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Abstract

Sediment (or other buried material) when heated gently glows with light called thermolu-
minescence. The amount of light given off depends on the material and on the amount
of radiation impinging on the sample while buried. Comparison of the equivalent dose (a
known laboratory dose required to produce the same amount of luminescence as the original
untreated sample) with historical radiation rates permits estimation of the age (duration of
burial) of the sample, a process called thermoluminescence dating,.

We study statistical techniques for estimating the equivalent dose from the data collected
for thermoluminescence dating. Physical models are used to motivate generalized non-linear
models for the data and to justify assumptions about the distribution of errors in these
models. Maximum likelihood, quasi-likelihood and least squares estimators are compared
by examining their statistical properties. Formulae are provided for the biases and the mean
squared errors of these estimators valid in the limit of small measurement errors.

In thermoluminescence studies, data are collected on a single sample at a series of tem-
peratures. Consequently, observations collected at different temperatures are correlated.
We propose a generalized estimating equations procedure for estimating the equivalent dose
from the correlated data. Large sample asymptotic properties of the proposed estimate are
examined and a formula is provided for estimating the error of the estimate. We propose
symmetric confidence intervals for the equivalent dose with a ¢ quantile; a formula is pro-
vided for the approximate degrees of freedom of the suggested ¢ quantile, valid in the limit of
small measurement errors. Finite sample performance of the asymptotic results is examined

by Monte Carlo.



Tests based on the empirical distribution function (EDF tests) of the standardized resid-
uals are proposed for testing the distributional assumptions on the random errors in two
situations: without assuming the fitted model is correct and assuming the fitted model is
correct. We propose a recurrence formula for evaluating the cumulative distribution function
of two fitted standardized residuals needed in the proposed EDF tests. Weak convergence
properties of the related empirical processes are examined. Finite sample performance of

the suggested EDF tests is examined by Monte Carlo.

iv
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Chapter 1

Introduction

Estimating the ages of historic materials is an important problem, needed in many fields
such as archaeology, geology and quaternary science. Radio carbon dating has been the most
widely used technique for this purpose. Berger et.al. [10] reports that radiocarbon dating
of Quaternary deposits is limited to organic material younger than about 50000 years old.
According to the same source, many of the most important stratigraphic units are much
older than this. Recent research in this area has proved that the luminescence phenomena
can be utilized for estimating the ages of old samples.

What is ‘thermoluminescence’? Upon gentle heating, crystalline or glassy materials be-
gin to glow. This weak but measurabie light which is observed before the characteristic ‘red
hot glow’ or incandescence is called ‘Thermoluminescence’ (TL). Luminescence phenomena
have been studied by scientists for several centuries. However, use of luminescence phe-
nomena for measuring exposure to nuclear radiation was not developed until early 1950’s.
Subsequently, during the 1960’s thermoluminescence was developed for archaeological dat-
ing.

The application of TL dating to sediments follows from the work of Huntley and Johnson
[35]. Wintle and Huntley [60] report the first successful application of TL dating to ocean
sediments. In the dating of sediments the event being dated is the last exposure to sunlight.

Thermoluminescence dating of sediments is not limited to ocean sediments. It extends

to desert loess, sand dunes, sediments in lakes filled by melting glaciers and even to the



dust incorporated in the ice of a glacier itself. It can also be used to analyze the history
of meteorites and lunar material (Aitken [1]). For this reason many fields such as geology,
archaeology, quaternary research etc. benefit from its use.

According to Aitken [1], the key concept behind the thermoluminescence dating of sed-
iments could briefly be described as follows. While the sediments are buried in the ground
they are exposed to the nuclear radiation emitted by the naturally occurring radioactive ma-
terials such as K40, Th?32 U238 etc. This results in an ionization of electrons of the crystal
lattice; these electrons are now free to diffuse around the crystal (see also Divigalpitiya [26]).
Due to imperfections of crystalline materials there are negative charge deficit sites that are
available to such diffusing electrons. Some of the electrons while diffusing around the crystal
get trapped at these sites. When trapped, they remain in these sites, or ‘traps’ as they are
usually called, as long as the temperature is not raised. In the measurement process, heating
causes eviction from traps at a temperature characteristic of the type of trap. Some of these
evicted electrons reach luminescence centers and in the process of recombination there is
emission of light. The amount of light is proportional to the number of trapped electrons.
This number depends on the amount of nuclear radiation to which the crystal had been
exposed during its burial and on the sensitivity of the crystal to ionizing radiation. Hence,
by measuring the sensitivity of the sample to acquiring thermoluminescence, archaeologi-
cally acquired thermoluminescence and the radiocarbon content of the surrounding soil it
is possible to calculate the age. Sensitivity of the sample is measured by exposing it to a
calibrated radio isotope source. Several methods for measuring the radioactive content of
the surrounding soil are discussed in the literature. In this study, we focus our attention on
estimating the acquired thermoluminescence during sediment burial.

Lack of knowledge about the amount of thermoluminescence at the time of deposition
of sediments burdens the problem of estimating the acquired thermoluminescence during
burial. The same reason invalidates the direct applicability of the procedures that are
already developed for pottery dating which hinge on the assumption that the act of firing
zeros the thermoluminescence acquired during geological times. Wintle and Huntley [60]

report that the study of the reduction in TL caused by various sunlamp exposures helps



us understand the TL at the time of deposition. Initially the TL is rapidly removed by
the sunlamp exposure but for times longer than one hour the TL is reduced much more
slowly. Therefore, Wintle and Huntley [60] assume that the natural TL is made up of
two components; an easily bleachable component I; and a residual component Iy, which
is the component that cannot be bleached by a laboratory sunlamp exposure. Wintle and
Huntley [60] assume this residual component I to be the TL at the time of deposition
of the sediment. The easily bleachable component I; is assumed to be the TL due to
the radiation dose since deposition. Each gives rise to a different fraction of the TL at
different glow curve temperatures. The total TL I(T) at temperature T is thus given by
I(T) = In(T) + I4(T). At a given temperature, only the total TL I(T) is measurable.
However, for dating purposes, it is required to measure the component I4(7T). Physicists
have developed several techniques to quantify the components Io(T') and I;(T) by simply
measuring the TL of natural samples and of samples left in the sun (or exposed to a sunlamp
in the laboratory). In this study we looked at estimating the equivalent dose from data
collected for three experimental techniques: the additive dose method, the partial bleach
method and the regeneration method. A brief introduction to these techniques is presented
in Chapter 2. This chapter also provides a description of the data. Plausible physically
motivated models for thermoluminescence data are also introduced in Chapter 2.
Exposure to sunlight (or to a sunlamp in the laboratory) drives off the trapped electrons
and reduces the intensity of the TL signal. This is called ‘bleaching’ the sample. Hereafter
we refer to the data collected on natural samples as ‘unbleached data’. The data collected
on samples that are given a laboratory bleaching are referred to as ‘bleached data’. Chapter
3 describes model fitting for the unbleached data (or the bleached data) collected at a given
temperature. This fitting process applies to the additive dose method. We examine four
estimation techniques: maximum likelihood, quasi-likelihood, weighted least squares and a
slightly modified weighted least squares technique. Formulae for approximate biases and
mean squared errors of these estimators are derived for the small ¢ asymptotic case. We
examine the assumptions made in estimating the biases and assess the validity of the derived

formulae for o in the range of real samples by a Monte Carlo study. These results are also



presented in Chapter 3.

In Chapter 4, we compare the four estimation methods by examining their asymptotic
properties. In Section 4.1, we examine the large sample asymptotic behavior of the estima-
tors. We show that the maximum likelihood and quasi-likelihood estimators are consistent
and generalized least squares and data weighted least squares estimators are generally not.
Distributional approximations for maximum likelihood and quasi-likelihood estimators are
also provided in Section 4.1. In Section 4.2, we analyze the large sample behavior of our
small o approximation to § — 0. In this limiting case, we show that the quasi-likelihood
estimator and the maximum likelihood estimator are mean squared error consistent. In
general, generalized least squares and data weighted least squares estimators were found
to have biases that do not vanish even asymptotically. However, the analysis of small o
large n behavior of the estimators reveals that for the parameter of interest in our model,
generalized least squares and data weighted least squares also produce asymptotically unbi-
ased estimators. The discussion presented in Section 4.2 is valid for more general response
functions than simply the response functions described for the additive dose method, the
partial bleach method and the regeneration method. Examining the behavior of our small &
approximations we found that for the parameter of interest in thermoluminescence studies,
maximum likelihood and generalized least squares have almost the same bias for o values
and sample sizes used in practice.

In the partial bleach method, the equivalent doseis estimated as the dose corresponding
to the intersection of the fitted response curves for the unbleached and bleached data.
Chapter 5 describes estimation of the equivalent dose from partial bleach data together
with an estimated standard error of the estimate. Formulae are derived for the biases and
the mean squared errors of the estimators for the small o asymptotic case. The validity
of the formulae for ¢ in the range of typical samples is explored by simulation studies.
Interval estimation is also discussed for each method. For maximum likelihood, we describe
computing profile likelihood intervals and symmetric intervals with Z and ¢ critical values.
We also describe confidence intervals based on a transformation of the likelihood ratio

statistic with a transformed F critical value. For quasi-likelihood, we describe symmetric



confidence intervals based on a ¢ quantile and also based on inversion of the quasi-score
test. The finite sample performance of the suggested confidence intervals is examined by
simulation studies. These are described in Chapter 5.

In the regeneration method, the equivalent dose is estimated as the dose shift necessary
for the unbleached response curve to match the bleached response curve. Chapter 6 describes
estimating the equivalent dose from regeneration data. Here again we examine the four
estimators mentioned earlier. For each method we provide formulae for the biases of the
estimators. As for the partial bleach method, finite sample performance of the asymptotic
theoretical results are examined by a simulation study. These results are presented in
Chapter 3.

In thermoluminescence studies data are collected at a series of temperatures. In chapters
3 to 6 we focused on analyzing the data at a given temperature. A series of estimates for
the equivalent dose are available from separate analyses at different temperatures. These
estimates are then plotted against the temperature. A region over which the equivalent dose
does not vary with temperature is identified from this plot. This region is called a ‘plateau
region’. Since the same samples are used to collect the observations over the plateau region,
the resulting observations are correlated (in fact correlations are very high). We propose
a generalized estimating equations (GEE) procedure closely related to that of Liang and
Zeger [43] to estimate the equivalent dose taking correlation into account. In Section 7.2.2,
we examine the large saraple behavior of the suggested estimate. We provide a formula for
the standard error of the estimate. For thermoluminescence data, the sample sizes are quite
small compared to the number of parameters fitted in the models suggested for these data.
Therefore, confidence intervals for the equivalent dose based on the large sample asymptotic
theory are found to have smaller coverage probabilities than the nominal coverages. In
Section 7.2.3, we examine the behavior of the estimate in the limit of small measurement
error. For this case, we propose constructing confidence intervals based on an approximate
t quantile; a formula based on the Satterthwaite’s approximation [53] is provided for the de-
grees of freedom of the suggested ¢ quantile. The finite sample performance of the suggested

theoretical results is examined by a Monte Carlo study. Confidence intervals based on the ¢




quantile were found to have coverage probabilities closer to their nominal levels than those

based on standard normal quantiles. The suggested theory is demonstrated on a real data

set.

In Chapter 8, we propose tests based on the empirical distribution function (EDF tests)
of the fitted standardized residuals for testing the assumption of normality of random errors.
In Section 8.2, we present a test procedure for testing normality which does not require the
fitted regression model to be correct. In Section 8.2.6, we prove the weak convergence of the
related empirical processes. Section 8.3 offers a test procedure for testing the assumption
of normality assuming the fitted regression model is correct. For each case, we show how
to compute the test statistic and an approximate p-value for testing the assumption of
normality. The finite sample performance of the suggested asymptotic theory is examined
by a simulation study. Section 8.6 summarizes the chapter.

Chapter 9 summarizes the conclusions and suggests guidance for analyzing TL data. We

end Chapter 9 with proposals for further work.



Chapter 2

Description of the data

A clear understanding of the data is the foundation of a “good” data analysis. Section 2.1
describes the data collected in thermoluminescence studies. The goal of the experiment is
to determine the age of the sample by estimating the TL acquired during sediment burial.
Section 2.2 describes some widely used techniques for this purpose!. These methods require
fitting of nonlinear response curves to the data. Some plausible models for the response
curves and for the error structure are suggested in Section 2.3. Model fitting is discussed in

subsequent chapters.

2.1 Method of data collection

Sedimentary samples are collected from dunes in a manner that avoids exposure to sunlight.
(Exposure to sunlight drives off the trapped electrons and zeroes — or decreases — the TL
signal.) Further experiments are carried out under subdued orange light.

About 2mm thick of the outer layer is etched away from each surface of the core sample.
The sample is then purified by subjecting it to a series of acidification and oxidation steps
and washings. Desired sized grains are then separated out from the resulting slurry, and are
dried on aluminum discs of about 1cm in diameter. About 50 such subsamples are prepared

from each core. After weighing each subsample, some of the subsamples are placed in an

!Much of the content of sections 2.1 and 2.2 is based on Aitken [1] and Wintle and Huntley [60].



oven. While heating the sample gently, the photon count and the corresponding temperature
is recorded every few minutes (usually 5 to 10 minutes). These photon counts represent
the ‘natural thermoluminescence’. The other samples are irradiated with different known
gamma doses before heating in the oven. The TL signal from these samples is simply called
‘thermoluminescence’.

In summary, a measure of the photon counts per unit mass, the corresponding temper-

ature and the amount of added dose are recorded from each subsample. Usually the dose is

measured in gray?.

2.2 Equivalent dose (ED) determination

The plot of TL vs the temperature is called a ‘glow curve’. Figure 2.1 illustrates a set of glow
curves obtained for a data set (coded as WFP2-7R1) kindly provided to us by D.J. Huntley.
In Figure 2.1, each glow curve represents photon counts observed from one subsample over
the corresponding series of temperatures. For a fixed temperature, the plot of TL vs added
dose is called an ‘additive dose curve’ or a ‘dose response curve’. Figure 2.2 illustrates such
an additive dose curve obtained for the unbleached data set (QNL84-2) given in Berger et.
al. [12]. In Figure 2.2, each dot represents the photon count obtained from one subsample at
temperature 300°C. For young samples the additive dose curve is nearly linear; see Berger
[6]. However, for older samples the additive dose curve departs from linear behavior. Cubic
or saturating exponential models® appear more suitable for the additive dose curves for
older samples (See Berger [9], Berger [6], Berger et. al. [5]).

The ED is defined as the dose required to produce an amount of thermoluminescence
equivalent to that which the sample had acquired during burial. Different techniques are
used to estimate the equivalent dose from the additive dose curves. The appropriateness of
the method depends on the the age of the core and in particular, the non-linearity of the

response curves. Next we briefly describe these methods.

2The ‘gray’, abbreviated Gy, is defined as the dose required to provide 1 joule of energy per kilogram of

roaterial.
3Saturating exponential models are defined in Section 2.3.
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Figure 2.1: Glow curves for the data WFP2-7R1

2.2.1 Additive dose method

In this method, the equivalent dose is estimated as the dose corresponding to the level of TL
at the time of deposition of sediments. To read the equivalent dose we need to extrapolate
the additive dose curve back to the point where the TL at the deposition would be. Figure
2.2 illustrates this method. This plot was obtained for the unbleached data set of QNL84-2
data given in Berger ef. al. [12]. The complete QNL84-2 data set was collected for the
partial bleach method. Here we use the unbleached data set for illustration of the additive
dose method. it is worth noting that for the additive dose method no samples are bleached
and the unbleached response curve would be the only response curve available, had the
data been collected for the additive dose method. Since it is necessary to extrapolate the
response curve to read the equivalent dose, the additive dose method is more appropriate
for young samples for which the additive dose curve is nearly linear.

As illustrated ir Figure 2.2, one needs to know the TL of the sample at the time of

deposition (Y'(0)) to use this method. In pottery dating, it is quite certain that initially
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Figure 2.2: Unbleached response curve for the data QNL84-2: additive dose method

the TL is zero (i.e. Y(0) = 0) because heating to very high temperatures at the time of
firing releases the trapped electrons. However, in sedimentary dating, the amount of TL at
the time of deposition is not known. Wintle and Huntley [60] assume that only the easily
bleachable component had been removed at the time of deposition. Therefore, the residual
TL, Io, remaining after a long laboratory bleaching is assumed to be the TL had it been
measured at the time of deposition of sediments (i.e. take Y(0) = Ip). However, if the
bleachable TL had not been fully removed at the time of deposition, the equivalent dose
thus determined is erroneous. The estimation is done on the assumption that the bleachable
TL had been fully removed. This assumption is then tested by the ‘plateau test’ described
next (Aitken [1]).

The plateau test

From separate analyses of data at different temperatures an estimate for the equivalent dose

is available for each temperature. These estimated equivalent doses are then plotted against

16



the temperature. A ‘plateau’ is the region where we observe that the ED does not change
with the temperature. Figure 2.3 illustrates the estimated equivalent dose vs temperature
for the data WFP2-7TR1 cited in Section 2.2. In this plot, each dot represents the equivalent
dose estimated from the data collected at the corresponding temperature. If the bleachable
TL was not fully removed at the time of deposition of sediments, a plateau may not be
apparent (Aitken [1]).

The ‘plateau test’ is not merely testing whether or not the bleachable TL had been fully
removed at the time of deposition of sediments. Only those traps that have accumulated
electrons without leakage can provide reliable information for dating purposes. These traps
are identified as the traps corresponding to the ‘stable’ region of the glow curve. This ‘stable’
region is recognized as the region corresponding to the ‘plateau’ on the plot of equivalent

dose vs temperature. (Aitken [1],Berger et. al. [10], Huntley et. al[38]).
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Figure 2.3: Plot of estimated equivalent dose vs temperature : Data WFP2-7R1

The lack of knowledge about the TL at the time of deposition of sediments, makes

the additive dose method less suitable for sedimentary dating. The partial bleach method

11



and the regeneration method that we describe next are two methods that are widely used

for sedimentary dating which avoid the need to know the amount of TL at the time of

deposition.

2.2.2 Partial bleach method

The partial bleach method or the R — I’ methed was introduced by Wintle & Huntley in
1980 [60]. Here a portion of the samples is used to determine the additive dose curve as in
the additive dose method. This dose curve is called the ‘unbleached dose curve’. Remaining
samples are subjected to afternoon sunlight for about 40 minutes and are then irradiated
with Gamma doses to define the additive dose curve for the bleached portion. This is called
the ‘bleached dose curve’. Figure 2.4 illustrates the unbleached and bleached dose curves
for the data QNL84-2 given in Berger et. al [12]. This method is so named because the
sample is only partially bleached so that the bleaching does not totally erase the signal.
Here we measure the reduction in TL (R) caused by the sunlamp exposure. A plot of R vs
the dose (I') when extrapolated to R = 0 yields the ED on the I' axis. Equivalently, the ED
can be estimated as the dose corresponding to the point of intersection of the bleached and
unbleached curves.

As we mentioned earlier, the estimates derived from the additive dose method are er-
roneous if the bleaching prior to deposition was not complete. The partial bleach method
works well even if the bleaching prior to deposition of sediments was incomplete as long as
it was more complete than that caused by the short laboratory bleaching (Aitken [1]).

As for the additive dose method, the partial bleach method also requires extrapolation of
the additive dose response curves. Therefore, the partial bleach method is also preferred for

samples for which the additive dose curves are nearly linear or can be reliably extrapolated.

2.2.3 Regeneration method

The regeneration method is more appropriate for old samples. As in the previous method, a
portion of the sample is used to define the unbleached curve and the remairing samples are

used to define the bleached curve. Here the bleaching is more vigorous. In the regeneration
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Figure 2.4: Dose response curves for the data QNL84-2

method, for the bleached curve, samples are left in the sun for about 15 hours. This totally
erases the TL signal. Then artificial irradiations are administered, thereby regenerating the
TL growth characteristic. To avoid the possible effect of sensitivity change due to bleaching
a new portion of the sample is used for each data point. The purpose of the bleached curve is
to use it as a pattern for the unobservable portion of the unbleached curve. If the bleaching
had not caused a sensitivity change it should be possible to match the two curves by a shift
along the dose axis (Huntley et. al. [38]). The equivalent dose is calculated as the dose
shift required for the unbleached curve to match the bleached curve. Figure 2.5 illustrates
the unbleached and bleached response curves for the data set SESA1 cited in Huntley et.
al. [38]. This data were kindly provided to us by D.J. Huntley.

The equivalent dose can also be determined as follows. The dose R required to generate
a level equal to the natural TL is determined on the bleached curve. The procedure is then
repeated for portions which have been given a known laboratory dose 3. The equivalent

dose is then estimated as the horizontal intercept of the plot of R vs the additive dose f3;
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Figure 2.5: Dose response curves for the data SESA1

see Aitken [1].

2.3 Plausible models

According to Huntley et. al. [36] (see also Kirkey [42]) only a few particles in a sample
produce most of the TL. The grains that glow upon gentle heating in the laboratory (or
emit light in the visible range) are called ‘emitting grains’. Franklin et. al. [30] reports
that only about 8% of the grains are emitting grains (or produce the observed TL). In the
following, we describe models for the mean photon count emitted by the sample at a given
temperature, in response to the dose received (natural dose during burial plus the artificial

dose administered).
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2.3.1 Models for the mean response

Notation:
We use the subscripts 7 and j to denote the dose and the temperature of the subsample

respectively. We refer to the kth replicate subsample receiving dose ¢ as the zkth subsample.

Let
N;jx = the number of emitting grains in the ikth sub sample at temperature j
m;r = the mass of the tkth subsample

and X;jx = emission from the /th grain of the ¢kth sub sample at the jth temperature

We make the following assumptions.

1. As in Berger ef. al. [11], the TL signal is assumed to be made up of the photons

emitted by the individual grains in the subsample.
2. The emissions from different grains in the same subsample are independent.

3. All emitting grains are identical and grains that have received the same laboratory

dose emit at the same rate.

4. The rate of emission from a given grain is independent of the number of emitting

grains in the sample.

5. At any temperature j, X;jx ~ Pois(A;;), where the rate \;; is a function of the dose

z; and the temperature j.
6. All the emitted photons are detected. (See the remarks below.)
7. The laboratory applied dose, z;, can be measured without any error.
8. The mass of the sample is measured without any error.

Remarks:
The calculations we make are still valid if we make the weaker assumption that only a

fraction of the emitted photons are detected, but all the emitted photons have the same
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chance p of being detected. In this case, the N;;x in the given formulae has to be replaced

by N D;jx, which is, the number of emitting particles detected from the :kth sample. The
E(N D;ji) and V(N Djji) can be computed as follows:
Noting that ND;jx ~ bin(N;jk,p), we find
E(NDijx) = E[E(NDijk| Nijk)]
= E(Nijep) = pPE(Niji),
and
V(NDijr) = VI[E (NDijkl Niji)l + E [V(N Diji| Niji))
= V(pNijr) + E[Nijep(1 - p)]
= p*V(Nijk) + p(1 ~ p)E(Niji)-

In the calculations presented below, we assume that all the emitted particles are detected.

(ie. p=1.)
The total emission from the :kth subsample is
Nijx
Eijr = Z Xijki-
=1
Therefore,
Nijx
E(E,‘jk) = F|FE Z Xijkl Nz'jk
=1
= E(Nijk) E(Xijur)
= E(Nijk) A
and
Nijx I Nijx
V(Eix) = VI|E|D Xiju|Nik| | +E |V | Xijut| Nijk
=1 =1

= V (Nii) )‘?j + E(Nijk) Aij-

Subject to the assumptions listed earlier, the expected TL can be computed as follows. The

emission per unit mass of ikth subsample is
TLijx = Eiji/mik.
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Therefore,

E (TLijx) = E (Eijk) [mix = E(Niji) Mij/mix (2.1)

and
V(TLijx) = V(Eijx)/mk. (2.2)
= V(Nijx) Ny/md + E (Nijk) Aij/miy. (2.3)

Without loss of generality we take the available y observations as the photon counts per
unit mass. If the data are not normalized by dividing by the mass of the sample then take
mir = 1.

We consider several models.
Model 1:
This is the model considered in Berger et. al. [11]. They suggest the following. For grains
of diameter < 10um, E(N;;i) is estimated to be of the order 10% — 104, Ai; is of the order
10% and V(NV;ji) is approximately of the order 10?2 ~ 10*. So, the term E (N;ji) Aij is small
compared to the term V (N;jx) A%;. Ignoring this term,

V(T Lijx) = V (Nije) M/ miy.

V(TLije) . V(Nijk)

EB*(TLijx) ~ E*(Nijx)
Let f(z;,0) = E(TL;jx) be the mean response for dose z;. For notational convenience

Therefore, is a constant.

we denote the observed photon count T'L;;r by yijx. We drop the suffix j when we refer
to the observed photon counts taken at a given temperature. A simple model for the
observed photon count y;x and the dose received z; can therefore be described by yix =
V(TL;jx)

L7

f(2:,0)(1 + o€ix), where the constant o = is referred to as the relative error in
a single measurement; 0 is a vector of parameters that we wish to estimate and €; is the
random error in the photon count observed from the ¢kth sample.

The mean response function f(z;,0) indicates how the expected photon count varies
with the applied dose z;. The plot of f(z;,8) against the applied dose defines the dose

response curve.
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For sediments younger than 10-20 kilo years (Ka?*) the dose response curves are nearly
linear. Thus, for sediments of this age the deterministic part of the model is described by
the relation f(z;,0) = o + B z; where § = (o, 3) is the vector of parameters to be estimated
and z; is the applied dose.

For sediments older than 20K a, dose response curves are not linear. More precisely
these have been described as sub-linear dose response curves. Sub-linear curves show a
linear relationship with a positive slope between TL and the applied dose at low dose levels
but curvature is observed as the dose level increases. Quadratic models and cubic models
have been used (Berger et. al. [9], [6], [5]) to describe dose response curves for moderately
old samples. Some response curves show a flat TL intensity at very high dose levels. This
happens when the traps are filled and no more capturing of electrons is possible. This is
described as the saturation point and can be observed for very old samples (greater than
100K a) or with young samples that are subjected to very high applied doses. (Berger
[9].) Huntley [37] introduces saturating exponential models (below we provide motivation
for using saturating exponential models) to describe the response curves for samples ap-
proaching saturation. The saturating exponential model is represented by the function
f(zi,0) = o1 {1 — exp [——fﬂgﬂ]} , where @ = (o, az,a3) is the vector of parameters we
wish to estimate and z; is the applied dose.

Motivation for using the saturating exponential model
Suppose the probability of filling an empty trap per unit dose of radiation is constant (say
¢) . Let N(d) denote the number of empty traps available, when the total acquired dose is
d units. Then

E[N(d+6d)~ N(d)|N(d)] = —uN(d)éd + o(éd).

Let E(N(d)) = M(d). Taking expectations we find
M(d+ éd) — M(d) = —uM(d)éd + o(éd).
Taking limits as éd — 0, and solving the resulting differential equation, we find

M(d) = exp(-pd + C),

*The letter ‘a’, from the French ‘an’, is used when specifying annual dose, following practice in most TL
laboratories. (Aitken [1].)
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where C is the constant of integration. Let M (0) denote the total number of available traps.
Noting that all the traps were empty when no dose was acquired, we find exp(C) = M(0).
Further, assume that no new traps are formed due to acquired radiation. Then, at saturation
all traps are filled and therefore the intensity at saturation, I, is proportional to M(0).
Thus, Is,; = C1M(0), where () is some constant. When d units of radiation is acquired the
expected number of filled traps is M(0) — M(d). Consequently, the intensity at dose d, can

be computed as:
Is = Ci(M(0)- M(d))
= C1(M(0) — M(0) exp(ud))

= s [1 - exp(-—ud)] .
The total acquired dose d is made up of the laboratory applied dose z and the dose acquired
during burial 7. Thus, Iy = I [1 — exp(—p(z + 7).
The distribution of the random error

Three possible choices for the distribution of the random error are:
1. As in Berger et. al. [11] assume the random error € to be normally distributed.

2. The assumption that the standard deviation of the TL count is proportional to its

mean suggests a gamma distribution as a plausible model for the random error.
3. Use quasi-likelihood estimating techniques where the distribution of ¢ is unspecified.

In Chapter 8 we propose procedures for testing the assumption of normality of random
errors.

We note that photon counts are never negative. Therefore the normal error model is
suitable only if o < 1/3, roughly.
Model 2:

This is a simple extension of Model 1. Here we use the complete variance function instead
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of the approximate function used in Model 1. From equations 2.1 and 2.3 we have
E(yik) = E(Nij) Aij/mix
V(yk) = EOi) Nj/mb+V (Niji) My /ml
= 61E(yir) + 62E* (yix) »

- 1 = —f(.—%‘f"
where (51 = o and 62 E? N‘jk}'

Thus, in this model, we have an additional parameter, 63, (notice that §; is measurable)
in the variance function. Techniques are available in the literature (see for eg. Davidian

and Carroll [22]) on how to estimate such parameters in the variance function.

The distribution of the random error

The gamma model is unsuitable for the distribution of random errors in Model 2. Two

possible choices for estimating the parameters are:
1. quasi-likelihood estimating techniques where the distribution of € is unspecified.

2. Assuming random errors € approximately follow a normal distribution, model y; as

¥; = f(zi,0)(1 4 o¢;) with E(y;) and V(y;) as defined above.

Model 3:
Let
m;r = mass of the ikth subsample,
M;. = mass of the emitting grains in the tkth subsample(< mi),
and Ej;; = total emission from the :k—th sample at temperature .

Assume that Ejjx ~ Pois()i;Mix). Then,

E(Ei;x) = E[E(Ej| M)
= E(AijMix)
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Assuming E(M;r) = (mik, for some constant {, we write E(E;;x) = A;j{mik. The variance
of E;;r can be computed as
V(Eijx) = VIE(Ejjx| M)+ E[V (Eiji| Mix)]
=V (/\,‘jMik) + E ('\ijMik)
= ALV (Mix) + AijCmig.

Since TL;x = %{f, we find E (TL;jr) = ¢Ai; and

1
V(TLije) = 5V (Eije)

ik
1

= m {/\?jV (M) + /\iijik}
2

E(TLij)

22
= V (M) +

ik mik
1 1
= mV (}K[ik) E? (TL,‘jk) + —TE;E (TL,'J‘k)

= 6E(TLij) + 62E* (T Lijx)

where 6; = Fnl; and & = %’7%{1% Thus, we have the additional parameter 8, (6, is

measurable ) to estimate; again these can be estimated as in Model 2.

2.3.2 Correlation structure

According to the models suggested earlier, if ¢ # i’ or ¢ = ¢ but k # &’ then
Cov(TL;jk,TL:-,j,k,) = 0, since these correspond to observations from different discs. If
i =4 and k = k' then Cov(TLij,TLi;4s) = nj;+, which can be computed as
1
pjjt = Cov(TLijg, TLijue) = ;—Q—COU(E,'jk,E,'j:k).
ik

Now consider

Cov(E;jk, Eijx) = E(EijxEijie) — E(Eijk)E(Eijr)

" Nijk Nijn 1
= E () Xum)( Y Xmij'k)J = AijAij E(Nijk) E(Nijre)
i {=1 m=1

1 Nijx Nyjix
= E|E [(E Xii5e)( Y Xomijik) Nijk,Nij'kH = XijAig E(Niji) E(Nijoi)
B =1

ma=]
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Since X’s are independent, the above can be simplified to get

Cov(Eijk, Ej) = E [NijNij E(Xiije) E(Xmijre)] — AijMij E(Nije) E(Nyji)
= AijAig E(NijeNijie) = MijAi E(Niji) E(Nyjoxe)
= /\,’j/\ij/CO’U (N,'j,’;, jvij’k) .

The correlation p;;s between the observations collected on the same disc at different tem-
peratures j and j’ can therefore be computed as follows.
Model 1
For Model 1,
Xijrijr1Cov (Niji, Nijik)
VARV (Niji) A5V (Nijon)
= Cor(Nijk, Nijix)

Pij’

FAN

1.

Remarks
If the same grains emit photons at temperatures j and j' then N;;jrx = N;;. In this case,
Model 1 predicts perfect correlation. Further note that for all k, E(Yi) = f(z:,6;) and
V(Yik) = 0%f%*(z;,0;). Therefore, E(E;;x) = A;E(Nijx) = f(z:,6;)mi and  V(E;ji) =
ALV(Niji) = 0 f(4,0;)m%. Consequently, %J(V—J—\/_]lv_":_—i—)— = 1. Thus, a gamma distribution
with shape parameter Z and scale parameter S;; = azf—(ﬂ’—jf%r-n—‘-"- is a plausible candidate for
the distribution of N;;;. We note that N;;x, the number of emitting grains in the sample,
can take only integer values, but if N;;i’s are large, the distribution can reasonably be
approximated by a continuous distribution.
Model 2
For Model 2,
- Afinj{Cov(Nijk,N;j:k)

VAEV(Nijk) + N E(Nigi) AV (Nigi) + Aigr E(Nien)

Cor(Nijk, Nijix)

pijt =

E(Nijn) ]

E(N;;
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Remarks

For Model 2, note that even under the assumption Nz = N;jp, pj;» < 1. Further note

that
E(Eijk) = Ai; E(Nijx) = f(zi,0;)mix

and

V(Eijk) = N5V(Nijk) + A E(Niji) = 0° f2(2:,0;)mb.

Therefore, for m;o?f(z;,6;) > 1,

E(Nijk)  _ AijE(Nijk)
AiiV(NgG) — ALV(Nie)
- f(zi,0;)mix
— [m3o? (24, 05) — f(zi, 0;)ma]
1

[miko?f(z:,6;) — 1]

Thus,
1+ E(Nijx) _ _ mixo’ f(2:,6;)
Ai;V(Nijk)  [mao?f(z:,6;) — 1
Consequently,
_ COT(N,;jk,Nijtk)
pJJ, - 2 -
mio? f{zi,0;) mxo? f{zi,6,1)
(mixo?f(zi.6;)-11\ [muo? f(zi6,1)-1]
Remarks:

1. According to Model 1, if the variability in the number of emitting grains does not
depend on the applied dose, then the correlation between photon counts taken on the
same disc at two different temperatures does not depend on the laboratory applied

dose z;.

2. According to Model 2, the correlation between the observed photon counts taken on
the same disc at two different temperatures depends on the applied dose z;. Our

notation p;;» suppressed this dependence.
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Chapter 3

Model fitting

In this chapter attention is focused on fitting the saturating exponential model defined in
Chapter 2. We intend to present a detailed study of fitting this model for a single data
set with two perspectives in mind. First, the results we derive are directly applicable if the
additive dose method is used to estimate the equivalent dose. Second, as we see in chapters
5 and 6, the methodology developed for this case can easily be extended to estimate the
equivalent dose from the partial bleach method and the regeneration method.

Section 3.1 presents initial estimates for the parameters. In sections 3.2 to 3.4, we derive
Maximum Likelihood (ML), Quasi Likelihood (QL) and Generalized Least Squares (GLS)
estimates for the parameters. In Section 3.5, we examine another estimation procedure
used by physicists. This procedure is similar to generalized least squares, except that it uses
observed Y values in piace of the expected Y values in the weight function of generalized
least squares. We refer to this procedure as Data Weighted Least Squares (DWLS).

As we described in Chapter 2, our model suggests that the variance function of the pho-
ton counts is proportional to the squared mean function. Furthermore, photon counts are
never negative. Consequently, the gamma distribution is a natural candidate for the distri-
bution of photon counts (McCullagh [49]). In Section 3.6, we obtain maximum likelihood
estimates assuming photon counts follow a gamma distribution.

In Section 3.8, we derive formulae for the biases of the estimators assuming the relative
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. . ViY)\ . , . . L
error in a single measurement, o (: E(}(’)) ) , is small. We examine this assumption in

Section 3.10. In Section 3.11, we examine the biases of the estimators from a Monte Carlo
study and compare with the results obtained from the derived formulae. In Section 3.12, we
demonstrate the theoretical results discussed in this chapter using a real data set. Section

3.13 summarizes the chapter.

3.1 Initial estimates

Kuo [41] Fas described two methods that yield initial parameter estimates; a graphical
method and a quadratic equation method. For completeness we now briefly describe those
two methods. We also describe an alternative method that can be used to obtain initial

estimates.

3.1.1 Quadratic equation method

The quadratic equation method proceeds as described by the following steps.

1. The average TL count (TL) is calculated at each applied dose.

2. As a first step, the dependence of TL on the dose (z) is approximated by a quadratic

relationship. In other words, the coefficients 7,75, 3 of the equation

TL = Ty + T2 + 1'3:52

are estimated by regressing TL on z, z2.

3. Near zero dose, the two models (exponential and quadratic) have similar behavior.
The coefficients of the saturating exponential model are thus estimated by equating

the first and second derivatives of the saturating model at zero dose to those of the

quadratic model.

The last step is more clearly expressed as follows:

o= Theo=fO) = [1-e (Z2)],
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r, = TL_o=f(0)= g—;exp (——-—(—1-3) ,

d 2rs = TL'_,=f"0)=-2L (Z‘—’E)
an 73 z=0 = f(0) ag exp o

The values for 71,72, r3 are available from the previous step. Thus, the initial estimates for

o, 07 and a3 can be obtained as follows:

T2
@) = T1-— 5;7
3
2
Qy = — Og 2 ’
T3 T3 — 27173
T2
and a3 = o
T3

3.1.2 Graphical method

The graphical method is described by the following steps:

1. The saturating exponential model has the form

ze)

a3

f(z,0)=E(TL)=0, [1 — exp (

For large applied doses the thermoluminescence approaches a;. Thus e is estimated
from a plot of TL vs dose (z) as the photon count TL approached at high applied

doses.

2. Noting that (TL — TT) = —ﬁexp [_-_(Ea_'*_;_ﬂ_'_z_l] , the parameters a; and a3 are then
estimated from a plot of In |(TL - ﬁ)] Vs I.

Next we suggest another method that can be used to find the initial estimates.

3.1.3 Alternative method

The model of interest is y = f(z,6) (1 + o¢), where f(z,8) = on{1 — exp[:%'*—f?l]}; here
6 = (ai,09,a3) is the vector of unknown true parameters and z is the applied dose.
Noting that as £ — oo, f(z,0) — «;, we estimate o; by the average of the photon

counts corresponding to the highest dose. At the low dose values the dose response curve is
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approximately linear. Therefore, we estimate a; and a3 by fitting a linear function for the

response at low dose levels. Note that -g—g = -gi exp [j%t—aﬂ} . Thus,

slope at dose zero = f'(0) = il § exp (_——_a_2>
Qs Qs

and
—

photon count at dose zero = f(0) = o [l — exp (-—-——2—)] .
a3

This gives az = 10—3,77%91 and a; = —azlog (5%—;@) . We estimate f(0), which is the photon
count at zero dose, as the average of the observed counts at zero dose. Slope at dose zero
is estimated by %%:—i’:%, where z[1] = 0, =z[2] = smallest positive dose value, y[1] =
average photon count at dose zero, and y[2] = average photon count at dose x[2]. Since we
already estimated a;, the parameters o; and a3 can now be estimated using the above
equations.

For all the data sets we analyzed, the initial estimates found from this method served
as good starting points for the estimation programs we developed. We did not use the
graphical method to obtain starting values since the other two methods are easier to use
than the graphical method. For some data sets, the quadratic method failed to provide
good starting values while the alternative method did not fail.

For some data sets, the parameter a; is much larger (roughly 1000 times in some cases)
than the other two parameters. In such cases, estimating the parameters instead of y;
we use a scale multiple of y; which makes the magnitude of @; compatible with the other
parameters. For example, when «; is 1000 times larger in magnitude then we use y;/1000
instead of y; and instead of a; we take a;/1000. After we find the solution we convert the
parameters back to the original scale. This was found to improve the convergence rate of

the procedures we describe next.

3.2 Maximum likelihood estimates (ML)

We begin by making the following assumptions:

1. The photon count from one aluminum disc does not affect the photon count observed

from another disc.
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2. The applied dose z can be measured without any error.

3. The observed photon count y is related to the dose received by the sample z according

to the model y = f(z,0)(1 + o¢;), where f(z,0) = o {1 — exp [——(—xic—"ll]} (Section
2.3).

4. The random errors in the photon counts ( €’s ) follow a normal distribution with zero
mean and unit variance.

5. The relative error in a single measurement o (= EVY ) is constant.

Under the above assumptions the likelihood function for a sample of n observations is

-1 2}
L= e [y; — f(2:,0)]" ;.
e Rt e LR
The log-likelihood {(#, o) apart from a constant is
[yz - :l:,, 0)]2
—nlog(c) — » log(f(zi,8))— . (3.1)
; 2"2 E—:l [f(z:,0))?

Let ¢T = (al, Qp,03,0) = (0T o). The maximum likelihood estimates solve the system of

equations a¢ = 0. Equatmg a[ to zero, we find

[v: — f(zi,0)]2 ‘
,_Zl Tt (32)

The gradient vector of / with respect to 6 is

_ Q{__ e ol 0f(zi,0) ol 0fz
Vi =55~ 2550 69 Z 57 06 (33)
where
1o~ (= f(z,0)) ~ f(2:,9))*
:1:,,0) Zfz,,B) Z [f(= 179)] 02; x,,ﬁ)] ,
and

T (6ﬁ 0f; aff>_

8oy’ Oay’ Oz

0f(2i,0)\" _ (0f;

8 T — 1 - ___2_
(v5) ( 36 ) ( 96 >
The partial derivatives of f; with respect to the components of @ are

2L = 1-exp [—(———H'M'Z ]

afi _ (zita2)

2L = oL exp [ a'; 2 ] (34)

g&% = %?(z;-l—az)eXP [:(%;;&l]
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The solution of likelihood equations:
We use a 2-part iteration (Green [33]). This means,

1. Use the starting valunes for 6 to estimate o.
2. Holding o fixed, solve the likelihood equations for 6.
3. Use the new parameter estimates for § to update o.

4. Repeat the process until desired convergence.
We describe two algorithms that solve the likelihood equations.

1. An iteratively re-weighted least squares algorithm.

2. The Newton Raphson algorithm

An iteratively re-weighted least squares algorithm:

Green [33] describes an iteratively re-weighted least squares algorithm that solves likelihood
equations. First we briefly describe the algorithm in general terms. Then we apply the
algorithm to solve the likelihood equations in our problem.

Let [(6,0) be the log-likelihood function of an n—vector 7 of predictors. The maximum
likelihood estimates solve the likelihood equations -g—é = 0. The standard Newton Raphson

method uses the iterative scheme
Okrr) = O — H'  li

to find the estimates for  at the (k + 1)st iteration; here Hj is the Hessian matrix (3%%17-
and 7lx is the gradient vector (%), both evaluated at the parameter estimates from the
kth iteration.

Let u be the n—vector -g—f, and D be the n x p matrix %. Then, the likelihood equations
can be written as g—é = DTy = 0. Using the introduced matrix notation, the Newton

Raphson iterative scheme can be written as

~82\ ,; a7
(W) (0 - 0) = 56 = D u. (35)
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Fisher’s scoring technique replaces -2 aaaT by its expectation value. Note that

8% Z al 8%n; (@)T 8% /59_12)
9007 ~ 2« B, 9OOT BT \36)

00

From the likelihood equations for the normal error model we find E (%) = 0. Let A

denote the matrix £ -—12—’1 . Then, it is easy to see that E -——ilr = DTAD. Thus,
onm o686

using Fisher’s scoring technique the algorithm 3.5 can be written as

(DTAD)(6 - 0) = DTu

-

Writing (6 — 8) = 8 we get
(DTAD)3 = DT AA M. (3.6)
(Assume that D is of full rank p, and that A is positive definite throughout the parameter

space.)

The above equations have the form of normal equations for a weighted least squares

regression. So B can be found by minimizing the weighted error sum of squares
i AT 1 5
(47'u-DB) A(aw~ DA).

Next we apply the above algorithm to solve the likelihood equations of our problem.

The log-likelihood is

__n 171,0)]2
1(6,0) = 5 ” Jog(27) — nlog(o glog (2,6 202 ; T
Writing f(z;,0) as f; we get
o -1 1[y-f], 1[w-fP
-F e R T B -1
and
o1 1 ___1_4[yi—fi]_13[ - £’
of ~ f* o2f? o2 fP o? A
For our model, E (y; — f;)* = E (f202¢?) = 02 f?. Thus,
gl 9% 2 1
\afz) - _F - o_2fi2 (3.8)
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and \
ol ol
El=—==1=0, foris#j.
(afi 5%;) 7
Thus, in our case the matrix A is diagonal with the ith diagonal element

2 1
Aii='}'§+53.—f—2-

and D is the » X 3 matrix with the :th row having entries %, g-c% and g—(% (Equations 3.4).

(3.9)

Next we outline an algorithm for solving likelihood equations.

1. Find an initial estimate 8y for 8.

2. Evaluate f; at the starting values.

3. Estimate o from equation 3.2.

4. Evaluate the matrix D(= —g—g).

5. Compute the n—vector u(= -33—;‘,-) consisting of the elements given by 3.7.
6. Compute the matrix A that has elements given by 3.9.

7. At the (k+1)st iteration, fy is estimated from fx = (DT Ay D)~ DI ui. The subscript
k indicates that the corresponding terms are evaluated at the parameter estimates from
the kth iteration. (Gaussian elimination can be used to solve (D{Aka)ﬁk = D{uk

for Bk, thus avoiding matrix inversion.)
8. At the (k + 1)st iteration estimate @ from é(k+1) = 6x + B.

9. Repeat the above procedure until desired convergence, each time replacing 6 from its
current estimate. In the algorithms we developed, the convergence criteria for 8 was
taken as when the step size 8 < le — 5, or, when all the components of the p-vector

DTu are less than le — 5.
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Variance covariance matrix of maximum likelihood estimates:

Let ¢T = (67,0). From the large sample theory for maximum likelihood estimators,
the asymptotic variance covariance matrix of ¢ is I=1(¢), where I(¢) = E (—5%7) . An
estimate for the variance covariance matrix can be obtained by evaluating I(¢) at . In
particular, the standard errors of the maximum likelihood estimates can be estimated as the

square roots of the diagonal elements of I~1(¢). Recall that E (—-—affg—é-r) = DTAD. Now

a0 =2 (“’ S DICIRFIIC NG

f
It is easy to see that E [—%] =2y, (fo)i. Since %—é =%-3 3y, ( )2’ we

8

consider

find E ( 321) = 22, Thus the matrix I(¢) is given by

_ | bTaD 2 n (-V-}-i)
S PN ET

Using standard matrix inversion results (see Rao [51]) we find that the variance covariance
matrix of 4 is
. -1
V()= (DTAD) + E1E;'ET,
T -1
where By = 3 - 4 [ iy (Zfi) ] (DTAD) [ 1 (Zfi) ] (note that E, is a scalar) and

-1 -1
F=2 (DTAD) (foo.)‘ Since (DTAD) is immediately available from the last step of

the algorithm we can easily compute the asymptotic variance covariance matrix of 6.

The Newton Raphson algorithm:

Before presenting the algorithm we first compute the matrix of second derivatives H = ﬁaa%r

that is needed in the Newton Raphson algorithm. °

Differentiating equation 3.3 with respect to 8, we get

g _ i i ] af; af; T al %f;
aeaa’-“‘g[(é‘ﬁf) ('575) (W) +(2’Tﬁ) (30801’)} (3.10)
where
Pl K1 1 &L 1K (w (y,fz
L AL AL ARt ew



Note that A; which is the matrix of second derivatives of f; with respect to & is a symmetric

matrix of order 3. The elements of A; = (aim)sx3 are:

an = %—2—% =0

12 = %‘212_(%; = al-; exp [:@iﬁ.’:’l}

a3 = af:g;a = .;_g. (z; + ) exp [—(1';-: az)}

azy = ?;g = —a? exp [——(z;-: az)]

a3 = Bc?:gixa = ——aaél exp [—(z;—: az)] + %(z; + a) exp [_"(I;‘: 0‘2)]

G = ?‘;E% = %(Ii + az) exp [:;(_x_;_'l'_gz_)_} - g—é—(z‘i + az)?exp [___—-(z;_: 0‘2)] .

The Newton Raphson algorithm for solving the likelihood equations proceeds as follows.

1. Find an initial estimate for 6.

2. Estimate o using equation 3.2.
3. Compute 7! using equation 3.3.
4. Compute H using equation 3.10.

5. At the (k + 1)st iteration, 8 is estimated from

) = 0k — HY' Tl
6. Re-estimate sigma from equation 3.2.
7. Repeat until the desired convergence criteria are met.

We developed software using the statistical package “S-plus” to implement the above
algorithm. (We experimented with the built-in procedure “nlmin” of S-plus but found it

sometimes failed to converge.) The convergence criteria were determined as follows:
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The absolute values of all the components of the gradient vector are all less than

Pt

a small value ¢, (in our program we used ¢; = x107°) and, the eigenvalues of the

Hessian matrix at the solution point are all negative or,

2. The absolute difference of the successive iterative points of all the parameters a;, a2

and a; are less than a small value ¢; (we used €, = x107%) or,

3. A maximum number of iterations(e.g. 200) is reached (this was never the case for the

data sets we analyzed).

Variance covariance matrix of maximum likelihood estimates:

Let ¢7 = (67,0). From the large sample theory for maximum likelihood estimators,
the asymptotic variance covariance matrix of ¢ is I=1(#), where I(¢) = E (—-aj%f) . An
estimate for the variance covariance matrix can be obtained by evaluating I($) at ¢. In
particular, the standard errors of the maximum likelihood estimates can be estimated as

the square roots of the diagonal elements of I=1(4).

3.3 Quasi-likelihood Estimates (QL)

One of the assumptions used in deriving maximum likelihood estimates is that the random
errors ¢’s follow a standard normal distribution. This distributional assumption is not
required for deriving quasi-likelihood estimates. Quasi-likelihood estimates only require
the assumptions made on the first two moments of the distribution of the photon counts.
Thus, we assume the model y = f(z,6)(1+ o¢), with E(y) = f(z,0) = ¢ and Var(y) =
o? f4(x,0) = o* E*(y) = V(p).

The quasi-likelihood @ introduced by Wedderburn [59] and later extended to the multi-
variate case by McCullaugh [48] is defined as any function of x satisfying

99 _

a‘u “1(#)(y "",U'),

where V! is a generalized inverse of V.
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The quasi-likelihood estimates for # are obtained as solutions of the quasi-likelihood

equations
9Q _ (?_E.)T 99 _,
00 ou

06T
For our model these can be written as
Frev'@ly-fl=0, (3.12)

where the n x p matrix F' denotes the derivative of the n-vector f with respect to the p-vector
6.

The Gauss Newton algorithm can be used to solve the quasi-likelihood equations. This
proceeds as follows.

If the estimates for  (say 6p) are close to the true parameter values, the non hinear

function f(@) can be approximated by the Taylor expansion
f(z,6) = f(=,80) + (8 — 60)" Fo.

The derivative vector F(6) and the variance covariance matrix V(6) can be approximated
by Fp and Vp which are the derivative vector and the variance covariance matrix evaluated
at 00.

The set of equations 3.12 can therefore be written as
FEV [y — £(60) — (6 — 60)" R ~ 0.
Let 2o = [y — f(6o)] and 6 = (6 — 6p). Then, the above system of equations gives
FIV; (20 - Fob] = 0,
which are the same set of equations as
FIV7 Fob = FIVy 2.

The above equations have the form of the normal equations for a weighted least squares

regression with the dependent variable z, design matrix F, and parameter é.
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Thus, the estimates for § can be fornd by minimizing the weighted error sum of squares
R(8) = S0, wik[zi — FT6)°, where
z; = dose received by the ¢th subsample,

0. = the value of the parameter vector (a;, &2, a3) at the kth iteration,

f(zi,0r) = a1 {1l —exp(—(z:+ a2)/a3)},

wik = f(zi, Ok)’z is the weight on the ith observation at the kth iteration,
zi = (4 — f(z:,60)),
and F; = gradient vector of f(z;,#) evaluated at the kth step of the iteration.

We use an iteratively re-weighted least squares algorithm to solve the above equations.
The algorithm proceeds as follows.

1. Calculate the weights w;o using the initial parameter estimates. Let W, be the diagonal

matrix of order n that has w;p’s as diagonal elements.

2. New estimates for 6 are given by &y = (Fg WoFp) ™ (F§ Wozo); here zg is the n-vector

with entries y; — f(zi,00), 1=1,...,n.
3. New estimates for # are given by 6; = 8y + éo.

4. Recalculate the weight matrix W and the n X p matrix F' using the new estimates for

0 and use it to compute 4.

5. At the (r + 1)st step, the estimates for # are given by
0(r41) = 0r + 6., where 6, = (F,TW,F,)"I(F,TW,z,.); here z, is the m-vector with

entries y; — f(z;,60:),i=1,...,n.

6. Repeat the above procedure until the desired convergence. In the algorithms we

developed the convergence criteria for # was taken as when the step size § < le — 5.

Remarks:
At the kth step of the iteration, the quasi-likelihood estimate §; minimizes

~ 2
n {?/i—f(ziygk)}
S0 =2. - f(zi, 1))

=1
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So, the estimates d; solve the system of equations

where 7 f; denotes the gradient vector evaluated at 6. In the limit, the estimates § solve

the system of equations .
as X”‘: [Z/i - f\Ii,ﬁ)J
0 = flai,6)

1=1

v f;=0.

Estimating o
We note that the quasi-likelihood estimating equations do not involve o. So, we can

estimate § without knowledge of 0. We have two choices for estimating o

1. For a model with mean function E(y;) = u; and variance function V' (y;) = o,, Davidian

and Carroll 23] suggesis estimating o; from the estimating equation

5[ (i — wi)? — o] ,
E[(y ‘;2 : %:0. (3.13)
=1 t d t

For our problem this gives

2 f£2 2 £2
=1 Ufi a-fi

4

So, we can estimate 02 as &% = 137, M here f indicates the fitted values,
which are f(z;,8) evaluated at 8. For our problem this estimate is identical to the

maximum likelihood estimate for o.

2. The parameter o can be estimated by equating the Pearson x? to its degrees of free-

dom. This gives

n o fA2 _ 262
Z[(y' ﬁgfg”f’}-(n-p)-—-o.

1=1

This suggests the estimate

(nip)z (yz ft (3‘14)

where p is the number of components of §. We use the latter estimate (Equation 3.14)
when we estimate the error of the quasi-likelihood estimate. We refer to this estimate as

the unbiased estimate of o; a small o justification of the jargon is in Chapter 5.
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Variance Covariance matrix of quasi-likelihood estimates:

The asymptotic variance covariance matrix of the quasi-likelihood estimates is V(f) =
% -‘.l - kd - Y -

o? ( FTWF ) for the matrices F and W defined earlier. An estimate for the variance

covariance matrix of @ can be obtained by replacing the unknown parameters by their esti-

mates. In particular, the diagonal elements of V() provide estimates for the errors of the

quasi-likelihood estimates.

3.4 Generalized least squares estimates (GLS)

This is a generalization of the linear generalized least squares procedure. The linear gener-

alized least squares estimate @ is found by minimizing the weighted error sum of squares
5(0) = [y - f(O) V7 O) lw - f(6)],

where f(8) is linear in 8 and V(@) is the variance covariance matrix of Y. The value of §

minimizing S solves

0o = &
a0,
35 & Jui— f(z:,0)] n [5 - £(2:0))
- ?'ﬁ':;' f(z:, 0y Vf”,.; fanep V=0

We used the IMSL subroutine NEQNF to solve these equations starting from an initial
estimate # from quasi-likelihood estimate. This system of equations is different from quasi-
likelihood estimating equations. As in quasi-likelihood. the estimating equations for 4
does not involve 0. Consequently, we can estimate # without knowledge of 0. Once we

have found the generalized least squares estimates for #, we can estimate o from 6% =

i T

We will later (Section 4.1) see that GLS estimates are not consistent. Consequently,
variance estimates are not relevant. However, asymptotic theory justifying the procedure
and producing approximate standard errors is available for a small o approximation; see

Section 3.9.
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3.5 Data weighted least squares (DWLS)

We now describe another method cited in Berger and Huntley ([12]). This is similar to the
generalized least squares described in the previous section except for the weights used in the
minimization. In generalized least squares [E(y)]™ = [f(z,,8)]"2 are used as weights. In
this method, y;” ? are used as weights. Consequently, the estimates § minimize the weighted

error sum of squares

ﬂm=fﬂw“jmﬂw}

=1 y7'2
We refer to this method as “Data Weighted Least Squares” and use the abbreviation DWLS.
The data weighted least squares estimates g solve the system of equations

ly: — f(=:,0)]
y?

85 i
36 = 2

=1

Vfé:O)

where 7 f; denotes the gradient vector evaluated at 8.

The algorithm described for solving quasi-likelihood equations can be used to solve the
above equations by modifying the weight matrix accordingly.

Similar to quasi-likelihood estimating equations, the equations that solve for DWLS

estimates do not involve o. Once we have found the DWLS estimates, o can be estimated

2 @i fi)?

~ 1
as 6° = o552 in 7o
As for GLS, data weighted least squares estimates are not in general consistent; see

Section 4.1. Again, small o theory is available; see Section 3.9.

3.6 Maximum likelihood estimates for the gamma model

Suppose the photon count y; has a gamma distribution with mean u = f(z;,8) and variance

V(y) = 02[f(z:,0)]. Assuming that photon counts from different discs are independent,

the likelihood for the sample i, ..., y, can be written as

\
+ b(yl)' "1yn)02)}

I's

1'(8,6%) = exp { [ i1 Vi (.f_(—r—;ITJ - >, ~log (ﬁﬁ)}

o2
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Taking n; = =0 0) the log-likelihood can be written as
[Z?:l yln’l + Z?:l log(—_nl)]

0_2 +b(y17"'ayn,o'2)-

1(0,0°) =

The maximum likelihood estimate § for § maximizes the log likelihood function. Since
b(¥1,---,Yn,02) does not involve @, this is equivalent to maximizing L = 3 7_; vim +
So%_, log(—n;) with respect to #. Consequently, the estimates 0 solves
BL 0L i = ( ) oni
an = i T = 07
Z < 9n; 96; ; y 6,

which is equivalent to solvmg

n

> {(yi - f(z:,0)) ((f(z,-l, 57 8f((;;;, 0))} = 0; (3.15)

1=1

here §; denotes the jth component of §. We recall that quasi-likelihood estimates also satisfy

the set of equations 3.15. Thus for our problem, the maximum likelihood estimates obtained

assuming photon counts follow a gamma distribution are identical to the quasi-likelihood

estimates.

3.7 Bias of the least squares estimator for parameters in the

standard nonlinear regression model

The standard nonlinear regression model is of the form y; = f(z;,0)+ e (i=1,...,n),
where we assume that th= random errors ¢; follow a normal distribution with zero mean
and constant variance. Several authors have addressed the problem of computing the bias
of least squared estimator for # in this model. (eg. Box [14], Cook [17].). For ease of

comparison with our formulae, we present the formula derived by Box [14]:

bias = — 2 [wa) () ]— Zn:(vf)Ttr{(Zn: (vf)f(vf)k)— Hk},

1=1 1=1 k=1
where
2
o = Var(e),
fr = kth response function,
Vft = Gradient vector of the kth response function,

40



and

H). = Matrix of second derivatives of the kth response function.

3.8 Biases of the estimators

Notation:
Let
Y = observed photon count from the ith subsample,
T; = dose applied to the zth subsample,
Oy = vector of unknown true parameters = (aq, oz, @3),
f(zi,60) = 1th response function = o {1 — exp — [ﬁg&] } ,
o = relative error in a single measurement,
and n = sample size.

For notational convenience we further introduce the following.

e We denote f(z;, é) and f(z;,0o) by f; and fo respectively. It is important to note that
our notation omits the dependence of fo and f; on i. However, it was decided to use

this notation to simplify the work of presenting the lengthy computations that follow.

e We denote the gradient vector and the matrix of second derivatives (i.e. the Hessian
matrix ) by \7f and H respectively; a subscript is used to indicate the parameter
point at which each quantity is evaluated. For example, (7 fo) indicates the gradient
vector evaluated at the true parameter value §p whereas 7 f; indicate. the gradient
vector evaluated at 6. Again note that the quantities 7 f; and Hp depend on ¢ which

we sometimes omit for notational convenience.

Assumptions:

1. The relative error in a single measurement o is small, so that the terms of order O(o?)

and higher are negligible.
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2. For small o, we approximate ] by 6 = 0y + Ci0 + Cpo?, where C; and Cs depend

on f(z,6p) and € but not on ¢. In Section 3.10, we examine this approximation by a

Monte Carlo study.

First we present some calculations that are common to all four methods of estimation.

For @ close to g, the Taylor approximation of f(z;, é) around fp can be written as

fi ~ ot (B 00)7 (7o) + (8~ 60)T Ho(d ~ bo)

Q

fo+ CT (9 fo) o+ (CT (T fo) + %c{f‘ HoCy)o.

Therefore, we find

and

Since y;

and

BT R )
o Ll (S8)e s (3)ar (39)].

|
R

g
Yot (F)et ()]

1 [ T

~ —=|1-C
fE !

~ iz[l-ch(iﬁ)a],
fi 0

ar gl (%))

= fo + fooe;, we find

(= ) [foes = CF (v0)] 0 = |CF (Vo) + 5CT HoC| o2

(%~ f5)* = (foe: = C (v fo))?0?

= (f2& = 2fo6;CT (v fo) + CT ( fo) CT (v fo))o.

Further note that

(v fo) + Ho(d — 6p)
= (Vfo) + HoC10 + HoC30?

il

v S;
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3.8.1 Maximum likelihood

The maximum likelihood estimates 8 solve the system of equations

a
96 |;

~0 = ZVf Z[yz:__ F- Z

=1 =1 =1

0 =

=0 = %[é[ ] ;fo il f Z;[yl—
Thus,
gl merionstonetintog b ()

Xg:{(Vfo+HoCIcr+HoCza)fo [1-01 (Vfof"> +CT (v}m cT (Vfof") ]}

1=1
- _cT T 1T 1 v fo
-3 [t = €T (oo = (CF (700 + 50T HoC) |2 1207 (%) <]

x (v fo) + HoC1r0 + HoCz0?)

_Zn:{ - 2foeiC{ (Vo) + CT (Vo) C (Vfo)lo ?J{ -3¢f (vf;fo> }}

=1

x((V fo) + HoC10 + HoC20?).

Equating the coefficients of powers of o;

oy 0 = Z(fofz CT (7 fo)) (‘ngfg

=1
- o= BEET B

e
(Sle-er () +er () or (B)]) (£ (%)

-3 { (fosi - €T (9 0) 2<Hocl—2cl (Vf")(vfo))} (3.24)

SN——

Ma

1

)}

Q
‘N
o
I
3=

M:

1

T

M:

+

ii
N

{(Cz (Vfo) + —C1 HoCy) (Vfofo)}
-2

(3¢ 21000F (o) + T (w1 T (010) (L)}

M:

1

1
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- BEET
- e (8 () () ()
o 4z<w°> e
(58) (B oo (58) 5 (32
S5 (%) () + £ (%),

1=1

+3)
2

Since we assume that ¢;’s have mean zero, E(Cy) = 0 (See Equation 3.23.).

Using the results of Appendix 9.3 we find
s = (=22 (F) 5 (3)=(F)
<5 () () = (%) -5 (%)=()
g (5) (5] (3
() £
E(Cy)=% {" zn_:(wl,i— n%— (%?) - %:Z::wzi (%)} ;

Therefore,

where

n T -1
T o= [Z (V_fo) (_V_fg) = Variance covariance matrix of C;

number of components of #
r \ T 1
ir (Vfo) (Vfo) v
fo /i \ fo /i

and wy; = tr {(;I;) E]

wy,;



Noting that § = 6y + C10 + C20%, with E(C;) = 0, the bias in 6 is computed to order
O(0?) as:

biasin § = E(6) - by = E(C2)o?, (3.27)

- o B D) ()55

wo ; (—v—;f—q) } o?. (3.28)
1 Jo ’

3.8.2 Quasi-likelihood

The quasi-likelihood estimator § satisfies the equation

0 = 3 -2 - ;ﬁx"’e)] v fs

i=1

=0 = 3 [oe = CT (o) - (CF (7o) + 5CT HoC)o] 12

=1

x((Vfo) + HoCi10 + HoC20?).

Al ()

Equating the coefficients of powers of o;

o9 0 = E(foe ct (Vfo))(

- o [EEAET B
A0 = S {ha- T wh) (Hocl—wf o) wm)]

2 (
}

Z { (7 (who) + 56T HC) (va‘)

oo S (Bt (%) () - Ser (%) (%)
+2201 (Vfo) (Vfo)(Vfo) X::

() ()
T () (%)
)

e G = t (vf (Vfo)j (3.30)

where

Vfo)

- 5 () a2 (%) (T) - ST (%) (%)

=1
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v fo\ (VS v fo 1~ 7 [ Ho v fo
et (92) () o ()35 (B)e (3
Zl fo "\ fo 2; "\h/ '\ f
Using the results of Appendix 9.3 we find

s = 3 (5%)5 () -5 (3) () = (%) -5 ()= (%)

e [(58) (52)"4] () -4+ (221 ()

25 (%)

Therefore,

E(C) = {-lwz, (fo’)j (3.31)

As before, 6 =6+ C10 + Cy0? with E(Cy) = 0. Therefore,
A 1 Vfo)
biasin § =X —— ( o
(2 ()}
3.8.3 Generalized least squares
The generalized least squares estimator § minimizes

L § PNL
5@)=3 { [v: fz(fag,-,ié)e)] }

1==1

So, 6 satisfies the set of equations

95
00 |5

o o - i{[yi;g’ ]vfo}+z{ féfo] Vfé}

=1 1

> 0 = an[(foe,-—cl (v fo)) - (CT (vf0)+—;-03‘11001) ]fo (1_201 (Vfi‘o) a>

=1

x((Vfo) + HoCr0 + HoCq0?)

+§ [ 62 _ 2f0€zCI (Vfo)+ C'1 (Vfo)CT(vfo)] U?(;' (1 3 301 <%f2> )
x((Vfo) + HUCIG' + H0020.2)
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Equating the coefficients of powers of o;

% 0 = g(foﬂ—cf(w‘))) (Yl‘l)

0

- - e e
o0 = ;[(foe f (v 5o (#o61 — 267 () (w0))]

’; ch (V fo) + §C1THOCI> (%{9)]

+ i [(fo%2 2foe:iCT (v fo) + CT (v fo) CT (v fo)) ((Vfo))]

f3
0 = B(B)e-rEeer (5) () -Eer () ()
e (58)er (%) () - £ (%) (5 o

SEer(2)e (5) e (%
GACOICORLACILACIICY
- o= [EEET 03

where

4= Sa()a- 15 (F) (F) ea-Ser () (B) e
oy (B et () () -3z (7)o ()
+Z (Vfo)

Thus,

i = & (%) () >(5B) oo ()

1=1

""Z (Vfo) +Z (Vfo> (3.34)
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From the result 4 of Appendix 9.3,
. Vfo) (Vfo)T (Vfo) - (vfo>
— =) X)) = ==
§< fo ) \fo fo ;“’1’ fo
The expected value of C; can therefore be written as
n n 1 n
se)=2{% () 2w (F) -3 (R
o\ fo i=1 fo 24

As before, 8 = 6y + C10 + Co0? with E(Cq) = 0. Therefore,

biasin§ = E() -6y = E(C;)o?

- {5 () Fo () - () o

1=1 i=1 i=1
3.8.4 Data weighted least squares

The data weighted least squares estimator minimizes

=1 y’

So, § satisfies the set of equations 22|, = 0, which can be written as
36 |;

= 1

=0

i

> [tfoss = €T (vfo)) = (CF (o) + 3CT HaCr)o] 75(1 = 206 + 30°¢)
1=1 0

x((7 fo) + HoC10 + HoCo0?).

Equating the coefficients of powers of o;

0 = 3 (o OF (v (T

=1

- a = [5(%) (%fﬂ)} 3o (%2)] e

=1

0 = 3 (fos—CT (V1)) (HOC1 26 (7 fo)s)

=1

- Z(Cz (V fo); + C1 HOCI)fQ (v fo);
0

=1
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n

- Bu()a-rEe () £ () (e
et () (5)-[£59) (3)

e (®)a(E) 0

- = B3]
- Se(f)e-r5a () -Eer () (R)e
gt (38) (%) -3t () (%)

ww = 5 (52 (F) 25 () -L(7)2(F)  ew

23 (%) (%) = (%) -2 ()= (%),

From result 4 of appendix 9.3,

3 (%) (%) 5 (%2) = S (%)

The expected value of C, therefore simplifies to give

E(Cy) = 2{ 22(VfO)+22 (V({O) %iw%i(yﬁ)@)}'

i=1

As before,

i =35 (%) o (5F) - (B}

=1 =1
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3.9 Mean squared errors of the estimators

We begin by proving the following results.

Result 1 If the random errors ¢;’s are independent and follow a distribution that is sym-
metric about zero, then E( MC1CE) = 0 for any matriz M with non stochastic elements;

the matriz M 1is assumed to be of the correct order to allow the matriz multiplication.

Proof: Recall that C; = XY e,( ) Since ¥ is a symmetric matrix,

E(eMCiCY) = MSE (e,-j;k\;e.e (foa)j (%):)2

= MZ (iiE(eiejek) (%);’ (%)Z) X,

7=1 k=1

Since ¢;’s are independent and E(¢;) = E(ef) = 0, we find E (e;MClC;f) =0

Result 2 If the random errors ¢;’s are independent and follow a distribution that is sym-
metric about zero, then E(CTMC,CT) = 0 for any matriz M with non stochastic elements;

the matriz M is assumed to be of correct order to allow the matriz multiplication.

Proof: The proof follows as in the previous result.

Result 3 If the random errors €;’s are independent and follow a distribution that is sym-

metric about zero, then for all four estimation methods, vectors Cy, and C, are uncorrelated.

P-oof:

We recall that, with an error of approximation O(o?), each estimator satisfies the approxi-

mation 6 = 0 + Cy0 + Cp02, where

o= (B0, [Be(3) ] -=[Be (32)]

1=1 x =1 1=1

=[S (), (5))] 4=s
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for the matrix A defined in each case. Since E(C;) = 0, we have Cov(Cy,C2) = E(C2CY).
Now on substitution for A, it follows that Cov(C;,C;) = 0.
Mean squared error

Tor small ¢ we showed that 6 = 6 + Cr0 4+ Ca0? + O(0>), where

B, B8]
e = B

and Cov(Cy,C2) = 0.

Ci

il

711
Since ¢;’s are independent and V(¢;) = 1, we find Var(C)) = [ i=1 (lf&) (zf'of*) ] '

7] 2 4 fn Yo <Zlo ! 2 4
Thus, Var(8) = Lo+ O(0?) = l i (76_),( & )i 0%+ O(o?).
The mean squared error is given by MSE(f) = Var(d) + (bias)®. The biases and the
variances of the estimators are summarized in the Table 3.1; the resulting mean squared

errors are correct to the order O(o?). In Table 3.1,

Method of Bias Var(6)
Estimation

ML > { iz (w1 — 1) (2&); ~ 2 Xic Wi (yfo&);} o Zo?
QL z {—- Yo W2 (Vf") }a Lol
Gis | 3{zh (%), - T v (%) - S B v (B2) ) o° s
DWis | {2, (), + 20y s (), - 1Sty () ] |5

Table 3.1: The biases and the variances of the estimators for single curve fitting

- - [,

/1

p = Number of components of 8

Wy = K‘Tfofo)i(%)jz}
and wy; = tr K%),—E]'
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3.10 Examination of the assumptions used in estimating the
bias

Now we describe a Monte Carlo study that examines the approximation § = 8y +C10+Ca02,
in our setting. If this assumption holds, then a plot of each of the components of (i-:l) Vs
o should be a straight line with the intercept and slope the corresponding components of
C] and Cz.
1. We chose o to be the sequence of values that divide the interval [0.0001, 0.3] into 20
equal parts.
2. We chose the dose levels to be the same as those used for the data set QNL84-2 of
Berger and Huntley {12]. This dose valixs are presented in Table 9.1 of Appendix 9.3
where they are labeled as P10. Let z4....,z, be the chosen dose values; for this data

n = 16.

3. We set the parameters at a; = 142800.7, ap = 122.737 and a3 = 391.9965. These are
the quasi-likelihood estimates obtained for this data set. (The complete data set can

be found in Berger and Huntley [12].}

4. We generated a single set of n standard normal random variates!. Let this sample be

€15---:€n-

5. For each o, a sample of y values were then generated according to the relation

¥i = f(2:,001+ 0¢;) for f(z;.8) = a; {1 — exp[—(z; + a2)/a3]}.

6. The procedures described in Sections 3.2 - 3.5 were then followed to estimate the

parameters in the model
¥vi = f(zi,0)1+0¢;) i=1,...,7n.
Thus, we have an estimate for # corresponding to each value of o.

Figures 3.1 - 3.6 illustrate the plot of the kth component of (§ — 6p)/o vs o, (k= 1,2, 3).

'We used the command “morm™ in the statistical package “S-plus” to generate the standard normal
random variates.
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Figure 3.4: Plot of 152—;——"2-1 vs 0: GLS and DWLS
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Conclusions:

1. Based on the Figures 3.1 - 3.6, we conclude that when o is smalier than 0.1, the ap-
proximation 6 = 69 + Cy0 + C0? holds for all the estimation methods we studied.
This justifies the validity of the above approximation for data collected in thermolu-
minescence studies.? The same figures demonstrate that the approximation does not

hold for the methods ML, GLS and DWLS when o is larger than 0.1.

2. We also computed estimates for the kth components of C; and C; by regressing the
kth component of (6 - 6o)/o on o; (k = 1,2,3). Using the known parameter values
and the ¢’s, the true values of C; and C, were also computed using the formulae
derived earlier. For all four estimation methods the regression estimates were found
to agree with the values from the formulae when the regression is based on the values
of o less than 0.1. This justifies the validity of the approximation 6 = g+ Cyo+ Ca0?
for thermoluminescence data. Using all the points on the plots in the regression, in
particular points with 0.1 < o < 0.3, the ML, GLS and DWLS estimates for C, were
found to show discrepancies from their true values whereas quasi-likelihood estimates

were still found to agree with the true values.

3. We repeated the study by setting the parameters at § = (96428.32,193.3713,761.6514).
These are the QL estimates for the bleached data set QNL84-2 (Berger et. al. [12]).
The dose values were set at the doses used in the same study. These dose levels are
presented in Table 9.1 of Appendix 9.3 where they are coded as P1B. The results

were similar to what we observed for the study reported earlier.

2Usually for data collected for thermoluminescence studies o is around 0.03.



3.11 Assessing the validity of the formulae for estimating the

biases

In deriving formulae for the biases of the estimators we assumed o is small and the quantity
Q?Q varies roughly linearly with . While the study described in Section 3.10 indicates no
evidence for possible violation of this assumption for ¢ in the range of real data sets, as
a further diagnostic, we computed the biases from a simulation study and compared with
the biases from the formulae. In contrast to the study we described in the previous section
here ¢ was fixed at values for which we wish to study the biases. The parameter vector
6o = (a1,02,a3) was set at a3 = 142800.7,a, = 122.737 and a3 = 391.9965. The dose
values used are presented in Table 9.1 of Appendix 9.3 where they are coded as P1U. Using
each sample of ¢;’s a sample of y;’s were generated according to y: = f(z;,00)(1 + 0¢€;).
Using each of the four methods # was estimated from each sample. The true value of
G, = [ T (szq ;(zf? j]—l & (Yff‘l)1 was computed using the ¢;’s generated in

step 3. The biases from the simulation study were computed as the average of the values

for (8 — 8o ~ C10).

Tables 3.2 to 3.4 presents the results of the Monte Carlo study based on m = 10000

simulations. In the tables:

Br =  True small o bias using the formulae derived in Section 3.11
B, = the average of the - 0o — C 0 values.
Remarks:

It is worth mentioning why we take the average of the differences ( 6 — 8y — C10), but not

(9 — 65). Let

B, =  the average of the m values of (6 — 8, — C10) = the average of C,0?,
and B, = the average of the m values of (§ — 6y} = the average of Cyo + Co02.

We note that for large enough m, the average of the m values of (8 — 8y — Cy0) should

be close to E(é — 0p — Cyo). This is the bias of é since E(C,) is zero. Theoretically, both
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averages B, and B, should provide reasonable estimates for the bias in 6. However, the large
variability in C; produces a large variability in B,. In other words, Var(Bg) > Var(Bl)h

Therefore, we report B, as the bias from the simulation study.

o ML QL GLS DWLS
Br B; Br B; Br By Br B;
0.005 4.87 4.80 5.73 3.71 7.97 7.68 1.64 1.77

0.01 19.49 19.65 22.92 22.86 31.09 31.24 6.58 6.54

0.02 77.95 77.25 91.68 91.63 | 124.36 | 123.78 | 26.32 27.71
0.03 | 175.40 | 180.01 | 206.28 | 209.44 | 279.82 | 284.52 | 59.21 60.70
0.05 | 487.21 03.30 ; 573.01; 590.34 | 777.28, T794.14 | 164.48 | 196.62

0.1 | 1948.85 | 2089.49 | 2292.04 | 2502.18 | 3109.10 | 3366.71 | 657.91 | 1247.42

on
[*N

Table 3.2: Comparison of exact bias and estimated bias of &

o ML QL GLS | DWLS

Br{ By| Br| B | Br{ B| Br|, B
0.005 | 0.002 | 0.002 ! 0.004 | 0.004 | 0.002 | 0.002 | 0.007 | 0.007
0.01 | 0.010 | 0.010 | 0.016 | 0.016 | 0.010 | 0.010 | 0.028 | 0.027
0.02 | 0.039 | 0.039 | 0.063 | 0.063 | 0.039 | 0.039 | 0.111 | 0.112
0.03 | 0.088 | 0.091 | 0.142 | 0.143 | 0.088 | 0.091 | 0.249 | 0.249
0.05 | 0.243 | 0.260 | 0.393 | 0.404 | 0.243 | 0.260 | 0.692 | 0.710
0.1 | 0.974 | 0.994 | 1.573 | 1.599 | 0.974 | 1.001 | 2.770 | 3.118

Table 3.3: Comparison of exact bias and estimated bias of &;



o ML QL GLS DWLS
Br B Br B Br B, Bt B,
0.005; 0.034; 0.033: 0.041 | 0.041| 0.03¢4| 0.034 | 0.054 | 0.055

0.01{ 0.136 | 0.137; 0.163}| 0.162| 0.136 | 0.137 | 0.217 | 0.217

0.02| 0543 | 0.543 0.652} 0.652| 0.543 | 0.543 ! 0.868 | 0.868

0.03 | 1223 1254} 1370 1488 )| 1.143 | 1.254 | 1.826 | 1.971
005} 3397 ! 3.518 4.074 | 4.198 | 3.397| 3.516 | 5.428 | 5.694
0.1 13.587 | 14.673 | 16.294 | 17.884 | 13.587 | 15.283 | 21.710 | 27.051

Table 3.4: Comparison of exact bias and estimated bias of &3

Conclusions

Based on the study we draw the following conclusions.

1. The biases from the simulation study agree well with the biases from the derived

formulae when o < 0.1.

2. For the parameter a;, the DWLS estimator appears to have the least bias whereas

the GLS estimator appears to have the largest bias.

3. For the parameters az and az, the ML and GLS estimators appears to have almost

the same bias.

The above results were obtained using a sample of size 16. A detailed study comparing the

biases of the four estimators is presented in Chapter 4.

3.12 Worked example

We developed software using the statistical package “S-plus” (and also in FORTRAN) to
implement the suggested methodology. Next we demonstrate the theoretical results derived

in this chapter using a real data set. The data set used here can be found in Berger et.



al. [12], where it is coded as QNL84-2. Parameter estimates for this data set are given in

Tables 3.5 and 3.6.

In Tables 3.5 and 3.6, MSFE stands for mean squared error. For maximum likelihood
we have used the maximum likelihood estimate for o. For the other three methods we have
used the unbiased estimate for o. The biases in Tables 3.5 and 3.6 are computed using the
formulae given in Table 3.1 with parameters replaced by estimates; so, for example, the bias

of ML estimates is computed by using ML estimates in Tables 3.5 and 3.6.

Data para. Description Method
ML QL GLS DWLS
QNL84-2 o Estimate 142852.8 | 142800.7 | 142973.0 | 142461.8
(Unbleached) bias 150.29 | 237.51 | 323.43 | 64.82
(n=16) std. error (se) 4117.15 | 4557.60 | 4573.13 | 4546.62
bias/v/MSE x 100% | 3.46 5.20 7.05 1.43
a; Estimate 123.18 | 122.74 | 123.18 | 121.86
bias 0.10 0.16 0.10 0.29
std.error (se) 6.09 6.73 6.76 6.70
bias/vVMSE x 100% | 1.31 2.38 1.48 4.32
as Estimate 393.07 | 392.00 | 393.07 | 389.92
bias 1.27 1.69 1.42 2.24
std.error (se) 27.79 30.68 30.82 30.56
bias/VMSE x 100% | 4.13 5.50 4.60 7.31
o Estimate 0.029 0.032 0.032 0.032

Table 3.5: Parameter estimates for the QNL84-2 unbleached data set
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Data para. Description Method

ML QL GLS DWLS
QNL84-2 a Estimate 96144.8 | 96428.3 | 96301.7 | 96725.0
(Bleached) bias 983.82 | 1515.38 | 1483.55 | 1615.75
(n=13) std.error (se) 8322.65 | 9611.64 | 9511.99 | 9891.64
bias/vMSE x 100% | 11.72 | 15.57 | 15.41 | 16.12

az Estimate 192.55 | 193.37 | 192.54 | 195.18

bias 0.53 1.02 0.69 1.70

std.error (se) 16.34 18.75 18.62 19.14

bias/vVMSE x 100% | 3.24 5.43 3.70 8.85
a3 Estimate 756.62 | 761.65 | 756.60 | 772.76

bias 15.30 22.83 19.86 29.50
std.error (se) 123.42 | 142.47 | 140.60 | 147.50

bias/vVMSE x 100% | 12.30 | 15.82 | 13.99 | 19.61

o Estimate 0.040 0.046 0.046 0.046

Table 3.6: Parameter estimates for the QNL84-2 bleached data set

3.13 Discussion

In this chapter, we discussed fitting the saturating exponential model introduced in Chapter
2. In sections 3.2 to 3.4, we derived Maximum Likelihood (ML), Quasi Likelihood (QL) and
Generalized Least squares (GLS) estimates for the parameters. In Section 3.5, we obtained
estimates from a procedure that we referred to as Data Weighted Least Squares (DWLS).

In Section 3.6, we obtained maximum likelihood estimates assuming photon counts follow

a gamma distribution.

In Section 3.8, we derived formulae for the biases of the estimators assuming:
1. the relative error in a single measurement o is small.
2. when o is small, § can be approximated by b = 0y + Cr0 + Caro?.
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In Section 3.10, we examined this approximation from a Monte Carlo study. We found
that, when o is small (¢ < 0.1), all four estimators satisfy the approximation 6 = 6, +
C10 + C202. We also learned that the quasi-likelihood estimates satisfy the assumption for
a wider range of o compared to the estimates from other three procedures. Since data sets
collected for thermoluminescence studies have small ¢ (usually < 5%), we conclude that
this approximation holds for all four estimators in our model.

In Section 3.11, we computed the biases from a simulation study and compared with
the biases from the derived formulae. We found that the biases from the simulation study
agree well with the biases from the formulae when o is small (¢ < 0.1). From the same
study we found that, for the parameter «;, the DWLS estimator has the least bias whereas
the generalized least squares has the largest bias. For the parameters o, and a3, the DWLS
estimator was found to have the largest bias. For the parameters a; and a3, the maximum
likelihood estimator and the generalized least squares estimator were found to have almost
the same bias. These results were observed using a sample of size 16. A detailed study on
comparing the estimators will be offered in the the next chapter. From the results of the
real data set we notice that the relative biases of all parameter estimates are small compared

to their standard errors so that the biases are all negligible.
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Chapter 4

Comparison of the estimation

procedures

In this chapter, we compare the estimators discussed in Chapter 3. Two types of asymptotic
results are of interest: behavior of the estimators as the sample size n becomes large and the
behavior of the estimators as the relative error in a single measurement o becomes small.
The data sets collected in thermoluminescence studies are frequently small in size. (The
partial bleach data sets we analyzed had » in the range 15 -30.) Moreover, the estimate
of o is usually small (in the range 0.02-0.05 in most cases). Thus, for thermoluminescence
studies, a comparison of the methods as ¢ — 0 is more appropriate. For completeness, we
investigate both asymptotics.

In Section 4.1, we examine the large sample asymptotic behavior of the estimators.
We show that the quasi-likelihood estimator and the maximum likelihood estimator are
consistent for §. We also provide distributional approximations for the maximum likelihood
and quasi-likelihood estimators. In Section 4.2, we analyze the large sample behavior of our
small o approximation to @ — 6. In this limiting case, we show that the quasi-likelihood
estimator and the maximum likelihood estimator are mean squared error consistent. We
also show that, in general, the generalized least squares and the data weighted least squares
estimatoi_ nave biases that do not vanish even asymptotically. However, for the parameter

of interest in our model, generalized least squares and data weighted least squares were
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also found to produce asymptotically unbiased estimators. In Section 4.3, we compare the
biases of the estimators in small samples assuming o is small. For realistic size samples,
biases of all four estimators were found to be negligible relative to the standard errors of

the estimators. Section 4.4 summarizes the chapter.

4.1 Large n, fixed ¢ asymptotics

Here we analyze the large sample asymptotic behavior of the estimators when o is fixed
and n — cc. We prove that the maximum likelihood estimator and the quasi-likelihood
estimator are consistent and generalized least squares and data weighted least squares are
not.

Notation:
Let f(8) = (f1(8),- .- f»(0)) be a real valued vector function. Assume that each component

fi(8), i=1,...nis defined on R*. Let Df(6) be the matrix of derivatives of f with respect

to the components of # and || f(6) ||>= Y%, f*(8) be the Euclidean norm of f.

We use the notations Apin [A) and Apax [4] to denote the smallest and largest eigenvalues

of a given matrix A.

We begin by examining the following result which is useful in proving the consistency of

the maximum likelihood and the quasi-likelihood estimators.

Result 1 Let Q@ C R* be a bounded open set. Let OQ denote the boundary of Q. Let
Q = QU 09 be the closure of Q.
Let f: Q+— R be such that:

1. f is continuous on .

2. f is differentiable in Q.

3. Df(8) is not singular in Q.

4. 36" € Q such that, || f(6*) ||<inf {|| f(O) || | &€ 0Q}.

Then, 3 6 ¢Q such that, f(8) = 0.
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Proof:
Note that the function g defined by g(8) =|| f(8) |*= =, f#(9) is differentiable in Q.
Since f is continuous on §, g is also continuous on $!. Therefore, 3¢ in @ such that
g() is a minimum. Condition 4 implies § € Q. Therefore, Dg(é) = 0. This implies that
Df(6)f(6) = 0. But D f() is not singular. Therefore, f(#) = 0; hence the theorem.

Now we apply the above result to see that the maximum likelihood and quasi-likelihood

estimators are consistent. Writing f; = f(z;,9), the maximum likelihood estimates (é,c’r)

solve the set of equations H,(0) defined by

""Z[sz]'}"_gz e 2f1 Vft 22 Vft“o (4'1)
=1 f d d i=1 'f i=1
and
——+;5§:[y’_ }vf,=0. (4.2)
The quasi-likelihood estimator 8 solves
> [———-yij;f’] v fi=0. (4.3)
=1 ?
So both estimators solve a general equation of the form
Ho(8) = Zh (¥:,0) = (4.4)
t"'l

Under the assumption that y; = f(z;,6)(1 + o¢;) with E(¢;) = 0 and Var(¢;) = 1 we have
E(hi(Y;,8)) = 0 and Var (hi(Y;,0)) < oo.

Result 2 Let Y;,Y,,...,Y, be independent random variables with mean E(Y;) = f(z;,0)
and V(Y;) = 02f%(z;,0). Under the following assumptions, the mazimum likelihood and

quasi-likelihood estimators are consistent for 8.



Assumptions:
1. The function h;i(Y:, 6} is differentiable in § for each Y.

2. Asn — oo, D = (LT%, Dhi(6) (5Xi, Dhil6o)) — M, where M is a

positive definite non - random matriz.

3 Asn — o0, Var(Hn.(6)) = 132 Var(h;) — Z(6), where () is non-

singular.

4. 3T: such that 157 T: isOy(1) and there ezists a 6 > 0 such that
| DRhik(67) — Dhir(6p) ||< T; 167 — o], whenever |8 — 6o < §;
here h;; is the kth component of h;.

Proof
Let 6 be the true parameter value. Let L, be 2 real number that depends on n such that

Ly s o(1) (eg. L, = log(n) or L, = n/®) and L, — o, as n — c.
iy

Let
9:{9; 16— 6| < fﬁ}
on = {01 Io-al=x].
and

Q’:Quﬂﬂ:{ﬂ | ;9—9015%}.

Let A,(L,) be the event that
Il Ha(Bo) | < am'{g; HaO)) | 10— 60| = _\7__}
n

Take f = H,(0) in Result 1. Then, f is continuous in 2 and Assumption 1 implies f is
differentiable in €2. To apply Result 1, we need to prove that

1. DH,(0) is nonsingular in € and
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2. P(A,(L,)) — 1, as mn — oo, or equivalently, for any given € > 0, a positive integer

no(e€) exists such that P (A,(L,))>1—¢, forall m > ng(e).

Proving Condition 1:

We prove that DH,{0) is non-singular in Q by proving (DHn(G))T (DH.(6)) is uniformly
positive definite in Q. Equivalently, we prove that z7 (DHn(G))T (DH,(6))z is positive
for arbitrary z such that z7z = 1. Let Q,(8) = X (DH.(0))" (DHA(8)) and Qn(bo) =
1 (DH.(60))7 (DH(6p))- Then, z7Q,(8)z = 2T (Qn(8) — @n(60)) z+2T Qn(60)z. Assump-
tion 2 implies that z7Q,,(6)z > %Amjn [M], for all z and for all sufficiently large n.

Now consider

7 (Qn(8) — Qu(80)) = (DHn(8) — DH,(66))T (DH.(6) — D Hn(60))
+(DH,(8) ~ DHn(60))" DHa(60)
+ (DHo(60))" (DH.(6) — DH,(80)).

Let U; and Vi be the jth row and k th column of the matrix -‘},:(DH,;(B)— DH,(6p))

respectively. Consider the inner product of I/; and V. Using the Cauchy Schwarz inequality,
WU Ve <1l U5 10 Vi T
Nov: observe that

) U li< 3" 11 th row of (Dhi(6) ~ Dhi(6)) || < = > T8 - 6l

=1 =1

- o{%)

Thus, the inner product of U; and V; is of order O, (%—?‘-) Similarly, since 7’;DH"(00)
is O(1), we find that the term (DHn(OO))T (DH,(6) — DH,(8p)) and its transpose are
o, (é%) Recall that (%) is o(1). Consequently, for large enough =, for all z,

ern(G)z > S Amin [M] + 05(1)

1
2
1
—Amin .
o [M]

Since M is positive definite Apmin [M] > 0 and hence z7Q,(8)z > 0. Thus,
-f;(DHn(ﬁ))T (DH,(8)) is uniformly positive definite in Q.
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Proving Condition 2:

Let §* be such that

| Ha®) li=in { || Z(8) ] | w-oo:=—%}.

Then, 6 = 6o + Lo, for some v such that || v [|?= vTv = 1.

/n

Taylor expansion of H,(6*) around 8 gives
H (o +—L-’iv) = H,(60) + DH,(6 )-L-’iv+R
n 0 V/T_l - n\Y0 n\vo \/;l_ ns

where R, is the remainder term.

Thus,
| DH..(60) fe | = [ Ha(bo+ %v)—ﬂn(eo)—zzn I
< || Ha(fo+ %v) 1+ 1| EalBo) |+ 1| Ba |l -
Therefore,
| Ha(6o + %) | > || DHA(8) fv = || Hal60) || ~ || Bn |l -
Use the fact that || v ||= 1 to see
| DE(G) 220 || = /o T(DH, (60 (D Bo))v

> \/UT,\mj,, [(DH.(60))" (DH(80))] v %

_ V/,\lm-n [(DHn(eo))T(DHn(HO))] _L\/_%’

SV mm[(DHn(%)) (DHA(60))] Ln

= Kz—; —Dh; (90)) (; —Dh; (00))]

_ ml(iim (eo)) (yn_: %Dh,.(go)y

\ =1 =1

Assumption 2 implies that the eigenvalues of D = (37, 1 Dhi(60))T (L% £ Dh:(65)) con-

verges to the eigenvalues of M, as n — oo. So, for large enough =, || DH,,(00)\—/%U [1>

/
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%\/ AminjM]L,. The right hand side of this inequality can be made arbitrarily large by
choosing arbitrarily large L,,.

Assumption 3 and Eg,(H.(60)) = 0 imply Hn(6p) = Op(1). Therefore, for large enough n,

| Ha(o + fﬁ) 12 5y AminlM) L~ Op(1)= 1| R (4.5)

Now consider the remainder term

L N Ln
R, =H, (00-}—\/_ ) (90)—‘\/—1;-1-.

Let R,; and H,; be the k — th components of R, and H,, respectively. Then,

H.(8) -

L. \ L.
Hot (00 + —ﬁfo) = Hoslfo) + DHr(6.) Fv,

where 0. = hg + (1 — h)(6o + L\/%’b), for some 0 < h < 1. Thus,
| Bak it=|| [DHnk(6.) — D Hnk(60)] \/—v I

T

Since v* v = 1, we find

| Rok | < 1} DHoi(6.) — DH,x(60) ”LTn‘

= | \/_(LDh,k(a) ZDh,k(b’o)) l

i=1

Bl

Now Assumption 4 implies

1, L2
<=) Ti—*=.
| Bak i< n ; t J/n

Take L, = n'/%. Then, g’% is 0,{1) and from Assumption 4, 2 3"7_, T; is Op(1). Therefore,
we find Ryk is 0,(1). For this L,, Equation 4.5 therefore implies
L, ..
| Ha(o + —=2) lI2

= VAmin( M) 2115 = 0,(1) = 0,(1) (4.6)

Since the right hand side of Equation 4.6 is free of v and || H.(fo) [[= O,(1), we find

N}

i
P (.nf {;; H,(0 + %v} 1 Ty = 1} >|| Ha(60) 1;) e lasn — o0 (4.7)

Then, Result 1 implies the existence of 0; such that ]0; -] < % = 113—%;0—, and H,,( 0;) = 0.

Thus, we have established the existence of a root of H,(#) in a neighborhood of ;.
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Proving uniqueness

Suppose there exists more than one root of Hy(#) in 2. Let #, and &, be two such distinct
roots. Then, || 6; — 63 |j> 0 and H,(6,) = H,(6,) = 0. Since 6,0, €, || 6; ~ 82 |I< 2%.

Taylor expansion of H,(¢,} around 8, gives
H,(0\) = Hno(02) + (DH(61)) (61 — 02) + R,

where R, is ofj| 6, — 02 ||) = o(%).

Consider

| (DHA(61)) (01 = 6) I = (01 — 65)7 DHo(61) (DHA(6:1))T (61— 62)
> Amin [(DHA(61))" (DHn(6:))] 11 61 — 62 II%,

From the proof of Condition 2, it follows that DH,(8;) (DHn(Ol))T is positive definite.
Therefore, Amin > 0. Since R, is 0,(]] 61 — 0, ||), with probability tending to 1, || Bn ||<

Vamin |61 — 62 ] /2.

Now consider

i

| DHA(6,)(6, — 62) + R, ||
| DH,(6:)(61—62) || = || Bn ||
> Vmin |6 —62] /2

| Hn(61) — Hz(62) ||

v

Since || 6; — 6 ||> 0, this contradicts || H,(6,) — Hn(82) ||= 0. So, there do not exist 8;,6;
in 2 such that 6, # 0; and H,(6,) = H,(62) = 0.

Let 6, be the unique root of H,(8) = 0. As |6,, — 6] < L"\/;T’ given any € > 0, a positive
integer ng(e€) exists such that, |8, — 8p] < ¢, forall n > ng(e) (eg. take any integer
n > ;,01—,5) This implies that 8, -2~ 8. Thus, under the listed assumptions, we have
established @y5; 2 6o, and éQ 1 > 6y. Hence, maximum likelihood and quasi-likelihood
estimators are consistent for 6.

Now we examine the assumpticns that guarantee the consistency of maximum likelihood

and quasi-likelihood estimators for our model of interest.
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Quasi-hikelihood

From the quasi-likelihood estimating equations h;;(8) = O—f}& (W fi)x - Thus, for quasi-
likelihood Dh;x(8) is of the form Dh;i(0) = y:G1:(6) + Gg;(ﬂ),lwhere G1i(0) and Gy;(6) are
polynomial functions of f(z;, #) and 1/ f(z;,8). For Dh;(8) to be bounded we therefore
need to find §, K, e such that forall z > 0, 0< €< f(2;,0) < K. whenever | — 8] < 6.
For saturating exponential model this is clearly true provided only f(0,8) > 0. Moreover,
we must assume the existence of M such that Var(Y;) < M for all i. Note that if f(z;,60)
is bounded over all z > 0 and @ close to 6y, as is the case for saturating exponentials, then,
when the model equation y; = f(z:,8)(1 + o¢;) hold with iid ¢; the variance condition is
simply Var(e;) < oo.

For the regeneration model that we discuss in Chapter 6, we need the additional condition
that 1 37, z; is bounded. This again is clearly satisfied for sensibly chosen designs.
Maximum likelihood
For maximum likelihood Dhi(8) is of the form Dh;(8) = y2G1i(6) + 4:G2:(8) + G3:(6),
where again G1;(8), G2i(0) and G3:(8) are polynomial functions of f(z;,8) and 1/ f(z;,9).
Thus, in this case in addition to the conditions discussed for quasi-likelihood we need the
existence of M such that Var(Y?) < M. So, if f(z:,80) is bounded over all z > 0 and 6
close to 8o, then when the model equation y; = f(z;,0)(1+o¢;) hold with iid ¢; the variance
condition is simply E(€!) < oo.

Generalized least squares and data weighted least squares

For fixed o, the estimating equations satisfied by the generalized least squares and the
data weighted least squares estimators are not unbiased (For GLS it is easy to compute
the expected value of the estimating equations; for DWLS this is difficult in general but
possible for the gamma model. In both cases the expected value is a multiple of 37, (%ob-)
which is 0.). So, generally the generalized least squares and the data weighted least squares

estimates will not be consistent.
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4.1.1 Distributional approximations for

Quasi-likelihood estimate
If E(Y;) = f(zi,0) the quasi-likelihood estimating equations are unbiased. General large
sample considerations will then establish that, in large samples and assuming Var(Y;) < oo,

(6 - 80) ~ MVN (0,E [-H,,(8)) " Var (Ho(6)) E [-H,,(0)] ") ,

where H,,(8) is the derivative of H,(f) with respect to 0. It is easy to see that E[H, (8)] =
T1-1
o (_i) (Yi) . Therefore, E[H.(6)]™! [ =1 (Zf‘{)i (_v?[)} =X

Var (H(6)) = Z VaT£Y) ( 7 ),— (vff)T

_—1 z

Also notice that

Thus, we find

(6 -6, ~ MVJV(OE[ZVM(Y)( )( )J )

1=1 1 )

For Var(Y;) = 0% f*(z;, 6) this simplifies to

(6 - b6) ~ MVN (0,0°%) .

Maximum likelihood estimate

Recall that maximum likelihood estimates (4, &) solve the set of equations H, () defined by
Equations 4.1 and 4.2. ¥ E(Y;) = f(z:,0) and Var(Y;) = 0®f?(z;,0) these equations are

unbiased. In large samples, assuming E(Y;*) < oo we find

6-0
, ~MVN (0, E[-H,(6)] ' Var (Ha(6)) E [-H,(6)] "),
6—o
where
[ _ou 221 |
(0)= ! 39567 2680
82 82
L 8Tac 857 |
As we showed in Chapter 3, E( 36557 ) DTAD, where D is the n X p matrix with

(2, 7)th entry g% and A is the diagonal matrix with ith diagonal element 2/ fZ + 1/(c?f?).
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So, DT AD can be written as (Jr) (E.:; (%ﬁ) (Efi)T)

Now consider

s =5 (7 (), - F5 (455) (F),

It is easy to see that E i~%} 2y (Zfi) .
d E

2
: 8% _ n 35 (y—fi .
Since 53 = % — X Li=1 ( e ) , we fin

Now consider
Var (H,(9)) = ii Var (5—";) T
(Cov .
The components of Var (H,(#)) are computed as follows:
var(3) = 2 (U5 (9).(5),
e () (vf’) (‘”)T
+;;zzc [ (nyij) Vfo }
- 55, +a4zw(v 1) (58) (32
042E[(yf,f)}(vf’),.(ff’
co(Gogr) = 2527 (P) 5527 ] ()

and

Var (gi) &%T;Var [(yi }: fi)z] .

Now assuming E [(Y, - ) Ji =0and F [(Y, - f;)4] = 304 f3 (the third and fourth moments
of normals) the components of Var(H,(#)) simplify to give

() - B2, S
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and Var(al) 2.

So for this case, F(—H,(8)) = Var(H,(0)). Therefore, the variance covariance matrix of

(6,5) reduces to
-1

o | ()T (), (%) 25 (F),
(E ["Hn(g)]) = [ 2 ¢ (S-Zfi)T d %

1.._. -
o 1 i

Thus, the variance covariance matrix of 4 is

- () E) G

Writing > 37, (2}[) ( ) the above variance can be rewritten as

vir=[53(%), () +{[D),- DN, - BN )| -

=1 =1
(4.8)

Remarks

et ——aT
1. Observing that the term {Z,_l [(yfi) - (%-50-)] [(Yff) - (fo‘l)] } is positive def-
inite, we note that the variance of the maximum likelihood estimator is smaller than

the variance of the quasi-likelihood estimator, provided the errors have the same first

four moments as the normal distribution.

2. If o is small, ignoring the second term in Equation 4.8, we find that the above variance

covariance matrix reduces to the variance covariance matrix derived in Chapter 3,

based on small 0 asymptotics.

4.2 Small ¢ large n behavior of the estimators

In this section, we analyze the large sample behavior of our small o approximations to § —6o.

In other words, we let 0 — 0 first and then n — oco. The more general problem in which
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n — 0o and 0 — 0 simultaneously is noi considered here. Another view of the material
which follows is that we analyze the large sample behavior of ¢'; and C3 in our small ¢
expansions, 6 = 6y + Cio+ Ca0? + 0(03); see Chapter 3.

Behavior of C;

Consider first the large sample behavior of ;. Recall from Chapter 3 that Cy is the
same for all four methods of estimation. If our model has the correct mean structure, i.e.,
E;) = f(z;,0) then E(C}) = (; Ei;in addition, Var(Y;) = 02 f%(z;,8) then Var(C)) = X,
where ¥ = [Z,’-‘zl (-V?—({Q)i (—Vf—oﬁl)i } . A natural and mild assumption is that as n — oo,

{%g (_V}{E)i (%{9)?] ) — X41(6),

where ¥,(#) is non-singular. In this case, neglecting terms of order o?, V(8 — 8) has
approximately a N (0,02%;(8)) distribution.

Behavior of (),

For quasi-likelihood we have

-1

o= [5(59), (5]

where
5 (1) 25 (58) () eve- S (%), (29
3o (9, (), & (% )-—ZCI( .6 (F),
and )
E(Cg):Z{—-;-Zw (‘j{")} (4.10)
1=1 t

The weights wy; are each linear combinations of the entries in ¥ and so on the order,
typically, of 2. The matrix ¥ is on the order O(1/n) (see also Halbert [34] (page 15)).
Thus, E(C3) will be O(L). Examining Equation 4.9 we see that for designs which keep

f(z;,00) away from zero, a law of large numbers may be expected to apply to C; yielding

Cz = O,(1/n).
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In the case of maximum likelihood, C; (see equation 3.25) contains the term

2{Sa (%) - (£9) (£() )}

which is 0,(1/+/n). The expected value of C; for maximum likelihood is

E(Ca) = z{ 2( . _) (V:‘o)i _ %m s (Y}%)} (4.11)
The weights w; ; are also linear combinations of the entries in ¥ and are therefore on the
order, typically, of L. Thus, E(C;) will be o(d).

Therefore, for quasi-likelihood and maximum likelihood estimators E(8 — o) is O(n™1),
and Var(d) = Var(fo + C1o + C20?%) = Zo? + O(o?), which is O(n~!). Consequently, for
o small and n large, the maximum likelihood estimator and the quasi-likelihood estimator
are mean squared error consistent estimators for 6y (see Serfling [56]; technically we have
established this only for a limit in which ¢ — 0 first.

Turning to generalized ieast squares and data weighted least squares the situation is
somewhat different. In Equations 3.33 and 3.39 we see that for these estimators E(Cj)
contains terms such as those above in Equations 4.10 and 4.11 which are O(1/n) but in
addition a scalar multiple of the term ¥ 5 7 ; (sz‘l)i which appears to be O(1).

For response functions of the form f(z,6y,---,6,) = 01 f*(62,---,0,), where f* is some

function that does not depend on 6, it is easy to see that

(—v?]il: EETW-){

7
and
2_1:[21:: (‘v—fg) (ﬂﬂz : gy (%L)T :
SN Jo NS D}IE?‘—* (zfél): = (%Li(zfi—)’
Thevrefore,
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Thus,

61
B
0

The crucial term in C; giving rise to the O(1) component in E(C,) is Y%, ¢ (%) ,
which will normally be (6; 0---0)7 +0,(1/y/n) (for ¢;’s with four finite moments). Hence,
to order o2, 6, is not asymptotically unbiased but all other entries in § are asymptotically

unbiased.

For our model p = 3 and 6, = a;. We thus have for generalized least squares the result

ar
Cz = 0 + OP(]‘/\/”_LL
0
and for data weighted least squares
—20:1
Co=10 + O0,(1/v/n).

0

Hence, to the order 02, generalized least squares and data weighted least squares estimators

for a1 are not asymptotically unbiased but for a,; and a3 they are.

4.3 Small ¢ asymptotic behavior of the estimators in finite

samples

For reasons we mentioned earlier, a comparison of the estimators in finite samples as ¢ —
0 is of more practical value for thermoluminescence studies. Since for small o, all four
estimators have the same error of estimation, here we compare the biases of the estimators.
A comparison of the biases using the derived formulae is not very obvious. Instead, we used

the derived formulae to compute the biases of the estimators in some arbitrarily chosen
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cases. The results obtained for a selected few cases are given in Tables 4.1-4.4. Similar

results were observed for the other cases.

The results given in Tables 4.1 and 4.2 were observed setting the parameters at
01 = 142800.7, 0y = 122.737, a3 = 391.9965 and o = 0.029.

The dose levels were fixed at (0,120,240,480,960). These are the quasi-likelihood estimates
and the dose levels for the unbleached data set ‘QNL84-2’ given in Berger et. al. [12]. The
first sample of size 10 was chosen by taking two replicates at each dose level. The rest of the

samples were obtained by each time doubling the number of replicates at each dose level.

n ay Q2

ML | QL | GLS|DWLS | ML | QL | GLS | DWLS
10 | 200.1 | 228.5 | 284.2 | 117.0 | 0.14 | 0.23 | 0.14 0.40
20 |100.1|114.2|202.1| -61.610.07|0.11| 0.07] 0.20
40 | 50.0 | 57.1|161.1| -150.9 | 0.04 | 0.06 | 0.04 0.10
80 | 25.0| 28.6|140.6 | -195.5 | 0.02 | 0.03 | 0.02 0.05
160 | 12.5| 14.3 |130.3 | -217.9 | 0.01 | 0.01 | 0.01 0.02

Table 4.1: Comparison of the biases of &; and G3: Example 1

n o3
ML | QL | GLS | DWLS
10 1149|178 | 1.49 2.36
20 | 0.7510.89| 0.75 1.17
40 10.37 ;0.44 | 0.37 0.59
80 {0.19{0.22 | 0.19 0.29
160 | 0.09 { 0.11 | 0.09 0.15

Table 4.2: Comparison of the biases of &3: Example 1
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We repeated the above procedure setting the parameters at

The dose levels were fixed at (0,1,2,4,8,16). These are the quasi-likelihood estimates a.id the

dose levels for the unbleached data set ‘STRB87-1' given in Ancient Thermoluminescence

a1 = 212138.3, a3 = 0.583. a3 = 5.964, and ¢ = 0.029.

[12]. The results are given in Tables 4.3 and 4.4.

n o as X 10°°
ML| QL| GLS| DWLS|ML| QL | GLS | DWLS
12 109.55 ; 141.04 | 243.36 | -63.61 | -1.3 | 274.2 | -1.3 825.2
24 54.77 1 70.52 | 210.88 | -216.21 | -0.7 { 137.1 | -0.7 412.6
48 27.39 35.26 | 194.65 | -283.51 | -0.3 68.5| -0.3 206.3
96 13.69 17.62 | 186.53 | -320.16 | -0.2 3431 -0.2 103.2
192| 6.85| 881 |18245|-33849|-0.1| 17.1| -0.1| 51.6
Table 4.3: Comparison of the biases of &; and &;: Example 2
n az x 1073
ML | QL { GLS | DWLS
12 591! 84 5.9 13.3
24 291 4.2 29 6.7
48 | 15(21| 15| 33|
96 0.7! 1.0 0.7 1.7
192} 0.4 0.5 0.4 0.8 }
Table 4.4: Comparison of the biases of &3: Example 2
Conclusions

Based on the results presented in Tables 4.1 - 4.4, we draw the following conclusions:
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1. The biases of the maximum likelihood and the quasi-likelihocod estimators for all three

..

a
. o~ -, f § n o1 1 M M -
parameters converge to zero at a rate O{1/n) as n is increased while o is fixed.

443
o

2. The biases of generalized least squares and data weighted least squares estimators for
the parameters a; and az also converge to zero at a rate O(1/n), as n is increased

while ¢ is fixed.

3. For the parameters a; and az. the generalized least squares estimator and the maxi-
mum likelihood estimator have almost the same bias. (For the additive dose method

a9 is the parameter of interest.)

4. For the parameter aj, the absolute values of the biases are in the order Bpy; <
Bor < BgLs. Depending on the sample size n, the absolute value of the bias of data
weighted least squares estimator could be larger or smaller than the biases of the other

estimators.

5. For parameters ag and az, the biases of the estimators in finite samples are in the

order By = Bgrs < BQL < BpwLs-

From the formulae derived in the last chapter, we notice that for all three parameters
in the additive dose model. the bias of the data weighted least squares estimator (Bpw_s)
is related to the biases of the quasi-likelihood estimator (Bgr) and the generalized least

squares estimator (Bgps) according to, Bpwrs = —2 Bgrs + 3 Bor.-

4.4 Discussion

In this chapter, we compared maximum likelihood, quasi-likelihood, generalized least squares
and data weighted least squares estimators for our model. In Section 4.1, we examined
the behavior of the estimators in large samples, for fixed ¢. We found that maximum
likelihood and quasi-likelihood estimators are consistent while generalized least squares and
data weighted least squares estimators are generally not. Least squares estimators in generai
were found to have biases that do not vanish, even asymptotically. We also examined the

distributional approximations for the maximum likelihood and quasi-likelihood estimators.
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We found that in large samples both estimators are approximately normally distributed;
the approximate asvinptotic variance of the maximum likelihood estimator was found to be
smaller than that of the guasi-likelihood estimator.

In Section 4.2, we analvzed the large sample behavior of our small ¢ approximations
to §, namely # = B + L0 + Cy0? + O(o®). For quasi-likelihood, the terms C; and C
were found to be of the order O,(1/\/n) and O,(1/n) respectively. Recall that C; is a
linear combination of the random errors € and C; is a quadratic term in ¢. For small o,
the quasi-likelihood estimator 6 is approximately normally distributed if n is large enough
or o is small enough so that ¢/4/n is small. For maximum likelihood, both C; and C;
were found to be of the order O,{1/y/n). Therefore, the maximum likelihood estimator is
approximately normally distributed if o is sufficiently small. For generalized least squares
and data weighted least squares, the terms (', and C, are in general of the order O,(1/+/n)
and O,(1) respectively. However, as we clarified in Section 4.2, for our model components
of Cy and C; corresponding to a2 and az were found to be of the order O,(1/4/n) and
O,(1/+/n) respectively. Therefore, for the limiting case of small o and large n. generalized
least squares and data weighted least squares were also found to produce asymptotically
unbiased estimators for a; and a3. The discussion presented in Section 4.2 is valid for more
general response functions than simply the response functions described for the additive
dose method, the partial bleach method and the regeneration method.

In Section 4.3, we used the formulae derived in the limit of small ¢ to examine the
behavior of the biases of the estimators as sample size grows. For sensible designs for the

additive dose model we found that:

1. The biases of maximum likelihood and quasi-likelihood estimators for all three param-

eters converge to zero at a rate O(1/n).

2. The biases of generalized least squares and data weighted least squares estimators for

the parameters a; and a3 also converge to zero at a rate O(1/n).

3. Maximum likelihood and generalized least squares estimators for a; (the parameter of

interest in thermoluminescence studies) and a3 have almost the same bias, for sample
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sizes used in practice.

4. For the parameter aj. the absolute values of the biases are in the order By <
Bgr < Bgrs. Yor the parameter ay. the absolute value of the bias of data weighted
least squares estimator could be larger or smaller than the biases of the other three

estimators depending on the sample size n.

In the limit of small o the biases of all four estimatcrs were found to be negligible relative
to their standard errors (see Chapter 3). While all four estimators were found to perform
well for o values and sample sizes used in practice, we favour using the quasi-likelihood
estimator since it has the advantage that it does not require any assumptions about the
distribution of the data other than those about the first two moments. Also we found that
the algorithms that solve quasi-likelihood estimating equations converge faster than those

for maximum likelihood and generalized least squares estimators.
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Chapter 5

Equivalent dose from partial bleach

data

In the partial bleach method introduced in Chapter 2, two data sets are collected from each
core; these define the unbleached and bleached dose response curves. These response curves
are nonlinear, and can be fitted using the techniques discussed in the previous chapters.
The equivalent dose is defined as the dose corresponding to the intersection point of the un-
bleached and bleached respomnse curves. In this chapter, we discuss estimating the equivalent
dose from partial bleach data.

An initial estimate for the equivalent dose is suggested in Section 5.1. We discuss two
approaches for estimating the equivalent dose. The first approach fits the unbleached and
bleached response curves separately using the techniques described in Chapter 3, and then
finds the equivalent dose as the intersection point of the two fitted response curves. We
reser to this procedure as the ‘two stage approach’. This procedure is described in Section
5.2. For this case, Berger et.al.[11] describe the error analysis assuming that a single error
factor (that is, a common value of o) describes both unbleached and bleached response
curves. Their method of error analysis and the construction of confidence intervals for the
equivalent dose are described in Subsection 5.2.1. In Subsection 5.2.1, we extend these ideas
to the case of different error factors for the unbleached and bleached data.

We discuss maximum likelihood, quasi-likelihood, generalized least squares and data
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weighted least squares estimators for the equivalent dose. Formulae for the biases of these
estimators are derived in Subsection 5.2.2. In Subsection 5.2.3. we examine the bias from a
Monte Carlo study. A theoretical justification for the suggested confidence intervals is offered
in Subsection 5.2.4. In Subsection 5.2.5. we describe a simulation study that examines the
finite sample performance of the asymptotic confidence intervals.

The second method estimates the equivalent dose by fitting the unbleached and bleached
curves simultaneously. We refer to this procedure as ‘simultaneous curve fitting’. In this
setting, the equivalent dose is treated as a parameter that appears explicitly in the estima-
tion procedure. In Section 5.3.1, we discuss obtaining maximum likelihood estimates for
the equivalent dose. Under maximum likelihood, we discuss computing profile likelihood
intervals and symmetric confidence intervals using Z and t critical values. We also discuss
obtaining confidence intervals based on a transformation of the likelihood ratio statistic
using a transformed F critical value. Use of the ¢t and F critical values is justified in the
limit of small . In Section 5.3.7, we discuss computing quasi-likelihood estimates. Under
quasi-likelihood, we discuss computing confidence intervals by inverting the quasi-score test.

/e also discuss computing symmetric confidence intervals based on the quasi-likelihood es-
timate with a ¢t quantile. In Section 5.3.10, we obtain generalized least squares and data
weighted least squares estimates for the equivalent dose. Symmetric confidence intervals
based on the least squares estimates are computed with a ¢ critical value. The coverage

probabilities of the suggested type confidence intervals are examined by a Monte Carlo

study. Section 5.6 summarizes the chapter.

5.1 Initial estimates

Suppose saturating exponential models! are suitable for both unbleached and bleached re-
sponse curves. Let 9’]‘7’ = (@y,0a2, a3), and 9; = (1, B2, #3) be the parameter vectors corre-

spording to these saturating exponential models.

1Saturating exponential models were intreduced in Chapter 2.



We use the following notation:

y1; =  photon count from the ith sample of the unbleached data,
y2; =  photon count from the ith sample of the bleached data,
z1; =  dose applied to the ith sample of the unbleached data,
z9; =  dose applied to the ith sample of the bleached data,

—+ = the equivalent dose,

67 = (61,6]) = (a1,02,03, 02,85, 7),

hi = flz1,01) = o {1—'GXP [—fﬂ‘&%ﬂ]},

fzi = [fl(z2i,02) = B {1 — exp {— xziﬂ-: ﬂz]} ,

and B = (fi(z,6,)— faz,62))-

At Jow dose values, the thermoluminescence vs added dose is roughly linear. Therefore, the
difference R between the unbleached and bleached response curves varies roughly linearly
with the added dose at low dose values so that approximately, B = mz + C, where C and
m respectively denote the intercept and the slope of the straight line that describes the
relationship. We need to find the dose corresponding to the intersection of the unbleached
and bleached response curves. This is the dose corresponding to R = 0, which is the absolute
value of —%. We estimate C and m using the average photon counts corresponding to the
zero dose and the next smallest dose common to both unbleached and bleached data sets.
Thus, an initial estimate for the equivalent dose is given by

o = (71(0) — 7,(0))
(71 (2) - F2(2)) — (7:1(0) — 7(0))]

-
?

where
%:{0) = average photon count corresponding to the zero dose for the unbleached data,
%2(0) = average photon count corresponding to the zero dose for the bleached data,
d = smallest positive dose value common to both data sets
7,(d) = average photou count corresponding to the dose d for the unbleached data,
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and

7,(d) = average photon count corresponding to the dose d for the bleached data.

For the data sets we analyzed (test data from Berger et. al. [12]), the initial estimates from

the above formula served as good starting values for the algorithm we describe next.

5.2 Estimation from a two stage approach

The equivalent dose 7 is a root of the equation g(z,61,82) = fi(z,61) — f2(z,02) = 0. The

equivalent dose is estimated by 4, which is a root of the equation g(z, 6,,6,) = fi(z, 6,) -

fa(z,02) = 0 (Berger et. al. [11]). First we find the estimates 6, and 6, using the procedures

described in Chapter 3. Then we solve the nonlinear equaticn g = 0 using the Newton

Raphson algorithm described below.

1.

2.

Find an initial estimate for the equivalent dose (Section 5.1).

At the (k + 1)st step of the iteration the equivalent dose is estimated as

A A .‘]L‘,k
TYE+1 = Tk (g-q-)l :
T/ 1A
where
. Gk + é2) 5 (4% + B2)
gL."‘ = Q3 {l—exp [—T]}—ﬂl l—exp —-T , (51)
and X A
dg a; [ (9 + &2)] B (& + ﬂz)]
P — = —¢€eX -_ ] ——1 . 5.2
dzls, a3 a3 B ¥ Ba (52

Iterate until desired convergence. In the software we developed, the stopping criteria

was taken as when the absolute difference in the successive iterations is less than 107>,

An estimate for the error of the estimate

As above, ¥ and 7 satisfy the respective equations g(7,6;,62) = 0, and g(4, 6,,67) = 0.

The first order Taylor expansion of g(7, 6y, 0}) around (7, 01, 6;) yields

- dg . ag\T - agN\T . .
o5,6,00) = 91,000 + 32 -1+ () G-+ (5) (Ba=02)
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In this equation each partial derivative term indicates partial differentiation of g with respect
to the estimated parareters and then evaluation of the resulting quantities at the respective
true parameter values, and at dose z = 7. Since g(v,6;,602) = 0, and g(%,61,6,) = 0 the
above equation gives

T T
(,5, — 7) = {— (%ef%) (01 - 91) + (g‘gi“) (02 - 02)} /(g_i - (5’3)

Therefore,

vart = (55 oty (53)+ (55) ot (G2)] 1 [B- ] - 00
In equations 5.3 and 5.4, the derivatives of f; and f, are to be evaluated at z = v. Here
onwards we use an additional suffix : to indicate when functions f; and f, are evaluated
at dose level z;. When the functions are evaluated at ¢ = v we suppress this additional
suffix. The sample sizes of unbleached and bleached data sets will be denoted by »; and
ny respectively. The error factors for the unbleached and bleached data will be denoted by
01 and o, respectively. When the unbleached and bleached response curves correspond to
a common error factor (i.e. when o7 = 03), this common error factor will be denoted by o.

From the formulae derived in Chapter 3, the variance covariance matrices for 6;,6, are

4-1

ey ot [ (%), ()] 2
and - 771

The vector 7 fj, (j = 1,2) denotes the gradient vector of f; with respect to the components

of 6. In the different error factor case, we estimate 0? and 02 by

6% = zl: [(”.41_7‘ - fi)/fl}z/(nl -3), (5.7)
j=1
and
i* =Y [ - R/ B] f(na - 3). (5.8)
k=1



In Section 5.2.4, we show that in the limit of o;,0, — 0, the 6; and &, suggested above
are approximately unbiased for o; and 7, respectively. If the two curves correspond to a
common o we estimate o from
ni » . .12 ny ) 42
5= (i = AA] +D [ = )1f2] § /(n1 42~ 6).
=1 =1

2 is an approximately unbiased estimate for o2,

In Section 5.2.4, we show that the above &
To estimate the standard error of ¥ we use Equations 5.4 and 5.5 by replacing the

unknown parameters by their estimates.

5.2.1 Confidence intervals

Let 4 and s2 be the estimates for 7 and Var(¥) discussed in Section 5.2.

Single error factor

In Section 5.2.4, we show that if the response curves correspond to a common error factor
o, in the limiting case as & —~ 0, an approximate 100(1 — @)% confidence interval for v
can be constructed by taking, ¥ F t(n, 4n,-6),a/255, 25 lower and upper confidence limits.

Here t,, indicates the upper a quantile of a t-distribution with v degrees of freedom.

Different error factors

Suppose the two response curves correspond to different error factors o; and o,. In Section
5.2.4, using Satterthwaite’s approximation [53], we show that when 01,02 — 0, the dis-
tribution of 3;';—" can be approximated by a t distribution and provide a formula (Equation
5.17) for the degrees of freedom of the approximate ¢ distribution. Therefore, we propose
computing confidence intervals with confidence coefficient a by taking 4 F 14 o /255 as lower
and upper confidence limits. The t4 , indicates the upper a th quantile of a z-distributijon
with df degrees of freedom.

It is important to note that for the common error case, we compute confidence intervals

based on an exact t distribution for the test statistic 7;:1 valid in the limit of small 0. In
Y
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contrast, for the different error factor case, we compute confidence intervals based on an

approximate ¢ distribution valid in the limiting case 0y,0, — 0.

5.2.2 Bias in the estimator for the equivalent dose

Notation:
Let 67 = (67,67), g(v,8j= fi(7,61) — f2(7,02), and
CT = (C 117 le) where

S (9 A(215,00) [V i(216,61) T & v filz1.8)
Cn = Lzzl( fi(z1i,61) ) ( fi(z1i,61) ) J Z[ fi(z1i,61) ]

=1
_ = [V fi(21i,61) .
= b ::ZI[ fi{z1i,61) ] ’ (59)

and

_ [ T fo(22i,02)\ [V fo22i,92)\ T I sz(zzj,ez)}
€ = Z( f2(22i,62) ) ( fa(z2:,63) ) } ]Z.__; [ f2(z25,62)

V fa(z25,62)
)3} Z{ A 92)} (5.10)

Similarly, let C%, and CZ, be the vectors C; introduced in Chapter 3 for the curves defined
by fi(z1,61) and fa(z2,8;). Let CI = (C%,CZ). For small o, 6 and 5 will have Taylor

expansions of the form
(6 —8) = Cr0 + Ca0?, (5.11)

and
(§ — ) = C30 + Cy0?. (5.12)

Here C3 and Cj4 are scalar quantities that do not depend on 0. We now obtain C3 and Cj4
in terms of C; and C; so that we can evaluate the small ¢ behavior of 7.
The equivalent dose 7 and the suggested estimate ¥ satisfy the equations g(v,0) =

0 and g('},é) = 0 respectively. Consider the Taylor expansion

. 2
9(3,0) = g(v,o)m«v)(g%) +(0- 07 (32) + 36— 1 g2 - )

a2g 32
5667 aoT( =) (5.13)

50— 07 =L (6-0) + (- 0
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Equations (3.11) to (5.13) give

/g 70?
0 = (C30’+(,4O’)\ } iC10+C20) k3;)+ ((,30+L4a) —3g( 20 + Cya?)
T 0%g . T 0% I
-!--2—((]10—.'-(5202) 60607(C10+C202)+ §(Cl‘7+Czaz)Taq!.agT(Cﬁ‘”"“('-’lc’h)'

Equating the coefficients of powers of o gives, assuming (gi,) £ 0,

-~y

___ 1 a7 _@_Q) .
= (éz)cl (ao ’ (5.14)
Iy
and

_ 1 rfog\ 1 T(Qg)_{f_g_ }

Cy = (g‘%)c (00) 2(%3)3 [C’l 50 (?OTC]

T 99 ~ 9 1 | g &%
2 (& 239TU13‘/36’TV1 2 (2 [Cl 90067 | - (5.15)

Oy

Let BB} and Bg»2 denote the biases of §; and 6, respectively (these will depend on which

method of estimation is being discussed). It is easy to see that

Jg 0fi 0fa
T 2 _ L .
ofor ()] - [2hs - 2]

Since CT (g%) is a scalar, we find

: dg\ Ag dg dg

T . T

E[C‘ (55) aoTC‘] = E{aeTC‘C (ao)]
dg

= par BGiC) ( )

_ Og 3g)
- 39TE(30

where
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and s /vf ; T]‘l
2= [,_,\ fzz)i(yf:%)i_l

Further note that

d%g [ .1 0% ] d%g
Cf —_— = Fr — ] =
b [ 157067 Cl} PG 506 = Y ovae
and
0%g 0%g
T _ T
E {Cl 30067 Cl} £ [” (Cl 56087 1
r 629 T ]
g \)
- (aoaaT ¥
Note that F(C3) = 0 and therefore the bias in ¥ is
B; = E(Cy)o?
= _,I_PI_I. : _%B‘} __o 0% 9 g(?ﬁ)
(%ﬂ) 0T "o pel ¢ 2(3’%\3672 06T — \ 08
o? Og _ 0% o? d?%g
+ T AT & ~Ta tr ( TE (5.16)
2 (g%) 00 ~9vy08 o (8’7) 3600

To simplify computation of (5.16) we provide explicit formulae for the pieces thereof. The

derivatives of g are given by

by _ on| _on
o0y Oz i._,r, oz

=y

= Zexp(~(y+az)/as) - Ghexp(~(y + Br)/ i),
3 3

and

d%g g 9% f2 |

oy T 87| _ T Ba?|

=~ =y

- - Zen(- (.,+a2)/a3)+ﬂ exp(—(7 + B2)/Ba),
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and by

()
39T 1x6

where

and by

where
31(2) -

3§2) —

?E2) -

3&2) -

3§2) -

3&2) _

Finally we note

( 5 01)7 8]2a\éT02,) _ (61(1)’65'1)‘6‘%1)’8&1)?aél),af(ilfy)
/ ~ 4+ o

o = 1-{ew |- (122)]}

N exp k o

£+ ool (5]

Q3 (2%

aél) = -2 (7+02)9\P[ ( o 2)] )

- 1= oo (22)]}).

m _ B B (’)’ + 52 ]

J;7 = Bq exp { 7 ,

an — A 3 [_ (7 + ﬂz)]

Sl (252)]

’i’%e"P :_ (7 1'30‘2)] + %(7 + az) exp { (]__Z_;?_?_)] )
w5

e |- ()]

b ol (2] - e (32)]
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where Hy = ?—;%%7?—)— Hy = g%%ﬂzl are the Hessian matrices of f; and f, (see Section
3.2.), evaluated at z = 7.

The biases B; and By can be estimated from the formulae given in Table 3.1 of Chzpter
3. Thus, an estimate for the bias of 4, E’.,, can be obtained by replacing the unknown
parameters in the Equation (5.16) by their estimates.

An approximate 100(1 — a)% confidence interval corrected for the bias can therefore
be constructed by taking (¥ — BA,) F lifas2 Va;'(’y) as lower and upper confidence limits.
For the single error factor case, df, which is the degrees of freedom for the ¢-distribution is

(n1 +ny —6). For the case of different error factors df is given by Equation (5.17) of Section

(5.2.4).

5.2.3 Examination of the bias from a Monte Carlo study

The formula for the bias derived in Section 5.2.2 is based on the approximation that for
small o, % = v + C30 + C40?, for coefficients C3 and C,4 that do not depend on o. We
examined the validity of the derived formula for o values in the range of typical TL data

sets by a Monte Carlo study. Next we describe the Monte Carlo study.

1. The parameter vectors for the two response curves were chosen so that they intersect
at 7. This was achieved by fixing the parameters a;, as, a3, 82, 33 at desired values

s hen aking, = 2R

2. The parameter values were set at a; = 14.2853,a, = 123.182, a3 = 393.065, 3, =
192.547, B3 = 756.620 and v = —87.45. These are the maximum likelihood estimates

for the unbleached data set ‘QNL84-2’ given in Berger et. al. [12].

3. The dose vectors of lengths n, and n; chosen for the unbleached and bleached curves

are presented in Table 9.1 of Appendix 9.3 where they are labeled as P1U and P1B.

4. For each study, two sets of random variates of sizes n; and n, were generated from

the standard normal distribution. Let these values be denoted by, €j;, j = 1,2 and

1= 1,...,11]*.
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. The relative error in a single measurement, o, was fixed at the values given in Table

5.1.

Ot

6. The photon counts, y;;’s, were then simulated using y;; = f(z:,6;)(1 + o¢;;), for

j=12andi=1,...,n;.
7. The algorithm described in Section 5.2 was used to estimate the equivalent dose «.

8. From Equation (5.14), the value of C3 was computed at the true parameter values

used in the study.

9. Estimates for the biases were obtained as the averages of the m values for 4 —v — C3o

and (¥ — 7). (m is the size of the study.)

The results based on 10000 simulations are presented in Table 5.1, where we use the

notation
Br = True bias (Equation 5.18)
B, = average of 4 — 7 — C30 values
B; = average of ¥ — 7 values

Both B; and B; provide estimates for the bias of 4. The variability in B; is smaller than
the variability in B;. Therefore we only recorded B;.

Based on the simulation results given in Table 5.1, we conclude that the derived formulae
are excellent approximations for small o(< 0.06). For real data sets collected for the partial
bleach method, o is usually around 0.03. Since the sample sizes used in the simulation study
are similar to real sample sizes the derived formulae can safely be used to estimate the biases
for all four methods. In any case, we observe that the biases are negligible compared to the

standard errors.

5.2.4 Theoretical justification for the use of the t-interval

Consider the model y; = f(z:,00) + f(zi,00)0€;,1=1,...,n, where ¢; ~ N(0,1), and by is

the 3—vector of unknown true parameters.
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Data o ML QL GLS DWLS

Set Br B Br B, Br B, Br B,
1 0.01 | -0.046 | -0.046 | -0.049 | -0.048 | -0.046 | -0.045 | -0.054 | -0.045
0.02 | -0.182 | -0.181 | -0.195 | -0.195 | -0.183 | -0.182 | -0.217 | -0.221
0.03 | -0.410 | -0.429 | -0.438 | -0.444 | -0.412 | -0.414 | -0.489 | -0.508
0.04 | -0.730 | -0.783 | -0.778 | -0.824 | -0.733 | -0.784 | -0.869 | -0.923
0.05 | -1.140 { -1.289 | -1.216 | -1.329 | -1.146 | -1.267 | -1.358 | -1.483

=W N

o

6 0.06 | -1.641 | -1.779 | -1.752 | -1.865 | -1.650 | -1.760 | -1.955 | -2.687

Table 5.1: Comparison of exact bias and estimated bias of ¥

Let 8 be an estimator for §, that satisfies the approximation §—6p = C10+C,0? discussed
earlier. Let y, fo, f;, € denote the n—vectors consisting of the elements y;, f(z;,6o), f(z;, é)

and (y; — f(2:,0))/f(zi,8) (i=1,...,n) respectively.
Theorem 1 Aso — 0, éT¢ 2, x? with (n — 3) degrees of freedom.

Proof:

'l . The first order
=86

Taylor expansion of f; around fo can be written as f; = fo + Fo(é — 8o). Then,

Let Fp be the n x 3 matrix with ¢ th row r; given by r7 = v fo = 4

y-f; & y— fo— Fo(6-6o),

1 N 1 _f_g
i f {1 fo(g 00)}
w—fp) . w=fo)[, _Fo _ R _ K
7; 2 {1 -} - 2w {1-26- 0},

Notice that Q;;-;{Q = o€, and ﬂ}a’i’—)- = ge. From the results derived in Chapter 3,as ¢ —
- 771 T
0, 6 =6y + Cy0 + o(0), where C; = [ 1 (fo‘l)i (Zfbﬁ)i ] o (%}ﬁl)i 6= (I—;g) €,
~
L

and £ = [£2, (%), (32)7] = [(B)" (2]

Taking first order terms in o,

o€ = {1 - %C’la} 7, C'1 {1 - EC}O’}
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- oo (B)3(2) e

Thus, é = (I — B)e + (), where B = (F‘”) ( )

Note that the matrix B is symmetric and idempotent. (ie. BT = B and BB = B.)
Therefore, é7¢é ~ x? with degrees of freedom df = tr(I - B) = n—tr(B).

Trace of the matrix B is

tr(B) = ZBu iii(fb) . <%)ki

=1 1i=1 3=1 k=1

- Zizf’“i( ) (fo)

)]

- e |(R) (G

ARGION
-« 2D )]
= tr{lzxs}

= 3.

Thus, éfé = 557, [fm_—}{i(g_ﬂufji =5, [%ﬂ] has approximately a x? distribution

o2

with (» — 3) degrees of freedom.

Theorem 2 Ifo is small, the error sum of squares éX¢ and the estimate § are independent,

in the sense that im,__oéTé and C; = ]jmg_.o(é ~ 0)/o are independent.

Proof:
We showed that (see the proof of Theorem 1) § — @ = Cy0 + o(0) = Aec + o(c), where
T - [ o \T 1-1
A=% (%) 0, and that é7¢é = €/(I — B)e + o(0). Since T = l(% (%)J we find
, T -
A(I-B) = oz (B)" - 0(5‘1) (B) s (—n) = 0. Therefore, using Theorem 4.17 of

fo
Graybill (1961) we find that €X' (I — B)e and C; are independent. Hence the result.
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Theorem 3 Let —v be the equivalent dose and ¥ be the quasi-likelihood estimate for 7.

Assume that the two response curves have a common o. Then,

(=

= =1 —6)-
Var(3) (n3+n,—6)

as o — 0,

Proof:
Let wy; =1/ ffl and wy; =1/ f'22] Applying Theorem 1 for the unbleached data we find

n e F N2
that Z—‘E‘Lﬂé—(}”—i—ﬂ has a x? distribution with (n; — 3) degrees of freedom. Similarly for
n - 7 2
the bleached data 2= wzi(;w’ 2 hasa x? distribution with (n, — 3) degrees of freedom.

 w2s(v2—f25)?

n A — Fr:Y2
The two x? variates are independent. Therefore, Z:sli”‘;(;’“ L 2; - =

(ny + ng - 6)%;— (where & is the quasi-likelihood estimate for o) has approximately a x?
distribution with (71 + ny — 6) degrees of freedom.

Let § = (6,,6,) and g(v,8) = f1(7,01)— f2(7,82). Aso — 0, Y—7v = Cs0+0(c), where
Cs=— _12 Cl 55 (see Section 5.2.2.). Since C is alinear combination of the standard normal

random va.rla.tes €;’s (Chapter 3), it follows that 4 is approximately normally distributed

with mean v. In Section 5.2 we showed that
oo (00N 5 2 (00 ) (3f2 (afz) 8 _ 0f2]
Var(9) = [(301) e (391 392) 20 06, / [ 8y Oy ] ’

The variance of ¥ is estimated by replacing 8;,6,,0 by their estimated values.

Neglecting the terms of O(o®) from a Taylor expansion

(52) s (52) ~ (G2) = ()

and e .
(52) = (5%) = ()= (30
Therefore,
(=7 _ G- -#%] v o)
Vel [(34) men (38) + () e (32))
Cs




Let U = p- - C;f 75 and V = (‘—;;)}/2. Note that,
{[(0)7s: (s0)+(38) = (38)| -0}

U,V are approximately distributed as N(0, 1) and \/(—-Xbi—) (v = n1 4+ ngy — 6). Furthermore,
we showed that U and V are independent. Therefore, as ¢ — 0, \—/(L%?%:ﬁ converges in
distribution to Student’s ¢ with ny + n, — 6 degrees of freedom.
Remark:
Theorem 3 remains valid if we replace 4 by its maximum likelihood estimate, generalized
least squares estimate or the data weighted least squares estimate.

When separate error factors oy and o3 are fitted for the two curves we do not get exact

t distributions. Instead a Satterthwaite type approximation is available.

Theorem 4 Assume that the two response curves have different error factors o, and o2(01 #

03). As 01, 03 — 0, the distribution of \/% can be approzimated by a Student’s t dis-

tribution with the degrees of freedom ‘df’ defined as defined in Equation 5.17.

Let

fl,i = f(xnel)v
f2,‘3 = f($i992)9

(Vfi); = Gradient vector of f;; with respect to 6;,
(Vf2); = Gradient vector of f,; with respect to 4,
" n -1
5= |3 (vfl) (vfl)T
Lz=1 fl : fl : ,
- n T -1
n - [3(22) (%)
=\ )i\ f2 /i)
v1 = Variance covariance matrix of él = Elcrf,
v, = Variance covariance matrix of 6, = Ega%,

When the response functions and the derivative vectors are evaluated at z = v, we drop the

suffix 2. Let u; = m, and uy = m Then, df is given by
(%) (%)

2
df = u(;u'l + uz?u.‘, .
ey T ey
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An estimate for the df can be obtained by replacing 6, 82, oy, 05 by their estimates 0}, 65,61, 09

described before.

Proof:

In the different error factor case, the variance of 4 is
0 = |(50) et () + (5) et (53)] /[ - 521
VCZT( /) - [(301 Co (01) 861 T+ 802 Cov (62) 802 / 87 B~ . )

where Cov(f;) = o? [ n (yj"nh) (zf;&)TJ -1 and Coo(fy) = o [ " (z&) (%‘})T} -1

As for the common error factor case, we can write ) a5y /V where U is a standard
Var('y)

normal random variate and V = y—fli)%-f-l— (5;)1/2 + V<fz ‘Uz)szz vzl vz)V2f1 (:%)1/2 Also note

oy 7 89 89
60-6

dag Bag
, - &2 52\1/2 .
that in the limit of 01,0, — 0, (n1-3) (;-;-) and (ng - 3) (;%—) are each approximately
1 2

distributed as x? random variates on degrees of freedom n; — 3 and ny — 3 respectively.

Furthermore, the two x? random variates are independent. Therefore, the variance of ¥ in
this case is a complex estimate of variance.? As in the case of common error factor, U and
V are independent.

Thus, using Satterthwaite’s approximation [53], we find that the distribution of the
statistic ¢ = ~2=2_ can be approximated by a Student’s ¢ distribution with the degrees of

= Ve

freedom ‘df’ as defined by Equation 5.17.

5.2.5 Finite sample performance of ¢-intervals

In this section we describe a Monte Carlo study that examines the finite sample performance
of the asymptotic theoretical results presented in Subsections 5.2.1. The parameter values
were set at ay = 14.2853,a; = 123.182,a3 = 393.065,0,; = 192.547, (3 = 756.620 and
vy = —87.45. The sample sizes used for the unbleached and bleached data sets are 16 and 13
respectively. The dose values used in the study are presented in Table 9.1 of Appendix 9.3
where they are labeled as data set P1. The values chosen for the error factors oy and o, are

given in the Table 5.2. In the single error factor case (SEF), o1 = o2 = ¢ and this is given

*Satterthwaite [54] defines a complex estimate of variance as one which is a linear combination of two or
more statistics distibuted as Chi square random variates .
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in the column indicated by SEF. The DEF stands for the different error factor case and the
chosen o, and o, values are given in the column indicated by DEF. Photon counts were
simulated according to the model y;; = f(z:;,0;)(1 + 0j¢5i), forj = 1,2and i = 1,...,n;.
Procedures described earlier in this Chapter were used to compute a confidence interval
for the equivalent dose from each simulated sample. The fraction of times the confidence
interval in each case captures the actual equivalent dose is recorded as the observed coverage.

The results based on 10000 simulations are presented in Table 5.2.

Study | Nominal | SEF | Observed Coverage DEF Observed Coverage

Level o case 1.1 | case 1.2 oy oy | case 2.1 | case2.2
1 0.95 0.01 | 0.9502 0.9502 | 0.01 | 0.02 | 0.9506 0.9503
0.95 0.02 | 0.9481 0.9489 0.01 | 0.03 | 0.9515 0.9517
0.95 0.03 | 0.9505 0.9497 | 0.01 | 0.05 | 0.9465 0.9459
0.95 0.04 | 0.9524 0.9538 | 0.005 { 0.05 | 0.9500 0.9495
0.95 0.05 | 0.9509 0.9518 0.04 | 0.05 | 0.9534 0.9528

(LT S I )

Table 5.2: Coverage probabilities of ¢ intervals for single and different error factor cases

In Table 5.2, we use the following notation:

case 1.1 = the single error factor case, neglecting the bias

case 1.2 = the single error factor case, corrected for the bias

case 2.1 = the different error factor case, neglecting the bias

case 2.2 = the different error factor case, corrected for the bias
Conclusions:

1. The confidence intervals using ? critical values were suggested based on the small o
asymptotic theory. The range of o values chosen for the study well cover the values of
o observed in typical TL studies. The close agreement between the observed coverages
and the nominal coverages therefore justifies the use of suggested confidence intervals

for the equivalent dose based on the paral bleach method.
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2. The agreement of the coverage probabilities in the different error factor case justifies
the use of symmetric confidence intervals with an approximate ¢ quantile based on the

degrees of freedom suggested in Subsection 5.2.1.

3. The confidence intervals without correcting for the bias also have coverage probabilities
in agreement with the nominal coverages. As we already mentioned, the biases are
negligible compared to the standard errors of the estimators. Therefore, we did not

correct for the bias in the studies described later in this chapter.

We also examined the coverage probabilities of confidence intervals obtained using a
single error factor, for data generated using different factors. The results based on 10000
simulations are presented in Table 5.3. The parameter values for the study were set at
a1 = 14.2853, a; = 123.182, a3 = 393.065, 5, = 192.547, B3 = 756.620 and vy = —87.45. The
dose values used in the study are presented in Table 9.1 of Appendix 9.3 where they are
labeled as data set P1. The columns 2 and 3 of Table 5.3 indicate the sample sizes used
for the unbleached and bleached data sets respectively. The different error factors used to
generate the data are given in the columns 4 and 5. The last two columns indicate the
coverage probabilities of confidence intervals ignoring the bias and corrected for the bias
respectively.

Conclusions

Based on the results of the study we draw the following conclusions.

1. When the large sample size is associated with the small o, the coverage probabilities

of the resulting confidence intervals are larger than their nominal levels.

2. When the large sample size is associated with the large o, the coverage probabilities

of the resulting confidence intervals are smaller than their nominal levels.

The results of this study establish the importance of testing (for eg. using likelihood ratio
test) whether the unbleached and bleached data sets correspond to a common ¢ or not

before further analysis.
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Study | Nominal | n; | n DEF Observed Coverage

Level o1 03 case 2.1 | case2.2
1 0.95 16 | 13 | 0.01 | 0.02 | 0.9795 0.9794
0.95 16 { 13 | 0.01 | 0.03 | 0.9851 0.9852
0.95 16 | 13 | 0.01 | 0.05 | 0.9905 0.9904
0.95 16 | 13 1 0.005 | 0.05 | 0.9914 0.9913
0.95 16 | 13| 0.02 | 0.01 ; 0.9155 0.9153
0.95 16 | 13 | 0.03 | 0.01 | 0.9051 0.9044
0.95 16 | 13| 0.05 | 0.01 | 0.8980 0.8972
0.95 16 | 13 | 0.05 | 0.005 | 0.8918 0.8910

© 00 N e W N

Table 5.3: Coverage probabilities of ¢ intervals using a common error factor for data corre-

sponding to different error factors

5.3 Estimation via simultaneous curve fitting

In Section 5.2, we described the estimation of the equivalent dose as the intersection of the
two fitted response curves corresponding to the bleached and unbleached curves. Here we
describe another technique for the same purpose. We reparametrize so that v, the quantity
of interest, is one of our parameters in the new setting.

Let the parameter vectors corresponding to the unbleached and bleached curves be
6; = (a1, 02,03)T and 6, = (B1, B2, B3)T. Let v be the dose corresponding to the intersection

of the unbleached and bleached response curves. Then, v satisfies the equation

o i 2 o [ 58]}

{1 — exp [ '7+orz ]

b= }
O [}

This gives

(5.18)
1 —exp

We eliminate 3, using the parameters oy, as, az, 82,03,7 and fit the two response curves

simultaneously treating v as a parameter that appears explicitly in the new setting. This
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avoids the problem of estimating the intersection point after fitting the nonlinear curves as
in the previous method described in Section 5.2. This also simplifies the estimation of the
error of the estimate. Since this is a reparametrization of the problem, the estimate and the
error of the estimate are unchanged.

Next we describe the estimation procedures.

5.3.1 Maximum likelikood estimates

Suppose first the two curves have a common error factor. The likelihood for a sample of

n3(= ny + n,) observations is
A 1 — [y — fi(z1:,00))
L = ex
H \/§7r0f1(:c11',01) p{ 202f12(z1i701)

¥ L ~[vi - fz(xz,-,ez)P}
X Jl_—__:E \/§7raf2(a:2j, 02) P { 20'2f22($2j,01) )

=1

where 8; = (a1,@2,a3) and 6; = (B1,02,03). The parameter vector of interest? is § =

(al) a2, O3, 1627 16377)7"

The log-likelihood for the sample apart from a constant is

ni 2! : Z14, 2
I = —(n1+mn2)log(o) - Zlog(f(zli,Ol)) - Z [y;g?figxli 23]

=1 1=1

_“ 2 [yok — f(z2k, 62)]
a :L_:‘l log(f (22, 62)) = :4:‘1 202 f2(zor,02) (5.19)

The maximum likelihood estimates for the parameters maximize the above log-likelihood
function. The algorithm described in 3.2 is modified as follows to obtain the likelihood
estimates. As described in Section 3.2, we use a 2-part iteration; see also Green [33].

Equating % to zero, we find

6% = (Z (1~ A) AP + }: [(y2x — fz)/f2]2) /(n1 + m2). (5.20)

7=1 k=1

The algorithm that solves for 8 is described by the following steps.

1. Find an initial estimate 6, for 6.

*Equation 5.18 expresses A, in terms of the components of 8.
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. Evaluate f;, f2 at the starting value.
. Estimate o using Equation 5.20 at the estimate for 6.

. Compute the matrix D = —g—g. The n x 6 matrix D consists of the columns

%, —3%, gg—;, %, g% and % which are given by the equations 5.21 below; here f is

the n-vector with entries fi(z;,6,) ( for i <n;)and fo(z;,60;) (for n; <7 < n).
. Compute the n—vector up = 537% (5.22) and the matrix A (5.23).
. Compute (g = (DTAD) DT u,.

. At the (k + 1)st iteration, estimates for 6 are given by ék+1 = 6y + B, where B; =
(DfAka)“leTuk. The subscript k indicates that the respective terms are evaluated
using the parameter estimates for § at the kth iteration. Then update Dy to Dy4q by

evaluating D given below at ;4.

. Repeat the above procedure until the desired convergence. In the algorithms we

developed, the convergence criterion for  was taken as when the step size 8 < 107°.

The matrix D has the following components:

g—cﬁ = l—exp[:—(-z:—lé-}gz—)},(forl<iﬁn1).
= {r-eo [ - [ 1o [5]
(for ny <1 < ny 4+ ny); (k= (i—mn))
% = giexp[——(zl—;:gz—)],(forl<i§nl)
- o[ 2] oo [ 2 [ 23]
(for ny < i<y + ma); (k= (i—m))
gc{é = -Z—é(zu + a2)exp [f_ﬁﬂj&sjﬂl] , (for 1 < 2 < myq)
- 2o 23] oo 2222
x{l—exp[—l;;;&}}—l,(fornl<iSn1+n2);(k=(i’n1))
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~a—'—fi = 0,(forl<i< )

k=(i—m))

k=(i—m))

ap
- 2w [ e [ 22
[ 2520 22
+%§ (1-exp[ ) [ x2k+ﬂ2]
x{l—exp[—‘/;jz}}n (for n; <7 < ng + n2);(
—8—82% = 0, (for1<i<m)
= 5 (e 1) {1 [ zzkﬂ:ﬂz}}
X(7+ﬂ2)eXP[ H — exp ~+ﬂ2]}
w5 H@%+%@m[l%¥ﬂ
x{l—exp[—vgaﬂz]} , (for ny < i < ny + ny);(

?ji 0, (for 1 <2< n)

9y
= Zeo |10 {1-ee [ 1 -

i

5 - [T o 22

<froeo[252]1

The n vector u = a f consists of the following elements:

-/ A | 1 fvii—fu] | 1 [ya—fuil?
Fi T o? £ T £

for(1<i< ny)
_ 12
= F4 o_,lf!yzk foi] + ;li_ika Sox)
Fax Fox Fox

for(ny < i < my +1n2); k= (i —ny) )

™
|
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Note that E(y1i — fii) = 0, E (v1: — f1:)* = 0% f%, E (vak — fox) = 0.and E(yax — fox)® =
0?f}.. The matrix A4 is diagonal with ith diagonal element

¢ n )

7zt ez

8% for(1<i<n

P (“’E) .y ( 1)
af:

T

,-a
o
o
o

v

for(mp <1< ny+n); k= (i—mng)

Let ¢ = (§,0) and ¢ = (4,5). From the large sample theory for maximum likeli-

hood estimators, the approximate asymptotic variance covariance matrix for ¢ is given by

921 \ 7!
£ (“ amﬂ‘) .
5.3.2 Profile likelihood intervals for the equivalent dose

Suppose that the parameter vector § = (a3, as, az, f2, ,83,"‘;’)T is partitioned as (¥,~) where
¥ consists of the elements of § excluding +.

Let 6 = (\il,'?) be the maximum likelihood estimate for # and l,,,, be the value of the
log-likelihood function (equation 5.19 ) evaluated at the maximum likelihood estimate 4.
Let i, be the value of the log-likelihood function evaluated at (¥.,,v) where ¥., maximizes
the log-likelihood function for fixed . Then, the profile likelihood interval for the equivalent

dose with confidence coefficient « is

{7 ]2 (lmar - i'y) S X?,l—a} 9

where X¥,1~a is the upper a quantile for a chi squared distribution with 1 degree of freedom.

Computing ¥.,:

Let D’ be the n X 5 matrix consisting of the n vectors aéaL;’ aa; , %, g-ﬁL;, gé;-, The restricted
maximum likelihood estimate 'I;,y can be computed by replacing the n x 6 matrix D by
the n X 5 matrix D’ in the algorithm described in Section 5.3.1. The end points of the
profile likelihood interval are the roots of R(v) = 2 (lmu - l:,) — x},_, = 0. The following

algorithm is used to find these roots. We have no convincing evidence that the profile, R(7y),
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must be unimodal but our algorithm never failed to converge for small 0. We suspect, but

have not proved, that R{7) is unimodal in the limit of small o.

1. Evaluate R(7) at 41 = 7 — Z,/25(%). Here 4 is the maximum likelihood estimate
for v and s(4) is the estimated standard error for ¥, which is the square root of the
corresponding diagonal element of the inverse of the matrix E (— aiezlf) evaluated at

6 and Z, /2 is the upper a/2 th quantile for a standard normal distribution.

2. If R(7) is positive, then use the method of bisection starting with v; and ¥ until the
absolute value of R, is less than a desired small positive number ¢;. In the software

we developed we use ¢; = 1073.

3. If R(~,) is negative, then we keep subtracting s(¥) until R(7;) is positive at a certain
7i- Again use the method of bisection starting with 7; and y;_1y(= 7 + (%)) until
the absolute value of R, is less than ¢.

4. To find the right end point we start from 72 = ¥4 Z,/25(%) and follow similar steps as
in the case of left end point but this time adding s(7) if B(72) happens to be negative.

(S0, ¥(i-1) = 7i — 8(%) in this case.)

5. Let 4; and ¥, be the roots of R(y) = 0 described earlier. Then, (711,72) is 2 (1—a)100%
profile likelihood interval for the equivalent dose.

5.3.3 Confidence intervals using asymptotic normality

The confidence intervals for 7 can be constructed assuming that the maximum likelihood
estimator ¥ is approximately normally distributed with mean v and variance the corre-
sponding diagonal element of the inverse of the matrix E(-gg-;%y). The lower and upper
confidence limits for an approximate 100 (1 — a)% confidence interval for 4y based on the
normal approximation are ¥ F Z, /2\/va1:ﬁ), where Z,/, denotes the upper a; th quantile
of a standard normal distribution. We also computed confidence intervals using a ¢ quantile
with (n; + n2 — 6) degrees of freedom instead of the Z quantile. It is important to note
that, when computing the confidence intervals based on the t quantile, the error factor o
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was estimated from &2 {2?11 (i = )/ ]+ T2, (w25 = £2)/ F2)2] ) /(1 + 2 - 6),

in contrast to the maximum likelihood estimate for ¢ used in Z intervals.

5.3.4 Confidence intervals using transformed F critical values

The traditional profile likelihood interval is computed by inverting the test based on the ap-
proximation that 2 (lmax - li,) is distributed as a chi squared random variate with 1 degree
of freedom. Here we suggest computing confidence intervals using approximate transformed
F critical values instead of the approximate chi squared critical values.

Notation:

Let the parameter vector in the regression model be partitioned as § = (f, 32), where (3

is the parameter of interest. Let

I(Bl,ﬁg,&) = log likelihood evaluated at the maximum likelihood estimates,

,Bl(ﬂz,o) = maximum likelihood estimate of 8, for B, fixed at (3,

and

&(B2,0) = maximum likelihood estimate of o for 3 fixed at Gp.

Let l(ﬁl(ﬂz,o), B2,0,(B2,0)) denote the log-likelihood evaluated at the restricted maximum
likelihood estimates and LR = 2 (I(B1, B2, 5) — UBr(B20), B2.0,5(B20)) -
For the linear regression model Y = X8 + ¢, it is well known (see, eg., Draper et. al.

[27], Seber et. al. [55], Chatterjee et. al. [15]) that the hypothesis Hg : B2 = B can be

[S(B1.82.0)-S(b1.82)] /7
S(1,62)/ (n—py)
denominator degrees of freedom p and = — py; here p is the dimension of 3, while py is the

has a F distribution with numerator and

tested based on the fact that

dimension of 8 = (f;,82) and S(#) denotes the error sum of squares for the model with
parameters (3 fixed at 6.

For the normal error linear regression model, this is equivalent to tests based on the fact
that 2LR is distributed as nlog '.l + T%’—’L} where F, ,, denotes an F distribution on
numerator and denominator degrees of freedom 74 and v, respectively.

Remarks:

108



Note that, when p = 1, Fin—p, = tﬁ_pj and

t2
2 LR = nlog 1{-—(“——&)—-
(n — py)

____17’___752
(= pp) 7P

Q

So assuming 2L R has approximately a x3 distribution is equivalent to pretending

n__
1. o) 1, and

2. Unop,) = N(0,1).

This is true in large samples. However, as we already mentioned thermoluminescence data
sets are frequently small in size. Therefore, using F critical values rather than x? critical
values, is expected to produce more precise coverage probabilities in small samples.

While the above result does not provide an exact test for our non-linear regression model

Y = f(z:,0)(1 + o¢;), we examined confidence intervals based on

Fl(n—-G)
2LR =nlog |1 + —+—=
LR nog[ +(n-—6)]’

where n(= n; + ng) is the sample size. Next we present these results.

5.3.5 Finite sample performance of the confidence intervals

We performed a Monte Carlo study similar to the one described in Section 5.2.5, to examine
the coverage probabilities of the suggested confidence intervals. The parameter vector was

set at
6 = (14.2853,123.182,393.065, 192.547, 756.620, —87.45)%.

The dose vectors used in the study are indicated in Table 5.4 within brackets in the column
‘Dose’. Table 9.1 of Appendix 9.3 describes these dose vectors. The samples sizes of the
unbleached and bleached data sets are indicated by n; and n; and n = ny + n2. The results
based on 10000 simulations are given in the Table 5.4. In the Table 5.4, FCRIT1 and FCRIT2

indicate the coverage probabilities using the approximations described by Equations 5.24
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and 5.25:

9LR = nlog [1+Fﬁ(ﬂﬁ] (5.24)
(n—6) |
n oo
~ F.—G—)Fl’(”_s)' (0.35)
Dose o nominal | Profile | FCRIT1 | FCRIT2 Z t ny | ng

(P1) | 0.01 0.95 0.9198 | 0.9520 0.9620 | 0.9078 | 0.9518 | 16 | 13
(P1) | 0.02 0.95 0.9182 | 0.9527 0.9622 | 0.9099 | 0.9523 | 16 | 13
(P2) | 0.03 0.95 0.9357 | 0.9510 0.9562 | 0.9301 | 0.9523 | 26 | 23
(P3) | 0.03 0.95 0.9389 | 0.9466 0.9487 | 0.9365 | 0.9468 | 50 | 50
(P3) | 0.04 0.95 0.9457 | 0.9545 0.9571 | 0.9415 | 0.9525 | 50 | 50
(P4) | 0.01 0.95 0.9446 | 0.9484 0.9497 | 0.9431 | 0.9472 | 100 | 100
(P4) | 0.005 0.95 0.9449 | 0.9493 0.9504 | 0.9439 | 0.9494 | 100 | 100
(P5) | 0.005 0.95 0.9500 | 0.9534 0.9543 | 0.9489 | 0.9530 | 125 | 125

Table 5.4: Coverage probabilities of profile, F', Z and ¢ intervals

Conclusions:

The following conclusions were drawn from the simulation results:

1. When the sample sizes are small, profile likelihood intervals and the Z intervals based
on the maximum likelihood estimate were found to have smaller coverage probabilities

than the nominal values.

2. The coverage probabilities of profile likelihood intervals based on the maximum like-
lihood estimates are closer to their nominal values than the corresponding traditional

Z—intervals based on the large sample theory for maximum likelihood estimates.

3. As the sample size is increased, the coverage probabilities of profile likelihood intervals

and the Z intervals approach their nominal values.
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4. The coverage probabilities of the confidence intervals based on the transformed F

critical value (Equation 5.24) agree with their nominal values even when the sample

sizes are small.

When the sample sizes are small, the confidence intervals based on the approximation

n

described in Equation 5.25 were found to be conservative. However, the coverages of
these confidence intervals were found to converge much faster to the nominal coverages

compared to profile likelihood intervals and the Z intervals.

6. The coverage probabilities of ¢ intervals based on the maximum likelihood estimates

agree with their nominal coverages even for small samples.

7. The coverage probabilities of the confidence intervals do not appear to be dependent

on o, if ¢ is small. So, when we simulated large samples we fixed ¢ at a small value

to save computational time.

5.3.6 Robustness of the transformed F test

The confidence intervals based on the likelihood ratio with a transformed F critical value
were found to agree well with their nominal coverages, when the observations (¥;’s) are
normally distributed. We examined the robustness of this test to departures fromAnormality.
The observed photon counts were simulated from a gamma distribution with mean f(z;, )
and variance 02f%(z;,0). The confidence intervals for the equivalent dose 4 were computed
using the transformed F critical value as described in the Section 5.3.4. The observed
coverage probabilities based on 10000 simulations are given in the Table 5.5.

Conclusions:

1. Even with small samples of data from a gamma distribution the coverage probabilities
of the intervals based on the transformed F critical values were found to agree with

their nominal values.

2. The coverage probabilities of  intervals also agree with their nominal values even when

the sample sizes are small.
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Dose o nominal | FCRIT | Profile | VA t ny | no
(P1) | 0.01 0.95 0.9502 | 0.9178 | 0.9065 | 0.9511 [ 16 | 13
(P1) | 0.02 0.95 0.9472 | 0.9117 | 0.9018 | 0.9469 | 16 | 13
(P2) | 0.029 0.95 0.9535 | 0.9384 | 0.9293 | 0.9522 | 26 | 23
(P3) | 0.029 0.95 0.9512 | 0.9442 | 0.9413 | 0.9533 | 50 | 50
(P4) | 0.01 0.95 0.9510 | 0.9470 | 0.9463 | 0.9507 | 100 | 100
(P4) | 0.005 0.95 0.9492 | 0.9441 | 0.9435 | 0.9486 | 100 | 100
(P5) | 0.005 0.95 0.9540 | 0.9502 | 0.9505 | 0.9542 | 125 | 125

Table 5.5: Coverage probabilities of confidence intervals for gamma distributed data

3. In small samples, the coverage probabilities of Z intervals are lower than their nominal

values. As the sample size is increased, the coverage probabilities approach their

nominal values.

4. We notice that the shape parameter for the gamma distribution is 1/02. Since we take

o to be small, the shape parameter for the gamma distribution is large. Therefore,

the gamma distributions in question are very close to normal distributions.

5.3.7 Quasi-likelihoocd estimates

The algorithm described in Chapter 3 can be slightly modified to obtain quasi-likelihood

estimates for ‘simultaneous curve fitting’.

Let y be the n vector of photon counts of unbleached and bleached samples stacked

together. Let z be the n vector of corresponding dose values.

Let p be the vector of mean values defined as

p=f(z,0)=

{ fl(xiso) for z = 1,...,711

lfz(:c,-,O) fori=(n1+1),...,m + na.
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The variance covariance matrix for y is diagonal with diagonal elements

V(i) = ol fi(z;,0) fori=1,...,m
olf2(z;,0) fori=(n;+1),...,n1+n,.
The parameters o; and o, denote the relative error factors for the unbleached and bleached
data. We discuss two settings; when the percent error factor does not depend on whether
or not the samples had received laboratory bleaching (i.e. ¢; = 02) and when different
error factors are more appropriate for the laboratory bleached and unbleached samples (i.e.
o1 # 032.)

The quasi-likelihood estimates for § are obtained as solutions of the quasi-likelihood

equations
FT(0)vV=1(0)[y - f]=0. (5.26)
For notational convenience, let s;; = exp [—‘&3332—1] , $2; = exp [_E_:B‘*;_ﬁzl] ,

83 = exp _ kel g 84 = exp ~(tB)|  The n x 6 matrix F consists of the columns
a3 33

F;, j=1,...,6 which are defined as follows:

R o= [(l—sl,) fori=1,...,m
1 Qosalloond for i = (my +1),...,(n1 + n2)
R o= { T fori=1,...,m
9‘;—;&1:—2;1 for i = (ny +1),...,(n1 + n2)
F = { Mﬁa{?)& fori=1,...,m
= (7:;2()13_%3(3)_52‘) fori=(n1 +1),...,(m1 + n2)
Fy = { fori=1,...,m
alolondn 4 ol fori=(ng +1),...,(n1 + o)
{
Fy = { 0 fori=1,...,m
| exl=slosmlpebn _ o(onletfle fori= (n +1),..., (5 + o)
B = { fori=1,...,m
ey 11-,":2' = 1—133‘)1 e % fori=(m +1),...,(n1 + n2)
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The iterative scheme described in Section 3.3 can be used to solve the system of equations

5.26.

5.3.8 Confidence intervals based on the quasi-score test

Let ¢T = (a1, 02,03,82,03) and 8T = (¢T,v) be the vector of unknown parameters. Let
U(8) = %% (equation 5.28) denote the vector of quasi-score functions.

We computed confidence intervals for the equivalent dose by inverting the score test
described in Dean [24].

The procedure is as follows.

1. Fix the equivalent dose at a value 7.

2. Partition UT(9) = [U](6), U5(9)], where UT(6) = £ and Uy(6) = §2.
3. Compute qz»('yo) that solves U3(¢, 7o) = 0.

4, Compute ug = Ug((;f&('yo),'yo). For our model ug is a scalar.

5. Let ¥ be the asymptotic variance covariance matrix for the quasi-likelihood estimator

for 6 (note that ¥ depends on o?).

6. The parameter o2 in the variance covariance matrix is estimated? as
A\ 2 5\ 2
) 1 ny ;= T na . fT
&2 = Z(ylAfl) +Z(y2]‘\f2) _
(n1 + np ~ 5) i=1 fi j=1 fi
The f{ and f; denote the functions f;(z1;,6) and fa(z2;, 8) evaluated at the restricted

maximum likelihood estimate 67 = (37 (70),70).

7. Partition ¥ as
l— I X2 ]

5 = (5.27)
T, Do ]

8. Let oo be the value of T35( 0 is a scalar for our problem ) evaluated at (¢(7o), Yo)-

#Note that we estimate o by equating the Pearson Chi Squared to its degrees of freedom from the restricted
model. Using (n; + n2 — 5) as the degrees of freedom could be justified following the same steps as in the
Theorem 1. Dean [24] suggests using the pseudo maximum likelihood estimate for o, which uses (n; + n3).
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9. The quasi-score test statistic for testing the hypothesis Ho : v = 7o is u2d9, and is

distributed as a chi squared distribution on 1 degree of freedom.

10. Thus, a (1 — @)100% confidence interval for the equivalent dose with confidence coef-
ficient a is
{70' uléo < X%,a},
where X%,a is the upper a quantile for a chi squared distribution with 1 degree of

freedom.

5.3.9 Finite sample performance of the confidence intervals based on the

score test

Now we describe the results of a Monte Carlo study that we performed to examine the finite

sample performance of the confidence intervals based on the quasi-score test. We fixed the

parameters at
0 = (14.2853, 123.182, 393.065, 192.547, 756.620, -—87.45)T.

The dose vectors used in the study are presented in Table 9.1 of Appendix 9.3 where they
are coded as indicated in the column ‘Dose’ of Table 5.6. For each simulated sample, a
confidence interval for the equivalent dose was computed by inverting the quasi-score test
as described in Section 5.3.8. The results of the study are given in the Table 5.6. In Table
5.6, the column ‘Qscore’ indicates the observed coverage of the confidence intervals obtained
by inverting the quasi-score test; the column ¢ indicates the coverage probability of the ¢
intervals based on the quasi-likelihood estimate.

Conclusions

The following conclusions were drawn from the simulation study:

1. The coverage probabilities of the confidence intervals obtained by inverting the quasi-

score test agree with their nominal coverages even for small samples.

2. The coverage probabilities of t intervals based on the quasi-likelihood estimates also

agree with their nominal coverages.
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Dose o | nominal | Qscore t ny | na

(P1) | 0.01] 0.95 | 0.9528 | 0.9518 | 16 | 13
(P1) | 0.02] 0.95 | 0.9547 | 0.9518 | 16 | 13
(P1)| 0.02| 0.90 | 0.8974 | 0.8970 | 16 | 13
(P1) | 0.02| 099 | 0.9936 | 0.9903 | 16 | 13
(P1) | 0.029 | 0.95 | 0.9572 | 0.9538 | 16 | 13
(P1) | 0.029 | 0.90 | 0.9043 | 0.9082 | 16 | 13
(P1) | 0.029 | 0.99 | 0.9948 | 0.9886 | 16 | 13
(P2) | 0.029 | 0.95 | 0.9478 | 0.9470 | 26 | 23
(P2) [ 0.029 | 0.90 | 0.8964 | 0.8969 | 26 | 23
(P2) | 0.029 | 0.99 | 0.9923 | 0.9887 | 26 | 23
(P3) | 0.029 | 0.95 | 0.9481 | 0.9473 | 50 | 50

Table 5.6: Coverage probabilities of quasi-score and t intervals

5.3.10 Generalized least squares and data weighted least squares

The procedures described in the Sections 3.4 and 3.5 could simply be extended to obtain
the generalized least squares and the data weighted least squares estimates for parameters

in the simultaneous curve fitting.

Generalized least squares:
The generalized least squares estimates minimizes the weighted error sum of squares

o [mi = Al O & ey — fa(225,0))
5(0) B Z flz(zli?o) * fg J f22(12.‘i,1;) .

=1
Let n be the total number of observations and ¥ = (¥11,-+-, ¥1n,> Y215 -+ -» Y2n, ) e the
vector of unbleached data followed by the bleached data. Let x and f respectively denote

the vectors of corresponding doses and response function values.
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The estimates 6 solve the system of equations

o ~ 12
_ 88 3 n [yz — f(:z:,-,ﬁ} i [yz - f(zire)} A
0=%6 = Z:l Fanly lt ; e

We used the IMSL subroutine ‘NEQNF’ to solve the above set of equations. When the

unbleached and bleached response curves correspond to a common error factor o, we estimate
_f.)2
iy—fg—)- If the

two curves correspond to different error factors o; and ¢y, we estimate them as &2 =

the parameter o2 by its approximately unbiased estimate 62 = (73-;3-)— T

(n,l— 35 PR (ynf-:l{ 1 and 6,2 = (ml_a) 2 gyz.-;gﬁ)? respectively.

Let W be the diagonal matrix with 7th entry wy; = 1/f?, for ¢ = 1,...,n. Let F be
the n x p matrix with (7, 7)th entry, the derivative of f; with respect to the jth component
of §. The standard error of the generalized least squares estimate 4 is estimated as &s,
where s denotes the corresponding diagonal element of the matrix (FTWF) _l, evaluated
at 4. These standard errors are appropriate only in the small ¢ limit, since otherwise the

estimates are not consistent.

Data weighted least squares estimate:

The data weighted least squares estimate for ¥ minimizes the weighted error sum of squares

S(6) = i { [y — J;(;'i’e)] }

=1

The iterative scheme described for obtaining quasi-likelihood estimates can be used to obtain
the data weighted least squares estimates by replacing the diagonal elements of the weight

matrix W by the observed 1/y* values.

The standard error of the estimate (s;) is estimated as s, where s denotes the corre-

3 - 3 —1 .
sponding diagonal element of the matrix (F TwWF ) , evaluated at the data weighted least
squares estimate. These standard errors are appropriate only in the small o limit, since

otherwise the estimates are not consistent.

Confidence intervals based on least squares estimates:

The confidence intervals for the equivalent dose can be constructed by taking § F tgf 1o /255

as lower and upper confidence limits. For the single error factor case, the degrees of freedom
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Study o | nominal GLS | DWLS | ny | ng

(dose)
(P1) | 0.01 0.95 | 0.9520 | 0.9529 | 16 | 13
(P1) | 0.02 0.95 1 0.9527 | 0.9510 | 16 | 13

(P2) | 0.029 0.95 | 0.9466 | 0.9460 | 26 | 23
(P2) | 0.04 0.95 | 0.9498 | 0.9506 | 26 | 23
(P2) | 0.05 0.95 | 0.9456 | 0.9456 | 26 | 23

Table 5.7: Coverage probabilities of ¢ intervals based on GLS and DWLS estimates

df is ny +ny —6 while for the different error factor case is computed using the Satterthwaite’s
formula (Equation 5.17). The use of these confidence intervals in large samples is justified

by Theorems 3 and 4 of Section 5.2.4.

5.3.11 Finite sample performance of the confidence intervals

We performed a study similar to that which we described for the quasi-likelihood estimates
(Section 5.2.5) to examine the performance of the confidence intervals based on the gener-
alized squares and the data weighted least squares. The results of the simulation study are
summarized in Table 5.7.

Based on the simulation results, we conclude that the coverage probabilities of the
confidence intervals based on the generalized least squares and the data weighted least

squares estimates agree with their nominal coverages even for small samples.

5.3.12 Biases of the estimators

Let 0 = (a3, @z.a3, 02, f3,7) be the vector of parameters in the simultaneous curve fitting.
We denote the vector of first derivatives and the matrix of second derivatives of f with
respect to the parameter vector # by <7 f and H. In each term, we use the subscripts 1 and

2 to indicate the unbleached and bleached data sets.
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The results derived in Chapter 3 can easily be extended to arrive at the formulae for the

biases of the estimators given in the Table 5.8.

Method of Bias Var(d)
Estimation

ML S{-wi+2 (%) -iw,}o? To?
QL 2 {-iw,}o? To?
GLS ${(%) - w, - W} o? To?
DWLS v{-2 (%) +2wi-W}a? | =

Table 5.8: Formulae for the biases and the variances of the estimators: partial bleach method

In Table 5.8,

where wqy;

Wy2,5

Wa,i

wa2,5

> (), 2 (),

=1

-1
505, () + 538, (%))
Variance covariance matrix of C;

Total number of parameters

n1 + nz = Total number of observations

=1

Z“’?l*(zf“l)ﬁz v (),
e (2), (%))

() (22)73]
r[(%) 5

(%) ]

ir

-t

»

ir
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p = Number of components of &

n = Total number of observations = n; + n,

Remarks:

1. The two stage curve fitting and the simnitaneous curve fitting yield the same estimator

for the equivalent dose.

2. The biases computed from the formulae given in the Table 5.8 are identical to the

biases computed using Equation 5.16 for the simultaneous curve fitting.

5.4 Comparison of the estimators in finite samples

In Chapter 4, we compared maximum likelihood, quasi-likelihood, generalized least squares
and data weighted least squares estimators by investigating their behavior in large samples,
for fixed 0. We found that maximum likelihood and quasi-likelihood estimators are consistent
while generalized least squares and data weighted least squares estimators are generally not.
Least squares estimators were found to have biases that do not vanish, even asymptotically.
However, we found that except for specific parameters, the component of the bias that does
not vanish asymptotically is essentially zero for certain forms of response functions in models
with variance fuaction proportional to the square of the mean function. Therefore, for these
models generalized least squares and data weighted least squares also provide asymptotically
unbiased estimators, except for those specific parameters (see Chapter 4). It is easy to see
from the results derived in Chapter 4 that the least squares estimators for ¥, the parameter
of our interest are asymptotically unbiased.

Next we describe the results of a small study that examines the biases of the estimators
in the model for the partial bleach method. For the study described here the parameters
were set at a3 = 2.121383,02 = 0.583,03 = 5.964,03, = 0.68,03 = 6.67,7 = ~0.48 and
o = 0.029. The dose levels were fixed at, (0,1,2,4,8,16). The procedure is similar to that
which we described for the additive dose method in Section 4.3.

Conclusions

Based on the results presented in Tables 5.9 - 5.11, we draw the following conclusions.
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n Gy X 10-5 az X 10—6

ML QL GLS | DWLS; ML QL | GLS | DWILS

L
12 1 64.941141.06 ; 243.36 | -63.58 | -1.33 | 274.31 | -1.39 | 825.40
24 132481 70.52210.871-210.17 | -0.64 | 137.16 | -0.73 | 412.90
48 | 16.33 | 35.27 : 194.64 | -283.41 | -0.41 | 68.56 | -0.42 | 207.02

96 8101 17.61 186.50 | -320.16 | -0.30 | 34.15 | -0.28 | 102.97
192 1 4.05 8.80 | 182.46 { -338.57 | -0.07 | 17.01 | -0.13 | 51.10

Table 5.9: Comparison of the biases of &; and a»: partial bleach method

n a3 X 10-3 Ba X 10-°

ML QL | GLS | DWLS | ML QL | GLS | DWLS

12 1588837 588 13.35|247 | 35.76 ; 2.47 | 102.36
24 1294419 2.94 6.68 | 1.23 | 17.89 | 1.24 | 51.18
48 |1.47}2.09 ] 1.47 3.34 1062 ] 8.94: 0.62 | 25.59
96 ]0.731.04] 0.73 1.67 1031 | 447 0.31 12.81
192 1 0.37 } 0.52 | 0.37 0.83 10.15| 224 0.16 6.36

Table 5.10: Comparison of the biases of &3 and J,: partial bleach method

n B3 x 1073 ¥ %1073

ML| QL|GLS|DWLS| ML| QL| GLS | DWLS
12 {821{1145] 821 | 17.93!-1.85|-2.07 |-1.85| -2.51
24 |4.10) 572 410 897|-093|-104-093 ]| -1.26
48 | 205| 2.86| 2.05| 4.48|-0.46 |-0.52|-0.46 | -0.63
96 | 1.03| 1.43] 1.03| 224-0.23|-026|-023] -0.31
192|051 072] 051 1.12]-0.12(-013|-0.12] -0.16

Table 5.11: Comparison of the biases cf 3; and 4: Partial bleach method
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1. For fixed o, as n increases, the biases of maximum likelihood and quasi-likelihood

estimators for all six parameters converge to zero at a rate O(1/n).

2. Except for the parameter o, the biases of generalized least squares and data weighted
least squares estimators also converge to zero at a rate O(1/n), as n is increased while

o is fixed.

3. For all the parameters except a; the generalized least squares estimator and the max-

imum likelihood estimator have almost the same bias.

4. For the parameter a;, the absolute values of the biases are in the order By <
Bgr < BgLs- Depending on the sample size n, the absolute value of the bias of data
weighted least squares estimator could be larger or smaller than the biases of the other

estimators.

5. For all the parameters except &, the absolute values of the biases are in the order

Bumr = Bgrs < Bgr < BpwlLs-
Remarks:
1. The conclusions drawn above agree with the theory discussed in Chapter 4.

2. We investigated the above results using different parameter vectors and different dose

levels. The results were similar to what we described here.

3. From the formulae derived for the biases of the estimators, it is clear that for all six
parameters the bias of data weighted least squares estimator (Bpw s ) is related to the
biases of quasi-likelihood estimator (Bgy) and the generalized least squares estimator

(BGLS) according to Bpwirs = 3BQL - 2BgrLs-

4. The results of the study show that for the parameter of interest, -y, maximum likelihood

and the generalized least squares estimators have almost the same bias.
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5.5 Worked example

Now we demonstrate the theoretical results derived in this chapter using a real data set.
The data set used here is presented in Berger et. al. [12] where it is coded as ‘QNL84-2’. We
fitted the model y = f(z,0)(1 + o¢), using the techniques described earlier in this chapter.

Here f(z,0) is the saturating exponential model defined by

a; [1 — exp (— -(ﬂ'ﬂl)] , (for unbleached data),

a3

P [1 T eXp (‘"‘%@)] , (for the bleached data);

f(xia) =

here 8 = (o, a2, 03, ,32,,33,’)’)T and —« denotes the equivalent dose (ED), and

{1 -2

a3

O e [FE2E] )

The parameter estimates for this data set assuming a common o for the two curves are

given in Tables 5.12 and 5.13.

ML QL

parameter | estimate | bias | std.error | estimate | bias | std.error

a; x 10~4 14.28 | 0.02 0.49 14.28 | 0.03 0.55
a2 123.18 | 0.12 7.26 122.74 | 0.24 8.12
o3 393.07 | 1.64 33.11 392.0 | 246 37.04
P2 192.55 | 0.39 13.97 193.37 | 0.72 15.80
B3 756.62 | 11.20 105.46 | 761.65 | 16.21 120.06
ED 87.15| 0.55 9.13 86.43 | 0.72 10.14
o? 0.0012 0.0015

Table 5.12: ML and QL estimates assuming common o: Data QNL84-2

For the common error factor case 95% confidence intervals for the equivalent dose 7

based on the methods discussed earlier in the chapter are given in Table 5.14.
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GLS DWLS
parameter | estimate | bias | std.error | estimate | bias | std.error
a; X 107* 14.30 | 0.05 0.55 14.25 | 0.09 0.55

Qg 123.18 | 0.15 8.16 121.86 | 0.41 8.10
a3 393.07 | 2.07 37.20 389.92 | 3.23 36.94
B2 192.54 | 0.49 15.69 195.18 | 1.19 16.12
Bs3 756.59 | 14.12 118.49 772.76 | 20.63 124.19
ED 87.16 | 0.70 10.26 84.98 | 0.77 9.97
o2 0.0015 0.0015

Table 5.13: GLS and DWLS estimates assuming common o: Data QNL84-2

Description Lower bound | Upper bound
Profile likelihood 70.83 108.90
using F critical value (FCRIT1) 68.77 112.72
Z interval based on the ML 69.27 105.04
t interval based on the ML 65.95 108.36
Quasi score interval 67.83 112.10
t interval based on the QL 65.45 107.42
t interval based on the GLS 65.94 108.37
t interval based on DWLS 64.36 105.61

Table 5.14: Confidence intervals for ED assuming common o: Data QNL84-2
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We also analyzed the same data set assuming o is different for the unbleached and

bleached response curves. The parameter estimates for this case are presented in Tables

5.15 and 5.16.
ML QL

parameter | estimate | bias | std.error | estimate | bias | std.error

a; x 1074 14.28 { 0.01 0.41 14.28 | 0.02 0.46
a; 123.18 | 0.08 6.09 122.74 | 0.16 6.73
a3 393.07 | 1.15 27.77 392.0 | 1.69 30.68
B 192.55 | 0.53 16.32 193.37 | 1.02 18.75
B3 756.62 | 15.30 123.22 | 761.65 | 22.83 142.74
ED 87.20 | -0.14 8.27 86.43 | -0.17 9.16
ol 0.0008 0.0010
ol 0.0016 0.0021

Table 5.15: ML and QL estimates assuming different o: Data QNL84-2

The 95% confidence intervals for the equivalent dose ¥ assuming unbleached and bleached
curves correspond to different error factors are given in Table 5.17.
Remarks
The results of the analysis of this data set indicate that fitting a common relative error o or
fitting two different o’s for the unbleached and bleached curves do not change the parameter
estimates; we demonstrate this below. However, as one might expect, the biases and the
standard errors of the estimates depend on whether or not the two curves correspond to a
common o.

Data weighted least squares estimating equations do not involve ¢. Therefore, the DWLS
estimates are unchanged regardless of whether we fit a common o or two different o’s for
the unbleached and bleached curves. For all the other three methods, the estimating equa-

tions for the simultaneous curve fitting involve o. For example, quasi-likelihood estimating
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GLS DWLS
parameter | estimate | bias | std.error | estimate | bias | std.error
a; x 1074 14.30 | 0.03 0.46 14.25 | 0.01 0.45

Q2 123.18 | 0.10 6.76 121.86 | 0.29 6.70
a3 393.06 | 1.42 30.82 380.92 | 2.24 30.55
B2 192.55 | 0.69 18.62 195.18 | 1.70 19.14
B3 756.63 | 19.84 140.61 772.76 | 29.50 147.50
ED 87.15 | -0.18 9.26 84.98 | -0.17 9.00
ol 0.0010 0.0010

o2 0.0021 0.0022

Table 5.16: GLS and DWLS estimates assuming different o: Data QNL84-2

Description Lower bound | Upper bound
Profile likelihood 72.16 106.73
using F critical value (FCRIT1) 70.21 110.15
Z interval based on the ML 70.99 103.41
t interval based on the ML 70.09 104.31
t interval based on the QL 67.42 105.45
t interval based on the GLS 67.93 106.39
t interval based on DWLS 66.31 103.66

Table 5.17: Confidence intervals for ED assuming different o: Data QNL84-2
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equations for the simultaneous curve fitting for the different o case are

Zylz—flzvfh ZyZJ f2] Vflizo'

= oifh a5 f3;
To obtain the parameter estimates we use a 2-part iteration similar to what we described
for obtaining maximum likelihood estimates. This means, we find the estimates for 6 in
an iterative fashion, each time upgrading o; and o, using current parameter estimates and
solving estimating equations for @ by replacing unknown o; and o, by these estimates. At
a glance, it appears that the parameter estimates depend on how we estimate o; (j = 1,2).
However, we observed in the example that the estimates did not have such a dependence.
Since this observation appeared puzzling, we examined this more carefully. For a fixed oy, o
the QL and GLS estimating equations for  are derivatives of a function (the likelihood for
the gamma model or the weighted error sum of squares) which is being optimized. The
location of the optimum is invariant under reparametrization of §. When the curves are
fitted separately this optimum clearly does not depend on o, 02 (the estimating equations
for @ for this case do not involve ). For QL and GLS, the invariance then guarantees that
the same conclusion holds for the simultaneous curve fitting. Thus, the quasi-likelihood
and the generalized least squares estimates are unchanged regardless of whether we fit a
common ¢ or not. Furthermore, QL and GLS estimates for # do not depend on how we
estimate o, in particular, whether we use maximum likelihood or least squares estimates
for o. Turning to maximum likelihood, the situation is somewhat different. As for QL and
GLS, the invariance property guarantees that the simultaneous curve fitting and two stage
approaches yield the same estimates by the method of maximum likelihood. However, the
maximum likelihood equations are coupled with the estimating equations for o, even for two
stage curve fitting. Therefore, the estimates depend on how we estimate ¢. In other words,
the estimates using maximum likelihood estimates for ¢ and least squares estimates for o
are not necessarily the same as for the QL and GLS. Furthermore, the estimates for ¢ using
a common error factor are not necessarily the same as those using different error factors.
However, for the illustrated example, the maximum likelihood estimates for the two cases,
fitting a common ¢ and fitting two different ¢’s for unbleached and bleached curves were

virtually the same to the degree of accuracy as reported here.
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5.6 Discussion

In this chapter, we discussed the estimation of the equivalent dose from partial bleach data.
We described two approaches for this purpose based on two different parameterizations of
the model. Both approaches yield the same parameter estimates. The first approach fits
response curves for the unbleached and bleached data sets separately and estimates the
equivalent dose as the intersection of the two fitted curves. For this approach, Berger et.
al. [11] describes interval estimation assuming a common error factor for the unbleached
and bleached data sets. We extended their results to the case of different error factors.
The second approach fits the two curves simultaneously treating the equivalent dose vy as a
parameter.

For both approaches, we described algorithms for obtaining maximum likelihood, quasi-
likelihood, generalized least squares and data weighted least squares estimates. Formulae
were derived for the biases of the estimators. We found that if the relative error in a single
measurement o is small, which is usually the case with partial bleach data, the bias is
negligible relative to the standard error.

Under maximum likelihood, we described computing profile likelihood intervals and sym-
metric intervals using z and ¢ quantiles. We also discussed computing profile type confi-
dence intervals using a F critical value. Under quasi-likelihood we discussed computing
profile type confidence intervals by inverting the quasi-score test, and symmetric confidence
intervals using ¢ quantiles. For generalized least squares and data weighted least squares we
described symmetric confidence intervals using ¢ quantiles. The finite sample performance
of the suggested confidence intervals were examined by a Monte Carlo study. The following

conclusions were drawn from the simulation results:

1. The coverage probabilities of symmetric ¢ intervals based on the maximum likelihood,
quasi-likelihood, generalized least squares and the data weighted least squares esti-

mates agree well with their nominal values even when the sample sizes are small.

2. When the sample sizes are small, the coverage probabilities of profile likelihood inter-

vals and z intervals based on the maximum likelihood estimate were found to have

128



smaller coverage than their nominal values.

3. The coverage probabilities of profile type confidence intervals with a transformed F

quantile agree well with their nominal values even in small samples.

4. The coverage probabilities of profile type confidence intervals based on the quasi-score

test agree well with their nominal coverages even in small samples.

5. Large sample sizes are not common in TL studies. Based on the simulation results,
we recommend using symmetric confidence intervals based on t quantiles, quasi-score
intervals and profile likelihood intervals with F critical values as opposed to intervals
based on the maximum likelihood estimate with z quantiles and profile likelihood

intervals with y? critical values.

6. The t type confidence intervals have the added advantage that they are easier to

compute than profile type confidence intervals.

We also examined the robustness of the test with F' critical values to the departures
from normality of the data. For this study, photon counts were generated from a gamma
distribution with mean f(z;,8) and variance o2 f?(z;,6). A confidence interval for the equiv-
alent dose was computed from each generated sample using an F critical value. We found
that the observed coverages still agree well with the nominal values even if the sample sizes
are small. However, for the values of o occurring in practice, the gamma distributions in
question have large shape parameters (shape parameter is 1/0%) and so were very close to
normal distributions.

From the small study we performed to examine the behavior of the biases of the esti-
mators for fixed o, as the sample size n becomes large, we found that for all the parameters
in the simultaneous curve fitting, the biases of maximum likelihood and quasi-likelihood
estimators converge to zero at a rate O(1/n). The same is true for the generalized least
squares and data weighted least squares estimators, except for the parameter a;. For 7,
the parameter of interest in thermoluminescence studies, the maximum likelihood estimator

and the generalized least squares estimator were found to have almost the same bias.
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We end this chapter with a brief description of the computational difficulties encoun-
tered in the simulation work. When o is larger than about 0.04 and the sample sizes are
small (less than 50), we found that the convergence of the programs that compute profile
type confidence intervals is poor. Since we are dealing with small samples (n around 29)
with a non-linear response curve involving about 6 parameters the poor convergence is not
surprising. Since the estimates for o from the real data sets are usually small, the poor con-
vergence for large o is not viewed as a serious limitation. Due to poor convergence when o
is large (> 0.04) the biases and the coverage probabilities were only examined using samples
of size larger than 50.

It may be worthwhile exploring the possibilities for improving the convergence of the
programs when o is large. Perhaps, a transformation of the parameters that removes the
parameter effects non-linearity as suggested by Bates and Watts [2] could improve the
convergence. In this work, we did not explore these possibilities.

We found that the coverage probabilities of the profile likelihood intervals are lower than
their nominal values when the sample sizes are small. Several authors have addressed this
problem of narrowing the profile when nuisance parameters are estimated. (See McCullagh
and Tibshirani [50], Cox and Reid [20], Fraser and Reid [31]). Further work needs to be
done in the area of adjusting the profile likelihood for estimating the nuisance parameters

in our problem.
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Chapter 6

Equivalent dose from regeneration

data

In the regeneration method, a portion of the sample is given a vigorous laboratory bleaching.
As in the partial bleach method, this portion is used to define the bleached response curve.
The other portion is used to define the unbleached dose response curve. The equivalent dose
is defined as the dose shift required for the unbleached curve to match the bleached curve
(Aitken [1], Huntley et. al. [38]). If such a dose shift does not match the two curves, then
the two data sets do not represent the same curve and the equivalent dose is not estimated
from such data sets (Huntley et. al. [38]). In this chapter, we describe estimating the
equivalent dose from regeneration data.

In Section 6.1, we introduce the notation and review the mathematical models for re-
generation data. Section 6.2 offers initial estimates for the parameters. The methodology
developed for partial bleach data can be applied to regeneration data with slight modifica-
tions. Therefore, we do not intend to elaborate on the theory. We describe the modifications
that are necessary and offer the simulation results. The maximum likelihood estimates for
the parameters are obtained in sections 6.3. Profile likelihood intervals and symmetric con-
fidence intervals based on the maximum likelihood estimate using Z and t critical values

are discussed in Section 6.3.1. In Section 6.3, we also discuss confidence intervals using a
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transformation of the likelihood ratio statistic with a transformed F critical value. Quasi-
likelihood estimates for the model parameters are discussed in Section 6.4. In Section 6.4.1,
we discuss symmetric confidence intervals based on the quasi-likelihood estimate with a ¢
critical value and based on inverting the quasi-score test. In Section 6.5, we obtain gen-
eralized least squares and data weighted least squares estimates for the equivalent dose.
In Section 6.5.1, we discuss symmetric confidence intervals based on the generalized least
squares and the data weighted least squares estimates. The finite sample performance of
the suggested confidence intervals are examined by a Monte Carlo study. Formulae for the
biases of the estimators are provided in Section 6.6.

In Section 6.7, we describe the results of a study that examines the behavior of the biases
of estimators for fixed o, as the sample size n gets bigger. We developed software using
the computing language FORTRAN to implement the suggested methodology. In Section
6.8, we demonstrate the suggested theory using a real data set. Section 6.9 summarizes the

chapter.

6.1 Mathematical models for regeneration data

For regeneration data, we discuss fitting a model with a saturating exponential plus a linear
component. We chose to use this response function for two reasons: first it is commonly used
by physicists for regeneration data (physical motivation for using this response function will
be described later) and second since the techniques we describe for fitting regeneration data
closely follow those for the partial bleach data we get a slightly different illustration of the
results we darived for general response functions. The model with saturating exponential

plus a linear component is represented by the function

T+ g

f(:c,ﬂ):al{l—exp[—- ”+a4(x+a2),

where z is the added dose and 8 = (a;,@q,a3,4)7 is the vector of unknown parame-
ters. The procedures we describe for fitting these models can easily be adapted with slight

modifications to fit other forms of response functions.
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Motivation for using saturating exponential plus a linear component

Suppose there are two different types of traps approaching saturation at different dose levels
as illustrated in Figure 6.1. In Figure 6.1, the dashed lines indicate the response curves, if
there were only one type of trap. The solid line indicates the response function we observe
from the sample as a result of the two types of traps, one approaching saturation while the
other is still at its trap filling stage so that the corresponding response curve is nearly linear.
As discussed in Chapter 5, response curves for each type of trap can be approximated by
a saturating exponential model. Consequently, the response curve for the photon counts

observed from the sample can be well approximated by a saturating plus a linear component.

Response curve for

the sample  ~—~__

Photon count

trap type 1
Response curve for

trap type 2

Added dose
Figure 6.1: Plot of response curves for two different types of traps

Suppose data are collected on n; unbleached and 7n, bleached samples. Let z1; and z3;
respectively indicate the doses received by the ith unbleached and jth bleached samples.
For the unbleached data, we fit the response function

__(171i + a3)
Qg3

fi(z1:i,80) = {1 — exp [ ] } + a4(zy; + 02)- (6.1)
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For the bleached data, we fit the response function

{32+ a2 +7)
a3

f2(z25,0) = qas {1 — exp [ }} + asaq(Te; + a2 + 7). (6.2)

The parameter o is called a TL intensity scaling factor. Let 8 = (a;, a2, a3,a4,a5,.7) be
the vector of unknown true parameters.

Huntley et. al. [38] reports that the equivalent dose can only be estimated if the
unbleached and the bleached response curves could be matched by a shift along the dose
axis. This is only possible if the TL intensity scaling factor, as. is unity and the parameter
a3 is the same for both curves. Therefore, we adhere to the following guidance for estimating

the equivalent dose from the regeneration data.

1. Fit the response functions described by 6.1 and 6.2 for the unbleached and bleached

data sets respectively.

2. Perform a formal hypothesis test to decide whether the intensity scaling factor is

significantly different from unity.

3. If the intensity scaling factor is not significantly different from unity, re-fit the data

with it fixed at unity.

4. From the re-fitted model, estimate the dose shift -y required for the unbleached response
curve to match the bleached response curve. This dose shift 7 estimates the equivalent

dose.

5. I the intensity scaling factor is significantly different from unity the equivalent dose

cannot be estimated from the given data (Huntley et. al. [38]).

Remarks:

1. The regeneration method for estimating the equivalent dose assumes that the labo-
ratory bleaching does rot cause any sensitivity change of the sample. According to
Huntley ez. al. [38], if the TL intensity (B) obtained from the bleached curve at the

zero dose (Figure 6.2) is not equal to the thermoluminescence had it been measured at
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the time of deposition it indicates a sensitivity change in the sample. The latter TL,
while is unknown, is assumed to be the same as that measured for a modern dune (M)
from the same environment. Consequently, if the points B and M do not coincide it is
considered as an indication of sensitivity change due to laboratory bleaching. If there
is an indication of such sensitivity change, the deduced dose has to be corrected for
this. Huntley et. al. [38] suggests the correction to be (, which is the dose reading

from the bleached response curve corresponding to the TL intensity of the modern

dune (M). (Figure 6.2).

T
E

Bleached response curve

photon count

M

Y

dose

Figure 6.2: Correction for sensitivity change

2. Following the work of Huntley et. al [38], the hypothesis that the unbleached and
bleached curves represent the same curve was examined by testing if the TL intensity
scaling factor a; is not significantly different from unity. Recall that, when writing the
response function for the bleached data we already assumed that a3z and a4 are com-
mon for the unbleached and bleached response functions. The guidance we followed
therefore imposes the restriction that the parameters a3 and a4 do not change due to
bleaching of the sample. While this assumption allows us to test the hypothesis that
the two curves represent the same curve shifted along the dose axis with more power
this assumption is not crucial for testing this. In Section 6.3, we describe procedures
for testing whether or not the two curves represent the same curve without imposing

restrictions on a3z and ay.
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6.2 Initial estimates

Consider the response function for regeneration data. Note that for large z, f; is
close to a straight line with slope and intercept:
slope =13 = a4, (6.3)
intercept =r21 = (a1 + azay). (6.4)
For small = values, f; is close to a straight line with the slope and the intercept:
a
slope =7r3; = 2Ly oy, (6.5)
2%}
. a0
intercept =14, = 172 a0, (6.6)
a3
For the bleached data the corresponding terms are:
T2 = Q304, (6.7)
re2 = (@50 + asasy) + asasoz, (6.8)
Q50
T3 = > + a0y, (69)
a3
Q50 Qi Q50
and 14, = + Y + asaq0g + asogy. (6.10)
Q3 Q3
Solving the equations 6.3 - 6.10 we get
711741
a = T21-— )
T3.1
T4.1
G = -—,
T3.1
(r21 —T13743/731)
Q3 =
(r31-r11)
g = T,
T3.2
s = —,
T3.1
T42 T3.2T41
and 7 = —/— - ===,
T32 T31T32
Let
n[l] = average photon count corresponding to the zero dose for the
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z2[2]

y2(2]

z2[n2}

z2[(n2 — 1)]

Ya[no]

and yf(ny —1)]

unbleached data,

smallest positive dose for the unbleached data,
average photon count corresponding to z;[2],
largest dose for the unbleached data,

second largest dose for the unbleached data,
average photon count corresponding to z;[n4],
average photon count corresponding to z;[(n; — 1)],
average photon count corresponding to zero dose for the
bleached data,

smallest positive dose for the bleached data,
average photon count corresponding to z3[2],
largest dose for the bleached data,

second largest dose for the bleached data,

average photon count corresponding to .7:2[722],

average photon count corresponding to z3[(nz — 1)].

We estimate the slopes and the intercepts as follows:

(
and Tg2 = y2[1 .

— (wl=nf(ra-1)D

ra = (z1[n —1:1[(”1‘1)])’
—  (w2[n2]-we((ra-1)))

2 = (ol
T21 = yl[nl] - T1.1 271[711],
T2.2 = yz[nz] —T.2 $2[712],

(6.11)

—  (n2]—un1}
31 = 1|2 ’
—  (wl2-w)1))
T32 = 212 ’

ra1 = (1

1
]

J

The initial estimates for the parameters are obtained by replacing the slopes and

intercepts by their estimated values using equation 6.11.
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6.3 Maximum likelihood estimates

We refer to the model with the parameter s unspecified as the full model. The model
with as fixed at unity is called the constrained model. The parameter estimates for

the constrained model are referred to as restricted maximum likelihood estimates.

To fit regeneration data, we modify the the algorithm described in Section 5.3.1 as

follows.

Maximum likelihood estimates

The columns of the n x 6 matrix D (Section 5.3.1) are replaced by the columns
(2f 2fi Ofi Ofi Bfi 8y given below:

8a1 ’ 8&2’ 8&3 ? 8&4 ? 305 ? 8‘7

8a1 a3
= o5 (1 — exp [-—(:Bzi toat ﬂ]) >
Q3
(for ny < i< ny + n2); (k= (i - n1))
% = 1—exp[———(-:-z%;—}_—q—zl}+a4(forl<i_<_nl)
= as (1 — exp [—(zzi tas 7)]) + asay,
a3
(for ny < i < ny 4 ng); (k= (i —n))
2L o Mewtan) e [TEEEA (or 1 << m)
das al asz ’ -
—(z9; + )
= ~a1(§5 (z2i + a2 + 71)exp [ (22 + +7)] ;
az as
(for ny; < i< ny 4+ n2); (k= (i —m))
of; .
3%; = (21:+az) (for1 <1< m)
= as(z2;+0a2), (forny < i< ny+ng);(k= (i~ n1)),
ofi :
=t = <
Bes 0 (forl<i<m)
. )
= o (1 — exp [— (2 +aa2 + 7"D + a4 (z2: + 2),
3
(for ny <3< ny +n2); (k= (¢ —m1))
%:f-yi = 0(f0r1<i§n1)
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-

o a3 [ (z2i + 02 + '7)J

e exp |~ .
Qa3 Q3

(for ny <t < ny 4 n2); (k= (- n1))

The restricted maximum likelihood estimates are obtained by fixing o5 at unity. To

compute the restricted maximum likelihood estimates, we replace the matrix I by the
iy (Ofi B8fi 8fi Ofi 8fi
n X 5 matrix (E{T’ 50%, 3—&%, 554—, 5%)

The standard errors of the maximum likelihood estimates can be computed as de-

scribed in in Section 5.3.1.

Tests on the intensity scaling factor

Recall that the first step in estimating the equivalent dose from the regeneration data
is to test the hypothesis Hg : a5 = 1.

The likelihood ratio test

Let the values of the log-likelihood function corresponding to the full model and the
restricted model be [; and I; respectively. Let x%’a denotes the upper a quantile for a
x*? distribution on 1 degree of freedom. If 2(1; —I3) > x? ,, with confidence coefficient
1 — a we conclude that the intensity scaling factor as is significantly different from
unity.

The ¢ test

Let s5, be the standard error of ;. Let t = ii”ffl If the absolute value of ¢ is
greater than 2,/3 , 4n, -6, We conclude that the intensity scaling factor is significantly
different from unity. Here ¢, , denotes the upper ath quantile for a ¢ distribution with

v degrees of freedom.

Worked Example

We applied the suggested methodology on the data set SESA1 (cited in Huntley et.
al. [38]). The results for the data collected at the temperature 350°C are as follows.

These data were kindly provided to us by D. J. Huntley.
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Maximum likelihood

as = 0972, sz, = 0.027

I -537.788, [l = —538.318

2 =) = 1.06 < x3g9s; (p— value =0.30)

S 1 ,
t = lggis-——-—)-! = 1.053 < 2.00(= to.975,56); (P — value =0.15)
as

Both tests lead to the conclusion that the data do not provide enough evidence to
reject the null hypothesis that the intensity scaling factor is unity. So we re-fit the
model by setting the intensity scaling parameter at unity. From the fitted parameters
for the restricted model, the maximum likelihood estimate for the equivalent dose =

73.06, with an error of the estimate s5 = 3.23.

Will a dose shift bring the two curves into coincidence?

Now we briefly describe test procedures for testing whether a dose shift would bring
the two response curves into coincidence without imposing restrictions on any of the
parameters. The procedures described earlier can be slightly modified to fit the models

described below.

(a) For the unbleached data, fit the response function

_ (z1i + a2)

p ] } + aq(z1i + a2). (6.12)

filzi,0) = {1 — exp [

For the bleached data, fit the response function

fo(22;,8) = B {1 _ exp [__ (z2; +;32 + ’7)]} + Ba(z2; + a2 + 7). (6.13)

(b) Test the hypothesis a; = f1, a3 = f3,04 = (4 using the likelihood ratio test.
Likelihood ratio test

1. Fit the two models described by the equations 6.12 and 6.13 for the unbleached and

bleached data respectively. We refer to this model as the full model.
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2. Now re-fit the models subject to the restriction, oy = By, 03 = 3, a4 = B4. We refer

to this model as the restricted model; it is the same restricted model described in the

previous section.

3. Let [; and /5 be the values of the log-likelihood for the full model and the restricted

model respectively.

4. M 2(ly ~ I2) > x3 , using a significance level & we conclude that the two curves do not

represent the same curve.

Worked Example
For the data set SESA1 cited earlier we found that the parameter estimates for the full

model are:

&y = 78594.0, &p = 85.72, 03 = 128.19, 64 = 74.97,7 = —79.51,,5’1 = 54043.80,
B3 = 74.63 and B, = 121.84.

The standard errors are:

sa; = 18146.10, 54, = 18.41, 55, = 59.53, 55, = 31.07,55 = 18.41, 55 = 5251.72,
5, = 10.28 and 55 = 13.10.

The log-likelihood for the full model is [y = —536.042.

The parameter estimates for the restricted model are:
G&1 = 62150.1, &g = 79.6176, 43 = 89.6115, &y = 105.644,% = —73.0640,
The standard errors are:
S&, = 4886.85, 55, = 3.41, 55, = 9.66,s5, = 11.12, 55 = 3.23.
The log-likelihood for the restricted model is I, = —538.318.

Note that 2(l; — I5) = 4.552 < x% p.05(= 7.81), (p—value = 0.79). Therefore, at a level

of significance a = 0.95, we conclude that the two curves represent the same curve shifted

over the dose axis.
The test that uses the additional information that a3 and a4 are common to the un-

bleached and bleached response curves is more powerful in detecting whether the intensity
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scaling factor is unity than the test described here. Since physicists follow the former proce-
dure we do not intend to follow the less powerful test procedure described here to determine
whether the two curves follow the same curve; we only examine whether the intensity scaling
factor is equal to unity. Similar tests as described in this section can be performed based

on the quasi-likelihood estimate or least squares estimates.

6.3.1 Profile likelihood intervals

Recall that, in the regeneration method we estimate the equivalent dose from the restricted
model. The full model is only used as a guide to decide whether or not we can estimate the
equivalent dose from the given data. The simulation results we present here and elsewhere
in this chapter are therefore obtained using the restricted model.

The Monte Carlo study is similar to what we already described for the partial bleach
data. Since the response functions we consider for the regeneration data are different from
those for the partial bleach data we need to modify the algorithms accordingly. The nec-
essary modifications are similar to what we described for deriving maximum likelihood
estimates. For example, to compute profile likelihood intervals, the n x 5 matrix D’ of
Section 5.3.2 has to be replaced by the n x 4 matrix D’/ with ith row consisting of the partial
derivatives (aéo%v %, 3%%, %).

As for the partial bleach data, we examined the finite sample performance of the profile

likelihood intervals, symmetric intervals with ¢ and Z quantiles, and the likelihood ratio

intervals with transformed F' critical values. The parameters were set at
8 = (57486.4,76.3545,86.9160, 95.3052, —68.8792)7.

These are the maximum likelihood estimates for the parameters in the full model obtained
for the data set SESA1 (collected at the temperature 360°C) cited in Huntley et. al. [38].
The dose vectors used for the study are presented in Table 9.2 of Appendix 9.3 where it is
labeled as indicated in the first column of Table 6.1.

The results based on 10000 simulations are given in Table 6.1. In Table 6.1, the column

‘PROFILE’ indicates the observed coverages for the profile likelihood intervals. The columns
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‘FCRITI’ and ‘FCRIT?’ indicate the observed coverages for the confidence intervals using
the transformed likelihood ratio statistic LR (Section 5.3.4) with the critical values based

on the approximations:

F,
2LR = nlog [1+ (;(1’55))} (6.14)
n
~ (n — 5)F1’(n'5) (6.15)

The columns Z and t indicate the coverage probabilities of the symmetric confidence
intervals based on the maximum likelihood estimate with quantiles of standard normal and

student ¢ with n — 5 degrees of freedom respectively.

Dose | ¢? | nominal | PROFILE | FCRIT1 | FCRIT?2 VA t ny | Moy
(R1) { 0.002 0.95 0.9375 0.9507 0.9531 |0.9331 | 0.9485 | 30 | 32
(R1) | 0.004 0.95 0.9369 0.9475 0.9531 | 0.9321 | 0.9482 | 30 | 32
(R3) | 0.002 0.95 0.9442 0.9502 0.9516 | 0.9415 | 0.9494 | 50 | 50
(R3) | 0.004 0.95 0.9389 0.9454 0.9476 | 0.9357 | 0.9455 | 50 | 50
(R4) | 0.002 0.95 0.9493 0.9527 0.9537 | 0.9476 | 0.9493 | 100 | 100
(R4) | 0.004 0.95 0.9487 0.9514 0.9520 | 0.9468 | 0.9510 | 100 | 100
(R4) | 0.006 0.95 0.9419 0.9456 0.9474 | 0.9411 | 0.9456 | 100 | 100

Table 6.1: Coverage probabilities of profile, F, Z and ¢ intervals: regeneration data

Conclusions:

Based on the simulation results we recommend using ¢ confidence intervals which are easier
to compute and have coverage probabilities in agreement with the nominal coverages. If
profile type confidence intervals are preferred, we recommend using a transformed F critical

value as oppose to a x? critical value.

6.4 Quasi-likelihood estimates

The algorithm described in Section 5.3.7 can be used to obtain the quasi-likelihood estimates

by replacing the matrix F by the matrix D described in Section 6.3.
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The quasi-likelihood estimates for the constrained model are obtained by fixing a5 at
unity. As in the case of restricted maximum likelihood estimates, the columns of the n x 5

matrix F of partial derivatives have to be replaced by the columns (gﬁ, g—%, g—ff‘; %, %%)

xq

to obtain the restricted quasi-likelihood estimates.

Testing the hypothesis Hg : a5 = 1:

Let W be the weight matrix, which is diagonal with ¢th diagonal element equal to the weight
on the ith observation, f2. Let &s be the quasi-likelihood estimator for as. Let sa, be the
square root of the corresponding diagonal element of the matrix o2( FTW F)~1,
Proceeding as in Section 5.2.4, we find that iz;;_a:;_%l has approximately a t distribution
with (n1 + n2 — 6) degrees of freedom. If the absolute value of E%f:—ﬂ is greater than the
corresponding quantile of a ¢ distribution with (n; + n2 — 6) degrees of freedom, we reject

the hypothesis that the intensity scaling factor is unity, at the significance level a.

Worked Example continued.

Quasi-likelihood estimates:

We applied the suggested methodology to find the quasi-likelihood estimates for the da-a set
SESA1 (Huntley et. al. [38]). The number of observations for the unbleached and bleached
data sets are n; = 30 and ny = 32. The quasi-likelihood estimates for the model parameters
are s = 0.970, sa, = 0.028. Thus, |K°ST:11| = 1.062 < tsg0975(= 2.00); (p—value = 0.15).
So as in the method of maximum likelihood, we conclude that as is not significantly different
from unity. Therefore, we re-fit the data by fixing o5 at unity. From the fitted parameters
of the restricted model, quasi-likelihood estimate for the equivalent dose = 73.17, with a

standard error of the estimate s; = 3.39.

6.4.1 Quasi-score intervals

The procedure described in Chapter 5.3.8 can be used to obtain confidence intervals for the
equivalent dose by inverting the quasi-score test. The necessary modifications are similar

to those described for the profile likelihood intervals.
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Symmetric confidence intervals for the equivalent dose can also be constructed based
on the quasi-likelihood estimate using a t critical value. Since the confidence intervals are
constructed based on the model with TL intensity scaling factor fixed at unity, for the
common error factor case, the degrees of freedom for the ¢ distribution is (n; + ng — 5).
When o is assumed to be different for the two response curves the corresponding degrees of
freedom can be obtained from Satterthwaite’s approximation (Equation 5.17).

The results of a simulation study that examines the finite sample performance of these

confidence intervals are given in Table 6.2. For this study the parameters were set at
8 = (57486.4, 76.3545,86.9160,95.3052, —68.8792)7.

These are the parameters used for examining confidence intervals based on the maximum
likelihood estimate. The dose vectors used for the study are presented in Table 9.2 of
Appendix 9.3 where they are labeled as indicated in the first column of Table 6.1. In this
table, columns ‘Qscore’ and ¢ indicate the observed coverages for the confidence intervals

based on the quasi-score and symmetric ¢ intervals.

Dose | o¢% | nominal | Qscore t nl | n2
(R1) | 0.002 0.95 0.9448 1 0.9494 | 30 | 32
(R1) | 0.004 0.95 0.9429 | 0.9478 { 30 | 32
(R3) | 0.002 0.95 0.9467 | 0.9492 | 50 | 50
(R3) | 0.004 0.95 0.9407 | 0.9424 | 50 | 50
(R4) | 0.002 0.95 0.9493 | 0.9510 | 100 { 100
(R4) | 0.004 0.95 0.9495 | 0.9510 | 100 | 100
(R4) | 0.006 0.95 0.9449 | 0.9464 | 100 | 100
(R5) | 0.002 0.95 0.9475 | 0.9487 | 125 | 125

Table 6.2: Coverage probabilities of quasi-score and ¢ intervals
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Conclusions:

Except for the quasi-score intervals in one case, the coverage probabilities of both ¢ intervals
and quasi-score intervals agree with the nominal coverages even in small samples. Based
on the simulation results we conclude that the small sigma asymptotic results are valid for
sigma in the range of real data sets collected for the regeneration method (The estimates

for 02 in real data sets collected for the regeneration method are usually around 0.004.).

6.5 Generalized least squares and data weighted least squares

We commonly refer to the generalized least squares estimates and the data weighted least
squares estimates as least squares estimates. The algorithms described for obtaining least
squares estimates for the partial bleach data can be slightly modified to obtain least squares
estimates for the regeneration data. Since the necessary modifications are similar to those

described for the maximum likelihood estimates we do not elaborate.

Testing the hypothesis Hy: a5 = 1:

Let &5 be any of the least squares estimators for as. Let s, be the estimate for the error
of the estimate obtained as described in Section 5.3.10 for the partial bleach data.

As in Section 5.2.4, it can be shown that E—‘As_:;%l has approximately a t distribution
with (n7 + ny — 6) degrees of freedom. If the absolute value of Kﬁ%%l is greater than the
corresponding quantile of a ¢ distribution with (ny + ny — 6) degrees of freedom, we reject

the hypothesis that the intensity scaling factor is unity, at the significance level «.

Worked Example continued.

We applied the suggested methodology to obtain the least squares estimates for the data
set SESA1 cited in Huntley et. al. [38]. The complete data set was kindly provided to us
by D.J. Huntley. A summary of the results are given below.

Generalized least squares

Estimate for as is, as = 0.972, with an error of estimate s4, = 0.099. Thus, l@f—ﬂi =
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0.287 < ts6,0.975(= 2.00); (p — value = 0.39). So, as in the method of maximum likelihood,
we conclude that as is not significantly different from unity. Therefore, we re-fit the data by
fixing a5 at unity. From the fitted parameters of the restricted model, the generalized least

squares estimate for the equivalent dose = 73.06, with an error of the estimate s; = 3.37.

Data weighted least squares

Gemn))

The estimate for as is, &s = 0.967, with a standard error ss, = 0.029. Thus, o

1.122 < tsep.975(= 2.00); (p — value = 0.13). As before, we conclude that as is not
significantly different from unity and re-fit the data by fixing s at unity. From the fitted
parameters of the restricted model, data weighted least squares estimate for the equivalent

dose = 73.56, with an error of the estimate s; = 3.50.

6.5.1 Confidence intervals based on least squares estimates

Let 4 be the least squares estimate and s; be the standard error of the estimate computed
as described under each method. The confidence intervals for the equivalent dose can be
constructed by taking ¥ F t4;_o/255 as lower and upper confidence limits. For the single
error factor case, the degrees of freedom df is (n; + n, — 5). For regeneration data, we do
not have justification for using different error factors. The use of these confidence intervals
in large samples can be justified as in Theorems 3 and 4 of Section 5.. 4.

The results of a simulation study that examines the finite sample performance of these

confidence intervals are given in Table 6.3. For this study the parameters were set at
6 = (57486.4,76.3545,86.9160, 95.3052, —68.8792)T.

These are the parameters used for examining confidence intervals based on the maximum
likelihood estimate. The dose vectors used for the study are presented in Table 9.2 of
Appendix 9.3 where they are labeled as indicated in the first column of Table 6.3.

Conclusions: Based on the simulation results we conclude that the small sigma asymptotic
resuits for the generalized least squares and data weighted least squares estimates hold for

o values typical of real data sets.
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Dose | o* nominal | GLS | DWLS | ny | n,
(R1)  0.002 ] 0©€.95 0.9486 | 0.9497 | 30 | 32
(R1) | 0.004 0.95 0.9485 | 0.9469 | 30 | 32
(R3) | 0.006 | 0095 |0.9494 | 0.9453 | 50 | 50
(R3)  0.008 | 0.95 0.9486 | 0.9415 | 50 { 50
(R3) j 0.010 0.95 0.9446 | 0.9381 | 50 | 50

Table 6.3: Coverage probabilities of ¢ intervals based on GLS and DWLS estimates

6.6 Biases of the estimators

6.6.1 Formulae for the biases

Let 8 = (a;,03.03,04,7)7 denote the vector of unknown true parameters of the restricted

model. The equivalent dose is estimated as 4. We denote the vector of first derivatives and

the matrix of second derivatives of f with respect to the parameter vector ¢ by \7f and H.

In each term, we use the subscripts 1 and 2 to indicate unbleached and bleached data sets.

The results derived in Chapter 3 can easily be extended to arrive at the following formula

for the bias of 4.

Method of Bias Var(8)
Estimation

ML s{-w + 2 (%) - im,} 02 To?
QL L {- %Wz} o? To?
GLS {rr, (#)-w - W}o? | T
DWLS | z{-2 (Y¥)+2w,-Iw}o?| 502

Table 6.4: The estimators for the bias and the Var(#):
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6.6.2 Biases from a simulation study

Let 6, be the vector of unknown true parameters, The formulae for the biases given in

Section 6.6 are based on the expansion for small ¢, § = 6,4 Cy0 +C,0?. We examined this
approximation in a simulation study. Since this study is Similar to that we described for
the partial bleach method we do not provide the details of the procedure. The parameters
vere fixed' at a1 = 57486.4,a; = 76.3545, a3 = 86.9160, a, = 95.3052, and v = —68.8792.
Table 9.2 of the Appendix 2.1 describes the dose vectors useq g, the study where they are
coded as indicated in the column ‘Dose’ in Tables 6.5 and § § From the simulation study
the biases were computed as the averages of ¥ — 5 — Cy0 ang (3 — ) values. Here,

vh o2 1
gz“' (% ) tL e (v}f}j : (6.16)

:——] i

The biases of the estimators were computed usjng the Tormulae given in Table 6.4 and

'In our study, we fixed the parameters at the maximui likelihood

‘WFP2-TR1’ of Huntley et. ol. [38]. estimates obtained for the data sets
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compared with the biases from the simulation study. The results based on 25000 simulations
are given in Tables 6.5 and 6.6. In the Tables 6.5 and 6.6, Br, By and B, respectively denote

the true bias, the average of 4 — v — ('yo values, and average of ¥ — ~ values.

Dose | o? ML QL Ny o
Br B, B, Br By B,
(R1) | 0.004 | -0.060 | -0.076 | -0.076 | -0.053 | -0.099 { -0.096 | 30 | 32
(R1) | 0.008 | -0.120 | -0.114 | -0.115 { -0.106 | -0.106 | -0.106 | 30 | 32
(R2) | 0.006 | -0.078 | -0.086 | -0.086 | -0.091 | -0.100 | -0.100 | 40 | 40
(R2) | 0.008 | -0.103 | -0.134 | -0.134 | -0.122 | -0.159 | -0.159 | 40 | 40
(R4) | 0.010 | -0.032 | -0.018 | -0.018 | -0.073 | -0.076 | -0.076 | 100 | 100

Table 6.5: Results of the Monte Carlo study 6.1(a)

Study | o2 GLS DWLS ny | T
Br By B, Br By B,
(R1) | 0.004 | -0.060 ; -0.078 | -0.078 | -0.039 | -0.062 | -0.062 | 30 | 32
(R1) | 0.008 | -0.120 | -0.131 | -0.131 | -0.079 | -0.072 | -0.072 | 30 | 32
(R2) | 0.006 | -0.078 | -0.086 | -0.086 | -0.119 | -0.136 | -0.136 | 40 | 40
(R2) | 0.008 | -0.103 | -0.139 | -0.139 | -0.159 | -0.227 | -0.227 | 40 | 40
(R4) | 0.010 | -0.032 | -0.018 | -0.017 | -0.073 | -0.076 | -0.076 | 100 | 100

Table 6.6: Results of the Monte Carlo study 6.1(b)

Based on the simulation results given in Tables 6.5 and 6.6, we conclude that the derived
formulae are valid for small o(< 0.09). For real data sets collected for the regeneration
method, o is usually around 0.08. Since sample sizes used in the simulation study are
around the real sample sizes, the derived formulae can safely be used to estimate the biases
of all four estimators for real data sets. For o in the range of real data sets, we notice that

the biases are negligible compared to the standard errors.
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6.7 Comparison of the estimators in finite samples

Next we describe the results of a small study that examines the biases of the estimators in
the model for the regeneration method. For the study described here the parameters were
set at a; = 57486.4, a; = 76.3545, a3 = 86.9160, ay = 95.3052, = —68.8792 and ¢ = 0.029.
The dose levels were fixed at (0,40,80,120,300,394,700). The procedure is similar to that

which we described for the additive dose method in Section 4.3.

n 851 Q2

ML QL GLS | DWLS | ML | QL | GLS | DWLS
14 | 1130.95 | 962.02 | 1590.83 | -295.63 | 0.33 | 0.44 | 0.33 0.67
28 655.47 | 481.00 | 1025.36 | -607.72 | 0.16 | 0.22 | 0.16 0.33
56 282.74 | 240.50 | 742.63 | -763.78 | 0.08 | 0.11 | 0.08 0.17
112 | 141.40 | 120.28 | 601.31 | -841.73 | 0.04 | 0.05 | 0.04 0.08

Table 6.7: Comparison of the biases of &; and &2: regeneration method

n as Q4

ML} QL | GLS | DWLS| ML | QL | GLS | DWLS
14 216 | 1.68 | 2.16 0.70 | -1.99 | -1.46 | -1.22 -1.94
28 |1.08 0.84 | 1.08 0.35]-0.99 | -0.73 | -0.23 -1.73
56 | 0.54 | 0.42 | 0.54 0.17 { -0.50 { -0.37 | 0.27 -1.63
112 | 0.27 | 0.21 | 0.27 0.09 | -0.25 | -0.18 | 0.51 -1.58

Table 6.8: Comparison of the biases of &3 and é4: regeneration method

Conclusions

Based on the results presented in Tables 5.9 - 5.11, we draw the following conclusions.

1. For fixed o, as n increases, the biases of maximum likelihood and quasi-likelihood

estimators for all five parameters converge to zero at a rate O(1/n).
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n g

ML | QL | GLS | DWLS
14 |-0.34|-0.44 | -0.34| -0.65
28 |-0.17|-0.22|-0.17 | -0.32

56 |-0.08 | -0.11 | -0.08 -0.16
112 { -0.04 | -0.05 | -0.04 -0.08

Table 6.9: Comparison of the biases of 4: the regeneration method

2. Except for the parameters o; and a4, the biases of generalized least squares and
data weighted least squares estimators also converge to zero at a rate O(1/n), as n is

increased while ¢ is fixed.

3. For all the parameters except a; and a4 the generalized least squares estimator and

the maximum likelihood estimator have almost the same bias.

4. It is easy to see from the results derived in Chapter 4 that the least squares estimators

for v, the parameter of our interest are asymptotically unbiased.

5. The results we observed here agree with the theoretical results presented in Chapter

4.

6.8 'Worked example

We analyzed the data set ‘SESA1’ (collected at 350°C) cited in Berger et. el [12] using
the techniques described earlier in this chapter. Now we present the results for fitting the

response functions

_ (:c + ag)
a3

flz,0) = {1 — exp [ }} + as(z + a3)
and
(zt+axt+7)

}} +a4(a:+a2+7),
a3z

f(z,0) = {1-6@[
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for the unbleached and bleached data respectively; here 8 = (a1, a2, a3, a4,7)T.

The parameter estimates for this data set are given in Tables 6.10 and 6.11.

ML QL
parameter | estimate | bias | std.error | estimate | bias | std.error .
a; X 1073 62.15 | 0.40 4.89 62.53 | 0.37 5.16
o 79.62 | 0.08 3.41 79.61 | 0.08 3.58
a3 89.61 | 0.69 9.66 89.92 | 0.58 10.14
a4 105.64 | -0.75 11.12 105.12 | -0.58 11.72
ED 73.06 | 0.08 3.23 73.17 | 0.08 3.39
o 0.0667 0.0697

Table 6.10: ML and QL estimates for the model parameters: Data SESA1

GLS DWLS
parameter | estimate | bias | std.error | estimate | bias | std.error
a; x 1073 | 6242 | 0.74 5.13 62.60 |-0.41 5.34

o 79.62 | 0.08 3.57 79.85 0.06 3.68

a3 89.61 0.75 10.09 90.70 0.23 10.50

oy 106.12 |-0.30 | 11.67 103.52 | -1.16 | 12.07

ED 73.06 0.08 3.37 73.56 0.06 3.50
o 0.0694 0.0719

Table 6.11: GLS and DWLS estimates for the model parameters: Data SESA1

The 95% confidence intervals for the equivalent dose (ED) are given in Table 6.12.
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Description Lower bound | Upper bound
Profile likelihood 66.77 79.82
using F' critical value 66.47 80.16
Z interval based on the ML 66.74 79.39
t interval based on the ML 66.32 79.80
Quasi-score interval 66.60 80.24
t interval based on the QL 66.39 79.96
t interval based on the GLS 66.61 80.56
t interval based on DWLS 66.56 80.56

Table 6.12: Confidence intervals for the equivalent dose: Data SESA1

6.9 Discussion

In this chapter we described procedures for estimating the equivalent dose from regeneration
data. The techniques developed for partial bleach data were slightly modified to fit the re-
generation data. As for the partial bleach data, finite sample performance of the asymptotic
results were examined by Monte Carlo simulations. Coverage probabilities of the following

confidence intervals were found to agree with the nominal coverages even in small samples:
1. symmetric confidence intervals with ¢ critical values
2. quasi-score intervals
3. profile likelihood intervals with transformed F critical values

When the sample sizes are small, profile likelihood intervals and symmetric confidence in-
tervals with Z critical values were found to have lower coverage probabilities than their
nominal values. Based on the simulation results we recommend symmetric confidence inter-
vals with ¢ critical values. These confidence intervals have the added advantage that they

are computationally uch simpler than profile likelihood intervals.



|

|

All four estimators {maximum likelihood, quasi-likelihood, generalized least squares and
data weighted least squares) were found to have negligible biases compared to their standard
errors, when the relative error in a single measurement o is small, and in particular for

sample sizes and values of o typical of careful experimental work.



Chapter 7

Equivalent dose from plateau data

In the previous chapters we focused on estimating the equivalent dose from the data collected
at a given temperature. In thermoluminescence studies, data are collected at a series of
temperatures. The equivalent dose estimated at each temperature is then plotted against
the temperature. Figure 2.3 given in section 2.2 demonstrated such a plot. The plateau
region, where the estimated equivalent dose does not vary with the temperature, is believed
to represent traps which have not been subjected to leakage over the burial time. Therefore,
only those traps corresponding to the plateau region can provide reliable information for
dating purposes; see Aitken [1]. From separate analyses at each temperature on the plateau,
we have several estimates for the equivalent dose corresponding to the plateau. Here we
address the problem of combining these estimates to obtain a more precise estimate for the
equivalent dose.

We have to face two problems in using the observations at several temperatures. First we
need to correctly identify the temperatures belonging to the plateau. From experience with
real data sets we understand that it is not clear cut whether or not certain temperatures
belong to the plateau. However we do not intend to deal with this problem in this work.
The second problem arises from using the same subsamples to collect data at several tem-
peratures. Consequently, the observations collected at temperatures over the plateau are
positively correlated. On the other hand over the range of plateau temperatures the same

traps are being emptied. This could produce a negative correlation between the photon
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counts taken over adjacent temperatures on the plateau. The real data sets we analyzed
show that the observations taken on the plateau are highly positively correlated.

In section 7.1, we introduce our notation. Section 7.2 proposes a procedure closely
related to that of Liang and Zeger [43] for estimating the equivalent dose from the data
corresponding to the plateau region assuming all the response curves correspond to a com-
mon o (relative error in a single measurement). In section 7.2.2, we investigate large sample
properties of the suggested estimate and provide an estimate for the approximate error of
the estimate. In section 7.2.3, we investigate small ¢ asymptotic properties of the derived
estimate. In section 7.2.4, we propose symmetric confidence intervals for the equivalent
dose with a t quantile and provide a formula for an approximate degrees of freedom of the
suggested ¢ quantile. Finite sample performance of the proposed asymptotic results are
examined by a simulation study which we describe in Section 7.2.5. From the simulation
study we find that the coverage probabilities of symmetric confidence intervals using stan-
dard normal quantiles are lower than their nominal levels. The ¢ confidence intervals were
found to have coverage probabilities close to their nominal confidence coefficients.

As we clarify in section 7.3, if bleaching could cause a change in the variability of the
emitting grains relative to the mean number of emitting grains in a sample, the physical
model we proposed in Chapter 2 suggests different o values for the unbleached and bleached
response curves. Section 7.3 proposes a procedure for estimating the equivalent dose assum-
ing unbleached and bleached response curves correspond to different o.

We developed software using the programming language FORTRAN to implement the
suggested methodology. In section 7.4, we demonstrate the suggested methodology using a

real data set. Section 7.5 summarizes the chapter.

7.1 Introduction to the problem

When analyzing the data at a given temperature, we described estimating the equivalent
dose from a simultaneous fitting of unbleached and bleached response curves. In this chapter,
we extend this idea and estimate the ejuivalent dose from a simultaneous fitting of all tie

curves corresponding to the plateau region. The temperatures corresponding to the plateau
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region are assumed to have been correctly identified by some other technique.

We explain the estimation procedure for partial bleach data. To fit regeneration data,
the same estimation procedure can be used, by suitably modifying the vectors of response
functions and derivatives of response functions with respect to the components of the param-
eter vector. In simultaneous curve fitting, the equivalent dose () is treated as a parameter
common to all the response curves. We notice that, the expected photon count correspond-
ing to the equivalent dose depends on the temperature, but is common to the unbleached
and the bleached response curves at a given temperature. We denote the expected photon
count corresponding to the equivalent dose at temperature T by é7. From a practical point
of view, 61 represents the photon count had the sample been measured at the time of deposi-
tion. Consequently, é7 plotted against the temperature represents a typical glow curve that
would have been observed, if the sample was collected at the time of deposition. (Figure
7.1 demonstrates a plot of estimated ér against the temperature for the Data WFP2-7R1
cited earlier.) Therefore, we feel that 67 is a physically meaningful parameter that could
perhaps provide insight into the study of thermoluminescence dating. For this reason, we
decided to treat 7 as another parameter in the new setting.

In the partial bleach method, the unbleached and bleached response curves corresponding

to a given temperature are represented by the response functions:

fi(z, 0, a9, 03) = o [1 _exp <_(z + az))]

a3

and

f2(2+ 81,82, 85) = B [1 —exp (—(iiﬂ'a_ﬁi))] .

When z =, fi1 = f2 = 6. Therefore, a; = tl—exp(—&w)J , and B, = [l—-exp(fty%-&l)J .
. a3 3

Thus, the parameters oy and 3, can easily be eliminated using the parameters v and 4.

Figure 7.2 illustrates the response curves corresponding to two temperatures 7} and 7%.
In the simultaneous curve fitting for partial bleach data, (6, as, a3, B2, 83,7) is treated as

the set of parameters for the response curves at a given temperature!. When we refer to the

!We observe that if it is possible to regard the response curves corresponding to the plateau region as
the same set of unbleached and bleached response curves shifted along the temperature axis then they can
be described with fewer parameters than used in our model. However, since physicists believe that {(D.J.
Huntley, personal commaunication) this is not the case we did not investigate this possibility.
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Figure 7.1: Photon count vs temperature at the plateau

response functions at a given temperature we drop the suffix T for notational convenience;
however, except for the parameter -y all the other five parameters (6, a2, a3, 2, f3) depend

on the temperature T'.

Suppose there are ny temperatures on the plateau. Then the parameter vector ¢ has
(5ngp + 1) components; the equivalent dose common to all the curves and 5 parameters
(8, a2, a3, B2, 3) corresponding to the unbleached and bleached response curves at each
temperature. If there are no missing values, there are ng measurements from each disc
(replicate subsample). Suppose observations are taken on n; unbleached and n, bleached
subsamples. Let n3(= n; + n2) be the total number of replicate subsamples. Let us denote
the photon counts taken on the Ith replicate subsample by yn, ..., Ym,- We stack all the
observations corresponding to the unbleached data followed by the bleached data to obtain
the Y vector with entries 411,.- ., %1ngy-- -3 ¥nyls« -2 Yninos -« -> Ynals - - -» Ynano- Lhe vector

of dose values is obtained by stacking together the corresponding dose values. We note
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Figure 7.2: Response curves at the plateau

that the variance covariance matrix of Y is block diagonal, since the observations taken on
different discs are assumed to be independent. Each block matrix is ng X ng. For notational
convenience let p(= 5ng + 1) and n(= n3zng = (ny + n2)ng) denote the total number of
parameters and the total number of observations respectively.

We first discuss estimation assuming that the correlation between any two photon counts
taken on the same disc does not depend on the dose received by the sample but may depend
on whether or not the sample was subjected to laboratory bleaching. We employ p;; (or
p;;) to denote the correlations between the observations taken on the same unbleached
(or the bleached) disc at temperatures 7 and j respectively. Suppose Qy and Qp denote
the correlation matrices for vectors of unbleached and bleached photon counts respectively.

Under the assumed model, the correlation matrix for Y takes the form

Qu 0
0 Qp

Q =
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pi1 P2z .- Plng
Pno1 e Prgno
where Qy =
fni1 P2 .- Ping
] Pnol se e Prgno ]
/ / !
P11 P12 --- Ping
/ /
p‘n.ol e pnono
and Qp =
/ / /
P11 P12z --- Pling
/ !/
i pnol e pngno ]

Note that p;; = pj;, pi; = pj;,and pi; = pl; = 1, V2,7 = 1,...,n9. We denote the correlation
matrices for the observations taken on the ith unbleached and jth bleached subsample (disc)
as {4; and €)3; respectively. The assumption that correlation between observations taken
on the same sample does not depend on the dose received by the sample leads us to believe
that Qy; = {4, forz =1,...,n; and Qy; = Qy for j = 1,...,n,. As we later clarify, this
assumption is not crucial for the proposed estimating procedures to be valid.

As in the fitting of data at a single temperature, we assume that standard deviations
of photon counts are proportional to their means. We further assume that the constant of
proportionality, o, does not depend on the temperature, nor on whether or not the samples
had received laboratory bleaching. Later we show how to extend the results if o is different
for the unbleached and bleached data.

Let fy,..., fu denote the mean functions of the observations and Dy denotes the diagonal
matrix with f;,..., f, along its diagonal. The variance covariance matrix for Y takes the
form V = o2D;QDy, where Q is the correlation matrix for Y. Let # be the vector of

parameters we wish to estimate. Let F’ be the n X p matrix of partial derivatives of f with
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respect to the components of §. As described in Chapter 3. quasi-likelihood estimates for 4
are found as solutions of the quasi-likelihood estimating equations FTW (Y — f) = 0, where
W = D}'l(azﬂ)‘lDf'l. Often, the correlation matrix Q is unknown. Liang and Zeger [43]
suggest replacing the unknown correlaticn matrix € by what they call a working correlation
matrix R.

First we develop an estimation procedure for our model closely related to that proposed

by Liang and Zeger [43] for the linear regression model.

7.2 GEE estimates when unbleached and bleached curves

correspond to a common relative error

Let Y; denote the vector of observations collected from the 2th sample with component Y;;
denoting the photon count observed from the :th sample at temperature j. In the following,
we denote the components of # corresponding to the jth temperature by é;. This means
6; has entries 6;, aa;, a3;, B2j,B35,7. The entries of §; are used to evaluate the response
function E(Y;;). Let f; denote the vector of response functions corresponding to the ith

disc. Then f; has entries E(Y;;), 7=1,...,n0. The model is:

E(Y,J) = f(zi’oj)v
Var(Y;) = o (f(zi,6;))%.

Let Dy, denote the ng x ng diagonal matrix with f(z;,6;), 7= 1,...,n¢ along its diagonal.

In general the covariance matrix for Y; can be written as
Cov(Y;) = 0* Dy, Dy,

where €2; is the unknown correlation matrix of Y;.
Motivation for the proposed scheme:
If we assume each ; is known, then the usual quasi-likelihood equations for estimating 6

are
%3

Y FF (oD 0:Ds) " (Vi fi) =0.

=1
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"R, 0 0 0 |
, 0 R, 0 0
with R =

0 0

(0 0 0 Ry |

"R, 0 0 0 |

0 R, 0 0
and Rg =

0 0

(0 0 0 - Ry

here Ry and R, denote the ng X ng working correlation matrices for observations taken on

tth unbleached and jth bleached discs. Since we assume that correlation matrices do not

depend on the doses received by the samples it is reasonable to take R; (or R3) to be the

same for all the unbleached {or bleached) samples.

In this section, we assume that o is the same for all the response curves. In section

7.3, we suggest estimating equations and present an algorithm for estimating  when o is

different for unbleached and bleached curves.

Now we present an algorithm for solving Equations 7.2 to obtain an estimate for .

1.

Find initial estimates for the parameters. We used the parameter estimates obtained

for separate curve fit at different temperatures as initial estimates.
Compute the fitted values f], . fn at the current estimate 6.

Find a working correlation matrix B. We computed the Pearson residuals X‘ﬁ!’:ﬁ for
the unbleached and bleached data, and used the sample correlation matrices com-
puted from Pearson residuals for unbleached data and bleached data as R; and H,
respectively.

Let V{® = Di,k)R(k’B%k) be an estimate for the variance covariance matrix for Y
F
evalnated at the current estimate 8. Let W(*) denote the inverse of V().

At the (k + 1)st iteration, # is estimated from §(-+1) = §(*) 4 ((¥) where
f = (( FONTw ) F(k))“ (FR) T ®) (y - f®).
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The superscript k£ indicates that each term is evaluated at the parameter estimates

from the kth iteration.

5. Iterate until desired convergence. In the software we developed, the convergence cri-

terio. was met when the absolute difference in the parameter estimates of successive

iterations was less than 1073,

Following the notation of Liang and Zeger [43], we refer to the estimate obtained as a

solution to the set of equations 7.2 as the GEE estimate.

7.2.2 Large sample asymptotics

The proposed estimate 6 solves

U4,R)=0.
Assume that the working correlation matrix R converges to some fixed correlation matrix O
(this symbol is “mho”); Crowder [21] shows that there are fairly natural natural examples
of working correlation matrices and corresponding true correlation matrices for which this
assumption fails. For notational convenience, let ¢ and 8 be s x 1 (1 < s < ng(ng — 1)/2)

vectors which fully characterize the elements of R and U respectively. Taylor series expansion

of U(8, R) around U(8, ) gives

U(8,R) ~ U(6,V) +Z(

1=1

£ [B_U—é%gl} R=U

From equation 7.2, we find

[Qﬂ@] " ZFT ( -[Ds,R(a)Dy,]” ) Y: - fi)-

aa,‘ =1

au(8 . . .
Observe that each [—Ua%:—&]R:U Oa; is a sum of nj independent mean zero terms (since

each is a2 non-random bounded quantity times (¥; — f;) which has mean zero). Hence, un-
. . . dU(6.R)] : 8U(6,R .
der mild regularity conditions Var ( ["E'(E.—“j sz) is O(n3) and [—ai;lJ s Op(1/73).
Since R converges to U, as n3 — oo, (o; — Bi) is 0p(1). It follows that, > i (i —
5i) [i%(f-(&] Rets Oa; is 0p(1/n3). Thus, provided R converges as n3 — oo to some determin-
istic U,
1 1
—=U(0,R) = —U(6,0) + 0,(1), 7.3
TV (0 B) = —=U(0,5) + (1) (73)
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It is worth noting that we do not have to believe U = corr(Y).

Now consider the following:

_— 1 Tried 1 . [9U(6.R) . U)o
[v(é.R) - V(s R)| [v(6.v) U,0)| ~ [_—”‘aa,- Lzuao(o 6) - —i—0-6)
e (G 0 S g [PV R)

Observing that Y7, (a; ~ i) [9"3—(;-3%&] s 18 0p(na), (6= 0) is Op(Fz), and (av - )

is 0,(1), we find [U(é, R) - U(8, R)} - [U(6,v) - U(o,zs)] is 0p(y/73). Recall that § solves

U(8, R) = 0. Since U(4, R) differs from U(§,T) by a quantity which is 0,(,/n3) we conclude
that U(#, U) =~ 0 with an error of approximation which is op(/73)-

As usual in estimating equations, under regularity conditions which we have not invec-
tigated in detail, U(é, U) = 0 can be expanded about 8 to produce
U(b,0) ~ U(8,0) + [______a L U)} _G-o,

Since U(#, V) is approximately zero (error of approximation is o,(,/n3)) we find

(6-6)~- (5?%%9)-1 U(8,0).

Next from Equation 7.2, we observe that

ou(68,0) o2 _
(F75) =~ L (oD F.

=1

Hence,

] 1 & 2N 1 &

=1

where U; = F7 (D;,UDy,)"! (Y; — f;) . For notational convenience we write
Wy = (D, 0D f')—l ; notice that Wy depends on i. Thus,

n3 ~1 n3
V(8- 8) = (;}; ZETWUI«:) (——\;1—.5 Y FTws (i - ﬂ-)) : (1.4)

=1 =1

For large ng, the right hand side of Equation 7.4 is approximately normal with mean zero

and variance of # given by

) 1 1 -1 1 2 na -1
Var(d) = (;- 3 F,—TWUF,-) (;ﬁ S FIwysVar(Y; )WUF,-> (-7—} S FTwy f;) .
3 3

=1 =1 1=1
(7.5)
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To find an estimate for the approximate variance of § we have three choices:

1. If we are willing to assume that U is close to the true correlation matrix for Y;, then
we can replace Var(Y;) by 02D;UD; to get Var(d) = o2 (Z?;l ETWUF;) ' We can
estimate the approximate variance of f by replacing the unknown parameters o2 and
f by their estimates. In section 7.2.3, we provide an estimate for o2 valid in the limit
of small measurement error. Hereafter we refer to this estimate as variance estimate

1. An estimate for o2 can also be computed as suggested in Liang and Zeger [43].
2. Assuming all the ¥;’s have the same correlation matrix €2, we can write
Var(Y;) = 62D QD;, = Va(say).

Then

1 &

na -1 -1

Var(d) = (lz F;TWUR) (-%if;TWUVQWUF;) (—ZF,-TWUF,) ,
73 =1 3 =1 3 =1

and can be estimated by replacing the unknown o2 and Q by their estimates; the

correlation matrix § can be estimated as the sample correlation matrix calculated

from the Pearson residuals to the fit. This estimate does not require U to be close

to the true correlation matrix for Y;. Hereafter we refer to this estimate as variance

estimate 2.

3. Without assuming that U is close to the true correlation matrix for Y;, and following
suggestions of Liang and Zeger [43], we can replace Var(Y;) in Equation 7.5 by (Y; —
ﬁ)(Y,- - _f,-)T. As in the previous case, an estimate for the approximate variance can
be obtained by replacing the unknown parameter # by #. Hereafter we refer to this

estimate as variance estimate 3.

Confidence intervals with standard normal quantiles

Let 8 be a solution of F TW(y — f) = 0 and Var(d) be an approximate variance covariance
matrix for § defined by equation 7.5. Let V(§) be an estimate for V(6) obtained from any

of the three methods discussed in the previous section. Let 4 be the pth component of 6
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and s; be the square root of the pth diagonal element of V(8). Using the results of section
7.2.2, an approximate confidence interval for the equivalent dose can be computed by taking
4 F 852472 as lower and upper confidence limits.

From simulation studies (see Section 7.2.3) we learned that confidence intervals for the
equivalent dose using normal quantiles have lower coverage probabilities than corresponding
nominal levels. In this regard we notice the following. The response function f(z,#) in
our problem is non-linear in . Moreover. in our model the equivalent dose 4 and the
relative error in > single measurement ¢ are the only parameters that are common to all
the temperatures on the plateau. The rest of the parameters (6, a;, az, 81, 32) are different
for different temperatures. Consequently, as the number of plateau temperatures increases
the number of parameters also increases. We wish to make inference about the parameter
~ and rest of the parameters are considered as nuisance parameters. The appearance of a
large number of nuisance parameters in the model makes the effective sample sizes much
smaller than the nominal sample sizes. As we mentioned in earlier chapters, for our problem
the relative error in a single measurement o is small. This motivated us to find a better
approximation for the distribution of the test statistic in small samples valid in the limit of

small measurement errors.

7.2.3 Small ¢ asymptotics

In this section, we examine small o asymptotic properties of the estimate suggested in
section 7.2.1. We do not necessarily assume that sample sizes are large. However, we need
to assume that the working correlation matrix R is chosen in such a way that R when
evaluated at (f = p, 0 = 0) is some fixed correlation matrix U. It is possible to choose such
R (but the estimate based on the Pearson residual does not have the desired property).
For example one may choose any fixed correlation matrix such as the identity matrix in
independent estimating equations proposed by Liang and Zeger {43] as R. Recall that U
need not be the true correlation matrix 2; in fact, often €2 is unknown. Liang and Zeger [43]
suggests that, the estimates 8 are consistent given only that the regression model for E(Y)

is correctly specified. It is not required to specify a correct working correlation matrix; this
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akes these estimating equations more attractive since often the true correlation matrix is
unknown. However, having the working correlation matrix converging to a fixed correlation
matrix which is close to the true correlation matrix makes the resulting estimates more
efficient. Therefore, one might perhaps choose a working correlation matrix based on prior
knowledge about the data or according to some physical model that suggests the correlation
structure. In section 7.2.5. we investigate the performance of the suggested procedure for
estimating # by examining the estimates obtained using a few chosen working correlation

matrices.

Next, we examine the small o asymptotic properties of 6. As in Chapter 3, we begin

by approximating 6 using 6 = 8y + Cy0 + Cz02, for small o. Then, C) = — 7 =ty o0 and
=5, 0=
Cy = % Gt o The estimates @ solve the system of equations
=bp, 0=

5(6.60,0,5.5) = (F(8))TWr [y - £(6)] =

-1

where we write W = (D f-R(é, o, p, /;’)D j) for notational convenience. Let fi,...,f,
denote the response functions evaluated at the true parameter 6,. Let Dy denote the
diagoral matrix with fi,..., f, along its diagonal. Using the introduced notation, the
model equations can be written as Y = f + o0 Dge. Thus,

95; df;

Do = 3o {ZZ J( Wr)k [fk + o(Do€)r — fk]}

1=1k=

where f denotes f(6), which is f(8) evaluated at § = §. When (8 = 85,0 = 0), the term in
the square brackets is zero. Therefore,

a5s; n
o = Z Z Bf_, (V'R)Jk(Doe)k - Z Z Z afJ ( R)Jk afk gﬁ,;]

6(7 =00 .o
=8 ,0==0 =1 k=1 =1k=1I=1
(  7=1 k= J=1k=11i= 6=0q,0=0

1
Z 2_, af] (W )}k(DOG)k - Z L z af] (W )Jk Jk(Cl)l

| i=1 k—l 7=1k=1 l"’l J 6=0y ,0=0

1

Since [R];_p =0, wefind [W'R]‘;:e0 om0 = (DsUD #)~! which we denote by Wy5. Thus,

(gg—gé:&,.aﬂ)i - (FTWUD Oe)i - (F "WoF Cl); )
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Therefore,
i T 7, T yx-
= (FTWyDoe) — (FTWyFCy).
: 35 _ 0 w
Since 2 = 0, we find
-1
C1 = (FTWyF) ™ FTWyDoe
1 -1
= = (FTwsF) FTWy(y- f).
g
-1 -
Thus, E(C;) =0, and Var(Ci) = % (FTWUF) FTWyVar(Y)WyF (FT Wy F) L
Since for small 0, 8 = 8y + Cy0 + C202, we find
~ -1 . -1
Var(8) ~ (FTWyF) ™ FTWyVar(Y)WyF (FTWyF) . (7.6)

We notice that the variance covariance matrix derived in the limit of small mcasurement
error { Equation 7.6) is identical to that derived for the large sample asymptotic case (Equa-
tion 7.5). Also, if the observations are independent, by substituting & = Q = I we find that

this variance estimate reduces to the one derived in Chapter 5.

Remarks: Our working correlation matrix suggested in section 7.2.1 uses

B - iiivnfﬁqu;ﬁqf

n =1 fl fl
1’“(n—ﬁqnn-ﬁqT
Therefore, Ryl;_, . = — { :
9=ty .0=0 ny ; fi fi
2 1 <&
= o -——E €11€
m L 11€1

~ oy, only if n, is large.

Similarly, Ral;_g ,oq = 07§, only if ng is large.

When n, and n, are not large enough. Rlé:eo,azo is quadratic in ¢ and is not a fixed
matrix U as required by the theory discussed under small ¢ asymptotics. Since Wy =
Dy 1 R[g_lg0 0 Dy, we find that C) is a complicated form in e. Therefore, the results we

propose under small o asymptotics are valid only when n; and n; are large enough so that

Rj

li=gy.0=0 = o*Q or if we use a fixed working correlation matrix U at each iteration. Also

we note that if we use R in place of U when n; and n, are not large enough for E| =6y 0=0

tc be close to 29, formula 7.6 underestimates the true variance of 8.
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Distribution of the test statistic

Let ¥ be an estimate for the equivalent dose obtained as the pth component of the GEE
estimate 8 suggested in section 7.2.2. Let V(é) be an estimate for the approximate variance
covariance matrix (Equation 7.6) obtained as discussed in steps 1 or 2 of section 7.2.2. Let
s; be an estimate for the approximate error of ¥ obtained as the square root of the pth
diagonal element of V(). Further assume that o2 is estimated by the estimate 2 described

below. In this section, we study the distribution of (§ — v)/ss.

Estimate for o:

Let f = (fl(:cl,é),-..,fﬂ(:z:n,é)T be the vector of fitted values and D); be the diagonal
matrix with entries of f along the diagonal. Let fo = (fo1(21,600),--., fon(Zn, 80)T be the
vector of response functions evaluated at the true parameter 8, and Dy be the diagonal
matrix with entries of fp along the diagonal. Let ¢ = D}l [Y - f] be the vector of fitted

standardized residuals. Taylor expansion of f, around 6y gives

f,—:f(x,-,é)zf(z;,ﬂo)+ [F(é—eo)] , fori=1,...,n3.

i

Thus,

7= (76w}

D7 ~ D3 {I - D5 F(F"WyF)™ FTW Doeo } = Dg* + o(o).

and

Now notice that

™)
I

o7 [y -7}

= (D& +0(0)) [fo+oDoc ~ fo— F(6 ~ )

= (D5 + o(0)) {oDoc - F(FTWysF)™ FT Wy Doeo }

= oe— Dy F(FTWyuF) ' FTWyDooe + o(o)

= o(I— H)e+ o(0), where H = D3'F(FTWyF) ' FTWyD,.
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Observe that

HH = Di'F(FTWyF) ' FTWyDoDg' F(FTWyF)™ FTWys Do

= H

Thus, the matrix H is idempotent. The error sum of squares can be written, to order o2,
as

Te =02 (I - HT)I - H)e.

Let Q = (I - HT)(I — H). Since e ~ MV N(0,9), we find

E(7¢) = o°E [ir (7Qd)]
= 0B ir (QeT)] = o*ir (QE [eT])
= o2r(QN).

An unbiased estimate for o2 is therefore given by 62 = E"E'Tcz—éﬁi’ where Q = (/- HT)(I- H).
To estimate o using the above formula we need 2, which is often unknown. In applications,
we replace by the sample correlation matrix obtained from the Pearson residuals to the
fit. In section 7.2.5, we examine the finite sample performance of the suggested results by a
simulation study.

Next we show that the test statistic ¢ = (¥ — v)/s5 is approximately distributed as
a t variate and propose a formula to compute an approximate degrees of freedom using
Satterthwaite’s [53] approximation.

Our expansions described earlier lead to the following.

Result 1 Let @ denote the GEE estimate described in sectior 7.1 and é denote the vector
of Pearson residuals. Let §) denote the correlation matriz of the random errors ¢’s. Then,

as o — 0,

€ . TITn. D 2
—F Qe = Z Aizf,
where z; are iid N(0,1) random variables and A; are the eigenvalues of the matriz QS2.

Tt is easy to see that the eigenvalues of Q€ are the same as those of Q1/2QQ2. Siuce

Q/2QQ1/? is symmetric, it follows that eigenvalues of Q) are real.
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Theorem 5 In the limit of small measurement error, (i.e. if o is small), the error sum

of squares €1¢, and the estimate é defined in section 7.1 are independent, in the sense that

eI Qe and C; are independent.

Proof: In the small o asymptotic case, we showed that (section 7.2.3)

-8, ~ Cio= (FTWUF)—I FTWy (Y - f") o
= (FTWuF)” FTWyDoe.
Py -1
Since € ~ MVN(0,9), 6 -6 2 (FTWU F) FTWisDoAer, where AAT = Q and ¢ ~
MVN(0,I). On the other hand the error sum of squares is asymptotic, as ¢ — 0, to
2T (I-HT)I-H)e= o2l AT(I-HT)(I~H)Ae;,where H = Dy F(FTWyF)~' FTWsDo.
If U is close to Q, then Wy = Dg'Q~1Dg!. Therefore, we find
BAT(I - HTYI-H)A = (FTWyF)" FTWuDoAAT(I - HT)(I - H)A
= (FTwsF)™ FTD;'07'D; ' Dol - HT - H + HTH)A

= (FTwsF)” FTDg(I- HT - H + HTH)A.

Now notice that
(FTwuF) " FTD7'HTA = (FTWuF) ' FTDg*DoWuF (FTWuF) ™ FTD;'A
= (FTwsF)™ FTWyF (FTWsF) ™ FTD3'A
= (FTwoF)™ FTD;'A

and

(FTwor)” FTD3*HTHA = (FTWyF)™ FTD3'D;F (F-WuF) ™ FTWyDoA
(FTwsF) ™ FTD; HA

Thus, BAT(I — AT)Y(I — H)A = 0. Therefore, using Theorem 4.17 of Graybill (1961) we

find that ¢ZQe and C; are independent.
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Theorem 6 Let vy be the equivalent dose and % be the estimate for v suggested in section 7.1,
Let s5 be an estimate for the error of the estimate obtained as defined in variance estimate
1 of section 7.2.3. If the response curves belonging to the plateau region all correspond

to a common o, then as ¢ — 0, the distribution of the statistic t = (¥ — v)/s5 can be

2
approzimated by a t distribution with degrees of freedom df = Z’:) ; here A;’s are the

eigenvalues of the matriz QS (or the matriz 01/2Q01/2).

Proof:

Using small o asymptotics we showed that, 6 =~ 0y + Cio, where C; = g; PEP
=vg, 0=

-1 -
(FTWUF) FTWy Dge. Thus,  — g is a linear combination of €’s. Notice that, 4 — v =

aT(§ — 6), where a is a p vector with first (p — 1) elements equal to zero and the pth
element unity. Thus, (¥ — ) is a linear combination of the random errors €’s. Since €’s
follow a multivariate normal distribution with mean zero and covariance matrix §2, Central
limit theorem implies that, (¥ — ) is approximately normally distributed. The estimate
s5 is the square root of the pth diagonal element of the matrix o? (F TWUF) ';l . Suppose
o? is estimated by ﬁg—‘b—) If § is close to 4, (FTWUF )"11 ~ (FTWysF)™. Therefore,

ws—: = %, where U = \/6—2(;;;’1’1:)_1 and V = a2_tr(b—9_) Then, U is approximately normally
distributed with zero mean and unit variance. From Theorem 5, U is independent of V.
From Result 1, it follows that the error sum of squares is a linear combination of indepen-
dent x? random variables. Therefore, V' is a complex estimate for the variance as defined
by Satterthwaite [53]. Applying Satterthwaite’s approxin‘la.tion we arrive at the formula
df = g(%—:—/\%, where );’s are the eigenvalues of the matrix Q€ (or the matrix 2/2QQ!/?)
for the approximate degrees of freedom. To obtain an estimate for the degrees of freedom we
suggest replacing €2 by the sample correlation matrix computed from the Pearson residuals
to the fit. In section 7.2.5, we present the results of a simulation study that examines the

finite sample performance of the suggested asymptotic results.

7.2.4 Confidence intervals

Let 6 be the GEE estimate defined as a solution of FTW (y — f) = 0 and Var(6) be the

approximate asymptotic variance covariance matrix given by equation 7.5. Let V(6) be an
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estimate for the variance covariance matrix for # obtained as described in step 1 of section
7.2.2. Let 4 be the pth component of 6 and s; be the square root of the pth diagonal
element of V(é). Using the results of section 7.2.2, an approximate confidence interval for
the equivalent dose can be computed by taking ¥ F s;t,/2 4¢ as lower and upper confidence
limits. An approximate degrees of freedom for the corresponding ¢ distribution (df) can be

computed as described in Theorem 6.

7.2.5 Simulation results

Now we describe the results of a simulation study that examines the finite sample perfor-
mance of the suggested asymptotic results. The photon counts for the study were generated
according to the model described in section 7.1. The FORTRAN subroutine ‘RNMVN’
was used to generate the multivariate normal random errors ¢’s. The doses given for the
unbleached and bleached discs are presented in Table 9.1 of Appendix 9.3 where they are
coded as P6U and P6B respectively. The data were generated assuming correlation does
not depend on the dose received by the sample. However, for unbleached and bleached
data we used different correlation matrices. Correlation matrices used for the study are
presented in Tables 9.3 and 9.4 of Appendix 9.3. These are the sample correlation matrices
computed from the Pearson residuals to the fit for the data set (for temperatures in the
range (270 — 320°C) described in Section 7.4. For each generated sample, we computed a

confidence interval for the eguivalent dose as described in section 7.2.4 by:

1. pretending correlation matrices are known and replacing them by the correlation ma-

trices used to generate the data and using variance estimate 1, defined in section

7.2.2.

2. replacing the unknown correlation matrices by the sample correlation matrices com-

puted from the Pearson residuals and using variance estimate 1.

3. replacing the unknown correlation matrix by an arbitrarily chosen fixed correlation
matrix and using variance estimate 2 defined in section 7.2.2; we chose the same

fixed correlation ma*—*x for both unbleached and bleached data. In the chosen fixed
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correlation matrices all off diagonal elements were set at the correlation coefficients,

p, given in Table 7.2.

Results using known correlation matrices and Pearson residuals are presented in Table 7.1.
Results using fixed correlation matrices are given in Table 7.2. Results given in these tables
are based on 10000 simnlations. The fraction of confidence intervals that capture the true
equivalent dose used to generate the data are recorded as the actual coverage. For both
cases, the actual coverages were examined using z quantiles and ¢ quantiles with degrees of

freedom estimated as described in section 7.2.3.

Dose| o |ng| ny | ny | Nominal | Observed coverage Observed coverage
level corr. matrix known | corr. matrix unknown
t z t z

P1 (001122119 0.95 0.9527 0.9435 0.9517 0.9426
Pi 10022 (2119 0.95 0.9511 0.9430 0.9508 0.9429
P1 1003 2 ;2119 0.95 0.9500 0.9425 0.9488 0.9406
P1 {004 2 |21 }19 0.95 0.9493 0.9419 0.9502 0.9422
P2 /0014 !/21!19 0.95 0.9541 0.9461 0.9455 0.9339
P2 1002 4 |21}19 0.95 0.9539 0.9454 0.9434 0.9325
P2 10034 21:19 0.95 0.9497 0.9440 0.9423 0.9309
P2 {0044 {2119 0.95 0.9510 0.9429 0.9407 0.9303
P3 1001} 6 {21119 0.95 0.9518 0.9440 0.9294 0.9148
P3 {002 6 {21]19 0.95 0.9486 0.9467 0.9231 0.9073
P3 1003} 6 | 21|19 0.95 0.9518 0.9424 0.9257 0.9106
P3 |004]| 6 2119 0.95 0.9515 0.9432 0.9319 0.9178

Table 7.1: Coverage probabilities using correlations calculated from Pearson residuals

We also examined the mean squared errors of the estimators from the simulation study
(Tables 7.1 and 7.2) by computing the averages of the (¥ — 7)? values. These are presented
in Table 7.3.
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Dose| ¢ |nginy | ng p =0.99 p = 0.60 p = 0.00

t z t z t z
Pr1 1001 2 {2119 09539 0.9455 | 0.9524 | 0.9441 | 0.9528 | 0.9445
P1 10021 2 ;211909518 0.9439 | 0.9517 | 0.9436 | 0.9518 | 0.9439
P1 10031 2 {2119 09519 0.9441 | 0.9500 | 0.9417 | 0.9499 | 0.9416
P1 [0.04{ 2 ;2119 0.9516 ; 0.9442 | 0.9507 | 0.9415 | 0.9504 | 0.9418
P2 10.01: 4 {2119 0.9588 1 0.9422 ) 0.9459 | 0.9387 | 0.9461 | 0.9382
P2 10.021 4 ;2119 {0.9537 ; 0.9383 | 0.9507 { 0.9437 | 0.9505 | 0.9437
P2 1003 4 {21119 0.9565 ! 0.9397 | 0.9467 | 0.9379 | 0.9459 | 0.9392
P2 1004 4 ;2119 0.9534 | 0.9379 | 0.9501 | 0.9423 | 0.9482 | 0.9425
P3 1001] 6 {2119} 0.6394{ 0.9285 | 0.9516 | 0.9452 | 0.9471 | 0.9397
P3 10.02{ 6 {2119 0.9380 | 0.9254 | 0.9484 | 0.9418 | 0.9488 | 0.9416
P3 [ 0.03] 6 2119 0.9425 | 0.9313 | 0.9512 | 0.9452 | 0.9507 | 0.9448
P3 (004 6 ;2119 |0.9414 } 0.9301 | 0.9494 | 0.9436 | 0.9480 | 0.9419

Table 7.2: Coverage probabilities using fixed correlation matrices: nominal level =0.95

Conclusions

Based on the simulation results we conclude the following.

1. When the correlation matrix is known, the coverage probabilities of confidence inter-
vals using a f quantile with an approximate degrees of freedom (Section 7.2.3) agree

with their nominal levels, even in small samples.

2. Coverage probabilities of confidence intervals with a standard normal quantile are

lower than their nominal levels, even if the correlation matrix is assumed to be known.

3. When the correlation matrix is replaced by the sample correlation matrix computed
from Pearson residuals, the suggested theory appear to hold with few temperatures
on the plateau. However, when we have more than four plateau temperatures the

coverages probabilities tend to be lower than the nominal levels. As we mentioned in
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Dose g lngimng o Using true { Pearson Using fixed correlations

correlations | residuals | p=0.99 | p = 0.60 | p = 0.00

Pt ;0.01] 2 121119 3.79 3.83 4.04 3.98 4.00
P1 1002 2 12119 15.44 15.58 16.56 16.12 16.18
P1 :0.03; 2 }21;19 35.76 36.11 38.21 37.34 37.47
P1 1004 2 ;21119 64.44 64.88 68.45 67.81 68.07
P2 1001} 4 ;2119 3.07 3.28 4.79 4.71 5.16
P2 10.02] 4 12119 12.46 13.29 19.94 18.36 20.11
P2 16031 4 {21119 28.05 29.85 43.83 42.92 47.21
P2 1004] 4 ;2119 50.52 33.95 78.44 76.81 84.34
P3 1001 6 |21 19 3.24 3.66 5.70 4.11 6.72
P3 1002} 6 {2119 13.54 15.22 23.82 16.99 27.19
P3 [003]6 |21}19 29.59 32.99 51.57 37.38 61.57
P3 [004] 6 [21]19 53.55 55.95 92.98 67.71 111.39

Table 7.3: Comparison of mean squared errors

section 7.2.3, when the sample sizes are not large enough variance estimate 1 under-
estimates the true variance of 6 and therefore we may expect the actual coverages to

be lower than the nominal levels.

4. When fixed working correlation matrices are used at each iteration, the coverage prob-
abilities of confidence intervals using variance estimate 2 (section 7.2.2) agree well with
their nominal levels, even in small samples, regardless of whether the fixed correlation

matrix is close to the true correlation matrix or not.

5. Based on the study, we conclude that the mean squared errors of the estimators is min-
imal when we use Pearson residuals to estimate the correlation matrices rather than

using arbitrarily chosen fixed correlation matrices. Therefore, we favour using Pearson
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residuals to estimate the correlation matrices. Recall that when we use Pearson resid-
uals to estimate the correlation matrices our formula (Equation 7.6) underestimates
the error of the estimate when the sample sizes are small. We hope to pursue further
work in this area to find a more accurate estimate for the error of the estimate when
using Pearson residuals: this might bring the coverage probabilities of the resulting

confidence intervals closer to their nominal values.

6. Comparing mean squared errors of the estimators with the same number of tempera-
tures on the plateau. we conclude that the mean squared errors of the estimators are

roughly proportional to a2, as we expect based on the small & limiting results.

-1

. Independence estimating equations appear to produce confidence intervals with correct
coverage probabilities. However, mean squared errors of the estimators appear to grow

as the number of plateau temperatures is increased.

7.3 GEE estimates when unbleached and bleached curves

correspond to different relative errors

V(ijk
E?(Ni )’
denotes the number of emitting grains of the ikth sample at the jth temperature. Suppose

Recall that from the physical model suggested in Chapter 2, 02 = where N;ji
7 and j' are two adjacent temperatures belonging to the plateau region. It is reasonable
to assume that number of emitting grains at temperature j is close to that of temperature
j'. This suggests that first two moments of N;;, are close to those of N,; which in turn
suggests that o for different response curves over the plateau temperature are not very
different. However, if the bleaching had an effect on the variability of emitting grains
relative to the mean number of emitting grains, the unbleached and bleached curves may
correspond to different o. The theory derived so far assumes that all the response curves
correspond to a common o. In this section we suggest the necessary modifications for finding
estimates when all the unbleached curves correspond to a common o but this is different

from the common ¢ for the bleached curves.
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7.3.1 Solution of estimating equations

We denote the different o’s for unbleached and bleached curves by o1 and o5 respectively.
In this section, we use the same notation as for the common o case. However, since we now
need to distinguish unbleached and bleached data we use an additional subscript 1 or 2 on
each term indicating whether it corresponds to the unbleached data or the bleached data
respectively. Let ny and n, denote the total number of unbleached and bleached samples
and €©,; and €2y; denote the correlation matrices for the vectors of observations taken on ¢th
unbleached (z = 1,...,n;) and jth bleached (j = 1,...,n;) samples. As for the common o

case, we begin with the estimating equations for the case of known correlation matrices

ny

> {FlTi ("fonQan:.) (Y - fu)} +2 {sz; ("SszJszszJ) (¥ - fzj)} =0.
3 7=1
(7.7)

1=

Again, we discuss two procedures for estimating the equivalent dose:

1. We assume that the correlation between observations taken at different temperatures
on the plateau does not depend on the dose received by the sample. This suggests
that for all the unbleached observations Cor(Y;) is some unknown correlation matrix
which we denote by ;7. Note that

Yii — fai Vi — fu)\T .
QU=E(61,~€¥;-)=E(( ! fh)) (( ! fh)) , fore=1,...,n;.

o1 fii o1 fii

R R T
Thus, 02Qu can be estimated as §; = % m [(Ylff_“fll)] [(Yx}-—fu)] . The subscript /
1 11

indicates Ith unbleached disc. Similarly for the bleached data, 02Qp can be estimated

as S; = 372 [Wmf’;jz‘) ] {KYZ;;f”)]T. Therefore, we can estimate § without knowl-
edge of 01 and g;. We refer to this procedure as Scheme 1. The notion of estimating
o2y and 029 using Pearson residuals is similar to that of using Pearson residuals to
estimate the correlation matrices in the common o case; however we note that U%QU

and 02Qp are not correlation matrices.

2. Assume that the ratio %f is some known fixed quantity A. In practice, A can be chosen

based on prior knowledge or in our problem using the results for individual curve
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fittings. In this case, Equation 7.7 simplifies to give

AY

S {FE (D 2iDs ) (Vi - fi)} + 3 {F{j (¥Dg,00;05,) " (¥ - Iy =0.
i=1 i=1

Now as suggested in Liang and Zeger {43], we can obtain generalized estimating equa-
tions by replacing the unknown correlation matrices by some working correlation ma-
trices Ry and R,. We do not upgrade A at each iteration, but once we find the estimates
6 we can use the error sum of squares for the unbleached and bleached response curves
to estimate A (See section 7.3.2). Thus, we estimate # assuming A is known. However,
when we estimate the variance of the suggested estimate we do not necessarily believe
that A is correctly specified. In section 7.3.2, we provide a formula for the standard
error of the suggested estimate. The estimating equations we introduce here can be
considered as modifications of those using working correlation matrices for the com-
mon o case; as before we have twe choices for choosing working correlation matrices:
We can use Pearson residuals at each iteration to find suitable working correlation
matrices or we can use fixed correlation matrices at each iteration. We refer to this
procedure as Scheme 2. (It is not crucial to treat A as fixed at each iteration. We
may estimate A at each iteration using the error sums of squares for the unbleached

and bleached data. In this case, we need to assume that A converges (as n — oc) to

some fixed ratio Ag; however we do not have to believe that Ag is the true ratio gll.)

Next we describe an algorithm for solving the suggested estimating equations.

1. Find initial estimates for the parameters. We used the parameter estimates obtained

for the independent curve fittings at different temperatures as initial estimates.

2. Compute the fitted values fl,. . fn at the current estimate @; note that the first
n; X ng fitted values are computed from the unbleached response function while the
remaining n, X ngp fitted values are computed from the bleached response function.
Let f denote the » x 1 vector whose entries are fy,..., fo. Let D 7 denote the n x n

diagonal matrix with entries of f along its diagonal.
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3.

To obtain estimates using Scheme 1, let R be the n x n block diagonal matrix with
the first n; blocks equal 10 S; and the last n, blocks equal to S; for S; and S defined
earlier. To obtain estimates using Scheme 2, let R be the n x n block diagonal matrix
with the first n; blocks equal to the working correlation matrix for the unbleached
data (say R;) and the last ns blocks equal to the working correlation matrix for the
bleached data (say R,) with each of the entries multiplied by A? (i.e. last ny blocks
are equal to A2R,).

Let V% = D?‘i Eg“jDi;k} . where we use the superscript k to indicate that each term
is evaluated at 8 (the parameter estimates from the kth iteration). Let W{¥) denote
the inverse of V' {4},

Let F*) denote the n x p matrix whose (7,5)th element is gﬁ% evaluated at i; note

that the first n; x ng rows of F are computed as the derivatives of unbleached response

function with respect to the components of § while the remaining ns X np rows are

those for the bleached data.
At the (k + 1)st iteration, @ is estimated from glk+1) = glk) 4 f (%), where
(R = ((‘ FEyTwis F(k))'l (FNT (k) (Y _ f(k‘;) ‘
Iterate uatil desired convergence. In the software we developed, the convergence cri-

terion was met when the absolute difference in the parameter estimates of successive

iterations was less than 1073,

7.3.2 Error of the estimate

Estimating o, and o,:

Let n, and n; denote the total number of unbleached and bleached observations respectively.

Let D, and D, denote the n, X n, and ns X n; diagonal matrices with response functions

for unbleached and bleached data as diagonal entries respectively. Let F; denote the n, X p

matrix whose (2, j)th element is 801 similarly let F, be the corresponding partial derivative

36, ©
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matrix for the bleached data. Let Wy, and Wy, be the n, x », and ny x 7 matrices defined

by:
Wy, = (D105, Dy)7".
-1
and Wy, = (D2A\?0;D;)
The results for the common o case (Section 7.2.3) can simply be extended to arrive at the

following formulae for estimating o7 and o3 :

-~ T ~

0112 _ €1 &
tr(Q )
where Q1 = (I-H{)I- Hy) and H, = D{*Fy{(FT Wy, Fy)™ FY Wy, Dy,
- T -
. & €
and ¢ 2 = ———
2 ir(Q250)

where Q; = (I-HI)I- H;) and H; = D;'Fp(FI Wy, F2) ' FT Wy, D,

To estimate o7 and 02 we need to replace the unknown correlation matrices with their

estimates using Pearson residuals.

Estimating )\

Once we estimate o; and o, we can estimate ) as the ratio g—’l’-

Variance covariance matrix for 4

Assuming
1T

. [vu-£0] =4
1. 2R, =& 020;, where Ry = Ly |- 1
1741 1+ 1 ny =1 Sfu Su

correlation matrix (not necessarily the true correlation matrix ;) and

and U, is some fixed

T

2. 62R; =% 620, where R, = %Z}Zz (Yuf;f")J (ij;j,,) and U, is some fixed

correlation matrix {not necessarily the true correlation matrix §;)

we can derive the following formula for the variance covariance matrix for # from Scheme 1:

n3 -1 n3 3 -1
- . 1 ‘
Var(d) = (3—2 :z-:TWUE) (—é} :F;-TWuVar(quFi) (;:EZE?’WUE) (1)
=1

35 =1 3=
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where Wi = [ Djigaf?le_;hg fori=1,....m
i ADy, 050, Dy, , fori=m;+1,...,n3and j =7—n;.

The same result holds for the estimate # from Scheme 2, under the assumption that the
working correlation matrices R; and R, converge to some fixed correlation matrices U; and
479

We have two choices for estimating Var( é)

D 1;0291D i fOl‘i: 1’__' nl
1. Letting VQ = f1.91 Jais ,

Dy, 050Dy, , fori=n;+1,...,n3; j=i—-m
we can write
1 2 AR 13 -
Var(f) = ( ZFTWUF) ( —QZETWUVQWUF;) ( ——-ZE—TWUF,-) .
3o \"3 i3 \"3 ;5

We can estimate Var( 5) by replacing the unknown o?, 02, Q; and Q; by their estimates.

For ease of presentation, we refer to this estimate as variance estimate 4.

2. Following suggestions of Liang and Zeger [43], we can replace Var(Y;) in Equation
7.5 by (Y — f:)(Y: — f:)T. As in the previous case, an estimate for the approximate
variance can be obtained by replacing the unknown parameter 8 by 6. We refer to

this estimate as variance estimate 5.

7.3.3 Confidence intervals

Let ¥ be the estimate for the equivalent dose obtained as the pth component of the GEE
estimate suggested for the case of different relative errors. Let F be the n x p matrix whose
(2,7)th element is g-g%. Let V() be an estimate for the variance of § obtained as suggested
in variance estimate 4 or variance estimate 5. Let s; be the square root of the pth diagonal
element of 17(5?). Then. an approximate (1 — &)100% confidence interval for the equivalent

ose can be constructed by taking 4 F s5z,/, 2s lower and upper confidence limits (z, /2

b4
d
denotes the upper «/2th quantile for a standard norma
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7.4 Worked Example

We developed software using the programming language FORTRAN to implement the pro-
cedures described earlier in this chapter. Now we demonstrate the suggested methodology
using a real data set. The data set used for this example (code WFP2-7R1) was kindly
provided to us by D.J.Huntlev. A plot of the quasi-likelihood estimates for the equivalent
dose by fitting the saturating exponential model (see Chapter 2) at different temperatures is
illustrated in Figure 7.3. The vertical bars indicate plus or minus one standard error limits.

An immediate observation from this plot is that the standard errors of the estimate begin to

f=4
34
|
{ !
g ; Co ! ,
* i i i ! s
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Figure 7.3: Plot of % vs temperature with error limits: WFP2-7R1

grow over the temperature region 320°C to 360°C. (We have observed similar pattern with
a few other real data sets we have analyzed.) At the moment we do not understand why
this is so. As we already mentioned, it is not clear cut whether or not certain temperatures
belong to the plateau. From the plot of 4 vs temperature (Figure 7.3), we notice a plateau
starting around 250°C. According to Aitken [1], the stable traps usually means traps for
which the glow peak occurs at 300°C or higher. However, for preheated samples the plateau
could begin at temperatures lower than 300°C (Huntley, personal communication). For

illustration, we estimated the equivalent dose treating the observations corresponding to
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the temperatures given in Tables 7.4 and 7.5 as being belonging to the plateau. The re-
sults given in these tables were obtained assuming correlation matrices for the unbleached
and blezched data are different. The estimates given in Table 7.4 were obtained using the
sample correlation matrices computed from the Pearson residuals to estimate the unknown
correlation matrices. The results described in Table 7.5 were obtained as described in Sec-
tion 7.3. For the common o case, the reported confidence intervals were obtained using
a t quantile with an approximate degrees of freedom as described in Theorem 6. For the
different ¢ case, we used the sum of the approximate degrees of freedom for the error sum
of squares for the unbleached and bleached data. Tables 7.4 and 7.5 present the results for
fitting a common relative error o and different ¢’s for the unbleached and bleached curves
respectively. In these tables, the first column {ng) indicates the number of temperatures on
the plateau; the corresponding temperatures are given in column 2. For the different o case,
with 6 observations corresponding to the temperature range 270-320 the program did not
converge. For a given type of electron trap, the glow curve is a single peak about 50°C in
width (Aitken [1]). It is possible that at 270°C and 320°C we are emptying different type
of traps.

Conclusions

The estimates for o7 and o, from fitting separate error factors for unbleached and bieached
curves indicate that a common error factor is sensible for this data. The parameter estimates
obtained by fitting separate error factors and a common error factor are not very different.
Another important observation is that in the range 330°C — 360°C, the standard errors of
the estimates have gone up even though the common error factor ¢ has gone down. The
large standard errors for the estimates using data collected in the range 330°C — 360°C
makes the estimates from anaiyses at a single temperature only, less useful in practice (for
example for the common o case, the standard errors of the estimates using only 340°C, 350°C
and 360°C were 51.48, 72.49 and 83.40). In this temperature range, use of the suggested
procedures for obtaining combined estimates has clearly resulted in a gain in precision
of the estimate. However, in the range 270°C — 310°C the gain in precision using more

observations in the plateau region is quite small; in fact in some cases the standard error
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Temperatures | —% | Standard An approximate 95% CI a

ng | on the plateau Error of ¥ | Lower bound | Upper bound

1 270 80.21 16.63 46.42 114.01 0.08
2 270-280 79.86 15.79 47.80 111.92 0.08
3 270-290 85.36 15.82 53.28 117.45 0.08
4 270-300 84.14 13.32 56.98 111.30 0.08 |
5 270-310 80.20 12.23 55.29 105.10 0.07 |
6 270-320 88.50 13.19 61.67 115.34 0.07 |
1 33C 73.92 34.84 3.12 144.73 0.07
2 330-340 74.24 22.84 27.65 120.82 0.07
3 330-350 75.63 22.07 30.69 120.56 0.07

Table 7.4: Estimate for the equivalent dose (%) using a common o: WFP2-7R1 data

ng | Temp. | —% | Standard An approximate 95% CI o1 s
Error of ¥ | Lower bound | Upper bound

1 270 | 80.21 15.51 48.87 111.56 0.08 | 0.08
2 | 270-280 | 83.34 15.42 52.20 114.48 0.07 | 0.07
3 | 270-290 | 81.31 13.78 53.49 109.13 0.07 | 0.07
4 | 270-300 | 82.06 12.00 57.83 106.28 0.07 | 0.07
5 | 270-310 ; 71.63 10.03 51.39 91.87 0.07 ; 0.07
1 330 73.92 31.90 9.45 138.39 0.06 | 0.07
2 1330-340 | 74.40 21.42 31.15 117.66 0.06 | 0.07
3 | 330-350 | 75.89 2045 34.61 117.16 0.06 | 0.07

Table 7.5: Estimate for the equivalent dose (%) using different o: WFP2-7R1 data
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stimate may even increase. This is not surprising; since the correlations

®

of the resulting
between the observations are very high, increasing the number of platean temperatures only
provides a little extra information about the value of v while with each added temperature
we have to add more nuisance parameters. Furthermore, when we take a wide range of
temperatures as belonging to the plateau, it is possible that observations corresponding to
the added temperatures may not relate to the same type of trap. Thus, it is important to

note that taking more observations over the plateau may not necessarily improve the quality

of the resulting estimate.

7.5 Discussion

In the previous chapters, we discussed estimating the equivalent dose from the data collected
at a given temperature. These estimates are plotted against the temperature. The region
over which these estimates do not vary with the temperature is believed to represent electron
traps that have not been subjected to leakage over the burial time. It is therefore assumed
that all estimates for the equivalent dose corresponding to the plateau region estimate the
same quantity, which is the equivalent dose corresponding to the stable traps (Aitken [1]).
In this chapter, we discussed the problem of combining these several estimates to obtain a
more precise estimate for the equivalent dose.

Since data collected at different temperatures are obtained using the same samples,
observations collected over the plateau region are correlated (in fact the correlations are
very high). We proposed a procedure closely related to that of Liang and Zeger [43] to
estimate the equivalent dose from the correlated data. Algorithms were presented for solving
the suggested estimating equations for the case where all the response curves correspond
to a2 common o (relative error in a single measurement) and also for the case where all
the unbleached curves correspond to a common ¢ which is different from the common o
for the bleached response curves. The estimation procedures proposed for estimating the
model parameters have to be augmented by some procedure for estimating the unknown
correlation matrices. Following the terminology of Liang and Zeger [43], we referred to these

as “working correlation matrices”. We examined two plausible working correlation matrices:
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using working correlation matrices computed from the Pearson residuals at each iteration
and using arbitrarily chosen fixed correlation matrices (derived. in practice, from experience
with other data sets) as working correlation matrices.

Since different nuisance parameters have to be fitted at each dose level, the number of
parameters increases with the addition of each observatior on the plateau. In fact, the
parameter of interest and the relative error in a single measurement o (if it is assumed
to be common for all the curves) aie the only parameters that are common to all the
temperatures. Since many nuisance parameters have to be estimated, the effective sample
size is much smaller than the nominal sample size. Consequently, confidence intervals using
standard normal quantiles were found to have lower coverage probabilities than their nominal
levels. As the number of plateau temperatures increases, the discrepancy between observed
coverages and nominal levels was found to grow. For thermoluminescence data, sample sizes
are quite small (usually under 40 discs). The relative error in a single measurement, o, is
quite small (around 8%). We examined the small o asymptotic behavior of the suggested
estimates and proposed using a ?t quantile for computing confidence intervals; a formula
for the approximate degrees of freedom for the corresponding t distribution was provided
using Satterthwaite [53] formula. Finite sample performance of the suggested asymptotic
theory was examined by a Monte Carlo study. Confidence intervals with an approximate ¢
quantile based on the estimate from the iterative scheme that uses fixed correlation matrices
as working correlation matrices were found to have coverage probabilities closer to their
nominal levels. As the number of plateau temperatures increases, confidence intervals based
on the estimate from the iterative scheme that uses sample correlation matrices of Pearson
residuals as working correlation matrices were found to have lower coverages than their
nominal levels, even with the suggested ¢ quantile. As we clarified in section 7.2.3, when the
sample sizes are not large enough, the suggested formula underestimates the true error of
the estimate from the scheme that uses working correlation matrices computed from Pearson
residuals. However, since estimates from the latter scheme were found to have smaller mean
squared errors than those using fixed working correlation matrices (see Section 7.2.5 ), we

favour using Pearson residuals to compute working correlation matrices. We hope to pursue
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further research in this area to find a better estimate for the error of the estimate from the
scheme that uses Pearson residuals.

In section 7.4, we demonstrated the proposed methodology using a real data set. It is
worth noting that the increase in the precision of the estimate (i.e. the reduction in the
standard error) for taking more observations on the plateau is quite small; in fact in some
cases the standard error of the resulting estimate may even increase. Also, it is worth noting
that, for some data sets it is not clear cut whether or not certain temperatures belong to the
plateau. Addition of an observation which does not belong to the plateau makes the resulting
estimate less accurate (more biased). Taking these facts into consideration, we suggest not

using observations which are not convincingly obvious as belonging to the plateau.
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Chapter 8

Testing the normality of random

errors

In this chapter, we describe procedures for testing the normality of random errors. Section
8.1 briefly describes the tests based on the empirical distribution function (EDF) of the
residuals for this purpose.

In Section 8.2, we describe a procedure based on the EDF to test the assumption of
normality without assuming that the fitted model is correct. We refer to this less restricted
model as Model 1. In this model we fit different mean and variance parameters at each dose
level. Thus, as we collect more observations, the number of fitted parameters also increases.
Usually, in thermoluminescence studies not more than five observations are collected at
each dose level. Therefore, the fitted standardized residuals need not be asymptotically
normally distributed even if the random errors are. We derive the true distribution of the
fitted standardized residuals assuming that the random errors are normally distributed.
We test the assumption of normality of the random errors by checking to see if the fitted
standardized residuals follow the derived true distribution.

Section 8.3 outlines a procedure for testing the assumption of normality of random errors
assuming that the fitted model is correct. We assume that the observed Y;;’s have mean
pi(0) and variance o?u?(#). We refer to this model as Model 2. In Model 2, both mean

. and variance are functions of a fixed number of unknown parameters. Therefore, we can
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find consistent estimates for mean y;(#) and variance V;j(o,6) by choosing a large enough
sample. If the random errors are normally distributed, the fitted standardized residuals are
approximately normally distributed. Here we test the assumption of normality of random
errors by checking to see if the fitted residuals are approximately normally distributed. Weak
convergence of the empirical processes is established in Section 8.2.6. In 8.5, we demonstrate

the theoretical results discussed in this chapter using a real data set. Section 8.6 summarizes

the chapter.

8.1 EDF tests

We begin by reviewing EDF tests in the context of iid sampling and then extend the dis-
cussion to tests of the distributions of residuals. Let z; < z5--- < z, denote the order
statistics (that is, the observations arranged in the increasing order) from a sample of n
values of some variate X with cumulative distribution function (cdf) G. Let F(z) be some
hypothesized distribution function of the data. For the moment we take any parameter in
F to be known and discuss tests of the simple null hypothesis that G = F. The empirical
distribution function (EDF) is defined as, F,(z) = 1 5%, I{z; < z]. Here I denotes the

indicator function,

I 1, if the condition A holds
A =
0, otherwise.

8.1.1 EDF statistics

Any statistic which measures the difference between F,(z) and F(z) is called an EDF
statistic. Here we describe only the Cramér-von Mises statistic and the Anderson-Darling
statistic that we used in this work. A discussion of these statistics can be found in Stephens

(1986). The Cramér-von Mises statistic is defined as

W2=n /_ Z (Fa(z) — F(2)}? dF(z).

The Anderson-Darling statistic is defined as
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A2 = o {Fn(l’)“F(l)}Q
" —oo [F(z)(1 ~ F(2))]

dF(z).

Computirg formulae for the above statistics:

Let F be the hypothesized distribution function and z; = F(z;) be the probability inte-
gral transforms of the z;’s. The following computing formulae for the above statistics are

provided in Stephens (1986):

. 2
wi o= T {=-ER} + 5
A2 = —n-1%7 {(2i-1)lnz 4+ (2n+ 1 —2i)In(1 ~ z)}.

t=1

(8.1)

8.1.2 Computing p-values

Let W,o(t) = 71-; Sor1{I{z <t} —t}. Then, under the null hypothesis, the process Wp(t)
converges weakly in D[0, 1] to the Brownian Bridge —a Gaussian process W with mean 0
and the covariance function p(s,t) = Cov(W(s), W(t)) = min(s,t) — st (cf. Billingsley [13].)

The limiting distribution of the Cramér-von Mises statistic (W;?) is then that of W% =
S\ Z2, where the Z;’s are independent N(0,1) variables and the A;’s are the eigen-
values of the covariance kernel p(s,?), namely, the solutions of the eigenvalue equation
fol p(s,t) f(t)dt = Af(s). For the case at hand (iid sample and simple null hypothesis) these
eigenvalues can be found analytically. When we discuss fitted residuals a numerical method
is required; this is discussed in Section 8.4.

Let w be the value of the test statistic obtained using the computing formulae (Equation
8.1) provided earlier. An approximate p-value for testing the hypothesis that z;'s follow
the hypothesized distribution function F(z)is P(3°52; Aix? > w) where x?’s denote a set
of independent Chi-squared random variables with 1 degree of freedom and A;’s are the
estimated eigenvalues for p(s,t) truncating the sum to a finite aumber of terms. We have
software that uses Imhof’s [39] method to compute the above probability. Literature related
to the computation of the above probability together with a comparison of the methods can

be found in Chen [16].
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For the Anderson-Darling statistic the same procedure can be used replacing the covari-

ance kernel p(s,t) by s(lli?jtt(l—t)'

Now we describe how to apply the EDF tests for our problem. The key problems in

applying the EDF tests are,

1. Finding the probability integral transforms to compute the 2;’s needed in computing

the test statistic (Equation 8.1).

2. Finding the covariance kernel of the appropriate Gaussian process needed in computing

the p-value.

In Section 8.2, we describe testing the assumption of normality without assuming that
the fitted model is correct. In Section 8.3, we describe testing the assumption of normal-
ity assuming that the fitted model is correct. In each case, we describe how to compute

the probability integral transforms and the covariance kernel of the appropriate Gaussian

process.

8.2 Application of EDF tests: Model 1

We refer to the model with no assumptions about the mean and variance functions as
Model 1. This less restricted model is expressed as Y;; = p; + €55, €; ~ N(0,1); ¢=
1,...,k, j = 1,...,n;; the suffixes 7 and j respectively denote the dose level and the

replicate. We wish to test the assumption of normality of the random errors.

8.2.1 Computing the test statistic

Let g; = ;:TZ;":I Yi; be the least squares estimate for y; and é’ij = Y;; — fii- Note that

E(é’.-_,') = 0 and V(é’{j) = {mizl o?. We study the standardized fitted residuals ¢; =

L

(Yo —isn) 22 - s (Yig—i)? - : :
7#1)7, where 67 = 301, N Cr The é;;’s replace the z;’s in the discussion of he
previous section. Note, however, that the €;’s are not iid. Let G, (:) be the true distribu-

tion of €;; when the random errors are normally distributed (Gy,(-) depends on n; but not

on f;,0; Or j).
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—
Letv=(n;—1)and 7}; = €,~j\/£—‘i__:§f). According to Beckman ef. al. [4], the variates 7;;
1y
follow the distribution #,_;, which is the univariate student ¢ distribution with degrees of
freedom v — 1. The probability integral transforms of é;; are therefore given by

v-1)

(v~ é?j) '

uij = G (&) = (- (é'j

We notice that in a sample of identically distributed observations, if the sample values
are in ascending order, so are the corresponding probability integral transforms. But this
does not hold for our case of non identically distributed standardized residuals. Therefore,
it is required to arrange the u;;’s in ascending order after computing the probability integral
transforms. Let 2,...,2x (N = Zf’:l n;) be the u;;’s arranged in ascending order. The
computing formulae (Equation 8.1) given in Section 8.1.1 can then be used to compute the

test statistic, with n replaced by N.

8.2.2 An approximate p-value
Let Wn(s) = ﬁ Sk ™ {I[ui; < s]— s}, and
P2.n:(8,t) = Cov(I(Gp, (&) < 8),I(Gn,(&;j) < 1)).
In Section 8.2.3 we show that the covariance kernel for the process Wy (s) is

k B — ,
p(s,1) = min(s,t) — st + Z Z ﬂ—]lv—wl—)pz,ni(s, t), (8.2)

=1 j=1
and show how to compute ps 5 .(s,t). The procedure described in Section 8.1.2 can be used

to compute a p-value by replacing the A;’s by the eigenvalues of p(s,1).

Next we summarize the test procedure.

1. For each dose i, estimate p; and ¢f using fi; = ;-3 7%, ¥;; and
- ni - \2
6f = (n%_r)Z?ﬂ (Yi; — )"
2. Compute the standardized fitted residuals &; = -(\/—.‘J-:-"-‘-’)'
{nizl)

3. Compute the probability integral transforms G, (&;;).
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4. Order the probability integral transforms in ascending order. Let z;,...,zx be the

ordered probability integral transforms.

Compute the Cramér-von Mises statistic

N . 2
2 o __(2z~1)} 1
Wi = Z{zi v T Tan

=1

W

or, the Anderson-Darling statistic

A% =-N Z{(Qz—-1)1nz,+(2N—rl——21)ln(1—z,)}

1=1
6. Find the eigenvalues of the covariance kernel p(s,t) defined by the Equation 8.2. We

compute approximations for these eigenvalues as described below:
(a) Create the matrix ) whose elements are

1 3 m
Q(S,t) = ;p(s,t), for S,t = m}T_l—), ceey (Tnﬁ)_
(Here m is the number of subdivisions of the unit interval. We chose m = 150. )
) R .. Y — o(s,t)
For the Anderson-Darling statistic replace p(s, ) by pa(s,t) TR
(b) Compute the eigenvalues Jy, ..., A, of the matrix ). These eigenvalues provide

estimates for the eigenvalues of p(s,t). (See Section 8.4.)

7. Compute the p-value based on the asymptotic distribution of the test statistic as
P (3°Aix? > w) where x?’s denote a set of independent Chi-squared random variables
each on 1 degree of freedom and w is the value of the test statistic computed in step
5.

8. Reject (or, do not reject) the null hypothesis if the p-value is less than (or, greater

than) the desired significance level a.

8.2.3 Covariance kernel p(s,t)

In this section we prove that the covariance kernel for the process
Wi (s) = g Ty Tiey {I [ui; < o]~ s} s
k ni
L oni(n; — 1)

pls,t) =min(s, ) — st + 33 L=y (s,0)

t=1 j=1
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The process Wx(s) can be rewritten as

1 k ng

Wx(s) = ﬁ ;; H(Gn;(&;) < 8)— 9.
Hence, Cov (Wx(s), W\(t))
1 & & |
= C IGn‘ 1} < - 1 Gn,r ~i’j’ <t) -t
ov( ;; (G, () < 5) - 5] ﬁgg[( (én) < 1) r])
= %cm; (ZZ I (Gri(&5) < 5], Zz[ (Gn, E,J)<t)])
i=1 j=1 i'=13'=1

= —"ZZZ ZC’ov (1(Gnil&) < )1 (Gyley) < 1)) - (8.3)

=1 j7=11'=1 j'=1
Note that

0, if i

. ) for these correspord to different doses
0v (I(Gni(&;) < ), 1 (GrylEr) < 1)) = 3
' o or(s,t), ifi=d, j=j

. p2,ﬂ.‘(sat)a ife= i,a .7 # j,

where p1(s,2) = Cov (I (Gy(é5) < 5),1 (Gny(&5) < 1)), and
P2.n:(5,t) = Cov(I(Gy,(&;5) £ 5),I(Gn;(&;) <t)). We use the subscript n; to indicate

that p2 5,,(s,t) depends on n;.

Computing pi(s,t) and p2.5.(s,?):
If A and B are two events then Cov (14, Ig) is easily seen to be P(AN B) — P(A)P(B). So,
pi(s,t) = min(s,t) — st and
P2ni(5:1) = P(Gn(&;) < 8,Gni(éij) < t) — st
= P (& < G7l(s) &y <GRAD) - st
= G(l‘"-:’) (G;il(s)’ Gr:il(t)a P,‘jj’) - st,
where G;1(.) denotes the inverse of the true distribution of the standardized residuals and

G(2,n;)(> - pi;3+) is the joint cdf of &; and &;:. Let g(-,-) denote the joint density function
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of é; and €. Noting that the correlation between two fitted standardized residuals is
—1/{n; — 1) (see Section 8.2.4), we find G n.(z,y) = [Z_ [¥ 9(z,y, —(ni— 1)~ )dzdy. We
give an expression for G2 5, as a univariate integral in Section 8.2.4.

Now from Equation 8.3 the covariance kernel for the Cramér-von Mises statistic is found

to be

. . k ni(n; — 1)
p(s,t) = Cov(Wn(s), Wn(t)) = min(s,t) — st + Z {__Wr—*pz”‘i(s’ t)} .
=1 -

The covariance kernel for the Anderson-Darling statistic is

_ p(s,t)
pals:1) = V5~ l=1)

To evaluate the above covariance functions we need the inverse distribution function of &;
(i.e. G;}(-)) and the joint distribution function of &; and &; (i.e. Gor.(-, ", Piji)-)

To compute the inverse of the distribution function at y we note that,

P =GINY) 4y = Gui(2) = o) ( (iy——_‘—z%)

Hence, t('ul_l)(y) = T /éj’_—’;;% Thus,
-1
() = 2 = —— @)
n; 2’
\/(V -1+ [t(,,l_.l)(y)]

where t7!, denotes the inverse of the student ¢ distribution function with v — 1 degrees of

freedom; recall that v = n; — 1.

8.2.4 The joint density of the standardized residuals

Ellenberg [29] provides the joint density of the standardized residuals for the linear regression
model. First we briefly mention their result and use their result to obtain the joint density
of the residuals in our problem.

Consider the general linear regression model, Y = X + ¢, where § is a k£ dimensional

vector of unknown parameters, and X is fixed and of full rank. Let M = I, — X (XTX)"1Xx7,
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where I, denotes the n X n identity matrix. Let @; = ¥; - Xi,»’;’, where X; is the ith row of
X and 3 is the least squares estimate for 8. Let $2 = "% 4,2

Ellenberg [29] defines the standardized residuals as (; = i,/ (Smi-/ 2) t = 1,...,n,
where m;; is the :th diagonal element of M. Consider a subset of p residuals. Without loss
of generality take these to be the first p residuals. Let M, be the corresponding (p x p)
principal minor of M. If M1 exists, according to Ellenberg {29), the joint density of the p

standardized residuals can be written as

-1
T(v + p/2)|M; |2 T, m!? ’

P P B
f(Cla C25-- -5 Cp) = 7rP/2I‘(1/) X |1- Z Z(mum,jj )1/2771‘](1‘(:]' )

=1 3=1

where m¥ are the elements of M 1 v=(n-k-p)/2, and the probability density function

is defined over the region
P P

ZZ(miimjj)lizmijCiCj <L

1=1 j=1

Ellenberg {29)] uses % = 32, @? which is actually n — k times the usual estimate for

1

o®. In this work we defined standardized residuals replacing S by s where s = §%/(n — k)

and use the notation & = ;/ (sm}i/ 2).

Note that Corr(d;, ;) = p say). Let m'/ be the ijth element of M~!. It

ml'z»: (=
is easy to check that m’’m;; = 1—_1-;7 and m#7’ [T 05 = —(ﬁﬁ' Thus, the joint density

of {; and (;: can be written as

(1-p?)

flu,v;p,v) = v__ 1 {1 _ [#? - 2puv 407 }(v—l) )
ey

and is defined over the region S 1, 32 _ (mium;;)/?mYu;u; < 1 which is the region
‘P'f;—%’ﬁ <1, or, in elliptical polar coordinates the region 72 < 1. Thus, the sup-
port of the joint density of two fitted residuals (;;’s (as defined by Ellenberg [29]) is the unit
circle.

Next we apply the above result to obtain the joint density of two residuals in our prob-
lem. When two residuals come from different temperatures they are independent. For two
residuals from the same dose level, we need to compute the correct correlation p. But this

is simply the correlation between ¢; — € and ¢; — € in a sample of size n;. This is easily seen
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to be ~1/(n; — 1). For notational convenience we now drop the suffix 7 and compute the
joint cdf of two residuals from a sample of size n.

Note that

P(g<eép<y) = P( = (n k)’CJ “(nyk)>

z v
CEDRCET A

where Fy(u,v;p,v) is the joint cdf corresponding to f(u,v;p,v). So, we only need to show

= Fy

how to compute the joint distribution function of two fitted residuals as defined in Ellenberg
[29]. In the next section, we show how to compute this joint cdf of two residuals for the
more general linear model Y; = X8 + o¢; discussed in Ellenberg [29]. We are able to do
this for general p, not just p of the form "(n_iﬂ' We specialize the answers to our case at

the end.

8.2.5 The joint distribution function of two fitted residuals

We closely follow the work of Dunnet et. al. [28] to evaluate the the integral

h k
/ / f(u, v; p,v)dudo,
-—0O0 bt ¢

for given values of h and k. First we show the calculations for h and & positive, and extend
the results for the negative values of h and . So, assume A and % are positive unless specified

otherwise.

Consider the new coordinate axes

Y = v=rsind,
and X = ——(u———;—)%)—zrcosﬂ.
(1-p?)

The Jacobian for this transformation is /(1 — p?). In the new coordinates the joint density
can be written as, g(r,6,p) = %r[l—rz]("—l). Since tand = %, the lines 6§ =
constant are straight lines through the origin. The line U = 0 can be written as ¥ =

—p2
——@X . So, depending on whether p is negative or positive the axis U makes an acute
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Figure 8.1: The probability integrals for p < 0

or obtuse angle with the Y axis. The direction of positive U can be identified by considering
the coordinates of (h, k) (for p negative) and (—h, k) (for p positive).
2
Define 72 = [\/_(%%] + k2. Note that 7 is the distance from the origin to the point of
intersection of the two lines v = k and u = h. Thus, the two lines intersect outside or inside
the unit circle according as r > 1 or < 1. (See Figure 8.1.).

We first evaluate the double integral for the case 7 > 1. Then we suggest the suitzble

modifications and evaluate the integral for the case r < 1. Let

R; = The region inside the unit circle outside the line v = k,
R, = The region inside the unit circle outside the line u = A,
C The point of intersection of v = k and u = h,
A A The points where v = k meets the unit circle,
and B, B’ The points where u = h meets the unit circle.

Suppose p is negative. Then (h — pk) and (k — ph) are both positive for all positive values

of h and k (Figure 8.1), and

Rk
/ / f(u,v;p,u)dudv:l—// g(r,O,p)drdé)-—// g(r,0,p)drds.
—00 v —-0O Rk Rh
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(r>1) (r<1)

Figure 8.2: The probability integrals for p > 0

Now suppose p is positive. Then if (h — pk) < 0, then (k — ph) > 0 (since ph < h <
pk < k). But if (h — pk) > 0, then (k — ph) can be either negative or positive. We need to
consider these three cases separately.

Case 1: (h — pk) < 0 (Thus (k — ph) > 0.) If » > 1, (Figure 8.2), then

ho ok
/ flu,v;p,v)dudv=1- /] g(r,8,p)drdé.
—-—00 v =00 Rh

Case 2: (h— pk) > 0 and (k — ph) < 0. Then
h k
/ / f(u,v;p,v)dudv=1- // g(r, 6, p)drdsf.
—00 v =00 Rk
Case 3: (h — pk) > 0 and (k — ph) > 0. Then

h o gk
/ / flu,v;p,v)dudv=1- [/ g(r,(),p)drd()-—// g(r, 6, p)drdd.
—00 =00 J Ry Ry

Limits for the integrals over the regions R, and Rp:

Let 6 be the angle measured from the axis perpendicular to the Y (= V') axis at the origin.

Let 64 be the angle corresponding to A. We note that, if 7 > 1 (Figure 1), then 64 =
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arctan \\/(-7} and 84 =7 — arcta,n\ (1L 7o ) or 0 < k < 1. For k > 1, the integral

over Ry is 0, whereas for k = 0 it is 0.5.

Note that over the region Ry, 6 varies from 84 to 4. For fixed #, r varies from & csc @
to 1.

Now let 6 be the angle measured from the axis perpendicular to the U axis at the origin.
As before, let g and 05/ be the angles corresponding to the points B and B’ respectively.
).forO( h < 1.

If » > 1, then 8 = arctan <\/(—15-T2)) , and fg: = ™ — arctan (\/’(T%/Tf)
Over the region R; 6 varies from fg to 0p:. For fixed 8, r varies from hcscé to 1.

Now we describe the modifications required when r < 1. When r < 1, we slightly modify
the definitions of Ry and Rj as follows.

We take the line joining the origin and the point C (the point of intersection of v = &
and v = h) as a boundary line for the regions. For notational convenience, we refer to
this line as line [ (See Figure 8.1.) The region Ry is now defined as the region bounded by
the curve 7 = 1, the line /, and the line v = k. Similarly, the region R} is defined as the
region bounded by the curve r = 1, the line [, and the line u = h. Accordingly the angles

corresponding to the boundary lines for the regions R and Rj take the following values.

k1 - p?
eA = arctan (m)

k
64 = w—arctan (ﬁ)
hy/1 - pz)

g = t _—
B arc an((k—ph)

fg: = = — arctan (—z—l———\/_li_v-)) .

When 7 < 1, regardless of the signs of (h — pk) and (k — pk),

,/[ ] f(u,v; p,v)dudv =1 — j / g(r,0,p)drdf — j / g(7,0,p)drdb.

We notice that, regardless of whether or not the point of intersection is inside or outside
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the unit circle,

f4 = = —arctan (———(—1-—\/.__:——:}:—-_75) .

h
and #pr = = —arctan (-m—)) ;

Considering the symmetry and taking

4

arctan ,—"—2- , if(r>1)
GA = < \/(1~k3
. k:{]—p

f 1

. arctan Wik if (r<1)

arctan ( (1!1-112)\ , if (r>1)

93 = < arct A 1_p2 f .
retan | === i (r<1j

84 = a::iaﬁ{ k__ ,
\V(1-%?%)
arnd 4 = arctan w——-———-,__{l_._.ﬁ
B VII-h?%))’

the integrals over the regjons R; and Rj can be written as

%‘{2 Jiesco9i7,0, p)drdd + f;;/z Jecsc4 9(r 8, p)drdd
if (h — pk) > 0),
// g(r, 0, p)drdd = < jz (1 #9>0 r/2 (1 .

R Jo i Rcsca9(r.0,p)ardd — [7° i q9(r, 6, p)drdd

v

(if (h — pk) < 0).

T i cs0tr.0,p)drd0 + [51° [}, 5 9(r,0, p)drd8
(if (k — ph) > 0)
I;Z,? f:gcﬂ g(r, 91 p)drde - 0:51,2 fi}cscﬁ g(T, 0’ p)deo

(f (k — ph) < 0).

and / ] g(r. 0, p)drdf = {
Ry,

Using the notation
1. if(a>0)
sgn(a) = 0, if(a=0)
-1, if(a<0),
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the above integrals can be written as

ror ref2 (1 =2 1
[ ] sr.6.p)drds = / 9(r. 8, p)drd + sgn(h — pk) /- f g(r.8, p)drds,
R 640 Jkesch B4 kcscf
(8.4)
and
=/2 r1 /2 1
/ / g(r,0, p)drdd = / / g(r. 8, p)drdf + sgn(k — ph) / / g(r.8, p)drds.
Ry fgr Jhescl fg hcscf
(8.5)

Evaluating the integrals:

We only need to evaluate the double integral over the region Ry, since by interchanging h
and k we caxn obtain the value of the integral over the region Rj;. For notational convenience
let us denote the lower and upper limits for the variable 8 over the region R by Ci(h,k,p)
and Ca(h, k, p) respectively. We need to evaluate

{2 /2

1 1
[ a(r.0,p)drds+ sgn(h — pk) [ a(n,6,p)drds,
kecsct kcsc@

C2(h,k,p) Ci(h,k,p)

where g(r,0,p) = £r[1 - rz]("_l) . Note that [ . ,9(r,8,p)dr = £ [1- k?csc?6]” . Let

1 /2 2 ...29]"
Qu(hk,p) = — [1- k2 csc6]” a6
2% ch(h,k,p)
+sgn(h — pk)i / /2 [1 — k% csc? 0] “ de.
27 JCy (h.k,p)
Then,
Q.(h,k,p) = i/fﬂ [1- k2 esc?g] =) [1- K?csc?6) df
vi\ieys vy o Calhkon)
1 /2 (v—-1) 2
+sgn(h — k—/ 1—k?csc?6 1—k%csc?d| db
gn(h = )27" Cx(h,k,p)[ ] [ ]
= Qu-1)(h,k,p)+ L(h,k,p), say. (8.6)
To evaluate I,(h,k, p) note that
2 = [2 y—
L(h.k,p) = k—/ {1 — k% csc? 0}( Y k2 csc? 040
2% JCy(h ko)

2 /2 v—1)
+sgn(h — Pk)‘;; /:(h ) [1 — k% csc? 0] ¢ 2 o2 046
1\h,K,pP
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k? o\ (v-1) [7/2 k? ) (v-1)
= — (1~ ‘ — = cot“ @ d
5 (1 k ) /C'Q(h,k,p) 1 =7 co (cot 8)

(v-1) [7/2 1 k?
C1 (hsk,0) (1-k2)

k2 (v-1)
+sgn(h — pk)27 (1 - kz) cot? 6’:‘ d(cot ).

Substituting z = (TE'?PT cot? 8, we can write the integral I, (k, &, p) as follows:

2 0 v—1
I(h,k,p) = %L ) [1 — k? csc? 6]( : k? csc? 0d#

2(h1kap
+sgn(h — pk)lc-z—fo [1 — k% csc? 0} =0 k% csc? 0do,
2r z1(h.k,p)
where
| 1, if (r > 1)
z1(hk,p) =

— 2 .
ey i (r< 1),

and z(h,k,p) = 1.

Let I;(p,q) = [§ %{;i’:—%y”‘l(l —y)?1dy be the incomplete beta function. Then I,(h, k, p)

can be written as

L(hkp) = —-;}ﬁ(1—kZ)‘"’l’”m%{usgn(h-pk)fz(h,k,p)}, (8.7)
1 if (r>1)
where z =

h—pk)? :
(—f___tp)—?i‘)__pf)' if (r < 1).
Combining Equations 8.6 and 8.7 we get

Qulhsk.p) = Qo (b )= (1= )7 s (14 sgn(h = ph)L (K, )
(8.8)

Using the recurrence formula (Equation 8.8), we can obtain the following expression for
Qu(h, k. p) (v=(n-23)/2):
( _k_<w 2y(1-3) ng% 1 .
QO T ax Ej:l (1 -k ) 2 TG+1) {1 + 'Sgn(h' - pk)Iz [’g'v]]}
(when 7 is odd)
k. o(r=3) D5+ 3) .
Qi1 -7 Lim’ -k 5e7h {1 + sgn(h — pk)I, [%,J + %]}

(when n is even).

Qu(h,k,p)= {

(8.9)

206



The formulae given in Dunnet et. al. [28] can be used to evaluate the incomplete beta

functions. These are

1.1 / ~14i(i)? ;
II":—2—,J+_2-} = —arctan \/.’L‘(l— 2(2 (+)1)'( —z),

(.7 1)
21)
and I, [l,j] = Z ( 2' 2(1
2 1=0 )
Computing Qo and Q»:
Recall that
1 /2 v
Bk, p) = ——/ 1 — k2 esc2 6]’ do
Q ( p) 2 Cz(h,k.p) [ cse ]
w/2 v
+sgn(h — pk) / [ ~ k%csc? 0] dé.
Cl(h k)p)
Therefore,
1
QO(h’7 k7p) = 5—7;[#/2- CQ(h7 k;P)]
1
+sgn(h — pk)5=[n/2 = Ci(h, k, )],
where
k
Cz(h,k, p) = arctan (ﬁ)
and

arctan (\/l—li—g) for (r > 1)

1-p2

Ci(h,k,p) =
1 arctan (%%) for (r < 1).

To compute Q; 2(h, k, p) we first compute [ [1 — k? csc? 4] 1249, We write

2 2V, 2. .27V 0 9 csc? 6
/[1‘1‘7 csc 0] do—/[l—k esc 9] 0 -k 1~ kZcsc?8

sm 6

\/sm20 k2
/\/]l—kﬁi—z2
\

= arcsin (ﬁ)
) (\/sin20—k2)
= aresmyf ———m———19,

Observe that / [1 — k2% csc? 8] 12 de =

dz,where z = Vsin?8 — k2.

1-k?
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and

csc? g _ / d(cot )
1 —k?csc?f \/1—k2(1+cot20)

k/ du ,
=)
. cot @
= karcsin ( = ) .
X

: . : in? 6—k2 .
For notational convenience let o = arcsin (%) and B = arcsin ( C‘;tiz ) . We
P¥)

tabulate some specific values of § and the corresponding values of @ and § which we need

—k°

for u = cot 6.

in the sequel.

9 o B
arctan (—\/—;%7) 0 o
7 7 0

arctan (k hj;kpz) arctan (k\/(l_p 2)(;1’:2;)*2'2"}*]) arctan ( \/(1_“,2)(_}}[; §?k2 _2phk])

Substituting corresponding limits (see the table), we find

1 (= T w
Qualk,p) = 5= {5 +son(h—pb) (5-61) -k |5 +son(h- P |,
where
9 01 if (T > 1)
' arctan (k\/(l_pzz;_[_h:gkz_bhk]) if (r < 1),
and
p Z if(r>1)
2 =
(h—pk) .
arctan (\/(1~p2)_[h2+k2_29hk]> if (r < 1).

We note that, according to the above formula, when 7 > 1 and (h — pk) < 0, the integral
over the region Ry is zero. Similarly if » > 1 and (k — ph) < 0, then the integral over

the region R; is zero. Therefore, regardless of the signs of (h — pk) and (k — ph) we can
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use the formula, f_}_’oo fr f(u,v;p,v)dudv=1— [ Jr, 9(7,8,p)drd6 - [ [p g(r,6, p)drdf to

compute the joint distribution function of v and v at (h, k) for all positive values of h and

k.

Computing the distribution function for regative values of h and k:

Recall that Fp(u,v;p,v) = ffoo ffoo f(u,v; p,v)dudv.
Casel: h>0and k<0
Let k; = —k then k; > 0. Observe that

PU<L<hV<Ek) = PU<LhV<~k)
= P(U<h)-PU<h,V>-k)
= PWU<hV<L1)=PU<Lh -V <k)
(Since the density is zero when V > 1.)

= Fy(h,1;p,v) ~ Fa(h, k1, —p, V).

Case2: h<0and k>0
Letting Ay = —h, as in Case 1, we find

P(U < h,V <k) = FQ1,k;p,v)— Fao(h1,k; —p,v).

Case3: h<0Qand k<0
Let hy = —h and k; = —k and write

P(U < h,V <k) 1-[P(V >k)+P(U >h) - P(U 2 h,V > k)]

= 1-P(=V < k)= P(=U < hy) + P(=U < b1, =V < k1)

+P(=U < h1,-V < k)

= 1~ FZ(lvkl;psy)'— F2(h1,].;*—p,l/)+Fz(hl,kl;p,l/)-

Thus, we can use the formulae already derived for positive h and & to evaluate the cumulative

distribution function even if either A or k is negative.
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Evaluating the integral when h =k = 0.

Now we describe computing the probability integral when A = k = 0. We show that the
probability integral for this case is identical to the result for the bivariate normal integral.
We note that the results for A = k = 0 can also be derived from the result we derived earlier

as a limiting case for h — 0 and k — 0.

Vv

....... —
_______ Y- u—pvﬁ
--o--om3gy (1-7%)
>
(p < 0) (p>0)

Figure 8.3: The probability integrals for h =k =0

When k = k = 0, the required integral [*_ [*  f(u,v;p,v)dudv can be computed as
follows (See Figure 8.3):

bk 6, -1)
/ / flu,v;p,v)dudv = / / 1 — 2 rdrdf
-0 v —~00
= ——f [1 - 7‘2] de

= 27r/ d0~——0A

2
= ———arctan( ——1——£—)
27 p

For ease of reference we now summarize the resu’ts derived in this section.

To evaluate the cumulative distribution function, f_ o f_ o f (2, v; p,v)dudv, for positive
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values of 1 and k we proposed the recurrence relation:

h k
|| sweipwidsts=1~ [ [ g(r.6,p)drde- [ [ o(r6.0)ras,
-—00 v —00 Rk Rh

where
' ks G-b .G .
Qo — I/ 2=l (1-k%)V™2 F(‘Jj%g) {1 + sgn(h — pk)I, [%,]]}
h is odd
// g(r,0,p)drdd = (w enkn 18 (C;_l)) .
A Q — o Ti0” (L= 1) T {1+ sgn(h - ph)LL [1,5 + 3]}
| (When n is even),

The term @ was found to be
1 1
Qo(h, k,p) = P [7/2 = Co(h, k, p)] + sgn(h — pk)-g [7/2 - Cy(h, &k, p)],

where

Ca(h, k, p) = arctan (\/1_157__1}‘2') ,

and

arctan (v,l—’_‘?) for (r > 1)

—p2
arctan (kh_lpkp ) for (r < 1).

Cl(h’ k’ p) =
The term Q,/; was found to be

T T

Qualto ko) = 5o {5+ som(h = pb) (3 - 0) = k[ 3+ somh~ pbs]

where
0, if (r>1)
6, =
! arctan (k‘/(1~"2 z;ih:;)'kz—zphk]) , if(r<l)
and
z if (r>1)
6, =
(h—pk) ;
arctan (\/(1—p2)—[h2+k2-—2phk]) if (r < 1).

The double integral over the region R, can be obtained from that of Ry by interchanging h
and k.
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For non positive values of h and k& we can use the results derived for positive values of
h and k as

G(h,1,p)— G(h,ky,—p), when h > 0 and k <0
G(1,k,p)— G(hi1,k,—p), when h < 0 and k > 0

h k
/ / f(u,v; p,v)dudv=<{ 1—G(1,k1,p) — G(h1,1, —p)+ G(h1, k1, p),
when h < 0and k<0

—n2
L arctan (—@)

5 when h =0 and k£ = 0.

?

.

8.2.6 Justification for using the approximate p-value

We provide theoretical justification for using the suggested test procedure by proving weak
convergence of the related empirical process. Validity of the suggested asymptotic results

in finite samples is justified by a simulation study.

Weak convergence of the empirical process

Let & denotes the number of dose levels and n; denotes the number of replicates at the
ith dose level. Let N = Y°¥_, n; be the total number of observations. We prove the weak

convergence of the process

k n;

_.\/l-]_V_-ZZ{I(Gm(EEj) < 1) -1}
1=1 j=1

for the case of equal number of replicates at each dose level (i.e. n; = n for all 7). We fix n

Wn(t) =

and let k' — oo. In this case the process

k n
Wi (t) = I/%? S5 {I(Gale) <) — 1)}

=1 j=1

can be rewritten as
1 n
Wy = == Wn;(t),
\/H j:l

where each Wy;(t) = 71;21-‘:1 [ (ui;; £t)—t] and wu;; = Gn(é;). For each fixed j, the

variables uy,...,ux; are, under the null hypothesis, iid uniform(0, 1] variables and so each
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Wy ; converges weakly in D[0,1] to a Brownian Bridge, that is, a Gaussian process W;
with mean 0 and covariance min(s,t) — st. Therefore, Wy; is tight in D[0,1]. This in
turn implies that for each j, there is a compact K; C D[0,1] such that P (Wy; € K;) >
1 - & for any € > 0. Since K; is compact in D[0,1], K = K; x ... X K, is compact
in (D[0,1])" and P ((Wn1,...,Wnn)eK) > 1 — €. Since € is arbitrary it follows that the
process (Wn1, ..., Wnn,) is tight in (D[0, 1])".

Now consider 0 < #; < ...<t, < 1. The matrix My whose [jth entry is Wy ;(t;) can be
written as Z§=1 T/LZQi where the matrices @;’s are iid and @Q; has ljth entry I (u;; < )~ 1.

Each @; has mean 0 and so My converges in distribution by the usual Central Limit Theorem,

to a Gaussian matrix M with E(M) = 0 and

Cov(Myj, Mpj) = Cov{l(uy <t),I{ui < ty))

= Ga(G™u), G tr), pjj7) - tity (See Section 8.2.3.),

where p;;» = 1if j = j' and "(Ti‘ﬁ ifj#7'.

Thus, (Wn1, . - ., Wnr) converges weakly in (D[0, 1])" to a Gaussian process (Wy, ..., W,)
with mean 0 and Cov (W;(t;), W;(tr)) = G2 (G™H(t1),G™ (), pjj) — tityr.

Since each W; isin C[0, 1] (each is a Brownian Bridge) it follows that Wx = 71; Y rey W
converges weakly in D[0,1] to W = \"/177 > 7=1 W; which is a mean 0 Gaussian process with

covariance

pls,t) = Cov(W(s), W(1)
=~ 3 Cov(Wj(s), Wi(t)

i=1j'=

= min(s,t) — st + -1-12- Z {Gz (G-—l(s),g—l(t), —(n}- 1)) - st} .

%35

Simulation results

Now we describe a Monte Carlo study that we performed to examine the approximate p-
value suggested in Section 8.2.2 for testing the normality of the random errors ¢;; in the

model Y;; = pi +o4€i5, i=1,...,k, j=1,...,n;
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In this study we used equal numbers of replicates at each dose level (i.e. n; = n, Vi=
1,...,k.). The chosen numbers of replicates, n, are given in Table 8.1. The mean u; and
the variance o? at each dose level were set at 0 and 1 respectively. In other words the ¥j;’s
were chosen to be standard normal random variates. We generated 1000 such samples. For
each simulated sample, we computed a p-value based on the Cramér-von Mises statistic
for testing normality as described in section in 8.2.2. Thus, we have 1000 p-values. If
the suggested asymptotic theory holds, these p-values should be approximately uniformly
distributed. The validity of the asymptotic theory was tested by checking to see if these
p-values are approximately uniformly distributed. We used the Anderson-Darling statistic
as a measure of uniformity of p-values. The null hypothesis to be tested is Hy : the p-values
are uniformly distributed on [0,1]. Thus, under Hy the distribution is completely specified.
According to Stephens(1986) it falls under Case 0. We arrange the p-values in ascending
order and we note that the probability integral transforms 2;’s are exactly the values itself
because the distribution of interest is the uniform distribution. The value of the test statistic
is computed using the formula for A2 given in Section 8.1.1. The p-values for the Anderson-

Darling test are computed by first estimating the eigenvalues of the covariance kernel for

AZ,
min(s,t) — st

Palt) = o)

and then using these eigenvalues as weights to compute the p-values as described in Section

8.1.2. The results using Cramér-von Mises statistic and Anderson-Darling statistic are given
in Tables 8.1 and 8.2 respectively. We also compute the observed levels of nominal 1, 5, and
10% level tests, that is, the fraction of p-values smaller than these nominal levels.
Conclusions

Based on the simulation results, we draw the following conclusions.

1. The Anderson-Darling test does not reject the null hypothesis that the p-values are
uniformly distributed in any of the above cases. This justifies the use of the approx-
imate p-values suggested in Section 8.1.2 for testing the normality of random errors

without assuming that fitted model is correct.
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Data [ n | k& Anderson | p-value Observed level for

Set test statistic =010} a=0.05| a =0.01
1 6 | 30 2.15 0.08 0.088 0.046 0.008
2 1530 0.42 0.82 0.093 0.057 0.007
3 | 4130 0.59 0.65 0.100 0.056 0.011
4 |4]10 0.48 0.76 0.108 0.050 0.009
5 3110 1.60 0.15 0.107 0.049 0.007
6 315 1.12 0.30 0.098 0.049 0.008

Table 8.1: Results for testing normality using W?: Model 1

Data | n | & Anderson | p-value Observed level for

Set test statistic a=010 | a=0.05] « =0.01
1 6|30 0.76 0.51 0.010 0.046 0.086
2 5130 1.77 0.13 0.009 0.056 0.098
3 (4130 1.60 0.15 0.012 0.061 0.104
4 14110 1.51 0.18 0.011 0.051 0.111
5 |3]10 2.24 0.07 0.008 0.055 0.106
6 |35 1.07 0.32 0.012 0.062 0.100

Table 8.2: Results for testing normality using A%: Model 1
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2. The observed levels from the simulation study agree well with the nominal levels.

3. The suggested asymptotic theory appears to hold for sample sizes as small as 15. The
typical sample sizes for thermoluminescence studies are around 30. Therefore, the
suggested procedure could safely be used for testing the normality assumption in the

model described for thermoluminescence data.

8.2.7 Sensitivity of the tests to departures from normality

In the previous section, we described a simulation study that examines the validity of the
approximate p—value for testing normality of random errors without assuming that the
fitted model is correct. Here we describe a small study that investigates the sensitivity of
the suggested tests in detecting departures from normality.

The simulation study is similar to that we described in Section 8.2.6 except that, instead
of normal random variates we generated data from different alternative distributions. When
generating data from the gamma distribution we fixed the shape parameter at values given
in Table 8.6. Since we assume that Y has mean f and variance o2f? we find that o2 is
the reciprocal of the shape parameter. The scale parameter for the corresponding gamma
distribution is o2f2. So we only report the shape parameter of the gamma distribution we
used to generate the data Y. For each generated sample, we computed an approximate
p-value for testing the hypothesis that the random errors are normally distributed. We
examined the performance of both the Anderson-Darling statistic and the Cramér-von Mises
statistic as test statistics for testing the normality. The powers of the tests were computed
as the proportion of samples rejected by each test. The chosen distributions, sample sizes,
and the results are given in Table 8.3.

Conclusions:

Based on the simulation results (Table 8.3), we draw the following conclusions.

1. For the alternative distributions considered in the study, the tests appear to detect
the departure from normality with reasonably large sample sizes. Since we are fitting
different mean and variance parameters at each dose level, the number of fitted pa-

rameters is quite large. Therefore, the effective sample size is much smaller than the
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Data | Distribution | = ! & The power of
Set Cramér-von Mises | Anderson-Darling
a=005]a=010; a=0.05} a=0.10
1 gamma(0.5) [ 3 | 10 0.50 0.61 0.56 0.66
2 gamma(2) | 3 | 10 0.14 0.23 0.15 0.24
3 gamma(4) | 3 | 10 0.10 0.16 0.10 0.16
4 gamma(6) | 3 | 10 0.08 0.13 0.08 0.14
5 123 3110 0.06 0.12 0.07 0.13
6 ts 3110 0.06 0.10 0.06 0.11
7 ts 5110 0.07 0.13 0.06 0.12

Table 8.3: Summary of test results for departures from normality: Model 1

nominal sample sizes used.

2. When the sample sizes are small, the Anderson-Darling test appears to perform better

than the Cramér-von Mises test.

3. Since the computational burden is very much the same for both statistics we recom-

mend using the Anderson-Darling statistic — particularly so if the sample sizes are

small.

4. Based on the study it appears that the proposed EDF test is more sensitive to skewness

than to heavy tails.

8.3 Application of EDF tests: Model 2

Consider the model, ¥;; = pi(#) + opi(B)ei;, i =1,...,k, and j = 1,...,n;, where the

random errors ¢;;’s have zero mean and unit variance. Here we assume that both mean and

variance of Y;;’s are functions of the unknown parameter! 4, and that the variance of the

'In our problem 6 is a vector of parameters.
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Y:;’s are proportional to the square of the mean function. We refer to this model as Model

2. We wish to test the assumption of normality of the random errors ¢;;.

8.3.1 Computing the test statistic

In this model, the number of fitted parameters does not increase with the number of obser-
vations as in Model 1. Therefore, we can estimate the mean and variance consistently by
choosing a large enough sample. Let 6 and & be the maximum likelihood estimates for 8 and
o respectively. The maximum likelihood estimate for y;(0) is p;(4). Let N = 5 n; be the
total number of observations. We define the standardized fitted residuals as é;; = %(7@)
The &;; are approximately normally distributed, for large enough N. The probability integral
transforms of ¢;;’s are therefore given by u;; = ®(¢;;), where ®(-) denotes the distribution
function of the standard normai distribution. Let zy, ..., zx be the ordered probability inte-

gral transforms, or the u;;’s arranged in ascending order. Formulae (Equation 8.1) provided

in Section 8.1.1 can be used to compute the test statistic for these z values.

8.3.2 An approximate p-value

The process Wi () = 7’: P Yt 41 lui; < 2] -t} can be rewritten as

Wr ()

i

fzf:{m(e,-j) <i-1)

i=1 j=1

= ZZ{I & <o) — 1}

1‘“1 =1
In Section 8.3.3, we show heuristically that the approximate covariance kernel for the

Cramér-von } ‘ses statistic is

p(s.1) = Cov(Wn(s), Wx(t)) = min(s, ) — st — --TT (SO (1), (8.10)

b

— 1‘6:1' N Y l- @ {@’1(3)1 {Q—-l(‘s) + ] Zg,‘l Z}:l i-"1(0) -]
=¥ ,0).Tis)= .1 et
| ¥oe-1(a) {2e-1(s))
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and I{£) denotes the average Fisher information per observation. The covariance kernel

for the Anderson-Darling statistic is

_ p(s,t)
pa(s.t)= NEE ——s)t(l-—t). (8.11)

Next we summarize the test procedure.

1.

n

Find the maximum likelihood estimates # and & for the parameters 6 and 0. The

maximum likelihood estimate for u;(8) is then u;(6).

Compute the standardized fitted residuals ¢; = (—}-fi:’;;—.‘z—;;()@l. (As we described earlier,

we test the assumption of normality of random errors by testing whether the fitted

residuals are approximately normally distributed.)

. Compute the probability integral transforms ®(&;;).

Order the probability integral transforms in ascending order. Let z,...,2y be the

ordered probability integral transforms.

Compute the Cramér-von Mises statistic

N . 2
2 _ __(21——1)} 1
Wi “Z{z’ an | TN

=1

or the Anderson-Darling statistic

N
A2 = —N—%E{(%— Dinz + (2N + 1 — 2) (1 — 2)} .

=1
Evaluate the covariance kernel p(s, t) given by Equation 8.10 at the estimated parame-
ter values 6 and . (If the Anderson-Darling statistic is used p(s,t) has to be replaced
by pa(s,?).)

Find the eigenvalues of p(s,t). We computed approximations for the eigenvalues as

follows:

(a) Create the matrix ¢ whose elements are

1 m
m+ D) m+ 1)

(Here m is the number of subdivisions of the unit interval. We chose m = 150.)

Q(5,t) = =p(s,2), for s,t=
m
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(b) Compute the eigenvalues Aq,..., An of the matrix ¢J. These eigenvalues provide

estimates for the eigenvalues of p(s,t). (See Section 8.1.1.)

8. Compute the p-value based on the asymptotic distribution of the test statistic as

described in Section 8.1.2.

9. Reject (or do not reject) the null hypothesis if the p-value is less than (or greater than)

the desired significance level a.

8.3.3 Covariance kernel p(s,t)

In this section we use standard expansions to derive an asymptotic Gaussian approximation
to the process Wy(t) = ﬁ Yy, {I[&; < @7(t)] —t} . Our derivation is heuristic
rather than rigorous though we believe that results of Loynes [45] can be used to provide

rigorous justification. Note that

& <07 (t) & opi(f)e;+ (ui(ﬂ) - u;(é)) < 6 (6)®7(t)
o) (1) + (w:(8) - ui(6))
oui(0)

& €; <

& ®(e5) < Hi),

where

H(t)y=9

oui(0)871(1) + (1i(0) - wi(9))
oui(6) .

Taylor expansion of H;(t) around § = 8 gives
- T
Hi(t)=t+ (0 - 6) ¥i(t) + (6 — o)ni(t) + negligible terms,

where

¥i(?)

11 0m(®) g 1 Ou(0)
.{m(ﬁ) a0 2 D+ =50 }

8 [#70)] [0+ 2] Ztog(u(@)

J

¢ [

Il

= 8[e7] [¢70) + 2|6, for (o) = Fylog(u(6))
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and 7:(t) = ¢ [@71(¢)] {;}@“1(1&)}. Therefore,

Wa(t) = ZZ{I [®() < 1) - 1}
=1 3=1
= \/—ZZ{I [®(e;5) < Hi(?)] - Hi()} + —= ZZ i(2) 1]
=1 j=1 l“"l =1
~ ZZ{I [®(ei;) < 1] — 1} + \/—EZ(" 0)" %i(t)
=1 1—1 i=1 j=1
ZZ(U - U)T mi(t)-

In the last step we used the fact that, when § is close to 6, H,(t) is close to t. This step
can probably be justified rigorously by following Loynes [45] but we have not tried to give
precise conditions under which this is possible. Note that the same argument does not hold
for the second term since H;(t) —t is Ox(N~1/2),

Letting £T = (6T,0) and &7 (¢) = (¢T(t),17,-(t)> we write

k n;

\/_ZE{I (®(e;;) Lt =t} + — ZZ(E E) ki(t)

=1 5=1 z_l j=1

= Un(t)+ Vn(t) (say).

Wh(2)

X

Now the covariance kernel of the process Wn(-) can be computed as

Cov(Wn(s), Wn(t)) = Couv(Un(s),Un(2))+ Cov(Vn(s), Vn(2))
+Cov(Un(s), Vn(1)) + Cov (Un(2), Vn(s)).

Computing Cov (Un(s), Un(1)):

The process Uy is the standard empirical process of the N iid variates ¢;. Hence,
Cov(Un(s),Un(t)) = min(s,t) — st. Note that Un converge, as in Section 8.2.6, to a

Brownian Bridge.
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Computing Cov (Vn(s), Vn(2)) :

Consider

k. ny . T
> (E - E) 'fz"(t))
=1 j'=1

= J—V—TT(.S)COU(E — &)7{1), (8.12)

%IH

1 ;=1

Cov (Vi(s), Vi(®)) = Cov ( \/—22(5 §) mils),

where
k ng
() = 2 Y mls)
[ 8 [871()) [271(s) + 1] Tk, 5, wi(6) } |

(8.13)
Ng[271(s) {2871(s)}

The maximum likelihood estimates £ solves the set of equations Sk 1 5:5(0,0) =0,

where § T(0 o) = ('377" 30) and [ is the log-likelihood for the sample. Taylor expansion of

5:;(8,8) around S;;(8, o) gives

N N 85:;(8,5) :
0 = > > Si(6,6)~ ZZS,J(() a)-}-ZZ 7 6-9)
i=1 j=1 i=1 j5=1 =1 j=1 (6,0)
k
1=1 j=1 (6,0)
- YO+ ZZ asgf) €9
i=1 j=1 i=1j=1 ¢

Hence,

Q2

-6 [ ZZaS‘J(E)J [ ZZS,J@)]

=1 j=1 1=13=1

Q2

I71(¢) [ ZZ SU(E)}

1=1 j=1

where I(£) = ( 21—1 ?..1 9;95;5,(_5_ ) Therefore,
£

Cov(é — €)= I"Y(&)Var ( Z Z Sii(€ )) I71(8).

i=1 73=1
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As usual in maximum likelihood theory,

Var (iisﬁ(@) ( 323 95

i=1j5=1 =1 j=1

) = NI(E).
'

Thus, Cov(€ - €) &~ LI7(€), where I(£) is the average Fisher information per observation.

It is easy to see that the matrix I(§) has the following components:

("2‘ + )N 1~1 Z j=1 wl(g)wT(g) }2;717 Zt:l Z = wil)
NZ1=IE_10 1(9) ;27

Now from equation 8.12 we find

1(6) =

Cov (Vi(s), Vi(0)) % 7777 () ™ ()7(2).

Computing Cov (Un(s), Vn(t)):

Now consider

Cov (Un(s), Vn(?))

i

Cov (\/_ZZ{I (eij) < 8] — ZZ(f £) kir( t))

i=1 j=1 =1 j'=1

= ~§:Z¥%v(kﬁ§@ﬂ@ﬂié—ﬂﬂTM (8.14)

1=1 j3=1

Recall that

X

(€-9) I~ ~—ZZSU(£):¥

=1 j=1

— % Tizy nawi(6) +

L

= I—l N
k i

DN ED PN

%Z =1 2 i1 ‘11“"1(0) +w DI Sy €5wi(6)
%Zt:l ZJ =1 1,_7

where I-1=[I(£)]"!. Observing E(€ — £) = 0, we write
Cov (I[e; < 874(s)] . (€= 6T) = E(I [e; < 27 ()] (6 - OT) -
To evaluate the above covariance we need the following terms:
E(I[e;<®7Y(s))) = =
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E (Cij[ [Gij < @—1(8)}) _ _O:(S) \/1__ _,-_2/2dz

- { /2} ¢ [271(s)]-

E(e?jl [6,‘]‘ < @”I(S)D = /_yoo 121‘_ 2¢-*/24y  where y = ®1(s)
d

y 1 2 - 2/2
= - 2= dz,
.[—oo \/21rx da:e z
—_—0 Y
= 1 [u-z2/z] e~ 4y

1
V2T v + V27 /—oo

1 2
= ———ye™V /2+@
\/27r (v)

= —yo(y) + 8(y)
= —07Y(s)p [871(s)] +.

Now it is easy to see using Equation 8.13 that
Cov (I -e,-j < Q"l(s)] , (f- f)T)

[ (271 (s)] & Thy Sy wi(6) (2 + ©7(s))

= (g
~1871(s)¢ [872(s)]

=~ T(SI7(E).

T

Now from Equation 8.14 we find Cov(Un(s), Vn(t)) = ——NITTT(S)I"l(f)T(t).
Therefore, Cov(Wn(s), Wn(t)) = min(s,t) — st — ]—\}TTT(S)I_I(f)T(t), where I(£) is
the average Fisher information per observation. To apply the suggested test procedure we

need an estimate for J(£). We have two choices for estimating /(£).

1. We can estimate I(£) by replacing the unknown parameters in the formula for 7(£) by

their maximum likelihood estimates.

2. Let H be Hessian matrix, that is, the matrix of second derivatives of the log likelihood
with respect to the parameters (i.e. components of § and ¢). The average Fisher
information matrix I(£) can be replaced by —H/N, where H is evaluated at the

maximum likelihood estimates for § and o. In this case, we therefore find p-values
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from the distribution of fol Y?(t)dt where Y is a mean zero Gaussian process with

covariance function min(s,t) — st — ﬁlf‘rT(s) (:vai) 7(t).

8.3.4 Justification for using the approximate p-value

Now we describe a Monte Carlo study that examines the performance of the approximate
p-value suggested in Section 8.3.2 for testing the normality of random errors ¢;; in the
model, Y;; = pi(0) + opi(@)e;, i=1,...,k, j=1,...,n;. We chose the mean function
pi(0) = o {1 — exp [——E—;ﬁ?—l}} , where a3, a2 and a3 are the components of 8. This is
the mean response function for the unbleached (or bleached) data for the partial bleach
method described in chapter 3. We set the parameters at a; = 14.28528, @y = 123.1816 and
a3 = 393.0665, which are the maximum likelihood estimates obtained for the unbleached
data set QNL84-2 given in Berger et. al. [12]. The vector of dose values used is given in
Appendix 9.3 where it is labeled with the code 1A. The values of o and the sample sizes,
n, used are given in Tables 8.4 and 8.5. The standard normal random variates ¢;; were
generated using the IMSL subroutine RNNOA.

For each sample we computed p-values for testing the normality of random errors using
the Cramér-von Mises statistic and Anderson-Darling statistic as described in Section 8.3.2.
If the suggested asymptotic theory holds these p-values should be uniformly distributed.
The results based on 1000 simulations for using Cramér-von Mises statistic and Anderson-
Darling statistic are given in Tables 8.4 and 8.5 respectively. For both tests, the uniformity of
p-values was tested using the Anderson-Darling statistic. To conserve space in the tables, we
denote Cramér-von Mises statistic and Anderson-Darling statistic as W2 and A? respectively.
For each set of 1000 p-values we also report the actual levels (fraction of p-values less than
the nominal value of a) observed from the study for values of & equal to 0.01, 0.05 and 0.10.

Based on the simuiation results we conclude the foilowing.

1. When we use the least squares estimate for o, the Anderson-Darling test does not
reject the null hypothesis that the p-values are uniformly distributed except in one

case; including this case the observed coverages were found to agree well with the
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ML & Least squares &

n o A? | p-value | Observed level for A? | p-value | Observed level for

stat 0.01 | 0.05 | 0.10 | stat 0.01 | 0.05 | 0.10
16 { 0.01 | 1.05| 0.33 | 0.009 | 0.058 [ 0.113 | 0.60 | 0.65 | 0.008 | 0.049 | 0.098
16 { 0.02 | 1.76 | 0.13 | 0.010 | 0.051 { 0.100 | 0.94 | 0.39 | 0.009 | 0.043 | 0.086
16 | 0.03 | 4.46 | 0.00 | 0.010 | 0.067 | 0.116 | 2.06 | 0.08 | 0.008 | 0.054 | 0.104
16 { 0.04 | 3.10 | 0.03 |} 0.015 0.066 } 0.119 ; 1.92 | 0.10 | 0.010 | 0.056 | 0.101
50| 0.01 { 0.60 | 0.65 | 0.0110.058 | 0.111 [ 0.45| 0.80 | 0.010 | 0.056 | 0.110
50 10.02{094] 039 |0.010{0.049 |0.100 | 1.10 | 0.31 | 0.009 | 0.048 | 0.098
50 0.03 110} 0.31 | 0.014 ) 0.060 | 0.118 { 0.89 ; 0.42 | 0.012 | 0.057 | 0.111
50 { 0.04 188 0.11 | 0.0080.058|0.116 } 1.79 | 0.12 | 0.008 | 0.054 | 0.115

Table 8.4: Table of p-values for testing normality using W? statistic: Model 2
ML é Least squares ¢

n o A? | p-value | Observed level for A? | p-value | Observed level for

stat 0.01 | 0.05 | 0.10 | stat 0.01 { 0.05 | 0.10
16 | 0.01 | 0.96 | 0.38 | 0.010 | 0.057 | 0.107 | 3.09 | 0.03 | 0.007 | 0.044 | 0.085
16 | 0.02 | 3.02{ 0.03 | 0.009|0.050{0.103 { 1.01} 0.35 |0.004 | 0.037 | 0.080
16 1 0.03 | 5.20 { 0.00 | 0.009 | 0.063 | 0.121 | 0.49 | 0.76 | 0.006 | 0.044 | 0.094
16 | 0.04 | 4.54 | 0.00 | 0.016 | 0.067 | 0.118 | 0.79 | 0.48 | 0.010 | 0.051 | 0.099
50| 0.01 1056 0.69 |0.011)0.0580.113 |0.26 | 0.96 | 0.009 | 0.050 | 0.104
50 {0.02}037| 0.88 {0.0090.050|0.103|1.00{ 0.36 | 0.004 | 0.037 | 0.080
501 0.03 {080 | 0.48 |0.0130.061;0.112{0.59| 0.65 | 0.010 | 0.056 | 0.105
5010.04 | 1.15| 0.29 | 0.006 | 0.060 | 0.119 | 1.33 | 0.22 | 0.006 | 0.053 | 0.108

Table 8.5: Table of p-values for testing normality using A? statistic: Model 2
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nominal coverages for significance levels o = 0.01,0.05,0.10. This justifies the use o
the approximate p-values using least squares estimate for o suggested in Section 8.1.2),

for testing the normality of random errors.

2. When we use the maximum likelihood estimate for o, the Anderson-Darling test was
found to reject the null hypothesis that the p values are uniformly distributed in
cases when the sample sizes are small and o is large. The Anderson-Darling test
is more sensitive to departures in the tails of the distribution. However, for all the
cases, the observed coverages for levels @ = 0.01,0.05,0.10 still agree well with the
noriinal coverages. In goodness of fit problems, often we are interested in the lower
tail probabilities. Since, in the lower tails the coverage probabilities agree well, we
conclude that we can safely use the approximate p-values using maximum likelihood

estimate for o suggested in Section 8.1.2), for testing the normality of random errors.

3. The suggested asymptotic theory appears to hold for sample sizes as small as 16. The
typical sample sizes for thermoluminescence studies are around 30. Therefore, the
suggested procedure could safely be used for testing the normality assumption in the

model described for thermoluminescence data.

Remarks:

The procedure we described here uses single mean and variance functions for all the data.
This is equivalent to assuming all the data correspond to a single response function. For
the partial bleach method and the regeneration method two data sets are collected at a
given temperature. The observed photon counts for unbleached and bleached data have
different mean and variance functions. The procedure described here can easily be extended
to situations where the data corresponds to more than one response function. For example,
to apply the test procedure for a situation where we have two response curves (such as the
partial bleach method or the regeneration method) each corresponding to a common o, first
compute the maximum likelihood estimates for § as described in Chapters 5 or 6. Then
compute the fitted residuals for the unbleached and bleached data sets as described earlier

by using the corresponding mean and variance functions. The assumption of normality
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of the random errors can then be tested by examining whether the fitted residuals are

approximately normally distributed.

8.3.5 Sensitivity of the tests to departures from normality

Now we describe a simulation study that we performed to examine the power of the EDF
tests described in Section 8.3 for detecting the departures from normality. The simulation
study is similar to that which we described in Section 8.3.4 except that, instead of normal
random variates we generated data from different alternative distributions. When generating
data from the gamma distribution we fix the shape parameters at values given in Table 8.6.
Since the mean of Y is f and variance of Y is 02f2, o2 is the reciprocal of the shape
parameter and the scale parameter for Y is 02f. So, we only report the shape parameter
for the gamma distribution.

For each generated sample, we computed an approximate p-value for testing the hypoth-
esis that the random errors are normally distributed. We examined the performance of both
the Anderson-Darling statistic and the Cramér-von Mises statistic as test statistics for test-
ing the normality. The power of the test was computed as the proportion of samples rejected
by each test. The chosen distributions, sample sizes, and the results are given in Tables 8.6
and 8.7. The parameter vector § = (a1, a3, 3) was fixed at oy = 14.28528, a5 = 123.1816
and a3 = 393.0665. The dose vector used for the study is coded as data 14 in the Appendix
9.3.

Results based on 1000 simulations are summarized in Tables 8.6 and 8.7 respectively.

Conclusions

Based on the simulation study we draw the following conclusions.

1. The tests appear to detect the departure from normality with reasonably large sample

sizes.

2. The Anderson-Darling test appears to be slightly more powerful than the Cramér-von

Mises statistic.
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Data | Distribution | n The power of W?
Set for mle & for least squares &
a=005|a=010; =005 a=0.10
1 gamma(0.5) | 16 0.37 0.55 0.37 0.55
2 gamma(l) | 16 0.20 0.31 0.17 0.30
3 | gamma(0.5) | 30| 067 0.84 0.69 0.86
4 | gamma(l) | 30| 0.34 0.50 0.34 0.51
5 | gamma(2) |30] 0.20 0.31 0.19 0.30
6 gamma(4) | 30 0.11 0.19 0.11 0.18

Table 8.6: Results for power studies using W?: Model 2

3. Comparing the results of Table 8.3 and 8.7 we conclude that the test that assumes
fitted model is correct is substantially more powerful than the test that do not assume

the fitted model is correct.

8.4 Estimates for the eigenvalues of p(s, )

We used the same approach used by Lockhart et. al. [44] to find estimates for the eigenvalues

of p(s,1).
Divide the interval [0,1] into m sub intervals each of length (?1-7-'17 Then,

Af(i/(m+1))

[ otm+ 1,050

Q

%f:p(i/(m +1),5/(m+ 1)) f(G/(m+1)),

i=1

for sufficiently large m.

Let V be the m—vector consisting of the elements (f(1/(m+1)),..., f(m/(m+1))),and
@ be the m X m matrix whose (%, j)th element is Q;; = -}n-p(i/(m-i- 1),j/{m+1)). Then the
above set of equations can be written as, AV = QV. Thus, finding the eigenvalues of p(s, )
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Data | Distribution | n The power of A2
Set for mle & for least squares &
a=005a=010|a=005| a=0.10
1 gamma(0.5) | 16 0.38 0.60 0.35 0.56
2 gamma(l) | 16 0.18 0.33 0.15 0.29
3 gamma(0.5) | 30 0.79 0.92 0.79 0.92
4 | gamma(l) | 30| 0.38 0.61 0.34 0.51
5 gamma(2) | 30 0.22 0.34 0.20 0.33
6 gamma(4) | 30 0.11 0.19 0.11 0.18

Table 8.7: Results for power studies using A%: Model 2

is reduced to the discretized problem of finding the eigenvalues of Q. Suppose Aq,...,Am
are the eigenvalues of ¢J. These eigenvalues are approximations to the true eigenvalues of
p(s,t). The accuracy of this approximation could be increased by increasing the number of

subdivisions m. The results we presented were based on 150 subdivisions.

8.5 Worked examples

In this section, we demonstrate the theoretical results suggested in this chapter using real

data sets from the partial bleach method and the regeneration method.

8.5.1 Example from partial bleach data

The data set we used here is presented in Berger et. al. [12] where it is coded as QNL84-2.
The sample sizes of the unbleached and bleached data sets are respectively »; = 16 and
ny = 13.

First we describe the results for testing normality of random errors without assuming
the fitted model is correct. As we mentioned in Section 8.2, for testing normality without

assuming the fitted model is correct, it is necessary to have at least three observations at
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each dose level. However for the data set QNL84-2, the dose level 960 of the unbleached
data set had only two replicates. (These dose levels are presented in Table 9.2 of Appendix
9.3 where they are coded as P1.) For the bleached data set. each of the dose levels 120
and 960 had onlv two replicates. So, we had to ignore these dose levels when testing
normality without assuming the fitted model is correct. Since different mean parameters
are to be fitted for the unbleached and bleached data, we have to consider the dose levels
of the unbleached and bleached data sets as different dose levels. Consequently, for testing
normality without assuming the fitted model is correct, we only have 23 observations taken at
7 different dose levels. Figure 5.4 illustrates the histogram and the plot of ordered probability
integral transforms vs uniform guantiles (probability plot) for the residuals obtained by

fitting different mean paramerters at each dose level.
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Figure 8.4: Histogram and probability plot of probability integral transforms of residuals:

partial bleach method

The results for testing normality of random errors without assuming the fitted model is

correct are as follows:
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Cramér-von Mises test statistic = 0.014; p-value = 0.98
Anderson-Darling test statistic = 0.145; p-value = 0.95.
Now we describe the results for testing normality assuming the fitted model is correct.

For this data set, we plotted the fitted residuals against the applied dose; see Figure 8.5. This

o e <« d
] o O 4
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ge1 g I’ :
[ - - c
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< [5+]
£ - &L
o
S .
0 200 400 600 800 0 200 400 600 800
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Figure 8.5: Plot of residuals vs applied dose: Data QNL84-2

plot does not indicate any evidence against the hypothesis that the fitted model is correct.
For testing normality assuming the fitted model is correct, we have 29 observations. As
we presented in Section 5.5, the maximum likelihood estimates for this data set are &; =
14.28x10% a, = 123.18, &3 = 393.07, 5, = 192.55, 62 = 0.0012. Summary statistics for these
residuals are as follows: N = 29, mean=1.2e-05, median = 0.155, standard deviation=1.018
and the first and the third quartiles = -0.611, 0.878. Figure 8.6 illustrates the histogram and

the normal quantile plot for the residuals to the fit from the method of maximum likelihood.

We computed approximate p-values using the maximum likelihood estimate for o and also

using the least squares estimate for 0. The results are as follows:
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Figure 8.6: Histogram and normal probability plot of residuals: partial bleach method

Using maximum likelihood estimate for o:

Cramér-von Mises test statistic = 0.046; p-value = 0.58

Anderson-Darling test statistic = 0.307; p-value = 0.58.

Using least squares esiimate for o:

Cramér-von Mises test statistic = 0.051; p-value = 0.50

Anderson-Darling test statistic = 0.344; p-value = 0.48.

Based on the above results we conclude that, we do not have enough evidence to reject the

null hypothesis that the random errors in the photon counts are normally distributed.

8.5.2 Example from regeneration data

For this example we used the data SESA1 collected at temperature 360°C cited in Huntley
et. al [38]. This data set had 62 observations (30 unbleached and 32 bleached). The un-
bleached data set had only two replicates at dose level 120. (The dose levels for this data
set are presented in Table 9.2 of Appendix 9.3, where they are labeled with the code R1.)
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Consequently, we had to ignore this dose level when testing goodness of fit without assuming
the fitted mode! is correct. So we had only 60 observations taken at 14 different dose levels
for testing goodness of fit using the procedure proposed in Section 8.2. Figure 8.7 illustrates
the histogram and the plot of ordered probability integral transforms vs uniform quantiles

(probability plot) for the residuals obtained by fitting different mean parameters at each

dose level.
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Figure 8.7: Histogram and probability plot of probability integral transforms of residuals

The results for testing normality without assuming the fitted model is correct are as follows:
Cramér-von Mises test statistic = 0.057; p-value = 0.34
Anderson-Darling test statistic = 0.507; p value = 0.24

Now we describe the test results assuming the fitted model is correct. The plot of fitted
residuals against the applied dose for this data set is illustrated in Figure 8.8. This plot does
not indicate any evidence against the hypothesis that the fitted model is correct. For testing

normality assuming the fitted model is correct, we have 62 observations. The maximum
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Figure 8.8: Plot of residuals vs dose: Data STRB87-1

likelihood estimates for the parameters are &; = 57363.2,a, = 80.72,43 = 91.33,64 =
91.98,4 = 73.11 and ¢ = 0.06. For the goodness of fit test, we used the residuals to the fit
(from fitting the restricted model discussed in Chapter 6) from the method of maximum
likelihood. Summary statistics for the residuals are as follows: N = 62, Mean=-9.9e-07,
Median = -0.0320, standard deviation=1.0081 and the first and the third quartiles = -
0.611116, 0.878173. Figure 8.9 illustrates the histogram and the normal probability plot of
these residuals.

Again, we computed approximate p-values using the maximum likelihood estimate for o and

also using the ieast squares estimate for . The results are as follows:

Using maximum likelihood estimate for o:
Cramér-von Mises test statistic = 0.083 ; p-value = 0.19

Anderson-Darling test statistic = 0.618; p value = 0.11.
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Figure 8.9: Histogram and normal probability plot of residuals: regeneration method

Using least squares estimate for o:
Cramér-von Mises test statistic = 0.010; p-value = 0.10

Anderson-Darling test statistic = 0.755; p value = 0.05.

From the plots of residuals, we notice that there is an unusual observation in this data
set (an observation from a disc receiving no added dose in the bleached data set). Since
this might have a large influence on the goodness of fit tests, in particular for the Anderson-
Darling test, we also computed approximate p values disregarding this observation. The
results are as follows.

Using maximum likelihood estimate for o:
Cramér-von Mises test statistic = 0.062 ; p-value = 0.36
Anderson-Darling test statistic = 0.407; p value = 0.35.
Using least squares estimate for o:

Cramér-von Mises test statistic = 0.059; p-value = 0.40
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Anderson-Darling test statistic = 0.421; p value = 0.321 .
Based on the above results we conclude that, we do not have enough evidence to reject

the null hypothesis that the random errors in the photon counts are normally distributed.

8.6 Discussion

In this chapter we proposed tests based on the empirical distribution function (EDF tests)
of the standardized residuals for testing the assumption of normality of random errors. We
outlined two test procedures. The first procedure can be used to test the assumption of
normality without assuming the fitted model is correct. In this model different mean and
variance parameters are fitted at each dose level. Usually for thermoluminescence data, not
more than five replicates are available at each dose level. Consequently, mean and variance
parameters cannot be estimated consistently. Therefore, the fitted standardized residuals
need not be asymptotically normally distributed even if the random errors are. We derived
the true distribution and the joint distribution function of two fitted standardized residuals
and use these to compute the EDF statistics and corresponding p-values. The assumption
of the normality of random errors is tested by checking to see if the fitted standardized
residuals follow the derived true distribution.

The second test procedure can be used if the fitted model is assumed to be correct. For
each case, we show how to compute the test statistic and an approximate p-value for testing
the assumption of normality. The finite sample performance of the suggested asymptotic
theory is tested by a Monte Carlo study. The procedure which assumes fitted model is
correct was found to be substantially more powerful than the test that do not assume the
fitted model is correct.

Weak convergence results for the empirical process of residuals are established rigorously
in Section 8.2.6 for the case of Model 1 and heuristically in Section 8.3.2 for the case of Model
2.
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Chapter 9

Concluding remarks

In this chapter, we summarize the conclusions of this study and provide some guidance
for analyzing data collected in thermoluminescence studies based on the experience of this

work. Suggestions are made for further research.

9.1 Summary of work and conclusions

In thermoluminescence studies, the age of the sample is determined by estimating the dose
impinging on the sample during its burial period and comparing with the radiation dose
rates of the surrounding soil. The radiation dose impinging on the sample is quantified
as the equivalent dose, which is a known laboratory dose required to produce the same
amount of luminescence as that given off by a natural sample upon gentle heating in the
laboratory. Lack of knowledge about the sample at the time of deposition distinguishes
sedimentary dating from pottery dating. Unlike pottery dating, not much is known about
the sample at the time of deposition. Therefore, part of the luminescence produced upon
gentle heating in the laboratory could have been due to emptying of traps that were already
filled at the time of deposition. This makes the estimation of the dose acquired during
burial more difficult. The partial bleach method and the regeneration method are widely
used technigues in sedimentary dating that avoid the necessity to know the amount of

thermoluminescence at the time of deposition. In this work, we focused our attention
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on the estimation of the equivalent dose from the data collected in thermoluminescence
studies. The theoretical results developed in this work have a range of applications outside
the framework of thermoluminescence studies.

In Chapter 2, we proposed physical models that motivate generalized non-linear modeling
of the TL data. We examined the performance of the traditional estimation procedures
(maximum likelihood, quasi likelihood and generalized least squares) for estimating the
unknown parameters in these models. We also examined another estimation procedure used
by physicists that is closely related to generalized least squares. In this procedure, they
use observed data y in place of the expected values E(y) appearing in the weight function.
These estimation techniques were compared by examining the statistical properties of these
estimators. Large samples are not common in thermoluminescence studies. Usual sample
sizes are around 40, but the effective sample sizes are much smaller than this due to the
presence of several nuisance parameters (about six nuisance parameters for each model).
However, the measurement errors are quite small, the relative error in a single measurement,
o, being around 3% to 8%. Consequently, small sigma asymptotics are more appropriate for
thermoluminescence data. However, for completeness we examined both large sample and
small 0 asymptotics. Examining the large sample properties of the estimators we found that
the maximum likelihood and quasi likelihood estimates are consistent while generalized least
squares and data weighted least squares are generally not. We also presented distributional
approximations to maximum likelihood and generalized least squares estimators. The large
sample asymptotic variances of maximum likelihood estimates were found to be smaller
than those of quasi likelihood estimates assuming the errors are normally distributed. We
derived approximate formulae for the biases and mean squared errors of the suggested
estimators valid in the small o asymptotic case. In the limiting case of small ¢ and large
samples, maximum likelihood and quasi likelihood estimators were found to produce mean
squared error consistent estimators. The generalized least squares and data weighted least
squares estimators were found to have biases that do not vanish asymptotically. However,
for parameters of interest in our model, generalized least squares and data weighted least

squares were also found to produce asymptotically unbiased estimators when ¢ is small.
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In realistic size samples, all four estimators were found to have negligible biases compared
to their standard errors. Furthermore, formulae derived based on asymptotic results were
found to hold for sample sizes and values of o typical of real data sets. The approximate
formulae for the biases and the mean squared errors derived in this work are valid for any
response function f(z,8), not just those discussed for thermoluminescence data.

In the partial bleach method and the regeneration method two data sets are collected:
one set from a portion of the untreated sample and the other set from a portion of the
sample left in the sunlight for a desired period of time or subjected to optical bleaching
in the laboratory. The data collected on the sample that has been subjected to bleaching
are called bleached data whereas the other data are called unbleached data. Berger et.
al. [11] have shown how to compute quasi likelihood estimates and confidence intervals for
the equivalent dose based on the quasi likelihood estimate assuming a single error factor is
suitable for both unbleached and bleached data. We extended their results to the case of
different error factors using a Satterthwaite type approximate degrees of freedom.

We examined profile likelihood intervals and symmetric confidence intervals based on
the maximum likelihood estimate using z and ¢t critical values. We also proposed confidence
intervals for the equivalent dose based on a transformation of the likelihood ratio test with
a transformed F critical value. Based on the quasi likelihood estimate, we examined quasi
score intervals and symmetric confidence intervals using ¢ critical values. Based oun the
generalized least squares and data weighted least squares estimates, we examined symmet-
ric confidence intervals using ¢ critical values. Finite sample performance of the suggested
confidence intervals were examined by a Monte Carlo study. When sample sizes are small
(n < 40), coverage probabilities of profile likelihood intervals and symmetric confidence in-
tervals with standard normal quantiles were found to have lower coverage probabilities than
their nominal levels. The coverage probabilities of quasi score intervals and confidence inter-
vals based on the transformation of the likelihood ratio statistic and symmetric confidence
intervals based on the ¢ quantiles were found to agree well with their nominal levels even in
small samples. Usually, data sets collected for thermoluminescence studies are small in size

(n < 40). Therefore, we recommend confidence intervals based on ¢ quantiles as opposed to

240



profile type confidence intervals. Symmetric confidence intervals have the added advantage
that they are computationally much simpler. Of the symmetric confidence intervals we dis-
cussed in this work we favour those based on quasi likelihood estimates since they depend
on fewer assumptions about the random errors.

In thermoluminescence studies, data are collected on a single sample at a series of tem-
peratures. The equivalent dose is estimated from data collected at each temperature and
the estimates are then plotted against the temperature. If the sample is capable of pro-
ducing a reliable estimate for the equivalent dose it is expected to see a plateau (a region
where the estimated equivalent dose does not vary with the temperature). This plateau is
believed to represent the stable traps (traps that have not been subjected to leakage over
the burial time). It is the equivalent dose estimated from the data corresponding to these
traps that can provide reliable information for dating purposes; see Aitken [1]. Since the
same samples are used to collect the observations over the plateau these observations are
correlated (in fact the correlations are very high). We proposed a procedure closely related
to that of generalized estimating equations suggested in Liang and Zeger [43)] for estimating
the equivalent dose from the correlated data. Finite sample performance of the asymptotic
theoretical results was examined by a Monte Carlo study. For realistic sample sizes, cov-
erage probabilities of symmetric confidence intervals using standard normal quantiles were
found to be lower than their nominal levels. Using small o asymptotics, we showed that the
estimated variance of the estimate for the equivalent dose can be approximated by a sum of
independent chi-squared random variables. Hence, we proposed confidence intervals with a ¢
quantile. Using Satterthwaite’s [53] approximation, a formula was proposed to compute the
approximate degrees of freedom for the appropriate ¢t quantile. The coverage probabilities
of confidence intervals with ¢ quantiles were found to be closer to their nominal levels than
those with standard normal quantiles.

When the number of temperatures on the plateau is increased up to about four we
found that the coverage probabilities begin to drop from their nominal levels. This may be
attributed to having to fit a large number of nuisance parameters (five additional nuisance

parameters need to be fitted with the addition of each temperature on the plateau) with only
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a small number of replicate samples (usually around 40). So we further imposed restrictions
on the correlations about the samples at different temperatures which we feel are not too
stringent; for example we assumed that the correlation between two observations on the same
disc over the region of the plateau depends only on the difference between the temperatures
but not on the temperature at which the measurements Weré taken. This suggests that the
correlations along the diagonals at equal distance about the main diagonal are the same.
Thus, we have fewer correlation coefficients to estimate. The data were generated with such
correlation structures and the coverage probabilities were examined. These restrictions were
found to improve the precision of the coverage probabilities of the confidence intervals.

In Chapter 8, we proposed tests based on the empirical distribution function (EDF tests)
of the fitted standardized residuals for testing distributional assumptions of the random
errors. We proposed two test procedures for this purpose. First we showed how to test
the distributional assumptions without relying on the assumption that the fitted model is
correct. In this model, different mean and variance functions are fitted at each dose level.
Consequently, with the number of dose levels the number of fitted parameters also increases.
Therefore, the fitted standardized residuals need not be asymptotically normally distributed
even if the random errors are. Using the results of Beckman et. al. [3] we derived the true
distribution function of the fitted standardized residuals. The joint distribution function of
two fitted residuals was derived using the results of Ellenberg [29]. Formulae were derived to
compute the joint distribution function of two fitted residuals needed in the proposed EDF
tests. The second test procedure for testing the normality of random errors is suitable if the
fitted model is correct. For both situations, we showed how to compute the test statistic
and an approximate p-value based on the related Gaussian processes. Weak convergence
properties of the related empirical processes were examined for both procedures. Finite
sample performance of the suggested asymptotic results were examined by a Monte Carlo
study. The tests we proposed based on the asymptotic theoretical results were found to work
for realistic sample sizes. We also examined the power of the suggested test procedures in
detecting the departures from normality. Simulation results show that using a sample of size

30 (10 dose levels with three replicates at each level) the powers of the tests for normality
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based on the Cramér-von Mises statistic without assuming the fitted model is correct were
around 0.60,0.15,0.10 (o« = 0.05) for gamma alternatives with shape parameters 0.5,2,4
respectively. For the test that assumes the fitted model is correct the corresponding powers
were found to be around 0.84, 0.31 and 0.11.

Using the computing language FORTRAN, software was developed to implement the
theoretical results suggested in this work. In each chapter, suggested theoretical results
were illustrated using real data sets. Real data sets for illustration were chosen to cover the
experimental designs (the additive dose method, partial bleach method and regeneration

method) described in this work.

9.2 Some guidance for analyzing data collected in thermolu-

rainescence studies

In this section, we provide some guidance for analyzing data collected in thermoluminescence

studies, based on the results of our study.

9.2.1 Estimating the equivalent dose using data at a single temperature

For estimating the parameters using data collected at a single temperature we recommend

the method of quasi likelihood for reasons listed below:

1. Quasi likelihood estimating equations are based on fewer assumptions about the un-

known distribution of the data.

2. They perform almost as well as the maximum likelihood estimates in terms of their
asymptotic statistical properties. Even though the asymptotic variances of quasi like-
lihood estimates are slightly larger than those of maximum likelihood provided errors
are normally distributed, our small o expansions to 6 indicate that both estimators
have almost the same variance if o is small, which certainly is true for thermolumi-

nescence data.
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3. Both quasi likelihood and maximum likelihood estimates are consistent. Furthermore,
distributional approximations for quasi likelihood estimates are based only on the first
two moments of the distribution for the random errors while for maximum likelihood

distributional approximations require assumptions on the fist four moments.

4. The quasi likelihood estimates for the parameters in the mean functions are more

robust in the sense that they do not depend on how we estimate the unknown relative

error factor o.

5. Programs for solving quasi likelihood estimating equations were found io converge

much faster than those for maximum likelihood and generalized least squares.

9.2.2 Confidence intervals for the equivalent dose using data at a single

temperature

For obtaining confidence intervals for the equivalent dose using data collected at a single
temperature, we recommend using symmetric ¢ intervals with appropriate degrees of freedom

as discussed in this work. The advantages of using the suggested intervals are:

1. The symmetric ¢ confidence intervals are computationally much simpler than profile

type confidence intervals.

2. The symmetric ¢ intervals were found have coverage probabilities close to their nominal

levels in samples sizes of typical thermoluminescence data sets.

It is important to note that the above conclusions were drawn based on our experience
with response functions considered in this work and for small measurement =rrors typical in
thermoluminescence data sets. Care needs to be taken when extending these conclusions for
cases with large o; it is possible that the parameter effects of non-linearity of the response
functions might then favour using likelihood based confidence intervals. In situations where
the likelihood based intervals are preferred, we recommend using transformed F critical
values as opposed to x? critical values; the coverage probabilities based on approximate F
critical values were found to be closer to their nominal levels than those using x? critical

values, in particular when the sample sizes are small.
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9.2.3 Utilizing the data collected at several temperatures

The purpose of using the data collected over a series of temperatures is to utilize the extra
information delivered by these added observations about the type of traps we are interested
in. According to Aitken [1], a single type of trap corresponds to a glow peak of about 50°C
in width. Therefore, taking too wide a range of observations as belonging to the plateau,
we increase the risk of confounding the information related to different types of traps. Fur-
thermore, as we learned in Chapter 7, using more data over the plateau may not necessarily
produce a more precise estimate. Therefore, we recommend not using observations that are
not convincingly obvious as belonging to the plateau.

A few real data sets we analyzed have shown that over certain ranges of plateau temper-
atures, the standard errors of the estimate for the equivalent dose using separate analyses
of single temperatures are quite large so that they are less useful in practice. However,
using data at several such temperatures was found to produce estimates with much smaller
standard errors. Therefore, the procedures for combining data collected at several such
temperatures have certainly resulted a gain in the precision of the estimate.

The procedures we proposed for combining data at several temperatures need to be
augmented by procedures for estimating the unknown correlation matrices. We recommend
using the sample correlation matrices to estimate the unknown correlation matrices rather
than using arbitrarily chosen fixed correlation matrices, unless there is evidence that such
chosen fixed correlation matrices are good approximations to unknown true correlation
matrices; the mean squared errors of the estimators using the former was found to be

smaller than for those using arbitrarily chosen fixed correlation matrices.

9.2.4 Testing model assumptions

Examining the assumptioos used in modeling the data is an essential component of any data
analysis. In Chapter 8, we proposed two procedures for testing distributional assumptions
about the random errors. We favour using the second test procedure where we assume that
the fitted model is correct, in particular when we have few replicates at each dose level.

Since estimates for ¢ computed from the residuals to the fit were found to be small for
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thermoluminescence data, we have reason to believe that the fitted model is correct. Also,
it is important to look at the plots of fitted residuals against the applied dose (see Figures
8.5 and 8.8) to see if there is any indication that the fitted model is not correct. Since data
sets for thermoluminescence data are quite small and not many replicates are available at
a given dose level, the second test procedure is more powerful in detecting departures from
normality. However, we feel that it is always good practice to test the results also by using
the procedure which does not assume the fitted model is correct. If this procedure does not
reject the hypothesis that the errors are normally distributed but the other does, then this
may be an indication that the fitted model is not correct. Based on the simulation results,
we recommend using the tests based on the Anderson-Darling test statistic, in particular
when the sample sizes are small. Procedures based on the Anderson-Darling statistic were
found to be more powerful in detecting departures from normality than those based on the

Cramér-von Mises statistic, while computational burden is the same for both procedures.

9.3 Further research

In this section we offer suggestions for further research.

In Chapter 2, we described physical models motivating generalized non-linear models.
Under the assumptions listed in Chapter 2, the mean and variance functions of the total
emission per unit mass of grains at temperature j from the zkth the sample (i.e. kth replicate

sample receiving dose 7) can be written as

, .\ Aig
E(TLijk) = E(Nije) =2, (9.1)
Mk
and
V(T L) = V(N A + E(N; )——’\‘j (9.2
ik} = < tjk)m?k tk m{];’ L. )

where N;;; is the number of grains producing thermoluminescence, or emitting grains as
they are usually called, in the ikth sample at temperature j. As suggested in Berger et.
al. [11], ignoring the term E{Ni;jt)A;; comparing with V(’f\"’;jk)}\;f'j (of the order 10° — 10°

vs 10° - 10%) ) we discussed fitting the model TL;jx = f(zix,0;)(1 + o€;j1). We referred to
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this model as Model 1. A natural extension of this model is therefore described by
E(T L) = f(zik, 05), (9.3)

and

V(TLijx) = 6: E(T Liji) + 6, E*(T Lijx), (9.4)

where 6, = ;}: and § = EV%% The mass of the sample m;; is assumed to be known
without error. Thus, é; is known and the variance function for T'L;;x has the additional
parameter §, that needs to be estimated. In this work, we discussed fitting of Model 1.
We referred to this extended model as Model 2. Model 1 is a simplified version of Model 2
that require the additional assumption that the term E(N;;k)A;; is negligible compared to
V(Nijk)/\?j. Methodology for estimating additional parameters in the variance function are
available in the literature (eg. pseudo likelihood methods; see Davidian and Carroll [22]).
These methods can be used to fit Model 2. The fitting of Model 2 would provide room
for assessing the additional assumption that leads to Model 1. Moreover, the estimate for
62 obtained by fitting Model 2 gives information about the coefficient of variation of the
distribution for the number of emitting grains.

We also proposed a physical model for the total emission treating the mass of the emitting
grains in the ¢kth sample, M;;, as a random subsample of the total mass of the ikth sample

m;x. This leads to the model

E(TL;jx) = (f(zik, 0;), (9.5)

and
V(TLijx) = 6, E(TLiji) + 8 E*(TLijx), (9.6)
where §; = 'r'n'l._k is a known quantity, and { = E Tf{ ";" and 6 = E"/}(%ﬁl) are unknown

parameters. We referred to this model as Model 3. In a given sample, only a few particles
produce most of the thermoluminescence (See Huntley et. al. [36].). The mass of the
emitting grains is unknown. Amn estimate for §, gives information about the coefficient of
variation on the emitting mass M;;. In Model 3, we assume that the rate of emission per
unit mass of emitting grains at temperature j, A;j, is related to the dose received by the

sample z; according to \;; = f(z:,0;), where 8; is the vector of parameters corresponding
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to temperature j and f is the dose response function. If there is a large variation between
the mass of emitting grains in different samples, this model might be more appropriate.
We would like to investigate including the M;;’s as explicit random effects in the model,
noting that given the M;;’s the model would be a non-linear Poisson regression. With data
at several temperatures on the plateau, if M;; depended little on temperature we might be
able to estimate individual values and improve our fits.

In the partial bleach method described in Chapter 5, a portion of the sample is given
an artificial bleaching. Huntley et. al. [60] suggest (see also Aitken [1]) that the method
works well as long as the artificial bleaching is less severe than that caused by the unknown
natural bleaching prior to the deposition (or the burial) of the sediments. It would be useful
to investigate if there is any optimal design that would suggest the amount of bleaching
(perhaps as a fraction of the thermoluminescence from the unbleached data) that would
produce more precise estimates for the equivalent dose. We have not looked at this problem
in this work.

In the regeneration method as discussed in :his work two response curves are fitted, one
for the unbleached data and tke other for the bleached data. If a reliable estimate for the
equivalent dose can be deduced from the given data then the two curves should be able to
match by a shift along the dose axis (Huntley et. al. [38]). Huntley et. al. [38] suggests
estimating the equivalent dose as the dose shift required to match the two curves. Aitken [1]
describes estimating the equivalent dose from the bleached curve as the dose corresponding
to the thermoluminescence produced by the natural sample (i.e. with no laboratory added
dose). Since the dose shift required to match the two curves is the same at any dose level
if the regeneration method works both procedures should provide equivalent results. From
a statistical point of view the two methods can be distinguished as follows. The method as
described in Huntley ef. al. [38] has the advantage that it allows one to test the assumption
that unbleached and bleached curves describe the same curve shifted along the dose azis.
It may also allow one to estimate the model parameters used to describe the curves more
precisely. On the other hand, as described in Aitken [1], if only the bleached curve is fitted

and all the samples used to estimate the unbleached curve are instead used to estimate the
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natural thermoluminescence then one can estimate the natural thermoluminescence more
precisely. This would in turn allow to estimate the dose corresponding to the natural
thermoluminescence more precisely. From an economic point of view the latter method has
the advantage that it is less costly since it is not necessary to provide artificial laboratory
doses for samples defining the unbleached curve. Furthermore, the estimation procedure
is much simpler in the latter situation. Therefore, it is worth comparing the precisions of
the estimates for the two situations: assuming all the unbleached samples are used only to
measure the natural thermoluminescence as described in Aitken [1] and assuming unbleached
samples are given different laboratory doses and are used to define the unbleached curve as
described in Huntley et. al. [38]. Using all the samples for the unbleached curve only to
estimate the natural thermoluminescence conceals the opportunity to examine whether the
bleaching had caused any sensitivity change of the sample; perhaps only a few replicates
could be used to define the unbleached curve while more of the unbleached discs could be
used to estimate the natural thermoluminescence. This leads to the question that can we
find any optimal design that suggests how we should allocate the samples?

As we mentioned earlier in this chapter, simulation studies have skown that profile like-
lihood intervals for the equivalent dose have lower coverage probabilities than their nominal
levels when the sample sizes are small. This could possibly be due to the narrowing of the
profile when nuisance parameters are estimated. Several authors (McCullagh and Tibshi-
rani [50], Cox and Reid [20}, Fraser and Reid [31]) have described adjustments to profile
likelihood to account for estimating the nuisance parameters. It would be useful to examine
the coverage probabilities of the profile likelihood intervals based on the modified profile
likelihood as suggested by these authors.

The discrepancy between the observed coverages and nominal levels of confidence inter-
vals based on the large sample normal approximations could possibly be due to non-linearity
of the response functions. Bates and Watts [2] describe two components of non-linearity.
The parameter effects non-linearity is that part of non-linearity which can be removed
by a transformation of the parameters. The intrinsic non-linearity is that component of

non-linearity which cannot be removed. Bates and Watts [2] define curvature measures of
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non-linearity that quantify this non-linearities of the response functions. It would be useful
to investigate the effects of non-linearity and to see if it is possible to reduce the parameter
effects non-linearity by a suitable transformation of the parameters.

When investigating the biases and the mean squared errors of the estimators in finite
samples we encountered computational difficulties when the relative error in a single mea-
surement is large. A suitable transformation of the parameters might also improve the
convergence of the algorithms.

In estimating the equivalent dose using the observations on the plateau, we assumed that
the temperatures belonging to the plateau are already identified by some other method. It
would be useful to investigate the problem of identifying the temperatures on the plateau.
Taking more temperatures on the plateau should reduce the standard error of the estimate.
However, if we incorrectly identify a temperature as belonging to the plateau using that
temperature might increase the error (bias) of the estimate. The problem of making this
trade off would be worth studying.

The observations collected at different temperatures along the plateau were found to be
highly correlated. Estimating equations suggested for the parameters in the regression model
were therefore augmented by a method for estimating the unknown correlation matrices.
We examined two approaches: using Pearson residuals to estimate the correlation matrices
and using arbitrarily chosen fixed correlation matrices. Using Pearson residuals was found
to produce estimators with smaller mean squared errors than those using arbitrarily chosen
fixed correlation matrices. Therefore, we favour using Pearson residuals to estimate the
correlation matrices. However, our simulation results presented in Chapter 7 show that
the coverage probabilities of the confidence intervals based on the estimates using Pearson
residuals are lower than the nominal levels, when more than four temperatures on the
plateau are used. As we described in Chapter 7, when the sample sizes are not large enough
for the asymptotic theory to hold, our formula (Equation 7.6) underestimates the error of
the estimate if we use Pearson residuals. We hope to pursue further work in this area to find
a more accurate estimate for the error of the estimate when using Pearson residuals; this

might bring the coverage probabilities of the resulting confidence intervals closer to their



nominal values. Also we hope to derive formulae for the biases of the estimators from data

using several temperatures, following the same steps as for the single temperature case.
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Appendix: Data sets

In Tables 9.1 and 9.2 we present the dose vectors used in the thesis. For ease of reference,
we give a label (code number) to each dose vector. Each label has three characters: The
first character indicates the method of data collection where we use P for the partial bleach
method and R for the regeneration method. The second character is a serial number arbi-
trarily given to identify the dose vector. The third character indicates the level of bleaching
where we use U for the unbleached data and B for the bleached data. When we refer to the
complete data set (unbleached and bleached) we omit the last character. For example data
set P1 refers to using P1U as the unbleached data and P1B as the bleached data. When
we have used the same dose levels for the unbleached and bleached data we only report
the unbleached dose levels and we indicate this by an equal sign in the first column. The
second column indicates the sample size of each dose vector (n; for unbleached and 7, for

bleached). The third column indicates the dose levels.
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Code size Dose values
P1U n = 16 0,0,0.0,120,120,120,240,240,240.480,480,480,480,960,960
P1B ny = 13 0,0.0.120.120.240,240,240.480,480,480,960.960
P2U ny = 26 0,0,0,0,120,120,120,200,200,200,240,240,240
320,320,320,480,480,480,480,840,880,880,960.,960
P2B ny = 23 0,0,0,120,120,240,240,240,320,320,320,480,480,480,840,840
880,880,880,960,960
P3U n; = 30 0,0,0,0,100,100,120,120,120,180,180,200,200,220,220,240,240.,240
(= P3B) 260,260,260,280,280,280,300,300,320,320,320,480,480,480,480,520
520,560,560,560,640,640,660,660,660,840,840,880,880,880,960,960
P4U n; =100 { 0.0,0,0,100,100,120,120,120,180,180,200,200,220,220,240,240,240,260
(= P4B) 260,260,280,280,280,300,300,320,320,320,340,340,340,400,400,400
420,420,420,440,440,480,480,480,480,520,520,560,560,560,580,580,580
600.600,600.620,620,620,640,640,660,669,660,700,700,700,720,720
720,740,740,740,760,760,760,780,780,780,800,800,800,820,820,820
840,840,880,880,880,900,900,900,920,920,920,940,940,940,960,960
P5U m =125 | 0,0,0,0,50,50, 100,100,120, 120,120,140,140,160,160,180, 180,200,200
. (= P3B) 220,220,240,240, 240,260,260,260,280,280,280,300,300,320,320,320
340,340, 340,360,360,380,380,380,400,400,400,420,420,420,440,440
460,460.460,480,480,480,480,500,500,520,520,540,540,560,560,560,580
580,580,600,600, 600,620,620,620,640,640,660,660,660,680,680,700
700.700,720,720,720,740,740,740,760,760,760,780,780,780,800,800,800
820,820,820,840,840,840,860,860,860,880,880,880,900,900,900
920,920,920,940,940, 940,960,960,960
P6U n =21 0,0,0,0,0,0,200,200,200,400,400,400,600,600,600
1002,1002,1002,1500,1500,1500
P6B ny =19 | 0,0,0.0.0,0,200,200,200,400,400,400,600,600,1002,1002,1500,1500,1500
Table 9.1: Dose values used in the thesis: partial bleach method
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Code Sample Dose values
size
R1A ny; = 30 0,0,0,0,0,0,0,0,0,0,40,40,40,80,80,80,80,120,120,
200,200,200,200,300,300,300,300,600,600,600
R1B ng = 32 0,0,0,0,0,0,40,40,40,40,80,80,80,80,120,120,120,200,200,
200,200,300,300,300,300,394,394,394,394,700,700,700
R2A ny = 40 0,0,0,0,0,0,40,40,40,40,80,80,80,80,120,120,120,160,160,200,200
(= R2B) 200,200,300,300,300,300,394,394,394,394,500,500,600,600,650
650,700,700,700
H3A ny = 50 0.0,0,0,0,0,0,0,0,0,40,40,40,80,80,80,80,100,100,100
(= R3B) 100,120,120,140,140,140,180,180,180,200,200,200,200,300,300
300,300,350,350,400,400,400,500,500,500,550,550,600,600,600
R4A n =100} 0,0,0,0,0,0,0,0,0,0,40,40,40,60,60,60,80,80,80,80,100,100,100,100
(= R4AB) 120,120,140,140,140,160,160,160,180,180,180,200,200,200,200
220,220,220,240,240,240,260,260,260,280,280,280,300,300,300
300,320,320,326,340,340,340,360,360,360,380,380,380,400,400
400,420,420,420,440,440,440,460,460,460,480,480,480,500,500
500,520,520,520,540,540,540,560,560,560,580,580,580,600,600,600
R5A nm =125 0,0,0,0,0,0,0,0,0,0,20,20,20,30,30,30,40,40,40,50,50,50,60,60,60,70
(= R5B) 70,70,80,80,80,80,90,90,90,100,100,100,110,110,120,120,130,130,140
140,140,150,150,150,160,160,160,170,170,180,180,180,190,190,200
200,200,200,220,220,220,240,240,240,260,260,260,280,280,280,300
300,300,300,320,320,320,340,340,340,360,360,36(,380,380,380,400
400,400,420,420,420,440,440,440,460,460,460,480,480,480,500,500
500,520,520,520,540,540,540,560,560,560,580,580,580,600,600,600

Table 9.2:

Dose values used in the thesis: regeneration method
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Correlation matrix

-

1.00000
0.983042

1.00000

0.983042
0.966130
0.955667

1.000000
0.983042
0.966130
0.955667
0.887912
0.859539

0.983042
1.00000

0.983042
1.00000

0.982168
0.960905

0.983042
1.00000

0.982168
0.960905
0.900910
0.880512

0.966130
0.982168
1.00000

0.982078

0.966130
0.982168
1.00000

0.982078
0.909663
0.906823

0.955667
0.960905
0.982078
1.00000

0.955667
0.960905
0.982078
1.00000

0.942630
0.947949

0.887912
0.900910
0.909663
0.942630
1.00000

0.966454

0.859539
0.880512
0.906823
0.947949
0.966454
1.00000

o

Table 9.3: Correlation matrices for the unbleached data
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Correlation matrix

-

1.00000
0.962972

[ 1.000000
0.962972
0.958241
| 0.947413

[ 1.000000
0.962972
0.958241
0.947413
0.926114
| 0.801369

0.962972
1.00000

0.962972
1.00000

0.986563
0.966392

0.962972
1.00000

0.986563
0.966392
0.955948
0.866872

0.958241
0.986563
1.00000

0.983300

0.958241
0.986563
1.00000

0.983300
0.984046
0.902601

0.947413
0.966392
0.983300
1.00000

0.947413
0.966392
0.983300
1.00000

0.977326
0.891907

0.926114
0.955948
0.984046
0.977326
1.00000

0.913664

0.801369
0.866872
0.902601
0.891907
0.913664
1.00000

Table 9.4: Correlation matrices for the bleached data
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Appendix: Supplement to chapter
3

Consider the model, y = f(z,60)(1 + 0¢€),i = 1,2, ...,n, where 8 is the vector of unknown
true parameter values. Let 8 be an estimator for 8. Suppose for small o, 6 = 6 + Cy0 +
C20?, where C; and C, depend on f(z,6) and ¢, but not on 0. We employ fp and f;
to indicate f(z, 5’) and f(z,6p) respectively. The gradient vector and the matrix of second
derivatives (i.e. the Hessian matrix ) evaluated at the true parameter values are respectively

denoted by ¥/ fo and Hp.

In chapter 3, we examined four methods of estimation: maximum likelihood (ML), quasi
likelihood (QL), generalized least squares (GLS) and data weighted least squares (DWLS).

Each method of estimation resulted the same formula for C'y, which is

=[S (%), ()] £ (%)

=1
Under the assumption that the random error ¢; are independent mean zero random variables

we find E(C;) = 0 and the variance covariance matrix of Cy, ¥, is given by

vrie= [£(5), (%))

=1

With the above notation we prove the following results.

Result 1
p(e1 (T () @) = (e () (%) )]
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- £l (%) (5 et
- oo () () o)
- o[() (5 e
- o[ )

T
Result 2 In result 1 replacing the matriz ( Zig) ( %) by the matriz ( %‘1) g
Ay \ 4

(7)) = (7).
Result 3 Since the term C{ (—) ts a scalar, we find
2o () (@)e) = 2((R), 0 ()
- (7). 7eh ()
- (7)=2(%)
Result 4 Since the term (%-&)TE (y}i_) is a scalar, we find
(%) (A (52) - (52)"(2) (39
- o[ =2
T
- o[() ()4 2),
Result 5 If the random errors are independent and follow a distribution which is symmetric

about zero (in particular if ¢; are iid N(0, 1)), then

E(C]f,‘) = CO’U(C] E)

_ Cm,( (Z () (vfo)T] 5 (vfo)k’q)

Li=1 \ JO 1 k=1 \f 0J)k

_ [ vfoi Vfo)TJ Vfo),-
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