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This study is a pilot attempt to introduce fractal geometry to a Survey Mathematics 12 

class. The paper describes the methodology employed in in~plementation and attempts an 

analysis of the ways in which the students acquired the concepts incorporated in the study unit. 

Concluding remarks include suggestions for improvement of the unit and recommendations for 

subsequent implementations. 

The method of inquiry is qualitative in nature. The data included eleven audio taped 

interviews and perusal of all assignments, quizzes, notebooks, and the unit test. The interview 

questions were intended to explore the ways in which students constructed their knowledge of 

fractals. The last two questions were designed to plumb for deeper understanding of the topic. 

They were framed to investigate students' conjectures regarding the appearance of structures that 

are between two and three dimensional; such structures were not specifically addressed in the 

study unit. 

The taped interviews were transcribed and analyzed; the Piagetian theories of 

assimilation, accommodation, and reflective abstraction were applied to students' responses to 

the interview questions. Included in the analysis is an attempt to characterize students' cognition 

using the notions of operational and structural thinking. 

The possibilities for cross curricular applications make fractal geometry an especially 

attractive topic of study. There are, however, aspects of the subject that appear to require special 

attention. The findings of this study indicate the accommodation of dimension and self- 

similarity dimension were particularly problematic for participants. Students also experienced 

difficulty in the effective characterization of a fractal. If fractal geometry is to be introduced, 

there are several conditions that must be met to ensure that the pedagogy employed in its 

presentation is appropriate to the subject matter. 



First, allowance must be made for the novelty of the topic. Fractal geometry is not a 

subject that can be studied in two weeks; therefore, implementation should be spiral in nature to 

avoid overburdening students with concepts that will, for most, be completely foreign. Second, 

there must be suitable hardware, software, and print resources available. The vast potential for 

curricular innovation cannot be fully realized if students experience a "traditional" presentation 

of the material. 
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Chapter 1 

Introduction 

Why fractal geometw? 

Most high school mathematics curricula have traditionally been concerned with topics 

that have been a part of the mathematical body of knowledge for at least three hundred years. 

Such a situation would not be tolerated in either the social or empirical sciences. The advent of 

the pocket calculator has, in the eyes of many students, rendered topics such as the 

simplification of radicals and rationalization of irrational denominators largely irrelevant . The 

simplification of rational expressions is a skill that appears, to a great number of students, to be 

useful only in the solution of problems that appear in mathematics textbooks; as such students 

again question the relevance of the practice. 

Why is such conservatism allowed to exist in the mathematics curriculum? Through our 

dated curriculum, and the drill and practice approach to mathematics teaching, students are 

given the impression that mathematics is the study of a static mass of esoteric facts, formulae, 

and algorithms that appear to have little application to the "real world." Without question the 

study of pure mathematics is critical; however, there should exist in the curriculum some 

balance between pure and applied mathematics at the secondary school level. 

High school mathematics has, with the possible exception of Euclidean Geometry, 

inculcated students with the idea that mathematics problems always have one correct method of 

solution, and the teacher always knows the solution. A large number of students who enjoy 

mathematics say they do so for this very reason; they can always find that solution with no 

confusing ambiguities to cloud the issue. As a result, high school students tend to assume that 

the very essence of mathematics lies in finding "the solution." Many students experience a great 

deal of difficulty in attaining the "correct" solution, and as a result may become frustrated and 

bored with mathematics. Even students who are, or could be, proficient at solving traditional 



mathematics problems may become bored with mathematics for coniplctcly diflcrcnt reasons; 

these students see mathematics as largely irrelevant. All of these students could benefit by 

seeing mathematics from a slightly different perspective. 

It has been my experience that most students will, when confronted with a novel 

mathematical problem, become engaged in the problem and actively seek a solution. On many 

occasions, I have observed students' reactions to the Konigsberg Bridge problem or Fibonacci's 

rabbit population problem and noted that they are quite different from the "normal" situation 

wherein students are expected to complete seemingly countless mathematics "problems" in a 

sequential fashion; all mathematics teachers have observed the abundance of off task activity 

that occurs when students are given class time to do their homework assignments. The attitudes 

toward the discipline that manifest themselves in these two scenarios are markedly different and 

the change in the classroom atmosphere is tangible. As a teacher of mathematics one would like 

to cultivate that atmosphere of discovery more often. Perhaps the introduction of a new 

curricular topic could help to bring a renewed sense of discovery to the classroom. 

I believe that students would benefit by doing a different type of mathematics: one that 

could lead students to a sense of mathematical discovery; one that could show students that there 

is a way to do some mathematical experimentation using current technology. It is my feeling 

that most high school mathematics students could benefit by doing a type of mathematics with 

which they are likely quite unfamiliar. An introduction to fractal geometry could fulfill all of 

these objectives. 

Fractal geometiy is a relatively new science; although its origins are a century old it has 

only recently been accepted into the mainstream of mathematical thought. It was with the 

advent of accessible computer technology that fractals and chaos theory were discovered to be 

two sides of the same coin. Had it not been for the "desktop" computer these two important 

topics would likely never have received any serious attention from mathematicians. Thus, the 



nature of the study is inextricably tied to the use of ~cchnology. 'This providcs I'urthcr 

justification for the inclusion of the topic in high scliool curricula. 

The latest curricular revisions from the Ministry appear to advocate the clustering of 

senior secondary mathematics students into two distinct streams: applied mathematics and 

principles of mathematics. The former is self-explanatory; the latter is oriented more toward 

pure mathematics. Fractals are well suited to both streams. The infinitely detailed nature and 

fractional dimensionality of these objects is within the realm of pure mathematics; the fact these 

structures closely model many natural phenomena is a connection to the physical world. 

According to the National Council of Teachers of Mathematics (NCTM) curriculum 

standards, college bound students should investigate and compare different geometries. 

This component of the 9 - 12 geometry strand should provide experiences that 

deepen students' understanding of shapes and their properties with an emphasis 

on their wide applicability in human activity. The curriculum should be infused 

with examples of how geometry is used in recreations (as in billiards or sailing); 

in practical tasks (as in purchasing paint for a room); in the sciences (as in the 

description and analysis of mineral crystals); and in the arts (as in perspective 

drawing) (NCTM, 1991, p. 157). 

If one places any credibility in NCTM recommendations, there is contained within the preceding 

statement ample justification for an introduction to fractal geomeEy. 

Fractals are, without a doubt, foreign to a great many high school mathematics students. 

It is precisely because of the newness of the science and the unfamiliarity with the concepts that 

students should study fractal geometry. They could benefit from an introduction to an area of 

mathematical research that is, in some cases, barely a quarter century old. They could read 

about new discoveries in the field in current periodicals. They could see applications of the 

science in popular culture. They could see mathematics as a study of a dynamic system, rather 

than one that has remained static for centuries. 



Although there is a desire to include different geometries in the curriculum, there is little 

knowledge of how students would learn the content of and react to alternate geometry curricula. 

There are many questions to be considered. 

In his article regarding fractal geometry for secondary schools, Paul Goldenberg asks 

"What are the most promising topics and approaches for introducing this particular new 

mathematics into the cumculum? What parts [of fractal geometry) are appropriate for grades 7 

to 12? How might the fractal content and the visual experimental approach broaden and deepen 

students' mathematical thinking and their interests in and perceptions of mathematics?" 

(Goldenberg, 1991, p. 39) There are many other questions that also need to be answered: 

Where will students' difficulties lie? What specific concepts will be particularly problematic? 

What would constitute the optimal scope and sequence of a study un i t  on fractals? Is it 

appropriate to expose high school students to such a complex topic? To date there has been no 

research done to determine how curricula might be designed in order to enhance student 

understanding of fractal geometry. My intent is to try to answer some of these questions. 

This thesis is a pilot attempt to probe student understanding of the basics of and describe 

how students construct specific concepts related to fractal geometry. I hope to gain some insight 

into students' assimilation and internalization of the content that I have incorporated in an 

introductory unit on fractals. Specific concepts that will be discussed include the description of 

a fractal, self-similarity and self-similarity dimension. Chapter 2 briefly describes these and 

other concepts fundamental to fractal geometry. 



Chapter 2 

What is a Fractal'? 

A brief historv of fractal geometry. 

The word fractal, from the Latin word frangel-e which means to break, was coined by 

Benoit Mandelbrijt in 1975. Mathematicians, however, have been aware of fractals for 

considerably longer. 

Many fractals and their descriptions go back to classical mathematics and 

mathematicians like Georg Cantor (1872), Giuseppe Peano (1890), David Hilbert 

(1 89l), Helge von Koch (1 9O4), Waclaw Sierpinski (1 9 16), and Gaston Julia 

(1918) to name just a few. However, these mathematicians did not think of their 

creations as conceptual steps toward a new geometry of nature. Rather, what we 

know as the Cantor set, the Koch curve, the Hilbert curve and the Sierpinski 

gasket were regarded as exceptional objects, as counter examples, as 

"mathematical monsters" (Peitgen, Jiirgens, and Saupe, 1992, page 76). 

For many decades fractals remained outside of mainstream mathematics because they 

were viewed merely as curiosities. Then, in the mid-1970s Mitchell Feigenbaum discovered that 

fractal geometry is the geometry of chaos theory. Since the discovery of that link, the 

mathematical community has taken great interest in fractals and serious research in the field has 

become legitimized. 

During the [early] 1970s, when both were in their infancy, chaos and fractals 

appeared to be unrelated. But they are mathematical cousins. Both grapple with 

the structure of irregularity. Fractals present us with a new language in which to 

describe the shape of chaos (Stewart, 1989, p. 216). 

Properties of a fractal. 

The question "what exactly is a fractal?" is often asked. According to Mandelbrot, a 

fractal is defined as a set whose Hausdorff (fractal) dimension is not an integer. Unfortunately, 



this definition is not easily understood. In general, an object is considered to be a fractal if it 

exhibits certain properties. It must display some degree of self-similarity; that is, a small portion 

of the object when magnified will appear to be similar to the entire object. Mandelbrot has 

written that: "A fractal is a shape made of parts similar to the whole in some way (Mandelbrot, 

1983)." Self-similarity is one of the central characteristics of a fractal; the self-similarity 

dimension is another of its distinguishing properties. 

A fractal must have non-integral dimension. This means that it will be neither zero, one, 

two, nor three dimensional; its dimension will lie somewhere between these numbers. This 

means, for example, that "...a one dimensional line can, in some fashion, be bent so many times 

that the line begins to fill space [cover an area]. Thus, the wiggly line has dimension greater 

than one." (Kern & Mauk. 1990, p. 179) These characteristic properties are relatively easy to 

identify in simple geometric figures. 

In The Mathenzatical Tourist, Ivars Peterson describes self-similarity as the property 

exhibited by focussing on progressively smaller and smaller segments of a figure. What one 

sees when zooming in on a fractal is that, unlike the structures studied in Euclidean geometry, 

the resulting magnification of the object does not tend to smooth the irregularities: "Instead, the 

objects tend to show the same degree of roughness at different levels of magnification." 

Peterson continues: "Fractal objects contain structures nested within one another. Each smaller 

structure is a miniature, though not necessarily identical, version of the larger form (Peterson, 

1988, pp. 114 - 115)." In other words, one part of the object is,a scaled down version of the 

entire object. The Koch curve and the Sierpinski gasket are classic, yet simple, examples of 

self-similar objects. 
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The Koch curve is one of the first fractal structures discovered; it was initially desribed 

by Helge von Koch approximately nine decades ago. The first three iterations of the Koch curve 

appear in jigure 2 . I .  

jigure 2.1 

The first three iterations of the Koch curve. 
slage 0 

stage 3 

The Koch curve is generated by beginning with a straight line (stage zero offigrire I). 

The middle third is removed from the straight line and is replaced with two segments that are 

equal to one third of the length of the original segment; the resulting figure is a line segment 

interrupted by an equilateral triangle that has no base (see stage I offigure I). The Koch curve 

is a fractal in the mathematical limit of an infinite number of iterations. 

Another well known fractal is called the Harter-Heightway curve. This structure, also 

known as the Dragon curve, was popularized in the book and motion picture J~irassic Park. The 

first few iterations of it are shown infigure 2.2. 



sloge 1 

slage 2 

Self-similarity dimension. 

Self-similarity dimension is a complex idea. In order to explain it at a level that the 

students could understand I needed a. description that was simple and yet adequately conveyed 

the essence of the concept. To that end I employed an approach that I have seen in at least four 

different sources. It appears in Kern and Mauk (1990), and in Pcirgen, Jusgens, and Saupe's 

Fracrals for- the Clussr.oom Pur-r Oue: I~rr~~od~rcrio~r ro Fr.ucru1s U I ~  Chuos. It is also contained 

in an unpublislled manuscript by Jean Pederson and Peter Hilton under the working title 

Matho?tatical Rcflectiorrs in a Room ~ d r h  Marry Mil-1-on. A similar explanation can be found in 



Peak and Frame's Chaos Under Control. In order to comprehend the approach, a little 

vocabulary is required. (The information that follows is summarized for students in 

Introduction to Fractal Geometry: Handout #2. This handout appears in Appendix B) 

Most people are familiar with objects whose dimensions can be described in the 

conventional manner: a point has zero dimension, a line is one dimensional, a square has two 

dimensions, and a cube is considered to be three dimensional. Pederson and Hilton begin with 

the assertion that any fractal can be broken up into self-similar objects. The objects into which 

the fractal is broken are then said to be reduced by a certain numerical factor: this is referred to 

as the reduction factor (or magnificatiorl factor- depending upon perspective) and is assigned the 

variable r. The number of copies, or "cells," of the original figure formed by this breaking 

process is assigned the variable N. The selfsimilari dimension is assigned the variable d 

(Pederson and Hilton, 1995, p. 11). 



j g w e  2.3 

A line segment divided into 4 identical copies. 

A square subdivided into 16 identical smaller squares. 

The straight line segment shown infigure 2.3 has been subdivided into four equal parts. 

The original segment is linearly reduced by a factor of 4 and the number of identical self-similar 

copies formed is 4. The large square shown is subdivided into many smaller squares. Again, 

the linear reduction factor is 4, but this time the number of identical copies is 16. The cube 

diagrammed infigure 2.4 has been subdivided into a number of smaller cubes. Yet again the 

reduction factor is 4, but now the number of identical copies is 64. These relationships can be 

described by the equation &=N. 

Applying rd=N to the straight line we get r = 4 and N = 4; therefore, the value of d must 

be 1 in order to make the equation true. Progressing to the square, r- = 4, N = 16, and so d must 

equal 2 for the equation to be true. Finally for the cube, r = 4, N = 64, and thus d = 3. These 

results illustrate the conventional facts; a line has a dimension of 1, a square is two dimensional, 

and a cube is three dimensional. The results become more interesting when the equation is 

applied to a figure that is considered to be a fractal. 



f igure 2.4 

A cube subdivided in 64 identical smaller cubes. 

Using the Koch curve as an example (refer tofisure 2.1), the first iteration yields four 

identical copies of the original line segment, and each copy is one third as long as the original; 

thus N = 4 and r = 3. Solving the equation for d we get 

d r = N;:., 

log 4 
,j=- 

log 3 

d - 1.262 

Therefore, the Koch curve would seem to have a dimension of approximately 1.262. 
log N 

According to Pederson and Hilton, the equation d = - is an acceptable definition for the 
log r. 

self-similarity dimension (Pederson and Hilton, 1995, p. 12). It should be noted that this is true 

only in the context of an infinite number of iterations. Self-similarity dimension is actually 

given by d = lirn !!@! where rr is the number of pieces into which the object is cut. Thus, not 
n+- logr 

only do such structures appear to have very unusual dimensions, but they also have other 

interesting properties. 



Perimeter of and area under the Koch Curve. 

Referring tofigure 2.1, one can see that with each subsequent iteration, the perimeter 

of the figure increases. If the original line segment is said to have unit length, then after the 

stage 1 iteration the length of the curve has increased to 413. After the second iteration, the 

length has increased by another factor of 4/3; therefore, the length of the second iteration is 

(4/3)2 or 1619. After the third iteration the perimeter of the figure has increased to (4/3)3 or 

64/27. Thus, after the nth iteration, the perimeter is given by (413)tI. Since the base of this 

expression is greater than 1, as the exponent increases without bound the power will do the 

same; therefore, the perimeter is infinite. Calculation of the area under the curve yields a quite 

different result. 

At stage 0 the area under the curve is 0. At s t u p  I the area under the curve consists of 

one equilateral triangle whose area is given by 

At the stage 2 iteration the area has increased slightly due to the addition of four smaller 

triangles that each have sides of length 119; therefore, the area under the curve is now given by 

&- 1 1  & 
Area = - + -(-)[-)(4) 

36 2 9 18 

At stage 3 sixteen smaller triangles that have sides of length 1/27 have been added; thus 

the area under the curve is now given by 



This process continues through successive iterations. The nth iteration adds another t t lh 

power of 4 to the total number of triangles; each new set of triangles has sides of length [f r 
units. The total area is thus given by 

4 
The large brackets constitute an infinite geometric series with a = 1 and r = -- . 

9 "" 

A,,,, = G[L] 
36 1 - 7  

It would seem that the greater the depth in which one studies these figures, the more 

complex they become. How is it that a seemingly simple collection of line segments could 

contain within it such paradoxical properties? My students were about to discover just exactly 

how mathematically unsettling these properties can be. 



Chapter 3 

Literature Review 

This chapter consists of a review of the literature related to the implementation of fractal 

geometry in a secondary school classroom environment. It has been divided into three 

subsections: theory, practice, and resources. 

The first section is a review of the literature that illustrates the potential for the curricular 

integration of fractal geometry. This is subdivided into two parts; the first summarizes the 

thoughts of researchers who advocate the introduction of fractals. The second part is an 

overview of the literature describing the experiences of teachers who have actually 

experimented with fractals in their classrooms. The chapter concludes with a summary of the 

resources that I found to be useful in planning and implementing my fractal geometry study unit. 

Fractals in the Classroom. 

To my knowledge there have been no studies done on how secondary school students 

react to the introduction of fractal geometry. Although there exists ample literature describing 

the introduction of various aspects of the topic, these papers deal only with content; I discovered 

no detailed account of how the students responded to the content. Furthermore, I was unable to 

find any documentation of the implementation of an entire study unit on fractals. Nonetheless, 

there are many people who have spent a great deal of time and energy on bringing this topic to 

the classroom. 

One need only leaf through any issue of School Mathenzatics utld Science, or The 

Mathematics Teacher, or Journal of Computers it1 Muth urid Scietlce Teachirq to see that there 

are countless educators in the field that are experimenting with alternate curricula. Most of them 

are undoubtedly doing so in an attempt to find new ways of increasing student interest and 



motivation. Many of them are trying to find stimulating new ways in which to refresh the 

delivery of a traditional curriculum. There exists a body of literature that suggests some 

teachers feel these objectives can be achieved through the study of fractals. 

Fractal geometry combines mathematics with visual images that are fascinating in their 

intricacy. These images are often strikingly beautiful; there are few topics that combine 

mathematics and art in such spectacular fashion. Many students are attracted to the images, and 

this attraction offers teachers an opportunity to explore with students the mathematics behind the 

images. 

Many educators involved in curricular experimentation are simultaneously attempting to 

tie mathematical activity more closely to current technology. There is ample justification for 

doing so, and fractal geometry is well suited to this objective. According to the NCTM's 

Professional Standards for Teaching Mathematics, "The teacher of mathematics, in order to 

enhance discourse, should encourage and accept the use of computers, calculators, and other 

technology." Elaborating on that statement, the Starzdards go on to say that "...Teachers must 

value and encourage the use of a variety of tools ...[ and] ... should also help students learn to use 

calculators, computers, and other technological devices as tools for mathematical discourse." 

(NCTM Standards, 1991, p. 52) With the proliferation of personal computers and appropriate 

software applications, it has become incumbent upon the mathematics teacher to incorporate 

these innovations into hisfher repertoire of teaching strategies. 

Had it not been for the advent of more accessible computer technology it is unlikely that 

fractal geometry would yet be considered a legitimate field of mathematical study. It was in the 

early 1960s that Edward Lorenz discovered chaotic behavior in a system of differential 

equations while running a meteorological model on his "desk top" computer. His discovery 

remained largely unnoticed for almost a decade until 1971, when physicist Mitchell Feigenbaum 

discovered the link between fractal geomety and chaos theory. Thus, the study of fractals and 



computer technology are inextricably linked, making i t  an ideal topic of study for secondary 

school students. 

Suggestions for implementation 

The theorists 

Paul Goldenberg has spent some time exploring this idea. In his paper, Seeing Beaury in 

Mathmatics: Using Fractal Geometry to Build a Spirit of Mathematical Enquiry, Goldenberg 

with his colleagues sought "...to demonstrate that it is possible to make dramatic and 

fundamental changes in students' engagement in mathematics." This ambitious objective was 

motivated by several observations, including: (1) the perception that "...mathematics is the least 

creative of subjects: a dead, unchanging body of facts and techniques handed down from the 

ancients..."; (2) the resistance of the mathematics curriculum to change of any kind, and; (3) 

"Attracting students to mathematics, or, more precisely, maintaining and justifying their interest 

in mathematics." (Goldenberg, 199 1, p. 40) 

In my view, the latter provides a compelling argument for inclusion of fractals and 

technology as a unit of study. Goldenberg elaborates on this: "By tenth grade, many students 

have stopped talung the subject altogether leaving no future chance to discover parts of it that 

might appeal to them and cutting themselves off from opportunities to pursue studies that 

depend on higher mathematics (p. 40)." He mentions females as being particularly susceptible 

to the abandonment of mathematics as an optional course of study (p. 40). It is my feeling that 

this is one of the most pressing issues facing mathematics educators today. Goldenberg does 

not, however, limit his discussion to the realm of mathematics. 

There is some evidence to suggest that fractals have many applications for modelling 

'real life' phenomena in a wide variety of sciences. Here then, is a topic that could assist 

students to observe that mathematics does not exist in isolation: that it  has the potential to be 

applied across curricula. Thus, Goldenberg sees "...the importance of fractal geometry as a tool 



beyond the realm of academic mathematics and its potentially pivotal position in the curriculum 

as an organizing and unifying force for science and mathematics." (p. 50) William Egnatoff 

(1991) shares this view: 

Fractal geometry links mathematics, science and computer science in a web of 

complexity. The strands of that web - self-similarity, recursion, nonlinearity, 

randomness, chaos - are now visible to curious students. By constructing 

computational tools and asking leading questions in collaboration with peers and 

teachers, students can assemble fragments of personal experience and subject 

knowledge into a more coherent picture of how their world works and who they are 

within it (page 40). 

A large portion of Goldenberg's paper consists of descriptions of various possible 

scenarios for studying fractals with computers. Much of what he suggests is "ideal"; there is 

little that I was able to incorporate into my students' experience due to logistical and 

technological constraints. Three suggestions of which I was able to make use, in slightly 

modified forms, included the drawing of fractal "trees," playing the "chaos game," and 

calculating the perimeter of, and area under, the Koch curve. Goldenberg then selects some 

topics from the traditional curriculum that can be applied to his proposed curricular innovations. 

Goldenberg suggests that fractals could be studied as early as the seventh grade. There 

is, in fact, a case study of a precocious third grade student who, for a mathematics fair project, 

created a presentation on fractal geometry (Vacc, 1992). It should be noted that the student was 

considered to be "...one to two grade levels above his current grade placement (p. 280)." 

Nonetheless, this eight year old was able to grasp some of the fundamentals of fractals and 

communicate his knowledge to contest judges and classmates (p. 281). Ms. Vacc was so 

impressed that she decided incorporate the student and his project in a mathematics course she 

was teaching. 

The course was a graduate level mathematics course for pseservice and inservice 

teachers. At the beginning of the course she administered a questionnaire and determined that 



none of her students considered fractal geometry to be an appropriate topic for elementary 

school students. She then introduced fractals to her students by having the eight year old present 

his project (p. 280). Not surprisingly, subsequent to the presentation her students decided 

"...that simple fractal concepts appear appropriate for inclusion in the elementary-school 

mathematics curriculum." However, she concedes that "...further exploration is needed in 

applying the subject's activities ...[ to] ... other elementary school students (p. 285)." 

Goldenberg acknowledges that, in order to introduce fractals to young children, there 

would necessarily be some early contact with more advanced mathematical ideas. He 

specifically mentions, among others, topics such as measure theory, trigonometry, calculus, and 

the concept of function. His argument in favour of early exposure to such ideas is that: "Initial 

contacts would be casual (even superficial), but the practical experience gained with these 

objects would make them quite homey and familiar by the time their properites are studied 

formally ...." (p. 60) 

Other threads Goldenberg has pulled from existing courses of study that can be tied to 

the study of fractals include limits, series, and "...such familiar notions as length, area, 

dimension, space, and randomness." @. 51) Egnatoff (1991) augments this list with graphing, 

ratios and scaling, linear and quadratic expressions, equations of straight lines, logarithmic and 

exponential functions, and probability (p. 41). Several of these topics can be extended and 

generalized in a fractal context in ways which most students would not think possible. The idea 

that an object could have a fractional dimension is one that is completely counter-intuitive for 

many adolescents. A figure possessing an infinite perimeter enclosing a finite area might seem 

highly unlikely to anyone unfamiliar with fractal geometry. 

These are but a few seemingly paradoxical situations that can arise from the study of 

fractals. Such conflicts may encourage students to reevaluate some of the ideas that they have 

considered sacred laws of mathematics. This reevaluation might possibly lead students to 



"...wish to alter a definition to accommodate a new generalization of an old idea [so that] they 

may no longer see mathematics as rigid, unchanging, unforgiving and finished, but rather as a 

live and evolving study (page 51)." As revolutionary as this idea might seem to many secondary 

mathematics students and educators, it is not what Goldenberg perceives to be the key advantage 

to studying this new topic. 

Perhaps the greatest impact that fractals and chaos have had on the mathematical 

community is the way in which they have revitalized the practice of mathematical 

experimentation. According to Mandelbrot, for a long period of time, experimental mathematics 

was not considered to be "real mathematics": an attitude that he claims dates to the time of Plato 

(Mandelbrot in Peitgen et al, 1992, p. 7). However, since the emergence of fractals and chaos 

as important fields of study, mathematical experimentation has enjoyed a renaissance. It is this 

that Goldenberg sees as perhaps the most important contribution that fractals can make to the 

mathematics classroom. 

The opportunity to perform mathematical experiments using interactive visual 

media can be as valuable to students as to mathematicians. Properly designed 

computer-supported environments can provide, through their concreteness, a 

scaffold for reasoning and a matrix for problem posing and ... help students in grades 

7 through 12 engage themselves in a visual, experimental mathematics, finding, 

posing, and attempting to solve problems much as a creative research mathematician 

would (page 41). 

Goldenberg's assessment of the value of a mathematics student behaving as a scientist is 

iterated by Egnatoff: "Making sense of coastlines and population growth entails much of what 

scientists do - observing, classifying, describing, explaining, thinking with examples, modelling, 

and clarifying one's thoughts through reading, writing, and talking with colleagues." (p. 41) If 

fractal geometry were to be included in the school mathematics curriculum as Goldenberg 

suggests, it might truly be the most important curricular innovation in decades. 



Unfortunately, the schools within my realm of experience possess neither the hardware 

nor the software required to explore the topic as Goldenberg has described; given the fiscal 

realities of public education in Canada today, it is unlikely that fractal geometry will occupy the 

role in secondary school mathematics curricula that he prescribes. Despite this, it is possible to 
. . 

provide students with some semblance of the mathematical experience he envisions as long as 

one has access to some relatively recent technology. 

Jane Kern and Cherry Mauk (1990) advocate a teachinflearning exploration of fractal 

geometry that makes extensive use of computers and LOGO. LOGO is a programming 

language that was developed in the 1970s specifically for school mathematics students. It is 

easy to learn and is compatible with even the most obsolete hardware; although the article was 

written in 1990 the authors mention that, for their purposes, they employed a version of LOGO 

compatible with an Apple I1 (p. 18 1). 

Even simple fractals are tedious and time consuming to draw by hand. Thus, computers 

make an excellent tool for exploration because they are designed to make repetitive calculations. 

It is this recursive aspect of computer programming and function that makes them ideally suited 

to drawing fractals. 

Kern and Mauk list a number of natural phenomena that are worthwhile exploring in a 

fractal context. Their list includes the self-similar properties of twigs, leaves, trees, coastlines, 

faultlines, and runoff pattern (pp. 179 - 180). 

These interesting properties can be studied by students even at the secondary school 

level by considering some of the classic 'monster cuves,' such as the Koch 

snowflake ... The generation of fractals using LOGO involves concepts from turtle 

geometry, Euclidean geometry, and fractal geometly (pp. 180 - 18 1). 

A considerable portion of the remainder of their article deals with using LOGO to draw 

some of the classic fractals. The paper concludes with several justifications for the introduction 



of fractal geometry to the secondary school student. An appendix contains several sample 

LOGO programmes that can be used to generate variations of the classic Koch curve. 

Kern and Mauk are not without support in their advocacy of LOGO as a useful tool for 

the study of fractals. David Thomas has written a book entitled Teenagers, Teachers, attd 

Mathematics (1992). Included within the book is a chapter on fractals and LOGO. There are 

suggestions for implementation and several sample programmes that will generate simple fractal 

structures. The January, 1985 issue of Microquests is devoted entirely to the exploration of 

fractal geometry using LOGO. Goldenberg also sees LOGO as a valuable implement in fractal 

exploration. While it is desirable to allow students to experiment and explore using LOGO and 

computers, the theorists fail to take into account that there is little "spare" time in a tightly 

packed cumculum to allow students to do so. In order to provide students with the sort of 

experience described above, there would appear to be two courses of action. 

One option is to build a LOGO study unit into the existing curriculum. In this way 

students could be exposed to simple programming early on in their mathematical training. This 

study of LOGO could be ongoing throughout their school years, so that by the time they reach 

secondary school they are already proficient at the basics of the language. Hence, students 

would not of necessity be taught the entire language at once; they would simply modify their 

existing knowledge to include the creation of fractals in their repertoire of programming skills. 

There is insufficient time in the school year to provide students with their initial exposure to 

LOGO and then expect them to have the ability, within a relatively short period of time, to write 

programmes that will draw fractals. 

The second option consists of sitting students i n  front of computers and giving them the 

programmes. A few would be capable of recognizing the algorithms and altering them to 

change the output of the programme. For these few it would be a worthwhile experience. The 

majority would not find it to be particularly stimulating; LOGO graphics are not exciting to 



watch. In order to make a LOGO experience successful for a group of secondary school 

students, the classroom teacher must be prepared to devote a minimum of two weeks of 

instructional time to the topic. In and of itself this would be a worthwhile unit of study, but 

curricular pressure renders it virtually impossible. In order to teach and learn fractal geometry 

effectively, government mandated curricular reform is required. 

Goldenberg posits that "...fractal geometry is a credible alternative to traditional 

precalculus courses. It ties together all prior mathematics ..." (p. 63) Be that as it may, it has 

yet to be officially included in any mathematics curriculum of which I am aware. He advocates 

a "...fundamental restructuring of the precollege mathematics curriculum (p. 63) ..." Ideally this 

would be a possibility. For the present it seems that fractals will necessarily be introduced in 

bits and pieces in assorted locations, rather than the large scale implementation that Goldenberg 

so desires. It will be the prerogative of individual teachers to provide students with experience 

in this "new" topic. 

The practitioners 

Ron Lewis of Sudbury, Ontario has developed and currently teaches an entire senior 

secondary course on fractal geometry and chaos theory (Lewis, 1990). Kari Oliver and Peter 

Penick of Port Orchard, Washington have compiled a set of activities that introduce some of the 

fundamentals of fractals and chaos. However, neither Lewis, nor Oliver and Penick have 

published any descriptions of either their experiences, or those of their students. What follows is 

a summary of the relevant literature that I was able to locate. 

The "chaos game" is an activity that seems to be popular with teachers experimenting 

with fractals in the classroom. There are several versions of it; the most popular is that which I 

used with my class and is described in detail in the methodology section of this paper. Ray 

Barton is another teacher who had his students experiment with that particular variation of the 

chaos game. (In his article, Chaos and Fractals, he does not specify the agelgrade level of the 

students in his class.) 



Barton's students' initial exposure to the chaos game was to plot points using pencil, 

ruler, and paper. They were subsequently asked to predict the final outcome of the "game." 

Then, Barton encouraged anyone capable of programming to analyze the algorithm and write a 

programme that would "play" the game. His students reacted to the outcome of the programme 

(a Sierpinski gasket) "...with surprise and interest (Barton, 1990, p. 525)." 

Barton goes on to describe a slightly different algorithm that has similar results. In this 

version he employs a matrix equation that transforms a point through rotations and translations: 

The matrix equation for transforming a point (vector) is 
X,+l R cos(A) - Ssin(A) 

[Yn+I]  = [Rsin( A) Scos(A) ] ' [;:Ii [g] 
where R is the horizontal scaling factor, S is the vertical scaling factor, A is the angle 

of rotation, H is the horizontal translation , K is the vertical translation , X, and Y s e  

the coordinates of the preimage, and X,, and Y,+] are the coordinates of the image 

under the transformation. By using different values for the parameters R, S, A, H, 

and K, one can use this matrix equation to describe each of the transformations used 

in the chaos game (pp. 525 - 526). 

Barton used this equation to facilitate the generalization of the chaos game programme. 

The equation also simplifies the programme modifications that are required to create different 

images. He used the generalized programme to encourage students "...to experiment with the 

chaos game by altering the parameters R, S, A, H, and K in the subroutines of the chaos game 

programme. This activity can afford an opportunity for students to investigate the question of 

whether the operations of rotating and translating are commutative." (p. 526 - 527) In this way 

he manages to tie a number of advanced mathematical concepts to a relatively simple activity. 

Barton continues his article by describing image compression, one of the major 

commercial/industria1 applications of fractal geometry. He states that by making minor 

alterations in the input parameters of the programme included in his article, many interesting, 

realistic looking images can be generated. He concludes by itemizing several concepts with 



which students will gain familiarity by experimenting with the chaos game and a computer. His 

list includes "...randomness, transformations, computer use, problem analysis, and fractal self- 

similarity." @. 529) 

Barton's article is an excellent resource for anyone who is considering an extended, 

computer based investigation into the chaos game. The "game" is simple; although, 

superficially, the process appears to be completely random, the resulting structure is anything 

but. Hence, it provides an excellent bridge between chaos theory and fractal geometry. Another 

method by which chaos and fractals can be effectively combined is in a study of the Mandelbrot 

set (hereafter referred to as the M-set). If one has access to a computer lab containing some 

current hardware, this can be a fascinating exploration for high school students. 

In order to understand the M-set students must first have some knowledge of complex 

numbers. This need not be an obstacle, as most senior secondary mathematics students are able 

to quickly grasp the fundamentals of complex numbers. Marny Frantz and Sylvia Lazarnick 

have published an article (1991) that details their methodology in the introduction of the M-set 

to a group of secondary school students. It is interesting to note that all of their objectives can 

be justified either through a traditional mathematics curriculum, or by following 

recommendations set out in the NCTM Standards for* Teuchitlg Muthentatics (1991). They are 

listed as follows: 

Our students will- 

become competent in complex number operations and graphing; 

understand and use an iterative process; 

understand how the M-set is generated; 

gain experience and facility in using the calculator for complicated computations; 

experience the power and utility of computers; and 

experience a current and beautiful topic in mathematics (page 173). 

Students spent three days mastering the requisite complex number concepts; these 

included the four basic operations, graphing, and calculating the distance from the origin to a 



point in the complex plane. A fourth day was occupied by an introduction to fractals and 

iterative computations. 

The students' task was to determine if a complex number was contained within the M- 

set. Initially, they were expected to do the iterative complex number computations using a 

calculator and the formula z n + ~  = zn2 + a + bi, where zo = 0 and a + bi is a given complex 

number. Frantz and Lazarnick report that students quickly discovered this becomes extremely 

tedious without the aid of a computer. The authors felt that this exercise provided students with 

"...a much more intimate understanding of the M-set iterative process than they might have had 

without [having done] any calculations (p. 177)." 

The final three days involved computer based activities and discussion of results. Two 

programmes were used in the study unit; one of them was developed by a student at the school 

in which the experiment took place, and the other is comn~ercially available. The class 

employed the former in deciding whether or not a particular point in the complex plane is 

included in the M-set. The latter was used to explore the M-set; apparently this programme has 

the capability of zooming in on any desired portion of the set. There is a plethora of available 

software that will do this; one of the best programmes of this nature that I saw is available as 

freeware on the Internet. 

Although there is no detailed reference to students' reactions to the study unit, it was felt 

by the authors that "...almost all students finished the experience with some sense of the beauty, 

elegance, and power of mathematics (p. 177)." It is of interest to note that in both Barton's and 

Frantz and Lazarnick's classes, a few students were sufficiently motivated to write programmes 

to assist them in their studies. Obviously not all students have the expertise to perform this task; 

it might be appropriate for students such as these to pursue an independent exploration of 

fractals using LOGO. 



Computer science and mathematics classes are obviously well suited for studying fracul 

geometry and chaos. It appears that many mathematics educators have considered providing 

students their initial contact with fractals; however, according to the literature, it would seem 

that it has largely been science teachers that have introduced fractals to their students. Tim 

Marks is one such teacher. He has written an account of his experience entitled Focus on 

Fractals (1992) that appears in The Science Teacher. 

In his article, Marks describes how a class of his physics students performed an 

investigation in measuring the length, and then calculating the fractal dimension, of a coastline. 

He describes two approaches to the task. Although one method is more intuitive in terms of 

measuring distance than the other, the less intutive method yields a result that is easier to 

understand. 

Marks describes how a map of a coastline can be measured using a pair of dividers. The 

students adjust the dividers so that they span, for example, 40 mm. They "walk" their dividers 

along the coastline, counting the number of "steps" required to cover the entire length of it. The 

scale on the map is then used to determine the length of the coastline. Once this has been 

accomplished they halve the length of the span and then measure the coastline again. This 

process is repeated until the span of the dividers is 5 mm. The measurements are tabulated and 

graphed on double logarithmic paper. The "best line" is then drawn through the data points. 

The fractal dimension of the coastline is given by d = 1 + 1011 where d is the dimension and m is 

the slope of the line of best fit (Lewis, 1990, p. 4). This same activity is included in the Survey 

Mathematics 12 materials that are available from the Ministry. 

There is one advantage and one disadvantage that I see in using this method. Although 

the procedure for estimating the length of the coastline is easily understood, the calculation of 

the fractal dimension is not so straightforward. The formula d = 1 + In11 would necessarily be 

given to students with no explanation; they would be expected to accept it  at face value and 
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apply it to approximate the fractal dimension of the coastline. For this reason I chose to use the 

second method that Marks describes. 

The box counting method is described in detail in the methodology section of this paper. 

It is not so easily perceived to be a measurement of the length of the coastline, but the resulting 

graph is much easier to interpret. The best line drawn through the data obtained in this fashion 

turns out to have a slope that approximates the fractal dimension directly. Not only is the graph 

more easily understood, but also the resource that I used includes activities leading up to the box 

counting technique that served to introduce students to it  and assisted them in reaching the 

desired conclusions. 

Physics educators appear to be particularly interested in the application of fractal 

geometry to their content area. In The Physics Teacher I learned of how fractals had been 

incorporated into four more physics classes. The Centre for Polymer Studies, Department of 

Physics at Boston University has collaborated with the Science and Mathematics Education 

Centre, School of Education, at the same University to develop some materials for linking 

science education and fractal geometry. 

This consortium has published two articles; the f i s t  is entitled Science Research in the 

Classroom. (Buldyrev, Erickson, Garik, Shore, Stanley, Taylor, Trunfio, & Hickman, 1994) 

The classroom model employed is one whereby the "...high school teacher becomes a mentor 

and the student groups become the research community (p. 41 I)." The authors draw an analogy 

between high school teachers and their students, and research professors and graduate students. 

A mentoring process "...through demonstratirig, scuffolding, and fading. .." is described. 

During the initiation process the students confers frequently with the professor who 

demonstrates the research process ... As students' strengths develop, they assume 

increasing responsibility for both accomplishing the research, and for defining the 

work to be done. The professor, however, continues to monitor the student's 

progress, and provides scaffoldirlg by inte~jecting suggestions at appropriate times. 



Finally, as the student achieves and demonstrates confidence in his~ller own 

expertise, the professor's role as mentor fades, and the new role of colleague emerges 

(p. 412). 

The authors elaborate: "...this process is the new role envisioned for secondary school 

science teachers who use our materials @. 412)." This description reads very much like that 

which Goldenberg proposes for his ideal mathematics curriculum and classroom; it echoes the 

spirit of mathematical experimentation that Mandelbrot has repopularized. Such ideas also 

appear in the NCTM Standards for Teaching Mathenzatics. The difference is that while 

mathematics educators pontificate about such revolutionary ideas, the physics teachers "...are 

currently testing this and other projects with 32 teachers (p. 41 1) ..." 

The project entails students making use of computers and fractal geometry to model 

certain physical processes. In one scenario, students observe a pattern that develops from the 

plating of metals out of a solution. The pattern is then scanned into a computer and the fractal 

dimension of the pattern is calculated by interactive software; the software uses an algorithm 

identical to one of those described in Tim Marks' paper. 

Several salient points are made in the article. "Doing research means moving ahead 

through a sea of ignorance, paying attention to a few essentials, and filling in one's background 

on the fly. We try to provide a similar experience to students." The authors ask and then answer 

the question: "In using our materials does the student become a science researcher? Not 

quite .... We call this role student as investigator (p. 412)." The article closes with the following: 

Most current research is not just interdisciplinary: the discij>lit~e is ir-t-elevunt. That 

is also an important message of our materials. High school physics, chemistry, 

biology, and mathematics teachers also use our materials. Modern science research 

ranges indifferently across all science disciplines; some day our science teaching 

may also lose this disunion (pp. 415 - 416). 

Overcoming Resistance with Fractals (Ching, Erickson, Garik, Hickman, Jordan, 

Schwarzer, & Shore, 1994) is the second paper published by this same group. This article 



29 

details how "...students construct a Sierpinski gasket from resistors and measure its resistance as 

a function of size." The Sierpinski gasket was chosen because "...it has proven a workhorse for 

testing physical theories on fractal geometry. Electrical conductivity, diffusive transport, and 

thermodynamics have all been studied extensively on the gasket (p. 546) ..." 

According to the authors, the understanding of "...materials properties of disordered 

solids is one of the central research themes in modem condensed matter and materials science." 

In this investigation, the Sierpinski gasket is chosen to model a "disordered solid." A fractal is 

chosen as the model because: "Such a study allows the building of physical intuition for the 

behavior of objects with complicated geometry (p. 546)." 

Physics is not my area of expertise, and so much of the article has little meaning for me. 

However, the report concludes with a section entitled "Student Response." In that section, the 

authors report that "...female students played an active role in the construction of the [resistor] 

network." Furthermore, one young lady became particularly engaged in the laboratory exercise, 

despite the fact it had been the authors' experience that "...young women students act primarily 

as recorders of data reported to them by male students (p. 550)." Here, then, is some anecdotal 

evidence supportive of Goldenberg's assertion that the study of fractal geometry could entice 

greater numbers of female students to consider mathematics to be a viable option in their senior 

high school years. 

The Boston University project would appear to be a large, well organized, well thought 

out attempt at cross cumcular studies incorporating fractal geometry. However, there are 

physics teachers who are doing the same on a much smaller scale. A Simple Experinzent that 

Demonstrates Fractal Behavior (KO and Bean, 199 1) and Fractal Bread (Esbenshade, 199 1 )  are 

descriptions of investigations into the dimension of objects that have dimension of between two 

and three. 



KO and Bean show that "...the crumpling of papcr balls exhibits thc conccpt oC a 

nonintegral dimension in a way that is easily done in the classroom or laboratory (p. 79)." Their 

study was conducted during the summer of 1988 in a "Young Scholars Programme" sponsored 

by the National Science Foundation (p. 79). Fractal Bread describes an experiment performed 

by Esbenshade's physics class. His students compressed bread into wads and then calculated the 

dimension of the "fractal bread." He suggests that an application of this concept would be to 

"...compare different complex structures easily and quantitatively (p. 236)." For an an easily 

understood explanation of the mathematics behind these investigations, I refer the reader to 

David Peak and Michael Frame's book entitled Chaos Under Control: The Art and Science of 

Complexity (Peak & Frame, 1994, pp. 96 - 99). 

It is of interest to note that, despite the fact fractal geometry is perceived to be a 

mathematical domain, it would seem to be the science teachers who are taking the lead in 

introducing this topic to students. It is possible that, because of curricular pressures, 

mathematics teachers are reluctant to introduce fractals; since there is insufficient time to do 

justice to the topic, it is ignored completely. Fractal geometry is not, in my opinion, a topic that 

lends itself well to an exploration that is one or two classes in duration. Such a treatment would 

tend to trivialize what is an extremely important area of mathematical research. However, 

despite the reluctance to make use of them, there are many high quality resource materials 

available that are appropriate to the secondary school level. 

The resources 

There are several resources upon which I drew heavily when planning my study unit. 

Fractals for the Classroom Part One: Introduction to Fractals atld Chaos by Peitgen, Jiirgens, 

and Saupe was invaluable. Another source that I found extremely useful was Bernt Wahl's book 

entitled Exploring Fractals on the Macintosh. A volume that I found to be effective in 

communicating the basics of the field was Peak and Frame's Chaos Under Control: The Art and 
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Science of Complexity. All three of these books include many suggestions for implementation 

that are suitable for a variety of secondary school levels. 

Fractals for the Classroom is a thorough examination of fractals and chaos. It consists 

of two textbooks, Volumes 1 and 2; volume 1 focusses on fractal geometry, and volume 2 deals 

more with chaos theory. Each volume is accompanied by a soft cover book entitled Strategic 

Activities. Photocopying of all investigations in the Strategic Activities workbooks is permitted. 

These books include more than enough content and experimentation to occupy an entire course 

on fractals and chaos. 

Although the textbooks are aimed at the senior secondary school student, my feeling is 

that they are somewhat too advanced for most high school aged adolescents. Nevertheless, I 

found the textbooks to be extremely useful for the enhancement of my grounding in the topic. 

In contrast, the Strategic Activities workbooks include worksheets that are suitable for a broad 

spectrum of mathematical sophistication; there are materials contained within these texts that are 

appropriate for any secondary school mathematics class. 

The textbooks are written so that no chapter is necessarily dependent upon the preceding 

one: each can stand on its own and be read independently from the others. This enables the 

classroom teacher to select one or more chapters to be studied without feeling the need to teach 

both books in their entirety. At the conclusion of each chapter there is a "Programme of the 

Chapter." These programmes are written in BASIC and serve to "...highlight one of the most 

prominent experiments of the respective chapter (p. ix). " 

The Strategic Activities workbooks contain investigations that parallel the textbook 

chapters, but again, the teacher is free to pick and choose the investigations that best suit hisher 

needs and time constraints. This flexibility is a very attractive feature given the nature of the 

secondary mathematics curriculum. For the purposes of my study unit I selected several 



worksheets. These included the authors' version of tlic chaos game, an investigation based on 

Pascal's triangle, and a series of four activities which enable students to calculate the fractal 

dimension of a coastline. 

The original concept for Fractals for the Classroom emerged from a series of lectures 

given by one of the authors, Heinz-Otto Peitgen. Through these lectures it was discovered that 

there existed within the mathematics education community a great deal of interest in both fractal 

geometry and chaos. This interest culminated in an agreement between Springer-Verlag and the 

NCTM to cooperate in the production of materials suitable for secondary schools. 

The endorsement and involvement of the NCTM generally implies a progressive 

approach to a topic and Fractals for the Classroom is no exception. There is ample potential for 

exploration incorporating contemporary technologies, including video tape, computers, and 

graphics calculators. Alternatively, if access to such facilites is limited, there are many 

classroom activities intended primarily for student based explorations. With these materials any 

secondary mathematics class can experience as much or as little fractal geometry as the teacher 

sees fit. If one is fortunate enough to have discretionary use of current hardware, there exist 

countless software applications for the study of fractals. 

Exploring Fractals on the Macirltosh is an excellent resource for any teacher who has 

access to a Mac lab. This book is more "readable" for secondary school students than is 

Fractals for the Classroom but, as the title implies, computer hardware is prerequisite. The 

most important advantage of this publication is that included with the book is a programme 

entitled FractaSketch, which is described in more detail in the methodology section of this 

paper. Like the Fractals for the Classr-oom series, there is enough information and investigation 

contained within Exploring Fractals on the Macintosh to occupy an entire course on fractal 

geometry. Since focus of my study unit was a general introduction to fractals, I used only a 
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small portion of Explorirtg Fractals or1 the Mucimsll; chapters one, two, and three were of 

particular use to me. 

Chapters one and two of the book provide an overview of fractal geometry. Chapter one 

is primarily concerned with the many "real life" phenomena that would appear to be closely 

modelled by fractal geometry. Many of these are discussed in chapter one; Wahl's list includes 

phenomena as diverse as river systems, architecture, and music. Chapter two begins with a brief 

history of the field followed by a description of two different types of fractals. Although he 

does not use the terms affine and deterministic, he essentially distinguishes between these two 

categories of fractals. There is a brief discussion of fractal dimension and chaos theory, after 

which the chapter concludes with applications of fractals and chaos in science and technology. 

These chapters comprise an excellent introduction to the topic for anyone who is unfamiliar with 

fractals, making it ideal for most secondary school students. 

Chapter three was, by far, the most useful to me in the development of my study unit. 

This chapter contains detailed instructions on the use of FractaSketch and countless suggestions 

for student (and teacher) exploration using the programme; it would be possible to engage a 

group of students for several days with FractaSketch and this chapter alone. One can easily 

draw simple fractals after a few minutes of experimenting with the programme. However, as 

one gains familiarity with the various features ofFructaSketch, i t  becomes relatively simple to 

draw figures of astonishing complexity. 

Exploring Fractals on the Macintosh and the accompanying software was, perhaps, the 

most valuable resource that I discovered. Based on observations of my students I can say with 

some confidence that, from their perspective, the FractuSkerch explorations were the most 

enjoyable part of the study unit. Even the "underachievers" were genuinely engaged in 

exploration of the programme. One such student remarked that a drawing he created "...looks 

just like an island." Any teacher who is planning an extended exploration of fractal geometry, 
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and has access to a Macintosh lab, should obtain a copy of Exploritrg Fructuls otl thc. Macitltosll. 

This publication not only greatly improved the quality of the study unit, but it also enriched my 

knowledge of fractals and enhanced my teaching of the topic. 

There are other resources that I employed to a lesser extent. One of these is Fractals in 

Your Future by Ron Lewis. Chapters one and two provide a good introduction to fractals. It is 

obvious that Lewis has expended countless hours developing investigations to mitigate the 

discovery of fractal properties. This is another resource that was undoubtedly of more use to me 

in augmenting my personal knowledge than in furnishing student activities. The fractal 

geometry materials contained in the Ministry resource book for Survey Mathematics 12 

provided me with a starting point for some of the ideas in the handouts that I prepared for my 

students. It was this material, and the November 1991 issue of the NCTM's Student Math Notes 

entitled Fracturing our Ideas about Dimension, that initiaily piqued my curiosity in fractal 

geometry. 

Without question, there exist many excellent resources that I have yet to discover; thus, 

the foregoing is not an exhaustive bibliography. Nonetheless, for educators who are interested 

in teaching students the fundamentals of fractal geometry, I feel that I have provided a good 

foundation upon which they can build even better study units. 



Chapter 4 

Cognitive Theories of Knowledge Acquisition 

This chapter deals with some of the cognitive psychological aspects of knowledge 

acquisition. It begins with a brief overview of Piagetian reflective abstraction as it applies to the 

learning of novel mathematical concepts. Following that is a summary of what Ed Dubinsky has 

labelled the alpha, beta, and gamma behaviors exhibited by learners. The chapter concludes 

with a description of how these ideas relate to structural versus operational cognition in a 

mathematical context. 

The way in which students acquire new information is a phenomenon that has received a 

great deal of attention in the education research community. However, despite the attention this 

cognitive activity remains enigmatic. Jean Piaget is "...probably the first and most important 

contributor to the epistemology of mathematics from the point of view of psychology 

(Vergnaud, 1990, p. 15)." Piaget spent a great deal of time and effort defining the process of 

knowledge acquisition and describing the ways in which it can be enhanced. 

Equilibration and reflective abstraction. 

Piaget postulated that a learner's cognitive condition is in a state of dynamic equilibrium. 

Periodically, this equilibrium may be disturbed; such disequilibrating experiences are known as 

perturbations. The learner responds to perturbations by attempting to restore equilibrium 

through a process known as equilibration. The method by which equilibration occurs is a topic 

that has received much attention from educational researchers over the years. 

Equilibration "...is the process by which a knower attempts to understand a given item of 

information by situating that item in the knower's overall cognitive system ...[ and] ... refers to a 

series of cognitive actions performed by a knower seeking to understand cognitive aliments 

(Dubinsky & Lewin, pp. 59 - 60)." The new infonnation is "...integrated by making the 
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appropriate modifications in one or more [pre-existing] cognitive structures (p. 58)." According 

to Piaget, these cognitive structures are known as schemae, or schemes. 

Piaget theorized that all knowledge is organized according to schemes. Perturbations are 

caused by new information that conflicts with, or is not satisfactorily internalized by, pre- 

existing schemes. They are said to consist of three parts: 

1. recognition of a certain situation; 

2. association of a specific activity with that kind of situation, and the; 

3. expectation of a certain result (von Glasersfeld, 1989, page 127). 

Mathematical knowledge is thought to consist of an interconnected collection of schemes 

corresponding to distinct mathematical concepts (Dubinsky, 1989, p. 286). If a learner 

encounters information for which helshe does not have a preconceived scheme, a perturbation in 

hisher equilibrium is said to have occurred. This perturbation sets the stage for equilibration; 

the learner will recognize and respond to the perturbation by constructing a new scheme, or 

modifiying a pre-existing one. 

While this process of construction, or reconstruction, is occurring a learner progresses 

from one mental state to another. In Piagetian terms, this progression is known as a transitional 

state. A transitional state is characterized by "...the experience of previous ideas conflicting with 

new elements (Tall, 1991, p. 9)." Piaget posited that such transitions are facilitated by two 

processes: assimilation and accommodation. Tall describes these processes as follows: 

Piaget uses the term assimilation to describe the process by which an individual 

takes in new data, and accommodation the process by which the individuals' 

cognitive structure must be modified. He sees assimilation and accommodation as 

complimentary (Tall, 1991, p. 9). 

Acording to Dubinsky and Lewin (1986), a learner will apply the concept that is to be 

learned to his/her preexisting schemes. If these structures prove inadequate for assimilation of 

the new concept, then either a particular scheme will be modified, or a completely new scheme 



will be constructed. Once the concept in question is perceived as having been "understood," the 

learner's cognitive system has equilibrated itself and the novel concept is said to have been 

accommodated (Dubinsky & Lewin, 1986, p. 60). Both assimilation and accommodation are 

intended to be employed within the framework of Piagetian scheme theory (von Glasersfeld, 

1989, p. 127). von Glasersfeld has postulated the existence of three main causes of 

perturbations. 

The first source of perturbation is when a subject has recognized a situation as one that 

requires a specific preexisting scheme. However, when that scheme fails to produce the 

expected result, accommodation of the recognition process may occur. The second cause is 

when an existing scheme produces, instead of the usual result, another result that is satisfactory. 

In this case, a new scheme may be constructed that will then be expected to produce the new 

result. Finally, a perturbation may occur when an activity that is associated with a particular 

situation leads to a result that is recognized as the expected outcome of another scheme (von 

Glasersfeld, 1991, p. 101). However, in order for any accommodation to occur a prerequisite 

process known as reflective abstraction must take place. 

Reflective abstraction is "...the situating of infolmation in a cognitive system [that] 

occurs as the knower builds an understanding of the item [of information] (Dubinsky & Lewin, 

1986, p. 55) ..." It is the process whereby old schemes are modified, or new schemes are 

constructed, in order to "understand" novel information. This facet of knowledge acquisition is 

of particular importance for the purposes of this paper because Piagetian theory states that the 

construction aspects of reflective abstraction "...are the most important for the development of 

mathematical thought during adolescence and beyond (Dubinsky, 1991, pp. 95 - 96)." 

Piaget has written that "...the development of cognitive structures is due to reflective 

abstraction (Piaget, 1985, p. 145) ..." and that "...new mathematical constructions proceed by 

reflective abstraction (Beth & Piaget, 1965, p. 205) ..." He identified four different types of 



construction of which reflective abstraction is composed: interiorization, coordination, 

encapsulation, generalization. A fifth aspect, known as reversal, was apparently considered by 

Piaget, but he ultimately deemed it irrelevant to reflective abstraction. Dubinsky believes 

otherwise (Dubinsky, 1991, p. 103). 

Interiorization has occurred when a student has mentally constructed a representation of 

a concept. According to Dubinsky, interiorization is "...the formation of an internal process 

corresponding to some mathematical transformation (Dubinsky, 1989, p. 286)." He cites the 

commutativity of addition as an example of interiorization. A child might discover that addition 

is commutative by counting, reordering and counting again, and repeating this process over and 

over again; the child has interiorized the concept of commutativity when helshe realizes that the 

same result is always obtained (Dubinsky, 1991, p. 100). 

Coordination is a process of composition of two or more schemes to construct a new one 

(Dubinsky, 1989, p. 286). He uses the concept of number to illustrate this process: this concept 

"...is constructed by coordinating the two schemes of classification (construction of a set in 

which the elements are units, indistinguishable from each other) and seriation (which is itself a 

coordination of the various actions of pairing, tripling, etc.) (Dubinsky, 1991, p. 100)" 

Encapsulation is the aspect of reflective abstraction that enables an individual to 

correlate several cognitive structures and project them into a single entity that describes a 

complex concept. Dubinsky and Lewin posit that encapsulation is likely the most important and 

powerful aspect of reflective abstraction (Dubinsky & Lewin, 1986, p. 62). In explaining this 

process they use the Klein-4 group as an example. 

Initially, a student utilizes each of the four operations (identity, negation, reciprocity, and 

correlation) separately. Eventually, helshe may perceive that these four operations compose a 

single structure: the Klein-4 group. It is at this point that encapsulation is said to have occurred 



(Dubinsky and Lewin, 1986, pp. 62-63). In describing this process, Dubinsky paraphruscs 

Piaget: encapsulation involves "...building new forms that bear on previous forms and include 

them as contents." and "...reflective abstractions that draw from more elementary forms the 

elements used to construct new forms (Piaget in Dubinsky, 1 991 , p. 101)." 

Generalization is said to have occurred when a child becomes aware of the wider 

applicability of a given scheme (Dubinsky, 1991, p. 101). To illustrate this idea Dubinsky and 

Lewin cite the example of a child extending the property of commutativity of addition to include 

the same property of multiplication (Dubinsky & Lewin, 1986, p. 62). 

The fifth, and final, facet of reflective abstraction to be considered is known as reversal. 

It is thought to be a method by which a learner constructs a new process which consists of 

reversing the original process; this means that if the learner has successfully assimilated the new 

concept, helshe should be able to make sense of it in the reverse order (Dubinsky, 1991, p. 102). 

An simple example of reversal is the translation of an exponential function to a logarithmic 

function, and vice versa. 

Many high school students experience difficulty with the equality of exponential and 

logarithmic expressions such as y = 2" e log:! y = x ; however, once this obstacle is overcome 

the student's understanding of both logarithms and logarithmic functions is greatly enhanced. 

Reversal, then, is the final of the five cognitive construction activities associated with a 

transitional state. While the process of reflective abstraction is ongoing Dubinsky has identified 

several different behaviors that may or may not be manifested by a learner. 

Dubinsky believes that as a learner who is attempting to "understand" a new concept 

helshe may exhibit alpha, beta, and gamma behaviors . In alpha behavior, the subject may 

believe that helshe has understood the information but, in reality, no reflective abstraction has 
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taken place. Alpha behavior is characterized by a conception of the information that is unstable 

and hence shifting from moment to moment (Dubinsky and Lewin, 1989, p. 63). 

Dubinsky characterizes beta behavior as that which is exhibited when the learner has 

successfully integrated the concept into hisher repertoire of mathematical schemes: reflective 

abstraction has taken place. He writes that beta behavior is the "...paradigm case of successful 

learning (Dubinsky & Lewin, 1986, p. 64)." Gamma behavior is exhibited by a subject that 

possesses a cognitive system that is "...sufficiently rich to integrate the novel [information] 

without constructing new cognitive structures. Nonetheless, reflective abstraction occurs as the 

new aliment induces the existing system of concepts to accommodate it through extending itself 

(Dubinsky & Lewin, 1986, p. 65)." 

Based on the above descriptions of alpha, beta, and gamma behavior it has been my 

experience that most students display a great deal of alpha behavior. It seems that there are 

always a few that assimilate and accommodate very quickly; however, it is rarely that one 

encounters a student that possesses sufficient mathematical sophistication to manifest gamma 

behavior. According to cognitive psychologists, these few are able to quickly make the 

transition from an operative mode of knowing to a figurative one. 

Operational versus structural cognition. 

It is thought by most influential researchers that mathematics students must construct 

their knowledge. Much of their argument is based on Piagetian theory; to many educators, 

Piaget was the pioneer constructivist. Among his many contributions to cognitive psychology 

includes the distinction between two different modes of mathematical thinking: figurative and 

operative. These two types of thinking are very closely tied to his notion of reflective 

abstraction. 

The essential character of mental life is its close connection with our actions, 

and intelligence itself must be conceived as a system of operations, that is to 



say, interiorized actions, made reversible and coordinated in the form of 

'operational structures' ... if we call this aspect of consciousness which relates 

to actions and operations 'operational' there also exists a 'figural' aspect, that 

is to say relative to the perceptible configurations (for example, perception 

and the mental image) (Beth and Piaget, 1966, page 156). 

As is the case with many Piagetian ideas these have, over the years, been analyzed, 

modified, and refined by countless researchers. The duality of operative and figurative thinking 

have thus been redefined in different but analagous ways by these researchers. One way in 

which this has been done is to rethink figurative cognition as "structural," and operative 

cognition as "operational." 

Similar dualities exists under many different names. Skemp (1976) describes relational 

versus instrumental understanding, and Hiebert and Lefevre (1986) distinguish between 

conceptual and procedural knowledge The terms operational and structural appear to have been 

coined by Sfard (1991). In the case of mathematics, the difference between the two modes of 

thinking is epistemological. Operational thinking encompasses the algorithmic, process 

oriented, aspect of mathematics. Students who perceive math to be nothing more than a litany 

of rules to be memorized and invoked when appropriate would be said to have a strictly 

operational understanding of the discipline. 

Although, historically, operational thinking has been considered inferior to structural, it 

need not necessarily be considered as such; many students who are extremely proficient at 

mathematics work solely on an operational basis. Indeed, Sfard suggests that there are 

comparatively few that can operate mathematically on a structural level. She writes: "...the 

structural conception is very difficult to attain (that is probably why some people feel, intuitively 

of course, that the special ability to develop a structural conception is what distinguishes 

mathematicians from 'mere mortals')." (1 99 1, pp. 9 - 10) 



Structural thought implies a deeper understanding of mathematical ideas; a student who 

is able to see a concept as an object, and who can mentally manipulate that object, would be 

considered to possess a structural understanding of that concept. While many see operational 

versus structural knowledge as a dichotomy, Sfard perceives the two to be complimentary. She 

argues that "...we have good reasons to expect that in the process of concept formation, 

operational conceptions would precede the structural." and continues "...the operational and 

structural elements cannot be separated from each other (Sfard, 1991, p. 1 I)." In other words, 

"...the same representation, the same mathematical concepts may sometimes be interpreted as 

processes and at other times as objects (Sfard, 1994, p. 193) ...." 

Sfard believes that all mathematical thought has, historically, developed in an 

operational way, followed by a deeper structural understanding when a given concept has 

received sufficient study. She cautions, however, that: "...one should be careful not to make 

automatic projections from history to psychology. After all, the deliberately guided process of 

reconstruction may not follow the meandering path of those who were the first travellers through 

untrodden area (1994, p. 195)." 

Despite this proviso Sfard argues that since this is the way in which all mathematics has 

evolved, it is likely that mathematical development in the individual would follow a similar 

pattern. She suggests the existence of three stages in concept development: interiorization, 

condensation, and reification (Sfard, 1991, p. 18). 

Sfard's connotation of interiorization is similar to that of Piaget's; during this phase 

"...the learner gets acquainted with the process which will eventually give rise to a new 

concept ...[ and] ... a process has been interiorized if it can be carried out through mental 

representations, and in order to be considered, analyzed, and compared it needs no longer be 

actually performed (Sfard, 1991, p. 18)." For example, junior secondary school students are 

taught a specific algorithm that is used to solve linear equations in one variable. For many 
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students, by the end.of grade 9 mathematics they need not actually perform the steps of 

transposing terms from one side of the equality sign to the other; at this point the process is said 

to have been interiorized. Once interiorization has been achieved the learner is ready to proceed 

to the condensation phase. 

Sfard writes: "Condensation is a period of squeezing lengthy sequences of operations 

into more manageable units. At this stage a person becomes more and more capable of thinking 

about a given process as a whole ... This is the point at which a new concept is born." She 

elaborates: "Thanks to condensation, combining the process with other processes, making 

comparisons, and generalizing become much easier (Sfard, 199 1, p. 19)." This idea appears to 

me to be a synthesis of the Piagetian ideas of coordination and generalization. 

The condensation phase of concept development may be quite lengthy; it seems likely 

that with much of the curriculum, many senior secondary mathematics students get no further 

than condensation. "The condensation phase lasts as long as a new entity remains tightly 

connected to a certain process. Only when a person becomes capable of conceiving the notion 

as a full fledged object, we shall say that the object has been reified (Sfard, 1991, p. 19)." Once 

a student has reached this stage of concept development helshe is capable of shifting the focus of 

hislher problem solving activity as the situation dictates. "The problem solver oscillates 

between the operational and structural approach, and between one structural interpretation and 

another. "It is this flexibility of perspective that distinguishes a student who is learning a 

concept from one who truly 'understands' (Sfard, 1994, p. 202)." 

It seems to be generally accepted that reflective abstraction is a crucial aspect of 

knowledge acquisition. Although Sfard's analysis has a somewhat different perspective it is still 

based on Piagetian theory and, as such, is not in strict disagreement with Dubinsky's position. 

Based on my cursory analysis of these complex processes, it appears to me that their perceptions 

are complimentary; reflective abstraction is a requisite step in the progression from operative to 
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structural thinking. It is of interest to note that both resexchers suggest the use of computers to 

assist students in their construction of mathematical concepts (Sfard, 1994, p. 224 and 

Dubinsky, 1991, p. 123). This observation bodes well for my Survey Mathematics students and 

their study of fractal geometry. 



Chapter 5 

Methodology 

What follows is a description of the methodology employed in the study. The first 

section is intended to provide an overall context for the study. The school setting, the students 

involved, the course in which the study took place, and the researcher are described. The second 

section is a detailed account of the pedagogy employed in the instructional unit. This is 

followed by a summary of the difficulties encountered in the implementation of the study unit. 

The chapter concludes with a section that addresses data collection. 

The Context. 

The School. 

The study was carried out at a school that I wil call Burnaby West Secondary School. 

Like most Burnaby secondary schools, Burnaby West is on a linear timetable; a teacher will 

meet a given class for 77 minutes on alternate days. The student demographics are typical of 

those found in many suburban British Columbia high schools. The school population is 

approximately 40% Caucasian and 60% Asian. Many students are learning disabled to some 

degree, and we have the requisite number of underachieving and/or under motivated students. 

The researcher and the course. 

The students involved in this study were enrolled in Survey Mathematics 12. This 

course is particularly appropriate for the following reasons: (1) The intent of the course is to 

broaden students' mathematical horizons through the inclusion of non-traditional topics. For 

example, the curriculum contains matrices, graph theory, and the "mathematics of finance" to 

name a few. (2) There is no government examination, and thus there is little or no curricular 

pressure. (3) The majority of students enrolled in the course intend to pursue their education at 

some post-secondary institution. As I am the sole teacher of the course in our school, my role in 

the study was that of teacherlresearcher. 



My experience as a mathematics teacher spans fourteen years. Prior to undertaking the 

master's programme at Simon Fraser University, I had a B.Sc. from the University of Alberta 

and a teaching certificate obtained via the Professional Development Programme at Simon 

Fraser. Combining the roles of full time teacher and part time researcher was challenging; each 

one is extremely time consuming. The greatest challenge was making the time to be effective at 

both. 

This paper describes a portion of my fifth experience in teaching Survey Mathematics 

12. I have enjoyed teaching this particular course a great deal and for several reasons. Because 

there is no cumcular pressure, both students and teacher are allowed the freedom to pursue 

topics in as little or as much detail as they choose. Another aspect of the course that I find to be 

of value is that it does more to enhance divergent thinking in students than any other high school 

mathematics course offered in British Columbia. Furthermore, several ex-students who have 

completed the course and subsequently returned to visit have informed me that Survey math has 

been of more use to them in their university studies than has Mathematics 12. Finally, as it 

attracts both academically and non-academically inclined students, there invariably exists an 

interesting classroom dynamic. It is unfortunate that the Ministry has decreed that the course 

will be offered for the final time in the 1996-97 school year. 

In other provinces Survey Mathematics 12 is, more appropriately, called Finite 

Mathematics. The misnomer, and the fact the course is not provincially examinable, tends to 

attract a wide variety of students. Many enroll in the course with an eye to obtaining an easy 

University entrance credit; these young adults are generally extremely disappointed with the 

level of mathematics studied and the amount of work required. As a rule they are not interested 

in mathematics and are not particularly good students. I mention this because I think that the 

feedback obtained from these students could be valuable in  my research; it should be useful to 

analyze the perceptions and conceptualizations of students who are somewhat apathetic toward 

mathematics. 



The partici~ants. 

Survey Mathematics thus provides me with students possessing a wide spectrum of 

mathematical aptitudes and attitudes. Another aspect that makes the course ideal for my 

purposes is that fractal geometry is included in the cumculum as an optional topic and so a 

teacher is fully justified in exploring the subject in greater depth. 

Fourteen students were enrolled in the course at the time the study began. Three of the 

fourteen were Caucasian and the remainder were Oriental. Of the fourteen, three were seriously 

underachieving students. Although these three were scheduled for interviews none of them 

appeared for their scheduled appointments; indeed, none of them has appeared in class since 

prior to the conclusion of the study unit. One additional student joined the class about half way 

through the study unit but because of his late arrival, he was not interviewed. 

As a result I have interview data for eleven students. Eight of the eleven interviewees 

were also enrolled in Mathematics 12, and two of the eleven were taking Advanced Placement 

(A.P.) Calculus. Of these eleven, several were English as a second language (E.S.L.) students. 

The interviews for these proved very difficult for both the students and for me. Subsequent 

transcription of the data was equally as difficult. 

Since I was new to the school in September, I had no previous experience with any of the 

students in the class. Because I was new, my rapport with the class was not as open and familiar 

as I would have liked it to be. Over the years I have developed a style that, with most classes, 

works quite well for me; I like to keep the classroom relaxed and infoimal. It is my feeling that 

it is more comfortable for all concerned if I am able to maintain such an atmosphere. However, 

if pushed by uncooperative students, I can also play the authoritarian game. Unfortunately, two 

students in the class did not respond well to my teaching style. As a result, the tone in the 
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classroom was strained too frequcntly for my tastc. Whcn wc began the fractal gco~lictry study 

unit, I had been teaching the class for approximately two months. 

My initial question was "How many of you have ever heard of fractal geometry?" None 

of the students answered in the affirmative. In retrospect I have no doubt that the students were 

feeling some apprehension. Most of the participants are expecting to attend some post 

secondary institution and so they are justifiably concerned with achievement in their classes. 

Now they were not only being exposed to a new teacher, but this person also expected them to 

learn a topic with which they were completely unfamiliar. 

The study unit spanned a period of approximately six weeks. During that time I became 

much more familiar with my students, and by the end of the unit I was on good terms with 

everyone who attended the class regularly. 

Software. 

In order for students to study fractals effectively, they must have access to appropriate 

hardware and software. I was able to locate two programmes that were useful in facilitating 

students' understanding of some of the basic concepts. These programmes have several 

functions. They expedite the drawing of the figures and provide a visual display of the recursive 

process. One of the two also assists in the understanding of the self-similarity dimension. 

The first programme that students used is called Fract-0-Graph. It is included with the 

Survey Mathematics 12 resource package that is available from the Ministry. 

In addition to Fract-0-Graph, I discovered a programme called FractaSketch. It is an excellent 

programme that is included with Bernt Wahl's book entitled Exploring Fractals with the 

Macintosh. This programme was perfect for the purposes of my research; it is easy to use and 

has the capability to generate simple and complex fractal images. The publisher Addison 

Wesley was lund enough to give me permission to use the programme in my research. 



With the assistance of these two programmes, students were able to draw simple fractals 

very quickly. I had the students begin with Fract-0-Graph because i t  is easier to use. 

Furthermore, FractaSketch has some more advanced features that require slightly greater 

knowledge on the part of the user. 

There are at least three distinct advantages to using FractaSketch. Although it is more 

difficult to use, it yields more a accurate drawing of the desired fractal and allows a greater 

freedom in the types of fractals that one is able to draw. This is because with Fract-0-Graph, 

the angles that one is allowed to use are predetermined; with FrucraSkerch, the user specifies the 

angles contained in the drawing. 

Once the user has completed hisher sketch of the generator, helshe double-clicks the 

mouse and FractaSketch automatically switches to a screen in  which the generator may be 

redrawn to as many iterations as the user desires. The programme automatically calculates and 

displays the fractal dimension of the diagram in the upper right comer of this screen. This 

feature was extremely useful to students in completing one of the required assignments. 

A third advantage to using FractaSketch is that included with the programme is a folder 

containing many predrawn fractals that very closely imitate naturally occurring structures. 

Users are able to see how a very simple line drawing that initially consists of perhaps three or 

four line segments can very quickly become a fern leaf or a tree. Many students used the 

programme to draw realistic looking trees of their own creation. 

A third source of software was provided by an Ontario high school teacher named Ron 

Lewis who has written a textbook that he uses in teaching an entire course on fractals and chaos. 

He included with his textbook a disk that contains several programmes, some of which Mr. 

Lewis obtained from the Internet; all are available as freeware. 



These programmes are written for IBM compatible machines; however, the IBM 

computers in the lab at our school have insufficient memory to run the software. Fortunately we 

have, in the mathematics department, an IBM 486 that is equipped with a liquid crystal overhead 

projector display. Access to this equipment made the programmes very useful for demonstration 

purposes. 

The disk contains, among other things, generators for the Koch and Dragon curves. The 

software allows one to begin generating a fractal with a straight line and progress to as many 

iterations of the curve as is desired. It is very fast, even at relatively high levels of iteration. 

The programme and the computer were extremely effective tools in demonstrating the concept 

of self-similarity. 

The Studv Unit. 

The ob-iectives. 

The study unit is of my own design. I attempted to focus on five effective behavioral 

objectives. It was hoped that the students would acquire the ability to: (1) describe the 

characteristics of a fractal; (2) sketch simple fractal structures; (3) recognize and define self- 

similarity; (4) manipulate the self-similarity dimension and apply i t  to various fractal structures 

under differing conditions, and; ( 5 )  compare and contrast the properties of fractal structures with 

those of some naturally occurring phenomena. 

Two additional objectives that I hoped to achieve were affective in nature. The primary 

one was that students be provided with a different lens with which to view mathematics. The 

second was to take this new lens, and use it in combination with ob-jective ( 5 )  to decide for 

themselves if they believe that fractal geometry is indeed the geometly of nature. 



Contained within these broad parameters are other, more specific, behavioral objectives 

that varied from lesson to lesson. To aid the students in achieving these objectives it was my 

task to gather the appropriate resources. 

In order to assist students in using the software that I had found, and to facilitate their 

study of the required concepts, I prepared a series of six handouts. I will be referring to these 

handouts from time to time throughout my description of the methodology. They are included 

in their entirety in appendix B. 

The slide show. 

We began with a slide show that I had prepared. Some of these slides are included with 

Fractals for the Classroom Part One: At1 Iiitroductiotl to Fractals atzd Chaos. The remainder 

were photographed from colour plates contained within the same book. 

There were eighteen slides that consisted of photographs of various naturally occurring 

phenomena juxtaposed with fractal "forgeries." Some of the "forgeries" are quite realistic and 

most of the students were convinced that they were looking at pictures of real landscapes. When 

it was revealed that many of the slides were photographs of fractals, students seemed to warm up 

to the topic. Following the slide show, I briefly mentioned some of the pioneers of the field and 

began an informal description of self-similarity. 

I introduced the concept by using some of the slides that we had viewed. I attempted to 

point out that several of the images they had seen appeared to have bits and pieces that recurred 

again and again at differing levels of magnification. Of course this was difficult given the 

limited resolution of the slides and the projector; however, I was confident that I had available to 

me the tools required to give the students a clear idea of what is meant by self-similarity. 



The Chaos Game. 

To conclude the first class the students engaged in the "Chaos Game." 'My rationale for 

inclusion of this activity was that I hoped i t  would help them begin to establish a link between 

chaos theory and fractal geometry. 

This activity is not so much a game as it is a mathematical exercise, albeit a tedious one. 

The students were given a diagram of an equilateral triangle consisting of only three points: one 

at each vertex, labelled T, L, and R. They chose an arbitrary point within the triangle, and then 

rolled a die that I had provided. After each roll of the die they plotted a new point. If the die 

showed either a 1 or a 2, they "moved" their point half the distance to vertex L. If a 3 or a 4 was 

rolled, they "moved" their point half the distance to vertex T. Finally, if the die came up either 5 

or 6, they translated the point half the distance to vertex R. 

The students "played" the game for no longer than twenty minutes at a time so that they 

did not become bored with the task. They were given six opportunities to "play" the game. In 

order to maintain their interest, I informed them that their output of the game would be graded. 

Furthermore, students were told that I would be able to tell if they had played the "game" 

properly because I knew how the result should appear and they did not. This seemed to be 

enough incentive to keep most of them on task. 

Simple Fractal Structures. 

Next the students were exposed to some simple fractal structures. (See the appendix for 

Introduction to Fractal Geometry: Handout # I .  This handout includes a list of structures 

studied.) We began with constructions like the Koch curve. 

Initially the students were expected to draw the first few iterations using pencil, ruler, 

and squared paper. My rationale for having them pelform this exercise was to give them some 

sense of the complexity of these seemingly simple figures; what begins as a small number of 



line segments very quickly becomes exlre~nely difficult and ~inic co~isu~iiing lo draw. 11 is my 

feeling that students cannot appreciate this complexity by watching a computer draw the 

structure. 

After having allowed the students some time to draw their sketches, I made use of an 

IBM 486 that belongs to the math department. The IBM is equipped with a liquid crystal 

display for an overhead projector. This allowed me to project images of several different 

fractals and point out exactly what is meant by self-similarity. 

The self-similaritv dimension. 

Next we began a more formal discussion of self-similarity , In order to apply the self- 

similarity dimension, students required a basic knowledge of logarithms. Many of my Survey 

Math 12 students who were also enrolled in Math 12 were comfortable with the required 

concepts. For those that were not I kept the explanation simple. The requisite knowledge was 

that they have the ability to solve simple exponential equations such as 3)' = 5. We discussed 

how this may be solved by taking the logarithm of both sides of the equation: 
3" = 5  

log3" = log 5 

12 log 3 = log 5 

log 5 n=- 
log 3 

Since this was the only knowledge of logarithms that was required I did not go into any greater 

depth. The next activity in which the students were engaged involved the calculation of the self- 

similarity dimension for the simple fractal structures that we had studied up to that point. 

Technolo~icallv based activities. 

In total, about twenty hours of class time were spent studying fractal geometry. Of these 

twenty, computer lab time comprised approximately six hours. This total includes a two hour 



session in which the class was engaged in using software in the Workshop for Computcr Aidcd 

Tutoring in Mathematics (WCAT) lab at Simon Fraser University (SFU). Ideally, we could 

have made use of more lab time, but logistical problems made it almost impossible for us to gain 

more access to the computer facilities at Burnaby West. 

After the students had become more familiar with some of the classic curves, we went to 

the Mac lab and the students made use of Fract-0-Graph. As they progressed through the study 

unit, the primary use of lab time evolved into an opportunity for them to explore the software 

and to sketch the fractals they had been studying. In this application, the age of the hardware 

worked in the students' favour. Because the machines are so slow, they could watch as each 

subsequent iteration of a fractal was drawn, thus enabling them to see how the structures grow 

and become more complex. 

On our first trip to the lab, the class was expected to use both the first and second 

handouts that I had prepared. On these handouts were diagrams of simple fractals that they 

could "draw" using the computers. I had intended to give students a brief explanation on how to 

use Fract-0-Graph; as it turned out they required no instruction whatsoever on the use of the 

programme. After some preliminary exploration, they quite quickly became proficient at 

drawing the figures. 

On another trip to the lab I provided students with 1tltr.oductiotl to Fractal Geontetty: 

Handout #4 and a new programme: FractaSketch. The handout contained several suggestions 

for implementation of the programme, but I noticed that most students went about it in their own 

way. Many of them were struck by the realistic looking "trees" that could be generated and 

spent a great deal of time trying to make their diagrams more natural in appearance. Figure 5.1 

shows several iterations of a fractal "tree" as drawn by FractaSketch. Once again, more 

computer time would have been useful. In order to fully explore the potential of the 

FractaSketch one requires considerably longer than two hours exposure to the programme. 





Classroom activities. 

Since unlimited access to the computer lab was not feasible, I required a number of 

student activities that were not computer based. Fortunately, we were able to employ several 

relevant exercises that I had located. 

After having allowed considerable time for students to explore some of the basic 

structures, my instruction returned to a more mathematical side of the discipline. In order that 

the students gain more familiarity with the self-similarity dimension, I provided them with a list 

of fractal generators and the dimensions of the resulting fractals. They were then expected to 

use trigonometry to calculate the angles required to sketch the curves (see Introdirction to 

Fractal Geometry: Handout #3). 

The level of trigonometry required included application of simple trigonometric ratios 

and, for the more complex structures, use of the sine and cosine laws. Students had some 

limited access to the computer hardware and software while working on the assignment; several 

of the them made use of FroctaSketch to check their solutions to the problems. They did so by 

sketching a generator using their calculated angles and then making note of the fractal 

dimension of the resulting figure. This was done with no prompting on my part. 

More fractal structures. 

Pascal's triangle contains within i t  some surprising patterns. We spent a few minutes at 

the beginning of one class generating the numbers in the triangle. The students were then split 

into groups and each group was given a large scale copy of the triangle completed up to the 

twenty fifth row. Different groups were then asked to shade different parts of the triangle. One 

group was to shade the even numbers, another was asked to shade all multiples of three, a third 

group was to shade the multiples of four, and a fourth group shaded the multiples of five. The 

resulting diagrams were then compared and contrasted. Many of the students were rather 
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surprised at the outcome of the exercise. Although each diagram turns out slightly differently, 

they are eerily alike, and are definitely self-similar. 

I used this activity as a springboard to introduce one of the more widely recognized 

fractals: the Sierpinsky gasket Cfigure 5.1). We calculated the self-similarity dimension of it 

and some similar structures. At the conclusion of this particular class students again "played" 

the chaos game. It was at that point that several of the students concluded that the "game" 

would result in a Sierpinsky gasket. 

figure 5.2 

The first two ileralions of Ihe Sicrpinski gaskcl 

stage 0 stage 1 stage 2 

A second look at the Koch curve. 

Other concepts investigated without the use of a computer included the perimeter of the 

Koch curve and the area contained under the curve. These were revelations of sorts for many 

students. It seemed counterintuitive that a figure that spans a finite distance could have an 

infinite perimeter. The explanation of the area contained under the curve provided even more 

confusion. Although many of the students were confounded by the explanation, there were 

equally as many that were able to comprehend it. Those that did were confronted with yet 

another paradox; here was a figure that contained a finite area, but had infinite perimeter. If one 

was so inclined, one might choose to believe that this paradox could be applied to model the 

geometry of an island. 



The investigations. 

In The Fractal Geometry of Nahrr-e Benoit Mandelbrot asks "How long is th le coastline of 

England?" In answering the question he posits that the length of the coastline is dependent upon 

the level of accuracy with which it is measured. Mandelbrot believes that the smaller the unit of 

measurement, the longer the coastline becomes. If students are adequately prepared, they can 

see how a coastline might be considered a fractal; i t  contains a finite area, and the perimeter 

could well be infinite. The final set of investigations that I used are designed to guide students 

to just such a conclusion. 

These investigations are contained in the workbook entitled Strategic Activities for the 

Classroom Volume One that accompanies Fractals for- the Classroom Part I .  (The four 

investigations that I used are contained in the appendix.) Investigations 3.3, 3.4, and 3.6 were 

photocopied and used exactly as they are published. I modified investigation 3.7 to make it 

seem less contrived and to give it a more "local" flavour. 

Investigation 3.3: Curve fitting. 

The first activity in the set requires that students graph three tables of values in three 

different ways: on standard graph paper, on semi-logarithmic paper, and on double logarithmic 

paper. The first set of data represents the distance travelled by an automobile that is moving at a 

fixed velocity. The second relation depicts how world population has changed in the past 350 

years. The final data set displays the relationship between the elapsed time and distance 

travelled by a free falling skydiver. The objective of this exercise is to show students that 

different types of functions have characteristically shaped graphs and that the shapes of those 

graphs can be altered by changing the scale used in the plot. 

The relationship between elapsed time and distance travelled by the automobile is linear 

and its graph demonstrates that fact on standard graph paper. When world population is plotted 
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versus time, the exponential nature of the curve is shown clearly on standard graph paper; when 

plotted on semi-logarithmic paper, the curve is "straightened out." When a distance versus time 

plot is carried out on the skydiver data the curve does not "straighten out" unless it is graphed on 

double logarithmic paper, indicating that there is a power relationship between the two variables. 

There are questions at the conclusion of the activity that are intended to guide the student to 

these conclusions. 

Investi~ation 3.4: Curve fitting using logs. 

This investigation is designed to illustrate exactly why exponential and power functions 

are "straightened out" by semi-log and double log paper. Students again graph linear, 

exponential, and power functions, but this time the relations are given by equations rather than 

data tables, and the students are required to supply a table of values for each function. Once 

again, there are questions at the end of the investigation that are designed to lead the students to 

the required conclusions. 

Investigation 3.6: Box Dimension. 

The thud activity is, conceptually, the crucial one. In this activity there are three shapes 

that are superimposed onto square grids: a sine wave, a darkened circle (the authors call it a 

"black hole"), and a wildly irregular graph of a "function." The shapes are printed on grids of 

six scales varying from relatively large to relatively small. Students were expected to count the 

number of boxes that contain any portion of each shape. The results of these counts were 

tabulated and graphed on the three different types of graph paper. 

Students were to deduce from the graphs the relationship that exists between the grid size 

and the boxcount: linear, exponential, or power. The graphs of the data tables were curves on 

both standard and semi-logarithmic graph paper. Most of the class was readily able to determine 

that it was a power function, as the graphical representation of the data tables "straightened out" 

only when plotted on double logarithmic paper. 
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Next, they were asked to calculate the slope of the resulting linear graphs. Most students 

obtained slope values of slightly less than 1 for the graph of the data obtained from the sine 

wave, just under 2 for the "black hole" data, and approximately 1.8 for the "function." From this 

it was hoped they would infer that the slope of the line is equal to the dimension of the figure. 

It should be pointed out that through the duration of the graphing activities I provided 

very little input. In fact, I was asked several times how these investigations were related to 

fractal geometry. My reticence was intentional; I did not want to prejudice the students' thinking 

by making any suggestions regarding the direction the investigations were taking. The students 

were working in pairs and, generally, were able to assist one another when required. At this 

point in the study, I felt that it was more appropriate to restrict my role to that of a guide or 

"coach" in the hope that they would reach the desired conclusions with minimal assistance from 

me. 

Investigation 3.7: Box Dimension and coastlines. 

The final investigation involved the same sort of exercise as the preceding the one, 

except that I substituted a map of the Queen Charlotte Islands for the three figures that were 

analyzed in Investigation 3.6. 

Using a computer I generated grids that were approximately the same scale as those 

employed in the preceding exercises. I then photocopied them onto overhead projector sheets so 

that they could be placed over the maps. Students were to count the number of boxes that 

contained any portion of the coastlines of the Graham and Moresby Islands. Averaging'class 

data and graphing it on double logarithmic paper rendered a linear graph with a slope of 

approximately 1.3. From this it  was hoped that the students would conclude that the coastlines 

of the islands have a fractal dimension. 



It was with these last two activities that students encountered the most difficulty 

intellectually. Most of them were unable to make the connection between the slope of the line 

and the dimension of the object. The nature of the investigation makes it virtually impossible to 

calculate whole number dimensions for the sine wave and the "black hole"; when I (very 

carefully!) performed the investigations myself the values at which I arrived were close to the 

actual dimensions. However, they were not close enough to allow students to make the desired 

leap of insight. The observed discrepancy is due to the fact a limiting process is invoked; the 

box counting process becomes accurate only when an infinitely small grid is used in the 

procedure. 

A field trip. 

One of our final fractal excursions consisted of a field trip to the WCAT computer lab at 

SFU. Dr. John Hebron kindly consented to be our guide in a journey through the considerable 

amount of fractal software that is on file in the lab. He did an outstanding job of leading the 

students through many applications that truly demonstrated the beauty and wonder of fractal 

geometry. It was an excellent opportunity for the students to work with some state of the art 

hardware and some sophisticated software. 

We were in the lab for approximately two hours, and John spent no longer than fifteen 

minutes on any one programme. As a result, the students had no opportunity to get bored with a 

given application. For many of them this trip crystallized the concept of self-similarity and 

provided them with further evidence that, just perhaps, fractal geometry is the geometry of 

nature. 

Tying things together. 

Subsequent to the field trip there remained only two classes in which to tie up loose ends 

and test the students on what they had retained. During one of the final classes I returned to the 

IBM 486 and the software that I had obtained from Ron Lewis. 



The disk contains a file which will sketch several fractals, including a Koch Island. The 

Koch Island is very similar to the Koch curve; instead of beginning with a straight line, it begins 

with an equilateral triangle and a Koch curve is constructed on each side of the triangle. As one 

reaches higher stages of the "island" the perimeter is obviously increasing, while the area 

contained within the structure remains, for all intents and purposes, constant. My intent was to 

use this as a model for the geometry of a real island. 

Another fractal that the programme will draw results in a familiar figure: the Sierpinsky 

gasket. Early stages of the fractal bear no resemblance whatsoever to the gasket. However, as 

one attains higher stages the structure becomes strikingly obvious. It was following this 

demonstration that I employed the students' output of the Chaos game. 

The students played the game in pairs on clear acetate overhead projector sheets. A total 

of six pairs of students played the game, and I included a transparency that I had prepared 

myself. When the sheets were stacked on top of one another and projected onto the screen, the 

results were hardly perfect, but they resembled a Sierpinsky gasket closely enough that many 

students were mystified and intrigued. I then projected a computer generated Chaos "game" that 

plots the points so quickly they could witness the gasket materialize in front of their eyes. 

The final concept discussed in class was the difference between deterministic and affine 

self-similarity. A fractal that is exactly identical at any level of magnification is said to exhibit 

deterministic self-similarity. The Dragon and Koch curves are examples of such structures. On 

the other hand, a fractal that displays affine self-similarity does not consist of selfsame copies of 

itself at increasing levels of magnification. Rather, when one "zooms in" on an affine fractal, 

the component fragments of the "curve" appear to be u p p r - ~ . ~ i t u t f y  the same. Examples of 

affine fractals include coastlines, silhouettes of mountain ranges, and riverbeds. Like 

deterministic fractals, however, affine curves are said to have infinite length. 



Implementation difficulties. 

The greatest difficulties in implementation of the study unit were logistic and 

technological in nature. My primary difficulty was gaining access to the lab. As is the case at 

most schools, computer lab time at Burnaby West is in demand. The business education, 

humanities, and computer studies courses have priority access to the labs; the mathematics 

department is forced to take whatever time is left over. I had to be very persistent in my efforts 

in order to secure any lab time at all. Furthermore, gaining access to the lab was no guarantee of 

a successful experience once we were there. 

It would be an understatement to say that the computer facilities at our school are 

somewhat dated. There are three computer labs: one containing IBMs , another with 

Commodore machines, and a third lab that has Macintosh computers. Each facility has an 

ample number of workstations, but none of the three labs is capable of running much of the 

current software; the hardware is simply too old. The IBM lab is the most technologically 

"advanced," but I could not find software suitable for my purposes that was IBM compatible. 

To complicate matters further, any relevant IBM software that I was able to locate would not run 

on our machines because there is insufficient memory available. As a result, Iwas forced to use 

our Macintosh lab. 

Unfortunately, our Mac lab is a working museum. It consists of twenty seven Macintosh 

Plus computers that are a minimum of eight years old. They so obsolete that one day I 

discovered, much to my dismay, that they will not read high density disks. Even the age of the 

hardware was not the greatest challenge. The network is so tenuous that even the slightest 

disturbance can cause it to crash. As a result of this, and other unknown bugs in the system, at 

any given moment one or more computers may freeze, and/or students may not be able to print 

their work. 
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A further difficulty we experienced was that not only was our computer time limited, but 

it was also fragmented. We were allowed access for one class per week if scheduling was 

fortuitous. If it happened that the network would not cooperate on that particular day we were 

out of luck until the next time that I was able to secure lab time. There was some improvement 

in this situation toward the conclusion of the study unit; we were able to access the lab at my 

discretion because the computer studies teacher had grown frustrated and abandoned it 

altogether. 

Despite these problems, I am confident that most students had a worthwhile experience 

with the software that I was able to locate. I believe that their computer time assisted them in 

their acquisition and assimilation of the concepts presented. Another objective that was met by 

the lab time was that we were able to take the mathematics class out of the mathematics 

classroom and introduce to the discipline a measure of investigation and discovery. 

Data Collection. 

The data to be analyzed in this study come from two primary sources: student work and 

student interviews. The participants were informed prior to the beginning of the study that all 

assigned work would be collected and analyzed. Such work included quizzes, the unit test, 

written reports of all investigations, output from the chaos game, homework assignments, and 

computer printouts of fractals generated during lab time. The quizzes, tests, and written reports 

were immediately graded and returned to the students. These, along with the other information, 

were to be included in a fractal notebook that would be collected subsequent to the completion 

of the study unit. I also encouraged students to keep a written record of any thoughts regarding 

and/or impressions of the content, and scope and sequence of the study unit. 

Formal instruction was completed on a Thursday afternoon. Class time on the following 

Monday was occupied by tying up some loose ends, and review of the study unit. On 



Wednesday afternoon we travelled to SFU for our field trip, and on Friday students wrote the 

unit test. 

Clinical, semi-structured interviews were administered to the students in the class. The 

interviews were, on average, approximately 45 minutes in duration and were conducted during 

the week of the review, field trip, and unit test. The students were scheduled to appear for their 

interviews in one of three daily time slots: before school, at lunch, or after school. With the 

exception of three who failed to show, my students were extremely cooperative; I was impressed 

with the willingess demonstrated in giving up their free time to participate in the process. 

Several students were interviewed prior to both the field trip and the unit test. These 

interviews would undoubtedly have been more successful had the students involved been 

exposed to both experiences. There was, without question, some crucial review and illustration 

of concepts during the field trip; hopefully, the same occurred during test preparation. 

My primary objective for the interview was to determine how (and if) the concepts 

discussed in class had been internalized and assimilated. The audio tapes of the interviews have 

been compared and contrasted with the written work that the students submitted so that it may 

be possible to determine how the students' understanding of the topic progressed. 

The interviews were structured in accordance with the following list of questions: 

1. What does the word "dimension" mean to you? 

2. What does the term "self-similarity" mean to you? 

3. What does the concept of self-similarity dimension mean to you? 

4. How would you characterize the properties of a fractal? 

5. For a given fractal at the third stage of iteration make a quick sketch of 
second stage of the iterations (see figure 6.1). 

6. Consider two coastlines. One has a fractal dimension of 1.5 and the other 
has dimension 1.9. How do they look alike? How are they different? 



7. From what you have seen and learned in this study do you think that it  is 
possible for some structure to have a dimension that lies somewhere 
between 2 and 3? What would such an object look like? 

8. Which would have a higher self-similarity dimension: a slightly crumpled 
wad of paper, or one that is tightly wadded into a ball? Why? 

figure 6.1 

Stage 3 drawing of a fractai from which students were expected to draw stage 2. 

Not all questions asked in the interviews were necessarily based on information covered 

in the teaching unit; some questions were designed to probe for deeper understanding of the 

topic. In the chapter that follows, transcriptions of student responses to the eight questions listed 

will be analyzed according to the theoretical framework outlined in Chapter 4. 



Chapter 6 

Results and Analysis 

In this chapter I will attempt to organize and interpret the data I have collected from my 

students. The first section consists of my rationale for each of the interview questions. This is 

followed by an analysis of the data collected. In the data analysis section I will employ the 

principles of reflective abstraction, and operational versus structural cognition, in an effort to 

interpret students' responses to the interview questions. The chapter concludes with a discussion 

of potential improvements to the study unit and the implications of the improvements for student 

learning. 

The interview auestions. 

Early in the school term, when I first informed my Survey Math 12 students that they 

would be participating in this study, none of my students was familiar with any aspect of fractal 

geometry. Everything that followed was based on this naivetk with the topic; behavioral 

objectives and, hence, the study unit were designed with this fact in mind. However, prior even 

to the development of the objectives and the study unit, I had a tentative list of interview 

questions in mind (see page 66 for the interview questions). 

My intent was to frame the questions so that they would require some independent 

thought on the part of the respondent; as such, the questions would ensure that a student who 

was proficient at memorizing facts and procedures might not necessarily have a "successful" 

interview. Yet, because the students had never heard of fractal geometry, the questions were out 

of necessity based on the fundamentals of the discipline. Dimension is one of those 

fundamentals. 

Dimension is critical to the understanding of fractals; thus, two of the first three 

interview questions dealt directly with different aspects of this notion. If students were to have 



their conceptions of dimension altered, they must possess a solid grounding in the conventional 

sense of the word; thus, my first question was designed to gauge their prior knowledge of one, 

two, and three dimensional structures. My third question regarding self-similarity dimension 

was intended to reveal not only the how, but also if students' perceptions of dimension had 

evolved over the course of the study unit. 

Self-similarity is another idea that is critical to the understanding of fractals. It was my 

hope that the second interview question would induce students to articulate a coherent 

perception of self-similarity. English is problematic for many of them; because of this they were 

encouraged to draw sketches to illustrate their explanations. The rationale, I felt, for exploring 

their understanding of dimension, self-similarity, and self-similarity dimension respectively was 

that perhaps by vocalizing their perceptions of these concepts they would be better prepared to 

respond to the fourth question regarding the characteristics of a fractal. 

Because the true definition of what constitutes a fractal is not easily understood, it was 

hoped that students would infer the characteristics of these structures. This ambiguity proved 

difficult for the students who rely heavily upon memory in doing mathematics. If, however, 

they were able to demonstrate sound concepts of self-similarity, and self-similarity dimension, 

then they should have possessed the ability to effectively characterize the concept of fractal. 

Once again, they were encouraged to draw diagrams, if necessary, to clarify their explanations. 

These first four questions were crucial in determining whether a student had acquired the 

fundamentals of fractal geometry. The remaining questions were designed to probe for a deeper 

understanding of the concepts covered in class. 

The study unit contained a considerable amount of drawing: both computer generated 

and pencil and paper drawings were important components of student activities. The fifth 

interview question required that students sketch the second stage of a simple fractal having been 

given the third stage. Although most students had considerable experience and expertise in 



drawing figures of progressively increasing con~plexity, they had yet to reverse the process. As 

discussed earlier, reversal is considered to be an indication that reflective abstraction has 

occurred. A successful attempt would indicate that helshe was capable of reversing the process 

that had been practised during the unit. This could be construed as an indication that at least one 

aspect of reflective abstraction had occurred. Generalization is another aspect of reflective 

abstraction; question 6 was an attempt to determine whether students could generalize and apply 

the self-similarity dimension to a specific phenomenon. 

Because we had spent a considerable amount of time studying coastline geometry, it 

seemed appropriate to include a question pertaining to that topic. The response that I sought 

was closely related to that of question 3; I was hoping students would deduce that self-similarity 

dimension can be interpreted as a measure of complexity. Perhaps, in turn, this could be 

generalized and applied to describe the relative "roughness" or "smoothness" of a coastline. 

Responses to questions 7 and 8 required further generalization of this notion of complexity. 

In class, our discussion of fractals was restricted to structures that had a dimension of 

between one and two; we did not consider the possibility that such ideas could apply to objects 

possessing a dimension greater than two, but not quite three. It  is thought by some that there are 

many naturally occurring structures that have fractal dimensions. Question 7 was an attempt to 

introduce the possibility that such objects exist, and question 8 was intended to tease out 

specifics regarding the appearance of these objects. The interviews concluded with an attempt 

to have students name a "real life" structure that has a dimension of between two and three. 

The interview questions can hardly be considered an exhaustive investigation of students' 

perceptions and conceptions of fractal geometry; nonetheless, it has been my experience that a 

student's understanding is often more successfully communicated in  a conversational context 

than it is when I try to decipher something heishe has written. Therefore, when the responses to 

the questions are compared to and contrasted with their written work, a more complete image of 
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their cognition should emerge. In the next section I will organize the data around the behavioral 

objectives outlined earlier. Furthermore, I will endeavor to apply the principles of reflective 

abstraction, and structural and procedural knowledge, in an effort to determine the depth of my 

students' understanding. 

Data analysis. 

All studentlparticipants were in the twelfth grade; I have used aliases to protect their 

identities. Because all had completed Mathematics 11 I assumed a certain amount of 

mathematical sophistication. Generally speaking, this turned out to be a safe assumption. It, 

therefore, came as a surprise to me that so few of them understood the concept of dimension in 

its conventional context. Very few of them were able to con-ectly identify structures of zero, 

one, two, or three dimensions. 

Alison was among the "better" students in the class: a very quiet and conscientious 

young lady. She was extremely proficient at applying algorithms and duplicating the procedures 

necessary for the acquisition of "correct" answers. To be fair, her response to question 1 may 

have been a result of her unfamiliarity with the language. That being said, Alison's answer to 

the question was not atypical of many that I received. 

I: Before we started all of this you must have had some idea about what the 
word dimension means. Can you explain that word to me? 

Alison: I don't know. 

I: (Indicating a point, a line, and a square that I have drawn on a page.) How 
many dimensions are each of these? 

Alison: (The point) One. (The line) No, is zero. 

I : Which is zero? Both are zero? 

Alison: Yes. 

I: How about this (indicating a square that I have drawn.) Or, how about the 
whole piece of paper? 

Alison: Two. Is it two? 



I: 

Alison: 

I: 

Alison: 

I: 

Alison: 

I: 

Alison: 

I: 

Alison: 

I : 

Alison: 

I: 

Alison: 

Why do you say this (the paper) has two ? Or why does this (the line) have 
two? 

Is flat. 

Anything else? 

No. 

How about length and width? Would those be two dimensions? 

I think so. 

What about that (the line) then. What does that have? 

No dimension. 

Does it have length? Does it have width? 

Yes. 

It has both of those? 

Just length. 

So how many dimensions? 

Zero. 

William is another extremely capable student whose concept of dimension is lacking. 

He was, at times, very insightful and quickly acquired new concepts. This was despite the fact 

English is his second language. William's perspicacity is, I think, illustrated by the following 

anecdote. 

When I was introducing the concept of self-similarity dimension I developed the notion 

according to the outline that appears in the methodology section of this paper. I was using the 

formula rd=N to describe one, two, and three dimensional structures. Although I had specified 

the meaning of the parameters r and N, I had deliberately not done so for d. I had neither 

completed the explanation nor initiated any discussion of i t  before William deduced that d 

represents dimension. Yet, as is evident from his reply to question I ,  his concept of Euclidean 

dimension is incomplete. 



I: Before we started this did you have any idca that thcsc was a possibility 
that something could have a dimension of between one and two? 

William: No. 

I: So now that you have had some exposure to this topic how has your idea 
of dimension changed? 

William: My idea of dimension is still the same. Because I cannot even touch what 
is between dimension one and two: no, I mean two and three. I don't 
know what it is supposed to be like except that it is a bunch of lines. 

I: So you still have the same basic idea of dimension; but do you think that 
those sorts of things exist, eh? 

William: I guess so. But one dimension is a dot, and two dimension is a line and 
three dimension is a box: a 3-D box. Of that I am very sure. But 1 point 
something dimension I don't know what it's looking like. 

Here again, we see an imperfect concept of dimension: this from a student who was 

concurrently enrolled in Mathematics 12 and A.P. Calculus. One student of the eleven 

interviewed was able to give me a correct answer to question 1. Valerie was another E.S.L. 

student. She was, perhaps, not as insightful as some of the students in the class, but she was of 

above average ability, an enthusiastic learner, and a contributor to the positive tone in the 

classroom. 

I: Before we started all of this you must have had some idea of the meaning 
of the word dimension. 

Valerie: Yes. The shape or ... I don't know. 

I: Well, what is the dimension of a point? A line? A square? A cube? 

Valerie: Zero, one, two, and three. But I don't know how to explain it. 

Although she asserted that she could not explain it, she correctly summarized the idea of 

dimension in its conventional sense. Her feeling of inadequacy in her explanation might have 

been a result of her unfamiliarity with the language; I have no doubt that she could have 

explained it very well in Mandarin. 

Rosemary joined the class late after having discovered that Mathematics 12 required 

more study than she had anticipated. The Math 12 cu~riculum is not, in my opinion, beyond her 



abilities; she is quite perceptive and has the potential to be a good student. Rather, she was 

somewhat undermotivated and was not willing to spend the time needed to achieve the kind of 

grade she felt she required to maintain her GPA. She joined my class because she saw Survey 

Mathematics as a means by which she could obtain a decent grade with a minimum of effort and 

as an easy university entrance credit. The following is an excerpt of her response to question 1. 

I: Before we started all of this you must have had some conception of 
what dimension means. Has that changed? 

Rosemary: A little. I only knew about 3-D. I didn't even realize that a line was one 
dimensional. 

I: What does it mean to you now? 

Rosemary: I don't know. 

I: Confusing? 

Rosemary: A bit, yeah. Because I don't really know when something is two 
dimensional. I was trying to figure out if it goes on both sides of the 
line. 

During a class discussion of self-similarity dimension, I recall Rosemary saying she had 

no idea that dimension was so confusing. It is apparent from the above exchange that, at the 

time of the interview, she still found it to be perplexing. Her last statement is of interest to me; 

it appears, based on this statement, that self-similarity dimension is also problematic for her. 

It seems that Rosemary was attempting to apply integral dimension to a structure that has 

a fractal dimension. The source of her confusion could lie in her attempt to contrast a fractal 

such as the Koch curve with a fractal exemplified by the diagrams shown infigwe 6.1 In 

Rosemary's way of thinking the Koch curve remains on "one side of the line," while the other 

structure "...goes on both sides of the line." Thus, according to Rosemary, the Koch curve might 

be uni-dimensional, while the figure on the right might be two dimensional. If this is the case it 

would seem that she is not only confused about dimension. but the entire notion of a fractal is 

also unclear. 



figure 6.2 

generator for the Koch c w e  

This is an extremely small sample; nonetheless, it is disconcerting to discover that in a 

group that has progressed as far as the high school mathematics cu~~iculutn will allow, fewer 

than ten percent can effectively communicate a geometric concept as fundamental as dimension. 

My suspicion is the blame does not lie with the students. Most mathematics teachers likely 

make the same assumption that I did: students already know what dimension means and for that 

reason it does not need to be spelled out for them. Despite these answers to the initial question, 

the responses to question 2 were more encouraging. 

Stephen was likely the least motivated of all my Survey Mathematics students. In 

mathematics class, his work ethic was nonexistent. He completed none of required assignments, 

and it is unlikely that he did any homework whatsoever. Altliougli Stephen is probably of 

average to above average intelligence he, like many high school students, was not particularly 

interested in academics. Despite this it was he who provided me with the most succinct 

description of self-similarity. 

I: What about self-similarity? What does that mean to you? 

Stephen: Self similiarity. Like from a fractal point of view? 

I: Yes. 

Stephen: You know how in the shapes you can see certain characteristics of the 
shape, right? Like say, you see a triangle, and in that triangle there are 
smaller ones and in that smaller one you see smaller ones and so it is the 
exact same shape, only in different sizes. 



I: 

Stephen: 

I: 

Stephen: 

Did what you saw yesterday up in the [WCAT] computer lab help you to 
get a better idea of what self-similarity is? 

Yeah. When you could, you know, really zoom in on the points, and you 
know it kept going and going and going, I thought that was wicked. 

Can you give me a little bit more information on the "zooming in" that 
you were talking about? 

Like you can see smaller ... Like was at first there was a big shape, right? 
And then in the big shape you can see the smaller shapes that are exactly 
the same. And then if you zoom in on those you can see smaller shapes in 
those ones. And then you can bring those up, and then you can see the 
shape again. 

None of the students possessed the capacity to articulate a succinct definition of self- 

similarity, although most were capable of placing it in a context that made sense to me. From a 

constructivist perspective this could be interpreted as a positive result. The students were not 

merely parroting a definition that they had obtained from me or from a textbook: most had 

constructed their own definition. There were only two who admitted they had no concept of 

self-similarity whatsoever. 

Some of the responses to question 3 were quite interesting. Tara was one of several 

students who seemed to have similar ideas regarding self-similarity dimension. Tara had a very 

strong work ethic; she was one of the most conscientious students in the class. Tara was always 

overly concerned about her grades as she was hoping to attend university after finishing grade 

12. A segment of our conversation about self-similarity dimension follows. 

I: What does self-similarity dimension mean to you? 

Tara: Like if you choose a part of the fractal like the dimension is the same as the 
big one. Can I draw it? 

I: Sure. 

At this juncture Tara drew the first and second stages of the Koch curve. While she was 

making the statement that follows, she circled several line segments 011 her diagram. She was 

trying to indicate that the self-similarity dimension of the entire structure is equal to that of any 

constituent part of the curve. 



Tara: Like if you chose this one it would be the same as the whole rest of them. 
How you calculated the dimension you find r and you find N and it's like r 
and N are the same. Like for that little section and for the whole thing. 
Therefore this dimension is the same as the whole thing. That's what I think 
it means. 

I: O.K. When you were asked to find the self-similarity dimension you made - - 

that calculation I d = - l ~ g y ] .  So then you found a number that gave you the 

value of d. Besides the word dimension, can you use one or two words to 
describe what that value d means? 

Tara: Like slope? 

I: Uh, that's part of it. See, what I was trying to get the other people to do was 
to think of something that has a dimension of a little bit more than one, and 
something else that has a dimension of a little bit less than two. Now how are 
these two figures different? 

Tara: It's like got a bigger slope. Like the rise is higher. Like a dimension of one 
would be a straight line, right? And then a dimension of two would be sort of 
just like that (indicating on her diagram). And then dimension of three would 
be like this (indicating on the diagram again). It's like the slope keeps like, 
rising. Like it becomes like, sharper. More clear, like ...( here she loses the 
thought a1 together.) 

It was while Tara was explaining her ideas regarding slope that I began to see that she 

was experiencing some difficulty with all aspects of dimension. In order to explicate her 

statement regarding "bigger slope" she drew some simple diagrams of a curve that, in class, we 

knew as the Dragon curve. I have reproduced her drawings in jiguw 6.2 below. It appears, 

based on her diagrams, that she was in the process of accommodating the idea of self-similarity 

dimension. 

figure 6.3 

Tara's perception of thc relationship bclwccn slopc arid dimension 



Tara's thoughts relating slope and dimension are, when one considers her diagrams, 

correct except for one large misinterpretation. She has correctly perceived that as the angle 

between the horizontal and the leading segment of the curve increases, so does the dimension of 

the resulting fractal. However, she has incorrectly labelled the dimensions as one, two, and 

three rather than dimensions that are increasingly close to two. This is, perhaps, evidence that 

she was in the process of constructing a new scheme to accommodate self-similarity dimension 

while invoking the scheme for Euclidean dimension. This is very much in character for Tara. If 

she encounters a concept that proves resilient to assimilation she will persevere until she reaches 

the point where she feels that she "understands." 

According to Tall (1991), students in transition experience new ideas in conflict with 

previously acquired knowledge. While Tara was in transition from her prior cognitive state to 

the new one that she was trying to construct, she may have been invoking schemes involving 

slope and dimension (in its conventional sense) in an attempt to make sense of her new concept 

of dimension. These schemes proved inadequate to the task, and so she was experiencing 

considerable confusion while the transitional process was ongoing. 

This idea of slope was one that several students mentioned in their efforts to define self- 

similarity dimension. Rosemary made a similar point in her explanation. 

I: O.K. So now what does the phrase self-similarity dimension mean to 
you? There [indicating the formula that was used] is the calculation that 
you had to make to calculate it. So aside from it equalling dimension, 
when you came up with a number to apply to some figure that you were 
supposed to find the dimension of, what are one or two words that could 
be used to describe what this number represents. 

Rosemary: Slope? 

I: Slope of what? 

Rosemary: Slope of the object, or the fractal, or whatever. 

I: If you have something that has a dimension of really close to one 
compared to something that has a dimension of really close to two, how 
are those things different? 



Rosemary: The one that is really close to one is really close to a straight line, and 
the other one would be closer to a two dimensional object, or a triangle. 

This last statement is precisely correct; it seems to signify that she has sorted out some of 

her difficulties with dimension and is perhaps indicative of some beta behavior. Her response 

continues: 

I: So how would they look different? 

Rosemary: Like, something between one and two would be like a triangle without a 
bottom, or a square without the, like, a half a square without the other 
half. 

I: O.K. So you are talking about something really close to a line as 
opposed to something that ... So it would be a measure of the .... 

Rosemary: Box dimension? I don't know. One has shape and one doesn't. 

Tara and Rosemary were able, given a diagram of a fractal, to determine correct values 

of r and N and then calculate the self-similarity dimension for the fractal. However, based on 

the excerpts from our conversations, it seems that neither of them understood exactly what it 

was they were calculating. Based on their interview responses, these two students would appear 

to have a purely operational understanding of self-similarity dimension. As such, when the 

interviews took place they were seemingly in the process of constructing an understanding of 

the concept. 

Mary and William were, without a doubt, the top two students in the class. Like 

William, Mary was ESL and was concomitantly enrolled in Mathematics 12 and A.P. Calculus. 

These two students completed Survey Mathematics 12 with averages in the 90's. When I asked 

Mary about self-similarity dimension, this was her reply. 

I: You remember making the calculation for self-similarity dimension, right? 

Mary: Yeah. 

I: So then you found this number, and besides i t  being a measure of dimension 
you could think of it as being a measure of ...... ? 

Mary: I don't know. 



I: 

Mary: 

I: 

' Mary: 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

Suppose you see something that has a dimension of very close to 1, and you 
compare it to something that has a dimension very close to 2. What is the 
difference between the two figures? 

This one is more ... no, it's not more complicated. 

Why? Why did you say "more complicated?" 

I don't know. 

Which one is more complicated? 

Two. 

How do you mean, more complicated. 

The shape, no, you can see more, no. I don't know. The angle is bigger for 
this one sir. 

What angle? 

I don't know. 

Why? Why did you say "more complicated?" 

This one is more realistic I think. 

By complicated what do you mean? 

I don't know. I just wanted to say that word. 

Here is another student whose concept of self-similarity dimension includes some aspect 

of angle. So although Mary's perception is somewhat more advanced than either Tara's or 

Rosemary's, she too maintains that "angle" is central to the definition. William's answer was, in 

some respects, quite similar to Mary's. 

I: Say you were looking at something that has a dimension of very close to 
one, and something else that has a dimension of very close to two. How 
are those things different? 

William: Is that the slope? 

I: No, it's not necessarily the slope. I am just looking for one word that you 
could use that would tell me what the difference is between something that 
is very close to one dimensional and something that is very close to two 
dimensional. 

William: The shape is different. 

I: What about the shape? 

William: It's more detailed. 



I: So you could say, then, that this number is a measure of ... 

William: Details. 

I: You used another word a minute ago. 

William: Complex. 

William and Mary are essentially correct in their perceptions of self-similarity 

dimension. Once again, language could be a bamer to the effective communication of 

understanding. William was the only interviewee that used "complex" to describe the difference 

between the two structures to which I alluded in the question; Mary used "complicated", which 

could be construed as having much the same meaning. However, despite a seemingly good 

grasp of self-similarity dimension, later in the interview William admitted to me that "...I don't 

know what 1.3 dimension means to me, like for the last three weeks. All I know how to do is 

calculate it." 

It is interesting to note that the idea of slope was so frequently employed in an attempt to 

convey the notion of self-similarity. Stephen and Mary, in my opinion, used an analagous idea 

when they mentioned "angle" in their descriptions. In the context of the deterministic fractals to 

which the students had been exposed, these ideas are correct. However, what they have said 

regarding slope and angle does not apply to affine fractals. It seems that, at least for this part of 

the interview, students are restricting their definition of fractal to include only those that display 

deterministic self-similarity. 

Tara and Rosemary were not the only students to experience difficulty with self- 

similarity dimension. Of the eleven participants, five admitted that they had no idea of what 

was meant by the phrase. Only two were able to provide a satisfactory description of it, yet all 

but one student performed the calculation flawlessly on the unit  test. Based on these results, it 

would appear that the participants had a purely operational understanding of self-similarity 

dimension. If this was indeed the case, then little or no reflective abstraction had taken place; 



thus students required more time to deal with the concept at thc opcl-ational lcvcl in ordcr to 

achieve structural understanding. It follows that accommodation of self-similarity dimension 

had not occurred. 

When the interviews took place Tara, Rosemary, William, and Mary all seemed to be in 

transition regarding self-similarity dimension; they may have been in the process of adapting 

preexisting schemes regarding dimension in its traditional sense, and/or constructing new ones 

in an attempt to accommodate self-similarity dimension. This could explain the manifestation 

of alpha behavior amongst the participants. Likewise, it seems they were still struggling with 

the integration of self-similarity into their cognitve schemes. 

Upon discovering that few of my students were able to provide concise answers to the 

first three questions, I did not expect that many would be able to effectively characterize the 

properties of a fractal. Renata's explanation of her connotation of fractal was not unlike many 

that I documented. She is another student for whom English is problematic. She is like Alison 

in several other respects as well; Renata is quiet, conscientious, is proficient at performing 

algorithms, and achieved a final grade of close to 90% in Survey Mathematics. And, like 

Alison, she appears to be performing at a purely operational level. 

I: Can you tell me what fractal means to you? 

Renata: Some drawing. 

I: Just some drawing, eh? Anything else? 

Renata: No. 

I: Is there anything about a fractal that you could tell me about: just by 
looking at something you could say "yes. that is a fractal." 

Renata: Yes. 

I: How could you tell? 

Renata: It has a pattern to form the fractal. We can calculate it. 



According to Renata's response fractal, in its totality, lies i n  the calculatio~l of self- 

similarity dimension. Here is a student capable of flawless computation of that property of a 

fractal while seemingly having no concept of what constitutes a fractal. It is possible, however, 

that while Renata is unable to express her thoughts in English she may be capable of correctly 

answering the questions in her first language. 

In general, none of my students was able to provide a concise characterization of a 

fractal, although most were capable of articulating bits and pieces of the concept. This is not 

surprising since there was no strict definition discussed in class to be memorized and 

regurgitated. It is obvious from the transcript that follows that at the time of the interview 

Rosemary was struggling to identify some properties of a fractal To her credit, she tried 

valiantly to answer the question. 

I: 

Rosemary: 

I: 

Rosemary: 

I: 

Rosemary: 

How would you characterize the properties of a fractal? 

Many dimensions. No. Below two dimensional. Between one and two 
dimensional. Repetitive. Like one specific ... Like say you draw half of 
a star it keeps on repeating on each line. Each line is the same each 
time you draw it. 

How often would it repeat? 

However many dimensions you want to go up to. The more stages you 
have the more times it will repeat. 

Think about what you were talking about a minute ago about self- 
similarity; relate those two. 

Each stage of a certain part of the picture you are drawing repeats itself. 
Like the main part, like if you are drawing a triangle with two lines it's 
always going to have a triangle with two lines. Like if you just take a 
piece of it, it will be the one that you started with. 

Here again we see Rosemary's difficulty with the idea of dimension. It could be said 

that her response is a reflection of more alpha behavior; her conceptions of fractals and 

dimension are unstable and seem to be shifting from moment to moment. 

Clearly Rosemary, among others, experienced considerable difficulty with the 

fundamentals of fractal geometry; questions 1 to 4 were intended to probe students' 
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understanding of these fundamentals. The remaining questions dcsigncti LO gaugc s ~ u d c n ~ s '  

depth of understanding and ability to generalize. If the preceding is any indication of the degree 

to which participants accommodated the basics, then the responses to questions 5 to 8 should 

expose further weaknesses in the subjects' conceptions of fractals. 

Because participants were expected to have drawn a considerable number of fractals, I 

anticipated that the responses to question 5 would be largely correct. Yet there were few 

sketches that accurately recreated the stage two drawing of the stage three fractal I provided. Of 

the eleven student sketches that I received only one could be considered "correct." Three others 

were reasonably close to correct, and seven students could not draw stage two having been 

given stage three. Most drew the generator correctly; only two respondents were unable to do 

this. 

Three of the four "successful" attempts were initiated in the same manner; William, 

Gerald, and Rosemary began by drawing stage one, or the generator, of the fractal. These 

students then "fractified" the generator to obtain the stage two drawing. Valerie used a slightly 

different approach. She initially traced the stage two drawing superimposed onto the diagram 

she was given, and then copied the tracing below the original drawing. Interestingly, hers was 

the most accurate representation that I received. 

It is difficult to speculate why so few students could successfully draw the stage two 

fractal. It is possible that, because of deficiencies observed with conceptions of self-similarity, 

they were incapable of recognizing the key aspect of the diagram (the generator) that would 

allow them to correctly draw stage two. It is worth mentioning that students had never seen the 

fractal they were expected to reproduce. I deliberately selected one with which they were 

unfamiliar in order to eliminate the possibility that students would recall the image from prior 

experiences. I have little doubt that if i t  had been a Koch curve, or one the others that we had 

studied in class, the success rate would have been much higher. 



That fractals can be used to model coastlines is an idea many students are able to intuit. 

James was one of the underachievers in the class; he eventually dropped the course without 

having participated in an interview. One day we were in the Mac lab using an Fruct-0-Gruph 

to draw simple fractals. James observed that one of the generators he had drawn, after many 

iterations, resembled an island. This event occurred before we had had any discussion regarding 

the fractal dimension of coastlines. Despite the apparentness of the phenomenon, and the time 

we had spent in class on the concept, most participants were unable to explain the difference 

between two coastlines of differing dimension. 

Renata and Alison were capable of neither articulating nor drawing the visible contrast 

between two coastlines of slightly differing dimension. Neither student perceived the series of 

activities she performed leading up to the calculation of coastline dimension to be anything more 

than another assignment that was part of the course requirements. In their interviews both 

Renata and Alison admitted that the investigations were meaningless to them. Hopefully, for 

others in the class these activities were slightly more enlightening. 

Rosemary, Gerald, William and Armond sketched diagrams that effectively 

communicated the way in which the two coastlines would differ in appearance. The remainder 

of the students experienced varying degrees of success in responding to this question. Valerie 

and Stephen were two students with similar, yet incorrect, thoughts regarding this concept. 

I: If I have a map that has a dimension of 1.2 and another map of a different 
coastline that has a dimension of 1.7 could you tell me how those two 
things would look different or how they would look the same? 

Valerie: They would look different. The one with the 1.2 .... The 1.7 one would be 
wider. .. 

I: Want to draw a picture? 

[Valerie draws two simple diagrams, neither of which is correct. Her diagrams show 
that the island having a coastline of smaller dimension has a smaller area than the 
island with the larger dimension coastline.] 



I: You are actually talking about the area niore than you are about the 
coastline. I was thinking about the coastline itself. 

Valerie: I don't know. 

Here are Stephen's thoughts regarding the same question. 

I: O.K. Say you have two coastlines. One of them has a dimension of 1.3 
and the other one has a dimension of 1.8. Can you tell me the difference 
between the two, besides the fact they have different dimensions? 

Stephen: Yeah. The angle that the first part of it goes out is different. 

I: Can you draw it? Can you draw me a sketch showing the difference 
between the two coastlines? 

Stephen: Yeah. How do you want me to show it? Like a triangle or something? 

I: Just draw some little islands; one that has a coastline of dimension 1.3 and 
another that has dimension of 1.8. 

Stephen: Yeah, I think I could do that. Like, one shape would be like, smaller than 
the other. Like, you're saying that it would be exactly the same, right? 
Exactly the same shape? 

I: Well, yeah. Say some imaginary island. They have different dimensions 
so they couldn't really be the same shape. 

Stephen: Well yeah, that's true. I don't know if I can draw it. 

I: Think about that piece of paper that I gave you a long time ago that had 
those really simple fractals in different dimensions. 

Stephen: Yeah. I remember those. That is exactly what I am .... Like, I know what it 
is, I just can't say it. I think the island with the bigger dimension, the 
smaller one could fit inside. I don't know how to explain it. 

Self-similarity dimension and area are linked, although not the way in which Stephen 

and Valerie have indicated. Both students believed an island having a coastline of smaller 

dimension should fit inside the island with the larger dimension coastline. These remarks 

expose further misconceptions of the basic concept of dimension. The question asked required 

that students elucidate the difference between two structures: one whose dimension is just 

greater than 1, and the other having a dimension closer to 2. Stephen and Valerie were under the 

impression that the smaller the area, the smaller the dimension. 



Based on their responses that it seems that Stephen's and Valerie's ideas regarding 

dimension in its conventional context are in a state of flux. The reader will recall that Valerie 

was the only student to provide a strictly correct answer to question 1. It is possible that both 

students' thoughts regarding dimension in  its traditional context have been thrown into disarray 

by exposure to dimension in its new context. The preceding excerpts could be indicative of 

Dubinsky's alpha behavior. 

When Tara was asked the same question she once again mentioned slope. However, her 

use of slope in this context is different from that which she employed in answering question 3 

regarding self-similarity dimension; in  her response to question 6 she is referring to the slope of 

a linear graph. 

Tara: 

I: 

Tara: 

I: 

Tara: 

I: 

Tara: 

I: 

Tara: 

I: 

Tara: 

So if I told you that I had a map that had a coastline of dimension 1.2 and 
another map that had a coastline of dimension 1.7 could you tell me basically 
how those two things would look different? 

The 1.7 would have like steeper lines. Like the slopes cause like it's the slope 
that .... 

Can you draw it for me? Just a quick sketch. 

Which curve? 

It doesn't matter. We're not talking about the curves that you guys did on the 
computer any more now. We are talking about an actual coastline, O.K.? So 
if you saw a picture of a coastline ...[ Tara begins to draw graphs now.] So this 
one has 1.7 and this one has 1.2? 

Yeah. 

Can you tell me in words how this one and this one (indicating her sketches) 
look different? 

The 1.7 is steeper. 

What do you mean by steeper? 

It's like because you get the slope by measuring the rise over the run, right? 
So if the rise is a bigger number- than the run  then therefore you are going to 
get that number and let's say rise is this and the run is this, then you get that 
(indicating on the paper again). 

So you are talking about the graphs, right? Not the coastlines themselves. 

Yeah. 



This time Tara was attempting to apply the methods she had used in analyzing the box 

dimension of a coastline. First she drew two diagrams of linear graphs: one which she perceived 

to have a "dimension" of 1.2, and the other a "dimension" of 1.7. Initially the graphs were 

straight lines. When she realized that this response was incorrect she superimposed wavy lines 

on to the straight lines. The wavy lines were intended to represent curves of different dimension 

although, visibly, there is little difference between the two sketches. 

Approximately thirty six per cent of the participants were able to correctly respond to 

question 6. This, despite the results from question 3 which indicated that only two of the eleven 

students seemed to have grasped the essence of self-similarity dimension. On the surface these 

results appear contradictory. Most students were unable to identify self-similarity dimension as 

a measure of complexity, yet they were capable of sketching a diagram depicting the difference 

between the two coastlines. This may be explained by the considerable time spent in class 

drawing, analyzing, and calculating the dimension of fractal structures, whereas no literal 

definition of self-similarity dimension was discussed. 

The final two interview questions dealt with concepts that were not mentioned in class. 

It is likely because of the unfamiliarity of the ideas that the responses to these questions often 

occupied the greater portion of a student's interview time. Responses to question 7, being 

basically a matter of opinion, were generally correct. When subjects were asked to justify that 

opinion in question 8, the results were somewhat more interesting. 

Most participants thought that, given what they had learned about fractals, it was likely 

that there exist structures that have a fractal dimension of between 2.0 and 3.0: three said no, 

one said maybe, and seven replied in the affirmative. The challenge was describing the 

appearance of such structures. In order to guide students toward some perception of the 



appearance, I adapted an investigation that I discovered i n  Peak and Frame's book Chaos Under 

Control: The Art and Science of Complexity. 

In Chaos Under Control, Peak and Frame describe an activity in which students 

calculate the self-similarity dimension of wadded up sheets of paper. The authors suggest that 

most three dimensional objects that are uniformly solid throughout contain within them spaces 

which are predominantly the same size and shape. Peak and Frame use the example of a 

styrofoam ball: many air spaces, but mostly of the same size and shape. They maintain that 

because the spaces contained within a wadded up paper ball are of irregular size and shape, that 

a paper ball has a fractal dimension @age 98). It should be noted, however, that crumpling a 

piece of paper into a ball does not "magically" change its dimension; the resulting paper wad is 

intended merely to approximately model a structure that has a dimension of between two and 

three. 

There was insufficient time for inclusion of this investigation in the study unit, so I had 

students try to imagine the results of it. My goal was to lead them to the conclusion that, 

because of the irregularity of the spaces contained within the paper wads, it is possible that the 

wads have a fractal dimension. Rather than using the styrofoam ball analogy, I had students 

imagine that they had filled an empty cube with marbles. I then had them mentally compare and 

contrast the interior appearance of the cube full of marbles with a solid cube, and then with the 

interior of a paper wad. Finally, I asked students to th ink of a "real life" object that might have a 

fractal dimension. Typically, this part of the interview was lengthy, generally running to several 

pages of transcribed text. Several students provided interesting responses to my questions; 

however, for the sake of brevity I will include only one sample transcript. 

Janet is a very personable young lady and an above average student. She was a willing 

and able participant in classroom discussions. Janet and I had an engaging conversation 

regarding this particular line of questioning. She had a tendency to answer a question with a 



89 
question; although her reply was phrased as an answer, her intonation suggested a question. 

There is much to a conversation that a transcript does not effectively communicate. 

I: Do you think that anything could exist that has a dimension of somewhere 
between two and three? 

Janet: Something in nature. Like an object? 

I: What would it look like? 

Janet: It would look weird. 

I: Can you describe it? 

Janet: No. 

I: You said "...something in nature." Why did you say that? 

Janet: Because nature has all these wierd looking things that can't be explained. I 
don't know. It's really like ... 

It is likely that Janet suggested a naturally occurring structure because of the work that 

we had previously done with fractals that had a dimension of between one and two. Students 

had seen a great many images that began simply and, after many iterations, closely resembled 

the outline of a leaf, a tree, or a fern. When she said "...nature has all these wierd looking things 

that can't be explained ..." she may have been alluding to the fact these wierd looking things 

cannot be explained by traditional mathematics. 

I: O.K. When you think of something three dimensional what do you think of? 

Janet: A cube. 

I: A solid cube or a hollow cube? 

Janet: Solid. 

I: We can say that this piece of paper is basically how many dimensional? 

Janet: Two. 

I: [Crumpling the paper.] How many dimensions does i t  have now? 

Janet: Three. 

I: How about if I crumple it so i t  isn't so tightly wadded together? 

Janet: A number of dimensions. 

I: Why? 



Janet: Because it is not totally solid. 

Here, Janet makes an interesting statement. In her view, a tightly crumpled ball is three 

dimensional, while one that is not so tightly crumpled has "a number of dimensions ... because it 

is not totally solid." Her indecision regarding the two objects is undoubtedly due to my question 

regarding the existence of objects that have dimension of between two and three. In retrospect I 

know that I should have explored what she meant by the more loosely crumpled ball having "a 

number of dimensions." 

I: If you take that and think about what you said earlier about something in 
nature.. . 

Janet: Some things are not totally solid. 

I: Let's back up a little bit. You said earlier that a solid cube comes to mind 
when you think of something three dimensional. How about a hollow cube; 
is that three dimensional? 

Janet: Yes. 

I: What do you think that you would have to do to the inside of the cube to 
make it somewhere between two and three dimensional? 

Janet: Decrease the sides? No. Increase the sides. 

I: Increase the dimensions [read "length"] of the sides? 

Janet: Yes. 

I: You said that if I crumple the paper really tightly it is three dimensional. 

Janet: Yes. 

I: But if it is not crumpled so tightly it is not three dimensional. 

Janet: Right. 

I: Why? 

Janet: I don't know. Wait. Because i t  doesn't have a definite shape. 

I: Anything else? Think about the things that you looked at that were 
somewhere between one and two dimensional and see if you can take that and 
extend it. 

Janet: I don't know. It's in between dimensions. It's not two and it's not three. 



I: You think that the more tightly its compacted the more three di~iiensional i t  
is, and the more loosely it's packed i t  is closer to two dimensional. 

Janet: Yes. 

I: What is the difference between one that is really tightly packed and one that 
is less tightly packed? 

Janet: Their dimension is different. 

At this juncture it is difficult to determine which of the ideas are her own and which are a 

result of my prompting. It is obvious that despite a conscious effort to remain noncommittal I 

was not; the phrasing and tone of the questions undoubtedly coloured Janet's responses. I am 

quite sure that Janet was trying to give me the answer she thought I wanted to hear when she 

replied, "Their dimension is different." 

I: Why? Think about what it actually looks like; a densely compressed paper 
ball compared to one that is not so compacted. What is the difference in 
appearance? 

Janet: Appearance; one doesn't have a different shape, but the other one does. And 
then ... 

I: What about inside? 

Janet: It's more hollow and the other one is more solid and compact. 

I: What about an empty box then; that's completely hollow. 

Janet: Outside it has a definite shape, though. 

I: It is still three dimensional, though eh? 

Janet: Yes. 

I: When it's densely packed what about the empty space within the wadded up 
piece of paper. 

Janet: As in inside the space? 

I: Yes. 

Janet: In the solid one? 

I: Even when you really squeeze this together. There is still some empty space 
in there, right? 

Janet: Lesser though. 

I: What do those spaces look like? 



Janet: Smaller. 

I: Are they all regular shaped or are they all different shaped? 

Janet: They are all different shapes. 

I: What about when you do this [uncrumpling the ball somewhat]? 

Janet: It has greater spacings. 

I: So what can you think of in nature that might have this sort of structure, but 
unlike an empty box where you can see this space that is well defined and it's 
a definite shape. 

Janet: In nature? Animals, as in sea animals. 

I: What kind of sea animals? 

Janet: Those sea urchins. Or a jellyfish, it doesn't have a definite shape. 

Despite the hints provided in the questions, Janet is of the opinion that the dimension of 

an object is dictated by its outward appearance. In what follows she seems to vacillate to some 

extent, but toward the end of the interview she returns to her initial position. 

I: Say you have a sponge in each hand, and one of them has a dimension of 2.4 
and the other one has dimension 2.8. What would be the difference? 

Janet: The shape. 

I: Can you be a little more specific? 

Janet: Their insides? 

I: How do you think they would look different inside? 

Janet: The spaces. The one with the less dimension has greater, has more space. 

I: What kind of space? 

Janet: More undefinite shape. 

I: Relate it to this (holding up the crumpled paper.) 

Janet: It has lots of spaces inside but it doesn't really have a shape. 

I : And what about the one that is closer to three dimensional? 

Janet: It has less space inside but it still has ... it is more compacted. 
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Janet's answer is, according to Peak and Frame, essentially correct. She concluded that a 

less densely packed object has a smaller dimension than a more dense one. However, she did 

not specifically cite the irregularity of the spaces as the reason for fractal dimension. In the 

following excerpt the questions are an attempt to direct students' attention to the shapes and 

sizes of the spaces within a structure that is not completely solid. Here are Mary's thoughts 

r egadng  this line of questioning 

I: 

Mary: 

I: 

Mary: 

I: 

Mary : 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

I: 

Mary: 

Give me an example of something simple that is 3-dimensional. 

A cube. 

Are you thinking of a solid cube or a hollow cube? 

Solid cube. 

Does it matter? Are they both three dimensional? 

Yeah. 

Say we have two of them: a solid one and a hollow one. Say we take the 
hollow one and fill it with marbles that are all the same size and shape. Now 
you take these two cubes and cut them right down the middle. The solid one 
is obvious. It's just solid. What about the other one? What does it look like? 

There will be marbles, like half a circle shape. 

What else is in there besides marbles? 

Space. 

Where? 

Between the marbles. 

If the marbles are all the same size and shape are the spaces all the same size 
and shape? 

Yes. 

So when you cut the cube down the middle ... 

There's going to be a pattern. 

It all looks pretty much the same, right. If you cut this thing [the paper wad] 
down the middle, does it all look pretty much the same? 

Yes. No. 

Why 

Because it just is. I don't think it will make a pattern. 



I: So what will the difference be between this thing [the paper wad] ... Say I was 
able to compress this into a cube shape but keep the same basic structure and 
then I cut it down the middle. How would the inside of this cube look 
compared with the insides of the other cubes? 

Mary: There is no pattern there. 

I: Can you think of anything in nature like that? 

Mary: (Long pause) I don't know. Everything is sort of the same. Give me an 
example and I will think of one for you. 

For my students these were completely new ideas; it is to be expected that they would 

display some confusion regarding them. Many likely found the line of questioning to be 

confusing; when I read the transcripts I see that my input is not always helpful. This could be a 

contributing factor in Janet's alpha behavior regarding the dimension of the objects. At one 

point she seems to understand the essence of the fractal dimension, but by the end of the 

interview she has abandoned that idea. Mary was able to foliow the line of questioning, but 

could not quite put it all together at the end to synthesize a coherent picture of a "real life" object 

having a fractal dimension. However, there were other students who offered perceptive 

suggestions regarding naturally occurring structures with fractal dimensions. 

Tara gave two examples of such structures. Her first thought was that the surface of the 

earth would have a fractal dimension. If this thought occurred to her spontaneously then it is 

extremely insightful indeed. I know this was not discussed in class, but it is possible she read it 

somewhere. If, for example, one considers a mountain range it could be said that the surface of 

the range has a fractal dimension. There is no fixed pattern to the surface contours of a 

mountain range. Thus, a rectangular prism superimposed atop the range would be only partially 

filled and would have spaces if irregular size and shape contained within it. Tara's other 

suggestion was a tree. 

I: Can you think of anything in nature that is like that? 

Tara: (Long pause) A tree. It isn't exactly the same throughout. 

I: What part of the tree are we talking about here'! 



Tara: Well, like the bushy part at the top. It's like the computer drawings that we 
did. Those were really neat because it is self-similar all the way throughout. 
And it does look realistic, but in a real tree there are deformities all over the 
place because of whatever. 

Here again Tara has taken what appears to be a three dimensional ob-ject and "zoomed 

in" on it. A cedar tree, for example, appears from a distance to be a conical solid. However, 

when one "zooms in" one sees that the tree is anything but solid. As with the mountain range 

there are countless spaces of irregular size and shape contained within the foliage of the tree. 

Upon concluding the discussion of naturally occurring fractal structures we reached the 

end of each interview. Overall, I was very impressed with my students' deportment in the 

interviews. Without exception they demonstrated a serious approach to the process and 

genuinely tried their best to answer the questions asked. For this, and their many other 

contributions to this study, I owe them a tremendous debt of gratitude. 



Chapter 7 

Discussion 

Anytime one tries something new and different one learns from the experience. 

Hopefully, the lessons learned are applied to future attempts at similar endeavors. If 1 was to 

teach fractal geometry again, there are lessons I have learned from my initial "teaching 

experiment" that will guide me in my next experience. What follows is a summary of 

improvements and changes I would make to ameliorate the teachinaearning experience for my 

students and myself. The behavioral objectives listed in chapter 3 are revisited and the relative 

success of their achievement is assessed in terms of student performance. The chapter concludes 

with some suggestions for others who might be interested in the implementation of a study unit 

on fractal geometry. 

Revisiting the behavioral ob-iectives. 

For the sake of convenience the behavioral objectives outlined earlier are listed again. 

Effective objectives specified that students have the ability to: 

(1) describe the characteristics of a fractal; 

(2) sketch simple fractal structures; 

(3) recognize and define self-similarity; 

(4) manipulate the self-similarity dimension and apply it to various fractal 

structures under differing conditions, and; 

(5 )  compare and contrast the properties of fractal structures with those of some 

naturally occurring phenomena. 

The affective objectives were that: 

(6)  students be provided with a different lens with which to view mathematics, and; 

(7) take this new lens, and use it in combination with objective (5 )  to decide for 

themselves if they believe that fractal geometry is indeed the geometry of 

nature. 



The initial stages of the study unit were successful in terms of student engagelnent and 

assimilation. Reactions to the slide show were very positive and, although the chaos game was 

tedious, it ultimately justified my rationale for its inclusion. The second behavioral objective 

was successfully achieved as almost all students were able to draw successive iterations of 

simple, deterministic fractals. As reported earlier, the success rate for reversal of the process 

was not as good as I might have hoped, but that was not among the objectives that I had set for 

my students. 

This portion of the unit was somewhat less intellectually demanding than what followed, 

but it was a critical starting point. Any modifications that I would make to this introduction to 

the topic would be minor. There are two improvements that I would make given more 

favourable circumstances: (1) significantly more computer lab time; and (2) a more modem 

network. However, there are several key modifications that could make the remainder of the 

study unit much more effective. 

As previously documented, there appeared to be only one student in my class who had a 

solid concept of dimension in its conventional sense. I t  is possible that prior to the study unit 

many participants were capable of discerning the dimension of structures explained by 

Euclidean geometry, and that as a result of their experience with fractals their prior conceptions 

of dimension became disordered. Nonetheless, if one is to alter students' perceptions of 

dimension, then students must clearly understand the traditional connotation of the notion from 

the outset. I made the mistake of assuming that my grade 12 students understood what was 

meant by zero, one, two, and three dimensional structures. 

It is my feeling that this assumption impeded my students' assimilation of the 

fundamentals of fractal geometry. Thus, a minor ad-justment to the study unit could have major 

implications for students' acquisition of the requisite concepts. As parts of the preface and 

conclusion to the study unit I would be sure to include a short lesson on dimension as it is 
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connoted in the traditional sense. That way, regardless of whether their initial conceptions of 

dimension were faulty, or if those conceptions were altered due to contact with fractals, students 

would at least be assured of what is meant by dimension in a Euclidean context. They would 

then be much better prepared to deal with the more complex notion of self-similarity dimension.. 

Generally speaking, I was satisfied with students' conception of self-similarity. 

Although no literal definition of the idea was discussed, almost all participants were able to 

articulate a functional understanding of it. I would, however, most certainly spend more time on 

a concise description of self-sirnilarity dimension. The reader may recall that participants 

struggled with the characterization of a fractal. Subsequent to analysis of the data, it is my 

feeling that if students were able to demonstrate a sound concept of self-similarity dimension, 

the achievement of my first behavioral objective would be greatly enhanced. 

Given a simple fractal generator, it is a trivial matter to identify values for r and N and 

apply the formula r d = ~  in order to calculate d. Perusal of students' tests and quizzes reveals 

that for most simple deterministic fractals, calculation of self-similarity dimension was not 

problematic. There was a slightly lower success rate when students were given the value of d 

and asked to calculate the angle between the horizontal and the leading edge of a given 

generator. A problem such as this required application of the self-similarity dimension and right 

triangle trigonometry (see the unit test in appendix B). In general I feel that students acquired an 

operational understanding of self-sirnilarity dimension and thus, my fourth behavioral objective 

was achieved. It should be noted, however, that the correct application of an algorithm does not 

necessarily imply a structural understanding of the concept represented by that formula. 

The final three objectives were closely related. It is with these three that I feel students 

achieved the greatest success. In their work with computers, students were constantly reminded 

of the theoretical applications to "real world" phenomena. In the Mac lab at Burnaby West 

students watched as the computers drew fractal "trees," "shrubs," and "islands" based on 



generators they had sketched themselves. In the WCAT lab at SFU they were able to generate 

fractal mountains and watch as the they "flew" over computer generated fractal landscapes 

below. Students witnessed combinations of simple Euclidean geometrical figures become 

complex leaves and flowers through iterations and reiterations of the original patterns. It is my 

opinion, based on informal, incidental conversations that took place during the interviews, that 

by the end of the study unit most students felt that fractal geometry effectively describes the 

geometry of nature. 

In assessing the overall effectiveness of the study unit there are several factors to be 

considered. Foremost among these is students' lack of prior knowledge of fractal geometry. 

One must bear in mind that participants progressed from having absolutely no concept of fractal 

to a stage where they could identify some key characteristics and calculate self-similarity 

dimension. Furthermore, most students became aware of the potential for wide ranging 

applications of fractal geometry. In this context the teaching experiment was, in my opinion, 

quite successful. A second equally important factor is the inexperience of the teacher with 

regard to the subject'matter. There is always room for improvement in one's practice; there are 

several changes I would make to enhance achievement of the behavioral objectives. 

Sumestions for improvement of pedagoa  

When I was planning the study unit, I made a conscious decision to provide considerably 

less structure than that to which students had become accustomed in  a traditional mathematics 

class. My hope was that in doing so it might foster an atmosphere of "discovery" in my 

classroom. According to the responses that I received, the class seemed equally divided in their 

opinions regarding the style that I adopted for the study unit: some students liked the flexible 

structure and some did not. In retrospect, I feel that all students would have benefited from a 

somewhat more conventional approach. Should I have the opportunity to repeat the experience, 

my students could expect slightly more traditional pedagogy. 



Periodically, I would try to summarize main ideas in a more structured way. 

Examination of participants' notebooks revealed that there were very few notes taken. In the 

absence of a textbook it is incumbent upon me to provide students with qualified reference 

material to effectively review for quizzes and a unit test. Subsequent to an initial exposure in 

which students would be permitted to explore a concept independently, elucidation of key 

aspects in the prescriptive manner might enhance student performance. It is not necessary to 

"regress" to a "chalk and talk" style of teaching; however, I feel that some type of formal 

presentation is required for effective communication of concepts. 

To cite an example, at one point I recognized that much of the class was experiencing 

difficulty with the concept of box dimension. At that point I should have intervened and led a 

discussion of my objectives for the activity and the objectives implicit in the activity itself. If 

students have some record of the discussion to facilitate their learning, so much the better. 

Calculation of self-similarity dimension was one area in which I adopted a more traditional 

approach and, generally speaking, students were able to apply the formula and algorithm 

correctly. 

Most mathematics teachers are extremely proficient at communicating algorithms and 

procedures; for many, the effective objectives are the embodiment of mathematics. When one 

studies the British Columbia mathematics cuniculum one finds few, if any affective objectives. 

As a result, most math teachers are unfamiliar with the methods used in the evaluation of these 

objectives. Fractal geometry offers an opportunity to explore alternatives to the traditional 

assessment techniques employed by mathematics teachers. 

In order to evaluate student achievement of the final three ob-jectives, students could be 

assigned a short (500 word) essay describing their thoughts regarding the existence of a fractal 

geometry of nature. To make the assignment worthwhile, one of the criteria would stipulate that 



the essay include a list of references; in that way i t  would bc incu~iibc~it upon studcnts to do 

some research to support their opinions. Unfortunately, there is a shortage of appropriate 

reference materials; much of the existing literature is too advanced for secondary school 

students. There are several books and articles listed in the bibliography that are suitable for a 

high school audience, but gaining access to a class set would be problematic. 

Recommendations for im~lementation. 

In hindsight, it occurs to me that my behavioral objectives were likely too ambitious. 

Given that my students had no previous exposure to the topic, my expectations were unrealistic. 

In Canada the traditional mathematics curriculum is spiral in nature; that is, topics are visited 

and revisited from year to year and with each encounter, concepts are covered in slightly greater 

depth. In this way many students are able to acquire a structural understanding of, for example, 

solving single variable equations or right triangle trigonometry. My students were given no 

such opportunity with fractal geometry. 

We studied the topic for approximately six weeks; this represents a threefold increase in 

the time that is typically allotted for a unit in the traditional cul-riculum. We did not address 

three times the material, but the concepts were completely foreign. Thus, only a gifted student 

would have the ability to accommodate all of the ideas disseminated during those six weeks. In 

a sense, fractals are like any mathematical topic. Students need time to think about the ideas, to 

make sense of them, and to construct their own meanings. They need time to ponder notions 

such as infinity and dimensions that are not natural numbers. Historically, British Columbia 

mathematics cumcula do not allow sufficient time for students to reflect on the information they 

are expected to acquire. 

It is rumoured that the Ministry is considering the introduction of fractal geometry to the 

secondary curriculum. As a result of my experience, it is my feeling that there are two ways in 

which this can be accomplished. The first is that fractal geometly be introduced at the grade 10 
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level, and the topic is visited and revisited like any other i n  grades 1 1  and 12. If the government 

opts to include fractals in only the grade 12 curriculum, then a significant period of time must be 

devoted to the study of the fundamentals. The former option would be ideal but the latter is 

what is rumoured to be under consideration. 

Should the Ministry decide to implement the second option, it would require the deletion 

of more than one topic from the existing cumculum in order to allow sufficient time for an 

effective study of fractals. It is, however, unlikely that this will occur. If it does not, then it is 

unlikely the curricular experiment will succeed; it will go the way of the Math 12 calculus unit. 

Like calculus, it is impossible to study fractal geometry for two or three weeks and expect 

students to acquire a significant amount of relevant information. 

Other considerations include available hardware, software, and print resources. In terms 

of technology, most schools are ill equipped to deal effectively with the content of a unit on 

fractal geometry. Because of the fiscal realities of public education this situation is unlikely to 

change in the foreseeable future. Hence, most students will be required to study fractals using 

pencil, paper, and perhaps a textbook. It is possible that this teachinflearning situation could 

work; however, in my opinion it is counter to much of the philosophical rationale for 

introduction of the topic. 

Concludin e remarks. 

As outlined in the introduction and in the literature review, there exists ample 

justification for teaching fractal geometry in high schools. Its cross curricular relevance makes 

it ideal for inclusion in the arts and the sciences alike. When my students were informed that I 

would be collecting their notebooks, I asked that they keep a journal of sorts. Tara was the only 

one to do so. The following is a quote from one of her entries: 
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These are some major discoveries which have changed the way that 1 view things. I 

feel that I have been ripped off; I should have been introduced to this when I was 

five years old. This is not a difficult concept. This was an amazing section of math. 

It wasn't the usual exercises from a textbook. This made me think and even 

incorporate philosophy into my thoughts and discoveries. This should be taught or 

at least introduced at a much earlier age. 

Tara's thoughts reflect Benoit Mandelbrot's feelings. In his words: "...if fractals' use in teaching 

is confirmed and proves lasting, it is likely to dwarf all their other uses (Mandelbrot, 1992, p. 



Appendices 

Appendix A: Letters of authorization 

The following is a letter requesting parental pennission for student participation in the study. 

Dear ParentjGuardian: March 2Sh, 1996 

Your son/daughter is being asked to participate in a study that is to take place in hisher 

Survey Mathematics 12 class. Participants in the study will be taught an experimental unit on 

fractal geometry, a topic that is included in the Survey Mathematics 12 curriculum. The study 

unit and students' responses to it are to be documented as part of my graduate studies at Simon 

Fraser University. 

The content of the study unit is non-traditional, but the methods used in the teaching will 

largely be those with which students are familiar. Participants will be responsible for all 

information taught and all assignments and/or evaluative measures prescribed by the teacher. 

One of the major differences between this unit and traditional ones is that upon 

conclusion the students will be asked to participate in an interview. The purpose of the 

interview is to determine if and how the students leamed the information presented to them. The 

interviews will be approximately 45 minutes in length. Your sonldaugl~ter will be asked to 

appear either before school, at lunch, or after school. Each interview will be audio taped for the 

purposes of analysis. The tapes will be destroyed upon completion of the study; confidentiality 

is guaranteed. If you would be interested in obtaining a copy of the results of the study, please 

feel free to request one from me and I will be happy to oblige. 

Participation is completely voluntaiy; should you decide that your child will not 

participate, or should your sonldaughter choose not to participate in the study, that decision will 

be respected and there will be no penalty to the student for not taking part in the project. 

Fusthermore, your son/daughter will be free to opt out of the study at any time without incurring 

any penalty to hisher class grade. Finally, should he/she become dissatisfied with, or have any 

complaints regarding, any part of the study helshe will have the opportunity to express liislher 

concerns. If your child wishes to express his/her dissatisfaction to a third party, complaints 

should be addressed to Dr. Robin Barsow, Dean of Education, Simon Fraser University, V5A 

1S6. Dr. Barrow can also be contacted by telephone at (604)291-3148. 



If you are willing to give your consent for your son/daughter to participate, but only if 

helshe wishes to participate, please fill in the appropriate blank below, sign this letter and return 

it with your sonldaughter . Should you require further information regarding any aspect of the 

study please contact me at school (664-8535) or at honie (421-2326). 

Thank you very much for your attention. 

Yours truly, 

Michael Langille 

1, , give my son/daugliter my 

permission to participate in the study described above. 

1, , do not wish my child to to participate. 

Signed: 

Date: 



To whom it may concern: March 25'11, 19% 

This letter is to acknowledge that I am aware of research on Survey Mathematics 12 

students' assimilation and acquisition of fractal geometry that is to be carried out at Burnaby 

West Secondary School by Michael Langille, a teacher at Alpha and a student in the Master's 

Degree Programme in mathematics education at Simon Fraser University. 

I understand that the research methodology is to consist of a six week study unit on 

fractal geometry to be administered by Mr. Langille. His students will then be subjected to an 

interview. The intent of the intelview is to detellnine if, and how, the students have acquired the 

concepts presented through the course of the study unit. The interviews will be audio taped and 

these tapes will provide most of the data to be studied. Other data will consist of students' work 

that will be collected and analyzed. At the outset the students will be informed of their right to 

withdraw from the study, or any part of the study, at any time. 

In my opinion, these activities are well within the educational context of the Survey 

Mathematics curriculum and the mathelnatics department at Bul-naby West. 

Principal 

Burnaby West Secondary School 



Appendix B 

Worksheet #I  

Introduction to Fractal Geometry 

The figure that appears below is one of the earliest fractals studied. It was 
discovered by the Swedish mathematician Helge von Koch in 1904 and thus, is 
known as the Koch curve. 

stage 0 

stage 1 

stage 2 

stage 3 

The first three iterations of the Koch Curve. 

As is the case with all of the simple fractals that we will be studying initially, the 
Koch curve begins with a straight line and becomes more and more complex with 
each iteration. Each line segment in a given iteration is replaced with the 
generator. 

For each of the generators shown below, use pencil, ruler, and squared paper to  
sketch the first three iterations of the fractal. 



The Chaos Game 

The Chaos Game is not so much of a game as  it is a n  activity that  will (hopefully) 
eventually help you to understand the relationship between chaos and fractals. 
Chaos is a relatively new science that  was discovered by meteorologist Edward 
Lorenz in 1961. I t  has since been discovered that  Fractal geometry is the geometry 
of chaos. Because of the complexity of chaos theory, and the equally complex 
relationship between it and fractal geometry, we will not be studying chaos in any 
detail. 

Here is how the Chaos "game" is played. Mark a point anywhere inside the vertices 
of A LTR. 

Step 1. Roll the die and move according to these rules: 

for a 1 or a 2, move halfway to vertex L; 
for a 3 or a 4, move halfway to vertex T; 
for a 5 or a 6 move halfway to vertex R. 

Step 2. For each point that  you locate in this manner, plot a small point on the 
acetate overhead sheet provided. 

For the first day, plot as  many points as you can in  the time provided. By the 
completion of the unit you should have plotted approximately 200 points (that 



works out to about 20 per day). This activity will be graded; I know what the result 
is supposed to look like, so take care in making your measurements and plotting 
your points. This is an  activity that you will be given class time to do every day 
that  we study fractals. You will not be allowed to take this activity to work on a t  
home. 



Worksheet #2 

Introduction to Fractal Geometry: Handout #2 

Begin by sketching the next two iterations of the figures shown below. 

Consider the following diagrams: 
figure 1 

A line segment divided into 4 identical copies. 

A square subdivided into 16 identical smaller squares. 

The straight line segment shown in figure 1 has been subdivided into four equal 
parts. The original segment is reduced by a factor of 4 and the number of identical 
copies formed is 4. The large square shown is subdivided into many smaller 
squares. Again, the reduction factor is 4 but this time the number of identical 
copies is 16. The cube diagrammed in figure 2 (overleaf) has been subdivided into a 
number of smaller cubes. Yet again the reduction factor is 4, but now the number 



of identical copies is 64. These relationships can be described by the equation 
&=N. 

In this equation, r represents the factor by which each segment has been reduced in 
the transition from the original figure to  the one that has been subdivided. The 
parameter N represents the number of copies of the original figure that are 
contained in the new figure. 

figure 2 

A cube subdivided in 64 identical smaller cubes. 

1. Below are some of the figures that you were to draw for homework. 
Calculate the dimension of these figures. 

a. stage 1 



2. Calculate the self-similarity dimension of the two fi y r e s  that you were asked to  
draw a t  the beginning of the class. 



Worksheet #3 

Introduction to Fractal Geometry: Handout #3 

Use the programme called Fract-0-graph to draw some of the fractals that  you 
have been asked to sketch in the two previous classes. The programme will sketch 
as many iterations as you want; all you have to  do is push the button labelled 
fractify . 

The sketches that the computer draws may be different than the ones that  you 
sketched yourself. This does not necessarily mean that your drawings are 
incorrect. There are a few problems with the programme that  prohibit it from 
sketching certain fractals. One in particular that i t  does not like is the Gosper 

v 
curve. If you need some clarification just ask. Print a couple of them and include 
them in your notebook. 

After you have explored the programme using some of the generators discussed in  
class try making up some of your own. I would like you to print a copy of any of 
these that  you do and include them in your notebook also. 

On page 2 of this handout there are several different versions of curves that we 
have studied so far in class. Complete the table below for each of the curves shown 
using the self-similarity dimension rd = N and some trigonometry. We will discuss 
a few of them in class. The subsequent iterations of each generator are there for 
the purposes of illustration; you need only analyze the generators themselves. You 
should show some work that I can see when these handouts are collected with your 
notebooks. 

curve 

Koch 

H.H. 

Gosper 

Koch 

H.H. 

Gosper 



curve 

Koch 

H.H. 

Gosper 

Koch 

H.H. 

Gosper 

Koch 

H.H. 

Gosper 

I 



This page photocopied from FI-uc!uls ill Yolrr Flr/irre, by Ron Lewis: page 39. 

- 

Later Stage 



Worksheet #4 

In t roduct ion to Fractal Geometry: Handou t  #.I 

Open the programme called FractaSizetch. Use the programme to dl.,,, some of 
fractals that  you studied in Handout #1. As with the other p rogran~l , ,~  that we 
used, (Fract-0-Graph) when you have completed sketching your gcl lclI-,tor double 
click the mouse and the screen will automatically be changed to the "liactifyw mode 
On the menu bar is a menu called Grid. You may want t o  pull dowrI 1his menu and 
change the grid to None. This will make it easier to specify the anglt, that you want 
to use to draw your generator; otherwise you are pretty much res t r i (~l ,~d to a certain 
range of angle measures. Remember that for the fractals that we hrlvc looked at to 
date all segments are the same length. Clicking on the numbers a c ~ . , , ~ ~  the bottom 
of this screen enables you to  see your generator a t  different stages. 

Across the bottom of the screen are the types of segments that are Civailable for use 
in drawing your generators. Experiment with these to discover w h ; ~ ~ ,  difference 
they make in the fractals that you draw. One of the more useful ant.,: is on the 
right hand side of the screen; this enables you to draw "invisible" sc.j;,nents. When 
you use this tool the segment that is drawn will not be included in I.II , ,  subsequent 
drawing of the fractal. 

At the upper right of the screen you will see the equation "D =." Thi,: will tell you 
the fractal dimension of the generator that you have drawn. Use FrrrCtasketch to 
attempt to draw some of the fractals that appear on the second pagr! l,fHandout #3. 

Try drawing the variations of Peano's curve that  are shown below. I llave tried to 
draw the arrowheads so that they are visible. Note that  in the fourl.ll drawing the 
segments are not all the same length. The fifth drawing should givc~ you the basic 
idea of what to draw. Play around with the angles for awhile; you know when 
you have drawn the generator using the correct angles. The sixth dlsnwing is  
another that  you should play around with for awhile. Once again, y r , ~  will 
recognize the fractal when you have found the correct angles. 

For more ideas see the reverse of this page. 



The diagram below and to the left shows a number of generators that  will yield 
variations of the dragon curve. See if you can match the generator to the fractal 
that  is shown several stages later (below right). 

The diagrams below are photocopied from Exploring Fractals on the Macintosh, by 
Bernt Wahl: pages 61 and 62. 



Try drawing some trees using the instructions that follow. 

The following is photocopied from Exploring Fractals on the Macintosh, by Bernt 
Wahl: page 67. 

Basic Tree Construction wifh FractaSketch 

Let's draw a tree, beginning wit11 a seed created in FractaSketch. See Figure 3.57. 

Side 

seed 

Figure 3.57 

Y seed-the most basic construction for a fractal tree-shown with the tree's side 
drawing and its corresponding upright rototion 

Hint: I t  is easiest to colistruct a fallen tree, which is a tree lying 90 degrees on its 
side. Whcn tlie construction is completed, you can use tlie Rotate feature from tlie 
Scale menu to put i t  in an upright position. 

Let's bcgin construction of our fallen trec with three segments. 

Step 1 Choose box 9 (the nonreplaced line segment), dra\v a horizontal line 
roughly iialfway across the screen, and click. l'l~is is tlie tree's trunk. 

Step 2 Choose box 1 and d m w  the tree's iirst branch. Do this by drawing a line 
from tlie trunk with a n  ascending 35-de~ree  angle toward the upper riglit. 

Step 3 Choose box 0, and use i t  to backtrack in\,isibly to thc top of the trec trunk 
(the right-hand side). Tliese light-gr'iy lines are uscci to let you draw f i ~ ~ ~ r c s  that 
consist of noncontinuot~s or clisconnectcd sections. In this casc, use this feature to 
dra\v a symmetric branch on the opposite side. 

Step 4 Clioosc bos 2 and draw a line equal in l c n ~ t l ~  to the other branch, only this 
time i t  should descend by 45 degrees toward the lo\\.er kit .  This branch should be 
symmetrical about the tree trunk. 

Step 5 Clioosc bos 0, iinisli the d ra \ \ . i n~  1.1:. double-clickins, and rotate the trce into 
an upright position. \\!hen !.ou're t inid~cd,  it' the Edit menu is set to Left to I<i:;lit, 
an in\lisible line \\ . i l l  autoni,iticall~ be d r . ~ \ \ . n  to the trce's niiddle top, \ t~hiih \vill 

dcfine tlic seed's Iensth. Otlier~vise, i f  the Edit menu is set to First to Last, this line 

\\.ill be isnorcd. 
im,~:;c ~ I iou l~ l  look like ,I $ant Y.  YOU can proiecil to Iiislicr le\.cls .ind 

ho\v your tree takes shape. 



The diagrams that  appear below were photocopied from Exploring Fractals on thc 
Macintosh, by Bernt Wahl: page 69. 

Level 4 seed 

Figure 3.60 

The bush. 
shown with its 
seed 

Figure 3.61 sho~vs  some templates that produce familiar trees. You can create - 
your own fractal seeds and see what kinds of trees you come u p  with. 

Figure 3.6 1 

Recognizable structures of fornilior trees 

Included on the disc with FructuSketch are some ready made fractals that you can 
view. Open the file labelled EF FractaSketch file folder. Contained within that 
folder are several other folders. Open, say, EF Nature folder and click on EF Fern 
II .  I t  may be interesting for you to click back to stage one of the fractal and watch 
how the fern leaf is generated as  you click through various stages of the fractal. 
Take some time to explore some of the other folders contained within the EF 
FructaShetch file folder. 



Worksheet #5 

Introduction to Fractal Geometry: Handout #5 

Use the box counting technique practiced in the previous activity to measure the 
complexity of the coastline of the Queen Charlotte Islands. There are many islands 
in the archipelago. To speed thngs  up count only the boxes that contain parts of 
the coastlines of the two main islands; Graham Island is the northernmost island, 
and Moresby is the large southern island. The coastlines of these two islands have 
been highlighted to make them easier to distinguish. 

Make sure that you include in your count every box in the grid that contains any 
part of the coastline within the interior of the box. Enter the results in the table 
below. The "scale" that has been used for a particular grid can be found in the 
lower left corner of the grid. The count for the grid of the smallest scale has been 
done for you. 

Group Data 

Make two double logarithmic plots of the boxcount y versus the reciprocal of the 
scale x; use your group data and the average of the class data. Draw your graphs 
on the same type of double logarithmic graph paper used in the previous activity. 
Use two separate pieces of graph paper. 

l/(scale x) 

boxcount y 

l/(scale x )  

boxcount y 

1. Calculate the slopes of the "best fit" lines that result from the plots that you 
drew. 

2. What dimension does the coastline of the Queen Charlottes appear to have? 

Class Data (average) 

4 

4 16 

8 

8 

16 12 

12 24 32 

277 

24 32 

277 



Worksheet #6 

Introduction to Fractal Geometry: Handout #6 

One of the programmes with which you will be interacting today provides a visual 
display of the iteration of a simple function. This display is called the Mandelbrot 
set (it will be referred to as  the M-set from now on),and is named after its 
discoverer Benoit Mandelbrot. At the beginning of this unit we viewed a slide show 
in which there were several slides showing a part of the M-set. A t  that time several 
of you asked what i t  was. Without getting too technical I will now try to explain in 
a little more detail. 

If you recall the unit we studied on finance and growth you should remember using 
recursive formulas. In studying those formulas you would begin with a number, 
plug it  into the formula, get a second number, and then plug that one in to generate 
a third number, and then plug that one in  t o  generate a fourth number, and so on 
and so  on. This is precisely how the M-set is generated. 

When we studied recursive formulas you may recall having observed one of two 
results. The results of the iterations either became progressively larger and larger, 
or they got smaller and smaller until they were very close to some limiting value. 
The successive iterations of the formula used by Mandelbrot behave in much the 
same way. 

2 Mandelbrot began with the formula z , + ~  = (z,) + c.  You should recognize this as  a 
simple recursive formula; however, Mandelbrot used complex numbers (sometimes 
known as imaginary numbers) which make the calculations more complicated. 
Start with the initial value zo = 0 , and choose some value c = x + yi, and begin the 
recursion (the value i is defined as G). The values resulting from the recursion 
are graphed on the complex coordinate plane where the x-axis is as  usual and they 
axis is the complex axis (see the graph below). 



The M-set consists of all the points for which the iterated function ;,,+I = + c 

with the initial value zo = 0 does not produce values which grow to infinity. In 
order to be contained within the M-set the iterated values of the function must lie 
within the circular region of the coordinate plane defined by -2 5 .r 5 2 and 
-2i 5 yi 5 2i. 

An initial value of c is chosen and the recursion begins. If the chosen initial value 
of c is contained within the M-set one of three things will happen within the region 
mentioned above: 

1. The resulting sequence of values may converge to a single point, or; 
2. the resulting sequence of values may oscillate between two or more 

points, or; 
3. the resulting sequence of values may forever bounce around randomly 

On your computer screen the values that are contained within the M-set are 
coloured black. I t  is  the values that are not contained within the set that  give the 
pictures their colours. The colours are determined by the speed with which the 
iterated values of the fimction escape to infinity. For example, the areas that  are 
coloured blue are the values of c that escape to infinity very quickly. The points 
contained within the areas that are coloured yellow escape to infinity, but not 
nearly as  quickly a s  the ones coloured blue. 

A simple diagram of the M-set appears below. Using the computer, explore the M- 
set and try to find the following areas. Mark them on the diagram. Try to find: 

a n  area where a miniature version of the M-set appears; 
a n  example of self-similarity (has the same structure a t  any 
magnification); 
the area known as  "Seahorse Valley." 

The diagram below is photocopied from the Survey Mathematics 12 resource binder I 



Aside from these excrciscs play around with thc progranln~c and just a d m i r ~  S O ~ W  

of the images generated. The computer must make extremely complicated 
calculations to  produce these images. This is one of the reasons that fractal 
geometry did not become an important area of study until very recently. 

Another programme that you will use today generates realistic looking fractal 
landscapes. John will explain how to change some of the controls within the 
programme so that you can customize your image. I have no idea how this 
programme works so I will not even try to explain. Play around with it and think 
about how real these pictures can be made to look. Think about some of the 
philosophical questions that arise from these pictures. 

Last, but not least, I want you to use FractaSketch again. If you have not already 
had a chance, look a t  some of the images contained within the file called EF 
FractaSketch Nature folder. When you look a t  these pictures think about the 
landscape images you-produced today. Also, if you have not had the chance to print 
some fractals from the computer this would be a good opportunity to do so. I will be 
expecting to see some computer generated fractals in your notebooks along with the 
ones that you were supposed to draw using pencil and paper. Remember: I want 
your notebooks by Friday, December 2 2 n d  a t  the latest! Remember also that I 
asked you to include in your notebook some of your thoughts regarding and 
impressions of fractal geometry: particularly with regard to what you have seen 
and learned today. 

In Mandelbrot's book The Fractal Geometry of Nature he writes: 

"Why is geometry often described as  'cold' or 'dry'? One reason lies in 
its inability to describe the shape of a mountain, a coastline, or a tree. 
Clouds are not spheres, mountains are not cones, coastlines are not 
circles, and bark is not smooth, nor does lightning travel in a straight 
line ... Nature exhibits not simply a higher degree but an altogether 
different level of complexity." 

This is likely his most widely quoted statement. He goes on to propose that fractal 
geometry can be used to explain many natural phenomena. Drawing on what you 
have seen and learned in this unit and on the assigned readings write a short 
response to Mandelbrot's theory. Your essay should be a minimum of two double 
spaced type written pages (about 500 words). 



Ouiz #1 

Fractal Geometry Quiz #1 

1. Given the following stage 0 and stage 1 diagrams; 

a. Draw the stage 2 diagram 

b. calculate the fractal dimension of the generator. 

Stage 0 

2. Given the stage three diagram shown below, sketch the stage two diagram. 



Ouiz #2 

S.Ma. 12 Fractal Ouiz #2 

1. a. Stage 0 and stage 1 of a Sierpinski carpet are shown above. Calculate its fractal 

dimension. Show all work. 

b. Briefly describe the appearance of stage 2 of the fractal. Draw a diagram if you wish. 

2. Given a Koch curve that has dimension 1.3, calculate the angle required in order for stage 1 

to be drawn. Show all work and draw a sketch. Use the reverse side of this page. 



Unit test 

Introduction to Fractal  Geometry: Unit  Test  

Name: 

1. Calculate the fractal dimension of the figures resulting from many iterations of 
the following generators. Show all work. 

Hint: in a given generator all segments are the same length. 



1. (continued ...I 

2. The figure shown below could be used to generate a Koch curve of dimension d 
= 1.5606. Calculate the angle between the horizontal and the second segment of 
the generator. Show all work. Round your answer to  the nearest tenth of a 
degree. 



3. Malie a sketch of the third iteration of the figure shown in question l(a). Make 
it neat and be as  accurate as you can. 

The graph shown below represents a double logarithmic plot of a boxcount 
that  was done on the coastline of Dogbreath Island. Calculate the fractal 
dimension of the coastline. Show work. 



5. Two "curves" have fractal dimension 1.2 and 1.8 respectively. Write a 
paragraph comparing and contrasting the two curves. Please note: a 
paragraph consists of several sentences. A sentence begins with a capital 
letter and ends with a period; what is in between must make some sense. 
You may support your description with diagrams if you wish. 
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