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Abstract

An algebraic semigroup (S,0) is an affine variety S along with an associative product
map © : S x § — S which is also a morphism of varieties. Background material
regarding algebraic semigroups is presented in Chapters 1, 2 and 3.

A semilattice of groups is a semilattice each of whose elements is a group, together
with a set of group homomorphisms which is compatible with the semilattice structure.
The union of these groups thus forms a semigroup where multiplication is determined
by the group operations and the group homomorphisms. In Chapter 4 we characterize
algebraic semilattices of groups. In particular we prove that a semilattice of groups
is algebraic if and only if the semilattice is finite, the groups are algebraic groups and
the connecting homomorphisms are morphisms of affine varieties. In order to show
that the semilattice is finite we prove more generally that any semilattice of matrices
is finite.

Let S be a semigroup and let a,b € S. We say that a < bif and only if S'a C S'b
and S'a # S'b, where S' = SU {1}. Using S and the relation <, we can form a
semigroup R(S) known as the left Rhodes expansion of S. In Chapter 5 we show that
the left Rhodes expansion of an algebraic semilattice of groups is itself an algebraic
semigroup.

Let S be a semigroup and let a,b € S. We say aJb if there exist z,y,z’,y’ € S?
such that zay = b and z'by’ = a. The relation J is an equivalence relation. Further,
a J-class of S is regular if it contains an idempotent element. It is known that for any
algebraic semigroup S the set U(.S) of regular J-classes is finite. Norman Reilly posed
the more general question: Is(S) finite when S is a semigroup of n x n matrices over
a field? In Chapter 6 we show that the answer to this question is “no” by presenting

such a semigroup having an infinite number of regular 7-classes.
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Chapter 1
Algebraic Geometry

The definitions and the statements of results in this chapter are taken from [3] and
[6] where most results are stated without proof. For completeness and clarity I have

provided proofs and additional details.

1.1 Introduction

Let k£ be an algebraically closed field and let k[T, T%,...,T,] be the algebra of poly-
nomials in n indeterminates, 71, 75, ..., T, over k. We abbreviate k[T3,T5,...,T,] to
k[T)]. An element z € k™ is a zero of f, f € k[T], if f(z) = 0. Moreover, z is a zero
of S, S Ck[T), if f(z) =0forall f € S. For S C k[T], we denote by V(S) the set
of zeros of S. An algebraic set is any subset of k" of the form V(S) where S C k[T).
Also if X C k*, we denote by Z(X) the ideal formed by the f € k[T'] vanishing on X.

We will use the following lemma frequently and without comment.
Lemma 1.1.1 Ewvery algebraic set is of the form V(I) for some ideal I C k[T).

Proof. This follows from the easily verified fact that for all S C k[T7],
V(S) = V(< § >) where < S > is the ideal of k[T'] generated by S. [

We present two examples of algebraic sets.
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Example 1.1.2 Let p € k™, then the singleton set {p} is an algebraic set. If
(p1,P2y---Pn) € k™, then {(p1,p2,...P2)} = V{T1 — p1, T2 — p2,---» T — Pn}).

Example 1.1.3 Let S C k[T] and let f1, fo,..., fn € k[T]. Then

P ={p €k : (filp), f2(p),-- -+ fn(p)) € V(S5)}

is an algebraic set.

For all g € S we create a polynomial g* € k[T] as follows:

g* = g(fl(Tl,Tg,. . .,Tn),fg(Tl,Tg, . ,Tn),. . .,fn(Tl,Tg, . ,Tn))

Further we let S* = {g* : g € S}. It is straightforward to verify that P = V(S5).

Thus P is an algebraic set.

Proposition 1.1.4 Let X C k™, Y C k™ be algebraic sets, then X xY C k™™ is an

algebraic set.

Proof. Let S C k[Ty,Ts,...,T.]. In this proof we indicate that the elements of V(S5)
are r-tuples by writing V(S) as V,.(S).

Let X = V,(Ix) and Y = V,,(Iy) where Ix and Iy are ideals of k[Th, Ty, ..., Ty)
and k[Uy,Us,...,U,] respectively. Notice Ix U Iy can be viewed as a subset of

[Ty, Tay s Ty Uy, Uss o Uil

Now for all (p, q) where p € X, ¢ € Y and for all f € IxUIy we have f(p,q) = 0. Thus
X XY CVoim(IxUly). Let (r1,72,...,7n,81,52,...,8m) = (r,8) bein Vo (IxUly),
then for all f € Ix, we have f(r) = 0. Thus r € X. Similarly s € Y. Hence
Viem(Ix Uly) € X x Y. |

1.2 The Zariski Topology

It is convenient to define a topology on £™. In this section we show that the so called

Zariski topology is Noetherian.
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Proposition 1.2.1
1. O and k™ are algebraic sets.
2. The union of two algebraic sets is an algebraic set.

3. The intersection of an arbitrary collection of algebraic sets s an algebraic set.

Proof.
1. V({0}) = k™, V(k[T]) = 0.

2. Let I,J be ideals of k£[T], then

1J = {Zaibi |la; € I,b; e J,r e Z+}

i=1
is also an ideal of k[T]. Clearly V(I) U V(J) C V(IJ). Say z € V(IJ) but =z ¢
V(I), then there exists @ € I such that a(z) # 0. But for all b € J we have
ab(z) = a(z)b(z) = 0. Thus for all b € J, we have b(z) = 0 and z € V(J). So
VIHuV(J)=V(J).

3. Let (Ia)aca be afamily of ideals of k[T]. Define D ., Io asfollows: a € 3 4 Lo

if and only if there exists a finite set Iy, Io,..., In € (I4)aca such that a € I} + Iz +
...+ Ir. Then 3., 1o is an ideal of k[T] and V (3 ,cp 1) = Naca V(a)-

|

We define the Zariski topology on k™ by taking the closed sets to be the algebraic
sets. From Proposition 1.2.1 we see that the Zariski topology is indeed a topology.
Let X be a topological space. We say that X satisfies the descending chain condition
on closed sets if for any descending sequence of closed subsets, X; 2 X, D ..., of X
there exists h € Z% such that X; = X, for all ¢ > h. A topological space is Noetherian

if it satisfies the descending chain condition on closed sets.
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Lemma 1.2.2
1. k™ with the Zariski topology is Noetherian.
2. A subset of a Noetherian space with the induced topology is Noetherian.

3. An algebraic set with the induced Zariski topology is Noetherian.

Proof.
1. This follows from the fact that k[T] is a Noetherian ring. For details we refer

the reader to [5]

2. Let Y be a subset of a Noetherian space X, and let Y7 2 Y, D ... be a
descending sequence of closed subsets of Y. Then there exist closed subsets X; C X,
1=1,2,..,suchthat Y, = X;NY. Now X; D XiNnXo D XiNXoNX3 D ... is
a descending sequence of closed subsets of X. Since X is Noetherian, there exists
h € Z% such that for all A’ > A, ﬂi;l X; = ﬂiil X;. Rewriting Y1 D Y2 D ... we get
XiNY 2X,NY 2 ... Thusfor alli € Z* we have X;NY = i_, X; NY. We
conclude that for A’ > A, Yy = ﬂfil X;NY = ﬂ?zl X;nY =Y;.

3. This follows immediately from items 1 and 2.

1.3 Regular Functions and Ringed Spaces

To begin this section we define a k-algebra, k[X], for each algebraic set X. An F-
algebra consists of a vector space V over a field F, together with an operation of

multiplication on V, such that for all « € F' and «a, 8,0 € V, we have the following:
1. (aa)B = a(af) = a(ap)

2. (a+p)o=aoc+ fo

(V]

.a(f+o0)=aB+ac

(aB)o = a(fo)

>
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Let X C k™ be an algebraic set. We form a k-algebra, k[X], by considering the
restrictions to X of the polynomials of k[T]. That is for f,g € k[T] we say f is
equivalent to ¢ if and only if f(z) = g(z), for all z € X. We let the elements of our
k-algebra be the equivalence classes of k[T] with addition and multiplication defined

as follows:

[f]1+ (9] = [f + gl and [f][g] = [fg] (VIf], [g] € K[X]).

By noting that k[X] is isomorphic to % it is not hard to see that k[X] is indeed
a k-algebra. Strictly speaking the elements of £[X] should be written as equivalence
classes of polynomials; however where no confusion will occur we will write them
simply as polynomials.

Let X C k™ be an algebraic set and let z be a point in X. A k-valued function
defined in a neighbourhood U of z is said to be regular in z if there exists both an
open neighbourhood V of z and elements g, h € k[X] such that V C U, and for all
y € V, we have both h(y) # 0 and f(y) = i%- A function f defined in a non-empty
open subset U of X is regular in U if it is regular for all points of U. Let f and g be

regular in U. We define f + ¢ and fg:

(f +9)(z) = f(2) + 9(z) and (fg)(z) = f(z)g(z) (Vz € U).

It is not hard to verify that the set of regular functions in U with the given addition

and multiplication form a k-algebra which is denoted by Ox(U).

Definition 1.3.1 Let X be a topological space. Let I/ be the set of open subsets
of X. Suppose that for each non-empty open subset U of X there is an associated
k-algebra O(U) of k-valued functions of U such that, with O(@) = {0}, we have

Shl) If § # U C V are open sets and f € O(V), then f [ U € O(U).

Sh2) Let U be a non-empty open set with an open covering U,(a € A). Further
let f, a k-valued function of U, be such that f [ U, € O(U,) Va € A, then

feow).

Then O = Uy OU) is a sheaf of functions on X and the pair (X,0) is a ringed
space. We shall usually drop the O and speak of the ringed space X.
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Definition 1.3.2 Let (X, O) be a ringed space, and let Y C X. We form a ringed
space, (Y, O'), where Y is considered to have the induced topology and O’ is defined
as follows: O'(0) = {0} and, for U # 0,

1. if U is open in Y but not in X, then O'(U) consists of all functions f: U — k
«ca Ua by open sets of X such that for
eacha €A f[UNU, = fo T UNU, for some f, € O(U,).

such that there is a open covering U C |J

2. 1f U isopen in Y and X, then O'(U) = O(U).
We call (Y, O') the ringed space induced by X.
Verifying that (Y, O’) is indeed a ringed space is straightforward.

Theorem 1.3.3 Let X be an algebraic set with the induced Zariskt topology. For
each non-empty open subset U of X let Ox(U) be the assoctated k-algebra of regular
functions and let Ox(0) = {0}. Then O = U{Ox(U) : Uis open in X} is a sheaf of

functions on X.

Proof. Clearly the regular functions are k-valued. We verify that Shl is satisfied.
Let U and V be open sets of X with # U C V and let f € Ox(V). Since f € Ox(V),
for all £ € V there exists A;, an open neighbourhood of z, and g., k., € k[X] such
that

he(y) # 0 and 5(y) = W) (v € a,).
hz(y)

Hence for all z € U, we have

bely) #0 and f(0) = 25 (v € A-(\0),

Thus for all £ € U there exits an open neighbourhood of z, namely A,[|U, and
functions gz, h, € k[X] which meet the requirements needed to make f | U regular
in z. We conclude thatf [ U € Ox(U).

We verify that Sh2 is satisfied. Let U be a non-empty open set with an open cover-
ing Us(a € A). Let f : U — k be such that for all @ € A, we have
f 1 Uy € Ox(Uy). Since Uy(a € A) is an open covering of U we have that for
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all z € U, there exists a € A such that z € U,. Now f [ U, € Ox(U,) so there exists
an open neighbourhood, A, C U,, of z and functions g,, h, € k[X] with

hely) # 0 and f(y) = 8 (v € 4.,

Since U, is open, A, = A [ U, is an open subset of U. Thus for all z € U there exist
an open neighbourhood of z, namely A, = A, (U, C U, and functions g,, h, € k[X]

which meet the requirements needed to make f regular in z. We conclude f € Ox(U).
|

1.4 Affine Varieties

Let (X,0x) and (Y, Oy) be two ringed spaces, and let ¢ : X — Y be a continuous
mapping. For each open set V C Y we define a mapping ¢7 from Oy (V) into the
set of k-valued functions on ¢~ (V) as follows: If f € Oy(V), then ¢}, (f) = f o ¢.
We say that ¢ is a morphism of ringed spaces if, for each open V C Y we have that
#} maps Oy (V) into Ox (¢~ (V)). See Fig. 1.1. Let ¢ : X — Y be a morphism of
ringed spaces which is one-to-one and onto. If the mapping ¢™! : ¥ — X is also a
morphism of ringed spaces then ¢ is said to be an isomorphism of ringed spaces. An
affine variety is a ringed space (X, O) such that (X, O) is isomorphic to a ringed space
(X', O') where X’ is an algebraic set with the induced Zariski topology and O’ is the
sheaf of regular functions. We shall usually drop the O and speak of the affine variety
X. If (X,0x) and (Y,Oy) are affine varieties then a morphism of ringed spaces
é: X — Y is a morphism of affine varieties. An isomorphism of affine varieties is

similarly defined.

Lemma 1.4.1 Let (X,0) and (R, P) be ringed spaces, let ¢ : X — R be an isomor-
phism of ringed spaces and let Y C X. Then ¢ [ Y is an isomorphism of the induced
ringed spaces (Y,0") and (¢(Y), P’).

Proof. It follows from results in elementary topology that ¢ [ Y is a homomorphism

of the induced topologies. Thus to show that ¢ | Y is a morphism of the induced
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X Y
o~ (V) 1%
¢ O
foo
f

Figure 1.1: A morphism of the ringed spaces X and Y

ringed spaces it suffices to show that if V C ¢(Y") is an open set and f € P(V) then
fog¢ e O(¢71(V)). We examine two possibilities.

1. Suppose that V is open in ¢(Y) and R. Since ¢ is an isomorphism we have that
¢~ 1(V) is open in X. Thus ¢7'(V) is open in Y and X, and, by Definition 1.3.2.2,
we have that O'(¢71(V)) = O(¢71(V)). Also since ¢ is an isomorphism we have that
fo6€0( (V). Thus fope O(671(V)).

2. Suppose that V is open in ¢(Y) but not in R. By Definition 1.3.2.1, f is such that

there exists an open covering V C | J_ ., Vo by open sets of R where for each a € A,

aEA
f1VvnVe, =fo,l VNV, for some f, € O(V,). Note that ¢"1(VNV,) =
¢ 1(V)Nn ¢~ Y(V,). Thus fog : ¢71(V) — k is such that there exists a covering
¢ (V) C Ugen 971 (Va) by sets of X where for each o € A, fog [ 971 (V)Ng~!(V,) =
faod | 71 (V)N 71 (V,) for some f, € O(V,). Now, since ¢ is an isomorphism,
each ¢7!(V,) is an open subset of X and each f, 0 ¢ € O(¢~'(V,)). Thus by Defini-
tion 1.3.2.1 fo ¢ € O'(¢~1(V)).

We conclude ¢ | Y is a morphism of the induced ringed spaces. Since ¢"! : R — Y
is also an isomorphism an analogous proof will show that ¢! | ¢(Y") is a morphism

of the induced ringed spaces.
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The proof of the next lemma follows from the definitions of a regular function and

an induced ringed space. The details are left to the reader.

Lemma 1.4.2 Let X be an algebraic set, Ox be the sheaf of regular functions and
Y be a closed subset of X. Then the induced sheaf of functions (Ox)' is equal to the

sheaf of reqular functions Oy .

The following is a consequence of the definition of the induced Zariski topology,

Lemma 1.4.1 and Lemma 1.4.2.

Corollary 1.4.3 Let (X,0x) be an affine variety and Y be a closed subset of X.
Then (Y, Oy) is an affine variety.

Proposition 1.4.4 Let X C k™ be an affine variety and let f be in k[X]. Then
Xy={z € X : f(z) # 0} is an affine variety.

Proof. Let Ox be the sheaf of regular functions on X and O% be the sheaf of
functions defined on Xy in accordance with Definition 1.3.2. Then (X;,O%) is a
ringed space. The set R = {(z,a) : 2 € X, a € k, f(z)a = 1} is closed in k"t
Let ¢ : Xy — R be the mapping which takes z € X to (x,?—(lx—)) Clearly ¢ is one-
to-one and onto. We show that ¢ is a morphism of ringed spaces. First we show

that ¢ is continuous by showing that the pre-image of a closed subset of R is a closed

subset of X;. Let V C R be closed. Then V = RN V(J) where J is an ideal of
k[T1,Ty,...,Tny1]. For all ¢ € J we define a polynomial ¢’ € k[T1,T%,...,Ty] as

follows. First expand ¢ in terms of the variable T, ,; writing
9=90+ g Tns1 + 0T +... + 94T
where d > 0 and g¢o,91,---,94 € k[T1,T2,...,T,). Then let
9 =9f* +af g f T4+

Further let J' = {¢': g € J}. We show ¢71(V) =V(J') N X;.
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Suppose that z € ¢7'(V). The polynomial ¢’ is in J' only if there exists a g € J
such that ¢ = go + g1Tns1 + ... + gaTn41 and ¢’ = gof® + g1 " + ... + ga. Now
8(z) = (¢, 75) € V., thus

= :vi: z :vL z L )2 d L e
0= gl 7725) = 90(2) + 9(8) 25 + 92 )"+ -+ 9l )

Multiplying through by f¢(z) we obtain

0= go(2)f*(2) + ga () f*7H(2) + ... + galz) = ¢'(2).

We conclude z € V(J') N X;.
Suppose that z € V(J')NXy. Let g€ J, 9 = go+ g1Tns1 + ... + ng,'fH and
g =gof*+ g1 f* '+ ...+ g4. Then ¢’ € V(J'). Since z € V(J'),we have that

0=g'(z) = go(2)f*(2) + q1(2) F*7}(2) + g2(2) [ (2) + - . + ga(2).

So dividing through by f%(z) # 0 we obtain
NN VR UV

whence (z, ﬁ) € V(J)N R. We conclude z € ¢~*(V). Thus ¢7(V) is a closed
subset of X;.

Let U C R be an open set and let £ € Og(U), the set of regular functions on U.
We wish to show that £o ¢ is in O% (¢~ 1(U)).

Suppose that z € ¢71(U), then ¢(z) = ($7f—(1,—,5) € U. Since £ € Og(U), there
exists an open neighbourhood V of (z, %) and polynomials g, h € k[R] such that

_9y)
h(y) # 0 and £(y) = "y) (Vy e V).

Expanding ¢ and h in terms of 7,1 we may write ¢ = go + g1Tp41 + ... + ng,‘f_,_l
and h = ho + ~iTp1 + ... + haT2,, where d > 0 and go,61,---,94, ho, b1, ..., ha €
k[T1,Ts,...,T,]. Since ¢ is continuous, ¢~ (V) is an open neighbourhood of .
For all 2 € ¢~}(V) we have ho(2)f%(z) + hi(2)f41(z) + ... + ha(2) # 0. For if
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ho(2)f%(z) + h1(2) f271(2) + ... + hg(z) = 0 it would follow that A(z, f—(l-z—)) = 0 where

y = (2, 7(5) € U, a contradiction. Further for all z € ¢7*(V'), we have

B 1 9(z: 77
log(z) = (2 ,f(z)) e
902 +a(2) g+ -+ 9a(2)(Fg)"
- ho(z)+ hi(z )f(lz)+ -+ ha(2)( ())d
_ 902 f2) + g1(2) [T (2) + -+ gal2)
ho(2) f4(2) + ha(2) f42(2) + .. . + ha(z)

Thus £ o ¢ is regular in z. Our choice of ¢ was arbitrary, so that £o ¢ € O%(¢~1(U))
and ¢3;(Or(V)) € Ox, (671 (V)).

Next we show that ¢~! is also a morphism of ringed spaces. Let V' C X be closed.
Then V = X; NV’ where V' is a closed subset of X. Thus, by the definition of ¢, we
have that

d(V)=o¢(X;NV") = {(z,0):z€V' ack, f(z)a=1}
= RN((V' xk)

which is a closed subset of R. Hence ¢(V) C R is closed. We conclude that ¢~ is
continuous.

Let V C X, be an open set and £ € O% (V). We show that £o0 ¢~ € Og(s(V)).
Since V' 1s open in X there exists V* open in X such that V = X; N V~. Thus, since
Xy isopen in X, we may assume V is open in X. From this assumption it follows that
{ € Ox(V). Hence for all s € V there exist g;, f; € k[X] and an open neighbourhood
V, of s such that

_ gs(r) r
hs(r) # 0 and £4(r) = 7(r) (Vr e V).

By letting gs(T4, - - -, Tn)=9gs(T1, - . ., Tn, Tny1) and hs(T1, ..., Tn)=hs(T1, ..., Tn, Tny1)
we can consider g, and hs to be elements of k[R]. Moreover since ¢! is continuous,
) So for all (s, ) € ¢(V) we have that

#(V;) is an open neighbourhood of (s,

(o) oo )25 o) o)

«,




CHAPTER 1. ALGEBRAIC GEOMETRY 12

We conclude that £0 ¢! € Ogr(4(V)). Thus ¢! is a morphism of the ringed spaces,
and (Xy,O%) and (R, OR) are isomorphic ringed spaces. Since R is an algebraic set
with the induced Zariski topology and Op is the sheaf of regular functions, it follows
that (X;,O%) is an affine variety.

L |

Let X C k™, Y C k™ be closed sets, then the map ¢ = (¢1,¢2,....0m): X =Y
where each ¢; € k[X] is a polynomial map.

Proposition 1.4.5 Let X C k", Y C k™ be closed sets and Ox, Oy be the sheaves
of functions formed by taking the regular functions. Further let ¢ = (¢1,¢2,...,bm) :

X — Y be a polynomial map, then ¢ is a morphism of affine varieties.

Proof. We show ¢ is a continuous mapping by showing that the pre-image of a
closed set of Y is closed in X. Let V C Y be a closed set, then there exists
I C k[yi,y2,-.-,Ym) such that V. = V(I)NY. Let f € I. We create a poly-
nomial f¢ € k[zi,22,...,2,) by substituting each occurrence of y; in f with ¢;,

i=1,2,...,m. Let (¢1,¢2.--.,¢,) € ¢~ (V), then since

(61(q1,92- -+, Gn), 92(q1:92- - -, @n)s - - s Dm(q1, Q2. - .., qn)) €V,

we have

f¢(q17q2' L aqn) = f(¢1(QI7Q2- - '7qn)7¢2(q1,q2' . 'aqn)a' .. ,¢m(q1, q2- ... aqn)) = 0.

Therefore (¢1,¢2,---,4,) € V{fe¢ : f € I}) N X and ¢ }(V) C
V{fe : f e I})NX. Let(q1,92,---,4x) € V{fé : f € I})N X, then for all
f € 1, we have fo(q1,42,.-.,9n) = 0. So

f(¢1(Q1,Q2, s aqn)7¢2(q1aq2a s aqn)a' . 'a¢m(q17q27 .. 7qn)) = 0 (vf € I)

Hence (¢1(‘11aQ2,---aQn),¢2(Q17Q2,---,Qn)>---,¢m(Q1,Q2,~--,qn)) € V. We can con-
clude (q1,¢2,-..,9n) € ¢7Y(V) and V(fo: fe )N X C ¢~ (V). Thus ¢71(V) =
V(fe: fel)N X and ¢ is a continuous map.
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Figure 1.2: The product of the affine varieties X and Y

Let V C Y be an open set and let f € Oy (V). We verify that fog € Ox(¢3(V)).
Let p € ¢7'(V), then ¢(p) = g for some g € V. Since f € Oy(V), there exist an open
neighbourhood @ of ¢ and elements g, h € k[Y] such that A(y) # 0 and f(y) = %(%%
for all y € (). Since ¢ is continuous, ¢~1((Q) is an open neighbourhood of p. Further
for all a € ¢7'(Q), we have f o ¢(a) = f(¢(a)) = f(b) for some b € Q. But b € Q
implies that A(b) # 0 and f(b) = % where ¢(b) = g¢(a) and h(b) = hé(a). Moreover
ho,gé € k[X]. Therefore f o ¢ is regular in ¢~1(V). u

Definition 1.4.6 Let X and Y be two affine varieties. The product of X and Y is
an affine variety Z together with morphisms ¢, : Z — X and ¢, : Z — Y such that
the following holds: for any triple (Z', ¢}, ¢}) of an affine variety Z' together with
morphisms ¢ : Z' — X and ¢, : Z’ — Y there exists a unique morphism o : Z2' — Z

such that ¢} = ¢1 00 and ¢}, = ¢, 0 5. See Fig 1.2.

Note that this definition is in accordance with the general notion of a product in

a category. A proof of the following theorem can be found in [6].
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Theorem 1.4.7 A product X XY of two affine varieties X and Y exists and is unique
up to isomorphism. Moreover the underlying set of X XY can be identified with the
Cartestan product of the sets X and Y.



Chapter 2
Abstract Semigroups

The definitions and results in this chapter are taken from [2], [3] and [4].

2.1 Introduction

A semigroup (S,0) is a set S with an associative operation o. We usually write S for
(S,0). An idempotent of S is an element e € S such that e = e. We denote by E(S)
the set of idempotents of S. We can define a partial ordering on E(S). If e, f € E(S),
we say € > f if and only if ef = fe = f. A commutative semigroup in which
every element is idempotent is a semtlattice. If S’ is a semigroup, then the mapping
¢: S5 — 5 is a homomorphism if and only if ¢(ab) = ¢(a)¢(b) for all a,b € S. A
semigroup with an identity element is called a monoid. If S has no identity element
we may adjoin an extra element 1 to the set S creating a monoid S U {1} with the

obvious multiplication. We will find it useful to define the semigroup S' as follows:

T S if S is a monoid
SU{1} otherwise .

Let B be an equivalence relation on a semigroup S. We will denote the fact that a,b €

S are B-related by aBb. An equivalence relation B on S is called a left congruence if

(Vs,t,ae S) sBt = asBat.

15
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Similarly B is called a right congruence if
(Vs,t,ae S) sBt = saBta.

Definition 2.1.1 Let I be a non-empty set and G be a group. We define a semigroup
(S,0) where S = (I x G x I)U {0} and multiplication is as follows:

(1,9h,n) ifj=m o
(V (2,9,7), (m, h,n) € S\{0})

0 otherwise

(i>gvj) © (m,h’n) = {

0o (¢,9,t) =(2,9,i)00=0=000 (VY (¢,9,7) € S\{0}).

S is known as the I x I Brandt semigroup over G and is denoted by u(I, G, I).

Definition 2.1.2 Let Y be a semilattice and let {G, : « € Y} be a family of disjoint
groups. For each pair o, € Y such that o > 5 let ¢op : Go — Gp be a group

homomorphism such that
SI1) ¢4, is the identity mapping of G, for each a € Y.
Si2) for all @, 3,7 € Y such that a > 3 > v we have ¢5,00,6 = Sa-

Let S =J,cy Go and let multiplication “o” on S be such that if a € G, and b € Gp
then a 0 b = ¢, op(a)dp,0s(b) where the multiplication of ¢, os(a) and ¢gs(b) takes
place in Go5. Then S is a semilattice of groups. We will denote S by [Y, Ga, ¢a sl
in recognition of the fact that S is completely determined by Y,{G, : @ € Y} and
{bap:a,B €Y a> B}. Further we will denote by e, the identity element of G,.

It is straightforward to verify that multiplication is associative both on an I x [
Brandt semigroup over G and on a semilattice of groups. Thus both are indeed

semigroups. We will use the following lemma without comment.
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Lemma 2.1.3 Let S = [Y,Gq, o] be a semilattice of groups and let o, € Y be
such that « > 3. Then we have the following:
1. eq 2 eg.

2. GoGs C Gp.

Proof.
1. Since ¢, 3 is a group homomorphism, we have that ¢, s(e.) = €5. So, by the

definition of multiplication on S, we have that

a0 €5 = da,6(€a)dsp(es) = es = dpp(es)das(ea) = €3 0 €.

2. Let a € G, and b € G3. Then, by the definition of multiplication in S, we have
that a o b= ¢, s(a)ds s(b) € Gg. [

2.2 Green’s Equivalence Relations

Certain equivalence relations known as Green’s equivalences are fundamental to the

study of semigroups. In our investigations we will use four of these relations £, R, J, H.

Definition 2.2.1 Let a and b be elements of a semigroup 5, then

1. we say a divides b if there exist z,y € S! such that zay = b. We write a | b to
denote that a divides b.

2. aJbif and only if a | b and b | a.
3. aLb if and only if there exist z,y € S? such that za = b and yb = a.
4. aRb if and only if there exist z,y € S? such that az = b and by = a.

5. aMb if and only if aRb and aLlb.
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It is straightforward to verify that 7, £, R and H are equivalence relations. Note
the symmetric nature of the definitions of £ and R. While investigating £ and R
we will often state two results which have an obvious left-right symmetry. In these
instances we will prove only one of the two results.

Let a be an element of a semigroup S. We denote the J-class of a by J,. The
sets L,, R, and H, are similarly defined. We will use the following lemma without

comment.

Lemma 2.2.2 Let S be a semigroup and a,b € S. Then aLb if and only if S'a = S'b.
Similarly aRb if and only if aS' = bS?.

Proof. Clearly S'a = S'b implies that aLb. If aLb then there exist ¢, € S? such
that ta = b and t'b = a. Thus S'a = S'¥'6 C S'b and S'b6 = S'ta C S'a. Hence

we have S'a = S'b. In a similar fashion we can prove aRb if and only if aS? = bS!. ®

Lemma 2.2.3 The relation L is a right congruence and the relation R is a left con-

gruence.

Proof. Let S be a semigroup and let s,t € S be such that s£t. Then by the defini-
tion of £ there exists u,v € S! such that us = ¢ and vt = s. So for all a € S we have
that usa = ta and vta = sa. Hence salta. We conclude that £ is a right congruence.

The proof that R is a left congruence is similar. [ ]

Let S be a semigroup. For all z € S! we define mappings p, : S — S and
Az 0 S — S as follows:

pz(s) = sz and A;(s) =zs (Vs € S).

The mappings p, and A, are known as the right translation by x and the left translation

by x respectively.

Lemma 2.2.4 (Green’s Lemma) Let S be a semigroup and let a,b € S be such that
aRb. Further let s,s' be the elements of S! such that as = b and bs’ = a. Then the
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right translations ps [ Ly, ps | Ly are mutually inverse R-class preserving bijections

from L, onto L, and L, onto L, respectively.

Proof. Since, by Lemma 2.2.3, £ is a right congruence, it is clear that p, [ L, maps
L, into Ly and py | Ly maps Ly into L,. Let £ € L, then there exists u € S' such
that ua = £. Thus we have that

ps’ps(e) = essl = UGSSI = ubs' = ua = ea

whence pyps : L, — L, is the identity mapping. Similarly we may show that psps [ Ly
is the identity mapping on L,. We conclude that p; [ L. and pg [ Ly are mutually
inverse bijections. If £ € L,, then £s € L, has the property that ({s)s’ = {. Thus
¢sRE and, so, the mapping ps | L, is R-class preserving. Similarly ps | Ly is R-class

preserving. [ ]

The left-right dual which follows is proved in an analogous fashion.

Lemma 2.2.5 (Green’s Lemma) Let S be a semigroup and let a,b € S be such that
alb. Further let t,t' be the elements of St such that ta = b and t'b = a. Then the left
translations \; [ Ry, Ay | Ry are mutually inverse L-class preserving bijections from

R, onto Ry and R, onto R, respectively.

Proposition 2.2.6 Let S be a semigroup, e € E(S) and a € 5. If aHe, then H, s
a subgroup of S.

Proof. We show H, is a subgroup of S by verifying that the condition
H,t=tH,=H, (Vt€ H,)

is satisfied. It is not hard to see that this condition holds if and only if H, is a group.
Let t € H,. By Lemma 2.2.4 we have that p; | H, is a bijection of H, onto itself.

Thus H,t = H,. We may similarly show that tH, = H..
[ |
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2.3 The Rhodes Expansion
Let S be a semigroup. We define the relations <, and <. on S as follows:
® a <. bif and only if S'a C S'b (Va,b€ S)

e a <. bif and only if S'a C S'b and S'a # S (Va,b € S)

Let @ = (a1,as,...,a,) where each a; is an element of S. Then @ is an L-chain
provided that a1 <, a; <¢ ... <, a,. Further @ is a reduced L-chain provided
that a; <, a3 <¢ ... <¢ a,. If @ is an L-chain we define red(@) to be the reduced

L-chain formed by removing all but the left most element from any string of L-related
elements in @ For example if S is the integers with the usual multiplication then
(0,4,—4,—2,2) is an L-chain and red((0,4,—4,—2,2)) = (0,4,-2). Clearly red(a)
is a unique reduced L-chain. We define a semigroup, (R(S),0), known as the left
Rhodes expansion: Let R(S) be the set of all reduced L-chains and let multiplication
be defined via

(a1,a2,---,a5) 0 (b, b2, .-, by) = red(arby, azby,. .., anby, by, ba,. .., br).

It is straightforward to verify that multiplication on R(S) is associative. The right

Rhodes expansion is defined analogously.




Chapter 3
Algebraic Semigroups

With the exception of Theorem 3.2.3 the results and proofs in this chapter have been
adapted from [3]. Theorem 3.2.3 is my own work.

3.1 Introduction

A semigroup (S, 0) is a (linear) algebraic semigroup provided that (S, o) is isomorphic
to (S’,0’) where S’ is an affine variety and o' : §’ x §' — § is an associative product
map which is also a morphism of varieties. Recall that an affine variety is a ringed
space which is isomorphic to a ringed space (T, O) where T is an algebraic set with the
induced Zariski topology and O is the sheaf of regular functions. Note that Theorem
1.4.7 assures us that if S’ is an affine variety then S’ x S’ is an affine variety and,
thus, that o’ may be a morphism of varieties. To illustrate this definition we present

two examples of algebraic semigroups.

Example 3.1.1 Any finite semigroup is an algebraic semigroup. Clearly any finite
set S can be represented by the zeros of a polynomial in £[73] and, thus is an affine
variety. It is a straightforward exercise to construct a polynomial map which gives

the desired multiplication.

We let M, (k) denote the semigroup of n X n matrices over k£ with the usual matrix

multiplication.

21
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Example 3.1.2 Let S C M, (k) be both a semigroup and an algebraic subset of k™,
then S is an algebraic semigroup. Let A, B € S. Since each entry of the product AB
is a polynomial expression of the elements of A and B, we have that the multiplication
is given by a polynomial map. Therefore S is an algebraic semigroup. In particular,

M, (k) is an algebraic semigroup.

The following lemma is a consequence of Corollary 1.4.3. We will use it without

comment.

Lemma 3.1.3 Let S be an algebraic semigroup. Any closed subsemigroup of S is an

algebraic semigroup.

A homomorphism between two algebraic semigroups is a semigroup homomorphism

which is also a morphism of affine varieties. An isomorphism is similarly defined.

3.2 The Matrix Structure of Algebraic Semigroups

The following well-known theorem and its corollary are fundamental to our investiga-

tion of algebraic semigroups. The reader is referred to [3] for a proof of the theorem.

Theorem 3.2.1 Let M be an algebraic monoid. Then M is isomorphic to a closed
submonoid of some M, (k).

Corollary 3.2.2 Let S be an algebraic semigroup, then S is isomorphic to a closed

subsemigroup of some M, (k).

Proof. We may assume that S is a closed subset of some k%. Let u € S and let
M = {S x {0}} U{(v,1)} C k%*!. On M define multiplication as follows:

e (a,0)0(b,0) = (ab,0) (Va,be S)
o (u,1)o(uw,1)=(u,1)

e (u,1)0(a,0) =(a,0) 0 (u,1) = (a,0) (Va € S)
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Clearly (M, o) is a monoid with identity (u,1). Note that we may write
(a,z)o(by)=ab(l —z)(1—y)+azy+bz(l —y)+ay(l—z) (Y(a,z)(by) € M)

Thus o is a polynomial expression of multiplication in S. It is not hard to show
that such a polynomial expression is a morphism of varieties and , thus, that M is
an algebraic monoid. Consequently, by Theorem 3.2.1, M is isomorphic to a closed
submonoid of some M,(k). But S is isomorphic to S x {0}, which, by Proposition
1.1.4 and the definition of M, is a closed subsemigroup of M. Thus § is isomorphic

to a closed subsemigroup of some M,(k). |

The following is a typical application of Theorem 3.2.1.

Theorem 3.2.3 Let G be an algebraic group and I be a finite set. Then u(I,G, 1),
the I x I Brandt semigroup over G, is an algebraic semigroup and u(I,G,I)! is an

algebraic monoid.

Proof. Let |I| = m. Given Theorem 3.2.1, we can assume G is an algebraic subgroup
of M,,(k). In the following we consider an mn X mn matrix to be partitioned into m?
n x n blocks. Let M be the set of mn x mn matrices whose entries are zero except
for exactly one of its n x n blocks; this remaining block belongs to G. We show that
M' = M U {0}, where 0 is the zero matrix, is an algebraic semigroup. First we show
that M’ is an algebraic subset of ¥, Since G is an algebraic subset of k™, we have

that G = V(I) for some ideal
I C k[T, Tz s Tins o1, Togy oo T2ns oo oy Tntys Ty« -, T

Let X = {2, : p,q € {1,2,...,n} 4,5 € {1,2,...,m}} be a set of (mn)? indetermi-
nates. For all f € I and 7,5 € {1,2,...,m} we form the polynomial f € k[X] by
replacing each instance of Ty, in f by ;. For all 7,7 € {1,2,...,m} let I; be the
ideal of k[X] generated by

{f; 1 fe I}U{qui'j' pq € {1727"'?n} (ilvj/) € {1,2,...,m}><{1,2,...,m}\{(i,j)}}.
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Then
M=Mufo}=|J VUyu{o}
i,7€{1,2,...m}
We conclude that M’ is a closed set.
Givena € G and 1,5 € {1,2,...,m}, let M,;; be the element of M which has the

matrix a in its ¢7’th block. Then for all a,b € G and ¢,7,7,5' € {1,2,...,m}
[ ] Maij-OZO'MaijZO'OZO

0 if § # 4

o My Myy =
o { Moy it j=1"

Thus M’ is closed under matrix multiplication and we conclude that M’ is an algebraic
semigroup. Clearly the mapping which takes (i,a,5) € u(I,G,I) to M,;; is an
isomorphism between u(I,G,I) and M'. We conclude that u(I,G,I) is an algebraic
semigroup.

Let 1 be the identity matrix. Since any finite subset of k™" is an algebraic set,
{1} is an algebraic set. Thus M’ U {1} is an algebraic set. Moreover M’ U {1} is
closed under multiplication. We conclude M’ U {1} is an algebraic semigroup. Clearly
M'" U {1} is isomorphic to u(I,G,I)". ]

3.3 Preparatory Results
The results in this section are used in Chapters 4 through 6.

Lemma 3.3.1 If S is an algebraic semigroup and e € E(S), then eS = {ex : z € S},

Se and eSe are algebraic semigroups.

Proof. We may assume S C M, (k). Let T be a matrix of n? indeterminates. Then,
since S C M, (k), the matrix T — T may be viewed as n® polynomials in k[T]. Thus
the set {p € k™ . p—ep = 0} is an algebraic set. But z € S is in eS if and only
ifz=ez ThuseS=SN{pe€k” :p—ep=0}isan algebraic set. Clearly eS is

a subsemigroup of S. We conclude that eS is a closed subsemigroup of S and hence
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an algebraic semigroup. An analogous proof will serve to show that Se and eSe are

algebraic semigroups. -

In [3] the following result was proved in the process of proving a theorem. Here it

is presented in isolation.

Lemma 3.3.2 Let S5 be an algebraic subsemigroup of M, (k) and let b € S. If there
exists an idempotent e € M, (k) such that bHe in M,(k), then e € S and bHe in S.

Proof. Let e = €* € M,(k) be such that eHb in M,(k) and let S; =
{z€ S:ex=ze==z}. Then be S, and, since

Si=Sn{pek” :ep—p=0, pe—p=0},

S, is an algebraic subset of S. Since bHe, we have eb = be = b and by Proposi-
tion 2.2.6, we have that there exists ¢ € M, (k) such that ec = ce = ¢, and bc = cb = e.
Note that we do not know whether ¢ € S. Let 1 € Z*. Using the fact that for all
z € §; we have ¢b'z = biciz = z, it is easy to show that b'S; = {z € 5, :c'r € 51}
So, by Example 1.1.3, 5'S; is closed. Further we have that 4S; D 525, D ..., so, since
S is a Noetherian space, by Lemma 1.2.2 we have that there exists ¢ € Z* such that
b5, = b'*1S,. Thus S; = eS; = ¢'b'S; = ¢b*1S; = ebS; = bS;. Similarly S; = S;b.
Therefore there exists z € S; such that b = bz. So z = ex = ¢bz = ¢cb = e. Hence
e € S;. Further e € 57 and S; = bS; = S;b imply that there exist y,z € S; such that
by = e = zb. It follows that bHe in S. [ |

Definition 3.3.3 If e € M,(k) is an idempotent and a € M,(k), then det.(a) =
det(eae +1 —e).

Lemma 3.3.4 Let S be an algebraic subsemigroup of M,(k), let e € E(S) and let
a € S. Then det(a) # 0 if and only if eacHe in S.

Proof. Suppose det.(a) # 0. Then there exists z € M, (k) such that (eae +1 —e)z = 1.

Thus eaex = e(eae+1—e)z = e and by duality we have that eaeHe in M, (k). Thus,
by Lemma 3.3.2, we have that eae’He in S.
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Suppose eaeHe in S. Then there exists z € S such that eaez = e. Thus
(eae+1— e)(exze — e + 1) = 1 and we have that det.(a) # 0. [

Lemma 3.3.5 Let S C M, (k) be an algebraic semigroup and let e € E(S). Then the
setI={a€S: a)fe} isclosed in S.

Proof. Let H denote H., and let X = eSen {z € k¥ : det.(z) = 0}. Then, by
Lemma 3.3.1, X is closed. Further by Lemma 3.3.4 we have that X = eSe\ H. Let
z,y € X and a € I. Suppose exaye is not in X. Then eraye € H, a subgroup of
S, whence a | e, a contradiction. Therefore ezaye € X. Now let a € S be such
that eraye € X for all z,y € S. We show that a € I. Suppose a ¢ I. Then
zay = e for some z,y € S. So exaye = e € H, a contradiction. We conclude that
I={a€S:erayec X Vz,y € S}. Thus I is closed. n

For the purposes of this thesis we call a J-class regular if and only if it contains
an idempotent element. This is not the standard definition of a regular 7-class. The
reader is referred to [3] pages 3 and 4 and [2] for further information. We denote the
set of regular J-classes of S by U(S). In [3] there was an error in the proof of the

following theorem. Norman Reilly provided the correction which is presented here.
Theorem 3.3.6 Let S be an algebraic semigroup, then U(S) is a finite set.

Proof. Suppose the theorem is false. Then there exists an infinite set X C E(S)
such that for all e, f € X we have eJf if and only if e = f. For e € X, let
Ile)={a:a€Sa fe} which is closed by Lemma 3.3.5. We claim that there exists
an infinite subset Y of X such that for all e € Y, I(e)NY is finite. Suppose not, then
X itself is not such a set. Therefore there exists f; € X such that X; = I(fi) N X
is infinite. Similarly there exists f; € Xj such that X; = I(f;) N X; is infinite.
Continuing we find a sequence fi, fa,... in X such that for all ¢ € Z* we have
fimn€Xi=I(fi)NnI(f)N...NI(f;)N X. By the definition of I( f;;1) we have that

fi+1 € I(fiz1)- So we have a strictly descending chain of closed sets

I(f) D IF)NI(L) D I(f)NI(f)NI(fs) D ...
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This contradicts the fact that S is Noetherian. Therefore there exists an infinite set
Y C X such that for all e € Y, I(e) NY is finite. Choose e; € Y. Since Y N I(e;) is
finite, Y\ I(e1) is infinite. Thus there exists e; € Y\ I(e;) such that e; # e;. Similarly
there exists e3 € Y\ (I(e;) U I(e2)) such that es # e; and e3 # e;. Hence we find dis-
tinct idempotents ey, e,, ... in X such that for¢ > j we havee; | e;. Let m € Z*. Con-
sider the chain e,, | ey | ... | €2 | e1. Since e, | €—1 there exist z,y € S such that
Temy = em_1. Let e/ _| = epyem_1ze, € E(S). Then e,_1Je€,,_; and €], ; < en.
By the choice of X this implies €/, _; < em. Forif €/, _; = en, then e, Jem_1, a con-
tradiction. Thus we havee,, > €, _, | em—2|...| €2 | e1. Sincee],_; | em—2 there exist
z',y’ € S such that z’e/ .y’ = em—2. Let e,,_, =€, _ ¥ em_oz’e,_,, then e,,_2Te;, ,
and e/, _, <el._,. Thus we have e,, > €/, ; > e, 5 | €m-3|...]| €2 | e1. Continuing
we find a sequence of idempotents e,, > €,,_; > e, _, > ... > €5 > e1. Since m was
chosen arbitrarily this means that we can find a descending sequence of idempotents

of arbitrary length. Since S is a matrix semigroup, this is a contradiction. »



Chapter 4

Algebraic Semilattices of Groups

4.1 Introduction

In this chapter we characterize algebraic semilattices of groups. Although Theorem
4.2.4 was almost certainly previously known, we present here an origional proof based

on a suggestion by Jan van der Heuvel. The remaining results and proofs are new.

4.2 Algebraic Semilattices

The goal of this section is to prove that any algebraic semilattice is finite. In order to
do this we will prove a stronger result: Any semilattice S C M,(k) is finite. While this
result is accessible using the following theorem from linear algebra we give a complete

proof.

Theorem 4.2.1 Let F be a commutative family of diagonalizable n x n matrices over
an algebraically closed field k. There exists an invertible matrizc P € M, (k) such that
P YAP is diagonal for every A€ F.

For further information the reader is refered to [1].
Throughout this section we will view a matrix A C M, (k) as a linear operator on
the set of n x 1 matrices over k, A : z — Az. We will denote the range and kernel of

A by Rng(A) and Ker(A) respectively.

28
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Lemma 4.2.2 Let R be the set of n x 1 matrices over k. If A € M,(k) is such that
A? = A, then R= Ker(A) & Rng(A).

Proof. Since the rank of Rng(A) plus the rank of Ker(A) equals n, it suffices
to show that Ker(A) N Rng(A) = {0}. Suppose that T € Rng(A) N Ker(A).
Then, since T € Rng(A), there exists § € R such that T = Ay. So we have that
AT = A(AT) = Ay = T. But 7 € Ker(A) implies that AT = 0. Hence 7 = AZ = 0.

Lemma 4.2.3 Let S be a semilattice such that S C M, (k), and let {A1, As, ..., An}

{B1,Bs,...,Bp} and {C} be disjoint subsets of S. Further let By and B, be bases for

R = ﬂRng ﬂﬂ[{er YN Rng(C)
=1
and .
T=ﬂRng ﬂﬂKer yn Ker(C)
=1

respectively. Then B1 U B, is a basis for (o, Rng(A:) N (i, Ker(B:).

Proof. Let T € (-, Rng(A4;) N (f_, Ker(B;). By Lemma 4.2.2, T = 71 + 73 for
some 77 € Rng(C) and T; € Ker(C). As in the proof of the previous lemma we
observe that if E € M,(k) is an idempotent and § € Rng(E), then we have that
Ey =7. Now 7y € Rng(C) and 75 € Ker(C), thus CZ = C71 + CZ; = 7;. For all
i € {1,2,...,m} we have T € Rng(A;), implying 71 = CT = CAT = A,CT = A7
and, hence, T1 € Rng(A;). For all ¢ € {1,2,...,p} we have T € Ker(B;), implying
Bii1 = B:Cz = CBT = C0 = 0 and, hence, that 71 € Ker(B;). We conclude
that 1 € (ie; Bng(A:) N (_, Ker(B;). Also since Tz = T — 71, we have that
77 € iz, Bng(A:) N, Ker(B;). Thus 77 is in the space spanned by By and 73 is
in the space spanned by B,. We conclude B, UB; spans [ )iz, Rng(A:) N, Ker(B;).

Now say that 0 = ¢\%] + ¢ov3 + ... + ¢,T; + diw1 + dowz + . .. + dsw, where for
ie{1,2,...,7},ci € kand 7; € By, and for j € {1,2,...,s}, d; € k and w; € Bs.
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Then
C0 =0t + Ch+...+ .0y + diCTT + dyCTz + ... + 4,05,
So 0 = ;o7 + U7 + ... + ¢, 7y, and, since B; is a basis for R, we have that
aqg=¢=...=c¢ =0. Thus 0 = d\w7 + d,W; + ... + d,W,, and, since By is a
basis for T, we have that d; = d, = ... = d;, = 0. Therefore we have that B, U B, is
an independent set of vectors.
We conclude that By U B; is a basis for (-, Rng(A:) N (o, Ker(B;). =

Theorem 4.2.4 If S is a semilattice and S C M,(k), then S is finite.

Proof. Let {A;,A2,...,A,} be a subset of S. To prove our claim it is enough to
show that the matrices Ay, A,,..., A, are simultaneously diagonalizable. That is, to
show that there exists an n x n matrix T such that for all A; € {A4;, A3,..., Ay} there
exists D;, a (0,1) diagonal matrix with A; = TD;T~!. For if such a T exists, then
{A1,As,..., A} = {TD,T\, TD,T7',...,TD,T'}. Since there are 2" distinct
(0,1) diagonal matrices, we have that p < 2". We conclude that S has size less than
or equal to 2" and, so, is finite. ‘

We proceed to show that A;, A,,..., A, are simultaneously diagonalizable. For
all @ € {1,2,...,p} we define Y, = {y1y2..-v : Vi € {1,2,...,a} y € {0,1}}.
That is Y, is the set of all (0,1) strings of length a. Further, for all y1y2...y4 € Ys
we define Sy, 4a = f(y1)(A1) N f(y2)(A2) N ...N f(Ya)(Aa) where f(1) = Rng and
f(0) = Ker. For example Sgo10 = Ker(A;) N Ker(A;) N Rng(As) N Ker(A,4). Also
we define By, ,, 4. to be the set of all bases for Sy,y,.. 4, We further define B to be
the set of bases of all » x 1 vectors over k.

Since A; is idempotent we have that for all 8y € By and 5, € By, fo U 5 € B.
Lemma4.2.3 implies that for all y,y, € Y2 and By, € By,,, We have that 850U Bo1 € Bo
and S0 U B1;, € B;, whence

(Boo U Bo1) U (Bro U B11) € B.
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Using Lemma 4.2.3 again gives that for all y1y2ys € Y3 and By, 4,4, € By,ysy, We have

Booo U Boor € Boo, Bgio U Bo11 € Bo1, BiooY Bior € Bio, BiooU Bi11 € By
Hence

(Booo U Boor) U (By1e U Bor1) U (Bioo U Bro1) U (Broo U Binr) € B.

It is clear that we can use Lemma 4.2.3 in this manner p—1 times. Thus we can even-
tually show that, given an arbitrary By € By for each y € Y, we have Uerp By € B.

For all ¥ € Y, we choose By € By. Since 8 = Ugeyp By € B, B is a set of n linearly
independent n x 1 vectors. We form our matrix T from these n column vectors. Since
these vectors are linearly independent, T is an n X n invertible matrix. We now show
that for 1 <i < p, T7'AT is a diagonal matrix. Let the columns of T be #1,%,,...,%,
and let 7; be the (0,1) column vector with a 1 in the i’th position and 0’s elsewhere.
If T = [21,22,...,%a)7 is any n x 1 matrix over k, then T = 2,77 + 2203 + . . . + 2,75
So

TZ = 1T01 + 2,755 + . .. + 2,00, = 71ty + T2ty + ... + z,t5,.

Now for all #;, 7 € {1,2,... ,n}, there exists 7 € Y} such that t; € B;. Further for
j €1{1,2,...,p}, ¥; = 1 implies 7; € Rng(A;) and y; = 0 implies #; € Ker(A;). So
that

Hence (A4;T)z = ZEeRng(AJ.) z;t;. Therefore
T7'AT)E = THATE =T Y, =&

t;€Rng(4;)
= E Tt = E T;7;.
T.€Rng(4;) t;€Rng(A;)

Since this holds for all n x 1 matrices T over k, T™'A;T = D; where D; is the (0,1)
diagonal matrix which has a 1 in the position (¢,7) if &; € Rng(A;) and 0 elsewhere.
We conclude that {A1,4,. .., Ay} = {T'DT, T7'D,T,...,T'D,T}.

|

The following is a direct consequence of Theorem 4.2.4 and Corollary 3.2.2.
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Corollary 4.2.5 Any algebraic semilattice is finite.

Notice that if S = [V, G,, ds ] is a semilattice of groups, then Y is isomorphic to
{e € S : e =¢€?}. Thus if S is algebraic, then Y is also algebraic. Further, given
Lemma 2.1.3, we have that for alla € Y, J., = {ea}. We can conclude that Corollary
4.2.5 also follows from Theorem 3.3.6.

4.3 The Characterization of Algebraic Semilattices
of Groups

In this section we give necessary and sufficient conditions for a semilattice of groups

to be isomorphic to an algebraic semigroup.

Lemma 4.3.1 Let S = [Y, G,, ¢a,6] be a subsemigroup of Mn(k). Then we have the
following:

1. Ifa > 6 and g € G, then det.,(g) # 0.
2. Ifa>6, go € Gy and gg € Gg, then det.(ga)dete,(95) = dete,(9a9s)-

Proof.
1. For all g € G, there exists g~' € G, such that gg™! = g7'g = e,. Now since s

1s an idempotent,
(esges + 1 — 65)(65g“165 +1—¢5) = esgesg les + 1 — es.

We have that esg € G, thus esges = esg. Hence esgesg™'es = es997 " es = eseqés.
However e, > e5, so ese, = €5, and we have that (65g65+ 1—- 65)(65g_165 +1-— 65) =1.
We conclude that det.,(g) # 0.

2. Notice that

dete,(go)dete,(9s) = det(esgaes + 1 — es)det(esgges + 1 — e5)
= det((esgaes + 1 — €s)(esgpes + 1 — es)).
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Since a > 6, we have that esg, € G5, whence esg.es = esg. This, along with the fact

that es 1s idempotent, implies

det((esgaes + 1 — es)(esgpes + 1 — e5)) = det(esgagpes + 1 — es) = dete;(9295)-

Theorem 4.3.2 Let S5 = [Y,G,, ¢ ] be an algebraic semilattice of groups and let
a € Y. Then Gs is an algebraic group. Further, if S C M,(k), then
Go={z €e,S : det. (z)#0}.

Proof. We can assume that S is a subsemigroup of M,(k). Pick any a € Y. Let
e = €y, [ = det., and eS; = {z € €S : f(z) # 0}. We show that G, = eS;. Let
g € G4, then by Lemma 4.3.1.1 we have that f(g) # 0. Clearly g € €S. We conclude
Gy C eSy.

Let b € GgNeSy. Since f(b) # 0, thereexists ¢ € M, (k) such that (ebe +1 —e)c = 1.
Hence e(ebe+1—e)c = e. Rewriting we get (ebe)c = e. Similarly, since c(ebe +1 —€) = 1,
we have c(ebe) = e. Therefore ebeHe in M, (k). Thus, by Lemma 3.3.2, ebeHe in S.
So there exists d € G5 such that ebed = e. Given the definition of S, ebed = e implies
that a6 = a. Thus eeges = e and we have that ees = (eeges)es = eeges = e. But
b € eSy implies that eeg = eg. Therefore e5 = eeg = e. We conclude €Sy C G,.

By Proposition 1.4.4 and Lemma 3.3.1 we have that eSy is an affine variety. Thus
G, = €Sy is an algebraic group. |

With this theorem and Corollary 4.2.5 we have proved the two main conditions
necessary for a semilattice of groups to be algebraic i.e. S = [Y, G4, ¢a,g] is algebraic
only if Y is finite and each G, is an algebraic group. Further, since we can assume
that S is a subsemigroup of M, (k), it is straightforward to show that the connecting
homomorphisms are morphisms of affine varieties. In addition to stating this formally,
the next lemma gives further necessary conditions concerning the G, that allow us to

prove Theorem 4.3.4, characterizing algebraic semilattices of groups.
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Lemma 4.3.3 If S = [Y, G,, ¢ ] ts an algebraic semilattice of groups, then S is

isomorphic to a semilattice of groups S' = [Y, G, ¢, 5] where
1. Y is finite,

2. each G, is an algebraic group. Furthermore each G, is an algebraic set of k™,

for some suitable m, with multiplication given by a polynomial map.

3. each ¢, 5 is a polynomial map.

Proof. We can assume S C M,(k). We begin our proof by defining a G/, for each
a € Y and by showing that these G ’s meet condition 2 above. By Theorem 4.2.4
we have that Y is finite. Let ¥ = {a;,,,...,2,}, and for all ¢ € {1,2,...,7}, let
€; = €4, and det; = det,,. For all j € {1,2,...,r} we define a function h; : § — £ as

follows:

m if:EEGai and (1,'2(1]'

0 if EGai d i ;
hj(:c)z{ if z and o; 2 a;

By Lemma 4.3.1.1 we have det;(z) # 0 in the second case. For all o; € Y let

G, = {(a, hi(a), ho(a), ..., he(a)) 1 @ € Go, }.

We define multiplication

o” on G| via
11

(a, hy(a), ha(a), ..., ho(a))o(b, ha(B), ha(b), . .., he(b)) = (ab, hy(ab), ho(ab),. .., h.(ab)).

It is clear that G/, is a group. Let L = {{:a; > ;} and L=1{1,2,...,7}\ L. Then
by the proof of Proposition 1.4.4 and Theorem 4.3.2 we have that

G,, = {(a,vl,vg,...,vr):a €eS, YWeLv = Veel W=0},

1
detg(a)’
is an algebraicset. Let a,a’ € Go,. If a; < ;, then by Lemma 4.3.1.2, det;(a)det;(a") =
det;(aa’). If o; € ; then hj(a)hj(a’) = 0 = hj(aa’). Thus for all j € {1,2,...,r}, we
have that h;(a)h;(a’) = hj(aa’). We conclude that multiplication on Gy, is given by

a polynomial map, whence G, is an algebraic group.



CHAPTER 4. ALGEBRAIC SEMILATTICES OF GROUPS 35

We will now define the homomorphisms ¢/, 5. Further we will verify that they
are homomorphisms which meet conditions Sl1 and S12 and that they are polyno-
mial maps. For all a; > aj define ¢}; = ¢4, . * Gi, — G, as follows. For all
(a,hi(a), ho(a),. .., h.(a)) € G, we let

8i; ((a, h1(a), ho(a)s - .., he(a))) = (aej, ha(a)ha(e;), hala)hales), - - -, he(a)hs(e;))-

Notice that each ¢;; is a polynomial map. We verify that each ¢; is a group homomor-
phism. Let a € G, and £ € {1,2,...,r}. Suppose a; < ;. Then, since ae; € G,
he(ae;) = Ze_t,"%?{;j But o; > a; > ay, so he(a) = ﬁ(a—), he(e;) = Ft:(_eﬁ Thus by
Lemma 4.3.1.2, he(a)he(e;) = hy(ae;). Suppose ay £ «;j. Then, since ae; € G,
he(ae;) = 0. But if ap € aj, then hy(e;) = 0, whence he(a)he(e;) = he(ae;). We have

shown that
(aej, hi(a)hi(e;), ..., he(a)he(e;)) = (aej, hi(agj), ..., h-(ae;)). (4.1)

Further for all a,b € G,,, £ € {1,2,...,r}, we have h(ae;)he(be;) = he(aejbe;) =
he(abe;). Using the two above facts it is straightforward to show that ¢;; is a group
homomorphism. By (4.1), it follows that for all a; € Y and a € G,

¢i:(a, hi(a),...,h(a)) = (ae;hi(aes),...,h(ae;))
= (a,hi(a),--.-, R (a)).

Thus SI1 holds. Let o, j, ¢ € Y be such that «; > a; > a; and let a € G,; then,
by (4.1), we have the following:

$;40i5(a, ha(a),... he(a)) = 8je(aej, ha(ag;),. .., h(ae;))
= (aejeq, hi(aejeq),. .., h(aeje;))
= (aeg, hl(ael)a-"ahr(ael))

= ¢iela,(a),..., R (a)).

Hence S12 holds. We conclude that S’ = [Y, GY,, 8, 4] is a semilattice of groups satis-

fying the given conditions.
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We complete our proof by showing that S is isomorphicto S’. Let A be the mapping
from S to S’ defined as follows: For all a € S we let A(a) = (a, h1(a), ho(a), ..., h-(a)).
Clearly X is one-to-one and onto. We verify that A is a homomorphism. Let a € G,,,

b€ G, where a;a; = ay, then

Ma)A(b) = (a,hi(a),ha(a),..., h(a))o (b, hi(b), ha(b),..., R (b))
= dix(a, hi(a), ha(a), ..., hr(a)) @5k (b, h1(b), ha(D), . . ., hr (b))
= (aex, hi(aer), ho(aer),. .., h,(aer))(bek, hy(bek), ha(bek),. .., k. (bex))
(abeg, h1(abeg), ho(abek), . .., h.(abeg))
A(abd).

Thus S is isomorphic to S’, and our result is proved.

Theorem 4.3.4 Let S be a semilattice of groups. S is an algebraic semigroup if
and only if there exists and algebraically closed field k such that S is isomorphic to a
semilattice of groups S’ = [Y, G4, du 8| where

1. Y is finite,

2. each G, is an algebraic group. Furthermore each G, is an algebraic set of k™,

for some suitable integer m, with multiplication given by a polynomial map.

3. each ¢op is a polynomial map.

Proof. Let S = [Y, H,, 0, 4] be an algebraic semilattice of groups, then by Lemma

/
o

4.3.3 S is isomorphic to a semilattice of groups [Y, H.,§
1, 2, and 3.

Now say S is isomorphic to S’ = [Y,G,, ds 5] where conditions 1, 2 and 3 are
satisfled. Since S’ = |

and so is itself an algebraic set. Thus in order to complete our proof all we need

ﬁ] which satisfies conditions

«cy Go, We have that S’ is a finite union of algebraic sets

verify is that multiplication on S’ is a morphism of varieties. Let » : 5’ x §" — S’ be



CHAPTER 4. ALGEBRAIC SEMILATTICES OF GROUPS 37

multiplication on §’, let Y = {o, @, ..., } and let ¢;; denote ¢, o,. Further let o;
denote multiplication on G,,. We begin our demonstration that * is a morphism of
varieties by showing that * is continuous. More specifically we show that the preimage
of a closed set is a closed set. Say V is a closed set in S’. Let P, be the set of pairs

(,7) such that a;a; = ag. From the definition of S’ x 5" and * we have that

V)= | U {(a,b) € Ga, X Ga, = diela) 0r 6;(b) € V1.
e{1,2,...,r} (4,7)EP:

Now for any (i,7) € P, we have that ¢;, ¢; and o, are polynomial maps. Thus their
“composition”, ¢, o, ¢;4, is a polynomial map from Go; X G, into G,,. Thus by
Proposition 1.4.5 we have that {(a,b) € Ga, X Ga, : du(a) 0r ¢;e(b) € V'} is a closed
subset of G, x G,,. But, by Proposition 1.1.4, G4, X Gq, is a closed subset of S'x S,
Thus {(a,b) € Ga, x Ga, : ¢ie(a) of ¢;¢(b) € V'} is a closed subset of S’ x S’. Hence
*~1(V) is a finite union of closed sets and is itself a closed set. We conclude that * is
continuous.

Let V C S’ be an open set and let f € Os/(V). We complete our demonstration

that * is a morphism of varieties by showing that fo* € Osixs/(*71(V)). As noted
before

* (V) = U U {(a,b) € Go; X Ga, : ie(a) or 9je(b) € V'}
te{1,2,...,r} (1,7)EF;
where for any (7, j) € P, the composition ¢;,0;@j¢ : Go; X Ga, = Ga,, is 2 polynomial
map. Further for any pair (7,;) there exists a unique £ € {1,2,...,7} such that
(4,7) € Po. Thus * [ G, X Ga, = ¢i 0z ¢;4. So by Proposition 1.4.5 we have that
fox Gy X Gao, € Ocaixc%(*‘l(V)). Now since Y is finite each G,, x G, is the

complement of a closed set namely

U Gay X Gay-
{g,R)e{1,2,.. 7} x{1,2,... s \{(7.4)}
Thus each G,, x G, is an open set and G, xGa, ((,5) € {1,2,...,7}x{1,2,...,7})is
an open covering of S’ x S So by Definition 1.3.1.2 we have that
f 0 * & OS’XS’(*—I(V))-
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We conclude that * is a morphism of varieties, whence S’ is an algebraic semi-

group. |



Chapter 5

A Rhodes Expansion

In this chapter we show that the Rhodes expansion of an algebraic semilattice of

groups is an algebraic semigroup. All results in this chapter are new.

Lemma 5.1.5 Let f be a map from a semigroup S onto a set A with a binary oper-

ation x. Fyrther let f be such that for all a,b € A, f(ab) = f(a)* f(b). Then * is an

associative operation.

Proof. Let z,,z,,z3 € A. Since f is onto, there exist a,as,a3 € S such that
flar) = z,, f(az) = z2 and f(as) = z3. Then

(21 % 24) * 23 = (f(a1) * f(a2)) * f(as) = f(a1a2) * f(a3) = f((a1a2)aa),

and

Ty * (zg % 23) = flay) * (f(ag) * flas)) = flay) * f(azaz) = flai(aza3)).

Now since S is a semigroup, (a1a2)as = aq(aqa3), whence (1% z2) ¥ T3 = T1* (2% T3).

We conclude  is an associative operation. [ |

Lemma 5.1.6 Let S = [Y, Ga, $a,0] be a semilattice of groups and let a € Ga, b e Gg,
then we have the following:

1. alb if and only if « = B.

2. a<;bif and only if a < B.

39
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Proof.
1. Suppose a € G,, b € G4 are such that aLb. Then there exists z € S! such that

a = zb. Thus ae, = zbes, and we have

€a = €ata = (a7 a)eq = a7 (aes) = a7 (zbeg) = (a7} (2b))es = aaes = eqep.

Similarly es = egeo. Now eqsep = eap = epe,. Thus e, = e and we can conclude
a = . Conversely suppose a,b € G,. Then (ba™*)a = be, = b and (ab™?)b = ae, = a.
Thus aLb.

2. Suppose a € G, b € G4 are such that a <, b. Then there exists z € S! such
that @ = zb. So, as shown in the previous paragraph, e, = e,es. From the definition
of S, eo = esep implies that & < 3. From 1. we have that o # 3. Hence o < 8.
Conversely suppose a < 8. Then a = ae, = aeseg = (ae,b71)b, so a <. b. From 1.
we have that a is not L-related to b. Hence a < b.

Theorem 5.1.7 IfS is an algebraic semilattice of groups, the Rhodes ezpansion R(S)

of S is an algebraic semigroup.

Proof. By Theorem 4.3.4 we can assume that S = [Y, G4, ¢a ], where Y is finite,
each G, is an algebraic set, and multiplication on S is given by a polynomial map.
This proof has three parts. In part 2 we construct an algebraic semigroup (A, *)
and in part 3 we show that A is isomorphic to R(S). To construct A we use a finite
semigroup M isomorphic to R(Y'). Describing M is our task in part 1.
Part 1. Let Y = {a1,s,...,a,}. With each (e;,,0i,,...,2;,) € R(Y) we asso-

ciate a (0,1) r-tuple, 7, which is defined as follows:
e in the 2;7th,25’th,..., 2, 'th position of T we place a 1.
e in all other positions of T we place a 0.

Let

M = {z € k" : 3s € R(Y') such that 7 is the r-tuple associated with s}
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We now define multiplication on M. Notice that for any set {a;,,@i,,...,a;,} C Y
there can be at most one ordering of this set in R(Y). Therefore the function
f: R(Y) - M which takes s € R(Y) to the r-tuple associated with s above is a
bijection. Let 77,7, € M. We define 77 0 73 = f(f~'(Z1)f*(Fz)).- Since f is a
bijection, this multiplication is well defined. By Lemma 5.1.5, all we need in order to
verify that o is associative (and thus M is a semigroup), is that for all a,b € R(Y),
f(ab) = f(a)o f(b). This will also confirm that f is a homomorphism and, so, we will
have that R(Y') = (M, o). For all a,b € R(Y') we have that

flab) = f(f7(f(a))fT(£(8)) = f(a) 0 f(B).

Observe that since Y is finite, M is finite. Thus M is an algebraic semigroup.
Part 2. Let n be such that S C k™ and let 0 be the n-tuple of zeros. Forall7 € M

we let

ifz; =0, thena; =0

if z; =1, then @; € G,,
A-f:{(f,af,a;,...,a—,) o }

Further we let A = Uze 1 Az. Each Az is a finite direct product of algebraic sets
and so, by Proposition 1.1.4, is an algebraic set. Therefore A, being a finite union of
algebraic sets, is an algebraic set.

We now prepare to define multiplication on A. Let 7,7 € M. Let

f1(z) = (71,72, - - Lma),andfTH(T) = (€, €, - . .y €e).

For each T,y € M, a, € Y we wish to record whether or not «a;, is contained in the
sequence (Ty€1, T2€1, - - -, Td€1, €1, €2,. - - €) and if o, does occur what is the “nature”

of its left most occurrence. To do this we form functions P ; ; as follows:
e Forl1<h<r 1<i<randl1 <j<r

1 if the left most occurrence of a; in
- the sequence i1s a;o; —
Ph,,-,j(a:,y) = ! J (Va:,y € M)

0 otherwise
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° ForlShST‘,i:T"{'l,andlSer

1 if the left most occurrence of « in
Pui;(T,7) = the sequence 1s a; (V2,7 € M)

0 otherwise
Notice that if P, ,1;,;(Z,7) = 1, then h = J.

Let (7,3) = (7,8, -, &), (7,8) = (7. by, by, br) and (5,9) = 2,60.5,...,5)

where
T= {xl?x27"'7x7'}7y: {y17y27"'7y7'}?z: {217227"'727'} € M7

and

a= {—T T,...,E},BZ{E,E,...,E;},_C_z{—CT,E,...,.C—T}

+@ b1 Py (Z,7) + @ 02Pur2(T,Y) + ... + @ 0, Py sy (T, 7)
+E-Pd,'r+l,l (f’ _) + b—2Pd,r+l,2(E> g) +...F Epd,rﬁ-l,r(fa g)

We are now ready to define multiplication on A. For all (Z,@)(y,b) € A we let

(Z,@) * (7,8) = (T 07,01((Z,9)(7,9)), 92((Z,8)(¥:)): - - -, 9:((Z,2)(7 §)))-

Since the domain of each Py, ; is finite we may assume that each Py ; ; is a polynomial
map. Further multiplication in S is a polynomial map. Thus multiplication in A is
given by a polynomial map. We now verify that A is closed under this multiplication;
that is, we verify that for all (Z,a),(7,b) € 4, (Z,@) * (7,b) € A. Let (Z,@) * (7,b) =
(z,¢). For all 1 < h < r either z; =1 or z;, = 0. If z, = 0, then a; does not occur
in f~'(z)f'(y). Thusforall 1 < A<r,1<i<r+1land1l <j<r wehave that

P, ;(Z,9) = 0. Hence ¢; = 0 as required for (z,@)*(7, b) to be in A. If z, = 1, then q,
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occurs in f~1(Z)f~!(y) and there exist a unique pair ¢, j where 1 <i <r+1,1<j<r
such that P, ; ;(Z,7) # 0. Suppose 1 < i < r. Then & = gr((7,a)(¥, b)) = Gid; € G,
as required for (Z,@) * (7,b) to be in A. Alternatively suppose i = r + 1. Then
¢ = gn((Z,3)(7, b)) = by, € G., as required for (%, @) * (7,d) to be in A.
Part 3.  We define our isomorphism ¢ : R(S) — A as follows: For

s =(31,53,...,%) € R(S), 5; € Gg, welet ¢(s) = (f((51,B2,---,0%)),01,02,...,57)
where

_ |} & ifai=p;forsome;=12,...,b

7 { 0 if there does not exist 8; (j = 1,2,...,b) such that a; = 3;.

Note that 57 <, 3 <¢ ... <¢ S, so, by Lemma 5.1.6, 5; < B2 < ... < B and
f((Br,B2y-..,5)) € M, whence (f((51,82,---,05)),01,02,-..,0,) € A. We show that
¢ is one-to-one. Say s1,s2 € R(S) are such that ¢(s1) = ¢(s2). Let s; = (ay,az,...,az)
where @ € G), and let s, = (b1,bs,...,5,) where b; € G,. Then ¢(s;) = ¢(s;) im-
plies that f((A1, A2,...,Ae)) = f((71,72,...,7¢)). So, since f is a bijection, we have
that (A, A,...,A¢) = (11, 72,...,7). Thus £ = ¢t and for ¢ = 1,2,...,t, A\, = 7.
Moreover for all ¢ = 1,2,...,¢ there exists j = 1,2,...,7r such that a; = A\; = 7.
Thus by the definition of ¢ we have that @; = b;. We conclude s; = (a7, @z, ...,d) =
(E,E, ...,b;) = s5. Next we show that ¢ is onto. Let (Z,a7,@z,...,a,) € A and let
' = (0w;s Quy, - - -, ). Then, by Lemma 5.1.6, s = (Tuy, Ty, - - -5 8u) € R(S),
so, by the definition of ¢, ¢(s) = (7Z,a1,az,...,G,;). We now show ¢ is a homomor-
phism. That is we show that for all s;,s2 € R(S), ¢(s1) * ¢(s2) = P(s182). Let
sy = (@1,@z,...,a¢) where @; € G, and let s, = (by,by,...,b;) where b; € G...
Further let ¢(s;) = (%, A1, Az, ..., A,), ¢(s3) = (§,B1,Bs,...,B,), and ¢(s185) =
(Z,D1,Ds,...,D,;). We have that ¢(s;) * ¢(s3) = (Z07,C1,C3,--.,C,) where for
1<d<r, C;= 94T, A1, As, ..., A) T, B1, Bs,-..,B.)). It is not hard to see that
Z=7To0TY, for ¢(s182) = qﬁ(red(ﬂE, Gzby,...,d¢b, by, bs,...,5;)). So, by Lemma 5.1.6
and the definition of ¢, we have that

z = f(red(MTi, AaT1, ..o, AeT1, 71, T2y - ooy Tt))
F((A1, A2, oy A (71, T2y oo, 7))
f(A1, A2, ., M) o f(T1,72y...,Tt) =T OF.
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To see that for all h = 1,2,...,r, we have C, = D), we examine three possibilities.
1. The element o, € ¥ does not occur in the sequence Ay 7y, Ae7y,. .., A7y, 71,72, . .., T

In this case the h’th position of both Z and ZTo 7 will be 0. Thus Dy =0 = Cj,.

2. The element ar € Y occurs in the sequence A7y, AeTy, ..., AeTy, 71, T2y ..., Ty
and the left most occurrence of ay, in the sequence is A, 7y for some m € {1,2,...,¢}.
In this case there exists a unique pair ¢/,;’ where 1 < ¢/ < r 1 < j/ < r such
that ay = A, and ¢y = 7. From the definition of the functions P, ;; we see
that 7/ and j’ are the only values of 7 and j for which Py;;(Z,y) # 0. Thus
Cy = gu((7,A1, Az,.. -, Ar) (¥, B1, Bs, ..., B,)) = Ay Bjy = @mby. To find D), we no-
tice that by Lemma 5.1.6 we have that if the left most occurrence of a, in the sequence
AIT1, AaTh, oo AT, T, T2y - - - Tt 18 Ay 71 = apajr, then the left most element of G, in
the sequence a—la, (TZE, . ,a_ga, E, E, ... ,E is @b;. Thus @, b, is the only element

of G, in 81 xs; = red(ﬁfb_l, Gzby,...,Ggby, 01,00, ... ,Z):) Therefore Dy, = G2b, = Ch.

3. The element ay € Y occurs in the sequence A\;71, A271, ..., A¢T1, Ty, T2, ..., 7t and
the left most occurrence of a; in the sequence is 7, for some m € {1,2,...,¢}. This

case is similar to 2. The details are left to the reader.

We conclude that

¢(3132) = (_Z-,_D_;,D_z, s 3D_r) = ('x’oﬂ, Cl,Cz, < ,Cr) = ¢(31) * ¢(32)

and, thus, that ¢ is a morphism.

Showing that ¢ is a morphism completes the verification that ¢ is an isomorphism.
Further it shows, via Lemma 5.1.5, that (A, *) is associative and thus is a semigroup.
We have already shown that A is an algebraic set and that * is a polynomial map.
Therefore we can now conclude that R(.S) is isomorphic to (A, *), an algebraic semi-

group.
|



Chapter 6
A Counterexample

In light of Theorem 3.3.6 and Theorem 4.2.4 Norman Reilly posed the following
question: If S is a subsemigroup of M,(k), then is (S) finite? In this chapter
we show that the answer to this question is "no”. To do this we present a semigroup
S such that U(S) is infinite. This counterexample is new.

We let C denote the field of complex numbers.

Example 6.1.8 There exists a semigroup S C Ma(C) where U(S) is infinite. Let X

-a(Z
( )

and let S be the semigroup generated by X. Clearly X € E(S) and X is infinite.
Thus to verify that #(.S) is infinite all we need show is that for all e, f € X we have
eJ f implies e = f. For a € Z we define M(a) to be

a 1
a(l—a) 1—a |

M(al)M(ag):(al-f-l—aQ){ % 1 }

az(l —a;) 1-a

Let ay,az,--.,a, € Z. Then

45
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and
1
M(a)M(az)M(as) = (a1 + 1 — az)(as + 1 — as) 4 .
a3(1 — al) 1 - a;
In general

M(a1)M(ay) ... M(a,) = I—I(ai +1—ai1) { fin ! } .

=1 an(l —al) 1 — a1

Let M(z), M(y) € X be such that M(z)J M(y). Then, since S is generated by X,

there exists a;,as,...,an,b1,b2,...,b, € Z such that

M(ay)M(az). .. M(an)M(z)M(b)M(by) ... M(by) = M(y).

Thus
b 1
(a1+1=az)...(an+1—2)(z+1=b1) ... (b1 +1=bs) = M(y).
bm(]- — al) 1 - ay
Let

f=(al+1—a2)(az+1—(13)...(an+1—CE)(CE+1—bl)...(bm_1+l—bm).

Then we have that

lb,, {
= M(y).
fbm(]. - al) f(]_ — (11)
So{=1, b, =y and a; = y. Suppose that we have integers z,, zs, ..., z, such that

(CE]+1_$2)($2+1—$3)...($7-._1+1—CET)ZII.

Clearly each term, z;+1—2,,1, must equal 1 or —1. So either z;.; = x; or 2,41 = z;+2.
Thus we see that either 2 =2, =... =z, 0orz; < z,. Now{f{ =1 and a; =y = b,

so we can conclude that
y=a1=a2=...:anzx:blzbzz,,,:bm=y’

whence M(z) = M(y).
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