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Abstract

Optical spatial solitons have been the subject of intense theoretical and experimental re-
search in the last thirty years. Spatial sclitons have been studied extensively in Kerr media,
where they arise when a nonlinear change in refractive index provides a confining effect
that compensates for the defocusing effect of diffraction. In 1292 Segev el al. [1] predicted
that spatial solitons could also occur in photorefractive materials as a resuit of a similar
balance between diffraction and nonlinear photorefractive selt-focusing. This was verified
experimentally in 1993 by Duree et al. [2]. Since then it has been demonstrated that three
distinct classes of spatial solitons can exist in photorefractive materials. The first class arises
from the nonlocal photorefractive effect and can be generated at extremely low intensities
(mW /cm?). These solitons require the application of an external voltage to the photore-
fractive crystal and are referred to as nonlocal solitons. The second class is the photovoltaic
soliton, which arises in a particular type of photorefractive crystal {3]. The final class of
spatial soliton is the screening soliton, which requires similar conditions to the nonlocal one,
but is the result of a local change in the index of refraction when the electric field of the
optical beam is comparable to the external bias field.

Both bright and dark solitons have been observed experimentally for the three soliton
classes. The theories developed for the screening solitons and the photovoltaic solitons
account for these observations. However, the theory proposed by Segev et al. fails to explain
the existence of dark solitons [1]. This thesis examines the assumptions made by Segev el al.
in an attempt to posit a more genera! theory that accounts for dark solitons. This requires
an understanding of the Kukhtarev-Vinetskii model of photorefraction, and an application
of the model to describe the coupling of two spatial modes in photorefractive media. Within
the two-wave mixing approximation an equation is derived for the propagation of optical

beams in photorefractive materials. The soliton solutions to the equation are studied and

iil



it is shown that the modified theory admits both bright and dark soliton solutions under
conditions consistent with experiment. The thesis concludes with an argument that accounts

for the stability of these solutions.
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In its effect the light was choral. Harmonies of power simultaneously achieved, a depth of
light, not one note but many, notes of light sung together. In its high register, far beyond
the ears of man, the music of the spheres, vibrated light noted in .5 own frequency. Light

seen and heard. Light that writes on tablets of stone. Light that glories what it touches.

Solemn, self-delighting light.

- Jeanette Winterson, Art & Lies (1994)
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Chapter 1

Introduction

1.1 The history of the soliton

The first documented observation of a soliton was made by a Scottish engineer named John
Scott Russell in 1834 while he was riding on horseback along the Union Canal that connects
Edinburgh and Glasgow. He recorded his chservation in the following delightful words:

I was observing the moti.: of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped-not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agilation, then suddenly leaving it behind rolled forward with great velocily, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued ils course along the channel apparently without change of form or dimunition of
speed. [ followed it on horseback. and overlook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot
and a half in height. Hs height gradually diminished, and after a chase of one or two miles

lost it in the windings of the channel. Such, in the month of August 1834, was my first

]

chance interview with thal singular and beautiful phenomenon which I have called the Wave

of Translation, .. .|6)
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Russell’s chance encounter with the Wave of Translation prompted intense debate
because its existence contradicted the shallow wave theory that was well accepted at the time
[6]. The controversy was resolved independently by Bo .sinesq in 1871 and T.ord Rayleigh in
1876 who both recognized the importance of the previously neglected concept of dispersion.
They were the first to realize that the solitary wave was a product of the balance between
two competing effects: the nonlinear effect, which describes why the crest of a wave moves
faster than the rest, and the dispersive effect, which describes the dependence of the wave
velocity on the frequency of the wave [7]. They reasoned that the tendency for the wave to
‘break’ was balanced by the spreading effect of dispersion.

In 1895 Korteweg and de Vries attempted to mathematically describe wave propagation
in shalow water, incorporating the effects of dispersion and surface tension. Their efforts
resulted in the celebrated KdV equation, which was shown to have solutions much like
Russell’s solitary wave.

In the years following, the solitary wave was thought to be an unimportant mathematical
curiosity of nonlinear wave theory. However, in 1955 it reappeared in a completely different
context. At the time, three scientists named Fermi, Pasta and Ulam, were studying the
transfer of heat in solids. It was known that a model consisting of a one-dimensional lattice
of identical masses connected by linear springs was not sufficient to achieve equipartition
of energy among the different modes of the lattice. In other words, a lattice with only
harmonic interactions would never reach thermal equilibrium. Debye had snggested that
this problem would likely be resolved by including nonlinear interactions between the atoms
[6]. Fermi, Pasta and Ulam proceeded to test this hypothesis numerically. They found that
the system did not reach thermal equilibrium. Instead, if they initially excited one mode of
the lattice, the energy returned almost periodically to this mode and a few nearby ones.

The unexpected results of Fermi, Pasta and Ulam motivated Zabusky and Kruskal to
study the problem in greater detail. They were led by a continuum approximation to

the KdV equation for describing the energy transfer among the lattice modes. Numerical
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simulations of the KdV equation showed that robust pulse-like waves propagated in the
system. These solitary waves could pass through each other while maintaining their speed
and shape. Zabusky and Kruskal named these waves solitons to emphasize their particle-
like qualities. In an attempt to explain the Fermi, Pasta and Ulam results, Zabusky and
Kruskal launched a sinusoidal pulse on a ring of atoms (see Figure 1.1) [6]. They found
that the system evolved to a state in which a number of solitons propagated along the ring
with different velocities. Collisions among these solitons caused small phase changes in each
soliton. After a long enough time the solitons were observed to collide simultaneously. At

this instant the system resembled the initial state. This explained the recurrence seen by

Fermi, Pasta and Ulam.

N=

% Figure 1.1: Breaking of initial state into
/& solitons. The recurrence of the inital state
occurs when the solitons collide simultane-

4 ously [6].

In 1967 Gardner et al. showed that under some conditions, analytic solutions to the
KdV equation could be obtained using what is now called the inverse scattering method [8].
They showed that the number of solitons that evolved was dependent on the initial state.
Their results were in general agreement with Zabusky and Kruskal’s numerical studies.

It is now apparent that solitons are ever-present in our modelling of the physical world.

In the past thirty years approximately one hundred different types of nonlinear partial
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differential equations have been shown to have soliton or soliton-like solutioﬁs [7]. Solitouns
have appeared in problems as diverse as the biological modelling of protein transport [9]
aﬁd the atmospheric modelling of Jupiter’s long-lasting ‘Red Spot’ [10].

Perhaps the most widely studied solitons have been optical solitons because of their
promising applications. These solitons arise from a balance between dispersion and a non-
linear effect such as the Kerr effect. They have been used successfully to transmit binary
data down optical fibers using a scheme where a soliton represents a logical ‘1’ and the
absence of a soliton represents a ‘0’. Optical logic gates using optical solitons have been
proposed [11] but have not yet been achieved experimentally.

The definition of a soliton has generated heavy debate. The original definition required it
to be ‘alocalized solution to an exactly integrable partial differential equation that is stable
against collisions with other solitons’. In much of the literature a looser definition has been
adopted to include all solutions that are relatively stable solitary waves. Because many
nonlinear partial differential equations are not exactly integrable, solitons are often found
numerically. The term relatively stable has come to mean that, numerically, the solutions
propagate without changing their shape, and retain their properties upon colliding with

other solitons.

1.2 Photorefractive spatial solitons

The Wave of Translation seen by Russell and the other solitons mentioned thus far have
been temporal solitons, a name given to reflect their unchanging nature as they propagate in
time. The solitons that will be studied here are spatial solitons that occur in photorefractive
crystals such as strontium barium niobate (SBN). They are the spatial analogues of the
temporal soliton: the propagation direction plays the role that time plays for a temporal
soliton. In the temporal case, dispersion acts to spread the pulse in time, while in the

spatial case, diffraction acts to spread the pulse in space. The basic effect of spatial soliton



CHAPTER 1. INTRODUCTION 5

N TN
y v

///////%/7////,/%”

% P

% (um)

a) b)

Figure 1.2: The intensity profiles of a) a bright spatial soliton, and b) a dark spatial soliton.
The intensity profiles remain unchanged along the propagation direction z.

formation can be explained as follows: when an optical beam enters a photorefractive crystal
it spreads via diffraction. In order to form a soliton, this spreading must be balanced by a
nonlinear effect. The nonlinearity arises because photorefractive materials undergo a change
in index of refraction én upon illumination. The index change causes a coupling between
the spatial modes of the input beam [12]. This coupling results in energy exchange and/or
self-phase modulation, depending on the nature of én. When én > 0 the medium is called
self-focusing and phase coupling causes the phase of each spatial mode to decrease linearly
along the propagation direction. Conversely, when én < 0 the medium is self-defocusing.
Phase coupling then leads to a linear accumulation of phase in each mode. If én is imaginary,
then energy coupling occurs, causing the amplification of either the low or the high order
spatial modes of the input beam. Because diffraction can be considered a linear accumulation
of phase, balancing it requires phase coupling rather than energy exchange. Thus a bright
soliton can be attained when the medium is self-focusing: the linear decrease in phase due

to phase coupling balances the linear increase in phase from diffraction. In contrast, dark
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solitons can be attained when the medium is self-defocusing: the linear increase in phase
due to phase coupling exactly balances the linear decrease in phase due to diffraction (see

Figure 1.3).

<«—diffraction—» ’ <«—self-defocusing—»
—» sclf-focusing «€— —» diffraction €—

a) b)

Figure 1.3: a) Intensity profile of a bright soliton (én > 0). The spreading effect of diffraction
is balanced by self-focusing. b) Intensity profile of a dark soliton (6n < 0). The inward spread
of diffraction is balanced by self-defocusing.

In 1992, Segev et al. [1] derived an approximate equation for the propagation of optical
beams in photorefractive materials and showed that the equation had bright spatial soliton
solutions. These solitons were studied in greater detail by Crosignani et al. [5] who found
additional analytic solutions and studied their stability and dimensionality [13][14]. These
solitons arise from the nonlocal photorefractive effect, and for that reason will be referred
to as monlocal solitons. Their formation requires the presence of a bias field, and the
magnitude of the bias field must be large compared to the electric field of the incident light.
Observation of these bright solitons came in 1993 [2], followed by the experimental discovery
of nonlocal dark solitons in 1994 [15]. The theory developed by Segev et al. does not account
for daric solitons [1][5]. There has been great interest in these solitons because they can

be generated at low light intensities, making them better candidates for optical switching
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devices than the conventional Kerr solitons. Nonlocal solitons have the disadvantage of
being short-lived: they have been reported to last for a maximum duration of ~ 2 s [4]. On
optical time-scales this is considered long enough to be potentially useful. The lifetime of
nonlocal solitons is limited because the bias field that is essential to their formation becomes
screened by thermally generated electrons inside the crystal. Nevertheless, their lifetime is
long compared to the time required for their formation (& 1x10~* s) [16]. For this reason
they are considered to exist in ‘steady-state’ conditions during this short time-window.
The experimental apparatus used to generate nonlocal solitons is shown in Figure 1.4.
The material used was a 5 mm x 5 mm x 6 mm SBN crystal, oriented with its c-axis
perpendicular to the beam propagation direction and parallel to the polarization of the
beam. The beam diameter at the entrance face of the crystal was 81 ym along the c-axis.
A digital oscilloscope was used to monitor the intensity of the incident beam after passing
through the crystal and an exit aperture the size of the original beam. While the intensity
remained constant the system was considered to be in steady-state. Different cross-sections
of the beam in the crystal were imaged onto the detector array by moving the imaging

lens position with respect to the SBN crystal. The glass slide was inserted for dark soliton
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Bright Soliton Dark Soliton

40 um

z=2.5 mm

Figure 1.5: Experimental bright and dark

~30 um soliton profiles in SBN [2][4]. The dark soli-
tons are approximated as a notch out of a
gausstan beam. The notch propagates with-
out change in profile.

40 um

z=5.0 mm

40 um

experiments only. It was tilted to create a 7 phase shift in half of the beam, yielding an
intensity profile with a 'notch’ taken out of it. Figure 1.5 shows an example of beam profiles
along the c-axis obtained for bright and dark solitons [2][4]. Soliton formation along the
other transverse direction lhas also been observed.

Since the discovery of nonlocal solitons, two other types of photorefractive solitons have
been found. One of these is the photovoltaic soliton, which occurs in photovoltaic materials
such as LiNbOgz [17]. A theory has been developed to account for the existence of both
bright and dark photovoltaic solitons, and both types have been observed experimentally
[18].

The last photorefractive soliton to be found was the screening soliton. It exists under
similar conditions to the nonlocal soliton, but requires an external bias field comparable to
the electric field of the incident light [19]{20]. Screening solitons are formed after the bias
field has been nonuniformly screened. The change in index of refraction arises primarily from
a local effect that depends on the incident intensity. Screening solitons cannot be generated

at intensities as low as their nonlocal counterparts. The theory describing their formation is
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reasonably complete and predicts bright and dark spatial solitons, both of which have been
observed experimentally [4][21][22].

Many theoretical questions regarding the three soliton types remain unanswered. The
theory postulated for all three types is two-dimensional and fails to explain experimentally
observed soliton formation in both transverse directions. The evolution properties of pho-
torefractive solitons from arbitrary input beams are also unaccounted for. No studies to
date have addressed questions regarding collisions between photorefractive spatial solitons.
The theory of nonlocal solitons is the weakest of the three soliton theories because it fails
to predict dark solitons.

This thesis tackles the latter problem and modifies the existing nonlocal soliton theory
to account for dark soliton solutions. To facilitate this goél the approximations made in
(1] and [5] are examined. This requires an understanding of the widely used Kukhtarev-
Vinetskii model of photorefraction. The photorefractive nonlinearity for two-wave mixing
is developed within the framework of this model and under more general conditions than
those outlined in [1] and [5]. Two-wave mixing is studied briefly and the results are extended
to provide a description of the propagation of optical beams in photorefractive materials

using the two-wave mixing approximation. With this description the search for dark solitons

begins.



Chapter 2

Photorefraction

Photorefraction is a process by which the local index of refraction of a medium is changed
when it is illuminated by a beam of light with varying spatial intensity [16]. It was discovered
in 1966 by Ashkin while he studied the propagation of laser light through LiNbOj. He found
that in the region of the laser beam there was a local change in the refractive index which
caused the beam wavefront to distort as it passed through the crystal. He considered this an
undesirable effect in an otherwise high quality optical crystal, and termed the effect ‘optical
damage’ [23].

Although photorefraction was originally considered a nuisance, the positive atiributes
of the effect were soon appreciated and a number of applications were proposed. Because of
the reversible nature of the refractive index variations, it was clear that these crystals could
be used as recyclable photosensitive media. With the recent improvement of doping and
crystal growth techniques, it is now feasible to use photorefractive crystals for holography
and optical information processing [23].

The physical origin of the photorefractive effect has been of considerable interest to
scientists studying solid-state physics, semiconductors, and coherent optics. Since Ashkin’s
observation, the theory of photorefraction has developed considerably. The current theory is

a collaborative effort beginning with work by Chen in 1967, and fleshed out by contributions

10
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from Amodei, Kukhtarev and Vinetskii and others {3].

A qualitative model of photorefraction is as follows: free carriers are produced in the
crystal by photoionization and are transported into non-iluminated regions where they
become trapped. The resulting charge distribution causes the formation of an internal
electric field, which modulates the index of refraction of the material via the linear Pockel’s
effect.

The aim of this chapter is to present the essentials of the commonly used Kukhtarev-
Vinetskii model of photorefraction and to utilize this model in deriving an expression for
the change in refractive index when a photorefractive material is illuminated by two plane

waves. This result will form the basis of our description of the propagation of optical beams

in photorefractive crystals.

2.1 Charge carrier generation

Pure photorefractive crystals are transparent in the visible regime and thus the charge donors
and acceptors needed for photorefraction must be provided by impurities [3]. In lithium
niobate (LiNbO3), potassium niobate (KNbOj3) and most other photorefractive crystals,

Fe ion impurities in different valence states act as both the donors and acceptors. The

e .
conduction band
yan AN
A
—Y N
N
1l Figure 2.1: Energy level model for pho-
i\ torefraction in which a single type of donor
h valence band and acceptor species are present, giving rise
to electrons in the conduction band and

hoies in the valence band.
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concentrations of impurities can be controlled through doping. Photorefraction has been
found to occur for Fe ion concentrations ranging between 10'®~10%cm=3 [3]. Other common
types of impurities include copper, thodium and manganese. The location of the impurities
in the crystal is often unknown. The impurities may substitute for certain cations in the
crystal, or occur as some other type of defect [23].

Upon illumination, light is absorbed by an acceptor and ionization occurs, promoting
an electron into the conduction band and leaving a hole in the valence band as shown in
Figure 2.1. After ionization, the electron is free to move in the conduction band until it
recombines with an acceptor elsewhere in the crystal. Although hole conduction occurs,
it will be neglected in the analysis that follows because the mobility of the holes is small
compared to the electron mobility. Thus hole conduction makes a negligible contribution
to photorefraction under most conditions [23]. In ferroelectric crystals, it is typically Fe*t
ions that act as the donors and Fe®*! ions that act as the acceptors. The photoexcitation

energy for Fe doped ferroelectric crystals ranges between 3.1 — 3.2 eV.

2.2 Transport of charge carriers

Once the charge carriers have been generated, they are transported out of the illuminated
regions of the crystal by three mechanisms: diffusion, drift and the photovoltaic effect.

Diffusion transport occurs because the electrons migrate from the illuminated regions,
where their concentration is high, into dark areas where their concentration is low. Figure 2.2
shows the diffusion field created by an incident intensity with a sinusoidal modulation. The
charge carriers typically travel a distance Ly before being re-trapped. This distance depends
largely on the acceptor concentration and charge mobility. Note that the space-charge field
E,. created by the charge distribution is m/2 out of phase with the incident intensity.

Drift transport occurs when an external electric field Fy is applied to the crystal. This
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0" ++J',++ S S Figure 2.2: Charge transport via diffu-
: = S —ttde—> sion. The positive charge distribution p*
p qj_: - - = is a result of ionized donors that are left in
L, high illumination regions when the carrier
/\ /\ /\ electrons diffuse to regions of low electron
E,_ ; > concentration. The resulting internal field
' \/ \/ X E,. is shifted by 7/2 with respect to the

incident illumination. [23].

field causes unidirectional electron transport away from illuminated areas as shown in Fig-
ure 2.3. Electrons typically move a distance Ly before becoming re-trapped. If Lo is small
compared to the wavelength of the intensity modulation, then the space-charge field F.
created by the redistribution of charge will be almost in phase with the incident intensity.

Photorefractive materials are often ferroelectric, meaning that at some temperatures
they possess a spontaneous polarization [24]. Thus the conduction electrons move pref-
erentially along the direction of this polarization. Charge transport of this type is called
photovoltaic and will not be included in the analysis fhat follows because it is generally neg-
ligible in the materials used for studying nonlocal solitons [23]). For information regarding
soliton formation under conditions where photovoltaic transport is important, the interested
reader is referred to [17].

The transport of charge carriers in the crystal results in a nonuniform charge distribution
which in turn creates an internal electric field. Because the charge distribution in one part
of the crystal gives rise to the electric field in another part of the crystal, the photorefractive
effect is said to be a nonlocal effect. The length scale over which this nonlocal effect acts

depends on the mean distance of charge transport (Lg in the case of drift transport, or Ly
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+ +4+ +++ +++ Figure 2.3: Charge transport via drift.
B — S The positive charge distribution p* is a re-
P _'1::| Il - sult of ionized donors that are left in high
tllumination regions when the carrier elee-

T
\ 0 /\ /\ / trons drift to low illumination areas of the
-> crystal. The resulting internal field £, is
S \J \J -

almost in phase with the incdent. illumina-
tion [23].

if transport is by diffusion).

2.3 Formation of the space-charge field

To derive an expression for the index of refraction change, it is necessary to quantify the
electric field formed by the charge distribution in the crystal. To do this we will make several
simplifying assumptions: i) we neglect the photovoltaic effect, ii) we neglect absorption and
ii) we assume that the intensity modulation is small.

With these assumptions in mind let us begin by defining Np as the total number density
of dopants in the material, and N* and N as the acceptor and donor number densitics such
that Np = N + N*t. The rate of electron generation is then (s/ + D)N, where s is the
cross-section of photoionization, and D is the rate of thermal generation of electrons. The
rate of trap capture is given by TpN*t where T is the recombination coefficient and p is the
number density of the electrons. Thus the rate equation for the number density of acceptlors

is given by

aN* .\ |




CHAPTER 2. PHOTOREFRACTION 15

Notice that we have neglected the decrease in intensity due to absorption. This approxima-
tion holds well for thin crystals but becomes worse as the distance the beam travels in the
photorefractive media increases.

The rate of generation of electrons is the same as that of the ionized impurities, except
that the electrons are mobile while the acceptors are fixed in the crystal. Thus the rate

equation for the electron number density can be written as

J . J
—(p-NH=v.= .
Slp— N =V (22)
The electron current, which is given by
J=eupE + k,TuVp (2.3)

arises from charge transport contributions from drift and diffusion respectively. Here u is
the electron mobility, e is the electron charge, and ky, is Boltzmann’s constant. Finally,

Poisson’s equation gives an expression for the electric field

V-€E=—e(p+Ns— Nt (2.4)

where N4 is the numbe; density of negative ions that are necessary to preserve charge
neutrality in the crystal. In the absence of illumination, the charge neutrality condition can
be expressed as (p + N4~ Nt)= 0.

A general solution to these equations is not available. However, for reasons that will
become apparent, we are interested in the solution for an incident intensity of two plane

waves of the same frequency but different wavevectors.
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2.4 The space-charge field from two plane waves

Consider the incidence of two plane waves of tue same frequency w onto a photorefractive

crystal. The electric field can be written as
E= am“‘“""“’”él + agei(q2"“”t)é2 (25)

If the polarizations cf the two plane waves are not orthogonal, they will form an interference

pattern, or grating, with an intensity given by

I(r) E-E

i

= Io+ Re(I;e'¥T) (2.6)
where

Iy = |asf? + |as]?

Il = ’ZCL!{azél . é2 (27)

and K = gy — q; which is related to the spacing of the grating A by K = 27 /A.

This provides the motivation for the approximation that we will use to solve the rate
equations for the space-charge field in the crystal. If the intensity varies aceording to
Eg. (2.6), it is reasonable to assume that, to a first approximation, the equations for the
electron density and the space-charge field will have a similar form. The justification for this
is simply that we expect the charge distribution and thus the space-charge field to reflect
the spatial variation of the incident light. This has been shown rigorously by Kukhtarev
to hold for the fundamental Fourier component of the input intensity [25]{26]. Higher
order harmonics with spatial frequencies 2K, 3K... become important as Iy /(lo + I4) — 1.

Here Iy = D/s is the “dark irradiance’ which is the equivalent irradiance that accounts
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for the electrons produced due to thermal effects. Moharam et al. have shown that for
Ii/(Is + 13) = 0.9 only the fundamental Fourier component contributes [27]. Thus we
will assume I1/(lo + I4) < 1 which is often called the small modulation approximation.
Physically, it corresponds to ensuring that the background illumination of the crystal is
large enough to guarantee high conductivity in all regions of the crystal.

With these approximations we write

E = Eo+E;
= Eo+ Re(E1e’®T)
p = po+ Re(pe’®T) (2.8)

where Fjy is the external field applied to the crystal. We are now in a position to solve the
rate equations for the two plane wave case.

Solution of these equations proceeds by eliminating j, N and N1 to obtain equations
involving p and E.

For the zeroth order in the electron density we obtain:

Np—Na—po) _(slo+ D)(Np— Na)

~ 2.9
(N4 + po) I'Ny (2:9)

po = (slo + D)(

The final expression for pg has been derived based on the assumption that |pg| < |Np— N4
and |po] € |N4|. This assumption is reasonable because typical lasers have irradiances less
than 1 W/cm?, and for most photorefractive crystals the absorption coefficient is less than
1 cm™! and the recombination time less than 1 ps. This leads to electron number densities
of 10° — 10'%2 cm~3, which are significantly lower than the typical number densities for the
impurities, which are usually of the order 10'® — 107 cm™3.

To simplify the notation in the solution of the first order quantities, it is useful to define

the following rate constants:
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Ty = 222 (2.10)
€€

I‘[ = SIO+D+Fp0 (2.11)

I'r = T(Na+po) (2.12)

' = IS'[,I,EO (2.13)
-2

b - Kl @

where T'y; is the dielelectric relaxation rate, I'; is the sum of ion production and recombi-
nation rates, I'g is the electron recombination rate, I'g is the mean field drift rate and I'p
is the diffusion rate.

These definitions lead to the following equations in the first order terms p; and £y:

(il +Tp+Tr4Tr)pr + (-Tai+-T1)Ay = (Np— Na— po)sh

(Tr+Tr)p. +T1A1 = shLi(Np— Na—po) (2.15)

where Ay = ie,e K Ey/e.
In the steady state, when Eo||K, the equations reduce to the following expression for

El:

Ey—11FEy I
Ey = FE :
! ’ [Eo +1i(Eq+ Eq)} Iy + I
I
En 2.16
Iy + Iy ( )
where E,||K and
Ed = kaK/B
e
= —°  Nul-
E, (“OK)NA( Na/Np)
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(2.17)

Ey—iEy }

E, = FE
" ! [Eo +i(Eg+ Ey)

Here E,, is a complex mean field, E; is the diffusion field and E, is the limiting space-
charge field (i.e.-the maximum possible field if all donors were excited). The quantity
N4(1 — N4/Np) is the ionized trap density. The dark irradiance Iy is typically small
(=~ 10 mW /cm?) [4], but has been found to be as large as 100 — 1000 mW/cm? in low purity
crystals [28]. It is often neglected because it is usually small compared to the incident in-
tensity, however, it makes an important contribution in dark areas if the intensity Iy is low
[5][28]. This does not conflict with the small modulation approximation: we require only
that Iy < (lo + I3), not that (o + I3) be large.
Thus our final expression for the space-charge field F. is given by

11 'K-r)
1 ¢ 2.1
Eg Re( - dE'me (2.18)

2.5 The electro-optic effect

All photorefractive materials are electro-optic crystals, meaning that in the presence of an
electric field, the index of refraction is changed via the electro-optic effect. The electro-optic
effect is traditionally defined in terms of the impermeability tensor 7;;. The change in #;

is given by

1
Ani; = A (—nz) =ik By + Sijkm ExEm (2.19)
ij

where Ey and E,, are components of the electric field. The constant r;j; is an element of
the linear electro-optic tensor that accounts for the linear Pockel’s effect. The Kerr effect is
described by the quadratic electro-optic tensor with components s;;t,. In photorefractive
materials, most of the phenomena of interest occur for small electric fields (& 10* V/m)
and are therefore a result of the Pockel’s effect. The Kerr effect contributes at much higher

electric fields (~ 108 V/m) and can therefore be neglected.
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The linear electro-optic coefficients r;;; are components of a rank 3 tensor. However,
the symmetry properties of the impermeability tensor allow the interchange of the indices @
and j, which reduces the number of independent components from 27 to 18. As a result, it

is convenient to introduce the traditional contracted indices defined by

1 = (11) = (z2)
= (22) = (yy)
= (33) = (22)
(23) = (32) = (y2) = (=)
= (31) = (13) = (a2) = (=2)

= (12) = (21) = (zy) = (yz)

(2.20)

St A W N
il

Using these definitions we can write 7y, = r;;x where I is the contracted index and k = 1,2,3
or (X,y,z). In this notation the electro-optic coefficients are written in terms of a 6x3 matrix.
In the previous sections we derived the space-charge field in photorefractive crystals for
the case of two plane waves present in the medium. With knowledge of the electro-optic
tensor, Eq. (2.19) can then be used to compute the change in index induced by this electric
field.
The majority of experimental work has used SBN which has the following electro-optic -

tensor:

[0 0 |
0 O 713
00 s (2.21)
0 42 O
40 0 0
0 0 0 |

where the c-axis of the crystal is chosen to lie along the z-direction. SBN belongs to the point
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group 4mm, and has only three nonzero coeflicients. At room temperature 733 > 713, T42.

? |
LR\

y PR crystal
polarization .
\ Figure 2.4: Geometry used to compute
j_ én(r, z). The bias field Ejp is applied along
- the c-axis and the space-charge field E,.

forms in the opposite direction as shown.

Using the geometry shown in Figure 2.4 the grating vector K lies parallel to the c-axis of the
crystal and the induced space-charge field is aiong this direction. Therefore the electric field
vector can be written as (0,0, E,.), and the components of the impermeability tensor can
be determined from Eq. (2.19) and the electro-optic tensor Eq. (2.21). For the two-plane

wave case and our specific geometry, we obtain:

T13 0 0
1
A(F>: 0 ot 0 | Ee (2.22)
0 0 T33

One final step remains to determine the change in index of refraction: we need to consider
the polarization p of the incident light. We are interested in the case where the light is
polarized along the c-axis (TE polarization). The resulting change in index is computed as

follows:

on(r,z) = ——%ng<A (%))
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- bl (3

1 |
= —5n0rs b (2.23)

where ng is the index of refraction in the presence of zero illumination.

SBN has been the material of choice in soliton experiments for several reasons. It can
be produced with high purity, and its electro-optic tensor has many zero entries which
simplifies the above analysis. The fact that r33 is so much larger than the other components
also gnarantees that for our geometry, én for the extraordinary polarization is much larger
than én for waves with ordinary polarization. This is important because our description of
optical beams in photorefractive materials that will be developed in the upcoming chapter is
a two-dimensional one and cannot account for coupling along both transverse coordinates.
Thus it is desirable to have dominant coupling along the direction of interest.

We arrive at our final expression for the change in refractive index in the two-plane wave

case in SBN by substituting Eq. (2.18) into Eq. (2.23)

1 I, .
é r, = -3 3 R (.._______Em 1K.r)
n( Z) 2n0T33 € IO n Id e
61 4 »
- Ip -ll- Iy [ n(q;,q”elx":al(z)*az(z) + cc.] (2.24)
where

. 1 |

én(q1,qz) = —§n8T33Em(ql,Q2) (2.25)

The form of Eq. (2.24) reveals that the change in index of refraction under these condi-
tions arises from coupling between the two plane waves in the medium. When this coupling
is small, more complicated intensities can be decomposed into their spatial modes and ana-
lyzed in terms of the coupling that occurs between each pair of spatial modes. This is called
the two-wave miring approximation.

Thus far we have described the Kukhtarev-Vinetskii model of photorefraction and used
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it to derive an expression for dn(r, z) for the specific case of two plane waves in the medium.
Our major assumptions have been i) that the photovoltaic effect is negligible, ii) that the
intensity decrease due to absorption is small and iii) that the modulation of the intensity
pattern is small. In addition we must ensure that the crystal is strongly biased. All of these
conditions can be achieved easily in the lab. Our expression for én(r, 2) is similar to the one
used by Segev et al. [1], with the exception that we have included the dark irradiance term.
Our motivation for this is that we expect it to make an important contribution in regions
of the crystal where the beam irradiance is small. The results developed here will prove
useful when we employ the two-wave mixing approximation in the next chapter to describe
the propagation of optical beams in photorefractive materials. We will use this description

to look for conditions under which soliton propagation is possible.



Chapter 3

Photorefractive optics

The purpose of this chapter is to develop the necessary equations to describe the propagation
of optical beams in photorefractive media. The nonlinear wave equation will be derived,
and the photorefractive nonlinearity will be discussed within the framework of the two-wave

mixing approximation.

3.1 Two-wave mixing in photorefractive materials

First let us return to the simple two plane wave case. Thus far we have shown that when
two plane waves are incident on the photorefractive crystal an index grating is formed, and
we have derived an expression for the grating. Because the two plane waves actually create
the index grating, they are perfectly phase-matched to it and will undergo Bragg scattering
(see Figure 3.1). We will find that this results in coupling between modes, which can cause
energy transfer and self-phase modulation.

For simplicity we will assume that the two plane waves are polarized along the same

direction. To study the coupling between these modes we substitute the electric field

E = g, @11 | gy ildzr—ut) (3.1)

24
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al
~
el
a,
a, a,
~a e
Figure 3.1: Bragg scattering due to an in-
dex grating in photorefractive media. Top:
A grating is formed by the pair of plane
waves a; and as. Middle: Beam a; is
diffracted into beam a;. Bottom: Beam a2
is diffracted into beam a;.
a rad ~a a
2 1

into the scalar wave equation
2

w
VIE + —gz-an =0 (3.2)
If we treat the change in refractive index due to the photorefractive effect as a small per-

turbation and write

n = ng + 6n(r, 2) (3.3)
where ng is the unperturbed index of refraction, then the wave equation becomes:

V2E + %’ﬁE = -————————2“2”":;’(“)E (3.4)
If both waves propagate in the xz plane and have infinite extent , then a1 and a; are functions
of z only. This approximation amounts to neglecting diffraction for the moment and studying
only the nonlinear coupling between the modes. Later in our description of optical beams,
diffraction will play a key role. We wish to study the steady-state behaviour of a; and

az, so the problem has no time dependence. If we employ the slowly varying envelope
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approximation (or paraxial approximation), we can neglect second derivatives in z:

d%a; da; .
dz; < ﬁqj—d?f , j=1,2 (3.5)
Recalling our previous result for §n(r, z):
on(r,z) = 1 [éﬂn(ql, q2)e’®Tal(2)ay(2) + cc.] (3.6)

then after grouping terms with the same exponential powers, we obtain the following equa-

tions to describe the coupling of the two plane waves

o dagy wlngbn (qi,qz)
2Py — = - 2
18q, P (I + 1) aa,aq
. dag w2n05}1(q1 q2) .
Werr T Tyt 1) “® G0

where B4, and S, are the z-components of the wave vectors q; and qs.
If both plane waves are incident on the same side of the crystal, then for simplicity we

assume

Bq, = Bq, = kcos(8) (3.8)

Neglecting loss in the medium, Eq. (3.7) can be written as

dal _ 1 ~ 3 2
- = 3 e CITg Id)én(ql, qz)|az]”ay
das _ 1 g 2
dz T2 cos(8) (1o + Id)én(ql, w)lal e

(3.9)

To study the amplitude and phase coupling of the system, it is convenient to rewrite the

amplitudes as a; = Tie 'Y and ey = /e *¥2. In addition, we define the complex
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coupling constant
s

A COS(B) 5:n(ql, q2) (310)

Q=v4iC=i
Eq. (3.9) then yields two sets of simplified coupled equations, one for the intensities:

dn v

= -2 LI
dz Io+1; 2!
d.[z 14
E?""2h+hhb (3.11)

and another for the phases of the two plane waves:

¢,
dz ~ I+ 1I;°

d¥, _ ¢ )
‘E - _IO + Id.ll \312)

1.0
0.8
1,(0y/1,(0)=100
=y =1.0 pm”
% 0.6 v=1.0im
I}
=
0.4
02 Figure 3.2: Energy coupling between two
plane waves: the energy initially in I; flows
into 7. Here v = 1.0 and ¢ = 0 which cor-
responds to an imaginary é ,q2). Iy =
0 5 10 15 20 12(1(;).11 s ginary 6n(q:,qz). Is
z (um)

Studying this set of coupled equations, one finds that the coupling constant ) dictates the
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Figure 3.3: Phase coupling between two plane waves: both plane waves change phase in a
linear fashion. a) Self-defocusing: ( = —1,~ = 0 and the phase of both plane waves increases
with z. b) Self-focusing: { = 1,» = 0 and the phase of both plane waves decreases with z.
There is no energy exchange between modes (8n{qy, q=) is real).

nature of the interaction between the plane waves. Adding the two equations in Eq. (3.11)
reveals that I; + I> = constant. If {1 is real, there is energy exchange between the two modes
as shown in Figure 3.2. The direction of energy flow depends on the sign of 2. If @ > 0,
energy flows from the higher spatial modes into the lower spatial modes. When Q@ < 0 the
energy flows the other way.

When  is purely imaginary there is no energy exchange between the modes, but phase
coupling occurs as shown in Figure 3.3. When ¢ > 0 the medium is referred to as self-
focusing and the phases decrease linearly with propagation distance. Conversely, when
¢ < 0 the medium is self-defocusing and the modes accumulate phase linearly.

Thus the nature of  determines what {ype of coupling occurs between spatial modes
[16]. H we recall our definition of (2, given by Eq. (3.10}, it is evident that snlqy.qq)
determines the character of 2 and therefore of the coupling. If 5n(qy.qz) is imaginary,

which occurs when both the drift and diffusion transport mechanisms contribute, then
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energy transfer between modes occurs. If 6;z(q1,q2) is real, there is phase coupling and

no energy transfer. These ideas will be important later when we look for conditions under

which soliton propagation is possible.

3.2 The two-wave mixing approximation

An optical beam can always be described in terms of the complete basis of plane waves. The
two-wave mixing formalism assumes that the change in index of refraction when more than
two plane wave components are present can be described as a linear summation of all the
possible two-wave interactions in the medium. This assumption has been used successfully
in the past to describe photorefractive phenomena such as self-focusing, self-defocusing and
beam-fanning [12][29] and will be employed here to describe optical beam propagation in

photorefractive materials.

3.3 The nonlinear wave equation

Ne wish to describe the propagation of a monochromatic optical beam of a given frequency
w and polarization travelling in an arbitrary direction we will call z. Assuming the absence
of nonlinear interactions between orthogonal polarizations, we can again use a scalar for-
mulation. However, our beam has transverse structure which prohibits us from neglecting

diffraction. The electric field associated with the optical beam can be written as:

E(r,z,1) = % {ei(kz—”‘) v/ E(q, r)ei(ﬂq’k)zf(q, z)dq+ c.c} (3.13)
= %{A(r,z)ei(kz'“‘) + c.c} (3-14)

where i
Blan)= g7 (L) eten (3.15)
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and k = wng/c. The spatial frequency (or angular) distribution of the complex amplitude
A(r,z)is given by f(q,r) where r = (z,y). Substituting Eq. (3.14) for the electric field into
Eq. (3.4) and using the slowly-varying-envelope approximation yields the following equation

for the propagation of the beam amplitude A(r, z):

J i, ik ~ 1o
(5—; - ﬂ\?’, ) A(r,z) = n—oén.(r, 2)A(r, z) (3.16)

3.4 The photorefractive nonlinearity

When more than one pair of plane waves is present in the medium, we can use the two-wave
mixing approximation to compute the index perturbation. This amounts to summing over
the index gratings formed by all possible pairs of plane waves and can be written in integral

form as [1]:

1
on(r,z) = m/dql/d%f((h,z)f*(%,2)E(Q1,l')

xE*(q,1)e'Pa~Pa)?6n(q;, qz) (3.17)
In the most general case, 6n(q, q2) can be written in terms of its Fourier transform g(p, p’)
én(ar,qz) = //g(p,p')e'i(q"p+Q2'p')dpdp' (3.18)
Substituting into Eq. (3.17), and recalling the form of the electric field Eq. (3.14) yields
1 ,
6.‘r,z=——,—//Ar-— ,2)A*(r+p', 2 ,p)dpdp’ 3.19
(r,z) AP+ L (r - p,z)A%(r +p’,2)g9(p, p')dpdp (3.19)

Note that this form for the index perturbation reveals the nonlocal nature of the photore-
fractive effect.

Finally, we substitute the general form for the index perturbation into the nonlinear
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wave equation Eq. (3.16):

xg(p, p’)dpdp’ (3.20)

Within the two-wave mixing approximation, this equation describes the evolution of the
amplitude of an optical beam in a photorefractive material. Although the task of solving
this equation looks daunting, we will find that, following the methods of Segev et al., we

can make several simplifying assumptions to obtain a more manageable equation in the next

chapter.



Chapter 4

In search of photorefractive

solitons

Thus far we have derived an expression for the propagation of an optical beam in a photore-
fractive crystal. In this chapter, we will utilize the nonlinear photorefractive wave equation
to describe the propagation of solitons in photorefractive crystals. Following the methods
used by Segev et al., we will simplify this equation and examine the fixed points of the
resulting ordinary differential equation to determine the conditions under which bright and

dark solitons exist.

4.1 The photorefractive soliton equation

At this point we need to consider how soliton formation occurs. As we expect, [q. (3.20)
shows that the beam experiences two effects as it propagates: those of diffraction and the
nonlinear effect. Diffraction causes a uniform spreading of the beam, which can be thought
of as a linear accumulation of phase in each spatial mode. To achieve soliton formation, we
need the nonlinearity to provide a compensating effect. Earlier we showed that if 6n(qy, q2)

was real, then there was no energy exchange between modes and self-phase modulation

32
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occurred. This is exactly what we need to get solitons: we want the amplitudes of each
spatial mode to remain constant (no energy exchange) but for the phases of each mode to
change linearly with propagation distance to balance diffraction. To attain a bright soliton
we will need a self-focusing medium (6;1(q1,q2) > 0) to provide a linear decrease in phase.
Alternately, for a dark soliton we need a self-defocusing medium (6;1(q1, q2) < 0) to provide

linear phase increase.

With these conditions in mind, we substitute the spatial soliton ansatz
A(r,z) = U(r)e"? (4.1)

into Eq. (3.20), where U(r) is real and represents the transverse amplitude, and 7 is the
characteristic soliton propagation constant, which may be real or complex. This substitution

yields the following integrodifferential equation for the amplitude U(r):

(1- 5w vy = niog(%é%f—d [ [ve-pue+pie.p)pd (@42)

We can obtain an ordinary differential equation by Taylor expanding U(r £ p) about p = 0:
1
Ur-p)=U(r)£V,U(r)-p+ 5 (V.V.U(r)):pp = ... (4.3)

The smaliness parameter associated with the Taylor expansion is d/! where d is the typical
length scale of nonlocality, which is dictated by the form of 6An(q1, qz), and ! is the transverse
beam width. This expansion will be justified later when we show that d is indeed small
compared to /.

Because photorefractive materials are noncentrosymmetric, they lack cylindrical sym-
metry. This makes the full three-dimensional solution to this problem extremely difficult.
If we restrict ourselves to one transverse dimension only, the equations become much more

tractable.
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4.2 Simplifying the two-dimensional photorefractive nonlin-
ear wave equation
If we choose our single transverse dimension to be the z coordinate, and substitute the

Taylor expansion Eq. (4.3) into the integrodifferential equation Eq. (4.2) we obtain the

following [1]:

1 02 kU 2 . 0U, , (OUN?
( ‘57;5;5)” N n_0U2+Id//{U + UG 0 -0 (5, )

1 82U 19U 9*U ,
+= U————( fp) + S5 Gp (P - p’)} g(p,p")dpdp’ (4.4)

Now we define the quantities

Imn

/dp/dpg(p, p™p™

= elmty —— oo én(q1,qz) (4.5)
a maq q1=92=0
Expanding 6An(q1, q2) as a power series in ¢; and g,
R [s 0] oo
én(qy,qz) = Z Z Smndqy 42 (4.6)
m=0 n=0
then
L = minlspn e (Mg (4.7)

Because diffraction is a symmetric process, we need a symmetric process to balance it and
therefore we require the symmmetry condition 6ﬁ(q1, qz) = 6}L(—q1, —qz2). This means that
Smn = 0 if m + n is odd. Moreover, the requirement that 6ﬁ(q1,q2) be real implies that
Smn = Sp, and therefore I, = Iz e!mt7)7/2 Recalling that U(z) is real and that the

propagation constant v is complex, we substitute vy = v1 + ¢y2 and Innn = I, + zl,’;’,‘b into



CHAPTER 4. IN SEARCH OF PHOTOREFRACTIVE SOLITONS 35

Eq. (4.4) and equate real and imaginary parts:

’)’QU = 0 (48)
1 d*U kU dUN? d?U
-2 = 2T e 2 __ Jre (__ Irey =——. 4.9
1nU o da? no(U? +Id){ ool 11 d:c) + 13 dwg} (4.9)
where we have used the relations I37' = —IT, It¢ = I5S and I, is real for all m. Eq. (4.9)

implies that v, = 0 for all nonzero solutions.

To simplify our notation, we define the constants

1 k
= — 4+ —IF 10
a 5% + g’ 20 (4.10)
k
b = —IT 4.11
nl M ( )
€ = E'IOO (4.12)
no

and Eq. (4.9) can be written more simply as
1,
(7 — U3 +y1,U - (aU2 + i) U'+bUU =0 (4.13)

where prime indicates the derivative with respect to the transverse coordinate 2. When

Iy = 0, this result reduces to that derived by Segev et al. [1]:
y'U? - aUU" +bU"? = 0 (4.14)

where the two real propagation constants are related by 7/ = 7 — e.

4.3 Calculating the coeflicients

The coefficients in the photorefractive soliton equation (Eq. (4.13)) are computed using the

results derived previously for the space charge field in the two-wave mixing case. Recall that
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soliton formation requires a real 67rz(q1,q2) to balance diffraction. From the definition of
6An.(q1,q2), given by Eq. (2.25), this can be satisfied under the condition that |Ey| < |Eo| €
|Eq|. In deriving the propagation equation we have also assumed that the optical beam
has small angular divergence (the paraxial approximation), which results in index gratings
with large periods (or small K). Consequently the limiting field E, is guaranteed to be
large compared to |E,| (recall Eq. (2.17)) and we can satisfy |E4| < |FEo| by applying an
appropriate bias field [Ep|. Under these conditions 6%(q1, q2) is computed from Eq. (2.25)
and Eq. (2.16). It is given by:

- 1
on{qi,q2) = —"2'7187‘33R€(Em)

1 1
= —ngraEo

2 E 2 '
1+ (—g%fﬂ) (g1 — q2)?

_ B

T 1+ d¥ g1 - 2)?

(4.15)

where B = 1/2n3r33Fy and d = Eyeger/(ePy), and Py = N4(1 — N4/Np) is the ionized
trap density. Here d is the smallness parameter that was mentioned when we introduced
the Taylor expansion in Section 4.1. d represents the scale of nonlocality in the problem, or
more intuitively, it is related to the mean distance Lo that a carrier electron is transported
by drift before it becomes re-trapped. This distance is much smaller than the width of the
beam, making the Taylor expansion reasonable.

To compute a,b, and e we need the quantities Iyg, I20, and Ij; which are defined by
equation Eq. (4.7). The coeflicients of the various powers of ¢; and g, are found by expanding

Eq. (4.15), again assuming that d is small:

én(q1,92) = B (1 - & - g} + 2P qun + ... (4.16)
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This gives the following expressions for the coefficients:

1 2k
= — + —Bd?
4 2k+n0
k
b= —2Epg
g
k
= —B 4.17
e = (4.17)

4.4 Phase-plane analysis

Now that we have a simplified equation for soliton propagation the true test comes. How
do we determine the conditions under which bright and dark soliton solutions exist and are
these conditions consistent with experiment?

The types of solutions to the photorefractive soliton equation (Eq. (4.13)) can be studied
by examining the nature of the fixed points of the system. Consider Figure 4.1a) and ¢)
which illustrate bright and dark soliton profiles. In the bright soliton case, the amplitude

must vanish at the limits

lim U —0

r—+o0

and reach some finite value at its peak. These conditions allow us to infer a possible
phase diagram, as shown in Figure 4.1b). The path along the separatrix in the phase-plane
diagram satisfies the bright soliton conditions and is the only trajectory that represents a
bright soliton solution. Other solutions are oscillatory and unphysical because they require
optical beams of infinite extent in the transverse direction. There are other phase-plane
portraits that admit bright soliton solutions, but they involve codimension two fixed points.
We will assume that codimension two fixed points do not occur in our model, and will later

find that this assumption is justified.
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Similarly the dark soliton phase-portrait, shown in Figure 4.1d), must satisfy the con-
dition

Lim U — constant
r—+oo

and U must pass through the origin. Again, the path along the separatrix in the phase-plane
portrait has this necessary behaviour.
Now that we know the character of the phase-portraits we are looking for, the next step

is to identify and classify the fixed points of the system.

4.5 The fixed points of the photorefractive soliton equation

To find the fixed points of Eq. (4.13), we define ¥ = U’ and rewrite the equation as two

coupled nonlinear equations:

U =Y
Y = __UI_[(7 — &)U + I, +bY?] (4.18)
al? + Z%

There are three fixed points for this system of equations, which can be found using the
condition U’ = Y’ = 0. One is the trivial fixed point (U,Y) = (0,0) and there are two

nontrivial ones given by:

(U,Y) = (i 714 ,0) (4.19)

The nontrivial fixed points exist under the following conditions:

(7>0): e>0, |y[<lel,la#0

(v<0): e<0, |yl<lel,Ia#0 (4.20)

It is interesting that the nontrivial fixed points require nonzero dark irradiance /4, a term

that had been neglected in the original theory.
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Figure 4.1: a) Amplitude profile of a bright soliton. b) Corresponding phase-portrait. The bright
soliton occurs along the separatrix. ¢) Amplitude profile of a dark soliton. d) Corresponding phase-
portrait. The dark soliton occurs along the separatrix.
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The nature of each of the three fixed points can be determined by performing a linear
stability calculation. This proceeds by studying the behaviour of the system near each fixed
point. Let U = U* +u and ¥ = Y* + y, where U™ and Y™ are the fixed point values of
and Y and u and y are small perturbations from U* and Y™ respectively. Substituting into
Eq. (4.18) and keeping terms to first order in u and y yields a set of linear equations of the

form:

uw = mu-+ny

¥y = pu+gqy (4.21)

u = 1€

y = se* (4.22)

where the eigenvalues £ are determined by the condition

=0 (4.23)
p q—¢

The behaviour of phase space trajectories near the fixed points can be deduced from
the eigenvalues. In a set of two equations like this one, £ has two possible roots. If both
roots are imaginary, trajectories will circle the fixed point, and the fixed point is said to be
a vortex. If both roots are real, with one positive and the other negative, the fixed point
is a saddle point. Both of these types of fixed points were iliustrated earlier in Figure 4.1.
They are the only two types that arise from our set of equations but the interested reader is
referred to [30] and [31] for an extensive study of the subject. The results of the linearization

are summarized in Table 4.1. With knowledge of the eigenvalues, the corresponding fixed
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Fixed Point (U*,Y*) | m | n P q £
(0,0) 01 2k 0 +/2k7

28 _ Aky(e~-7) __4ky(e—7)
( e—’Y’O) 041 (2ka—-1)y t+e 0 + (2ka— 1)y + e

s Zr _ Aky(e—7) __Aky(e—7)
( e—"r’O) 011 2ka — 1)y +e 0 + (2ka—-1)y+e

Table 4.1: Linear stability results for the three fixed points of Eq. (4.18).

Fixed Point (U~,Y™) Character of fixed point
(0,0) 7>0 saddle
7<0 vortex
(:i: gf—"fr,ﬂ) a>0,e>0,7v>0 vortex
a>0,e>0,7<0 saddle
a<0,e<0,7< —27:7;—6_——1- vortex
" a<0,e<0,7:7;‘_"’_—1<'y<0 saddle

Table 4.2: The fixed points and the conditions determining their character.

points can be classified. These classifications are given in Table 4.2. Note here that the case
a < 0,e > 0 was not mentioned because the definitions given in Eq. (4.12) imply that a > 0.
The existence criteria Eq. (4.20) for the non-trivial fixed points have been included.
Comparison of Table 4.2 with Figure 4.1b) and Figure 4.1d) give the necessary conditions
to obtain the two types of soliton solutions. For bright solitons, we combine conditions that

provide a saddle-point at the origin and two vortices at the nontrivial fixed points to obtain:
bright solitons : e > 0,7 > 0 (4.24)

Conversely, for dark solitons we combine conditions that provide a vortex at the origin and
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two saddle-points at the nontrivial fixed points to obtain:

dark solitoris :a>0.¢ <0,7<0 or “<0’€<@")L ']<-34
2ka ~

<0 (1.25)
This is interesting because it suggests that to switch from bright to dark solitons. the sign
of e must change. From the definition of ¢ this corresponds to changing the sign of the hias
field relative to the c-axis of the crystal. This fact has been confirmed experimentally in
[4] and [5] and corresponds to changing the medium from self-focusing (¢ > 0, £ > 0) to

self-defocusing (e < 0. Eg < 0).

} ! " finite [}]
s
. -~

-—— W

E YOriex\ -

\}
\
] X

vortex =~ - - ‘ S,(Ivom:x

Y;Zer 5 Y% Y finite \/

4
Y300 Y »oo

a) b)

Figure 4.2: a) Phase-portrait when all three fixed points are vortices. The phase-plane is
divided into three sections by the lines along which Y’ is infinite. These lines are defined
by the equation al® + -g% = 0. There are four points at which Y is finite and these occur
when (¥ — e)U% + 713 + 8¥% = 0. The only path through phkase space that passes from
one section (o the next must pass through these points (shown by the thick dashed line).
b) The amplitude U(x) for the dashed hine trajectory in aj. The solution is periodic and
therefore unphysical since it cannot represent a single optical beam propagating through the
photorefractive material.

Another interesting result can be derived from the linear stability analysis. When the

medium is self-defocusing, the parameter a has the capability of changing sign. When this
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occurs the fixed points are either in the dark soliton configuration, or they are all vortices, as
shown in Figure 4.2. In this case, the phase-plane is divided into three sections by the lines
along which Y’ — oc. Note that each of these lines has two points at which Y” is finite. Thus
a possible solution consists of a path in phase space that passes through these well defined
points as shown. This solution is not interesting as a solitary wave candidate because it does
begin or end at any fixed points. It is rather an oscillatory solution, requiring an infinite
extent in the z direction. Dark solitons are only possible when the Y/ — oo lines lie outside
the nontrivial fixed points, and we recover the familiar dark soliton fixed point configuration.
If we assume that the peak intensity of the soliton (given by U*?) is approximately equal to
the peak intensity /,,,, of the input beam, we can obtain a condition on the magnitude of

the bias field applied to the crystal to achieve dark solitons:

, 1/3
(Imar + Id) ’\Zelpdz
1Eo} < 4.26

| Eol ( sy 87%nie2elrss (4.26)
There has only been one experimental paper reporting photorefractive nonlocal dark soli-

tons, and il contains no evidence to support or contradict this condition [4].

4.6 Comparison with experiment

In the previous section we demonstrated that the photorefractive soliton equation had
the necessary characteristics to admit both bright and dark soliton solutions. In this section
realistic parameters will be used to show that these solitons do exist under conditions consis-
tent with experiment. The following parameters are reported in [5] and [4] for experiments
in SBN: A = 0.5 um, ng = 2.35, ry3 = 2.24x10~* um/V, ¢, = 1100, P; = 4x10* pm=3,
and |Ep| = 5x10° V/m, which lead to the coefficient values listed in Table 4.3. The dark
irradiance /; is estimated to be = 10 - 100 mW/cm® [32][4].

Figure 4.3 shows the phase-portraits for the bright and dark cases using the parameters
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Figure 4.3: a) Phase-portrait for the bright soliton case (y = 1.92107%). b) Corresponding
dark soliton phase-portrait (v = —6.8521073).

listed in Table 4.3. The corresponding amplitude and intensity profiles for the bright and
dark cases are shown in Figure 4.4a),c) and Figure 4.4b),d) respectively. By choosing 7,
soliton solutions can be found to correspond with the power »f the optical beam. This is
particularly easy in the dark soliton case, since U* represents the peak amplitude, and v

can then be found from Eq. (4.19):

eU*‘Z

v

The bright soliton case requires a bit of guesswork. Experimentally, bright solitons have
been generated for intensities in the range 0.05 - 78.5 W/cm?, which corresponds to electric
field values of = 400 - 1.6x10* V/m. Note that the lowest intensity value is not much greater
than the estimated dark irradiance (10 - 100 mW/cm?). Dark solitons have been observed
for intensities of 0.3 - 30 W/cm?, or electric field values of ~ 1x10% - 1x10* V/m [4]. The

photorefractive soliton equation yields both bright and dark soliton solutions for both these
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Figure 4.4: a) Amplitude profile of a bright soliton (v = 1.921073). b) Amplitude profile of a dark
soliton (y = —6.8521077). ¢) Corresponding bright soliton intensity profile (peak of 0.05 W/cm?).
d) Corresponding dark soliton intensity profile (peak of 0.3 W/cm?).
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Soliton Type | Bright Dark
Eo(V/m) 5.0x10° -5.0x10°

B 7.27x 107* | -7.27x 1071
d (pm) 7.59x107 | -7.59x107?
a (pm) 2.75x10~2 | 6.41x1073

b (um) -1.05x1072 | 1.05x10™2

e (um™1) 9.13x1073 | -9.13x1073

Table 4.3: Experimental parameters from [4][5].

ranges of electric field. Two examples are shown in Figure 4.4.
Using the parameters in Table 4.3, we predict the following condition on the bias field

when the incident intensity is large compared to I;:
|Eq| < 5.85x10° V/m (4.28)

When the incident intensity is comparable to I; the maximum field condition can be derived

from Eq. (4.26).

4.7 The Segev equation

Earlier when we derived the photorefractive soliton equation, we mentioned that if the
dark irradiance I; was neglected, we obtained Eq. (4.14) derived by Segev et al. [1]. It
is interesting to compare the differences between these equations to understand how they
permit different solutions.

We begin by looking at the fixed points of the Segev equation. Making the substitution



CHAPTER 4. IN SEARCH OF PHOTOREFRACTIVE SOLITONS 47

Y = U’ yields the following set of coupled equations

U =Y

1 y?
Y’ |y + b= :
- (7 U+by ) (4.29)

i

Eq. (4.29) has a single fixed point at the origin (as well as fixed points at +00). The standard
stability analysis used previously cannot be applied here because it is readily shown that
the system has two zero eigenvalues. However, the general character of the fixed point
is revealed by plotting the phase-portrait (see Figure 4.5). Unlike the (0,0) fixed point
examined earlier, this one has the character of both a saddle node and a vortex and is a
codimension two fixed point [30]. The system permits an infinite number of bright soliton
solutions instead of a single solution for each set of parameters (recall the single separatrix

in Figure 4.1b)).  The Segev equation does not permit dark soliton solutions. This is

Y

codimension 2
fixed point

bright solitons bright solitons

Figure 4.5: Phase-plane for bright soliton
solutions of the Segev equation.

apparent because there is a singularity at U = 0,Y # 0. The Segev equation can be solved
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exactly for bright solitons solutions. They are fonnd to have the following form:
U(z) = Ug[sech(az)]P (4.30)

where D = a/(b—a), @ = \/7(a — b)/a. Tle constants a and b are defined in Eq. (4.12). The
arbitrary constant U reflects the behaviour seen in the phase-plane that permits an infinite
number of solutions for a single set of parameters. The requirement D > 0 guarantees that
the boundary conditions at £ — +oo are satisfied. This yields an upper and lower bound

on the applied electric field; for bright solitons in SBN this condition is

) 1/3 2 1/3
(.ﬁ.@.zi) <IEol<(—('\ePd) ) (4.31)

1
16m2r33nde2 8m2razngele?

For the parameters in Table 4.2 this condition reduces to
—5.85x10°V/m < Eg < —4.60x10°V/m (4.32)

The polarity of the electric field is not consistent with experiment. We have demonstrated
that bright solitons require Fg > 0 or equivalently én > 0, which corresponds to self-focusing
[2]{4], and this has been verifed experimentally [19]. Segev’s equation predicts the opposite:
that bright solitons occur when the medium is self-defocusing, and dark solitons occur when
the medium is self-focusing. One experimental paper reports reasonable agreement with the

bounds set on the magnitude of the bias field by the Segev prediction [2].

4.8 The small modulation approximation

Our theory relies on the small modulation approximation, which allows us to ignore all
but the first Fourier component in deriving the space-charge field inside the crystal. Recall

that this assumption requires that there be high conductivity in all regions of the crystal.
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Figure 4.6: a) Amplitude profile of a bright soliton (y = 5x10~*). b) Amplitude profile of a dark
soliton (y = —8.23x10~*). ¢) Corresponding bright soliton intensity profile (peak of 1.2 W/cm?). d)
Corresponding dark soliton intensity profile (peak of 1 W/cm?). I,=10 W/cm? and I;=10 mW /cm?.
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Segev’s method ignores this requirement entirely, which makes his analysis inaccurate in
regions of low intensity (the edges of the beam), or when the incident intensity is of the
same order as the dark irradiance. Our analysis is somewhat better. By including the dark
irradiance we have removed the unphysical divergence from the Segev equation. However,
we have still neglected to require a constant background illumination that is needed to make
our approximations fully valid when Iy is large compared to I;. This was done largely to
compare the theory with experiments, which do not use background illumination. Like
Segev’s method, our analysis is poorest in regions of low intensity; near the beam edges for
bright solitons, or the centre of dark solitons. When the optical beam irradiance is of the
same order as the dark irradiance, our analysis is valid for all parts of the beam.

We can extend our method to include the background illumination by adding this term
to the dark irradiance in the denominator of Eq. (3.20), and adjusting the average index
of refraction ng to account for the constant internal electric field that would be created
in the crystal. What this does is essentially redefine what we mean by ‘dark’, so that
conductivity that was originally due to thermal effects now includes photoconductivity from
the background illumination. The rest of the analysis proceeds as before. The phase plane
analysis and conditions for soliton formation are the same, with the term [; being replaced
by I4+ Iy where I} is the background illumination. Figure 4.6 shows bright and dark soliton
profiles for I, = 10 W/cm?® and I; = 10 mW/cm?.

4.9 Other assumptions

To obtain the photorefractive soliton equation we have made several additional assumptions.
We began by deriving the change in refractive index for two plane waves in the medium.
We ignored the photovoltaic effect, which is valid for materials such as SBN and most
other photorefractive crystals that have negligible photovoltaic properties. In deriving an

expression for optical beam propagation in photorefractive materials we assumed that the
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beam had small angular divergence which allowed us to neglect second derivatives in z. This
is a frequently used approximation which can be easily satisfied experimentally [33].

We have neglected absorption in our model of photorefraction. Experimental studies
of nonlocal solitons have not reported diminishing soliton amplitude due to absorption.
This merits further investigation because absorption coefficients for SBN suggest that for
propagation distances as large as 5mm, absorption effects should play a role [23].

We have restricted our analysis to one transverse dimension to simplify the mathematics
of finding soliton solutions. In materials such as SBN which have one dominant electro-optic
coefficierr, this has been shown to be a reasonable approximation because coupling along
one transverse direction is much stronger than the coupling along the other. By choosing to
polarize the optical beam along the c-axis, the largest coupling occurs along this direction,
making coupling contributions from the other transverse dimension negligible.

QOur final assumption was that the scale of nonlocality d was small compared to the soliton
width [. Taking our d value from Table 4.3 and estimating ! ~ 40um yields d/l =~ 0.019.
Recall that we have kept to second order in this parameter. From Eq. (4.16), we see
that there are no odd orders in d so that tire next highest order is fourth order, which is
extremely small (=~ 1x10~7), making this a reasonable assumption. Oae could avoid the
Taylor expansion altogether and numerically integrate Eq. (3.20) by a method such as the
‘split step Fourier method’ {33]. However, it is doubtful that much would be gained in the

analysis given here for SBN because the terms we have neglected are so small.
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Stability of nonlocal solitons

Experimentally, nonlocal solitons have been shown to be stable despite the index inhomo-
geneities that are always present in photorefractive crystals. They have also been observed
to evolve from an arbitrary input waveform [2][13]. This chapter presents a theoretical sta-
bility argument adapted from one developed by Segev et al. [13] to suit both bright and
dark solitons of the type discussed previously. The evolution properties of the solitons will
not be addressed.

The analysis begins by recalling the paraxial nonlinear wave equation developed previ-

ously:

a i 9? k . .
(-é; - 5};}9—@_2) Az, z) = —ﬁgén(z,z)A(a,z) (5.1)

where, as before, we are restricting the analysis to two dimensions. A soliton solution to

this equation has the form

Az, z) = U(z)e™? (5.2)

Now let us assume the presence of an index perturbation that causes a deviation from the

soliton solution so that the field amplitude now has the form
Az, z) = U z)e” + UW(g, 2) (5.3)

52
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where U() represents the perturbation and we require |U(D|2 « |[U©)]2. As before, the
light induced photorefractive change in index is assumed to be real, (but permitting uniform
absorption) so that én(z, z) = én*(z, z). Multiplying Eq. (5.1) by A* and adding its complex

conjugate yields the equation:

] i 0%Ar L 0%A
—a—;(AA )+ % (A e A W) =0 (5.4)

This equation is an expression of conservation of energy. Substituting the perturbed solution

Eq. (5.3) into Eq. (5.4) and keeping to first order in U(!) yields

{U(O) [C@ +iyu ] + —2% [v@uQ* - vOv ) } e

+ {U(o) [Uil) _ M,m] n 5115 [U(O)Ug} _ U(I)UJES)] } " = (5.5)

Grouping terms with identical exponential arguments gives the equation

(1) (0) (1)
g-‘;—l—)—iwﬁ{—gf(’j—)—a—“’(—%}:o (5.6)
Let us assume that the perturbation takes place on a length scale [, which is small compared
to the soliton width [, and larger or of the same order as the wavelength of light A (I > [, >
A). The paraxial approximation requires that the longitudinal scale I, of U() be larger than
l,, but it may still be small relative to the soliton size. In addition, it was shown previously
that soliton solutions occur for |y| < |e|, where e o k. This implies that at most v =~ 1/A.

Comparing the relative magnitude of the various terms in Eq. (5.6):

@ 1 vl A vl
U ~ E, 7= :\'3 kU(l) ~ l—g? kU(O) ~ ﬁ (57)

Thus we are justified in neglecting the third term in Eq. (5.6) to obtain a simplified equation
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governing the propagation of the perturbation:
Ul - iyu® - ib’g) =0 (5.8)

This equation reveals that U{!) propagates almost independently of the soliton solution {/(°),

If we make the transformation
U(z,2) = 7V (z,2), (5.9)
then the second term is removed and the equation has the form:

U - #Uﬁ) =0 (5.10)

This equation, along with its accompanying conservation of energy relation
d [~ :
—/ UM 2de =0 (5.11)
dz J-w

implies that the perturbation remains small in magnitude and eventually diffracts away as
it propagates. This is apparent because Eq. (5.10) has the same form as the paraxial wave
equation with no nonlinear term to balance the effect of diffraction. Thus the perturbation
dies off and we can say that for perturbations that are small relative to the soliton size,
the soliton is relatively stable. This conclusion is in agreement with an experimental study
done by Duree et al. [14] for bright solitons in SBN. No perturbing studies of this kind have

been done for dark solitons.



Chapter 6

Conclusions

Photorefractive nonlocal solitons of the bright and dark type have been observed experimen-
tally. They occur when the spreading effect of diffraction is balanced by the self-focusing
or self-defocusing effect of the phase coupling between spatial modes of the input beam.
These solitons are thought to be potentially useful in all-optical switching devices because
they can be generated at very low light intensities. The original theory of nonlocal soliton
formation proposed by Segev et al. [1] accounted only for the existence of bright solitons.
It also predicted that these solitons could be found when the medium was self-defocusing, a
fact that experiment has shown to be incorrect. Using the same two-wave mixing formalism
as the original theory, we have derived an equation to describe the propagation of solitons
in photorefractive materials. This equation includes the dark irradiance in the calculation
of the change in index of refraction, and thus removes the unphysical divergence that was
present in Segev’s equation under zero incident intensity. Our theory predicts that a nonzero
dark irradiance is essential for nonlocal soliton formation. A possible method for testing
this prediction would be to lower the crystal temperature, and thus the dark irradiance, and
observe what effect this has on bright and dark nonlocal soliton formation.

By analyzing the fixed points of the equation, we found both dark and bright soliton

solutions and conditions for their existence. We demonstrated that bright soliton solutions
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require the polarity of the bias field to be such that the medium is self-focusing. Conversely,
dark solitons require self-defocusing which is achieved by switching the polarity of the bias
field. Both of these predictions have been verified experimentally. There is no available
experimental evidence to support the maximum bias field condition that we obtained for
dark solitons. We have also shown that nonlocal solitons are stable to index perturbations
that are small compared to the size of the soliton. This fact has been experimentally
confirmed.

Qualitatively, our theory does a good job of predicting the type of behaviour that has
been observed in soliton experiments. However, caution should be used when comparing
our results directly with those of experiment. The reason for this prudence is that all
of the experiments to date have used zero background illumination, which is incounsisteni.
with the conditions necessary for the small modulation approximation. This means that
at best our theory can describe the high intensity portions of the beam, unless the beam
irradiance is comparable to the dark irradiance. If the incident intensity is large compared
to I, our theory is more appropriateiy applied with the presence of a constant background
illumination. It would be interesting to see how well our theory corroborates experiments
done under such conditions.

A complete description of nonlocal solitons in photorefractive materials is still lacking.
To date, the theory accounts only for self-trapping in onc dimension and does not explain
the experimental observations of soliton formation along both transverse directions. Anal-
ysis has been restricted to materials such as SBN which have one dominant electro-optic
coefficient, allowing the approximation that coupling between tranverse modes is small. A
full three dimensional treaiment has not been attempted here becausze the lack of cylin-
drical symmetry in the problem makes solving the photorefractive nonlinear wave equation
very difficult. Any future progress in this area wiil likely rely on numerical studies of the
full three dimensional problem. Other questions that remain unanswered include soliton

collisions and the evolution properties of nonlocal solitons from arbitrary input beams. In
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addition, the effect of absorption on nonlocal soliton formation needs investigation. Never-
theless, the basic effect of nonlocal soliton formation seems to be understood. We now have

a theory which qualitatively predicts bright and dark solitons under conditions consistent

with experiment.



Bibliography

[1] M. Segev, B.Crosignani, and A. Yariv. Spatial solitons in photorefractive media. Phys.

Rev. Lett., 68:923, 1992.

{2] G. Duree, J. Shultz, G. Salamo, M. Segev, A. Yariv, B.Crosignani, P. Di Porto,
E. Sharp, and R. Neurgaonkar. Observation of self-trapping of an optical beam due to
the photorefractive effect. Phys. Rev. Lett., 71:533, 1993.

[3] P. Gunter and J. Huignard. Photorefractive Materials and Their Applications I.

Springer Verlag, 1988.

[4] G. Duree, M. Morin, G. Salamo, M. Segev, B.Crosignani, P. Di Porto, E. Sharp, and
A. Yariv. Dark photorefractive spatial solitons and photorefractive vortex solitons.

Phys. Rev. Lett., 74:1978, 1995.

[5] B. Crosignani, M. Segev, P. Di Porto, A. Yariv, and G. Salamo. Self-trapping of optical
beams in photorefractive media. J. Opt. Soc. Am. B, 10:446, 1993.

{6] M. Remoissenet. Waves Called Solitons. Springer-Verlag, 1994.

[ Erd

{7] A. Hasegawa. Optical Solitons in Fibers. Springer-Verlag, 1990.

[8] C. Gardner, J. Greene, M. Kruskal, and R. Muira. Method for solving the

Korteweg de Vries equation. Phys.Rev.Lelt., 19:1095, 1967.
[9] A. Davydov. Solitons in Molecular Systems. Reidel, 1985.

58



BIBLIOGRAPHY 59

(10] S. Antipov, M.Nezlin, E. Snezhkin, and A. Trubnikov. Rossby autosoliton and station-

ary model of the Jovian Great Red Spot. Science, 323:238, 1986.

(11] R. H. Enns, D. E. Edmundson, S. S. Rangnekar, and A. E. Kaplan. Optical switching

between bistable soliton states: a theoretical review. Opt. and Quantum Flectron.,

24:51295, 1992.

[12] M. Segev, Y. Ophir, and B. Fischer. Photorefractive self-defocusing. App. Phys. Lett.,
56:1086, 1990.

[13] M. Segev, B.Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp.
Stability of photorefractive spatial solitons. Opt. Lett., 19:1296, 1994.

[14] G. Duree, G. Salamo, M. Segev, A. Yariv, B.Crosignani, P. Di Porto, and E. Sharp.

Dimensionality and size of photorefractive spatial solitons. Opt. Lett., 19:1195, 1994.

[15] M. Castillu, J. Sanchez-Mondragon, S. Stepanov, M. Klein, and B. Wechsler. (1+1)-

dimension dark spatial solitons in photorefractive Bi;3TiOg9 crystal. Opt. Commun.,

118:515, 1995.

[16] P. Yeh. Introduction to Photorefractive Nonlinear Optics. John Wiley & Sons, 1993.

[17] G. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, and M. Bashaw. Dark and
bright photovoltaic spatial solitons. Phys. Rev. A, 50:4457, 1994.

[18] M. Taya, M. Bashaw, M. Fejer, M. Segev, and G. Valley. Observation of dark photo-
voltaic spatial solitons. Phys. Rev. A, 52:3095, 1995.

{19] M. Segev, G. Valley, B.Crosignani, P. Di Porto, and A. Yariv. Steady-state spatial
screening solitons in photorefractive materials with external applied field. Phys. Rev.

Lett., 73:3211, 1994.



BIBLIOGRAPHY 60

[20] D. Christodoulides and M. Carvalho. Bright, dark, and gray spatial soliton states in
photorefractive media. J. Opt. Soc. Am. B, 12:1628, 1995.

[21] M. Carvalho, S. Singh, and D. Christodoulides. Self-deflection of steady-state bright

spatial solitons in biased photorefractive crystals. Opt. Commun., 120:311, 1995.

[22] M. Shih, P. Leach, M. Segev, M. Garrett, G. Salamo, and G. Valley. Two-dimensional

steady-state photorefractive screening solitons. Opt. Lett., 21:324, 1996.

[23] M. Petrov, S. Stepanov, and A. Khomenko. Photorefractive Crystals in Coherent Op-

tical Systems. Springer-Verlag, 1991.
[24] C. Kittel. Introduction to Solid State Physics. John Wiley & Sons, Inc., 1986.

[25] N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V.Vinetskii. Holographic storage

in electrooptic crystals. I steady state. Ferroelectrics, 22:949, 1979.

[26] N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V.Vinetskii. Holographic storage
in electrooptic crystals. II beam coupling-light amplification. Ferroelectrics, 22:961,

1979.

[27] M. Moharam, T. Gaylord, and R. Magnusson. Holographic grating formation in pho-
torefractive crystals with arbitrary electron transport lengths. J. Appl. Phys., 50:5642,
1979.

[28] A. Mamaev and V.Shkunov. Interaction of counterpropagating waves and phase self-
conjugation in a BaTiOj3 crystal. Soviet Journal of Quantum Electronics, 19:1199,

1989.

[29] D. Christodoulides and M. Carvalho. Compression, self-bending, and collapse of gaus-

sian beams in photorefractive crystals. Opt. Lett., 19:1714, 1994.



BIBLIOGRAPHY 61

[30] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields. Springer-Verlag, 1983.

[31] P. Manneville. Dissipative Structures and Weak Turbulence. Academic Press, Inc.,

1990.

[32] S. Singh and D. Christodoulides. Evolution of spatial optical solitons in biased pho-

torefractive media under steady-state conditions. Opt. Commun., 118:469, 1995.

[33] G. Agrawal. Nonlinear Fiber Optics. Academic Press, Inc., 1989.



