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Chapter 1 

Tensor Analysis on Differentiable 

Manifolds 

1-1 Notations and Conventions 

To a - o i t i  c-c)ilfusion later on. a fen- convenient notations are tiefilled here. T\T7hile it 

is al:j-ays desiral>!e. rtt::siste~:ty of notation is usually lard  to acliiei-e. In general 

rclativit?-, use of the Greek autl Latin alplial>ets alone nlakes it difficult to avoid 

~-tq)t~tition of the same syn11,ol. The meaning of particular sym1)ols is usual',y clear 

from tlir. con t m t  rind. n-here possible, there is a warning al~out recycled symbols. 

The st4 N is taken to 1,e the set of all positive integers: in particular, 0 is not 

in(-luclc*tl in 81. .Ally general 11-tuple (.TI ,  .r", . T ' ~ ,  . . . , . r Z )  E R" ( 1 2  f N) is tlenotetl 

hiillply 1 ) ~ -  t l ~ t  i m n ~  .I. .  Tlie individual coort1inates1 .I-' of .r E Rn are obtained 13y the 

1m?/ect.ion ~ I ~ C I I ) ~ ~ ? I Y S  5;' : R1' - E, defined 1 3 ~ -  

n-hcw i f {I.?,. . . . n )  and s E Rn. 

Tllc set e"(-4: B) ( r *  2 O i  is defined as the set of :,I1 functions f : -4 t I3 (where 

-4 C a11d B E B ? a r e  open sets in the usual topology) where all the functions 

'Do not confuse snpersrripts on indexed 3-ariahles with exponents. The meaning is clear from the 
c'mltt'xt. 





Tlw signs in tllc terms of t 1 1 ~  Rieinaliii teilsor ant1 other geomet rical construct ions are 

c-lt~ar fiwn tlteir tlefiniticms. Finally. tlle units for the field equations are geoinetrisetl 

11nits for ~~intllrlniatical sirnr~licit!- in n-llicll the speed of light c = 1 ant1 Newton's grav- 

i t i\ t i o~ l i~ l  const ant G = 1. The approp,late definitions of all the concepts mentioned 

n l w w  artb ,+\-en ill this c h p t  er. 

Differentiable Manifolds 

Definition 1.3. L,ei 3f be (L ~l.o?z-ernj;tt?j topologisecl set 'tu7:th W(~usdorff topology: that 

i s .  f o r  (my  rlasr'anct points y, q E M, there exist open sets LTJ, C ,M c~nd C:, C n/C such 

t f m f  11 E I ; .  q E I., m d  I.;,nE., = ?. A chart or local coordinate sys tem (;y, U )  is 

t c n  o~-dci%;'d p(1,%7. ~071.skt172g of rm. open set c' 5 ?Yl together with c co?k~inuozis, one-to- 

o m  7ncq)pknij \ : I-- -+ D C R" , where D is  ccn  open subset of IWn in the ' I ~ S U C L I  topology. 





Definition 1.5. Let h be some set of i.ncl$ces. A sub-atlas of class eT ( I .  2 0) is 

n cllei:tio7t of c h t s  A = {(t,, C X )  : ct E A\) such that +M. E UncA li,, and all the 

charts (I,,, ti,,) nre e"-related. If A i s  moxisnel fin the sense t h t  any chart that is 

P-wlntetl to e v e q  cfrttr't i n  A i s  also in A), then A is nn atlas of class e' . 

Definition 1.6. Let (M, Ad() consist of tc set ,%€ with Hcwdorff topolqqy together with 

(m d m  A of CICLSS  C" of co~)rtlinate chnrts that mccp open sets in %f into open sets in  

R" . TIt.en, the orelereel pctiv ( M ,  A) is  cut. n-dimensional diflerentiabde manifold 

of class er .  

Again, the langilage is quite instr.uctive. The goal is to create a inotlel of space- 

t imr. that apl>rosilnatcs tlic plysical unitwse. .Just as one uses cllarts and atlases in 

g,c\ograplly to liiotlcl tlie curved face of the earth, one uses matl~ematical charts and 

ii11 atlas of space-time t,o lwt ter u~iderstantl space-time. 

1.3 Curves, Tangent Vectors, Tangent Spaces 

Definition 1.7. Let [cr, O] he a closed i n t e n d  in  R. A pa~arnetrised curve y i s  a 

' ~ u ~ p p i n g  front [a,  b] into the monifokl M. (Note that the curve is the mapping 7 and 

?lot thc sct of points 7 [[Q, b]]  c 31.) Let the range of -y lie inside some neighborhood 

rsvcrrd it* chart ( \ , I ]).  The coordinates nssocic~ted witit this c7wce w e  

,trrhcrc t E [ n ,  I ) ] .  If the &&ions X9ilzse continuous ordinnrp derivatives mith respect 

to the pcwanteter t up to cmd inchding order 7 % .  then -y is said to be a curve of class 





e'er* ( L  C?T-curve. A nowdegenerate curve is one s~ ich  that 

Altllough a specific chart (1 ,  U )  is iiseti in the above definition, any general co- 
h 

orclinatt. trartsformation to  a C"-related chart (7, U )  (where r > 0) suffices. That is, 

i f  tlip almre tlefixlitions apply to the coortli~m,tes associated with a curve in a chart 

( 1, I : ) ,  t lity apply also to tllc coortrinates associated with the same curve in any other 
h 

acImissiirlo cllart ( 7. U ) .  

C'urvcs associatctl with a manifold allow specific rlifferential operators - tangent 

?)ct:tor.s to  Iw tlefinctl. The totality of these operators constitutes a vector space 

wliicll allows the construction of all t l l ~  geometric objects that form the foundat,ions 

of classical gmcrai relativity. This motivates the following definition. 

Definition 1.8, Let ? : [ ( I ,  b] 4 M be n cwue whose irncige ?[a, b] c M is covered 

Irp o, cirnrt ( \ , I v ) .  Let the point 1) = ej(t) E M with t E [ c ( , ~ I ]  and iet f E el(L';R) 

bc (1 d.iBwer&k& real-tmlued fmction that is defined over G E E  the points in the inm9e 

of the crrroc 7 .  Tlrc tangent vector or contravariant vector $ to the curve y at 

tlrr point p = 7 j f )  i s  the m n p  Sp defined b y  

c i 
[ C p ( . f ? i V )  := -(.f 0 M). tit 

ti%" r l  ,,. - ( t )  z - (7 r  0 \ 0 ~ ) ( t ) .  tit t lt 

4 

Tllc tangtwt wctor t ,  maps red-valued functions defined in a neigl~bot~rliootl of p E M 
into the sct of real-valued functions defined in some ~ieighho~irllood of t E [a, I,]. The 



tangent vector t, of 7 at p E is visualibetl as x tlirtctctl liiw scprucnt c~ilnilnt i~ng 

from y tangential to the image of t E [cr ,  b] unclcr 7 .  Tlicrc Is an iiltrinsic way of  
-4 

defining a tangent vector t ,  as t lie tlircc t ioiial tlcrivat ivc 

-. -, - il~" 
tIJ = t,W = - t l t  ( I )  -1 

ihk p=- , ( t )  - 

where f E ? ' ( t i :  Rj for some open set U contaiiiiiig p. It is c!enr that tlw sct 'J,,(M) 
of tangent vectors at  y E ,M togetlicr wit11 the rules for w~ctos a&lil,iou a1l~1 svid;-tr 

multiplication is a vector space over R, Thus, Tp(M) is t hc t w r y ( ~ ~ t  91wt01' ,y)i~,i:c i! t 1) .  

It can be shown [26] that if M is 12- t l in~~s iond ,  tlicri T,,(M) is n-tlii~lc~i~sior~:il also, 

Each y E M has an isomorpliic copy of the tangent vector spwe Tp(M) assoc.i;ltcrl 

wit11 it. However, sirice distinct points have t1istinc.t tailgwt vw t or sl)accbs, t,nt!gclit 



- 
Givr~n any vcctor space I f ,  it is possii)le to define tlie dual space b- of dual vectors. 

Tllrw ( l ~ i i l  YW~OI.S artx liiw;tr fmctionals rriappiitg I - into R. In this case, the dual 

V(T t OI'S ;enJ wfvrrctl to as covu?-icmt vectors to clistinguisli t l~ein from tlic contravariant 

v w  t ors. 

for iilk). vector < ill T[)(M). The set fI3(M) togetlier witli these rules for addition 

m t l  smlar ~nultiplicatioii of ccntriant vectors is also a vector space over R. As for - 
;my finittl tliiwl~sional i.tlctor space. tlie dual space of 3;,(M) is isomorpliic to TP(M). - 
r~ I lilts, T[,(%T) is vie'tvetl as i\ space of linear functionals over 'TP(M); to show this, define 

fi 3 := ii(t'). WIIITP < E &(%I) and ii E fP(3n). 
C4ivt.n t l ~  Imis (i?',)y=, for 3;(M), tliere is a corresponcting unique dual 1)asis - 

{ G  ) ,  for ?,,(M) clefinrd by the relations &($) := 6:. It follows that T,,(M) lias - 
tli~neusion n.  Further, every covariaat vector 6 E Tij(M), then, can be writtfs~i as 
- 
1% = ttkGk for m i t a b l ~   scalar^ tik E R. 

.J~[si as tllc contra~ariant vectors in 'J[,(M) have an interpretation as clirectio~lal - 
clcrivitt in* operators on scalar-val~led functions on M, the covariant vectors in TP(M) 



the manifold M with a vector ill the tarigent spacv at that lwint. If t l ~ b  c.o~llpttlt~lll;s 

tb(.r ) of some vector field < relative to tlw basis ( O / a . r b J ~ = ,  in th~cnl  I? s o ~ c  (wor t l iwto  

chart are smooth functions of the coortliliatcs of tlic chart, tllc vwtor ficdtl < is also 

smooth. This dclfiriition is nude  precisp later, but it is sufficient to rcctqpist! that 

expresses the vector fieid < rdnt ivc to tlw holo~lornir basis in(lrirtv1 l q  i l i r l  ( , l k i i ~ . !  ( \ ,1;). 

Obviously, ;7 similar tlefinitioil of a covariant vcctor f ic~lt l  6 i:, tlcfi~itvl wit l~ c=olr~ l ) t  t n w  t s 

relative to some liolorlo~nic basis that vary smoothly. - 
For the most part, tlic bases used to clescril~c T(M) RMI T(M) iLSt1 \)v vocmli~mt'v 

-, 

I~ases induced by some chart (1, U ) .  In t h t  c ; ~ ,  tlw vwt rm < E T(M) ; 1 1 d  ii E 7(M) 
-+ 

(that are images of some smocrtll vector fields) can 1~ writ tcn as t - /''(.r)i)/i).r*" ;riul  
-* 

u = ub(.r)tl.rb, wher~  



;In1 tlw cor~poiicots of i and ii relative to this coordinate induced hasis. For a general 
A 

roonlinatr transforn~ation S of class e'' (1.  2 1) relating the charts ( y, U )  and (2,6), 
the contravariant hasis vectors transform according to tlie multivariate chain rule. 

N m w ,  the hasis i~lrh~rrrl by the chart ((, 6) is related to the unhatted basis by the 

rr 1lt1 

It follows, then, thnt the componei~ts of a contravariant vector field transform ac- 

cording to the rule 

A ~i~nilr t r  rirgument gives the rule for t h y  transformation of the covariant basis vectors 

n s 

The corrc~po~ding transfo'onnation rule of components u i  of a covariarit vector field 6 
i lS  

1 m 1.4 Tensors ana lensor Algebra 

l'lw t~sistcwx of the spares 7"S,(M) and f p ( ~ )  allow the construction of more com- 

plivatctl cd)jects called tensors. Loosely speaking, tensors are multi-linear functio~trtls 

thnt map Cnrtesiaii protltlcts of covariititt and contravariant vectors into R. 



To elucidate, a tensor of rmnli (0 + s) is a cova~icwtt tensor of rank s, ~ d l i i t l  a tvnsor 

of rank ( I .  + 0) is a contrnvar%r~nt tensor of rank I * .  Tlms, a contravariant tcwsor rd' 

rank I is a contravariant (tangent) vector while a cowriant wctcr of r;utl< 1 is u 

coslariant (dual) vector. In terms of tllc iiotatioli just defined, :,'T,,(M) = iT,,(M) r t ~ d  

yTp(hZ) = 'fP(M). Finally, a tensor of rauk (0+0) is a. scalar (1 E W. 
Atldition of two tensors T, S E l;'Tj,(M) is tlefinctl by 

where the arguments of the function artb as i i t x ) ~ .  Wit11 time rnlt\s, t?lu, set I;:T,,!M) 
of all tensors of rank ( r + .s ) at an event p E M turns o ~ t  to 1w a vcctclr S ~ H W .  0 d - y  

tensors of the same rank call he atltletl together. 

Beyond the operations of addition a id  scalar ixu~ltiplic~ntiol~, t l ~ t w  is a tcrtsor. 

product for multiplying tensors. 



.'.i'otir.t* tliat t21~ tei~sor protliict T @ S is linear in every argument since the tensors T 

and S arti lir~tvxr in evcry argunici~t. The tensor product is associative, so tensors like 
5 ,/i- (-. - .  c,.@ ii, @. - .@G, E :T,(M) (where 6.. . . .<,. E T,(M) a d  G I , .  . . , $ E r?,(M)) 

irrta wtbll-tlefi~retl. Tlic tensor product of t llese contravaria;~t and covariant vectors is 
-+ 

thr mal) Itl w . . . ;,.@ til @ - - @I G,] : I'I; -+ R defined 1)y 

- 
fi)r t w r y  G I , .  . . , G,. f TP(&l) ant1 y ' , , .  . . , f S  E Tp(M). Finally, tlie tensor product is 

also (list rihutivc over atltlition of tensors [IS]. 

If {GI  } :=, iincl {5J are dual bases for T,,(M) m d  T,(M) respectively, the set of 

1 )  "+" ~ ( ' I ~ S O T  ~ ~ I . c \ ~ I ~ c ~ s  

is a lmsis set for t,lle vector space :"J;,(M) [%I. In te rns  of this basis, any tensor 

;T E aT1,(M) can he writ ten 

1ii~owi.ing Ilow to clPfine conlponents of tensors, it is possible to consider symmetries 

of t t l i ~ ~ ~ r s .  A tcilsor T'll'-'l of rank ( I .  + 0)  is symmetric i11 the kt11 and lth indices 

( 1  5 A. 5 5 I.) if Tl1...f~...t[...Il - - TI1 ... ' I  ... t b . . l ,  ; it is antisymmetric in the ktli and ltll 

intiices ( 1 5 1- 5 5 I * )  if T~i...t~...ll.-lt - - -T ' 1 .  .. I /  ... ' A  ... t r  

.hiotllcr important operation on tensors is contrclction. Tlie contraction of a tensor 

of  rank ( 1% + s )  rcsults in a teiisor of ranlc ( (  r - I )  + i s  - 1)). This operation is called 

vontrnction \wituse it involves surlinlirig tlic conlponents of a tensor (relative to some 

Imsis st-t ) uwr OW of the covariant and one of tlle contravariant indices, contracting 

i t  t o  a t twor  of lowvcr rank. 



It can be proved that C:(I,'T) is in fact a tensor. --llso, in sl)itc of thc i \ l ) l ~ ( ' i \ ~ ; ~ l ~  

of basis dependence in this definition, the contraction of n tcnsor is i l l  f ' i l(. i I)asis- 

independent 1231. 

To make the earlier notion of a ~ ~ e c t o r  fieltl precisc, tlt.\finc it bursol. Jivltr! [13]. 

Since a vector is simply a tensor of r d i  (0+1) or (I+()), illis cl(~finitioil i~ic.l~ltl(~s I ) o t , l ~  

cont ravariant and covariant vector fields. 

Definition 1.14. Let T be tr m q p i n g  

Althougl~ this clefinitiou appears to tleperltl oil a 1)articwlar c.11;ti.t , i t  ix 11ot tlifhc-itl t, to 

s11ow that it holds for all charts in the atlas if i t  lloltls for ol~c.  For ~ o ~ i l l ) l t t ; ~ t i o ~ ~ i ~ l  l)l~r- 

poses, the clefinition of a tensor ficltl as a map assoc.iatiug points in M wi b i t  ~ l ~ i d t i - l i l ~ ( w  
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- 
fimc.tio~lais of ortlerrd ( 1 .  + -5)-tuples of vectors in 3-,(JYC) ant1 'T,(M) is impractical. 

Following tlit. classical literature, a tensor field :T is referretl to  by its components 
~ k ,  kL ... kr  ~ l l l . . . l , (  ) with respr~ct to some local coordinates on M. The choice of chart 

irirlucrs a natl~ral  hasis for 'J,(M), namely the liolonon~ic hasis associated with the - 
local coortiiilates. That 1)asis induces a dual basis for 'Tp(M) and in turn for I,"TP(dYC). 
I--lence, tlw cl l~iee  of local toortlinate systems fixes the representation Tkl"'-kr 111 ?... 1, of 

a tcrtsor field :T in sollie open set L; containing 13 E M. The complicated nature of the 

Einstein field vcpations (1.33) necessitate using coordinate representxtions of tensors 

t lircqliout this tllt*sis. Furtlier, unless necessary, tlie argument ,r of such conlponents 

are lcft out: i t  is inlplicitly understood that such components actually do depend on 

tllc r.oorclinates of points in M. 
The contravariant antl covariant indices of tlie components of a tensor field trans- 

k)nu just as the conlponents of contravariant antl covariant vector fields. Explicitly, 
h 

if the functions S and X = S-' describe a C" ( 1 .  2 1) general coordinate transfor- 
h 

~liation relating tlw cliarts (1, L:) and (7, I / ' ) ,  tlie components of a tensor field :T of 

rank ( 1 .  + s) transform according to the rule 

Klry often, since tellsors are referretl to by their components, the tensor character of 

an ol)jcc t is proved 1): verifying this transforination law. In fact, this transformation 

rulc is somctinies given as the definition of a tensor. 

1.5 The Metric Tensor 

This discussion to this point lias been based on a tlifferentiahle manifold (3d, A) and 

tlic vector spaces 3-,(M) included in the tangent vector l~untlle. No inner product or 

scctor norm has yet 1,een assigned to these spaces. A metric tensor field goo defines 

2111 inner procluc t on each tangent space wllicll determines the geometric properties of 

-v. 
Definition 1.15. Let go, be n tenasorfield of mnk (O+2) on 31 with components g,b(.~) 

rchfive to SOTi1.U chart ( 1, U ) .  The tensor field goo is a metric tensor field zf the 





Definition 1.17. Lei, -7YI: be endowed w t h  (i metric tensor field whose co.ml,onents are 

!j,,,f . I . )  rclrikiue lo SQ' I I IC  chart ( 1 ; C 7 ) .  The signature of the metric tensor is the sum 

u ~ h c ~ c  f j  w e  the i~4ilic~itors of the eigenvalwes ns given in (1 .11) .  If the signnture of the 

~rtefric Is 1 1  (t11.c tlirnension of the ~nmxfold),  the metric i s  scrid to  be Riemannian; 

othcrwi.w, it  is pseudo- Riemannian. 

7'11(* sig:\ature of t l ~ e  metric tensor field is given by tlle sum of the nunher of positive 

r+,ci~valucs of [gc,b(.t-)] rni~liis the uumber of negative eigenvalues of [gab ( . r ) ] .  Altliough 

tll? clPfinitio~~ of signature refers to the signature of a metric tensor at  some specific 

point p E M, it  is conmlon to refer to t l ~ e  signature of the ~nanifold ,W with the 

implicit assumption that -7VC is entlon-etl wit11 a metric tensor field of fixed sig~lature. 

Tllc true importance of the metric tensor field lies in its cllaractzrisation of (con- 

t rav~iriarit ) vectors. 

Definition 1.18. Let gob be the corrq~o~aerrts of (L :rl.etl-ic tensor relative to some fixed 

hasis (GAI;.);f,, (it some point p E M. Let G = t+"& E 'J,,(hf) be nonzero contrc~varinnt 

r~eclior. Co~asirler. the ipic~,stit?j 

The 7~ccto.r. ? i s  said to be space-like i f  9 > 0 ,  time-like if Q, < 0 or null if 

@ = 0. A vt:ctor field i s  space-like. time-like or  mil if it  i s  space-like, time-like or 

7611l1! 7espectiveky (it each poin,t of i t s  donmin. S.imilnrly, n curve is  space-like, tame-like 

or. '~rti.ll ~ ~ c c ~ r d i n g  to  the space-like, time-like or mill c ~ ~ ~ ~ r i ~ r c t e r ~ s ~ ~ k b o n  of its tangent 

occ tors. 

If the inctric is Riemannian at a point, the inner product is pos i t i~e  definite: that 

is, ex-ery nonzero vector is space-like. For a metric of pseudo-Riemannian signature, 

nonzVro time-like and nrdl vectors exist. This makes the name "metric" a bit mis- 

Icntling. It seems plausible to think of M as a metric space with a distance function 

related in some way t~ the metric tensor field. IYhile this is possible with Riemannian 



To malie M a iiietric space, it is necessary to 11nvc a R i c ~ ~ l a ~ i ~ ~ i a n  nwtrii. (s:v* [ I ]  j. 

Define 

space. 

The inner protluc t given by tlie metric tensor i1ii1ucc.s an isolnorl)ltisli~ I ) c h t  t\iocSl~ I 110 - 
tangent space 'J,(M) and its associated tlllal sp;xce T!,(M). Assoc.ia t ( ~ 1  wit 1 1  a ( .()v~I rii111 t 

(dual)  vector field S = q,.(.r)G".rr), tllere is a rolitravarimt wic.tor firlll = r ) J ( . r ) $  ( . t $  

The contravariant ~ w t o r  field z l J  results froin T Y L ~ , S ~ T L ! /  tlw f ' o ~ i ~ ~ i i l l ~ t  iu(lox i l l  t,lio ('0- 

1-ariant I-ect or field L J ~  am1 the cctvariant wrtor ficld i),, t t w ~ l  ts i iv~r l  lower any t lit* 

contravariant intlex in rl'. Similarly, the i.ovariant inthtric. t t w m  nn(l its ~ o ~ i t ~ i ~ v i t r j i t l ~ t  

counterpart are to raise a i d  lower iiitlices in ar1,itrary trwsor Eicblds. For l o w t ~ r i ~ ~ g  

the ptll contravariant index (1 5 I:, I - )  or raising the qth c.ovi~riant ir~(lcx ( 1 5 (I < 5) 
of the components of a tensor field Tzl- . 'r , ,  ...,s of rank ( I .  + s) (wltic-11 yieltls a twsor 



of rallk ( (  r - 1 j f (s. + 1)) or ( ( 1 .  + 1) + (s  - 1)) respectively), the rules are: 

Tlius, for a manifold e~dowetl with a mctric, the cowriaat or contravariant rank of a 

tcmor can 1)c cl~angetl at will through successiw raising and lowering operations. 

Dnc t o  t lie cwnnection of the metric tensor to (list a w e  in Riema~mian spaces, it is 

c.o~nnio~i to see tllc components of go, relative to some llolonolnic basis given as a h e  

clcrrmt t: 

The. qlianti ty tls"s nlcnilt to tleilotc the square of t lie infinitesillla1 tlisplacement 

1)ct~vccn two points wit11 coortli~iates .r anti s + tls respectively in a Rienlanrlia~l 

mauifcdc\. It would be more accurate to write goo = .qab(.r)(?.ra B ( I sb  to espress all the 

coinponents of the metric teiisor. However, to saw space, it is more convenient to use 

;I lint clement . 

1.6 The Covariant Derivative 

Bcforc proceecling further, two definitions are useful. 

Definition 1.20. The Christoflel symbols of the first kind associated with n 

Thc Christogek symbols of the second kind (or conn 

rtefined h y  

ection co 

( 1 . 1 4 )  

e f ic ients)  are 



From the definitions, it is clear that 

. . 
[1,7, X'] = [ji. A'] and { A }  = {A:') * 

Define v , ~ ( . v )  := (&abQ) ( . r ) .  Wit11 the s~contl orcler partial rlcrivntivc~s of' ci,, t l it lrc* is it 

different trailsforination under n cl~angv of cllarts: 



Definition 1.21. Let Til..*'*. j, ,%. ,% he c tensor field nf mnl: j r + s )  over some region i n  
. . 

I ;  c -M ccwcr.etl hy  the chart (1, I ; ) .  The covariant derivative of T'l.-?~.~,. , ,j ,+ is the 
. . 

~ S C W  f i d d  VnTt l . - t r  ...ja '~uith covqmrwnts defin,ed by  

I N /  7 : I c R 4 ,M bc (1, c t m c  whose wage is covered b:(/ the chctrt (i, U ) .  The 

absolute derivative of the tensor field T'l'*.b Jl  ...,, (.r) nlor~g 3 is the tensor field of 

r b t m A :  ( I '  + (s + 1 ) )  defined dong y [ I ]  b y  

'I'llt, occ.tirrc1tc.c of second order partial tlerivatives in thc tra~isforiuation (1.27) of 

t l ~ ~  ( ' l~rintofhl syiulmls iilakes the co~nriant tlerivntivc trarlsfor~n as a tensor. Altllough 

t l ~ t *  aim-v tlcfinitions scrm complex, it is easiest to remeinher that each term in the 

i.o\wimt clcrivative is atltled if it differs from T".3*11.J1,.,,,* in a contravariant i~ltles 

i l ~ l t l  s ~ t / , t r a c t ~ ~ l  if i t  differs frow T1l*..zrJ1.+ in a covariant intiex, In such terms, the 

tlisplactd iuclcs is pnt iuto a CllristofZ'e! synhcrl of tlre second liintl ant1 replacetl by a 

clr~lmty ii~cltx of suiunlatioir. 

hr;r scalar fit41 9, tllc ~q'r~dient  of c9 is the contravariant vector V"$ := g " h ~ b +  ZE 

!I""3t,~~~; in  t'owrinnt forin, the grxtlirnt is V,& = &Q. The covariarlt tlerivative also 



As a conseqnencc, the al)solute clcrivati\-(1 also Ius this Lc\il)~iit ~ i : t ~ l  l , r t ) l ) t~ t~- .  

i t  is possilde to clCfilic a structure c.;\llctl it linwr wrlncct ion 011 M t l l i l t  p n ~ l \ i c ~ t ~ s  

tlip Cllristoffcl s,vrrilmls and tlic rovariant clt.~rivativc~ ( sw  [ X ,  1 31 ). 111 I his t l lvs ih ,  :I 

metric-intlucct1cel connection is consicbertbtl, so t lw C'hristoftiil hyllil t tr l s  ;\rtl t l t s t i i t t v  l f u t ~ t t  

the metric tensor, -4s a rcsnlt (see [ 2 5 ] ) ,  tllc covnrinat tlrrivat ivc o f  t hr\ t t w t  r i c k  I t w w r  

lowering indices, the metric tciisor rolnponeuts can 1 ~ 1  t rt\ntti(l 21s cw~lst a i l  t s w I H I ~ I  
taking covariarit tleriva tivcs, Tlius, for i nst ancc, 

for any tex~sor field PJ. 

1.7 Geodesics 
r -  Geotlesics in Riemanrliaii spuces arc curves of s t a t i o l ~ r y  lwip,th. [ 1 1 t y  r(q)r(wbtit t I f f '  

patlis of sliortcst arc lerlgtll conncctixig clistinct lrc,ilits. For a c.rtrvtvl sl)irt.ci t l t ~ l l t t v i ( l t ~ l  

in a space of lliglier tlinicitsion, they ciln I)(% f ~ t ~ ~ t l ; ~ ~ f i i t i l  ( i i f f t w ~ t  t l ~ l t l l  t l l c '  w v r t l ( ~ s i c . h  

of the larger space. For instunc'c, in !Ei3:', tlw gcwlc~sics an1 st rnigllt l i l t w .  t Iowc*wr,  o n  

thc manifold S2 which is tlie s~arfi~cc of a splicrt* v ~ l t l ~ ~ l ~ l t ~ l  i l l  IF?, thcv gc*otl(-sirh aii. 

great circles. For a 11seutlo-Kicniaii~lia~l spnccl, rurws (.all 1 ) 1 5  r i t ~ w l i l w  t ) r  tutll, so i r t i  

interpretation related to seprtratinn ratlicr t ltiu! ;trc h g t h  is ~ l t d c ' t  i .  

Towar(ls finding a suitable analogy. k t  11. q E M l w  two (list i l i c ~ t  fixo(1 1 ) c h t t  5 .  

C'onsicler the class of curves 

($,(I c R; M) :=(7 : 7 E ~ ' ( 1 :  M) for somr. iuttmxl I = [ ( L ,  b] c IN: 

and ?In )  = 11, y ( 1 1 )  = q J 



1ias solrlth ctcfini t e v d w .  This fimc t iorial in solrw sense tlescrilws t lie separation of t lie 

two p i n t s :  in favt ,  for a Ritmaanian metric, it gives the arc length along the curve 7 

that exttmls twtwcen p ant1 q.  Suppose 7 is a curve for which L[y] is a stationary value 

of t l it% filnc. tionnl L, t lwn, as a cunsecpcIm of the Euler-Lagrange equations (see [l 11 ), 

i t  is ~wssilde to select a special parameter t r  so that the componellts clXa/clu of the 

trmgt1nt vectors nlolig the curvc necessarily olwy the following (tiffere ztial equations: 

FEIli~w ~ ~ p a t i o n s  can he more concisely tvritteri using the, Cliristoffel sy1nl)ols of the 

first 1;iwl: 

Filially, nidtiplyirtg by g"(I ant1 contracting, a second ortle:. coupled system of non- 

liuciir c)rcliuary tqiintiolis r t d t s :  

Definition 1.22. Lct 7 hr: ti crww whose imt~ge is covered by some clrurt ( \ , U ) .  Let 

.I"(' = X a ( i f )  he fhc con~~ponents of y( u )  wader this ckart. Then, the curve y i s  (6 

gerrdesic c w v e  If the comjmzents X" sntdsfg the eqmtions ( 1.19). The equations 

( I .  19) iire tkt: geodesic equations c~ssocinted with the metric tensor. 

Tht t*qltations (1.19) art. tensorial siiice they tau 1)e espressetl in t,ern~s of the 

n1)solrttt~ cicrivative: 



1.8 The Tensors of Riemann, Rieci and Einstein 

The coefficient of 1; on tllc right-ham1 side i s  a tiwsor of r m k  ( l-k.3). 'l'liis mot iva t  61s 

the following clefinition. 



Definition 1.23. The Riemann cztvvature tensop i s  a tensor f iet i t  Rirsk chf rank 

( 1 -+ 3)  dt;jl'neil by  

Tlir ~>uxIF~;  of thr nbove are straiglltforw~rd computations (see [%I), T l t ~  ~'yuations 

( 1.23~1) art1 kriowu as the D'h'cmchi 'l,d(~:?tt%'t%'es. For I ?  2 4, the ~ylmletries (211d anti- 

sptuwtrit~s of tltc Rirrlrntirl tellsor reduce the xltnulwr of iurlcpentlcnt conlpc.~ients of 

1 lw R i c ~ w n t ~  tcnsctr htrm rr ' tcr r t ' ( r r2  - 1)/12. 

\';~rirtrrs contract ions of the Ritmnlin tensor yield tc~istsrs esseut in1 fur relativity. 





This clt~fiuition is not the inost general; sometimes, complex null tetrads with a 

cliffw~nt r.1loit.c o f  r](cc1(6i is ilsefid (see [lz, 23]), but for present purposes, q n ) ( 6 )  = 

tii;tg(l, I ,  1 - 1) is iisetl. 

Nrjtict* that e(n )  = e(,)',ql, are the conlponeiits of foltr covarlant vector fields 
J 

ot)tai~lcd from the contravariant vectors q,)'. A hit of nlanip~!ation reveals 

For it11 ortllonrmnal tctra(1 consisting of t h e e  space-like vectors e ( ' ~ . .  eC2),, e(3)k and 

orie finlr-like v ~ c t o r  ri I i l ,  the definitions above inlply that 

'rillt tetrad ilvliccs of a trlisor are mised and lowere(l with and ? h a ) ( 6 )  in tlie 

sitlnc tvny ttlnsor intiices are raised anid lowered with f i U b  arltl gab. 

f l 1 lit% miih t ? i l~a i i tag~  cif using tetrads is that the tetrad components of tensors 

t i - i~~la funu  as scdnrs. That is, an rtclinissihle cllixnge of coordinates does not change 

t Ilc. nntwric.al va lw of tlie tetrad coiriponcnts of a tensor. From a plivsical perspective, 

this ~ u a l i ~ s  the conipanents of tensors rrsenssmble which is of utmost importance for 

t~spt~rinicnts. 'Ttxts~d components of tensors also help iclentifv mitt rule out possible 



1.10 The Stress-Energy-Momentum Tensor 

With the tools from differential geometry asscmtdett so fiir, ro~isitlcr soma idcbas froiu 

pliysics. Since, in Newtonian gravitation, gravitational potcnt,ial fieltls an1 rc.latctl to 

the mass-tlensity in space, some version of this must 1)o incl~ltlc~l ill t l i ~  ZICW tliooq. 

In keeping witli tlie ideas developed in this chaptcr, tlie liCw "mass-tlcnsi ty" sllolrltl 

1)e a tensor field. The tensor analogue of mass-density is tlw str*c.ss-t!rt~~r~y~j-ri1o~~~t'rt111~r~ 

tensor Tab, a rc'lativistic version of the tensor of a sinlilnr nainc fro111 coutint~urn 1 1 ~ -  

cllanics. It emhotlies tlie ~~leclianical pro1)erties of mat t t r  ant1 nets as t l ~ t ~  s o i w c  

of gravitational fields. The properties of To,) can I)e fount1 i ~ s i i ~ g  stat,istivnl argn- 

iuents, integrating t lie flux of 4-nlomentum' of all the p t r t i c l~s  of 1r1;t l t cr t,ltrol~gll a 

3-climensional 11ypersurface (space-like or time-like) in sp;wc-tinic.. Tllr cxzct pl~ysic~:~l 

arguments are in 1241, hut it is sufficient to aclinowlt~lg~ tllc 1)rininry i~lgt>l)r;~i(' i l ~ l ( l  

differential identities tliat the tensor Tab m ~ s t  satisfy. T l i f ~  itrtb 

tions of consert~ation of energy, momentum, etr. that arise in classic'al rwc.lliulic+s, 

'The 4-niomrntum p" of a particle of mass rn moving along i L  world-lint. with tinif 4-vc4ocity 11" 

is given 1)y pa := rn.1~". 



of  tcltratfs comes fro111 solving t l ~  covariant eigenvalue problem 

w l ~ t ~ c ~  tllcre is 110 slm over i ill the right-liand side of the equation (1.30). The 4 

( ~ m t  rwtri iw t vrc t ors I j ,  %re eigcnvcc t ors of t 11;. problem and the corresponding real 

scalars Xi ,) are the cigcnvalues3. T:,c eigenvectors are ortliogonal, with t h e e  space-like 

vigr~nvrctors lit , ' ,  l i2)" 1 i:3,b and a time-like eigenvector l wliicll can be defined 

to Iw fut we-tlirec ted". 

Arli~ect with this ortllolior~r~al tetrad, it is possible to find the invariant tetrad 

c-oniponrnts of TcLl. Tliese are given by 

Tltc. eige~lvalues A( I ), X ( 2 ,  and are the principal stresses wllicll are referred to  as 

prcssu~.ts if tltey are positive, tensions if tlley are negative. Corresponding to the 

~r insi l )a l  stresses are the space-lilie eigenvec tors I.; )' , I 72)" and y3," wliicll are the 

principal 0irect.ions of stress. The eigcnvalue of tlie time-like eigenvector is called 

tllc dcns'itg of tlle medilm (illis can be (tensity of mass or energy, ~rh ich  are equivalent 

i l l  t Ile general t licory of relativity). The time-like eigenvector is often denoted 

I ( "  mil  referred to as the 4-wlocity of the medium. 

If A( I ) = X p )  = 4 3 )  =: p > 0, the nletli~inl is a perfcctfluid. Defining p := > 0, 
for a pcrfcct fluid, by (1.23), Tab can he written 

u.llerc. 1) is the pressure inside the fluid ant1 11 is the density. The equality of all three 

s~)aw-lil;e vigrni-dues indicates that the pressure is isotropic. In the Segr4 not at  ion 

1131, the tensor Tab is of type [(I 1 1). 11 for a perfect fluid. 
3 Tlic syametry of Tab guarantees the aigmvalues are real. 
'This is possildc provided T,b is of Segri c1x.s A1 [Is]; there are situations with nnll eigmvartors 

and coruples eigt~nvalues (which are appropriate to study mdiation or elaciromagnetic fields) but 
ttiosc are not be considered here. 



Since Tab describes the distrihntion of matter in s p a c ~ - t i n l ~ ,  clioosiilg f l i t>  c+oiillw 

neuts of Tab arbitrarily do not generally resu!i in pliysicnlly ;ic.c.cpt ahlc q );NX\- t i 1 1 1 i ~ i .  

To further constrain t lie p s ~ s i l ~ l e  clioices of Tab, t ~ I C  invariant cllari~c t crisa t io11 o f  T,,!, i l l  

terms of its sigem-alues is veq- useful. Hawking a i d  Ellis [13] givv tn-o roiltlitiol~s ;111(1 

TTald [30] gives another that restrict clioices for tllc strcss-r~11crgy-1i1c~lli(111 t U ~ I I  ttwsoi.: 

3. The donzinnnlf energy co~~dit'ion: ~ " ~ 1  ;I 'j) > 0 and ~cl'l;, is t i~itc*-lil;c~ or 111111 

every time-like vector field 1,;. (This is equivalent t o  -A( > 0 ;11tc1 I,\(,, , 
-A(.,) , where cl = 1 , 2 , 3  provitlecl ~~rovitletl z,b is of Scgri. ( * l i t ~  .-\ 1 .) 

1.11 The Einstein Field Equations 

Tlle uuderlying ~noclel for the space-time of gei~cral rcht ivi t~.  is a ~ O I I ~ - ~ ~ ~ I I I ~ ~ I J S ~ O I ~ ~ I ~  

r t * i  - cliffereatial>le manifoM jM, A) of class e3 P with a rn~i r ic  of  sigrlairtrc* +2. 1 n ~ b  cliifw- 

entiable nlanifold is referred to as a sl1nce-t.l.7ne ;tntl points ill i t  arcB ewnt.5. 'I'i~is rliffim 

from the Yewtonian model in wl~icli space is Ric~manr~ian alul flat. Havi~lg, c*st;t tdisl~v[I 

a inanifold structure for the model of space-timc, t l i ~  ttiusrrr fit*lcls 011 31 rryrrwl~t t 1 1 c .  

physical quantities of interest in space-time. 



Definition 1.27. A d.iflerentinli,le mcmifold (,%I, A) with nn indefinite metric goo is 
+ 

time-orientable .If there exists 11 continuous vector field T that is everywhere time- 

1iX:c. 

-+ 

0 1 1 ~ ~  a manifold has sucll a vec-cor field T, a classification of all time-like vectors 

at raclr point iu M is estaltlislletl: given a time-like vector q E 'JJM). Then, 9 
4 

is firhre-directed if (q, T(p)) < 0 and is past-directed otherwise. It is this 

prc.rper.ty that fixts tlle arrow of time and ensures material particles traveling along 

timc~-like world-lines ha\-e a fixed definition of the future as opposed to the past. This 

is oin-iously in accord with intuitive notions allout time. 

\I?~at is desired is a way to map the properties of '.gravitational force" onto the 

~xopertics of a pseudo-Riemannian differentiable manifold. In Newtonian gravitation, 

s l ~ a w  is associated with the Euclidean manifold Ei3 wllich can be covered globally 

1 q  a Cartesian chart : E3 + Ri3. Let p be a scalar field defined on \[IE3] C 

EX" that is nonzero only in some open set D c \[lE'3]. If p is talien to be some 

mass clensity tlisirilmtiun, then tlime exists a gravitational potential Ti that satisfies 

Poisson's equation inside matter ant1 Laplace's equation outside: 

Tlw solution to this prol~lem is found using the appropriate Green's function and is 

gil-cn by tlle integral 

One of the postulates of the post-Newtonian way of looliing a t  gravity is tlle 

pxleslc  hypothesis: the world-line of a free particle in space-time is a geodesic curve. 

Tllus, the perceived attraction betn-een massive bodies is actually due to the curva- 

ture of the unclerl?-ing manifold. Time-like geodesics correspond to the world-lines 

of material particles while null geodesics correspond to the world-lines of photons or 



particles of light. (Space-lilie geodesics do not liavc olrvious ilit i'rl)rr\~t\ticms: t fl~v)rvt - 
ical particles known as ~ U C ~ A ~ O ' I Z S  follo~v space-lilw C U ~ V C S  wliic11, IS!. 11ryyssity, tr;lvrl 

faster t hall light. ) 

However, given a ma~iifold wit11 nltltric, tliv geodesic' ll>-l>ot litsis nlol~t. t1or.s uot 

capture all tlie aspects of post-Newtonian gravit ntion. in  particwlar, sonic' ficltl t~ l i la -  

tions silililar to t lie Poisson equation (1.34) rclat in$ gravit a t i o l d  pot t b t r l  ial to u1:tss 

density are needed. Clearly, these field ecluat ions slioulrl lw t twori;ll. This rt1t:~c.t s 

the fact that u~ltlerlying laws of nat use nmint ail1 t lic same lmsic. for111 rcgilrt llws of t 

coordinate system imposed to express tliem. Tlic ficltl ccpatiol~s (lilic o r  lwrs) shoultt 

be partial differential equations in the functio:is to 1 ) i s  tlett~n~iincvl, lu tlw lir l l i  t of  

low gravity, the field equations slloultl re duct^ to tllc Poissol~ cyrlation ( L.3-1) a l ~ o \ v c h .  

Tlle role of a gravitational potential in (1.34) slmuld 13c assulml 1,- tcwsors rc.latctl to 

curvature, as the geodesic liypotliesis asserts tlia t t llc psrc'ciwtl g rwi  t a t iolial 1 ~ )  t 1'11- 

tial is a consequence of curvature of space- time. Siilce t llc. st rcss-cb~icrgy-~klolilcllt 11111 

tensor is the analogue of mass tlensity, Tab slioldtl act as tlw source of griwii,;ttion i l k  

this tlieory. Finally, in tlic case of a flat space with a Iliriuliowsliii~~~ iwtric., therc1 is 

presumed to he no mass, so Tab slmdtl vanish. 

The hest caldiclates (see [24, 23, 151 ) for t l i c s~  field cqua t ioris arc 1 1 ~ o  @i'11sk~h 

field equations5: 

The equations (1.35) relate tlic distribution of matter m t l  tBncr.gy i I I  slwcv- t i n l c b  to 

tlie curvature ant1 geometric properties of space- t imt.  Assi~nlii~g t l i t i t  t l l ~  ststw- 

energy-momentul~ tensor is l i n o ~ ~ ~ i  explicitly, tlic fichls e q ~ ~ a t i o l ~ s  c'trv it ( ~ ) 1 1 1 1 1 ( ~ 1 ,  ~ ( w i -  

linear system of second ostler p.tl.e's in tlie .unknown mc~tric tmsor crmzl~ol~cuts. 'UIV 

symmetry of the Einstein, R,icci and met,ric tcrisors rcr1iic.c t 11c. n i 1 1 1 h ~  of ~ t n k l l o ~ l t  

functions gab from 16 to 10. The numbrr of iiitlepenrlcnt cxjll;i.trions is not 10, ~IOU'(*V(T,  

due to  the adclitional 4 differential i(1eiititics VrtGah z 0. F ~ I u ~ o ,  a11 :ttlditio~~ili fot~r 

conditions (linown as coordinate co'~~ditir:o~~s) are also pcmnit,twl. 

5Geon~etrisecl units are chosen so that r; = ST and (. = G = 1, wlrcbrc C: is Nc*wto~t's g~*;~vi t ;~t . iord  
constant and c is the speed of light, 



Tlrtw is i i  wrta i~ i  ai~hignity in tlie interpretation of the field equations; if ap- 

~ ) r o a ~ l ~ t d  iisirlg i t  sptbcifi('  ordin din at+^ svstem, the tensor Tab must be specified before 

t11r nlt.tric tmsor can I F  found. 'Tlius, the clepentle~ice of T,b on tlie coordinates is 

1;m)wn lwforrl the sporific geometric interpretations of the coordinates is determined. 

Couvcrsely, the tensor gab can be specified ~vl~ic11 generates a specific Tab. This may 

not rcs~llt ill a p l ~ v ~ i ~ ~ l l y  nieaningful (listrilmtion of matter and energy, hut it is a 

~ l s c b f ~ i l  waji t ~f tliscovering s o h  t ions. iZno t lier coninion approach is a niixecl method 

( S C O  /XI) ill which sonitb r011~triiillt~ 011 various coniponents of gob and Tctb are specified 

to assist in fintli~lg a scdution. >lost often, it is best to think of the field equations as 

a set of rcstrktious ol? t!te choices of the 20 d i n o w n  quantities gab anti Tab. 

Finding soltrtions of the field equations is a norit~ivial task. Tliis stems in part clue 

to tlic largc rium1)er of I I I I ~ I ~ O W ~ S  ant1 also to the uonlinear nature of the differential 

cqunt ions. Solutions are gelicrally found l y  making assuniytioiis of symmetry to 

rcltlucc thc 11u1nl)er of d i n o w n  ftuictions ant1 tlie number of tlepenrlent variables. 

,411 filial consitlcrntion in solving the field equations is the cpestion of jt~r1ctior1 

conct.it.ior~. Suppose tllere is some vacutini domain of space-time in which tlie Tab 

snriisltw autl sonw reason d i e r e  Tab # 0. Let S c M be a Iiypersurface representing 

tile ho~uitlary I~etween matter ant! vacuum. In some coordinate cllart, the set S can 

Iw clcsrrilml by S = \[S] where S = {.r E R" : f (.r) = 0).  (Notice T: divides 

tho rcgion into two tlis,joint connected parts, one wl~ere $(.r) > 0 and anotuer where 

f ( . r )  < 0.) Some or all of tlie components Tab are d i s c ~ ~ l t i i ~ ~ o u s  across C. AS a 

c.oiisc~lucncc~ of tllc Einstein fieltl equations, the derivatives of 2nd or 3rd order of tlie 

1nc1t ric tensor conlponents nlay also be (liscontinuous across 2. As a first junction 

contlition, it is rcquiretl that, relative to an ad~nissible coordinate chart in a domain 

of s1)nc.t.-tiiuc, tllc quantities gab and &gab should be continuous functions across 2 

ill  sollie a(lniissi1de coordinate chart. Tlie second ju~action conclition relies on the 

mvnriant nonnal%? j ( .r)  := (V j  f)( .r)  = il, f (.r) to the hypersurfare P. Explicitly, the 

"Usudly, 1rrj is scalctl so that it has unit b'lei~gtl~" which is always possible provided Vj f is not a 
null rector. 





Chapter 2 

Spherical Symmetry in General 

Relativity 

Ck~icmlly s~wal<i~ig, tlic Einstein field equations (1.33) are an under-determined sys- 

t ~ 1 1  s i im  the nunr1)er of intlepe~ident equations exceeds the number of unknow~l func- 

ticns. The process of finding C W W ~  solutio~is is simplified by niaking atltlitional as- 

s~~rnpt ic~us  about thc form of the metric tensor and symmetries of the underlying 

hpaw-time. A cornmon assilniptiori is that of spftt't'icat synmet~y .  ' ~ ' a c ~ ~ i m  solutions, 

in atft l i t  ion to tlic convcnieim of having a vanishing stress-energy-nlo~~lentum tensor, 

arcb 11st3ful for astroriornical calculations. This cllapter cliscusses spherical svmmetry 

in  gtwral  t e m s  and provides a complete description of the ~naxirnal spherically sym- 

rwtric vac t11ul1 space-time in general relativity. 

2.1 Spherical Symmetry 

:\. t l ~ t  tzilctl tiiscussion of Lie groups, Lie algebras, infinitesimal translations anti groups 

of motions is necessary tr! fnrmulate i; precise clcfinitim of a spherically symmetric 

pst2rltlo-Ric~iianiiialr ~ilanifoltil [l 1 , 151. For the present purposes, it is sufficient to 

~ o w i d t > r  t l ~  following clefinitlion: 



The Axiom of Lorent ziun sigriaturc ($1 has 1)twi  ~tsctP to r t c l t r n ~ i t v . *  t hc s i g ~ ~ s  of 

the metric tensor components in (2.1). I111 general, the v o o r t h t t t l s  .I,' i t t l< l  .r" ;w 

restricted to lie in the ranges 2 k r  < .r2 < j2k + 1 ) ~  ;uid ( r r  - 1 )T < .I.'' < ( r r  -t- 1)n 

for some k ,  H f Z. From the countably infinittt possible tlomt\iias of c.ltarts inrl~dcvl ilk 

the atlas for M, clmose k = rt = 0. so 0 < .I." T i ~ t l  -T < t." < zr. I-lcuw, ill t h r *  

chart (k, U )  that has the line clement (2.1), .rl is a spaw-like ratlid twortli~iattl, ,rL 

and .r3 are space-like a~igular coortlinates on a sphest-b ant1 .t." is a tiwe-lilic c.oonliiii~,t 0.  

The metric tensor conlponents y 12, p .3 ,  913, pk,t and g ~ , ,  i ~ w  itlc11t~ic-ally zero i ~ ~ ( l i r t l t i ~ ~ g  

there is no preferred spatial direction nor anv angular motion. (In gcrr<ll*;il, ! I , , ,  is not, 

identically zero, but a transforn~aticrn of coonlinatt~s can lw tbouincl to p i ~ t  thc. ~rwtric' 

in diagonal form.) 



'I'l~csc are tlscftll for formulating tlie Einstein field ecluations in specific instances. 

Xotiw that tile aiixctl Eiiisteiu telisor coinpo~ients depend only on .r' am1 s". Then 

t hc ficltl ccpations imply tliat the mixcd cornpvnexlts of tlie st,ress-energy rnonlentuln 

t twc  ~r tltq)end only on ,rl ant1 .r" . Ftirt hermore, t lie equivalence of the Einstein tensor 

so~nlront~tlts 622 = C?3:3 implies TilY = TS3 ,  The equivalence 1'" = T33 iinplies two of 

t h v  priwipal stresses of t lie s tress-energy inoiiientuln tensor are ecjual, so the stresses 

witlliii tlic matter do not single out any angular direction 

Any hyperslwfaw tlescribc.d by D2 := {.r E [U] : .rl = cl = constant, .rn = c.i = 

rozlstaut) inrltlces a tw~-clin~e1:siona1 sub-mdfokl  ,Mz ~uetricaily ant1 topologically 

tlq~tiwlcnt to S2 ,  tile ~urface of a splitre in Euclictean space. Tlie induced inetric 

t c w w  011 M2 is 



For a T-dornain. n sirnilits t ransfcmnatiort ran t 16. fo~ultl to T-cclorvli~cctkf ,s t h i t  t g i w h  

the line element2 



w h t w  r x r  is a. coustnut . Tliis is ot->vionsiy the salrle form as (2.1) with the ickntificatioia 
1 

1 ,  z . I * ! ,  d x2,  61) E .r" a ~ d  t E x in (2.1 ), and d~fiiling e ( r ,  t )  :== - ln(I - 2 t u / r ) ,  

:I(/*, t )  := 2 111 r nut1 ~ ( r ,  t )  := In( k - 2rr t / t*) .  The coiistant t r ,  is the Schwcar~~sc~~i l l  nmss 

c d' t hc gn'ari trtting hotly Iwnust~, in t l ~ t  Newtoninri limit, this cons tnnt is 1)rc)yortional 

to tlw wi~ss  t r f  t l t ~  gravitttting 1,otI;v (see 1231). 

This is a vacuunt solution cicrivetl fro-orn the assumption of sphericd symmetry 

:ii~! thtb firltl cqu:ttaions CTcrb = 0. The solution is also static in that titic inetrie tensor 

tnompcwcrkts ~ i t l  ;t tiy t*cttlrivctl quilnt it ies HI.C all intlepentlcnt of t llc t ime-likc coorit imk 

t .  A rcstdt  know^ as i3irl;lmff ' s  tlleoreru fsec the appemlis of [13]) guarantees that 

i.tIly C%ac.tiurll split-sically syninwtric snlution of the Einsttiu fieltl equations is part 

o f  t l r r )  ~naximdly  tstcrrtletl Schtvl~rzschiltl s o h  tion. In st utlics of st ntic solutions of 

t lit1 Ei~lstei~l fieltl the rlonmins of mat t w  are rtss~mwtl to have n k)ot~nclary 

t* = r b  > 2w > 0 in orclcr to he joined suecessfullv with the Schwarzschild nletric 

rirttsiclc? mnttcr.. The irtctric is also tesyvz~1tntictt1I~j %;it w'tiitli (it1 t l k  cctntext) means, 

ill tlic litnit as r t  -, DO, the metric tensor compotlc.nts go over that of R hliiikiw~ki 

& ~ t ,  11i1111ely )/,&h = diag( 1, 1, I ,  - 1). 



CH--IP?'ER 2. SPHERIC4 I,  SE-J;\I,\IE'TRl- 1-i" GEXER,.i l.. NEE, \TI\ "I?'\' 

Extending the SchwarzschiId Solution 



s y s t t w  with w:)rrtirtatcs ( r ,  f), rb). In suc.21 a case, the line elernelit takes the form 

wtiew 0 < I .  < SIX, 0 < f l  < .ir and -ir < d < T .  The tleterriziximt of the metric tensor 

is <b*t(g) = r." sill" wl1it.h tcrirls to zcro as I *  j. O or 4 j, 0, There is, lmwever, not,hing 

irr-tgtdar a h t i t  tl~osv siiI)st>ts of the nla~rifold. The :ipgarent singular behaviour is an 

;trtificv of the &oice of coorctinati. charts; simply converting to  Cartesian coordinates 

t low away wwi t 1 4  t hc proli,lc~ri. Tllc components of t be metric tensor, wheti consitlered 

;is f ~ i ~ t i o r ~ s  of the  twortlinatcs, arc not scalar fields (so they do not transform as 

twsor  fivltls of rank (0+0)). As such, no real geometrical meaning is prescribed to 

singulitrit iw  in t hc ix~dividual comyormlts of tile metric (or anv other) tensor. 

0 1 1 ~ '  i d i m t i o u  that thc singular b~~hmriour 011 the hype, surface r = 2171 of the 

Sc11~;~rmcl~ild sollttion is I I O ~  indicative of a si~igulnrity is given by the scalar invariants 

uf t l w  nit4ric. For instance, the I<retcllniann scalar is completely regular except as 

This scalar- has tilt* same vairle in any cooriliilaie system, unlike the component g11 of 

t f l t t  11tt.t ric. t~xlsor. It sctwls, tllen, that so~net l~ ing  is lacking in the choice of Schwarz- 

sr-hihl ( r ,  0-c.oortlirintes to describe this space-time. 

( ) th3r  ( ' O O S ( ~ ~ L ~ C  charts are used to circuirivent this difficulty. For simplicity, the 

t rmsfonrint ious tliwussccl here will be on thc two-climensional sub-manifold M2 where 

0 =cStrlist imt , Ci) =C'OIIS~ u t  . It is t l~ t ransf~nnations of the coorilinates I. and t for the 

slbt ~ - t t l i \  tiifoh1 f hitt arc of iiitcrcst and the angdar  coorc~inates play passive roles in the 

t riutsfuriuat ions. ~ r m n i t r c  hunt1 a way to rliniinate the tliscoxitinuity in the metric 



tensor components. This transformation is as follows: 

Tlir resulting metric from this cliange of rliart is tlie ~ r i n a l t r r  mctric [23, 331 t r l l i t t  is 

described by tlie line element 

The function R in tlie line element (2.6) is tlefinctl in tdic invc\rsc transforination Fro~u 

~ e l n a i t r e  (F, F)-coonlinates to Scl~warzschihl ( r ,  t)-roorrlillat,ss: 

This choice of cliarts is physically interpreted as the coortlinatcs co-nioviug wikh 2111 

ol~server falling radially from infinity. 

Looking at the line element (2.6), tlic components of tllc rnc~tric t c~nsor arc$ clcnrly 

regular as r j, 2n1. Tlie hypersurface I .  = 2rr1 at tlitl l)ou~ltlary of tilts Srliw:irzsrld(l 

~lomnin corresponds to t lie liypersurface 7 - i' = ( 3 )  I in tlw ~ c w a ~ t  r~ (lw  ah. 

Defining 



i t  1)ocomt~s r-lcar that tllc Sr.li~varzscllilt1 tlornairi DR is holneomorpllic to the donlain 
A 

covered t~ t h ~  ~ r n i a i t r e  chart, so the tlomain DR is an R-domain. However, 
A 

t h t .  L(blllaitrt. coordi11atw arc also valid ill the T-domain DT that extends heyond the 

ctolrlai l l  wliere Scl:w;rrzscl~ild ( r ,  t)-coordinates are valid. The metric (2.6) is defined - h 

itnd i.y,~ildr in  DH U UT and 011 the imundary Izypersnrface where F - i' = 4m/3 
A - 

( a l  though tlirre is a singularity along tlie I~ypersurface r-t = 0 along whicll R(7, i) = 0 ,. 
a t  thc~ I)ountlaq- of the domain DT;  see figure 2.1). 

It is possi1)le t o  cover the T-domain hcyond r = 2n1 with Scllwarzschiltl-like 

coorctinatr-s. The tlolnain in tlle new coordinate system is thus called tlie vncz~um 
A - 

Srlru~n.~.zschiltl 7'-domain, tleimtetl DT. The transform: tlon from tlie ~ e i n a i t r e  ( r , t ) -  
h 

c.oortliriates in DT to  the Scl~~varzsclriltl ( R ,  Tj-coordinates in tlie tlolliain DT is defined 

as follows: 

Using t lie t ransforination (2.9), tlie new line element is 

wliere ( R, T) E Dr. This ~netric olxiously reseriibles the Sch~varzsclzild metric (2.4) 



singularity 
A A A 

(r-l=O\ 
event horizon 
/- (T=Zin) 

A 

Figpre 2.1: Depiction of the trai~sformation M w r w  h ~ ~ a ~ t r o  (7, ! ~-~+o~mIi rmt  PS ~ I H I  
Sch-arzschikl (7.. f ) and (R .  T)-coordinates in the rcqwc.tivcl R i t ~ l  ? ' - ~ ~ ( J I I ~ ; I ~ J I S ,  



whwr the radial ~ar iab le  r is replaced by tlie time-like x-arialde T in the metric ten- 

sor componmts. The ~ e m a i t r e  (i;,F)-coonlinates can he recovered from the ( R ,  T)- 

coordinates using the same functions R, I as in (2.7a) and (2.7b): 

The line elenlent in tlle T-domain DT is exactly as in (2.6). 

For further anal-sis of the vacuum T-domain DTl it is convenient to use an al- 

tcrnatc chart using null or light-cone coordinates. The term "light-cone coorclinates" 

rcfcrs to the fact that the coordinate curx7es are null curves and hence represent the 

worldliues of particles of light. -4 doubly null coorclinate system describes the tlie 

lilnxinlal extension of tlie Schwarzscllild solution. Tlie angular coordinates 0 and 4 
play passive roles once again and so this discussion focuses on a two-climensional sub- 

~nanifold. Consider the two-dimensional domain D in tlie (U, V)-plane where UTr < 1. 

This domain D can 1)e divided up into open sub-domai~ls in the separate yuaclrants: 

D, := {(I/',T'):C<O,T'>O}, 

D,, := {(C,.,:, T ') : L: > 0, T ' > 0, U1' < I}, 

Dl], := { ( C ~ , \ - ) : C ~ > o l T - < o } l  

D := { ( L ,  1') : C' < 0 , l ~ -  < 0, UV < I}, 

D,, := {(L7,T-) :LT=O} 

Defiue tlie Iiruskal-Szelieres metric [16] in B by the following line element: 

- y ( u ,  V) 
d.2 = - dUdT' + [y(U, v)]'~R" where (2.13a) 

y(L-, 1.') := 2m( l  + ̂ N(-Ul;/e)) and 

~ ( e  . for 2 E (-l /e,  +m). 

This is the ~llasimal extension of the spherically symmetric vacuum Scl~warzschild 

solution. 



The f ~ ~ n c t i o n  y : D -+ (-1, +m) in the line elerncilt (2.13a) inclutli>s t hc Lanltwrt- 

W ful:lction"[/] defined implicitly by tlle cquation ( 2 . 1 3 ~ )  so that it satisties the 

t ransceiident a1 identity 

The Lambert-W function is the inverse of the function f tlcfi~~ctl by f( .r)  :== . roi  . 

On the semi-infinite interval ( - 1, +m), tlie fi1nctio11 f is ~ H O ~ I C )  to11~' i~l(w;isiug i i 1 ~ 1  

infinitely differentiable, so the inverse W is well-tlefincd and irlfinitcly c1ifl'vrcuti;ll)lc 

on the semi-infinite interval ( - l /e ,  +m). Tlle ftuiction W as i t  oec~trs ill y Ilas as 

its arguinent -e-' U'I'. By the definition of tlle domai~i D undchr c011si(lcri~ti01l ill t 1 1 t h  

(U ,  IT)-plane, -XI < UT7 < 1, so - l / e  < -Ulr/e < +m. As st lr l~,  thc. fuucbtio~l Y is 

smooth over the donlain D considered. (Notice that thcl-ci arc ot1lt.r 1~:anrl~c~s of the* 

function W ;  the point - 1 / e  is a 1)ranch point and, in tllc fuiictio~l Y rlcfincvl ilk (2.131)), 

corresponds to the liyperbolae Ul = 1 in D which arc thcb gclliiinc siilgi~lnritic~s of 

this space-t iine. ) 

Let tlle functions Y,, y,,, yIII ant1 yIv denote tlie restrictions of y to tllr' ( l o~~ l i~ i l~s  

D:, Dl,, Dl,, and D,, respectively. These partictrlar functions ocwr  in the> trnlrsfor- 

mations from I<ruslcal-Szelceres coordinates to Sc1lw;~rzscllild-1il;c coortlinntcvi. Orl tlw 

llypersurface D,,, U I r  = 0; as such, for ( I / ,  V)  E D,, , IF(li', V) = 211r ( I + W(0)) = ' 2 ~ 1 .  

Tllus, even though parts of the llull hqersurfacc corrcspontling to D,, rat mot I ) ( &  

described by Scllwarzscldcl-like coordiaat~s in Dn or DT, t l ~  ~ n c  tric is snmot h a ~ l  

regular there. 

The curves U = collstant and 17 = constant have tangt~rit v t ~ ~ t o r s  tha 1, arc* (wry -  

where null. The coordinate lines, tllen. are the tlic worltllincs o f  pllotor~s. Matcrirtl 

observers must have worltlli~les lying strictly withi11 tlle c.oortlinntc litlcbs. C h ~ w t r i -  

cally, in the donlain D,, tlle tangents drawn to tllc worltl-liue of' m y  ti iatc~ii~l  olwrvclr' 

have to lm-e strictly positive ant1 finite slopes. Tlmt is, at  all FVV(TI~ with I i ~ t ~ ~ k i t l -  

Szelceres coordinates (Uo, 16) E D, ally the-l ike curve passing throllgll ( t io, K1) Iivs 

3Tl~ i s  transformation is always defined implicitly in the litoratur(3. I il~tsod~i(*(l t . h  L ; l : ~ l l ~ + t - W  
function in recognition of the fact that an implicitly clrfinetl f i i~~ction is still a func*tion ~ I I  i t h  ow11 

right. 
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strictly in the set If U I - ,  where 

It := ( ( U , V )  E D :  Li; < U,Vo < V )  and I -  := {( l i ;V)  E D : liTo > U,l/b > V } .  

Tliese sets are, respectively, tlie chronological future and the chronological past of 

(Uo, Q,) [13]. They include all possible events in tlie past that could affect (Uo, T / i )  

tlmmgh a time-like curve terminating at  (U', h) antl all the possible events in the 

future that can be affected by a time-lilie curve originating from (&, Vo) (tlie causal 

firturc and past include null trajectories also), For events in D,, tlie causal and 

chronological pasts Iie strictly in DIV antl DI while the cllronological and causal futures 

lie strictly within DI and DII.  Tlius, events in D,, can be affected by events in D1 

lmt the converse is not true. Tlie null hypersurface liV = 0 is often referred to as an 

event horizon due to this asymmetry; observers witliin D, can never receive signals 

fro111 observers in D,, antl thus have no kno~vleclge of what exists beyond (see figure 

2.2). 

The relevance of this particular space-time is that its various quadrants can be 

covered with Scl~rvarzschild-type coordinates; thus, it satisfies the vacuum field equa- 

tions and hence is an extension of the spllerically symmetric vacuum solution of the 

Einstcin field equations (1.35). Tlie Iiruskal-Szekeres (U ,  V)-coordinates in D, are 

ol)tained frorn tlie Scllwarzscl~iltl ( I . ,  t)-coordinates in the domain DR by the following 

relations: 

DR := ((r ,  f )  : 2 m  < r < +m, t E R). (2.154 

The inverse transformatioll from Dl to DR is as follows: 



The horizo~ltal lines t = t ,  = constant E R in tlw Sc.liwarzsc.fdd tlulunin art1 

mapped into half-lines 1; = - (etl i""' )IT incident oil tht. origiai iu the Kr~~slinl-Sackc.rcs 

tlo~nain D,. As t -, -a, the half-lines are nearly tlorixoutal ant1 htww art. t t t w t 3 r  

to the U-axis. The line t = 0 maps to the half-line of slope -1 tliat ccuts D, ill lialf. 

Finally, as t -+ oo, tlie slopes of the half-liim lwcosnc almost vertical autl w n r  t l ~ c l  

IT-axis. 

A si~nilar transfornmtion esists from Dl, to t lle T-tlomaiii tltscrihd I d w o  i n  ('2.9). 

The 1ml1 surface UTr = 0 which bounds Dr is tlic image of tho event lmizuu I .  - 2rr1 

in the transformation (2.15) and it divides the clomains D,, i1~1t1  D, in tlit I\;ntslinl- 

Szelieres domain. The traasfor~llation 1)etwcen DT ant1 DII is as follows: 

(2,11itl) 

(2. I&!) 

(2.1 Gf )  

The radial half-lines and llyperholae in D,, are similar to thim iri 3,. Fzvr ixlstmci~, 

tlle images of the lines R = constant in Dl, are radial half-lines from the origin 

while the images of the lines T = constant are I>ranches of hyperlmlw UV = c with 

0 < c < 1. However, in D,,, there is a genuine singularity, tllc hyptrt)nln UV = 1. 

In this domain, any future-directed curve, null or time-like, starting from an wt:n t 
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Figure 2.2: Depiction of the traiisforrnation h t t ~ c c i l  Iirrislcal-Szc.lic:rr,s ( U ,  V)- 
coordinates and Sclirvarzscliiltl-ty~)e coortliiiates i11 each of t h c b  s~~l~-t loxr~i~ins ,  



s i n ~ j u l w r t y  o r  il urhitc Irdc urililie that in1 D,,. Future-directed time-like or null curves 

5t;trting irk D,, rail travel iuto D, or D,,, but no ohserver or photon stsrting in any 

of thrl o t l t c ~  t11r.w ( k ~ 1 1 l a h ~  can trawl hack there. Filrtller, the tlomains D, and D,,, 

earl 1 ) ~  vicwtd its distinct urlivcwPs scparatecl by the Mack llole: Ilotvever, no material 

partirle or l i g h t - r ; ~  can ever traverse fi-om one to the other clue to tlle singularitv 

st*l)itrittir~g tlwm. (The situntiorl Is clearly illustrated in figure 2.2). 



Chapter 3 

T-domains and exotic black holes 



3.1 Analysis of a General T-domain 

DT := { ( R ,  T )  : R E R O  < T < 2 m )  



The line clernrnt (3.2) is valitl ill tllv clo~mili Dl wltilv thv liw t ~ l t ~ ~ t l t ~ ~ l t  i n  t l l t ~  ~; i1 '11111t1  

tlomairl DF is 

1x1 the definition of D,; 311(l in  this liiicl r.lt~imvnt, t11v l )ar i t~rtc~tc~t .  t t r  is t h  il~vi~riiit~t 

S ~ l ~ w a ~ z s ~ i ~ i l t i  rims r i l  of tlw spact>-ti~iiv. (This will 1w rc+ltotL to f lw  r~orr-vit~lisliir~g 



fur wmit. orlritrary diRersntin1,le function f E e:(DI: R). The function T 1  1 must 

lw ncgn t i w  i l l  onltbr to lnalie a positive contribution to the effective inass function 

:I I ( h', 7') > 0. Integrating tlic equation (3.5~1) gives the ftmction a needed for gl, : 

Tlw iuilix~owi f~mction TII is obtained by differentiating e-r(R$T) with respect to R 

(givru in the equation (3.7a)) to find &3 and substituting the result into tlie field 

t ~ ; \ ~ i \ t i o ~ ~  E ' 1 = 0 ( 3 . 5 ~ ) .  Thus, 
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CIJA PTER 3. T-DOA fAIXS AXD EXOTIC BLACK HOLES 

Tlms, f ~ r  T > Bf R) ,  ,II(R, T) = rn where 711 is a constant and gt ,~ depends only on 

the rc)ortlinate T. IVhen nlatchetl with the vacuum Schwarzscl~ild T-tlonzain metric, 

it. is clear tliat this paranleter rn is identical to tlle Scllwarzsclliltl mass as observed 

I?y an external ol~server. In this instance, the Scllwarzscldd mass is different from 

that in the static spllc*rically symmetric case in an R-domain because the mass in the 

T-tlomaiii is tension genemted mass. That is, the effects of gravity observed from 

tlio vacrlwn domain coi~icitle with the usual Schwarzschild picture for a Sc1~~~:arzscldtl 

1,lack liolt or a star of mass rt t .  Inside, liowewr, the effective mass is determined by 

the radial tension T i  , < 0 rather than the energy density T " 4 .  

3.2 Particular Sdutions 

111 prnct ice, tlie preceding analysis is extremely difficult to apply to\vards obtaining ex- 

act s o h  t ions. Rat her tlian assuiiling the stress-energy-llloinelltulll tensor components 

T '  I ant1 T",l are prescril~etl, it is usually more practical to use a mixed method (see 

[24]) that prescribes soine constsaints on the functions gab and Tab to determine the 

rmt. To derive some solutions to the Einstein field equations in the T-domain, restrict 

t lie analysis to tlie casc wliere the metric functions are fuilnctioas of the time-like coor- 

dinate T olily. This resembles assuming the static case for an R-domain in which the 

il~etric fi~nr.tio~ls are independent of 1. (special cases of this include tlie Scllwarzscldd 

vacuum s~lu t ion  aiitl 11iany other static solutio~is sucll as in [15, 17, 18, 32, 4, 311). 

Tllc line eleiilellt (3.2) goes over into 



and t lie field equations ( 3 . 5 )  1)econle 

~ ~ - 1 l e ~ e  the prime cle~lotes the total derivative n.it 11 respect to t lic T cwortlimt tt. 111 

addition, the couserx-atiol~ equations v,T"" 0 rrttlucc to a singlcl i~ontrivial ~ Y ~ I I ; I ~  i o ~ i :  

The system at this point is wider-determined. It colisists of  3 ilol~ t ritria1 f i c ~ i t l  

equations and 1 conservation equation; liowever, tliere are 5 ~t~rknowll flil~i't ioll~: ( I ,  

7 , T' 1 ,  T'2 and T i  1. For t l ~ e  static spllerically syntnlctric cast in R-<loli~itill, t l l t '  

requirement T ' ,  = TZ2(= TB3)  is often used: this amoimts t o  rrq~~il-ilig isotrol~y of' 

pressure within a perfect fluid. By analogv, to malie tllc system of ty~~at iol is  i~l)ovcb 

more determinate, introduce tlie requiremelit 

T l i e ~ ~ ,  the above system can he writ ten as follows (see [29] j: 



T l l ~  clcpatio~~ (3.17~1) is identically satisfied as a consequence of (3. l7a),  (3.17b), 

(3 .17~) .  In that case, the system to he solved is (3.17a), (3.17b) antl (3 .17~)  for the 

ii~llc~lowils cr , -, , 7'' I ant1 Td4. 

The strategy atloptetl is as follows. 

1. Prpscrilx some coilstraint on a,  y or 1)otll to inalie the equation (3.17a) inte- 

grable. 

2. Integrate the equation (3.17a) and use with the additional constraint to find the 

solutions for u antl 2 .  

3. Su1)stitutr the expressions for a and 7 into (3.1711) and (3 .17~)  to give T1 and 

At this point tlle system is solved. 

SOIIIC solutions obt aketl  in this manner are tabulated in Table 3.1. (Admittedly, 

tlir so l~~ t ion  1'11 is clerivecl using a different procedure closer to that in [31] wliicll uses 

;ui equation of state as an aclclitional assumption.) These solutions are mostly local 

soiutions !hat satisfy the field equations involving a number of arbitrary const ants 

t hilt arise out of the integration and tlie initial assuinpt ions about the functions. 

Some of the solutions cannot satisfy the necessary junctions conclitions for any values 

of these constants. I11 such a case, tlie matter described by the solution can be joined 

to some other solution with matter of a different lii~lcl that can meet the junction 

r-olditions (see [I 71). Such an analysis is done for the solution I in tlie next section. 

3.3 Analysis of Solution I 

The solution I closely resenibles the interior Schwarzschild inodel of a st at  ic star 

jstv [IS]) with constant energy density. It can be derived by assuming that 944 .= 

- (QT2 - I)-' for some constaut Q > 0 and following the approach outlined previously. 

-4lt cmately, assunie that T' 1 = -3Q/ti = constant and integrate (3.7a) to obtain 944. 



Table 3.1: Particular solutions for gctb in the T-(loin:tin 

In either case, for the solution I in Table 3.1, the line elclriclit ill tllv (10111iliu l3, is 

for some suitable constant 3 To > 0 and Tb that dctcrrniiic t l ~ c  bou 

lmuntlary of the niatter DaI is given by tlie curve T = B( R )  := 7;, = c-oustnilt,, so 

aD,  := { ( R .  T )  E R' : R E R ,  T = T*). (3.1 9)  

Using (3.171,) and (3.17c), the lionzero components of tllc tcrtsor T"r, a r ~  

IVliile it is imnlediately o1)vious that T i  I < 0, marc. irifonnation atmu t t lw 1);1rtmc~tf~1' 

C is needed to determine whether T4.i is positiw or ~wgativc 

The arbitrary constants C, k in the metric tensor compc)ncnts i~risrl o u t  of t h c l  

integration of the system (3.17). Tllese call l x  relatctl to the tmllntlary p;tralrictt PIX 

To,Tb by coilsidering the boundary of Dl. Clearly, tlie metric' tensor wr~~por~c:rtt 



= T - 1 )  iwrolnes illfinite as T 1 Q - 4 .  Thus, it is reasonal~le to assume 

7;, > Q-; > 0, so Q-: is a lower l,onll(l on tlle parameter To. The other constants 

(-a11 iw rc~lntccl to thc Imuitlary parameter Tb througl~ use of the junction conditions. 

7 ' 1 1 ~  jittiction cmltlitions (3.1 1 )  take a simple form due to the form of the 1)ountlary 

(-111.w T = B ( R )  = Tb ant1 tllc fact that T' I = TI1 = 0. As sucll, the equation (3.1 l a )  

[ ( T i t )  . (B'(R))T' III,=,~ = [ ( T I , )  (0 )  - T ' ~ ] I , = , ~  = -T",(T~) = O. 

Lookilig at the earlier equation (3.20) for Ti.[, this colditioll simplifies to C" =Ti2- 1 

or Cf = (QGL - I )$ .  

To firid the parameter A. that occurs in g1 1 = e", use the fact that the metric must 

n~atcll  ? ! : t b  vacuum Scllmrarzsclliltl T-(lomain metric at the hou~ldary. This means 

111 tvniis of tile h i e  element (3.1Sa) wit11 the parameter C as determined previously, 

this nduces to 

Tlli~s, with tllc ronstants C and k tletenninetl, the line element (3.lSa) is 

Ha\-ing tlctermined the constants C and X., the question of the sign of the compo- 

ncnt T1 I of the stress-e~le~-gy-nlorllelltrllll tensor is resolved: 
1 

( Q T ; - ~ ) ~ - ( Q T ~ - ~ ) T  
T I . [  = -- I , )  < 0. 

3 ( ~ ~ ; 2 - 1 ) ; - ( Q T 2 - 1 ) ! ?  



For 0 < To < T < T,, the tonlponent T i  is oln-io~lsly neg. it t '  l v ~ .  

Consider tlie energy conditions. Sol\-ing t llc cigcnvnluc prol)lmi 7 '"(, rb  = ,\ c ~ ' ~  = 0 

turns out to be trivial 1)ecause tllc tensor Tab is rlingoild. Tl~tls, the\ so lu t io~~  to t liis 

eigenvalue problem defines an ortllononilnl tetrad: 

Recall that the metric tensor can be tlecomposctl t-q)rcsst~l ill t c 1 . 1 ~  of a11 or- 

tiionornlal tetrad as in (1.28): writing this in misect foriri giws 

Thus, the mixed stress-energ--mo~li~~~t i i ~ i l  tensor adr~li ts n si~~liliir c l ( w ) l ~ i l ) o s i (  i 0 1 1  i  11 

terms of its eigenvalues alid eigenvector-;. Applying t l i ~  f'ilct that = A(:{, autl i~sing 

t lie eci~iat ion (3.32), this clecomposi tion is 



md thr radial tension (lwcause r < 0) as 

t l ~ e  st ress-eilergy moment urn tensor takes tlie form 

This is similar to tlie case for a perfect fluid (see (1.33)) except the isotropic pressure is 

rtylac.etl hy a radial tension and the velocity of the fluid is space-like. This makes the 

flnitl tachyorric in nature rather t lml  a perfect fluid. The fluid is anisotropic because 

t llc angular stresses are tensiolis equal in magnitude to /L which is different from the 

radial tel~sion r. -Although the energy density ,u = -A(.,) is positive, the weak, strong 

a 1 ~ 1  tlorninant energy conditions are not satisfied since 

Thus, tlle fluid niatter is exotic matter'. This solution constitutes an exotic black 

liolc 1)ccause the exotic matter lies entirely within the T-domain: as such, observers 

in tlornaiiis D, (see (2.13)) of the 1l;rusl;al-Szekeres space-time see a black hole of 

Scli~varzscliiltl mass nz = QTf/2 even though the T-domain is substantially different. 

'111 the literatnre. esotic matter usually violates energy conditions because the energy density 
11 < 0 which is ro t  the case here. However. another common feature in studies of exotic matter 
is that the principal stresses are tensions rather than pressnres. For this reason, the matter is still 
c-allcd csotic. 



To := Q-1 and rib := (3 
Hence, Dl is as wide as it possibly can be siilce is as  small as it rail 1 ~ 1  for a 

prescribed value of Q. Holding m constant cz~itl lcttiilg Q iilc.reiw tvitlto~lt I~)utlcl, 

both boundary parameters To ant1 Tb decrease towanls zcro. Thus, iw C) i~~t.roiwcs, 

the tacllyoiiic fluid tlomain sllrinks down to a singularity aiitl tlie eilt irt. Scl~warzsc*ltiltl 

T-domain is recovered. Tlie situation is illustrated in figurc 3.1. 



vacuum 

tachyonic -/ 
fluid flow 

I D vacuum I 

Figure 3.1 : Qualitative representation of the tacliyonic fluid within the T-domain and 
t lit image in the Kruslial space-time. 



Chapter 4 

The Tolman-Bondi solutions 

Tlie Tolnian-Bondi solutions consist of spherically symnict ric. spnc.c,- t il1lc.s c~mt  i l ini~g 

the simplest lii~itl of perfect fluid. It is assumed that tllc fluid xnattc~ coilsists of it 

fine dust; as a result, there is no pressure. Tlie stress-ciicrgy tcxusor is grcwtly siiii- 

plifietl by virtue of this assumption ant1 it is tlie resulting mass tlcnsi ty w l w c l  t l ~ ; \  t is 

responsible for gravity. Tliis nlodel was first applied l)y Tollnail [28] t o  niotlel a st nr  

115- a splierically symmetric, inliomogeneous, pressure-free fluitl Imdy. It was h~rtlwr 

analr\-set1 nu~nerically by Oppenlieimer and Snyder [20] to study griwit i~tic)llit,l ( W I I -  

traction. This class of space-times bears Boiitli's nmne also tluc. ti) his I i - ~ t t ~  rc~iirr.11 

(see [3]). Tlie 'Iblman-Bondi solutions Iiave lwen applied ~)rimarily to cosliiologic+ill 

models. 'Tolman-Bondi space-times have also lwei1 usecl rcccntly trt c-onstr~tc.t, c.oiln- 

teresaniples to the Cosmic Censorship Hypotliesis'. However, more tli;~n fifty ywrs 

after their initial cliscovery, it is difficult to find a nlatl~ei~iaticully tlwrough tlcsc~iptio~~. 

of gravita.tiona,l collapse in a Tolman-Bontli space-time. 

This chapter provides a complete glolml analysis clescri1)ing tilt. gr;~vit,ittio~lil,l (-01- 

lapse of an inliomogeneous, pressure-free flnitl l>otlv into a \)lack 11olc. This il~cli~tlos 

three possible cases (parabolic, elliptic and 1lypert)olir) complvti! with ncccssitry j~lrlc-- 

tion conditions applied at the boundarv of tlle hotly. The ilf>tailetl ; m t l  ysis i11c.l tt(l(\:, 

the transformation of the exterior metric to the exterior Schwarzscl~ild for111 a r d  t lro 

'This conjecture is due to Penrose and roiighly states that no acccptahle s o l ~ ~ t i o t ~  of t l t c l  Eirihl (*in 
field equations will result in a singularity that does not lie Iwhirtd some kind of c.wtlt Itork~on. 



caxtr>rior fomi ill tilt T-(ior~~ain of tilt1 vacuum spherically symmetric soiution. 

4.1 Integrating the Field Equations 

f i r  n p r f d  fluid, t h e e  of t l ~ c  eigenvalucs of the tensor Tab are equivalent, so Tab 

(.a11 l)e espressd in covariant form as Tab = (p + p ) u , t ~ ~  + pga(,, wllere 11 is the energy 

clcwity, 21" is tllc 4-vclocitv field of the fluid matter arid p is the isotropic pressure 

witllin tlw fluid. In the casc of an incol~t.reiit fluid or dust, the pressure is ass~uned to 

I)?  zero. Thus, Einstcin's field equations are given 1)y the system 

The mixetl tensor Tab has some interesting algebraic properties. Multiplying T " ~  

1)y !/,,k t ~ "  mtl  contracting gives 

sinre a l e k  = -1. Tllerefore, -11 is an rigenvalue of the 4 x 4 matrix [Tab]; the 

corrt~spontling eigenvector coniponents are given by the time-like vector 11". The other 

time pigenvalues are esactly zero (whicll is the pressure in the perfect fluid). 

Cfsing the equation (4.11)) for t l ~ e  stress-energy-momellturn tensor, the conservation 

equations (4. l c )  imply that 

\lultiylying tlirouglr by ( -  1 1 , )  ant1 substituting (4.ld) again, the above equation yields 



A special class of exact solutions of tlie gcotlcsic rquations is givrw 1)y 

b=O, O = O .  d E 0 .  r = 1 .  

p(s )  = constant, B ( s )  = constant, (a(.?) = coristant , T ( S )  = S, 

rx where dots refer to differentiation with respect to the par;tlnt:tclr s. 1 his ~ ~ : t r ; t i ~ ~ c ~ t . c * r ~ i ~ ~ ~ ( l  

curve is a time-like radial geodesic curve. For a rollapsing dust c.loild, c.lloosc* t,l~ct f l ~ l i ( l  



t.t~luc.iiics alor~g srrrh gf-udesics. Therefore. the components ti" are expressed in the 

c-otrloving ~oor t l i r la t~  system as 

HCIIC'~, e a~ l i  SUI&CC p = = ~011stallt is associated with a collapsing spherical shell 

c d  tilist j)asticlw at rest in tllis frame. 

Tllc cl~oice of the 4velocity u" in (4.6) simplifies the stress-energy-mo1ne11t11111 

t ~ u s o r ;  rising (4.3a) and (4.5tl), all the components of Tab vanisli except T"4 = - p .  

The Einstein field equations (1.35) reduce to the following four non-trivial equations: 

The conservation equations ( 4 . 1 ~ )  go over into one nor,-trivial equation: 
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The differential identities V,Eab + t i 3  9 sertrrcc to fn-c? nun-trk-ial icicniiiirw: 

Tllere are three unlaown fxmctions ,\, 1R. and ~r ant1 five 1)artial tliffkrcntial cqua t ioux 

(4.7) and (4.8). Moreover, there are two clifferential itlcntitics (4.9). Tlllis, this is n 

determinate system of partial differential equations in a t~~~o- ( l i n~ t~ns io l~ :~ l  t l ~ l ~ l i \ i ~ l .  

The strategy for solving this system is given in tllc following sstps. 

1. Solve the two equations EI.1 = 0 and E' 1 = 0. 

2. At this stage, by tlle tliffereruhl itlentitmy (4.9a) mt l  an atltlit ionul assiunpt ion 

aPr # 0, the ecpation Ea2 = 0 must lloltl. (For the i-itst. a,/. = 0, src [L5] .) 

3. Solve the equation E ',, = 0 by defiriiiig ,/r(p, 7).  

4. It follows from tllc identity (4.91)) that tlle equation ?;I = 0 ~u~ t s t ,  1w sr\l,istiotl. 

Thus, the whole system of equations is solved. Notiw that 1)y solving tllv lisst- ortlor 

l~ar t ia l  differential equation I '  = 0 for A i l ~ l  tlw second o r t l ~ r  l~ilrt ial (lifF(w~ltiill 

equation 1' = 0 for 2, three arbitrary functions of a singlcb vxri;tl)ltl iLl>])('ilI. ill 1 l i c k  

general solution. (These arbitrary furic tions arcb t l c~ io t t~ l  1, E' ant1 To. ) 

Following this strategy for finding tlie solution, tllc cquat ion (4.7~1) yields 

Integrating the above ecjuatio~l with rcspect to r in a corlvex cl011li~i11 of t l r ~  ( p ,  T j-plil~v 

gives 



H c w .  h is an arbitrary function of integation and it 1,elongs to the class e:. It turns 

oilt that the solutions call he conveniently classified into three distinct cases according 

to whetlm esp[-l t(pj]  is less than, greater than or equal to one. A convenient way 

t o  rlc~c.rii,~ tliese tl1rc.e cases is to set 

with tllr rrstric.iions ilp% # 0 ant1 t[fip)]" 1. 

Su1)stituting tlle (4.10) far gll into the field equation & ' I  = 0 ( 4 . 7 ~ ~ )  gives 
& I ,  = 1.-32i.#t.  + ( 3  T r P  I + 1 )  - ?.-2p - t[ f j p ) ] ' )  = 0. The result of canceling r-' and 

11~11 t iplying wi tll d, 1% is 

I n t ~ g r n t i ~ ~ g  with respect to T gives 

The fi~liction F is an arlitrary function of integration of class C!:, subject to the con- 

straint F ( p )  > e % ( ~ ,  ~ ) [ f  (p ) ] ' l .  The pt1.e. (4.11) ultimately determines the U ~ ~ ~ I O W E  

fi~llciion 2 in the general solution. It is studied extensively in the separate cases 

F = 0, i 1 in the following sections. 

Usi~lg the ptl .e (4.11) and the expression for $1 1 in (4.10), it follows that 

Tlicreforc, it is possihle to express F in terms of % and A and to  find the total 



Tlms, to satisfy t l ~ e  field equation E ' 1 = 0 in (4. i c ) ,  clefinc 

p(p ,  7 )  := 1 ; - ' G " ,  = F f  ( p )  

8 ~ [ % ( p .  i)]? [%(/,, T ) ]  ' 

This tlefinitio~i impl i~s  j ~ fp ,  r ) = 0 e F  ( p )  = const ant . 

The energy contfitions (4.4) require / i  2 0. From tlw clcfi~litiol~ of' 11  i l l  (-1.11') ; t l ~ l  

the restriction a,,% # O. it follows that F f ( p ) [ 8 J ? ] - '  2 0. To satisfv this r c ~ c l ~ ~ i r c ~ ~ ~ ~ o l ~ l ,  

select F f ( p )  > 0 and aP2 > 0. In the interior of the collapsing star (c.osl.t~sl)olitli~~g to 

the interval p, < p < pb ), assume that tlle proper Illass tlcllsity 11 is stricbtly 1)ositivtl. 

Thus, assume that Ft (  p )  > 0 inside the fluid botlj- illl(1 

F(p,+) = lim F ( p )  := 0. (4.13)  
P I P <  

Returniug to tlle problem of solving - - tllc ficM cqliaticms ( 4 . i ) ,  i d 1  tilt. ' ~ l ~ t i l t i ~ l ~ ~  

have heen reduced to the remaini~ig ma-linear, first ortler, swonrl tlty,rclcb (b(lltiltio~l 

(3.1 1). It implies t ~ o  distinct first ortler partial tlifh-cntial ccl~la tiom 

For the gravitational collapse of a fluit1 l)c,tly, tllc 11cyat ivc sign is ~t11ysic.ully r-tslstrl~- 

able. (For the expanding phase of the cosmologitd ~ r m l c ~ l ,  tlitl ~msiti tv siglt wotlltl 

tlie wiser choice. j The differe:ltial equation (4.14) is w ~ ~ s i t l c r t ~ ~ l  i l l  t11(1 t wo-rli~~~t*~~sio~r;i l  

clomai~ls corresponding to  the interior and cxterior of tlw sti~r. as wc*ll ;IS f lw i l~trww- 

cliate boundary: 



If B : D c IF!' + !R is a scalar-valued fmction defined 1)y B(p, T) := p - pb, then the 

tmlm(lary i7DI can also he descril>erl as a level curve of B: 

It is st ill necessary to verify tlie junction conditions. Since t lle boundary between 

matter and vacuum is given by the curye B(p, T) r 0, tlie nor~nal direction to this 

curve is given 1 9 7  V,B, the gratlie~it of B.  Thus, the junction conditions reduce to 

[Philft B]all, = 0. Tlle explicit norinal components can be used to reduce the junction 

colitlitions to tlie following two nontrivial equations: 

Using tlle clloice of st.ress-energy-niolllelltunl tensor in (4.lb) with the clloice of fluid 

velocities in (4.6), the above junction conditions are ident ically satisfied. 

Returning to tlie arbitrary function F that came out of the integration of the field 

ecluatiolls, a physical interpretation is useful. The equation (4.12) relates F' to the 

mass density 11. It is reasonalde, then , to look for a relationship between F ( p )  and 

t1.c total mass included in tlie spherical domain (p,,p]. Define the "total effective 

mass f m c  tion" :ll# 1,s 

Using t lle espression (4.12) for f i  aucl assumption (4.13), the int egral in this definition 

SO i),-\l#(p. T) 3 0. Therefore, the total effective mass of a spllerical core cor:esponding 

to the interval (p,, p) is conservecl. Since the total effective mass function does not 

t l tymd esplicitly on r ,  redefine the total effective mass fu~lction 211 by iW(p)  := 



d i # ( , o ,  T ~ ) ,  where T,. is a co~istnlit [3]. Replacing by .\I in tlic ::bo\-r t'tjtki\ t kms 

and recalling the p.cl.e. (4.11), the function F is rclatetl to tlic :<>t;:l cff ctivc ~tiriss 

function -11 1 ~ ) -  the relations 

The points corresponcling to p = p, represent the world line of tllc cc~iltrc~ of t l w  star. 

Tlie condition (4.1611) prevents a singularity from appearing at tlic c u l t  1.t. 1)t~forv t lkc. 

final collapse. Also, notice tliat the equation j -1.16~) ~weinbles the classicnl invcrsc 

square law of Newtonian gravitation, even tliougli this "ccluatioii of niotio~i" tlllic>rgcbs 

from Einstein's field equations. 

The invariant volume element of tlle spatial llypersurfacc~ i ~ i l i ~ r c ~ l t  ii t  tllc. nwtric. 

( 4 . 2 ~ )  is given by eX/%I.' sin 6' rlp (10 (16'. Define the "total proper mass" function AIL, [3] 

by 

The "gravitational liiicling energy" [30, 31 is tlie tliffcrence of t l ~ c  cfft~1,ivc and l ' rop~r  

masses : 

The physical meaning of the arbitrary firncticsrl f appearing in gll a d  tltc 11.tf.c- 

4.11 can he understood by studying a time-like radial geocltwic in tllc. Schwarzsc-llil<l 

metric. It is given by the ordinary differential equation [5] 

In the above 0.c1.e.. s is the proper time parameter, rrl is t11~ Schwarzscl~iltl rl~:tss of 

the sphericall? symmetric central body and E is the c01wrv(x1 total twrgv  (i~lcli~cling 



the rcst cir~crgy) of a tillit l~iass test particle freely falling along the geodesic. Tlle left- 

l ~ d  side of this o.(l.e. res~mkles tlle "kinetic energy" plus the "potential energy" of 

t l w  l111it mass particle according to Xewtonian physics. The p.tl.e. (4.11), expressed 

wit11 2-11 rather tllan F at a particular value p = po, becomes 

Tlw ~mcetliilg p.d .e. and o.rl.e. are rernarkaldy similar. Therefore, pl~.sically speaking, 

it is reasonahle to conclude that d1-.[fiPo)l2- represents the total energy E(po) 

( i~du t l ing  the rest energy) of a unit Inass tlwt particle follotving the radial geodesics 

rl~arectrrisc(l 1,y p = po. (The negative root - JI-f[fol '  is ignored.) In the p.cl.e. 

;tl)ove, t lle "potential energy" stems from the mass ;lJ(po) > 0 contained wit hi11 the 

sl)lierical core correspor~tli~ig to the interval ( p,, pol; as in Newtonian gravitation, the 

total mass of tlie external spherical shell (outside the interval (po, pb)) does not affect 

the motion of the particle at  p = po. 

Tllc curvature of the metric in (4.5.3) also merits investigation, particularly for the 

iclcnt ificatioli of possi1)le singularities. The corresponding ortlionorlnal tetrad can be 

tlefincd I!\- 

The non-zero Rie~liailn illvariants of the metric ( 4 . k )  relative to the tetrad in (4.18) 

are t lle following: 





t~rniinology from the theory of p.tl.e's, these separate cases are called parabolic, ellip- 

tic. m r l  Iryptrbolic. Tlle resulting metric tensor components is be analysed in detail. 

ilatcliilig contli tions are found at the bountlary aDI and the external metric is trans- 

formed into the vacuum Sclir~arzscliiltl metric (2.4) to complete the analysis in each 

case. 

4.2 The Parabolic Case: 6 = 0 

Tlle partial differential equation (4.1 1) particular to this case is 

Recalling the analogy with classical physics, this implies that the "kinetic energy" 

ant1 the "potential energv" of a dust particle are exactly balanced. I11 a sense, the 

tlilst particles are "coasting." 

Tlie collapsing dust particles obey the p.d.e. (4.14): 

The c d i e r  restriction of X as a positive real-valued function forces F to be positive 

i~lso: this ,  tlie right liantl side of (4.21) is well-defined. The solution of this p.d.e. can 

l x  found 1)y integrating with respect to r: 

wlirrc 7, is tlie arbitrary ffuiction of integration and must be of class (2:. Note that 

this solnt ion implies 

8% 
lim 3 ( p ,  T )  --, cm, and lim - (p ,  7-) = 0.  

T---w T+--rn &- 



lforeover, for this soltltion, 

Since F is nonnegative and  non not one increasing, = p .  is tllc only root of t l w  

equation F ( p )  = 0 in [p,, pb). 

The two-climensional domains correspontling to tlic intcrior, thc txtcrior niitl I ILP 

boundary of the star are 

D E  := {(p, T )  : pb < p, -ca < 7- < 'J,(p)). (4.231)) 

(compare these to (4 .15)) .  Tllis metric tensor components for this soluticm ii~(.lu(lv t,ll(\ 

the functions F am1 TI. These arbitrary functions are of class C?: in tllc 11iiI~oii11~1(~1 

clo~nain Dl U DF U 8DI .  Since jump tliscontinuities are penilissi1)lc 011 DL;'[, iut r o t l ~ ~ w  

the following notation to denote tlie very smootli pieces of t lmc  fi~iictio~is Ily t lit1 

following equations: 

In the exterior domain, the mass tlensitj~ / ~ ( p ,  T )  - 0. Rccalliilg tlw rf'li~t iollsltip 

(4.12) between p and F in the exterior tlomain, it follows that 



Hcrc. i r h  is a positive coristant. Using the definition of the total effective mass function 

ill togetl~er with the previous equations ( 4 . 2 4 ~ ~ )  ant1 (4.25), ,If is given by 

T11t.1-eforcb, 711 > 0 stantls for the total (Scliwarzscliilcl) mass of the star. 

M'itli the  iotat ti on just introduced, the interior a i d  exterior line elements for the 

casc F = 0 can be written using tlie general line element (4.20): 

'Z 
OR, ( I $ +  [X,(p, r ) j2 r lV-  df'. 

wlicre 0 < 2 , ( p ,  T) < R,(p, T), aPX, > 0 ant1 > 0. 

To continuously match tlie metric tensor coinponeilts ancl their first partial deriva- 

tives across the l~ountlary ODr, introduce another convenient notation. Consider a 

function H 1)elonging to tlie class C?; in DI  U DE.  The jump across the tlie boundary 

i)DI is tlefiiuxl in the usual rliailner as 

for all -m < T < T,(pb). 111 the case 

tllc fu~lctiori H is said to lm-e a removahle discontinuity on a D f .  Henceforth, a 

renioval)le tliscont inuity is always elimiilatecl by clefiiiitioiis like 

H t w e ,  t lie f m c  t ion H is now con tiiiuous across the bounclary. 

Proposition 4.1. A n,ecessnry and sufficient condition for the continuity of the met- 

r i c  tcnsor comjmeents of (4.27) nnd their first order partial derivntives across the 

borrndary DD, i s  that the fzmction.~ F ,  F'.  F", TI, T: nnd 7; (where primes denote 

total tlerivc~tives) are all con.tin.uous across i7DI. 
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Proof. Using the solution (4.2%) ant1 the ctefiiiitions (4.34) of tht. iutcrior n r ~ t l  cstcrinr 

l~ranches, it is possible to sunmarise all the partial t1t.rivati1.c~ of X up to anti in~'lttc1it~g 

2nd order: 



Looking at the line element (4.27)) tbe continuity of the metric tensor component 92.2 

across tllc l)oun(lary &'Dr implies 

Using the espressiolis (429a,b) for 3, and %,, the condition (4.30) implies the identity 

Difkreritiating this identity with respect to T ,  and recalling FE, F, as tlescrihed in 

(4.2G) gives 

Si w e  F is nonnegative ant1 monotone increasing, t lle condition (4.32) implies that 

tlie total niass function -11 attains its onlv ex t ren~un~ in tlle interval (p,, p6] at the 

lmuntlary point p = pb and its nlasiniunl value is m. This conclusion is physically 

reasoualde. 

3ow, substitute the previous condition (4.32) into (4.31): 

At this stage, tlic f ~ ~ i i ~ t i o i i s  F ant1 7, are continuous across the boundary. 

Consider now the continuities of the first partial derivatives of .~/22. Using the 

line elenlent given in (4.27) and the continuity of 2 in (4.30), the co~itinuity of i3,g22 

clcmanrls that 

Tlw csplicit fornis of i3,2, aiitl i3,2, are given in (4.29e,f); using the continuity of 2 

given in (4.30). together vith the continuity of F a d  7, given in (4.32) and (4.33), the 

almvc collclitions are autoii~atically satisfied. (The continuity of 8,2 given by (4.34) 

iinplies that tlie radial "velocities" of dust partic!es moving along radial geodesics 

across tlic bouaclary of the star are continuous). 



Using the explicit expressions for 42, ant1 8J?, given i11 (4.29c,tl), tcqytlwr with t llc 

continuities of X, F and 'TI, the continuity of a,,% in cquation (-1.35) i11lpIic.s 

Differentiating wit11 respect to r and using tlie relation I ) c t ~ w n  F mtl / r  givcw ill 

(4.11) gives 

The above conditions (4.37) and tlle definition of F, in (4.25) 111;ilx~ t811rb fu~lctioll~ F1 

and 1-1 continuous across the boundary. Tlle co~itinuity of F' at p = p,, i11 (4.37;1), 

w11en used in (4.36), yields 

Therefore, tlie funst ion Ti is also continuoas across the 1)ountlar;y. 

Returning again to the line elernelit (4.27), consicler tlic cbont iilui ty of t 1lt.l r lcrivu- 

tives of 91 1 .  The contiliuity of I implies tlle continriitv of %,a; this cwl~tlition l ~ s  

already been investigatecl (see (4.33)), so no a(ttlitio1~a1 i~ifoni~atioii cmcargcs. T11t. 

continuity of 8,yl 1 implies 

The explicit expressions (4.29g.h) for a:%, and 8:2, can 1~ ilsed with the rontilntitiw 

of 2, LIP%, F ,  F', 'J, and 'Ti to derive tllc identity 



Il)iffw.tutiating the above with respect to T ,  

Sul~sti  tuting (4.41) l)cxck into (4.40) yields 

Thus,  it follows that tlie functions F" and 7; are botli continuo~is across 

i1I.Y. Tlic cr_tritinuity of i3,gl 1 (foes riot yield new conditio~is 1113011 loolcing at  

(4.42) 

t lie b)ouncl- 

the explicit, 

cq~rcwion  for i3,i),2 and olmrving tlie continuities already establislletl. Tlie continu- 

i t  ic.s of g:j:$ are equivalent to those of 9 .  and tlie continuities of 9 4  = - 1 are trivial. 

Tl~twfore ,  i t  lias l~eeii proved that the continuities of the metric tensor co~nponents 

a i d  t;f tllcir first partial derivatives across the boundary DDr imply the continuities 

of' F ,  F', F", T,, 7: ant1 7: across the boundary 8Dr.  Tlie converse statement follo~vs 

fron: tllc csplicit expressions (4.29) for all the derivatives of 2, and 2, and observing 

t l ~ e  continuities of F, F', F", T,, 'Ji and T: across the boundary d D I .  a 

To complete this analysis, a gcneral coordinate transformation relating this local 

mordillate spst en1 to the Sclin~arzsclliltl coordinate syste~n (2.4) is neetlecl. The metric 

in cqua tions (4.27) call be expressed with the help of tile explicit expressions for the 

sollttion 2 am1 its cleri~ratives given in 

Fro~li tlic equation (4.32h), 'J:(p) > 0 and TL (p )  > 0 so both are monotone increasing. 





event horizon singularity 

Fipure 4.1: Gravitational collapse of a dust spliere of parabolic ( F  = 0) type. 





IT-here 0 < I .f ( p )  1 < 1. 

Tlle partial differential ecpation (4.44) can 1)e regartlctl as a11 ortlilliir~ cliffi~rv~~tial 

equation i11 7 :  the result of integratirig n-it11 respect t o  r is 

1 -- arc t ail F ( p )  / [f(p~'l:p, 'T) - I .  ' l.m)l:3 
This equation defines tllc filnction X impiicitly. Tlir ;~rl)it rnry hunct i(hu To of (-lass e; 
arises out of the integration. (The espressioli I ~ I N ~ F Y  t ~ I C  r m  t sign is always posit ivo 1,y 

virtue of the iiiecluality (4.44).) The yrincij,al lm11c.11 of thr nrctiu~ li~ic-tion is c.llosc1~ 

froin non- on svitllout loss of generality. 

The interior, exterior and the 1 muntlary of the star are assu~~lr~tl  to 1w corrc~s~)o~ltli~rfr; 

to t lie follo~viiig tlonlains (compare to equations (4  .%al,,c)) : 

DI := { ( p ,  r )  : p, < p  < ~ b ,  T d p )  < < 7 ] ( ~ ) ) ,  

D E  := { ( P ,  7)  : < p,To(p)  < < ' J l j p ) } ,  

i ) ~ ~  := { ( p .  7 )  : p  = pb, %(pb) < 7  < ' J , (pd  J.  

The clioice of 7, is essentially explained iii tlio crluation (4.71f). Not o idso t 11a t I ) /  is 

a hountled domain. 

Since tlifferentiation of the a1)solutc value functiol~ is c~sst~lltii~lly c-o~~l~)lic-:rtc*cl, ; I  

.;implifying assumption is made: 



'Ill(* srrtootll Imncllcs of the functions F, To and 2 are denoted exactly as in (4.24). 

similar notatio~l is used for the function f .  Moreover, the function F is again 

i~o~tlic*pttivo,  non not one increasing and constant for p > pi,. The interior and exterior 

1i1w c ~ l r * ~ ~ l c ~ l t s  are 

O w e  qpi11,  the contli tions for tlle ma telling of the metric t emor components and 

tltcir first order partial derivatives must be found. 

Proposition 4.2. A s~ecessccry and st1ficien.t con.dition. for the cont.inuity of the met- 

ric tensor corrqxments o-f (4.49) an.d t i~eir  first order pnrtid der.ivtctives across the 

I ~ ~ I L T I , ( Z ( E I ~  i3DI i s  t lu t  the ftrnctions F ,  F'.  F", TI? 'J: and 'J: (where primes denote 

t o td  der+wt'L~~es) (trc d l  contin~uows ncross i7DI . 

Proof. From the inlplicit solutioli (4.G) for IR, the interior and exterior 1)ranclies of 

the function 3 satisfy 





C'onsit1t.r the continuities of the inetric tensor components (4.49) and of their first 

ostler partial derivatives. Recall that the continuity of g2.2 implies jconlpare with the 

cyitati(m (4.30) 

T lw colltinuitj- of 3 , ~ ~ ~  implies [A(DTfR)'(p6, T ]  = 0, so the explicit ecluations (4.5Oe,f) 

m t l  the previous c-on& tion (4.31 ) imply that 

Iliffescntiate (4.32) with respect to 7. Recallirlg that dT2(p,  T )  < 0 and using (4.52) 

again, tlle result is 

Tlwrefore, the functions E and f are continuous across the boundary. Continuities of 

72. F ant1 f used in tile expressions (4.30a,b) for imply that 



j 3otice liere that tlle contiliuities of F, f ant1 3;) also inll)l!- tllc c-ontinuity of' IR.) 
The continuit? of t?,,q12 implies that [Ai1,,X(p1,, r ) ]  z 0. rTsing tllc c.ol~tiiluit y of X 

in (4.21) and the explicit expressions for ill,% in (-1.20c-,tl), 

Therefore, tlle set of functions {w(T),  ( l+[u+(r)] '  ) - I ,  l+w(r) arc.tmi(nr(r))} is li~ic~arly 

i~lrlependent in the interval ' .Jo(p) < T < ' .J , (p) .  It follocve from tlie wlation (4.55) t 11;if. 

tlie coefficients of the independent functions must a11 l)c zcro: 

Tlle above equations iniply the three intlepentlent contiauit ies: 



EIwc-v,  tllc fi~nctions .f. F aiicl 'To and their first derivatives are all continuous across 

tllc I)i~it~l(l;try p - pt. 

Yon., tlic w~~t inui t ies  of gl l  ant1 f imply the continuity of aP%. This condition has 

;ilrc~it~ly l m n  csaniined, so no other atitlitiona: information cinerges. The continuity 

of &gl , imp1ic.s the co~itinuity of 0,3,3. Loolti~lg at the explicit equations (4.SOg,h) 

frir B,i)l,lR. no new vcli1atio11 arises. Tllc cotititii~itj- of Bpgl 1 implies that 

The c.ontin~lities already estal)lisl~erl reduce the above identity to 

Recalling that the set of fnnctions {u1( T ) ,  ( 1 + [u:(i)12 ) - I ,  1 + li*(r) arct all [zo(r)]} is 

li~itarly indepentlent in any interval, the identity (4.58) reduces to t h e e  equalities: 

Tlitwforr , it has 1,een established that the continuities of the metric tensor com- 

po~lcnts in (4.49a,b) and of tlieir i'irst partial derivatives imply that the functions 

E', f ,  To, F', f t ,  T& F", f "  and 'J: are continuous across the boundary. 0 
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Sl11)stitlitirig the above into (4.601)) and 1-lsing (4.50f). the result is the first order, 

..;ci*o~i(l tliyyee cclnation 

h 

0 1 1 t  of two l>ossil>ilities in (4.62), choos~  8,T > 0 to preserve the orientation of the 

tiin+lil;c vnria1)le. Therefore, the equation (4.62) yields 

Sn1)stituting (4.63) into (4.61) gives 

The pair of first orcter partial rlifferential equations (4.63) and (4.64) is soluble provided 

t l ~  right 1 ~ ~ 1  sides satisfy an integrability condition. Cliecking the integrability con- 

tlitiou in tllesc (p, T)-coordinates is quite tlifficult. It is more convenient to introtluce 

an intcrinetliate coorclinat e cllart 1g- the following equations: 



fl? 
7 = T ( ( ,  1 ) )  := 'JdC) + ( 11 + sin I ) ) ,  

[.fE(C>]" 

(It is necessary to restrict 11 E (0, T )  to  preserve tlic iueclualit!- (4.44)). 'IYiv tratlsl'or- 

mation of ((, 11)-coortiinates into the Sclirvarzscliiltl coortlinatc~s c . m  1w w i t  1011 c 6 s l ) l k -  



Tlie intcgra1)ility coildition for the pair of first order p.d.e's (468a,h) is 

condition is identically satisfied. Therefore, a solution T#( [ ,  71) 

ctsists. In this coortlinat e system, the integration of this pair of p.d.e's is manageable. 

Tllc solution is given esplicitly 1))- a line integral (along any continuous and piecewise 

difikrcntialde curw I' in 05): 



a lolls clefinetl tlie parametric equ t '  



event horizon 

................. 

p event horizol: 

Figure 4 . 2  Gra\-iiational collapse of a dust sphere of elliptic ( c  = +1) type. 



h 

DT := ( ( R ,  T )  : J ( T )  < R < 8%. 0 < T < 2 1 1 2 ) .  

-4s 11 1 x. T = o # ( ~ ,  1 1 )  1 0 ant1 the entire spllcrical lio(ly c.oll:q~sc~s i r t t o  t lw t ~ l t i ~ l l i ~  t P 

singularity. 

Thus, outside the dust ball, the ( p ,  7-1-coortlinates can be t.r;tusforiut~(l iu to  Shvnrz-  

schild-type coorclixiat~s in both the vaculun R-riornairl and tllc \'itc'lilllll T-f101tliti11 ( ~ ( ' ( 1  

(4.71)). The Sell\%-arzschild-tge coordinates can t1lc.n lx t r;iilsfrm~tc~il into lirtlslial 

coordinates as in f 2.13 j and (2.16). The gravitativ~~al c.ollapse of ;t spliwic.al tli~st 

body into a Mack hole is depicted in the figure 4.2. 



4.4 The Hyperbolic Case: E = -1 

fur i f([,)/ < J F ( ~ ) ( x ( ~ .  7 ) )  + [f(p)12. The fmction TI is an arbitrary (2; function of 

i l i t t y p t  t ic!rl. The first case requires that F(p) jX(p ,  r) < 0,  and which is not considered 

I W ( - H I I S P  1mth 3 and F are positive. Therefore, consider the second equation only. 

?.lorcot.w, for the sake of simplicity, c!iouse f (p)  > 0. Thus, tlle case involving the 

frliiction arccotll almw togetller n-it11 the assu~nption f > 0 yields an implicit equation 

iix t lw filiwtictn 2: 



Once, tlie f~mction 32 is defined inlplicitly. 

*To consider the matclling of metric te~isor compoii t~ts  and tllcir cl~'ri\'i\t i r w  i \ t  

the houndarj- of the star, adopt a notation as in (4.24) to tlistinguisl~ l)sn~lc*l~c\s of 1 1 1 ~  

functions 2, F, .f ant1 TI witllin the interior donlain ant1 nvi t liin t lic cstt\rior tlou~ailt. 

Notice also that F E ( p )  E 2171 as hefore. flt the 1)ountlary of t l l v  star a t  p = I)!,, t h v  

line elements in tlie interior arttl exterior domairls are g i \ w  I)y 

Using the solution (4.73), tlie interior and the cstcrior s~ilootli l)rai~c.lws of' t l i v  f l lnc ' t  iou 

32 s a t i s e  

Having estahlislietl the line element inside in D, and D,.:, it is I I ~ W  1)ossil)lil to c . l ~ t d {  

the continuity recpirements. 



Proposition 4.3. A necessary and suficient conclition for the continuity of the rnet- 

7.%c t e ~ s o r  C O ~ ~ O ? A C T L ~ S  of (4.14) and their first order partial derivatives across the 

~ ) O W L ( ~ I L T ~  i)DI is t11d the fi~nctz'ons F ,  F ' ,  F", 'J;, T: and 7: (where primes denote n 

to td  dWtkfdi?~e) CUY QII! cor~t'i~1z~ozi~s across a D I .  

Proof. The results from differentiating equations (4.7;) are as fol!ows: 



{ . f E ( p ) y k , ( / j )  - G ? l L f ' ( p )  nrrroth[VE (p ,  T ) ]  
[ f E  (dl" 

The necessity is ~staldis l~ed first. Suppose that tlic filnctions F, f ,  T,, I;", j", T:, 

F", f" and 3-: are continuous across t l ~ e  Imilntlary i)D,. Tl~fw, l y  tl(tl1i~ti011~ (4.75i1,I)) 

that implicitly define XI arid %,, 



M'it 11 tllc cl(hit ions of W J ,  r r ~  and . J ,  the previous itlentity can l)e expressed as 

T l ~ i s  st rirf inecl~li~li ty sllows that the function .J is one- to-one. Since J is one-to-one 

N K I  .I( w, ) = .I( W F ) ,  conclttde that 

rl'lltw*fort~, tllc Lw~ttinuity of !R across the l)ountlary DD1 is est a1)lislletl. So, the ~iletric 

I msor c.olill)oilcnt p . 2  is cc)~itinuous. Tho contiiluities of F, f alitl R together with 

t l l r b  oquatio~ls (-4.7Gc,tl) give the continuity of D,X at p = pb. Thus, DTpS2 is con- 

t irtrtous. I3!- tllc (-ontinuities of F, f ,  2, F' ant1 f '  and the equations (4.7Ga1b), 

t lw c.olltiuuitics of a,,%, ilf,!gr2 and g ,  1 arc proved. It follows that tlie contiliuities 

o f  F, .f, R, F', f ' ,  3 ,  and Or% aild the ccjilations (4.76e,f) yield the contiliuity of 

. Finally, from the equations (4.76~,11) am- the continuities already estall- 

lisllwl, i),,,ql 1 is cbnnt i n ~ ~ o n s .  Tllcrcfore, it has 1 ) t ~ n  proved t llat t lle continuities of 

F,  ,f, 7, .  F', f ' ,  T:, r"", f" ant1 7; inlply the contin~iities of the metric tensor compo- 

ncnts ant\ uf tlwir first partial derivatives across the 1)ouiitPary ODr. Tlie converse 

r twl t  fc)llo\vs in ;I. r l~al i lm similar to tliat used in previous sections. 0 



(:) = cot h- 



Tllc transformation (4.78) can be inverted through use of the 13.d.e. (4.7511); the 

i~~vwst:  tra~lsfo'ornlatjon is 

Tllr transformat ion of ( J ,  <)-coortlinates into Sclirvarzscliilrl coordinates can found 

wit11 the tile transformation (4.78): 

(4.SOb) 

(4. SOc) 

(4.80d) 

Tlw iitiictio~l T# is unltnorvn. Use the chain rule ant1 (4.7%) to convert the system 

(4.77) into t l ~ l  followillg p.c1.e9s for T#:  



CHAPTER 4. THE TOLlI=14Y-B01WISOLI'TIC~I'1'S 

The integrability co~lclition for tlie equations (-4.81) is 

This condition is identica!ly satisfied. Tllerefor~. the sc,lutim ?'# ([, <) is t r b  t ;~incjc t by 

a line integral (and the equation (4.SOtl)): 



Tllv f i ~ i ~ t i o n  c,, is tlefi~~etl so tliat X,(p, 'Tl ,(p) j  - 2m,  ie. the image of %# ewluated 

;t1011g thri mrvc C = <,I(c) in tllc ( J ,  rl)-plalle is a portion of the event horizon in the 

S(.l~rvarascliilrl spacta- t imp. 
h 

Thc. range Ds of the transformation fro111 (p ,  T)-coortlinates into the Schwr~z- 
h 

sc.hilt1 R-tlctrnain is given by the l~ounrlary curye F = B ( t )  defined by the paranletric 

r*clllatiolls 

w11tw -cxj < r < T I r ( p 6 ) .  Tlius, the Sclirvarzscl~iltl coordinate cliart is valid for 

A 
, A h  - -  D,, := ( ( 1 3 )  : B ( t )  < 7, T E  R}. 

For tllc tioriiniil w11el.e p  > pb and T > 'J;,(p) in ( p ,  7)-coordinates, the coordi~lates 

t ransforrrl into ( R, T)-coortlinat es in t lie Schn-arzschild T-domain. To find t,lx range 
# of this trmsformation, consider tlie (c, <)-coordinates in the alternate domain DT 

givw 11-y 

T h r  cionlain 8 T  of validity for the ( R ,  T) coordinate chart is given by 

h 

whcre, tlie lmuxitlary curve R = $(T)  is provitled by the parametric equations 



event horizon ( 3=2m ) 'I singularity 

'-mom* *........... ..*, 

event horizon 

.................................... .................................... .................................... .................................... .................................... .................................... .................................... .................................... .................................... .................................... .................................... * p event horizon 

................................... .................................... .................................... .................................... .................................... .................................... .................................... boundary .................................... .................................... .................................... (R( p ,z)=2m) 

.................................... .................................... .................................... .................................... .................................... .................................... ............. ... 

Figure 4.3: Gravitational collapse of a dust sphere of llypcrltolic ( 6  = -1) t,yl)cb. 



fiir 0 < < Gr(pb). T11e SchwarzscI~il~l metric in the R-domain arid T-tio~nain can 

ltotli Ijc tra~lsformed into I<ruskal coortliiiates by the transformations (2.15) ant1 (2.16) 

r t s~)e4vcly .  The gravitatiorlal collapse of a stellar dust ball of llyperl>olic type is 

cIcpic.tcc1 in figure 4.3. 
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