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ABSTRACT 

As the demand for mobile communications continues to grow, speech codec designers 

are faced with the challenge of providing high quality speech coding systems at low bit 

rate. New efficient speech coding algorithms are required to reduce the bit rates and 

obtain high quality reproduced speech signal. 

Transform coding is a frequency-domain coding technique which has been studied 

extensively and used widely in low bit rate speech coding systems. The Vector Transform 

Quantization (VTQ) system is an example of transform coding, where a set of vector 

quantizers are used to quantize the transform coefficients. 

With the motivation of developing high quality speech coders at low bit rate, this thesis 

investigates two new speech coding algorithms with the goal of obtaining high quality 

synthetic speech at the rate 2.4 kbps. Based on the VTQ system, the Vector Transform 

Quantization with Coefficient Ranking (VTQ-CR) system and its enhanced version, 

Vector Transform Quantization with Coefficient Ranking and Adaptive Linear Prediction 

(VTQ-CR-ALP), are developed. Coefficient ranking technique and adaptive transform 

domain linear prediction analysis are proposed to improve the performance of 

conventional VTQ coders. 



The experimental results indicate that ranking transform coefficients in a descending 

order of their energy values and vector quantizing the most significant coefficients can 

make the VQ more efficient at low bit rate. A further performance improvement can be 

achieved by applying an adaptive linear predictor to the voiced ranked coefficients, where 

the correlations between the coefficients are reduced. Multi-Stage VQ (MSVQ) coupled 

with the closed-loop VQ codebook search is used to obtain an efficient, high quality and 

low complexity quantization. 
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Chapter 1 

Introduction 

1.1 Background 

Speech coding is one of the most crucial parts of advanced digital telecommunication 

systems. The very high demand for mobile communications is currently the main driving 

force behind the development of new speech coding algorithms. Offering higher capacities 

for voice communications at reduced costs, low bit rate speech compression has become 

an area of intensive research in many telecommunication applications, such as international 

public telephone networks, digital cellular and mobile communications, video conference, 

Integrated Services Digital Network (ISDN) and multimedia applications. With the 

anticipated sharp growth of mobile, personal and secure wireless communications, future 

wireless digital systems need to rely on advanced source coding technologies for coding 

speech at rates of 2.4 kbps and below. During the last decade, a great deal of research has 

been conducted on low bit rate speech coding algorithms and a rapid progress has been 

made in producing high quality speech at low bit rates [I-101. 



The design objective of low bit speech coders is to minimize the bit rate to represent the 

speech signal while preserving high quality and minimizing the complexity of 

implementation. Most voice coders (vocoders) operating at rates of around 2.4 kbps are 

parametric, usually attempting to track the underlying process that generates the speech 

waveform, by encoding the parameters that describe that process and reproducing the 

property and resonance of the original speech at the decoder. Linear Predictive Coding 

(LPC) is one of the most widely used speech coding techniques today [11][12]. LPC 

analysis may be used to derive the coefficients of a linear digital filter which models the 

spectral shaping of the vocal track and gives the best spectral match to the speech being 

encoded. LPC-10 (LPC-lOe is its enhanced version) [13][14] and the Mixed Excitation 

LPC (MELPC) vocoder [15][16] are two examples of LPC vocoder at 2.4 kbps. LPC-10 

is a U.S. government standard speech coder for secure communications. The synthesis 

model is a 10th-order lattice filter, controlled by a set of 10 reflection coefficients which 

are updated every 22.5ms. The speech produced by the LPC-10 coding algorithm is 

intelligible, though of a quality significantly lower than telephone quality. The main defect 

is its perceived robotic quality, which can often disguise the identity of the speaker. The 

most annoying aspect of the basic LPC vocoder is that, although acceptably intelligible, it 

does not always sound like natural human speech, especially in the presence of acoustic 

background noise. MELPC is based on the traditional LPC model of exciting an all-pole 

filter with either a periodic impulse train to represent voiced speech or white noise to 

represent unvoiced speech. An improvement on the quality is achieved by using mixed 

pulse and noise excitation, periodic and aperiodic pulses, a pulse dispersion filter, and 



adaptive spectral enhancement [16]. It produces more natural sounding synthetic speech 

than the LPC-lOe vocoder [15]. 

The introduction of the Multi-Pulse Linear Predictive Coding (MPLPC) in 1982 [I] and 

the Code-Excited Linear Prediction (CELP) in 1984 [2][3] led to research in a new class 

of analysis-by-synthesis speech coders [4-61 that enabled us to encode high quality speech 

at bit rates as low as 4.8 kbps [7][8]. Analysis-by-synthesis, as its name implies, is the use 

of synthesis as an integral part of the analysis process. The MPLPC is an analysis-by- 

synthesis system in which each excitation vector consists of a combination of a given 

number of pulses whose positions and amplitudes are optimized in the closed loop. The 

derivation of the appropriate pulse positions and amplitudes at the encoder is crucial to the 

coder performance. 

The CELP system uses an 'innovation sequence' as the excitation, instead of using 

multipulses. At the encoder there is a codebook which contains many different excitation 

sequences (innovations). The 'optimum' innovation sequence is chosen to minimize a 

given distortion criterion between the original and the synthesized speech. At the decoder 

of a CELP codec, each block of reconstructed speech samples is produced by filtering the 

selected innovation sequence through a long-term filter and then a LPC vocal tract filter. 

CELP encoding is a very important technique--several speech coding standards, such as 

the 4.8 kbps US Department of Defense standard FS- 1016 for secure telephony [17], the 

ITU G.728 LD-CELP [18] 16 kbps standard, and the ITU G.729 CS-ACELP [19] 8 kbps 

standard, are all based on the CELP coders. Although both multi-pulse and CELP 

excitation models use analysis-by-synthesis techniques and represent very important steps 



in synthesizing natural-sounding speech, these models are not able to reduce the bit rate 

for high quality speech below 4 kbps. Due to the lack of the efficient presentation of the 

excitation, the performance of CELP coders degrades rapidly below 4.8 kbps [20]. 

Transform coding is a frequency-domain coding technique which has been studied 

extensively and used widely [21]. One of the well-known types of transformations is the 

orthogonal transform. There are two reasons for using orthogonal transform. The first is 

that such a transform can help to reduce the bit rate since it distributes the si.gnal power 

non-uniformly over the transform coefficients; the second reason is that such a transform 

can decompose the signal into perceptually relevant components. By quantizing these 

components with different accuracies, the coding errors can be controlled in such a way 

that perceptible distortion is minimal [21][22]. The bit rate required to encode the 

transformed samples is lower than the rate required to encode the untransformed samples 

to obtain the same quality synthesized speech. 

If the input signal samples are Gaussian distributed random variables and the transform 

coefficients are scalar quantized, the Karhunen-Loeve Transform (KLT) was proven to be 

optimal orthogonal transform under the minimum mean-squared error (MSE) criterion 

[2 11 [23] [56]. The KLT completely decorrelates the signal sequence in the transform 

domain. However, KLT is signal-dependent and difficult to implement. The other two 

well-known orthogonal transforms are the Discrete Cosine Transform (DCT) which is 

used in the Adaptive Transform Coding (ATC) [23] and the Discrete Fourier Transform 

(DFT) which is used in the Multiband Excitation (MBE) coding model [24]. Both DCT 

and DFT are signal-independent and sub-optimal in the sense that they cannot fully 



decorrelate the transform coefficients. In the application in speech coding, DCT 

demonstrates a better performance than the DFT [23][21]. Experimental results indicate 

that DCT is the closest in performance to KLT [21]. Moreover, there are fast 

computational algorithms for DCT that allow easy VLSI implementation. 

In ATC, although the total number of bits available to quantize the transform 

coefficients remains constant, the bit allocation to each coefficient changes from frame to 

frame. This dynamic bit allocation is controlled by the time-varying statistics of the speech, 

which have to be transmitted as the side information. The number of bits assigned to each 

transform coefficient is depends on its corresponding spectral energy value. ATC was 

used to encode speech successfully at bit rate in the range of 9.6 - 20 kpbs. 

MBE model assumes that both voiced and unvoiced excitation can exist at the same time 

in the same analysis frame but in different frequency bands. The speech spectrum is split 

into non-overlapping bands and each band is modeled as being either voiced or unvoiced. 

The voiced bands are synthesized using sinusoidal signal and the unvoiced bands are 

synthesized using bandpass filtered noise. The required frequency band analysis is obtained 

by using a DFT. 

Other important speech coding algorithms for 2.4 kbps include the Time-Frequency 

Interpolation Coding (TFI) [25] and the Sinusoidal Transform Coding (STC) [26], etc. 

The STC algorithm uses a sinusoidal model with amplitudes, frequencies, and phases 

derived from a high resolution analysis of the short-term Fourier transform of the speech 

signal. A harmonic set of frequencies is used to represent the periodicity of the input 

speech. Pitch, voicing, and sine wave amplitudes are transmitted to the decoder. 



Conventional methods are used to code the pitch and voicing, and the sine wave 

amplitudes are coded by fitting a set of cepstral coefficients to an envelope of the 

amplitudes. 

Many transform coding systems use scalar quantization [23], where the transform 

coefficients or speech analysis parameters (linear prediction coefficients etc.) are quantized 

individually by a set of scalar quantizers. It was proven that the vector quantizer can 

achieve better performance than the scalar quantizer [27]. The idea of vector quantization 

(VQ) is to map each input vector into a codevector in a codebook which consists of a 

finite set of vectors and covers the anticipated range of the input values of the quantizer. 

In each analysis interval, the codebook is searched, the codevector which gives the best 

match to the input is selected and the corresponding index is transmitted. The interest in 

VQ resides in the fact that additional gain in performance is achievable over scalar 

quantization even in the case the input vector consists of independent elements. One of 

greatest difficulties with VQ is in setting up a good quality codebook; significant amounts 

of training are involved. In addition, there is a need for very efficient algorithms to keep 

the codebook search complexity reasonable. In the last decade, many efficient algorithms 

for searching VQ codebooks have been developed [28-301. 

As the demand for mobile communications continues to grow, speech codec designers 

are faced with great challenges in providing high quality speech coding systems at low bit 

rate and low costs. At the rate 2.4 kbps, the number of bits available to produce a signal 

that matches the original speech waveform is insufficient. An efficient and effective speech 

coding algorithm is required to reduce information loss and obtain high quality reproduced 



speech signal. Because of the model inadequacies in current 2.4 kbps vocoders, the quality 

of reconstructed speech is still lower than desired. With the motivation of developing high 

quality speech coders at low bit rate, this thesis is concerned with investigating two new 

speech coding algorithms with the goal of obtaining high quality synthetic speech at the 

rate 2.4 kbps. 

A typical Vector Transform Quantization (VTQ) system is a coding system where each 

consecutive M samples of a waveform are transformed into a set of coefficients which are 

quantized by a set of m < < M  vector quantizers. Based on the VTQ system, the Vector 

Transform Quantization with the Coefficient Ranking (VTQ-CR) system and its enhanced 

version, Vector Transform Quantization with the Coefficient Ranking and Adaptive Linear 

Prediction (VTQ-CR-ALP) system, are introduced in this thesis. In these two systems, 

before the vector quantization, the transform coefficients are ranked in a descending order 

of their energy values. Only the first N ,  ranked transform coefficients with higher energy 

values are quantized. The order information is extracted from the short-term spectral 

information of the speech. The voiced and unvoiced frames are encoded by searching 

different codebooks. The decoder restores the order of the quantized coefficient sequence 

and takes an inverse transform to reconstruct the corresponding block of samples. 

Moreover, in the VTQ-CR-ALP system, an adaptive transform domain linear predictor is 

applied to the voiced ranked transform coefficients, improving the system performance 

further by reducing their near-sample correlations. The ranked transform coefficients are 

reconstructed at the decoder from the knowledge of the short-term speech spectrum. The 

analysis-by-synthesis method is used to encode the excitation of the synthesizer. The 



performances of these two systems are evaluated along with a conventional VTQ system. 

The experimental results indicate that the transform coefficient ranking and the adaptive 

transform domain linear prediction are efficient methods in improving the performance of 

the transform coding system. System simulation results are presented for a Gauss-Markov 

source and speech source. 

1.2 Contributions of the Thesis 

The major contributions of this thesis can be summarized as follows: 

1. The development of new speech coding algorithms at the bit rate 2.4 kbps; the features 

of the coding schemes include the use of the order ranking vector quantization to 

encode the transform coefficients and the application of the adaptive transform domain 

linear prediction in the transform coding system. 

2. The design and the analysis of the proposed coder with the optimal bit allocation 

scheme. 

3. Simulations of these coding systems. The performances of al l  these systems are 

compared and evaluated. It is shown that the new systems improve the performance, 

when compared to the known VTQ approach. 



1.3 Thesis Outline 

The rest of this thesis is organized as follows. In Chapter 2, the basic techniques used in 

speech coding are reviewed. A vector transform quantization (VTQ) system at 2.4 kbps is 

described in detail in Chapter 3. The optimal bit assignment strategy is discussed. Two 

new coding systems with the coefficient ranking strategy, the VTQ-CR and the VTQ-CR- 

ALP, are presented in Chapter 4. The adaptive transform domain linear prediction is 

applied in the VTQ-CR-ALP system and the analysis-by-synthesis method is used to 

quantize the excitation of the synthesizer. In Chapter 5, simulation results of all speech 

coders in this thesis are presented and the performances are evaluated. Finally, conclusions 

are drawn in Chapter 6. 



Chapter 2 

Analysis and Compression of Digital 

Speech 

The purpose of this chapter is to present an overview of the digital signal processing 

techniques related to the analysis and compression of the speech signal. From Section 2.1 

to section 2.7, some important concepts for the research presented in this thesis are 

reviewed, including the characteristics of the voiced and unvoiced speech, the scalar 

quantization and vector quantization, the analysis-by-synthesis technique and the linear 

prediction analysis, and transform representation of speech etc. In Section 2.8, two classes 

of coding systems, analysis-by-synthesis speech coding and transform coding are 

discussed. 



2.1 Voiced Speech and Unvoiced Speech 

For the voiced speech, the signal waveform is considered periodic at a rate 

corresponding to the glottal pulse frequency. The period may be variable over the duration 

of a speech segment, and the shape of the periodic wave usually changes gradually from 

segment to segment. For the unvoiced speech, the signal is like random noise, being 

produced by the turbulent flow of air at restrictions in the vocal tract. However, the 

spectrum of unvoiced speech does not have a truly flat energy spectrum as would 

Gaussian white noise; the spectrum is shaped by the resonance of the vocal tract, and this 

gives rise to a small amount of predictability. 

Fig 2.1 and Fig 2.2 are examples of voiced speech and unvoiced speech, respectively. 

-1.5~ I 
0 50 1 W 150 200 250 300 

Samples 

Fig 2.1 Voiced Speech 



Fig 2.2 Unvoiced Speech 

In the speech signal analysis, we assume that the speech waveform can be considered 

stationary over a sufficiently short time interval, although it is non-stationary over a long 

interval of time. In order to handle the time-variant characteristic of the speech signal, the 

spectral information of the speech signal is transmitted every 20-301ns. 

2.2 Scalar Quantization and Vector Quantization 

Vector quantization (VQ) can be viewed as a mapping of a vector in a k -dimensional 

Euclidean space, R ~ ,  into a codevector in a finite set, C ,  containing N codevectors such 

that the difference between the input vector and the quantized vector is minimized 

according to some chosen criteria [28]. The set C is called a codebook. 



The most common distortion measure is the squared Euclidean distance 

where is the quantization operator and y is the input vector. A vector quantizer 

defines a partition of N cells in the k-dimensional space which are denoted by 

Qi , i = 1,2,. . . , N , and associates each cell Qi with a codevector c, . The partition satisfies 

Q i n Q j = O  f o r i z  j; (2.3) 

and 

The quantizer assigns the codevector ci if the input y belongs to the Q, . There are two 

necessary conditions for an optimal quantizer. The first is the nearest neighbor condition 

q(y)=ci ,  iff d(y,ci)Sd(y,cj), j z i ,  li j S N  (2.5) 

which means that a VQ chooses a codevector that results in the minimum distortion with 

respect to the input vector y . The second condition for optimality is that each codevector 

ci is chosen to minimize the average distortion in the cell Qi . For the squared Euclidean 

distance, such a vector is found to be the centroid of the cell Qi , i.e., 



This condition is called the centroid condition. If a set of input ve,ctors called the training 

set is given, an iterative training procedure known as the generalized Lloyd algorithm 

(GLA) can be used to design a VQ codebook [28]. 

In speech coding systems employing VQ, identical codebooks are stored in both the 

encoder and the decoder. For each input vector y ,  the quantization is performed by 

computing the distortion between y and each of the codevectors, then choosing the 

codevector with the minimum distortion as the quantized value of y . This type of VQ is 

known as the full search since all codevectors are tested for quantizing each input vector. 

The index of the selected codevector is transmitted to the decoder where it is used as an 

entry to obtain the corresponding quantized vector fiom the decoder's copy of the 

codebook. 

Vector quantization can offer substantial performance advantages over scalar 

quantization at very low bit rates. However, these advantages are obtained at considerable 

computational and storage costs. For the full search quantization, the complexity increases 

exponentially as a function of the number of bits per vector. It is the computational 

complexity and storage requirement of a VQ codebook that have led speech researchers to 

develop a number of structured VQ schemes [28-301 in which structure is added to the 

codebook in the design process to reduce the computational and/or memory complexity, 

such as the multi-stage VQ, the gain-shape VQ, and the tree-searched VQ. 

A structured VQ scheme which can achieve very low encoding and storage complexity 

in comparison to unstructured VQ is the multistage vector quantization (MSVQ) [31][28]. 

The basic idea of the MSVQ is first to perform a relatively crude quantization by using a 



small codebook and then to provide a further refinement by using successive codebooks. 

The available BT code bits are divided among L stages, with B, bits for stage 

L 

i, i E (1,. . . , L) , and x B~ = BT . Each stage consists of a codebook with 2 Bi codevectors. 
i=l 

A representation f of an input vector y is formed by selecting from each stage codebook 

L 

a codevector, f i  for stage i , and forming their sum, i.e., j = xii . Thus, the storage 
i=l 

L 

complexity of an MSVQ is x 2" vectors, which can be much less than the complexity of 
i=l 

L 

n 2 B i  = 2" vectors for an unstructured VQ. In a traditional MSVQ, the stage codebooks 
i=l 

are searched sequentially. In each stage, a residual vector is generated and passed to the 

next stage to be quantized independently of the other stages. The encoding complexity for 

L 

sequential searching of the stage codebooks is x 2 B i  . In spite of the complexity 
i=l 

advantages of the MSVQ, the conventional stage-by-stage design of the codebooks in the 

MSVQ is suboptimal with respect to the overall performance measure. The performance 

of the conventional multistage vector quantizer is usually lower than that for a single-stage 

vector quantizer with the same number of bits and it can be enhanced by joint design of 

the MSVQ codebooks and a tree-search strategy[32][33]. 

There are two other methods for reducing the VQ complexity: split VQ and gain-shape 

VQ. In a split VQ, the input vector is partitioned and quantized by separate VQs. In a 

gain-shape VQ, the input vector is normalized by a gain and the codebook contains 



vectors for which only the shape varies. Thus for input vectors with different amplitudes 

but the same shapes, only one codevector has to be available. This substantially reduces 

the number of required codebook vectors. 

Scalar quantization is the independent quantization of each signal value or parameter. It 

can be viewed as a special VQ with dimension equal to one. 

2.3 Analysis -by- Synthesis 

Analysis-by-Synthesis is a general approach for estimating a set of parameters of a 

speech production model. The model is assumed to be able to generate a variety of speech 

waveforms by adjusting the parameters; the synthesized speech signals are compared to 

the original speech signal, and the model parameters are varied in a systematic way to 

obtain the best match between the original and the synthesized signal. The first application 

of the analysis-by-synthesis technique to speech coding is due to Atal and Remde [I]. 

In the case of applying the analysis-by-synthesis technique to low rate speech coding, the 

speech production model is used at the encoder to find the optimal set of parameters for 

reproducing each segment of the original speech signal under a given distortion criterion. 

Then, the optimal parameters are transmitted to the decoder which uses an identical 

speech production model and the received set of parameters to synthesize the speech 

waveform. In other words, the incorporation of a decoder within the speech encoder 

allows the selection of the set of parameters which minimizes in some sense the error 



between the original speech and the synthesized speech. Coding the parameters, rather 

than the entire speech waveform can result in a significant data compression ratio. At the 

same time, the fact that parameters choice at the transmitter is based on direct comparison 

of the reconstructed and original waveforms helps to preserve good speech quality at low 

rates. 

Fig 2.3 is a block diagram of an analysis-by-synthesis system. 
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Fig 2.3 Block diagram of an analysis-by-synthesis system 

2.4 Linear Prediction 

Linear prediction is a very important and powerful speech processing technique. The 

basic idea behind the method is that sample values of speech, x,, , can be approximated as 

a linear combination of the past p speech samples. Mathematically, the linear predictor is 

described by 



where Zn is the predicted sample at instant n . ai' s, i = 1,2,. . . , p , are the linear prediction 

coefficients and p is the predictor order. These coefficients are determined by minimizing 

the mean-squared error (MSE) between the actual speech samples and the linearly 

predicted ones. 

Setting the partial derivative of o: with respect to each coefficients a,, i = 1,2, ... , p to 

zero results in a set of p linear equations with p unknowns a;, which can be written as 

where r, (n)  , n = 0,1,2,. . . , p , is the autocorrelation function of the input signal. In a 

matrix form, the equations in (2.9) becomes 

where R, is the autocorrelation matrix, 



T 
and a = [a,, a,, . .. , a, p , r, = [r, (I), r, (21, .. . , r ~ ) ]  . Hence, the solution of (2.10) 8 

given by 

a = ~ : r ,  (2.12) 

Equation (2.10) is called the Yule-Walker equation [28]. Fig 2.4 shows the model of a 

linear predictor. With input xn and output en, the z-domain transfer function is 

I en 

Fig 2.4 The model of a linear predictor 

It can be shown that for a stationary random process, the prediction error of the optinal 

infinite-order linear predictor is a white noise process. A(z) is cormnonly referred to as a 

whitening filter. The inverse filter YA(z) can convert en back to the original signal xn . 

Since the local stationary model of the speech signal is considered in speech analysis, a 

set of predictor coefficients is computed every 20-30 ms in order to match the time- 

varying properties of the speech signal. A value of prediction order p ranging from 10 to 

20 is normally sufficient for a good spectral estimate of a speech signal. The 



autocorrelation method can be used to find the short-time autocorrelation values [34]. For 

a segment of speech signal, x,, x, , . . . , xL-, , the autocorrelation functions are estimated by 

The successive segments of speech signal are windowed by multiplying the signal with a 

rectangular window which has a value of 1 in the interval (0, L-1) and is 0 outside. 

Typically, a smooth window, wi , such as the Hamming window 1281 is used in order to 

obtain a better spectral estimate. In this case, the autocorrelation functions in (2.14) 

become 

The autocorrelation matrix is Toeplitz and symmetrical. The Levinson-Durbin algorithm 

[35-371 can be used for finding the linear predictive coefficients. This method requires 

much less computational effort than a general method for solving the set of linear 

equations. 

2.5 Line Spectrum Pairs (LSP) 

Direct quantization of the linear prediction coefficients is known not to be efficient and 

can lead to an unstable inverse filter yA(z). We therefore transform these coefficients to 

an equivalent set of parameters, such as the reflection coefficients or the line spectrum 



pairs (LSPs). Among the various linear prediction coefficient representations, the LSPs are 

the most efficient parameters for quantization while maintaining stability. Using this 

technique, the transfer function of the analysis filter is represented by two functions which 

have their zeros on the unit circle. 

For the transfer function of the LPC analysis filter in (2.13), we define 

where p is the order of the linear predictor. P ( z  ) has zeros z = 1 and z, = e'2"f"q, 

k=1,2 ,,.., g. Q(z )  has zeros z=-1 and zk=e"KgkTs, k=1,2 ,..., g [38][39]. f k  and 

gk are frequencies of zeros, T is the sample time. With A(z) known, fkls and gk 's can 

be obtained. f, and gk make up the k th line spectral pair. If the inverse filter %(z) " 
stable, LSPs alternate on the frequency scale [38][39], i.e. 

This property can be used to check the stability of the inverse filter 
% ( 4 ,  

After vector quantization, the LSPs are transmitted to the receiver. At the receiver, they 

are converted back to the linear prediction coefficients by using the following equations: 



2.6 Pitch extraction 

Pitch estimation is an essential requirement in speech coding systems. Many different 

algorithms have been investigated and most of them work well on strongly voiced sounds. 

Many of the algorithms were discussed by Rabiner [40]. In the case of voiced speech, the 

short-time autocorrelation function exhibits peaks at time-shifts corresponding to multiples 

of the pitch-period. At these points the speech signal is in phase with the delayed version 

of itself, giving high correlation values. This suggests that the short-time autocorrelation 

function is a powerful technique for estimating the pitch period of voiced speech. The 

short-time autocorrelation function forms the basis of some pitch extraction algorithms 

[40], in spite of the fact that there are a number of efficient time-domain algorithms which 

operate directly on the time-waveform. 

2.7 Transform Representation of Speech 

Orthogonal transform plays an important role in the analysis and compression of the 

speech signal. Orthogonal transforms are block-based operations. The input signal is 



segmented in blocks of M samples. Each block is treated as a vector x, 

x = [no, x, , .. . ,xM-,IT which is transformed to another representation, denoted by vector s, 

The components of s are usually called the transform coefficients. The transform matrix T 

is orthogonal, therefore, its inverse is given by 

The superscript T denotes the matrix transposition. 

If the input signal samples are Gaussian distributed random variables and the transform 

coefficients are scalar quantized, the Karhunen-Loeve Transform (KLT) was proven to be 

optimal orthogonal transform under the minimum mean-squared error (MSE) criterion 

[21][23][56]. The orthogonal basis functions for KLT are obtained as the eigenvectors of 

the covariance matrix of the input signal. 

Let x be a zero mean M-dimensional random input vector, x=[x, .x ,,..., xM-, ]?, the 

transform vector s is given by 

s=Ux (2.24) 

where U is the KLT matrix, U=[u,,u, ,..., uM-,IT. ui7s,  i=O, l , . . , ,  M-1,  are 

eigenvectors of the autocorrelation matrix of x. They are orthogonal and satisfy 



Since the autocorrelation matrix of x is symmetric and positive, it can be decomposed as 

where UT is the eigenvector matrix of R, and A is the eigenvalue diagonal matrix of 

R, . Therefore, the autocorrelation matrix of the transform vector s is equal to 

Here, UUT = I,, I, is a M x M identity matrix. Therefore, the KLT completely 

decorrelates the signal in the transform domain. 

Although KLT gives the best MSE performance, its main disadvantage is the lack of 

fast algorithms to compute the transform coefficients. The basis functions of KLT are 

dependent on the autocorrelation matrix of the input signal and a lot of computation is 

needed to determine the eigenvectors. This has made KLT an ideal transform but 

impractical tool. However, the KLT does provide a benchmark against which other 

discrete transforms may be judged. 

Another important orthogonal transform is the Discrete Cosine Transform (DCT) which 

is defined as [21]: 



where A is an M x M transform matrix whose k th row, nth column element a,, is 

given by 

k = O  
where a ( k )  = 

k = 1,2, ..., M - 1 

DCT is signal-independent and a suboptimal orthogonal transform. A very low 

correlation between transform coefficients is achieved by the DCT. There are other 

important orthogonal transforms used in the speech signal analysis and compression, such 

as Discrete Fourier Transform (DFT), Walsh-Hadamard Transform (WHT), etc.. Zelinski 

and Noll's research results showed that DCT is the closest in performance to KLT among 

DCT, DFT and WHT [41][21]. Moreover, there are fast computational algorithms for 

DCT which allow easy VLSI implementation. The DCT is the most popular transform 

used in the digital speech and image processing [42]. 

2.8 Speech Coding Systems 

Speech coding can generally be classified into two categories: waveform coders and 

source coders or vocoders. The aim of waveform coding is to reproduce the original 

signal as accurately as possible. It usually requires a high bit rate (> 16 kbps). Waveform 

coders are generally signal independent. In contrast, the vocoders extract perceptually 



~ i g ~ c a n t  parameters from the input signal in order to synthesize a reproduced signal 

which is acceptable to a human ears. They are based on a model of speech production and 

hence are signal dependent. Vocoders achieve a higher data compression ratio than 

waveform coders. Since vocoders make no attempt to reproduce the original waveform, 

they can operate at very low bit rates (I 2.4 kbps) but the lower rates are obtained at the 

expense of reduced speech quality. 

2.8.1 Analysis-by-Synthesis Speech Coding 

At low bit rates, the most successful linear predictive based speech coding algorithms 

are based on analysis-by-synthesis techniques. The Code Excited Linear Predictive Coding 

(CELP) [2] [3] is an example of such coding techniques. 
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Fig 2.5 An analysis-by-synthesis LPC coding scheme 

Fig 2.5 shows a generalized analysis-by-synthesis LPC coding scheme. For an analysis- 

by-synthesis LPC-based coder, the LPC synthesizer model is employed at both the 



encoder and decoder. At the encoder the aim of linear prediction analysis is to extract a set 

of parameters from the speech signal to specify the synthesizer transfer function which 

gives the best match to the speech to be coded. These optimum parameters, i.e., predictor 

coefficients, are obtained by applying the method which is described in Section 2.4. The 

LPC coefficients are converted to the LSPs for VQ. The transfer function of the LPC 

analysis filter is given by 

An all-pole filter YA(z) is used to model the spectral shaping of the vocal tract. The 

synthesized speech signal, i ,  is produced by feeding this filter with an excitation signal 

[12][50]. The current excitation vector should be selected such that the distortion E ,  

between x and 2 is minimized. 

In the CELP codec, two different kinds of excitation codebooks are used. One is the 

adaptive codebook which initiates the quasi-periodicity of the voiced speech, the other is 

the fixed codebook which provides the innovation excitation. The optimal codevector for 

the fixed codebook search is determined by minimizing the MSE, E , 

where t is the target vector formed by subtracting the zero-input response (ZIR) of the 

synthesized filter YA(z) from the input speech, and y i  is the zero-state response (ZSR) 



of the filter generated using the i th codevector ci. Let H be a lower triangle impulse 

response matrix, 

0 

h(O) 

h(l) 

Lh(n - 1) h(n - 2) 

then, Equation (2.30) can be written as 

2 
E = 11' - g c ~ c i  11 

where gc denotes the gain. Minimizing E with respect to gc in Equation (2.31), the 

optimal gain is found to be 

If gc is substituted into (2.3 I), minimizing the E is equivalent to maximize E *  

The index of the selected codevector is transmitted to the decoder in order to construct 

the excitation vector. 

For the adaptive codebook search, the excitation vector is formed by delaying the 

previous excitation vectors. The optimal delay is the one which generates the excitation 

vector to maximize E * in Equation (2.33). 



The sequential codebook search is usually used in the CELP coding system. The 

adaptive codebook is first searched, then the contribution of the adaptive codebook is 

subtracted from the target vector before searching the fixed codebook. A lot of work has 

been done to reduce the codebook search complexity. Most of the fixed codebooks are 

structured codebooks, instead of the stochastic codebooks, such as the multi-pulse 

codebook [3] and the algebraic codebook [19]. 

2.8.2 Transform Coding 

Transform coding is a frequency-domain coding technique. In transform coding systems, 

each block of speech samples is transformed into a set of transform coefficients; these 

coefficients are then quantized and transmitted. An inverse process in the receiver converts 

the frequency-domain encoded signal back into the time-domain to obtain the 

corresponding block of reconstructed speech samples. Fig 2.6 shows the general diagram 

of a transform coding system. 

encoder decoder 

Fig 2.6 Transform coding scheme 

At the encoder, the input signal vector x is transformed to the vector s by an orthogonal 

transform matrix T : 



The transform coefficients, which are the elements of s, are quantized and transmitted 

across the channel. The decoder takes the inverse quantization and transfo~m, then 

generates a synthesized signal 2.  

The quantization error in s, s - i , can results in an error ex in the coding system 

Let E be the mean-squared error (MSE) between the original signal x and the 

reconstructed one 2, then 

which means that E is equal to the mean-squared quantization error of the transform 

vector s. In other words, the MSE is unaffected by an orthogonal transform. 

The orthogonal transform distributes the signal power non-uniformly over the transform 

coefficients. Therefore, the transform coefficients can be efficiently coded by assigning 

more bits to the components with higher energy. 

Transform coding gain, GTc , is introduced to evaluate the performance of the transform 

coding. With the scalar quantization, it is defined as the ratio of the distortion of the Pulse- 

Code Modulation (PCM) coding, D,, , over the distortion of the transform coding, D,, . 



For the Gaussian source, the optimum bit assignment for the scalar quantization of the 

transform coefficients in terms of the MSE criterion was derived in 1231. which is given by 

where b, is the number of bit assigned to the i th transform coefficient, r is the average 

bit rate in bits/sample and o; is the variance of the i th transform coefficient. If the 

optimal bit assignment in (2.38) is used for the quantization of the transform coefficients, 

then 

where 6 is an item related to the practical quantizer. For the same source, if the PCM is 

used, the distortion is equal to 

26 -2r D,,=2 2 o2 (2.40) 

where, for the orthogonal transform, the variance o2 is equal to the average of the 

variances of the transform coefficients 

Therefore, the coding gain is equal to 



The coding gain equals to the ratio of the arithmetic average over the geometric average 

of the variances of the transform coefficients. GTc is maximized when KLT is used [23]. 

For a white Gaussian source, no coding gain is obtained since the variances of the 

transform coefficients are equal. Therefore, the transform coding is most beneficial for the 

correlated sources. 

Adaptive Transform Coding (ATC) varies the bit allocation among the transform 

coefficients adaptively from frame to frame while keeping the total number of bits 

constant. This dynamic bit allocation is controlled by time-varying statistics of the speech 

signal which is transmitted as side information. The side information is also used to 

determine the step size of the various coefficient quantizers. Very good speech quality can 

be achieved at 12-16 kbitsls by ATC. 



Chapter 3 

The Vector Transform Quantization 

(VTQ) System 

In this chapter, a vector transform quantization (VTQ) system is discussed. In this 2.4 

kbps coding system, DCT is used as a transform operation and the split VQ is used for 

quantization of the transform coefficients. Furthermore, the transform coefficients are 

encoded by assigning more bits to more important transform coefficients. The bit 

assignment is optimized based on the asymptotic theory of the average energy distribution 

of the transform coefficients. In Section 3.1, the VTQ system is described. The optimal bit 

allocation strategy is discussed in Section 3.2. 



3.1 System Description 

Traditionally, scalar quantization is used to quantize the transform coefficients in the 

transform coding system. However, it is easy to show [27] that a better performance can 

be achieved by employing VQ rather than the scalar quantization even if the transform 

coefficients are not correlated. If there exists correlation among the transform coefficients, 

the VQ can further exploit this redundancy. Vector Transform Quantization (VTQ) coding 

system was developed as an effort to improve the performance of the transform coding 

system [27][45]. As we know, the codebook vectors in VQ have to be chosen such that 

they are representatives of the set of transform coefficients. However, a considerable 

amount of memory is required for storage of the VQ codebook. Also, the quantization of 

a vector requires a large number of calculations. Due to these considerations, a split VQ is 

usually used in VTQ system, where a set of m VQ's (m<<M), instead of one M- 

dimensional VQ, are employed. Obviously, in order to make the m VQ more efficient, an 

optimum bit assignment rule for split VQ is required for assigning more bits to more 

important transform coefficients than to less important coefficients. 

The DCT is usually used in the VTQ system as a suboptimal orthogonal transform, 

although the optimal transform is the KLT which fully decorrelates the transform 

coefficients. A very low correlation between transform coefficients is achieved by the DCT 

as well. By choosing this transform, we avoid the problems of a signal dependent 

transform encoding, the determination of the correlations, and the computation of the 



eigenvalues and eigenvectors. In addition, we can use a fast algorithm to compute the 

transform coefficients. 

VTQ based on the DCT was originally proposed in [27][45] for speech coding at 8 

kbps. Here, we re-design a VTQ system for coding at 2.4 kbps. Fig 3.1 illustrates the 

structure of the VTQ system. It is a coding system where each consecutive M samples of a 

waveform are transformed into a set of coefficients which is quantized by a set of m<<M 

vector quantizers. An inverse vector quantization and inverse transform are taken at the 

decoder to obtain the corresponding block of reconstructed speech samples. The design of 

this system includes the choice of the transform T and the optimum bit assignment for 

coding the transform coefficients. 
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Fig 3.1 The block diagram of a typical VTQ system 

Let x be a vector representing M consecutive samples of a speech subframe, 

x = [x, , x2 , ... , x, IT , and T be the orthogonal transform DCT. Then, the transformed 

vector s , s = [s, ,s2,. . . , s,lT , is given by 



where x is assumed to have zero mean and T can be denoted by 

tr , i = 1,2,. .. , M , is the i th row vector of the transform matrix T. As described in 

Chapter 2, T is an M x M matrix whose i th row, j th column element tii is as follows: 

where a(1) = 1 and a(i) = f i  for i = 2, ..., M .  

The transform vector s needs to be normalized before the quantization. Here, the gain g 

is chosen to be the largest value among transform coefficients of the two subframes which 

form a frame. Each frame has total 256 speech samples, correspondingly, each subframe 

has 128 samples. Scalar quantization is used to quantize the gain. The vector s is gain- 

normalized to a vector y with elements 

where denotes the quantized gain. The normalized vector y is quantized to by m 

VQs with dimension k, and codebook size Ni , i = 1,2, ... ,m . The codebook vectors are 

stored in the gain-normalized form. The input of VQ, is composed of the first k, 

components of the vector y and is denoted by y, ,  the input of VQ, is the following k, 

components and is denoted by y,, and so on. At the decoder, the inverse quaritizers 



V Q ~ '  , i = 1,2 ,... ,m, are applied and the corresponding quantized vectors ii , i = 1,2 ,... ,m, 

are retrieved from the codebooks. The concatenation, f , of vectors ii, i = 1,2, ... ,m,  is 

multiplied by ,ij to obtain the quantized vector G. By taking the inverse transform T-' to 

i , we can obtain the reconstructed speech vector 2 . 

Our design target is the minimization of the distortion between the input vector x and 

the reconstructed vector 2 at reasonable complexity. This distortion is measured by: 

Equation (3.5) indicates that to minimize the mean-squared error between x and 2 is 

equivalent to minimize the mean-squared quantization error of y . 

Let ci be the MSE distortion of the quantizer VQi , then 

then, equation (3.5) can be written as 

Equation (3.7) shows that, for the given bit allocation, if the encoding process minimizes 

each distortion c i ,  the total distortion E is minimized. In this system, the encoding in 

each of the quantizers VQi is done according to the minimum distortion criterion, and a 

full codebook search procedure is applied. In other words, for each vector y , ,  the 



"nearest" vector f i  is retrieved from the corresponding codebook Ci to minimize the 

distortion 

In order to minimize the MSE between the source and the reproduced sequence, we will 

discuss a bit assignment rule for finding the optimal bit allocation for the VQ of the 

transform coefficients in Section 3.2. 

3.2 Bit Allocation Optimization for Vector 

Quantization 

The input speech signal sampled at 8 kHz is segmented in frames of 256 samples. The 

data in a frame are encoded with a fixed number of bits. At the rate of 2.4 kbps, the total 

number of bits for a frame is 77. Each frame is divided into two subframes of dimension 

M = 128. We assign 5 bits for the quantization of the gain for each frame and 36 bits for 

the VQ of the transform coefficients for each subframe. 

Assuming that the M-dimensional vector y is quantized by a set of m VQ's having 

dimension k, and codebook size Ni , i = 1,2,. .. ,m , then 



The average rate r in bitslsample is 

where B, is the number of code bits available for the vector y . Here, B, = 36. Following 

a derivation similar to [27], the strategy of the optimal bit assignment for VQ's can be 

summarized to the following steps: 

A 2 
1. Compute the estimated variances, CTi , of transform coefficients. 

A 2 

where CTi is the estimated variance of the ith component in the vector y, n is the number of 

vectors which are used for estimating statistics, and yi is the value of the ith component 

in the jth vector, z = 1,2.. . M, j = 1,2.. .n. The input vectors are assumed to have zero 

mean. 

2. Compute the number of bits, bi assigned to the ith sample [23][27] 

where p i  is a term which depends on quantization coefficients and on vector dimensions. 

Here, we assume P i  = 0 . 



3. If b, < 0 for any of i = 1,2.. . M, set bi = 0 .  Then, the remaining components with a 

positive bit allocation are subject to bit reassignment. The reoptimization algorithms have 

been proposed in [23] [46] [47]. 

4. Calculate the number of code bits, B, , which is allocated to the VQ, 

The choice of the dimension ki is guided by implementation constraints. Beginning with 

k,, each dimension is set to the maximal value which can be implemented under a given 

complexity constraint, except k, which is chosen to satisfy (3.9). The complexity 

constraint is actually a limitation on the codebook size 

where N,, is the maximal codebook size and set to be 1024. 

5. Similar to step 4, choose k, and obtain B, ; choose k, and obtain B, and so on. 

6. Round off each Bi (i = 1,2.. . m) to its nearest integer value and adjust them to satisfy 



Chapter 4 

Transform Coding with the 

Coefficient Ranking 

In this chapter, two transform coding systems with coefficient ranking are introduced for 

speech coding at 2.4 kbps. In Section 4.1, a new Vector Transform Quantization with the 

Coefficient Ranking (VTQ-CR) system is proposed, in which the transform coefficients 

are ranked and a part of them with higher energies are vector quantized and transmitted. 

Based on the VTQ-CR system, another transform coding system, Vector Transform 

Quantization with the Coefficient Ranking and Adaptive Linear Prediction (VTQ-CR- 

ALP), is introduced in Section 4.2. An adaptive transform domain linear predictor is 

applied to reduce the near-sample correlations of the ranked transform coefficients and the 

analysis-by-synthesis technique is used to determine the optimal excitation of the synthesis 

filter. 



4.1 The VTQ 

CR) System 

with the Coefficient Ranking (VTQ- 

4.1.1 Ranking Structure and Vector Quantization 

At low bit rates, it is important to maximize the cost effectiveness of every bit that is 

transmitted. The objective here is to get the best approximation of input speech in the 

sense of minimization of MSE between the original speech and the reconstructed 

waveform. The coefficient ranking scheme introduced here can improve the efficiency of 

the VQ. 

In the transform coding systems, the signal power is distributed non-uniformly over the 

transform coefficients. Some of the coefficients can be set to zero without introducing any 

perceptual distortion because the corresponding basis components can not be observed 

and some can be quantized less accurately because the human observer is not very 

sensitive to errors. For other components, people may have great sensitivity to errors, 

which means that the corresponding coefficients should be quantized more accurately. The 

idea of the transform coefficient ranking is that, based on the short-time spectral 

information of the input speech, the transform coefficients are ranked in a descending 

order of their energy values. Only the first N ,  ranked coefficients with higher energy 

values are vector quantized, while others with lower energy values are set to zero. 



Ranking the transform coefficients and discarding those with lower energy values can 

make the VQ more efficient. 

4.1.2 System Description 

A VTQ System with Coefficient Ranking (VTQ-CR) was developed for the goal of 

improving the efficiency of the VQ and the system performance. Fig 4.1 is a block diagram 

of the VTQ-CR system. 
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Fig 4.1 The block diagram of a VTQ-CR systeni 



The speech signal is segmented in frames of 256 samples and encoded with a fixed 

number of bits per frame. Each frame is divided into two subframes of 128 samples each, 

i.e., M = 128, where M denotes the length of a subframe. The transform vector, s, 

T 
s  = [s, ,s, ,.. . , s,] . is obtained by 

s = T x  (4.1) 

where x is an input subframe vector consisting of M consecutive samples, 

x = [x, ,x, , .. . , x, f , and T  is the DCT orthogonal transform matrix. Its elements are 

defined as in (2.28). The transform coefficients, s,, s,, . . . , s, , are ranked in a descending 

order of their energy values to form a new vector. It means that the variances of the 

transform coefficients are in order such that the successive values contribute 

proportionally less and less to the total. The variances represent the energy or information 

content of the corresponding transform coefficients. Only the N, most significant 

coefficients are vector quantized and transmitted, while others are set to zero. After the 

same gain-normalization operation as in the VTQ system, the truncated representation of 

the new ranked transform vector is given by 

T 
u = [Y~,Y~,.. . ,Y~~,O... . .O] 

where yi = ' A ,  i = 1,2 ,... , N ,  , j E [I, MI, and j is the quantized gain, which means that 

the jth normalized transform coefficient is ranked as the ith component of the new formed 

vector u. The truncated vector is denoted by y 



The truncation error is given by the sum of the variances of the discarded coefficients. 

Fig 4.2 and Fig 4.5 show segments of voiced speech signal and unvoiced speech signal, 

respectively. Fig 4.3, Fig 4.4 and Fig 4.6, Fig 4.7 show the corresponding non-ranked and 

ranked transform coefficients for the voiced and the unvoiced speech signal, respectively. 

From Fig 4.3 and Fig 4.6, we can see that the energy distribution over the non-ranked 

transform coefficients is non-uniform and the coefficients with greater variances may 

occur anywhere. With very limited code bits at the bit rate of 2.4 kbps, the VTQ coding 

scheme discussed in Chapter 3 could not quantize these significant coefficients effectively 

because Equation (3.11) is used to compute the variances of the transform coefficients in 

the optimal bit allocation under the assumption that the input signal is a stationary process. 

Speech signal is non-stationary over a long interval of time, although it can be considered 

stationary over a sufficiently short time interval. However, by applying the coefficient 

ranking technique in the VTQ-CR system, these coefficients are concentrated in the first 

part of the vector and ranked in a descending order of their energy values as shown in Fig 

4.4 and Fig 4.7. 

The ranking information of the transform coefficients is extracted from the speech 

spectral information. The variances of the transform coefficients are calculated from the 

basis vectors of the transform matrix T and the short-time autocorrelation matrix of the 

input speech, which can be obtained from the linear prediction coefficients. Therefore, in 

addition to the transmission of the quantized truncated transform vector, the linear 



prediction coefficients have to be computed once per frame and transmitted in the form of 

quantized LSPs. 
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Fig 4.4 Ranked transform coefficients of the voiced speech signal 

-2000 1 I I 
0 50 100 150 200 250 300 

Samples 
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Fig 4.7 Ranked transform coefficients of the unvoiced speech signal 



As discussed in Chapter 2, the linear prediction coefficients are converted to LSPs for 

quantization. The LSPs are determined by using the method proposed by Kabal [48]. Split 

VQ is applied for the quantization of the LSPs. 

Voiced speech and unvoiced speech have different characteristics. As shown in Fig 4.2 

and Fig 4.5, voiced speech waveform is periodic at a rate corresponding to the glottal 

pulse frequency, while unvoiced signal is random noise-like waveform. Compared with 

voiced frames, the ranked transform coefficients of unvoiced frames have much lower 

energy level and more scattered energy distribution as shown in Fig 4.4 and Fig 4.7. This 

indicates that more coefficients with low energy values could be discarded without leading 

to a great perceptual distortion in the case of voiced speech than in the case of unvoiced 

speech. In order to make the encoding more efficient, voiced and unvoiced frames are 

classified. Different truncations are taken for the voiced and unvoiced transform vectors; 

and different VQ codebooks are searched for the quantizations of the gains and the ranked 

transform coefficients. The pitch information is used to determine the period of the 

autocorrelation function for voiced speech. The pitch periods of the voiced frames, the 

voicing decision and the gain are transmitted once per frame. 

At the encoder, a two-stage VQ is applied for the quantization of the voiced truncated 

transform vectors. The first stage performs a relatively crude quantization and then the 

second one provides a further refinement. For the unvoiced truncated transform vectors, 

split VQ is used. 



At the decoder, an inverse VQ is taken and the quantized truncated vector is obtained as 

T 
j = [yl , a,. . . , jNt ] . The corresponding ranked transform coefficients are reconstructed as 

T 
6 , G = [ ,  , , 0 . Based on the linear prediction coefficients, the pitch period 

and the voicing decision, the components of the vector 6 are re-ranked to restore the 

order of the coefficient sequence. The re-ranked sequence is multiplied by the quantized 

gain, , to obtain the quantized transform vector G . Then, an inverse DCT transform is 

taken to reconstruct the corresponding block of samples 2 .  To further enhance the 

perceptual quality of the reconstructed speech, a postfilter is added to the decoder output 

[49l. 

4.1.3 Coefficient Ranking 

At the encoder, the transform coefficients, s,, s,, . . . , s, , are ranked in a descending order 

of their energy values or variances. Assuming that the input speech is zero mean, the 

variance of the transform coefficient si , o ; , is defined as 

From the equation (4.1), the ith component of the transform vector s is given by 

where s = [s, ,s,,. . . , s, y . and tT is the i th row vector of the transform matrix T, 

T 
T = [t,, t,, . . . , t,] . Hence, the equation (4.4) becomes 



where Ii, is an approximation of the M x M autocorrelation matrix, R,=. of the input 

speech frame, which is obtained from the linear prediction coefficients and is updated at 

intervals of a frame of the speech signal. If the approximations of the corresponding 

autocorrelation functions r (n) , n = 0,1,2,. . . , M - 1 are denoted by 

We will discuss the calculation procedure for the R= in the Subsection 4.1.4. 

Direct computation of o; using Equation (4.6) will involve a significant amount of 

multiplication operations. There are M~ + M multiplications for the computation of each 

o: . However, since the vector ti is a column vector of a DCT matrix, we can resort to 

the fast DCT algorithm to reduce the computation complexity of 0;. Let the first two 

terms in (4.6) be denoted by ci = t f ~ , ,  where ci is a row vector. In the fast DCT, the 

computation complexity for the transform s = Tx is log, M , where T is a M x M 

DCT square matrix and x is the input vector. Suppose that we take M DCT for different 



input vectors, the complexity would be M(MAlog2 M) which is equal to the computation 

complexity of M ci 's for different i . Also, there are M multiplications for each c,t, . 

For a frame of speech samples, we need compute 128 variances of the transform 

coefficients. Therefore, the total number of multiplication operations is 

M(~/: log2 M + M) = 73728 compared to M~ + M2 = 21 13536 for a direct use of (4.6). 

4.1.4 Autocorrelation Functions and Linear Prediction 

Coefficients 

We assume that a frame of 2 M consecutive samples of the speech signal is a realization 

of a stationary process. The autocorrelation functions are estimated, based on a frame of 

2 M samples, in the encoder by using the autocorrelation method described in Chapter 2. 

We rewrite the equation (2.15) as follows: 

where wi is the Hamming window function. By knowing the r,(n) 's, n = 0,1,2, ..., 16, a 

16th order LPC analysis is carried out in the encoder for each frame. The linear prediction 

coefficients ai , i = 1,2,. . . ,16 , can be determined from the Yule- Walker equation in (2.10). 

In order to use the identical autocorrelation matrix R,, both the encoder and the 

decoder calculate the autocorrelation functions, ?,(n) 's, n = O,l, ... , M - 1 , based on the 

knowledge of the linear prediction coefficients which are vector quantized in the line 



spectral frequency domain [38][39]. (0) is normalized to be 1. The inverse Levinson- 

Durbin procedure is used to convert the quantized linear prediction coefficients hi, 

i = 1,2,. . . ,16 , to the autocorrelation functions Fn (n) , n = 1,2,. . . ,16 [ 121. 

Different algorithms are applied to estimate fn (n) , n = l7,l8,. . . , M - 1 , depending on 

whether the speech frame is voiced or unvoiced. For a voiced speech kame, the short-time 

autocorrelation function exhibits peaks at time-shifts corresponding to multiples of the 

pitch period P which is considered as the period of the short-time autocorrelation 

function. We define int(o) as an integer operator of a .  When int(%) > 16, a (n)  . 
n = 17,. . . , int(P/2) , can be extrapolated by the following equation: 

F, (n) , max(l6, int(%)) < n 5 P , can be obtained by taking advantage of the symmetry of 

the autocorrelation function within one period. 

Because of the periodicity, ?, (n) , P < n 5 M - 1, can be obtained by duplicating the values in 

the first period. Fig 4.8 shows the extrapolated autocorrelation function of a voiced speech 

frame. 



Unvoiced speech frames, on the other hand, do not usually have strong short-term 

correlations. Therefore, the corresponding autocorrelation functions beyond (0,16) can be 

extrapolated by 

16 

?= (n) = hi?= (n - i) 1 6 < n 5  M-1 
i=l 

n 

Fig 4.8 Extrapolated autocorrelation function of a voiced frame (P=37) 

4.1.5 Voiced/Unvoiced Classification and Pitch 

Extraction Algorithm 

The pitch period can be determined from the autocorrelation function, ~ ; ( n ) ,  

n = 0,1, ..., 2M -1, of the input speech frame. In the case of voiced speech, the main peak 

in the short-time autocorrelation function normally occurs at a lag equal to the pitch 



period. This peak is therefore detected and its time position gives the pitch period, P, of 

the input speech. In the case of unvoiced speech, the short-time autocorrelation function 

exhibits no strong peaks and overall has a much lower amplitude. Fig 4.9 and Fig 4.10 

show plots of the short-time autocorrelation functions for voiced and unvoiced speech, 

respectively. 

Based primarily on the strength of the pitch periodicity of the short-time autocolrelation 

function, the voicing decision is made on the ratio of the amplitude of the main peak to the 

amplitude of the autocorrelation function for zero time lag, that is 1:,(0) . The threshold is 

set to be 0.35. If the amplitude of the main peak is less than 0.35r,(O), the speech frame 

is declared unvoiced, otherwise it is voiced. 

Fig 4.9 Short-time autocorrelation function for voiced speech 



n 

Fig 4.10 Short-time autocorrelation function for unvoiced speech 

4.1.6 Vector Quantization of the Ranked Transform 

Coefficients 

A two-stage vector quantizer is used for the VQ of the voiced truncated transform 

vectors. The structure for the two-stage VQ is depicted in Fig 4.1 1. For each voiced 

truncated transform vector, the available B, code bits are divided with B, bits for the first 

stage and B, bits for the second stage. The truncated vector y is quantized with the first 

stage codebook producing the selected first-stage code vector $, . An error vector E, is 

formed by subtracting f l  from y . Then El is quantized using the second stage codebook 

with exactly the same procedure as in the first stage and the selected second-stage code 

vector $, is produced. The decoder receives for each stage an index identifying the stage 



code vector selected and forms the reproduction f by summing the vectors f ,  and f , ,  

lee., 

The overall quantization error y - f is equal to the quantization residual from the second 

stage. Sequential searching of the stage codebooks renders the encoding complexity 

2'1 + 2B2 . 

Fig 4.1 1 Two-stages VQ in VTQ-CR system 

The conventional way of designing the stage codebooks for sequential search MSVQ 

with a MSE distortion criterion is to apply the generalized Lloyd algorithm (GLA) stage- 

by-stage for a given training set of input vectors. Here, the training data for the first stage 

VQ codebook consists of the truncated transform vectors. The codebooks are trained 

sequentially, the second stage using a training sequence consisting of quantization error 

vectors from the first stage. 

For the unvoiced truncated transform vectors, split VQ is used as in the VTQ system, 

but no optimum bit assignment algorithm is involved. The bit allocation is guided by 

comprehensive consideration of such factors as the energy concentration of the transform 

coefficients, the complexity of codebook search and the efficiency of the VQ. 



4.1.7 Bit Allocation 

At the rate of 2.4 kpbs, as analyzed in Chapter 3, a frame of 256 samples is coded by 77 

bits. Each frame consists of two subframes with each dimension 128. Two classes of VQ 

codebooks are designed to encode the voiced and unvoiced speech, respectively. The bit 

allocations for voiced and unvoiced frames are as follows: 

I Voiced (bits) Unvoiced (bits) 

Table 4.1 The bit allocation for VTQ system 

Transform Vector 

The detailed truncation strategies and bit allocations for both voiced and unvoiced 

truncated transform vectors will be given in Chapter 5. 

2*20 

Linear prediction coefficients, voicing decision, pitch period and gain are updated per 

frame. The linear prediction coefficients are converted to the LSPs which are quantized by 

a split VQ. 16 LSPs are devided into three groups with first two having 5 for each and the 

last one having 6. With 24 bits available, a split VQ is designed with 8 bits assigned for 

2*22 

each group. 



For a voiced frame, 7 bits are required to quantize all possible 128 pitch lags. For the 

scalar quantization of the gain, 5 bits are used for a voiced frame and 7 bits are used for an 

unvoiced frame. 

4.1.8 Postfiltering 

The characteristics of human auditory perception is that speech formants are much more 

important to perception than spectral valleys. A postfilter [49] is added to the decoder 

output to enhance the perceptual quality of the reconstructed speech. The postfilter 

consists of a pole-zero filter based on the quantized short-term predictor coefficients 

followed by a spectral tilt compensator. The transfer function of the pole-zero filter is 

where 4 , i = 1,2,. . . ,16 , are the quantized linear prediction coefficients. a = 0.8 and P 

= 0.95. An automatic gain control is used to avoid large gain excursions. 

4.2 The Application of Linear Prediction in VTQ- 

4.2.1 The Features of the VTQ-CR-ALP System 

Although the DCT decorrelates the transform coefficients, there still exist correlations 

between the ranked transform coefficients, especially between the voiced ranked transform 



coefficients. Hence, we propose another coder, Vector Transform Quantization with the 

Coefficient Ranking and Adaptive Linear Prediction (VTQ-CR-ALP), which is developed 

as an enhanced version of the VTQ-CR to improve the system yerfoi-mance further by 

exploiting possible redundancy between the voiced ranked transform coefficients. Fig 4.12 

shows the structure of this system. 

In common with VTQ-CR, VTQ-CR-ALP also makes use of the transform coefficient 

ranking technique. Moreover, after the gain normalization, a 2nd-order adaptive transform 

domain linear predictor is applied to the voiced ranked transform coefficients, which 

reduces their near-sample correlations. The analysis-by-synthesis method is introduced to 

determine an optimal excitation signal for reproducing the voiced truncated transform 

vectors. The transfer function of the linear predictor is given by 

where c,, and c,, are linear predictor parameters. They are chosen to minimize the MSE 

of the prediction residual which is obtained by filtering the voiced truncated transform 

vector y through the all-zero filter C(n,z). The calculation of c,, and c,, only depends 

on the basis vectors of the DCT matrix T and the short-term speech spectral information 

which has to be transmitted for the coefficient ranking and re-ranking even in the case of 

no adaptive transform domain linear prediction. Therefore, there is no extra side 

information transmitted due to the application of the adaptive transform domain linear 

prediction. The derivation of the predictor parameters will be discussed in Subsection 

4.2.2. 
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Fig 4.12 The block diagram of the VTQ-CR-ALP 

The synthesized truncated transform vectors are produced by feeding an all-pole f~lter 

Yccn,z) with an excitation signal selected from a codebook. For a voiced speech 

subframe vector x , letting the excitation of the corresponding truncated transform vector 

y be the vector r and the output of the filter Yccn, Z) be j , then, the excitation vector, 

r , should be selected such that the distortion E ,  between y and 9 is minimized. 



The closed-loop derived excitation signal, r ,  is quantized and the index of the 

corresponding codevector is transmitted to the decoder. The identical synthesis filter 

Yccn, Z) is also used in the decoder to obtain the optimal synthesized signal j . Assuming 

T T 
that r=[r , , r2  , ,  rNt] ,and ? = [ $ , a  , . ,  jNt]  ,thesynthesizedsignalisgivenby 

where j, = j-, = 0 . 

In this system, for the voiced subframes, a two-stage VQ is applied for the quantization 

of the excitation, r, of the synthesizer. For the unvoiced subframes, they are coded in the 

same way as in the VTQ-CR system. 

4.2.2 Adaptive Transform Domain Linear Prediction 

Analysis 

When the voiced ranked transform coefficients are filtered through the filter, C(n,z) , 

their near-sample correlations are reduced and a residual signal is produced as the output. 

The parameters, cnl, cnz, of the filter are determined by minimizing the energy of the 

residual signal. The derivation of these parameters is as follows: 

For the ith input of the filter C(n, z) , yi , i E [I, N,] ,  the transfer function is as follows 



C(i,z) = 1-cilz-' -ci2z-, 

The variance of the output residual signal is given by 

'5 : = ~[llyi - CilYi-I - ' i2~i-211~] 

T 
Let c = [c,,c, ,..., CNr 1. where Ci = [cil,ci2] and Y = [Y,,Y, ,..., YNr]. where 

Yi = [yi-, , yi-,lT , then (4.18) can be written as 

0 : = '[llyi -'?ci lr] (4.1 9) 

In order to minimize '5: , let a'5yCi = 0 

Then, E[Y~ (yi - Y:c,)] = 0 (4.20) 

Let Q = [Q,,Q~,. . . ,Q~~],  where Qi=E[Y,yT]  and q=[q l ,q  2, . . . ,q~,] ,  w k r e  

qi = E [Yiyi], then, the solution of the equation (4.20) is given by 

Assuming that yi = 'A, yi-I ='A, yi-2 ='&, i = 1,2 ,..., N , .  j , k , h ~ [ 1 , 2  ,..., M] and 

y-I = yo = 0 ,  based on the fact that si = tfx and E [ X X ~ ]  = R, , we obtain 

and 



Equation (4.21), (4.22) and (4.23) indicate that c,, and c,, are determined by the short- 

time autocorrelation matrix of the input speech and the basis vectors of the DCT matrix T. 

The decorrelating effect of the adaptive transform domain filter can be seen in Fig 4.13, 

in which the dotted line is the input of the adaptive transform domain filter and the solid 

line is its residue. Some of the peaks in the dotted line are eliminated or decreased in the 

solid line. The residue is the signal which can not be linearly predicted from the past 

ranked coefficients by the 2nd-order adaptive transform domain filter. 

Samples 

Fig 4.13 Input and output of the adaptive transform domain filter (40 points) 
(Solid line: residue of the adaptive filter. Dotted line: ranked transform coefficients) 



4.2.3 Bit Allocation and MSVQ 

The bit allocation in the VTQ-CR-ALP is exactly the same as in the VTQ-CR. But, 

because of the application of the analysis-by-synthesis method, for the voiced subframe, 

the two-stage VQ is used for the quantization of the excitation of the synthesis filter, 

instead of the quantization of the truncated transform vectors as in the VTQ-CR. The 

structure for the two-stage VQ is depicted in Fig 4.14. The closed-loop codebook search 

is used in each stage to find an optimal excitation signal. The excitation vector in the first 

stage, r, , is selected such that the distortion E, between the truncated transform vector y 

and the corresponding output, il, of the filter yc/C(n, z )  is minimized. 

In the second stage, the excitation vector, r,, is selected such that the distortion E, 

between the vector y -il and the corresponding output, i,, of the filter &,z) is 

minimized. 

r = rl + r2 

The corresponding reproduction is i = il + i2. Th ~e overall qua 

equal to the quantization residual from the second stage. 

E, = E, = lly - il - i21r 

The selected excitation vector r should be the sum of r, and r2 , i.e., 

(4.26) 

intization error y - is 
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Fig 4.14 Two-stage VQ in VTQ-CR-ALP 

The codebooks are trained sequentially. The training data for the first stage VQ 

codebook consist of the output vectors of the filter C(n,z).  The second stage uses a 

training sequence consisting of the error vectors between the residue vectors of the filter 

C(n,z) and the corresponding codevectors selected by the first stage closed-loop 

codebook search. This system has higher encoding complexity compared with the VTQ- 

CR system, due to the closed-loop codebook search procedure. 



Chapter 5 

Simulations 

This chapter presents simulation results for a Gauss-Markov source and for real speech 

waveforms. The simulations are implemented in the C language and run on a SUN 

workstation. Section 5.1 describes the performance criterion. Section 5.2 presents the 

simulation results for a Gauss-Markov process and Section 5.3 presents the simulation 

results for real speech waveforms. 

5.1 Performance Criterion 

In evaluating the quality of a speech coding system, it is important to obtain an objective 

measure that correctly represents the quality as perceived by the human ear. The criterion 

used in this thesis is the signal-to-noise ratio (SNR). It is defined as the ratio of the energy 



of the input signal and the energy of the corresponding error signal. If x(n) denotes the 

sampled input speech and e(n) denotes the error between x(n) and the reconstructed 

signal i ( n ) ,  the SNR is defined as 

0:  SNR = 10 log,, - 
02 

where 0  2, and 0 2  are the variances of x(n) and e(n)  , respectively. This SNR criterion is 

mainly influenced by high-level segments of speech, i.e., by voiced sounds, and it reflects 

only to a small degree the coder performance for unvoiced sounds and for the idle channel 

situation. 

The system coding gain is introduced here to evaluate the compression performance of 

the coding systems. The average MSE distortion D of the coding scheme is defined as 

Let Dp, be the distortion of the Pulse-Code Modulation (PCM) scheme and DWQ be the 

distortion of the VTQ system. The VTQ coding gain over the PCM is defined by [23] [27] 

Similarly, the VTQ-CR and VTQ-CR-ALP system coding gains over the PCM can be 

defined as 



where DmQ-, and DmQ-cR-m are the corresponding distortions in the VTQ-CR and 

VTQ-CR-ALP, respectively. From Equation (5.3)--(5.5), the VTQ-CR and VTQ-CR- 

ALP coding gains over VTQ can be obtained, respectively, as 

In terms of SNR measure, G;~-, and G;~-,-, can be computed by 

Equation (5.8) and (5.9) indicate that the coding gains over VTQ measure the SNR 

increases due to the adoption of the ranking VQ and the adaptive transform domain linear 

prediction. 

Under the assumption that the transform coefficients are independent, it can be proven 

[27] that 



where GTc is the transform coding gain with scalar quantization and GvQ is the gain due 

to the use of vector quantizers instead of scalar quantizers. GTc is equal to the ratio of the 

arithmetic and the geometric mean of the variances of the transform coefficients [23]. 

where o; is the variance of the ith transform coefficient. When Equation (5.1 1) is applied 

- 
to measure the transform coding gain G,, for ranked VTQ, o; should be the variance of 

the ith ranked transform coefficient. The ranked VTQ transform coding gain over VTQ is 

obtained by 

GvQ is the VQ gain which depends on the type of the chosen quantizer. For the VTQ 

system in which the split VQ with the optimal bit allocation is used, the expression of the 

GvQ was derived by Cuperman in [27]. It only depends on the bit allocation and the pdf of 

the transform coefficients. For the VTQ-CR and VTQ-CR-ALP systems, it is difficult to 

derive the mathematical expressions of the GvQ due to the truncation of the transform 

coefficients and the applications of the multistage VQ and the adaptive transform domain 

linear prediction. The GvQ can be estimated through system coding gain and transform 

coding gain. 



5.2 Simulation on 

The purpose of simulation on 

the Gauss-Markov Source 

the Gauss-Markov source is to test the effectiveness of the 

coefficient ranking model in the transform coding systems. First, we need to build a 

Gauss-Markov model which generates data sequences used as the input signal of the 

systems. Second, the simulations are performed to compare the performance of the VQ of 

the ranked transform coefficients with the performance of the VQ of the non-ranked 

transform coefficients. 

5.2.1 The Design of a Gauss-Markov Model 

We build a Gauss-Markov model which generates data sequences having spectral 

characteristics of voiced speech. Fig 5.1 is the block diagram of this model. 

Gauss White 
Noise "Q 1 en 

1 1 -=- 4, 
). B ( z ) = -  

1 - bz-P 

Fig 5.1 Gauss-Markov model 

It is known that if the input speech of a linear prediction filter is voiced, the residual 

waveform will contain periodic spikes at the pitch frequency. In this model, the sequence 

en, which has the periodicity of the voiced speech, is obtained by filtering the Gauss white 

noise no through the pitch filter B(z) . The parameter P controls the pitch frequency. 

Here, we set P = 81 and the gain of the filter b = 0.9. The 16th-order linear prediction 

coefficients a,, i = 1,2,. . .16, are calculated from several frames of typical voiced speech 



signal. Fig 5.2 shows the frequency spectrum of YA(r). Fig 5.3 is a segment of data 

sequence b, generated by such model. 

-8l I I I 
I I I I 

0 500 1000 1500 2000 2500 3000 3500 r 
Frequency in Hz 

Fig 5.2 The frequency spectrum of YA(d 
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Fig 5.3 Data sequence of the Gauss-Markov source 



A sequence of 3,900,000 samples is used as the training data. A separate sequence of 

200,000 is used for testing purpose. 

5.2.2 Simulation Results on the Gauss-Markov Source 

In the simulation with the VTQ system at rate 2.4 kbps, each subframe of transform 

coefficients have dimension M = 128. Bit allocation is optimized by the procedure 

described in Chapter 3. Each transform vector is divided into 4 sub-vectors, i.e., m = 4, for 

vector quantization, having dimension k, = 7, k, = 8,  k, = 42 , k, = 7 1 . With 36 available 

bits for the quantization of each subframe, the optimal bit assignment is R, = 10, R, = 10, 

B, = 10 , B, = 6.  The limitation on the codebook size is 1024. 

For the simulation with the VTQ-CR system, the transform coefficients are ranked 

before VQ. We found that the first 40 out of the 128 ranked coefficients concentrate the 

94.1% of the signal energy. Therefore, the ranked transform vectors are truncated and 

only the first 40 data are vector quantized and the rest is set to be zero. Since all input 

frames are "voiced", there is no voicing decision to be made. Also, the linear prediction 

coefficients and the pitch period are constant, therefore, it is not necessary to transmit 

them to the decoder. Here, the available bits for quantizing each truncated transform 

vector is 36, too. A four-stage VQ is designed with 9 bits assigned to each stage and the 

dimension is 40. The quantization is implemented in four successive stages, in which the 

quantization error from the previous stage is used as input to the next stage of the VQ. 

The identical gain codebook is used in both systems and 5 bits are assigned for the scalar 

quantization of the gain. 



The SNR performances for different data sequence are presented in Table 5.1. Test 1 

and test 2 are the results obtained for the training data and test 3 to test 5 are the results 

for the testing sequence. 

Table 5.1 The simulation results on the Gauss-Markov source 

Compared with the non-ranked VTQ system, the VQ of the ranked transform 

coefficients could provide average 0.7 dB SNR improvement, which gives a good 

indication about the efficiency of the coefficient order ranking approach. It should be 

pointed out that the simulation results on the Gauss-Markov source make only a limited 

sense on the evaluation of the VTQ and the VTQ-CR systems, because the input 

waveform unlike the speech signal has no spectral changes and, hence, the ranking is fixed. 

However, we still can conclude that ranking transform coefficients in a descending order 

of their energy values and vector quantizing the most significant coefficients can make the 

VQ of the transform coefficients more efficient at a low bit rate. 

Theoretically, VTQ and ranked VTQ transform coding gains over PCM are the same, 

i.e., G ; ~  = 0 dB, if the input signal is stationary. However, it can be noticed that there 

Average: 

10.772 

11 A62 

exists slight spectrum changes when the autocorrelation functions of the input signal are 

Test 5 

10.21 

10.72 

estimated for each frame. The VTQ and ranked VTQ transform coding gains over PCM 

S W B )  
(Non-ranked) 

S W B )  
(Ranked) 

are 5.78 dB and 6.05 dB, respectively, which are computed using the estimated variances 

Test 3 

10.78 

11.57 

A 2 
oi in Equation (5.11). Therefore, the theoretical value of the system coding gain is 0.27 

Test 4 

10.54 

11.41 

Test 1 

11.23 

11.82 

Test 2 

11.10 

11.79 



dB if the VQ gain in Equation (5.10) is neglected. The experimental value of the coding 

gain is approximately 0.7 dB, which is obtained by using Equation (5.8). These results 

indicate that the ranked VTQ can provide a slightly higher transform coding gain over the 

non-ranked VTQ. However, the gain is small because of the fact that the signal is 

stationary. 

Fig 5.5 shows the transform coefficients of the input waveform shown in Fig 5.4. Fig 5.6 

is its ranked sequence. Fig 5.7 and 5.8 show the corresponding reconstructed signals for 

the VTQ system and the VTQ-CR system, respectively. 
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Fig 5.4 Waveform of the Gauss-Markov source 
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Fig 5.5 Transform coefficients of the Gauss-Markov source 
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Fig 5.6 Ranked transform coefficients of the Gauss-Markov source 
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Fig 5.7 Reproduced waveform of the Gauss-Markov source (VTQ) 
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Fig 5.8 Reproduced waveform of the Gauss-Markov source (VTQ-CR) 



When the input signal is the real speech waveform, the SNR performance of the VTQ 

system will degrade since the non-stationariness of the speech signal is not taken into 

account in the estimation of the variances of the transform coefficients in the optimal bit 

allocation -- this problem does not exist in the simulation on the Gauss-Markov source. 

On the other hand, in the case of real speech input, some bit codes have to be used for the 

transmission of the speech spectral information in the VTQ-CR system -- this transmission 

does not needed in the simulation on the Gauss-Markov source. We will give the 

simulation results on the real speech source in Section 5.3. 

5.3 Simulation on the Real Speech Source 

The simulation purpose on the real speech source is to evaluate the performance of the 

speech coding systems, VTQ, VTQ-CR, and VTQ-CR-ALP. A file containing 

26015 x 128 speech samples from different talkers is used for the VQ codebook training. 

Different speech content from the same talkers and material from talkers not included in 

training data is used to test the system performance. 

The input speech signal sampled at 8 kHz is segmented in frames of 256 samples. Each 

frame is divided into two subframes with each having 128 samples. At the bit rate of 2.4 

kbps, the 256 samples in a frame are compressed and represented by 77 bits. For the VQ 

of each subframe transform coefficients, 4 split VQ is applied and 36 bits are available. 5 



bits are used for the scalar quantization of the gain. The maximal codebook size is set to 

1024. The optimal bit allocation for the VTQ system is derived as follows: 

Table 5.2 Optimal bit allocation for the VQ of the transform coefficients in VTQ 

In the simulation with the VTQ-CR and VTQ-CR-ALP systems, the transform 

m 
Dimension (k, ) 

Bit Assigned (B.: 

coefficient truncation is based on the estimated vector variances or energy distributions. 

- 

2 
23 

10 

1 
27 

10 

For a voiced subframe, statistically, the first 50 out of the 128 ranked transform 

coefficients concentrate 91.2% of the subframe energy. Therefore, these 50 coefficients 

- 

3 
3 3 

8 

are vector quantized and the rest of 78 coefficients is set to zero. According to the bit 

4 
45 

8 

allocation strategy described in Chapter 4, 20 bits are available for the VQ of the ranked 

coefficients. A two-stage vector quantizer is designed with 11 bits in the first stage and 9 

bits in the second stage. Table 5.3 shows the detailed bit allocation for VTQ-CR and 

VTQ-CR-ALP. 

Voiced (bits) Unvoiced (bits) 

LSP 

Table 5.3 The detailed bit allocation for VTQ and VTQ-CR-ALP 

Transform Vector 
or Excitation 

24 24 

1st stage: 2*11 
2nd stage: 2*9 

1st subvector:2*ll 
2nd subvector:2* 1 1 



The bit assignment is subjected to the constraints of the complexity, the SNR performance 

and the listening subjective quality of the coded speech. In the VTQ-CR-ALP system, 

because of the application of the analysis-by-synthesis method, the two-stage VQ is used 

for the quantization of the excitation of the synthesis filter, instead of the quantization of 

the truncated transform vectors as in the VTQ-CR system. Closed-loop codebook search 

is adopted to find the optimal excitation for the synthesis filter. 

For the unvoiced subframe, since the energy distribution of the ranked transform 

coefficients is quite scattered, the last 20 coefficients are set to zero and the first 108 are 

vector quantized. We devide these 108 coefficients into two sub-vectors with one having 

the first 44 and another having the rest of 64. With 22 bits available as discussed in 

Chapter 4, split VQ is used with each sub-vector 11 bits assigned. The identical unvoiced 

codebooks are used in both systems. 

5 sets of experiments are made. SNRs of the three systems are recorded in %ble 5.4. 

Test 1 and test 2 are the results obtained inside of the training process and test 3 to test 5 

are from outside of the training sequence. 

Table 5.4 The simulation results on real speech source 

S N W w  
(VTQ) 

S W W  
WQ-CR.) 

S W d B )  
(VTQ-CR- 
ALP) 

3 

Test 1 

5.36 

6.57 

7.47 

Test 2 

5.12 

6.49 

7.26 

Test 3 

5.05 

5.85 

6.62 

Test 4 

2.96 

3.88 

4.79 

Test 5 

2.32 

3.8 1 

4.45 

Average 

4.162 

5.320 

6.118 



The simulation results indicate a performance improvement of 1-1.5 dB for the 

transform coefficient order ranking in VTQ-CR when compared with coefficient non- 

ranking scheme in VTQ. For a subframe of 128 voiced ranked transform coefficients, the 

energy concentrated in the first 50 components is 91.2% of the subframe energy, while the 

first 50 non-ranked voiced coefficients just have approximately 60% of the energy. At low 

bit rates, coding the most significant coefficients which are in the descending order of their 

energy values can make the VQ more efficient. VTQ-CR and VTQ-CR-ALP outperform 

VTQ, although they use less bits than VTQ to quantize the coefficient sequence because 

of the transmission of the LSPs, gain, voicing decision and pitch period. 

From Table 5.4, we can see that VTQ-CR-ALP improves the SNR performance of the 

VTQ-CR system further by 0.6-0.9 dB. An adaptive transform domain linear predictor 

decorrelates the voiced ranked transform coefficients. The VTQ-CR-ALP system 

combines the features of both coefficient order ranking and adaptive transform domain 

Linear prediction to form a more sophisticated coding scheme which provides better quality 

and more efficient speech coding. MSVQ coupled with codebook closed-loop search is 

used to obtain an efficient, high quality and low complexity quantizer. 

For the real speech source, the VTQ and VTQ-CR transform coding gains over PCM 

are 4.17 dB and 4.79 dB, respectively, which are computed using the estin~ated variances 

A 2 

CTi in Equation (5.11). Therefore, the theoretical value of the VTQ-CR and the VTQ-CR- 

ALP system coding gains over VTQ are 0.62 dB if the VQ gains in Equation (5.10) are 

neglected. The experimental values of the coding gains are 1.158 dB and 1.956 dB, 

respectively, which are obtained by using Equation (5.8) and (5.9). Compared with the 



results obtained by the Gauss-Markov source, we can see that the ranked VQ is more 

efficient for the non-stationary source. 

When the input signal only consists of voiced speech, the corresponding transform 

coding gains over PCM are increased to 5.63 dB for VTQ and 6.44 dB for VTQ-CR. 

These results indicate that unvoiced speech decreases the VTQ and VTQ-CR transform 

coding gains. Since unvoiced speech is more like random "noise", the bansform coding 

and the coefficient ranking is less efficient. 

-5000,!, 50 I 100 I I I I 

150 200 250 300 
Samples 

Fig 5.9 Voiced speech signal 

Fig 5.9 shows two subframes of voiced speech signal. Fig 5.10 to Fig 5.12 show the 

corresponding reproduced waveforms generated by VTQ, VTQ-CR and VTQ-CR-ALP, 

respectively. Fig 5.13 shows a frame of unvoiced speech. The corresponding reproduced 

waveforms generated by VTQ and VTQ-CR are shown in the Fig 5.14 and Fig 5.15, 



respectively. Fig 5.16 shows the SEGSNR variation with speech subframes in VTQ-CR- 

ALP. Here, the SEGSNR is evaluated by computing the SNR for each subframe speech. 

-5000' I I I I I 

0 50 100 150 200 250 
Samples 

Fig 5.10 Reproduced voiced speech signal (VTQ) 
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Fig 5.1 1 Reproduced voiced speech signal (VTQ-CR) 



-5000' I 

0 50 100 1 50 200 250 300 
Samples 

Fig 5.12 Reproduced voiced speech signal (VTQ-CR- ALP) 
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Fig 5.13 Unvoiced speech signal 
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Fig 5.14 Reproduced unvoiced speech signal (VTQ) 
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Fig 5.15 Reproduced unvoiced speech signal (VTQ-CR) 
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Fig 5.16 SEGSNR variation with speech subframes (VTQ-CR-ALP) 



Chapter 6 

Conclusions 

In this thesis, two transform coding systems based on the coefficient ranking model are 

developed: VTQ-CR and VTQ-CR-ALP. Coefficient ranking technique and adaptive 

linear prediction analysis are proposed to improve the performance of conventional VTQ 

coders. Particular emphasis is placed on the effectiveness and efficiency of the ranking 

vector quantization and the application of the adaptive tsansform domain linear predictor 

in the transform coding at low bit rate. A lot of work has been done on the system designs 

and the performance analysis. 

By comparing the performance of the coefficient ranking VTQ for a Gauss-Markov 

source with the performance of a conventional VTQ system, it is shown that ranking 

transform coefficients in a descending order of their energy values and vector quantizing 

the most significant coefficients can make the VQ more efficient at low bit rate. The 

comparison of the performances of these three systems for real speech signal indicates that 



VTQ-CR and VTQ-CR-ALP outperform VTQ, although they use less bits than VTQ to 

quantize the coefficient sequence because of the transmission of the LSPs, voicing 

decision and pitch period. In the low bit transform coding systems, the VTQ coding 

scheme could not quantize the transform coefficients effectively because the non- 

stationariness of the speech signal is not taken into account in the estimation of the 

variances of the transform coefficients in the optimal bit allocation. 

A further performance improvement can be achieved by applying an adaptive transform 

domain linear predictor to the voiced ranked coefficients, where the correlations between 

the coefficients are reduced. MSVQ coupled with the closed-loop VQ codebook search is 

used to obtain an efficient, high quality and low complexity quantizer. VTQ-CR-ALP 

combines the features of both coefficient order ranking and linear prediction to form a 

more sophisticated coding scheme which provides better quality and more efficient speech 

coding. 
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