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The ability to model the spinal response to shock and vibration is an important step in 

assessing the health hazard effects of repeated impacts to vehicle passengers. Current 

methods used for this purpose, such as the Dynamic Response Index and the British 

Standard 6841 filter, were found to perform poorly when the input consists of large- 

magnitude shocks typical of those experienced by occupants of tanks, trucks, and other 

off-road vehicles. In this thesis I present a novel approach to the problem of modeling 

the spinal response of the seated passenger to vertical accelerations applied a t  the seat. 

The modeling approach taken utilizes an artificial neural network (ANN) to predict the 

z-axis (vertical) acceleration at the fourth lumbar vertebra based on measured z-axis seat 

acceleration. An ANN is a universal approximator, capable of modeling any continuous 

function if trained with a sufficiently representative set of measured input-output data. 

The seatspine system was modeled as a ~etwork with five inputs and one output. The 

Levenberg-Marquardt algorithm was used to train the network by edjusting the 

network parameters so as to minimize the square of the prediction error. The inputs to 

the network are delayed samples of the measured inputs and predicted outputs of the 

nonlinear simulation. It is shown that the trained network significantly outperforms 

three different linear models examined for predicting the z-axis acceleration at the L-4 

vertebra. 
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Modeling physiological systems is an important tool in understanding how the human 

body operates and is affected by its environment. The complexity and nonlinear nature 

of living systems often makes the development of an accurate model difficult when 

traditional linear modeling techniques are employed. In these circumstances, a 

nonlinear modeling approach can yield a more accurate model, leading to a better 

understanding of the real system. 

A traditional modeling strategy is to develop the model strudure from first principles 

and then to estimate the values of model coefficients from measured input and output 

data. This analytical approach suffers if the system or process is either not well 

understood or overly complex. In addition, the simplifymg assumptions upon which 

the model is based may be incorrect under certain conditions. In many cases, linearity 

is assumed over a certain operating range. The simplified system can then be 

represented using a variety of welldeveloped linear modeling techniques. However, if 

the nonlinearity is strong or a general model is required, a nonlinear modeling approach 

is preferable. 

One example of interaction between the human body and the environment is the case of 

a seated passenger in a moving vehicle. If the vehicle travels over rough terrain the 

passenger's body will be subjected to a variety of motion-related stresses. For simplicity, 

we can categorize these motion-related stresses as two distinct: phenomena: vibration 

and mechanical shocks. For most of us, vehicle vibration and shocks are low magnitude 

and infrequent, except for the occasional pothole. However, for passengers in rough- 

terrain vehicles (tanks, mining and logging trucks, for example), these stresses are 

-ere heg';~e~?t meugh to ktd to disc:o,mf ort and adverse health effects (Backman, 

1983; Beet-is and Foshaw, 1985; Konda ef al. 1985). Epidemiological studies suggest that 

exposure to shock and vibration can lead to fatigue, gastro-intestinal/cardiovascular 

problems, and back disorders, such as vertebral disk degeneration (Guignard, 1972; 

Sturges, f W4; Wanson and HoIm, 1991). 



These problems may be dealt with though changes in the design of the vehicle to 

provide a smoother ride, or by Iimiting the exposure of the occupant. In the latter case, 

an international standard exists for exposure to constant vibration (IS0 2631, 1985). 

However, no appropriate standard exists for the type of high amplitude shocks 

experienced in off-road vehicles. 

The lack of applicable standards is largely due to limitations of the models upon which 

the standards are based. For example, two second order linear models, the Dynamic 

Response Index model utilized in the Air Standardization Coordinating Committee 

(1982) and the British Standard 6841 filter (1987), do not perform well for large 

amplitude shocks (Cameron et al., 1996; Payne, 1991). Therefore, there exists a need for 

a model which can adequately characterize the spinal response to such shocks. 

In this thesis, I develop such a model for the spinal response based on experimental data 

obtained from a series of experiments designed to simulate the shocks experienced by 

occupants in military tactical ground vehicles. Since the spine is a complex musculo- 

skeletal structure, whose biomechanical properties are not fully known, a system 

identification approach is taken to the modeling problem. In system identification, the 

model is developed based only on measured input and output data. Moreover, since 

numerous pieces of evidence suggest &at the spinal response is nonlinear, a nonlinear 

system identification strategy is taken utilizing an artificial neural network. An ANN is 

a universal approximator that can model any continuous function provided it is trained 

with a representative set of input-output data (Cybenko, 1989; Funahashi,l989). 

The thesis is organized as follows. Chapter 2 provides likratm-e review of the human 

response to shock and vibration, existing models, and exposure standards. Chapter 3 

and 4 describe artificial neural networks and sptem identification, respectively. In 

Chapter 5, the objective and methodology 3f the model development is explained. The 

modeling results are provided and discussed in Chapters 6 and 7, respectively. Where 

possible, technical details such as mathematical derivations are provided for 

completeness in the appendices. 



CHAPTER 2 HUMAN RESPONSE TO MECHANICAL 

SHOCK AND VIBRATION 

When traveling in a vehicle, the human body is subjected to vibration and intermittent 

mechanical shocks. The magnitude and frequency characteristics of these signals 

depend on both the vehicle design and the traveling surface. The passenger experiences 

motion (displacement, velocity, and acceleration) in six degrees of freedom: fore-aft, 

vertical, lateral, pitch, roll and yaw. Accelerations in the vertical direction typically 

have the greatest magnitude since shocks and vibration of the vehicle are transmitted 

upwards through the seat. 

The purpose of this chapter is threefold. Firstly, the levels of shock and vibration 

reported for various types of vehicles is described. Secondly, the reported health effects 

of short and long term exposure to shock and vibration are discussed, thereby indicating 

the need for reducing exposure. Finally, some models and international standards for 

the response to shock and vibration are described. 

2.1 Mechanical Shock and Vibration in Vehicles 

Vibration may be defined as oscillations which result in zero mean displacement, or 

rotation. A mechanical shock, on the other hand, may be defined as an input to the 

body (force, displacement, velocity, or acceleration) that results in a forced disturbance 

of the relative position of body parts (Village et al., 1995) These two types of motions 

represent opposite ends of a spectrum of vehicle motions. That is, as the time between 

successive shocks decreases, the mction signal increasingly resembles vibration. In the 

relevant literature and international standards, both shock and vibration are usually 

measured and discussed in terms of acceleration. 



Two quantitative measures of vehicle acceleration signatures are the root mean square 

(RhG) value and the crest factor. The RMS value is a measure of the energy contained 

in the signal and is defined as 

1 
a,, = [- Ja2 (t)dt]If2 

T 0 

where a(t) is acceleration and T is the duration of the signal. 

The crest factor is a measure of the peakedness of the signal or, in other words, the 

degree of amplitude variation: 

crest factor = I%ax --I 
2%"*.Y 

where a, and a,, are the maximum and minimum values, respectively, observed over 

duration T. 

Numerous investigators have sought to determine the vibration level for on-road 

vehicles (cars, trucks, buses), off-road vehicles (tractors, skidders, military tanks, 

construction equipment) air transport (helicopters, fixed-wing ) and water transpart 

(ships). A comprehensive review of these studies is provided in Village et nl. (1995). 

The reported ranges of vibration levels for cars are 0.2-1.0 m/s2 in the vertical direction, 

and 0.02-0.45m/s2 in the horizontal directions. A spectral analysis of these signals 

indicated that their energy was concentrated in the 6-12 Hz range (vertical) and 1-3Hz 

range (horizontal). For trucks, the reported accelerations were somewhat higher: 0.4- 

1.5m/s2 (vertical) and 6.15-0.65m/sZ (horizontal). The corresponding dominant 

frequencies were 6-12 Hz and 1-4 Hz, respectively. Crest factors were reported by 

Griffin (1984) to be 3.9 and 4.8 for cars and trucks, respectively. 

In contrast, reported values of acceleration and crest factors for off-road vehicles were 

significantly higher. The highest values were reported for dozers, graders, 



underground mining trucks, tractors, and military tanks. Dupuis (1980) reported 

vertical acceleration values of 1.6-2.5m/s2. and 4-10m/s2 for tanks (1974). Griffin (1984) 

reports tractors having vibration levels of 0.67-2.12 m/s2 (vertical) and 0.59-1.86m/s2 

(horizontal). Crest factors in the vertical direction ranged from 5 to 22 for tractors 

(Monsees et al, 1989), 5 to8.79 for skidders (Golsse and Hope, 1987), and up to 21 for 

tanks (Griffin, 1986). (To put these numbers into perspective, a crest factor of 21 on a 

vibration signal with an rms value of 2.5m/s2 would indicate the presence of shocks of 

over 50m/s2 in magnitude). The dominant frequencies for off-road vehicle vibration 

ranged from 1-6 Hz (vertical) and 1-4 Hz (horizontal) for tanks, and 1.6-10Hz (vertical) 

and 1.6-3Hz (horizontal) for mining trucks (Village et al., 1995). 

2.2  Health Effects 

Numerous studies have indicated that shock and vibration can result in both short 

(acute) and long term (chronic) health effects for the vehicle occupant. The majority of 

literature focuses on the effects of whole body vibration rather than repeated impacts. 

However, a significant amount of data has been gathered from both epidemiological 

and cadaver studies of pilot ejection, horizontal seated impacts due to vehicle collision, 

life boat free falls, and blast in ships. Whole body vibration has two types of 

physiological consequences: 

i) Those due to the movement of organs or tissues; 

ii) A general stress response. 

Animal studies have indicated that prolonged exposure to high levels of vibration can 

result in hemorrhaggic and degenerative changes in organs and various other systems 

in the body. Such injuries indude: injury of the viscera, lungs, myocardium (Guignard, 

1972); gastro-intestinal bleeding (Sturges, 1974); and hemorrhage of the kidney and 

brain (Guignard, 1972). 



In addition, whole body vibration result in a generalized stress response due tn an o \w 

stimulation of the sympathetic nenrous system. This response manifests itself as 

increases in heart rate, cardiac output, peripheral vasoconstriction, respiratory rate and 

oxygen uptake. Such stress-induced stimulation of the cardiovascular system may 

result in fatigue but there are no indications of more serious health effects (Village ef nl., 

1995). 

2.2.1 Vertebral Effects 

The spine is a complex structure consisting of a number of rigid elements (vertebrae) 

connected by flexible, visco-elastic elements (disks). The lateral and posterior views of 

the spine are shown in Figure 2.1. One such disk and the superior and inferior vertebrae 

constitute a spinal unit, as pictured in Figure 2.2. 

BACK AN11 SlUE VIEW 
OF THE SPINE 

Figure 2.1 The posterior (left) and lateral(right) views of the human spine. 



facet joint 

branch to facet joinf 

Figure 2.2 Spinal Unit 

Exposure to whole body vibration and shock can result in back pain and back disorders. 

Back pain is a term fox a general class of back ailments which are diagnosed on a 

subjective basis, whereas (clinical) back disorders are diagnosed through more objective 

measures (radiological methods, for examplej. There is a high reported incidence of 

back pain among heavy equipment operators, tractor drivers, truck, bus and car, heavy 

equipment operators (eg. excavators), and pilots. Paulson (1949) reported that of 23 

tractor drivers, 43.5% complained of back pain. Moreover, the study indicated that 

there was correlation between the reported severity of pain and the roughness of the 

ground. Among large population of container tractor drivers (540) and truck drivers 

(633), approximately 40% experienced back pain (Konda et al., 1985; Backrnan, 1983). 

Beevis and Forshaw (2985) reported an 89% incidence of back pain among trainees for 

MI13 Armoured Personnel Carriers. Gruber (1976) reported that truck drivers have 

higher rate of premature deformation of the spinal column, back pain and sprains than 

air traffic controllers bus drivers. 



For incidence of back disorders, Kristen (1981) reported an 81% rate among truck 

drivers. Similar rates for truck drivers were reported by Schmidt(1969): 79.5% versus 

61.1% for the control group. Rehrn and Wieth (1984) reported rates of 65% for retired 

truck drivers, 77% for truck/car drivers, and 80.3% for heavy equipment operators, 

compared with 62% in the control group. 

Damage to the spine in response to high amplitude impacts typically consists of end 

plate fractures, whereas long-term exposure to vibration and/or repeated impacts is 

usually associated with degenerative damage. This pattern of failure is analogous to 

engineering materials which can fracture due to a single loading beyond their elastic 

limit and suffer material fatigue due to repetitive loading. It, therefore, follows that 

understanding the bio-mechar;lcal properties of the spine will lead to an understanding 

of its failure mechanisms. 

A number of researchers have investigated the mechanical properties of the spinal unit 

in vitro (Crocher and Higgins,l967; Henzel, Mohr, and van Gierke, 1968; Markolf, 1970; 

and in vivo (Nachemson and Morris, 1964; Christ and Dupuis, 1966; Pope et al. ,1991). 

Two mechanisms for chronic degeneration of tissues due to long-term exposure of 

vibration have been proposed: mechanical fatigue and impairment of nutrition. 

Several studies (Henzel et GI. 1968, Rolander and Blair, 1975; Brinckmann, 1988) have 

indicated that when the spinal unit is compressed, the disk, being virtually 

incompressible, bulges only slightly along its radial axes. Thus, any forced 

displacement of the two vertebrae is due not to compression of the disk but rather an 

inward deformation of the vertebral end plates. Such findings lead Brinkman (1988) to 

suggest that disk herniation is a result of repetitive loading of the disk, resulting in a 

fatigue failure of the disk rather than a single mechanical overload. This argument is 

supported by clinical symptoms of disk herniation whch include detached pieces of 

annular material and sometimes fragments of cartilagenous end plate. 

Hansom and Mdm (1991) speda te  that tissue damage is partially a result of impaired 

nutition to the disk and end plate structures. The authors state that vibration may lead 



to a disruption of blood flow in vessels surrounding the annulus fibrosis and under the 

endplate, thereby reducing the diffusion of nutrients to tissues. 

Sandover's (1983) hypothesis links the nutrition and mechanical failure mechanisms. 

He suggests that compressive loading leads to fatigue-induced micro fractures of the 

end plate or the subchondral trabecular bone. The repair process leaves deposits of 

callous which lead to reduced nutrient diffusion to the end plate and the disk, thereby 

resulting in eventual tissue degeneration. 

2.3 Existing Models 

A number of models have been developed which simulate the response of the human 

body to vibration and shocks. These models can generally be classified as being either 

biodynarnic models or physiological models. Biodynamic models attempt to reproduce 

the dynarnical characteristics of the body, but do not represent real anatomy or neuro- 

muscular effects. Instead, these models usually contain interconnected springs, masses, 

and damping elements. Biodynamic models range from lumped parameter models 

having a single degree of freedom and linear characteristics (Payne, 1991) to discrete 

parameter models having multiple degrees of freedom1 (Belytschko and Privitzer, 1978; 

Amirouche, 1987) and models having nonlinear characteristics (Payne and Band, 1971; 

Hopkins, 1972). The model parameters were adjusted using measured input and output 

data to provide the best possible prediction. This undermines the validity of the model 

(unless it is verified using an independent data set) as it is no longer independent of the 

experimental data with which it was compared (Arnirouche, 1987). It has been shown 

A few words about terminology for clarification: The usage of "lumped parameter", "discrete- 
parameter", and "degrees of freedom" in the literature differs somewhat from conventional engineering 
usage. In this context. "lumped means the body is treated as several large masses, representing the head: 
thorax, abdomen. etc., whereas in "discrete" models, the body is represented by individual elements, such 
as masses for each vertebra. In ;he sybtems theory. both of these models would be considered to be of the 
lumped parameter type. In reality, most real systems are of the distributed parameter type but to simplify 
analysis, we lump the system parameters into discrete elements. 

Funhennore, "the degree of freedom" refers to the system rather than the number of variable model 
parameters. For ~xarnple, a single degree of freedom model of a spinal unit would predict motion (usually 
acceleration) in one of the six independent directions of movement available in three dimensions. 



that the biodynamic response can be predicted reliably within certain ranges of motion 

using a linear lumped parameter model (Fairley and Griffin ,1989). However, Muksian 

and Nash (1974) demonstrated that a nonlinear model was required to accurately 

simulate biodynamic response o17er a wide range of frequencies and amplitudes. 

A separate modelling approach incofporates anatomical structures and their properties 

as determined experimentally (for example the stiffness and damping of intervertebral 

discs and ligaments, muscle recruitment patterns and force-velocity characteristics). 

Passive models of this type representing the geometry and material properties of the 

vertebral column have been shown to be informative in predicting internal stresses and 

compression failures (Orne and Lui, 1971; Prasad and King, 1974). Active models 

incorporating muscle characteristics have been developed for predicting vertebral 

compression forces in activities such as lifting and carrying (Marras and Sommcrich, 

1991; McGill, 1992). These models require a knowledge of body segment kinematics as 

input data, and for this reason are sometimes referred to as inverse dynamic models. 

However, these models have not been validated for whole body vibrations and shock 

environments and, unlike lumped or discrete parameter models, cannot predict body 

segment accelerations or vertebral compressive forces from a knowledge of vehicle 

motion (eg. seat acceleration data) alone. 

2.4 Standards of Exposure 

A variety of guidelines exist for the evaluation of human exposure to whole body 

vibration and shock: International Standards Organization (ISO) 2631 (1985), British 

Standard 6841 (1987), Air Standardization Coordinating Committee (ASCC) (1 982). Of 

these methods, the most widely used is the IS0 2631, which provides a method for 

calculating the exposure limit for health effects of vibration. The method of calculation 

is based on the vector sum of the frequency weighted accelerations at the seat in all 

three biodynamic axes. The use of root mean square (RMS) acceleration values in the 

sLmdarD tends to smooth the effect of single, high amplitude events such as impacts or 



mechanical shocks. For this reason the standard excludes acceleration signals 

containing crest factors greater than 6. Although crest factors up to 12 are proposed in a 

draft revision of the standxd, it is widely recogrued that the rms method is inadequate 

for evaluation of the health effects of non-stationary signals. 

A more sensitive method of evaluating non-stationary signals containing vibration and 

shocks is described by Griffin (1986) and is included in Appendix A of the British 

Standard 6841. This method calculates a vibration dose value (VDV) based on the 

fourth power of the weighted acceleration signal at the seat, 

where a,, (t) represents the BS 6841 filter output due to acceleration at the seat. 

Although the BS 6841 does not define limits for health effects, it is estimated that a VDV 

of 15 causes severe discomfort, and it is also assumed that increased exposure will be 

accompanied by increased risk of injury. A revision of ths  standard utilizes a 

biodynamic model developed by Fairley and Griffin (1989) to weight the accelaration 

prior to application of the VDV equation. This model, based on the data of 60 subjects 

exposed to low amplitude vibrations (1.0 ms-2), has a natural frequency at 5 Hz and a 

critical damping ratio of 0.48. 

The DRI developed by Payne (1965) and utilized in the ASCC advisory publication is 

designed specifically for the analysis of the spinal injury risk of large amplitude 

accelerations (10 to 200 m/s2) in the vertical direction ( +z axis). Unlike the frequency 

weighting approach of the IS0  2631 and BS 6841, the DM is based on a biodynamic 

model having a single degree of freedom. It is assumed that the output of the model, 

represented by the peak force in the spring component, is proportional to the stress 

developed in the human body. The model, shown in Figure 2.3, consists of a second 

order linear system which can be defined by its natural frequency (f,= 8.4 HZ) and 



critical damping ratio (2 = 0.224). In a draft revision of the DRI, Payne (1991) 

recommended fn that should be increased to 11.9 Hz with a c of 0.35. 

4477- ground reference 

Figure 2.3 Biodynamic model used in Dynamic Iiesponse Index. 

m = mass 
k = spring stiffness A 

6 

The DRI model acts as a low pass filter, attenuating the higher frequency acceleration 

components at the seat, and magnifying acceleration waveforms close to the resonant 

frequency of the model. By focusing on the peak output of the system it avoids the lUvlS 

"weraging" process contained in the IS0 2631 and more accurately reflects the effect of 

impacts. Although originally dcsigned to evaluate single impacts, the DRI has been 

extended to evaluate the injury risk from repeated shocks (Allen, 1976) using a peak 

stress summation method based on the fatigue failure characteristics of biological 

materials (Sandover, 1985). In this model the critical DRI for j occurrences of a given 

acceleration magnitude is expressed as 

112 

where D q  is the DRI value of the acceleration waveform input at the seat, 

DRI, is the DRI value required to cause injury from a single impact, and 

ADRI = DRI - I is an offset factor for gravitational loading (Payne, 1991). 

c = damping constant 
h h = unloaded spring length 

- C 
6 = spring compression 1 h ( v  y, ) 1 

I 
. . 

P 

Yc Acceleration input 



The ability of the DRI and VDV models to evaluate health effects depends on the degree 

of accuracy with which their filter outputs simulate th.e human response to vibration 

and repeated shocks. The response characteristics of the two models upon which these 

standards are based demonstrate distinct differences as shown in Figure 2.4. In 

addition, both models describe linear systems, whereas the hurtan response is generally 

accepted to be nonlinear in nature. 

The different natural frequencies of the Fairley-Griffin and DRI models representing 

low amplitude and high amplitude acceleration, respectively, would appear to confirm 

the nonlinear characteristic of the human body. Furthermore, in vitro compression 

testing nf !l)mbarl-lumbar2 spinal units have indicated a non-linear foieo-displacement 

curve( Crocher and Higgins,l967). Thus, it is unlikely that a simple linear model is 

capable of representing a wide range of vibratio-n and shock amplitudes. 

Figure 2.4 Magnitude frequency response of the DRI model (dashed line) and the BS 6841 filter 
(solid line). 
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Artificial neural networks are a class of computational structures which, in some 

respects, emulate biological neural networks. Some shared characteristics include high 

connectivity, massive parallelism, and adaptation to stimulus. Artificial neural 

networks have applications in engineering (modeling, control systems, signal 

processing, speech recognition), as well as cognitive science and neurophysiology (as 

models of high and medium level brain function, respectively). They have been used by 

financial analysts to forecast commodity prices, meteorologists to predict weather, and 

biologists to interpret nucleotide sequences. 

A simplified model of a typical biological neuron is shown in Figure 3.1. The neuron 

consists of three anatomical regions: dendrites, soma, and axon. The dendrites are the 

receiving terminals for the majority of incoming neural signals. The soma, or cell body, 

controls the metabolism/reproduction of the neuron, and the axon transmits outgoing 

signals to other neurons or effector cells such as muscle. 

dendrites nuclew 

axon 

L 

Figme 3.2 Biological Neuron. 

Neural signals propagate between neurons at connections called synapses. When a 

neural signal reaches an end terminal of an axon, chemical messengers called 



neurotransmitters are released from the axon and bind to the membrane of a post- 

synaptic neuron. Each bound neurotransmitter results in a small change in the 

receiving neuron's membrane potential. If, and only if, the net sum of all synaptic 

inputs causes the neuron's membrane potential to exceed a threshold value, an action 

potential is produced, and the neural signal propagates to other neurons. 

A number of factors govern the probability of action potential generation, including the 

magnitude of excitatory and inhibitory post-synaptic potentials and the effectiveness (or 

strength) - of the synapse. It is believed that long-term modification of synaptic strength 

is the basic mechanism through which a biological neural network learns. 

An artificial neural network (ANN) consists of elementary processing units analogous 

'if; bicilogicaf. neurons in function but far less complex. A network of interconnected 

processing elements (PEs) may be implemented as a computer program or as an 

electronic circuit. Connections between PEs are unidirectional communication channels 

with a scalar gain factor called the connection weight. Inputs to each PE are amplified 

or attenuated by the weight of each connection and then summed. The sum of these 

weighted inputs is then passed through an activation function, resulting in an output 

which is distributed to other PEs. Whereas biological neurons fire an action potential 

only if the the activation threshold is reached, artificial neurons produce an output for 

all ranges of input signals. The input-output characteristics of the PE depend on the 

particular activation function chosen. 

Artificial neural networks adapt through modificabons of the connection weights 

according to a pre-defined adaptation algorithm, or training rule. The training rule and 

arrangement of PEs (network architecture) is what distinguishes different types of 

artificial neural networks. 

ANN architecture may be classified as either static or dynamic. A static network 

pefforms a nodnear transformation of the form ): = G(x) wherex E 93" and y E 93" . 

Static networks are, therefore, memoryless systems since the current output is a function 

=f mdy the cm-nznt input- ?%ex n&works are usually referred to as feedforward 



networks (FFNN) because information flows uni-directionally, from input to output PEs 

without any cycles. 

Dynamic networks contain feedback connections and, thus, their output is a function of 

both the current input and the current network state. Because the output must be 

calculated recursively, these networks are usually referred to as recurrent neural 

networks (RNN). In signal processing terminology, recurrent neural networks are 

equivalent to nonlinear infinite impulse response (IIR) filters. 

The operation of an ANN can normally be divided into a training phase and a recall 

phase. During training, input stimulus are presented to the network and synaptic 

weights are modified according to the training rule. In the recall phase, the adaptation 

mechanism is normally deactivated and the rietwork simply responds to further stimulii 

as it has been trained to do. In some cases, as when employed as adaptive equalizers, 

these two phases can occur at the same time. 

Training rules may be categorized as being supervised or unsupervised. Ln supervised 

leaming, the network is presented with example input/output data and trained to 

implement a mapping that matches example data as close as possible. A "supervisor" 

detects incorrect network responses and adjusts the weights accordingly. The 

supervisor typically takes the form of a performance criterion, such as the sum of 

squared errors between the desired response and the network output. Some examples 

of supervised learning algorithms include Backpropagation (Werbos, 1974; iiummelhart 

and McLelland, 1986), Cascade Correlation (Hecht-Nielsen, 1987), Learning Vector 

Quantization (Kohonen ef GI.,  1988), Red-Time Recurrent Learning (Zipser and 

Williams, 1989), and Extended Kalman Filtering (Singhal and Wu, 1989) 

From the point of view of pattern recognition, supervised leaming utilizes pattern class 

membership information (Kosko, 1992). If the network performs a nonlinear mapping 

of the form y = G(x) wherex E 9In and y E * ;Xm,  then the training process partitions the 

input space 32" into k pattern classes of dimension M. After training, the network 

mput h&r"a*e the degree to which the input pattern be1ongs to a particular pattern 



class. Since the membership classes are known a priori, the supervisor can detect 

incorrect pattern classifications during training and correct them through weight 

adjustments. 

In unsupervised learning, the pattern membership classes are not known beforehand. 

Rather the network is presented with unlabelled patterns and evolves its own 

membership classes, or pattern clusters. Patterns are clustered on the basis of similarity 

defined by some metric, such as the Nearest Neighbor Rule (Simpson, 1993). Due to this 

behavior, such neural networks are described as self-organizing. Some examples 

include Kohonen Self-organizing Map (Kohonen, 1984), Adaptive Resonance Theory 

(Carpenter and Grossberg, 1987), Discrete Hopfield Networks (Hopfield, 1982), and 

Temporal Associative Memory (K ..,KO, 1988) 

3.1 The Multi-Layer Perceptron 

Probably the most commonly used ANN is the multilayer perceptron (MLP), also 

referred to as a multilayer feedforward network . These networks are modification ~f 

the single layer, linear Perceptron that was first developed by Rosenblatt in 1958. The 

structure of a MLP consists of a number of PEs, arranged in layers as depicted in Figure 

3.2. Information flows from the input layer to the output layer without any feedback. 



input 
layer 

Figure 3.2 Multilayer Perceptron 

PEs in the input layer are typically data buffers which distribute the input to the rest of 

the network. PEs in the hidden layer typically consist of a summer and an activation 

function. Each input to the summer is multiplied by the connection weight. The 

activation function introduces a non linearity which makes these networks powerful 

modeling tools. Without it, the network can at most perform a linear mapping. Output 

PEs may ha.ve nonlinear or linear activation functions, depending on the application. 

Consider a MLP consisting of M layers. The i'th PE in the l'th layer (Figure 3.3) 

produces an output that is a nonlinear function of weighted inputs from PEs in the 

previous layer. The inputs are first summed and then passed through an activation 

function F(m). The input to the activation function is given by 

"-1 
I / - I  

v,! ( t )  = wbxj ( t )  + b: 

where n,-, is the number of PEs in the (I-1)'th (or previous) layer, w; is the weight 

connecting the j'th PE in layer I-1 to the i'th PE in layer I, xi-' ( t )  is the output of the j'th 

PE in the (I-1)'th layer, and b: is the threshold parameter, or bias, associated with the I'th 

layer. 



Figure 3.3 Basic Processing Element. 

The PE output is then given by 

xi! ( t )  = F[V;  ( t ) ]  . (3.2) 

Using the above equations the entire network (Figure 3.4) can be described by 

"1-1 1 1-1 
x: ( t )  = F [ X  W ~ X ,  ( t )  + b:] for I = 1, ..., M 

j=1 
(3.3) 

layer I = 0 layer I = 1 layer 1 = 2 

Figure 3.4 M layer Perceptron 



The number of inputs and outputs then becomes, respectively, 11, and P I , , ,  . To 

differentiate the network input from the input to any PE, we can redefine the input to 

the j'th PE of the input layer (1=0) as 

14, ( t )  = x; ( t )  (3.4) 

Similarly, to differentiate the network output from the output of any PE, we can 

redefine the ouput of the i'th PE of the output layer (l=M) as 

ji ( t )  = xy ( I )  

where Fi(t) is the network approximation of the target variable y, ( t ) .  

The most common choice of activation function are either the sigmoid or the hyperbolic 

tangent but, in theory, any differentiable function can be used. The sigmoidal activation 

function is described by 

whereas v is the sum of weighted inputs to the PE. Similarly, the hyperbolic tangent 

function is defined by 

An advantage of these two functions is 

expressed as a simple function of itself. 

sigmoidal function is given by 

that their respective first derivatives can be 

For example, the first derivative of the 



3.2 Training 

During training, the network is presented with example inputs and outputs. The 

weights and bias values are then adjusted to minimize some cost function, typically the 

sum of squared errors between the network output and the actual output. To elaborate 

on this concept first let us define a three layer network (M=2) with a single PE in the 

output layer. The total number of network parameters (weights and biases) is then 

N, = n, (no + 2) + 1.  Now define a network parameter vector, 0, that contains both the 

weight and bias values, such that 

T 
0 =[e, ... e,] . 

Furthermore, let 

The cost function used in training the network is then 

The objective of training is to find the value of 0 for which ~ ( O ) i s  minimized. The 

optimal vector is found iteratively using the generalized update equation 

where s is the search direction on the error surface at iteration step k, and a is a small 

positive constant called the leaning rate which determines the adaptation step size. 



3.3 Steepest Descent Algorithms 

The simplest search direcnon is called steepest descent, in which the parameter change 

is along the negative gradient of the error surface J. That is, we choose 

where 

Define the gradient of the network output with respect to O as 

Then it can be shown that Equation 3.13 can be expressed as 

The update equadon then becomes 

The most popular form of steepest descent for neural networks is the backpropagation 

algorithm first proposed by Werbos (1974) and modified by Rummelhart and 

McLelland (1986). Backprogation takes its name from how the weight changes are 

ordered. Updates are made from the output layer to the input layer, using calculation of 

the error dependent on the earlier steps, so that the error tends to propagate backwards 

through the network. The main disadvantage of backpropagation and steepest descent 



in general is that the algorithm may converge to a local minimum of the error function. 

In addition, convergence tends to be slow due to the typical shape of the error surface. 

Sigmoidal activation functions tend to result in error surfaces w-hich alternate between 

very flat regions, in which learning is painstakingly slow, and steep regions which can 

causes the algorithm to become unsiable (Hush and Horne, 1993). 

3.4 Gauss Newton Methods 

A more efficient search direction is used in Gauss-Newton-based methods such as 

Levenberg-Marquardt (Marquardt, 1963), Extended Kalman Filter, and Recursive 

Prediction Error (Chen, Billings, and Grant, 1989). These algorithms use second order 

derivative information of the error surface which results in an increased rate of 

convergence. Unfortunately they also require significantly more computation, and 

unlike backpropagation do not take advantage of the parallel structure of the network. 

Gauss-Newton methods modify the steepest descent search direction through 

multiplication of the negative gradient by a special matrix which contains information 

about the error surface shape. This matrix is the inverse of the approximate Hessian of 

the cost function. The appro::imation of the Hessian is 

1 " 
H(O)=-CY(t,O)YT(t,0)+hl for h >  0 

N , = I  

(The addition of the second term ensures that H(O) is nonsingular.) The modifued 

search direction then becomes 

3.5 Generalization. 



Generalization is the ability of the trained network to perform well on unseen dat,~ sets. 

Cross validation is the most common test for generalization. Prior to training, a subset 

of the available data called the testing set, is set aside for validation purposes. This set is 

assumed to be contained within the input space bounded by the training datcl. In other 

words, it should represent data that is similar, though not identical, to that used for 

training, where the definition of similar is application specific. The trained network's 

performance on the testing set indicates the degree to which the n~odcl represents the 

underlying system as opposed to merely being a good fit to the training data. 

Network generalization is affected by the number of data samples in the training set 

(and how well they represent the problem), the complexity of the underlying systcm, 

and the complexity of the neural network model (Hush and Horne, 1993). In general, as 

the amount of training data increases, so too will the ability of the network to 

generalize. 

The complexity of the neural network is measured by the number of hidden layer I'Es 

and the number of hidden layers. These parameters determine the complexity of the 

nonlinear function that can be approximated. If too few PEs are present, the 

representational capacity of the network will be limited. On the other hand, if  there are 

too many, the network will be prone to overfitting the training data. Optimal 

performance will be obtained when the complexity of the neural network matches that 

of the system or function to be modeled. 

The number of hidden layer PEs can be optimized using cross validation. A plot of the 

performance function over the testing set will often show a minimum value when the 

structure of the neural network corresponds to the trre system structure (Billings, 

Jamaluddin and Chen, 1991). A similar strategy is to compare the performance of the 

network on the training set and the test set. The optimal number is obtained when the 

prediction error is approximately the same on both sets. Some strategies, such as the 

Cascade Correlation method, add PEs during training as needed. 



The number of hidden layers is similarly related to network's representational ability. 

Increasing the number of hidden layers results in an increase in the dimensionality of 

the problem space, making it easier for the network to approximate the nonlinear 

function. It has been shown that a single hidden layer is sufficient to approximate any 

continuous nonlinear function (Funahashi, 1989; Cybenko, 1989). Therefore, this same 

increase can be achieved by adding PEs to a single hidden layer but the number 

required may be astronomical. An analogous situation occurs in digital circuit design in 

which any binary function may be implemented as a sum of products (or product of 

sums) but may require a large number of logic gates. The total number of logic gates 

may be drastically reduced by instead using several layers of logic. 

Various other strateges exist to increase network generalization: early stopping, 

pruning and complexity regularization. Early stopping (Cohn, 1993) involves limiting 

the number of training iterations. During the learning process, the performance of the 

network on the training set will continue to improve. However, at some point the 

performance on the testing set will decrease. Overtraining causes the network to learn 

the particular noise realization of the training set, as opposed to learning the input- 

output behavior of the underyling system. 

Network pruning is based on the view of training as a process of encoding system 

information in the network weights. It assumes that a trained network contains 

redundant information which may be removed, thereby decreasing the network 

complexity. Pruning strategies usually start with a large network and systematically 

delete weights and PEs. One approach is to simply delete connections with very small 

weight values. It has been shown that a more effective strategy called Optimal Brain 

Damage (Cun, Denker, and Solla, 1989) is to delete the weights with the smallest 

salimnf, i.e. whose removal disturb the solution the least. 

Complexity regularization (Larsen and Hanson, 1994) increase generalization by 

penalizing netwmk solutions that are overly complex. The penalty is imposed by 

adding a complexity term, such as the sum of squared weights to the cost function. This 

penalty term causes the weights to converge to smaller absolute values than they 



otherwise would. A common method of regularization is through weight decay in 

which the cost function takes the form 

In this equation, N represents the number of training patterns, 0; is the i'th welght 

contained in the vector 0, and h is the weight decay - .  parametsr which controls the 

influence of the second term relative to the squared error term. Weight decay results in 

a smaller average weight size which tends to discourage overfitting. 



CHAPTER 4 RECURRENT NEURAL NETWORKS FOR 

SYSTEM IDENTIFICATION 

Two fundamental approaches exist for developing a mathematical model of a system. 

In the analytical approach, physical laws such as the conservation of energy or mass are 

used to develop differential or difference equations. Analytical modeling may be used 

only when adequate knowledge about the system is available and when the system is 

not overly complex. When these conditions do not hold, an alternative strategy is 

identify the system from input and output observations. 

System identification is one of the main concerns in the discipline of mathematical 

systems theory. Over the past five decades, considerable mathematical tools have been 

developed for analyzing and designing systems. Most of these tools are based on linear 

algebra, complex variable theory, and the theory of ordinary, linear differential 

equations (Narendra and Parthasarathy, 1990). As a result, there exist well-developed 

techniques for the analysis of linear systems. A similar set of tools does not exist for 

nonlinear systems and, consequently, modeling such systems is considerably more 

difficult. 

The purpose of this chapter is to introduce some fundamental concepts of system 

identification, and to discuss recurrent neural networks in the context of nonlinear 

systems identification. 

4.1 System Identification: Preliminary Concepts 

What is a system? Sinha and Kuszta (1983) define a system as "a collection of objects 

arranged in ordered form, which, in some sense, are purpose or goal directed." More 

specifically, a system transforms a set of inputs, or causes, into a set of outputs, or 



effects. The form of the inputs, outputs, and the type of transformation distinguishes 

one system from another. 

Systems may be categorized as being either static or dynamical. A static system is 

memoryless in that its output is a function of the current input only. In contrast, a 

dynamical system generates an output that is a function of the input as well as the 

current state of the system. Since the current state is determined by past states and 

previous inputs, a dynamical system has memory. In addition, systems may be 

characterized on the basis of stability, causa:ity, linearity, luxnpedness, and time- 

invariance. For additional discussion of these topics, the reader is referred to any 

introductory textbook on systems theory such as Chen (1989) or Oppenheim and 

Schaffer (1989). 

The model of a system may be mathematically defined by an operator, P, which maps 

the input space U into the output space Y. P may be realized in a variety of 

mathematical forms, such as differential equations, difference equations, or as a transfer 

function. For static systems, U and Y are subsets of %" and %", respectively. For 

dynamical systems, U and Y are subsets of bounded integrable functions defined on the 

intervals [0, T] or [Of-) (Narendra and Parathasarathy, 1990). The goal of system 

identification, then, is to determine an operator which approximates P according to 

some criterion. 

Figure 4.1 depicts a single-input, single-output (SISO) system to be modeled, where u(t) 

is the input signal, w(t) is additive system noise, r(t) is the unobservable system output, 

n(t) is measurement noise, and y(t) is the observable system output. Given a set of 

measured input data, u(t), and output data, y(t), the objective is to determine P such 

that 



for some E > 0 and some defined norm, denoted by ji*/), such as the root mean squared 

~ I Z ~ ~ j  error. 

w(t> 

Figure 4.1 System identification approach. 

In other words, the system is identified by assuming a parametric model of some 

suitable structure and then adjusting the parameters such that the discrepancy between 

the model output and the system output is minimized. The model accuracy will depend 

on a number of factors such as the choice of model structure, the parameter estimation 

method, the type of input signd, the complexiw of the system, and the nature of the 

disturbances, w(t) and n!t)- 

System identification approaches may be "on-line" or "off-line". When the model is 

constructed off-line, input and output data are recorded and stored in computer 

memory. The model is then constructed in batch mode, meaning all at once. The 

advantages of off-line methods are a greater choice of estimation algorithm and a 

greater freedom in selection of input signals. For these two reasons, the estimation 

accuracy of these methods are typically superior to on-line approaches. 

With on-he system idefitificatioii, mode! parameteis are updated remsively at each 

sampling instant. Such methods are suitable for modeling a system whose 

characteristics change with time, or when it is not practical to wait for all the data to be 

solfected. An example application is an adaptive equalizer which corrects distortion in 

comun ica~on  channels. r4d\-antages of the on-line approach are that all the data need 



not Se stored and special input is not required. However, since computation of 

parameter adjustments must be a fraction of the sampling period, the choice of 

estimation algorithms is limited. 

4.1.1 Input-Output Models 

When identifying a system based on input-output data, a common approach is to 

express the system as function of delayed inputs and outputs. This formulation of the 

modeling problem may take one of two forms: the series-parallel model or the parallei 

model. In the series-parallel model, the predicted output, j ( ~ )  is expressed as a function 

of previous in puts,^, and previous measured outputs,y, as expressed by 

where m and I are the orders of the input-output model, respectively; and P is the 

model operator ( a linear or nonlinear function). This model is appropriate for 

applications in which a one step-prediction is required. In other words, the model is 

intended for use on-line (when the system's output is available in real-time). 

In some applications the model is required to be used off-line, i.e., when the system's 

output is not easily obtained in real-time. In this case, the parallel model must be used 

in which the actual lagged outputs in Equation 4.2 are replaced by lagged values of the 

model's predicted output. Thus, the parallel model is expressed as 

The disadvantage of the parallel model is that convergence of the model parameters to 

the desired values is not guaranteed. Even for the linear case, stable adaptive laws for 

the parallel modd have yet to be found (Narendra and Parathasarathy, 1990). On the 

other hand, if the system is 5o~ded-inpat/bomded-output stable, the series-parallel 



model is guaranteed to converge (Narendra and Parathasarathy, 1990). Moreover, if the 

output error drops to a small value such that ?( t )  approximates y( t ) ,  then the 

series/parallel model may be replaced by the parallel model. That is, once the 

parzmeters have been established, the seriesi'parallel model may be operated off-line by 

feeding back its own predictions in lieu of the system outputs. 

4.1.2 Model Order 

The performance of an input-output model not only depends on the method of function 

approximation, but also on the determination of the correct model orders (He and 

Asada, 1993). In general, the order of a model is the number of state variables required 

to adequately characterize the dynamics of the system. For continuous-time models, 

this quantity is equivalent to the degree of the system's characteristic equation or the 

order of the describing differential equation. For discrete-time models, the model order 

refers to the number of lagged inputs and outputs in the series-parallel or parallel 

models. 

Failure to include adequate dynamics in the input-output model will likely lead to a 

poor model fit to the data (Billings et aI., 1991). Therefore, it follows that a trial-and- 

error approach may be taken to determine the required number of lagged inputs and 

outputs. Specifically, the prediction error will show a minimum for those lag values 

which are optimal. However, this approach results in excessive computation especially 

when other model parameters must be optimized. In other words, if the model orders 

can be determined lz priori, then optimization of other parameters is more efficient in 

terms of time and computations. 

Numer~us such methods have been developed to identify the correct model orders for 

linear systems (Woodside, 1971; Wellstead,. 1976; 1978; Young et al., 1980). However, 

few results have been reported for nonlinear systems. One recent method (He and 

Asada, 1993) exploits the continuity property of nonlinear functions which represent 

input-output models of the system. This techruque requires only measured input- 



output data and has been shown to be effective for determining the correct lags for 

chaotic dynamic systems and non linear plant models. 

4.1.3 The Effects of Noise 

Measurement data is inevitably contaminated with noise, from estermi a i d  internal 

sources as well as from the measuring instruments themselves. When iderdifying a 

system based on input and output observations, noise can result in a biased estimation 

of the true model parameters. Bias is a statistical term which describes how close the 

average estimate is to the actual value of the parameter. For example, the parameter 

estimate, 6, is said to be unbiased if and only if 

where E{*) is the expectation operator. In other words, the average value of a set of 

estimates will, in fact, be the true value. 

A biased model will likely predict well for the set of data on which the model was 

trained, but relatively poorly on an unseen data set. That is, the model is biased 

towards the training set data. This discrepancy indicates that the model provides a 

curve fit to the data but does not represent the underlying system. Thus, bias is closely 

related to the concept of generalization. 

A common strategy to remove bias is to model the noise process. For example, if the 

system is perturbed by additive, coloured noise, a linear filter can be identified to 

remove this effect. When the system is linear, a noise source applied anywhere in the 

system may be transposed to the output (using the principle of superpositionj and dealt: 

with in this manner. For nonlinear systems, superposition does not hold and other 

methods must be applied. 



One strategy is to choose a nonlinear model structure based on assumptions of the noise 

source location. Depending on where the disturbance is applied three variations of 

input/output models may be applied. 

In the output error model (Equation 4.5), it is assumed that the disturbance is applied at 

the output, but does not feed back into the system and, therefore, does not effect future 

outputs. This assumption is generally true when the major source of noise is on the 

output measuring device. 

r(t) = P[u(t - I), . . ., u(t - l ) ,  r(t - 1), . . . , r(t - m)] 

Y(Q = r(tj -t 

where u(t), r(t), n(t) ,and y(t) are defined as in Figure 4.1 above. This assumption leads 

to the predictor 

which is equivalent to the parallel model of Equation 4.3. 

In the NARX (Nonlinear Auto-Regressive with Exogenous inputs) or equation error 

model, the disturbance is also applied to the output of the system but in such a way that 

it feeds back and affects future outputs. This system is described by the following 

equations: 

r(t) = P[LL(~ - I), . . . , u(t - I ) ,  r(t - l), . . . , r(t - m)] + n(t) 

y(t> = r(t) 

This system results in the predictor 

m = h ( t  - I), .. -, u(t - l ) ,  y(t - I), .*. , y(t - m)] 

which is equivalent to the series-parallel m d e l  of Equation 4.2. 



Finally, with the NARMAX (Nonlinear Auto-Regressive Moving Average with 

Exogenous inputs) model, it is assumed that the noise is applied to the input of the 

system, such that the output is a function of the current and previous noise samples as 

described by 

r(t) = P[u(t - I) , .  . . ,u(i - 11, r(t - I), . . . , r(t - in), w(t - w(t - p) ]  -t n ( t )  

YO) = r(t> 
(4.9) 

where w(t) is the system disturbance. In this case, the predictor is described by 

where e(t) = y(t) - Z,(t). 

The notion of feeding back the residuals (the e(t)'s ) is based on a principle of estimation 

theory that states the optimal estimates occur when the residuals are uncorrelated with 

all combinations of past inputs and outputs. That is, as the prediction improves, e(t) 

increasingly resembles white noise. 

4.1.4 Choice of Input Signals 

Correct identification of a system also requires the use of an appropriate input signal. 

The input should be such that it excites all modes of the system (Sinha and Kuszta, 

1983). For linear systems it is sufficient that the input has a flat power spectrum over the 

frequency range of interest, so that the system is excited by a wide spectrum of 

frequencies. Ideally, the best choice is an impulse function, but such signals are 

impossible to generate in practice. A suitable alternative is a white noise signal such as 

the pseudo random binary sequence (PRBS). 



For nonlinear systems, the PRBS is not necessarily adequate to excite all the modes 

because, although its spectruin is flat, it has a constant amplitude in the time domain. In 

linear systems a constant amplitude can be used since the response at any other 

amplitude will only differ in amplitude (i.e. by a scaling factor) but not in frequency. 

This scalability of response does not hdd for nonlinear systems, which may exhibit 

completely different responses for two signals of similar shape but unequal amplitudes. 

Intuitively, then the PRBS may be modified for nonlinear systems by allowing it to vary 

in amplitude. 

4.2 Modeling Dynamical Systems with Recurrent Neural Networks 

Linear system identification techniques are well-known and numerous: frequency 

response method, step response method, deconvolution, correlation method, least 

squares estimation, Kalman filtering, maximum likelihood, and instrumental variables. 

These methods benefit from the well-developed theory of linear systems and the 

simplifications which come with the assumption of linearity. For example, it is well- 

known that a linear system is stable if the roots of the characteristic equation are inside 

the unit circle. However, for nonlinear syste~ts, no equivalent condition exists and 

stability must be cheeked on a system-by-system basis (Narendra and Parathasarathy, 

1990). Furthermore, if the order of a linear system is known then the mde l  stmcture is 

uniquely defined and system identification reduces to the problem of parameter 

estimation. In contrast, nonlinear systems have an infinite variety of possible 

representations for a given set of input output observations (He and Asada, 1993). 

Thus, the choice of model structures must be chosen from a specified set of model 

classes which are assumed to have the ability to realize the system's input-output 

behavior (Levin and NarendraI 1996). In other words, the type of model must be 

justified for the intended application. 

%me early methods for modeling nonlinear systems include the works of Voltena 

ff 9591, the H m -  mdd (Chang and Lurrs, 1971) and nonlinear least squares 



estimation (Hsia, 1968). More recently, numerous nonlinear function approximation 

and modeling approaches have been developed: radial basis functions (Powell, 1987; 

Moody and Darken, 1989), Nonlinear Auto-Regressive Moving Average with 

exogenous inputs {NARMAX) models (Leontardis and Billings, 1985), fuzzy logic 

(Takagi and Sugeno, 1985), local technique (Farmer and Sidorowich, 1988). Artificial 

neural networks, in particular, have received considerable attention for modeling 

nonlinear dynamical systems ( Narendra and Parathasarathy, 1990; Chen ef nl., 1990; 

MacMurray and Kimmelblau, 1993; Minderman and McAvoy, 1993; Fernandez ef al., 

1993; Kechriotis et al., 1994; Puskorius and Feldkamp, 1994). 

Numerous classes of artificial neural networks can be used to model a dynarnical 

system, including radial basis function networks, recurrent neural networks, and multi- 

layer perceptrons. To date most applications have focused on the latter due to the 

availability and simplicity of effective training algorithms such as backpropagation. A 

common approach is the time-delayed neural network which can be implemented using 

a multi-layer perceptron in which the input layer consists of a tapped delay line of 

inputs (Figure 4.2). However, since the model memory is determined solely by the 

number of input PEs, this approach is limited to systems of relatively low order. 

Figure 4.2 Time-delayed neural network. 



A variation of the time-delayed neural networks is to also include delayed system 

outputs in the input layer, resulting in the NARX model of Equation 4.7. While there is 

an appearance of recurrence in the NARX case, the network is actually static because the 

lagged outputs consist of actual system measurements. We now turn our attention to 

the case of truly recurrent neural networks. 

Recurrent neural networks, introduced in the works of Hopfield (1982), have long been 

recognized for their powerful mapping and representational capabilities. Because a 

RNN has feedback, its memory capacity exceeds that of a time-delayed neural network 

even when a fraction of the number of PEs are used. (Using signal processing 

terminology, a time-delayed neural network is a nonlinear finite impulse response filter 

whereas a RNN is a nofinear infinite impulse response filter) Despite this advantage, 

only in recent years have their use become more popular due to the advent of effective 

2nd order training algorithms (.e.g. Real-time recurrent learning , Extended Kalman 

Filtering, Recursive Prediction Error.) 

A number of different archtectures have been developed including Hopfield networks 

(1982), recurrent multi-layer perceptrons ( Fernandez et al., 1990) , and Elman networks. 

These variations fall into one of three categories: externally-recurrent, internally 

recurrent, and fully-recurrent. In an externally-recurrent network (Figure 4.3), 

information from the output layer feeds back to PEs in the input layer. A network may 

also be internally-recurrent (Figure 4.4), in which information from one layer may feed 

back to itself or other layers. The most general case is the fully-recurrent network 

(Figure 4.5) in which all PEs are interconnected. 



Figure 4.3 Externally-recurrent neural network. 

Figure 4.4 Internally-recurrent neural network. 



wll 

Figure 4.5 Fully-recurrent neural network. 

The internally- and fully-recurrent versions have the advantage that the exact number of 

lagged inputs and outputs does not have to be determined a priori (MacMurray and 

Himmelblau, 1993). Rather, these networks have their own internal memory which 

stores information about the past. On the other hand, these networks require more 

computationally-expensive training algorithms due to their inherently recursive 

structures. (Real-time recurrent learning has a complexity of 0(w2) compared with 

O(w)  for standard backpropagation, where w is the number of adjustable .veights). 

Moreover, an externally-recurrent network can be trained using actual system outputs 

in the input layer as opposed to the network's own predictions. In other words, the 

network is trained as a series-parallel model, which facilitates parameter convergence, 

and then operated as a parallel model, whereby the network's predicted outputs are fed 

back to the input layer. 



5.2 Statement of Problem 

Simply stated, the objective of this thesis is to model the mechanical response of the 

spine to seat-imposed vibration and shocks. A system identification approach has been 

taken to meet this objective, so that the model will be developed using experimentally 

measured input and output data. Furthermore, since evidence exists to suggest that the 

mechanical response is nonlinear in nature, a nonlinear systems identification approach 

will be taken which will utilize an artificial neural network. 

The problem is described by the system in Figure 5.1 (a). The input to the system, s(t), is 

acceleration at the vehicle seat, and the output, v(t) is acceleration at the vertebrae. The 

seat motion consists of linear and angular acceleration in six degrees of freedom as 

depicted in Figure 5.1 (b). (the x,y, z axes and rotation about these axes). Seat 

acceleration transmits upwards through the spine resulting in acceleration of each 

vertebra, also in six degrees of freedom. Moreover, the response of the spine will differ 

at each vertebra. 

Figure 5.1 (a) Block diagram of the seat-spine system; (b) Degrees of freedom in terms of 
acceleration of the human body. 

~ ( t )  human body + ~ ( t )  



The system in Figure 5.1 (a) can be described mathematically by an operator, P, which 

maps the seat acceleration to the vertebrae acceleration such that 

where 

and 

Note that v(t) is matrix of dimension N x 6 matrix where 

and N is the number of vertebrae in the spine. Thus, P maps the six acceleration 

components at the seat to the six acceleration components at each of the N vertebra. 

To simplify the modeling task, a number of constraints are imposed. Firstly, the 

problem is limited to seat and spine acceleration along the z-axis. One disadvantage of 

this approach is that it ignores the cross-axis transmission; an impact at the seat in the x 

or y axis will result in acceleration in the z-axis at the vertebral level. However, this 

constraint may be justified on several grounds. Shocks in the z-axis typically have the 

largest amplitude since mechanical impacts travel upwards through the vehicle and seat 

into the body, and therefore presumably have the greatest effect on tissues. As some 

studies suggest compression of the spine, due largely to z-axis shocks, results in fatigue 

failure of vertebral end plates. 

Secondly, the model will only predict acceleration at a single vertebra. This constraint 

greatly reduces the complexity of the model and the number of computations required 



in the identification process. It should be fairly straightforward to extend the model to 

other spinal levels. The !=mbar level was chosen because the main health effect of 

exposure to vibration and mechanical shock reported in the literature is low~r-b~~ck 

pain. Moreover, while only the response at a single lumbar vertebra has been modcled, 

it has been shown (Cameron et nl., 1996) that the shape and magnitude of the rtlspnnst 

at adjacent vertebrae is similar. 

The third constraint is optimizing the model based on data collected for only one 

subject. Ideally, the model would be universal such that it predicts the response for tht* 

entire population of vehicle occupants. Realistically, we can only hope to characterize 

the average response. System identification techniques are intended for modeling one 

particular system, whether it is a biological process or an industrial plant. In this case, 

however, we wish also to characterize an entire class of systems &r. snore than one 

subject) so that the resulting model is universal in its applicability. A universal mode 

will not only depend on how well we identify this one system but also on the degree of  

variance between individuals and the degree to which the chosen subject represents the 

average response 

Given the above constraints, the identification problem is now formulated as follows: 

We wish to predict the z-axis acceleration at the fourth lumbar vertebra (L4) for one 

particular subject of a military population, for the types of z-axis seat i n w x i s  and 

vibration experienced by occupants in tactical ground vehicles. The developed model is 

intended to predict the spinal response based on vehicle seat only, as it is impractical to 

measure the vertebral acceleration of vehicle passengers in the field. The simplified 

system to be identified is shown in Figure 5.2 

human body 

Figure 5.2 Simplified seat-spine system, showing the seat z-axis acceleration, s,(tj, and the z-axis 

acceleration at the fourth lumbar vertebra, vZrL4(t). 



if the model can predict the lumbar acceleration then methods exist to relate this to 

effective stress on the vertebral tissues. Using material fatigue theory and 

epidemiological data of back injuries i t  is possible to estimate the probability of injury 

due to exposure to mechanical shocks IBC Research Incorporated, 1996). The exposure 

time for vehicle occupants may then be limited to maintain the risk of injury below an 

acceptable level. 

The strategy to be employed in the dtvelopmen t of the model is as follows: 

i 

i 

j ; Experiment 

Choose Model 

! 

j Validate Model 

Figure 5.3 System Identification Flowchart. 



The flowchart illustrates the iterative nature of system identification. In many cases it 

n a y  be necessary to back up a step and re-examine the assumptions made about the 

system. Most development time is spent in steps 3 to 5. We try to adjust the structure 

and estimate parameters to obtain a good model. If we are unsuccessful we may haw to 

take more drastic measure such as re-designing the experiment (perhaps the test data 

does not excite all the system modes adequately) or choosing another class of model. 

These steps are discussed in the following sections. 

Except where noted, the data processing and model development was performed using 

the MatLab software package (Mathworks), running on an IBM 486 - 50 MHz Personcd 

Computer. The neural network training and simulation routines were provided by a 

publicly available neural network MatLab toolbox (Norgaard, 1995). In many cases, 

these programs were modified to suit this application. All MatLab m-file scripts are 

provided in Appendix A. 

5.2 Selection of model class 

5.2.1 Justification for a nonlinear model 

The choice of a nonlinear model was based on several pieces of evidence which indicate 

that the response of the spine to seat shocks is nonlinear. Cameron et nl. (1996) found 

that a nonlinear relationship exists between the peak z-axis acceleration measured at L4 

and the peak z-axis seat accleration in response to positive and negative seat shocks. 

This relationship is illustrated ir. Figures 5.4 and 5.5. If the response was linear then one 

would expect the plotted ratios to be constant over different ranges of seat shock 

amplitudes, based on the homogeneity property of linear systems (Chen, 1989). 



Figure 5.4 Peak transmission ratio versus frequency for positive amplitude seat shocks. (From 
Cameron ef al., 1996). 

Figure 5.5 Peak transmission ratio versus frequency for negative amplitude seat shocks. (From 
Cameron ef al., 1996). 

In addition, the shape of the response at the spine changes with the amplitude of the 

seat shock. This is demonstrated in Figures 5.6 and 5.7 which show the L4 acceleration 

in response to 4Hz shocks of amplitudes 3g and -3g, respectively. If the response was 

linear then the two responses would have the same shape and differ only by a scale 

fac'x of -1. 
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Figure 5.6 L4 response (dashed line) to 3g, 4Hz seat shock (solid line). 

t i m e  ( s )  

Figure 5.7 L4 response (dashed line) to -3g, 4Hz seat shock (solid line). 

The nonlinear response of the spine has also been reported by several researchers 

(Crocher and Higgins, 1967; Griffin, 1986). Finally, the different natural frequencies of 

the Fairley-Griffin and DRI models representing low amplitude and high amplitude 

vibration, respectively, imply the nonlinear characteristic of the human body. Hence, 

the use of a nonlinear model appears to be warranted. 



5.2.2 justification of the neural network model 

The choice of an artificiaI neural network to model the system is justified on the basis of 

the Stone-Weierstrass theorem (Cotter, 1992) which states that any continuous function 

can be approximated arbitrarily closely by a polynomial of sufficient degree.. Stone- 

Since it has been demonstrated that a neural network with an arbitrary number of PEs 

in a single hidden layer is capable of approximating any polynomial (Cybenko, 1989; 

Funahashi, 1989), it follows that an ANN is a universal approximator. A corollary to 

this axiom is that a recurrent network of correct order can model any continuous 

system. 

To model the system, an externally-recurrent neural network was chosen which 

represent the parallel identification model 

( t )  = [ ( t  - 1 ) .  . ( t  - 1 )  ( - 1 ) .  . ( t  - m)] 

This above mcdel is the nonlinear output error(N0E) formulation given in Section 4.2 

and is recurrent of order m. The choice of this model class, as opposed to the 

NARMAX, or NARX formulation, was based on the need for the model to be used off- 

line. (Recall that both the N A R U X  and NARX models require the actual system 

output to generate their prediction.) 

It is possible to first train the model using the NARX structure and then to use this 

model off-line. Training involves the finding the set of network parameters for which 

Equation 3.11 is minimized. 

W e n  Equation 4.2 (the NARX model) is substituted into the above equation for?(t), the 

minimization process is identical to the maximum likelihood estimation approach 

(Werbos, McAvoy, and Su, 1992). We will, therefore, refer to the network parameters 

optimized in this manner as the maximum likelihood values. 

There are two problems with the NARX (or maximum likelihood) approach. Firstly, the 

resulting model is optimized for single-step ahead prediction and likely will not 

perform well as a multistep predictor. During multi-step forecasting, prediction errors 



feed back into the input of the model resulting in continually worse predictions. 

Secondly, noise can result in a biased parameter estimates if the NARY model is 

employed. 

However, the output error mode1 is difficult to train because, in general, neither 

convergence nor stability is guaranteed for parallel identification models. This 

difficulty is overcome using a combination training approach, called the Compromise 

Method (Werbos et al., 1992). Essentially, an NARX model is trained until convergence 

is attained. The NARX model parameters are then used as initial values for the training 

of a NOE model. The details of this training method are discussed in Section 5.4. The 

problem of model bias due to noisy training data is overcome by validating the model 

on a test data set. 

5.3 Experiment 

Acceleration data was collected at the multi-axis ride simulator (MARS) of the U.S. 

Army Aeromedical Research Laboratory, Fort Rucker, Alabama, during a series of 

experiments designed to assess the health effects of repeated impacts (Cameron et d., 

1996). These experiments were performed by researchers of USAARL and BC Kcsedrch 

Inc. and are not considered part of this thesis. 

The MARS consists of a hydrauiically-driven platform, two hydraulic pumps in parallel, 

three orthogonal hydraulic actuators, three fail-safe valves, and a Schenck/17egasus 

multi-channel seivo controller, all  of which are controlled by a DEC-PDP11 computer. 

The MARS has an acceleration range of &4g, a displacement range of H.9 cm (3.5 in.) 

and a frequency response of 2-40 Hz. The vibration frequency and acceleration 

amplitude are controlled by a computer synthesized displacement command signal. 

The subjects for these experiments were 10 healthy, male army volunteers between the 

ages of 19 and 40 years. All subjects had previous experience with motion from military 

or civilian exposure (eg. TGV's, air transport, participation in Operation Desert 

Shield/Storm). Prior to the experiment, subjects were required to pass a medical 

examination, attended a briefing session, signed informed consent forms, and 



participated in a hid exposure in order to become familiar with the motion and 

~ ~ f l ~ t i o n .  

The subject sat on the MARS platform (Figure 5.8), which simulated accelerations 

typical of those experienced during cross-coilntry vehicle rides. The subject sat face 

forward in a comfortable iiprigk~f position on a seat with no back rest (most occupants of 

TGVs don't have backrests) 

Figure 5.8 h4ARS table and subject. 

The MARS was programmed to apply a series of acceleration impulses in the vertical 

tfirection @idy"amic z-axis), having various waveform frequencies and acceleration 

;;'agnittzde profi!~. Six sets of input sip& were used, each of which was applied for a 

duration of 55 minutes. Each shock Lsas presented twice. All signal sets contained 

gaussian background vibration (RMS value of 0.05g and a bandwidth of 2-40Hz) and 



periodic shocks that occurred at a rate of 6 shocks/minute. These signals were designed 

on the basis of a number of vehicle characterization experiments (Roddan et a/., 1995); 

US Army TVGs were driven in operational manner over typical terrain and seat 

accelerations were measured in three axes. 

Each input shock consisted of a single cycle damped sinusoid as depicted in Fibwre 5.9. 

The amplitude and frequency range (f = 1/T, where T is the period of the shock 

waveformj of the applied shocks were +/-0.5g to +/- 4g, and 2 Hz to 20 Hz, 

respectively. 

I Shock Frequency, f=lE 

Figure 5.9 Input shock waveform diagram. 

The MARS seat acceleration was measured with a tri-axial Entran accelerometer housed 

in. a fiexible epoxy seatpad, b d ;  according to specs SAE(297-4). The seapad was 

positioned on the seat between the subject and a thin bean-bag cushion. Both cushion - 

and seatpad were secured firmly to the metal frame of seat by tape. Acceleration over 

the spinous process of the LA vertebra was measured with a 0.3 gram miniature 



accelerometer (Entran EGAX +25 g) attached to the skin by a small square of two-sided 

carpet tape with a thin strip of surgical tape placed over the top. 

The seat and spine acceleration data were sampled at 500 Hz and high-pass filtered at 

0.5 Wz. The measured seat acceleration contained high frequency components that were 

imposed on the original shock signal computed for input to the MARS controller. The 

main source of these high frequency components was the result of the subject leaving 

the seat and then impacting the seat in response to both positive and negative 2,3, and 

4g shocks. These components were removed by low-pass filtering the seat data at 

110Hz. The lumbar acceleration was processed to compensate for the movement of skin 

over the vertebrae. Details of this procedure from Cameron et al. (1996) are provided in 

Appendix B. 

5.3.1 Data Processing for Model Development 

For the purpose of developing a neural network model, the seat and lumbar acceleration 

files were combined into two data sets--a training data set and a testing set. Each set 

consisted of a seat shock (input) file and a lumbar response (output) file. Input shocks 

and their corresponding spinal responses were copied from the raw data files and 

compiled in either the training or testing data set. Approximately 60% df the data were 

used for the training set and the remaining 40% were saved for validation purposes. 

The order of shocks in both sets were randomized to obtain an equal representation of 

shock frequencies and magnitudes in each set. The number and type of shocks 

represented in the training and testing sets are listed in Tables 5.1 and 5.2, respectively. 



Table 5.1 Training Data Profile 

Amplitude I Frequencies 
5,6,6,8,15,15,20,20 

During this process, significant sections of the signals were removed that did not 

contain any shocks, only background vibration. This editing was necessary so that the 

neural network training would not be overly biased toward learning the response of the 

system to the vibration as opposed to high-amplitude shocks. 

Power spectral analysis of the condensed data indicated that most significant signal 

energy occurred at frequencies less than 75 Hz. To reduce the amount of data, the 

signals were down-sampled to 150 Hz, using the resample function provided by 

MatLab Signal Processing Tool Eox. Down-sampling had the effect of attenuating some 

of the peaks of the spinal acceleration by roughly 5-10%. This attenuation was the direct 

result of the anti-aliasing filter built i?to the resample function whch removed 

frequencies greater than 75 Hz. However, it was decided that the removal of this 

portion of the signal's spectrum was warranted by the 50% reduction in the amount of 

data to be processed. This reduction resulted in savings in processing time and 

computer memory which in turn allowed testing larger neural network architectures. 



5.3.2 Determination of Training Subjc;ct and TrainingITesting Data 

In order that the resulting model can be generalized to other subjects, the neural 

network was trained with data from the subject that exhibited the most typical response. 

This data set was found by averaging the responses for all of the subjects, and then 

determining the individual response which was closest to the group average according 

to some distance measure. 

The averaging process was carried out in the frequency domain. The power spectral 

density (PSD) was found for the spinal acceleration response of each subject due to 

negative input shocks of various frequencies with amplitudes of -1,-2, -3, and -4g. 

(Positive input shocks are not included in this calculation based on the assumption of 

symmetry. In other words, if  two subjects demonstrated similar responses due to 

negative input shocks, then they are likely to show similar response due to positive 

input shocks.) The mean PSD was then calculated by summing the frequency 

components of each PSD and dividing the result by the number of subjects. 

The similarity between the PSD of each individual and the mean PSD was quantified by 

calculating the normalized root mean square (RMS) error as described by the following 

equation: 

where P(i) is the i'th frequency component of the mean PSD, Pj (i) is the i'th 

component of the j'th subject's PSD, and M (=64) is the size of the Discrete Fourier 

Transform used to compte  the IED. 



5.4 Selection of Model Structure 

5.4.1 Determination of model orders 

The optimal model order (input and output lags) was determined using the Lipschitz 

quotient method developed by He and Asada (1993). This method is described below. 

First, we assume that the system is modeled using a generalized form of the input- 

output model of equation 4.2: 

In this formulation, the xi' s represent lagged inputs, outputs or both. 

Furthermore, we assume that the partial derivatives of y with respect to the input 

variables exist and are bounded (i.e. f (x) is continuous and smooth) such that 

for i = 1, ..., n 

The objective of system identification is to approximate f (x) based on the input-output 

data pairs (xi ,yi). Define the Lipschitz quotient qg as 



The denominator x - - x . is the Euclidean distance between points xi and x j  in the I t  J l  
input space and numerator 1 - y j  1 is the difference between f (xi ) and f (x ) . Tf f (x) 

is continuous, the Lipschitz condition states that the Lipschitz quotient is bounded for 

any input-output data pairs, such that 

By applying a sensitivity analysis to the relationshp between qij and the number of 

input variables, it can be shown that 

where the superscript (n) represents the number of input variables included in the 

input-output model. This expression states that if f (x) satisfies lfr/ < M and all the 

input variables are included in the reconstruction of f (x) , then the Lipschitz quotient 

must be less than &A4 for all input-output pairs. When one or more input variables 

are missing, the Lipschitz quotient may be very large or unbounded. On the other 

hand, if a redundant variable is included, the value of the quotient will only be slightly 

smaller. Hence, information from these quotients may be used to determine the optimal 

number of input variables required. Specifically, this is done by calculating the 

following index 

where q(")(k) is the k'th largest Lipschitz quotient among all q("Ig 

( i f  j ; i , j =  1,2, ..., N);nisthenumberofinputvariables (xl,x2, ..., x,);andPisa 

positive integer chosen in the range P = 0.1 N.. -0.2N. By plotting this index (the 



Lipschitz number) against n, the optimal model orders can be visually determined; they 

correspond to the value of n at which the cunre begins to flatten out. 

A listing of the Turbo-C code for the Lipschitz method is provided in Appendix C. 

5.4.2 Determination of Hidden Layers 

The model was developed using only one hidden layer due to limitations of the neural 

network software. However, only one hidden layer is theoretically required to model 

any nonlinear system. Furthermore, this limitation actually simplifies the modeling task 

in that the number of network structures to be optimized is reduced. The remaining 

task is to determine the number of PEs in the one hidden layer. 

The number of hidden layer PEs was determined using a trial and error approach 

described in Werbos et af. (1992 ). The objective is to find the number of PEs for which 

the error on the test set is minimized. In doing so, caution must be taken to avoid 

confounding the results by the effect of different starting points. In other words, has the 

error improved due to the number of hidden PEs or because of where the algorithm 

started on the error surface? To answer this question we can repeatedly train each 

network (with a constant number of PEs), always initializing the weights randomly. We 

can then choose the network that yielded either the lowest average error or the lowest 

overall error . The disadvantage of this technique is the large number of computations 

involved. 

Instead of the above approach, the network was trained only once, but always with the 

parame:ets initialized to zero. This constant initialization avoids the effect of different 

starting points. Unfortunately, initializing all the weights to zero results in final weight 

values which crre all identical. To avoid this problem, different learning rates were 

assigned to each weight. As in Werbos ef al. (1992), the learning rate was multiplied by 

a linearly decreasing factor which varies with the number of hidden layer PEs. Thus, 

thele~ratekarrtiaallyavedor@venbyv=~[l  1 ... 2 / n  l / n ] .  



where c/, is a small positive constant, and n is the number of hidden PE1s. This learning 

rate had the effect of multiplying the gradient by the matrix diag[l 1 . . . 2 1 rz 1 / T I ] .  

It can be proved that an optimization algorithm using this transformed gradient will 

lead to a minimum in the error (Werbos et al., 1992). Therefore, this technique allowed 

the weights to be initialized to zero. 

'fit following cross validation procedure was then used to determine the optimal 

number of hidden PE's: 

1 - Start with n = 1 

2. initialize the network Farameters to zero as discussed above. 

3. Trair? the network model to a minimum, using the Levenberg-Marquardt algorithm 

(described in Section 5.3). 

4. Validate the model on the test data set. 

5. Let *I = rz + I and repeat steps 2 through 5, until the prediction error on the test set 

begins to increase. 

Once the correct number of hidden PEs was determined, a similar method was used to 

eptimize the number of training iterations, Ni. Both optimizations were performed on 

the equation error model formulation since training is sigruficantly faster than the 

output error model. The optimal number of n and Ni were then used in the compromise 

method to train the model as described below. 

5.5 Parameter Estimation 

Estimation of the correct network parameters consisted of two steps. The Compromise 

Method was used to determine the cost function to be optimized. Essentially, the 

Compromise Method configures the cost function for optimization in terms of either the 

XARY m d d ,  the NOE mode! rrr an average of the two. fn the S K O ~  step, the 



Levenberg-Marquardt algorithm was then used to optimize the parameters of the. 

specified cost function. These two steps are discussed further in the following sections. 

5.5.1 The Compromise Method 

The Comp;omise Method determines the way in which the cost function, J (Equation 

5.2), is calculated. Rather than minimizing J in terms of the NARX model or the NOE 

model, the Compromise Method combines these approaches by defining an alterna tivc 

input-output model 

y(t) = ~ [ y ( t  - 1) ,..., ).(t - m), u(t - 1) ,..., u(t - I)]. (5.10) 

The signal T ( t )  which is fed back to the network input layer is a weighted average 

defined as 

w h c e  y(t) is the network's prediction, y(t) is the actual output, and w is a constant 

which varies between 0 and 1. T!te cost function to be minimized is still 

but the network output signal is calculated differently, depending on the value o f  w. 

Note that when the w = 1, the above expression is equivalent to the maximum 

likelihood (NARX) case, and when w=O, it is equivalent to the NOE case. 

The Compromise Method t h  consists of the following steps. 

1. Initialize the nemmk parameters randomly. 



2. Setting w = 1, train the network, using the Levenberg-Marquardt method to 

determine the maximum likelihood values. 

3. initialize the parameters to their maximum likelihood values and re-train the network 

using successively stiffer forms of compromise (w = 0.8,0.5,0.1,0.01,0.001). 

4. Repeat steps 1-3 several times and choose the network which exhibits the lowest error 

on the test set. This last step helps the algorithm avoid local minima. 

5.5.2 The Levenberg-Marquardt Method 

The Levenberg-Marquardt method is a variation of the Gauss-Newton method for 

finding the minimum of a function. The concept behind all Newton-like optimization 

methods is to approximate the function f(x) ,~hout some point f (x + 8 )  by a truncated 

Taylor series expansion: 

In this equation g'") and H'k' are the gradient vector and Hessian matrix of f(x), 

respectively, calculated at x = x'"'. The minimum of f(x) can then be found iteratively 

by finding the minimum of the quadratic approximating function, q'k'(8). The 

minimizing value of 8 is calculated by setting the derivative of Equation 5.13 to zero 

and solving. That is, we solve 

The k'th iteration of Newton's method can be written as: 

I. %he Equation 5.14 for 6. 



The Gauss-Newton method differs from Newton's method in that it utilizes a first order 

approximation of the Hessian. 

A desirable property of an optimization algorithm is global convergence, which means 

that the algorithm will converge to a local minima regardless of the starting point. In 

other words, the minima will be found in a finite number of iterations even if x'"' is far 

from the solution. However, global convergence does not imply that the procedure 

finds the global minimum of f(x). The latter can usually be found by repeating the 

algorithm from different initial points, and choosing the minimum of all local minima 

found. 

In all Newton-like methods, a necessary condition for global convergence is that the 

Hessian or the approximate Hessian is a positive definite matrix. However, this 

condition may not be true, especially if x ' ~ '  is far from the solution. To solve this 

problem, the Levenberg-Marquardt approach biases the search direction towards the 

steepest descent direction through the addition of a small positive constant, h ,  to the 

diagonal elements of H. The system to solve thus becomes 

and we iterate steps 1 and 2 as before. If h is small then the search direction 6 

approaches the Gauss-Newton direction, - H - ' ~  , whereas if his large then 6 

approaches the steepest descent direction, -g. 

The version of Levenberg-Marquardt described by Fletcher (1987) adapts the size of h 

based on the closeness of fit between f(xf and its quadratic approximation. y"'(6). This 

doseam is meamred as a riit=uo Se-tiiea the acttia! reduction in f(x) gft en by 



and the predicted reduction in f(x) (based on qfk' (6) )  given by 

We, therefore, define the performance metric upon which we predicate changes in the 

size of h as 

This version of Levenberg-Marquardt algorithm is as follows: 

1. Given xCk' and h'", calculate g'" and H'". 

2. Solve Equation 5.15 to give 6'". 

3. Evaluate f ( x ' ~ '  + 6'"') and hence r'". 

1 W' 

If rik' > 0.75 set A!""' = - 
3 

Otherwise set = 2'' 

We can now formulate this d g o f i h  in t e r n  of the neural network model that we 

wish to train. Let the network parameters (weights and bias values) be contained in the 

vector 8 as in Chapter 2. Furthermore, define the error function 



where e(t,O)is the discrepancy between the actual output y(t) and the network 

prediction y(t, 0) ,  and N is the length of the training data. The objective then is to train 

the network by finding the Q which minimizes J. This objective is achieved using thc 

Levenberg-Marquardt algorithm to iteratively search the error surface, J, in the direction 

specified by the vector s(t, OtL' i - 

Specifically, the procedure for determining the optimal network parameters is as 

follows: 

1. Initialize the vector O and initialize h to a small positive constant. Set k = 0. 

2. Solve [H"' + h~]s"' = -gfk' for sik'. 

3. Evaluate ~(63") + s"') and hence rfk'. 

4. If r'@ < 0.25 set h""" = 2h'" (If the predicted decrease in J is close to the actual 

decrease, let the search direction approach the Gauss-Newton search direction.) 

I f  r'k' > 0.75 set h""' = - (If the predicted decrease in J is far from the actual 
2 

decrease, let the search direction approach the gradient (steepest descent) direction.) 

5. I f  J(C3'" +sf'') < ~ ( 8 " ' ) ,  then accept updated parameters for 0 and set k = k +I. 



6. If the stop criterion is met fk > maximum number of iterations or ~(43'~') < error 

bound) is not satisfied then go to step 2. 

The gradient of J is calculated using Equation 3.16 and the Hessian is approximated 

using 

where ~ ( t , @ ) ~  = 
d j w 3  

dO 

5.6 Model Validation 

Having determined the best model parameters, for the chosen structure, we need now 

to determine whether the model is "good enough". This is the problem of model 

validation. The question has several aspects: 

iiii Does the nrodel describe flie tnce system? (Ljung, 1987) 

To answer these questions, the proposed model was tested in several ways. First, a 

pure simulation of the model (i-e, using only the input and not the measured output) 

was performed to generate the model predicted output. The model predicted output 

was then plotted against the actual output for visual comparison. This metric is more 

effeczixre at revealing the inadequacies of the model than simply using the singlestep 

prediction (Ljung, 1987; B*np d d, 1991)- 



In addition, the model was compared to three linear models using both a \.isual 

inspection of the modei predicted outputs and an objective error measure. The error 

measure chosen is the RMS error given by 

The linear models chosen were the DRI mode!, the BS 6841 filter, and a 20'th order AliX 

model identified from input-output data using Least Squares Estimation ( See Appendix 

D). This comparison wilt indicate whether the neural network model is an 

improvement on some of the existing models. It will also help to demonstrate that a 

linear approach is generally not well-suited to this particular modeling problem. 

The above validation process was then repeated for unseen data obtained from a 

different subject. This test helps to indicate whether the model can be applied to 

szbjects outside the training set. 

Finally, using the data from the same unseen data the neural network was validated on 

input consisting of only low-level vibration. The RMS error and time-series plot of the 

neural network's output was then compared to those of the DRI, BS 6841, m d  AKX 

models. Finally, a power spectral analysis of the outputs was performed in order to 

compare the performance of the four models in predicting the correct response to 

xibration. 



6.1 ~etermination of Subject Data 

Figure 6.1 shows the average, normalized power spectral density of the L4 response to a 

single -2g, 4 Hz seat shock. The graph indicates that the majority of the signal energy is 

between 1 Hz and 25 Hz. 

Mean PSD -2gl4H.z shocks 

0.8 ~ 

0 40 60 80 100 
Frequency. Hz 

Figure 6.1 The mean normalized power spectral density of the lumbar-4 response. 

Table 6.1 lists the RMS error between the mean and individual PSD plots (as defined by 

Equation 5.3) for all subjects in response to three types of input shocks: -2g/ 4Hz, -3g/15 

kfi, and -4g/ 4Hz. The data from subject #1 and subject #11 were incomplete as these 

subjects did not complete the test protocol. In addition, some of the data obtained from 

Subjects #3 and #5, contained large amplitude, high frequency noise, possibly due to a 

loosely attached accelerometer. Therefore, this data was not ir\cIuikd in the averaging 

procedure. 



The table indicates that Subject $9 has the lowest aggregate score and, therefore, exhibits 

a response to all three types of input shocks that is the closest to the average response. 

Thus, the data from Subject 9 was used for training the model. 

Table 6.1 Similarity between subject and mean PSD for various input shock responses, exprcsstd 
as the normalized RMS error. 

Subject # 
1 
2 
4 
6 
7 
8 
9 
10 
11 

-2g/4Hz 
not avail. 
0.727 
0.644 
0.597 
1 .O38 
0.645 
0.735 
2.267 
0.560 

-3g/15Hz 
not avail. 
0.825 
1.320 
0.750 
0.547 
0.477 
0.501 
1.303 
not avail. 

-4gi4Hz 
not avail. 
0.556 
0.860 
0.508 
0.564 
0.681 
0.529 
0.687 
not avail.- 

Total - 
2.11 
2.82 
1.86 
2.15 
1.80 
1.77 
4.57 

6.2 Determination of Model Orders 

The Lipschitz numbers for various input and output lags (Refer to Section 5.3.1.) are 

listed in Table 6.2. Using the two-dimensional search of the lag space described by He 

and Asada (1993), three possibilities for the lag structure were identified: 2 previous 

inputs/2 previous outputs, 2 previous inputs/3 previous outputs, and 3 previous 

inputs/2 previous outputs. For example, by setting m = 2, we can plot a slice of the lag 

space (Figure 6.2) and observe how the Lipschitz index changes with the number of 

delayed inputs. The knee of the curve seems to occur at 1=2 or 1=3. At this point, the 

additional input terms have diminishing effect on the Lipschitz index, and, therefore, 

are not crucial to the reconstruction of f(x). 



Table 6.2 Lipschit;! number q(n) for various input lags (1) and output lags (m). 

. - 
0 1 2 3 4 5 6 

Previous inputs, I 

Figure 6.2 Plot of the lag space for input-output data (m = 2).. 

The m=2/1=3 lag structure was found to yield the best results of the three combinations 

identified. 



6.3 Determination of the Number of Hidden PEs 

The number of hidden PEs and size of the training file was constrained to less than 16 

PEs and 2500 samples, respectively, due to computer memory limitations. In addition, it 

was discovered that a smaller training file resulted in a model that could better predict 

peak values. Thus, a training file of 500 samples was used for optimizing the network 

for both hidden PEs and number of training iterations. The ramifications of such a 

small training set will be discussed further in Chapter 7.0. 

Figure 6.3 shows the EVIS error on the test set for different numbers of hidden PEs. 'Chc 

error was calculated using the model-predicted output. The graph indicates that three 

PEs should be included in the hidden layer. 

5.5 1 I 
0 2 4 6 8 10 12 14 16 

Number of Hidden Layer PEs 

Figure 6.3 RMS error vs hidden PEs. 

Figure 6.4 was used to indicate the optimal number of training iterations for the 

network. We see that the RMS error tends to decrease for the first 30 iterations, after 

which network learning slows considerably. According to the notion of Eariy Stopping 

(Cohn, 1993), any additional decrease in the RMS error is likely due to the network 

learning the stochastic variations in the training set data, as opposed to learning the 

underlying system. Thus, in order to avoid overtraining, the number of iterations was 

Iimited to 30. 



10 20 30 40 50 
Training iterations 

Figure 6.4 RMS Error vs. training iterations. 

6.4 Final Model Structure 

The optimized model structure is shown below in Figure 6.5. This final model can be 

represented as the nonlinear difference equation 

The input layer consists of 5 unity-gain buffers which serve only to distribute the inputs 

to the hidden layer PEs. The hidden layer PEs utilize a hyperbolic tangent activation 

function which enable the network to approximate nonlinear functions. However, the 

output PE utilizes a linear activation function, such that the output is a linear 

summation of its weighted inputs. A linear PE provides a greater dynamic range for the 

output than one which utilizes a hyperbolic tangent activation function. The latter is 

limited to an output range of [-1,1]. 



Figure 6.5 Finalized neural network structure. 

The hidden and output layers also include a bias unit which adds a constant value to 

each PE. The inclusion of the bias removes the constraint that the network's 

approximation of the system pass through the origin. The bias input to each IT is 

determined through the training process along with the network weights. 

6.5 Model Validation 

The following plots show the model predicted output (dashed 1ine)compared with the 

actual lumbar-4 acceleration (solid line) for the test data set. 



Figure 6.6 Response to 1g/5Hz, -2g/5Hz, 3g/5Hz input shocks. 
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Figure 6.7 Response to 4g/llHz, -lg/3Hz, -2g/6Hz, Ig/llHz input shocks. 
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Figure 66. Response to -3g/5Hz, 3g/15Hz, and 4g/8Hz input shocks 
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Figure 6.9 Response to -lg/4Hz, -4g/8Hz, lg/GHz, and -3g/15Hz input shocks. 
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Figure 6.10 Response to 2g/5Hz, 4g/4Hz, -lg/6F 7 input shocks. 
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Firmre 6.11 Res~onse to.-3d6Hz. 1~/11Hz, and -2g/8Hz input shocks. 
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Figure 6.12 Response to -2g/SHz, 3g/20Hz, and 3g/4Hz input shocks. 
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Figure 6.13 Response to -lg/4Hz, -4g/5Hz, and lg/2Hz input shocks. 
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Figure 6.14 Response to -2g/llHz, 2g/20Hz, and 3g/15Hz input shocks. 
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F i m e  6.15 Resuonse to.-3d4Hz. and le/2Hz invut shocks. 
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Figure 6.16 Response to -2g/6Hz, and 3g/4Hz input shocks. 
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Fieure 6-17 Res~ome to 4d4Hz. -1d8Hz and -4d12I-k. invut shocks. 



4 0  t I 

3 0 

2 0 

1 0  

0 

- 1  0 

-2 0 

3 1 .5 3 2 3 2.5 3 3 3 3.5 
t i m e  ( s )  

Figure 6.18. Response to lg/llHz, -2g/8Hz, and 2g/4Hz input shocks. 
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Figure 6.19 Response to 4g/ llHz, -lg/15Hzl and -4g/8Hz input shocks. 

The plots in Figures 6.6 to 6.19 seem to indicate a fairly good fit between the model's 

output and the measured lumbar4 acceleration. In the majority of cases, the model's 

response has a similar shape although the peak amplitudes and timing are not exactly 

matched. The model exhibits the worst performance on the following shocks (listed in 

order of appearance in Figures 6.6-6.19): -1g/3Hz1 -1g/4HzJ -4g/8Hz, -3g/ l5Hz, - 

?g/15f-fir 2g/20Hz, 3g/15Hz, -Ig/8Hz, -4g/llHz, and -1g/20Hz shocks. Thus, the 

model seems to perform poorly on low amplitude negative shocks, high frequency 

negative shocks, and high frequency, high amplitude positive shocks. On some of these 

shoks (eg. -4g/8Hz from Figure 6.19) the model overestimates the response. In others 

(e.g. -2g/2OHz from Figure 6.14) the model underestimates or misses the peak response. 



6.6 Model Comparisons 

This section shows a comparison between the recurrent neural network model, the 

Dynamic Response Index model, the British Standard 6841 filter, and a 20'th order ARX 

model. The implementation details of the DRI and BS 6841 models are provided in 

Appendix E. The input for all four models consisted of the seat acceleration of the test 

data set, sampled at 150Hz. The models are compared on the basis of the IiMS error 

(Table 6.3) and visual inspection of the model predicted output (dashed line) plotted 

against the actual output (solid line) in Figures 6.20-6.38. 

Table 5.3 Prediction errors for the four model types. 

Model Tvue I RMS Error 
20'th order ARX 1 4.90 
5-3-1 neural network 1 6.62 

6.6.1 RNN Model 

BS 6841 filter 
DRI 

1 7.1 f.2 t .3 5.4 
time [s) 

Figure 0.20 R-W (dashed) and measwed (solid) responses to a -2g/5Hz input shock. 

7.66 
9.33 
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Figure 6.21 RNN (dashed) and measured (solid) responses to a 4g/4Hz input shock. 

16.7 16.8 16.9 17 17.1 17.2 17.3 
time (s) 

Figure 6.22 RNN (dashed) and measured (solid) respon:;es to a 3g/Hz input shock. 
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time (s) 

Figure 6.23 RNN (dashed) and measured (solid) responses to a -4g/5Hz input shock. 



Figure 6.24 RNN (bashed) and measured (solid) responses to a 4g/l'lHz input sl~ock. 

6.6.2 The Dynamic Response Index model 

w 1 
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Figure 6.25 DKI (dashed) and measured (solid) responses to a -2g/5Hz input shock. 
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Figure 6.26 DRI (dashed) and measured (solid) responses to a 4g/4Hz input shock. 
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Figure 6.27 DRI (dashed) and measured (solid) responses to a 3g/4Hz input shock. 
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Figure 6-29 DRI (dashed) and measured (solid) responses to a 4g/llHz input shock. 
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Figure 6.28 DRI (dashed) and measured (solid) responses to a -4g/5Hz input shock. 



6.6.3 The British Standard 6841 Filter 

time ( s )  

Figure 6.30 BS 6781 filter (dashed) and measured (solid) responses to a -2g/5Hz input shock. 
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Figure 6.31 BS 6781 filter (dashed) and measured (solid) responses to a 4g/4Hz inpcrt shock. 

time [s) 

Figure 6.32 BS 6781 filter (dashed) and measured (solid) responses to a 3g/4Hz input shock. 
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Figure 6.33 BS 6781 filter (dashed) and measured (solid) rewonses to a -4e/5Hz input shock. 
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Figure 6.34 BS 6781 filter (dashed) and measured (solid) responses to a iig/llHz input shock. 



6.6.4 ARX Model 
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Figure 6.35 ARX (dashed) and measured (solid) responses to a -2g/EiHz input slioch. 
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Figure 6.36 ARX (dashed) and measured (solid resnonses to a 4e /4Hz inou t shock. 
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ARX (dashed) and measured (solid) responses to a 3g14Hz input shock. 
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Figure 6.38 ARX (dashed) and measured (solid) responses to a -4g/5Hz input shock. 
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Figure 6.39 ARX (dashed) and measured (solid) responses to a 4g/llHz input shock. 

Based on visual inspection of the plots in Figures 6.20 to 6.39, the neural neiwork clearly 

outperforms the other three models for predicting the response to the seat shocks 

examined. The DRI mot-:,,, which is optimized for positive input shocks predicts the 

peak value of the initial L4 response fairly well. The shape of the DRI response is 

tvpical of a second order, underdamped linear model and, hence, does not reflect the 

more complex shape of the measured data. Moreover, this model fails to predict the 

correct peak and shape for negative input shocks as indicated by Figure 6.25. Finaily, 

unlike the KW model, the DRI is unable to predict the secondary peak of the response 

as s e n  in Sip-e 6.26 mb 6.27. 



The BS 6841 filter performs even worse than the DRI in response to all the shocks 

examined. It fails to predict the correct shape and peak wlues. This result is not 

surprising in that this model was optimized to predict the rezponse to low amphtadc 

vibration. 

The ARX model predicts the overall shape of the response fairly accurately in Figures 

6.36,6.37, and 6.38. Like the RNN model it is able to predict the secondary peck in 

Figures 6.36 and 6.37, but not as accurately. In terms of the RMS error, this model 

exhibits the best performance. However, it performs dismally on predicting the 

response in Figures 6.35 and 6.39. In addition, the model seems to add high freqilency 

noise to the output. 

6.7 Cross-Sub ject Validation 

The prediction errors for the four models applied to a different subject (No. 7) ;Ire 

shown in Table 6.4. The error values here cannot be compared directly with thosc 

presented in Table 6.3 since the number and type of shocks in the test set for the two 

subjects are slightly different. Furthermore, the amount of vibration compared with 

shocks is not exactly the same either, and thus, the performance on predicting the 

shocks is weighted differently for the two subjects. However, the rtla tive order of the 

model predictions is the same in both tables. For both subjects the neural network 

model outperforms the BS 6841 filter and the DRI model. 

Table 6.4 Prediction errors for the four model types for Subject 7 

Model Type I RMS Error 
20'th order ARX 1 2.91 
5-3-1 neural network i 3.25 
BS 6841 filter 1 4.67 
DRI 1 5-49 



Figures 6.40 to 6.45 shows the neural network prediction (dashed line) on individual 

shocks mixpared ~ 6 t h  the measwed data (solid line). These plots correspond wit11 

Figures 6.20 to 6.24, so that the model's response to the same type of shocks can be 

compared visually for the two subjects. As seen in the following plots, the neural 

network model appears to be capable of predicting the overall shape of the unscen 

subject's response. This result seems to indicate that the neural network is able to 

generalize and is not subject specific. 

2.5 2.6 2.7 2.8 2.9 3 3.1 
time (s) 

Figure 6.40 Neural network (dashed) and measured (solid) response to a -2g/SHz shock. 
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Pu'emal n&iiioik (Gashed) =d measured (solid) response to a 4g/4Hz shock. 
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Figure 6.42 Neural network (dashed) and measured (solid) response to a 3g/4 Hz shock. 
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Figure 6.43 Neural network (dashed) and measured (solid) response to a -4g/5Hz shock. 
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Figure 6.44 Neural network (dashed) and measured (solid) response to a -3g/4Hz shock. 
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Figure 6.45 Neural network (dashed) and measured (solid) .esponse to a 4g/ l lHz shock. 

6.9.1 Cross-Subject Validation of the Model's Response to Vibration 

In order to test the neural network's ability to model the spinal response to low-level 

seat vibration, a number of comparisons were made with the three other models 

examined. The data used for these comparisons consisted of 5.8 seconds of seat 

vibration and the corresponding lumbar-4 response of the unseen subject (No. 7). 

The BMS prediction error for all four models are listed in Table 6.5. For the purposes of 

visual comparison a 1 second window of the models' outputs are plotted against the 

measured data in Figures 6.46-6.49. The difference in the RMS prediction errors 

between the four models is small and perhaps does not accilrately reflect the 

performance of the models. For example, the neural network model output appears to 

match the measured response more closely than the DRI which contains large 

amplitude oscillations. Yet on the basis of the RMS error, these two models perform 

equivalently. 

Table 6.5 Time-domain prediction errors for the four model types for Subject 7 in response to 
vibration. 
Model Type 1 RMS Error 
BS 6841 filter 1 0.742 

model 1 0.763 
53-2 Nemal network 1 0.764 
ARX model 1 0.789 
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Figure 6.46 Neu~al network (dashed) and measured (solid) response to background vibration 
with an RMS value of 0.05g. 
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Figure 6.47 BS 6841 filter (dashed) and measured (solid) response to background vibration with 
an RPvlS value of 0.05g. 
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Figure 6.48 DRI model (dashed) and measured (solid) response to background vibration with an 
RivfS value of 0.05g. 

0.2 0.4 0.6 0.8 1 
time (s) 

Figure 6.49 20'th order ARX model (dashed) and measured (solid) response to background 
vibration with an RMS value of 0.05g. 

A frequency-domain analysis was performed by estimating the power spectral density 

of the models' cutputs. The Welch's periodogram method was used to estimate the 

power spectral density (PSI3)of each signal. This method used a Fast Fourier Transform 

size of 256, and a Hanning window with 50% overlap between successive windows. 

The PSD plots are shown in Figures 6.50-6.53. The RMS error between the PSD of the 

measured and that of each model's output is listed in Table 6.6. 



The PSD of the neural network response compares favorably with the other models 

examined. The neural network seems to underestimate the low-frequency (0-20Hz) 

response while overestimating the higher frequency (30-40Hz) response. However, the 

overall shape of the PSD is fairly accurate. Zn contrast, the PSD of the BS 6841 model 

appears to match the shape of the measured PSD accurately, but tends to overestimate 

the amplitude consistently throughout the spectrum. The PSD RMS errors of the neural 

network and BS 6841 filter are both considerably smaller than those of the DRI and the 

ARX model. 

The poor RMS error performance of the DRI and ARX models is reflected in their 

respective PSD plots. The DRI model greatly overestimates the amount of energy 

contained in the lower frequency range (0-15Hz), while underestimating the energy of 

signals above 15Hz. The ARX model, on the other hand, ~ a t c h e s  the overall pattern of 

the measured PSD fairly well except that it exhibits a large response above 55Hz. 
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Figure 6.50 Power spechid density estimate of neural network (dashed) and measured (solid) 
response to background vibration with an RMS value of 0.5g. 
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Figure 6.51 Power spectral density estimate of DRI model (dashed) and measured (solid) 
response to backgrorurd vibration with an RMS value of 0.5g. 
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Figure 6.52 Power spectral density estimate of BS 6841 (dashed) and measured (solid) response 
to background vibration with an RMS value of 0.5g. 
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Figure 6.53 Power spectral density estimate of 20'th order ARX model (dashed) and measured 
(solid) response to background vibration with an RVS value of 0.5g. 

Table 6.6 Frequency-domain prediction errors for :he lour model types for Subject 7 in response 
to vibration. 

BS 6841 filter 0.520 
ARX model 
DM model 2.413 

Model Type 
5-3-1 neural network 

RMS Error 
0.473 



The performance of the neural network relative to other models depends on thtl criteria 

used for evaluation. When the root mean squared error is used, the ncural net~ror!, 

prediction on the test set is second to that of the 2OJtl1 order ARY model, as shown in 

Table 6.3. However, the RMS error can be misleading for a number of reasons. For  IN.,, 

this error measure is heavily weighted by the performance of the mociel on the 

background vibration which constitutes the majority of the signal. Thus, a model that 

predicts the vibration response well will exhibit a low RMS error regardless of the 

predicted shock response. It is, therefore, not surprising that the ARX model performs 

well according to this criterion as it represents a linear least squares fit of the data. 'l'lw 

neural network represents a nonlinear least squares fit to the data, but it was optimized 

for shock response prediction. 
- - 

The second misleading aspect of the RMS error criterion is that it does not take into 

account time shifts between the predicted and measured response. For example, in 

Figure 6.10 the neural network predicts the overall shape of the response quite well ~ L I  t 

the prediction leads the actual response so that the peaks do not line up. This time shift 

results in a large RMS error which does not reflect the accuracy of the model in 

predicting the response pattern. Similarly, if we are interested in predicting only the 

peak acceieration values, then the DRI model actually performs quite well as can be 

seen from Figures 6.26 to 6.29. 

For these two reasons, the RMS error, while a useful metric of model perforrnancc, is 

limited. Better insight into the suitability of the model can be obtained by visually 

inspecting the model predicted output. 

Comparing these plots with those corresponding to the other models, a case can 

certainly be made that the neural network model is superior. The perfcrma~ce of the 

four modeb is examined more closely in the following secti~ns. 



7.1 Model Response to Positive Input Shocks 

In response to a positive input shock, the seat accelerates upwards for 1/2 of the shock 

duration (T) and then acceierates downwards. Since the input is a damped sinusoid, the 

maximum positive acceleration is reached at approximately t= T/4, and the maximum 

positive velocity is reached at t = T/2. 

If the input shock carries sufficient energy, the subject will leave the seat at some point 

in its trajectory resulting in a (later) secondary seat/subject collision. Such shocks have 

a bi-phasic lumbar response. In other words, the lumbar response has two peaks 

corresponding to the initial shock and the seconds-y collision. This type of response 

can be seen in Figure 6.8 between 6.5 and 6.8 seconds. A bi-phasic response results 

when the input consists of low frequency, high amplitude shocks ( e.g., 2-5Hz and > 2g) 

since these shocks result in a greater separation between the seat and subject. Lower 

energy shocks (low amplitude and/or high frequency) exhibit little or no secondary 

response and are, therefore, referred to as mono-phasic. In these cases, the subject does 

not leave the seat and no secondary collision results. The lumbar response consists of 

only the initial acceleration shock which transmits upward through the spine. The 

shape of this response will be a function of the input shock and the biomechanical 

properties of the spine. 

The neural-network's response to high and low energy shocks are shown in Figures 

6.21,6.22 and 6.24. Figures 6.21 and 6.22 show the predicted and measured response to 

4 g / m  and 3g/4Hz input shocks, respectively. The network seems to predict the 

general shape of the bi-phasic response, but with an error in the timing. Figure 6.24 

shows the measured and predicted response to a 4g/llHr, input shock. The neural 

network output matches the measured response very closely in terms of shape, timing 

and amplitude. A comparison of these three plots with the corresponding ones for the 

other models indicates that the neural network model is better at predicting the lumbar- 

4 response to positive input shocks of the types examined. 



7.2 Model Response to Negative Input Shocks 

When a negative input shock is applied, the seat accelerates downwards, reaching ,I 

maximum acceleration at approximaiely t = T/4 and a maximum velnci ty , ~ t  t=1'/2. I f  

the downward acceleration exceeds -lg, thc subject becomes separated from the scat 

and a collision will result. The force of that collision will depend on the relative 

velocities of the subject and seat which, in turn, will depend on the frequency and 

amplitude of the input shock. In some cases, this collision will be sufficiently energfxtic 

that the subject will be bounced off the seat again causing yet another collision 

afterwards. Thus, a negative input shock may result in a mono-phasic or bi-phasic 

lumbar response. 

As indicated by Figure 6.20, the neural network is capable of accurately predicting n 

mono-phasic response. Figure 6.23 shows the predicted and measured responses to CI 

large amplitude, low frequency negative input shock. The model output follows the 

general shape of the actual response on the first peak but does not produce the smallcr 

second peak. Ln addition, the first peak response seems to be time-shifted. Still, this 

model's prediction is considerably more accurate than the DM, BS 6841 filter, and the 

ARX model's response to this type of shock. 

7.3 Validation on an Unseen Subject 

For the model to be useful it is necessary that it can be applied to subjects other than thc 

one on which it was trained. Therefore, a randomly selected subject (Subject 7) was 

chosen to further validate the model. 

The RMS error results for model validation on Subject 7 are provided in Table 6.4. 

These results rate the four models in the same order as on the training subject (Table 

6.3), with the neural network model performing better than the BS 6841 filter and the 

DRI model but slightly worse than the ARX model 



Figures 6.40 to 6.45 show the predicted response of the model compared with the actual 

responses. The mode! seews to predict the shape quite well, although not as well as on 

the training subject data. This discrepancy is to be expected due to slight differences in 

weight, height, muscle tone, and other biomechanical characteristics between subjects. 

7.4 Model Performance on Low-Level Vibration 

The performance of the model to low-level vibration is significant since long-term 

exposure to such motion can result in tissue damage similar to shorter term exposure to 

high amplitude shocks. It is, therefore, important that the model have the ability to 

predict both types of responses. 

The model performance on low-level vibration was analyzed in the time and frequency 

domains, quantitatively and qualitatively. Based on the time-domain RMS prediction 

errors (Table 6.5), the neural network model performs slightly worse than the BS 6841 

filter, roughly the same as the DRI mociel, and slightly better than the 20'th order ARX 

model. Visual inspection of the time-domain plots (Figures 6.46 - 6.49) lend support to 

superiority of the BS Mi41 filter. However, visually, the neural network appears to 

predict the shape of the vibration better than the DRI model. 

The results of the frequency-domain analysis seem to indicate that the neural network 

performance is comparable to that of the BS 6841 model. The PSD estimate of the latter 

(Figure 6.52) visually seems to match the PSD of the measured data better than does the 

E D  of the neural network output. However, the neural network exhibits a lower RMS 

error between the PSD of the measured data and that of the predicted output (Table 6.6). 

The DRI model is significantly worse than the neural network (and the BS 6841 filter) 

when compared on the basis of the power spectral density plots as well as the PSD RMS 

errors. 



7.5 Model Limitations 

From visual comparison of the model outputs, the neural network arg~mblv perfornw 

better than the other three models examined when the input consists of shoihs. 

Moreover, its performance on low-level vibration is better than the DRI and A1L.X 

models and comparable to that of the BS 6841 filter. However, there are CI few 

limitations to the neural network's performance: it does not perform well on some types 

of shocks, it fails to predict the second peak of large amplitude negative input shochs, 

and the model output is time-shifted in some cases. 

The most obvious explanation for the inadequacies of the model output is the sn~iidl size 

of the training set. It was criginaily intended that the training set consist of 

approximately fifty shocks of saying amplitudes and frequencies. However, this 

training set resulted in a memory overflow condition d u r i ~ g  training and, therefore, 

had to be reduced in size. The maximum allowable training set was approximately 2500 

samples, or 17 shocks. However, it was discovered that the network was better able to 

predict the peak values when a smaller training set was used. The final model w~ts 

trained on a set of 500 samples, consisting of a -2g/5Hz input shock, a 2g/6Hz shock, a 

3g/4Hz shock and approximately 300 samples (2 seconds) of low-level vibration. 

fn theory, the larger the training set the greater the ability of the network to generalize 

to unseen data. When the small training set was used, the ability to interpola tc and 

extrapolate to shock types outside the training space is impaired. A close examination 

of plots in Figures 6.6 to 6.9 indicates that the model performs better on those shocks 

which a;e similar to the ones in the training set. 

f t  is likely that better results would be achieved by increasing the variety of shocks in 

the training set. Numerous attempts to do so did not result in a model that could 

produce the peak acceleration values. Tfis failure may be the result of insu fficicn t 

training iterations, number of hidden PEs, number of hidden layers, or compromise 

method step size. Some of these parmeters simply could not be fully optimized on the 



simulation platform for a variety of reasons. For example, PC memory limited the 

number of hidden PEs to approximately 10 when the maximum training set u7as used. 

Furthermore, the neural network software does not support multiple hidden layers. In 

some cases, these parameters were not exhaustibly searched due to the limited speed of 

the PC. Neural network training was often an overnight task but took as long -; week 

in some cases fe-g. maximum training set, maximum number of hidden PEs, and using 

the Compromise Method). A week is a long time to wait to find out that a particular 

method does not work! Hence, model devrlopment time was an important factor in the 

decision to limit the training set size. 

The memory limitation problem could have been alleviated to some degree by using an 

iterative training - algorithm, as this avoids the need to compute the gradient across the 

entire time trajectory. However, the iterative algorithm provided by the neural network 

software (Recursive Prediction Error, Chen ef a!., 1990) has its own problems. It is 

significantly slower than the batch algorithm used. Moreover, this algorithm tends to 

become unstable, experiencing a problem called co-variance blowup. In fact, the author 

of the software advises against its use in favor of batch methods (Norgaard, 1995). 

A second explanation of the model inadequacies is related to the: problem of learning 

long-term time dependencies. A system displays long-term dependencies if the 

prediction of an event at time t depends on an input which occurs at an earlier time 

r << t . When training a recurrent network, parameters tend to settle into sub-optimal 

solutions that take into account short-term dependencies but not long-term 

dependencies. Bengio et al. (1994) demonstrated that gradient-based methods are ill- 

suited for learning long-term dependencies due to the fact that the derivative of the cost 

function at time t diminishes exponentially as t increases. This problem of the vanishing 

gradient likely hinders the network from learning the secondary response of large 

ampEtude, low frequency shock. 

Another possible explanation for the model's shortcomings is that the training set lacks 

sufficient information to enable the network to properly map the input to the output. In 

training the network we have assumed that there is a one to one correspondence 



between the input acceleration and the output acceleration. However, this is not the 

case. me lu~mbar z-acce!eratim is actually a function of the seat acceleration in all three 

biodynarnic axes. Moreover, a purely z-axis input shock will result in lumbar 

acceleration in x and y axes, not just the z-axis. Conceivably, better modeling resid ts 

could be obtained by using information from all three axes at both the seat and the 

spine. 

A third possible shortcoming of the developed model is the choice of the subject from 

whom the training data was collected. The power spectral density method used for 

selecting the typical subject has a few limitations. Only three types of negative shock 

responses were used in the calculation of the similarity score. It is possible that the 

chosen subject exhibits an atypical response to other types of seat shocks. A more 

thorough analysis which included a greater variety of response waveforms would likely 

lead to a more accurate choice of training subject. Also, the decision criterion was based 

only on the magnitude of the frequency response, and not the phase response. 

However, this limitation is possibly justified in that tissue-damaging effects are 

magnitude related. 

Finally, it is debatable whether only one subject can be used as prototype for training a 

model that is intended for universal application. An alternative strategy may be to train 

the network on data collected from a number of different subjects. Ideally, the network 

would learn the similarities that exist in the response of each subject. I-lowcver, i t  is c~lso 

possible that as the network was trained on a new subject, it would "forget" the 

response of the previous subject. This type of memory resetting is a genuine problem in 

the training of neural networks. Training the network with multiple subjects was 

originally considered at the onset of the model development but was nilt explored 

further due to the difficulty experienced in modeling a single subject. Now that these 

probiems have been (in most part) overcome, this alterndtive approach warrants further 

investigation as a meam for developing a general model. 



7.6 Stability 

A useful model should be well-behaved in response to a variety of inputs. Often 

stability of the model is a measure of "good" model behaviour: we usually do not wish 

to see large oscillations or exponential growth in the model's output, regardless of the 

input applied. However, whereas the necessary conditions for stability of a linear 

system are well-known, no equivalent tests exist for nonlinear systems. Still, insight 

into the stability of the neural network model may be gained by examining the model's 

impulse response. 

The discrete-time impulse ( or unit sample sequence) is defined as 6(t) = 1 for t =O and 

is equal to zero othenvise. A hear ,  time-invariant system is completely characterized 

by its response to this impulse. Furthermore, such a system is guaranteed to be stable if 

its impulse response is absolutely summable. That is, if 

where h(t) is the system's impulse response. Thus, if the impulse response decays to 

zero with time, the system is guaranteed to be stable. 

However, a nonlinear system is not completely characterized by its impulse response as 

demonstrated by the Volterra Series expansion(Hsia, 1977) 

for t 2 p. 



The first right-hand term of the above equation is a convolution of the input signal tvith 

the system's impulse response. This term is the time-domain equivalent of multiply in^ 

the input by the system's transfer function, H(z). However, for nonlinear systems, the 

output, y(t), is also defined by the additional right-hand terms, which implies that 

neither the impulse function nor the transfer function adequately describes a nonlinear 

system's behavior. 

To overcome the limitations of the impulse response in characterizing a nonlinear 

system, I have plotted the response of the neural network to impulses with various 

amplitudes other than unity. Figure 7.1 shows the model's response to impulses of 

weights log (98.1 m/s2), 20g, 30g, and 40g. Figure 7.2 shows the model's response to 

impulses of weights -log,-20g, -30g, and -40g. Figure 7.3 shows the model's responsc to 

impulse of weights +0Sg and -0.5g. All responses show a decay towards zero which is 

good evidence, albeit not conclusive, that the model is stable in the intended region of 

operation. 
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Figure 7.1 The neural network model response to impulses of log (solid line), 20g ('-.' line), 30g 

('- -' line) and 4Cg ('. .' h e ) .  
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Figure 7.2 The neural network model response to impulses of -10g (solid line), -20g (I-.' line), -30g 

('- -' line) and -40g ('. .' line). 
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Figure 7.3 The neural network model response to impulses of 0.5g (solid line) and -0.5g ('-.I line). 

There a few other interesting characteristic of these graphs worth mentioning. For 

example, the shape of the impulse response varies for different impulse amplitudes and 

polarities. If this model was linear, these responses would have the same shape and 

only differ by a scaling factor. Secondly, the impulse response to 0.5g and -0.5g (Figure 

7.3) appears to be symmetrical about the horizontal axis as we would expect for a linear 

system. Such symmetry indicates that the model exhibits a fairly linear response to low- 



range of vibration and to low-level shocks. This result is expected in that many studies 

have demonstrated that the response of the spine to vibration is, in fact, linear. 

7.7 Complexity/Implementation Issues 

A useful characteristic of a model is parsimony, meaning frugal use of the model's 

parameters to represent the system. The developed neural network model meets this 

criteria. By using the Lipschitz algorithm, redundancy in the input/output lags was 

avoided. And certainly using only three hidden PEs results in a fairly simple network. 

The model's power lies in its recursive nature, essentially being a nonlinear infinite 

impulse filter. Still, lest the term "neural network conjure up vision of some horribly 

complicated structure, the computational complexity of the final model is analyzed. 

In many cases, the training algorithm for a neural network can be quite complicated, as 

we have seen, requiring an abundance of computer memory, speed, and special 

software. Once trained, however, the operation of the network can be simply 

implemented on nearly any processing platform that can perform floating point 

operations. 

The neural network model can be expressed by a composition of the following 

analytical functions: 

3 
(2 )  (1) 

y, ( t )  = wlj X, (t) + bj" 
j=l 



The first equation requires 7 floating point operations (3 multiplications, 4 additions). 

Using a Tayior Series expansion, the hyperbolic tangent function may be approximated 

in the domain [-1.5,1.5] by 

Evaluation of this approximation requires 8 flops and evaluation of its argument, v, 

requires another 10 flops, for a total of 18. Since there are three hidden layer PEs the 

total number of flops for the hidden layer output is 54. Therefore, the network requires 

a total of 61 flops to compute each predicted output sample. For comparison, the 

computational complexity of the ARX, DRI and BS 6841 filter models are provided in 

Table 7.1 

With a sampling rate of 150Hz, a processor would require a computational speed 

exceeding 9150 flops/second to compute the neural network output in real-time. This 

speed requirement is easily met by all modern PCs and DSP chips. For example, the 

AT&T DSP 32 series of processors can execute over 20 million flops/second. 

Table 7.1 Computational complexity of the various models 

I Model 

2nd order DRI 
8'th order BS 6841 Filter 

Computational 
Complexity (flops) 

7 
32 

5 -3- 1 Neural Network 
20' tin drder ARX 

6 1 
80 . 



In this thesis, I have demonstrated that an artificial neural network (ANN) can be used 

to model the dynamic response of the spine to seat-imposed acceleration. The neural 

network model developed utilizes a recurrent architecture which feeds back p r a  ~IC)US ' 

model predictions to its input- This recurrence results in a model capable of 

representing complex nonlinear dynamics. Thus, the neural network can model the 

nonlinear dynamics of the seat-spine system better than existing linear models which 

are used for assessing the health effects of impacts of repeated shocks and vibration. 

Specifically, I have shown that for predicting the response of the lumbar spine to large 

magnitude seat shocks, the neural network model outperforms the Dynamic Response 

Index model and the British Standard 6841 filter. In addition, the neural network's 

performance in response to low-level seat vibration is comparable to these established 

methods. 

The recurrent structure of the model provides immense representational ability without 

requiring an overly complex network. The relatively small size of the model (5 input 

PEs, 3 hidden layer PEs, and 1 output PE) results in a computational complexity only 

slightly higher than current linear models. Moreover, once trained, the neural network 

can be easily implemented on a DSP chip or computer using any software which 

supports floating point or scaled arithmetic. 

I have also demonstrated the use of a systematic method for determining the optimal 

model orders and have incorporated the results into the neural network structure. The 

results obtained seem to indicate that, for a limited data set representing -4g to +4g 

shocks and 0.05g RMS vibration in the -2 axis direction, the seat-spine system can be 

modeled using three previous input samples and two previous output samples. A 

particular caution should be taken when using the model to extrapolate to regions far 

from the training range, as demonstrated by the model's performance on shocks which 



differed significantly from those in the training set. This restriction applies to all models 

based on interpolation techniques. 

In principle, ANNs are an effective modeling tool for this type of problem. However, 

more work is needed to produce 3 comprehensive model. Although validated using 

unseen input data, the model is specific to a range of data obtained from a single 

subject. Tests on a different subject demonstrated a small degradation in model 

performance, although results were still generally superior to other methods. The 

development of a genera1 model will likely require a much larger training set consisting 

of data obtained from multiple subjects. In addition, future work should strive to 

produce a neural network model that can predict the output acceleration in all three 

biodynainic axes, Finally, the model could be extended to predict the response at 

various vertebral levels, thus, reflecting the multiple degrees of freedom present in the 

human body. 

Objective methods for assessing health risks associated with vehicle shock and vibration 

are important for limiting exposure time and improving vehicle design. In this thesis, I 

hope to have provided groundwork for the development of an improved ANN model 

to predict the spinal accelerations upon whch these health risk assessments are based. 
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A.l Training Routines 

Main Program 

sp_h.m 0: '0 

Copyright 1996 Jordan Nicol '!4 I 

II : 
1,) 

This program trains a neural network to model the seat to spine transfer function. '%I 

The input is the seat acceleration time series (z-axis) and the output is the z-axis ' X ,  
acceleration measured at the lumbar-4 vertebra. Once trained the network 0; 

; , I  

predicts the L-4 acceleration given only the measured seat input. 01 
/O 

%o 

This program trains many different networks to optimize the number of hidden layers% 
the number of training iterations. Each network is trained 10 times from different '%I 

initial weight values to avoid local minima. '%, 

clear; 

% Input and output lags 
L-in = [I 2 31 
L-out = [12] 

% number of times we re-train network with same parameters 
M = 10; 

% Speclfy the different number of iterations to train with and the number of hidden neurons. 
iterate-sch = [1:2:100]; 
hid-sch=[12345678910111213141516]; 

O/O size of training set 
wixsize = 500; 
max-wins = 1; 

% Training method (all use some form of the Levenberg-Marquardt algorithm) 
%method = 'nnoe' 
%method = 'marx'; 
method = 'm-comp'; 

O/O Select the data set to train and tes the network with. 
experiment = 'd'; 

?4 Initializations 
best-vec = [I; 
vb-vec = [I; 
vb-err = 100; 
best-mat = zeros(length(iterate_sch),length(hiddsch)); 
best-mat1 = best-mat; 

"io Iteration loops for training the neural network Outer loop optimizes the number of training 



% iterations. Middle loop optimizes the number of hidden Pes. Inner loop tries M different initial 
% values. 
for jj = 1: length(iterate-sch) 

its = iterate-sch(jj); 
out-lags = L-out; 
prev-outs = length(out-lags); 
inp-lags = L-in; 
prev-ins = length(inp-lags); 
best-hid = 100; % best error ior ludden neurons 

% Determine optimal number of hidden neurons. 
for j = 1: length(hid-sch) 

hidden = hid-sch(j) 
err-sum = 0; 
best-err = 100; 
best-err1 = 100; 

%Given the number of training iterations and hidden neurons, train the network M times from 
%different initial values. 
for i=l:M 

[Wl, W2, NN, NetDef, tra-err,tes-errl, tes_err2]= train(method,experiment, inp-lags, 
ou t-lags, hidden,its,win_size, 
max-wins); 

% Find best network from all the initial starting points 
if (tes-err2 < best-err) 

best-err = tes-err; 
best-Wl = W1; 
bestW2 = W2; 
best-index = 1; 

end; 

end; % End of M loop 

%Create history matrix of best hidden neuron results 
best-mat(jj,j) = best-err; 

9/0 Find best network for varying hidden neurons 
if  (best-err < best-hid) 

best-hid = best-err; 
b-hid-W1= best-14'1; 
b-hid-W2 = bestW2; 
bh-index = j; 

end; 

dear u-test 
clear ytest  
clear Ysim; 

end; '% hidden layer for loop 



% Create error vector for best hidden at each iteration 
vb-vet = [vb-vec; best-hid]; 

% Now of all hidden neuron results need to find best result for varying 
% training iterations 
% This is also the very best network tested. 
if (best-hid < vb-err) 

vb-err = best-hid; 
vb-W1= b-hid-W1; 
vb-W2 = b-hid-W2; 
bi-index = jj; 
vbh-index = bli-index; 

end; 

end; % varying iteration for loop 

vb-err %Best of best networks test results 
best-hid = hid-sch(vbh-index) %Which number of hidden neurons 
best-its = iterate-sch(bi-index) 

% Show results of very best network 
win-num = 1; 
sc-flag = 1; 
[u, y, uscale, yscale] = load-dat(experiment, 'training', wixsize, sc-flag); 
clear u; clear y; 

sc-flag = 0; 
[u, y, us, ys] = load-dat(experirnent, 'training', wixsize, sc-flag); 

sc-flag = 1; 
[u-test, y-test, uiscale, yt-scale] = load-dai(experiment, 'testing', win-size,sc-flag); 

if (strcmp(method,'arxoel') 1 strcmp(method,'nn~comp') ) 
method = 'nnarx'; 

end; 

%Need to create NetDef to match number of hidden neurons of best network. 
hid-str = 'H'; 
out-str = 'L'; 
for i = 1: best-hid-1 

hid-str = [hid-str 'H']; 
out-str = [out-str '-'I; 

end; 
NetDef = [hid-str;out-str]; 

[tra-err, tes-err, ypl, yp2] = validate(method,experiment,NetDeffNN,inpPlags,outtIags,vbbW 1 ,  
vb-W2, u,y, u-test, y-test ); 

% Save the best network to file 
save best-net.mat vb-W1 vb-W2 NN NetDef vb-vec bi-index bh-index tra-err tes-err method 
... best-hid best-mat vbh-index win-size hid-sch iterate-sch L-in L-out experiment; 



function IW1, W2, NN, NetDef, tra-err, tes-err] = trainfmethod, experiment, in-lags, out-lags, 
hidden, its, win-size, max-wins); 

-s ---- - ---- ----------- ---------------- ----------- ---------- ..................................... Yo 
% train.m YO 

Yo 
'20 Copyright Jordan Nicol YO 
% 199b Yo 
Yo Yo 
'YO Optimizes the neural network parameters on ming three different O/O 
(20 model paradigms: Output Error, Equation Error, or Compromise % 
% Method. The Compromise Method is a weighted average of :he t a o  YO 
% approaches. YO 
"/o ............................................................................................. Yo 
'51 INPUTS: Yo 
%> method Training method to use YO 
Oh, experiment Data to set to train or, YO 
'%, in-lags The delay values of the input signal YO 
'%, out-lags The delay values of the ouput signal % 
YO its Number of training iterations YO 
0' 
10 hidden Number of hidden layer PEs YO 
%) win-size Size of the training file YO 
%, max-wins No longer used YO 
%> Yo 
% OUTPUTS: 70 
% W1 Re-scaled input-hidden layer weights YO 
% M'2 Re-scaled hidden-output layer weights Yo 
% NetDef Network structure string YO 
% tra-err RMS error on training set YO 
% tes-err RMS error on testing set % 

X j  General Initiaiizations 
prev-ins = length(ix1ags); 
prev-outs = length(out-lags); 
n u - i n s  = prev-ins + prev-outs +l; 
delay = ones(size(nu-ins)); 
skip = 141; 
W 1 = rand(hidden,num-ins)-0.5; 
W2 = rand(1,hidden + 1)-0.5; 
stop-crit = le-4; 
lamb da-init = 0.1; 
w t-&cay = 0.00; 

trparms = [its stop-crit decay-init wt-decay]; 

%Generate Network structure string 
hid-str = 'H'; 
out-str = 't'; 
for i = 1: hidden-1 

hid-str = wd-str 'H']; 
outstr  = [out-str I-']; 

end; 
NetDef = [hid-str;out-str]; 



% Train the network using the Output Error (NNOE), Equation Error (ARY) 
% or a combination approach (Compromise Method) 
if (strcmp(method,'~oe')) 

% set up for oe training 
win-num = 1; 
sc-flag =l; 
[u, y, uscale, yscale] = load-dat(experiment, 'training', wk~size,scflag); 
NN = [prev-outs prev-ins delay]; 
[Wl,W2,NSSEvec,iter,lambda] = nnoe(NetDef,NN,W1,W2,trparms,skip,y,u); 

elseif (strcmp(rnethod,'nnarx')) 
% Set up for nnarx training 
trparms = [its stop-crit decay-init wt-decay]; 
NN = [prev-outs prev-ins delay]; 
sc-flag = 1; 
[u, y, uscale,yscale] = load-dat(experiment, 'training', win-size, sc-flag); 
[WlfW2,NSSEvec,iter,lambda] = nnarx(NetDef,NN,in-lags,outlags,Wl,W2,trparms,~y,~1); 

elseif (strcrnp(method,'nn_comp')) 
% Use Compromise Method. Find intial weights usinf ARX (Max Likelihood). 
% Then move to NNOE (Pure Robust Method) in steps. If w = 1, then we 
%are doing A.W, if w = 0, then we are doing NNOE 
sc-flag = 1; 
[u, y, uscale,yscale] = load-dat(experirnent, 'training', win.-size, sc-flag); 

% Set up for nnam training 
trparms = [40 stop-crit decay-init wt-decay]; 
NN = [prev-outs prev-ins delay]; 
[W1,W2,NSSEvecl,iter,lambda] = nnarx(NetDef,NN,in_lags,out~lags,W1,W2,trparms,y,u); 
lambda 

YONOW train with Compromise Method 
decayjnit = 0.1; 
trparms = [its stop-crit decayjnit wt-decay]; 

decay-init = 0.1; 
w = 0.8 
[Wl,W2,NSSEvec3,iter,lambda] = nn_comp(NetDef,NN,W1,W2ftrparms,skip,y,u,w); 
lambda 

decay-init = 0.1; 
w = 0.5 
[Wl,W2,NSSEvec3,iter,lambdaj = nn-comp(NetDef,NN,Wl,WZ, trparms,skip,y,u,w); 
lambda 

decay-init = 0.1; 
w = 0.3 
[Wl,W2,NSSEvec3,iter,lambda] = M-comp(NetDef,NN, W1,W2,trparmsIskip,y,u,w); 
lambda 

decay-init = 0.1; 



w =O.l 
[Wl,W2,NSSEvec3,iter,lambda] = nn_cornp(NetDef,NN,Wl,W2,trparms,skip,y,u,w); 
lambda 

w = 0.001 
decay-init = 0.1; 
[WlfW2,NSSEvec5,iterflambda] = nn_cornp(NetDef,NN,Wl,W2,trparms,skip,y,u,w); 
lambda 
method = 'nnarx'; 

end; 

win-num = 1; 
sc-flag = 0; 
% Re-load training data to obtain the correct data scaling factors. 
[u, y, us, ys] = load-dat(experiment, 'training', wixsize, sc-flag); 

sc-flag = 1; 
% Load unscaled testing data. 
[u-test, y-test, ut-scale, yt-scale] 

= load-dat(experiment, 'testing', win_size,sc-flag); 

% Rescale the weights so unscaled data can be applied to data 
[W1,W2]=wrescale(W1,W2,uscale,yscale,NN); 

% Validate the network by performing a pure simulation on the training 
% and test set input. 
[tra-err, tes-errl, tes-err21 = validate(method,experiment,NetDef, NN,in-lags, out-lags,Wl, W2, 
u,y, u-test, y-test ); 

A. 2 Validation Routines 

funetian [tra-err, tes-errl, tes-err2,Ysimlr Ysim2]= validate(Method,experiment,NetDef, NN, 
lags~in,lags~out,W1, W2, U,Y,U-test,Y-test);%- 

----------------------------------------------------------------------------------------------..------------------ Yo 
% va1idate.m YO 
%Copyright Jordan Nicol YO 
"ib 1996 % 
o/ 
10 Yo 
% Validates the trained neiral network by calling Neural Net Toolbox functions nnsimul % 
% for p r e  simulation (model predicted output) or nneval for one-step prediction YO 
%--------------------------------------------------------------------------------------------------------- 

one-step = 0; 

Or: Need to determine nmax (the no. of samples to skip cut ofi on the predicted outpt) 
na = NN(1); 



nb = NN(2); 
if (strcmp(Method,'nnarmax')==l) 

nc = NN(3); 
nk = NN(4); 

else 
nc = 0; 
nk = NN(3); 

end; 

li-max = max(1ags-in); 
lo-max = max(1ags-out) 
nmax = max([na,nb+nk-l,nc,lo-max, li_max])+l 

i f  (one-step == 1) 
% Get one step ahead prediction. 
[Ysiml,NSSEl] = nnvaLid(Method,NetDef,NN,Wl,W2,Y,U); 
[Ysim2,NSSE] = nnvalid(Method,NetDef,NN,Wl,W2,Y-test,U-test); 
NSSEl %Normalized sum sqaured error 
NSSE 
tra-err = NSSE1; 
tes-err = NSSE; 

else 
% Get model predicted output 
Ysiml = nnsimul(Method,NetDef,NN,lags_in,lags_out,W1,W2,Y,U); 
Ysim;! = nnsimul(Method,NetDef,NN,lags~in,lags~out,W1,W2,Y~test,U~test); 
[tra-err] = ge t-err(Ysiml,Y,nmax); 
[tes-errl] = get_err(Ysim2,Y_test,nmax); 

end; 
% -- --- -- - - - - - -- - - - - - - - - - - - - - -- - - - --- - - - - - - - - - - -- - - -- - - - -- - - - -- - -- - - - - - - - -- - - - - - - - -- -- - - - -. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - '%, 

function [m-err] = get-err(pred,actual,nmax); 
% Calculate the root mean squared prediction erro 
N = length(actua1); 
Np = length(pred); 

actual(1:nmax) = [I; 
N = length(actua1); 
pred = reshape(pred,Np,l); 
actual = reshape(actual,Np, 1);  

res = (pred-actual); 
P =  2; 
rms-err = ( (l/Np)*sum!res."P) )."(l/P) ; 

A. 3 Neural Network Toolbox Functions 

function 
fW1,W2lPI~vector,iteration,lambdal=nn~comp(NetDeflNNlWl,W2ltrparmslskiplY,Ulw) 
% Compromise Method (See Werbosj , April 25/96. 
% -  
% Determine a nonlinear output error (OE) model of a dynamic system 



% by trzining a two layer neural network with the Marquardt method. 
'%, 
YO ykat(t)=f(yhat(t-I), ...,y hat(t-l),u(t-nk), ... u(t-nk-nb+l)) 
% The function can handle multi input systems (MISO). 
"0 

% CALL: 
% [W1,W2,NSSEvec,iteration,lambda]=nnoe(NetDef,~,Wl,W2,trparms,skip,Y,U) 
'%i 

Yo INPUTS: 
'Yo U : Model input (= Control signal) (left out in the nnarma case) 
'Yo matrix. Structure: [(inputs) I (# of data)] 
% Y : Output data. (1 I #of data) 
% NN : NN=[na nb nk] 
[YO na = # oi past outputs used to determine prediction 
<Yo nb = # of past inputs used to determine prediction 
% nk = time delay (usually 1) 
YO For multi input systems, nb and nk contains as many columns as 
[YO there are inputs. 
% W1,WL : Input-to-hidden layer and hidden-to-output layer weights. 
'% If they are passed as f], they are initialized automatically 
% trparms : Containing parameters associated with the training (see marq) 
%, if trparms=[], it is set to [I000 0 1 01 
% skip : Don't use the first 'skip' samples for training in order to 
'26 reduce the influence from the transient occuring because of the 
70 unknown initial prediction and gradient. If skip=[] 
% it is reset to skip=0. 
% 
%, 
% NB NB NB! 
'& -------- 
% See the function "marq" for an explanation of the remaining inputs 
"/ as well as of the returned variables. 
I l l  
/O 

% Progammed by : Magnus Norgaard, IAUIEUIMM 
% EastEditDate : Sep 8,1995 
% Modified by Jordan Nicol1996 to train with the Compromise Method 
% modifications indicated by bold type 
%--------------------------------------------------------------------------------------------- 
% ------ -- -- - - - NETWORK INITIALEATIONS ------------- 

if s&c;.p==f' L J ~  

skip=O; 
end 
skip=skip+l; 
Ndat = length(Yj,- % # of data 
na = NN(1); % Order of polynomials 
[nu,Ndat]= size(U); 
ltb = NN(Zl+nu); '"e- *--~-i- + 

nk = kTN(l+nu+l:1+2*nu); 
nrnax = max(na,nb+nk-1); 
N = Ndat - nmax; 
N2 = N-skipl; 
nab = na+surn(nb); 

% Oldest signal used as input to the model 
% Size of training set 



hidden = length(NetDef(1,:)); % Number of hidden neurons 
inputs =nab; '4 Number of inputs to thc network 
outputs = 1; % Only one output 
L-hidden = find(NetDef(l,:)=='L')'; % Location of linear hidden neurons 
H-hidden = find(NetDef(l,:)=='H')'; % Location of tanh hidden neurons 
L-output = find(NetDef(2,:)=='L1)'; YO Location of linear output ne~~rons  
H-output = find(NetDef(2,:)=='H1)'; O/O Location of tanh output neurons 
y l  = zeros(hidden,N); % Hidden layer outputs 
y l  = [yl;ones(l,N)]; 
y2 = zeros(outputs,N); % Network output 
E = zeros(outputs,N); % Initialize prediction error vector 
E-new = zeros(ou!puts,N); O/O Initialize prediction error vector 
index = outputs*(hidden+l) + 1 + [O:hidden-l]*(inputs+l); % A useful vector! 
index2 = (0:N-1)"outputs; % Yet another useful vector 
iteration= 1; % Counter variable 
dw =l; % Flag telling that the weights are new 
parametersl= hidden*(inputs+l); % # of input-to-hidden weights 
parameters2= outputs*(hidden+l); % # of hidden-to-output weights 
parameters=parametersl + parameters2; % Total # of weights 
ones-h = ones(hidden+l,l); (26 A vector of ones 
o n e s j  = ones(inputst1,l); % Another vector of ones 
if Wl==[] I W2==[], Initialize weights if nescessary 

[Wl,W2]=marx(NetDef,[na nb nk],[],[],[100 trpam1~(2:Iength(trparms))],Y,U); 
end 

% Parameter vector containing all weights 
theta = [reshape(W2',parameters2,1) ; reshape(Wl',parametersl,l)]; 
theta-index = find(theta); % Index to weightso0 
theta-red = theta(theta-index); % Reduced parameter vector 
reduced = length(theta-index); % The # of parameters in theta-rcd 
index3 = l:(reduced+l):(reducedA2); % A third useful vector 
dy2dy = zeros(na,N); % Der. of output wrt. the past outputs 
dyldy = zeros(hidden,na); % Der. of hidden unit outp. wrt. past outputs 
index4 = 1:na; % And a fourth 
PSI-red = zeros(reduced,N); % Deriv. of output w.r.t. each weight - 

RHO = zeros(parameters,N); % Partial -"- -"- 

if  trparms==[], 70 Default training parameters 
max-iter = 1000; 
stop-crit = 0; 
lambda = 1; 
D = 0; 

else User specified values 
max-iter = trparms(1); 
stopcrit = trparms(2); 
lambda = trpanns(3); 
if length(trparms)==4, % Scalar weight decay parameter 
D = trparms(4*ones(l,reduced))'; 

eiseif length(Qarms)==5, % Two weight decay y- urameteu 
D = trparms([4*ones(l,parameters2) S*ones(l,parametersl)])'; 
D = D(theta-index); 

elseif length(trparms)>S, % Individual weight decay 
D = trparms(4:length(trparms))'; 

end 
end 



PI-vector = zeros(max_iter,l); % A vector co~taining the accumulated SSE 

% r>>>> CONSTRUCT THE REGRESSION MATRIX PHI ..................... 
PHI = zeros(nab,N); 
jj = nrnax+l:Ndat; 
fork = l:na, PHI(k,:) = Y(jj-k); end 
index5 = na; 
for kk = lnu ,  
for k = l:nb(kk), PHI(k+index5,:) = U(kk,jj-k-nk(kk)+l); end 
index5 = index5 + nb(kk); 

end 
PHI-aug = [PHI;ones(l,N)]; % Augment PHI with a row containg ones 
Y = Y(nmax+l:Ndat); % Extract the 'target' part of Y 

%- ---------- ....................................................................... 
% -------- ------ TRAIN NETWORK ------------- 

% >>>>>>>>>>>>> COMPUTE NETWORK OUTPUT y2(theta) ...................... 
for t=l:N, 
h l  = Wl*PHI-aug(:,t); 
yl(H-hidden,t) = pmntanh(hl(H-hidden)); 
yl (L-hidden,t) = hl(L-hidden); 

0 G ' O G U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0 / / / / / / / / / / / /  X /o /o /o /o /o /o /o /o /o /o /o /' /o /O /O /o /o /o /o /o /o /o/ 0  OOOOOOOOOOOOrrOOOOOOOOOO 

% HERE WE FILL UP PHI WITH AN .WEBAGE OF THE PREDICTED OUTPUT AND% 
% THE ACTUAL OUTPUT- THE COMPROMISE METHOD Yo 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
/o /o /o /o /o /o /o /o /o /o /a h X /o /o /o /o /o /o /o /o /o /o /o X /o /o /o /o /o /o /O /o /o /o /o /o /o /o /o /o /o /o /o 

for d=l:min(na,N-t), 
PHI-aug(d,t+d) = (1-w)+y2(:,t) + wSY(:,t); 

end 
end 
E=Y-y2; 
SSE = E(skip:N)*E(skip:N)'; 
PI = (SSE+theta_red'*(D.*theta-red))/(2*N2); 

% Prediction error 
% Sum of squared errors (SSE) 
% Performance index 

while iteratiow=na?c_iter 
if dw==l, 
% >>>>>>>>>>>>>> COMPUTE THE R H O  mTm .......................... 
% Partial derivative of output (y2) with respect to each weight and neglecting 
% that the model inputs (the residuals) depends on the weights 

7; ========= Elements corresponding to the linear output units ============ 
for i = L-output' 



indexl = (i-1) * (hidden + 1) + 1; 

% -- part of RHO corresponding to hidden-to-output Layer weights -- 
RHO(indexl:indexl+hidden,index2+i) = yl; 
% 

% - The part of RHO corresponding to ir.put-to-hidden layer weights -- 
for j = L-hidden', 
RHO(index(j j:index(j)+inputs,index2+i) = W2(i,j)*PHI_aug; 

end 

for j = H-hidden', 
tmp = W2(i,j)*(l-yl(j,:).*yl(j,:)); 
RHO(index(j):index(j)+inputs,index2+i) = tmp(ones-i,:).*PHI-aug; 

end 

end 

o/ - - -- -- -- -- - - o - - - - - - -- -- - - Elements corresponding to the tanh output units ============= 
for i = H-oufput', 
indexl = (i-3.) * (hidden + 1) + 1; 

% - The part of RHO corresponding to hidden-tc-output layer weights -- 
trnp = 1 - y2(i,:)."y2(iJ:); 
RHO(indexl:indexl+hiBden,index2+i) = yl.*tmp(ones-h,:); 
% 

% -- The part of RHO corresponding to input-to-hidden layer weights --- 
for j = L-hidden', 
tmp = W2(i,j)*(l-y2(i,:).*y2(ir:)); 
RHO(index(j):index(j)+inputs,kdex2+i) = tmp(ones-i,:).* PHI-aug; 

end 

for j = H-hidden', 
tmp = W2(irj)*(l-yl(j,:).*yl(j,:)); 
imp2 = (1-y2(i,:).*y2(i,:)); 
RHO(index(j):index(j)+inputs,index2+i) = tmp(ones-i,:) ... 

.*tmp2(ones-i,:).+ PHI-aug; 
end 
Yo --- ------------- ---- 

end 
m r e d  = RHO(thetajndex(l:reduced),:); 

% Matrix of partial derivatives of the output from each hidden unit with 
"/, respect to each inputr 



dy ldyf l-hidden,:] = MilfL_hidden,index4); 
for j = ti-hidden', 
dyldylj,:) = Wl~j,index4)*~1-)il~j,t~-*yl(j,t)); 

end 

'5, Matrix of partial derivatives of each output with respect to each input 
dyZdy!:,t)= (dy2dyl ' dytdy)'; 

end 

% --------- Determine PSI by "filtering" 
for t=l:N, 
PSI -red(:,t)=RHO-red(:,tj; 
for tl=l:min(na,t-I), 
PSI-red f:,t) = PSI-redj:,i)-tdy2dy~tl,~"Ei-redf:,t-t1); 

end 
end 

'% -- Hessian -- 
R = PSlred(:,skip:N)*PSIIrcd[:,skippN).; 
dw =0; 

end 

H = R; 
H(index5) = H(index3)'+lambda+D; Oh Add diagonal matrix 

"% -- Search direction -- 
h = H\G; "1 !%Sol for search direction 

<i/6 -- Compute 'apriori' iterate - 
theta-red-new = theta-red + h; Oio Update parameter vector 
the ta(theta-index) = theta-red-new 

% -- Put the parameters back into the weight matrices -- 
Wl-new = refhape(theta(parameters2+1:parameters),inputs+I,hidden)'; 
W2-new = reshape(theta(l:parameters2),hidden+1,outputs)'; 



end 

E-new =Y-y2; % Prediction error 
SSE-new = E-new(skip:h~*E-~e\\r(skip:N)';~ Sum of squared errors (SSE) 
PI-new = (SSEnew + theta-red-new'*(D.*theta-red_new))/(2*hT) 4il PI 

% Decrease lambda if SSE has fallen 'sufficiently' 
ii 2W'jPi - P I-new) > (ii.?5*L), 
lambda = lambda/2; 

% Increase lambda if SSE has grown 'sufficiently' 
elseif 2*N2*(PI-PI-new) <= (O.E*L), 
Eambda = 2*lambda; 

end 

% >>>>>>>>>>> UPDATES FOR NEXT ITERATION ..................... 
% Update only if criterion has decreased 
if PI-new < PI, 

I 3  
ti% 1 = W1-new; 
W2 = W2-new; 
theta-red = theta-red-new; 
E = E-new; 
PI = PI-new; 
dw = 1; 
iteration = iteration + 1; 
PI-ertor(iteration-1) = PI; % Collect PI in vector 
fpri?tf('iteration # %i PI = Oid.3ein',iteration-I,FI); % Print on-line inform 

end 

if (PI > 0.85*Pl-vectoditeraiion-epoch)) 
%Jog weights by a random amount to help get out of local minima 
wi = WI + 0.5CfrandfsizeWXH 10.3; 
W2 = W2 + 0.5*(rand~sizelW2)) -0.51; 



fprintff'weights jogged at iteration # %i\n\n,iterationt); 
end; 

end; 
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function Yhat=nnsimul(method,NetDef,NN,lags~in,lags~outIW1IW2IY,UIobsidx) 
% NNSIMUL 
'%, ------- 
v/  
10 Simulate a neural network model of a dynamic system from a sequence 
% of controls alone (not using observed outputs). The simulated output 
'%> is compared to the observed output. 
74 
% Call: 
' X  Network generated by nnarx (or nnrarx,!. 
X Ysim = nnsimui('marx',~et~ef~~?,~!~?,v<2,~,~) 
'% (Likewise for nnoe and nnarmaxl+2) 
0' /r> 

X ?Jetwork generated by mssif: 
Cli 
fU Ysim = nnsimul('nnssif ,NetDef,nx,W1,W2,Y,Ulobsidx) 
Yo 
% Inputs: 
% See nnvalid / ifvalid 
l l  .J 

"to Output: 
'lib Ysirn: Simulated output. 

1 0  

':a NB! Does not work for models generated by NNIOL. 
0 
%3 

% Programmed by Magnus Norgaard, IAUIEUIMM, Technical Univ. of Denmark 
X LastEditDate : Aug 14,1995 
% Modified by Jordan Nirol where bold type 1996 

skip = 1; 
if stranp(method,'marxarx) I strcm~(method,'nnrarx'), 
milag=l; 



elseif strcmp(method,'nnssif') 
mflag=5; 

else 
disp('Unknown method!!!!!!!!'); 
break 

end 

% --- --- -- -- NNARX/NNOE model ---------- 
if mflag==l I mflag==4, 
nb = NN(2:l+nu); 
nc = 0; 
nk = NN(2+nu:1+2*nu); 

% --------- NNA.RMAX1 model -------- 
elseif mflag==2, 
nb = NN(2:l+nu); 
nc = 0; 
nk = NN(2+nu+l:2+2*nu); 

% --------- NNARMAX2 model ------- 
elseif mflag==3, 
nb = NN(2: 1 +nu); 
nc = NN(2+nu); 
nk = NN(2+nu+l:2+2*nu); 

end 

0 0 0 0 0 0 0 0  /o /o /o /o /o /o /o /o MODIFICATION %Yo%%% 

% To allow non-consecutive past inputs . Jan 13/95 
%lags-in = 11 5 151; 
%lags-out = [I 21; 
nb = length(1ags-in); 
na = iengthflags-out); 
Kmax = max(lags3); 
10-max = max(1ags-out); 
nmax = max([na,lo-max,nb+nk-l,nc,li_maxl) + 1; 
%runax = max([na,nb+nk-11); % 'Oldest' signal used as input to the model 

%Size of training set 
"/&a+nb 



nabc = nab+nc; 
c?utputs = I; 

% --------- PJNSSIF model ------ 
if mflag==5, 
nx = NN; 
na = nx; 
nab = nx+nu; 
nabc = nab+ny; 
nk = 1; 
nmax = 1; 
N = Ndat - nmax; 
outputs = ny; 
obsidx=obsidx(:)'; 
rowidx=obsidx; 
for k=2:np, 
rowidx(k)=obsidx(k)+rowidx(k-1); 

end 
nrowidx = 1:nx; 
nrowidx(rowidx)=[]; 
Cidx=[l rowidx(1:ny-l)+l]; 
C = zeros(ny,nx); 
C(l :ny,Cidx)=eye(ny); 

end 

%na+nb+nc 
740 Orily MIS0 models considered 

% 'Oldest' signal used as input to the model 
% Size of training set 

% Find row indices 

% Not row indices 

% , - - - - -- - - - Common initializations ------- 
L-hidden = find(NetDef(l,:)=='L1)'; % Location of linear hidden neurons 
H-hidden = find(NetDef(l,:)=='H1)'; % Location of tanh hidden neurons 
L-output = find(NetDef(2,:)=='L1)'; % Location of linear output neurons 
H-output = find(NetDef(2,:)=='H')'; % Location of tanh output neurons 
[hidden,inputs] = size(W1); 
inputs = inputs-1; 
yl = [zeros(hidden,N);ones(l,N)]; 
Yhat = zeros(outputs,N); 

96 ----- CONSTRUCT THE REGRESSION MATRIX PHI ----- 
PHI-aug = [zeros(nab,N);ones(l,N)]; 
jj = nmax+l:Ndat; 
index = na; 

0'0 0 0 0 
/o /O /o /O /o MODIFICATION %%%%%%%%%% 
% Added r = lags&&). Jan 13195. 
for kk = l:nu, 

for k = 1:nbudC; 
r = lags-in(k); 
PHI-aug(k+index,:) = U(kk,jj-r-nk(kk)+l); 

end; 
index = index i nbfkk); 

end 



%%% ADDITION: This code never used to be here 
% inciuded for non-consec predicted outputs. Feb 16/96 
lag_ind(l) = lags-out(1); 
for k = 2:lengthilags-out) 

lagind(k) = lags-out(k) - lags-outtk-1); 
end; 

% ----- DETERMINE SIMULATED OUTPUT ----- 
for t=l:N, 
h l  = Wl(:,[l:nab nabc+l])*PHI-aug(:,t);; 
y l  (H-hidden,t) = pmntanh(hl(H-hidden)); 
y l(L-hidden,t) = hl  (L-hidden); 

%•’or d=l:min(na,N-t), 
% PHI-aug(d,t+d) = Yhat(:,t); 
%end 
0 0 0 0 0 
/O /O /O /O MOD for non-consec outputs Feb 16/96 
for d=l:min(na,N-t) % min(na,N-t) 

r = lag-ind(d); 
PHI-aug(d,t+d) = Yhat(:,max(t-r+l,l)); 

end; 
end 

% ---------- State space model 
elseif mflag==5, 
% ---- CONSTRUCT THE REGRESSION MATRIX PHI ----- 
PHI = zeros(inputs,N); 
PHI(nx+l:nx+nu,:) = U(:,l:N); 
PHI-aug = [PHI;ones(l,N)]; % Augment PHI with a row containing ones 

% ----- DETERMDW SIMULATED OUTPUT ----- 
for t=l:N, 
h l  = Wl"PHI_aug(:,t); % Hidden neuron outputs 
vl(H-hidden,t) = pmntanh(hl(H-hidden)); 
;1 (L-hidden,t) = hl  (L-hidden); 

h2 = WTyl(:,t); % Predicted states 
y2(H_output,t) = pmntanh(h2(H-output,:)); 
y2(L_output,t) = h2(L-output,:); 
y2(iuowidx1tj = y2(nrowidx,t) + PHI-aug(nrowidx+l,t); 
Yhat(:,t) = C+y2(:,t); 

for d=l:min(l,N-t), 
PHI-aug(l:nx,t+l) = y2(:,t); 

end 
a d  

end 



.................... PLOTTHERESULTS ........................... 
si = figure-1; 
Y = Y(:,nrnax+l:Ndat); 
for k=l:autputs, 
if outputs>l, 
figure(si+k); 

end 
tvec = ( linspace(0,lengthlY),length(Y)) YFs; 
plot(tvec,Y(k,:),'y-'); hold on 
plot(tvec,Yhat(k,:),'m--');hold off 
xlabel('time (seconds)') 
if outputs==l, 
title('0utput (dashed) and simulated output (solid)') 

else 
title(['Output (dashed) and simulated output (solid) #' int2str(k)]) 

end 

grid 
end 



TO ~ C C O U N T  FOR THE ~ ~ O V E M E N T  OF SUPRA-VERTEBRAL 
SKIN 

The acceleration at the lumbar vertebra was measured using an acclerometer attached to 
the skin above the lumbar-4 spinous process. Therefore, the motion measurcci by the 
sensor will be similar but not equivalent to the motion of the vertebra. The latter is 
effectively filtered by the bio-mechanical characteristics of the skin and various other 
tissues that lie between the vertebra and the accelerometer. To compensate for this 
filtering we wish to identify a transfer function that maps the spinal acceleration to the 
acceleration measured at the skin. The inverse transfer function can then be applied to 
the measured data to obtain the actual spinal acceleration. 

The identification and application of this skin transfer function was performed by 
researchers at BCRI. As such it is beyond the scope of this thesis but the rationale and 
methods are included here for completeness. The following excerpt from Cameron ci nl 
(1996) explains how the details of this procedure (reprinted with permission): 

Skin Transfer Function 
Prior to analysis of acceleration data, it was necessary to determine, and correct for, any movemenl ol' the 
skin surface relative to the underlying bone (spinous process). This correction required a knowledge of' the 
"bone-skin transfer function" for the y and z spinal accelerometers for each subject. Mcasurcd accclcra~ion 
signals were then multiplied by their respective inverse transfer functions. This correction eliminates any 
contribution of bone-skin movement and provides the true acceleration at the spinous process. In  this 
document, this procedure is referred to as the skin transfer function (STF) method. 

As x axis accelerometers measured motion perpendicular to the skin surface, they wcre not sensitive lo 
shearing motion between the spinous process and the skin. Hence a skin transfer function was not 
computed for these accelerometers. 

The influence of the STF on calculated transmission ratios, relative to low pass filtering at 150 Hz or at 40 
Hz, is described below in the section "Comparison of Filtering Effects on the z axis Transmission Kolio". 

Linear Modeling Approaches for Identifying the Transfer Function of the Skin. 

Hinz et al. (1988) developed a method of caiculating bone accelerations from miniature nccclcromctcrs 
attached to the skin. The soft tissues between the spinous process and the accelerometer wcrc modeled as n 
simple Kelvin element [consisting of a mass with a spring and damping element in  parallel], whosc 
parameters described an approximate transfer function between the bone (input) and skln surfxc- 
accelerometer (output). System parameters were determined from free damped oscillations of' the 
ai.celerometer issue complex in response to an initial displacement, using the "logarithmic decrcrnent" 
method (Korn & Korn, 1961). This approach was based on the assumption of Franke (195 11 that the skm 
ezq be described in the first- approximation 2-  a Kelvin element for a single excitation and small 
amplitudes. A similar technique was reported by Smeathers (1989) for measuring accelerations of the 
spine during walking and running, and by Kitamki and Griffin (1995) to meawre accelerations of' the spine 
and abdomen during low level (2.0 m . s e ~ - ~ )  sinusoidal vibration, Both Hinz el al. (1988) and Smcathers 
i1989) applied this method to measurement of accelerations that were less than 20 Hz. Kitazaki and 
Griffin 11995) applied the method to accelerations below 35 Hz. 



Skin perturbation data showed that the free response of the vertebra - skin subsystem contained bath high 
and low frequency components. Hence the system could not be truly represented as a simple Kelvin 
element (i.e., a single degree of freedom, second order system). Frequency components of the y and z axis 
accelerations measured in response to shocks at the seat were inspected using power spectral analysis. 
Only iow frequency accelerations (<20 Hz) were recorded at the y axis spinal accelerometers in response to 
shocks at the seat. Skin perturbation data collected in the y axis were therefore low pass filtered, and the 
tissue-accelerometer subsystem was then modeled as a simple Kelvin element. 

y Axis Spinal Accelerations 

Skin perturbation data were band pass filtered at 0.5 to 40 Hz. The free response of the tissue- 
accelerometer system to each perturbation was viewed on the computer monitor using MATLAB@ 
software (The Mathworks Inc., Natick, MA). A typical free damped oscillation of the L3 accelerometer is 
shown in Figure F-I 1 .  The magnitude and timing of adjacent acceleration peaks were digitized on the 
display monitor. The damping ratio (c) and natural frequency (m,) of the tissue-accelerometer system 
were then calculated from the logarithmic decrement in amplitude (6) and the period of the waveform (T) 
using the relationships: 

and, 

where, 
6 = logarithmic decrement 
r = period (s) 
< = fraction of critical damping 
P, = undamped angular natural frequency (radsls) 

The transfer function, H(a), between the spinous process and accelerometer was characterized by the 

amplitude ratio 

and the phase angle, @ (a ) 

where 

U = angular frequency. 

The bone-skin transfer fufiction of each accelerometer for each subject was based on the average values of 
< and % obtained from four separate perturbations. 

To estimate the acceleration response of the vertebra underlying the accelerometer, spinal acceleration data 
of each ibxperimentai exposure were converted from the time domain to the frequency domain using a 
forward I??. The frequency spectrum was multiplied by the inverse of the bone-skin transfer function, 
and the data then reconstructed in the time domain using an inverse FIT. This mathematical treatment of 
the data provided an estimate of the input acceleration signal at the spinous process necessary to produce 
the output acceleration signal rneasared at the skin surface. 



z Axis Spinal Accelerations 

Anaiysis of spinai accelerations in the z axis revealed substantial acceleration "spikes" in rcspnnse to 
shocks input at the seat. These acceleration spikes occurred in response to 2. 3 and 4 g stlocks and 
contained frequency components well above 20 Hz. The higher frequency responses (in the range 20 to 
150 Hz) were most noticeable as a result of the 4 to 8 Hz shock inputs, and were present in response to 
both positive and negative shock directions. Acceleration spikes tended to coincide with the subject hitting 
the seat. Therefore, they could not be considered to be artifacts in the data which could be ~ . e i i i o ~ t ~ t  by low 
pass filtering. Hence, the assumption of a simple Kelvin element in determining the z .*xis skin transfer 
function was inadequate. When this model was applied (using the method described above), ttic inverse 
transfer function resulted in an artificial magnification of the high frequency components of the 
accelerometer signal. Theoretically, these high frequencies would not have been tra~smittcd if the second 
order linear model was correct. To circumvent this problem. new approaches to modeling of the bone-skin 
transfer function were investigated. These method included parametric modeling using Least Squares 
Estimation, Prony's algorithm (Parks and Burrus, 1987) and Steiglitz-McBride (STMCB) iterntion 
(Steiglitz and McBride, 1965); and a linear approximation of a two degrees of freedom mcldzl. 

Parametric Modeling 

A parametric model was developed based on measured input and output data. Assuming a linear- systcni, 
there were various approaches which could be used for developing such a model. Several of ~liesc 
approaches were investigated and are discussed below. 

The general parametric model for the skin transfer function was expressed as a linear, constilnt coel'ficienl, 
differential equation which predicted the output acceleration given the input acceleration, and vice versa. 
Because data were sampled, the discrete-time version of this model was used, namely a recursive 
difference equation, in which the output of the system at a given time was a linear function o f  the previous 
inputs and previous outputs: 

where u(k) and y(k) were the input and output values, respectively, sampled at instant k,  with cocl'ficients 
ai and bi 

Three modeling methods were investigated, all of which involved optimizing the coefficients ai and bi 
given the measured input and output data from the system. The first method was the Lcast Syuarcs 
Estimation (LSE) technique, which fits the data to a polynomial corresponding to the difference equation. 
As anticipated, this approach was not appropriate for the skin transfer function problem since there is, in 
fact, no input data, only an initial excitation (the skin pluck). It was hoped that the initial acceleration at 
time t=O could be modeled as an input signal u(k) = A, for k=O and u(k) = 0 for k # 0. This approach did 
not yield a functional result. 

Two other approaches were tried: Prony's algorithm (Parks and Burrus, 1987) and the Steiglitz-McBridc 
(STMCB) iteration (Steiglitz and McBride, 1965). Both approaches seemed to overcome the limitation of' 
having no true input signal avaiiable. Both methods utilize the fact that a linear system can be compictciy 
characterized by its impulse response. (Intuitively, this can be seen from the fact that an impulsc, by 
definition, cons is?^ cf 21! frequencies and, therefore, excites all modes of a system). The Pronjf and 
STMCB algorithms determine the difference equation coefficients from the assumed impulse response of 
the system. It was assumed that plucking the skin resulted in an acceleration impulse and that the signal 
measured by the accelerometer was the approximate impulse response. Both algorithms produced a 4th 
order model with two nsonant frequencies, the lower of which was similar to that obtained using thc 
"logarithmic decrement" method. The main disadvantage was that a true impulse is assumed to haw a 



weight of 1, which was not the case for the skin pluck impulse. As a result, the true magnitude of the 
transfer function's frequency response was subject io a scaling factor error. 

Two Degrees of Freedom Linear Approximation 

From the above analyses it appeared that the soft tissues between the vertebra and skin contained two 
resonant frequencies, or possibly represented a non-linear system. To overcome this problem and obtain a 
linear approximation of the system the following method was utilized. 

A series of perturbations were applied to the skin immediately below the z axis accelerometer, and the 
resultant acceleration data recorded. The skin perturbation data were band pass filtered at 0.5 to 150 Hz. 
The free damped response of the tissue-accelerometer system to each perturbation was viewed on the 
display monitor using  software. ware. An example of free damped oscillation of the 
LT4 accelerometer is shown in Figure F-12. The frequency spectrum of the free damped oscillations of the 
vertebra-skin subsystem was computed and plotted, and the (twoj dominant frequency components of the 
acceleration data were identified as shown in Figure F-13. The skin perturbation data were then low pass 
(0.5 to 50 Hz) and high pass filtered (50 to 150 Hz) to isolate the two main frequency components. The 
high and low pass time domain components of the same perturbation are shown in Figure F-14 and F-15). 
it was assumed that the data within each frequency band could be modeled independently as the outputs of 
separate Kelvin elements. The magnitudes and timing of adjacent acceleration peaks within each frequency 
band were digitized on the display monitor. The system parameters (mn and <) of the two frequency bands 
were then determined separately using the "logarithmic decrement" method. These parameters defined two 
independent models for the low and the high frequency components of the tissue-accelerometer subsystem. 
The bone-skin transfer function of each model was then determined from the system parameters as 
described above (n, and <). 

A compensaiion filter was developed with frequency response characteristics derived from the low pass 
and high pass models. The transfer function of each 'model' was obtained using a MATLAB@ subroutine. 
The magnitude of the frequency response curves were plotted and the frequency (fi)at which the two curves 
intersected was determined. This frequency was used to delineate the low and high frequency ranges of the 
compensation filter. An example of this procedure is shown in Figure F-16. 
In order to correct the spinal acceleration response, the folIowing procedure was used. The measured 
spinal acceleration in the z axis was low pass, and then high pass filtered to create two separate data 
records. The common cut-off frequency (fi) was determined as described above. The filter characteristics 
of the appropriate model were then applied to the low pass and high pass frequency components of the 
spinal acceleration data. The corrected acceleration data within the two frequency bands were then added 
to obtain the predicted acceleration at the spinous process. This procedure provided a piecewise inverse 
transfer function over the complete frequency range (0.5 to 150 Hz). 

In summary, the spinal acceleration data were separated into low frequency and high frequency 
components; each component was treated separately with a linear correction; and then the two components 
were summed to obtain the corrected acceleration at the vertebra. The spinal acceleration data recorded by 
the L4 accelerometer in response to a negative 4 g, z axis shock at the seat is shown in Figure F-17. For 
comparison, the predicted acceleration at the spinous process after correction by the compensation filter is 
superimposed on the acceleration data. 



Figure F-12. Example of a free damped oscillation of the L4 acclererometer (z-axis) in rcsponsc to 
perturbation of the skin. 

Figure F-13. Spectral density of a free damped oscillation of the skin-accelerometer systcrn at L4 ( x  
axis). 



Figure F-14. The high pass acceleradon component of a skin perturbation. 

Figure F-15. The low pass acceleration component of a skin perturbation 



Figure F-16. The amplitude components of low frequency (dottsd line) and high fr~qucncy (sol~tl i ~ n c )  
bone-skin transfer functions derived from a free damped oscillation. The cross-over frequency (1'1) wn\ 
used to establish the cut-off frequency fcr low pass and high pass filtering o l ' l l ~  rncasurcd accckmt~ctn 
signal. 

Figure F-17. Recorded LA accelerometer response to a -4 g, z axis shock at the seat and thc prcdictctl 
acceleration at the spinous process after correction by the skin transfer function. Dotied linc = recttrdccl I ,4 
response; Solid line = corrected response 
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small-ind = 0; 
for (i = 0; i < P; i++) 

Q[i] = 0; 

/* Read the input and output data from file */ 
if (Get-Data(Xptr,Yptr)-=false) 

return@); 

for (1 = 0; 1 <=l-max; I++) 
{ 

for (m = 1; m <=m_max; m++) 

/* Intialize variables */ 
xptr = x; 
Yptr = Y; 
small = 0; 
small-ind = 0; 
for (i = 0; i < P; i++) 

Q[i] = 0; 
for (i = 0;i < N; is+) 
{ 

/* printf("Percent completed: %.2f \nU,(float) i/N); */ 
for (j = 0; j < N; j++) 
{ 

if (j != i) 
I 

/* Calculate the Lipshitz coefficient and see if it is among the P largest */ 
/* encountered so far. */ 
LipQ = Calc-Qij(Xptr,Yptr,i,j,l,m); 

/* If LipQ comes back as zero just ignore it small is the smallest L.Q. in */ 
/* the array Q. So, if the newly calculated L.Q. id larger than small '/ 
/* it should go in the array instead. Then we figure the new small one */ 
/* for next time. * / 
if (LipQ > small) 
{ 

small = LipQ; 
Q[small-ind] = LipQ; 

/* find new small */ 
for (k = 0; k <?; k++) 
I 

if ( Q[k] < small ) 
{ 

small = Q[k]; 
small-ind = k; 

1 



/* Q contains the P largest Qij's */ 
Qptr = Q; 
/* Use P largest Qij's to calculate the inclex value for the given */ 
/* value of n, where n = m + 1. Note m and 1 values set above. */ 
n = m+l; 
qn = Calc-Index( Qptr,n); 

) /* m for Ioop */ 

I* Read data from file *I 
char Ge~Data(doub1e *xptr, double *yptr) 
{ 

FILE *stream; 
char inputstr[20], 'endptr; 
int i; 

/* Open the input data file */ 
stream = fopen("seat-zd.tran,"r+"); 
fseek(stream, 0, SEEK-SET); 

/* Read in the data to an array */ 
for (i = 0; i < N; i++) 
i 

if (fgets(inputstr,l4,stream)) 
{ 

*x'xptr = strtod(inputstr, kendptr); 
fgets(inputstr,l,stream); /" gobbles up the EOL */ 



xptr++; 
1 
eise 
{ 

printf("Error reading string for filel.\nV); 
return(fa1se); 

I 
1 
fclose(stream); 

/* Open the output data file for reading. * / 
stream =fopen("lumb-zda.tra","r+"); 
fseek(stream, 0, SEEK-SET); 

/* Read in the data to an array '/ 
for (i = 0; i < N; i++) 
{ 

if (fgets(inputstr,l4,stream)) 
I 

*yptr = strtod(inputstr, &endptr); 
fgets(inputstr,l,stream); /* gobbles up the EOL */ 
yptr++; 

I 
else 
I 

printf("Error reading string for file2.\nW); 
return(false); 

1 
1 
fclose(stream); 
return(success); 

1 

I* Caldates  the Lipschitz quotient *I 
double Calc-Qij(doub1e "r3tr, double "yptr, int i, int j, int 1, int rn) 
( 

double yi, result, denom, *denom-ptr, num; 

/" calculate dencminator I Xi - Xj I */ 
if (Get~Denom(xptr,yptr,i,j,l,m,denom~ptr)) 
f 

/*calculate numerator l yi-yj l */ 
yptr += i; 
yi = 'yptr; 
yptr=yptr-i+j; 
num = fabs(yi - "yptr); 

/" Calculate Lipschitz quotient */ 



if (+denom-ptr !=Oj 
result = num/ ('denom-ptr); 

t 
else 

result = 0; 

/* restore ptr values */ 
xptr -= j; 
yp tr -= j; 
retum(resu1t); 

1 

I* Calculates the Lipscfiitz number--an average of Lipschitz quotients. */ 
double Calc-Index(doub1e "qptr, int n) 
f 

in& k; 
double exp,result,nroot, prod; 

prod = I; 
exp = P; 
exp = l/exp; 
nroot = sqrt(n); 
for ( k = 1; k <= P; k++) 

prod = nroot*prod*(*qptr); 
qptr++; 

I 
result = po w(prod,exp); 

P Calculates the demnominator portion of the Lipschitz quotient *I 
c b r  Get-Denomfdouble *xpti, double 'yptr,int i,int j,int 1,int m, double "den-ptrf 

double Xi[C], *Xi-ptr, Xj[C], *Xipix, s.m, term; 
char 51, S2, S3, S4; 
int k; 

j* for (k = 0; k < 10; k++) 

Xi[k] = 0; 
Xjfk] = 0; 

l 
*[ 
Xi-ptr = Xi; 
xi-pti = xj; 



if (Sl&S2&S3&S4) 
i 

surr? = 0; 
for jk==O; k < m +I; k++) 

sum += term; 
term = 0; 
Xi-pix++; 
Xj-ptr++; 

1 

Xi-ptr -= m+l; 
Xj-ptr -= m+l; 
*den-ptr = sqrt(sum); 

/* Printl(xptr,yptr,X-ptr,X?-ptr); */ 
retum(success); 

1 
else 

retum(fa1se); 
I 

I* Calculates one of the terms in the denominator of the L. quotient */ 
char Get-Vector(doub1e +vectptr, double *datptr, int i, int r) 
1 

5?t k; 

datptr += i; 
3 (i >= r) 
{ 

for ( k  = 0; k < r; k++) 
1 

datptr-; 
*vectptr = *datptr; 
vecQtr++; 

1 
return(success); 

1 
else 

rettlm(false); 
I 



APPENDIX D THE A m  MODEL AND LEAST SQUARES 
Eemr a s lMkTIOliJ 

The ARX (auto-regressive with exogenous variables) model expresses the current output 
of a linear, time-invariant system in terms of previous inputs and previous outputs. If 
we denote the input to the system at time t=k as u(k) and the output as y(k) then the 
ARX model can be expressed as 

Define the observation vector 

and the parameter vector 

Equation D.l can then be expressed in vector notation as 

We want to determine an estimate for 63 given our set of input output data. If we have 
N samples then we can define an observation matrix which consists of N rows of 
consecutive x , . That is, 

A system of linear equations can then be set up to solve for 0 : 

If N=n+m+l, the matrix X is square and, thus, ;likely invertible. The solution to 
Equation D.6 is then given by 

In most practical situations, the measurement data is corrupted by noise, and it is 
impossible to find the exad solution to Equation D.7. In this case, we want to find the 
!east squared error fit of the pameters to the data. In general, the parameter estimate 
will be improved the greater the size of N (the length of data used to generate the 



estimate. Note, however, that when N > n+m + 1, the matrix X is no longer square and, 
hence, not invertible. Fortunately, this problem is taken care of by the formulatiolr of 
the least squares soiution. 

Let the system of N equations be given by 

where the e is the fitting error or residual given by 

The squared error,J, is given by 

To find O that corresponds to the minimum J, we set 

It can easily be shown that the minimum J occurs for 

The following recursive algorithm from Sinha (1983) was used for solving the Equation 
D.12: 

Let x, and O be defined as above. Define Q and P as square matrices of dimension 
n+m+l, with QO = I, and Po = 0. The k'th step of the algorithm is then written as: 

For k I ( m  + n + l ) ,  

(D.13) 

(D. 14) 



Using the above algorithm and setting m=n, the ARXmodel was trained and tested for 
various model orders. The graph in Figure D.l indicates that the optimal model was 
approximately 20. 

Figure D.l 
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Model Order, n 
Error vs Model order for ARX mode! indentified using least squares estimation. 



APPENDIX E IMPLEMENTATION OF THE BRITISH STANDARD 
6841 Frznn AND DYNAMIC RESPONSE INDEX MODEL 

The British Standard 6841 model is a second order linear model of the form 

where on is the undamped natural frequency, 6 is the damping ratio, and s is the complex 
variable used in the Laplace transform. 

This model was implemented on MatLab as an 8'th order recursive infinite impulse 
response (IIR) filter. This implementation was chosen because only the model's 
magnitude frequency response, and not the model parameters, were available. 'Thus, 
instead of converting the continous-time model into a digital version, 1 decided to 
design a digital filter that exhibited the same frequency response characterstics. 

This filter was designed using the yulewalk function provided by MatLab. yulewalk 
designs recursive IIR filters using a least squares fit to the specified frequency response. 
Specifically, it computes the filter coefficients using the modified Yule-Walker equations 
(Friedlander and Porat, 1984). Details of the filter design algorithm can be found in the 
MatLab Signal Processing Toolbox manual. 

It was found that a filter order of 8 was required to adequately fit the desired frequency 
response. The designed filter was of the form 

i=l 
with the following coefficients: 

The stability of the filter was checked by verifying that the poles were contained within 
the unit circle of the z-plane. 

The DRI model is also specified in the form of Equation E.1. The digital version o f  the 
model was implemented on MatLab as a second order, recursive IIR filter, whose 
coefficients were identified wing the Steiglitz-McBride algorithm (Steiglitz and 
McBride, 1965). This algorithm is provided by the MatLab Signal Processing Toolbox 
under the mme stmeb. 



The resulting DRI filter is described by 

The stability of the filter was ensured by verifying that the poles were inside the unit 
circle of the z-plane. 
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