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Abstract 

Moving mesh methods have been shown to be successful in last few years for time-depcildcnt 

partial differential equations with large solution variations, especially for blo~vup problcnls. 

In this thesis, we use the moving mesh methods based on moving mrsh PDEs to study 

a few blowup problems azd conservation laws. In chapter 1, we briefly go thsougl~ tlw 

development of the methods. The equidistribution principle, from which the moving ~rlcsli 

PDEs are deduced, is introduced. In chapter 2, studies of the blowup problems are carried 

out. Some of the formal analysis of the problems is compared with our computations to show 

the performance of the method. In chapter 3, the methods are used on conservatioi~ laws,  

where discontinuous solutions and large variations in the first derivatives are espectcrl. It is 

shown that,  with proper spatial discretization, the moving mesh methods irnpIicit!y adapt 

the artificial viscosity while other spatial discretizations may fail to give physical solutions. 

Some of the problems encountered are discussed. New adaptive Godunov type schemcs for 

conservation laws are developed and the performance of this approach is demonstrated by 

computations. We give a summary of the conclusions and remarks in chapter 4. Some ideas 

for future study are also suggested. 
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Chapter 

Moving Mesh Methods 

1.1 Method of Lines 

When considering the time-dependent PDE initial-boundary value problem: 

u t =  f (u ) ,  a < x < b ,  O < t < T ,  

u(x,O) = g x )  a < x < b 

where f is a first or second order spatial differential operator with suitable I>ot:ndary twn- 

ditions at a and b: we have two common approaches to compute the ~turnerical salutioj~. 

The first is to discretize the PDE both in time and space, usually on a fisctl uniform spatid 

mesh. This method changes the PDE into an algebraic system by replacing tile partial 

derivatives with finite differences. \Ye obtain the numerical solution by solving the resultirlg 

algebraic system. Another approach is the so called method of lines (h4OL) approat.fr o r  

semi-discrete method. In this approach, we discretize the PDE in space or in time o~tly. 111 

the transverse method of lines; we discretize in time and get a system of ODES in spatial 

variables with boundary conditions. i.e.: an ODE bound;.,sy value problem. Discretizaticm 

in space leads us to a system of ODES with initial conditions. The numerical solt~tio:t can 

be obtained by solving the ODE initial value problems. The latter is ofterg referred ti) as 

the longitudinal method of lines. 

The possible advantages of MOL are: 

1. By separating the problems of space and time discretization it is easy to establist~ 

stability and convergence. 



2. T ~ I C  powerful numerical techniques for solving ODEs, such as dpamical  regridding of 

the stepsize which maintains stability and desired time integration accuracy, can be 

directly applied to the PDE case. Existing ODE software neatly reduces programming 

effort. 

3. Csing an MOL approach, one needs only be concerned with discretizing spatial deriva- 

tives. Solving the ODES very accurately permits comparison of the accuracy and 

efficiency of different approximations of spatial derivatives. 

The possible disadvantages of an 1ZOL approach are that the reduced ODEs may 

become very stiff and overall optimization of the method may he lost by decoupling the 

analysis of the space and time discretization. 

This method of lines approach, which separates the spatial and temporal variables 

makes possible the use of different meshes at different time levels. It is our goal to exploit 

this property of the method of lines approach to develop adaptive mesh methods and apply 

them to  a selection of scalar degenerate blowup problems, a nonlinear coupled system, and 

scalar conservation laws. 

1.2 Moving Mesh Methods 

Jt has been amply demonstrated that significant improvements in accuracy and efficiency 

can be gained by adapting mesh points so that they are concentrated about areas of large 

.solution variation. For problems with large solution variations, viz. shock waves; layers, and 

single point blowup, constructing an adaptive mesh in time can be essential if the problem 

is to be solved efficientl;.: and often if it is to be solved at all. 

There are many waxs to  adapt the meshes. The two most popular are: 

1. Local refinement methods: 

Mesh points are added or deleted according to the profile of the solution and the local 

errors. 

2. Moving mesh methods: 

A fixed number of mesh points move adaptively to minimize a selected monitor func- 

tion which is an estimation of the errors of the solution. 



X combination of the two methods is also possible [I]. 

.A difficulty ~vith local refinement nletliods for certain problenls, e.g. thosc \vitlr ;i 

single point blowup. is that the total number of the mesh points may increase cl~asticrill~, 

compounding the difficulty of the computation [GI. Moving mesli a net hods arc cspwii~lly 

attractive for this kind of problems, and they will be the focus of our a t tcnt io~~ ill tllc 

sequel. 

Almost all moving mesh methods are based on a Lagrangian type approach wliic.11 

is best introduced via a co-ordinate transformation. Considering the PDE (1 .I),  Ict ([, / j 

be new independent variables linked with the old independent variables ( . c , t )  through a 

co-ordinate transformation x = x([,t). Denoting v(c, 1 )  = u(x, i), the total derivative of 1 )  

is dv/dt = duldx 8 z l d t  + Buldt, and the Lagrangian form of (1.1) reads 

dv d u d x  - - -- - 
a t  a x a t  

+ f (v ) ,  [ a < [ < J b ,  O < t < T .  

The basic idea of the Lagrangian approach is to choose the variables ( [ , t )  so that thc 

problem is easier to handle numerically than for the original pair (x, 2). For equations with 

large variation in solutions, a standard MOL approach in original variables ( r ,  1 )  wo~lltl 

require the ODE solver t o  take small time steps to maintain stability. M4th tllc atmvc 

Lagrangian approach. ideally, if a suitable nonuniform x-grid exists according to the chaugc 

of variables x = x(E- t). we can then take acceptable step sizes in the time directiou wl~ilc 

using a coarse uniform <-grid in space. The variables (x, t) and ([, t )  are called the physical 

and the computational co-ordinate variables respectively. 

Moving mesh methods can be roughly divided into two categories: static alrd dy-  

namic. In the static approach [32], each time step consists of two computational stages: a, 

step involving the application of a stiff ODE solver to an augmented semi-discrete sys tcm , 
followed by a second regridding stage in which a redistributiorl of points a t  the forward 

time level is carried out and the solution is then interpolated to the new mesh. Although 

it  is highly reliable and robust, the very frequent regriddings prevent the integration pro- 

cefiure from exploiting the attractive, higher order BFD formulas of the OD12 solver and 

interpoiations can cause perceptibfe loss of spatial accuracy [18]. 

Among moving mesh methods, the moving finite element methods developed by Millcr 

and his co-workers (361, [37], [38] are perhaps more elegantly formulated in mesh movernc!nt 

than moving finite difference methods. However, their methods require prolmly chooscri 

parameters, which are highly problem dependent, to ensure proper governing of the mesh, 



anti some nlcasures have to  he taken to  avoid node overtaking and singular mass matrices 

8 .  In contrast: one of the objectives in the recent development of the moving finite 

difference mcthods is to  uncover a mechanism to select the spatial mesh more automatically. 

Moving finite element methods are beyond the scope of this thesis, and a more detailed 

analysis car1 be found in [3], 1.51 and [48]. 

In this study, we take a dynamic approach for the moving mesh based on the idea of 

Dorfi and Drury [14] which is recommended in [l$] for its simplicity and insensitivity to the 

parameters. With a moving mesh approach. we augment the physical equation (1.3) with a 

moving mesh equation, which will be detailed in the nest section. The system in Lagrangian 

co-ordinate variables is solved by a stiff ODE solver, DDASSL [41]. Because the solution 

and the mesh can be solved simultaneously. no regridding and interpolation is necessary, 

and the integration of the ODE solver will not be interrupted so that we can benefit, to  a 

large extend, from the efficiency of the ODE solver. 

1.3 Equidistribution Principle and Moving Mesh PDEs 

In computations with moving mesh methods, the most important consideration is the deci- 

sion of how to autnmatically and stably choose a nonuniform mesh which suitably adapts t o  

the solution behavior. Unfortunately, the resolution of this issue has been proven to  be very 

difficult. Although a few mesh selection principles have been suggested in the literature [18], 

[25], [32]: the problem of which overall strategy to use and how to  best choose the mesh for 

a given strategy is still controversial [ls]. 

Among various moving mesh methods, the most popular is based on the idea of 

equjdistrjbution first introduced by de Boor 191 and Dodson 1131. A number of moving mesh 

methods have been developed in the literature [I], [2], [16], [26], [27], [44], [45], and almost 

all are based on the equidistribution principle. 

The idea behind the equidistribution principle is that if some measure of error M(x) ,  

also called the monitor function, is available, then a good choice of a mesh T : a = xo < XI < 
- - . < s,y = b would be one for whic'l the contributions to the error over the subintervals are 

equally distributed. Without loss of generality, we assume the computational coordinate < 
is in the unit intervai [ O ,  11 and a uniform mesh is given on the computational domain by 



In the one dimensional case, for a chosen nlonitor function M(r, t )  ( > 0 ), the cquirlist r i -  

bution principle can be expressed in its integral form [43] as: 

where 

By differentiating (1.4), several hlMPDEs have been derived in [2S] based 011 tlic 

equidistribution principle. In the following, we briefly go through their derivakion for coni- 

pleteness and for future reference. 

Differentiating (1.4) with respect to once and twice, we oi?ta.in 

and 

respectively. 

By differentiating (1.5) with respect to  time t and expanding, we 11a.ve: 

The moving mesh methods used in [12], 1161, [44], and [4S] are equivalent to or closcjy 

related to  (1.6). In (1.6), can be regarded as the source of the mesh rnovernent [21i]. 

Unfortunately, in actual applications is often hard or impossible to compute. 

Instead of requiring that the mesh satisfy (1  -6) at time t ,  we may require that ( I  3) 

is satisfied a t  a later time t + 7, i.e., 

This can be regarded as a condition to regularize the mesh movement. 

By using the second order expansion and dropping the higher order tcr~ris irk ( I  .7) ,  

we obtain 



CHAPTER 1. MOVING MESH -METHODS 

Compared with (1.6), (1.8) contains the additional term 

which implies that in (1.8) some deviation from equidistribution is acceptable. 

T w o  other MMPDEs based on (1.8) in [28] are 

and 

Anderson [2] derived another moving mesh PDE: 

based on attraction and repuIsion pseudoforces. 

in [I] Adjerid and FlaherQ- used a method equivalent to the discrete form of 

Remarks: 

I .  In the above derivation, the process of differentiation implicitly assumes that x(<, t )  

nearly satisfies (1.5) which is generally not always true in actual computations. 

2. Almost all MMPDEs are obtained without considering the physical properties of the 

phenomena modelled by the physical eqmtion. However, information about the phys- 

ical situation may be recorded through a properly chosen monitor function, as demon- 

strated in nest chapter. 

1.4 Moving Collocation Method 

11s this section, we give a detailed explanation of the moving collocation method, used to 

study so-called blowup problems. A different numerical method will be used in chapter 3 

to  study conservation laws. 

It is known that moving mesh methods can be unstable, and some sort of smoothing of 

the mesh is often necessary in order to obtain non-oscillatory, accurate solutions. Actually, 
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(1.7), which leads to  hlMPDE2, 3, 4, and 6, can also be regarded as a kind of temporal 

smoothing, where the relaxation time r controls the speed of the mcsh. As for spittin1 

smoothing, instead of the monitor function Ari, a smoothed monitor function defined by 

is used in the moving mesh equations. Replacing M in (1.10) with ic1 and using (1.13), wc! 

The smoothed moving mesh equation (1 .Id) has some desired properies. It has becn 

proven in [30] that (1.14) and its discrete analogue leads to longterm regularity of thc mesh, 

no node-crossing will occur and the level of perturbation from equidistributjoli decreases. 

In actual computations, a moving collocation approach. motivated by the idea that 

the mesh points do not need to  be resolved with the same accuracy as the solution to 

the PDE itself, is used. In thjs approach, the h4MPDEs are discretized in with 3-point 

finite differences on a uniform mesh, the physical PDE(s) are discretized in x with Hermite 

cubic collocation on the corresponding nonuniform mesh, and the resulting system is then 

integrated. 

Consider a second-order parabolic PDE in divergence form [31] 

In the collocation method, for a given mesh xl(t) := xL(t) < x2(t) < - .  < xR(2) := x ~ ( t ) ,  

the solution u(x ,  t )  for x z: [xi(t), z;+l(t)], i = 1, . . . , N - 1 is approximated by 

where vi(t) and vXj(t) denote approximations to  u(x;(t), t )  and u,(x;(t), t), respectively, 

and the $i's are the standard shape functions of cubic Hermite interpolation. 

Taking a cell average for (1.1.5) on each half of [x;, x;+~],  we get 

(xi+xi+l 112 

J Fdx  = Gi+l12 - Gi, 7l Fdx = G';+l - G';+t12, (1 .16) 

xi (xi+ G + I ) / ~  



where 

Approximating F piecewise linearly 

in (1.16): where xi* and xi2 are two collocation points given by 

and integrating with the two point Gauss quadrature formula, we have 

Solving for F and F l ( z i 2 , f )  in (1.19) using (1.18), we get the colloca.tion discretization 

of the physical equation (1.15): 

From t,he smoothing of the monitor function (1.13), we have 

With properly chosen A, 

where A = "?;. It is argued in 1301 and 1291 that,  with centered finite difference approxi- 

maijon for Al Le. A M  z &It+! -M,-I 
G+Z -ri-i 

. the smoothed monitor function can be computed by 

a suitable combination of neighbouring values of M .  Here we use 
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where 7 is a smoothing parameterf30j. Usually we take 7 = 2: and p is a ~~onnegativc intcgcr 

which xve often refer to as the smoothing indes ip in following chapters. The summations 

in (1.20) are understood to  contain only those elements with indices in the raiigc of Lero 

and the number of mesh points used. The moving mesh equations are discretized by 3-point, 

finite differences. For example, the discretizatioc di (1.14) is 



Chapter 2 

Numerical Study of Blowup 

Problems 

Many partial differential equations modelling physical phenomena have solutions which blow 

up (become infinite) in a finite time. The equations are basically of reaction-diffusion type 

arised from combustion theory and thermodynamics. These models with some applications 

[22], for example, in the study of spontaneous ignition used by the loss adjustors, have raised 

a lot of research and pratical interest in last twenty years. 

One feature of this type of singularity is that as the blowup time T is approached, 

changes in the solution occur on increasingly smaller length scales and on increasingly smaller 

time scales. When the length scale of the singularity approaches that of the spacing between 

mesh points, the accuracy of a %xed mesh computation will diminish significantly. To 

compute such singular behaviour accurately, it is essential to  use a numerical method which 

adapts the spatial mesh as the singularity develops. 

In this chapter, we use the moving collocation method developed in the previous 

chapter to  study a few problems with blowup phenomena. 

2.1 Degenerate Blowup Problems 

In [lo], it has been shown that  moving mesh methods developed in [29] are efficient and 

successful in resolving the spatial feature of the blowup problem 



CHAPTER 2. NliMERICAL STUDY O F  BLOIVUP PROBLEMS 

In this section we study a model for a fluid in a channel wit.11 a tempera.ture depentfcltt. 

source derived by Ockendon f39]: 

In Floater [IT]: it is shown that if uo(x) is sufficiently la.rge then the solution of (2.2) 

blows up and that if p 5 q + 1 the blowun point is at the origin so that there is a sequence 

x,(t) - 0 such tha.t u(x,(t), t )  4 rn as t --; T where T is tke blowup time. It is conjectureif 

that if p > q + 1 then blow-up occurs a t  an interior point x, # 0. Accordingly we esa,~lzine 

the two cases q = 2,p = 3 and q = 1 , p  = 3. The empha.sis here is to resolve the blowup 

structure without esploiting the analytic results. 

2.1.1 Blowup at the origin when q = 2 , p  = 3 

Assuming the blowup point sb is the origin, the equation (2.2) is invariant under the rescaling 

and a natural set of variables to use are coordinates related to the rescaling with y = 2, p = 3. 

Accordingly we set 

1 1 
s = -log(T - t), y = (T - t)-ax, w(y,.s) = u ( T -  t ) i ,  (2.6) 

Under this change of variables, (2.2)-(2.4) becomes 

where K is a constant. 

First we look for an analytic asymptotic form for the blowup. Following the method 

adapted in [6], we seek an  approximately seu-similar solution in the form 

Y w = g(s) f ( r ) ,  where a = - 
ds)' 

(2.8) 



CHAPTER 2. NUMERICAL STUDY OF BLO lVUP PROBLEMS 

To allow a consistent asymptotic expression we require that 

g ( s )  - W) s - 00. 

Using (2.81, (2.7) reads 

-2 
rC 

- - ( z f z  4 + f > + f 3  = -g-4 f z z  + g g - 3 ( f  - ~ f , ) ,  

For large s ( t  close to  T ) ,  (2.9) implies that (2.10) reduces to  

whose solution is 
1 2  

f( ') = Zd-7 

and considering higher order terms in (2.10) to the leading order, we get 

where A is a constant. Combining the above results we get the conjectured asymptotic 

solution profile for u: 

1 1 2 
v(x,t) = -(T - t ) - 5  

J5 1 4  
7 (2.14) 

J1 + A4(T-t)jllog(T-t)II 

which in turn implies that the maximum value of v is 

the maximum point of the asymptotic solution is 

and 

To corroborate the above conjectmed soltition, we compute the solution of (2.2) with 

initial data uo(x) = 20sinsx and the following parameters: T = in MMPDEfj (1.12), 

smoothing index ip = 1 which means a three point averaging for spatial smoothing, absolute 

error tolerance rtol = lo-' and relative error tolerance at01 = low5 for the ODE solver 
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Figure 2.1: uZ(O,t) us u function of T - t 

DDASSL. It has been shown in 1101 that for the success of the computation it is important, 

t o  choose a monitor function which preserves the scaling invariance. We choose 

: q+Z) (p - -1 )  
:kf = u 2 (2.18) 

which makes (1.12) invariant under (2.5). Actually, no choice of monitor f u l ~ t i o ~ i s  of the 

form M ( u ,  u,) can make other moving mesh equations listed in section 1.3 irlvariatlt under 

(2.5) if T is kept constant. For q = 2, p = 3 ,  (2.18) reduces to .U = u4. 

Figure 2.2: Relationship between u,,, and T - t 

From (2.17), we have 

~ ( 0 ,  t)-= = 2(T  - t j 
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Figure 2.3: Relationship between x, and T - t 

which implies that if u,(O, t ) - 5 s  plotted as a function of time t ,  the result should be a 

straight line with slope -2. This is confirmed in figure 2.1. In principle, this output can be 

used t o  estimate the blowup time T. 

From (2.15), we readily obtain 

1 
where e is a constant. In figure 2.2, we plot log (u,,,(T - t ) ~ )  versus log(1 log(T - t )])  

based on the estimate T - t = 112 . w,(O, t)-2 from (2.17). Clearly, near the blowup time 

(2.20) holds, i.e., our computation matches the magnitude of the solution near blowup time. 

In figure 2.3. log ( r . ( ~  - t ) - t )  is plotted against log(/ log(T - t)l). Comparing with 

(2.16), it demonstrates that our computation captured the blowup point accurately. 

From (2.13) and (2.16), we can find that 

is independent of time. This implies that the spatial feature of the solution, as described 

by (2.21), ic independent. of time near blowup time T.  In figure 2.4, we present u / ~ , ,  as 

a f~inction of If = s/r, for times when u,, = 1.2 x 104,6 x lo3, 3 X lo3, 1.5 X lo3, 7.5 x 

10'. 3.75 x lo2. It demonstrates reasonable convergence towards (2.21). 



Figu~e 2.4: Asympfotic solution profile as a jzlnctiorr of s/x' 

2.1.2 Blow up at an interior point when q = 1,p = 3 

In this case, close to the blowup point, the equation (2.2) effectively Lccolnes 

which is invzriant, with the absence of boundary conditions, under the  rescaling: 

where xb is the blowup point. 

MMPDEG (1.12) is invariant under (2.23) if 

Therefore, we use this as our monitor function. 

In [lo], i t  was shown that close to the peak the computed solution U ( [ ,  1 )  and cnor- 

dinate transformation s(c, t) for (2.1) can be represented as 

where W(C) and y(() are independent of time t .  For the case q = l , p  = 3, 



Figure 2.5: Smled solution as a junction of the computational coordinute 

which implies that, as a function of the computational variables, the scaled solution u/u,,, 

has the asymptotic form COS(Z([ - 1/21). 

In figure 2.5. we present this scaled numerical solution obtained using a smoothed 

version ,\I of the monitor function. In the computation, we used 41 mesh points, the 

snmotiliitg index ip = 1: ternperal smoothing parameter T = lo-", and the error tolerance 

for DDASSL at01 = rtol = with initial condition uo(z )  = 100sin(srx). The result 

appeals to deviate from the profile given in (2.26). This can be accounted for by the fact . 

that the analysis was carried out for (2.22) (which is an approximation of (2.2)! ), but the 

conlprrtation was done for (2.2) itself. 

1Vorth noting is that. with different initial conditions, no obvious change in the spatial 

feature as a function of the computational coordinate was observed, but the blowup point 

fin t h e  physical coordinate) does change. as shown in figure 2.6 where the resulting spatial 

profih when /lu/l.z; = 1-6 x lo" are given- The relationship between local structure of the 

initial roitdition and the blowup point is not yet clear. 

There is evidence shewing that bhlarv-up time is dosely related to the L2 norm rather 

than the infinity norm 11 - 11, of the initial conditions. In principle, the numerical method 

cotrid be wed to reliably determine r b  and T as functions of the initial data, but we do r,ot 

do this here since no rigorous analytic results can be used t o  compare with. 
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Figure 2.6: Blowup point changes for several different initial conditions: s l :  100 sin(n:c), 
s2: lOOx(1- x)e-=: s.3: lOOx(1- x)e-il-") 

2.2 A Blowup System 

In this section, we consider a blowup system defined by: 

with 

modelling heat propagation in a two-component combustible mixture. This system 11 as beerr 

studied by Escobedo and Herrero and others (cf. [15] and references therein). It hiis beerl 

shown in [15] that when pq > 1 and (y$l)/(pq- 1) > N / 2  with y = max{p,  g )  and N is the 

dimension in space, nontrivial solutions of (2.27) blow up in finite time. 111 this study, we 

shall restrict our attention to the one-dimensional case, i.e., N = 1. Since to the autlm's  

knowledge little is known about the solution behavior of (2.27) and virtually no  corn pu tntion 

has been done, we will first- carry out a formal analysis, and some computativr~a! results will 

be compared with the analytic calculation. 
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2.2.1 A Formal Analysis 

The system (2.27) is invariant under the transformation: 

T-iT= X ( T - t ) ,  

2 - x f  = W ( 2  - x z ) ,  

, = ~ - ( ~ + ' ) / ( ~ 9 - 1 ) ~ ,  

= X - ( f T f  l ) l ( ~ q - ' ) ~ ,  

where a' is the blowup point. Since U ( T  - t ) ( p + ' ) / ( ~ f T - ~ )  and v(T 

under (2 .28 ) ,  we can assume 

where 

y = ( X  - ~ = ) ( 2 '  - t ) - 1 / 2 ,  

s = - log(T - t ) .  

Then (2.27) becomes 

( P  + ~ M P Y  - l ) f  + f, + 112 f ,  = f,, + gp, 

Cq + ~ M P Y  - l ) g  + g, + 1 /29 ,  = g,, + f4 ,  

which has the constant solutions 

Here, and /3* satisfy 

( p  + I)@:+' = (q  + 1 ) ~ ; ~ ~ .  

To seek a n  approximate self-similar solution, we assume 
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where $1 and P2 are affixed t o  d and Z!I to simplify future algebra. Substituting into (2.32), 

we have 

To keep consistent with the b l ~ w u p  nature of the solution, we assulne furthcr that 

which implies that,  near blowup time, (2.38) reduces to 

Substituting (2.33) into (2.39): we get 

whose solution is 

where c is a constant depending on the initial conditions. Actually, there might be other 

solutions to  (2.40), but our computational results suggest that,  near blowup time, 

Substituting (2.29), (2.301, (2.35), (2.36) into (2.43) and using (2.33), we have 

The only solution of (2.40) that satisfies (2.44) is (2.41) and (2.42). 
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Consideration of higher order terms in (2.38) reveals that $ and have the same 

order as .s-', and we have ( to  the leading order) 

where A is a constant. 

The monitor function, which, again, keeps (1.12) invariant under (2.28), can be 

or any linear combination of n ( p q - ' ) / ( p + * )  and v ( p q - ' ) / ( q + l ) .  We use the monitor function 

(2.36), which is used in our computations, to deduce the mesh behavior. Combining (2.41), 

(2.35) and (2.29), we have 

where k = -$. Substituting (2.47) into (2.46), we arrive at the following asymptotic form 

for h4: 

Integrating MMPDEG 

with respect t o  [, t,he mesh transformation x ( t ,  t )  satisfies 

Integrating again uskg the boundary conditions 

for the mesh transformation, we find 

B ( t )  = - Mdx,  
0 
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but for blowup solution u(x, t ) ,  the integral is asymptotically dominated by the contribution 

from the blowup peak. Thus, 

The asymtotic formula (2.38) yields, 

PP--l x*+€ 
-PIp+' (T -  I)-' J (1 + k-*)-ldZ 

x*-€ 

As t i T, the integral limits in the above integral tend to infinity; hence, 

From (2.31), (2.37), and (2.45), we know that 

Substituting (2.48), (2.51), a.nd (2.52) into (2.49), after some simplifications we have 

where the lefthand side is relatively very small if T << 1 and can be dropped. Therefore 

and 
7 = - tan(.@ - (*I) 

& 
Now (2.52), with boundary ccndition (2.50), implies that 

This condition with (2.53) i~nplies that 
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So (2.52) becomes 

Su  bst.ituting this into (2.47), we obtain 

Similarly, 

In conclusion, we conjecture from the formal analysis that  the solution to  (2.27) has 

the form (2.54) and (2.55). In the next subsection, we shall justify this form numerically. 

2.2.2 Computational Results 

In the following, all computations, starting with a uniform mesh, except where specified, 

are carried out with the following parameters: 41 mesh points, atol = 1.d - 8 ,  rtol = 1.d - 8, 

r = l .d - 5, ip = 1. Also (2.46) is used with the moving mesh equation (1.12). 

Figure 2.7: For p=3, the slope is 2 and 4/3 respectively for q=l and 2. For p=4, the slope 
is 5/2, 5/3, 5/4, respectively, for q=l ,  2 and 3 

From (2.54) and (2.55!, the formal analysis implies that 



Figure 2.8: Scaled solutions as functions of the ignitionnl kernel,p=3, q=2 crnd y=3, q=l 

Figure 2.9: Scaled solutions as functions of the ignitional kernel, p=4, q=l and p=4, q--2 

which we confirm by plotting log(umaX) as a function of log(v,,,j. The function should 

be asymptotically a straight line with slope s. This is shown to be true in figure 2.7 fur 

p = 3 and p = 4, respectively. 

Also, (2.41) and (2.42) imply that asymptotically 

where z is the ignitional kernel 

This is demonstrated in figures 2.8, 2.9. In figure 2.8, ;r" and & are approximately 

fixed functions of z,  and two reference curves clearly show that (1, = $2. In figure 2,!>, we 
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Figure 2.10: Sculed solutions as functions of the computational coordinate, p = 3, q = 2 

Figure 2.11: Scaled solutions as functions of the computational coordinate, p = 3, q = 1 

demonstrate that (2.56) and (2.57) are true for other combinations of p and q. Actually, 

our computational results show that ( p  + l)uq+l = ( q  + l)vP+'. 

Another result from (2.41) and (2.42) is that asymptotically 

This is shown to  be true in figures 2.10, 2.11 for some combinations of p and q. 

During the computations, we also observed that the physical blowup point may change 

in accordance with the relative magnitude and local structure of the initial conditions. But a 

discussion of the relationship between the blowup point and the initial conditions is beyond 

the scope of this study. 
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Figure 2.12: A decayirzy solution 

Figure 2.13: Relationship between u,,, and v,,, while decaying 

In [15], it has been also shown that if pq 5 1, then the solution is global, i.e., no b lowup  

occurs. When we tried some computations with pq = 1, even witlz large i~iitial conditio~ls 

the solution decayed, as shown in figures 2.12 and 2.13 for p = 2, q = 112. 'SIE ir~itial 

condition used here is uo(x) = 100 sin(7ix): vo(x) = 20000 sin(nx). For other con~biilat~iolrs 

of p and q with pq < 1, similar results are obtained. 

It  is interesting to observe that if pq > 1 but (y + l)/(pq - 1) < 112 (ill tl1c3 onc! 

dimensional case) with y = max(p,q), the solution behaviour is mixed (as predicted i r k  

[Is]). For p = 4, q = 3, with initial condition uo(x) = 4.75 sin(ax), vo(xj = .9 sin(nx),  a 

blowup solution with magnitude u,,, = 5 x lo4 is observed while witlz initial condition 

uO(x) = 4.5 sin(rx), vo(x) = .9 sin(rx) the soltition decayed. 

The above results demonstrate that our method not only can cornputc the blowup 

solutions accurately but can also automatically distinguish between blowup and non-hlowtlp 



CHAPTER 2. NUMERICAL STUDY OF BLOWUP PROBLEMS 

solutions. 

2.3 Blowup in a Set 

In this section, we coasider the initial value problem 

with 

u(2,O) = u0(2), x E R', 

where a > 0 is a constant. 

Assurne the initial condition (2..59) satisfies 

uo(x) 2 0: uo f 0 in R1; M1 = sup uo < + w ;  

ug(a) is uniformly Lipschitz continuous in R' ; 

supp uo(z) r {x E R ~ ~ U ~ ( X )  > 0) is a bounded set, 

where MI and M;! are positive constants. 

It is well known ([I91 and references therein) that, under the above hypotheses, the 

Cauchy problem (2.58),(2.59) has a unique local (in time) weak solution u(x, t)  which is a 

nonnegative continuous function. Since uo f 0, this solution blows up in finite time [20]. 

The blow-up set is defined as 

B = B ( U - ~ )  r { x E RII there exists s, -, x and t, + To 

such that u(x,, t,) + +cu, as n -, co). 

Equation (2.58) is invariant under the self-similar transformation 

It has been shown [19] that assuming the blowup set is centered at 0, i.e. x* = 0, equation 

('2.55) admits the (blow-up) self-similar weak solution 



Here 

is the so-called fundament.al lengt 11. 

In the numerical computations ~vhich are described below, we change thc ('aurl~y 

problem (2.58) into an initial-boundary vaiue problem with boundary condjtjon 

where L and R are the left and right end of an interval in which (2.59) is defined. Actually, 

in the following computations, we choose L = -5 and R = 5. 

As a monitor function, we take 

which makes the MMPDEG (1.12) invariant under the transformation (2.61 ). 

From (2.63), we know that the blowup set is 

which is independent of the initial condition as long as (2.60) is satisfied. 

In figure 2.14, we present a solution with magnitude u,,,, = 1.0 x 10%omputcd for 

a = 2 using (1.12) as the moving mesh equation, with the followjng parameters: N = 41, 

at01 = 10-~,r tol  = 10-lo, T = lo-? In the figure, the curve "Sl" stands for the solut,ior: 

obtained with the initial condition uo(rc) = 0.01(5 - xj2(5 $ x ) ~  (which is the curve "11'' ill 

the figure), whose support contains the btowiip set. The solution 5 2 "  is obtained with tlw 

initial condition uo(z) = 10(1 - x ) ~ ( I  + x ) ~  (t.he curve "12" in  the figure) whose support, 

is contained in the blowup set. As showu in the figure, both solution profiles match t k c  

solution c o s ( 2 )  predicted by (2.63) for a = 2, and the blowup set obtained matches that 4 
given in (2.64). 
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Figure 2.14: Blowup in a set: solution profile 

From (2.62) and (2.63), we know that 

i.e., u&g, is a linear function o f t  near blowup time with the slope -(,#)-I. For o = 2, 

the slope is -4/3 z -1.333. This is shown to be approximately true in figure 2.15 for 

computations with four different initial conditions. 

Figure 2-15 Blowup in a set: magnitude 

For other a values, similar results can be obtained with properly chosen parameters. 

The moving mesh method has been shown to  be successful [lo] in computing the solution 

lor blowup problems. In this chapter, this method is used on several blowup problems. 
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In section 2.1. we studied a degenerate blowup problem. Compared with the asy~np- 

totic analysis, our nlethod gives accurate prediction of spatial blowup featum, cspccially 

the blowup point and the blowup time. In principle, our method can be used to study tltr 

delicate relationship between the initial conditions and the blowup time and point. 

We study a blowup system in section 2.2. IVith the help of the numerical c o ~ i p u -  

tations, we completed a fp-ma1 analysis for tlie system. The insight gained from thc corn- 

putations plays an impor ta t  role in the analysis. We also demonstrate that our ~ttcthod 

automatically distinguishes between blowup and nonblowup solutions, making it reliablc far 

studying other problems with possible blowup solutions. To tlie author's linotvledge, this is 

the first extensive numerical study and asymptotic analysis for such systeins. 

Another challenging problem for numerical computation, heat conduction wit 1 1  t c ~ n -  

perature dependent ccnductivity and nonlinear forcing, is studied in section 2.3. This proh- 

lem evidently has blowup in aset ,  and the computed blowup set matches with that pretlictctl 

by asymptotic analysis. 



Chapter 3 

Moving Mesh Method and 

Conservation Laws 

In this chapter, we consider the scalar conservation law 

There is an exterisive literature concerning numerical methods for (3.1), however adaptive 

approaches seem to be underrepresented. A recent study of adaptive methods for solving 

j3. i)  is by Bell [Tj. He used a static mesh refinement method based on a sequence of nested 

locally uniform grids. His method depends on local error estimation and the efficiency of 

his method is problem dependent. Biswas and co-workers [8] studied (3.1) with a hybrid 

of rnovirtg mesh and local refinement methods. Their emphasis is on the local mesh refine- 

ment, their global mesh motion does not always work well, and incorrect mesh movement 

rnay occur. X static mesh regridding method was studied by Lucier [35]. Harten and Hyman 

studied (3.1) with a self-adjusting mesh [23]. Actually, Harten and Hyman's approach is 

to compute the solution on a >zed mesh by adjusting the ends of the intervds on which 

the computed solution is a piecewise constant approximation to  the exact solution. Their 

srhenres do not perform very well in rarefaction regions, and in some cases noticeable non- 

physical osciIIations can be observed. In this chapter, we study (3.1) with our moving mesh 

methods. The motivation is t o  study the sensitivity of t.he computations to  the spatial 

discretizatioas and find out how adaptive viscosity is provided by the moving mesh meth- 

ods. 'The moving mesh method has previously been shown t o  be successful for conservation 

taws with artificial viscosity tern f29], [MI, [45]. But the artificial viscosity term smears 
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the solution, and the difficulties of computing possibly discontinuous \veak solutions are 

not overcome but avoided. The purpose here is to investigate the possibility of designing n 

moving mesh equation for inviscjd conservation laws. 

In section 3.1. we compare the computations on a fixed mesh with those on an adaptive 

mesh t o  uncover the mechanism that keeps moving mesh computatiens stable. In section 3.2, 

a new Godunov type adaptive method of lines approach to conservation laws is dcvclopcd, 

and some computational results are shown to demonstrate the performance of this new 

method. 

3.1 A Finite Difference Approach 

In this section, we study the method of lines approach for conserva.tion laws with a.rtificial 

viscosity term on both a fured mesh and a moving mesh. 

In the first chapter, we haw shown that ada,ptive methods are based on the coordinate 

transformation (x, tj  - (t, t) .  After this transformation, conservation law with artificia.l 

viscosity term, 

U t  + ( f  ( 4 ) s  = EUxx, (3.2) 

becomes 

73 - U,X + ( f ( u j ) ,  = CU,,. 

Several spatial discretizations can be used to approximate the first order spat,ia.l 

derivatives in (3.3). We use the following two to make our comparisons. 

1. (3-point) Centered finite differences: 

where fj := f (u;j. - - The truncation error is 

which is of the magnitude of the larger one of xj+l  - xj  and x j  - xj-1 if one is much 

larger than the other. 
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2. (3-point) Varied centered finite differences: 

Using the Taylor's expansions 

where Axl := x j+ l -  xj and Ax2 := x j  - xj-1, adding (3.5) times Ax2 and (3.6) times 

AxI ,  we obtain (3.4) with a local truncation error 

This scheme will reduce to  the standard centered finite difference on a uniform mesh. 

The uxx term in (3.3) is approximated by 

whose truncation error is 

In the computations which follow we specify our flux function f ( r )  = $, that is, we 

use inviscid Burgers' equation: 

% +  (;) =o ,  (3.8) 
x 

as our ba.sis problem for numerical experiments. 

1% first test our spatial discretizations on a uniform mesh for viscous Burgers' equa- 

tion: 

with the initial and boundary conditions 



Figure 3.1: 6 = 1.d - 3 with fixed uniform mesh 

Figure 3.2: r = 1.d - 2 with fixed unifornz mesh 

In the computations, we used 40 fixed uniform mesh points and absolute and relative error 

tolerance at01 = rtol = 1.d - 6 for DDASSL. In this case, varied centered finite differenws 

is identical to  centered finite differences. 

Two results are presented in figures 3.1 and 3.2 for computations with cenlercci fillitde 

differences for both u, and (f (u)), terms in (3.3) with 6 = 1.d - 3 and c: = 1 .d - 2, 

respectively. In the figures; solid lines denote the refereace so!utic?ns r?btail:ed by c o u p h g  

(3.9) with MMPDE4 (1.10) with parameters T = 1.d - 5, ip = 1, rtol = at01 = 1 .d - 6, 

E = lod3 and arclength monitor function J.f = d m .  
There are two things worth noting here: 

1. In the computation with r = 1.d - 3, large oscillations in the solution arc obscrvc-td 

while with r = 1.d - 2 the solution is oversmoothed. This phenomena clearly shows the 

dilemma with artificial viscmity: it is difficult to determine the appropriate amorint for 
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the  artificial viscosity that introduces just enough dissipation to  preserve monotonicity 

without causing unnecessary smearing. 

2. I-tecall that, with proper moving mesh methods, the computation with centered finite 

differences is successful with similar parameters [29] while a fixed mesh fails, we can 

conjecture that some aduptire viscosity was introduced by the moving mesh equation. 

In other words, one important function of the moving mesh methods is to introduce 

viscosity adaptiuely. 

Now, we turn our attention to the moving mesh method for conservation laws. With 

the above observation in hand, assuming the moving mesh equation can be solved exactly, 

we can undo the change of variables introduced and transform (3.3) back to (3.2), and no 

additional terms are introduced. This reveals that no adaptive viscosity will be produced 

by the first two terms in (3.3) independent of the moving mesh equation chosen, or adaptive 

viscosity comes from spatial discretization of the derivatives in (3.3). 

Bow, let us consider the discretization of (3.3). If a centered finite difference is used 

in (3.3), we obtain 

The leading t.erm of the truncation error in (3.10) is 

- xi) - (x; - 

- xi) - (xi - xi-l)) 

- xi) - (x; - xi-l)) 

where - xi) - (zi - xi-l)) can be regarded as a second order approximation to A['@. 
-. ~nerefore, the soiution obtained by (3.10) is actually, to a higher order of approximation, 

the solution of: 

It is clear from (3.11) that the adaptive viscosity of moving mesh methods comes in from the 

numerical viscosity, the second derivative terms in (3.11). With centered finite difference 

discretization for (3.2) the conservation law with artificial viscosity term, the moving mesh 



Figure 3.3: Varied centered,finite disference for u,, E = 10- 3 

method is implicitly an adaptive viscosity method. The adaptivity depends heavily on 

the mesh distribution (3). Thus, a carefully chosen monitor function and movi~g  nlesli 

equation will be essential to  the success of the moving mesh methods. 

A varied centered finite difference (3.4) for u, (but centered finite diffcre~zcc for f (u),) 
2 

eliminates the second term and introduces another dispersive term - ($) iu,,, 011 the 

right hand in (3.11). A computational result using MMPDEG (1.12) as the moving 111cs1i 

equation, arclength monitor function, and E = lov3, is shown in figure 3.3 with time t = 0.3 

(other parameters are the same as before). Compared with the reference solution, the solid 

line in the figure, the shock falls far behind and some oscillations are observed. The presence 

of oscillations indicates that the viscosity is insufficient to damp the artificial dispersion (the 

last term in (3.11)). Similarly, a varied centered finite difference for ( ~ ( z L ) ) ,  eliminates the 

V a m  m w d  - 6 I I r r u  (or Uw 

i 
I 

7 I- 
Figure 3.4: Varied centered finite difference for f (u),, r = lo-" 
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Figure 3.5: iVumerical approximation of u,j 

2 
third term and introduces another term - (s) f,, on the right hand side in (3.11). 

Computational result shows a shock faster than the reference solution with large oscillations 

(see figure 3.4). 

Notice that at tbhe corner point where u,, and $ are relatively large (compared with 

smooth region), numerically u. << u,, (see figure 3.5), EU,,, << u,,, 

2 f = fuu  -212 + f u  - uxx 
M f u - U x x .  

Under this approximation the right hand side of (3.11) reduces to 

which implies that if the mesh speed is drifting away from the characteristic speed fu ,  some 

viscosity is added at the corner points. It is not yet clear whether this property may lead 

to  an ent.ropy condition (which guarantees the computed solution is the physical solution 

[33]) as 6 - 0. The above varied centered finite difference discretizations apparently lack 

an entropy condition as evidenced by the computed shock speed drifting away from the 

physical speed and the generation of the oscillations. 

Row, let us consider the effect of decreasing E on the efficiency of the moving mesh 

methods with centered finite difference discretization. Typical integration behavior for dif- 

ferent 6's (with MMPDEG (1.12) as moving mesh equation, arclength monitor function 

M = \[-$. and 7 = low5) are listed in table 3.1. It shows that min Ax N E and At N t.. 



Table 3.1: Comparison of temporal and spatial steps with different c 

Figure 3.6: Mesh behavior of inviscid conservation law and c = 

il'ot surprisingly, the computation without the artificial viscosity term cu,, or 6 = 

0 collapses. In figure 3.6, we plot log(Ax), where Ax, = x, - x,-1, a t  different 1nes11 

points for computations with (1.12) as moving mesh equation and T = before tlrc time 

step reaches lo-'. An examination of the mesh distribution plot reveals that the rnesl~ 

distribution becomes too far away from uniform mesh with Ax, << Ax,+l at some points, 

which greatly complicates the above analysis and necessitates the inclusion of higher order 

terms. 

In summary, the finite difference approach to the colrservation laws requires artificial 

viscosity to  keep the computation stable. When 6 becomes very small, the method bccornes 

inefficient. Noticing that,  with the arclength monitor function, many mesh points are located 

in the shock region (so called over-resolved shock) with min Ax N c ,  the resolutio~r to 

the shock is smeared. Proper spatial discretization is required to obtain a nonoscillatory 

physically correct weak solution. 
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3.2 A Godunov Type Approach 

In this section, we consider conservation laws without artificial viscosity (3.1). First of 

all, we derive an ODE for the cell average of the solubion for conservation law (3.1) in an 

adaptive environment based on a Godunov type approach. 

ntl 

Figure 3.7: Goduniv type schemes in an adaptive envirment 

Considering the adaptive mesh shown in figure 3.7, we consider our computed solution 

uf as the average of the exact solution u ( s ,  t )  over [x7 , , x ; + ~ ]  at time t,, and define 
3-5 

zl(x,t)  as the exact solution for the conservation law with pointwise function o ( z )  (which 

is either piecewise constant or piecewise linear with cell average U;) as the initial condition 

for t ,  < t < t ,  + At, where At is a small time step. Taking an approach similar to  

that used by Godunov [33], we notice that,  for piecewise constant i?(x), the exact solution 

G(z, t ) ,  t ,  < t < t, + At  can be obtained by solving a sequence of Riemann problems and 

piecing together these Riemann solutions. For piecewise linear o ( x ) ,  G(x, t )  can be obtained 

by solving the conservation law (3.1) with a piecewise Linear initial data. If we define U j ( t )  

as the cell avera.ge of G(Z, t )  for t ,  < t < t ,  + At,  we have 
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Differentiating (3.13) with respect to t ,  we have 

Since ii(x,t) is the exact solution, we can use (3.1) and (3.13) to obtain 

therefore, the ODE fm Uj(t) in conservative form is 

where the quantity f (ii(zj*;, t)) + Uj(t) . xi*+ (t) plays the role of the flux function. A 

s i l a r  flux function was used by Harten and Hyman in [23], Assuming the existence of 
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5(x, t), the above derivation is independent of the definition of the initial pointwise function 

e ( s ) .  The same derivation carries through for a system of conservation laws in one spa.ce 

dimension without any modification. 

Now, we define our adaptive Godunov type schemes. 

1. adaptive Godunov scheme: 

Definiting o (x )  = U?, x E [xn , , x;++], i.e. reconstructing the solution at t = t, 
J-T 

in a piecewise constant faskion, C(x, t) can be obtained by solving a sequence of 

Riemann problems and piecing together the solutions. Noticing that xj+ (t) ;;. 

xn , + t i j++(& + At),&. < t < t, + At and L(x,t) is a constant along the line 
.I+ 5 

x(t) = xn , + t i j + +  (t, f At),& < t < t, + At if no interaction occurs between J+ 5- - 
neighbouring Riemann problems, we can reasonably approximate ii x I (t), t) in ( J+5 

(3.14) by that constant. Thus, G(xj++(t),t) in (3.14) can be approximated with 

u* (kj+; (t); u;, o;+;) where u*(x/t; q, uT) is the solution of the Riemann problem 

We call this first order scheme an adaptive Godunov scheme. 

2. adaptive Osher scheme: 

We ca.n also reconstruct the solution at t = t, in a piecewise linear fashion, i.e., 

ci(z) = u7 + +,(z - z:), x E [xn , , z n  ,], where u-j is the slope limiter defined by 
3-5 3 + ~  

and the minmod function is defined as 

( a,  if la1 < 161 and ab > 0, 

minmod(a,b) = b, if la1 > Ibl and ab > 0, 

0, if ab < 0. 

Unfortunately, the esact solution i i (x , t ) ,  which is now a solution of a nonlinear initial 

d u e  problem with piecewise linear initial data, is hard to  obtain, even in the scalar 
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case. However: there are various ways to obtain approximate solutioils ~vhicll arc 

sufficiently accurate that second order accuracy can be maintained [21], [33], [40]. 11y 

following Goodman and Osher's approach in [21], we obtain an approximation to t h e  

exact solution l(x j+ +, t ) ,  

where again uX(x/t; ul, u,) is the solution of the Riemann problem (3.15) and 

This kind of reconstruction of the solution was extensively sttidied by Osher [.10] i n  

the context of fixed meshes; we call this approximation an adaptive Osher schenm 

To simplify the calculation of ii(x,t), which requires solving a sequence of Rictmann 

problems, we require the following condition which prevents the neighboring R.iernann prob- 

lems from interacting: 

x7 , + A t  max 
3-? 

where of-, := lim,+.,- , 6 := + U ,  and OL and U P  are sirnila~.ly 
2 1-3 3-5  3 - 3  I +  $ 3+ $ 

defined, which leads to  

For a system of conservation laws, the derivatives ff(.) in (3.16) would he replaced by 

corresponding eigenvalues of the Jacobian matrix of f (u),. 

Obviously, defining U(Z) in terms of higher order polynomials and approximating 

i i (z , t )  accordingly will resdt  in a higher order approximation [Ill, [24], but this is not the 

concern of our study. 

For Burgers' equation, the Riemann problem for ur > u, has the shock solution 

if x < st,  
u(2, t )  = {:: i f z > s t ,  



where s = (.ur $ u T ) / 2 .  For ui < u,  one solution is given by the rarefaction 

Tliis lcads to the following definition of u X ( x / i ;  vl, u,) ,  

In our computations with the adaptive Godunov scheme and the adaptive Osher scheme, this 

Riemann solution (3.17) will be used. For problems without an explicit Riemann solution, 

approximate Riemann solvers, for example. Roe's approximate Riemann problem solver [33], 

can he used in the place of u S ( z / t :  ul: u,). 

To avoid over-resolving the shock. we modify the arclength monitor function for the 

moving mesh method t o  

where u is a small parameter which controls the number of mesh points in the shock region. 

Sotice that the modification in (3.18) makes the monitor function continuous in x even in 

the shock region while the arclength monitor function Jq becomes discontinuous in a 

shock region since u l  - [x. 
?Ve solve the invicid Burgers' equation (3 .8 )  by coupling (3.14) with our moving mesh 

equation MMPDE6 (1.12). Two computed results shown in figures 3.8 and 3.9 are obtained 

with the following parameters: o = 80 mesh points, T = lo-*, ip = 4 indicating a 9 

point smoothing. and absolute and relative error tolerance for DDASSL ~ t o l  = at01 = 1W6.  

The solid lines in the figures are the reference solutions obtained by a method of lines 

approach with Osher's scheme with 1000 fixed uniform mesh points with the same error 

tolerances. For the adaptive Godunov scheme, a small deviation in shock position can be 

obscrved, hut bearing in mind that the Godunm scheme is a first order approximation, we 

consider this deviation acceptable. For the adaptive Osher scheme, the shock is perfectly 

resotwd and its position matches with the reference solution. 

'The author is grateful to Dr. Keith Promklow for the suggestion of this new monitor function. 



Figure 3.8: Aduptire Godurlov jor incicid Burgers* cqucltioil 

Figure 3.9: Adaptive Oshcr for invicid Hurprs'  ~(juclfion 

During the computations, we also observed min Ax - a/10 indiciit i~ ig  a rrwlr~tiotr o f  

the shock with the magnitude a/10, and typically At - mill Ax/10. 

Presented in figures 3.10 and 3.11 are the mesh trajectories of a cornyrtt i i t i f t i t  wit 11 t Iw 

adaptive Osher s c h e ~ e .  As shown in figure 3.10. the modification of the inorlitor f~r~lctiolr 

(3.18) avoids over-resolving the shock by forcing some of the rnesh points out of ttic. 5hoc.k 

region. Some mesh oscillations can also be observed indicating tirc r twvs i t y  of a twt tcbr 

moving mesh equation. ?Vorth mentioning is that when the shock tut~clct~es tlw right wid 

of the physical interval, shown in figure 3.11, we experienced some wry small time* xltAj)s 

(- 10-'). The possible reason for this  phenomenon is that we wed spatial sinoc,thi~rf: (a  
.n 
Y - ~ C J ~ I ~  averaging is nsed tiere) to regularize the distribntion of itie i i i e h  j i 4 i i  t ~ .  aiii! ~ j i c i i  

there are only a few points ( say, < 4) left before the shock, where the rnorritor fr~ncticl~i t; ik~s 

large d u e ,  more time steps are needed t o  propagate the information abollt the r ~ m i  t o r  



Figure 3.10: Mesh trajectory of adaptive Osher scheme, 0 < t < 1 

hnction to other mesh points so as 10 move the mesh points backward. The time integration 

alst-. takes a few small steps when a mesh point needs to be moved out of the shock region, 

c.g., near the blowup time \+-hen u, begins to  approach infinity. 

Figure 3.11: Xesh trajectory of adaptive Usher scheme, 1 < t < 1.5 

Typical performance of the method for the time period 0 < t < 1 is summarized 

in table 3 2  where the column S contains the number of mesh points used, NTS contains 

the number of tinre steps, RES contains the number of residue evaluations, JAC contains 

the number of Jacobian evaluations, and CPv contains the computer time used for the 

computation. Compared with a fised mesh method of lines approach, which is used to 

obtain rhe reference solution. our method Is reasonably more efficient t o  reach the same 

resolt~tion of the shock, but the new method is less efficient compared with previous moving 

mesh cortzputatio~ls with artificial viscosity terms [29]. However, our emphasis in this study 

is to show how to compute a possibl~ discontinuous solution with the moving mesh method. 



Table 3.2: Performance conzparisoiz of fixed mesh cornputution and Godu~zov (~ppro(irk, *: 
shown i n  figure 3.8; i :  shown in  figure 3.9. 

Figure 3.12: Comparison of co-ordinute trclnsformatio~zs 

,I 
I 

3 Fixed Mesh Osher (MOL) 
hdap  tive Gcdunov 

In figure 3.12, we compare the coordinate transformation, dictaked by the ~ e w  nio~iitor 

function (3.18) with CT = of a computation with the adaptive Osher scheme h r  illviscid 

Burgers' equation (3.8) and that,  dictated by the arclength monitor functiou Ad = mT, 

~ n i n A z  / NTS / RES / JACTCTU~ 

of a computation with a centered finite difference (CFD) scheme for viscid Hurgc!rs' equ,abiou 

(3.9) with c = At time t = 0.1.5 (before the blowup time): the two transformations 

are almost the same. After the formation of the shock ( t  = 0.3) the new approacl~ put ,  only 

lo-" - lo-3 - low3 

S 1 r 
1000 1 

a few mesh points in the shock region while the CFD computation moves morr! 1ncs11 ~miuts 

into the shock region t o  keep the computation stable as implied by (Z.12). 
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3.3 Summary and Discussion 

In this chapter, we study the conservation laws with the method of lines approach and mov- 

ing mesh nwthods. It is shown that with the finite difference approach an important feature 

of the moving mesh method is to  provide viscosity adaptively, and for viscous conservation 

laws with centered finite difference discretization the moving mesh methods are, implicitly, 

cqtiivalcnt to adaptive viscosity methods. 

Although proven t o  be successful and efficient for some problems, moving mesh meth- 

ods based on moving rnesh PDEs should, in general, be used with caution. For certain 

problems not all spatial discretization are permissible. 

A new Godunov type approach for conservation laws with adaptive meshes is devel- 

oped and shown to be successful in shock resolution. -1lthough improvement in efficiency 

may he required, it shows the potential of moving mesh methods for conservation laws. 

For problems without explicit Riemann solutions. an  approximate Riemann problem 

solver can be used to approximate E(x, t )  in (3.14): and a new moving mesh equation may 

be required to improve both the accuracy and efficiency. Notice that we had used a linear 

(first order) approximation for xj+;(t)  in the derivation of the methods. One possible 

irnprove~nent may be t o  define a moving mesh equation such that 

.i. . 1 ( t )  = cn 
I +  g 3+$'  

t, < t  < t, t At, 

where c';' is a, constant in the interval t ,  < t  < t ,  + At which depends on the solution . + 5 
profile a t  time t = t,, perhaps selected by equipartition of some monitor function. Such a 

method could be more a,ccurate. This approach may also lead to  improvement in efficiency 

with this redefinition of the moving mesh equation. 

In principle, the idea of cell averaging ca,n he used in higher dimensional cases with 

some a.dditiona1 difficult.ies. The  approximation to the exact Riemann solution may provide 

clues for possible moving mesh equa.tions in higher dimensions. 



Chapter 4 

Concluding Remarks 

In this thesis, we studied blowup problems and conservation lalgs with moving rllesll nlct hotis 

based on MMPDEs. 

For blowup problems, basically reaction-diffusion equations. moving 1ues11 nletliotls 

are successful. The cornputationa! ,?sults agree with our amlysis. Due to tlw problern- 

independent nature of the moving mesh equations, a properly chosen monitor function, 

which preserves the invariant property of the physical equation, is required for tlw success 

of the computations. We show that the blowup point and time can be accurdely captured 

by movin5 mesh methods. 

A formal analysis is carried out for a blowup system. The relationsllip betwccri 

the two components is confirmed by the computations. Our computations also sliow that, 

with proper monitor function, moving mesh methods can automatically disti~~guish bet,wcp~~ 

blowup and nonblowup solutions. Thus moving mesh methods are ideal for stutlyirtg I~ lowup 

problems. Moving mesh methods are used to  compute the solution of a problem with I~low~ip 

in a set. The results provide an accurate description of the blowup behavior. 

A finite difference approach for viscous conservation laws was show~r to hc succt:ss- 

ful. Our analysis shows that, for viscous conservation laws, with centered finite djffcrcnr:c? 

discretization, moving mesh methods implicitly adapt the artificial viscocity. fjut propcr 

spatial discretization is cruicial for the success of the computations. With varied ccnterctl 

finite difference, which is one order higher for nonuniform meshes, the method fails to givc 

correct shock speed and fails t o  preserve stability. Although an increase of the pararnet,cr 

r will increase the time step, it is impossible to keep the computation stable wjtltoi~t the 

artificial viscocity. For invicid conservation laws, the time step could be too s1r1aI1 to be 
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practicable and some artificial viscocity is necessary. IVhen moving mesh methods are used 

with invicid conservation laws, the mesh distribution becomes too far away from uniform 

and the analysis becomes much more complicated. 

Generally speaking, caution must be taken when moving mesh methods are to be 

used. An a priori error analysis for different spatial discretizations may be very helpful and 

ofter necessary. 

Sew adaptive Godunov type schemes for conservation laws are developed and they 

are shown to  be successful in efficiency and shock resolution. Further development in this 

direction is a good topic for future study. 
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