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Abstract 

Optical spatial solitons have been the subject oS intense theoretical and c~spcrirnent;:,l rc- 

search in the last thirtx )-ears. Spatial solitons ha-e been studied estensivdy i n  K c w  nlctlia, 

where they arise when a nonlinear change in refractive indes provides a confining efferl 

that compensates for the defocusing effect of diffraction. In 1992 Segev ct al. [I! predictcxf 

that spatial solitons could also occur in photorefractive materials as a rcsuit of a sir~tilitr 

balance between diffraction and nonlinear photorefractive self-focusing. I'ttis was vwificcl 

experimentally in 1993 bj- Duree et a€. f2j. Since then it has been demmstrated that, thrcr 

distinct classes of spatial solitons can exist in photorefractive materials. The first, class arises 

from the nonlocal photorefractive effect and can be generated at extreinely low intcnsitit*~ 

(mJV/cm2). These solitons require the application of an extcrnal voltage to the phutom- 

fractive crystal and are referred to as nonlocal solitons. The second class is thc photovoltaic 

soliton, which arises in a particular type of photorefractive crystal [3]. 7'he f i : d  rlitss ol' 

spatial soliton is the screwling soliton, which requires similar conditions to the 11o111oc;tl one, 

but is the result of a local change in the mdex of refraction when the electric field of the 

opticd beam is comparable to the external bias field. 

Both bright and dark solitons have been observed experimentally fur the three soliton 

classes. The theories developed for the screening solitons and the photovoltaic solitorrs 

account for these observations. However, the theory proposed by Segev et al. fails to explain 

the existence of dark solitons [I]. This thesis examines the assumptions made by Scgcv c l  (11, 

in an attempt to posit a more general theory that accounts for dark solitons. This requires 

m understanding of the Kukhtarev-Vinetskii model of photorefraction, and an applicaticm 

of the model to describe the coupling of two spatial modes in photorefractive media. Withi11 

the two-wave mixing approximation an equation is derived for the propagation of optical 

beams in photorefractive materials. The soliton solutions to the eqnation are studied and 



it is sImwn that the modified theory admits both bright and dark soliton solutions under 

corditions consistent with experiment. The thesis concludes with an argument that accounts 

for the stability of these solutions. 
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Chapter 1 

Introduction 

1 .1 The history of the soliton 

The first documented okstm-ation of a soliton was made by a Scottish engineer named John 

Scott Russell in 1881 while he was riding on horseback along the Union Canal that connects 

Edinburgh and Glasgow. He recorded his ubservation in the following delightful words: 

I was observing the rnotic.; of a boat which was rapidly drawn along a narrow channel 

by a pair of horses, when the h t  suddenly stopped-not so the mass o j  water in the channel 

which it had put in mofion; it accumulated round the prow of the vessel in a state of violent 

agitation. then suddenly leaving it behind rolled forward with great velocity, assuming the 

form 01 a large solitary elelration, a rounded. smooth and well-defined heap of water, which 

continued its course along the channel apparently without change of form or dimunition of 

sped .  f followed it on horseback. and owrtooX: it still rolling on at a rate of some eight or 

nine miles an hour, pwen-ing its original figure some thirty feet long and a foot to a foot 

and rr haij ift height. ffs kigial gmdzrally diminished, and after a chase of one or two miles 

i last it in the windings of the channel. Such, in the month of August 1834, was my 3 r d  

chanct- inte.iru- with that singular and beautiful phenomenon which I have called the Wave 

of Tmnslation. . . . [6f 



Russell's chance encounter with the W a z ~ e  of Translation prompted intense dt+at,c 

because its existence contradicted the shallow wave theory that was well accepted at. t , l ~  timr 

[6]. The controversy was resolved independently by Bo* ,sinesq in 1871 and T,ord Raylcigh in 

1876 who both recognized the importance of the previously neglected concept of tlispcrsio~t. 

They were the first t o  realize that the solitary wave was a product of the b a h c c  betwwrl 

two competing effects: the nonlinear effect, which describes why the crest of a wave riloves 

faster than the rest, and the dispersive effect, which describes the dependence of the wavc 

velocity on the frequency of the wave [7].  They reasoned that the tendency for thc wavc to 

'break7 was balanced by the spreading effect of dispersion. 

In 1895 Korteweg and de Vries attempted to mathematically describe wave propa,gal,ion 

in s h a k w  water, incorporating the effects of dispersion and surface tension. Their cfforts 

resulted in the celebrated KdV equation, which was shown to have solutions much like 

Russell's solitary wave. 

In the years following, the solitary wave was thought to be an unimportarlt tnat hematicad 

curiosity of nonlinear wave theory. However, in 1955 it reappeared in a completely c1iiTcrcnt 

context. At the time, three scientists named Fermi, Pasta and Ulam, were studying t h c  

transfer of heat in solids. It was known that a model consisting of a one-dimensional lattict! 

of identical masses connected by linear springs was not sufficient to achieve equiparti1,ion 

of energy among the different modes of the lattice. In other words, a lattice with o d y  

harmonic interactions would never reach thermal equilibrium. Debye had suggested that 

this problem would likely be resolved by including nonlinear interactions between the atorns 

161. Fermi, Pasta and Ulam proceeded to test this hypothesis numerically. They found that 

the system did not reach thermal equilibrium. Instead, if they initially excited one mock of 

the lattice, the energy returned almost periodically to this mode and a few nearby ones. 

The unexpected resalts d Fermi, Pasta and Clam motivated Zabusky and Krus,bl to 

study the problem in greater detail. They were led by a continuum approximation to 

the KdV equation for describing the energy transfer among the lattice modes. Nunrcrical 
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simulations of the KdV equation showed that robust pulse-like waves propagated in the 

system. These solitary waves could pass through each other while maintaining their speed 

and shape. Zabusky and Kruskal named these waves solitons to  emphasize their particle- 

like qualities. In an attempt to explain the Fermi, Pasta and Ulam results, Zabusky and 

Kruskal launched a sinusoidal pulse on a ring of atoms (see Figure 1.1) [6]. They found 

that the system evolved to a state in which a number of solitons propagated along the ring 

with different velocities. Collisions among these solitons caused small phase changes in each 

soliton. After a long enough time the solitons were observed to  collide simultaneously. At 

this instant the system resembled the initial state. This explained the recurrence seen by 

Fermi, Pasta and Ulam. 

Figure 1.1: Breaking of initial state into 
solitons. The recurrence of the inital state 
occurs when the solitons collide simultane- 
ously (61. 

In 1967 Gardner et al. showed that under some conditions, analytic solutions to  the 

KdV equation could be obtained using what is now called the inverse scattering method [8]. 

They showed that the number of solitons that evolved was dependent on the initial state. 

Their results were in general agreement with Zabusky and Kruskd's numerical studies. 

It is now apparent that solitons are ever-present in our modelling of the physical world. 

In the past thirty years approximately one hundred different types of nonlinear partial 
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differential equations have been shown to have soliton or soliton-like solutions [TI. Solitons 

have appeared in problems as diverse as the biological modelling of protein transport [9] 

and the atmospheric modelling of Jupiter's long-lasting 'Red Spot' [lo]. 

Perhaps the most widely studied solitons have been optical solitons because of thcir 

promising applications. These solitons arise from a balance between dispersion and a, noti- 

linear effect such as the Kerr effect. They have been used successfully to transmit hirrnsy 

data down optical fibers using a scheme where a soliton represents s logical '1' and the 

absence of a soliton represents a '0'. Optical logic gates using optical solitons have been 

proposed [ll] but have not yet been achieved experimentally. 

The definition of a soliton has generated heavy debate. The originaJ definition recluisccl it 

to  be 'a localized solution to an exactly integrable partial differential equation that is stable 

against collisions with ~ t h e r  solitons'. In much of the literature a looser definition has been 

adopted to include all solutions that are relatively stuble solitary waves. Because Inauy 

nonlinear partial differential equations are not exactly integrable, solitons arc often founcl 

numerically. The term relatively stable has come to mean that, numerically, the solutions 

propagate without changing their shape, and retain their properties upon colliding with 

other solitons. 

1.2 P hotorefractive spatial solitons 

The Wave of Translation seen by Russell and the other solitons mentioned thus f i j , ~  havc 

been temporal solitons, a name given to reflect their unchanging nature as they propagate in 

time. The solitons that will be studied here are spatial solitons that occur in photorcfractive 

crystals such as strontium barium niobate (SBN). They are the spatial analogues of tho 

temporal soliton: the propagation direction plays the role that time plays for a temporal 

soliton. In the temporal case, dispersion acts to spread the pulse in time, while in the 

spatial case, diffraction acts to  spread the pulse in space. The basic effect of spatial solitorr 
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Figure 1.2: The intensity profiies of a) a bright spatial soliton, and b) a dark spatial soliton. 
The intensity profiles remain unchanged along the propagation direction z. 

formation can be explained as follows: when an optical beam enters a photorefractive crystal 

it spreads via diffraction. In order to form a soliton, this spreading must be balanced by a 

nonlinear effect. The nonlinearity arises because photorefractive materials undergo a change 

in index of refraction Sn upon illumination. The index change causes a coupling between 

the spatial modes of the input beam [12]. This coupling results in energy exchange and/or 

self-phase modulation, depending on the nature of Sn. When Sn > 0 the medium is called 

self-focusing and phase coupling causes the phase of each spatial mode to  decrease linearly 

along the propagation direction. Conversely, when Sn < 0 the medium is self-defocusing. 

Phase coilpling then leads to a linear accumulation of phase in each mode. If Sn is imaginary, 

then energy coupling occurs, causing the amplification of either the low or the high order 

spatial modes of the input beam. Because diffraction can be considered a linear accumulation 

of phase, balancing it requires phase coupling rather than energy exchange. Thus a bright 

soliton can be attained when the medium is self-focusing: the linear decrease in phase due 

to phase coupling balances the linear increase in phase from diffraction. In contrast, dark 
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solitons can be attained when the medium is self-d.efocusing: the 1inea.r increase in phase 

due to  phase coupling exactly balances the linear decrease in pha.se due to diffraction (see 

Figure 1.3). 

4- dif fract ion* 

-W self-focusing 4- 

f se l f -de focus ing-  

4 diffraction f 

Figure 1.3: a) Intensity profile of a bright soliton (Sn > 0). The spreading effect of diffraction 
is balanced by self-focusing. b) Intensity profile of a dark soliton (6n < 0). The inward spread 
of diffraction is balanced by self-defocusing. 

In 1992, Segev et al. [1] derived an approximate equatjm for the propagation of optical 

beams in photorefractive materials and showed that the equation had bright spatial solitorr 

solutions. These solitons were studied in greater detail by Crosignani et a/. [5] who found 

additional analytic solutions and studied their stability and dimensionality [13][14]. These 

solitons arise from the nonlocal photorefractive effect, and for that reason will he referred 

to as nonlocal solitons. Their formation requires the presence of a bias field, and the 

magnitude of the bias field must be large compared to the electric field of the incident light. 

Observation of these bright solitons came in 1993 [2], followed by the experimental discovery 

of nonlocal dark solitons in 1994 [15]. The theory developed by Segev et al. does riot accollnt 

for dark solitons [1][5]. There has been great interest in these solitons because they can 

be generated at low light intensities, making them better candidate8 for optical ~jwitching 
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devices than the conventional Kerr solitons. Nonlocal solitons have the disadvantage of 

being short-lived: they have been reported to  last for a maximum duration of PZ 2 s [4]. On 

optical time-scales this is considered long enough to be potentizlly useful. The lifetime of 

nonlocal solitons is limited because the bias field that is essential to  their formation becomes 

screened by thermally generated electrons inside the crystal. Nevertheless, their lifetime is 

long compared to the time required for their formation (x 1x10-* s) [16]. For this reason 

they are considered to exist in 'steady-state' conditions during this short time-window. 

The experimental apparatus used to generate nonlocal solitons is shown in Figure 1.4. 

The material used was a 5 mm x 5 mm x 6 mm SBN crystal, oriented with its c-axis 

perpendicular to the beam propagation direction and parallel to  the polarization of the 

beam. The beam diameter at the entrance face of the crystal was 81 pm along the c-axis. 

A digital oscilloscope was used to  monitor the intensity of the incident beam after passing 

through the crystal and an exit aperture the size of the original beam. While the intensity 

remained constant the system was considered to be in steady-state. Different cross-sections 

of the beam in the crystal were imaged onto the detector array by moving the imaging 

lens position with respect to the SBN crystal. The glass slide was inserted for dark soliton 



Bright Soliton Dark Soliton 

Figure 1.5: Experimental bright and dark 
soliton profiles in SBN [2][4]. The dark soli- 
tons are approximated as a notch out of a 
gaussian beam. The notch propagates with- 
out change in profile. 

experiments only. It was tilted to  create a i~ phase shift in half of the beam, yielding an 

intensity profile with a 'notch' taken out of it. Figure 1..5 shows an example of beam profiles 

along the c-axis obtained for bright and dark solitons [2][4]. Soliton formation along thc 

other transverse direction has also been observed. 

Since the discovery of nonlocal solitons, two other types. of photorefractive solitons have 

been found. One of these is the photovoltaic soliton, which occurs in photovoltaic material8 

such as LiNbOs [17]. A theory has been developed to account for the existence of both 

bright and dark photovoltaic solitons, and both types have been observed experimentally 

P81. 

The last photorefractive soliton to be found was the screening soliton. It exists under 

similar conditions to  the nonlocal soliton, but requires an external bias field comparable to 

the electric field of the incident light [19][20]. Screening solitons are formed after the bias 

field has been nonuniformly screened. The change in index of refraction arises primarily from 

a local effect that depends on the incident intensity. Screening solitons cannot he generated 

at intensities as low as their nonlocal counterparts. The theory describing their formation if; 
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reasonably complete and predicts bright and dark spatial solitons, both of which have been 

observed experimentally [4] [21] [22]. 

Many theoretical questions regarding the three soliton types remain unanswered. The 

theory postulated for all three types is two-dimensional and fails to  explain experimentally 

observed soliton formation in both transverse directions. The evolution properties of pho- 

torefractive solitons from arbitrary input beams are also unaccounted for. No studies to  

date have addressed questions regarding collisions between photorefractive spatial solitons. 

The theory of nonlocal solitons is the weakest of the three soliton theories because it fails 

to  predict dark solitons. 

This thesis tackles the latter problem and modifies the existing nonlocal soliton theory 

to account for dark soliton solutions. To facilitate this goal the approximations made in 

[l] and [5] are examined. This requires an understanding of the widely used Kukhtarev- 

Vinetskii model of photorefraction. The photorefractive nonlinearity for two-wave mixing 

is developed within the framework of this model and under more general conditions than 

those outlined in [I] and [5]. Two-wave mixing is studied briefly and the results are extended 

to  provide a d~scription of the propagation of optical beams in photorefractive materials 

using the two-wave mixing approximation. With this description the search for dark solitons 

begins. 



Chapter 2 

P hotorefraction 

Photorefraction is a process by which the local index of refraction of a medium is dla,tigtd 

when it is illuminated by a beam of light with varying spatial intensity [16]. It was discovcrctl 

in 1966 by Ashkin while he studied the propagation of laser light through LiNb03. Iie found 

that in the region of the laser beam there was a local change in the refractive index which 

caused the beam wavefront to distort as it passed through the crystal. IIe considercd this a n  

undesirable effect in an otherwise high quality optical crystal, and termed the effect 'optical 

damage' [23]. 

Although photorefraction was originally considered a nuisance, the positive attrihutcr; 

of the effect were soon appreciated and a number of applications were proposed. I3ecause of 

the reversible nature of the refractive index variations, it was clear that these crystals could 

be used as recyclable photosensitive media. With the recefit improvement of doping arid 

crystal growth techniques, it is now feasible to use photorefractive crystals for holography 

and optical information processing [23]. 

The physical origin of the photorefractive effect has been of considerable irltcrcst to 

scientists studying solid-state physics, semiconductors, and coherent optics. Sincc A wh kin's 

observation, the theory of photorefraction has developed considerably. The currerrt theory i~ 

a collaborative effort beginning with work by Chen in 1967, and fleshed out by contrihutionw 
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from Amodei, Kukhtarev and Vinetskii and others [3]. 

A qualitative model of photorefraction is as follows: free carriers are produced in the 

crystal by photoionization and are transported into non-illuminated regions where they 

become trapped. The resulting charge distribution causes the formation of an internal 

electric field, which modulates the index of refraction of the material via the linear Pockel7s 

effect. 

The aim of this chapter is to present the essentials of the commonly used Kukhtarev- 

Vinetskii model of photorefraction and to utilize this model in deriving an expression for 

the change in refractive index when a photorefractive material is illuminated by two plane 

waves. This resillt will form the basis of our description of the propagation of optical beams 

in photorefractive crystals. 

2.1 Charge carrier generation 

Pure photorefractive crystals are transparent in the visible regime and thus the charge donors 

and acceptors needed for photorefraction must be provided by impurities [3]. In lithium 

niobate (LiNbOs), potassium niobate (KNb03) and most other photorefractive crystals, 

Fe ion impurities in different valence states act as both the donors and acceptors. The 

e- 
/ 

conduction band 

\ 

band 

Figure 2.1: Energy level model for pho- 
torefraction in which a single type of donor 
and acceptor species are present, giving rise 
to electrons in the conduction band and 
hoies in the valence band. 
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concentrations of impurities can be controlled through doping. Photorefraction has Lweu 

found t o  occur for Fe ion concentrations ranging between 1016 - 10 '~c rn -~  [3]. 0 ther common 

types of impurities include copper, rhodium and manganese. The location of t,he impurities 

in the crystal is often unknown. The impurities may substitute for certain cations in t i ~  

crystal, or occur as some other type of defect [23]. 

Upon illumination, light is absorbed by an acceptor and ionization occurs, promoting 

an electron into the conduction band and leaving a hole in the valence band as shown in 

Figure 2.1. After ionization, the electron is free to move in t1,e conduction band u~ltil it, 

recombines with an acceptor elsewhere in the crystal. Although hole contluction occurs, 

it will be neglected in the analysis that follows because the mobility of the holes is small 

compared to the electron mobility. Thus hole conduction makes a negligible contribution 

to photorefraction under most conditions [23]. In ferroelectric crystals, it is typical1 y 

ions that act as the donors and Fe3+ ions that act as the acceptors. The photocxcitation 

energy for Fe doped ferroelectric crystals ranges between 3.1 - 3.2 eV. 

2.2 Transport of charge carriers 

Once the charge carriers have been generated, they are transported out of thc illu~nirlatcd 

regions of the crystal by three mechanisms: diffusion, drift and the photovoltaic effect. 

Diffusion transport occurs because the electrons migrate from the illuminated regions, 

where their concentration is high, into dark areas where their concentration is low. Figurc 2.2 

shows the diffusion field created by an incident intensity with a sinusoidal modulation. Thc 

charge carriers typically travel a distance Ld before being re-trapped. This distance depends 

largely on the acceptor concentration and charge mobility. Note that the space-charge field 

E,, created by the charge distribution is ~ / 2  out of phase with the incident intensity. 

Drift transport occurs when an external electric field Eo is applied to the crystal. 'I'hjs 
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P+ ++,t;+ +I I;+ +;;I+ Figure 2.2: Charge transport via diffu- 
> - - - -  - -  - - - -  - -  sion. The positive charge distribution p+ 

p- 4 1 -:- - - - - is a result of ionized donors that are left in - 
high illumination regions when the carrier 
electrons diffuse to regions of low electron 

Esc % concentration. The resulting internal field 
x E,, is shifted by 1r/2 with respect to the 

incident illumination. [23]. 

field causes unidirectional electron transport away from illuminated areas as shown in Fig- 

ure 2.3. Electrons typically move a distance Lo before becoming re-trapped. If Lo is small 

compared to the wavelength of the intensity modulation, then the space-charge field E,, 

created by the redistribution of charge will be almost in phase with the incident intensity. 

Photorefractive materials are often ferroelectric, meaning that at some temperatures 

they possess a spontaneous polarization 1241. Thus the conduction electrons move pref- 

erentially along the direction of this polarization. Charge transport of this type is called 

photosoltaic and will not be included in the analysis that follows because it is generally neg- 

ligible in the materials used for studying nonlocal solitons [23]. For information regarding 

soliton formation under conditions where photovoltaic transport is important, the interested 

reader is referred to 1171. 

The transport of charge carriers in the crystal results in a nonuniform charge distribution 

which in turn creates an internal electric field. Because the charge distribution in one part 

of the crystal gives rise to  the electric field in another part of the crystal, the photorefractive 

effect is said to  be a nonlocal effect. The length scale over which this nonlocal effect acts 

depends on the mean distance of charge transport (Lo  in the case of drift transport, or Ld 



Figure 2.3: Charge transport i - i ; ~  thin.. 
> --- The positive charge distrib~ltioit p t  is a re- - - - -- suit of ionized donors that are left in high 

illumination regians whcn tltt. carricsr i.1t.c- 

trons drift t.o low ill~~miriatioir rtrpn4 of t l w  
> crystal. The resulting internal field is 

x almost in phase with the incideut i l lut~iin~t- 
tion [23]. 

if transport is by diffusion). 

2.3 Formation of the spacecharge field 

To derive an expression for the  index of refraction change, it Is wwxiary t o  tjttirtrtify t h *  

electric field formed by the charge distribution in the crystal. To do this He will rrrakc* st%vcr;tl 

simplifying assumptions: if we neglect the photovoltaic effect, ii) we neglect absorptictn a d  

ii) we assume that the intensity modulation is small. 

With these assumptions in mind let us begin by defining iVD as the total ~tamber clcmity 

of dopants in the material, and N +  and AT as the acceptor and donor nurnbcr densities sttr.11 

that ib = N + N + .  The rate of electron generation is then (sl+ DfNI ,* i s  tfw 

cross-section of photoionization, and D is the rate of thermal generation of ctwtrims. 'i'tw 

rate of trap capture is given by r p N f  where r is the recombination cwficient and p is the 

number density ofihe eiectrons, Thus the raw equation for the  nudher density of acceptors 
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.';ot.icc that we have nelected the decrease in intensity due t o  absorption. This approxima- 

tion holds well for thin c rp ta l s  but becomes worse as the distance the beam travels in the 

pbotorcfractive rnedia increases. 

The rate of generation of electrons is the same as that of the ionized impurities, except 

that the etectrons are mobile while the acceptors are fixed in the crystal. Thus the rate 

~cjuation for the electron number density can be written as 

?'he electron current, which is given by 

arises from charge transport contributions from drift and diffusion respectively. Here p is 

the electron mobility. e is the electron charge, and kb is Boltzmann's constant. Finally, 

Poisson's equation gives an  espression for the electric field 

where xVe4 is the nunrbei density of negative ions that are necessary t o  preserve charge 

neutrality in the crystal. In the absence of illumination, the charge neutrality condition can 

be expressed as { p  + iVA - X+) = 0. 

.A ge~rcral solution to these equations is not available. However, for reasons tha t  will 

become apparent, we are interested in the solution for an incident intensity of two plane 

waves of the same frequency but different wavevectors. 
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2.4 The space-charge field from two plane waves 

Consider the incidence of two plane mves  of +he same frequency w o1it.o a phot.orefrartivr 

crystal. The electric field can be written as 

If the polarizations cf the two plane waves are not orthogonal, they will form a n  interference 

pattern, or grating, with an intensity given by 

where 

and K = q 2  - q1 which is related t o  the spacing of the grating A by K = 27r/A. 

This provides the motivation for the approximation that we will use to solve the raf,c? 

equations for the space-charge field in the crystal. If the intensity varies according to 

Eq. (2.6), it is reasonable t o  assume that,  t o  a first approximation, the equations for ttrc 

electron density and the space-charge field will have a similar form. The justification for thk  

is simply that  we expect the charge distribution and thus the space-charge field to  reflc~cl 

the  spatial variation of the incident light. This has been shown rigorously by Kukhtarev 

t o  hold for the fundamental Fourier component of the input intensity [25][26]. Higher 

order harmonics with spatial frequencies 2K, BK ... become important as Il / ( I o  + I d )  - 1. 

Here Id = D / s  is the 'dark irradiance' which is the equivalent irradiance that accountfj 
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for the electrons produced due to thermal effects. Moharam et al. have shown that for 

. I l /(Io + I d )  = 0.9 only the fundamental Fourier component contributes [27]. Thus we 

will assume I l / ( I o  + I d )  << 1 which is often called the small modulation approximation. 

Physically, jt corresponds to ensuring that the background illumination of the crystal is 

large enough to guarantee high conductivity in all regions of the crystal. 

With these approximations we write 

E = Eo + E,, 

= Eo + ~ e ( ~ ~ e ~ ~ . ' )  

P = po + ~ e ( ~ l e ~ ~ " )  

where Eo is the external field applied to the crystal. We are now in a position to  solve the 

rate equations for the two plane wave case. 

Solution of these equations proceeds by eliminating j, N and N +  to obtain equations 

involving p and E.  

For the zeroth order in the electron density we obtain: 

The final expression for po has been derived based on the assumption that \pol << IND - NAl 

and ]pol << INAl. This assumption is reasonable because typical lasers have irradiances less 

than 1 w/cm2, and for most photorefractive crystals the absorption coefficient is less than 

1 cm-' and the recombination time less than 1 ps. This leads to  electron number densities 

of 10' - 1012 ~ r n - ~ ,  which are significantly lower than the typical number densities for the 

impurities, which are usually of the order 1016 - 1017 cmV3. 

To simplify the notation in the solution of the first order quantities, it is useful to  define 

the following rate constants: 
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where rd; is the dielelectric relaxation rate, rI is the sum of ion production a n d  rcxombi- 

nation rates, rR is the electron recombination rate, rE is the mean field drift rate and Y u  

is the diffusion rate. 

These definitions lead to  the following equations in the first order terms pl and E l :  

where A1 = ic&El/e. 

In the steady state, when EollK, the equations reduce to the following expressior~ for 

El : 

where El I IK and 
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Em = EQ 

Here Em is a complex mean field, Ed is the diffusion field and E, is the limiting space- 

charge field (i.e.-the maximum possible field if all donors were excited). The quantity 

NA(l  - NA/ND) is the ionized trap density. The dark irradiance Id is typically small 

(,- 10 mw/cm2) [4j, but has been found to be as large as 100 - 1000 mw/cm2 in low purity 

crystals [28]. It is often neglected because it is usually small campared t o  the incident in- 

tensity, however, i t  makes an important contribution in dark areas if the intensity I. is low 

[5][28]. This does not conflict with the small modulation approximation: we require only 

that Il << (Io + Id),  not that (Io + Id) be large. 

Thus our final expression for the space-charge field Esc is given by 

2.5 The electro-opt ic effect 

All photorefractive materials are electro-optic crystals, meaning that in the presence of an 

electric field, the index of refraction is changed via the electro-optic effect. The electro-optic 

effect is traditionally defined in terms of the impermeability tensor vij. The change in rl;j 

is given by 

Allij = A (') n2 . . = r i jkEk -I- sijkmEkErn (2.19) 
13 

where Ek and Ern are components of the electric field. The constant r i j k  is ;Ln element of 

the linear electro-optic tensor that accounts for the linear Pockel's effect. The Kerr effect is 

described by the quadratic electro-optic tensor with components sijk,. In photorefractive 

materials, most of the phenomena of interest occur for small electric fields (FZ lo4 V/m) 

and are therefore a result of the Pockel's effect. The Kerr effect contributes at much higher 

electric fields (FZ lo6 V/m) and can therefore be neglected. 
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The linear electro-optic coefficients r i j k  are components of a ra.nk 3 tensor. However, 

the symmetry properties of the impermeability tensor allow the interchange of the indices i 

and j ,  which reduces the number of independent components from 27 to 18. As a result, it 

is convenient to  introduce the traditional contracted indices defined by 

1 = (11)  = ( x x )  

2 = (22)  = ( Y Y )  

3 = (33)  = ( z z )  

4 = (23)  = (32)  = ( y s )  = (xy) 

5 = (31)  = (13)  = ( z x )  = (xz) 

6 = (12)  = (21)  = ( x y )  = ( y x )  

Using these definitions we can write TI,, = r i j k  where I is the contracted index and k = L,2,3 

or (x,y,z). In this notation the electro-optic coefficients are written in terms of a 6x3 matrix. 

In the previous sections we derived the space-charge field in photorefractive crystals for 

the case of two plane waves present in the medium. With knowledge of the electro-optic 

tensor, Eq. (2.19) can then be used to compute the change in index induced by this electric 

field. 

The majority of experimental work has used SBN which has the following electro-optic 

tensor: 

where the c-axis of the crystal is chosen to lie along the z-direction. SBN belongs to the point 



CHAPTER 2. PHOTOREFRACTION 

group 4mm, and has only three nonzero coefficients. At room temperature 7-33 >> 7-13, 7-42. 

- - - - - - - - - - -  

Figure 2.4: Geometry used to compute 
Sn(r, z) .  The bias field Eo is applied along - - the c-axis and the space-charge field E,, 
forms in the opposite direction as shown. 

Using the geometry shown in Figure 2.4 the grating vector Ii lies parallel to  the c-axis of the 

crystal and the induced space-charge field is aiong this direction. Therefore the electric field 

vector can be written as (0, 0, E,,), and the components of the impermeability tensor can 

be determined from Eq. (2.19) a.nd the electro-optic tensor Eq. (2.21). For the two-plane 

wave case and our specific geometry, we obtain: 

One final step remains to determine the change in index of refraction: we need to consider 

the polarization p of the incident light. We are interested in the case where the light is 

polarized along the c-axis (TE polarization). The resulting change in index is computed as 

follows: 
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where no is the index of refraction in the presence of zero illumination. 

SBN has been the material of choice in soliton experiments for several reasons. It ca,n 

be produced with high purity, and its electro-optic tensor has many zero entries which 

simplifies the above analysis. The fact that ~ 3 3  is SO much larger than the other components 

also guarantees that for our geometry, Sn for the extraordinary polarization is much larger 

than Sn f ~ r  waves with ordinary polarization. This is important because our descriptio~~ of 

optical beams in photorefractive materials that will be developed in the upcoming chapter is 

a two-dimensional one and cannot account for coupling along both transverse coordinates. 

Thus it is desirable t o  have dominant coupling along the direction of interest. 

We arrive at our final expression for the change in refractive index in the two-planc wave 

case in SBN by substituting Eq. (2.18) into Eq. (2.23) 

- - a l ( z ) * a 2 ( z )  + cc. I 
where 

The form of Eq. (2.24) reveals that the change in index of refraction under thcse concii- 

tions arises from coupling between the two plane waves in the medium. When this coupling 

is s m d ,  more complicated intensities can be decomposed into their spatial modes and ana- 

lyzed in terms of the coupling that occurs between each pair of spatial modes. This is called 

the two-wave mixing approximation. 

Thus far we have described the Kukhtarev-Vinetskii model of photorefraction and used 
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it to  derive an expression for 6n(r, z )  for the specific case of two plane waves in the medium. 

Our major assumptions have been i) that the photovoltaic effect is negligible, ii) that the 

intensity decrease due to absorption is small and iii) that the modulation of the intensity 

pattern is small. In addition we must ensure that the crystal is strongly biased. All of these 

conditions can be achieved easily in the lab. Our expression for 6n(r, z )  is similar to the one 

used by Segev et al. [I], with the exception that we have included the dark irradiance term. 

Our motivation for this is that we expect it to make an important contribution in regions 

of the crystal where the beam irradiance is small. The results developed here will prove 

usefnl when we employ the two-wave mixing approximation in the next chapter to describe 

the propagation of optical beams in photorefractive materials. We will use this description 

to look for conditions under which soliton propagation is possible. 



Chapter 3 

Photorefractive optics 

The purpose of this chapter is to develop the necessary equations to describe the propagakiort 

of optical beams in photorefractive media. The nonlinear wave equation will be derivcd, 

and the photorefractive nonlinearity will be discussed within the framcworlc of the two-wave 

mixing approximation. 

3.1 Two-wave mixing in photorefractive materials 

First let us return to  the simple two plane wave case. Thus far we have shown that whc~l 

two plane waves are incident on the photorefractive crystal an index grating is formed, and 

we have derived an expression for the grating. Because the two plane waves act,ually creatc 

the index grating, they are perfectly phase-matched to it and will undergo Bragg scattering 

(see Figure 3.1). We will find that this results in coupling between modes, which cilrl cause 

energy transfer and self-phase modulation. 

For simplicity we will assume that the two plane waves are polarized along the sanic 

direction. To study the coupling between these modes we substitute the electric fic:ld 
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Figure 3.1: Bragg scattering due to an in- 
dex grating in phot~refract~ive media. Top: 
A grating is formed by the pair of plane 
waves a1 and a2. Middle: Beam a1 is 
diffracted into beam aa. Bottom: Beam a2 
is diffracted into beam a l .  

into the scalar wave equation 

If we treat the change in refractive index due to the photorefractive effect as a small per- 

turbation and write 

n = no + 6n(r, z )  (3.3) 

where no is the unperturbed index of refraction, then the wave equation becomes: 

If both waves propagate in the xz plane and have infinite extent, then a1 and a2 are functions 

of z only. This approximation asmounts to neglecting diffraction for the moment and studyilig 

only the nonlinear coupling between the modes. Later in our description of optical beams, 

diffraction will play a key role. We wish to study the steady-state behaviour of a1 and 

az, so the problem has no time dependence. If we employ the slowly varying envelope 
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approximation (or paraxial approximation), we can neglect second derivatives in z: 

Recalling our previous result for Sn(r, z): 

then after grouping terms with the same exponential powers, we obtain the following equa- 

tions to  describe the coupling of the two plane waves 

. dal 
2 % ~ ~ ~  - = - w2nocn*(ql, q2) a2a;al 

dz c2 (I0 + Id) 

where Pq, and Pq2 are the z-components of the wave vectors ql and qz. 

If both plane waves are incident on the same side of the crystal, then for simplicity wc 

assume 

Pq, = Pq, = cos(8) (3.8) 

Neglecting loss in the nredium, Eq. (3.7) can be written as 

To study the amplitude and phase coupling of the system, it is convenient to rewrite the 

amplitudes as al = fi-;'l and a2 = f i e d i ' 2 .  In addition, we define the complex 
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coupling constant 

Eq. (3.9) then yields two sets of simplified coupled equations, one for the intensities: 

and another for the phases of the two plane waves: 

Figure 3.2: Energy coupling between two 
plane waves: the energy initially in Il flows 
into Iz.  Here Y = 1.0 and < = 0 which cor- 
responds to an imaginary 6n(ql, q2). Id = 
I2(0). 

Studying this set of coupled equations, one finds that the coupling constant R dictates the 



Figure 3.3: Phase coupling between two plane waves: both plsrac nawm rftatlge p11;rsr- i r k  a 
Iinear fashion. a) Self-defocusing: < = -1 ,  u = O and the phase of i m h  plane w a v e  isrriwx* 
with z. b) Self-focusing: = 1,u = 0 and the phase of both plane waum t1ecrcw.s with z. 
There is no energy exchange between modes (&cqt, q?) is real). 

nature of the interaction between the plane waves, Adding the 1wrr quatiotrs in  Eq. (3. I i ) 

reveals that I1 + I2 = emsfant .  If St is real, there is energv excharrgc bet wwtt t hc* L W  ~rtrrcJcbs 

as shown in Figure 3.2. The direction of energy flow depends on the of It .  11 11 > 0, 

energy flows from the  higher spatial modes into the lower spatial rnodcs. W9wn ft  < It kfv* 

energy flows the other way. 

When It is purely imaginary there is no energy exchange betwc~*n t trra m o ( h ,  I ~ u t  p l ~ i ~ w  

coupling occurs as shown in F i g w e  33.  When < > 0 the rnediurn ir; ri*fcbrrc*iJ t o  as WIT 

focusing and the phases decrease linearly with propagation distancr*. I'onv~*rl;r*ly, w h m  

< < 0 the mediam is self-deiocuskg and the mudm accnmulatc phase lirwarly- 

Thns the nature  of SZ determines what typo of coupling occurs tretwwrr spartjai t r t r h s  

[16]. U we recatf oar definition of $2, giwn by Eq. (8.10). it is evident that h>d;r(qt.q~) 

dede-es the character of Sk and therefore of the coupling. If 6n(ql,qk) is  ifi~xgiriary, 

which occurs when b a l r  the drift and diffusion transport mwhanisrm r-rmtsihtr*, t h t  



energy transfer between modes occurs. If dn(ql,q2) is real, there is phase coupling and 

no energy transfer. These ideas will be important later when we look for conditions under 

which sotiton propagation is possible. 

3 2 The two-wave mixing approximat ion 

.An optical heam can a!ways be described in terms of the complete basis of plane waves. The 

two-wave mixing formalism assumes that the change in index of refraction when more than 

two  plane wave comyments are present can be described as a linear summation of all the 

possible two-wave interactions in the medium. This assumption has been wed successfully 

in the past to describe photorefractive phenomena such as self-focusing, self-defocusing and 

beam-fanning [12]129] and w3.I be employed here to  describe optical beam propagation in 

photorefractive materials- 

3.3 The nonlinear wave equation 

Viie wish to describe the propagation of a monochromatic o p t i d  beam of a given frequency 

iv. and polarization travelling in an arbitrary direction we will call z. Assuming the absence 

of nonlinear interactions between orthogonal polarizations, we can again use a scalar for- 

mulation. However, our beam has transverse structure which prohibits us from neglecting 

diffraction. The electric field associated with the optical beam can be written as: 
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and k = wno/c. The spatial frequency (or angular) distribution of the complex amplitude 

A(r, 2) is given by f(qt T )  where r = (2, 9) .  Substit.uting Eq. (3.14) for the electric field into 

Eq. (3.4) and using the slowly-varying-envelope approximation yields the following eqnation 

for the propagation of the beam amplitude A(r, 3): 

3.4 The photorefractive nonlinearity 

When more than one pair of plane waves is present in the medium, we can use the two-wavc 

mixing approximation t o  compute t h ~  index perturbation. This amounts to summing over 

the index gratings formed by all possible pairs of plane waves and can be written in integral 

form as [I]: 

In the most general case, &(ql, q2) can be written in terms of its Fourier transform g(p, p') 

Substituting into Eq. (3.17), and recalling the form of the electric field Eq. (3.14) yields 

Note that this form for the index perturbation reveals the nonlocal nature of the pfrotore- 

&active effect. 

Finally, we substitate the general form for the index perturbation into the nonlinear 
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wave equation Eq. (3.16): 

Within the two-wave mixing approximation, this equation describes the evolution of the 

amplitude of an optical beam in a photorefractive material. Although the task of solving 

this equation looks daunting, we will find that, following the methods of Segev et al., we 

can make several simplifying assumptions to obtain a more manageable equation in the next 

chapter. 



Chapter 4 

In search of photorefractive 

solitons 

Thus far we have derived an espression for the propagation of an optical beam in a photore- 

fractive crystal. In this chapter, we will utilize the nonlinear photorefractive wave cqnatioti 

t o  describe the propagation of solitons in photorefractive crystals. Following the methods 

used by Segev et al., we will simplify this equation and examine the fixed points of the 

resulting ordinary differential equation to  determine the conditions under which bright and 

dark solitons exist. 

4.1 The photorefractive soliton equation 

At this point we need to  consider how soliton formation occurs. As we expect, Eq. (3.20) 

shows that the beam experiences two effects as it propagates: those of diffraction and t hc 

nonlinear effect. Diffraction causes a uniform spreading of the beam, which can be thought 

of as a linear accumulation of phase in each spatial mode. To achieve soliton formation, we 

need the nonlinearity t o  provide a compensating effect. Earlier wc showed that if q2) 

was real, then there was no energy exchange between modes and self-phase niodulation 
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occurred. This is exactly what we need to get solitons: we want the amplitudes of each 

spatial mode to remain constant (no energy exchange) but for the phases of each mode to 

change linearly with propagation distance to balance diffraction. To attain a bright soliton 

wc will need a self-focusing medium q2) > 0) to provide a linear decrease in phase. 

Alternately, for a dark soliton we need a self-defocusing medium (6^n(tql, q2) < 0) to  provide 

linear phase increase. 

With these conditions in mind, we substitute the spatial soliton ansatz 

into Eq. (3.20), where U(r) is real and represents the transverse amplitude, and y is the 

characteristic soliton propagation constant, which may be real or complex. This substitution 

yields the following integrodifferential equation for the amplitude U(r): 

We can obtain an ordinary diff'erential equation by Taylor expanding U(r f p)  about p = 0: 

The smallness parameter associated with the Taylor expansion is d l 1  where d is the typical 

length scale of nonlocality, which is dictated by the form of S^n(ql, qz), and I is the transverse 

beam width. This expansion will be justified later when we show that d is indeed small 

compared to I .  

Because photorefractive materials are noncentrosymmetric, they lack cylindrical sym- 

metry. This makes the full three-dimensional solution to  this problem extremely difficult. 

If we restrict ourselves to  one transverse dimension only, the equations become much more 

tractable. 
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4.2 Simplifying the two-dimensional photorefractive nonlin- 

ear wave equation 

If we choose our single transverse dimension to be the .z. coordinate, and substitute tho 

Taylor expansion Eq. (4.3) into the integrodifferential equa.tion Eq. (4.2) we o13ti~in t lw 

following [l] : 

Now we define the quantities 

Expanding Sn(ql, q2) as a power series in ql and q 2  

Because diffraction is a symmetric process, we need a symmetric process to  balance it and 

therefore we require the symmmetry condition 6n(ql, qz)  = dn(-ql, -qz) This means that 

s,, = 9 i f  rn + n is odd. Moreover, the requirement that Gn(ql, q 2 )  be real implies that 

s,, = sLn and therefore I,, = ~ ~ , e ' ( ~ + " ) " / ~ .  Recalling that U(x) is real and that the 

propagation constant 7 is complex, we substitute 7  = 71 + i l 2  and I,, = I:, + ilj:' into 
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Eq. (4 .4)  and equate real and imaginary parts: 

1 d2U 
y 1 u -  -- = 

dU' 
2k dx2 no(Uz f Id) t lPI.e} dx2 (4 .9)  

where we have used the relations I i r  = -I;?, I;: = 16; and I,, is real for all rn. Eq. (4.9) 

implies that 7 2  = 0 for all nonzero solutions. 

To simplify our notation, we define the constants 

and Eq. (4 .9)  can be written more simply as 

( y - e ) ~ ~ $ y I d U -  L T 1 ' f b ~ ' 2 ~ = 0  (4.13) 

where prime indicates the derivative with respect to the transverse coordinate x. When 

Id = 0 ,  this result reduces to that derived by Segev et a!. [ I ] :  

where the two real propagation constants are related by 7' = y - e .  

4.3 Calculating the coefficients 

The coefficients in the photorefractive soliton equation (Eq.  (4 .13))  are computed using the 

results derived previously for the space charge field in the two-wave mixing case. Recall that 
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soliton formation requires a real 6^n(ql, q2) to balance diffraction. From the definition of 

&(ql, qz), given by Eq. (2.25). this can be satisfied under the condition t.ha.t IEdl << lEol < 
jE,I. In deriving the propagation equation we have also assumed trht\*t the optical beam 

has small angular divergence (the paraxial approximation), which results in indes gratings 

with large periods (or small K). Consequently the limiting field E, is guara,nteecl to be 

large compared to lEdl (recall Eq. (2.17)) and we can satisfy lEdl << IEol by applying a n  

appropriate bias field IEol. Under these conditions q2) is computed from Eq. (2.25) 

and Eq. (2.16). It is given by: 

where B = 1 / 2 n i ~ ~ ~ E ~  and d = EoEor,/(ePd), and Pd = NA(l  - NA/NU) is the ionized 

trap density. Here d is the smallness parameter that was mentioned when we introduced 

the Taylor expansion in Section 4.1. d represents the scale of nonlocality in the problem, or 

more intuitively, it is related to the mean distance Lo that a carrier electron is transported 

by drift before it becomes re-trapped. This distance is much smaller than the width of the 

beam, making the Taylor expansion reasonable. 

To compute a,  b ,  and e we need the quantities loo, Izo, and Ill which are defined by 

equation Eq. (4.7). The coefficients of the various powers or'ql and g2 are found by expanding 

Eq. (4.15), again assuming that d is small: 
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This gives the following expressions for the coefficients: 

4.4 P hase-plane analysis 

Now that we have a simplified equation for soliton propagation the true test comes. How 

do we determine the conditions under which bright and dark soliton solutions exist and are 

these conditions consistent with experiment? 

The types of solutions to the photorefractive soliton equation (Eq. (4.13)) can be studied 

by examining the nature of the fixed points of the system. Consider Figure 4.la) and c) 

which illustrate bright and dark soliton profiles. In the bright soliton case, the amplitude 

must vanish at the limits 

lim U - + O  
x-+f CQ 

and reach some finite value at its peak. These conditions allow us to  infer a possible 

phase diagram, as shown in Figure 4.lb). The path along the separatrix in the phase-plane 

diagram satisfies the bright soliton conditions and is the only trajectory that represents a 

bright soliton solution. Other solutions are oscillatory and unphysical because they require 

optical beams of infinite extent in the transverse direction. There are other phase-plane 

portraits that admit bright soliton solutions, but they involve codimension two fixed points. 

JQe wiU assume that codimension two fixed points do not occur in our model, and will later 

find that this assumption is justified. 
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Similarly the dark soliton phase-portrait, shown in Figure 4.ld). xtu~st satisfy thtl con- 

dition 

lim U -+ constant 
I-+* '33 

and U must pass through the origin. Again, the path along the separatris in the phase-p1a.w 

portrait has this necessary behaviour 

Now that we know the character of the phase-portraits we axe looking for, the nest stcp 

is to identify and classify the fixed points of the system. 

4.5 The fixed points of the photorefractive soliton equation 

To find the fixed points of Eq. (4.131, we define Y = U' and rewrite thc equation as two 

coupled nonlinear equations: 

There are three fixed points for this system of equations, which can he fourttl using tho 

condition U' = Y' = 0. One is the trivial fixed point (U, Y) = (0,O) and thcre are two 

The nontrivial fixed points exist under the following conditions: 

It is interesting that the nontrivial fixed points require nonzero dark irradiance Id ,  a term 

that had been neglected in the original theory. 
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addle ~ o i n t  

saddle point saddle point 

Figure 4.1: a) Amplitude profile of a bright soliton. b) Corresponding phase-portrait. The bright 
soiiion occurs along the separatrix. c) Amplitude profile of a dark soliton. d) Corresponding phase- 
portrait. The dark soliton occurs along the separatrix. 
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The nature of each of the three fixed points can be determined by performing a litwar 

stability calculation. This proceeds by studying the behaviour of the systcru new each fixed 

point. Let U = U* + u and Y = Y* + y, where U* and Y* are the fixed point values of IT 

and Y and u and y are small perturbations from IT* and Y* respectively. Substituting into 

Eq. (4.18) and keeping terms to first order in u and y yields a set of linear equations of l l ic> 

form: 

These equatio~s have the non-trival solution 

where the eigenvalues are determined by the condition 

The behaviour of phase space trajectories near the fixed points can be deduced from 

the eigenvalues. In a set of two equations like this one, [ has two possible roots. If bot t~ 

roots are imaginary, trajectories will circle the fixed point, and the fixed point is said to ba 

a vortex. If both roots are real, with one positive and the other negative, the fixed point 

is a saddle point. Both of these types of fixed points were iiiustrated earlier in Figure 4.1. 

They are the only two types that arise from our set of equations but the interested reader is 

referred to  [30] and [31] for an extensive study of the subject. The results of the linearization 

are summarized in Table 4.1. With knowledge of the eigenvalues, the corresponding fixed 



Table 4.1: Linear stability results for the three fixed points of Eq. (4.18). 

Table 4.2: The fixed points and the conditions determining their character. 

points can be classified. These classifications are given in Table 4.2. Xote here that the case 

a < 0, e  > 0  was not mentioned because the definitions given in Eq. (4.12) imply that a  > 0. 

The existence criteria Eq. (4.20) for the non-trivial fixed points have been included. 

Comparison of Table 4.2 with Figure 4.lb) and Figure 4.ld) give the necessary conditions 

to obtain the two types of soliton solutions. For bright solitons, we combine conditions that 

provide a saddlepoint at the origin and two vortices at the nontrivial fixed points to obtain: 

I Fixed Point ((i=,Y*) I 

bright solitons : e > O,-y > 0  (4.24) 

Converse1y3 for dark solitons we combine conditions that provide a vortex at the origin and 

Character of fixed point 

saddle 
vortex 

vortex 

saddle 

vortex 

saddle 
L i 

(07 0) 1 -/ > 0  
Y < O  

a > O , e > O , y > O  
f 

I a > O , e > O , y  < O  -e 
a < O , e < o , ~  < 2 k a - 1  

a < ~ , e < ~ ; ~ < y < O  



two saddle-points a: the nontrivial fixed p i n t s  to obtain: 

Another i~teresting ~edt can be derived from the linear ~tabifity artalysis. Wfrerr t h e  

medium is d-ddcacusinrg, aLe parameter a has the capability of cf~anginp: sigrl. When this 
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occurs the fixed points are either in the dark soliton configuration, or they are all vortices, as 

shown in Figure 4.2. In this case, the phase-plane is divided into three sections by the lines 

along which Y 1  1 QL. Sote that each of these lines has two points at which Y 1  is finite. Thus 

a possitde solution consisns of a path in phase space that passes through these well defined 

poiirts a5 shown. This solution is not interesting as a solitary wave candidate because it does 

fiegin or ~ ~ n d  at ~ S I F  fixed points. It is rather an oscillatory solution, requiring an infinite 

extent irr the x direction. Dark solitons are only possible when the 2'' - oo lines lie outside 

t fie nontrivial fixed points, and we recover the familiar dark soliton fixed point configuration. 

If we assume that the peak intensity of the soliton (given by U S 2 )  is approximately equal to 

the peak intensity I,,, of the input beam. we can obtain a condition on the magnitude of 

the bias field applied to  the crystal t o  achieve dark solitons: 

There has only been one experirnenta! paper reporting photorefractive nonlocal dark soli- 

tons. and it contains no evidence to  support or contradict this condition [4]. 

4.6 Comparison with experiment 

In the previous section we demonstrated that the photorefractive soliton equation had 

the necessary characteristics t o  admit both bright and dark sofiton solutions. In this section 

realistic parameters will be used t o  show that these solitons do exist under conditions consis- 

tent with experiment. The following parameters are reported in [S] and [4] for experiments 

in SBS: X = 0.5 ym, no = 2.35, ~JI, = '2:24~10-~ pn/V,  E ,  = 1100, Pd = 4 x 1 0 ~  pm-3, 

arrd Eoj = 5sl@ \-fm, which lead t o  the coefficient values listed in Table 4.3. The dark 

irradiancc 4 is estimated to  be z 10 - 100 rnw/cm2 [32][3]. 

Figure 1.3 shows the phaseportraits for the bright and dark cases using the parameters 
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Figure 4.3: a) Phase-portrait for the bright soliton case (y = 1 . 9 ~ 1 0 - ~ ) .  b) Corresponcling 
dark soliton phase-portrait (y = -6.85~10-~). 

Listed in Table 4.3. The corresponding amplitude and intensity profiles for the brig111 and 

dark cases are shown in Figure 4.4a),c) and Figure 4.4b),d) respectively. By choosing y, 

soliton solutions can be found to correspond with the power the optical bcarn. 'Phis is 

particularly easy in the dark soliton case, since U* represents the peak amplitude, and y 

can then be found from Eq. (4.19): 

The bright soliton case requires a bit of guesswork. Experimentally, bright soli tolls have 

been generated for intensities in the range 0.05 - 78.5 w/crn2, which corresponds to clet:t,ric 

field values of z 400 - 1 . 6 ~ 1 0 ~  Vjm. Note that the lowest intensity value is riot much greater 

than the estimated dark irradiance (10 - 100 rn~/crn ') .  Dark solitons have been otlservcd 

for intensities of 0.3 - 30 w/cm2, or electric field values of rz 1 x 1 0 ~  - 1x10" V/m [4]. 'I'hc 

photorefractive soliton equation yields both bright and dark soliton fjolutions for both thcse 
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Figure 4.4: a) Amplitude profile of a bright soliton (y = 1 . 9 ~ 1 0 - ~ ) .  b) Amplitude profile of a dark 
soliton (7 = -6 .85~10-~) .  c) Corresponding bright soliton intensity profile (peak of 0.05 W/cm2) .  
d) Corresponding dark soliton intensity profile (peak of 0.3 W/cm2).  
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Table 4.3: Experimental parameters from [4][5]. 

Soliton Type 

ranges of electric field. Two examples are shown in Figure 4.4. 

Using the parameters in Table 4.3, we predict the following condition on the bias field 

Bright I Dart  1 

when the incident intensity is large compared to Id: 

lEol < 5.85x105 V/m 

~t intensity is comparable to Id the maximum field condi When the inciden 

from Eq. (4.26). 

(4.28) 

tion can bc derivccl 

4.7 The Segev equation 

Earlier when we derived the photorefractive soliton equation, we mentioned that if the 

dark irradiance Id was neglected, we obtained Eq. (4.14) derived by Segev et 81. [I]. It 

is interesting to  compare the differences between these equations to understaid how they 

permit different solutions. 

We begin by looking at the fixed points of the Segev equation. Making the substitution 
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Y = U' yields the following set of coupled equations 

Eq. (4.29) has a single fixed point a t  the origin (as well as fixed points at koo). The standard 

stability analysis used previously cannot be applied here because it is readily shown that 

the system has two zero eigenvalues. However, the general character of the fixed point 

is revealed by plotting the phase-portrait (see Figure 4.5). Unlike the (0,O) fixed point 

examined earlier, this one has the character of both a saddle node and a vortex and is a 

codimension two fixed point [30]. The system permits an infinite number of bright soliton 

solutions instead of a single solution for each set of parameters (recall the single separatrix 

in Figure 4.lb)). The Segev equation does not permit dark soliton solutions. This is 

Y 
codimension 21 

fixed point 

Figure 4.5: Phase-plane for bright soliton 
solutions of the Segev equation. 

apparent because there is a singularity at U = 0, Y # 0. The Segev equation can be solved 
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exactly for bright solitons solutions. They axe fnnnd to have t,he following form: 

where D = a/(b-a), ru = J m / a .  Tl e constants a and b a,re defined in Eq. (4.12). 'I'llc 

arbitrary constant Uo reflects the behaviour seen in the phase-plane that permits an infinit,{\ 

number of solutions for a single set of parameters. The requirement D > 0 guarantees tha,t 

the boundary conditions a t  x 4 f oo are satisfied. This yields an upper and lower bound 

on the applied electric field; for bright solitons in SBN this condition is 

For the parameters in Table 4.2 this condition reduces to 

The polarity of the electric field is not consistent with experiment. We have demonstrated 

that bright solitons require Eo > 0 or equivalently Sn > 0, which corresponds to self-focusing 

[2][4], and this has been verifed experimentally [19]. Segev's equation predicts the opposite: 

that bright solitons occur when the medium is self-defocusing, and dark solitons occur wheii 

the medium is self-focusing. One experimental paper reports reasonable agreement with the 

bounds set on the magnitude of the bias field by the Segev prediction 121. 

4.8 The small modulation approximation 

Our theory relies on the small modulation approximation, which allows us to  ignore all 

but the first Fourier component in deriving the space-charge field inside the crystal, Recall 

that  this assumption requires that there be high conductivity in all regions of the crystal. 
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Figure 4.6: a) Amplitude profile of a bright soliton (7 = 5x10-~). b) Amplitude profile of a dark 
soliton (7 = -8 2 3 ~ 1 0 - ~ ) .  c)  Corresponding bright soliton intensity profile (peak of 1.2 W/cm2). d) 
Corresponding dart soiiton intensity profile (peak of 1 W/cm2). 4=lO W/cm2 and &=I0 mW/cm2. 
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Segev's method ignores this requirement entirely, which makes his analysis inaccurate in 

regions of low intensity (the edges of the beam), or when the incidcnt int.crisity is of the 

same order as the dark irradiance. Our analysis is somewhat better. By including the dark 

irradiance we have removed the unphysical divergence from the Segev cquatioa. I-Iowcvcr, 

we have still neglected to require a constant background illunlination that is needed to makc 

our approximations fully valid when I. is large compared to Id.  This was dorie largely to 

compare the theory with experiments, which do not use background illumination. Like 

Segev7s method, our analysis is poorest in regions of low intensity; near the beam cdges for 

bright solitons, or the centre of dark solitons. When the optical beam irradiance is of t hc 

same order as the dark irradiance, our analysis is valid for all parts of the bcam. 

We can extend our method to  include the background illumination by adding this term 

t o  the dark irradiance in the denominator of Eq. (3.20), and adjusting the average index 

of refraction no to  account for the constant internal electric field that would be created 

in the crystal. What this does is essentially redefine what we mean by 'dark', so that 

conductivity that was originally due to  thermal effects now includes photoconductivity from 

the background illumination. The rest of the analysis proceeds as before. The phase plane 

analysis and conditions for soliton formation are the same, with the term Id being replaccd 

by Id + Ib where Ib is the background illumination. Figure 4.6 shows bright and dark soliton 

profiles for Ib = 10 w/crn2 and 4 = 10 rnw/cm2. 

4.9 Other assumptions 

To obtain the photorefractive soliton equation we have made several additional assumptions. 

We began by deriving the change in refractive index for two plane waves in the medium. 

We ignored the photovcdtaic effect, which is valid for materials such as SBN and most 

other photorefractive ~ryi i tds  that have negligible photovoltaic properties. In deriving an 

expression for optic& beam propagation in photorefractive materials we assumed that the 
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beam had srn all angular divergence which allowed us to neglect second derivatives in z. This 

is a frequently used approximation which can be easily satisfied experimentally [33]. 

We have neglected absorption in our model of photorefraction. Experimental studies 

of nonlocal solitons have not reported diminishing soliton amplitude due to absorption. 

This merits further investigation because absorption coefficients for SBN suggest that for 

propagation distances as large as 5mm, absorption effects should play a role [23]. 

We have restricted our analysis to one transverse dimension to simplify the mathematics 

of finding soliton solutions. In materials such as SBN which have one dominant electro-optic 

cocrffirier t ,  this has been shown to be a reasonable approximation because coupling along 

one transverse direction is much stronger than the coupling along the other. By choosing to 

polarize the opticd beam along the c-axis, the largest coupling occurs along this direction, 

making coupling contributions from the other transverse dimension negligible. 

Our final assumption was that the scale of nonlocality d was small compared to  the soliton 

width I. Taking our d value from Table 4.3 and estimating I % 40pm yields dl1 % 00.19. 

Recall that we have kept to second order in this parameter. From Eq. (4.16), we see 

that there are no odd orders in d so that tl!e next highest order is fourth order, which is 

extremely small (z l ~ l o - ~ ) ,  making this a reasonable assumption. One could avoid the 

Taylor expansion altogether and numerically integrate Eq. (3.20) by a method such as the 

'split step Fourier method' [3,13. However, it is doubtful that much would be gained in the 

analysis given here for SBN because the terms we have neglected are so small. 
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Stability of nonlocal solitons 

Experimentally, nonlocal solitons have been shown to be stable despite the index inhomo- 

geneities that are always present in photorefractive crystals. They have also beeu obscrvctl 

to evolve from an arbitrary input waveform [2][13]. This chapter presents a thcorcticnl sta- 

bility argument adapted from one developed by Segev et (11. [13] to suit botli bright a.nd 

dark solitons of the type discussed previously. The evolution properties of the solitons will 

not be addressed. 

The analysis begins by recalling the paraxial nonlinear wave equation developed previ- 

ously: 

where, as before, we are restricting the analysis to two dimensions. A soliton solution to 

this equation has the form 

A($ ,  Z) = ~ ( x ) e ~ '  (5.2) 

Now let us assume the presence of an index perturbation that causes a deviation from t h e  

soliton solution so that the field amplitude now has the form 



CHAPTER 5. STABILITY OF NOATLOCAL SOLITONS 53 

where U(I)  represents the perturbation and we require IU(')I2 << IU( ' ) /~ .  As before, the 

light induced photorefractive change in index is assumed to  be real, (but permitting uniform 

absorption) so that 6 n ( x ,  z) = 6n*(x ,  z ) .  Multiplying Eq. (5.1) by A* and adding its complex 

conjugate yields the equation: 

This equation is an expression of conservation of energy. Substituting the perturbed solution 

Eq. (5.3) into Eq. (5.4) and keeping to first order in u(') yields 

Grouping terms with identical exponential arguments gives the equation 

Let us assume that the perturbation takes place on a length scale 1, which is small compared 

to the soliton width 1,  and larger or of the same order as the wavelength of light A ( 1  >> l p  2 

A). The paraxial approximation requires that the longitudinal scale I ,  of u(') be larger than 

I,, but it may still be small relative to the soliton size. In addition, it was shown previously 

that soliton solutions occur for I y 1 < /el, where e a k. This implies that at most y z 1 / X .  

Comparing the relative magnitude of the various terms in Eq. (5.6): 

Thus we are justified in neglecting the third term in Eq. (5.6) to obtain a simplified equation 
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governing the propagation of the perturbation: 

This equation reveals that u(') propagates almost independently of the solito 

If we make the transformation 

then the second term is removed and the equation has the form: 

This equation, along with its accompanying conservation of energy relation 

tn sol 

implies that the perturbation remains small in magnitude and eventually diffracts away :IS 

it propagates. This is apparent because Eq. (5.10) has the same form as the paraxial wave 

equation with no nonlinear term to  balance the effect of diffraction. Thus the perturbation 

dies off and we can say that for perturbations that are small relative to the soliton s i x ,  

the soliton is relatively stable. This conclusion is in agreement with an experimental study 

done by Duree et al. [14] for bright solitons in SBN. No perturbing studies of this kind have 

been done for dark solitons. 
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Conclusions 

Photorefractive nonlocal solitons of the bright and dark type have been observed experimen- 

tally. They occur when the spreading effect of diffraction is balanced by the self-focusing 

or self-defocusing effect of the phase coupling between spatial modes of the input beam. 

These solitons are thought t o  be potentially useful in all-optical switching devices because 

they can be generated at very low light intensities. The original theory of nonlocal soliton 

formation proposed by Segev et at. [1] accounted only for the existence of bright solitons. 

It also predicted that these solitons could be found when the medium was self-defocusing, a 

fact that experiment has shown to be incorrect. Tising the same two-wave mixing formalism 

as the original theory. we have derived an equation to describe the propagation of solitons 

in photorefractive materials. This equation includes the dark irradiance in the calculation 

of the change in index of refraction, and thus removes the unphysical divergence that was 

present in Segev's equation under zero incident intensity. Our theory predicts that a nonzero 

dark irradiance is essential for nonlocal soliton formation. A possible method for testing 

this prediction wodd be to lower the crystal temperature, and thus the dark irradiance, and 

observe what effect this has on bright and dark nonlocd soliton formation. 

By anakzing the &xed points of the equation, we found both dark and bright soliton 

s~lut lof t~ and cunditioas for their existerrce. We demonstrated that bri@ soliton solutions 



reqIEire the polarity of the bias field t o  be such that the medium is self-focusing. C'onwrsrly, 

dark solitons require self-dehusing which is achieved by switching the polarity of t t~c bins 

field. Both of these predictions h a w  been wrified esperimcntaltg. There is no aviiilnhlr 

experimental evidence t o  support the maximurn bias field condition that  w t  obtaincd for 

dark solitons. We have also shown that nonlocal solitons are stable to illcfcs pcrturBirtions 

that are small compared to the size s f  the soliton. This fact tias l>cwl csptri~rtcntally 

confirmed. 

Qualitatively, our theor? does a good job of predicting the type of itc*havimr that It ;is 

been observed in soliton experiments, However, caution should be used w h m  cornpitring 

our results directly with those of experiment. The reasou for this prudence is tlritt, all 

of t he  experiments to date have used zero background illumination. whirlr is int-onsistmi; 

with the conditions necessary fos the small modulation approsirnation. This mcsans th;tt. 

at best our theory can describe the high intensity portions of the beam, unlt*ss tlw beam 

inadiance is comparable t o  the dark irradiance. If the incident intensity is largv contpitrc4 

t o  Id: our theory is more appropriateiy appiied with the presence of a c-onstant harkground 

iUumination. It  would be interesting to  EW how well our thtrrry corrobsrati~s rxpcrimcv~tr 

done under such conditioas. 

A complete description of nonlocaI solitons in photorefractive materials is still larki rtg. 

To date, the theory accounts only for self-trapping in  snc dimension and c1oc.s not explain 

the experimental obsemtions of soliton forniatisn along both transverse dircxtions. 12 rr al- 

ysis has been restricted to materials such as SHN which have one clominant dcctro-optic- 

coefficient, allowing the approximation tha t  coupling betwwn tranverse modes is srrtafl. A 

full three dimensional treatment has not been attempted here bccauee the lack of cylirr- 

dried symmetry in the problem makes mlving the photorefractive nonlinear wave equation 

very &&&, Any fatare progres in ithis area wiii iikeiy rely on nnmcficd ~ i u i h  of the 

id three dimensianal problem. Other questions that  remain unanswered include soliton 

mE&m and the evoIeGm propertie of eonlocal soli tons from arbitrary hpu t beams. In 



addition, the effect of absorption on nonlocal soliton form ation needs investigation. Never- 

thr?less, the basic effecf. of nonlocal soliton formation seems to  be understood. We now have 

a theory which qualitatively predicts bright and dark solitons under conditions consistent 

with experiment. 
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