+2, without 

any regard for the vertices of G\H.  
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Suppose a is a leaf of T. If a vertex (say v) belongs to  X, n Ck+2, then there is a color 

class Cj  (1 5 j < k + 1) such that X, nCj = 0. If v is a drop vertex of a ,  then (by Def. 2.6.1) 

X, contains each vertex that is adjacent to v; hence, v can be recolored with Cj, reducing 

the size of Ck+2 (contradicting criterion C2). This establishes the basis of the following 

Induct ive Hypothesis.  For a E V(T), XTa can be partitioned into C1, C2,. . . , Ck+2 such 

that: 

H 1  if v E XTa fl Ck+2, then v is a non-drop vertex of a ,  and 

H 2  there is a color class Cj  (1 5 j 5 k + 1) such that no bag in XTa contains both a vertex 

of Cj and a vertex of Ck+2. 

Suppose that b is an internal node of T ,  such that each child of b satisfies the inductive 

hypothesis. By H 1  (inductively), no vertex of XTb - Xb belongs to Ck+2. Since lXb 1 5 k + 1, 

there is a color class (without loss of generality, say C1) such that Xb does not contain both 

a vertex of C1 and a vertex of Ck+2. For each child c of b (inductively) there is a color class 

Cj, (1 5 j, 5 k + 1) such that no bag in XTc contains both a vertex of Cjc and a vertex of 

Ck+2. Hence, if either X, n Ck+2 = 0 or Cj, = C1 holds for each child c, then H 2  is satisfied 

by the node b. If neither of those conditions is satisfied for some child c, then there is some 

vertex (say v) belonging to  Xb n X, fl Ck+2; and Xb fl C1 = X, n Cjc = 0 (see Figure 4.3). It 

follows that we can swap the color classes C1 and Cjc for the vertices of XT, - Xb. To see 

that this is possible, we recolor the vertices one-at-a-time in the following order: 

1. For each u E Cjc n XTc, recolor u with Ck+2. 

2. For each u E Cl n XTc, recolor u with Cjc. 

3. For each u E Ck+2 fl (XTc - Xb), recolor u with C1. 

We may repeat this process for each child c. If, at any stage of the recoloring, a color 

class becomes filled, we have contradicted criterion C1. After the recoloring, no bag in XTa 

contains both a vertex of C1 and a vertex of Ck+2 (hence a satisfies H2). Furthermore, 

no vertex of XTa fl Ck+2 can be a drop vertex of a ,  since this would contradict C1. It 

follows inductively that H 1  is satisfied by the root of T (which has no non-drop vertex). 

Therefore, all the vertices of H can be colored using C1, C2,.  . . , Ck+l, without using Ck+2 

(contradicting criterion C2). 0 
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It is easy to see that the upper bound of k + 1 light color classes (given by Lemma 4.5.1) 

is tight whenever t > 1. Consider the clique on k + 1 vertices: This is a partial k-tree, and 

no two vertices may share the same color class. 

The following corollary follows immediately from Lemma 4.5.1 : 

Corollary 4.5.2. If G is a partial k-tree on n vertices, then I: xt(G) I: + k. 

So for any partial k-tree G (on n vertices), xt(G) is the minimum value of + t (over 

0 5 l 5 k) such that G is a yes-instance of a decision problem IIe, which we now show to 

be CMS-definable. 

Theorem 4.5.3. For 0 5 t 5 k, the following decision problem is CMS-definable over 

partial k-trees: 

Proof. Let G be a partial k-tree; and suppose IV(G)I + c - 0 (mod t), for 0 I: c 5 t - 1. 

For 0 I: t I: k, let Ge be the graph obtained by adding c + t t  isolated vertices to G. 

Hence, G E IIe iff Ge is a yes-instance of PERFECT xt-COLORING. By Theorem 4.4.6, this is 

definable by a CMS statement in which V(G) is partitioned into 5k independent sets, each 

with cardinality divisible by t. The isolated vertices of Ge\G are free to belong to any of the 

independent sets; hence, IIe is CMS-definable by modifying the statement of Theorem 4.4.6 

as follows: 

301, D2,. . . , DSlc : " { ~ j ) ~ ~ ~  is a partition of V(G)" A 

/\5k a = 1  ( "D; is an independent set" A @(Dl, 0 2 , .  . . , D5k)) 

where @ encodes the following (using the card predicates of CMS logic): 

where k' is the number of color classes D; (1 5 i 5 5k) whose cardinality is not divisible by 

t; and 11 Dillt denotes the residue of I DiI (mod t). 0 

By Theorem 2.8.3, it can be decided in linear time whether a partial k-tree belongs to 

each IIe (0 5 t 5 k). This provides a linear-time algorithm to compute xt(G) for a partial 

k-tree G. 



4.6 f -Factors and their Complements 

An f -factor of a graph G is a subgraph F of G such that V(F) = V ( G )  and each vertex 

v has degree SF(v) = f (for some fixed constant f E Z+). A graph G is a yes-instance 

of the f -FACTOR problem iff G contains an f -factor. The CONNECTED f -FACTOR problem 

is the variation in which G is a yes-instance iff it contains an f-factor that is connected. 

The 1-FACTOR problem is simply a reformulation of the PERFECT MATCHING problem- 

which is the complement of PERFECT ~2-COLORING (Problem 4.3.1). A yes-instance of 

the %FACTOR problem is a graph whose vertices can be covered with disjoint cycles. The 

CONNECTED 2-FACTOR problem is also known as the HAMILTONIAN CIRCUIT problem. 

f-Factors were first studied by Petersen [Pet911 in 1891. Tutte [Tut52] considered a more 

general problem, where an instance consists of a graph G and a function f : V(G) -t N. For 

the general problem, Tutte7s f -Factor Theorem elegantly characterizes all graphs that con- 

tain a factor F with degree SF(v) = f (v) for each vertex v. Such graphs can be recognized 

in polynomial time, by reducing the problem to recognizing graphs that contain a per- 

fect matching ( i e .  1-factor); the details of the reduction can be found in [Bo178]. In the 

remainder of this chapter, we are only concerned with f-factors for a fixed constant f .  

It is much more difficult to recognize graphs with connected f-factors. For f = 1 the 

problem is trivial, but for f > 2 the problem is NP-complete. The HAMILTONIAN CIRCUIT 

(or CONNECTED %FACTOR) problem is one of the classic NP-complete problems [GJ79], and 

it is easily reducible to  the CONNECTED f-FACTOR problem for any f > 3. There are classes 

of graphs for which each member contains a Hamiltonian circuit: for example, Dirac [Dir52] 

showed that every graph with minimum degree contains a Hamiltonian circuit (where n 

is the number of vertices of the graph). Remarkably, the HAMILTONIAN CIRCUIT problem 

remains NP-complete over the class of graphs with minimum degree S(n), for any S(n) < 4 
[DHK93]. The complement of a partial k-tree has average degree exceeding (except for 

some small graphs); however, there is no nontrivial lower bound on the minimum degree, 

and the Hamiltonian circuit problem is still interesting over this class of graphs. 

We have shown (Example 2.7.8) that HAMILTONIAN CIRCUIT is CMS-definable over 

general graphs. It is not difficult to modify that example to define f -FACTOR (with or 

without connectedness) for any f E N. Question 4.0.4 now asks whether the complements 

of these problems are CMS-definable over partial k-trees. In the following sections we answer 

this question affirmatively. The complement of f-FACTOR can be expressed as either of the 
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following (equivalent) questions, for an input graph G: 

0 Does there exist an irreflexive and symmetric relation on V(G) in which every vertex 

v is paired with exactly f vertices that are not adjacent to v? 

0 Does c contain an f -factor? 

Because the latter question is more "natural", our presentation will be more intuitive by 

considering the f -FACTOR problem over the class G of partial k-tree complements. In 

Section 4.7 we develop a CCMS formula encoding the f-FACTOR problem over Z. It then 

follows (by Lemma 4.1.3) that the complement problem can be encoded in CMS over the 

class of partial k-trees. In Sections 4.8 and 4.9 we will use this same approach to  show that 

the complement of CONNECTED f-FACTOR is CMS-definable over partial k-trees. 

4.7 Encoding an f-Factor in CCMS Logic 

In this section we derive a CCMS statement to define f-FACTOR (for any f E N) over the 

class 6k of partial k-tree complements, thus showing that the complement of f -FACTOR is 

CMS-definable over the class GI, of partial k-trees. CCMS does not allow us to  explicitly 

represent any edge subset of the evaluation graph; but we can explicitly represent the 

endpoints of a constant number of edges. The vertices of a graph G E 6k can be partitioned 

into k + 1 cliques; and we will show that an arbitrary f-factor in G can be transformed, by 

a series of edge flips, into a standardized f-factor in which most of the edges are contained 

within these cliques. Such edges need not be explicitly enumerated by a CCMS statement 

because their existence is guaranteed whenever the corresponding clique is big enough and 

a certain parity condition is satisfied. 

Throughout this section G is some graph in Z, and C is a standard partition (Prop. 4.2.5) 

of V(G). Hence, C is a collection of k + 1 sets partitioning the vertices of G such that each 

set induces a clique in G (or an independent set in c ) .  We will refer to  each set in C as a 

color class. 

Definition 4.7.1. An edge of G is called monochromatic if its endpoints belong to the same 

color class; otherwise it is called dichromatic. 

Definition 4.7.2. Suppose H is a subgraph of G. Two dichromatic edges are said to  be 

parallel in H if 
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u?. . . . . . y' 8 color c h s  c3 

Figure 4.4: Parallel edges in a subgraph of G 

their endpoints belong to the same two (distinct) color classes, and 

all four of the endpoints are distinct, and 

there are no monochromatic edges induced in H by the four endpoints. 

Figure 4.4 illustrates a pair of dichromatic parallel edges in a subgraph (say H) of G; 

these edges are depicted by solid lines. Dashed lines are used to  indicate that the like-colored 

endpoints are not adjacent in H. The like-colored endpoints are, of course, adjacent in G 

(because each color class induces a clique). 

We easily obtain the following proposition: 

Proposition 4.7.3. Let f E z+, and suppose F is an f -factor of G. If el and e2 are parallel 

dichromatic edges of F ,  then the graph obtained by the following sequence of operations is 

an f -factor of G. 

1. Add, to F ,  the two monochromatic edges between the endpoints of el and e2. 

2. Delete el and e2 from the resulting graph. 

We  will refer to this sequence of operations as a parallel flip of el and e2. 

We wish to  transform an arbitrary f-factor of G into an f-factor for which the number 

of dichromatic edges is bounded by a constant: to do this, we use the following lemma to 

identify two parallel dichromatic edges which can be flipped. We present a more general 

result ( to identify any constant number of parallel edges) which will be useful in Section 4.9: 

Lemma 4.7.4. Let f , p  E z+, and suppose F is an f-factor of G. If F has 2 p f 2  or more 

dichromatic edges between two fixed color classes, then p of these edges are pairwise parallel. 
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Proof. The lemma is trivially true when p = 1. We inductively assume it is true for some p, 

and suppose F contains 2(p+ 1) f dichromatic edges between two fixed color classes (say C 

and C'). Let e be one of these edges: Any other (say el) of these edges is parallel to e unless 

either e and e' share an endpoint, or their like-colored endpoints are adjacent (in F). Since 

each vertex has degree f ,  it follows that F contains a t  most 2( f - 1)2 edges between C and 

C' that are not parallel to e. Therefore, F contains at least 2(p+ 1) f 2  - 2( f - 1)2 - 1 > 2pf2 

edges (excluding e) between C and C' that are parallel to e. Among these edges (inductively) 

there exist p pairwise parallel edges. 0 

Lemma 4.7.5. For f E z+, there exists a constant f' (depending only on f and k) such 

that if G contains an f -factor, then G contains an f -factor with fewer than f' dichromatic 

edges. 

Proof. If an f-factor of G contains 4 f (or more) dichromatic edges between two fixed color 

classes, then (by Lemma 4.7.4) two of these edges are parallel. Using Proposition 4.7.3, we 

can flip pairs of parallel edges until fewer than 4 f dichromatic edges remain between each 

pair of color classes. Since there are only (k:l) distinct pairs of color classes, the resulting 

f -factor has fewer than 4 f (k:l) dichromatic edges. 0 

We have now established that an f-factor with a bounded number of dichromatic edges 

necessarily exists if any f-factor exists in G. In order to prove the sufficiency of representing 

only the dichromatic edges (and possibly also a constant number of monochromatic edges) 

we will need the following lemma-which is a consequence of Tutte's f-Factor Theorem 

[Tut52]. We give here a constructive proof, which will be helpful in Section 4.9. 

Lemma 4.7.6. Suppose H is a factor of G containing only a constant number of edges, 

and let f be an upper bound on the degree SH(v) of any vertex v. Suppose further that V(G) 

is partitioned into k + 1 color classes, each inducing a clique in G. There exists a constant 

f" (depending only on f) such that if a color class (say C) contains f" or more vertices, 

and 

then it is possible to replace the monochromatic edges between vertices of C with a larger set 

of monochromatic edges so that each vertex in C has degree f .  
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1: If two light vertices in C are non-adjacent, then add an edge between them. 

2: If C contains only one light vertex (say v), then let u,ul E C be adjacent non-light 
vertices such that neither u nor u' is adjacent to  v: 
Now, delete the edge {u, u') from H ,  and add two new edges {u, v) and {u', v). 

3: Otherwise, C contains two adjacent light vertices (say v, v' . Let u, u' E C be adjacent 
I) non-light vertices such that u is not adjacent t o  v, and u is not adjacent to  v': 

Now, delete the edge {u, u') from H ,  and add two new edges {u, v) and {u', v'). 

Figure 4.5: Adding monochromatic edges to  a factor H 
( C  is a color class that satisfies the parity condition (4.7.7)) 

Proof. Suppose that the parity condition (4.7.7) is satisfied for a color class C. Figure 4.5 

gives three different ways to modify H ,  incrementing the number of monochromatic edges 

with endpoints in C. In the rest of this proof we treat H as a dynamic variable: A vertex 

v E V(H) is called light as long as SH(v) < f .  When we say that two vertices of C are 

adjacent, we mean that H currently contains an edge between them. 

If some vertex in C has degree less than f ,  then one of the steps (in Figure 4.5) can 

be applied to increment the number of edges. In steps 1 and 3, two distinct light vertices 

have their degrees incremented by one. In step 2, there is only one light vertex, and its 

degree is incremented by two; by the parity constraint (4.7.7), its degree was at  most f - 2 

beforehand. Therefore, no vertex is ever made to  exceed degree f .  To complete the proof, 

we need only show that the required vertices u, u' E C exist when steps 2 and 3 are applied. 

Suppose step 2 is to be applied: So C contains only one light vertex, v. Let X be the 

subset of C - {v) comprised of the non-light vertices that are not adjacent t o  v. Now, C -X 
contains at most f - 1 vertices, each of which is adjacent to  fewer than f vertices of X; 

so there are only a constant number of edges between X and C - X. Furthermore, there 

are only a constant number of dichromatic edges incident to vertices in X. But X contains 

more than f" - f vertices, each of which has degree f .  Therefore, provided the constant f" 

is large enough, there must be a monochromatic edge between two vertices in X: These are 

the required vertices, u and u'. 

The proof for in step 3 is similar: There are two light vertices, v and v'. Let X be the 

subset of C - {v, v') comprised of the non-light vertices that are adjacent to neither v nor v'. 

Without loss of generality, we assume step 1 cannot be applied; hence, the light vertices are 
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1. {C1, Cz, . . . , Ck+l) is a partition of V(G) into cliques. 

2. For 1 5 i 5 f k ,  either vi, vi are "null", or v; v:. NO adjacency of G is represented 
by two different pairs in this way. 

3. For 1 5 j 5 k + 1: if lCj) < f", then 

(a) V x  E Cj: x appears exactly f times as an enumerated endpoint, v; or v: 

4. For 1 5 j 5 k + 1: if )Cj) 2 f", then 

(a) V x  E Cj: x appears at most f times as an enumerated endpoint, v; or vj 

(b) E:, E:, . . . E; 2 Cj and each x E Cj appears in exactly one of these sets for 
appearance of x as an enumerated endpoint 

f (c) flCjl - IEjll - IEf1 - . . . - IEj I is even 

each 

- - 

Figure 4.6: CCMS definition of f-FACTOR for the complement G of a partial k-tree 
(constants fk  and f" are dependent only on f and k) 

pairwise adjacent. Therefore, C - X contains at most f light vertices, and at most 2(f - 1) 

non-light vertices. It follows that there is a monochromatic edge between two vertices of X 

(provided the constant f" is large enough). 0 

Theorem 4.7.8. For f E N, the f-FACTOR problem is CCMS-encodable over partial k-tree 

complements. 

Proof. Suppose the complement G of a partial k-tree is a yes-instance of the f -FACTOR 

problem. We instantiate the variables shown in Figure 4.6 as follows: C1, C2, . . . , Ck+l are 

the color classes comprising a standard partition of V(G). By Lemma 4.7.5, G has an f -  

factor in which only a constant number of edges are dichromatic. We explicitly enumerate 

the endpoints v;, v: of each dichromatic edge, and each monochromatic edge in a "small" 

color class (i.e. those with cardinality less than the constant f" of Lemma 4.7.6); we have 

used fk  to  denote a constant bounding the number of these explicitly enumerated edges. 

Finally, we let the sets E; (1 j j 5 k + 1; 1 < i 5 f )  be as specified by item (4b). The 

statements in the figure are not difficult t o  encode in CCMS logic, and it is easy to see that 

they are all satisfied when the variables are as described above. 
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Suppose, conversely, that the statement of Figure 4.6 is satisfied for the complement G 

of a partial k-tree. Let H be the factor of G whose edge set contains exactly the enumerated 

edges {v;, v:) (1  5 i 5 fk). So, for each "large" clique Cj (1 5 j < k + I), the following 

quantity is bounded by a constant: 

Item (4c) states that f lCil -d is even: This is exactly the parity condition (4.7.7). Hence, by 

Lemma 4.7.6, the f -factor can be completed by adding monochromatic edges to  the factor 

H .  0 

From Theorem 4.7.8 and Lemma 4.1.3, we obtain 

Corollary 4.7.9. For f E N, the complement of the f-FACTOR problem is CMS-encodable 

over partial k-trees. 

4.8 Encoding HAMILTONIAN CIRCUIT in CCMS Logic 

In this section we derive a CCMS statement to  define HAMILTONIAN CIRCUIT over the class 
- 
Gk of partial k-tree complements. Throughout this section (just as in Section 4.7), G is 

some graph in z, and C is a standard partition of V(G) into k + 1 color classes. We show 

that if H is a connected 2-factor of G, then Proposition 4.7.3 can be used to flip pairs of 

parallel edges so that the number of dichromatic edges is bounded by a constant. We must 

be careful, though, that this operation does not disconnect the 2-factor. 

Definition 4.8.1. Suppose el and e2 are parallel dichromatic edges in a subgraph H of 

G. If H \{el, e2) has a component containing an endpoint of el and the oppositely-colored 

endpoint of e2, then we say that el and e2 have an N-configuration in H .  

Suppose, for example, that the parallel edges are el = {u, u') and e2 = {v, v'), as shown 

in Figure 4.4. These edges have an N-configuration iff H\{el,ez) contains either a path 

between u and v', or a path between u' and v. If H is a Hamiltonian circuit, then H\{el, e2) 

is simply the disjoint union of those two paths. 

Lemma 4.8.2. If a Hamiltonian circuit of G has three dichromatic edges between two fixed 

color classes, then some pair of them can be flipped to give a (still connected) Hamiltonian 

circuit. 
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Proof. It is readily verified that if three dichromatic edges pass between two fixed color 

classes of a Hamiltonian circuit, then two of those edges are parallel and have an N- 

configuration. Furthermore, a connected subgraph of G does not become disconnected 

by making a parallel flip of edges in an N-configuration. 0 

Since there are only (*il) different pairs of color classes, we obtain 

Lemma 4.8.3. If G contains a Hamiltonian circuit, then G contains a Hamiltonian circuit 

with at most 2(*i1) dichrornatic edges. 

Theorem 4.8.4. HAM ILTONIAN CIRCUIT is CCMS-definable over the class of partial k-tree 

complements. 

Proof. A CCMS formula can state that, for some constant r < 6 there exist nonempty 

vertex subsets XI ,  X2, .  . .X, for which: 

0 XI, X2,.  . . X, is a partition of v(G), and 

a clique is induced in G by each of Xi U X;+l (1 5 i 5 r - 1) and X1 U X,. 

When these conditions are satisfied, a Hamiltonian circuit of G can be obtained by first 

visiting all of the vertices of X1 (in any order), then all of the vertices of X2,  and so on. 

Conversely, suppose H is a Hamiltonian circuit in G. Without loss of generality (by 

Lemma 4.8.3), assume that H has no more than 2(*z1) dichromatic edges. Let the vertices 

of G be enumerated vl, v2, . . . v,, such that E ( H )  consists of {v;, ~;+~)71' and {v,, vl). 

The vertices can be ~ a c k e d  into r 5 6(*i1) nonempty sets XI,  X2, .  . . , X, to  satisfy the 

conditions itemized above: We treat [XI, X2, . . . , X,] as a circular sequence; and for each 

edge of H, we pack its endpoints either into the same set or into consecutive sets, such that 

a singleton set contains each endpoint of each dichromatic edge, and some set contains all 

the intervening vertices between any pair of dichromatic edges. Hence, the union of any 

two consecutive sets is either a monochromatic set or a dichromatic edge; so the conditions 

itemized above are satisfied. 0 

Figure 4.7 shows an example of how the first ten vertex sets XI,  X2, .  . .XIO are con- 

structed in the proof of Theorem 4.8.4 when G has n 2 10 vertices. Let i > 3, and let 

i + 4 5 j < < n, and suppose all but five of the edges of H induced by {v ,  , vl , v2, . . . , 
are monochromatic: The five dichromatic edges are marked with triangles in Figure 4.7. 
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Figure 4.7: Hamiltonian circuit 
(Triangles indicate dichromatic edges) 

4.9 Encoding a Connected f-Factor in CCMS Logic 

We now generalize the result of the previous section, showing that CONNECTED f -FACTOR 

is CCMS-definable (for any f E N) over the class 6k of partial k-tree complements. Again, 

throughout this section G is some graph in G, and C is a standard partition of V(G) into 

k + 1 color classes. We show that, by a series of edge flips, any connected f-factor in G 

can be transformed into one in which the number of dichromatic edges is bounded by a 

constant. 

Definition 4.9.1. Suppose F is an f-factor of G. An edge in E(G) - E ( F )  is said to be a 

nonedge of F. An alternating circuit in F is an even-length cycle in G that is composed by 

alternating edges of F with nonedges of F. 

In order to transform the f-factor, we will repeatedly find an alternating circuit, and flip 

its edges with its nonedges. An alternating circuit of a connected f-factor will be called 

useful if this flip operation results in a connected f-factor with fewer dichromatic edges. 

In Section 4.8 we flipped pairs of parallel edges in an N-configuration: This is one type of 

useful alternating circuit. In this section we also need other types. 

Lemma 4.9.2. Let f 2 2; and suppose F is a connected f-factor of G. If F contains 

max{4, [%I} or more pairwise parallel edges between two fixed color classes, then there 

exists a useful alternating circuit in F. 

Proof. Suppose F contains r > max{4, [El} pairwise parallel edges between two fixed 

color classes, say C and C'. Let E' = {el, e2,. . . , e,} be the set of these parallel edges; for 
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Figure 4.8: Connected f -factor without N-configuration 
(Rectangles represent components after deleting the edges el ,  e2,. . .e,) 

1 < i < r ,  let v; E C and v: E C1 be the endpoints of e;. If any pair of edges in El have an 

N-configuration, then they are the edges of a useful alternating circuit. So suppose that no 

two of them have an N-configuration. 

Claim. F\E1 consists of r + 1 components. The vertex set of one of these components is a 

superset of either {q, 712,. . . , v,) or {vi, vi, . . . , v:). 
Suppose the claim is false. Since F is connected and IEII = r ,  there are at most r + 1 

components of F\E1. Since no pair of edges in E' has an N-configuration, no component 

of F\E1 contains the oppositely-colored endpoints of two distinct edges in El. Hence, 

F\E1 has two distinct components (say H and Hi), each containing at  least two vertices of 

{v;, v: 11 < i < r). Let i (1 5 i 5 r )  be the largest index such that H and HI belong to the 

same component of F\{el, en, . . . , e;-l). Let I and I' be components of F\{el , e2, . . . , e;) 

such that v; E V(I)  and v: E V(I1). 

Now, for 1 5 j 5 r ,  I\E1 does not contain a path between v; and vj (otherwise e; and 

e j  would have an N-configuration). Hence, for some j # i, there is a path in I\E1 between 

v; and vj (for otherwise I would not be connected). Similarly, for some h # i, there is a 

path in I1\E1 between v: and v;. Since IE1l 2 3, we can assume without loss of generality 

that h # j .  Therefore, e j  and eh have an N-configuration-because a path between vj and 

vf, need not pass through any edge of E - {e;). This contradiction establishes the claim. 

Without loss of generality, we now assume that vi , vi, . . . and v: belong to  some com- 

ponent of F\E1 (see Figure 4.8). Let T; (1 5 i 5 r )  be a maximal induced subgraph of F 

such that T; is a tree containing the vertex v;, and each vertex of T; belongs t o  color class 

C. We say that a vertex s of F\T; is a neighbor of T; if there is an edge of F between x 

and some vertex of Ti. Clearly, each tree T; has at least f - 1 neighbors, and no vertex is 

a neighbor of more than one of them. Therefore, there are at least [ E l ( f  - 1) 2 k + 1 
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Case 1 Case 2 

Figure 4.9: Useful alternating circuits 
(%" = 0 or more edges; "+" = 1 or more edges) 

neighbors in total. We consider two cases: 

Case 1. The color class C contains a vertex (say x) that is a neighbor of one of the trees, say 

tree TI. Since TI is a maximal induced tree whose vertices have color C ,  it follows that x is 

adjacent to  two distinct vertices (say tl and ul) of TI. This is illustrated in Figure 4.9, where 

the tree TI is depicted as a triangle surrounded by the vertices t l ,  ul, vl (possibly vl = tl 

or vl = ul). Since v2 and x (respectively, v3 and ul) have the same color, but belong to 

different components of F\E', it follows that they are the endpoints of a non-edge of F 

(depicted by a dashed line in Figure 4.9). Therefore, the vertices x, ul ,  v3, vi, v;, v2 induce 

an alternating circuit-the edges of which are labeled with filled triangles in Figure 4.9. 

Two of these edges are dichromatic, and each of the non-edges is monochromatic. So this 

is a useful alternating circuit. 

Case 2. None of the b + 1 (or more) neighbors belong to  C. By the pigeonhole principle, 

two of these neighbors (say x and y) belong to the same color class. Since there are at 

least four trees Ti, we can assume, without loss of generality, that x and y are neighbors of 

trees other than T2 and T3. By Corollary 4.2.6, there exists an edge of G ( i . e .  a non-edge 

of F )  between x (or y) and vh (or vi). Without loss of generality assume that {x, v;) is a 

non-edge of F, and that x is a neighbor of TI: So let tl be a vertex of TI such that {x, t l)  is 

an edge of F (see Figure 4.9). Therefore, the vertices x, tl,  vz, v; induce a useful alternating 

circuit-with two dichromatic edges and (at most) one dichromatic non-edge. 0 

Combining Lemma 4.7.4 with Lemma 4.9.2, we see that whenever there are enough 

dichromatic edges in a connected f-factor, there exists a useful alternating circuit whose 
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edges can be flipped to  reduce the number of dichromatic edges: 

Lemma 4.9.3. For fixed f E N ,  there exists a constant f' such that i f  G contains a con- 

nected f -factor, then G contains a connected f -factor that has fewer than f' dichromatic 

edges. 

Theorem 4.9.4. For f E N, the C O N N E C T E D  f -FACTOR problem is CCMS-encodable over 

partial k-tree complements. 

Proof. The problem is trivial to encode for f = 0 and f = 1. By Theorem 4.8.4, it can be 

encoded for f = 2. To encode it for f 2 3, we augment the CCMS formula of Figure 4.6 

with an additional statement to express the following: 

Vu, v E V(G) : "the factor contains a path between u and v" 

This path can be represented by explicitly enumerating the sequence of vertices [xl, x2, . . . , xe] 

where u = XI, v = xe and (for 1 5 i 5 ! - 1) either 

xi and x;+1 are endpoints of an explicitly enumerated edge, or 

x; and x ; + ~  belong to  the same "large" color class, and neither is incident with f of 

the explicitly enumerated edges 

In the latter case, we appeal to Lemma 4.7.6 to  ensure that the represented f-factor ( f  2 3) 

has a path between x; and x;+1 that consists of only monochromatic edges. Note that 

connectedness is always preserved by the procedure given (in Figure 4.5) to  add monochro- 

matic edges between vertices of "large" color classes. We just need to start with a connected 

graph among those vertices-which is easy to  do when the color class is large enough and 

f 2 3: 0 

From Theorem 4.9.4 and Lemma 4.1.3, we obtain 

Corollary 4.9.5. For f E N ,  the complement of the C O N N E C T E D  f -FACTOR problem is 

CMS-encodable over partial k-trees. 
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As defined by Garey and Johnson [GJ79, Problem GT121, an instance of PARTITION INTO 

ISOMORPHIC SUBGRAPHS consists of two graphs G and H ,  with IV(G)I = rIV(H)I for some 

r E z+. Since this does not fit into our formalism (Def. 4.0.1), we will fix the pattern graph 

H in the problem description: 

Problem 4.10.1. PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS: For a fixed pattern 

graph H ,  a graph G is a yes-instance ifl  V(G) can be partitioned into sets that each 
IV(H)I 

induce a subgraph of G isomorphic to H .  

Kirkpatrick and Hell [KH78] have shown Problem 4.10.1 t o  be NP-complete for any pattern 

graph on three or more vertices. This is a generalization of several well-known problems: 

Probably the most famous is VERTEX MATCHING-for which the pattern graph consists of 

just two vertices and an edge between them. Another example is PERFECT X ~ C O L O R I N G  

(Problem 4.3.1)-for which the pattern graph consists o f t  vertices and no edges. 

For a connected pattern graph H ,  PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS is 

CMS-definable for any graph G = (V, E): 

(3E' & E)(  "each component of (V, E') is isomorphic to  H"  ) (4.10.2) 

The complement of this problem, then, requires G to be partitioned into copies of N, which 

is possibly disconnected. The disconnectedness causes difficulties in obtaining a logical 

encoding: We now show that, for some disconnected pattern graphs, PARTITION INTO FIXED 

ISOMORPHIC SUBGRAPHS is not CMS-definable-not even over the class of trees. (The 

proof carries through even if the subgraphs need not be induced.) Since the complement 

of a disconnected pattern graph is always connected, this provides a negative answer to 

Question 4.0.4. 

Theorem 4.10.3. Let P3 be the path o n  three vertices; and let S4 be the star on four 

vertices. For the pattern graph P3 U S4, PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS 

is not CMS-definable over the class of trees. 

Proof. Suppose there is a CMS statment defining the class (say II) of trees that can be 

partitioned into copies of P3uS4. For n, m 2 2, let G,,, be the tree (shown in Figure 4.10) on 

4n + 3m vertices, containing a path with vertex sequence v3%, 2)3n-1,. . . , v1, u1, u2, . . . , '113, 
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v 2 - u L  
%--"- "t, 

The star S4 [ # ]  < ' u !  The path P3 

__.. , . 2 6  
Xlk l.... 

/... 

L-J 
...'l 

,'311-2 "a U3m 

Figure 4.10: The tree G,,, 

such that, for i = 2 (mod 3), the vertex v; is adjacent to  one other pendant vertex (not 

counting ~3,). SO Gn,, E II iff m = n > 2. 

By Theorem 2.8.3, there exists a tree automaton (say A) that recognize the yes-instances 

of II. Let (T, X) be a width-1 tree decomposition of G,,,; and choose the root r of T such 

that X, = {vl, ul). Say the subtree rooted at some child of the root is a path P T on 

3n - 1 nodes, such that the bag indexed by the ith node of P contains u; and u;+l. By 

Pumping Lemma 2.9.3 (provided n is large enough), there exist nodes b, d E V(P) (where 

b is an ancestor of d) such that the graph Gn,,[T\Tb - (Tb\Td)' Td] is a yes-instance of 

TI, for any f? E N (see Definition 2.9.2). But this yes-instance is G,,, for some m > n (a 

contradiction). 0 

Corollary 4.10.4. There exists a CMS-definable decision problem II such that n n Gk is 

not CMS-definable, for any k E N (where Gr, is the class of partial k-trees). 

Proof. Let H be the complement-graph of P3 U S4, where P3 is the path on three vertices, 

and S4 is the star on four vertices. Let 11 be the decision problem PARTITION INTO F I X E D  

ISOMORPHIC SUBGRAPHS for the the pattern graph H .  Since H is connected, II can be 

defined by a CMS statement (4.10.2). 

Now, n is the decision problem PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS for 

the pattern graph H = P3 u S4. Suppose there exists a CMS statement @ defining n n Gk. 
But a CMS-statement @' can easily be written such that G a' iff G is a tree. Therefore, 

A a' defines PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS over the class of trees 

(contradicting Theorem 4.10.3). 0 
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PERFECT xt -COLORING (Problem 4.3.1) provides an example of Problem 4.10.1 where 

the pattern graph is disconnected (provided t 2 2), and yet it is CMS-definable over partial 

k-trees. Such a pattern graph consists of t isolated vertices. The CMS-definability can be 

generalized to  any pattern graph consisting of t pairwise isomorphic components. 

Theorem 4.10.5. For any pattern graph consisting oft isomorphic components, PARTITION 

INTO FIXED ISOMORPHIC SUBGRAPHS is CMS-definable over partial k-trees. 

Proof. Suppose the pattern graph H consists of t components, each isomorphic to  a 

fixed graph (say HI). A CMS statement can encode the following for an evaluation graph 

G = (V, E): 

3V1, V2,. . ., VSk, Wl, W2,. . . , WSk : ''{K);$~ is a partition of V(G)"A 

I \ Z ~ (  "each component of G p l  is isomorphic to  A'" A 

"W; contains exactly one vertex from each component of Gpi Iv  A 

cardo,t ( Wi)) 

Suppose the above statement is satisfied for a partial k-tree G. So W; (1 5 i 5 5k) 

contains exactly one vertex from each component of Glvi1; and IW;I = 0 (mod t). Hence, 

the number of components of G[K1 is divisible by t, and no pair of these components is 

adjacent. Therefore, any t of these components comprise an induced subgraph isomorphic 

to H ;  and G[K] can be subdivided into such subgraphs. 

Conversely, suppose G is a yes-instance of the problem; and let G' L G such that G' 

consists of ,&#, induced copies of H .  Let M be the minor of G' obtained by contracting 

(Def. 2.5.1) each component of G' into a single vertex. So M has t independent vertices 

corresponding to  each copy of H .  Therefore, M is a yes-instance of PERFECT xt-COLORING, 
and the CMS formula given in Theorem 4.4.6 is satisfied for M. It follows easily that the 

formula above is satisfied for G. 0 

Although PARTITION INTO FIXED ISOMORPHIC SUBGRAPHS is not CMS-definable over 

partial k-trees for an arbitrary pattern graph, it is definable in the more powerful Extended 

Monadic Second-order (or EMS) logic [ALSgl]. An EMS statement can be automatically 

translated into a polynomial-time algorithm to  solve the corresponding problem over partial 

k-trees. In their seminal paper, Arnborg et al. [ALS91] claimed that a EMS statement could 

encode this problem independently of the treewidth k; this claim has since been withdrawn 

[Lag94]. In [GKMS96], we develop an EMS statement to encode the problem (for any 
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fixed pattern graph) over the class of partial k-trees: The length of the EMS statement is 

dependent upon the treewidth k. 



Chapter 5 

Conclusions and Open Problems 

This thesis has established that CMS-definability is a necessary and sufficient condition for 

a subclass of the partial $trees (or k-connected partial k-trees) to  be recognized by some 

tree automaton. It is known that CMS-definability is sufficient for a subclass of the partial 

k-trees (for any k) to  be recognized in this way; but it remains an open question whether 

CMS-definability is necessary (for k 2 4). We conjecture that CMS-definability is necessary. 

In other words, we conjecture that a subclass of the partial k-trees is CMS-definable iff it 

is recognizable by a tree automaton. We have presented a general strategy which may lead 

to a proof of this conjecture-we need only establish that CMS logic can encode a tree 

decomposition of any partial k-tree G. We have shown how this can be done in the case of 

k = 3, and in the case that G is k-connected. 

The general strategy to encode a tree decomposition of a partial k-tree G is to first 

decompose G into a collection of (simple) partial k-paths. These partial k-paths cover the 

vertex set of G; and the union over their edge sets is a superset of the edge set of G. 

Encoding a tree decomposition of G is thus reduced to the following two tasks: 

1. Determine which vertices belong to  each partial k-path (the edge sets can then be 

determined easily from this information). 

2. Encode a path decomposition for each partial k-path (these path decompositions can 

then be easily assembled into a tree decomposition of G). 

We have shown how the first task can be implemented (if k 5 3 or G is k-connected) by 

inductively identifying the vertices of each partial k-path (say R). In these cases, V ( R )  
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can be ordered vl, v2,. . . , vlv(R)l such that each v; (2 5 i 5 IV(R)() satisfies some logical 

condition relative to the set {vl, v2,. . . , v;-~): There exists some vj (1 5 j 5 i- 1) in this set 

such that v; can be uniquely identified by a CMS predicate @(vj, v;). Furthermore, the first 

vertex q of the order does not belong to any other partial k-path (in the decomposition 

of G). Thus V(R) is encoded as the minimal set containing vl and any vertex v; such 

that @*(q, v;), where @* is the transitive closure @. If this approach is generalized in a 

straightforward way, then instead of identifying the vertices one-at-a-time, we would need 

to identify groups of up to  min{L$], k - ! + 1) vertices at each step-for an 1-connected 

partial k-tree. For k > 4 and 1 5 k - 1, this quantity is greater than 1; so it becomes much 

more difficult for a CMS formula to determine the vertices of such a group. 

We have shown how the second task can be implemented for a 2-connected partial 

3-tree; and this can be generalized quite easily to  the case of an 1-connected partial k-tree 

where 1 > k - 1. This completes the proof that recognizability implies CMS-definability 

for partial 3-trees, because the 2-connected blocks of an arbitrary partial 3-tree G can be 

handled separately in this way, and then the resulting collection of tree decompositions 

can be assembled together. We are not able to conclude, at this time, that recognizability 

implies CMS-definability for (k - 1)-connected partial k-trees-because we have not shown 

how to  perform the first task enumerated above for such graphs. 

Under the conjecture that CMS-definability equals recognizability of partial k-trees, 

CMS logic would elegantly characterize the graph decision problems that can be solved in 

linear time by tree automataover the class Gk of partial k-trees. In this thesis we investigated 

how tree automata can also be used to solve problems over the class z of partial k-tree 

complements. The graphs in z have @(n2) edges (where n is the number of vertices), but 

they can be represented in O(n) space with a list of their "non-edges". The "complement" 

of CMS logic (called CCMS logic) encodes properties of a graph G E 6,, by referring to 

the non-edges of G (i.e. the edges of E Gk). A CCMS statement over G, then, can be 

interpreted as a CMS statement over c; so a tree automaton can be used to evaluate it in 

O ( n )  time. This provides a linear-time algorithm over for any graph problem that can 

be defined by a (CCMS) logical statement over a universe consisting of the vertices and 

non-edges of the evaluation graph. 

A graph decision problem can be represented by the class (say 11) of yes-instances. A 

CMS statement defining the class TInGk is equivalent to a linear-time algorithm for deciding 

whether a partial k-tree (in Gk) is a yes-instance. Similarly, a CCMS statement defining 
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11 n is equivalent to a linear-time algorithm for deciding whether a graph in is a yes- 

instance. The latter type of algorithm is implemented by a tree automaton that recognizes 
- 
II n Gk, where is defined as the class containing the graph-theoretic complement of each 

graph in II. By definition, n n Gk is CMS-definable iff 11 n is CCMS-definable. In this 

thesis we addressed the question of whether En Gk is CMS-definable if II is CMS-definable. 

We showed that this question is answered affirmatively for some CMS-definable decision 

problems, but is answered negatively for others. Thus the graph-theoretic complement- 

problem I does not necessarily have linear time complexity over the class of partial k-trees. 

In other words, it is not necessarily the case that a CMS-definable decision problem has 

linear time complexity over the class of partial k-tree complements. 

Although CMS logic can capture most of the decision problems that are known to have 

linear time complexity over partial k-trees, there are exceptions. For example, a CMS 

statement cannot define whether or not a tree has a unique center: A center of a graph G is 

a vertex v E V(G) such that, over the collection of shortest paths between v and each vertex 

of G, the length of the longest path is minimized. Using Pumping Lemma 2.9.3, it can be 

shown that the class (say II) of trees with a unique center is not CMS-definable. However, 

there is a linear-time dynamic-programming algorithm to decide whether a tree belongs to  

11: This algorithm can be implemented by a tree automaton equipped with a counter that 

allows an integer to be associated with each terminal-representing the maximum length of 

the shortest path between the terminal and any vertex that has been seen so far. Network 

flows provide another example where it might be useful to augment tree automata with 

some sort of counter: Hagerup et al. [HKNR95] noted that a minimum-weight cut-set can 

be encoded by an MS statement (over weighted graphs); thus, the value of a maximum flow 

(which is equal to the minimum weight of a cut-set) can be computed in linear time over 

partial k-trees-because this is a Linear Extended MS Extremum Problem, as defined by 

Arnborg et al. [ALSgl]. Hagerup et al. also show how dynamic-programming techniques 

can be used to compute the flow through each edge (to achieve a a maximum flow). However, 

this cannot be expressed within the MS logical formalism. It would be interesting, then, to  

see if CMS logic can be extended somehow so that problems of this sort can be defined. 
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