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Abstract

Moving mesh methods have been shown to be successful in last few years for time-dependent
partial differential equations with large solution variations, especially for blowup problems.
In this thesis, we use the moving mesh methods based on moving mesh PDEs to study
a few blowup problems and conservation laws. In chapter 1, we briefly go through the
development of the methods. The equidistribution principle, from which the moving mesh
PDEs are deduced, is introduced. In chapter 2, studies of the blowup problems are carried
out. Some of the formal analysis of the problems is compared with our computations to show
the performance of the method. In chapter 3, the methods are used on conservation laws,
where discontinuous solutions and large variations in the first derivatives are expected. It is
shown that, with proper spatial discretization, the moving mesh methods implicitly adapt
the artificial viscosity while other spatial discretizations may fail to give physical solutions.
Some of the problems encountered are discussed. New adaptive Godunov type schemes for
conservation laws are developed and the performance of this approach is demonstrated by
computations. We give a summary of the conclusions and remarks in chapter 4. Some ideas

for future study are also suggested.
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Chapter 1

Moving Mesh Methods

1.1 Method of Lines

When considering the time-dependent PDE initial-boundary value problem:

u = f(u), a<z<b 0<t<T, (1.1)

u(z,0)= g(z), a<z<b (1.2)

where f is a first or second order spatial differential operator with suitable boundary con-
ditions at a and b, we have two common approaches to compute the numerical solution.
The first is to discretize the PDE both in time and space, usually on a fixed uniform spatial
mesh. This method changes the PDE into an algebraic system by replacing the partial
derivatives with finite differences. We obtain the numerical solution by solving the resulting
algebraic system. Another approach is the so called method of lines (MOL) approach or
semi-discrete method. In this approach, we discretize the PDE in space or in time only. In
the transverse method of lines, we discretize in time and get a system of ODEs in spatial
variables with boundary conditions, i.e., an ODE boundsry value problem. Discretization
in space leads us to a system of ODEs with initial conditions. The numerical solution can
be obtained by solving the ODE initial value problems. The latter is often referred to as
the longitudinal method of lines.
The possible advantages of MOL are:

1. By separating the problems of space and time discretization it is easy to establish

stability and convergence.
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2. The powerful numerical techniques for solving ODEs, such as dynamical regridding of
the stepsize which maintains stability and desired time integration accuracy, can be
directly applied to the PDE case. Existing ODE software neatly reduces programming

effort.

3. Using an MOL approach, one needs only be concerned with discretizing spatial deriva-
tives. Solving the ODEs very accurately permits comparison of the accuracy and

efficiency of different approximations of spatial derivatijves.

The possible disadvantages of an MOL approach are that the reduced ODEs may
hecome very stiff and overall optimization of the method may be lost by decoupling the
analysis of the space and time discretization.

This method of lines approach, which separates the spatial and temporal variables
makes possible the use of different meshes at different time levels. It is our goal to exploit
this property of the method of lines approach to develop adaptive mesh methods and apply
them to a selection of scalar degenerate blowup problems, a nonlinear coupled system, and

scalar conservation laws.

1.2 Moving Mesh Methods

It has been amply demonstrated that significant improvements in accuracy and efficiency
can be gained by adapting mesh points so that they are concentrated about areas of large
solution variation. For problems with large solution variations, viz. shock waves, layers, and
single point blowup, constructing an adaptive mesh in time can be essential if the problem
is to be solved efficiently, and often if it is to be solved at all.

There are many ways to adapt the meshes. The two most popular are:

1. Local refinement methods:

Mesh points are added or deleted according to the profile of the solution and the local

eTTorsS.

2. Moving mesh methods:

A fixed number of mesh points move adaptively to minimize a selected monitor func-

tion which is an estimation of the errors of the solution.
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A combination of the two methods is also possible [1].

A difficulty with local refinement methods for certain problems, e.g. those with a
single point blowup. is that the total number of the mesh points may increase drastically,
compounding the difficulty of the computation [6]. Moving mesh methods are especially
attractive for this kind of problems, and they will be the focus of cur attention in the
sequel.

Almost all moving mesh methods are based on a Lagrangian type approach which
is best introduced via a co-ordinate transformation. Considering the PDIE (1.1), let (£,1)
be new independent variables linked with the old independent variables (x,t) through a
co-ordinate transformation z = z(¢,t). Denoting v(f,t) = u(z,t), the total derivative of v

is 0v/0t = du/0z dx /0t + Ou/Ot, and the Lagrangian form of (1.1) reads

Jdv  Oudzx . o
—87_%—8_{+f(v)’ £, <E<&, 0<t<T. (1.3)

The basic idea of the Lagrangian approach is to choose the variables (£,t) so that the
problem is easier to handle numerically than for the original pair (z,?). For equations with
large variation in solutions, a standard MOL approach in original variables (,1) wounld
require the ODE solver to take small time steps to maintain stability. With the above
Lagrangian approach, ideally, if a suitable nonuniform z-grid exists according to the change
of variables z = z(£.t), we can then take acceptable step sizes in the time direction while
using a coarse uniform &-grid in space. The variables (z,t) and (&, ) are called the physical
and the computational co-ordinate variables respectively.

Moving mesh methods can be roughly divided into two categories: static and dy-
namic. In the static approach [32], each time step consists of two computational stages: a
step involving the application of a stiff ODE solver to an augmented semi-discrete system,
followed by a second regridding stage in which a redistribution of points at the forward
time level is carried out and the solution is then interpolated to the new mesh. Although
it is highly reliable and robust, the very frequent regriddings prevent the integration pro-
cedure from exploiting the attractive, higher order BFD formulas of the ODE solver and
interpolations can cause perceptible loss of spatial accuracy [18].

Among moving mesh methods, the moving finite element methods developed by Miller
and his co-workers [36], [37], [38] are perhaps more elegantly formulated in mesh movement
than moving finite difference methods. However, their methods require properly choosen

parameters, which are highly problem dependent, to ensure proper governing of the mesh,
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and some measures have to be taken to avoid node overtaking and singular mass matrices
[18]. In contrast, one of the objectives in the recent development of the moving finite
difference methods is to uncover a mechanism to select the spatial mesh more automatically.
Moving finite element methods are beyond the scope of this thesis, and a more detailed
analysis can be found in [4], [5] and [48].

In this study, we take a dynamic approach for the moving mesh based on the idea of
Dorfi and Drury [14] which is recommended in [18] for its simplicity and insensitivity to the
parameters. With a moving mesh approach, we augment the physical equation {1.3) with a
moving mesh equation, which will be detailed in the next section. The system in Lagrangian
co-ordinate variables is solved by a stiff ODE solver, DDASSL [41]. Because the solution
and the mesh can be solved simultaneously, no regridding and interpolation is necessary,
and the integration of the ODE solver will not be interrupted so that we can benefit, to a

large extend, from the efficiency of the ODE solver.

1.3 Equidistribution Principle and Moving Mesh PDEs

In computations with moving mesh methods, the most important consideration is the deci-
sion of how to automatically and stably choose a nonuniform mesh which suitably adapts to
the solution behavior. Unfortunately, the resolution of this issue has been proven to be very
difficult. Although a few mesh selection principles have been suggested in the literature [18]},
(25], [32], the problem of which overall strategy to use and how to best choose the mesh for
a given strategy is still controversial [18].

Among various moving mesh methods, the most popular is based on the idea of
equidistribution first introduced by de Boor [9] and Dodson [13]. A number of moving mesh
methods have been developed in the literature [1}, [2], [16], [26], [27], [44], [45], and almost
all are based on the equidistribution principle.

The idea behind the equidistribution principle is that if some measure of error M(z),
also called the monitor function, is available, then a good choice of amesh 7 :a = zp < 27 <
.-+ < n = b would be one for which the contributions to the error over the subintervals are
equally distributed. Without loss of generality, we assume the computational coordinate £

is in the unit interval [0,1] and a uniform mesh is given on the computational domain by

Ei==, i=0,1,...,n

(4
)
n
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In the one dimensional case, for a chosen monitor function M(z,t) ( > 0 ), the equidistri-
bution principle can be expressed in its integral form [43] as:

z(£:1)

/ M(E,1)d3 = €6(1) (1.1)

a

where
:
6(¢) :j M(z,t)dz.

a

By differentiating (1.4), several MMPDEs have been derived in [28] based on the
equidistribution principle. In the following, we briefly go through their derivation for com-
pleteness and for future reference.

Differentiating (1.4) with respect to £ once and twice, we obtain

M (a(6,0),0) 5 4(€. 1) = 60

and 5 5
EE AJI("E(Ev t)'v t)-(%:c(g,t)} =0, (15)

respectively.

By differentiating (1.5) with respect to time ¢ and expanding, we have:

g, .0t 0 0M, d 0M 0z

(MMPDE1) e M 30+ 5656 ™) = ~ 2 (G ag )

(1.6)

The moving mesh methods used in [12], [16], [44], and [45] are equivalent to or closely

related to (1.6). In (1.6), -@8% can be regarded as the source of the mesh movement [2§].

Unfortunately, in actual applications 22 is often hard or impossible to compute.
PP 3t p p

Instead of requiring that the mesh satisfy (1.6) at time ¢, we may require that (1.5)

is satisfied at a later time t + 7, i.e.,
ad a .
EE{J\/I(z(E,t+‘r),t+‘r)5£—:c(£,t+T)}_O. (1.7)

This can be regarded as a condition to regularize the mesh movement.
By using the second order expansion and dropping the higher order terms in (1.7),

we obtain

a, 0k 8 M. 3§ aMdz. 19 . dc
(MMPDE?) e Mge)+ ~a¢ 5 58) ~ 7 oe M 7E)

52(*56—1) = (1.8)
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Compared with (1.6), (1.8) contains the additional term

19, 0z

which implies that in (1.8) some deviation from equidistribution is acceptable.

Two other MMPDEs based on (1.8) in [28] are

9* 10,, 0z
MMPD —(Mz)= ——=(M—= .
(MM PDE3) S M) =~ (M50, (19)
2nd 9 9 o 0
( T 1 T
MMPDE4 —(Mz=)= -5z (M 55). 1.10
Anderson [2] derived another moving mesh PDE:
(MMPDES) i = %%(Mg—z), (1.11)
based on attraction and repulsion pseudoforces.
in [1] Adjerid and Flaherty used a method equivalent to the discrete form of
2 .
(MMPDESG) 07 19 3,92 (1.12)

ez~ T roe e
Remarks:

1. In the above derivation, the process of differentiation implicitly assumes that z(¢,?)

nearly satisfies (1.5) which is generally not always true in actual computations.

2. Almost all MMPDEs are obtained without considering the physical properties of the
phenomena modelled by the physical equation. However, information about the phys-
ical situation may be recorded through a properly chosen monitor function, as demon-

strated in next chapter.

1.4 Moving Collocation Method

In this section, we give a detailed explanation of the moving collocation method, used to
study so-called blowup problems. A different numerical method will be used in chapter 3
to study conservation laws.

It is known that moving mesh methods can be unstable, and some sort of smoothing of

the mesh is often necessary in order to obtain non-oscillatory, accurate solutions. Actually,
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(1.7), which leads to MMPDE2, 3, 4, and 6, can also be regarded as a kind of temporal
smoothing, where the relaxation time 7 controls the speed of the mesh. As for spatial

smoothing, instead of the monitor function M, a smoothed monitor function defined by

M—%%:M (1.13)
is used in the moving mesh equations. Replacing M in (1.10) with M and using (1.13), we
get

o (- %3) w5
% i %S =0, (1.14)

The smoothed moving mesh equation (1.14) has some desired properies. It has been
proven in [30] that (1.14) and its discrete analogue leads to longterm regularity of the mesh,
no node-crossing will occur and the level of perturbation from equidistribution decreases.

In actual computations, a moving collocation approach, motivated by the idea that
the mesh points do not need to be resolved with the same accuracy as the solution to
the PDE itself, is used. In this approach, the MMPDEs are discretized in £ with 3-point
finite differences on a uniform mesh, the physical PDE(s) are discretized in z with Hermite
cubic collocation on the corresponding nonuniform mesh, and the resulting system is then
integrated.

Consider a second-order parabolic PDE in divergence form [31]

a , . \
F(t,z,u, g, ug, Upz) = —a-;G(t,a:,u, Uz, Ug, Urt), zrp(t) <z <zp(t), 0<t<T. (1.15)

In the collocation method, for a given mesh z,(t) := z1(t) < z2(t) < --- < zp(t) := zn(1),
the solution u(z,t) for z € [z;(t),zi41()],i = 1,..., N — 1 is approximated by

v(2,1) = ()1 (sD) + vz i (O Hi(ba(s) + viga (s(sD) + v (D Hi(1)a(sV),
where v;(t) and v, :(t) denote approximations to u(z,-(t), t) and u,(zi(t),t), respectively,
st = (2 — i)/ Hi(t), Hi(t) := zina(t) - zi(t),

and the ;s are the standard shape functions of cubic Hermite interpolation.
Taking a cell average for (1.15) on each half of [z;, z;}1], we get
(zitzig1)/2 Titl
Fis =Gy =G, [ Fdo=Gin=Ginp,  (116)

T (zitzig1)/2
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where
Gi =G lzt)y, Git1y2:= G l(witzip)/aeys  Git1 = Gz ) -
Approximating F piecewise linearly
FaF g, (z—2i2)/(zia — 2i2) + F |z (&= zi1) /(i ~ i),
in (1.16), where z;; and z;; are two collocation points given by
Iil(t) = :l:,'(t) + SlHi(t), fl?ig(t) = l‘i(t) + SQH,'(t), (1.17)
s :=05(1-1/v3), s; :=0.5(1+1/V3), (1.18)
and integrating with the two point Gauss quadrature formula, we have
Fl(_.,_.mt)Hi(QSz - 0.5)/4(s2 — s1) + F](In’t)H,'(Oﬁ —2s81)/4(s2 — 51) = Gi+1/2 - Gi,(1.19)
Fl(z,)Hi(252 = 1.5)/4(82 = $1) + Fl(z;,,1y Hi(1.5 ~ 251)/4(s2 — $1) = Giy1 ~ Gigay2-
Solving for F' |(z;, 1 and F [z, 1) in (1.19) using (1.18), we get the collocation discretization
of the physical equation (1.15):
Fliegg= (1/H) (-(1+2/V3)Gi+ (4/V3)Giprp + (1= 2/V3)Gin)
Flzpn= (1/Hi) (—(1 -2/V3)Gi — (4/V3)Gip12 + (1 + 2/\@)0141) .

From the smoothing of the monitor function (1.13), we have

. , 02 -t
With properly chosen A,

(1-A722) 7 % 142728 + (A2A2 4+ (A2,

where A = 53—{23. It is argued in [30] and [29] that, with centered finite difference approxi-

.- - N Mg ~M;_ . .
mation for A, i.e. AM = ’?!f;Tz,L{l‘ the smoothed monitor function can be computed by

a suitable combination of neighbouring values of M. Here we use

L onr ()"
M; = "”fﬂ ( )Ik_q (1.20)
Z ni

TH

k=1—-p
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where 7 is a smoothing parameter[30]. Usually we takey = 2, and p is a nonnegative integer
which we often refer to as the smoothing index ip in following chapters. The summations
in (1.20) are understood to contain only those elements with indices in the range of zero
and the number of mesh points used. The moving mesh equations are discretized by 3-point
finite differences. For example, the discretization o1 (1.14) is

1 . . . 1 ﬂtf,'_H + ﬂjf,‘ J\jf,' + 1\71‘,'__1
(T — 22+ Tia) = = | (i — T) - o (z — ri)|
(7 Gim ~ 2+ &) = — 2 57 (@i = ) = a7 (- i)



Chapter 2

Numerical Study of Blowup

Problems

Many partial differential equations modelling physical phenomena have solutions which blow
up (become infinite) in a finite time. The equations are basically of reaction-diffusion type
arised from combustion theory and thermodynamics. These models with some applications
[22], for example, in the study of spontaneous ignition used by the loss adjustors, have raised
a lot of research and pratical interest in last twenty years.

One feature of this type of singularity is that as the blowup time T is approached,
changes in the solution occur on increasingly smaller length scales and on increasingly smaller
time scales. When the length scale of the singularity approaches that of the spacing between
mesh points, the accuracy of a fixed mesh computation will diminish significantly. To
compute such singular behaviour accurately, it is essential to use a numerical method which
adapts the spatial mesh as the singularity develops.

In this chapter, we use the moving collocation method developed in the previous

chapter to study a few problems with blowup phenomena.

2.1 Degenerate Blowup Problems

In [10], it has been shown that moving mesh methods developed in [29] are efficient and

successful in resolving the spatial feature of the blowup problem

U = Uy + up, p>1. (21)

10
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In this section we study a model for a fluid in a channel with a temperature dependent

source derived by Ockendon [39):

z9uy = ugy + u?, (2.2)
u(0,t) = u(1,t) =0, (2.3)
u(z,0) = up(z) > 0. (2.4)

In Floater [17], it is shown that if uo(z) is sufficiently large then the solution of (2.2)
blows up and that if p < g + 1 the blowup point is at the origin so that there is a sequence
z.(t) — 0 such that u(z.(t),t) — oo as t — T where T is the blownp time. It is conjectured
that if p > ¢ + 1 then blow-up occurs at an interior point z. # 0. Accordingly we examine
the two cases ¢ = 2,p = 3 and ¢ = 1,p = 3. The emphasis here is to resolve the blowup

structure without exploiting the analytic results.

2.1.1 Blowup at the origin when ¢=2,p=3

Assuming the blowup point z is the origin, the equation (2.2) is invariant under the rescaling

T—-t= MNT-1t),
4= )\'(q+2)2ip—15u, (2.5)
I—xp= )\q_jri(a:—zb),

and a natural set of variables to use are coordinates related to the rescaling with ¢ = 2,p = 3.

Accordingly we set
s=—log(T-1), y=(T- t)"i'a:, w(y, s) = u(T — t)%, (2.6)

Under this change of variables, (2.2)-(2.4) becomes

2
W, = wyy — 2(ywy + w) + 07, (2.7)

K
w(0,s) =0, w(y,s) — ;—, y — 00,
where K is a constant.
First we look for an analytic asymptotic form for the blowup. Following the method

adapted in [6], we seek an approximately self-similar solution in the form

w = g(s)f(z), where 2z= (2.8)

¥y
g9(s)’
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To allow a consistent asymptotic expression we require that
g(s) =+ 00, s — 0. (2.9)
Using (2.8), (2.7) reads
L2
—Z(Zfz+f)+f3 = _g—4fzz+gg_3(f“'zfz)- (210)
For large s (¢ close to T'), (2.9) implies that (2.10) reduces to
52
- GEE N+ ff=0, (2.11)

whose solution is

1 z
zZ) = -———-—-——-——-, (2.12
&= 5= (212)
and considering higher order terms in (2.10) to the leading order, we get
g(s) = Ast, (2.13)

where A is a constant. Combining the above results we get the conjectured asymptotic

solution profile for u:

(a0 = -1— —t)3 ‘ , (2.14)
VI st
which in turn implies that the maximum value of v is
1
vmax(t) = 5(T = )7 - 4] log(T — 1)|3, (2.15)
the maximum point of the asymptotic solution is
z.(t) = (T — 1)+ - Allog(T — t)|3, (2.16)
and
1 1
v.(0,1) = —=(T —1)"=. 2.17
vz(0,1) \/—2—( ) (2.17)

To corroborate the above conjectured solution, we compute the solution of (2.2) with
initial data ug(z) = 20sin#z and the following parameters: 7 = 1077 in MMPDES6 (1.12),
smoothing index ip = 1 which means a three point averaging for spatial smoothing, absolute

error tolerance rtol = 102 and relative error tolerance atol = 10~° for the ODE solver
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x*2 U t=U_xx + U3
T T T

0.0003 v
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0.00025 - -t

0.0002 -

Ux{0.4p(-2)
°
&

0.0001 ¢

3 29205 40105 58105 50;05 0,0‘001 D.N;OYZ 0.“‘”14 0.00018
Figure 2.1: u.(0,%) as a function of T — t

DDASSL. It has been shown in [10] that for the success of the computation it is important
to choose a monitor function which preserves the scaling invariance. We choose

{g+2)(p~1)
2

M=u (2.18)

which makes (1.12) invariant under (2.5). Actually, no choice of monitor functions of the
form M(u,u,) can make other moving mesh equations listed in section 1.3 invariant under
(2.3) if T is kept constant. For ¢ = 2,p = 3, (2.18) reduces to M = u*.

*2 U_t=U_xx + U3
T r

0.95

il T v
*p3g2e3t,
09 + 4

085 -

08 -

Log{ Umax (T-1}4{1/4) }

075 +

F 22 24 26 28 3 32 34 36
Log(t Log(T-0 1)

Figure 2.2: Relationship between wmax and T — t

From (2.17), we have
v:(0,8) 2 = 2T ~t) (2.19)
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x2U_t=U_xx+ U3
T T T

T
‘P3q2e3t ——

155 »

Logl x* {TAW-14) )

X : . "
2 22 24 2.6 2.8 3 3z a4 36
Log(iLog(T-9)1)

Figure 2.3: Relationship between z. and T —t

which implies that if u.(0,¢)2 is plotted as a function of time ¢, the result should be a
straight line with slope —2. This is confirmed in figure 2.1. In principle, this output can be
used to estimate the blowup time 7.

From (2.15), we readily obtain
1 1
log (tmax - (' — £)7) = 7 log (log(T = 1)) + ¢, (2.20)

where ¢ is a constant. In figure 2.2, we plot log (umax(T - t)i') versus log(]log(T — t)|)
based on the estimate T — t = 1/2 - u;(0,t)~2 from (2.17). Clearly, near the blowup time
(2.20) holds, i.e., our computation matches the magnitude of the solution near blowup time.
In figure 2.3, log (z,.(_T - t)‘%) is plotted against log(|log(T" — t)|). Comparing with
(2.16), it demonstrates that our computation captured the blowup point accurately.

From (2.14) and (2.16), we can find that

o(€zat) s € _
—1’—;:-—\/5\/1—;—5—4 L h(€) (2.21)

is independent of time. This implies that the spatial feature of the solution, as described
by (2.21), i< independent of time near blowup time 7. In figure 2.4, we present u/umax as
a function of £ = z/z. for times when upax = 1.2 X 10%,6 x 103,3 x 103,1.5 x 103,7.5 x

102,3.75 x 102. It demonstrates reasonable convergence towards (2.21).
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X2 U t= U xx « U3
T v

09 +

[+2:-3 3

07 &

06 +
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UfUmax

o4t

03

0.2 H

[
b
b

X%

Figure 2.4: Asymptotic solution profile as a function of x/z~

2.1.2 Blow up at an interior point when ¢ =1,p =3

In this case, close to the blowup point, the equation (2.2) effectively becomes

(Ib)qut = Uzr + up7

which is invariant, with the absence of boundary conditions, under the rescaling:

T-i= MT-1),
1

U= A -1 U,

1 .
T—zp= AZ(z— 1),

where z; is the blowup point.
MMPDESG (1.12) is invariant under (2.23) if

M=t

Therefore, we use this as our monitor function.

(2.22)

(2.23)

(2.24)

In [10], it was shown that close to the peak the computed solution U(£,1) and coor-

dinate transformation z(€,t) for (2.1) can be represented as

1

U(E,t) = (T —8)"TIW(E), z(£,1) =24 + (T - 1)2|log(T ~ 1)|23(¢),

where W(£) and y(€) are independent of time . For the case ¢ = 1,p = 3,

W(©) = () cos(a(€ - ).

(2.25)

(2.26)
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x U= Ux« U3

——

cos(pi(x-5)} —

Uimax

a8

08 1

xi

Figure 2.5: Scaled solulion as a function of the computational coordinate

o 2 1 1
y(&) = 2\, g(il’b)'f tan(7 (£ — 5)%

which implies that, as a function of the computational variables, the scaled solution u/umax
has the asymptotic form cos(z{£ — 1/2)).

In figure 2.5, we present this scaled numerical solution obtained using a smoothed
version M of the monitor function. In the computation, we used 41 mesh points, the
smoothing index ip = 1, temperal smoothing parameter 7 = 107>, and the error tolerance
for DDASSL atol = rtol = 1078, with initial condition ug(z) = 100sin{xz). The result
appears to deviate from the profile given in (2.26). This can be accounted for by the fact
that the analysis was carried out for (2.22) (which is an approximation of (2.2)! ), but the
computation was done for (2.2) itself.

Worth noting is that, with different initial conditions, no obvious change in the spatial
feature as a function of the computational coordinate was observed, but the blowup point
{in the physical coordinate) does change, as shown in figure 2.6 where the resulting spatial
profiles when {ju}j.c = 1.6 x 10* are given. The relationship between local structure of the
initial condition and the blowup point is not yet clear.

There is evidence showing that blow-up time is closely related to the L? norm rather
than the infinity norm || - || of the initial conditions. In principle, the numerical method
could be used to reliably determine ry and T as functions of the initial data, but we do not

do this here since no rigorous analytic results can be used to compare with.
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Figure 2.6: Blowup point changes for several different initial conditions: si: 100sin(rz),
s2: 100z(1 — z)e™=, s3: 100z(1 — z)e~ =7

2.2 A Blowup System
In this section, we consider a blowup system defined by:

Ug = Ugg + VP,

Vg = Vpp +u! (2.27)
with

u(z,0) = ug(z) > 0,
v(z,0) = vo(z) > 0,

modelling heat propagation in a two-component combustible mixture. This system has been
studied by Escobedo and Herrero and others (cf. [15] and references therein). It has been
shown in [15] that when pg > 1 and (y+1)/(pg—~1) > N/2 with v = max{p,¢} and N is the
dimension in space, nontrivial solutions of (2.27) blow up in finite time. In this study, we
shall restrict our attention to the one-dimensional case, i.e., N = 1. Since to the author’s
knowledge little is known about the solution behavior of (2.27) and virtually no computation
has been done, we will first carry out a formal analysis, and some computational results will

be compared with the analytic calculation.
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2.2.1 A Formal Analysis

The system (2.27) is invariant under the transformation:

T-t= MT -t),
g~z"= A/%z—z7),
= A-(P+1)/(pa=1)y
7= ,\—(q+l)/(pq~1Jv,

18

(2.28)

where z” is the blowup point. Since u(T ~1)(P+1)/(Pa=1) and (T —¢)(9+V/(Pa=1) yre invariant

under (2.28), we can assume
u(z,t)= (T - 1)~ EHD/ee=1) f(y, s)
v(z,1) = (T — 1)~ et/ (Pa=1)g(y, s)
where
y= (z—z")(T —-1)"1/2
s = —log(T - t).

Then (2.27) becomes

(p+ 1)/(pq - 1)f+ fs + 1/2fy = fyy + gp’
(¢+1)/(pg—1)g+gs+1/2g9, = gyy + [9,

which has the constant solutions

f -3, = (p+1)P3—1 (q+1)pq-1
— M = pFI ?
(pg—-1)Pe~!

(g+1)P3—-1 (p+1)pg—!
I1 :

9EL
(pg—1)Pa~1

g=105 =

Here, 3, and (; satisfy
(p+1)87"" = (¢ + 1)B5*.

To seek an approximate self-similar solution, we assume

f(y,s)= ﬂlgé('a(_ysj)y
9(y,8) = Ba(5E),

- 3
a(s)?

>
4

(2.29)
(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
(2.36)
(2.37)
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where (1 and j, are affixed to ¢ and ¥ to simplify future algebra. Substituting into (2.32),

we have

Brllp+ 1)/ (g~ 106~ 26:% +1/226. — 60 = 7,

Bal(g+ 1)/ (pg - 1)¥ - :ug +1/22, — $.a”?) = B, (2.38)
To keep consistent with the blowup nature of the solution, we assuine further that

a(s) — oo as s — oo,

a(s) — 0, as s — oo,
a(s)

which implies that, near blowup time, (2.38) reduces to

Billp+ 1)/(pg - 1) +1/22¢.] = B3P,
Bal(g+ 1)/ (pg— 1)+ 1/2z40.] = B{¢f. (2.39)
Substituting (2.33) into (2.39), we get
(p+1D/(pg— )¢ +1/226, = Erpyr,

(g+ 1)/(pg— 1) +1/22¢, = e, (2.40)

whose solution is

= —Lo, (2.41
(1+cz2)%+‘1r )

¢ - 1 b 2.42
- 242
where ¢ is a constant depending on the initial conditions. Actually, there might be other
solutions to (2.40), but our computational results suggest that, near blowup time,
(p+ D™ = (g + 1)oPt. (2.43)
Substituting (2.29), (2.30), (2.35), (2.36) into (2.43) and using (2.33), we have
éﬂ‘]‘l - ¢P+l. (2.44)

The only solution of (2.40) that satisfies (2.44) is (2.41) and (2.42).



CHAPTER 2. NUMERICAL STUDY OF BLOWUP PROBLEMS 20

Consideration of higher order terms in (2.38) reveals that -f;’ and a~? have the same

order as s7!, and we have (to the leading order)
a(s) = As'/?, (2.45)

where A is a constant.

The monitor function, which, again. keeps (1.12) invariant under (2.28), can be

M = yP-1/(p+1) (2.46)

or
M = p(Pe=D/la+1),
or any linear combination of u(Pa~1)/(P+1) and v(Pa=1)/(4+1) " We yse the monitor function

(2.46), which is used in our computations, to deduce the mesh behavior. Combining (2.41),

(2.35) and (2.29), we have

_ m*)\2
w(z.0) = Bo(T — 1) B (1 4 o E T ~geeT (2.47)

(T — t)llog(T — )|
where & = . Substituting (2.47) into (2.46), we arrive at the following asymptotic form

for M:
pg-1 (x_x*)z

M=8 " (T-t)"Y1+k -1, 2.48
1 ( ) ( (T—t)[log(T-—t)]) ( )
Integrating MMPDEG
0% 0 Oz
L (M=
"oe = "aeMae)
with respect to £, the mesh transformation z(&,1) satisfies
Integrating again using the boundary conditions
z{0,1) = 0, z{1,t) =1 (2.50)

for the mesh transformation, we find

8() = — /0 ' Mz,
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but for blowup solution u(z,t), the integral is asymptotically dominated by the contribution
from the blowup peak. Thus,

T*+e
0(t) = - / Mdz.

T*—e€
The asymtotic formula (2.48) yields,

pa-1
0(t) = -8 (T -7 f (1 + kT "[i‘)'ilog‘r o) da

T*—€

pect . , (T oo h
= =B (T —1)"2|log(T - t)|2 S 7 -
—e(T=t)" ¥ llog(T 1)1~

As t — T, the integral limits in the above integral tend to infinity; hence,

pg—1 o 1 Foo
b(t) = =B (T~ 1) 2llog(T ~t)|7 | (14 ky?)~'dy,

-1

= —B7 (T = 1)7%|log(T = 1)]? F. (2.51)
From (2.31), (2.37), and (2.45), we know that
z(£,0) = 2" + (T — )2 |log(T — )] 7 2(€). (2.52)

Substituting (2.48), (2.51), and (2.52) into (2.49), after some simplifications we have

Pae(— s S = B (14 k5 — A
S22 T 2llog(T-0))) T U

where the lefthand side is relatively very small if 7 << 1 and can be dropped. Therefore

(1+k2*) 7z = \—;—Z

- (x(€ - €)
L tan(w (€ — & co
z= NG . (2.53)

Now (2.52), with boundary condition (2.50), implies that

z— —oo, as £&—0; z— 400, as {—1.

This condition with (2.53) imnplies that

. 1
&=3
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So (2.52) becomes

n\m —1
a(6,0) = 2"+ (T = ) flag(r - ) G2

Substituting this into (2.47), we obtain
- 1. ..2p41)
w(z,t) = By(T ~ t)” %=1 [cos(n (€ — D (2.54)

Similarly, )
w(z,t) = Bo(T — 1) 557 [cos(r (€ - 5))]75%1. (2.55)

In conclusion, we conjecture from the formal analysis that the solution to (2.27) has

the form (2.54) and (2.55). In the next subsection, we shall justify this form numerically.

2.2.2 Computational Results

In the following, all computations, starting with a uniform mesh, except where specified,
are carried out with the following parameters: 41 mesh points, atol = 1.d -8, rtol = 1.d — 8,
T=1.d-5,1p=1. Also (2.46) is used with the moving mesh equation (1.12).

Relationship between Umax and Vmax
0 T ™ u T T —

Relatonahp betwsan Limax and Vmax
T ¥ T

30

s 25 |-

Log{Umax)
&

ol

8 7 ] 9 10 1"
Log{ymax} Log(Vmax}

Figure 2.7: For p=3, the slope is 2 and 4/3 respectively for q=1 and 2. For p=4, the slope
s 5/2, 5/3, 5/4, respectively, for q=1, 2 and 3

From (2.54) and (2.55), the formal analysis implies that

Umazr = ﬂl(T - t)‘%

_9tl
Umaxr = ﬂZ(T_t) Pa-1,
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Tigure 2.9: Scaled solutions as functions of the ignitional kernel, p=4, q=1 and p=4, q=2

which we confirm by plotting log(umaz) as a function of log(vmaz). The function should
be asymptotically a straight line with slope % This is shown to be true in figure 2.7 for
p =3 and p = 4, respectively.

Also, (2.41) and (2.42) imply that asymptotically

+1
U0t gy = (14es?) Fen (2.56)
uma.‘l:
v(z,t) . gy L .
—2 2= P(z)= (1+cz") ra-1 (2.57)
Umazx

where z is the ignitional kernel
z=(z—a)|(T — t)log(T — 1)|" 7.

U v

and are approximately

UYUrmnaz Umaz

fixed functions of 2, and two reference curves clearly show that ¢ = 2. In figure 2.9, we

This is demonstrated in figures 2.8, 2.9. In figure 2.8,
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Figure 2.11: Scaled solutions as functions of the computational coordinate, p = 3,q=1

demonstrate that (2.56) and (2.57) are true for other combinations of p and q. Actually,
our computational results show that (p + 1)u?t! = (¢ + 1)vPt1.
Another result from (2.41) and (2.42) is that asymptotically

MED — feostr(e - I
v(€.1) 2(g+1)

= [cos( (£ - —))] Pl

Uma::
This is shown to be true in figures 2.10, 2.11 for some combinations of p and q.
During the computations, we also observed that the physical blowup point may change
in accordance with the relative magnitude and local structure of the initial conditions. But a
discussion of the relationship between the blowup point and the initial conditions is beyond

the scope of this study.
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In [15], it has been also shown that if pq < 1, then the solution is global, i.e., no blowup
occurs. When we tried some computations with pg = 1, even with large initial conditions
the solution decayed, as shown in figures 2.12 and 2.13 for p = 2,¢ = 1/2. The initial
condition used here is ug(z) = 100sin(#xz), vo(z) = 20000 sin(nz). For other combinations
of p and ¢ with pg < 1, similar results are obtained.

It is interesting to observe that if pg > 1 but (v + 1)/(pg — 1) < 1/2 (in the one
dimensional case) with ¥ = max{p, q}, the solution behaviour is mixed (as predicted in
[15]). For p = 4,q = 3, with initial condition ug(z) = 4.75sin(nz),vo(z) = 9sin(nz), a
blowup solution with magnitude uya.y, = 5 x 10* is observed while with initial condition
ug(z) = 4.5sin(wz), vo(z) = .9sin(7z) the solution decayed.

The above results demonstrate that our method not only can compute the blowup

solutions accurately but can also automatically distinguish between blowup and non-blowup
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solutions.

2.3 Blowup in a Set
In this section, we consider the initial value problem

up = (uug )y +u’t,  for z € (—00,+), t>0, (2.58)
with

u(z,0) = ug(z), z € R, (2.59)

where o > 0 is a constant.

Assume the initial condition (2.59) satisfies
ug(z) > 0,40 Z 0 in RY: M, = sup ugp < +00;
ug(z) is uniformly Lipschitz continuous in RY; (2.60)
supp uo(z) = {z € R'|uo(z) > 0} is a bounded set,
where M; and M, are positive constants.
It is well known ([19] and references therein) that, under the above hypotheses, the
Cauchy problem (2.58),(2.59) has a unique local (in time) weak solution u(z,t) which is a

nonnegative continuous function. Since ug # 0, this solution blows up in finite time [20].

The blow-up set is defined as

B = B(up) = { z € R!| there exists 2, — z and t, — Tp

such that u(z,,t,) — +00 as n — oo}.

Equation (2.58) is invariant under the self-similar transformation

T-z"= -z, (2.61)

It has been shown [19] that assuming the blowup set is centered at 0, i.e. z* = 0, equation

(2.58) admits the (blow-up) self-similar weak solution

us(z,) = (To — 1)~ 780,(z) (2.62)
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where
2{c+1) 2/ : L,
Os(z) = [m cos (I:—)] , for Jz| < 5
B:(z) = 0. for |z| > %i (2.63)
Here
I, = 27(o + 1)%

g

is the so-called fundamental length.
In the numerical computations which are described below, we change the Cauchy

problem (2.58) into an initial-boundary value problem with boundary condition
w(L,t)=0, u(R,t)=0

where L and R are the left and right end of an interval in which (2.59) is defined. Actually,
in the following computations, we choose L = —5 and R = 5.

As a monitor function, we take
JI = ua,

which makes the MMPDEG (1.12) invariant under the transformation (2.61).
From (2.63), we know that the blowup set is

L, L,

B=[-2 3] (2.64)

which is independent of the initial condition as long as (2.60) is satisfied.

In figure 2.14, we present a solution with magnitude u,,,x = 1.0 x 10° computed for
o = 2 using (1.12) as the moving mesh equation, with the following parameters: N = 41,
atol = 1078, rtol = 1071°, 7 = 1073, In the figure, the curve “S1” stands for the solution
obtained with the initial condition ug(z) = 0.01(5 — z)%(5 + z)? (which is the curve “I1” in
the figure), whose support contains the blowup set. The solution “52” is obtained with the
initial condition up(z) = 10(1 — z)2(1 + z)? (the curve “I2” in the figure) whose support,
is contained in the blowup set. As shown in the figure, both solution profiles match the
solution cos(vz_g) predicted by (2.63) for o = 2, and the blowup set obtained matches that
given in (2.64).
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Figure 2.14: Blowup in a set: solution profile

From (2.62) and (2.63), we know that

(20 +1)
=(T-1) \a(a + 2)) ’

max

i.e., u% is a linear function of ¢ near blowup time with the slope —(%)‘1. For o = 2,
the slope is ~4/3 =~ —1.333. This is shown to be approximately true in figure 2.15 for

computations with four different initial conditions.

sigma = 2, Reigsonshup between Umax and §
¥ T \ T T
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Figure 2.15: Blowup in a set: magnitude

For other o values, similar results can be obtained with properly chosen parameters.

2.4 Summary

The moving mesh method has been shown to be successful {10} in computing the solution

for blowup problems. In this chapter, this method is used on several blowup problems.
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In section 2.1, we studied a degenerate blowup problem. Compared with the asymp-
totic analysis, our method gives accurate prediction of spatial blowup features, especially
the blowup point and the blowup time. In principle, our method can be used to study the
delicate relationship between the initial conditions and the blowup time and point.

We study a blowup system in section 2.2. With the help of the numerical compu-
tations, we completed a f~~mal analysis for the system. The insight gained from the com-
putations plays an importeant role in the analysis. We also demonstrate that our method
automatically distinguishes between blowup and nonblowup solutions, making it reliable for
studying other problems with possible blowup solutions. To the author’s knowledge, this is
the first extensive numerical study and asymptotic analysis for such systems.

Another challenging problem for numerical computation, heat conduction with tem-
perature dependent cenductivity and nonlinear forcing, is studied in section 2.3. This prob-
lem evidently has blowup in a set, and the computed blowup set matches with that predicted

by asymptotic analysis.



Chapter 3

Moving Mesh Method and

Conservation Laws

In this chapter, we consider the scalar conservation law

us + (f(u))z = 0. (3.1)

There is an extensive literature concerning numerical methods for (3.1), however adaptive
approaches seem to be underrepresented. A recent study of adaptive methods for solving
(3.1) is by Bell [7]. He used a static mesh refinement method based on a sequence of nested
locally uniform grids. His method depends on local error estimation and the efficiency of
his method is problem dependent. Biswas and co-workers [8] studied (3.1) with a hybrid
of moving mesh and local refinement methods. Their emphasis is on the local mesh refine-
ment, their global mesh motion does not always work well, and incorrect mesh movement
may occur. A static mesh regridding method was studied by Lucier [35]. Harten and Hyman
studied (3.1) with a self-adjusting mesh [23]. Actually, Harten and Hyman’s approach is
to compute the solution on a fired mesh by adjusting the ends of the intervals on which
the computed solution is a piecewise constant approximation to the exact solution. Their
schemes do not perform very well in rarefaction regions, and in some cases noticeable non-
physical oscillations can be observed. In this chapter, we study (3.1) with our moving mesh
methods. The motivation is to study the sensitivity of the computations to the spatial
discretizations and find out how adaptive viscosity is provided by the moving mesh meth-
ods. The moving mesh method has previously been shown to be successful for conservation

laws with artificial viscosity term [29], [44], [45]. But the artificial viscosity term smears

30
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the solution, and the difficulties of computing possibly discontinuous weak solutions are
not overcome but avoided. The purpose here is to investigate the possibility of designing a
moving mesh equation for inviscid conservation laws.

In section 3.1, we compare the computations on a fixed mesh with those on an adaptive
mesh to uncover the mechanism that keeps moving mesh computations stable. In section 3.2,
a new Godunov type adaptive method of lines approach to conservation laws is developed,
and some computational results are shown to demonstrate the performance of this new

method.

3.1 A Finite Difference Approach

In this section, we study the method of lines approach for conservation laws with artificial
viscosity term on both a fixed mesh and a moving mesh.

In the first chapter, we have shown that adaptive methods are based on the coordinate
transformation (z,t) — (£,t). After this transformation, a conservation law with artificial
viscosity term,

w4+ (f(w))z = €ugg, (3.2)

becomes
@ — ur + (f(u))r = €tys. (3.3)
Several spatial discretizations can be used to approximate the first order spatial

derivatives in (3.3). We use the following two to make our comparisons.

1. (3-point) Centered finite differences:

fiv1 = fia

2
Ti+r — T5-1

(fr)] ~
where f; := f(u;). The truncation error is

f"(w)
2

((zj41 —z5) — (2 - zj-1))

flll(uj )
6

(501 = 2302 = (501 — 23)(z5 = 2j-1) + (25 - zi-1)%,

which is of the magnitude of the larger one of z;4; — z; and z; — z;_; if one is much

larger than the other.
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2. (3-point) Varied centered finite differences:

(fe); = . (fjH —J; (z; - zj1) + IL%}' (Tj41 ~ ‘Ej)) (3.4)

Tj+1 = Zj-1 \Tj+1 — T; T;—Tj-1

Using the Taylor’s expansions

Fia) = 1= f‘ Ara) , ) nay 1 (2}, (3.6)

where Az := z41 —z; and Az := z; —z;_1, adding (3.5) times Az, and (3.6) times
Azy, we obtain (3.4) with a local truncation error

~ f///(uj )
6

(zj41 ~ 2;)(zj — zj1). (3.7)
This scheme will reduce to the standard centered finite difference on a uniform mesh.

The uz; term in (3.3) is approximated by

(Ugz)j = 2 Ui —U;  U; — Uj
xT /)] ™~ j . . | . j ?
Tipr = ZTj-1 \Tj41 —T; T~ Tj-1

whose truncation error is
(Uzzz);
—*———x;x (2541 — 25)(z5 — T5-1)) -

In the computations which follow we specify our flux function f(u) = —’f;, that is, we

u?
U + (’32—’)1: = 0, (38)

as our basis problem for numerical experiments.

use inviscid Burgers’ equation:

We first test our spatial discretizations on a uniform mesh for viscous Burgers’ equa-

22
us + 5 ) = €l (3.9)

with the initial and boundary conditions

tion:

u(z,0)
u(0,2) = u(1,8)=0, t>0.

f

I |
sin(27z) + §Sin(7l'.’L‘), 0<z<1,
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Figure 3.1: € = 1.d — 3 with fired uniform mesh

CFO for Viscous Burger Equabon, eps = 1.d-2
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Figure 3.2: € = 1.d — 2 with fized uniform mesh

In the computations, we used 40 fized uniform mesh points and absolute and relative error
tolerance atol = rtol = 1.d — 6 for DDASSL. In this case, varied centered finite differences
is identical to centered finite differences.

Two results are presented in figures 3.1 and 3.2 for computations with centered finite
differences for both u, and (f(u)); terms in (3.3) with € = 1.d — 3 and ¢ = 1.d — 2,
respectively. In the figures, solid lines denote the reference solutions obtained | i
(3.9) with MMPDE4 (1.10) with parameters 7 = 1.d - 5, ip = 1, rtol = alol = 1.d ~ 6
¢ = 1073 and arclength monitor function M = /T + uZ.

There are two things worth noting here:

1. In the computation with € = 1.d ~ 3, large oscillations in the solution are observed
while with € = 1.d—2 the solution is oversmoothed. This phenomena clearly shows the

dilemma with artificial viscosity: it is difficult to determine the appropriate amount for
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the artificial viscosity that introduces just enough dissipation to preserve monotonicity

without causing unnecessary smearing.

2. Recall that, with proper moving mesh methods, the computation with centered finite
differences is successful with similar parameters [29] while a fixed mesh fails, we can
conjecture that some adaptive viscosity was introduced by the moving mesh equation.

In other words, one important function of the moving mesh methods is to introduce

viscosity adaptively.

Now, we turn our attention to the moving mesh method for conservation laws. With
the above observation in hand, assuming the moving mesh equation can be solved exactly,
we can undo the change of variables introduced and transform (3.3) back to (3.2), and no
additional terms are introduced. This reveals that no adaptive viscosity will be produced
by the first two terms in (3.3) independent of the moving mesh equation chosen, or adaptive
viscosity comes from spatial discretization of the derivatives in (3.3).

Now, let us consider the discretization of (3.3). If a centered finite difference is used

in (3.3), we obtain

S B P fin = fier _ 2 (ui+1 —ui Ui u’”) (3.10)

: € -
Ti+1 — Ti1 Tiy1 — Ii-1 Tip1 — i1 \Tj41 — T i —Ti-1

The leading term of the truncation error in (3.10) is

ii(ur;)i ((Ziy1 — z:) = (zi — Ti1))
_(_(_I_(UT))E_I.JL ((zigy1 — 2:i) — (2i — 7i1))
22 (2041 — 7:) — (i = ©i-1))

3

where ((z;31 — ;) — (zi — z;~1)) can be regarded as a second order approximation to AL22z 8«52 .
Therefore, the solution obtained by (3.10) is actually, to a higher order of approximation,
the solution of:

AR, AL AE? 9%z

w—uZ + (f(u))e = €tgy — ~2—5£—2:cu 5 sz(f( u))gz + € 3 EZEHIII' (3.11)

It is clear from (3.11) that the adaptive viscosity of moving mesh methods comes in from the
numerical viscosity, the second derivative terms in (3.11). With centered finite difference

discretization for (3.2) the conservation law with artificial viscosity term, the moving mesh
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Figure 3.3: Varied centered finite difference for uz, € = 1073

method is implicitly an adaptive viscosity method. The adaptivity depends heavily on
the mesh distribution (%‘E). Thus, a carefully chosen monitor function and moving mesh
equation will be essential to the success of the moving mesh methods.

A varied centered finite difference (3.4) for u, (but centered finite difference for f(u))
eliminates the second term and introduces another dispersive term —éﬁﬁ (-‘3355) ’ TUzzy ON the
right hand in (3.11). A computational result using MMPDEG (1.12) as the moving mesh
equation, arclength monitor function, and € = 1072, is shown in figure 3.3 with time ¢t = 0.3
(other parameters are the same as before). Compared with the reference solution, the solid
line in the figure, the shock falls far behind and some oscillations are observed. The presence

of oscillations indicates that the viscosity is insufficient to damp the artificial dispersion (the

last term in (3.11)). Similarly, a varied centered finite difference for (f(u)), eliminates the

Vaned cenwred fuxis dillerence fos Sux
T -

‘wotnd' —
‘ol

c o2 o4 (1] 08 i

Figure 3.4: Varied centered finite difference for f(u),, € = 107*
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Figure 3.5: Numerical approrimation of uz;

2 2
third term and introduces another term “'éei‘ (%’Ei) frzz on the right hand side in (3.11).
Computational result shows a shock faster than the reference solution with large oscillations

(see figure 3.4).

2 . .
Notice that at the corner point where %;, and 2—53’- are relatively large (compared with

smooth region), numerically u2 < u, (see fignre 3.5), €uzry < Uy,

fuu u?; + fu *Uzr

fu * Uz

(f(u))rz

Q

Under this approximation the right hand side of (3.11) reduces to

AE? 5%z

——2—-70?(fu -_ i:)u:,_.:,_., (312)

€U +

which implies that if the mesh speed is drifting away from the characteristic speed f,, some
viscosity is added at the corner points. It is not yet clear whether this property may lead
to an entropy condition (which guarantees the computed solution is the physical solution
[33]) as € — 0. The above varied centered finite difference discretizations apparently lack
an entropy condition as evidenced by the computed shock speed drifting away from the
physical speed and the generation of the oscillations.

Now, let us consider the effect of decreasing € on the efficiency of the moving mesh
methods with centered finite difference discretization. Typical integration behavior for dif-
ferent €’s (with MMPDEG (1.12) as moving mesh equation, arclength monitor function
M = /1 +4Z, and 7 = 107°) are listed in table 3.1. It shows that min Az ~ ¢ and At ~ «.
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€ min Az At

1073]02x%x10"% [05x 107
10047102x10"% [02x10
107° | 0.25 x 107° | 0.5 x 10™°
107 [ 0.5x107% [0.1x10°¢

Table 3.1: Comparison of temporal and spatial steps with different ¢
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Figure 3.6: Mesh behavior of inviscid conservation law and ¢ = 1076

Not surprisingly, the computation without the artificial viscosity term cu,, or € =
0 collapses. In figure 3.6, we plot log(Az), where Az; = z; — z;—1, at different mesh
points for computations with (1.12) as moving mesh equation and 7 = 10~2 before the time
step reaches 107°. An examination of the mesh distribution plot reveals that the mesh
distribution becomes too far away from uniform mesh with Az; €« Az;4; at some points,
which greatly complicates the above analysis and necessitates the inclusion of higher order
terms.

In summary, the finite difference approach to the conservation laws requires artificial
viscosity to keep the computation stable. When ¢ becomes very small, the method becomes
inefficient. Noticing that, with the arclength monitor function, many mesh points are located
in the shock region (so called over-resolved shock) with min Az ~ ¢, the resolution to
the shock is smeared. Proper spatial discretization is required to obtain a nonoscillatory

physically correct weak solution.



CHAPTER 3. MOVING MESH METHOD AND CONSERVATION LAWS 38

3.2 A Godunov Type Approach

In this section, we consider conservation laws without artificial viscosity (3.1). First of

all, we derive an ODE for the cell average of the solution for conservation law (3.1) in an

adaptive environment based on a Godunov type approach.

n+l n+l n+l n+l n+l
X X X j X j+mn j+1

"l - e
: ? [ Al

T [N

I I

¥ i

i i
1"

{
"

n n n n n
il Xiw % Xow M

Figure 3.7: Goduniv type schemes in an adaptive envirment

Considering the adaptive mesh shown in figure 3.7, we consider our computed solution
UJ" as the average of the exact solution u(z,t) over [z;.‘_%,a:;?_'_%] at time t,, and define
#(z,t) as the exact solution for the conservation law with pointwise function U(z) (which
is either piecewise constant or piecewise linear with cell average UJ”) as the initial condition
for t, < t < t, + At, where At is a small time step. Taking an approach similar to
that used by Godunov [33], we notice that, for piecewise constant I/(x), the exact solution
(zr,t),t, < t < t, + At can be obtained by solving a sequence of Riemann problems and
piecing together these Riemann solutions. For piecewise linear U(z), i(z,t) can be obtained
by solving the conservation law (3.1) with a piecewise linear initial data. If we define U;(t)
as the cell average of @(z,t) for t, <t <, + At, we have
f::f((:)) iz, t)dz
:cj+1§(t) — :cj_%(_t)’ I, <t<t,+ AL (3.13)

Ui() =
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Differentiating (3.13) with respect to t, we have

; IJ“L%U)~
a0 P D e (1,40 - 5,,0)
(]j(t) :"—"Ed—gl = ot . )
dt IO EETON (=; MIOEE l(r))
:L'j+f%(t)3u(ri)dz+u(z ) )& (8) = @(z_1,t) i1 (b)
\ 4 it Timp T4
= zj+%(t)—mj_1§(t)
$Jv+17(i)
f(t) i(z,t)dz - (rbﬂ_%(t) - ;1))
“i~4

(2040 - ,-40)

Since u(z,t) is the exact solution, we can use (3.1) and (3.13) to obtain

i3
- f( )[f(ﬂ(z,t))]xd:c +8U(zjy350) - Ei40(t) — Wejo1, 1) E510(0)
. :L']._% H
U;(t) =
i) $j+15(t) - xj—%—(t)

RZORCORET0)
OEEN ,_(t) ’
 —flilegyy t))+f(u(xj_l D)+ @z, 3,1) - E541 () -
- z10) — 2, 1 (1)

U0 (854300 ~ ;1)
OE j__(t) ’
therefore, the ODE for U;(t) in conservative form is
s 0) 4 U025, 0)] - [Faz,_y ) + U0 8,,)]
- :r:]-+15(t)—:1:j_1§(t)
’&(zﬂ.;—,t) : ij.{-%(t) - ﬂ(zj-.%’t) ’ i:j—-li(t) ,
:cj+;_(t) — xj_;_(t) ) (3.14)

where the quantity f(u(z;41,1)) + Uj(?) - i'ji;_(t) plays the role of the flux function. A
2
imilar flux function was used by Harten and Hyman in [23]. Assuming the existence of

( T, -. ’)'i'j..%(t)
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ii(z,t), the above derivation is independent of the definition of the initial pointwise function
U(z). The same derivation carries through for a system of conservation laws in one space
dimension without any modification.

Now, we define our adaptive Godunov type schemes.

1. adaptive Godunov scheme:
Definiting U(z) = (7;‘,z € [z;.‘__,_,z;:_l], i.e. reconstructing the solution at ¢t = t,
2 2
in a piecewise constant fasuion, #(z,t) can be obtained by solving a sequence of
Riemann problems and piecing together the solutions. Noticing that Tiy1(t) =
2
z;?+, +12;,1(tn + At)tn < t < tn + At and 4(z,t) is a constant along the line
3 2 ‘
z(t) = .7:;.‘+] + tz'j+z_(tn + At),t, < t < t, + At if no interaction occurs between
_ 1 L
neighbouring Riemann problems, we can reasonably approximate (:rHl(t),t) in
2
(3.14) by that constant. Thus, @ (:cH%(t),t) in (3.14) can be approximated with

u* (a‘:].+%(t); (7}1, U}‘H) where u”(z/t;w, u,) is the solution of the Riemann problem

ur + f(u)e = 0, (3.15)
( 0) Uy, ifIE(O,
u(z,0) =

ur, if z > 0.

We call this first order scheme an adaptive Godunov scheme.

2. adaptive Osher scheme:

We can also reconstruct the solution at ¢t = ¢, in a piecewise linear fashion, i.e.,

U(z) = Ur+oj(z - z?}),z € [1‘;‘ %,x;.‘_‘_;_], where o} is the slope limiter defined by

jr. _[r r— [P
or, - 0r U U]_1>
n n' . n__ .0

.’L‘J T

o; = minmod (
3, . -z
1+1 J

71—1
and the minmod function is defined as
( a, if|a| < |b] and ab > 0,

minmod(a,b) = § b, if |a] > |b] and ab > 0,
0, ifab<0.

Unfortunately, the exact solution @(z,t), which is now a solution of a nonlinear initial

value problem with piecewise linear initial data, is hard to obtain, even in the scalar
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case. However, there are various ways to obtain approximate solutions which are
sufficiently accurate that second order accuracy can be maintained [21], [33], [40]. By
following Goodman and Osher’s approach in [21], we obtain an approximation to the

exact solution -ﬂ(zH%,t),

&(a:j+15(t),t) ~u” ( () Ul 2 U1+1/2)

where again u™(z/t;w, u,) is the solution of the Riemann problem (3.15) and

(IEJ+1 ~-z7 ")o;

UJ+1/2 = U 2
n n .
R _ fmn (27 — =] )oin
j+i/2 = 17 9 ’

This kind of reconstruction of the solution was extensively studied by Osher [40] in

the context of fixed meshes; we call this approximation an adaptive Osher scheme.

To simplify the calculation of @(z,t), which requires solving a sequence of Riemann
problems, we require the following condition which prevents the neighboring Riemann prob-

lems from interacting;:
2" | + At - max (f’(éﬂL ), f(TR )) <z, + At-min (f'(U.L D), fOR ))
=3 72 =7 I+3 I+3

where UJ.L_l = lim,_ - , (7, ﬁjR_l = lim,__+ U, and UL+, and URI are similarly
2 j— 2 3— 2

defined, which leads to

n —
At < lm,in - - 1241 = il - - - (3.16)
7 | max (f’(U.L . F(OR )) _ min (f’(U.L O, JATR ))l
=3 -3 1+3 Jt3

For a system of conservation laws, the derivatives f’(-) in (3.16) would be replaced by
corresponding eigenvalues of the Jacobian matrix of f(u).

Obviously, defining 17(:1:) in terms of higher order polynomials and approximating
i(z,t) accordingly will result in a higher order approximation {11}, [24], but this is not the
concern of our study.

For Burgers’ equation, the Riemann problem for u; > u, has the shock solution

w(z,1) = u, ifz<st,
’ u,, if z > st,
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where s = (u; + u,)/2. For u; < u, one solution is given by the rarefaction

uy, if z < ut,
w(z, 1) =< z/t. f yt <z < ud,

Uy, If x> u.t.

This leads to the following definition of u™(z/t; u;,u, ),

{ .
vy, ifs>z/t, .
if @y > u,,
u., if s<zft,
wz/tupu) =4 w, ifwy>z/t, (3.17)
rft. ifuy <z/t<u,, if w < u,,
w,. if up < zft.

\

In our computations with the adaptive Godunov scheme and the adaptive Osher scheme, this
Riemann solution (3.17) will be used. For problems without an explicit Riemann solution,
approximate Riemann solvers, for example. Roe’s approximate Riemann problem solver [33],
can be used in the place of u™(z/1: u;, uy ).

To avoid over-resolving the shock. we modify the arclength monitor function for the

moving mesh method to

M= \/l +u2 - exp(—0 - |ug)),! (3.18)

where o is a small parameter which controls the number of mesh points in the shock region.
Notice that the modification in (3.18) makes the monitor function continuous in r even in
the shock region while the arclength monitor function /1 + u2 becomes discontinuous in a
shock region since u% — oc.

We solve the invicid Burgers™ equation (3.8) by coupling (3.14) with our moving mesh
equation MMPDEG®6 (1.12). Two computed results shown in figures 3.8 and 3.9 are obtained
with the following parameters: ¢ = 1072, 80 mesh points, 7 = 102, ip = 4 indicating a 9
point smoothing. and absolute and relative error tolerance for DDASSL rtol = atol = 1076.
The solid lines in the figures are the reference solutions obtained by a method of lines
approach with Osher’s scheme with 1000 fixed uniform mesh points with the same error
tolerances. For the adaptive Godunov scheme, a small deviation in shock position can be
observed, but bearing in mind that the Godunov scheme is a first order approximation, we
consider this deviation acceptable. For the adaptive Osher scheme, the shock is perfectly

resolved and its position matches with the reference solution.

"The author is gratefal to Dr. Keith Promislow for the suggestion of this new monitor function.
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Figure 3.8: Adaptive Godunov for invicid Burgers”™ equation
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Figure 3.9: Adaptive Osher for invicid Burgers’ equation

During the computations, we also observed min Az ~ ¢/10 indicating a resolution of
the shock with the magnitude /10, and typically At ~ min Az/10.

Presented in figures 3.10 and 3.11 are the mesh trajectories of a computation with the
adaptive Osher scheme. As shown in figure 3.10, the modification of the monitor function
(3.18) avoids over-resolving the shock by forcing some of the mesh points out of the shock
region. Some mesh oscillations can also be observed indicating the necessity of a better
moving mesh equation. Worth mentioning is that when the shock touches the right end
of the physical interval, shown in figure 3.11, we experienced some very small time steps
(~ 1078). The possible reason for this phenomenon is that we need spatial sinoothing (a

R Le mech nointe and wher
i the mesh points, and when

9-point averaging is used here} to regularize the distribution of
there are only a few points ( sav, < 4) left before the shock, where the mouitor function takes

large value, more time steps are needed to propagate the information about the monitor
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Figure 3.10: Mesh trajectory of adaptive Osher scheme, 0 <t <1

function to other mesh points so as to move the mesh points backward. The time integration
alse takes a few small steps when a mesh point needs to be moved out of the shock region,

e.g., near the blowup time when u; begins to approach infinity.

Liesn trapaciory, Adaptve Osher scheme, 1au = 1.d-2, um =14
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Figure 3.11: Mesh trajectory of adaptive Osher scheme, 1 <t < 1.5

Typical performance of the method for the time period 0 < ¢t < 1 is summarized
in table 3.2 where the column N contains the number of mesh points used, NTS contains
the number of time steps, RES contains the number of residue evaluations, JAC contains
the number of Jacobian evaluations, and CPU contains the computer time used for the
computation. Compared with a fixed mesh method of lines approach, which is used to
obtain the reference solution. our method is reasonably more efficient to reach the same
resolution of the shock, but the new method is less efficient compared with previous moving
mesh computations with artificial viscosity terms [29]. However, our emphasis in this study

is to show how to compute a possibly discontinuous solution with the moving mesh method.
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N T o minAz | NTS | RES | JAC | CPU

Fixed Mesh Osher (MOL) | 1000 107° 8232 1 13581 | 1774 | 1660
Adaptive Goedunov 80~ 1107201072 | ~1073 | 2829 ] 4952 | 345 52
1073 11072 | ~ 1073 | 3463 | 6423 ] 479 69

107111072 ] ~1073 | 3879 7762 740 96

107511072 | ~ 1073 | 4544 ] 9173 ] 998 | 122

1072 11073 | ~ 10~ | 14688 | 24858 | 6378 | 642

Adaptive Osher 807 10741072 |~ 10" | 3171 | 5429 328 61
1072 [ 1073 | ~10~% | 13392 | 22104 | 4263 | 523

100 [1072]1072 ] ~1073 | 3850 | 6509 | 406 | 102

107211073 | ~107% | 13016 | 20342 | 1686 | 360

Table 3.2: Performance comparison

1

o8

06 r

04 r

o2r

of fized mesh computation and Godunov approach, *:
shown in figure 3.8; i: shown in figure 3.9.

[ ot Ci
Y

"
o4

"
L]

Figure 3.12: Comparison of co-ordinate transformations

In figure 3.12, we compare the coordinate transformation, dictated by the new monitor

function (3.18) with ¢ = 1072, of a computation with the adaptive Osher scheme for inviscid

Burgers’ equation (3.8) and that, dictated by the arclength monitor function M = /1 +"&?;,

of a computation with a centered finite difference (CFD) scheme for viscid Burgers’ equation

(3.9) with € = 1073. At time ¢ = 0.15 (before the blowup time), the two transformations

are almost the same. After the formation of the shock (¢ = 0.3) the new approach put only

a few mesh points in the shock region while the CFD computation moves more mesh points

into the shock region to keep the computation stable as implied by (3.12).
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3.3 Summary and Discussion

In this chapter, we study the conservation laws with the method of lines approach and mov-
ing mesh methods. It is shown that with the finite difference approach an important feature
of the moving mesh method is to provide viscosity adaptively, and for viscous conservation
laws with centered finite difference discretization the moving mesh methods are, implicitly,
equivalent to adaptive viscosity methods.

Although proven to be successful and efficient for some problems, moving mesh meth-
ods based on moving mesh PDEs should, in general, be used with caution. For certain
problems not all spatial discretization are permissible.

A new Godunov type approach for conservation laws with adaptive meshes is devel-
oped and shown to be successful in shock resolution. Although improvement in efficiency
may be required, it shows the potential of moving mesh methods for conservation laws.

For problems without explicit Riemann solutions, an approximate Riemann problem
solver can be used to approximate @(z,?) in (3.14), and a new moving mesh equation may
be required to improve both the accuracy and efficiency. Notice that we had used a linear
(first order) approximation for Ij+%(t) in the derivation of the methods. One possible

improvement may be to define a moving mesh equation such that
:&H%(t) = c;.‘+%, t, < t<t,+ At,

where c:} 1 is a constant in the interval {, < t < ¢, + At which depends on the solution
profile at gime t = t,, perhaps selected by equipartition of some monitor function. Such a
method could be more accurate. This approach may also lead to improvement in efficiency
with this redefinition of the moving mesh equation.

In principle, the idea of cell averaging can be used in higher dimensional cases with
some additional difficulties. The approximation to the exact Riemann solution may provide

clues for possible moving mesh equations in higher dimensions.



Chapter 4
Concluding Remarks

In this thesis, we studied blowup problems and conservation laws with moving mesh methods
based on MMPDEs.

For blowup problems, basically reaction-diffusion equations, moving mesh methods
are successful. The computationa! iesults agree with our analysis. Due to the problem-
independent nature of the moving mesh equations, a properly chosen monitor function,
which preserves the invariant property of the physical equation, is required for the success
of the computations. We show that the blowup point and time can be accurately captured
by moving mesh methods.

A formal analysis is carried out for a blowup system. The relationship between
the two components is confirmed by the computations. Our computations also show that,
with proper monitor function, moving mesh methods can automatically distinguish between
blowup and nonblowup solutions. Thus moving mesh methods are ideal for studying blowup
problems. Moving mesh methods are used to compute the solution of a problem with blowup
in a set. The results provide an accurate description of the blowup behavior.

A finite difference approach for viscous conservation laws was shown to be success-
ful. Our analysis shows that, for viscous conservation laws, with centered finite difference
discretization, moving mesh methods implicitly adapt the artificial viscocity. But proper
spatial discretization is cruicial for the success of the computations. With varied centered
finite difference, which is one order higher for nonuniform meshes, the method fails to give
correct shock speed and fails to preserve stability. Although an increase of the parameter
7 will increase the time step, it is impossible to keep the computation stable without the

artificial viscocity. For invicid conservation laws, the time step could be too small to be

47
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practicable and some artificial viscocity is necessary. When moving mesh methods are used
with invicid conservation laws, the mesh distribution becomes too far away from uniform
and the analysis becomes much more complicated.

Generally speaking, caution must be taken when moving mesh methods are to be
used. An a prior: error analysis for different spatial discretizations may be very helpful and
ofter necessary.

New adaptive Godunov type schemes for conservation laws are developed and they

are shown to be successful in efficiency and shock resolution. Further development in this

direction is a good topic for future study.
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