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Abstract

This thesis presents investigations of selected solutions of the Einstein ficld equations
of classical general relativity. This first chapter is a review of necessary material from
tensor analysis on differentiable manifolds and general relativity. The second chapter
studies the field equations inn the case of spherical svmmetry. The complete vacuum
spherically svmmetric solution is reviewed. The third chapter presents original selu-
tions involving exotic matter derived within a spherically synunetric T-domain. Such
solutions are exotic black holes because thev resemble classical Schiwarzsehild black
Lioles to external observers vet consist of exotic matter. The Tolman-Bondi solutions
are studied in the fourth chapter. The first section reviews the ntegration of the
field equations for spherically symmetric incoherent dust. Following that is an orig-
inal detailed critical analysis the pressure-free collapse of an incoherent fluid hody
into a Schwarzschild black hole. This new analysis includes explicit transformation of
the exterior Tolman-Bondi metric to the vacuum Schwarzsehild metrie and explicit

verification of required junction conditions.
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Chapter 1

Tensor Analysis on Differentiable

Manifolds

1.1 Notations and Conventions

To avoid confusion later on, a few convenient notations are defined here. While it
is always desirable, consistency of notation is usually hard to achieve. In general
relativity, use of the Greek and Latin alphabets alone makes it difficult to avoid
repetition of tlie same svmbol. The meaning of particular symbols is usually clear
from the context and. wlere possible, there is a warning about recyeled symbols.
The set N is taken to be the set of all positive integers: in particular, 0 is not
included in N, Any general n-tuple (¢!, 2% 2%,... . 2") € R* (n € N) is denoted
simply by the name r. The individual coordinates' +' of x € R" are obtained by the

projection mappings ' 1 R" — R, defined by

i) = (a7, )=t
where ¢ € {1.2.... .n} and r € R".

The set C"(A: B) {(r > 0) is defined as the set of =ll functions f : A — B (where

A CR" and B C R™ are open sets in the usual topology) where all the functions

Do not confuse superscripts on indexed variables with exponents. The meaning is clear from the
coutext.
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—I - o . = ;o — LTS st 3aanys R | uayeaq- T
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The image of a set A under some fuction f s denoted by 7741 whore
fidl :={y:y= firyfor some r £ 4}

The right-hand and lefi-hand limits of a real-valued fnetion f of a single vead variable
1 as the r approaches a € = is denoted by

Fla™y :==lim firy. and fla™ )= It fir)
i

e

respectivelv. To analvze jump discontimities. define
[Afla)] := fta”™y = fa™y.

A similar notation applies for a function of a single variable nmsduced from a function of
more variables by holding ail but one of the arcuments constang {ie. il g 1s a constand
and fly) = glry. y) the expression [Lgirg. gl is defined to be {45 fiyi]).

A vital tool for the study of general relativity is the vensor caleulus, This ivolves

: LY . oo T
Wo signincant conventions £

Definition 1.1. The Range Convention: [u the cvent that an index vuriable (sub-
script or superscript} ts wnrepeated vu a lerm i is understood Lo varg over the range

of values {1.2.. .. .n}. where n is the dimension of the space.

Definition 1.2. The Summation Convention: In the cuent that an wdey nyr-
able occurs once m a superscript and once i o subseript of a term. thal variable s

assumed to be a {dwmmy} summation variable 1o he swnmed over the vange 1,2 000 0,

For example. the equation a,r'T* = 0 represents n” equations {one for cach of the
free indices a and b). each of which involves T wmltiplied by the s 327 o
AH exceptions to the range or summation conventions are stated explicitly to avoid

ambiguity.
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[in the first chapter. the discussion of tensor analysis 1s set on a manifold of arbi-
trary dimension # € . However, the discussion of general relativity in subsequent
chapters assumes the setting is a specific pseudo-Riemannian differentiable manifold
of dimension 4. Thus, throughout most of this thesis, the range and summation con-
venfions hold with the additional assumption that n = 4, unless a different dimension
15 specified.

Various couventions are used 1n the literature on general relativity with regard
to the signature of M and whetlier indices range from 0 to 3 or from 1 to 4. As is
clear from the rauge convention, indices are assumed to range from 1 to 4 in this
deseription of general relativity. The pseudo-Riemannian manifold that is the model
for space-time is assumed to have signature +2. Hence, a local Minkowski coordinate

frame admits a metric teusor represented by the line element
B i 4] DD 2.9 49
ds® = gapdatde” = (da' Y + (da®)? + (da)? = (da')?.

Tlie signs in the terms of the Riemann tensor and other geometrical constructions are
clear from their definitions. Finally, the units for the field equations are geometrised
units for mathematical simplicity in which the speed of light ¢ = 1 and Newton’s grav-
itational constant G = 1. The approp.iate definitions of all the concepts mentioned

above are given in this chapter.

1.2 Differentiable Manifolds

The model of space-time studied in classical general relativity is a four-dimensional
differentiable manifold. To develop the idea of a differentiable manifold, a few pre-

liminary ideas are necessary.

Definition 1.3. Let M be a non-empty topologised set with Hausdorff topology; that
is. for any distinct points p,q € M, there exist open sets U, C M and U, C M such
thatpe U,. g€ Uy and U,NL, = B. A chart or local coordinate system (\,U) is
an ordered puir consisting of an open set U C M together with ¢ continuous, one-to-

one mapping \ : U — D CR", where D is an open subset of R" in the usual topology.
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For each ordered n-tuple v = (', 2%, ... .a0") € D, there is a point p € M such that
r = \(p) (ie. \ maps U onto D). Under the chart (\.U). the entries o' 0% .. 0"

of the n-tuple x = \(p) are the coordinates of p.

Part of the strength of this formalisi for describing the set M ois that a given
open subset of M can be described by many different coordinate charts, This is
often useful if certain properties of M or calculations or physical phenomena are more
easily understood when deseribing M using the chart ((F) rather than the chart
(v.U). (The language used here is particularly enlightening; the term “chart™ alludes
to a geographical map which is a useful metaplhor. As some charts are more useful
than others for navigational purposes, in a model M of the physical universe, sone
coordinate charts provide more insight than others.) If a neighbourhood of a pount
p € M can be covered by two or more coordinate charts, it is possible to define

transformations between the different local coordinates.

Definition 1.4. Let (\,U) and (Y, U ) be two charts such that the intersection U7N U
is nonempty. Let D := \(U N CA/') CR" and D := U n CA’) C R"., The two charts
(\, U7) and (3, f) are said to be €T -related (where v > () if the interscetion Nl =)
or the function X:D-D defined by X = \ o\~ and its inverse X : D— D defined

Uare C" functions over their domains D and D respectively. That s,

by X =T o\~

v . -y ; - ; o~ -y ; o ; o~ o
the functions \' .= 7o X =7 oo\ and X/ := 7/ o X = 7w/ oo\ "' (where

i,j € {1,2,....n}) have continuous mized particl devivatives up to and including

order r over their respective domains.
Using the notation above, the n-tuples x and ¥ associated with a point p € M are

=) = vp) = X(@) = (y o VT F), and

F= (@) =) = K() = (Tor ).
The Ath components of these n-tuples are given by

F=[r"ovoxM) = Xra) = NRl e, and
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k

2= o v o 7@ = XM@) = XF@@L 2.2,

where v € D and 7 € D with D and D being the images of U' N U under the charts

(v,U) and (Y, U ) respectively. The situation is clearly illustrated in the figure 1.1.

Definition 1.5. Let A be some set of indices. A sub-atlas of class € (r > 0) is
a collection of charts A = {(xa,Us) 1 @ € A} such that M C | ,cp Us and all the
charts (v, Uy) are C-related. If A is maximel (in the sense that any chart that is

C"-related to every chart in A is also in A), then A is an atlas of class C" .

Finally, the necessary tools have heen assembled to define what a ditferentiable

maiifold is.

Definition 1.6. Let (M, A) consist of a set M with Hausdorff topology together with
an atlas A of class C" of coordinate charts that map open sets in M into open sets in

R". Then, the ordered pair (M, A) is an n-dimensional differentiable manifold

of class C".

Again, the langnage is quite instructive. The goal is to create a model of space-
time that approximates the physical universe. Just as one uses charts and atlases in
geography to meodel the curved face of the earth, one uses mathematical charts and

an atlas of space-time to better understand space-time.

1.3 Curves, Tangent Vectors, Tangent Spaces

Definition 1.7. Let [a,b] be a closed interval in R. A parametrised curve 7 is o
mapping from [a,b] into the manifold M. (Note that the curve is the mapmng v and
not the set of points y[ja,b]] C M.) Let the range of ~y lie inside some neighborhood

covered by a chart (y,U). The coordinates associated with this curve are
X*(t) = [7* 0 \ 0 7](2) = 2¥,

where t € [a,b). If the functions X* have continuous ordinary derivatives with respect

to the parameter t up to and including order r, then v is said to be a curve of class
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Figure 1.1: A differentiable manifold M with a graphical representation of two coor-
dinate charts (y,U) and (Y,U) and the transformations between the two coordinate
systems.
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Cror « €T -curve. A non-degenerate curve is one such that

"L Taxk :
— (? (
Z[dt (1)} > 0,

at each point of differentiability.

Although a specific chart (\,U) is used in the above definition, any general co-
ordinate transformation to a C"-related chart (T,i/\ ) (where » > 0) suffices. That is,
if the above definitions apply to the coordinates associated with a curve in a chart
(\,U), they apply also to the coordinates associated with the same curve in any other
admissible chart(y, U ).

Curves associatecdl with a manifold allow specific differential operators — tangent
vectors — to be defined. The totality of these operators constitutes a vector space
which allows the construction of all the geometric ohjects that form the foundations

of classical general relativity. This motivates the following definition.

Definition 1.8. Let v : [a,b] — M be a curve whose image v[a,b] C M is covered
by @ chart (\,U). Let the point p = +(t) € M with t € [a,b] and let f € C'(U;R)
be « differentiable real-valued function that is defined over all the points in the image
of the curve v. The tangent vector or contravariant vector fp to the curve v at

the point p = v(t) s the map fp defined by

- [
BN = =(f o ).

The compo.aents of the tangent vector EP to the curve v (relative to the chart (x,U))
are defined by
dx*

4 e
- f)—-—(*;(7r oy o)1)

The set of all possible tangent vectors t, to all possible curves v with ranges containing

a point p € M is denoted T,(M).

The tangent vector t, maps real-valued functions defined in a neighbourhood of p € M

into the set of real-valued functions defined in some neighbourhood of t € [a,b]. The
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tangent vector t, of v at p € M is visualised as a directed line segment emanating

from p tangential to the image of t € [a,b] under 4. There is an intrinsic way of

defining a tangent vector t, as the directional derivative

- axt, 9
t,=t,y = " (t) 5oF -
Consider the set T,{M) of all possible tangent vectors to all possible differentiable
curves whose ranges include a point p € M. It is possible to define addition of tangent
vectors and multiplication of tangent vectors by scalars. Let X,,¥, € T,(M) and let

a € R. Then, the vectors X, + ¥, and aX,, are defined by the rules

(X, + Fp)(HI(E) = Kl NI(E) + [Fp( (), (L.1)

[(aX,)(H)(t) = oR,(H](t), (1.2)

where f € Y (U;R) for some open set U containing p. It is clear that the set T(M)
of tangent vectors at p € M together with the rules for vector addition and scalar
multiplication is a vector space over R. Thus, T,(M) is the tangent vector space at p.
It can be shown [26] that if M is n-dimensional, then T,(M) is n-dimensional also.

Each p € M has an isomorplic copy of the tangent vector space T,(M) associated
with 1t. However, since distinct points have distinct tangent vector spaces, tangent
vectors associated with distinct points cannot in general be added or subtracted.
To simplify the notation f,, for an element of T,(M), drop the subscript p while
remembering that t € T,(M) is a tangent vector strongly associated with p € M.

Interpreting a tangent vector as a directional derivative, a chart (\, /) € A induces
a natural coordinate basis {&;}', for T,(M), where &, := 5‘,—);‘]] That is, the basis for
Tp(M) is the set of partial derivative operators with respect to the local coordinates
a*. Such a basis is called a holonomic basis. For convenience, when a particular chart
is used, this holonomic basis is used for T,(M). Then, every vector te T M) can be
expressed as t = flg‘f—; for some suitable scalars t# € R which are the components of
t relative to the coordinate basis

n
d

5 Vk
72l I -
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Given any vector space V| it is possible to define the dual space V" of dual vectors.
These dual vectors are linear functionals mapping V' into R. In this case, the dual
vectors are referrecd to as covariant vectors to distinguish them from the contravariant

vectors.

Definition 1.9. A function u : T, (M) — R is a covariant or cotangent vector

if W s a linear function; that s, for every X, ¥ in T,(M) and for every scalar « € R,

(X +y) = uX)+u(y), and u(axX)=ocu(x).
The set of all covariant vectors is denoted ‘fp(M).

Addition and scalar multiplication of rovariant vectors is defined by their action on
contravariaut vectors; given the covariant vectors u, v € J,(M) and the scalar v € R,

the covariant vectors [0+ V] and [a1] are defined by the rules

[ + V](t) == u(t) + V(t), (1.3a)

[etl](F) := a[a(t)], (1.3b)

for any vector t in TyM). The set ‘f,,(?\/[) together with these rules for addition
and scalar multiplication of cevariant vectors is also a vector space over R. As for
any finite dimensional vector space, the dual space of ‘JN',,('M) is isomorphic to T,(M).
Thus, T,(M) is viewed as a space of linear functionals over ’.‘FP(M); to show this, define
t(@) := a(f), where t € T,(M) and &1 € T,(M).

Given the basis {€;}, for T,(M), there is a corresponding unique dual basis
{e}i_, for if,,(M) defined by the relations &(8;) := &. It follows that fp(M) has
dimeunsion n. Further, every covariant vector u € rj:,,(ff‘/[), tlien, can be written as
u = ue* for suitable scalars uy € R.

Just as the contravariant vectors in J,(M) have an interpretation as directional
derivative operators on scalar-valued functions on M, the covariant vectors in fp(M)
liave an interpretation related to multivariate calculus. The differential of some func-

tion f € CHM;R) is defined as a covariant vector in TF,,(M).
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Definition 1.10. Let f € C'(M;R). Then, the differential of f at p € M is a

covariant vector df that is defined by
[Af)®) ==tf  (FeT, ().

If (\,U) is a chart so that p € U, let 2’ denote the real-valued functions & 1= 7' o\ :
U — R. The coordinate differentials {dx'}?, turn out to be he dual basis veetors
for ‘JN'p(M) corresponding to the basis {(9/0x7),}1_, [25], since

[da')(8)027), = (0/(').1?1')(;17")|p =6

J

Hence, in terms of this coordinate basis, the differential of a function f: U — R is
df = (0f/0xF)da*.

In practice, vectors at a specific poiut p € M are not discussed as often as vector
fields are. Let T(M) := U,emT (M) be the totality of all the tangent vector spaces of
M (sometinies called the tangent vector bundle [13]). A contravariant vector field is a
function mapping M into T(M); in other words, a vector field associates each point in
the manifold M with a vector in the tangent space at that point. If the components
t(x) of some vector field t relative to the basis {0/02*} 2, induced by some coordinate
chart are smooth functions of the coordinates of the chart, the vector ficld t is also

smooth. This definition is made precise later, but it is sufficient to recoguise that

expresses the vector field € relative to the holonomic basis induced by the chart (y, U).
Obviously, a similar definition of a covariant vector field 1 is defined with components
relative to some holonomic basis that vary smoothly.

For the most part, the bases used to describe T(M) aud ‘}(M) are be coordinate
bases induced by some chart (\,U). In that case, the vectors £ € T(M) and 1 € ‘5;(3\‘[)
(that are images of some smooth vector fields) can be written as £ = *()d/dx* and
a = uy(2)da®, where

(')

¢ = t(da® 1 w:=ul —
(dz®) and wuy (0‘1:1))
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are the components of t and 1 relative to this coordinate induced basis. For a, general
coordinate transformation X of class € {(r > 1) relating the charts (v, U) and (¥, U ),
the contravariant basis vectors transform according to the multivariate chain rule.
Hence, the basis induced by the chart (Y, U ) is related to the unhatted basis by the
rule

13 oX* 0

= RA . 14
b = o gk (1.4)

It follows, then, that the components of a contravariant vector field f transform ac-

cording to the rule

3 1b N
O‘X )T (1.5)

since

oTe are " " Oxb
91b
= (Bap) L =p2
oz ox Oa
A similar argument gives the rule for the transformation of the covariant basis vectors
as
e OXF
dv¥ = *(;)-fljr(;l?)(l;l'l. (1.6)

The corresponding transformation rule of components u; of a covariant vector field @
as

~ o OXT
(7)) = —(?—jﬁ(.l?):lLi(;lT): (1.7)

1.4 Tensors and Tensor Algebra

The existence of the spaces T,(M) and T,(M) allow the construction of more com-
plicated objects called tensors. Loosely speaking, tensors are multi-linear functionals

that map Cartesian products of covariant and contravariant vectors into R.
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Definition 1.11. Let II. denote the Cartesian product of r covariant and s con-

travariant vector spaces at p € M defined by

T3 = Ty(M) X TH(M) -+ Tp(M) X Ty(M) X T,(M) x -+ x T,(M).

\ . -’

r times & times

A tensor of rank (r + s) is a mapping T : II3 — R that is linear in cach of the

(r +s) arguments. The set of all such linear functionals is denoted [T (M).

To elucidate, a tensor of rank (0 + s) is a covariant tensor of rank s, while a tensor
of rank (r + 0) is a contreveriant tensor of rank r. Thus, a contravariant tensor of
rank 1 is a contravariant (tangent) vector while a covariant vecter of rauk 1 is a
covariant (dual) vector. In terms of the notation just defined, {T (M) = T,(M) aund
T (M) = ‘f,,(M). Finally, a tensor of rank (0+0) is a scalar « € R.

Addition of two tensors T, S € [T,(M) is defined by
[T+S](l~ll~' ) ﬁl; Ela' b 'a‘—;‘s) :=T(i}l3' T fils EI&' ' Eﬂ)'{-s(ﬁla' Yy ﬁl‘;El PR ES)\

where Uy, Uy, - , U, € T(M) and t;,ty, -t € TH(M). Similarly, multiplication of

a tensor T € [T,(M) by a scalar « € R is defined by
[(YT](ﬁla e sﬁ‘l'; Ela e ES) = (V[T(ﬁla Y ﬁla i-;l y 1—."3 )]'

where the arguments of the function are as above. With these rules, the set [T ,(M)
of all tensors of rank (r + s) at an event p € M turns out to be a vector space. Only
tensors of the same rank can he added together.

Beyond the operations of addition and scalar multiplication, there is a tensor

product for multiplying tensors,

Definition 1.12. Let T € ! T, (M) and S € 2T,(M). The tensor product T @S €

nrrg (M) is the multi-lineer functional defined by

s1+s2

B

[T@S](ﬁ[, 3ﬁ7'1+7‘2;t|"" 7t31+~92)
= [T(ﬁ], ,ﬁ,‘l;tl,... 1t51)]'[s(ﬁ7'1+l9"' ,ﬁ,yl+r2;t,gl+,],.a. N

(3}

1442 )]

for every t1, ... ,t, 44, € THM) and every w,... , U, 4., € T(M).
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Notice that the tensor product T ® S is linear in every argument since the tensors T
and S are linear in every argument. The tensor product is associative, so tensors like
t @2 6,000 - 0u, € [T,(M) (where ty,... ,t,. € T,(M) and a,,... , 0, € T(M))
are well-defined. The tensor procuct of these contravariant and covariant vectors is

the map [E, @ tONQ O u,] : [If — R defined by

-

= [£ (V)] [Ea(¥)] - -

[

[El®Ez®"'®gr®l~ll®ﬁz®"'®ﬁs]whv~z'“ Ve VLY 0 Ys)
] ] u

for every vi,... .V, € ’.TN,,(JV[) and ¥,,...,¥s € T,(M). Finally, the tensor product is
also distributive over addition of tensors [13].
If {&}r, and {&/})_, are dual bases for T,(M) and ‘JN'p(M) respectively, the set of

n"** tensor preducts
(6, ©6,0 @& @& @ ® Q& 1i1,...0nj1,.. . Js € {1,... ,n}}

is a basis set for the vector space [T,(M) [25]. In terms of this basis, any tensor

VT o€ LT(M) can be written

r Ry ot 1Y YN 2 o = =1 . s )
T=T0 55,58, 0 08, 0e" @ 6", (1.8)

n

where Tz, o € R are the components of [T relative to the dual bases {&}5,

and {#/}5_,. Explicitly, the components can be found by the equation

Thivein, o = TT@EN, L 81, 6)). (1.9)

Nnowing liow to define eomponents of tensors, it is possible to consider symmetries
of tensors. A tensor T7V2r of rank (r 4+ 0) is symmetric in the kth and [th indices
(1 <k <1 <) if Thelinivddr = Theiidiedies it 4g gntisymmetric in the kth and [th
indiees (1 S 8 < ! S _,‘) if Til...ik.‘.i,...i,. — ___Til...-i,..;ik...ir.

Auether important operation on tensors is contraction. The contraction of a tensor
of rank (r + ) results in a tensor of rank ((r — 1) + (s — 1)). This operation is called
contraction because it involves summing the components of a tensor (relative to some
basis set) over one of the covariant and one of the contravariant indices, contracting

it to a tensor of lower rank.
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Definition 1.13. Let [T € [T, (M) be o tensor of order {1+ s) that has components
Tret g, relative to the dual bases {€;}]_ and {&'}"_,. The contraction of the
tensor (T in the pth contravariant index and the qth covariant index (1 < p < r.1 <

q < 5) s the tensor Cr(;T) € "“I‘J’,)(M) defined by

s—1

pr I {1eadp—1 M Ipg1nly ) ) 1.
C(/(ST) P [T P r r_“..._[,l_l m _[q+1..._[5]

6,0 ®6, 08,0 908 QO Q& Qe Q... ©&,

That s, the components of the contracted tensor are obtained by replecing the pth
contravariant and the qth covariant index in the components of the tensor with a

dummy variable and summaing.

It can be proved that CP(;T) is in fact a tensor. Also, in spite of the appearance
of basis dependence in this definition, the contraction of a tensor is in fact basis-
independent [23].

To make the earlier notion of a vector field precise, define a tensor field [13)].
Since a vector is simply a tensor of rank (0+1) or (140), this definition includes both

contravariant and covariant vector fields.
Definition 1.14. Let T be a mapping
T : M — [ T(M) where [T(M) 1= Upents Tp(M).

(*T(M) is the totality of all the tangent tensor spaces for every p € M), T associates
each point p € M with a tensor of rank (r + s) in the associated tangent tensor
space. Given any chart (\,U) in the atlas for space-time, let ’I’“"Q“""’"_,‘.A,g...j,,(1'7) be the
comnponents of these tensors at each point p € M with respect to the coordinaie bases
{0/02'}1,} and {da;}i_, induced by (\,U) at each point. If these components are
C™ functions (m > 1) of the coordinates v = (x',2%,... ,2"), then'T is a €™ -tensor
field of rank (v + s) on M. More simply, a tensor field is « tensor-valued function

on M whose components vary smoothly over M.

Although this definition appears to depend on a particular chart, it is not diffienlt to
show that it holds for all charts in the atlas if it holds for one. For computational pur-

poses, the definition of a tensor field as a map associating points in M with multi-linear
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functionals of ordered (r + s)-tuples of vectors in T,(M) and ‘JN',,(M‘) is impractical.
Following the classical literature, a tensor field [T is referred to by its components
Thikekr) 1 (7)) with respect to some local coordinates on M. The choice of chart
induces a natural basis for T,(M), namely the holonomic basis associated with the
local coordinates. That basis induces a dual basis for fp(M) and in turn for 1T,(M).
Hence, the choice of local coordinate systems fixes thie representation T*1kz-%r) ) of
a tensor field “T in some open set U containing p € M. The complicated nature of the
Einstein field equations (1.33) necessitate using coordinate representations of tensors
throughout this thesis. Further, unless necessary, the argument x of such components
are left out; it is implicitly understood that such components actually do depend on
the coordinates of points in M.

The contravariant and covariant indices of the components of a tensor field trans-
form just as the components of contravariant and covariant vector fields. Explicitly,
if the functions X and ¥ = X' describe a " (r > 1) general coordinate transfor-
mation relating the charts (\,U) and (Y, U ), the components of a tensor field [T of

rank (r + s) transform according to the rule

iy iy (A ax l_afi' oxh OXE T ks kok
Ty (@) = [05{3k1] I_aa:k',‘ jl . [ oTn } [OFEJs } T gty (). (1.10)

Very often, since tensors are referred to by their components, the tensor character of
an object is proved by verifying this transformation law. In fact, this transformation

rule is sometimes given as the definition of a tensor.

1.5 The Metric Tensor

This discussion to this point has been based on a differentiable manifold (M, A) and
the vector spaces T,(M) included in the tangent vector bundle. No inner product or
vector norm has yet been assigned to these spaces. A metric tensor field g,, defines
an inner product on each tangent space which determines the geometric properties of

M.

Definition 1.15. Let g,, be a tensor field of rank (0+2) on M with components gq()

relative to some chart (\,U). The tensor field g., is a« metric tensor field if the
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mapping g,, satisfies the following criteria at each point p = \HE) € M for any

vectors El,ﬁg,é'] € T M) and any scalars o, 3 € R:
1. [go(2)](ty, t2) € R.
2. [goo(@))(at) + 35,.15) = [, ()] (1. E2) + 3[gos(0)](81 . ta).
3. [.(]<>t)](*l")(tlq
4 [VE € TpM), [goo(2)](£,d) = 0] & d=0.
(These requirements imply that g0 defines an inner product on cach tangent vector
space T(M).)
The first two criteria simply assert that ¢,, () is a tensor, ie. that Goo () 18 scalar-valued
and bilinear. The next criterion asserts that g, (x) is symmetric, so the compouents
gap(T) satisfy gup(2) = gpe(r). The last requirement is known as the aziom of nou-
degeneracy (see [8]); it follows from this that det[g.(x)] # 0 over the domain of oo
where [gq()] is the n X n matrix formed by all the components of ¢,, [11].
The non-degeneracy of the metric tensor has two important consequences. Firstly,
the matrix inverse [gq(x)] ™! exists. This allows the definition of a contravariant from
of the metric tensor field.

Definition 1.16. The contravariant metric tensor field ¢°° is the tensor field

of rank (2 + 0) that has components ¢g®®(x) defined by
aby . ) = &¢
97 () gue(x) = 67,
That 1s, the components of the contravariant metric tensor are given by the elemenlts
of the matriz inverse [y*®(2)] := [ab()] 7 of the matriz [gu,(x)].

A second consequence of the axiom of non-degeneracy is that none of the eigenval-
ues of [gq4(2)] are zero. This makes it possible to enumerate the eigenvalues of [g,(:)]
in the form

€191(2), e292(), . .. L €agn(), (1.11)

where g;(x) > 0 and the ¢; are indicators of the signs of the eigenvalues, ie. ¢, = +1

or €; = —1. Thus, the metric tensor can be characterised by its eigenvalues [11].
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Definition 1.17. Let M be endowed with a metric tensor field whose components are

g () relative to some chart (\,U). The signature of the metric tensor is the sum

1

E t‘j,

j=l
where €; are the indicators of the eigenvalues as given in (1.11). If the signature of the
metric is n (the dimension of the manifold), the metric is said to be Riemannian;

otherwise. it is pseudo-Riemannian.

The signature of the metric tensor field is given by the sum of the number of positive
eigenvalues of [gqp(r)] minus the number of negative eigenvalues of [gq(x)]. Although
the definition of signature refers to the signature of a metric tensor at some specific
point p € M, it is common to refer to the signature of the manifold M with the
implicit assumption that M is endowed with a metric tensor field of fixed signature.

The true importance of the metric tensor field lies in its characterisation of (con-

travariant) vectors.

Definition 1.18. Let gq be the components of a metric tensor relative to some fized
basis {€ )i, at some point p € M. Let v = 1€, € T,(M) be a nonzero contravariant

vector. Consider the quantity
— 3 ) — a,b
P = goo(V. V) = gap 2.

The vector ¥ is said to be space-like if & > 0, time-like if & < 0 or null if
® = 0. A vector field is space-like, time-like or nulil of it is space-like, time-like or
null respectively at each point of its domain. Similarly, a curve is space-like, time-like
or null according to the space-like. time-like or null chararcterisation of its tangent

vectors.

If the metric is Riemannian at a point, the inner product is positive definite; that
18, everv nonzero vector is space-like. For a metric of pseudo-Riemannian signature,
nonzero time-like and mull vectors exist. This makes the name “metric” a bit mis-
leading. It seems plausible to think of M as a metric space with a distance function

related in some way to the metric tensor field. While this is possible with Riemannian
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metrics, the notion of distance between points in M is not as useful as the notion of

separation between points in M.

Definition 1.19. Let v : [a.0] C R — M be a non-degencrate, smooth curve with
endpoints p = y(a) and g = y(b) in M. Let (\.U) be a chart covering the image of
7 and let the mappings X 1= y oy and X* := 71%0 \ 0y be the coordinate mappings
induced by the curve v and the chart. Then, the separation of p and g along the

curve v s defined to be

(=S

dxe dx?t

— (t)— (¢ 't > 0.
oy ()dt (t) dt >0

b
a(vip.q) r=/ Gab(X(t)

Ja

To make M a metric space, it is necessary to have a Ricmannian metrie (see [1]).

Define
d(p,q) = 1inf{o(v:p,q) : v is any smooth curve with endpoints p, ¢}.

With a pseudo-Riemannian metric, the metric tensor has negative eigenvalues and so
the inner product determined is indefinite. As sucl, the separation between distinet
points along a null curve is zero whicli obviously means that (M, d) cannot be a metric
space.

The inner product given by the metric tensor induces an isomorphisin between the
tangent space T,(M) and its associated dual space ‘3’1,(3\/[). Associated with a covariant
(dual) vector field v = v (x)e*(2), there is a contravariant vector field ¥ = v ()& ()
where

v (2) = ¢?*(x)u(a) and v (a) = gula)et(2). (1.12)

The contravariant vector field v/ results from raising the covariant index in the co-
variant vector field v, and the covariant vector field v, vesults from lowering the
contravariant index in »’. Similarly, the covariant metric tensor and its contravariant
counterpart are used to raise and lower incices in arbitrary tensor ficlds., For lowering
the pth contravariant index (1 < p < 7) or raising the ¢th covariant index (1 < g < s)
of rank (» + s) (which yields a tensor

of the components of a tensor field T““'""jl___j“
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of rank ((r — 1)+ (s + 1)) or ((r + 1) + (s — 1)) respectively), the rules are:

i () = g (0T (), (113)
Ti)‘“l‘rjl---j'r"lkjrl‘\"l--'jn(;l") = «(]qu(“l?)‘TVilmirjlh-].s(:l")' (]“13]:))

Thus, for a manifold endowed with a metric, the covariant or contravariant rank of a
tensor can be changed at will through successive raising and lowering operations.
Due to the connection of the metric tensor to distance in Riemannian spaces, it is

commol to see the components of ¢, relative to some holonomic basis given as a line

element:
2 N a7 b
ds® = gap(v)dadx®.

The quantity ds? is meant to denote the square of the infinitesimal displacement
hetween two points with coordinates @ and @ + dx respectively in a Riemannian
mauifold. It would be more accurate to write g,, = gap(x)dz® ® da® to express all the

components of the metric tensor. However, to save space, it is more convenient to use

a line element.

1.6 The Covariant Derivative
Before proceeding further, two definitions are useful.

Definition 1.20. The Christoffel symbols of the first kind associated with a

given metric tensor gy, are defined by
. 1, . .
[ k] == §(€)i,f/jk(_-l') + 0jgki() ~ Drgij(x)). (1.14)

The Christoffel symbols of the second kind (or connection coefficients) are

defined by

{.’ } = ¢ (@) [k, m). (1.15)
Jk



CHAPTER 1. TENSOR ANALYSIS ON DIFFERENTIABLE AMANIFOLDS 20

From the definitions, it is clear that

. iy J ! .
[if, k] = [ji k] and ¢ » = b (1.16)
Ik kj
The Christoffel symbols of the second kined are related to the symbols of the first kind
by raising one of the indices. However, these are not components of a tensor as cau
be verified by looking at the relation between the Christoffel symbols of the second
kind in different coordinates [23]:

e,

i 9X'0XP0X° [a N oX o2 X" e
]l\, h Jx® I ok be dam OTIT+ ( h ‘)

There is an additional term involviung the second order derivatives of the transforma-
tion between coordinates.
Given a scalar field ® : M — R and two coordinate charts (\, /) and (V, ) that

“Land ¢ = DoV

overlap, in the region of intersection U N l?’ define ; = P o
Then, ¢(p) = () = H(T) where pe UNT, v € V(U N 0 T and T € (U N (7] Deline
vo() := (Oyphi)(x) as the partial derivatives of the scalar field in the chart (\, /).

Then, the v, are the components of a covariant vector field, since they transforn by

the rule
99, OX* _ Db, ON®
() = == (%) = ()Tb( Dgpa¥) = = (@),

Define vgp(a) := (0,0p0) (). With the second order partial derivatives of ¢, there is a

different transformation under a change of charts:

~ ~ 0° a ~ 0 \1) R ()(/)
lf«mn(fl‘) - (')rn T (l) - 0&\?."1 (Otl, n (J )()lb( ))
aoxXe 0\” 02 X«
= 01"’ 01” Vap( ) + 01’"01'!/ C)v, ().

Repeating this argument with tensor fields of higher rank, it becomes clear that differ-
entiating the components of tensors relative to some coordinate chart generally yields

a set of quantities that are not the components of a tensor (cousider the Christoffel
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svnibols, for example). As the methods of multivariate calculus are desired to for-
mulate differential equations and provide other reasonable tools for the description
of space-time, some kind of derivative operator is desired that operates on tensors
and produces tensors. Since ordinary partial derivatives of components vector fields
relative to some coordinate basis do not transform as tensors do, a covariant form of

thie derivative operator is desired.

Definition 1.21. Let T/ . be a tensor field of rank (v + s) over some region in
U C M covered by the chart (x,U). The covariant derivative of T, . is the

tensor fleld VT, with components defined by

VaTil ...ii‘jl s (;l') - (‘)aTu ...1.~j1".js (I)

’ 2 | ik ~
+ 0 Tk'“mh.jl...j_.,»(ir) + o Tnl\....u ji.-._fg(4l?) +
aJs th
T PP m -
AW 7ot ) =g T g ()
N aj
m T . m iy iy .
- . T j‘m.‘.js(l ) — T . T J’l.f‘.‘.u-"l(;l‘)'
(79 @)

Let v I € R — M be a curve whose range is covered by the chart (x,U). The
absolute derivative of the tensor field T, . (¥) along 7 is the tensor field of
rank (r + (s + 1)) defined along y[I] by
- - dXe
m"lnlm‘ril--'J's(“r)].x-zx(u) = {V“Tllmlrjl~--js(I)]!;r:'X(U)W(u’)'

The occurrence of second order partial derivatives in the transformation (1.17) of
thie Christoffel symbols makes the covariant derivative transform as a tensor, Although
the above definitions seem complex, it is easiest to remember that each term in the
covariant derivative is added if it differs from Tt ji.g, i @ contravariant index
and subtracted if it differs from T 1. I & covariant index. In such terms, the
displaced index is put into a Christoffel symbol of the second kind and replaced by a
dummy index of summation.

For a scalar field ¢, the gradient of ¢ is the contravariant vector V¢ 1= gV =

g™ Oy¢; in covariant form, the gradient is Vo0 = dy¢. The covariant derivative also
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-

satisfies the Leibnitz product rule of ordinary caleulus:

ey dy kyokr, ok oke, - TR
V(J(Tl ! J1ee j,‘S ! "11...1,,,) =S5 '11.‘.1_*.'\"—(1.(7”1 " m
Uy iy k oy
+10 gV o(SHA "y, )-

sy

As a consequence, the absolute derivative also has this Letbunitzian property,

It is possible to define a structure called a linear connection on M that produces
the Christoffel symbols and the covariant derivative (see [26, 13]). In this thesis, a
metric-induced connection is considered, so the Christoftel symbols are defined from
the metric tensor., As a result (see [25]), the covariant derivative of the metric tensor

vaniches:
Ve = 0. (1.18)

Combining this property with the Leibnitzian property and the rules for raising and
lowering indices, the metric tensor components can be treated as constants when

taking covariant derivatives. Thus, for instance,
il oy ikl
V(LTU = va(.(} .(}J le) =49 .(]J vaTkl

for any tensor field T%.

1.7 Geodesics

Geodesics in Riemannian spaces are curves of stationary length. They represent the
paths of shortest arc length connecting distinet points. For a curved space embedded
in a space of higher dimension, they can be fundamentally different than the geodesics
of the larger space. For instance, in E?, the geodesics are straight lines. However, on
the manifold $? which is the surface of a sphere embedded in B2, the geodesies are
great circles. For a pseudo-Riemannian space, curves can be time-like or null, so an
interpretation related to separation rather than arc length is needed.

Towards finding a suitable analogy, let p,q € M he two distinet fixed potuts.

Consider the class of curves
Co(I C Ry M) :={~: CH(I; M) for some interval [ = [a,b] C R
and "/((l-) =p, v(b) = ¢}
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consisting of every parametrised curve v joining p and ¢. For each v € €}(I C R; M),

the functional

[T

b 7 j
L] = j/ ‘/,,(fx{u))ﬂ( )ﬁj(u)g lu,

lu du

has some definite value. This functional in some sense describes the separation of the
two points; in fact, for a Riemannian metric, it gives the arc length along the curve =
that extends between p and ¢. Suppose 7 is a curve for which £[4] is a stationary value
of the functional £, then, as a consequence of the Euler-Lagrange equations (see [11]),
it 1s possible to select a special parameter « so that the components dX* du of the

tangent vectors along the curve necessarily obey the following differeatial equations:

d dx? 1 dX? dX
'(7; (.(fab(x(u')) du ( ‘)) - §aagij(x(l ))(lll (U>'(7;l‘ ('U')-

These equations can be more concisely written using the Christoffel symbols of the
first kind:

M dXdx’
+ [ab, (] =

l
ool O 2
Ja ( )!.r_*'lf( ) du?

e=x(a) du du
Finally, multiplying by ¢* and contracting, a second order coupled system of non-

linear ordinary equations results:

d2x" m dxe® daxt ,
3 (w) + ol T (‘u)m (u) = 0. (1.19)
r=X{u)

Definition 1.22. Let v be a curve whose image is covered by some chart (yv,U). Let
J) ) ,

= X%u) be the components of y(u) under this chart. Then, the curve v is a

geodesic curve if the components X° satisfy the equations (1.19). The equations

(1.19) are the geodesic equations associated with the metric tensor.

The equations (1.19) are tensorial since they ecan bhe expressed in terms of the

absolute derivative;

dX i _ ‘
(Du du )l 0 (1:20)

a6
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Changing the parameter u generally changes the system {1.19); the right hand side
of (1.19) will be non-homogeneous if the parameter u is substituted for some general
parameter s = S(u). However, it S{(u) = au + b for some real constants a, b, then the
equations (1.19) remains homogeneous. Thus, the geodesic equations define a fanily
of curves and a class of affine parameters related by lincar transformations that are
associated with each curve.

Along a geodesic curve, gp, (dX™/du)(dX"/du) is a constant (sce [25]). By a

permissible change of the affine parameter along the curve, this becomes

dxm dxn.
- ) = 5
e=X(n) du (u)du () =e, (1.21)

Imn(2)
where € = 0, &1 depending on the space-like, tinie-like or null character of the geodesic
curve. In general, when attempting to solve the system (1.19), the additional con-
straint (1.21) is helpful. Results from the theory of o.d.e’s guarantee the existence of a
unique solution to the geodesic equations given suitable initial or boundary conditions

provided the Christoffel symbols satisfv suitable coutinuity recquiremen:s.

1.8 The Tensors of Riemann, Ricci and Einstein

For a scalar field ¢ : D C R" — R that has continuous partial derivatives up to and
including order two, the second order mixed partial derivatives d,0;¢ and ;0 are
identical. Having constructed the covariant derivative to extend the partial derivative
operator in a tensorial manner, it is worthwhile to consider the commutator V,V, —
V.Vi. of the covariant derivative operator. A quick calculation shows that, for
a scalar field f € C2(M;R), (ViV, — V.Vi)f = 0 due to the synunetries of the
Christoffel symbols and the fact (9,0, — 0.0 ) f = 0. For a covariant vector field V.,

(ViVy =V Vi)Vo(z) = | O :}—E)A, ,1 ! 1{ 1 ! 1 HV(r'
b 81

kr) {si)  Lsr) Lhi) ]

The coefficient of V; on the right-hand side is a tensor of rank (14+3). This motivates

the following definition,
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Definition 1.23. The Riemnann curvature tensor is a tensor field R\ of rank
(L+3) defined by
Ripg=0,4  s—d b4/ VL2700
kr sr kr} tsy sr} oLk

Using the definition of the Riemana tensor to evaluate the commutator of the covariant
derivative of a covariant vector field in (1.22), (ViVe - V.Vi)V, = R, Vi. Thus,
the commutator of the covariant derivative operator vanishes only where R . = 0
(such a region is saul to be flat).

As the name indicates, the Riemann curvature tensor includes information about
the curvature of the manifold under consideration. From the definition, it depends
on the first and second order derivatives of the components of the metric tensor and
heuce 18 determined by intrinsic properties of the space. The covariant Riemann
tensor fl;;, provides insight into anti-symmetries, symmetries and other properties of

thie Riemann tensor.

Proposition 1.1. Let R;ju(x) = gip(@)RPju(x). Then the following identities hold:

1

Lo Ry 2§(aif}kffit + 9051 — 0,09k + 0i0k91) (1.232)
g™ ([, m] [k, n} — [ik,m][ji,n]).

2. Rijp = ~Rjire = = Rijue = Ry (1.23b)

3. Rijuu+ Riwj + Rijr = 0. (1.23¢)

4. Vo Rijut + ViRijmi + ViRijim = 0. (1.23d)

The proofs of the above are straightforward computations (see [25]). The equations
(1.23d) are known as the Bianchi identities. For n > 4, the symmetries and anti-
symmetries of the Riemann tensor reduce the number of independent components of
the Riemann tensor from n' to n*(n® — 1)/12.

Various contractions of the Riemann tensor vield tensors essential for relativity.
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Definition 1.24. The Ricci tensor R;; . the curvature invariant R and the

Einstein tensor G;jare defined as follows:

LR == R*jk = ¢"' Rijpn, (1.24)
2.R:= R =gYRy, (1.25)

Ll 1 5 2
3.(10' = R‘,'J' - ,_)'R.qij- (12())

From the above definitions, the Ricci and Einstein tensors are both syvonnetric
covariant tensor fields of rank (0+42). Further, the Bianchi identities (1.23d) imply

the first and second contracted Bianchi identities:

Vk,R,;J' - VJ‘R”(, + V]Rl,-“ = (), (1.27: )
VG = V(R = 2g7) =0, (1.27h)

1.9 The Tetrad Formalism

Most of the tools for developing the theory of relativity are in place. With the ideas
from differential geometry and the tensors needed to describe curvature, the tetrad
formalism provides a useful way of representing tensors. Thorough treatinents can be
found in 15, 23, 3]. The underlying manifold that models space-time is assumed to

be four-dimensional with a metric of signature +2.

Definition 1.25. Let M be a differentiable manifold of dimension 4 with a metric of
signature +2. A set of four linearly independent contravariant vector ficlds {ei )1

on M is an orthonormal tetrad if, relative to any coordinate chart, the components

) Of the vectors e,y satisfy the equations

. . O ‘: ...-i — F) . N
Fij€la) €0 = Tlla)b)

e

where gy = ' 1= diag(1, 1,1 = 1). The bracketed indices are tetrad indices
which are raised and lowered as follows:

b)

: : b — »
elWt — n(a)( ) ey = ’f('a)(b)(»( i

i
1

€(b)



CHAPTER 1. TENSOR ANALYSIS ON DIFFERENTIABLE MANIFOLDS 27

This definition is not the most general; sometimes, complex null tetrads with a
different choice of 14 is useful (see [15, 23]), but for present purposes, 1w =
diag(1,1,1 — 1) is used.

Notice that €la); = e gi; are the components of four covariant vector fields

obtained from the contravariant vectors e(,)'. A bit of manipulation reveals
f’(a')r(’(a)__q = frsa f’(a)rf?(w =g, f»’(a)rﬁ’(a)s =&", and e(a)'rﬁ’v(b)r = 5(0)(1))-

For an orthonormal tetrad cousisting of three space-like vectors ell);, (2 e®); and

one time-like vector eV, the definitions above imply that
2 2 i . B ‘ 4 4
Urs = 7}(6)(1)}(‘(’(():'6([))3 = E‘(”,-€(”3 + E’( )re( ).s T e(‘j)"e(‘j)s - 6“ ”,.6( )S‘ (128)

This provides a decomposition of ¢, in terms of four linearly independent vector
fielels.

Having introduced the rules for using the matrices 1) and n(® to obtain the
fields ' from f’(p)’ , extend the use of tetrads to describe general tensors other than

the metric tensor.

Definition 1.26. Let T+, . be the components of some tensor field. The tetrad

components T )\ .\ are given by
T gy = T g € € e e

It follows from above that

ire(bl)’, e

Ty plar).(ay) .
et =1 it o

je (by )...(bs)e(m)“ * €,

The tetrad indices of a tensor are raised and lowered with 5®®) and 7q)e) in the

® and gep.

same way teusor indices are raised and lowered with ¢

The main advantage of using tetrads is that the tetrad components of tensors
transform as scalars. That is, an admissible change of coordinates does not change
the numerical value of the tetrad components of a tensor. From a physical perspective,
this makes the components of tensors measurable which is of utmost importance for

experiments. Tetrad components of tensors also help identify and rule out possible
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singular regions of a manifold because scalar invariants may reveal more about a region
than the individual components of a tensor relative to some fixed chart. The invariance
of tetrad components also provides a useful way to classify tensors according to their
algebraic properties (see [3, 15]). Finally, the use of tetrads simplifies the computation
of the components of tensors in a coordinate-independent mauner. (In particular, the
Kretchmann scalar RUM R,y = ROWED R ooy is often easier to compute using

the tetrad components of the Riemann tensor.)

1.10 The Stress-Energy-Momentum Tensor

With the tools from differential geometry assembled so far, consider some ideas from
physics. Since, in Newtonian gravitation, gravitational potential fields are related to
the mass-density in space, some version of this must be included in the new theory.
In keeping with the ideas developed in this chapter, the new “mass-density” should
be a tensor field. The tensor analogue of mass-density is the stress-encrygy-momentum
tensor Ty, a relativistic version of the tensor of a similar name from continuum me-
chanics. It embodies the mechanical properties of matter and acts as the source
of gravitational fields. The properties of T,, can be found using statistical argu-
ments, integrating the flux of 4-momentum? of all the particles of matter through a
3-dimensional hypersurface (space-like or time-like) in space-time. The exact physical
arguments are in {24], but it is sufficient to acknowledge the primary algebraic and

differential identities that the tensor Ty, must satisty. These arve
Tob = Tha (symmetry of Ty), (1.29a)
VTV = (conservation equations). (1.29h)
The identities (1.29b) are called conservation equations due to tlieir relation to equa-
tions of conservation of energy, momentum, etc. that arise in classical mechanics.

To interpret Ty, physically, it is necessary to use coordinate-independent invariants,

This is most easily achieved with the help of an orthonorinal tetrad. A natural choice

2The 4-momentum p® of a particle of mass i moving along a world-line with unit 4-velocity u"
is given by p® = mu®,
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of tetrads comes from solving the covariant eigenvalue problem
r b s b
ab"‘f(i) = ’\(i)gab‘/(iv) y (130)

where there is no sum over ¢ in the right-hand side of the equation (1.30). The 4
contravariant vectors 17;,® are eigenvectors of thiz problem and the corresponding real
scalars A\(;, are the eigenvalues®. Tlic eigenvectors are orthogonal, with three space-like
eigenvectors V1), Vig)’, If’};;)b and a time-like eigenvector V{4 )b which can be defined
to be future-directed®.

Armed with this orthonormal tetrad, it is possible to find the invariant tetrad

components of T,,. These are given hy

Tl = TijViw)' Vipy (1.31)
and simplify matters considerably. These non-vanishing invariants are

Ay = Ty Ay = Ty Ay = Tayxa)s Awy = Taya- (1.32)

The eigenvalues A(y), Ay and A3y are the principal stresses which are referred to as
pressures if they are positive, tensions if they are negative. Corresponding to the
principal stresses are the space-like eigenvectors V(1)%, V(2 and V(3* which are the
principal directions of stress. The eigenvalue A4 of the time-like eigenvector is called
the density of the medium (this can be density of mass or energy, which are equivalent
m the general theory of relativity). The time-like eigenvector V(4 is often denoted
u* and referred to as the 4-velocity of the medium.

If Ay = M2y = A3y =: p > 0, the medium is a perfect fluid. Defining p1 := A4y > 0,

for a perfect fluid, by (1.28), T, can be written
Top = (p+ 1) ttatty + PYas. (1.33)

where p is the pressure inside the fluid and p is the density. The equality of all three
space-like eigenvalues indicates that the pressure is isotropic. In the Segré notation

[13]. the teusor Ty, is of type [(111),1] for a perfect fluid.

3The symmetry of T, guarantees the eigenvalues are real.

"This is possible provided T,p is of Segré class Al [15]; there are situations with null eigenvectors
and complex eigenvalues (which are appropriate to study radiation or electromagnetic fields) but
those are not be considered here.



CHAPTER 1. TENSOR ANALYSIS ON DIFFERENTIABLE MANIFOLDS 30

Since T, describes the distribution of matter in space-time, choosing the compo-
nents of T, arbitrarily do not generally result in physically acceptable space-times,
To further constrain the possible choices of Ty, the invariant characterisation of T, in
terms of its eigenvalues is very useful. Hawking and Ellis [13] give two conditions and

Wald [30] gives another that restrict choices for the stress-energv-momentum tensor:

1. The weak energy condition: TV eV > 0 for every time-like vector feld V7.
(This is equivalent to —A¢y > 0 and Aoy — Ay 2 0 where o = 1,2,3 provided

T, is of Segré class Al.)

2. The strong energy condition: T,VeV® > ——%g""Tal, for everv time-like vector
field V9. (This is equivalent to —Ayyy > 0 and Ay + A2y + Mgy — Ay = 0 and
May — Ay > 0, where o = 1.2,3 provided T is of Segré class Al.)

3. The dominant energy condition: TV, 1}, > 0 and TV, is time-like or null for

"\(n)] <

every time-like vector field V,. (This is equivalent to —A;;, > 0 and

—A) , where o = 1,2, 3 provided provided T, is of Segré class Al.)

These conditions can be simplified depending on the algebraic classification of T,,,. The
weak energy condition insists that the energy density is positive evervwlhere while the
dominant energy condition iusists that the magnitude of the principal stresses does
not exceed the energy density. These conditions are physically reasonable but there
are examples of interesting space-times (see [27, 10]) involving matter that violates

some of the energy conditions.

1.11 The Einstein Field Equations

The underlying model for the space-time of general relativity is a four-dimenstonal
differentiable manifold (M, A) of class E‘i with a metric of signature +2. This ditfer-
entiable manifold is referred to as a space-time and points in it are events. This differs
from the Newtonian model in which space is Riemanmian and flat. Having established
a manifold structure for the model of space-time, the tensor ficlds on M represent the

physical quantities of interest in space-time.
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Another necessary property is time-orientability.

Definition 1.27. A differentiable manifold (M, A) with an indefinite metric g,, s
titne-orientable if there exists a continuous vector field T that is everywhere time-

like.

Onece a manifold has such a vector field ’f‘, a classification of all time-like vectors
at eacl point in M is established: given a time-like vector Ve T,(M). Then, \Y
is future-directed if [goo(p')](\*/',’f‘(p)) < 0 and is pasi-directed otherwise. It is this
property that fixes the arrow of time and ensures material particles traveling along
time-like world-lines have a fixed definition of the future as opposed to the past. This
is obviously in accord with intuitive notions about time.

What is desired is a way to map the properties of “gravitational force” onto the
properties of a pseudo-Riemannian differentiable manifold. In Newtonian gravitation,
space is associated with the Euclidean manifold E* which can be covered globally
y a Cartesian chart \ : E* — R3. Let p be a scalar field defined on y[E3}] C
R? that is nonzero only in some open set D C Y[E}]. If p is taken to be some
mass density distribution, then there exists a gravitational potential V' that satisfies
Poisson’s equation inside matter and Laplace’s equation outside:

Vi = { ) el (1.34)
0 r ¢ D.
The solution to this problem is found using the appropriate Green’s function and is

given by the integral

, 3
V(I)ze/ Py
Jra |lv =yl

One of the postulates of the post-Newtonian way of looking at gravity is the
geodesic hypothesis: the world-line of a free particle in space-time is a geodesic curve.
Thus, the perceived attraction between massive bodies is actually due to the curva-
ture of thie underlying manifold. Time-like geodesics correspond to the world-lines

of material particles while null geodesics correspond to the world-lines of photons or
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.

particles of light. (Space-like geodesics do not have obvious interpretations; theoret-
ical particles known as tachyons follow space-like curves which, by necessity, travel
faster than light.)

However, given a manifold with metric, the geodesic hypothesis aloue does not
capture all the aspects of post-Newtonian gravitation. In particular, some field equa-
tions similar to the Poisson equation (1.34) relating gravitational potential to mass
density are needed. Clearly, these field equations should be tensorial. This retlects
the fact that underlying laws of nature maintain the same basic form regardless of the
coordinate system imposed to express them. The field equations (like others) should
be partial differential equations in the functions to be determined. In the limit of
low gravity, the field equations should reduce to the Poisson equation (1.34) above.
The role of a gravitational potential in (1.34) should he assumed by tensors related to
curvature, as the geodesic hypothesis asserts that the perceived gravitational poteun-
tial is a consequence of curvature of space-time. Since the stress-energy-motentun
tensor is the analogue of mass density, Ty, should act as the source of gravifation in
this theory. Finally, in the case of a flat space with a Minkowskian metrie, there is
presumed to be no mass, so 7% should vanish.

The best candidates (see [24, 23, 15]) for these field equations arce the Einstein

field equations®:
- , 1 : y
‘:ab = G+ Hirab = Rab - §R(]ab + ’\"Tah = 0. (1‘35)

The equations (1.33) relate the distribution of matter and energy in space-time to
the curvature and geometric properties of space-time. Assuming that the stress-
energy-momentum tensor is known explicitly, the fields equations are a coupled, semi-
linear system of second order p.d.e’s in the unknown metric tensor components. ‘The
symmetry of the Einstein, Ricci and metric tensors reduce the number of nnknown
functions g, from 16 to 10. The number of independent equations is not 10, however,
due to the additional 4 differential identities V,G% = 0. Hence, an additional four

conditions (known as coordinate conditions) are also permitted.

5Geometrised units are chosen so that x = 87 and ¢ = G = 1, where (7 is Newton’s gravitational
constant and c is the speed of light.
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There is a certain ambiguity in the interpretation of the field equations; if ap-
proached using a specific coordinate systeimn, the tensor T, must be specified before
the metric tensor can be found. Thus, the dependence of Ty, on the coordinates is
known before the specific geometric interpretations of the coordinates is determined.
Conversely, the tensor g, can be specified which generates a specific Ty,. This may
not result in a physically meaningful distribution of matter and energy, but it is a
useful way of discovering solutions. Another common approach is a mixed method
(see [24]) in whick some constraints on various components of g, and T, are specified
to assist in finding a solution. Most often, it is best to think of the field equations as
a set of restrictions on the choices of the 20 unknown quantities g, and Ty

Finding solutions of the field equations is a nontrivial task. This stems in part due
to the large number of unknowns and also to the nonlinear nature of the differential
equations. Solutions are generally found by making assumptions of symmetry to
reduee the number of unknown functions and the number of dependent variables.

An final consideration in solving the field equations is the question of junction
conditions. Suppose there is some vacuum domain of space-time in which the Ty,
vanishes and some reason where Ty, # 0. Let S C M be a hypersurface representing
the boundary between matter and vacuum. In some coordinate chart, the set S can
be described by © = \[S] where © = {x € R' : f(x) = 0}. (Notice ¥ divides
the region into two disjoint connected parts, one where f(x) > 0 and another where
f(x) < 0.) Some or all of the components Ty, are disccautinuous across ¥. As a
consequence of the Einstein field equations, the derivatives of 2nd or 3rd order of the
metric tensor components may also be discontinuous across £. As a first junction
condition, it is required that, relative to an admissible coordinate chart in a domain
of space-time, the quantities go and .94 should be continuous functions across ¥
in some admissible coordinate chart. The second junction condition relies on the

covariant normal® n;(x) 1= (V;f)(x) = 8;f(x) to the hypersurface E. Explicitly, the

$Usually, n; is scaled so that it has unit “length” which is always possible provided V; f is not a
null vectar.
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second junction condition requires that
52l e 3 )
T P o = 0, (13()>

physically, this requires the continuity of the flux of 4-momentum across ¥, Other
junction conditions do exist; for instance, the requirement of Isvael [1-1] that the second
fundamental form is continuous across ¥ is another possible junction condition. The
junction conditions presented above are due to Synge [24] and ave adopted in this

thesis.



Chapter 2

Spherical Symmetry in General

Relativity

Generally speaking, the Einstein field equations (1.33) are an under-determined sys-
tem since the number of independent equations exceeds the number of unknown func-
tions. Tle process of finding exact solutions is simplified by making additional as-
sumptions about the form of the metric tensor and syminetries of the underlying
space-time. A common assumption is that of spherical symmetry. Vacuum solutions,
in addition to the convenience of having a vanishing stress-energy-momentum tensor,
are useful for astronomical calculations. This chapter discusses spherical symmetry
in general terms and provides a complete description of the maximal spherically sym-

metric vacuum space-time in general relativity.

2.1 Spoherical Symmetry

A detailed discussion of Lie groups, Lie algebras, infinitesimal translations and groups
of motions is necessary to formulate a precise definition of a spherically symmetric
pseudo-Riemannian manifold [11, 15]. For the present purposes, it is sufficient to

consider the following definition:
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Definition 2.1. A differentiable manifold (M, A) is spherically symmetric if it
can be covered by charts of the form (\,U") in which the metric tensor components are

given by the line element
2 alaty g 1N Bt at M2 a2 D 3y alpt 12 9
ds? = ™) (dx")? 4+ O () 4 sin?(0?) (dah)?) — WD e 201
(The functions e, 3 and v are assumed to be G; functions over their domains).

The Axiom of Lorentzian signature [8] has been used to determine the signs of
the metric tensor components in (2.1). In general, the coordinates »? and +? are
restricted to lie in the ranges 2k7 < a? < (2k + )7 and (n — D)7 < 2% < (n + D)7
for some k,n € Z. From the countably infinite possible domains of charts included
the atlas for M, choose k = n = 0,50 0 < 2? < 7 and —7 < 2% < 7. Henee, in the
chart (y,U) that has the line element (2.1), x' is a space-like radial coordinate, r*
and x? are space-like angular coordinates on a sphere and @ is a time-like coordinate.
The metric tensor components ¢ya, ¢a3, (13, f2q and ggy are identically zero indicating
there is no preferred spatial direction nor any angular motion. (In gereral, gy, s not
identically zero, but a transformation of coerdinates can be found to put the metric

in diagonal form.)
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The components of the mixed Einstein tensor are

1 .. .., 1 , ,
Cr | = e o (-'-:I((()”i)z - -—(0”3)(0(})) -+ €~’Ij (22d)
1
-+ e <()"d+ (0[(3) ')"(04/”(01 /))
Gy =" -la‘sz——(a 3)* Lo f-“l-(a ,)2__1(3 (D) (2.2b)
1Ty =€ 1P — 7 54 1Y 1 17 1 1£ LY &D

1 o1
+ j(Olt‘l')(atﬂ) + T(ala)(aﬂ))

4(()U}) +20"(l+ (0[0’) (()((\’)( [U’)

+e” («-—0)/3 +
- “4"(("2115)(04“/) - 1(010‘)(31’}')) -,
(1 3= (;22, (22(‘)

Gly= e (——0%’/3 - @97 + é—(a,a)(alm) +e?

+e77 (-}I(&t;’i %(010)((")‘1/3)) . (2.2d)
. 1 S R | ‘
"Gl = TG = 0,00 + 5(013)(010) - (0 )(013) — 5(84/3)(817') (2.2¢)

These are useful for formulating the Einstein field equations in specific instances.
Notice that the mixed Einstein tensor components depend only on ! and x?. Then
the field equations imply that the mixed components of the stress-energy momentum
tensor depend only on @' and &', Furthermore, the equivalence of the Einstein tensor
components G2, = G35 implies T2, = T3;. The equivalence T2, = T?; implies two of
the principal stresses of the stress-energy momentum tensor are equal, so the stresses
within the matter do not single out any angular direction.

Any hypersurface described by Dy := {& € \[U] : ' = ¢; = constant, ! =¢; =
constant} induces a two-dinensional sub-manifold M, metrically and topologically

equivalent to §2, the surface of a sphere in Euclidean space. The induced metric

tensor on Mo is

(ls'f;vq = e D[(da?)? + sin(a?)(da?)?].
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Consider the quantity 4 = drexp(J(r', a")) that is the surface area of such a 2
sphere. The radius of curvature is exp(J(a'. ")) and the covariant components of the

gradient of 4 are 47e?d,. The space-like or time-like character of 9,(.) s given by
G0 A)(A) = 1672 (D) = e (D).

Then, the domain of space-time has a different characterisation depending on whether

the surfaces A = constant have space-like or time-like normal vectors [33].

Definition 2.2. Let D = \[U] C R be the image of a spherically symmetrie domain
under a suitable chart with a metric tensor of the form (2.1). The domain D is an
R-domain if 3 is space-like throughout D (ic. ¢V ,3Vi3 > 0). If 3 is time-like
throughout D, (ie. ¢**V 3V, 3 < 0) then D is a T-domain. This is equivalent to the
requirernent f(xt, x*) > 0 for an R-domain and f(x',o") < O for a T-domain, where

f:D — R is defined by
et ah) = [0|_;’3(.’lrl,;r’i)]26’"""("’1""4) - [&m‘(m";z”')]'“)t"“’("’l“"'l)‘ (2.3)

For a hypersurface along which the gradient of the surface area of the 2-spleres
is a null vector, the points are not in an R-donain nor a T-domain. Far from matter
concentrations where the metric is asymptotically flat, events lie in an R-domain.
T-domains usually exist where concentrations of mass are very high, Within an
R-domain, it is usually possible to find a coordinate transformation to curvature

coordinates [24] which takes the line element into the form!
2 &l 2 9 2 SOr) a2
ds® = e y? 472007 — e,

For a T-domain, a similar transformation can be found to T-coordinates that gives

the line element?

ds? = BT gR? 4 T202 - D) g2,

'Hats are used to indicate that the functions & and 5 ave different from the functions o and ~.
?Tildes are used to indicate that the functions & and % arve different from the functions v and =,
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2.2 The Schwarzschild Solution

The Schwarzschild solution is the most well known exact solution of the Einstein field
equations (1.35). It describes the gravitational field in the vacuum outside an isolated
spherically symmetric static body. Provided a star is close to spherical, this metric is
wsed to model space-time in the vacuum outside. The original major experiments to
verify Einstein’s theory of gravitation—measuring the perihelion precession of Mer-
cury and the bending of light due to the Sun’s gravity among them—rely on the
assumption that gravity in the solar system is reasonably modeled by Schwarzschild’s
vacunm solution. It is also the first known example of a black hole coming out of
Einstein’s equations. Detailed descriptions of these experimental results and details
of the the geodesics in Schwarzschild space-time can be found in [3, 23, 19)].

The line element for the schwarzschild metric is
. -1
2mn . ; e 2m : ,
ds* (1 - ——) dr? 4+ r2(d6? + sin® #¢?) — (1 - -—’-) dt?, (2.4)
y

where 1 is a constant. This is obviously the same form as (2.1) with the identification
r=a' 0 =07 ¢ =0t and t = 07 in (2.1), and defining a(r, ¢) = —ln(1 - 2m/r),
d(r,t) = 2lnr and y(r,t) = In(1 =2m/r). The constant m is the Schwarzschild mass
of the gravitating body because, in the Newtonian limit, this constant is proportional
to the mass of the gravitating body (see [23]).

This is a vacuum solution derived from the assumption of spherical symmetry
and the field equations G4 = 0. The solution is also static in that the metric tensor
components and any derived quantities are all independent of the time-like coordinate
t. A result known as Birkhoff’s theorem (see the appendix of [13]) guarantees that
any €* vacnum spherically symmetric solution of the Einstein field equations is part
of the maximally extended Schwarzschild solution. In studies of static solutions of
the Einstein field equations, the domains of matter are assumed to have a boundary
r=ry, > 2m > 0 in order to be joined successfully with the Schwarzschild metric
outside matter. The metric is also asymptotically fat which (in this context) means,
in the limit as » — oo, the metric tensor components go over that of a Minkowski

chart, namely 7, = diag(1,1,1,-1).
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The gravitational radius r = 2m > 0 lies at the edge of the domain that the
Schwarzschild chart can cover. The metric tensor appears to have a siugularity on the
hypersurface r = 2 since gy ((r) — +oc asr | 2m. If the source of the Schwarzschild
field is a static, spherically sviumetric body whose outer boundary has radins 1, > 2m,
this causes no problem in deseribing the entirety of space-time in a single chart.
However, for a dense body (such as a neutron star) or a vacunm spherically symunetric

space-time, the nature of this apparent singularity must be examined further.

2.3 Extending the Schwarzschild Solution

In classical physics, a singularity of a field is identified as somewhere that the field
diverges. For a static electric or gravitational field with potential of the form V7 =
k/r, the singularity at r = 0 is due to the “infinite charge or mass density” of the
idealised “point™ charge/mass. Non-linear theories o not necessarily have sucl easy
interpretations of singularities,

In precise terms, a space-time M is time-like geadesically incomplete if there exists
a time-like geodesie curve in M that cannot be extended to arbitrary values of its
affine parameter. In a seuse, this means that a freely falling observer could reach the
bhoundary of space-time or “run out of mauifold” in a finite amount of thne. Since
time-like geodesic incompletentess is a bit too restrictive, a similar definition applies
for null geodesic incompleteness. However, particles are not restricted to moving
along geodesics; there are other time-like curves in space-time that are not geodesics,
To allow for other kinds of incomplete curves, b-completeness and generalised affine
parameters are introduced (for details, see [6, 13]). These constructions are necessary
to define a space-time M as singular if it contains time-like or null curves that are
incomplete, It turns out that the definition of a singularity is nch more involved
than defining singular space-times and the ideutification is difficult,

A singularity in a local coordinate system is particularly misleading. For example,

the flat differentiable manifokl B is covered almost globally by a spherical coordinate
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system with coordinates (1,8, ¢). In such a case, the line element takes the form
Y . g, o
ds? = dr* + v*(df* + sin® 0dp?),

where 0 <+ < +00,0 < 0 < 7 and -7 < ¢ < 7. The determinant of the metric tensor
is det(g) = r'sin® @ which tends to zero as » | 0 or | 0. There is, however, nothing
irregular about those subsets of the manifold. The apparent singular behaviour is an
artifice of the choice of coordinate charts; simply converting to Cartesian coordinates
does away with the problem. The components of the metric tensor, when considered
as functions of the coordinates, are not scalar fields (so they do not transform as
tensor tields of rank (04+0)). As such, no real geometrical meaning is prescribed to
singularities in the individual components of the metric (or any other) tensor.

Omne indication that the singular behaviour on the hype.surface » = 2m of the
Schwarzschild solution is not indicative of a singularity is given by the scalar invariants
of the metric. For instance, the Kretchmann scalar is completely regular except as
r | O

0y A 3
= (48m*/r° =T Y
( m /' )I,-:?m dm

( RUH-RUM)L

=2m

This scalar has the same value in any coordinate system, unlike the component ¢,; of
the metric tensor. It seems, then, that something is lacking in the choice of Schwarz-
sclild (r, ¢)-coordinates to describe this space-time,

Other coordinate charts are used to circumvent this difficulty. For simplicity, the
transformations discussed here will be on the two-dimensional sub-manifold My where
f =constant, ¢ =constant. It is the transformations of the coordinates r and ¢ for the
sub-manifold that are of interest and the angular coordinates play passive roles in the

transformations. Lemaitre found a way to eliminate the discontinuity in the metric
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tensor components. This transformation is as follows:

2m 2 ‘
\/- + 3\/ —_— (2.5a)

\/-—i— v2m
VT —V2m

VT +V2ml|

OFD _ [ _ (3= .
o(r,t) — \ 2m (- 4m ) > 0; (2.5¢)

The resulting metric from this change of chart is the Lemaitre metric [23, 33] that is

= 7@(} t):=t+2vV2mr+2min

t=T(r t) =t —2vV2mr+2min

described by the line element

2m

ds® = T di? + [R(T, ]A(IO“ ~ 2. (2.6)

* U7

The function R in the line element (2.6) is defined in the inverse transformation from

Lemaitre (7, 1)-coordinates to Schwarzschild (r, t)-coordinates:

Wit

~ 3 .
r=R(Nt) = (5\/ 2m(r — t)) , (2.7a)
ot t —2v2m( 3V2m(F ~ ﬂ/Z)% (2.7h)

1) =
(3V2m(F—1)/2)7 + V2m
(3vV2m(F=1)/2)3 = V2m )

This choice of charts is physically interpreted as the coordinates co-moving with an

)

t=T(

il

~

2mIn

observer falling radially from infinity.
Looking at the line element (2.6), the components of the metric tensor are clearly
regular as r | 2m. The hypersurface r = 2m at the houndary of the Schwarzschild

domain corresponds to the hypersurface 7 —t = (4/3)m in the Lemaitre domain.

Defining
Dgr = {(rt):2m <r < +o0,t € R}, (2.82)
~ ~ 4
Dgp = {(",ﬂ Tt > §m} , (2.8h)

ET = {(?,A) 0<7—t< —;-'771} , (2.8¢)
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it becomes clear that the Schwarzschild domain Dg is homeomorphic to the domain
5,{ covered by the Lemaitre chart, so the domain ﬁR is an R-domain. However,
the Lemaitre coordinates are also valid in the T-domain ET that extends beyond the
domain wlere Schiwarzschild (7, t)-coordinates are valid. The metric (2.6) is defined
and regular in BR U ﬁrr and on the houndary hypersurface where 7 — T = 4dm/3
(although there is a singularity along the hypersurface 7—t = 0 along which R(7,7) = 0
at the boundary of the domain Dr; see figure 2.1).

It is possible to cover the T-domain heyond r = 2m with Schwarzschild-like
coordinates. The domain in the new coordinate system is thus called the vacuum
Schwarzschild T-domain, denoted Dp. The transforme “.on from the Lemaitre (7,7)-
coordinates in ﬁr to the Schwarzschild ( R, T)-coordinates in the domain Dy is defined

as follows:

R =TR(71) =7 =2V2m(3V2m(7 — 1)/2)3 (2.92)
+2mln ( v2m + (3vam(T —t)/Z)?)
V2m — (3V2m(T -1 )/2)s

T =T(F1):= (g V2m(7 - ?)) : (2.9b)

J(R. T 4m 3 2m e~ A

(;(ﬁ;{;) = (3(?—ﬂ> = \/;(;g> 0 ((7.t) € Dr). (2.9¢)
The range of the transformation (2.9) is

Dr:={(RT)eER*:ReR,0<T<2m}.
Using the transformation (2.9), the new line element is

ds® = (%’hﬁ - 1) dR? + T%d0° — (%ﬁ ~ 1)—.l dT? (2.10)

where (R, T) € Dy. This metric obviously resembles the Schwarzschild metric (2.4)
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T
i , A
SlI/l\gl/l\]arlty event horizon
" (r-1=0 —(T=2m)

g .. 5

singularity
(T=0)

CVEn/t\ horizon
(r—t=4m/3)

Figure 2.1: Depiction of the transformation betweer Lemaitre (¥, #)-coordinates and
Schwarzschild (r,t) and (R, T)-coordinates in the respective R and T-domains,
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wlere the radial variable r is replaced by the time-like variable T in the metric ten-
sor components. The Lemaitre (7, t)-coordinates can be recovered from the (R, T)-

coordinates using the same functions R, 7 as in (2.7a) and (2.7b):

_ v2m — VT 3
=R(T,R):=R+2v2mT +2mIn N \/__ 5 (2.11a)
~ v2m — T ,
t=7(T,R):=R-2 T+2mln | —————— 2.11b
‘ 2 Vot VT| (2.110)

Tle line element in the T-domain ﬁrp is exactly as in (2.6).

For further analysis of the vacuum T-domain D, it is convenient to use an al-
ternate chart using null or light-cone coordinates. The term “light-cone coordinates”
refers to the fact that the coordinate curves are null curves and hence represent the
worldlines of particles of light. A doubly null coordinate system describes the the
maximal extension of the Schwarzschild solution. The angular coordinates § and ¢
play passive roles once again and so this discussion focuses on a two-dimensional sub-
manifold. Consider the two-dimensional domain D in the (U, V')-plane where UV < 1.

This domain D can be divided up into open sub-domains in the separate quadrants:

D, = {(U,V):U <0,V >0}, (2.12a)
Dy = {(UV):U>0,V>0,UV <1}, (2.12b)
Dy, = {(U,V):U >0,V <0}, (2.12¢)
Dy = {(,V):U <0,V <0,UV <1}, (2.12d)
Dy = {(UV):UV =0} (2.12¢)
Define the Kruskal-Szekeres metric [16] in D by the following line element:
, 39m2 YU,V , o
ds” = Y ;1‘ 3 exp (—)%%1——2) AUdV + [Y(U,V))?dQ?, where (2.13a)
V(U V) = 2m(1 + W(=UV/e)) and (2.13b)
W(2)eWE) = = for z € (—=1/e,+00). (2.13c)

This is the maximal extension of the spherically symmetric vacuum Schwarzschild

solution.
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The function Y : D — (—1,40o0) in the line element (2.13a) includes the Lambert-
W function® [7] defined implicitly by the equation (2.13c) so that it satisfies the

transcendental identity

UV + exp ( V(U v)) (ch(U, V) 1) ~ 0. (2.14)

2m 2m

The Lambert-W function is the inverse of the function f defined by f(x) 1= xe'.
On the semi-infinite interval (—1, +00), the function f is monotone increasing ad
infinitely differentiable, so the inverse W is well-defined and infinitely differentiable
on the semi-infinite interval (—1/e,+00). The function W as it occurs in Y has as
its argument —e~'UV. By the definition of the domain D under counsideration in the
(U, V)-plane, —oo < UV < 1,80 —=1/e < =UV/e < 4+o0. As such, the function Y is
smooth over the domain D considered. (Notice that there are other hrauches of the
function W; the point —1/e is a branch point and, in the function Y defined in (2.13b),
corresponds to the hyperbolae UV = 1 in D which are the genuine singularities of
this space-time.)

Let the functions Y, Vi, Yin and Vi denote the restrictions of Y to the domains
D,, Dy, Dy and D,y respectively. These particular functions occur in the transfor-
mations from IKruskal-Szekeres coordinates to Schwarzschild-like coordinates. On the
liypersurface Dy, UV = 0; as such, for (U, V) € Dy, Y(U,V) = 2m{1 + W(0)) = 2m.
Thus, even though parts of the null hypersurface corresponding to Dy, cannot be
described by Schwarzschild-like coordinates in Dg or D, the metric is smooth and
regular there.

The curves U = constant and V' = constant have tangent vectors that are every-
where null. The coordinate lines, then, are the the worldlines of plhotons. Material
observers must have worldlines lying strictly within the coordinate lines. Geometri-
cally, in the domain Dy, the tangents drawn to the world-line of any material observer
have to have strictly positive and finite slopes. That is, at an event with Kruskal-

Szekeres coordinates (U, Vo) € D, any time-like curve passing through (U, V4) lies

3This transformation is always defined implicitly in the literature. T introduce the Lambert-W
function in recognition of the fact that an implicitly defined function is still a function in its own
right.
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strictly in the set [T U I, where
I"={UV)eD:Uy<UVy<V}and I":={(U,V)e D :Uy> UV >V}

These sets are, respectively, the chronological future and the chronological past of
(Up, Vo) [13]. They include all possible events in the past that could affect (U, Vo)
through a time-like curve terminating at (Up, V4) and all the possible events in the
future that can be affected by a time-like curve originating from (Uy, V5) (the causal
future and past include null trajectories also). For events in D, the causal and
chronological pasts lie strictly in Diwv and Dr while the chronological and causal futures
lie strictly within Dr and Du. Thus, events in Dy can be affected by events in D,
but the converse is not true. The null hypersurface UV = 0 is often referred to as an
event horizon due to this asymmetry; observers within D; can never receive signals
fromn observers in Dy and thus have no knowledge of what exists beyond (see figure
2.2).

The relevance of this particular space-time is that its various quadrants can be
covered with Schwarzschild-type coordinates; thus, it satisfies the vacuum field equa-
tions and hence is an extension of the spherically symmetric vacuum solution of the
Einstein field equations (1.35). The Kruskal-Szekeres (U, V')-coordinates in D; are

obtained from the Schwarzschild (r,t)-coordinates in the domain Dy by the following

relations:
U = Uy(r,t) := r=ty (2.15a)
=YL U= e T om SO
. . r+t 7

V = Vol t) = ex L, 15b
Vi(r,t) exp( 4771.) 5 1 (2.15b)

JUV)  rems

=~ 0, (r D 2.15

a(r,t) 16m3 <0, (1¢) € D, ( )
Dpg = {(r.t) : 2m <r < +o0o,t € R}. (2.15d)

The inverse transformation from D, to Dpg is as follows:

ro= V(UV) = 2m(l + W(—e"'UV)), (2.15¢)
t = T(UV):=2In(-V/U). (2.151)
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Consider the line r = r, = constant > 2in in the Schwarzschild domain. The image
of such vertical lines in the Kruskal-Szekeres domain Dy is a branch of a hyperbola
UV = —(r./2m — 1)e"/? < 0. As r. decreases towards 2m, the images of the
hyperbolae approach the coordinate axes. Thus, the line » = 2m in the Schwarzschild
domain is mapped to thie coordinate axes U = 0,1V > 0 and V" = 0,7 < 0 bounding
the domain D,.

The horizontal lines t = t, = constant € R in the Schwarzschild domain are

mapped into half-lines V = —{et/2m)

U incident on the origin in the Kruskal-Szekeres
domain D;. Ast — —oo, the half-lines are nearly horizontal and hence are nearver
to the U-axis. The line ¢ = 0 maps to the half-line of slope -1 that cuts D, in half.
Finally, as t — oo, the slopes of the half-lines become almost vertical and near the
V-axis.

A similar transformation exists from Dy, to the T-domain described before in (2.9).
The null surface UV = 0 which bounds Dy is the image of the event horizon » — 2m
in the transformation (2.15) and it divides the domains D, and D, in the Kruskal-

Szekeres domain. The transformation between Dy and Dy, is as follows:

— R T
U=U (R, T) :=exp (T ) \ — - L, (2.16a)
) 4m 2m

T+R T .
/= , = ex - 161
V =Vi(R,T) :=exp ( ™ ) 5 1, (2.16h)
AU,V) Teim
- - = ! 2.16¢
IR, T) 16m3 >0, (R,T) € Dr, (2.16c)
Dy :={(R,T): Re R0 <T < 2in}; (2.16d)
R =Yy(UV) :=2m(1 + W(—e~'UV)), (2.16¢)
T = T,(V/U) := 2In(V/U). (2.161)

The radial half-lines and hyperbolae in D, are similar to those in D,. For instance,
the images of the lines R = counstant in D are radial half-lines from the origin
while the images of the lines T' = constant are branches of hyperbolae UV = ¢ with
0 < ¢ < 1. However, in D,;, there is a genuine singularity, the hyperbola UV = 1.

In this domain, any future-directed curve, null or time-like, starting from an event
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(L, V) € Dy necessarily intersects this singularity. This singularity is called a black
hole for this reason; not even light can escape from the domain Dy, (see figure 2.2).
Finally, there are the domains Dy; and D;,. The line element is invariant upon
reflection through the origin; that is, the mapping (U, V) +— (=U,=V) does not
change the metric tensor components at all. The R-domain Dy, can be covered by
coordinates identical to the (r t)-coordinates covering D, while the T-domain Dy
can be covered by coordinates identical to the (R, T)-coordinates covering D;,. The

transformation from Dy, to Dpg is

TI - tl !
U=Ue(r', ') =exp — —1, (2.17a)
4m 2m
J '[7/ )
V= Vel ) = —exp [ bl ) 4/ = — 1, (2.17b)
4m 2m

rl

AU, V)  redw

S ‘,/\ ! 17
a0, t) TR 0, (.) € D, (2.17c)
= YUV i=2m(1 + W(—G‘IUV)), (2.17d)
= Tu(VIU) = 21n(~V/U), (2.17¢)

and the transformation from Dy to Dy is

N oY) ]
U=Us(RT) := —exp (T i ) A 1, (2.18a)
4m 2m
72l ! I
V= V(R T') = —exp <T + R ) /z— -1, (2.18b)
4m \/ 2m
QU V)  Tletn .
= s WU, d
SR~ 16m? >0, (R, 7)€ Dr (2.18c)
R = Yu(UV) 1= 2m(1 + W(=e"'UV)), (2.18d)
T = T(V/U) :=21n(V/U). (2.18¢)

Primed coordinates are used in the Schwarzschild-like coordinates for these domains
is hecause the orientation of time is different in these domains. In particular, the
domain Dy is almost identical to D; in that future-directed time-like or null curves

can fall into the future singularity in D, .- However, the singularity in Dy, is a past
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Figure 2.2: Depiction of the transformation between Kruskal-Szckeres (U, V)-
coordinates and Schwarzschild-type coordinates in each of the sub-domains.
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singularity or a white hole unlike that in Dy;. Future-directed time-like or null curves
starting in D,y can travel into D, or Dy, but no observer or photon starting in any
of the other three domains can travel back there. Further, the domains D; and Dy,
can be viewed as distinet universes separated by the black hole; however, no material
particle or light-ray can ever traverse from one to the other due to the singularity

separating them. (The situation is clearly illustrated in figure 2.2).



Chapter 3
T-domains and exotic black holes

Static spherically symmetric stars have heen studied extensively in the literature on
general relativity. Many classes of static solutions for bodies composed of perfect
isotropic fluids or anisotropic fluids are documented in [15]. Sowe of the models are
more realistic in the choice of an equation of state (see [, 2]) than others derived [rom
mathematical considerations alone (see [29, 32, 17, 18]), although it should be noted
that most physically realistic models cannot be solved exactly and require numerical
methods. These exact solutions all arise from the assumption of time-independence
of tlie solutions of the field equations (1.33) in a spherically symmetric R-domain that
is joined to a vacuum Schwarzschild metric using suitable junction conditious.
Ruban [21, 22] did examine T-models of a sphere. Later, questions about time
machines and the possible existence of closed time-like curves in space-time prompted
Morris and Thorne [27] to study wormholes. These wormhole solutions are built
from ezxotic matter that violates the energy conditions that restrict the stress-energy-
momentum tensor. More recent studies of gravitational collapse have revealed models
of spherically symmetric stars consisting of anisotropic fluid matter undergoing a
transition into exotic matter after collapsing past the event horizon of a black hole
(see [10, 9]). This chapter presents a survey of general solutions within a spherically
symmetric T-domain that involve similar exotic matter. The solutions obtained differ
from other spherically symmetric solutions in R-domains in that the gravitational

effects are due to radial tension within the matter rather than mass-energy density.
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For external observers, the space-times resetnble Schwarzschild black holes, and hence

are crotic bluck holes.,

3.1 Analysis of a General T-domain

[n the most general case, the Einstein field equations together with all other con-

straints are written as follows:

EU = GYU -+ hT,l = (), (3].(1)
T :=V,TY =0, (3.1b)
C i Ongtiy) = 0. (3.1c)

The C* are 4 possible coordinate conditions that can be chosen. There are 20 un-
known funections (¢;; and Tj;) to he determined and 18 equations in total in (3.1).
The equations (3.1) are not indepencent, however, due to the 4 differential identities
V,EY 4+ wT" = 0. Thus, there are 14 independent equations to solve and 20 unknown
functions so the system (3.1) is under-determined.

For a general spherically symmetric T-domain, the spherically symmetric ansatz
(2.1) with the identification! »' = R, 22 =0, 2% = ¢, 2" = T and exp(3(R,T)) := T?

is

ds® = " FNIR? 4 T240% — /(BT T2, (3.2a)
dQ? = d? + sin® 0o, (3.2b)

The unknown funetions « and + are assumed to be of the differentiability class (‘Ei over
their domains. These coordinates are valid in some domain D; C R?. The angular
coordinates play passive roles so the analysis is restricted to a sub-manifold My on
which @ = coustant and ¢ = constant. In this analysis, some kind of matter (7%, # 0)

is embedded within the T-domain

Dy:={(RT):ReR0<T <2m}

'The coordinate names R and T should not be confused with the tensors represented by similar
letters, The meaning is generally clear from the context.
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of the eharft eovering a domain diffeomorphic to the sub-domain 1, of the Kruskal
space-time (2.16).  The matter exists in some open set 12, < Dy oin the (R T)-
plane. The boundary between matter and the spherically sviimetric vacumn domain
outside 1s denoted dD; and the vacinm domain is denoted Dp. The houndary ean
be deseribed by some curve F(R,T) = 0 for some suitable function £ with an
additional assumption 9, F(R.T) # 0 ou the boundary 0D;, the implicit function
theorem guarantees that the function F can be inverted locally on 90D;. Thus, the

domains under consideration can be given by

D; = {(RT)ER*:ReR.0<T <T < B(R)}, (3.30)
oD; = {(RT)eER*:RecRT = B(R)}, (3.3h)
Dr = {(R.T)e€ R*:ReR,BRY<T< 2m}. (3.3¢)

The line element (3.2) is valid in the domain D; while the line element in the vacuum

domain Dg is

9 2n o D gt 2m - Y
ds? = (—}i - 1) AR? + T2I0" — (3'-’—' - 1) a1, (3.4)

In the definition of Dy and iu this line element, the parameter m ois the invariant
Schwarzschild mass m of the space-time. (This will be related to the non-vanishing

stress-energy tensor components in equation {3.12)).

The components of the mixed Eiustein tensor computed from (2.2) give the non-
trivial field equations (for simplicity, denote o = a{ R, T') and ~ = +(R,T")).
1 - .
Yy = G+ W = Tz (1 + 71 =TOry)) + W =0, {3.5a)

E = G +nT?%

(1 1 1
= ¢ (-2—(0%04) - Z(O’p(]f)(a’p')’) Z(B,w) + w;fd (v -»7))
—cy 1 1 2 q F

+e7¢ Z((‘)Rcv)(i?nv) 0,(7 4(01e’)’) + kT =0, (3.5h)
£y = £, (3.5¢)
, . , 1 ,
gy = G’u+H.T",..,_T—,(1+w<1+Taﬂg)>+H,T",.i:o, (3.5d)

d ,

gy = Gl(;+h:Tl,.1=—~(3“—;%z+ KT 4 =0, (3.5¢)
E'Y = el (3.51)
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The conservation equations T, = V. 7%, = 0 reduce to two nontrivial equations:

y L , 1 2\ ..

T = 0,»,7"[+~0,‘T"|+;)—(0Rﬂ/)(T1|—-T".f;)+(-2—8T((x+7)+—7:)T'1=O, (3.6a)
;1 2, .1

7, = (')uT":;+t"‘)rT'ls|—E(U'rﬂ)Til—:I:T“)2+§3T(CV+’Y)TI4 (3.6b)

1 2 y
+ ('2-07'(1 + "j:,) T‘f‘l = (.

There are 4 independent equations and 6 unknown functions: «, v, T, T, T?, and
T, which depend ouly on (R, T). The system is under-determined and two functions
can be preseribed. Thus, assuming 7', and T4 are known functions of (R, T), the
remaining four functions can be determined.

The field equation £') = 0 (3.5a) can be integrated, since it becomes
Op(Te™ ) = —n(THT' —1.

Hence, the metric tensor component gqy can be determined directly from the pre-

scribed function T,.

. 2M(F
e~ 1Ry M — 1, where (37&)
T
1 T,
M(RT) = 5 (f(R) - '\‘/ T“Tli(R»T)dT) (3.7b)
I/ JTy

for some arbitrary differentiable function f € (:’f,(DI;R). The function T'!'; must
he negative in order to make a positive contribution to the effective mass function

M(R,T) > 0. Integrating the equation (3.5d) gives the function o needed for g;:

T rer(RT) 4 .
a&(RT)=— / (f—-—-——;——l:——— + ke’ BT (R, 7‘)) dr. (3.8)
J T,

The unknown function 79, is obtained by differentiating e="®7) with respect to R
(given in the equation (3.7a)) to find dpy and substituting the result into the field
equation £y = 0 (3.5e). Thus,

' T
T =L (”R) - / Tzc’)R_Tll(R,T)dT) . (3.9)

2 .
T K To
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Finally, the last unknown T2, is given using the differential identity V, 7 = 0 (3.06h).

. T | T T.
T%(R,T) = 5 (0:T"4 + 0,T")) — I(ara) + 0xla+ T,
(3.10)
/——{()TO + 1) ]114.

The junction cenditions (1.36) must be satisfied at the interface dD; between
matter and vacuum. The boundary as defined in (3.3) can be viewed as a level curve
of the function F(R,T) := B(R) —T = 0. As such, the non-vanishing components of
the gradient V,F are V| F = B'(R) and V4F = —1. Using V F as a vector normal

to the boundary, the junction conditions [T“bna”,r: BR) = 0 become
[THB'(R) =T | popy = O (3.11a)
[T".B'(R) - ,1]|,T:mm = 0. (3.11h)

Specific choices of the boundary B(R), the stress-energy teusor components T T,
and T, are necessary for explicit verification of these junction conditions. Notice
that some solutions of the field equations (3.1) are not able to meet these junction
conditions. Such solutions are still useful as local solutions that can he matched
to other solutions that do satisfy the required junction conditions at the interface
hetween matter and vacuum [17, 13].

In the domain Dp outside the matter, T = 0. As such, for T > B(R), the
solution derived for g44 gives

R 9M(R, B(R -
grg = 7T = ( ( = (R)) _ 1) |

This appears to depend upon the time-like coordinate T' and the radial coordinate
R. In fact, for T > B(R), the quantity M(R,T) is shown to he constant using the

equation (3.9) for T, and the junction condition (3.11a):

T
[ d (f(}?)—h / T (R, T)([T)]
T=B(R) dR To

T
= [—HB'(R)(TQTII) + (f'(R) - K / TQ(?RT';(R,T)(I'r)]
JTo

d
{EZ M(R, T)}

(3.12)

T=DB(It)

= —k[B(R))*[B'(R)T" = 0.

1
T 1”'r:ri(1t)
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Thus, for T > B(R), M(R,T) = m where m is a constant and g,4 depends only on
thie coordinate . When matched with the vacuum Schwarzschild T-domain metric,
it is clear that this parameter m is identical to the Schwarzschild mass as observed
by an external observer. In this instance, the Schwarzschild mass is different from
that in the static spherically symmetric case in an R-domain because the mass in the
T-domain is tension generated mass. That is, the effects of gravity observed from
the vacuum domain coincide with the usual Schwarzschild picture for a Schwarzschild
black hole or a star of mass . Inside, however, the effective mass is determined by

the radial tension T, < 0 rather than the energy density T*,.

3.2 Particular Solutions

In practice, the preceding analysis is extremely difficult to apply towards obtaining ex-
act solutions. Rather than assuming the stress-energy-momentum tensor components
T', and T, are prescribed, it is usually more practical to use a mixed method (see
[24]) that prescribes some constraints on the functions g, and T, to determine the
rest. To derive some solutions to the Einstein field equations in the T-domain, restrict
thie analysis to the case where the metric functions are functions of the time-like coor-
dinate T only. This resembles assuming the static case for an R-domain in which the
metric functions are independent of r (special cases of this include the Schwarzschild
vacuum solution and many other static solutions such as in [15, 17, 18, 32, 4, 31]).

The line element (3.2) goes over into

ds? = eV dR? + T2dQ?* — T dT?, (3.13a)
Q2 = db? + sin?0de?, (3.13b)
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and the field equations (3.5) hecome

‘ 1 1 X ,

£ = G T = (1 M I(q—v‘(TC“’O +rT' =0, (3.14a)
&5 = G%+rT>

___ — ]‘ n ]‘ I 1 N2 ]‘ ! / o2 — s

= ¢ (5(1 —-z():fy +Z(a) +§T(a —-v) + v = 0. (3.14b)
&y = &%, (3.14¢)

, 1 X

Y = Gy +rTY = ﬁ(l +eT(14+Te')) + T =0, (3.14d)

where the prime denotes the total derivative with respect to the T coordinate. In
addition, the conservation equations V,7% = 0 reduce to a single nontrivial equation:

VT = (T%) = ST + 2T = T%) + ST = 0. (3.15)

The system at this point is under-determined. It consists of 3 nontrivial ficid
equations and 1 conservation equation; however, tliere are 5 unknown functions: «,
~. TY, T? and T'4. For the static spherically symmetric case in an R-domain, the
requirement T', = T?y(= T33) is often used; this amounts to requiring isotropy of
pressure within a perfect fluid. By analogy, to make the system of equations above

more determinate, introduce the requirement
5 2 .y
T14 = T_g. (3 l())

Then, the above system can be written as follows (see [29]):

d (e +1 " d {a'e™ ™ R d {o'e 0 (3.17)
T - 7 e : f— =\, d.l(a
ar \~ T ar\ 2T )¢ ar\ 2T | |

1 — , - S
T—2(1+e 1 -T+))+rT" =0, (3.17h)
1 —— AR +A . —
7;5(1‘*'9 "(1+Ta’))+ T, =0, (3.17¢)

)I
(T") + %—(T"{, ~1')=0. | (3.17d)
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The equation (3.17d) is identically satisfied as a consequence of (3.17a), (3.17b),
(3.17c). In that case, the system to be solved is (3.17a), (3.17b) and (3.17c) for the
unknowns «a, v, T, and TY,.

The strategy adopted is as follows.

1. Prescribe some constraint on «, v or both to make the equation (3.17a) inte-

grable.

2. Integrate the equation (3.17a) and use with the additional constraint to find the

solutions for o and 7.

3. Substitute the expressions for a and v into (3.17b) and (3.17¢) to give T, and

T,

At this point the system is solved.

Some solutions obtained in this manner are tabulated in Table 3.1. (Admittedly,
the solution VII is derived using a different procedure closer to that in [31] which uses
an equation of state as an additional assumption.) These solutions are mostly local
solutions that satisfy the field equations involving a number of arbitrary constauts
that arise out of the integration and the initial assumptions about the functions.
Some of the solutions cannot satisfy the necessary junctions conditions for any values
of these constants. In such a case, the matter described by the solution can be joined
to some other solution with matter of a different kind that can meet the junction

conditions (see [17]). Such an analysis is done for the solution I in the next section.

3.3 Analysis of Solution I

The solution I closely resembles the interior Schwarzschild model of a static star
(see [15]) with constant energy density. It can be derived by assuming that gy =
—(QT?—1)""! for some constant } > 0 and following the approach outlined previously.

Alternately, assume that T!; = —3Q/r = constant and integrate (3.7a) to obtain gaq.
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L] gu(T) = D i gu(T) = (T }
R (30—(QT2— 1)%)’ QT2 - 1)
II A2 (kTZ=1)!
111 B2 (1 +T?%/A?) (14 2T%AY) (1 4+ TYA?) (T2 - 1)
IV T2 (AT™ + BT™) (n2—1)"
v ATTR (nZ = 2n = 1) /(1 + kT -0 F0y
where m := (2n+ 1)(n —3)/(n+ 1)
VI ATZe BT [(B?T2/16)eT"Ei(BT — 4)
—(5B2T%/16)e""Ei( BT)
+(BT)/2 — 2+ CT%"7] "
VII n(B —1) (1/n)(1+ A’T3) In(B — 1)
+(1+ A2 [(C)T) +(1 4 A2T?)% ((C/T)
| —((nB)/(AT))arcsinli( AT')] —((nB)/(AT))arcsinh( AT))] ™

Table 3.1: Particular solutions for ¢4, in the T-domain

In either case, for the solution I in Table 3.1, the line element i the domain Dj 1s

dT?
012 -1’
{(RTYER*:ReR Ty <T < Ty} (3.18h)

1y 2 . -
ds* = K2 (30— (QT? =1)*) dR* +T0* -
Dy

(3.18)

for some suitable constants Ty > 0 and T that determine the bounds on T". The outer

boundary of the matter diJ; is given by the curve T' = B(R) := T}, = constant, so

OD; = {(R.,T)eR*: Re R, T =T,}. (3.19)

Using (3.17b) and (3.17¢c), the nonzero compouents of the tensor 7, are

1_ 2_. :-1;
=39 o 1 =2, = 3QC— QT — 1)

K K(3C — (QT2 ~1)7)

(3.20)

While it is immediately obvious that T'; < 0, more information about the parameter
C is needed to determine whether T, is positive or negative.

The arbitrary constants C,k in the metric tensor components arise out of the
integration of the system (3.17). These can be related to the houndary parameters

Ty, Ty, by considering the boundary of D;. Clearly, the metric tensor component
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gir = (QT? = 1)~ hecomes infinite as T | Q~2. Thus. it is reasonable to assume
1y > (,)”“ff > (), so Q‘% 1s a lower bound ou the parameter 7). The other constants
can be related to the boundary parameter T, through use of the junction conditions.
The junction conditions (3.11) take a simple form due to the form of the boundary
curve T = B(R) = T, and the fact that ', = T, = 0. As such, the equation (3.11a)
is ldentically satisfied: \
(T') - (B{R) =T |y = (T") - (0) = T] |y, = 0.
The equation (3.11h) implies
(r'y)- (B’(R))TdeHT:T,} =[(T")-(0) - T"‘,/;]IT:TL’ =-T"%(T,) = 0.
Looking at the earlier equation (3.20) for T, this condition simplifies to C? = QT2 —1
or ¢'=(QT? —1)z.
To find the parameter A that occurs in g;; = e, use the fact that the metric must

match tlie vacuum Schwarzschild T-domain metric at the boundary. This means

2m

5 5 1\ 2
gn(Ty) = &~ (3C - (QTy - 1)2) =7 1

2m . -
T ’

In terms of the line element (3.18a) with the parameter C' as determined previously,

and

H
—_—
<
—_
—
!

il

gaa(Ty)

this reduces to

. . 1 § 1\2 1 . 1
A-3(3 ITE —1)7 — T3-1§) e ) =142 = 3.21
Thus, with the constants C' and A determined, the line element (3.18a) is
l(3 (QTZ 1) — (QT? - 1)%)211R2+T2(102———d—]:2——— (3.22)
4 b ‘L A QT-)' 1 22)

Having determined the constants C' and A, the question of the sign of the compo-

nent 71, of the stress-energy-momentum tensor is resolved:

T = _E’Q ( (QT;“ 1)51— Q" —1)* ) <0. (3.23)
MAB(QTY - 1) —(QT? 1)

1of—
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For 0 < Ty < T < T}. the component T is obviously negative.
Consider the energy conditions. Solving the eigenvalue problem T ef = Ao = ()
turns out to be trivial because the tensor 7% is diagonal. Thus, the solution to this

eigenvalue problen. defines an orthonormal tetrad:

w' = 23 (QTF - 1)F - (T2 = 1)) o, (3:24)
vyt = T"é(g)“, (3.29)
v = (Tsinf)~'é3)°, (3.20)
v = (QT? —1)% " (3.27)

The eigenvalues corresponding to these eigenvectors are also the non-vanishing tetrad

components T ;) of the stress-energy-momentum tensor relative to the orthonormal

tetrad:
3 ,
Ay = TU)<1)=T11=— ’(_2<0\ (3.28)
1 1
) .- , T2 —1)F — (QT2 —1)¢
Aoy = Ty =T%= —3(? @ b. ) T (Q‘ : ) -] <0, (3.29)
KA\B(QTE—1) —(QT? —1)?
As) = Ap) (3.30)
‘ 3Q [ (QTZ — 1) — (QT? —1):
Ay = Ty =T = - Q[ 1QL — 1) = (Q S <o (3.31)

) : T ‘ T
ROAB(QTE - 1) —(QT* —1)2
Recall that the metric tensor can be decomposed expressed in terms of an or-

tnonormal tetrad as in (1.28); writing this in mixed form gives
8% = v(l)al’(l)b + ‘l’(Q)(l'l’(2)b + lr’(:s)a Uw)b + '1/’(4)“7’(5”2; (3.32)

Thus, the mixed stress-energv-momentian tensor admits a similar decompaosition in
terms of its eigenvalues and eigenvectors. Applying the fact that Ay = A¢y) and using
the equation (3.32), this decomposition is
T = T®mum e
= Ay ey 4 Aoy [ee) P+ vy 0] 4 Aoy o™,
= Mt 4+ Aoy[6% — vy vy — vy o) + Ay ot

1 (4
et [/\(1) b /\(2)]’()(”“0( )b + /\(2)(5(‘}) + [/\(4) -— /\(2)]‘1,’(4)"0( )b.
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Defining the velocity of the medium as

the energy density of the medium as

_3Q [ (QTE—1)* — (QT? — 1)

fi= = Ay : : T - | >0
5 \3(QT7 ~1)f — (QT2 - 1)}
and the radial tension (hecause 7 < 0) as
Ti= Ay = -—§g < 0,
the stress-energy momentum tensor takes the form
T = (7 4+ p)uuy + b, (3.33)

This is similar to the case for a perfect fluid (see (1.33)) except the isotropic pressure is
replaced by a radial tension and the velocity of the fluid is space-like. This makes the
fluid tachyonic in nature rather than a perfect fluid. The fluid is anisotropic because
the angular stresses are tensions equal in magnitude to g which is different from the
radial tension 7. Although the energy density pt = — A4 is positive, the weak, strong

and dominant energy conditions are not satisfied since

—6Q (QTZ — 1)?
5 (3(QT§ ~ 1) —(QT

,\[2) — /\“) = 0 and /\(1) - /\(4) =

W=

(B

~1) )
Thus, the fluid matter is exotic matter>. This solution constitutes an exotic black
hole because the exotic matter lies entirely within the T-domain; as such, observers
in domains Dy (see (2.13)) of the Kruskal-Szekeres space-time see a black hole of

Schwarzschild mass m = QT}/2 even though the T-domain is substantially different.

’In the literature. exotic matter usually violates energy conditions because the energy density
jt < 0 which is cot the case here. However, another common feature in studies of exotic matter
is that the principal stresses are tensions rather than pressures. For this reason, the matter is still
called exotic.
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To complete this analysis, consider the tension-generated Schwarzschild mass m as
a constant and the parameter () as a variable. In terins of m and @, set the boundary

parameters as

1=

- 2m 3 .
To:= Q77 and 1} := (——) . (3.34)

Q

Hence, D; is as wide as it possibly can be since T, is as small as it can be for a
prescribed value of (). Holding m constant and letting ) increase without bound,
both boundary parameters Ty and T} decrease towards zero. Thus, as @ increases,
the tachyonic fluid domain shrinks down to a singularity and the entire Schwarzschild

T-domain is recovered. The situation is illustrated in figure 3.1.
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Dx, vacuum
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tachyonic J

fluid flow

Q=16
T=10.25
sz 2
m=2

/boundarf :

-V

l)I vacuum

Figure 3.1: Qualitative representation of the tachyonic fluid within the T-domain and
the image in the IKruskal space-time.



Chapter 4
The Tolman-Bondi solutions

The Tolman-Bondi solutions consist of spherically symmetric space-times containing
the simplest kind of perfect fluid. It is assumed that the fluid matter consists of a
fine clust; as a result, there is no pressure. Tle stress-energy tensor is greatly sim-
plified by virtue of this assumption and it is the resulting mass density alone that is
responsible for gravity. This model was first applied by Tolman [28] to model a star
by a spherically symmetric, ithomogeneous, pressure-free fluid body. It was further
analysed numerically by Oppenheimer and Snyder [20] to study gravitational con-
traction. This class of space-times bears Bondi’s name also due to his later rescarch
(see [3]). The Tolinan-Bondi solutions have been applied primarily to cosmological
models. Tolman-Bondi space-times have also been used recently to construct coun-

!, However, more than fifty years

terexamples to the Cosmic Censorship Hypothesis
after their initial discovery, it is difficult to find a mathematically thorough description
of gravitational collapse in a Tolman-Bondi space-time.

This chapter provides a complete global analysis describing the gravitational col-
lapse of an inhomogeneous, pressure-free fluid body into a black hole. This includes
three possible cases (parabolic, elliptic and hyperbolic) complete with necessary junc-
tion conditions applied at the boundary of the body. The detailed analysis includes

the transformation of the exterior metric to the exterior Schwarzschild form and the

1This conjecture is due to Penrose and roughly states that no acceptable solution of the Einstein
field equations will result in a singularity that does not lie behind some kind of event horizon.

66
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exterior form in the T-domain of the vacuum splherically symmetric solution.

4.1 Integrating the Field Equations

For a perfect fluid, three of the eigenvalues of the tensor 7%, are equivalent, so T'%,
can be expressed in covariant form as Ty, = (p + p)ugtty + pgay, where ji is the energy
deusity, u” is the 4-velocity field of the fluid matter and p is the isotropic pressure
within the fluid. In the case of an incoherent fluid or dust, the pressure is assumed to

he zero. Thus, Einstein’s field equations are given by the system

Eij =Gy + 1T =0, (4.1a)
T = puu’, (4.1b)
T .= V,T* =0, (4.1c)
U:=u"u,+1=0, (4.1d)

The mixed tensor T, has some interesting algebraic properties. Multiplying T

by gttt and contracting gives
T ub = — JTRT

since upu* = —1. Therefore, —p is an eigenvalue of the 4 x 4 matrix [T%]; the
corresponding eigenvector components are given by the time-like vector u®. The other
three eigenvalues are exactly zero (which is the pressure in the perfect fluid).

Using the equation (4.1D) for the stress-energy-momentum tensor, the conservation

equations (4.1c¢) imply that
T = u'Vy(pud) + b Vy(u®) = 0. (4.2)
Multiplying through by (—u,) and substituting (4.1d) again, the above equation yields

—u T = Vy{pub) = 0, (4.3)
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since u*Vyu, = 0. The equation (4.3) is the continuity equation for the four-
dimensional fluid flow: together witli (:.2) and an additional requirement o # 0,
it follows that the stream-lines are geodesics, since WV et = 0.

Looking at the tensor Ty, in (+.1b), the three energy conditions are satisfied (since

the pressure p = 0) provided
02 0. (-b.4)

In a spherically symmetric comoving coordinate system, the line element can be

written as [19]

ds® = eAr.lp2 + 12dQ? — d7?, (-4.5a)
A= A(p, 1), (4.5h)
r=R(p,7) >0, (4.5¢)
d0? = dh? + sin? 0 do”. (.5d)

(This is equivalent to identifving p= ', § = a2, o = a3, 7 = 2", o', 2") = A(p, 1),
gz, a") = 2InR(p, 7) and (2!, 2") = 0 in the general ansatz (2.1) for spherical
symmetry.) In a coordinate system in which » > 0 and 0 € (0, 7), typical domains of

validity are

Dy = {(p.0.pT)ipe<p<py 0<b<m, —1<Ph<m, Tolp) <7< T(p},
55 = {(p.0.d,7)ipp<p, 0<O<m, —w<p<m Tolp) <7 <Tip},
aD; = {(p,0,m)ip=pp, 0<O <, —m<hp<m, To(p) <7 <Tilpm)}

A special class of exact solutions of the geodesic equations is given by
p =0, 950, (,550.: T=1,
p(s) = constant, #(s) = constant, ¢(s) = constant, 7(s) = s,

where dots refer to differentiation with respect to the parameter s. This parameterised

curve is a time-like radial geodesic curve. For a collapsing dust cloud, choose the fluid
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velocities along such geodesics. Therefore, the components u® are expressed in the

comoving coordinate system as

w==u=0, 0 =1=—uy. (4.6)

Hence, each surface p = py = constant is associated with a collapsing spherical shell
of dust particles at rest in this frame.

The choice of the 4-velocity u® in (4.6) simplifies the stress-energy-momentum
tensor; using (4.5a) and {(4.5d), all the components of 7%, vanish except T = —p.

The Einstein field equations (1.35) reduce to the following four non-trivial equations:

EY = G+ RTY
= (2) (0%r) + (O-In7)> = (9, Inr)2e™ +r~2 =0, (4.7a)

r

%y = &3:=G3+ nT3

S 1, 2 | ‘
= %(a‘r%’r) + '2—(8;/\) + (‘;‘a‘r/\) + <%(3plnr)(8p/\) - ’I‘*l(aﬁr)> e_’\
1 .
EYW = G+ T,

= ((0[, Inr)(9,A) — %(azr) — (Opln'r)Q) e

+(0;In7)? 4+ (O; Inr)(O;N) +r~2 —kp = 0, (4.7¢)
gy = G+ rT,
= 171(2(8;0,7) — (9:-M)(pr)) e™* = 0. (4.7d)

The conservation equations (4.1c) go over into one now-trivial equation:
1
T = 0,T' 1+ (-9-(6@) +2ap(1nvr)) T,

s/

+ 0, T + G—(a,,\) + 20, ln'r) T,

A

- (%(a,,\)T‘l +2(8; In7r)T2,

= - {8,;1 + pnd, (% + 21111')} = 0. (4.8)
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he differential identities V€% + k7, = 0 reduce to two non-trivial identities:
T +2(dpnr) T + 0,7+ (a( + >1nr>)

(4.9a)
-2(0, Inr)T? 5 =0,

A
O,T v+ 0, =+2Inr) )T - l(ar,\)T' 200, Inr) T?) + 0.1,
’ 7\ 2 2

A
-+ (8T ('; +2In I)) T"Al —wTy = 0.

There are three unknown functions A, R and g and five partial differential equations

(4.91)

(4.7) and (4.8). Moreover, there are two differential identities (4.9). Thus, this is a
determinate system of partial differential equations in a two-dimensional domain.

The strategy for solving this system is given in the following steps.
1. Solve the two equations &'y = 0 and &' = 0.

2. At this stage, by the differential identity (4.9a) and an additional assumption

d,r # 0, the equation £%; = 0 must hold. (For the case J,1r = 0, see [L5].)
3. Solve the equation £'4 = 0 by defining p(p, 7).
4. Tt follows from the identity (4.9b) that the equation 7y = 0 must be satisfied.

Thus, the whole system of equations 1s solved. Notice that by solving the first order
partial differential equation £y = 0 for A and the second order partial differential
equation £') = 0 for R, three arbitrary functions of a single variable appear in the
general solution. (These arbitrary functions are denoted f, I and Tj.)

Following this strategy for finding the solution, the equation (4.7¢) yields
—reMd,r) Y = 0.(\ = 21Ind,r|) = 0.

Integrating the above equation with respect to 7 in a convex domain of the (p, 7)-plane

gives

A=A(p,7)=2In + h(p).

JdR
%(P»T)
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Here, /i is an arbitrary function of integration and it helongs to the class Gi. It turns
ont that the solutions can be conveniently classified into three distinct cases according
to whether exp[—h(p)] is less than, greater than or equal to one. A convenient way

to describe these three cases is to set
2
exp[=h(p)] =1 —¢€[f(p)]" >0, (e=0,%1)
Here, f is an arbitrary function of class (‘3; Using the above results, the metric tensor
compouent g is

an(p,7) = exp[Ap, 1)) = 5 >0, (4.10)

L —€[f(p)]
with the restrictions J,R # 0 and €[ f(p)]? < 1.

Substituting the equation (4.10) for g|; into the field equation £} = 0 (4.7a) gives
EY = r722r0% +(0,r)2 +1) = r~ 21— €[ f(p)]?>) = 0. The result of canceling r~2 and

multiplying with d,» is
Or(r(0rr)?) = —€[f(p)?0rr.

Integrating with respect to 7 gives

,  [oR * F ,
0 = | 5207 = L st (4.11)

The function F is an arbitrary function of integration of class €2, subject to the con-
straint F(p) > eR(p, 7)[f(p)]>. The p.d.e. (4.11) ultimately determines the unknown
function R in the general solution. It is studied extensively in the separate cases
e = (), £1 in the following sections.

Using the p.d.e (4.11) and the expression for ¢;; in {4.10), it follows that
—€elf(p))? = e7N9yr)? = 1= (8,1)* = Flp)/r.

Therefore, it is possible to express F in terms of R and A and to find the total
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derivative F'. It turns out, upon differentiating, that F” is proportional to (:':

F(p) = r+r0.r)? - 7‘6“‘\(0ﬂz')2. S0,

F'ip) = r0,rle™((0,nr)(9,\) — 27100 = (0, Inr)?)

+(O:In 1) + (9, In r)(9:) + 7
= (r?0,nG",.
Thus. to satisfy the field equation &', = 0 in (4.7c). define
, F'(p)
wp.7) =116y = (e . (-1.12)

S7R(p, 72 [ B(p. )]
This definition imyplies u(p, 7) = 0 & F(p) = constant.

The energy conditions (4.4) require gt > 0. From the definition of ;o in (4.12) and
the restriction 9,R # 0, it follows that F'(p)[0,R]~' > 0. To satisfy this requirement,
select F'(p) > 0 and 9,R > 0. In the interior of the collapsing star (corresponding to
the interval p. < p < py ), assume that the proper mass density j is strictly positive.
Thus, assume that F'(p) > 0 inside the fluid body and

Flpe+) = 11)1]1;11 F(p):=0. (-1.13)

Returning to the problem of solving the field equations (4.7), all the equations
have been reduced to the remaining non-linear, first order, second degree equation
(4.11). It 1mplies two distinet first order partial differential equations

oR F(p) , 2 4.1+
O—T(p-. )= i\/fR(p,T) —€lf(p)]*. (4.14)

For the gravitational collapse of a fluid hody, the negative sign is physically reason-
able. (For the expanding phase of tlie cosmological model, the positive sign would bhe
the wiser choice.) The differential equation (4.14) is considered in the two-dimensional
domains corresponding to the interior and exterior of the star as well as the iuterme-

diate houndary:
Dy == {(p.7):pe<p<pp. Tolp) <7 <Tilp)}, (4.15a)
Dr = {(p.7):p < p. Tolp) <7 <Tip)}, (4.15h)
oD; = {(p.7):p=ps. Tolm) <7< Ti(py)}- (4.15¢)
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If B:D CR? — Ris a scalar-valued function defined by B(p,7) := p — ps, then the

boundary JdD; can also be described as a level curve of I:

OD; = {(p.7) : Blp.7):=p—ps =0, Tolpe) <7 <Ti(ps)},
J,b=1, 0,3 =0.

It is still necessary to verify the junction conditions. Since the boundary between
matter and vacuum is given by the curve B(p,7) = 0, the normal direction to this
curve is given by VB, the gradient of B. Thus, the junction conditions reduce to
[T*,0.Blap, = 0. The explicit normal components can be used to reduce the junction

conditions to the following two nontrivial equations:

[Tlla/’B +T'110TB]’JD1 = [Tll]laD, =0,
[quapB + Td"iaTBh{)Dl = [Tld]lc’)D! = O

Using the choice of stress-energy-momentum tensor in (4.1h) with the choice of fluid
velocities in (4.6), the above junction conditions are identically satisfied.

Returning to the arbitrary function F that came out of the integration of the field
equations, a physical interpretation is useful. The equation (4.12) relates F” to the
mass density p. It is reasonable, then , to look for a relationship between F'(p) and
tlie total mass included in the spherical domain (p.,p]. Define the “total effective

mass function”™ AM# by

4 ppmopm 5 . OR
M7 (p, 1) = / plz, )[Rz, 7)] s1110—6)fj(at,7) do df dz
pe’0 J—mx T

iR(p;r) T T s
= / / / prssin 8 do df dr
0 0J—m

Using the expression (4.12) for g and assumption (4.13), the integral in this definition
can be evaluated:

MHp.7)=5[F(p) ~ Flpes)] = 5F(p) >0,

so 0, M#(p.7)=0. Therefore, the total effective mass of a spherical core cor:esponding
to the interval (p,p) is conserved. Since the total effective mass function does not

depend explicitly on 7, redefine the total effective mass function M by M(p) =
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M#(p,7c), where 7 is a constant [3]. Replacing A/# by M in the above equations
and recalling the p.d.e. (4.11), the function F is related to the wotel effctive mass

function A by the relations

F(p) = 2M(p) >0, and (4.16a)
: 1 ,
limM(p) = <limF(p)=0, (4.16h)
plpe 2 plpe
R Al(p)
é;?(ﬂa T) = —W < 0. (4,16()

The points corresponding to p = p, represent the world line of the centre of the star.
The condition (4.16b) prevents a singularity from appearing at the centre before the
final collapse. Also, notice that the equation {4.16¢) resembles the classical inverse
square law of Newtonian gravitation, even though this “equation of motion” emerges
from Einstein’s field equations.

The invariant volume element of the spatial hypersurface inherent in the metrie
(4.5a) is given by e*?r2siné dp dé df. Define the “total proper mass” function M, [3]

by

p pTopT ]
M,(p) / / / (. 7Y exp[A(x, 7)/2][R(x, 7)]* sin 9 de db dx
pev O J—7
r F(a

1 x)

2/, JTI—df@)

The “gravitational binding energy”[30, 3] is the difference of the effective and proper

dx.

masses:
() =M =3 [ | =
IS N NV e

The physical meaning of the arbitrary function f appearing in ¢,; and the p.d.e.

-1

F'(x)da. (4.17)

4.11 can be understood by studying a time-like radial geodesic in the Schwarzschild
metric. It is given by the ordinary differential equation [5]

1 |dR 2 m 1. .,

In the above o.d.e., s is the proper time parameter, m is the Schwarzschild mass of

the spherically symmetric central body and E is the conserved total energy (including



~J
(&7}

CHAPTER 4. THE TOLMAN-BONDI SOLUTIONS

the rest energy) of a unit mass test particle freely falling along the geodesic. The left-
hand side of this o.d.e. resembles the “kinetic energy” plus the “potential energy” of
the unit mass particle according to Newtonian physics. The p.d.e. (4.11), expressed

with 2A7 rather than F at a particular value p = pg, becomes

M(po)
:R(/)Oa T,)

2

&~

1 raﬂz( 2
[—é; vaT) -

=~ (5) [Ftoo) = (1B = 1}
The preceding p.d.e. and o.d.e. are remarkably similar. Therefore, physically speaking,
it is reasonable to conclude that \/T——_e[_m represents the total energy E(po)
(including the rest energy) of a unit mass dust particle following the radial geodesics
characterised by p = po. (The negative root —\/1 — €[f(po)]? is ignored.) In the p.d.e.
above, the “potential energy” stems from the mass A (pg) > 0 contained within the
spherical core corresponding to the interval (p., pp); as in Newtonian gravitation, the
total mass of the external spherical shell (outside the interval (pg, pp)) does not affect
the motion of the particle at p = py.

The curvature of the metric in (4.5a) also merits investigation, particularly for the

identification of possible singularities. The corresponding orthonormal tetrad can be

defined by

b =M2ek ko —ck kMg ooy—lgk  k_ ck
ey = € T8y, el =TT 8, €3y =17 (SIn)7 b3, efyy = by (4.18)

Tle non-zero Riemann invariants of the metric (4.5a) relative to the tetrad in (4.18)

are the following:

_ A A\ A\ F 2M ,
Ry = 1771 = e7(0r)* + (0:1)] = g) = 7‘3(p)\, (4.192)
et (1 ) 1
Ripame = == | 50,7)(0A) = (G;7) | + 5(0r In7)(0:A)
K M(p) ,
= 5#’ 3 = R1)3)1)3) (4.19b)
Al PN N
Raynayn = . (()par?‘ - 5(0p‘7‘,)(()r/\)> =0 = Ruy3)3)4) (4.19c¢)
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T . K 2M(p)
Ry = —e M2 (M) = S —-7—3(—- (-£.19d)
—1a M(p) _
Royayzya = =1~ 00 = 5 = Raen, (4.19¢)
R Rypea = RNIR G iyena
) Al A8 (p)]?
= 3[np)* — 16ku () + M) (4.190)

[Rip. TP [R(p, 7]
The Riemann invariants have been simplified with the aid of the field cquations (-1.7)
as well as the equations (4.10) for e*, (4.12) for g, (4.16) for AL and the p.d.e. (L.11).
It is interesting to note that the Riemann invariants reduce to algebraic functions of
pt, M, and r and not on their derivatives.

The metric can be written as
0.1
: dp 7 2 2 132 2
ds®> = F————__dp* + [R(p, 7)]?dQ* — d7*. (4.20)
1 —€[f(p))? | )

Alternately, the local solution of the p.d.e’s (4.14) can be written in a unified fashion

[23, 15] as parametric equations

F(p) .,
r = ———=h/(n),
2[f(p))?
‘ F(y
Tp) =7 = g lih).
/6 for e = 0,
he(n) = nEsinn fore= 41,
sinhn —n fore= -1,

This unified solution requires f(p) # 0. Further, r = 0 = F(p) = 0 or hi(y) = 0.
However, expressing the metric tensor in terms of the parameters p and 5 proves to
be very complicated. For global or semi-global analysis, the unified solutions are not
convenient.

In the following sections, the p.d.e. (4.14) is solved for the distinct cases ¢ =

0,41, —1 respectively to give R, the last unknown function remaiuing. Borrowing
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terniinology from the theory of p.d.e’s, these separate cases are called parabolic, ellip-
tic and hyperbolic. The resulting metric tensor components is be analysed in detail.
Matching conditions are found at the boundary 0D; and the external metric is trans-

formed into the vacuum Schwarzschild metric (2.4) to complete the analysis in each

case.

4.2 The Parabolic Case: e =0

The partial differential equation (4.11) particular to this case is

= —(po, 7T - =.

2 \or ” R(po, 7)

Recalling the analogy with classical physics, this implies that the “kinetic energy”
and the “potential energy” of a dust particle are exactly balanced. In a sense, the
dust particles are “coasting.”

The collapsing dust particles obey the p.d.e. (4.14):

—
oR _ | Elp)
Z(pr) = \/R(m)' (4.21)

The earlier restriction of R as a positive real-valued function forces F' to be positive
also; thus, the right hand side of (4.21) is well-defined. The solution of this p.d.e. can

be found by integrating with respect to 7:

(Tilp) = 7)3, (4.22a)

Il
=
®
2
I
TN
tO| W
N’
(AN
e
D
=
ap
Wit

(p) > 0, (4.22b)

where T, is the arbitrary function of integration and must be of class C";ﬁ. Note that

this solution 1mplies

lim R(p,7) — oo, and lim —5—(p, 7) =0.
Lt e OO T——00 (OJT
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-1
oo

Moreover, for this solution,

R(p,7)=0= F(p) =0, or 7 = T,(p).

Since F is nonnegative and monotone increasing, p = p. is the only root of the
equation F(p) = 01in [p, ps)-
The two-dimensional domains corresponding to the interior, the exterior and the

boundary of the star are

Dr:={(p,7):pe < p<pp —00<7<T(p)}, (4.23a)
Dg = {(p,7): py < p, —00 <1 < Ty(p)}, (4.23h)
IDr = {(p.T):p=pp, —00 <7 < Ty(pp)} (4.23¢)

(compare these to (4.13)). This metric tensor components for this solution include the
the functions F' and T,. These arbitrary functions are of class (“‘f, in the unbounded
domain D;U DgUJD;. Since jump discontinuities are permissible on 0L, introduce
the following notation to denote the very smooth pieces of these functions by the

following equations:

Flp) = Fi(p) for p. < p < ps, (4.240)
Fe(p) for py < p,
T, for p. < p < s, .
Ti(p) = dp) forpe <p <py (4.241))

L Jelp) for ppy < p,
i'R'I(/)s’r) for(piT) ED[a
Re(p,7) for (p,7) € DE.

R(p,7) = { (4.24c)

In the exterior domain, the mass density p(p,7) = 0. Recalling the relationship

(4.12) between p and F in the exterior domain, it follows that

Fe(p)=2m > 0. (4.25)
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Here, m is a positive constant. Using the definition of the total effective mass function

M together with the previous equations (4.24a) and (4.25), M is given by

! iy for p,. < Pos
Mp) = F(p) :{ sF1(p) for p. < p < ps, (4.26)

Z m for p, < p.
Therefore, m > 0 stands for the total (Schwarzschild) mass of the star.
With the notation just introduced, the interior and exterior line elements for the

case € = (0 can be written using the general line element (4.20):

ds? = [052 (p, T J dp* + [Ri(p, T)]2dN? ~ d7?, (4.27a)
.. R, 2 .
ds: = [ OPE(/),T)] dp* + [Re(p, 7))2dQ* ~ d7?, (4.27b)

where 0 < Ry(p, 7) < Re(p,7), O,R; > 0 and 9,Rz > 0.

To continuously match the metric tensor components and their first partial deriva-
tives across the boundary dD;, introduce another convenient notation. Consider a
function H helonging to the class G; in D; U Dg. The jump across the the boundary

dD; is defined in the usual manner as

[AH(po,7)} = lLmH(p,7)—lLimH(p,7)

7l elo

= H(pp+,7)— H(pp-,T)
for all —oo < 7 < T,(pp). In the case
[AH(p, 7)) =0,
the function H is said to have a removable discontinuity on dD;. Henceforth, a

removable discontinuity is always eliminated by definitions like

H(pp.7):=lim H(p,7) = 11111H(p, T). (4.28)
plpw plow

Hence, the function H is now continuous across the boundary.

Proposition 4.1. A necessary and sufficient condition for the continuity of the met-
ric tensor components of (4.27) and thewr first order partial derivatives across the
boundary 0D; is that the functions F, F', F", T,, T, and T! (where primes denote

total derivatives) are all continuous across 0D;.
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S0

Proof. Using the solution (4.22a) and the definitions (4.24) of the iuterior and exterior

branches, it 1s possible to summarise all the partial derivatives of R up to and including

2nd order:

Rilp,T) = (g)i [Fl(p)]%(irl(p) ~7)5 >0, (4.29a)
Re(p,7) = (g)i [2m]3 (Te(p) — )3 > 0, (4.20h)
%9—;—‘@,7) = ZRi(p,7) ([thm]’ + Tif;f)(f)T) >0, (4.29¢)
agjf (p,7) = gmg(p,f) (TEF‘(T;E)()’L 7) >0, (4.291)
23 (02
%-2—/?;—’(/),7) = %‘IRI(/%T) ([hl F(p)]" -2 [Tzigl)_) ,,r ;(i;f;(f)T)
+%00—3;’(p,7) ([ln E(p) + %ﬁ%) , (4.29g)
a;?(” 7= el (%t(r;g)g,,_) 7 [irj;)()p—) TT)
% (_0%(/)’7)7:(7[’?)(@ T) , (4.20h)
—g—%(p,f) = %%(p 7) ([ln R(p)] + Tii;;)(’l) + %j(a,‘r([fp)ﬁi‘r‘:fj (4.29i)
2% e () Pt
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Looking at the line element (4.27), the continuity of the metric tensor component gss

across the boundary dD; implies

i

[AR(pp, T)] 1= hm[fR p, 7)] = im[Re(p. 7)] = 0. (4.30)

Ploe

Using the expressions (4.29a,b) for R; and Rg, the condition (4.30) implies the identity
Fi(po-)[Tilpe-) — 7] = V2m[Te(ppr) — 7). (4.31)

Differentiating this identity with respect to 7, and recalling Fy, F; as described in

(4.26) gives
Fi(pp-) = 2m = Fg(pp+). (4.32)

Since F' is nonnegative and monotone increasing, the condition (4.32) implies that
the total mass function A attains its only extremum in the interval (p., pp] at the
boundary point p = p, and its maximum value is m. This conclusion is physically
reasonable.

Now, substitute the previous condition (4.32) into (4.31):
T pp-) = Telper ) =1 To(ps)- (4.33)

At this stage, the functions F and T, are continuous across the boundary.

Consider now the continuities of the first partial derivatives of gg5. Using the
line element given in (4.27) and the continuity of R in (4.30), the continuity of 0, ¢a9
demands that

11111 [%ji (p, T)] — lim [%j%(pﬂ’)] = 0. (4.34)

Pl plpe

The explicit forms of 9.k, and 0,R; are given in (4.2%¢,f); using the continuity of R
given in (4.30), together with the continuity of F' and T, given in (4.32) and (4.33), the
above conditions are automatically satisfied. (The continuity of 9.R given by (4.34)
implies that the radial “velocities” of dust particles moving along radial geodesics

across the boundary of the star are continuous).
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[ 3

To consider the implications of the continuity of J,¢29, explore the condition

lim [%(p, T)] — lim
dp

ar plot

OR e

Using the explicit expressions for 9,R; and 0,R;; given in (4.29¢.d), together with the

continuities of R, F and T,, the continuity of J,R in equation (+.35) implies
[T:(pp) — 7] 11111[111 E(p)] + 2 (11111[‘.]" )] — 11111[‘3' (p)]) = 0. (4.36)

Differentiating with respect to 7 and using the relation between F and pe given in
(4.11) gives

lim F{(p) = 0, (4.37a)
ploy
limu(p,7) = 0, (4.37h)
plpy
wp, ) = 0for p> . (4.37¢)

The above conditions (4.37) and the definition of Fy in (4.25) make the functions £’
and g continuous across the boundary. The continuity of F' at p = p, in (4.37a),
when used in (4.36), yields

hm[‘.T' ) — lillgz[ﬂ','z(p)] = 0. (4.38)

elpy

Therefore, the function 77 is also continuous across the houndary.

Returning again to the line element (4.27), consider the continuity of the deriva-
tives of g;;. The continuity of ¢,; implies the continuity of d,R; this condition has
already been investigated (see (4.33)), so no additional information emerges. The

continuity of d,¢,; implies

PR, PR, |
i | 7] =l [t )] =0 (4:3)

The explicit expressions (4.29g,h) for f);ffR, and (9231[3 can be used with the continuities

of R, 9,R, F, F', T, and T, to derive the identity

(Ti(pp) = 7) (},%lpr,f[hl F(p)) ) +2 (hm[‘J' p)] = 11111[‘3' (P)]) = (). (4.40)

ara oLpy
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Differentiating the above with respect to 7,

lim[lu Fi(p)]" = 0. (4.41)

ar

Substituting (4.41) back into (4.40) yields

1T/ (p)] ~ im[T2(p)] = 0. (4.42)

rloe Pl
Thus, it follows that the functions #” and J7 are both continuous across the hound-
ary. The continuity of d,¢y; does not yield new conditions upon looking at the explicit
expression for 9,0,R and observing the continuities already established. The continu-
ities of gs3 are equivalent to those of gy and the continuities of g4 = —1 are trivial.
Therefore, it has been proved that the continuities of the metric tensor components
aud of their first partial derivatives across the boundary dD; imply the continuities
of F, F' F", T,, 77 and 37 across the boundary dD;. The converse statement follows
from the explicit expressions (4.29) for all the derivatives of R; and R and observing

the continuities of F, F', F", T,, 77 and T across the boundary dD;. O

To complete this analysis, a general coordinate transformation relating this local
coordinate system to the Schwarzschild coordinate system (2.4) is needed. The metric
in equations (4.27) can he expressed with the help of the explicit expressions for the

solution R and its derivatives given in

/ oy 2
ds? = [Rulp, 7)) ((1/9) [?(’))Jr 271(p) ] (_zp‘2+cm2) —dr,

i(p)  Tlp)~7
B ( 4m )
ds? = (et
3(JTe(p) = 7)

From the equation (4.22b), T/(p) > 0 and T(p) > 0 so both are monotone increasing.

4

(TL(P)2dp? + (;?;-\/2772,(‘J’E(p) — T)) 402 - ar?.

wits
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This allows the introduction of another coordinate systen:

7= Ti(p), (4.43a)
t=r, (443h)
GO .

Dp.7) =T(p) >0, (p.7) € DrUDRUID,, (-h-43¢)
D:=D;uDrUdD, (L.A3d)
D= {71 7. <T <R —o0 <1 <TF}, (h.43¢)
Dp={F1:7 <7 —0 <t <7}, (-£.430)
dD; = {(F.D): T =7, —oco <T< 7). (1.43g)
7o = Tupe)s 1o = Tipy) (-L.431)

In this transformation, 8 = 8 and ¢ = ¢ and thus play passive roles. The met-
ric tenser components in the new (7, t)-coordinates are found from under the usnal
transformation of coordinates:

2

2M(7) (1+ {lll zﬂ(?)] (zA-—-?)y(fl’rA')2

(I.S‘;2 = 5
- ((lf)!,’
4
. 2m(dr)? r3  ~1 A ~
ds? = -+ [— V2m(r — 1‘)} (d€2)” — (dt )=,
§ [(3/2)V2m(F=1)]F 2 )
where QQ(?) = f(?) = (F o T7')(7). The line element iu the exterior domain is

the Lemaitre line element (2.5) for the spherically symmetric vacuum solution. By
analogy, the metric in the interior domain is called the interior Lemaitre metric.,
Having obtained the Lemaitre metric in the exterior domain where 7 > 7, recall
that the event horizon in these coordinates is the curve 7—1 -= dm /3 in the (7, ?) plane.
Hence, in the exterior domain, the Lemaitre (?,ﬂvcoor(linates can be trausformed into
Schwarzschild coordinates (2.4) in the R-domain 7 — t> dn /3 (see (2.5)). In the T-

domain where ¥ > 7, and 7 — t < 4m/3, the (¥, )-coordinates can be transformed
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event horizon singularity
AN A
(r—t=4m/3) A . (UV=1)
singularity
A A ..‘o /, “"
( r-t:O ) ‘.0" ,/I i
t A ‘.?l;;x’ DAE /
: ?\boundary “ boundary
: A A
(i i (I" = rb)
centre o singularity
A A At e
(r=r.) T (t=1(p))
4 DE
pd -
centre —E- > event horizon
P=p) E \boundary (R(p,T)=2m)
p= Pb)

Figure 4.1: Gravitational collapse of a dust sphere of parabolic (e = 0) type.
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into vacuum Schwarzsclild (R, T)-coordinates (see (2.9)). Both of these domains can
then be mapped using (2.15) and (2.16) into the Kruskal sub-domain D, U Dy, U D,,.
This is illustrated in figure 4.1 which shows the gravitational collapse of a spherical

dust ball of parabolic type into a black hole.

4.3 'The Elliptic Case: ¢ = +1

The equation (4.11) vields

i [oR 2 M(p) i )
o T —_— = — - “ <0,
5 [87 (po, )} Ripy.7) Q[f(/)o)] v
where f(pg) # 0. In this case, the absolute value of the “potential encrgy”™ exceeds

the “kinetic energy.” The p.d.e. (4.14) for the gravitational collapse hecomes

oOR F
(p,7) = -\/ el _ [f(p)]* <0, (-h.44)

or R(p. )
where 0 < [f(p)]> < F(p)/R(p, 7). Conclude from this inequality that

lim F(p) =0 = lmR(p,7) = 0. (4.45)
plpe plpe

Everv solution of (4.44) can define a curve in the (p, 7)-plane by the equation

F(p)
[f(p)]2R(p, T)

On this curve, d7R = 0. If this curve is taken as an initial boundary of the domain

—-1=0.

of consideration 7 = Ty(p) then all collapsing dust particles start from rest at finite
proper times. Therefore, out of the three cases considered for this dust model, this
case is the most pertinent in describing the collapse of a splierically synunetric star
into a black hole. If a particular py € (p., g} is chosen, then by the equality (4.44)
and the first mean value theorem,

, , JdR « _
Ripo,7) = R{po,Tolpo)) + (7 = Tolpo)) | 7= (po, (1 — ) Tolp) + 07)

or
< R(po. Tolpo)),
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where (0 < 8 < 1). Therefore. R(pg. To(po)) 1s the maximum value of R(py, 7) for
7 € (Tolpo). Ti(po)]-
The general component g, in (4.10) in the case € = +1, subject to the constraiuts

d,R >0 and f(p) # 0. 1is

[?)R(P 13};
L~ [f(p)?
where 0 < |f(p)| < L.

exp[A(p,7)] = > 0,

The partial differential equation (4.44) can be regarded as an ordinary differential

equation in 7; the result of integrating with respect to 7 is

iR{
‘—(-TO(/)) - /) l \/ ?:R =1
F(p) F(p
. M seta i — 4,40
TP \/[.f(p)]zﬂz(m) ] A0

This equation defines the function R implicitly. The arbitrary function Ty of class €3
A B 0 »

arises out of the integration. (The expression under the root sign is always positive by
virtue of the inequality (4.44).) The principal branch of the arctan function is chosen
from now on without loss of generality.

The interior, exterior and the boundary of the star are assumed to be corresponding

to the following domains (compare to equations (4.23ab,c)) :

= {(p.7):pe < p<pp,Tolp) <7 <T(p)} (4.47a)
= {(p,7):pp < p.Tolp) <7 < T(p)}, (4.47h)
= {(p = py, Talps) <7 < Tilpo) (4.47¢)
TF(r)) 17
— _ 147d
(-T](/)) ('TO(/)) + 2|f([))|3 ( A )

The choice of 7, is essentially explained in the equation (4.71f). Note also that [); is
a bounded domain.
Since differentiation of the absolute value function is essentially complicated, a

simplifying assumption is made:

0< f(p) <l (4.48)
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The smooth branches of the functions F', Ty and R are denoted exactly as in (4.24).
A similar notation is used for the function f. Moreover, the function F is again
nonnegative, monotone increasing and constant for p > p,. The interior and exterior

e elements are

[500.7]"
1—[fi(p)]?

————dp? + [Ry(p, T2 — d7?, (4.49a)

’]51 =

2 [%m’”)r
=T 1= [falp)

Once again, the conditions for the matching of the metric tensor components and

s dp* + [Re(p, T))2dQ? — dr?. (4.49b)

their first order partial derivatives must be found.

Proposition 4.2. A necessary and sufficient condition for the continuity of the met-
ric tensor components of (4.49) and their first order partial derivatives across the
boundary 0D, is that the functions F, F'. F'. T,, T and T" (where primes denote

total derivatives) are all continuous across ODj.

Proof. From the implicit solution (4.46) for R, the interior and exterior branches of

the function R satisfy

T—=Tp) = 700 Wip, 1)+ Dk arctan[W(p, 7)], (4.50a)
Re(p. 2m
7= Jelp) = ;éfp;)IIVE(/).T) + le(’;:)]3 arctan[Wg(p, 7], (4.50b)
R _ (E _ 2f((ﬂ))
gy ) = (Fam i) ) Rl
Fl(p) 3f{('p')> }
Wip. 7)Y ~ — Ty
Wil T){ o)+ (E(p) i )T
I O T AT
fr(/))

F(p) 3F1(/))f1'(p)) " -
+<[f1(p)]2 TP ) L WilenactaaWiip. I}, (4.500)
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IR ) ] |
0/)5; (p.7) = ;T -Re(p.7) + fE(/))j‘E(/,)[,{fE(/,.T)
il
G'me
[fl: ]3 {1 + VVE(/) T) ll(l'?ll][u’[(/) T)]}
aR, _ Fip 2
—ET_(P,T)— \/""——‘%(p - [fi(p)]? <0,

IRz _ 2m 3 5
—Z(p.7) = \/RE(/)‘,T) Fetp))? <.

- AR . -1
O*Ry 1 / Flipy  BpGtp.) g [OLR, }
____—( 7T) - :5‘- \Rl(p_’r) [iRI /) T] 2f1(p)jl(/)) rdT (/)17-) 1

2 m 3 OR, -
_0_3‘3_ ,T)=— < m IRz (p.7)+ felp)fel /))) { OTE(/),T)] .

orop " Relp. 7P 99
‘ R "
08331(/) ) = [In fi(p ] apl(/’e )+ Ry p, 7)In fi{p)]

+1( Flp) BFI(/))f[’(,))> [In Fi(p) }’__ U (p,7)
2 \ [fi(p)]? Tk (fi(pm]? Ri(p,7)
1 F(p) [l F(p) } (,,, (p,7) y
2 [F(PNPR(p, 1YW (p, T) [fi(p)]? Rilp,7)

, F! 3F(p )
(fl(p)‘.T{(p) + ([fll i’[)])z - [lfll)/).{i P ) wetan[Wi{p, 7) >

+Wilp, D) [APT] + 1+ Wi(p, 1) arctan[W(p, 7)] ) x
( F'p) _ Kl fI p) _ B fip) o Blp)lfi ,;) 2)
[fi(p)]? [fl(ﬂ)]3 Lh(p)) Li(p)

(4.50d)

(4.50¢)

(4.50£)

(4.50g)

(4.50h)

(4.501)
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7R _ ,OR; , "
G = el 7 + Relp. lIn felp)]
IRE
Jinflip) , “()‘/;E(/) 7) . , ,
IRE
m ’ Ip (p.7)
-~ s - 2{n fz Bt A
[fe(pPRe(p, T)Wr(p, T) ( o folp) + RE(PJ)) X
) 6m f,
(fg(p)‘J"E(p) - f]%(f—%%) arctan[WE(p;T)O
falp) L) .
~6m (1 + Wg(p, 7) arctan[Wg(p, 7)] ) ([fEE(/))]B — 3[f:(p)]”' ,(4.507)
F(p)
Wip. 1) = -1, 4.50k
T =GP RG (4501
Wilp.T) = 2m 1 (4.501)
PAPT) = [fE(/))]Q:RE(/’n,T) ) ‘ ©

Consider the continuities of the metric tensor components (4.49) and of their first
order partial derivatives. Recall that the continuity of go» implies {compare with the

eqnation (4.30))
Re(pys ) = Rilpy-.7) = 0. (451)

The continuity of &, g9o implies [A(9,R)*(pp, 7] = 0, so the explicit equations (4.50e,f)
and the previous coudition (4.51) imply that

F[ - —2’ . - 9 =S
[ (53’(/)2,. 7) "l = [A(f(p))7]- (4.52)

Differentiate (4.52) with respect to 7. Recalling that 9,R(p,7) < 0 and using (4.52)

again, the result is
Fipp-)—=2m = 0, (4.53a)
[Afips)] = 0. (4.53b)

Therefore, the functions F and f are continuous across the boundary. Continuities of

R, F and f used in the expressions (4.50a,b) for 0,R imply that

[AT.(ps)] = 0. (4.54)
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(Notice here that the continuities of F, f and T also imply the continuity of R.)
The continuity of d,¢2» implies that [AJ,R(p. 7)] = 0. Using the continuity of R

i (4.51) and the explicit expressions for d,R in (+.50c.d),

) 2mAf’ oo
ooty + (2HEEEL) (g ey
[f(ps)] (4.55)
[AF'(pp)]  6m[A f'(pb)]) ) o
- 5 — 1 4 w(7)arctan(w(7))) =0,
( Lf(ps)]? [f(ps)]3 ( ) (e(m)
where
() 2m .
xw(T) = S -1
[£(ps) PR(py.7)
Now, the Wronskian of the set of functicus {6, (14+62)~!' 1 +@arctan 6} in an interval
is given by
|6 (1 +62)"! 1 + 0 arctanf
1 —20(1 +6*)2 arctand + 6(1 + 62~ | = —4(1 +6*)7" < 0.
| 0 —2(1-36*)(1 +6%)73 2(1 4 6%)72

Therefore, the set of functions {w(7), ( 1+[w(7)]> )™, I+w(r) arctan(w(7))} is lincarly
independent in the interval Ty(p) < 7 < T(p). It follows from the relation (4.55) that

the coefficients of the independent functions must all be zero:

Fou)[ATo(ps)] = 0,

DS )] _
P

AF(p)]  omAF ()] _
[f(os)]? [f(ps))? '

The above equations imply the three independent continuities:

[AT(p)] =0, (4.56a)
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b

(A F ()] =0, (4.56b)

[AF(py)] = 0. (4.56¢)

Hence, the functions f, F and Ty and their first derivatives are all continuous across
the boundary p = p.

Now,. the continnities of g;; aud f imply the continuity of J,R. This condition has
already been examined, so no other additional information emerges. The continuity
of Orq;, implies the continuity of 9,0,R. Looking at the explicit equations (4.50g,h)

for 8,0,R, no new equation arises. The continuity of d,g11 implies that

2R ,
[Ag . (pl,,r)] =0. (4.57)
PE

The continuities already established reduce the above identity to

A 1 o )
2;11%};{/—)5))%%{2 F (P2 4 FOon)[AT o) ()
+[f([1)b)]2 (F’I(Pb“) - 6171.[A]‘C+,p(bp)b)l) {1 + w(7)arctan[w(7)]} = 0. (4.58)

Recalling that the set of functions {w(7),(1 + [w(7)]?)~'.1 + w(r) arctanfw(7)]} is

linearly independent in any interval, the identity (4.58) reduces to three equalities:

Fl'ipy-) =0, (4.59a)
[Af"(ps)] =0, (4.59b)
[ATH(p)] = 0. (4.59c)

Therefore, it has been established that the continuities of the metric tensor com-
ponents in (4.49a,b) and of their first partial derivatives imply that the functions

F.f.To, F' f T F", f" and Ty are continuous across the boundary. O
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As before, a transformation from the exterior metric (4.49b) into the vacuum
Schwarzschild metric (2.4) is desired to complete this deseription. Since the solution
R of the p.d.e. (4.44) is given implicitly, this transformation is not as straightforward

as it is for the case € = 0. The transformation of the coordinate chart is

T = R(p.7) = Relp, 7).
t = Tip,7),

=

where the coordinates # = § and (3 = ¢ play passive roles in this transformation. As
such, this can be regarded as a transformation from one two-dimensional domain to
another. Since R is known implicitly, the only unknown function 1s T. To derive T,
use the transformation rule for the transformation of the contravariant wmeteic tensor

components to derive at a pair of p.d.e’s for T' [20]:

QX 9XY

~ab/ cd
g () = 2 ) (),
9UT) = S () g ) (),
where (Z',7%) := (F.1) and (&', 2") == (p, 7). The hatted metric tensor components

should be those of the Schwarzschild metric (see (2.4)); recalling the exterior line

element (4.49b), the following equations result:

N [aszﬁ(,,_,,] {@_W] 1= [felp)? ) [_O__Jzz(,,,ﬂ] [g_z.(,,,ﬂ] |
» T ar J

(4.60a)

_ (1 _ 3:2> = {QI(,,’T)} Sl P10 iy [‘31‘(,,,7)} , (4.60D)
T } T

2m gy [_a__&(p T)]Q 1-— [fra(/))]? _ [OIR(-; ]2‘ (4.600)
: or

1 = — = — = —-——(/)._T
) IR~ 2
P [()75,5,?(/),7)]

Recalling the p.d.e (4.50f) for the case ¢ = +1, the third cquation (4.60c) above

is identically satisfied. Simplifying the first equation (4.60a) above gives a linear,
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Lhomogeneous first order p.d.e. in the unknown function 7'

(p. )5 DL = LT ). (4.61)

Substituting the above into (4.60h) and using (4.350f), the result is the first order,

second degree equation

—~ 2 -1
oT - ORy 2 - om\ !
[E(P«T)J = (1 - { 5y (P»T)] 1= [fpl] I) (1 - —T—)

= [1-[fulp)]] (1 - -Z—’li]) h > 0. (4.62)

Out of two possibilities in (4.62), choose OTT > () to preserve the orientation of the

time-like variable. Therefore, the equation (4.62) yields

oT ={  2m ! ‘
= = V1i=[flp)l (1 - —,:) > 0. (4.63)

Substituting (4.63) into (4.61) gives

oT IR IR _— om\ ™! o
o =TS - a3 (1- 2] <o oy

The pair of first order partial differential equations (4.63) and (4.64) is soluble provided
thi~ right hand sides satisfy an integrability condition. Checking the integrability con-
dition in these (p, 7)-coordinates is quite difficult. It is more convenient to introduce

an intermediate coordinate chart by the following equations:

£ = Z(p,7)=p, (4.65a)
n = H(p,7):=2arctan \/[fE(p)]zg%lE(p,r) -1, (4.65b)
w(3) = GRG0 (465
géi% = %—?—(p,r)zi{%;%m, (4.65d)

Dp = {(p.7):p < p, Telp) < 7 < Top)}. (4.65¢)
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1

. Vi . ., TN -~ .
Furthermore, use the notation fI (&) = fi{p) = f.(&) and ‘J',f({) = Tu(p) = Tu(€).
The inverse transformation to (4.63) can be derived with the assistance of the tmplieit

equation (4.50b) for Rg:

p = RIE):=¢. (4.66a)
o= T(&n)=Te() + [fra](];)]“(” +sin ), (4.66h)

ap. 7) cos?(1/2) ,.
aem - TREPE H06¢)
D? = (&) <EO0 <y < 7). (4.6Gdd)

(It is necessary to restrict n € (0,7) to preserve the inequality (4.44)). The transfor-
mation of (£, n)-coordinates into the Schwarzschild coordinates can be written explic-

itly by the transforination

~ __cos*(n/2) (1+cosy) -
r o= ) = 2m——t = m————— =: R7 (&, 1)), 4.67a
Po= R = r T T ROP &) (67
t = T(p,T) =: T#(&, 1), (4.67D)
D¥ = {(&.n) < &0 <n<nu(d)} C DE. (4.67¢)
(&) = 2arccos|fe(&)]. (4.67d)

The above choice of ny(€) buplies by (4.67a) that 7 = R¥(&,n,(&)) = 2m. The
function T# in (4.67b) is still unknown and has to be determined. The pair of p.d.e’s
(4.63) and (4.64) to be solved can now be expressed in terms of (£, 7)-coordinates

witl the assistance of tlie chain rule and the transformations (4.66) and (4.67). The
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resulting p.d.e’s are used to verify the integrability condition:

oT# ,
P& ny = 0,] (€.m) (4.68a)
or OR or oT
= 0_/1 /’:T)a—n(fﬂl)‘*‘ '0‘;(/3 )5;)“(5#’])

5 2m ' /m(1 + cos 77))
= 041 [felO2 (1 - —_—
N (@] ( fR#(f-ﬂ))) ( [fe(&)])3

2mI(€) ( cos®(n/2) )
1-]

(O] fel&)]?/ cos?(n/2)
2”72(5) 2 2 [f]:(f)]‘ >
= 0s“{11/2 : . .
[fr' ]3 ((‘OS (T]/ ) + [fE(g)] + COSQ(’I]/2) ___ []‘L‘(f)]z 3
, oT* .
Q& m) = € (&.m) (4.68b)
oT R aff
= Fp—(p,r)ag (€. ?7)+0 (p,T) 0£ En
_ TL(E) N mfL(€) oM +sing + sin(n/2) cos3(n/2) )
() | B[O F(O)]2 7 “cos?(n/2) — [fe(&)]?)

2() = V1= (4.68¢)

The integrability condition for the pair of first order p.d.e’s (4.68a,b) is

_f)_P(c 0 = —2mfL(&) cos? 7)/2
oc = T T ROTT
(4[f1: )] —O[fn ]‘—Z[f,; E)] cos?
(cos?(n/2) = [fe(&)]?)
5
(bg &n). (4.69)

This integrability condition is identically satisfied. Therefore, a solution T#(&,n)

(n/2) + 3 cos?(n/2)>

exists. Iu this coordinate system, the integration of this pair of p.d.e’s is manageable.
The solution is given explicitly by a line integral (along any continuous and piecewise

differentiable curve I" in D?):

- & rg7# #
t = T#('E«')):/ [ _ (:l‘,y)d;tJraT (:lf,.u)dy}
(EO) dx Jdy

:/ 1-"[fn (I;zr+*r71\/_—[_f;:——]—<(n[];:m;n)+.f132(v£)>

o . [tan(m(£)/2) + tan(n/2) ,
+2min [tan(nu({)/‘.?) — tan(y;/?)} (4.70a)
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tan(”ﬂ(g)/)) = [ E(E)] Vv “[ (€ ] (1.70b)

Now, by (4.50b), (4.67D), (4.70) and (4.65b,c), the transformation from the (p.7)-

coordinates into the Schwarzschild (7, t)-coordinates is

= Re(p, 7). (4.71a)
N P .
F=T(p.7) = / () da
Jp RS

4m 2m
+/ 1 =P [ 7= Telp) arcts : — -1
Vel ( CANAPE t“‘\/[.mmm;(/n ) )

)

o [tan(nn(p)/Z) + VO TRl 7)) ~ 1 (4710
tan(n(p)/2) — / (2m/[fe(p)?Relp, 7)) — 1 '

tan(nu(p)/2) = [fe(P)] ™' V1 = [falp)]?, (+.71c)
Tulp) == Telp) + [f.’(np)]:g(")u(p) + sin['r;n(p)]), (4.71d)
D = {(p,7): pp < p, Telp) <7 < Tulp)}. (4.71¢)
nm o

Tu(p) < Tilp); Tilp) := Telp) + m, (4.711)

This domain of the above transformation from the comoving (p, 7)-coordinates to
Schwarzschild (7,%)-coordinates is given by Dg in (4.71e). The corresponding range
Dy of the transformation (4.71) is found by considering the houndary curve 7= [3(1)

defined by the parametric equations

— o~

? = Rﬁ(pbs T)! t= 1”(f)l71 T)a
where To(p) < T < Tu(ps). Thus, Schwarzschild coordinates are valid for

Dg = {(r,t): ﬁ(,

Lo <t < oo}, where

P 1

}\n = / Tels -
Jpo 1— [fl: I)]_

There is an analogue of the above transformation that trausforins (p, 7)-coordinates

into (R, T)-coordinates in the Schwarzschild T-domain. To find this mapping, consider
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event horizon ~ boundary U singularity
Ty ,(T=2m) (R=B(T)) A (UV:J)7
7 p,
IS LTy
..................................... > R D,
singularity J bolnd
T oundar
(T=0) event horizon 4
. . (r=2m)
sm(glﬂarlty event horizon ;)
n=m) W (n:nH(i))) o
| SRV P :
T ,'D#-_ i >
--E # ' A\ boundary
i A
Ds N (G=B(1)

boundary initial curve
E=¢8) o
% (1=t,)
T
T singularity
N CERA(Y)

centre | g
(P=p) Dy Ds

> P event horizon
boundary (R(p,T)=2m)

initial curve

(T=%/P) _I\E

- -
-
-

Figure 4.2: Gravitational collapse of a dust sphere of elliptic (e = +1) type.
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the (&.7n)-coordinates in the complementary domain D;’f (within the event horizon)

given hy
D¥ = {(&n) i pp <& ml&) <y <7} CDE.

In this domain, R¥(£.n) < 2m, so the boundary of the star has already collapsed past
its event horizon and a black hole is forming. The transformation from D mto R is
R = R*(&n)
g')’

¢ T (r) I]+Sllll} 21
= e 4+ my/1 = [ ful :
J & \/l—[f!: 1) T f ]‘ +f1(f.))

4 omin Fian(n/2) + tan(nu(€)/2)
tan( 1]/2 ) — tan(nu(€)/2)
T = O%(&n) = 3 057 (1/2).

[fn ]’

Looking at the boundary curve R = (7"} given parametrically by the equations
R = R¥*(py.n), T = 0% (ps,1),

where 1 € (ny(ps). ), the range Dy of the transformation to Schwarzschild T-

coordinates is
Dr:={(RT):3(T)<R< o0, 0<T < 2m}.

Asn T x, T = O0%(p,n) | 0 and the entire spherical body collapses into the ultimate
singularity.

Thus. outside the dust ball, the (p, 7)-coordinates can be transformed into Schwarz-
schild-type coordinates in both the vacunm R-domain and the vaciunm T-domain (see
(4.71)). The Schwarzschild-type coordinates can then be transformed into Krnskal
coordinates as in (2.15) and (2.16). The gravitational collapse of a spherical dust

body into a black hole is depicted in the figure 4.2.
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4.4 The Hyperbolic Case: ¢ = —1

The p.de. (4.11) describing the collapsing radial velocity vields

d

=

| Fip) ) .
(p.7) = \/SQ(/)‘T)Hf(/))] <0, (4.72)

where F(p)/R(p.7) + [f(p)]? > 0. and f(p) # 0. This choice of ¢ = —1 gives the

metric tensor component gy in (4.10) as

| B
pfMp 7l =

where 9,R(p, 7) > 0.
[utegrating the partial differential equation (4.72) with respect to 7 gives

Rip.7) Fip)
— ‘J’l = - 3 ]_
T 70| \/[f(/))]-fR(p.T) *

+_Ii‘_____ arctanh __M____ 1.
%l F2R(p. 1)

for \/F(p)/(R(p.7)) + [f(p)]> < |f(p)]. and

Rip,7) F(p)
-7 = - . 1
T 7] \/[f(m]zaup.,r) *

F(p) F(p)
+'_——','_.' CC tll e — 1.
7P 1\/[f(p>]2sz<p.,r> T

for [F(p)] < /F(p)(R(p.7)) + [f(p)]2. The function 7, is an arbitrary €3 function of

integration. The first case requires that F(p)/R(p, 7) < 0, and which is not considered

because both R and F are positive. Therefore, consider the second equation only.
Moreover, for the sake of simplicity, choose f(p) > 0. Thus, the case involving the
function arccoth above together with the assumption f > 0 yields an implicit equation

for the function R:

‘:Tl(l)) -7 =
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R(p.7) F(p) F(p) Fip) _
- - - - 1- 7 aree 1 - - L. NN
() \/[f(p)]zmw) T e e ‘\/[f<p>1~’:n<p, At L)

Once, the function R is defined implicitly.

To consider the matching of metric tensor components and their derivatives at
the boundary of the star, adopt a notation as in (4.24) to distinguish branches of the
functions R, F. f and T, within the interior domain and within the exterior domain.
Notice also that Fg(p) = 2m as before. At the boundary of the star at p = py, the
line elements in the interior and exterior domains are given by

o, )
ds? = [ap(p’ )}

L1+ AP

o [933,,33-(/)~T)}~
T T ()P

Using the solution (4.73), the interior and the exterior smooth branches of the function

R satisfy

dp* + [Rilp, T))2d0? — dr?, (4. 74a)

dp® + [Re(p. 7)]2dQ? — dr?. (L.74h)

Tp)—T1= :R}(I(pp;) p, 1) — [flz(/)p);} arccoth[Vi(p, 7)], (4.75n)
Re(p, - 2m , -

Telp) — 7= —T(Tpp—)Tl\-’E(p, T) — [—f—(—lpn)T arcroth[Vy(p, 7)), (4.75D)

Dy = {(p7):pe < p < pp—o0 <7< Tp)}, (4.75¢)

Dy = {(p.7):ipp < p,—o0 <1< Ty(p)}, (4.75d)

dD; = {(p.Ty:ip=pp,—00 < T <T(p)}, (4.75¢)

F i

Vi(p,T) = \[[f(p)]‘zgg)(p 5 + 1, (4.75t)

/ 2m

Vo(p.7) = T 1. (4.75g)
= TR T I

Having established the line element inside in D; and Dy, it is now possible to check

the continuity requirements.
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Proposition 4.3. A necessary and sufficient condition for the continuity of the met-
ric tensor components of (4.74) and their first order partial derivatives across the
boundary 0Dy s that the functions F, F', F", T, T, and T! (where primes denote a

total derivative) are all continuous across 0Dy,

Proof. The results from differentiating equations (4.75) are as follows:
IR, [ Fi(p) ] ( ' [ Fi(p) }I )
—(p, = |In Rilp, )+ Vilp,7) [T In —== -T
7, (p.7) DE 1(p,7)+ Vilp, 7) { Ti(p) + |In A0k (T = Tilp))

F!'(p) __3FI(/))fI(p)> ” otV
([fl (p)]? DK (Vi(p. 7) arccoth[Vi(p, 7)] )

fI )

mMVi(p, ), 4.76z
fl( ) (/).T), ( "l,)
'
(903;1, (p.7) = (Emf;;] (1 — Ve(p, 7) arccoth[V(p, 7)])
+* (p)iRE(p 7) + fe(p)Telp) Velp, 1), (4.76b)
fe(p)
O:RI _ F(/) 5
—O_T—(/)’T)——\/-ji;(p—fr-}-[fl(p] < 0, (4.76¢)
OR: _ 2m 9 ,
07_ (/)17-) - -\/:RE(/)T) + [fE(/))] < O (476d)

PR, _1{ FE FIP)Q&P 7) . OR, -
(”’T)"i(:}zl(p,r)_ Reip. )2 +2fi(p) fi(p) (W(IMO , (4.76e)

*Ry; B m ORy b\ [ ORe -
(p’T)"—([:RE(p,T)]? 3 (p,T)—fE(p)fE(p))( (o7 )) , (4.76f)
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2R JdR .
a/,‘w T) = [lnfl(p)]’—é;}(_n,r)+:RI(/>,T>[mfx<p>]"

_1( F{(p) _m(mf(_(p)) [ln Bip) 1 FHeT)

2 [fl(/’)]2 [fl(/’)]3 [fl(/))]")J RI(/%T)
L F(p) {1 F(p )]’ S\
2[f1 ]>:R1 (p,T)Vi(p,7) [fl\/’)] Rilp.1)

: / F(p)  3F{p)filp) s
{fl(p)‘TI(p) + ([fl (/)]‘) - [fI/ /))f’]n,) ) arccoth{V(p, T)]}
+Vi(p. T) [P TP + (Vilp, ) avecoth[Vi(p, T)] — 1)

' (p)  _Fpfp) E(p) | Fplf ,,] ) .
2 3 g : ] l: )
([fl(ﬂ)]2 [fi(p)]3 7 (P +9 o] (4.76g)

PPR; ’ ,OR: . "
ap-zn(p"ﬂr) = [lnfE(p)]—é—/—)ri(/),'r)+RE(;),T)[hle(/))]

ORf:
37”f13 (i[,)(/)vT)
2(In fr( Lo Vil . )
[fe(m)]? <[1f ) + Ralpir) ) TV (7Y [fulp) T

)’PD
m R (/ ’T)

: 211 __(_E_____
[fe(P]*Re(p, T)Ve(p,T) ( In fololf + ) X

Ri(p,7)
e Gom.fy
{fE(ﬂ)‘TE(/)) - [;:;{;E][;) arccoth[Vg(p, T)]}

i ! 2
—6m (Vg (p, 7) arccoth[Vi(p, 7)) — 1) ([f ”((/:)))]3 - 3[[;[((/{));!‘ ) (4.761)
fe Je

The necessity is established first. Suppose that the functions F, f, T,, £, f', T,
F", f" and T? are continuous across the boundary dD;. Then, by equations (4.75a,h)

that mmplicitly define R, and R,

le (py—T)

2m + 1 2m ccotl 2m + L
— — AT CCOLIL i
[f (o)) 2 Ri(py=, 7) [f (pp)]? [f ()]

2m. ) 2m
= R; +1 — —————-—-,—(u((uth +Il \
o TN T PR (e 7) Fonl \/[f (o P Re e 7
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Define the functions

2m
S | Sl 1,
I(T) \/[f(f)b)}zjzl(pb“afr) T

‘[[?I possnd
We(7) 21 +1>1 and
wp = o(T) = , anc
g g [f(pp)]2Re(pp. T)
Jw) = w(w?—=1)""— arccothw, w > 1.

With the definitions of wy, wp and J, the previous identity can be expressed as

JOwy) = J(wg).

The cderivative of J 1s

2

-

J(w) = — e .
() (“!2-1)2<0

This strict inequality shows that the function .J is one-to-one. Since J is one-to-one

and J(w;) = J(wg), conclude that

Wi(r) = wr =wp = We(T);
= Wi =1=[We(n)? -1,
= [AR(py, 7)] =0.

Therefore, the continuity of R across the boundary 90Dy is established. So, the metric
tensor compouent guo is continuous. The continuities of F, f and R together with
the equations (4.76c«1) give the continuity of ;R at p = py. Thus, drgys is con-
tinuous. By the continuities of F, f, R, F’ and f’ and the equations (4.76a.bh),
the continuities of d,R, J,¢22 and gy, are proved. It follows that the continuities
of F,f,R,F',f.0,R and 0;R and the equations (4.76e,f) yield the continuity of
O-ary. Finally, from the equations (4.76g,h) and the continuities already estab-
lished, d,¢1¢ is continuous. Therefore, it has been proved that the continuities of
FRTGE T FY 7 and T imply the continuities of the metric tensor compo-
nents and of their first partial derivatives across the boundary 0D;. The converse

result follows in a manner similar to that used in previous sections. O
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Once again, a transformation of the exterior line element (4.74b) into the Schwarz-

schild line element (2.4) is sought. Such a transformation takes the form
T =R(p.7) = Re(p.7). t=T(p.7).

where Ry is given implicitly by (4.75Db) and T has vet to be determined. The angular
coordinates f = # and 8 = ¢ play passive roles and are left out. The function T las to
be determined. The procedure is as hefore; obtain a pair of first order, linear p.d.e's
for T, use a suitable intermediate coordinate chart to verify the mtegrability condition
and perform the integration, express the transformation explicitly in terms of (p, 7)-
coordinates again and obtain the range of the transformation from the boundary
curve.

Following the argument leading up to (4.63) and (4.G4), the pair of first order,

linear p.d.e's for T are as follows:

oT - 3 2m - ——
“(5;(/),7') = V1+[fe(p)? (1 - m) >0, (1.77a)
Iy = B, 2%
dp pTr = dp e

(p. )L+ [fulp)]’] (1 = \l < O(L.77h)
), I ) : T e————e———— “L, )
[ ' / fRH(/)« T)/

[T

Again, checking the integrability condition for (4.77) is more convenient in another
coordinate system. The transformation to the intermediate coordinate chart is given

by the following equations:

£ = Z(p,7):=p, (4.78a)
¢ = Zp,7):=2arccotl 2m +1>0 (4.781)
= ,T) := 2arccoth. - - , 4.78h
g [Folp PR 7)

5 [ C 2m o

coth*{ =) = ++—— + 1, (4.78¢)
(2) Ur(P)PRe(p, 7)

d(&,¢) 9% fe(p) PR
- = 2 ), (4.78
) o T TR "
D = {(p7)ipy<p, —o0 <1< Telp)} (4.78¢)

To be precise in the notation, denote FHE) = fulp) = ful€) and THE) = Tulp) =
Te(£).
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Tle transformation (4.78) can be inverted through use of the p.d.e. (4.75b); the

inverse transformation is

p = R¥():=¢, (4.79a)
m . i _
T = é— C) _r‘TL ) [fE(é-)]3(C_Slnhg)v (4791))
dp,T) | sinh?( (¢/2) .
060~ T Trep <% (4.79¢)
D% = {(£,¢):pm <0< < o0}, (4.79d)

The transformation of (&, {)-coordinates into Schwarzschild coordinates can found

with the the transformation (4.78):

sinh®((/2)  m
[f=(E)2  [f(O)

.’7“.‘

= Ru(p,7)=2m (cosh ¢ — 1) =: R¥(£,¢), (4.80a)

t o= T(pr)=T*¢.Q), (4.80D)
D¥ = {(£0) 1 m <& @lé) <), (4.80¢)
Cu(€) = 2arcsinh[fz(£)]. (4.80d)

The function T# is unknown. Use the chain rule and (4.78b) to convert the system
(4.77) into the following p.d.e’s for T#:

PHEQ) = —a—c-—(fC (4.81a)

—‘)mE#(f sinh"(¢/2)
(P sinh?(¢/2) = [fo(O]
oT#

QF(E.¢) = 7 (£,0) (4.81b)
aT T‘
= ap f fC —(p,T) ae fC
_THE) N me(g) (351nh( c+4cosh(</2)sinh3(4/2))
OSHEE)  DHEOSOPR T (O T sinh?(¢/2) — [fz(6)]2

S#E) = V1+[fe(O]2 (4.81c)
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The integrability condition for the equations (4.81) is

oP# _ -meE( ) sinh®(¢/2)
o &9 T TR
( [fE (O] + 5[ fu(&)]? ‘Q[fr ) Si111~12(C/2)"‘3Si11112(‘:/'3))
(sinh?(¢/2) — [fa(©)]?)? ,
Q¥

= ¢ (&0, (4.82)

This condition is identically satisfied. Therefore, the solution T#(&, () is obtained by
a line integral (and the equation (4.80d)):

& [oT# oT#
TH(e.0) = / [——(z e+ 0, l/)(h/]
(£0,0) T dy

¢ T (x) s ((sinh( - () 2¢ )
Jeo /14 [felx ]) v+ L8] [fe(E)]? " fi(€)

| coth([Cu(€)/2] + coth[¢/2] L
+2mln Loth[gn /2= coth[C/QJ (4.83a)

t

Il

coth[¢u(€)/2] = /1 + [fe(€)]~2 (4.83Dh)

Using the above solution (4.83) in (€, 7)-coordinates, the transformation from the

(p, T)-coordinates into the Schwarzschild (7, t)—coordinates is

7= Rp(p.7), (4.84a)
s P
t=T(p,7)= £l)

o VTR
+V1+ [fulp))? (T“TE(P) “T'II((()th\/[fx (r) ]2,973' (p,7) l)

coth[Cu(p)/2] + v/ (2m/[fo(p)]?Ru(p, 7)) + (4.841)
coth[Cu(p)/2] = v/ (2m/[fs(p))2Rs(p, 7)) + 1 '

coth[Cu(p)/2] = /14 [fe(p)] 2, (4.84¢)

Tulp) = T(p) - E?F)'F{Sillll[ﬁl(/’)] - Culp)}, (4.84d)

Dg = {(p,7):pp < p, —0 <7 < Ty(p)}. (4.84¢)

+2m1n [
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The function (; is defined so that Rg(p, Tu(p)) = 2m, ie. the image of R¥ evaluated
along the curve ¢ = (,(£) in the (&, n)-plane is a portion of the event horizon in the
Schwarzschild space-time.

The range 5_:,- of the transformation from (p, 7)-coordinates into the Schwarz-
schild R-domain is given by the boundary curve 77 = E(f) defined by the parametric
cquations

—~ —~

7= Re(pe, 7). t=T(py,7),

where —oo < 7 < Ty(ps). Thus, the Schwarzschild coordinate chart is valid for
Dy :={(R7): B <7 teR}.

For the domain where p > p, and 7 > Ty(p) in (p, 7)-coordinates, the coordinates
transform into (R, T)-coordinates in the Schwarzschild T-domain. To find the range

of this transformation, consider the (&, ()-coordinates in the alternate domain D#

given hy
DF = {(&,C) :pp < €, 0< ¢ < (ulé)}y C DE.

The transformation itself is

R = R¥¢
- NGIE (sinh ¢ — ) 2§ "
/&, \f1+[fn VIO ( [F(&F )
} coth({/2) + coth(¢u(€)/2
Hamin [coth C/2) = oG/ ,>] !
T = 0%(¢.¢):= il £)])smh (¢/2).

The domain Dy of validity for the (R, T') coordinate chart is given by
Dr:={(RT):3(T)<R< oo, 0<T < 2m},
where, the boundary curve R = E(T) is provided by the parametric equations

R = R*(ps, ), T = 0%(py,0),
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event horizon (7=2m ) AU singularity
AN .
l ) boundary
/ F=B(1))

>
w

boundary
Ca A boundary ! event horizon
(& f;O)
o event horizon
(T=2m)

o o= v o - e - - e .

seerindtisnily

.....
seirilitiiii i

singularity _/ =
A

(€=0)

sin gularity ................. [ > R
bounddry singularity

p, ®=Bm) (=0

o ound > D event horizon
ounaary (R(p,’c)=2m)
™ (p=p)

Figure 4.3: Gravitational collapse of a dust sphere of hyperbolic (¢ = —1) type.
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for 0 < ¢ < (G(pp). The Schwarzschild metric in the R-domain and T-domain can
botl be transformed into Kruskal coordinates by the transformations (2.13) and (2.16)

respectively. Tle gravitational collapse of a stellar dust ball of hyperbolic type is

depicted in figure 4.3.
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