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Abstract 

An algebraic semigroup (S, o )  is an affine variety S along with an associative product 

map o : S x S -+ S which is also a morphism of varieties. Background material 

regarding algebraic semigroups is presented in Chapters 1, 2 and 3. 

A semilattice of groups is a semilattice each of whose elements is a group, together 

with a set of group homomorphisms which is compatible with the semilattice structure. 

The union of these groups thus forms a semigroup where multiplication is determined 

by the group operations and the group homomorphisms. In Chapter 4 we characterize 

algebraic semilattices of groups. In particular we prove that a semilattice of groups 

is algebraic if and only if the semilattice is finite, the groups are algebraic groups and 

the connecting homomorphisms are morphisms of affine varieties. In order to show 

that the semilattice is finite we prove more generally that any semilattice of matrices 

is finite. 

Let S be a semigroup and let a ,  b E S. We say that a <L: b if and only if S'a C S1b 

and S'a # S'b, where S' = S U ( 1 ) .  Using S and the relation <L: we can form a 

semigroup R(S)  known as the left Rhodes expansion of S. In Chapter 5 we show that 

the left Rhodes expansion of an algebraic semilattice of groups is itself an algebraic 

semigroup. 

Let S be a semigroup and let a ,  b E S.  We say a 3 b  if there exist x,  y, x', y' E S1 

such that xay  = b and x'by' = a. The relation 3 is an equivalence relation. Further, 

a J-class of S is regular if it contains an idempotent element. It is known that for any 

algebraic semigroup S the set U(S) of regular 3-classes is finite. Norman Reilly posed 

the more general question: Is U(S) finite when S is  a semigroup o f  n x n matrices over 

a field? In Chapter 6 we show that the answer to  this question is "no" by presenting 

such a semigroup having an infinite number of regular 3-classes. 
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Chapter 1 

Algebraic Geometry 

The definitions and the statements of results in this chapter are taken from [3] and 

[6] where most results are stated without proof. For completeness and clarity I have 

provided proofs and additional details. 

1 .I Introduction 

Let k be an algebraically closed field and let k[Tl, T2, . . . , T,] be the algebra of poly- 

nomials in n indeterminates, TI, T2,. . . , T,, over k. We abbreviate k[Tl, T2,. . . , T,] to 

k[T]. An element x E kn is a zero of f ,  f E k[T], if f (x) = 0. Moreover, x is a zero 

of S, S 2 k[T], if f(x) = 0 for all f E S. For S G k[T], we denote by V(S) the set 

of zeros of S. An algebraic set is any subset of kn of the form V(S) where S 2 k[T]. 

Also if X kn, we denote by Z ( X )  the ideal formed by the f E k[T] vanishing on X. 

We will use the following lemma frequently and without comment. 

Lemma 1.1.1 Every  algebraic se t  is of the fo rm  V(I) for  s o m e  ideal I C k[T]. 

Proof. This follows from the easily verified fact that for all S k[T], 

V(S) = V(< S >) where < S > is the ideal of k[T] generated by S. 

We present two examples of algebraic sets. 
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Example 1.1.3 Let S C k [T]  and let f l ,  f 2 , .  . . , f n  E k [ T ] .  Then 

is an algebraic set. 

For all g E S we create a polynomial g* E k [T]  as follows: 

Further we let S* = {g* : g E S ) .  It is straightforward to  verify that P = V ( S * ) .  

Thus P is an algebraic set. 

Proposition 1.1.4 Let X 2 kn,  Y C_ km be algebraic sets, then X x Y 2 kn+" is an 

algebraic set. 

Proof. Let S C k[Tl ,  T2,  . . . , T,]. In this proof we indicate that  the elements of V ( S )  

are r-tuples by writing V ( S )  as V, (S) .  

Let X = V n ( I x )  and Y = Vrn ( I y )  where Ix  and ly are ideals of k[Tl ,T2, .  . . ,Tn] 

and k[Ul, U2 , .  . . , Urn] respectively. Notice Ix U I y  can be viewed as a subset of 

Now for all ( p ,  q)  where p E X, q E Y and for all f E Ix U I y  we have f ( p ,  q)  = 0. Thus 

X x Y E Vn+, ( I x  u I y  ). Let ( r l ,  r2 ,  . . . , rn,  s l ,  ~ 2 ,  . . . , s,) = ( r ,  S )  be in V,+, ( I x  u Iy  ), 
then for all f E Ix, we have f ( r )  = 0. Thus r E X. Similarly s E Y. Hence 

Vn+m ( I x  U I Y )  C X x Y- 

1.2 The Zariski Topology 

It is convenient to define a topology on En.  In this section we show that the so called 

Zariski topology is Noetherian. 
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Proposition 1.2.1 

1. 0 and kn are algebraic sets. 

2. The union of two algebraic sets is an algebraic set. 

3. The intersection of an arbitrary collection of algebraic sets is an algebraic set. 

Proof. 

1. V ( {O) )  = kn, V(k[T]) = 0. 

2. Let I ,  J  be ideals of k[T], then 

is also an ideal of k[T]. Clearly V ( I )  U V ( J )  5 V ( I J ) .  Say x E V ( I J )  but x  9 
V ( I ) ,  then there exists a E I  such that a ( x )  # 0. But for all b E J  we have 

ab(x) = a(x)b(x )  = 0. Thus for all b E J ,  we have b(x)  = 0 and x  E V ( J ) .  So 

V ( I )  U V ( J )  = V ( I J ) .  

3. Let be a family of ideals of k[T]. Define CaEA I. as follows: a E &A I. 

if and only if there exists a finite set 11, 12,. . . , Ih f (Ia)aEh such that a E 11  + 1 2  $ 

. . . + Ih. Then ED,, I,  is an ideal of k[T] and V (CaEA I,) = noEA V(1,). 

We define the Zariski topology on kn by taking the closed sets to be the algebraic 

sets. From Proposition 1.2.1 we see that the Zariski topology is indeed a topology. 

Let X be a topological space. We say that X satisfies the descending chain condition 

on closed sets if for any descending sequence of closed subsets, XI _> X2  _> . . ., of X 

there exists h E ZS such that Xi = X h  for all i 2 h. A topological space is Noetherian 

if it satisfies the descending chain condition on closed sets. 
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Lemma 1.2.2 

1. kn with the Zariski topology is Noetherian. 

2. A subset of a Noetherian space with the induced topology is Noetherian. 

3. An algebraic set with the induced Zariski topology is Noetherian. 

Proof. 

1. This follows from the fact that k [T]  is a Noetherian ring. For details we refer 

the reader to [5]  

2. Let Y be a subset of a Noetherian space X, and let 2 & 2 . . . be a 

descending sequence of closed subsets of Y. Then there exist closed subsets Xi X, 
i = 1 ,2  ,..., such that = Xi n Y. Now X1 _> XI n X2 2 Xl n X2 n X3 2 . .  . is 

a descending sequence of closed subsets of X. Since X is Noetherian, there exists 

h E Z+ such that for all h' 2 h,  n:=, Xi = nFll Xi. Rewriting K 2 Yz > . . . we get 

Xl n Y 2 X2 n Y 2 . . .. Thus for all i E Z+ we have Xi n Y = X j  n Y. We 

conclude that for h' 2 h,  Yhl = n;ll Xi n Y = n t l  xi n Y = Yh. 

I 3. This follows immediately from items 1 and 2. 

1.3 Regular Functions and Ringed Spaces 

To begin this section we define a k-algebra, k [ X ] ,  for each algebraic set X. An F- 

algebra consists of a vector space V over a field F ,  together with an operation of 

multiplication on V, such that for all a E F and a ,  ,f?, a E V, we have the following: 

I 2. (cr +@)a = aa + @a 

I 3. a(@ + a) = + cra 
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Let X 2 kn be an algebraic set. We form a k-algebra, k[X], by considering the 

restrictions to  X of the polynomials of k[T]. That is for f , g  E k[T] we say f is 

equivalent to  g if and only if f (x)  = g(x), for all x E X. We let the elements of our 

k-algebra be the equivalence classes of k[T] with addition and multiplication defined 

as follows: 

[ f  I + [sl = I f  + 91 and [ f  I [gl = [ f  gl (V[f 1, [gl f WI 1. 
By noting that k[X] is isomorphic to it is not hard to see that k[X] is indeed 

a k-algebra. Strictly speaking the elements of k[X] should be written as equivalence 

classes of polynomials; however where no confusion will occur we will write them 

simply as polynomials. 

Let X 2 kn be an algebraic set and let x be a point in X. A k-valued function 

defined in a neighbourhood U of x is said to be regu lar  in x if there exists both an 

open neighbourhood V of x and elements g ,  h E k[X] such that V 2 U, and for all 

y E V, we have both h(y) # 0 and f ( y )  = -. A function f defined in a non-empty 

open subset U of X is regular  in U if it is regular for all points of U. Let f and g be 

regular in U. We define f + g and f g :  

It is not hard t o  verify that the set of regular functions in U with the given addition 

and multiplication form a k-algebra which is denoted by Ox(U). 

Definition 1.3.1 Let X be a topological space. Let U be the set of open subsets 

of X .  Suppose that for each non-empty open subset U of X there is an associated 

k-algebra O(U) of k-valued functions of U such that, with O(0) = {0}, we have 

Shl)  If 0 # U G V are open sets and f E O(V),  then f r U E O(U). 

Sh2) Let U be a non-empty open set with an open covering U,(CY E A).  Further 

let f ,  a k-valued function of U, be such that f r U, E O(U,) VCY E A,  then 

f E O W ) .  

Then O = UUEU O(U) is a sheaf  o f  f u n c t i o n s  on X and the pair (X, O)  is a r inged 

space.  We shall usually drop the O and speak of the ringed space X. 
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Definition 1.3.2 Let (X,  0) be a ringed space, and let Y C X. We form a ringed 

space, (Y, O f ) ,  where Y is considered to have the induced topology and 0' is defined 

as follows: 0 ' ( 0 )  = (0) and, for U # 0, 

1. if U is open in Y but not in X, then O f ( U )  consists of all functions f : U -t k 

such that there is a open covering U UaEh  UOL by open sets of X such that for 

each cr E A, f r U r l  U, = f a  1 Ufl  U, for some f, E O(U,). 

2. if U is open in Y and X, then O 1 ( U )  = O ( U )  

We call (Y, 0') the ringed space induced by X .  

Verifying that (Y, O f )  is indeed a ringed space is straightforward. 

Theorem 1.3.3 Let X be an algebraic set with the induced Zariski topology. For 

each non-empty open subset U of X let O x ( U )  be the associated k-algebra of regular 

functions and let O x ( @ )  = (0).  Then 0 = u { O x ( U )  : Uis  open in X) is a sheaf of 

functions on X .  

Proof. Clearly the regular functions are k-valued. We verify that Shl  is satisfied. 

Let U and V be open sets of X with 0 f U V and let f E O x ( V ) .  Since f E O x ( V ) ,  

for all x E V there exists A,, an open neighbourhood of x, and g,, h,  E k[X] such 

that 

g x ( y )  (Vy E A x ) .  M Y )  # O  and f ( y )  = q - j  
5 Y 

Hence for all x E U ,  we have 

S ~ Y  
h X ( y )  # 0 and f ( y )  = - (Vy E A,r) U ) .  

h d ~ )  

Thus for all x f U there exits an open neighbourhood of x, namely A, n U, and 

functions g,, h, E k[X] which meet the requirements needed to make f 1 U regular 

in x. We conclude that f 1 U E O x ( U ) .  

We verify that Sh2 is satisfied. Let U be a non-empty open set with an open cover- 

ing U,(a E A). Let f : U t k be such that for all a E A, we have 

f r U, E O X ( U a ) .  Since U,(a E A )  is an open covering of U we have that for 
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all x f U, there exists cu E A such that x E U,. Now f 1 U, E Ox(U,) so there exists 

an open neighbourhood, Ax U,, of x and functions g,, h, E k[X] with 

%(Y) hX(Y) # 0 and f (y )  = - (Vy E Ax). 
hX(Y 

Since U, is open, A, = A, n U, is an open subset of U. Thus for all x E li there exist 

an open neighbourhood of x, namely A, = A, n U, C U, and functions g,, h, E k[X] 

which meet the requirements needed t o  make f regular in x. We conclude f E Ox(U).  

1.4 Affine Varieties 

Let (X, Ox)  and (Y, Oy)  be two ringed spaces, and let 4 : X t Y be a continuous 

mapping. For each open set V C Y we define a mapping 4; from Oy(V) into the 

set of k-valued functions on $-l(V) as follows: If f E Oy (V) ,  then &(f)  = f o 4. 

We say that 4 is a morphism of ringed spaces if, for each open V 2 Y we have that 

4; maps Oy (V) into Ox (4-I (V)). See Fig. 1.1. Let 4 : X + Y be a morphism of 

ringed spaces which is one-to-one and onto. If the mapping 4-' : Y -+ X is also a 

morphism of ringed spaces then 4 is said to be an isomorphism of ringed spaces. An 

aJJine variety is a ringed space (X, O )  such that (X, 0) is isomorphic to a ringed space 

(Xf ,  0') where X' is an algebraic set with the induced Zariski topology and 0' is the 

sheaf of regular functions. We shall usually drop the O and speak of the affine variety 

X .  If (X, Ox)  and (Y, Oy)  are affine varieties then a morphism of ringed spaces 

d : X -t Y is a morphism of aJJine varieties. An isomorphism of aJJine varieties is 

similarly defined. 

Lemma 1.4.1 Let (X, O )  and (R, P )  be ringed spaces, let 4 : X -+ R be an isomor- 

phism of ringed spaces and let Y X. Then 4 r Y is an isomorphism of the induced 

ringed spaces (Y, 0 ' )  and ($(Y), Pf) . 

Proof. It follows from results in elementary topology that 4 Y is a homomorphism 

of the induced topologies. Thus to show that 4 r Y is a morphism of the induced 
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X Y 

Figure 1 .l: A morphism of the ringed spaces X and Y 

ringed spaces it suffices to  show that if V C $(Y) is an open set and f E P ( V )  then 

f o 4 E 0t(4-'(V)). We examine two possibilities. 

1. Suppose that V is open in 4(Y) and R. Since 4 is an isomorphism we have that 

$-'(V) is open in X. Thus 4-' (V)  is open in Y and X, and, by Definition 1.3.2.2, 

we have that 0t(4-'(V)) = O(4-'(V)). Also since 4 is an isomorphism we have that 

f 0 4 E O(4-'(V)). Thus f 0 q5 E O'(4-'(V)). 

2. Suppose that V is open in $(Y) but not in R. By Definition 1.3.2.1, f is such that 

there exists an open covering V C UaEA Vff by open sets of R where for each cr E A, 

f 1 V n V, = fa r V n V, for some f, E O(V,). Note that $-'(V n V,) = 

+-'(V) n $-'(I(,). Thus f o $ : $-'(V) -4 k is such that there exists a covering 

4-' (V)  C UaEA 4-' (V,) by sets of X where for each rr E A,  f o $ r 4-'(V) n 4-'(V,) = 

fa o 4 1 4-'(V) n $-'(V,) for some f, E O(V,). Now, since 4 is an isomorphism, 

each 4-'(V,) is an open subset of X and each f, o 4 E O($-'(V,)). Thus by Defini- 

tion 1.3.2.1 f o 4 E 0t(q5-'(V)). 

We conclude 4 1 Y is a morphism of the induced ringed spaces. Since 4-I : R --t Y 

is also an isomorphism an analogous proof will show that 4-I r 4(Y) is a morphism 

of the induced ringed spaces. 
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The proof of the next lemma follows from the definitions of a regular function and 

an induced ringed space. The details are left to the reader. 

Lemma 1.4.2 Let X be an algebraic set, Ox be the sheaf of regular functions and 

Y be a closed subset of X. Then the induced sheaf of functions (Ox)' is equal to the 

sheaf of regular functions Oy. 

The following is a consequence of the definition of the induced Zariski topology, 

Lemma 1.4.1 and Lemma 1.4.2. 

Corollary 1.4.3 Let (X,Ox) be an afine variety and Y be a closed subset of X. 
Then (Y, Oy) is an afine variety. 

Proposition 1.4.4 Let X kn be an afine variety and let f be in k[X]. Then 

Xf = {x Z: X : f (x) # 0) is an afine variety. 

Proof. Let Ox be the sheaf of regular functions on X and 0;; be the sheaf of 

functions defined on Xf in accordance with Definition 1.3.2. Then (Xf, 0;;) is a 

ringed space. The set R = { ( x , ~ )  : z E X, cu E k, f(x)o = 1)  is closed in kn+'. 

Let q5 : Xr + R be the mapping which takes x E Xj to (x, h). Clearly 4 is one- 

to-one and onto. We show that #I is a morphism of ringed spaces. First we show 

that q5 is continuous by showingthat the pre-image of a closed subset of R is a closed 

subset of Xf. Let V R be closed. Then V = R n V(J) where J is an ideal of 

k[Tl, T2,. . . , Tn+1]. For all g E J we define a polynomial g' E k[Tl, T2,. . . , T,] as 

follows. First expand g in terms of the variable Tn+l writing 

where d 2 0 and gO,gl,.  . . ,gd E k[Tl, T2,. . . , T,]. Then let 

Further let J' = {g' : g E J). We show q5-l(V) = V(Jf) n Xf. 
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Suppose that x E 4-'(V). The polynomial g' is in J' only if there exists a g E J 

such that g = go + glT,+l + .  . . + gdTn+l and g' = g o f d  + g l f d - l  + . . . + gd. Now 

Multiplying through by f d ( x )  we obtain 

We conclude x E V ( J ' )  n Xf . 
Suppose that x E V ( J 1 )  n XI. Let g E J ,  g = go + glTn+l + . . . + gdT,d+l and 

9' = g o f d  + gl fd-' + . . . + gd. Then g' E V ( J 1 ) .  Since x E V ( J f ) , w e  have that 

So dividing through by f d ( x )  # 0 we obtain 

whence ( x ,  &) E V ( J )  n R. We conclude x E Q-'(V). Thus 4-'(V) is a closed 

subset of XI. 
Let U 5 R be an open set and let 1 E OR(U) ,  the set of regular functions on U .  

We wish to  show that t o Q is in O;($- l (U)) .  

Suppose that x E 4- ' (U) ,  then $ ( x )  = ( x ,  &j) E U.  Since l E On(U) ,  there 

exists an open neighbourhood V of ( x ,  A) and polynomials g ,  h E k [ R ]  such that 

g ( y )  
h ( y )  # 0 and [ ( y )  = - (Vy E V ) .  ' 4 ~ )  

Expanding g and h in terms of T,+l we may write g = go + glT,+' + . . . + gdTt+l 

and h = ho + hlT,+l + . . . + hdT,d+, where d 2 0 and g, ,g l , .  . . ,gd, ho, h l ,  . . . , hd E 

k[Tl ,  T2 , .  . . , T,]. Since q5 is continuous, Q-'(V) is an open neighbourhood of x. 

For all z E 4-' ( V )  we have ho(z )  f ( z )  + h l ( z )  f d-l  (z) + . . . + hd ( z )  # 0. For if 
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ho(z) f d ( z )  + hl(z)  f d - ' ( 2 )  + . . . + hd(z )  = 0 it would follow that h(z ,  &) = 0 where 

y = ( z ,  &) ;i)E U ,  a contradiction. Further for all z E $- ' (V) ,  we have 

Thus l o 4 is regular in x. Our choice of x was arbitrary, so that l o 4 E O;($-'(U)) 

and d ; ( O ~ ( u ) )  C Oxf  ($ - ' (u ) ) .  
Next we show that 4 - I  is also a morphism of ringed spaces. Let V C Xf be closed. 

Then V = Xf n V' where V' is a closed subset of X .  Thus, by the definition of 4,  we 

have that 

which is a closed subset of R. Hence 4 ( V )  R is closed. We conclude that 4-' is 

continuous. 

Let V C Xf be an open set and l E O;i(V). We show that l o E 0 R ( 4 ( V ) ) .  

Since V is open in X j  there exists V *  open in X such that V = X j  n V*.  Thus, since 

Xf is open in X, we may assume V is open in X. From this assumption it follows that 

e E O x ( V ) .  Hence for all s E V there exist g,, f ,  E k[X] and an open neighbourhood 

V ,  of s such that 
gs  (4  h , ( ~ )  # 0 and e(r)  = - (Vr E V,) .  
hdr )  

By letting gs(T1, . . . , Tn)=gs(Tl, . . . , Tn, Tn+l) and hs(T1, . . . , Tn)=hs(T~, . . . , Tn, Tn+1) 

we can consider g, and h, to be elements of k[R]. Moreover, since 4-' is continuous, 

$(&) is an open neighbourhood of ( s ,  h). So for all ( s ,  $) E $ ( V )  we have that 

h ( ) # 0 and 4 0 6' (r ,  &) = ( hs(r, &) (. (., &) E O(V,)) . 
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We conclude that ! 0 $-I E 0R(4(V)). Thus $-I is a morphisrn of the ringed spaces, 

and (Xf, Oi) and (R, OR) are isomorphic ringed spaces. Since R is an algebraic set 

with the induced Zariski topology and OR is the sheaf of regular functions, it follows 

that ( X j ,  0;) is an affine variety. 

Let X 5 kn, Y C km be closed sets, then the map 4 = 42,. . . ,4,) : X -4 Y 
where each $; E k[X] is a polynomial map. 

Proposition 1.4.5 Let X C_ kn, Y 2 km be closed sets and Ox, Oy be the sheaves 

of functions formed b y  taking the regular functions. Further let q5 = (41, 42, . . . ,4m) : 

X + Y be a polynomial map, then $ is a morphism of afine varieties. 

Proof. We show $ is a continuous mapping by showing that the pre-image of a 

closed set of Y is closed in X. Let V C Y be a closed set, then there exists 

I G k[yl, y2,. . . , ym] such that V = V(I) n Y. Let f E I. We create a poly- 

nomial f 4 E k[xl, 5 2 , .  . . , x,] by substituting each occurrence of y; in f with 4;, 
i = 1,2, . . . , m. Let (ql, q2. . . . , qn) E 4-l(V), then since 

we have 

Therefore (qi,q2,...,qn) E V((f4 : f E I)) n X and $-l(V) C 
v({f$ : f E I}) n x. Let(ql,q2,...,qn) E V((f4 : f E I}) n X, then for all 

f E I, we have f 4(ql, 42,. . . , qn) = 0. SO 

Hence ($l(ql,q2,-.,,qn),42(ql,q2,.. . ,  qn),... ,$m(ql,qa,.. .,qn)) E V. We can con- 

clude (ql, q2, . . . , qn) E $-' (V) and V ( f  $ : f E I) n X 5 4-' (V). Thus $-I (V) = 

V (  f 4 : f E I) n X and 6 is a continuous map. 
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Figure 1.2: The product of the affine varieties X and Y 

Let V C Y be an open set and let f E Oy(V) .  We verify that f 0 4  E 0x (4 - l (V ) ) .  

Let p E 4-'(V),  then 4 ( p )  = q for some q E V .  Since f E O y ( V ) ,  there exist an open 

neighbourhood Q of q and elements g ,  h  E k[Y] such that h(y)  # 0 and f ( y )  = ' 4 ~ )  
for all y E Q. Since 4 is continuous, # - I ( & )  is an open neighbourhood of p. Further 

for all a E 4-'(Q), we have f 0 $(a) = f ( $ (a ) )  = f ( b )  for some b E Q. But b E Q 

implies that h(b) # 0 and f ( b )  = where g ( b )  = g m ( a )  and h(b) = hd(a). Moreover 

h4, gd E k [ X ] .  Therefore f o 4 is regular in $-l(V).  w 

Definition 1.4.6 Let X and Y be two affine varieties. The product of X and Y is 

an affine variety Z together with morphisms : Z -+ X and 4, : Z -t Y such that 

the following holds: for any triple (Z',&, 4;) of an affine variety Z' together with 

morphisms 4: : Z' -+ X and 4; : Z' -+ Y there exists a unique morphism o : Z' + Z 
such that 4: = $1 0 a and 4; = 42 o a. See Fig 1.2. 

Note that this definition is in accordance with the general notion of a product in 

a category. A proof of the following theorem can be found in [6]. 
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Theorem 1.4.7 A product X x Y of two afine varieties X and Y exists and is unique 

up to isomorphism. Moreover the underlying set of X x Y can be identified with the 

Cartesian product of the sets X and Y .  



Chapter 2 

Abstract Semigroups 

The definitions and results in this chapter are taken from [2], [3] and [4]. 

2.1 Introduction 

A semigroup ( S ,  o) is a set S with an associative operation o. We usually write S for 

( S ,  0 ) .  An idempotent of S is an element e E S such that e2 = e. We denote by E ( S )  

the set of idempotents of S. We can define a partial ordering on E ( S ) .  If e ,  f E E ( S ) ,  

we say e 2 f if and only if e f = f e = f .  A commutative semigroup in which 

every element is idempotent is a semilattice. If S' is a semigroup, then the mapping 

4 : S + S' is a homomorphism if and only if +(ab) = $(a)q!(b) for all a, b E S .  A 

semigroup with an identity element is called a monoid. If S has no identity element 

we may adjoin an extra element 1 to the set S creating a monoid S U (1) with the 

obvious multiplication. We will find it useful to  define the semigroup S1 as follows: 

if S is a monoid 

S U (1) otherwise 

Let 23 be an equivalence relation on a semigroup S .  We will denote the fact that a, b E 

S are 23-related by aBb. An equivalence relation 23 on S is called a left congruence if 

(Vs, t ,  a E S )  sBt + asBat. 
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Similarly 23 is called a right congruence if 

Definition 2.1.1 Let I be a non-empty set and G be a group. We define a semigroup 

( S ,  o)  where S = ( I  x G x I )  U ( 0 )  and multiplication is as follows: 

( i ,gh ,n)  i f j  = m  
( 4  9,  j )  0 (m,  h,  n )  = 

otherwise 
b' ( 2 ,  g , j> ,  (m,  h, n )  E S\{O)) 

0 o ( i ,  g ,  i) = ( i ,  g ,  i )  o 0 = 0 = 0 o 0 (V ( i ,  g ,  i )  E S\{O}). 

S is known as the I x I Brandt semigroup over G and is denoted by p(I ,  G ,  I ) .  

Definition 2.1.2 Let Y be a semilattice and let {G, : a E Y )  be a family of disjoint 

groups. For each pair a, P E Y such that a 2 ,L3 let $,,p : G, t Gp be a group 

homomorphism such that 

S11) $,,, is the identity mapping of G, for each a E Y. 

S12) for all a ,  P, y E Y such that a 2 ,l? 2 y we have $p,7$,,p = $a,y .  

Let S = UaEY G,  and let multiplication " o "  on S be such that if a E G, and b E G p  

then a o b = $,,ap(a)$p,,p(b) where the multiplication of $,,,p(a) and $p,ap(b)  takes 

place in Gap. Then S is a semilattice of groups. We will denote S by [Y, G,, 4,,p] 
in recognition of the fact that S is completely determined by Y, {G,  : a E Y }  and 

{$,,p : a l p  E Y a 2 p}. Further we will denote by e, the identity element of G,. 

It is straightforward to verify that multiplication is associative both on an I x I 

Brandt semigroup over G and on a semilattice of groups. Thus both are indeed 

semigroups. We will use the following lemma without comment. 
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Lemma 2.1.3 Let S = [Y, G,, be a semilattice of groups and let a,  ,B f Y be 

such that a 2 ,B. T h e n  we have the  following: 

1. e, 2 ep. 

2. G,Gp Gp. 

Proof. 

1. Since $,,p is a group homomorphism, we have that d,,p(e,) = ep. So, by the 

definition of multiplication on S ,  we have that 

2. Let a E G, and b f Gp. Then, by the definition of multiplication in S, we have 

that a 0 b = da,p(a)dp,p(b)  E G O .  H 

2.2 Green's Equivalence Relations 

Certain equivalence relations known as Green's equivalences are fundamental to the 

study of semigroups. In our investigations we will use four of these relations L, R, 3, R .  

Definition 2.2.1 Let a and b be elements of a semigroup S, then 

1. we say a divides b if there exist x, y E S1 such that xay = b. We write a I b to 

denote that a divides b. 

2. a J b  if and only if a I b and b I a .  

3. a L b  if and only if there exist x, y E S1 such that xa = b and yb = a .  

I 

I 4. a R b  if and only if there exist x, y E S1 such that a x  = b and by = a .  

5 .  a R b  if and only if a R b  and aLb .  
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It is straightforward to verify that 3, L ,  R and 5Y are equivalence relations. Note 

the symmetric nature of the definitions of L and R. While investigating L and R 

we will often state two results which have an obvious left-right symmetry. In these 

instances we will prove only one of the two results. 

Let a be an element of a semigroup S .  We denote the J-class of a by Ja.  The 

sets La ,  Ra and Ha are similarly defined. We will use the following lemma without 

comment. 

Lemma 2.2.2 Let S be a semigroup and a, b E S .  Then aCb if and only if S1a = S1b. 

Similarly aRb if and only i f a S 1  = bS1. 

Proof. Clearly S1a = S'b implies that aLb. If aLb then there exist t ,  t' E S 1  such 

that ta = b and t'b = a. Thus S1a = S1t'b C S1b and S1b = S1ta G S'a. Hence 

we have S1a = S1b. In a similar fashion we can prove aRb if and only if a s 1  = bS1. . 
Lemma 2.2.3 The relation L is a right congruence and the relation R is a left con- 

gruence. 

Proof. Let S be a semigroup and let s ,  t E S be such that sLt.  Then by the defini- 

tion of L there exists u,  v E S1 such that us = t and vt = s. So for all a E S we have 

that usa = ta and vta = sa. Hence saLta. We conclude that L is a right congruence. 

The proof that R is a left congruence is similar. . 
Let S be a semigroup. For all x E S1  we define mappings p, : S + S and 

A, : S + S as follows: 

p,(s) = sx and A,(s) = xs (Vs E S ) .  

The mappings p, and A, are known as the right translation b y  x and the left translation 

b y  x respectively. 

Lemma 2.2.4 (Green's Lemma) Let S be a semigroup and let a ,  b E S be such that 

aRb. Further let s ,  s' be the elements of S1 such that as = b and bs' = a.  Then the 
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right translations p, r La, p , ~  r Lb are  mutually inverse R-class preserving bijections 

from La onto Lb and Lb onto La respectively. 

Proof. Since, by Lemma 2.2.3, L is a right congruence, it is clear that p, 1 La maps 

La into Lb and p , ~  Lb maps Lb into La. Let l E La then there exists u E S' such 

that ua = l .  Thus we have that 

whence p,lp, : La + La is the identity mapping. Similarly we may show that p,p,t r Lb 

is the identity mapping on Lb. We conclude that p, 1 La and p , ~  r Lb are mutually 

inverse bijections. If l E La, then ls E Lb has the property that (ls)sl = l. Thus 

l s W  and, so, the mapping p, r La is R-class preserving. Similarly p,l 1 Lb is R-class 

preserving. 

The left-right dual which follows is proved in an analogous fashion. 

Lemma 2.2.5 (Green's Lemma) Let S be a semigroup and let a ,  b E S be such that 

aLb. Further let t ,  t' be the elements of S1 such that t a  = b and t'b = a .  Then the left 

translations At 1 R,, X t l  r Rb are mutually inverse L-class preserving bijections from 

Ra onto Rb and Rb onto Ra respectively. 

Proposition 2.2.6 Let S be a semigroup, e E E(S) and a E S. If a x e ,  then Ha is 

a subgroup of S. 

Proof. We show Ha is a subgroup of S by verifying that the condition 

Hat  = tHa  = Ha (Vt E Ha) 

is satisfied. It is not hard to see that this condition holds if and only if Ha is a group. 

Let t E Ha. By Lemma 2.2.4 we have that pt 1 Ha is a bijection of Ha onto itself. 

Thus Hat  = Ha. We may similarly show that tHa = Ha. 
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2.3 The Rhodes Expansion 

Let S be a semigroup. We define the relations sc and <c on S as follows: 

a <c b if and only if S1a  S1b (Va ,  b E S )  

a <c b if and only if S1a S1b  and S1a  # S1b (Va,  b E S )  

Let a = ( a l ,  a2, . . . , a,) where each a; is an element of S. Then a is an L-chain 

provided that al SL a2 SL . . . Sr. a,. Further a is a reduced L-chain provided 

that al <c a2 <c . . . <c an. If a is an L-chain we define red@) to be the reduced 

L-chain formed by removing all but the left most element from any string of L-related 

elements in Z. For example if S is the integers with the usual multiplication then 

(0 ,4 ,  -4, -2 ,2)  is an L-chain and red ( (0 ,4 ,  -4, -2 ,2) )  = ( 0 , 4 ,  -2).  Clearly  red(^) 

is a unique reduced L-chain. We define a semigroup, ( R ( S ) ,  o ) ,  known as the left 

Rhodes expansion: Let R(S)  be the set of all reduced L-chains and let multiplication 

be defined via 

( a l ,  a2, . . . , a,) o (b l ,  b2, . . . , b,) = red(a1 bl, azbl, . . . , a,bl, b l ,  b27 .  . . , b,). 

It is straightforward to verify that multiplication on R(S)  is associative. The right 

Rhodes expansion is defined analogously. 



Chapter 3 

Algebraic Semigroups 

With the exception of Theorem 3.2.3 the results and proofs in this chapter have been 

adapted from [3]. Theorem 3.2.3 is my own work. 

3.1 Introduction 

A semigroup (S, o) is a (linear) algebraic semigroup provided that ( S ,  o)  is isomorphic 

to (St, 0') where St is an affine variety and o' : S' x St + S' is an associative product 

map which is also a morphism of varieties. Recall that an affine variety is a ringed 

space which is isomorphic to a ringed space (T, 0) where T is an algebraic set with the 

induced Zariski topology and O is the sheaf of regular functions. Note that Theorem 

1.4.7 assures us that if S' is an affine variety then S' x S' is an affine variety and, 

thus, that o' may be a morphism of varieties. To illustrate this definition we present 

two examples of algebraic semigroups. 

Example 3.1.1 Any finite semigroup is an algebraic semigroup. Clearly any finite 

set S can be represented by the zeros of a polynomial in k[Tl] and, thus is an affine 

variety. It is a straightforward exercise to construct a polynomial map which gives 

the desired multiplication. 

We let Mn(k) denote the semigroup of n x n matrices over k with the usual matrix 

multiplication. 
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Example  3.1.2 Let S C - M n ( k )  be both a semigroup and an algebraic subset of kn2, 

then S is an algebraic semigroup. Let A, B E S .  Since each entry of the product A B  

is a polynomial expression of t h e  elements of A and B, we have that the multiplication 

is given by a polynomial map. Therefore S is an algebraic semigroup. In particular, 

Mn(lc) is an algebraic semigroup. 

The following lemma is a consequence of Corollary 1.4.3. We will use jt without 

comment. 

Lemma 3.1.3 Let S be an algebraic semigroup. Any  closed subsemigroup of S  is an 

algebraic semigroup. 

A homomorphism between two algebraic semigroups is a semigroup homomorphism 

which is also a morphism of affine varieties. An isomorphism is similarly defined. 

3.2 The Matrix Structure of Algebraic Semigroups 

The following well- known theorem and its corollary are fundamental to our inves tiga- 

tion of algebraic semigroups. The reader is referred to [3] for a proof of the theorem. 

Theorem 3.2.1 Let M be a n  algebraic monoid. Then M is isomorphic to a closed 

submonoid of some Mn(k ) .  

Corollary 3.2.2 Let S  be an algebraic semigroup, then S is isomorphic to a closed 

subsemigroup of some M n ( k ) .  

Proof. We may assume that  S  is a closed subset of some kd.  Let u  E S and let 

M  = { S  x (0)) U { ( u ,  1)) kd+l. On M define multiplication as follows: 
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Clearly (M, o)  is a monoid with identity (u, 1). Note that we may write 

(a, x)  o (b, y )  = ab(1 - x)(1 - y )  + axy + bx(1 - y) + ay(1 - X) (v(a, x)(b, y)  E M )  

Thus o is a polynomial expression of multiplication in S.  It is not hard to show 

that such a polynomial expression is a morphism of varieties and , thus, that M is 

an algebraic monoid. Consequentiy, by Theorem 3.2.1, M is isomorphic to a closed 

submonoid of some Mn(k). But S is isomorphic to S x {O) ,  which, by Proposition 

1.1.4 and the definition of M, is a closed subsemigroup of M.  Thus S is isomorphic 

to a closed subsemigroup of some Mn(k). 

The following is a typical application of Theorem 3.2.1. 

Theorem 3.2.3 Let G be an algebraic group and I be a finite set. Then p(I ,  G, I ) ,  

the I x I Brandt semigroup over G, is an algebraic semigroup and p(I ,  G, I)' is an 

algebraic monoid. 

Proof. Let I I I = m. Given Theorem 3.2.1, we can assume G is an algebraic subgroup 

of Mn(k). In the following we consider an mn x mn matrix to be partitioned into m2 

n x n blocks. Let M be the set of mn x mn matrices whose entries are zero except 

for exactly one of its n x n blocks; this remaining block belongs to G. We show that 

M' = M U {0), where 0 is the zero matrix, is an algebraic semigroup. First we show 

that M' is an algebraic subset of kmZn2. Since G is an algebraic subset of kn2, we have 

that G = V ( I )  for some ideal 

Let X = {x,,;~ : p, q E {1,2,. . . , n} i,  j E {1,2,. . . , m}) be a set of (mn)2 indetermi- 

nates. For all f E I and i, j E {1,2, . . . , m} we form the polynomial f;*j E k[X] by 

replacing each instance of T,, in f by x,,;j. For all i, j E {1,2,. . . , m} let Iij be the 

ideal of k[X] generated by 

{ f,; : f E I } u { x ~ ~ ~ ~ ~ ~  : p, q E {I,  2,.  . . , n} (if, j') E {I ,  2, - - .  , m}  x {I, 2, - - . , m}\{(i,j))). 
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Then 

M 1 = M u { O ) =  U V(Iij)u{O). 
i , j ~ { l , 2  ,..., m} 

We conclude that MI is a closed set. 

Given a E G and i ,  j E {1,2,.  . . , m),  let Maij be the element of M which has the 

matrix a in its i j ' th  block. Then for all a ,  b E G and i, j , i l ,  j' E {1,2, .  . . , m )  

Thus MI is closed under matrix multiplication and we conclude that M' is an algebraic 

semigroup. Clearly the mapping which takes ( 2 ,  a, j) E p ( I ,  G, I) to Ma,; is an 

isomorphism between p ( I ,  G, I) and M'. We conclude that p ( I ,  G, I) is an algebraic 

semigroup. 

Let 1 be the identity matrix. Since any finite subset of km2"' is an algebraic set, 

(1) is an algebraic set. Thus M' U {I)  is an algebraic set. Moreover M' U (1) is 

closed under multiplication. We conclude M'U (1) is an algebraic semigroup. Clearly 

MI U (1) is isomorphic to p ( I ,  G, I)'. rn 

3.3 Preparatory Results 

The results in this section are used in Chapters 4 through 6. 

Lemma 3.3.1 If S is an algebraic semigroup and e E E(S), then, e S  = {ex : a: E S) ,  

S e  and eSe are algebraic semigroups. 

Proof. We may assume S G Mn(k). Let T be a matrix of n2 indeterminates. Then, 

since S 2 Mn(k), the matrix T - eT may be viewed as n2 polynomials in k[T] .  Thus 

the set {p E kn2 : p - ep = 0) is an algebraic set. But s E S is in eS  if and only 

if x = ex. Thus e S  = S n {p E kn2 : p - ep = 0) is an algebraic set. Clearly eS  is 

a subsemigroup of S. We conclude that eS  is a closed subsemigroup of S and hence 
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an algebraic semigroup. An analogous proof will serve to show that Se and eSe are 

algebraic semigroups. rn 

In [3] the following result was proved in the process of proving a theorem. Here it 

is presented in isolation. 

Lemma 3.3.2 Let S be an algebraic subsemigroup of Mn(k )  and let b E S .  If there 

exists an idempotent e E -Mn(k) such that b7ie in Mn(k ) ,  then e E S and bfie in S .  

Proof. Let e = e2 E M n ( k )  b e  such that e7ib in Mn(k )  and let Sl = 

{ x  E S : ex = xe = x ) .  Then b E S,, and ,  since 

S1 is an algebraic subset of S .  Since bXe,  we have eb = be = b and by Proposi- 

tion 2.2.6, we have that there exists c E M n ( k )  such that ec = ce = c, and bc = cb = e. 

Note that we do not know whether c E S .  Let i E Z S .  Using the fact that for all 

x E S1 we have cibix = bicix = x ,  it is easy to show that b'Sl = { x  E S1 : cix E S1) .  

So, by Example 1.1.3, biSl is closed. Further we have that bS1 _> b2S1 _> . . ., so, since 

S is a Noetherian space, by Lemma 1.2.2 we have that there exists i E Z+ such that 

biSl = bif lS1.  Thus S1 = eS1 = c i b i ~ l  = cibi+lS 1 - - ebSl = bS1. Similarly S1 = Slb. 

Therefore there exists x E S, such tha t  b = bx. So x = ex = cbx = cb = e. Hence 

e E S1. Further e E S1 and S1 = bSl = Sl b imply that there exist y ,  z E S1 such that 

by = e = zb. It follows that bUe in S. rn 

Definition 3.3.3 If e E Mn(k)  is an idempotent and a E Mn(k ) ,  then dete(a) = 

det(eae + 1 - e).  

Lemma 3.3.4 Let 5' be an algebraic subsemigroup of Mn(k ) ,  let e E E ( S )  and let 

a E S .  Then det,(a) # 0 if and only if eae'Fle in S .  

Proof. Suppose dete(a) # 0. Then there exists x E M n ( k )  such that (eae + 1 - e)a: = 1. 

Thus eaex = e(eae + 1 - e)x = e and by duality we have that eae'J-te in Mn(k) .  Thus, 

by Lemma 3.3.2, we have that eaefie in  S .  
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Suppose eae')-le in S. Then there exists x E S such that eaex = e. Thus 

(eae + 1 - e)(exe - e + 1 )  = 1 and we have that dete(a) # 0. w 

Lemma 3.3.5 Let S C Mn(k)  be an algebraic semigroup and let e E E ( S ) .  Then the 

set I = {a  E S : a j'e} is closed in S .  

Proof. Let H denote He,  and let X = eSe n { x  E kn2 : det,(x) = 0 ) .  Then, by 

Lemma 3.3.1, X is closed. Further by Lemma 3.3.4 we have that X = eSe \ H .  Let 

x ,  y E X and a I .  Suppose exaye is not in X .  Then exaye E H, a subgroup of 

S, whence a I e, a contradiction. Therefore exaye E X .  Now let a E S be such 

that exaye E X for all x ,  y E S .  We show that a E I .  Suppose a @ I .  Then 

xay = e for some z, y E S .  So exaye = e E H ,  a contradiction. We conclude that 

I = {a E S : exaye E X Vx, y E S ) .  Thus I is closed. w 

For the purposes of this thesis we call a J-class regular if and only if it contains 

an idempotent element. This is not the standard definition of a regular 3-class. The 

reader is referred to [3] pages 3 and 4 and [2] for further information. We denote the 

set of regular 3-classes of S by U ( S ) .  In [3] there was an error in the proof of the 

following theorem. Norman Reilly provided the correction which is presented here. 

Theorem 3.3.6 Let S be an algebraic semigroup, then U ( S )  is a finite set. 

Proof. Suppose the theorem is false. Then there exists an infinite set X E ( S )  
such that for all e,  f E X we have e 3  f if and only if e = f .  For e E X, let 

I ( e )  = {a : a E S a j' e )  which is closed by Lemma 3.3.5. We claim that there exists 

an infinite subset Y of X such that for all e E Y, I ( e )  n Y is finite. Suppose not, then 

X itself is not such a set. Therefore there exists f l  E X such that X1 = I ( f l )  n X 

is infinite. Similarly there exists f 2  E X 1  such that X2  = I ( f 2 )  n X1 is infinite. 

Continuing we find a sequence f l ,  f 2 , .  . . in X such that for all i E ZS we have 

fi+l E Xi = I (  f l )  n I (  f 2 )  fl . . . fl I (  f ; )  n X .  B y  the definition of I (  f;+l) we have that 

f;+l 6 I(f;+,). So we have a strictly descending chain of closed sets 
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This contradicts the fact that  S is Noetherian. Therefore there exists an infinite set 

Y X such that for all e E Y, I ( e )  n Y is finite. Choose el E Y. Since Y n I ( e l )  is 

finite, Y \ I ( e l )  is infinite. Thus there exists e2 E Y \ I ( e l )  such that e2 # el.  Similarly 

there exists e3 E Y \ ( I ( e l )  U I ( e 2 ) )  such that e3 # el  and e3 # e2. Hence we find dis- 

tinct idezpotents el ,  e2 , .  . . in X such that for i > j we have e; I ej. Let m c Z+. Con- 

sider the chain e, I em-l I . . . I e;! I el. Since e, I e,-1 there exist x ,  y E S such that 

xemY = em-1. Let e',-, = em yern-lxe, E E ( S ) .  Then em-lJe',-l and e;-, 5 em. 

By the choice of X this implies e&-I < em. For if e',-, = em, then emJem-l, a con- 

tradiction. Thus we have e, > e;-, I em-2 I . . . I e2 I el. Since e;-, I e,-2 there exist 
I I 

XI, yf E S such that xleA-, y1 = em-2. Let e',-, = e&-I yfem-2x ern-, , then em-23ek-2 
I I and ern-, < e&-,. Thus we have em > e',-, > em-2 I em-3 I . . . I e2 I el. Continuing 

we find a sequence of idempotents em > e&-, > e&-, > . . . > e; > el. Since m was 

chosen arbitrarily this means that we can find a descending sequence of idempotents 

of arbitrary length. Since S is a matrix semigroup, this is a contradiction. 



Chapter 4 

Algebraic Semilattices of Groups 

4.1 Introduction 

In this chapter we characterize algebraic semilattices of groups. Although Theorem 

4.2.4 was almost certainly previously known, we present here an origional proof based 

on a suggestion by Jan van der Heuvel. The remaining results and proofs are new. 

4.2 Algebraic Semilattices 

The goal of this section is to  prove that any algebraic semilattice is finite. In order to 

do this we will prove a stronger result: Any semilattice S & Mn(k)  is finite. While this 

result is accessible using the following theorem from linear algebra we give a complete 

proof. 

Theorem 4.2.1 Let F be a commutative family of diagonalizable n x n matrices over 

an algebraically closed jeld k .  There exists an invertible matrix P E Mn(k) such that 

P- lAP is diagonal for every A E F .  

For further information the reader is refered to  [I]. 

Throughout this section we will view a matrix A C M,(k) as a linear operator on 

the set of n x 1 matrices over k ,  A : x H Ax. We will denote the range and kernel of 

A by Rng(A)  and K e r ( A )  respectively. 
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Lemma 4.2.2 Let R be the  set of n x 1 matrices over k. If A E Mn(k) is such that 

A2 = A, then R = K e r ( A )  @ Rng(A).  

Proof. Since the rank of Rng(A) ~ l u s  the rank of Ker(A) equals n, it suffices 

to show that I(er(A) n R n g ( ~ )  = (0) .  Suppose that T E Rng(A) n Ker(A). 
Then, since Z E Rng(A),  the re  exists ij E R such that ?f = Ay. So we have that 

- 
AT = A(AT) = Ay = :. But E E Ker(A) implies that AT = 0. Hence T = AT = 0. 

Lemma 4.2.3 Let S be a 

{Bl,  B2,. - .  , 4) and { C )  

and 

T = 

semilattice such that S L Mn(k), and let {Al ,  A2,. . . , A,), 

be disjoint subsets of S. Further let B1 and B2 be bases for 

Proof. Let P E nE1 Rng(Ai) n Ker(Bi). B y  Lemma 4.2.2, f = S; + % for 

some zl E Rng(C) and 22 E Ker(C). As in the proof of the previous lemma we 

observe that if E E M n ( k )  is an idempotent and i j  E Rng(E), then we have that 

Ey = y. Now 21 E Rng(C) and ~2 E Ker(C), thus CT = CS; + CG = 21. For all 

i E { 1 , 2 , .  . . , m )  we have Z c Rng(A;), implying q= CT = CA;Z = A;CZ = A ; q  

and, hence, zl E Rng(Ai). For all i E {1,2,. . . , p )  we have T E Ker(B;), implying 

B i z  = BiCE = CBiT = CD = 0 and, hence, that 5 E Ker(B;). We conclude 

that 5 E nL1 Rng(Ai) Ker(Bi). Also since 5Z = f - T i 7  we have that 
- 
x2 E Rng(A;) n n:=, I(er(Bi). Thus 21 is in the space spanned by B1 and is 

in the space spanned by 132. We conclude Bl uB2 spans Rng(A;) Ker(B;). 

Now say that = ~ 1 %  + c 2 q  + . . . + C,ZI, + dim + d2- + . . . + ds= where for 

i E {1 ,2 , . . - , r ) ,  ci E k a n d 6  E B17 and for j E {1 ,2  ,..., s), d j  E k and z o j ~  B2. 
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Then 

So b = c l T  + ~ 2 %  + . . . + c,u,, and, since Bl is a basis for R ,  we have that 
- - cl = c2 = . . . - c, = 0. Thus 0 = dlw + d2i& + . . . + d,=, and, since B2 is a 

basis for T ,  we have that dl = d2 = . . . = d, = 0. Therefore we have that Bl LJ B2 is 

an independent set of vectors. 

We conclude that Bl U B2 is a basis for nLl Rng(A;) n n:=, Ker(B;). 

Theorem 4.2.4 If S is a semilattice and S Mn(k), then S is finite. 

Proof. Let {Al, A2,. . . , A,} be a subset of S. To prove our claim it is enough to 

show that the matrices Al, A2, . . . , A, are simultaneously diagonalizable. That is, to 

show that there exists an n x n matrix T such that for all A; E {Al, A2, . . . , A,} there 

exists D;, a ( 0 , l )  diagonal matrix with A; = TD;T-I. For if such a T exists, then 

{Al, A2,. . . , A,) = {TD1T-l, TD2T-', . . . , TDpTdl) .  Since there are 2" distinct 

( 0 , l )  diagonal matrices, we have that p 5 2". We conclude that S has size less than 

or equal to 2" and, so, is finite. 

We proceed to show that Al , A2, . . . , A, are simultaneously diagonalizable. For 

all CY E {1,2 ,..., p }  we define Y, = {yly 2 . . . y ,  : Vi  E {1,2 , . . . ,  a }  yi E (0 , l ) ) .  

That is is the set of all (0 , l )  strings of length a. Further, for all ~ 1 ~ 2 . .  . y, E Y, 

we define S,,,,...,, = f(yl)(Al)  n f(y2)(A2) n . .. n f(y,)(A,) where f (1 )  = RW and 

f (0) = Ker.  For example Soolo = Ker(Al)  n Ker(A2) n Rng(As) n Ker(A4). Also 

we define By, ,,...Ye to be the set of all bases for S,, ,,...,, . We further define B to be 

the set of bases of all n x 1 vectors over k. 

Since Al is idempotent we have that for all Po E Do and P1 E Bl, Po U P1 E B. 

Lemma4.2.3 implies that for all y1 y2 E Y2 and P,,,, E B,,,, we have that /300UPol E 230 

and Plo u Pll E Bl, whence 
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It is clear that we can use Lemma 4.2.3 in this manner p - 1 times. Thus we can even- 

tually show that, given an arbi t ray € EF for each B E Y,, we have UFEYp pF E B.  
For all y E Y, we choose & E BB Since @ = UFEYp &j E B ,  /3 is a set of n  linearly 

independent n x 1 vectors. We form our matrix T  from these n  column vectors. Since 

these vectors are linearly independent, T  is an n  x n  invertible matrix. We now show 
- 

that for 1 I 2 I p, T - ' A ~ T  is a diagonal matrix. Let the columns of T  be q, G, . . . , tn  

and let E be the ( 0 , l )  column vector with a 1  in the i'th position and 0's elsewhere. 
T .  If T = [ X I ,  ~ 2 , .  . . , xn] 1s any n x 1 matrix over k, then Z = xl'iT; + x 2 G  + . . . + x, '~ , .  

So 

T ~ = x ~ T ~ + x ~ T ~ ) ~ + . . . + x ~ T V , =  x l ~ + x & + . . . + x n ~ .  

Now for all 6, i  E {1,2 , .  . . , n } ,  there exists ?j E Y ,  such that 6 E ,BF Further for 

j E { I ,  2, . . . , p), y j  = 1  implies i; E R n g ( A j )  and yj = 0 implies 6 E K e r ( A j ) .  So 

that 

Since this holds for all n x 1  z over k, T- lA jT  = D j  where Dj is the ( 0 , l )  

diagonal matrix which has a 1 in the position (i, i )  if E E R n g ( A j )  and 0  elsewhere. 

We conclude that { A 1 , & .  . . , A,} = { T e l D I T ,  T- 'D2T,.  . . , T-'D,T}. 

rn 

The following is a direct consequence of Theorem 4.2.4 and Corollary 3.2.2. 
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Corollary 4.2.5 A n y  algebraic semilattice is  finite. 

Notice that if S = [Y, G,, is a semilattice of groups, then Y is isomorphic to 

{ e  E S : e = e 2 ) .  Thus if S is algebraic, then Y is also algebraic. Further, given 

Lemma 2.1.3, we have that for all cu E Y, J,, = {e,) . We can conclude that Corollary 

4.2.5 also follows from Theorem 3.3.6. 

4.3 The Characterization of Algebraic Semilattices 

of Groups 

In this section we give necessary and sufficient conditions for a semilattice of groups 

to  be isomorphic to  an algebraic semigroup. 

Lemma 4.3.1 Le t  S = [Y, G,, &,p] be a subsemigroup of M,(k). T h e n  we have the  

following: 

1. If a 2 6 and g E G,, t h e n  d e t e 6 ( g )  # 0 .  

2- If 2 6 ,  g ,  E G, and gp E G p ,  t h e n  dete6(g,)dete,(gp) = det,6(g,ga). 

Proof. 

1. For all g E G, there exists g-l E G, such that gg-' = g-'g = e,. Now since es 

is an idempotent, 

2. Notice that 
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Since cu > 5, we have that esg, E G6, whence esg,e6 = esg,. This, along with the fact 

that e6 is idempotent, implies 

Theorem 4.3.2 Let S = [Y, G,, 4,,p] be an algebraic semilattice of  groups and let 

cu E Y. T h e n  G, is an algebraic group. Further, if S 2 M )  then 

G ,  = { x  E e,S : dete , (x)  # 0). 

Proof. We can assume that S is a subsemigroup of M,(k).  Pick any CY E Y. Let 

e = e,, f = det,, and e S j  = {x E e S  : f ( x )  # 0). We show that G, = e S f .  Let 

g E G,, then by Lemma 4.3.1.1 we have that f ( g )  # 0. Clearly g E e S .  We conclude 

G, 2 eSr .  

Let b E G p n e S j .  Since f ( b )  # 0, there exists c E M n ( k )  such that (ebe + 1 - e ) c  = 1. 

Hence e(ebe+l -e)c  = e.  Rewriting we get (ebe)c = e. Similarly, since c(ebe + 1 - e )  = 1,  

we have c(ebe) = e. Therefore ebelFle in M n ( k ) .  Thus, by Lemma 3.3.2, ebe'He in S.  

So there exists d E G6 such that ebed = e. Given the definition of S ,  ebed = e implies 

that cup5 = a. Thus eepe6 = e and we have that eep = (eepe6)ea = eepe6 = e. But 

b E e S f  implies that eep = ep. Therefore ep = eep = e. We conclude e S f  5 G,. 

By Proposition 1.4.4 and Lemma 3.3.1 we have that e S f  is an aEne variety. Thus 

G, = e S j  is an algebraic group. rn 

With this theorem and Corollary 4.2.5 we have proved the two main conditions 

necessary for a semilattice of groups to be algebraic i.e. S = [Y, G,, $,,p] is algebraic 

only if Y is finite and each G, is an algebraic group. Further, since we can assume 

that S is a subsemigroup of M n ( k ) ,  it is straightforward to show that the connecting 

homomorphisms are morphisms of affine varieties. In addition to stating this formally, 

the next lemma gives further necessary conditions concerning the G, that allow us to 

prove Theorem 4.3.4, characterizing algebraic semilattices of groups. 
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Lemma 4.3.3 If S = [Y, G,, q5,,p] is an algebraic semilattice of groups, then S is 

isomorphic t o  a semilattice of groups S t  = [Y, G',, where 

1. Y i s  finite, 

2. each G', is an algebraic group. Furthermore each GL is an algebraic set of knL, 

for some suitable m, with multiplication given by a polynomial map. 

3. each is a polynomial map. 

Proof. We can assume S 2 M,(k). We begin our proof by defining a G/,  for each 

a E Y and by showing that these GL's meet condition 2 above. By Theorem 4.2.4 

we have that Y is finite. Let Y = {a l ,  a2,. . . ,a , ) ,  and for all i E { 1 , 2 , .  . . , r ) ,  let 

e; = e,, and det; = det,,. For all j E { 1 , 2 , .  . . , r )  we define a function hi : S t k as 

follows: 
if x E G,, and a; 2 aj 

h j ( x )  = 
if x E G,, and a; 2 aj 

By Lemma 4.3.1.1 we have de t j ( x )  # 0 in the second case. For all a; E Y let 

G&, = { ( a ,  h l ( a ) ,  h2(a) , .  . . , h, (a) )  : a E G,,) . 

We define n~ultiplication " o " on G',, via 

It is clear that G',, is a group. Let L = {V : a[ > a ; )  and = { 1 , 2 , .  . . , r )  \ L. Then 

by the proof of Proposition 1.4.4 and Theorem 4.3.2 we have that 

is an algebraic set. Let a ,  a' E G,, . If aj  < a;, then by Lemma4.3.1.2, de t j (a )de t j (a l )  = 

det j (aal) .  If cuj ai then h j ( a ) h j ( a l )  = 0 = hj (aa l ) .  Thus for all j E {1,2,. . . , r } ,  we 

have that h j ( a )  h j (a l )  = hj (aa l ) .  We conclude that multiplication on G',, is given by 

a polynomial map, whence G',, is an algebraic group. 
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We will now define the homomorphisms Further we will verify that they 

are homomorphisms which meet conditions S11 and S12 and that they are polyno- 

mial maps. For all a; > aj define $:, = dk,,,, : Gk, + Gb3 as follows. For all 

( a ,  h1(a),  h2(a),  . . . , h T ( a ) )  E GLt, we let 

Notice that each q5ij is a polynomial map. We verify that each q5ij is a group hornomor- 

phism. Let a E G,, and C E {1 ,2 , .  . . , r } .  Suppose 5 aj. Then, since aej E G,,, 
1 1 ( a )  = . But ai 2 aj 2 a t ,  SO he(a)  = - dr$ (o ) '  h e ( e j )  = w. Thus by 

Lemma 4.3.1.2, he(a)he(ej)  = he(aej) .  Suppose f. aj. Then, since aej E G,,, 

he(aej) = 0. But if $ aj, then he (e j )  = 0 ,  whence h e ( a ) h e ( e j )  = he(ae j ) .  We have 

shown that 

Further for all a ,  b  E G,,, C E {1,2, .  . . , r ) ,  we have he(ae j )he(be j )  = he(aejbej) = 

he(abej).  Using the two above facts it is straightforward to show that q51j is a group 

homomorphism. By (4.1), it follows that for all E Y and a E G,, 

Thus S11 holds. Let a;,aj,ae E Y be such that a; 2 aj > and let a E Gal, then, 

b y  (4.1), we have the following: 

Hence S12 holds. We conclude that S' = [Y, G',, & p ]  is a semilattice of groups satis- 

fying the given conditions. 
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We completeour proof by showing that S is isomorphic to S'. Let X be the mapping 

from S to S' defined as follows: For all a E S we let X(a) = ( a ,  h l ( a ) ,  hz (a) ,  . . . , h,(a)) .  

Clearly X is one-to-one and onto. We verify that X is a homomorphism. Let a E G,,, 

b E GmI where a;aj = ak, then 

Thus S is isomorphic to S', and our result is proved. 

Theorem 4.3.4 Let S be a semilattice of groups. S is an algebraic semigroup if 

and only if there exists and algebraically closed field k such that S is isomorphic to a 

semilattice of groups S' = [Y, G,, where 

1. Y is finite, 

2. each G, is an algebraic group. Furthermore each G, is an algebraic set of k m ,  

for some suitable integer m, with multiplication given by a polynomial map. 

3. each &,p is a polynomial map. 

Proof. Let S = [Y, H,, S,,J] be an algebraic semilattice of groups, then by Lemma 

4.3.3 S is isomorphic to a semilattice of groups [Y, HL, S;,@] which satisfies conditions 

1, 2, and 3. 

Now say S is isomorphic to S' = [Y, G,, where conditions 1, 2 and 3 are 

satisfied. Since S' = UmEY G,, we have that S' is a finite union of algebraic sets 

and so is itself an algebraic set. Thus in order to complete our proof all we need 

verify is that multiplication on S' is a morphism of varieties. Let * : S' x S' -t S' be 
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multiplication on St ,  let Y = {al, a 2 , .  . . ,a,} and let q5ij denote $,,,,,. Further let oi 

denote multiplication on G,,. We begin our demonstration that * is a morphism of 

varieties by showing that * is continuous. More specifically we show that the preimage 

of a closed set is a closed set. Say V is a closed set in St. Let Pe be the set of pairs 

(i, j) such that aiaj = a t .  From the definition of S' x St and * we have that 

Now for any (i,  j )  E Pe we have that 4,e, dJe and oe are polynomial maps. Thus their 

"composition", $,e oe dJe, is a polynomial map from G,, x G,, into G,,. Thus by 

Proposition 1.4.5 we have that {(a, b) E G,, x G,, : d,e(a) oe dJe(b) E V) is a closed 

subset of G,, x G,,. But, by Proposition 1.1.4, G,, x G,, is a closed subset of St x St. 

Thus {(a, b) E G,, x G,, : $a(a) oe dJe(b) E V) is a closed subset of St x St. Hence 

*-'(V) is a finite union of closed sets and is itself a closed set. We conclude that * is 

continuous. 

Let V C_ S' be an open set and let f E Osl(V). We complete our demonstration 

that * is a morphism of varieties by showing that f o * E Oslxsl(*-l(V)). As noted 

before 

where for any (i, j) E Pe the composition d,? oe $J,e : G,, x G,, 4 G,,, is a polynomial 

map. Further for any pair ( i , j )  there exists a unique l E {1,2,. . . , r }  such that 

( i d  E Pe. Thus * [ Ga, x Gal = d,e oe $J,e. So by Proposition 1.4.5 we have that 

f 0 * I G,, x G,, E Oca, xcal (*" (V)). Now since Y is finite each G,, x G,, is the 

complement of a closed set namely 

Thus each G,, x Gaj is an open set and G,, x G,, ((i, j) E {I, 2, . . . , r ) x {I,  2, . . . , r}) is 

an open covering of St x St. So by Definition 1.3.1.2 we have that 

f 0 * E O~lxs,(*-~(V)).  
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We conclude that * is a morphism of varieties, whence S' is an algebraic semi- 

group. = 



Chapter 5 

A Rhodes Expansion 

In this chapter we show that the Rhodes expansion of an algebraic semilattice of 

groups is an  algebraic semigroup. All results in this chapter are new. 

Lemma 5.1.5 Let  f be a map from a semigroup S onto a set A with a binary oper- 

ation *. Further let f be such that for all a ,  b E A, f (ab)  = f ( a )  * f ( b ) .  Then  * is  an 

associative operation. 

Proof. Let X I ,  5 2 , ~ 3  E A. Since f is onto, there exist a l ,  a2, a3 E S such that 

f ( a l )  = x l ,  f ( a 2 )  = x2  and f (a3)  = 53.  Then 

and 

Now since S is a semigroup, (ala2)a3 = a1(a2a3), whence ( X I  * 2 2 )  * 2 3  = XI  * ( 2 2  * 5 3 ) .  

We conclude * is an associative operation. rn 

Lemma 5.1.6 Let S = [Y, G,, ~j,,~] be a semilattice of groups and let a E G,, b E Go, 

then we have the following: 

1. a.Cb if and only i f  cr = P .  

2- a <r. b if and only if a < p. 
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Proof. 

1. Suppose a E G,, b E Gp are such that aCb. Then there exists x E S1 such that 

a = xb. Thus ae, = xbep, and we have 

- 1 e, = e,e, = (a-'a)e, = a (ae,) = a-'(xbep) = (a-'(xb))ep = a-laep = e,ep. 

Similarly ep = epe,. Now e,ep = e,p = epe,. Thus e, = ep and we can conclude 

a = p. Conversely suppose a ,  b E G,. Then (ba-')a = be, = b and (ab-')b = ae, = a .  

Thus aLb. 

2. Suppose a E Go, b E Gp are such that a <c b. Then there exists x E S1 such 

that a = xb. So, as shown in the previous paragraph, e, = e,ep. From the definition 

of S, e, = e,ep implies that a 5 ,B. From 1. we have that a # p. Hence a < ,B. 

Conversely suppose a < P. Then a = ae, = ae,ep = (ae,b-l)b, so a I c  b. From 1. 

we have that a is not L-related to b. Hence a <L: b. 

Theorem 5.1.7 If S is an algebraic semilattice of groups, the Rhodes expansion R(S)  

of S is an algebraic semigroup. 

Proof. By Theorem 4.3.4 we can assume that S = [Y, G,, $,,p], where Y is finite, 

each G, is an algebraic set, and multiplication on S is given by a polynomial map. 

This proof has three parts. In part 2 we construct an algebraic semigroup (A, *) 

and in part 3 we show that A is isomorphic to R(S). To construct A we use a finite 

semigroup M isomorphic to R(Y). Describing M is our task in part 1. 

Part 1. Let Y = {a1, a 2 ,  . . . , aT). With each (a;, , a;,, . . . ,a;,) E R(Y) we asso- 

ciate a ( 0 , l )  r-tuple, 7, which is defined as follows: 

0 in the il 'th, izl th, .  . . , il'th position of T we place a 1. 

0 in all other positions of T we place a 0. 

Let 

M = {T E kT : 3s E R(Y) such that T is the r-tuple associated with s} 
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We now define multiplication on M. Notice that for any set {a;, , a;,, . . . , a;,) C Y 

there can be a t  most one ordering of this set in R(Y). Therefore the function 

f : R(Y) + M which takes s E R(Y) to the r-tuple associated with s above is a 

bijection. Let 5 1 , ~  E M. We define zl o G = f (f-l(%) f -I(-)). Since f is a 

bijection, this multiplication is well defined. By Lemma 5.1.5, all we need in order to 

verify that o is associative (and thus M is a semigroup), is that for all a,  b E R(Y), 

f (ab) = f (a)  o f  (b). This will also confirm that f is a homomorphism and, so, we will 

have that R ( Y )  E (M, 0 ) .  For all a ,  b E R(Y) we have that 

Observe that since Y is finite, M is finite. Thus M is an algebraic semigroup. 

Part 2. Let n be such that S C kn and let 0 be the n-tuple of zeros. For all z E M 

Further we let A = UFEM AL Each AT is a finite direct product of algebraic sets 

and so, by Proposition 1.1.4, is an algebraic set. Therefore A, being a finite union of 

algebraic sets, is an algebraic set. 

We now prepare to define multiplication on A. Let 35, ij E M. Let 

we let 

For each 1 , y  E M, a h  E E' we wish to record whether or not ah is contained in the 

sequence (nlel, 7r2cl,. . - ,  7 ; d ~ l ,  €1, €2,. . . , ~ e )  and if ah does occur what is the "nature" 

of its left most occurrence. To do this we form functions Ph,i,j as follows: 

- 
( T , K , G  , . . . ,  a,) 

1 if the left most occurrence of ah in 
the sequence is aiaj 

ph,i,j (Z, y) = ('75, y E M )  
0 otherwise 

if xi = 1, then a; E Gai 

if xi = 0, then a; = 0 
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1 if the left most occurrence of ah in 

Ph,i,j (:, Y )  = the sequence is aj 

0 otherwise 

Notice that  if Ph,T+l,j(Z, Y )  = 1 ,  then h = j .  

-- - - 
Let (T ,  E )  = (T,F,G, .  . . , a,), ( y ,  b) = (y, b l ,  b2,. . . , 6,) and (Z,-C) = (z, c,?, . . . , c,) 
where 

and 
- - - -- - - 
a = { ~ , 7 i ; l , .  . . , a T ) ,  b = { b l ,  b2,. . . , b T ) , E  = {%,G,. . . , c T }  

where 4,5, T; E S 2 kn. Further for all 1 5 d 5 T and (f, a),  (g ,  b) E A let 

We are now ready to  define multiplication on A. For all (II,Zi)(y, 6 )  E A we let 

Since the domain of each Ph,i,j is finite we may assume that each Ph,i,j is a polynomial 

map. Further multiplication in S is a polynomial map. Thus multiplication in A is 

given by  a polynomial map. We now verify that A is closed under this multiplication; 

that is, we verify that for all (z ,  z) ,  @,6) E A, (5, h) * ( I ,  6 )  E A. Let (r, a)  * ( Y ,  6 )  = 

(z ,Z) .  For all 1 < h 5 T either zh = 1 or zh = 0. If zh = 0, then ah does not occur 

in f - ' (x )  f - l ( y ) .  Thus for all 1 5 h 5 T ,  1 5 i 5 T + 1 and 1 < j 5 r we have that 
- 

Ph,i,j(C, Y )  = 0. Hence = 0 as required for (F, a) *(y ,  b )  to  be in A. If zh = 1, then ah 
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occurs in f  -l ( T )  f  -l ( y )  and there exist a unique pair i ,  j where 1  < i 5 r+ 1, 1  5 j 5 r  

such that P h , i , j ( ~ ,  y)  # 0. Suppose 1  < i  5 r .  Then C = gh((+, i i)(y,  5 ) )  = KG E Gah 

as required for @,a) * ( y ,  6 )  to be in A. Alternatively suppose i = r  + 1. Then 
- 
ch = gh((T, Ti)(y, 5 ) )  = bh E Gah as required for (T ,  Z) * (B, 6 )  to be in A. 

Part 3. We define our isomorphism 4 : R ( S )  + A as follows: For 
- 

s  = (q,%, . . . ,%) E R ( S ) l  E Gp,  we let $ ( s )  = ( f  ( ( P I ,  P 2 , .  . . , P ~ ) ) , ( T ~ , E ,  . . . , o T )  
where 

- 
sj if a; = Pj  for some j  = 1,2, . . .  , b  

0; = - 

- i 0 if there does not exist ,Bj ( j  = 1,2, .  . . , b )  such that a;  = P j .  

Note that S; < L  S2 <L . . . < L  %, SO, by Lemma 5.1.6, P1 < p2 < . . . < Pb and 
- f ( ( P i ,  P 2 , .  . . , P b ) )  E M ,  whence ( f  ( ( P I ,  P 2 , .  . . , P b ) ) ,  F, E, . . . , gT) E A. We show that 

$ is one-to-one. Say s l ,  s2 E R ( S )  are such that 4 ( s1 )  = 4( s2) .  Let sl = (G, G, . . . , G) 
-- - 

where St; E Gxi and let 5-2 = (bl ,  b2,. . . , bt) where 6 E G,. Then qh(sl) = $(s2)  im- 

plies that f  ( ( X i ,  X 2 ,  . . . , A t ) )  = f  ( ( r l ,  7 2 , .  . . , r t ) ) .  SO, since f  is a bijection, we have 

that ( A 1 ,  X2,. . . , X e )  = ( r l ,  7 2 , .  . . , rt).  Thus C = t and for i = 1,2 , .  . . , t ,  X i  = r;. 

Moreover for all i = 1,2,.  . . , t there exists j = 1,2 , .  . . , r such that aj = X i  = ri. 
- Thus by the definition of 4 we have that = 6. We conclude sl = (c, G, . . . , ae) = 

- - (q7&,.. . , bt) = sz. Next we show that 4 is onto. Let (T,Si; ,Z, .  . . , aT )  E A and let 

f -l = (awI ,  aw2,  . . . , awe) .  Then, by Lemma 5.1.6, s  = (a,,, a,,, . . . , a,,) E R(S), 
- so, by the definition of 4,  $ ( s )  = ( E ,  c, G, . . . , a,). We now show 4 is a homomor- 

phism. That is we show that for all s l ,  s2 E R ( S ) ,  $ ( s l )  * 4 ( s 2 )  = 4(s1s2) .  Let 
- -- - 

sl = (c,G:.  . . ,ae)  where ai E Gx, and let s2 = ( b l ,  b2,. . . , bt) where 6; E G,. 
-- - -- - 

Further let $ ( s l )  = (2,  A1, A2,. . . ,A , ) ,  $ ( s2)  = (Y ,  B1, B2 , .  . . , BT),  and $(s ls2)  = 
-- - -- - 

(z, D l ,  D 2 , .  . . , DT) .  We have that 4 ( s l )  * 4 ( s 2 )  = ( T O  y ,C1,C2, .  . . , C T )  where for 
-- - -- - 

1 < d 5 r ,  Cd = gd((T,  A1, A2 , .  . . , A,)(y, B1, B2,. . . , B,)). It is not hard to see that 
- - --- - - 

5 = J: o  y, for 4(s1s2)  = q5(red(albl,zbl,. . . , aebl, b l ,  b2,. . . , bt)) .  So, by Lemma 5.1.6 

and the definition of 4, we have that 
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To see that for all h = 1 , 2 ,  . . . , r ,  we have Ch = Dh we examine three possibilities. 
- 1. The element ah E Y does not occur in the sequence X 1 ~ 1 ,  & T I ,  . . . , Xer1, 7 1 , r 2 ,  . . . , I ,. 

- - 
In this case the h'th position of both Z? and T o  jj will be 0. Thus = 0 = C h .  

2. The element ah E Y occurs in the sequence Xlrl, A271,. . . , Xerl, rl ,  r2,. . . , rt 
and the left most occurrence of ah in the  sequence is Xmrl for some m E { 1 , 2 , .  . . , !}. 
In this case there exists a unique pair it, j' where 1 5 it < r ,  1 5 j' < r  such 

that a;! = A, and ajl = 71. From the definition of the functions PhIitj we see 

that it and j' are the only values of i and j  for which Ph, i , j (Z ,y)  # 0. Thus - -- - -- -- 
Ch = g h ( ( Z ,  A1, A2, .  . . ,&)(a, B1, B2,. . . ,B;)) = Ajr Bj! = G;. TO find we no- 

tice that by Lemma 5.1.6 we have that if the left most occurrence of a h  in the sequence 

X1r1, A2rl , .  . . , X e ~ l , ~ l ,  7 2 , .  . . , rt is Xmrl = Q ; r C Y j r ,  then the left most element of G,, in 
--- - - - - 

the sequence KG, z&, . . . , aebl, bl ,  b2, .  . . , bt is G b l .  Thus G b l  is the only element 
- - --- .- - - - - 

of Gah in s l  * s2 = red(Gbl ,  G b l ,  . . . , aebl,  bl,  b2, . . . , bt). Therefore Dh = G b l  = Ch. 

3. The element a h  E Y occurs in the sequence X1rl, A 2 ~ 1 , .  . . , Xerl, T I , T ~ , .  . . , rt and 

the left most occurrence of a h  in the sequence is T, for some m 6 { 1 , 2 , .  . . , t ) .  This 

case is similar to 2. The details are left to  the reader. 

We conclude that 

and, thus, that 4 is a morphism. 

Showing that 4 is a morphism completes the verification that 4 is an isomorphism. 

Further it shows, via Lemma 5.1.5, that ( A ,  *) is associative and thus is a semigroup. 

We have already shown that A is an algebraic set and that * is a polynomial map. 

Therefore we can now conclude that R(S) is isomorphic to ( A ,  *), an algebraic semi- 

group. 



Chapter 6 

A Counterexample 

In light of Theorem 3.3.6 and Theorem 4.2.4 Norman Reilly posed the following 

question: If S  is a subsemigroup of Mn(k), then is U ( S )  finite? In this chapter 

we show that the answer to this question is "no". To do this we present a semigroup 

S such that U ( S )  is infinite. This counterexample is new. 

We let C denote the field of complex numbers. 

Example 6.1.8 There exists a semigroup S  C M 2 ( C )  where U ( S )  is infinite. Let X 

be the set 

and let S  be the semigroup generated by X. Clearly X C E ( S )  and X is infinite. 

Thus to verify that U ( S )  is infinite all we need show is that for all e, f E X we have 

e J  f implies e = f .  For a E 2 we define M(a)  to be 
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and 

In general 

Let M ( x ) ,  M ( y )  E X be such that M ( x ) J M ( y ) .  Then, since S is generated by X, 

there exists al ,  a2,. . . , a,, b l ,  b2 , .  . . , b, E Z such that 

Thus 

Let 

! = (a1 + 1 - a2)(a2 + 1 - a3). . . (a ,  + 1 - X ) ( X  + 1 - bl)  . . . (bm-l + 1 - b,). 

Then we have that ,- - 

So ! = 1, b, = y  and a1 = y .  Suppose that we have integers X I ,  x2,. . . , x,  such that 

Clearly each term, xi+ 1 must equal 1 or - 1. So either x;+l = x; or x;+1 = x;+2. 

Thus we see that either xl = x2 = . . . = x,  or xl < x,. Now ! = 1 and a1 = y = b,, 

so we can conclude that 

whence M ( x )  = M ( y ) .  
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