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Abstract 

Sediment (or other buried materid) when heated gently glows with light c d l d  thermolu- 

minescence. The amount of fight given off depends on the material and on the amount 

of radiation impinging on the sample while buried. Comparison of the equivalent dose (a  

known laboratory d m  z q G d  to prodace the same amount of hminescence as the original 

untreated sample) with historical radiation rates permits estimation of the age (duration of 

burial) of the sample, a process called thermoluminescence dating. 

Wk study statistical techniques for estimating the equivalent dose from the data collected 

for thermoluminescence dating. Physical models are used to motivate generatized non-linear 

models for the data and to  justify assumptions about the distribution of errors in these 

models. Maximum likelihood, quasi-likelihood and least squares estimators are compared 

by examining their s ta t is t id  properties. Formulae are provided for the biases and the mean 

squared errors of these estimators valid in the limit of s m d  measurement errors. 

h thermoluminescence studies, data are coliected on a single sample at  a series of tem- 

peratures. Consequently, observations collected at  different temperatures are correlated. 

We propose a generalized estimating equations procedure for estimating the equivalent dose 

from the correlated data. Large sample asymptotic properties of the proposed estimate are 

examined and a formula is provided for estimating the error of the estimate. We propose 

symmetric codidence intervals for the equivalent dose with a t quantile; a fomula is pro- 

vided for the approximate degrees of freedom of the suggested t qazntile, valid in the Emit of 

small measurement errors. Finite sample performance of the asymptotic results is examined 

by Monte Carlo. 



Tsfs  b=cl on the empiricd distrlhntim fanctioii (EDF tests j of the s'iandarcfized resid- 

uals are proposed for testing the distributional assumptions on the random errors in two 

situations: without assurning the fitted model is correct and assuming the fitted model is 

correct. We propose a recnrrence formula for e~duating the cumdative distribution function 

of two fitted standardized residuals needed in the proposed EDF tests. Weak convergence 

properties of the related empirical processes are examined. Finite sample performance of 

the suggested EDF tests is examined by Monte Ca~lo. 
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Chapter 1 

Introduction 

Estimating t;he ages of historic materials is an important problem, needed in many fields 

such as archaeology, geology and quaternary science. Radio carbon dating has been the most 

widely used technique for this purpose. Berger et.al. [lo] reports that radiocabon dating 

of Quaternary deposits is limited to organic material younger than about 50000 years old. 

-4ccording to  the same source, many of the most important stratigraphic units are much 

older than this. Recent research in this area has proved that the luminescence phenomena 

can be utilized for estimating the ages of old samples. 

What is 'thermoluminescence'? Upon gentle heating, crystalline or glassy materials be- 

gin t o  glow. This weak but measurabie light which is observed before the characteristic 'red 

hot glow' or incandescence is called 'Thermoluminescence' (TL). Luminescence phenomena 

have been studied by scientists for several centuries. However, use of luminescence phe- 

nomena for measuring exposure to nuclear radiation was not developed until early 1950's. 

Subsequently, during the 1960's thermoluminescence was developed for archaeological dat- 

ing. 

The application of TL dating to sediments follows from the work of Huntley and Johnson 

1353. Wintle and Huntley 1501 report the first successful application of TL dating to ocean 

sediments. In the dating of sediments the event being dated is the last exposure to sunlight. 

Thermoluminescence dating of sediments is not limited to ocean sediments. It extends 

to  desert loess, sand dunes, sediments in lakes filled by melting glaciers and even to the 



dust incorpo~ai.tei: in the ice of a glacier iiself. It can also be used to  analyze the history 

of meteorites and lunar material (Aitken [l]). For this reason many fields such as geology, 

archaeology, quaternary research etc. benefit from its use. 

According to Aitken [I], the key concept behind the thermoluminescence dating of sed- 

iments could briefly be described as follows. While the sediments are buried in the ground 

they are exposed to the nuclear radiation emitted by the naturally occurring radioactive ma- 

terials such as K407 Th232, U2= etc. This results in an ionization of electrons of the crystal 

lattice; these electrons are now free to  diffuse around the crystal (see also Divigalpitiya [26]). 

Due to imperfections of crystalline materials there are negative charge deficit sites that are 

available to such diffusing electrons. Some of the electrons while diffusing around the crystal 

get trapped at  these sites. When trapped, they remain in these sites, or 'traps7 as they are 

usually called, as long as the temperature is not raised. In the measurement process, heating 

causes eviction from traps a t  a temperature characteristic of the type of trap. Some of these 

evicted electrons reach luminescence centers and in the process of recombinati~n there is 

emission of light. The amount of light is proportional to  the number of trapped electrons. 

This number depends on the amount of nuclear radiation to  which the crystal had been 

exposed during its burial and on the sensitivity of the crystal to  ionizing radiation. Hence, 

by measuring the sensitivity of the sample to acquiring thermoluminescence, archaeologi- 

cally acquired thermoluminescence and the radiocarbon content of the surrounding soil it 

is possible to calculate the age. Sensitivity of the sample is measured by exposing it to a 

calibrated radio isotope source. Several methods for measuring the radioactive content of 

the surrounding soil are discussed in the literature. In this study, we focus our attention on 

estimating the acquired thermoluminescence during sediment burial. 

Lack of knowledge about the amount of thermoluminescence at  the time of deposition 

of sediments burdens the problem of estimating the acquired thermoluminescence during 

burial. The same reason invalidates the direct applicability of the procedures that are 

already developed for pottery dating which hinge on the assumption that the act of firing 

zeros the thermoluminescence acquired during geological times. Wintle and Huntley [60] 

report that the study of the reduction in TL caused by various sunlamp exposures helps 



us understand the TL a t  the time of deposition. Initially the TL is rapidly removed by 

the sunlamp exposure but for times longer than one hour the TL is reduced much more 

slowly. Therefore, Wintle and Huntley [60] assume that the natural TL is made up of 

two components; an easily bleachable component Id and a residual component lo,  which 

is the component that cannot be bleached by a laboratory sunlamp exposure. Wintle and 

Huntley [60] assume this residual component I. to be the TL at the time of deposition 

of the sediment. The easily bleachable component Id is assumed to be the TL due to 

the radiation dose since deposition. Each gives rise to a different fraction of the T i  at  

different glow curve temperatures. The total TL I (T)  at temperature T is thus given by 

I(T)  = Io(T) + Id(T). At a given temperature, only the total TL I ( T )  is measurable. 

However, for dating purposes, it is required to measure the component Id(T). Physicists 

have developed several techniques to quantify the components Io(T) and Id(T) by simply 

measuring the TL of natural samples and of samples left in the sun (or exposed to  a sunlamp 

in the laboratory). In this study we looked at estimating the equivalent dose from data 

collected for three experimental techniques: the additive dose method, the partial bleach 

method and the regeneration method. A brief introduction to these techniques is presented 

in Chapter 2. This chapter also provides a description of the data. Plausible physically 

motivated models for thermoluminescence data are also introduced in Chapter 2. 

Exposure to sunlight (or to a sunlamp in the laboratory) drives off the trapped electrons 

and reduces the intensity of the TL signal. This is called 'bleaching' the sample. Hereafter 

we refer t o  the data collected on natural samples as 'unbleached data'. The data collected 

on samples that are given a laboratory bleaching are referred to  as 'bleached data7. Chapter 

3 describes model fitting for the unbleached data (or the bleached data) collected at a given 

temperature. This fitting process applies to  the additive dose method. We examine four 

estimation techniques: maximum likelihood, quasi-likelihood, weighted least squares and a 

slightly modified weighted least squares technique. Formulae for approximate biases and 

mean squared errors of these estimators are derived for the small a asymptotic case. We 

examine the assumptions made in estimating the biases and assess the validity of the derived 

formulae for o in the range of real samples by a Monte Carlo study. These results are also 



presented in Chapter 3. 

In Chapter 4, we compare the four estimation methods by examining their asymptotic 

properties. In Section 4.1, we examine the large sample asymptotic behavior of the estima- 

tors. We show that the maximum likelihood and quasi-likelihood estimators are consistent 

and generalized least squares and data weighted least squares estimators are generally not. 

Distributional approximations for maximum likelihood and quasi-likelihood estimators are 

also provided in Section 4.1. In Section 4.2, we analyze the large sample behavior of our 

small a approximation to  0 - 8. In this limiting case, we show that the quasi-likelihood 

estimator and the maximum likelihood estimator are mean squared error consistent. In 

general, generalized least squares and data weighted least squares estimators were found 

to have biases that do not vanish even asymptotically. However, the analysis of small a 

large n behavior of the estimators reveals that for the parameter of interest in our model, 

generazed least squares and data weighted least squares also produce asymptotically unbi- 

ased estimators. The discussion presented in Section 4.2 is valid for more general response 

functions than simply the response functions described for the additive dose method, the 

partial bleach method and the regeneration method. Examining the behavior of our small a 

approximations we found that for the parameter of interest in thermoluminescence studies, 

maximum likelihood and generalized least squares have almost the same bias for a values 

and sample sizes used in practice. 

In the partial bleach method, the equivalent dose is estimated as the dose corresponding 

to  the intersection of the fitted response curves for the unbleached and bleached data. 

Chapter 5 describes estimation of the equivalent dose from partial bleach data together 

with an estimated standard error of the estimate. Formulae are derived for the biases and 

the mean squared errors of the estimators for the small a asymptotic case. The validity 

of the formulae for a in the range of typical samples is explored by simulation studies. 

Interval estimation is also discussed for each method. For maximum likelihood, we describe 

computing profile likelihood intervals and symmetric intervals with Z and t critical values. 

?Ve also describe confidence intertds based on a transformation of the likelihood ratio 

statistic with a transformed F critical value. For quasi-likelihood, we describe symmetric 



confidence intervals based on a t quantile and also based on inversion of the quasi-score 

test. The finite sampie performance of the suggested confidence intervals is examined by 

simulation studies. These are described in Chapter 5 .  

In the regeneration method, the equivalent dose is estimated as the dose shift necessary 

for the unbleached response curve to match the bleached response curve. Chapter 6 describes 

estimating the equivalent dose from regeneration data. Here again we examine the four 

estimators mentioned earlier. For each method we provide formulae for the biases of the 

estimators. As for the partial bleach method, finite sample performance of the asymptotic 

theoretical results are examined by a simulation study. These results are presented in 

Chapter 3. 

In thermoluminescence studies data are collected at  a series of temperatures. In chapters 

3 to  6 we focused on analyzing the data a t  a given temperature. A series of estimates for 

the equivalent dose are available from separate analyses at  different temperatures. These 

estimates are then plotted against the temperature. A region over which the equivalent dose 

does not vary with temperature is identified from this plot. This region is called a 'plateau 

region'. Since the same samplzs are used to  collect the observations over the plateau region, 

the resulting observations are correlated (in fact correlations are very high). We propose 

a generalized estimating equations (GEE) procedure closely related to that of Liang and 

Zeger [43] to  estimate the equivalent dose taking correlation into account. In Section 7.2.2, 

we examine the large sample behavior of the suggested estimate. We provide a formula for 

the standard error of the estimate. For thermoluminescence data, the sample sizes are quite 

small compared to  the number of parameters fitted in the models suggested for these data. 

Therefore, confidence intervals for the equivalent dose based on the large sample asymptotic 

theory are found to  have smaller coverage probabilities than the nominal coverages. In 

Section 7.2.3, we examine the behavior of the estimate in the limit of small measurement 

error. For this case, we propose constructing confidence intervals based on an approximate 

t quantile; a formula based on the Satterthwaite's approximation 1531 is provided for the de- 

grees of freedom of the suggested t quantile. The finite sample performance of the suggested 

theoretical results is examined by a Monte Carlo study. Confidence intervals based on the t 



quantile were found to  have coverage probabilities closer to their nominal levels than those 

based on standard normal quantiles. The suggested theory js demonstrated on a r ed  data 

set. 

In Chapter 8, we propose tests based on the empirical distribution function (EDF tests) 

of the fitted standardized residuals for testing the assumption of normality of random errors. 

In Section 8.2, we present a test procedure for testing normality which does not require the 

fitted regression model to be correct. In Section 8.2.6, we prove the weak convergence of the 

related empirical processes. Section 8.3 offers a test procedure for testing the assumption 

of normality assuming the fitted regression model is correct. For each case, we show how 

to compute the test statistic and an approximate pvalue for testing the assumption of 

normality. The finite sample performance of the suggested asymptotic theory is examined 

by a simulation study. Section 8.6 summarizes the chapter. 

Chapter 9 summarizes the conclusions and suggests guidance for analyzing TI, data. We 

end Chapter 9 with proposals for further work. 



Chapter 2 

Description of the data 

A clear understanding of the data is the foundation of a "good" data analysis. Section 2.1 

describes the data collected in thermoluminescence studies. The goal of the experiment is 

t o  determine the age of the sample by estimating the TL acquired during sediment burial. 

Section 2.2 describes some widely used techniques for this purpose1. These methods require 

fitting of nonlinear response curves to  the data. Some plausible models for the response 

curves and for the error structure are suggested in Section 2.3. Model fitting is discussed in 

subsequent chapters. 

2.1 Method of data collection 

Sedimentary samples are collected from dunes in a manner that avoids exposure to sunlight. 

(Exposure to sunlight drives off the trapped electrons and zeroes - or decreases - the TL 

signal.) Further experiments are carried out under subdued orange light. 

About 2mm thick of the outer layer is etched away from each surface of the core sample. 

The sample is then purified by subjecting it to  a series of acidification and oxidation steps 

and washings. Desired sized grains are then separated out from the resulting slurry, and are 

dried on aluminum discs of about lcm in diameter. About 50 such subsampies are prepared 

from each core. After weighing each subsample, some of the subsamples are placed in an 

' ~ u c h  of the content of sections 2.1 and 2.2 is based on Aitken [I] and Wintle and Huntley [60]. 



oven. -while heating the sample gently, the photon count and the corresponding temperature 

is recorded every few minutes (usually 5 to 10 minutes). These photon counts represent 

the 'natural thermoluminescence'. The other samples are irradiated with different known 

gamma doses before heating in the oven. The TL signal from these samples is simply called 

't hermoluminescence'. 

In summary, a measure of the photon counts per unit mass, the corresponding temper- 

ature and the amount of added dose are recorded from each subsample. Usually the dose is 

measured in gay2. 

2.2 Equivalent dose (ED) determination 

The plot of TL vs the temperature is called a 'glow curve'. Figure 2.1 illustrates a set of glow 

curves obtained for a data set (coded as WFP2-7R1) kindly provided to us by D.J. Huntley. 

In Figure 2.1, each glow curve represents photon counts observed from one subsample over 

the corresponding series of temperatures. For a fixed temperature, the plot of TL vs added 

dose is called an 'additive dose curve' or a 'dose response curve'. Figure 2.2 illustrates such 

an additive dose curve obtained for the unbleached datz. set (QNL83-2) given in Berger et. 

at. [12]. In Figure 2.2, each dot, represents the photon count obtained from one subsample at  

temperature 300•‹C. For young samples the additive dose curve is nearly linear; see Berger 

[6]. However, for older samples the additive dose curve departs from linear behavior. Cubic 

or saturating exponential models3 appear more suitable for the additive dose curves for 

older samples (See Berger [C], Berger [6], Berger et .  al. [5]). 

The ED is defined as the dose required to  produce an amount of thermoluminescence 

equivalent to  that which the sample had acquired during burial. Different techniquzs are 

used to  estimate the equivalent dose from the additive dose curves. The appropriateness of 

the method depends on the the age of the core and in particular, the non-linearity of the 

response curves. Next we briefly describe these methods. 

2 ~ h e  'gray', abbreviated Gy, is defined as the dose required to provide 1 joule of energy per kilogram of 
material. 

3Saturating exponential models are defined in Section 2.3. 
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Figure 2.1: Glow curves for the data WFP2-7Rl 

2.2.1 Additive dose method 

In this method, the equivalent dose is estimated as the dose corresponding to the level of TL 

at the time of deposition of sediments. To read the equivaient dose we need to extrapolate 

the additive dose cur7/e back to the point where the TL at the deposition would he. Figure 

2.2 illustrates this method. This plot was obtained for the unbleached data set of QNL84-2 

data given in Berger et. al. 1121.. The complete Qh'L84-2 data set was collected for the 

partial bleach method. Here we use the unbleached data set for illustration of the additive 

dose method. It is worth noting that for the additive dose method no samples are bleached 

and the unbleached response curve would be the only response curve available, had the 

data been collected for the additive dose method. Since it is necessary to  extrapolate the 

response curve to  read the equivalent dose, the additive dose method is more appropriate 

For young samples for which the additive dose curve is nearly Enear. 

As illustrated k Figure 2.2, one needs to  know the TL  of the sampk at the time of 

deposition (Y(0)) to use this method. In pottery dating, it is quite certain that initially 



Figure 2.2: UnMeached response curve for the data QNLM-2: additive dose method 

the TE is zero (i.e. YIO) = 0) because heating to very high temperatures at the time of 

firing releases the trapped ekctrms, However, in sedimentw dating, the amount of TL at 

the time of deposition is not known. Wintle axid Huntley [60f assume that only the easily 

bleachable component had been removed at the time of deposition, Therefore, the residual 

TL, lo, remaining after a long Iabmatoq bleaching is assumed to be the TL had it been 

measured at the time of deposition of sediments (i.e. take Y(0) = Io)- However, if the 

bleachable TL had not been f d y  removed at the time of deposition, the equivalent dose 

thns determined is erroneous. The estimation is done on the assnmption that the bleachable 

TL had been f d y  remowdf This assumption is then tested by the 'plateau test' described 

n a r  (tqitkm f I]). 

The plateau a-t 

From separate analyses of data at different temperatures an estimate for the equivalent dose 

is available for each temperature. These estimated eqnivdent doses axe then plotted against 



the temperature. A 'plateau' is the region where we observe that the ED does not change 

with the temperature. Figure 2.3 illustrates the estimated equivalent dose vs temperature 

for the data WFP2-7R1 cited in Section 2.2. In this plot, each dot represents the equivalent 

dose estimated from the data collected at  the corresponding temperature. If the bleachable 

TL was not fuUy removed at  the time of deposition of sediments, a plateau may not be 

apparent ( Ait ken [I]). 

The 'plateau test' is not merely testing whether or not the bleachable TL had been fully 

removed at the time of deposition of sediments. Only those traps that have accumulated 

electrons without leakage can provide reliable information for dating purposes. These traps 

are identified as the traps corresponding to the 'stable' region of the glow curve. This 'stable' 

rwgon is recognized as the region corresponding to the 'plateau' on the plot of equivalent 

dose vs temperature. (-4itken [l],Berger et.  al. [lo], Huntley et. a1 [38]). 

0 

230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 
Temperature 

Figure 2.3: Plot of estimated equivalent dose vs temperature : Data W FP2-7Rl 

The lack of knowledge about the TL at the time of deposition of sediments, makes 

the ddif;ive dose method less snitable for sedimentary dating. The partial bleach method 



and the regeneration method that we describe next are %WO methods that are widely used 

for sedimentary dating which avoid the need to know the amount of TL at  the time of 

deposition. 

2.2.2 Partial bleach method 

The partial bleach method or the R - method was introduced by Wintle & Huntley in 

1980 [60]. Here a portion of the samples is used to  determine the additive dose curve as in 

the additive dose method. This dose curve is called the 'unbleached dose curve7. Remaining 

samples are subjected to  afternoon sunlight for about 40 minutes and are then irradiated 

with Gamma doses to define the additive dose curve for the bleached portion. This is called 

the 'bleached dose curve7. Figure 2.4 illustrates the unbleached and bleached dose curves 

for the data QNL84-2 given in Berger et. a1 [12]. This method is so named because the 

sample is only partially bleached so that the bleaching does not totally erase the signal. 

Here we measure the reduction in TL (R) caused by the sunlamp exposure. A plot of R vs 

the dose (I?) when extrapolated to  R = 0 yields the ED on the r axis. Equivalently, the ED 

can be estimated as the dose corresponding to  the point of intersection of the bleached and 

unbleached curves. 

As we mentioned earlier, the estimates derived from the additive dose method are er- 

roneous if the bleaching prior to deposition was not complete. The partial bleach method 

works well even if the bleaching prior to deposition of sediments was incomplete as long as 

it was more complete than that caused by the short laboratory bleaching (Aitken [I]). 

As for the additive dose method, the partial bleach method also requires extrapolation of 

the additive dose response curves. Therefore, the partial bleach method is also preferred for 

samples for which the additive dose curves are nearly linear or can be reliably extrapolated. 

2.2.3 Regeneration methad 

The regeneration method is more appropriate for old samples. As in the previous method, a . 

portion of the sample is used to define the unbleached curve and the remaining samples are 

used to  define the bleached curve. Here the bleaching is more vigorous. In the regeneration 



Figure 2.4: Dose response curves for the data QNL84-2 

method, for the bleached curve, samples are left in the sun for about 15 hours. This totally 

erases the TL signal. Then artificial irradiations are administered, thereby regenerating the 

TL growth characteristic. To avoid the possible effect of sensitivity change due to bleaching 

a new portion of the sample is used for each data point. The purpose of the bleached curve is 

to use it as a pattern for the unobservable portion of the unbleached curve. If the bleaching 

had not caused a sensitivity change it should be possible to match the two curves by a shift 

along the dose axis (Huntley et. al. [38J). The equivalent dose is calculated as the dose 

shift required for the unbleached curve to match the bleached curve. Figure 2.5 illustrates 

the unbleached and bleached response curves for the data set SESAl cited in Huntley et .  

a!. [38]. This data were kindly provided to  us by D.J. Huntley. 

The equivalent dose can also be determined as follows. The dose R required to generate 

a level equal to the natural TL is determined on the bleached curve. The procedure is then 

repeated for portions which have been given a known laboratory dose /3. The equivalent 

dose is then estimated as the horizontal intercept of the plot of R vs the additive dose P;  



dose 

Figure 2.5: Dose response curves for the data SESAl 

see Aitken [I]. 

2.3 Plausible models 

According to Huntley et.  al. [36] (see also Kirkey [42]) only a few particles in a sample 

produce most of the TL. The grains that glow upon gentle heating in the laboratory (or 

emit light in the visible range) are called 'emitting grains'. Franklin et. al. [30] reports 

that ordy about 8% of the grains are emitting grains (or produce the observed TL). In the 

following, we describe models for the mean photon count emitted by the sample at a given 

temperature, in response to the dose received (natural dose during burial plus the artificial 

dose administered). 



2.3.1 Models for the mean response 

Notation: 

We use the subscripts i and j to denote the dose and the temperature of the subsample 

respectively. We refer to the kth replicate subsample receiving dose i as the ikth subsample. 

Let 

Nijk = the number of emitting grains in the ikth sub sample at temperature j 

m i k  = the mass of the ikth subsample 

and Xijkr = emission from the lth grain of the ikth sub sample at the jth temperature 

We make the following assumptions. 

1. As in Berger et. id. [Ill, the TL signal is assumed to be made up of the photons 

emitted by the individual grains in the subsample. 

2. The emissions from different grains in the same subsample are independent. 

3. All emitting grains are identical and grains that have received the same laboratory 

dose emit at the same rate. 

4. The rate of emission from a given grain is independent of the number of emitting 

grains in the sample. 

5. At any temperature j, Xijkl N Pois(Xij), where the rate Xij  is a function of the dose 

xi and the temperature j. 

6. All the emitted photons are detected. (See the remarks below.) 

7. The laboratory applied dose, xi, can be measured without any error. 

8. The mass of the sample is measured without any error. 

Remarks: 

The calculations we make are still valid if we make the weaker assumption that only a 

fraction of the emitted photons are detected, but all the emitted photons have the same 



chance p of being detected. In this case, the Nijk in the given formulae has to be replaced 

by ,WDijk, which is, the number of emitting particles detected from the ikth sample. The 

E(NDi jk )  and V ( N D i j k )  can be computed as follows: 

Noting that N Dijk - bin(Nijk, p), we find 

and 

In the calculations presented below, we assume that all the emitted particles are detected. 

The total emission from the ikth subsample is 

Therefore, 

and 

Subject to the assumptions listed earlier, the expected TL can be computed as follows. The 

emission per unit mass of ikth subsample is 



Therefore, 

and 

Without loss of generality we take the available y observations as the photon counts per 

unit mass. If the data are not normalized by dividing by the mass of the sample then take 

mik = 1 .  

We consider several models. 

Model 1: 

This is the model considered in Berger et, al. [ l l ] .  They suggest the following. For grains 

of diameter < lOpm, E ( f i j k )  is estimated to  be of the order lo3 - lo4, X i j  is of the order 

lo2 and V(.Nijk) is approximately of the order lo2 - lo4. So, the term E ( N j j k )  Aij is small 

compared to  the term V ( N i j k )  A$. Ignoring this term, 

Let f ( x ; ,  8) = E (TLijk) be the mean response for dose xi. For notational convenience 

we denote the observed photon count TLijk by y ; j k .  We drop the suffix j when we refer 

t o  the observed photon counts taken at  a given temperature. A simple model for the 

observed photon count yjk and the dose received xi can therefore be described by y,k = 

f (xi,8)(1 + ocik), where the constant o = -- is referred to  as the relative error in 

a single measurement; 8  is a vector of parameters that we wish to  estimate and €ik  is the 

random error in the photon count observed from the ikth sample. 

The mean response function f ( x i ,  0) indicates how the expected photon count varies 

with the applied dose xi. The plot of f ( x i ,  0) against the applied dose defines the dose 

response curve. 



For sediments younger than 10-20 kilo years (Ka4) the dose response curves are nearly 

linear. Thus, for sediments of this age the deterministic part of the model is described by 

the relation f ( x i ,  0) = a  + j3 x; where 8 = (a ,  p) is the vector of parameters to  be estimated 

and x; is the applied dose. 

For sediments older than 20Ka, dose response curves are not linear. More precisely 

these have been described as sub-linear dose response curves. Sub-linear curves show a 

linear relationship with a positive slope between TI, and the applied dose at  low dose levels 

but curvature is observed as the dose level increases. Quadratic models and cubic models 

have been used (Berger et. al. 191, [6], [5]) to describe dose response curves for moderately 

old samples. Some response curves show a flat TL intensity a t  very high dose levels. This 

happens when the traps are filled and no more capturing of electrons is possible. This is 

described as the saturation point and can be observed for very old samples (greater than 

100Ka) or with young samples that are subjected to very high applied doses. (Berger 

[9].) Huntley [37] introduces saturating exponential models (below we provide motivation 

for using saturating exponential models) to describe the response curves for samples ap- 

proaching saturation. The saturating exponential model is represented by the function 

f (zi, 0) = ol (1 - exp [- -1 } , where 0 = (a l ,  az, as) is the vector of parameters we 

wish to estimate and xi is the applied dose. 

Motivation for using the saturating exponential model 

Suppose the probability of filling an empty trap per unit dose of radiation is constant (say 

p )  . Let N(d) denote the number of empty traps available, when the total acquired dose is 

d units. Then 

E [ N (d + Sd) - N(d)l N (d)] = -pN(d)Sd + o(6d). 

Let E(N(d)) = M(d). Taking expectations we find 

Taking limits as Sd - 0, and solving the resulting differentid equation, we find 

M ( d )  = exp(-pd + C), 

'The letter 'a', from the French 'an', is used when specifying annual dose, following practice in most TL 
laboratories. ( Aitken [I].) 



where C is the constant of integration. Let M(0) denote the total number of available traps. 

Noting that all the traps were empty when no dose was acquired, we find exp(C) = M(0) .  

Further, assume that no new traps are formed due to acquired radiation. Then? at saturation 

all traps are filled and therefore the intensity at  saturation, Isat, is proportional to hf(0). 

Thus, Isat = CIM(0), where C1 is some constant. When d units of radiation is acquired the 

expected number of filled traps is M(0) - M(d). Consequently, the intensity at  dose d, can 

be computed as: 

The total acquired dose d is made up of the laboratory applied dose x and the dose acquired 

during burial 7. Thus, Id = Isat [ I -  exp(-p(s + y)] . 

The distribution of the random error 

Three possible choices for the distribution of the random error are: 

1. As in Berger et. al. [Ill assume the random error 6 to  be normally distributed. 

2. The assumption that the standard deviation of the TL count is proportional to its 

mean suggests a gamma distribution as a plausible model for the random error. 

3. Use quasi-likelihood estimating techniques where the distribution of t is unspecified. 

In Chapter 8 we propose procedures for testing the assumption of normality of random 

errors. 

We note that photon counts are never negative. Therefore the normal error model is 

suitable only if a < 1/3, roughly. 

Model 2: 

This is a simple extension of Model 1. Here we use the complete variance function instead 



of the approximate function used in Model 1. From equations 2.1 and 2.3 we have 

Thus, in this model, we have an additional parameter, b2, (notice that dl is measurable) 

in the variance function. Techniques are available in the literature (see for eg. Davidian 

and Carroll [22]) on how to  estimate such parameters in the variance function. 

The distribution of the random error 

The gamma model is unsuitable for the distribution of random errors in Model 2. Two 

possible choices for estimating the parameters are: 

1. quasi-likelihood estimating techniques where the distribution of E is unspecified. 

2. Assuming random errors E approximately follow a normal distribution, model yi as 

y; -- f ( x i ,  8)(1+ mi)  with E(yi) and V(yi) as defined above. 

Model 3: 

Let 

mik = mass of the ikth subsample, 

M;k = mass of the emitting grains in the ikth subsample(_< mik), 

and Eijk = total emission from the ik-th sample at temperature j .  

Assume that Eijk P o z s ( X ~ ~ M ~ ~ ) .  Then, 



Assuming E(.kfik) = [mix, for some constant c, ure write E(Ei jk )  = Aij<m;k. The variaace 

of Eijk can be computed as 

Since TLijk = %, we find E (TLi jk)  = (Xu and 

1 
V (TLi jk)  = -V ( E i j k )  

m:x 

where S1 = -1- 
mik  

and 62 = *",$. Thus, we have the additional parameter 6 2  (b l  is 

measurable ) t o  estimate; again these can be estimated as in Model 2. 

2.3.2 Correlation structure 

According to the models suggested earlier, if i # if or i = if but k f k' then 

C O V ( T L ~ ~ ~ , T L : / ~ ~ ~ ~ )  = 0, since these correspond to  observations from different discs. If 

i = i' and k = k' then C O V ( T L ~ ~ ~ , T L : ~ ~ , ~ ~ )  = I),., which can be computed as 

Now consider 



Since X's are independent, the above can be simplified to  get 

The correlation pjjt between the observations collected on the same disc at  different tem- 

peratures j and j' can therefore be computed as follows. 

Model 1 

For Model 1, 

Remarks 

If the same grains emit photons at  temperatures j and j' then Nijk = Nijtkt. In this case, 

Model 1 predicts perfect correlation. Further note that for all k, E(&) = f (xi, Oj) and 

V(Ek)  = o2 f2(s;,8j). Therefore, E(Ejjk) = XijE(Nijk) = f(x;, 8j)mik and V(Eijk) = 

X : ~ V ( N ~ ~ ~ )  = o2 f 2 ( ~ i ,  Oj)m$. Consequently, E(Nijk)  = I. Thus, a gamma distribution 
JI/(Nilk)I/O 

with shape parameter -$ and scale parameter Pik = o2 f (x i '63)mik 
X i j  

is a plausible candidate for 

the distribution of Nijk- We note that Nijk, the number of emitting grains in the sample, 

can take only integer values, but if Nijk's are large, the distribution can reasonably be 

approximated by a continuous distribution. 

Model 2 

For Model 2, 

XijAijtC~~(Nijk, Nijtk) 
pjjt = 

JA&V(N,~~)  + A i j ~ ( ~ i j k )  J x : ~ ~ v ( N ~ ~ I ~ )  + AulE(Nij~k) 



Remarks 

For Model 2, note that even under the assumption I f i j k  = illijlk,. pjjl  < 1. Further note 

Therefore, for m ; k ~ ~ f ( ~ i , @ ~ )  3 1, 

Thus, 

Consequently, 

Remarks: 

1. According to Model 1 ,  if the variability in the number of emitting grains does riot 

depend on the applied dose, then the correlation between photon counts taken on the 

same disc at two different temperatures does not depend on the laboratory applied 

dose 2;. 

2. According to Model 2, the correlation between the observed photon counts taken on 

the same disc at two different temperatures depends on the applied dose 2;. Our 

notation pjjl suppressed this dependence. 



Chapter 3 

Model fitting 

In this chapter attention is focused on fitting the saturating exponential model defined in 

Chapter 2. We intend to present a detaiied study of fitting this model for a single data 

set with two perspectives in mind, First, the results we derive are directly applicable if the 

additive dose method is used to  estimate the equivalent dose. Second, as we see in chapters 

5 a d  6, the methodoiogy developed for this case can easily be extended to  estimate the 

equivalent dose from the partid bleach method and the regeneration method. 

Section 3.1 presents initid estimates for the parameters. In sections 3.2 to  3.4, we derive 

Mazimcm Lik&Bc=O f ML), Quasi (QL) a ~ d  Generalized Least Squares (GLS) 

estimates for the parameters. h Section 3.5, we examine another estimation procedure 

used by physicists. This procedure is similar to generalized least squares, except that it uses 

observed Y values in piace ef' the expected Y d u e s  in the weight function of generalized 

Ieast squares. We refer to this procedllre as Data Weighted Least Squares (DWLS). 

As we described in Chapter 2, our model suggests that the variance function of the pho- 

ton counts is proportional to the squared mean function. Furthermore, photon counts are 

never negative. Conseguentl_v, the gamma distribution is a natural candidate for the distri- 

bat ion of photon connts (McCnllagh [49j)- In Section 3.6, we obtain maximum likelihood 

estimates assuming photon connts fSbw a gamma distribution. 

In Section 3.8, we derive form& for the biases of the estimators assuming the relative 



error in a single measurement, a (= e) is s m d .  ?Ve examine this assumption in 

Section 3.10. in Section 3.11, we examine the biases of ihe estimators from a Monte Carlt, 

study and compare with the results obtained from the derived formulae. In Section 3.12, we 

demonstrate the theoretical results discussed in this chapter using a real data set. Section 

3.13 summarizes the chapter. 

3.1 Initial estimates 

Kuo [41] T-as described two methods that yield initial parameter estimates; a graphical 

method and a quadratic equation method. For completeness we now briefly describe those 

two methods. We also describe an alternative method that can be used to obtain initial 

estimates. 

3.1 .l Quadratic equation method 

The quadratic equation method proceeds as described by the following steps. 

1. The average TL count (m) is calculated at each applied dose. 

2. As a first step, the dependence of TL on the dose (x) is approximated by a quadratic 

relationship. In other words, the coefficients q, ~ 2 ,  r3 of the equation 

are estimated by regressing on s, x2. 

3. Sear zero dose, the two models (exponential and quadratic) have similar behavior. 

The coefficients of the saturating exponential model are thus estimated by equating 

the first and second derivatives of the saturating model at  zero dose to  those of the 

quadratic model. 

The iat step is more deaxiy expressed as follows: 



- " - and 2 ~ 3  = TL,=o - 

The values for TI, TZ, 7'3 are available from the previous step. Thus, the initial estimates for 

al , a2 and a3 can be obtained as follows: 

T2 and a3 = --. 
2 ~ 3  

3.1.2 Graphical method 

The graphical method is described by the following steps: 

1. The saturating exponential model has the form 

[ (-(za.- 0 2 9 1  f(x,6) = E(TL) = al 1 - exp 

For large applied doses the thermoluminescence approaches al. Thus a1 is estimated 
A 

from a plot of vs dose (x) as the photon count approached at high applied 

doses. 

- 
2. Noting that (m - 6) = -Tkexp [*I a 3  ? the parameters a2 and a3 are then 

.. - - 
estimated from a plot of In I(TL - TL) I vs x. 

Next we suggest another method that can be used to find the initial estimates. 

3.1.3 Alternative method 

x+az The model of interest is y = f (x, 8 )  (1 i- oe), where f (x, 8) = ax {l - e x p [ u ] } ;  a3 here 

6 = (al,aa,a3) is the vector of unknown true parameters and x is the applied dose. 

Noting that as x oo, f (x, 6) -, al, we estimate a1 by the average of the photon 

counts corresponding to  the highest dose. At the low dose values the dose response curve is 

26 



approximately linear. Therefore, we estimate a 2  and as by fitting a linear function for the 

- (x+a2)  response a t  low dose levels. Note that = 2 exp [ ] . Thus, 

slope at dose zero = ft(0) = 

and 

photon count at dose zero = f(0) = crl 1 - exp - [ (::>I. 
This gives a3 = jw and a 2  = -a3 log (q) . We estimate f(O), which is the photon 

count a t  zero dose, as the average of the observed counts at zero dose. Slope at dose zero 

is estimated by .=, where z[l] = 0, zr2] = smallest positive dose value? y[l] = 

average photon count a t  dose zero, and y[2] = average photon count at  dose x[2]. Since we 

already estimated al, the parameters a 2  and 03 can now be estimated using the above 

equations. 

For all the data sets we analyzed, the initial estimates found from this method served 

as good starting points for the estimation programs we developed. We did not use the 

graphical method to  obtain starting values since the other two methods are easier to use 

than the graphical method. For some data sets, the quadratic method failed to provide 

good starting values while the alternative method did not fail. 

For some data sets, the parameter crl is much larger (roughly 1000 times in some cases) 

than the other two parameters. In such cases, estimating the parameters instead of pi 

we use a scale multiple of y; which makes the magnitude of a1 compatible with the other 

parameters. For example, when crl is 1000 times larger in magnitude then we use yi/lOOO 

instead of y; and instead of crl we take a l / l O O O .  After we find the solution we convert the 

parameters back to  the original scale. This was found to  improve the convergence rate of 

the procedures we describe next. 

3.2 Maximum likelihood estimates (ML) 

We begin by making the following assumptions: 

1. The photon count from one aluminum disc does not affxt the photon count observed 

from another disc. 



2. The applied dose x can be measured without any error. 

3. The observed photon count y is related to  the dose received by the sample x according 
xSa2 to the model y = f(x, @)(I + or;), where f(x,@) = ul (1 - exp [-I) 0 3  (Section 

2.3). 

4. The random errors in the photon counts ( r7s ) follow a normal distribution with zero 

mean and unit variance. 

5. The relative error in a single measurement o (= e) is constant. 

Under the above assumptions the likelihood function for a sample of n observations is 

The log-likelihood b(8, a) apart from a constant is 

Let $T = (al, a 2 ,  as, o) = (eT,  0). The maximum likelihood estimates solve the system of 

az az equations -5;3; = 0. Equating to  zero, we find 

The gradient vector of l with respect t o  8 is 

where 

and 

(vfilT = ( f  ( x i  0 ) )  - (a) - - ( f i  --- afi afi ) - 
d8 88 da2 ' da3 ' 

The partial derivatives of fi with respect to  the components of 0 are 



The solution of likelihood equations: 

We use a Zpart iteration (Green f331). Th' is means, 

1. Use the starting values for 8 to estimate a. 

2. Holding a fixed, solve the likelihood equations for 8. 

3. Use the new parameter estimates for 8 to update a 

4. Repeat the process until desired convergence. 

We describe two algorithms that solve the likelihood equations. 

1. An iteratively re-weighted least squares algorithm. 

2. The Newton Raphson algorithm 

An iteratively re-weighted least squares algorithm: 

Green [33] describes an iteratively re-weighted least squares algorithm that solves likelihood 

equations. First we briefly describe the algorithm in general terms. Then we apply the 

algorithm to  solve the likelihood equations in our problem. 

Let l(6,a) be the log-likelihood function of an n-vector 7 of predictors. The maximum 

likelihood estimates solve the likelihood equations $$ = 0. The standard Newton Raphson 

method uses the iterative scheme 

t o  find the estimates for B at the (k + 1)st iteration; here H k  is the Hessian matrix (&) 

and g l k  is the gradient vector (g), both evaluated at the parameter estimates from the 

kth iteration. 

Let u be the n-vector and D be the n x p matrix 3. Then, the likelihood equations 

c a  be written as = IITu = 0. Using the  introduced matrix notation, the Newton 

Raphson iterative scheme can be written as 



Fisher's scoring technique replaces 

From the likelihood equations for 

23- by its expectation vdue. Note that a w  

the normal error model we find E ( E )  = 0. Let A  

denote the matrix E (-g) . Then, it is easy to  see that E (-a) = D ~ A L ) .  Thus, 

using Fisher's scoring technique the algorithm 3.5 can be written as 

Writing ($ - 8) = ,b we get 

( D ~ A D ) ~  = D ~ A A - ~ U .  

(Assume that D is of fil l  rank p, and that A  is positive definite throughout the parameter 

space.) 

The above equations have the form of normal equations for a weighted least squares 

regression. So ,b can be found by minimizing the weighted error sum of squares 

Next we apply the above algorithm to solve the likelihood equations of our problem. 

The log-likelihood is 

and 

For our model, E (y; - f ; )2  = E (f:a2rq) = a2 f:. Thus, 



and 

Thus, in our case the matrix A is diagonal with the ith diagonal element 

and D is the n x 3 matrix with the ith row having entries %,% and (Equations 3.4). 

Next we outline an algorithm for solving likelihood equations. 

1. Find an initial estimate O0 for 8. 

2. Evaluate fi a t  the starting values. 

3. Estimate a from equation 3.2. 

4. Evaluate the matrix D(= g). 
5. Compute the n-vector u(= 6)  consisting of the elements given by 3.7. 

6. Compute the matrix A that has elements given by 3.9. 

7. At the (k+l)st iteration, ,dk is estimated from A = ( D ~ A ~ D ~ ) - ' D ~ u * .  The subscript 

k indicates that the corresponding terms are evaluated a t  the parameter estimates from 

the kth iteration. (Gaussian elimination can be used to  solve ( D ~ A * D ~ ) @ *  = D:U~ 

for jk, thus avoiding matrix inversion.) 

8. At the (k + 1)st iteration estimate 0 from 6(k+l)  = 6k + A. 

9. Repeat the above procedure until desired convergence, each time replacing 8 from its 

current estimate. In the algorithms we developed, the convergence criteria for 0 was 

taken as when the step size p < l e  - 5, or, when all the components of the p-vector 

are less than l e  - 5. 



Variance covariance matrix of maximum likelihood estimates: 

Let @ = (oT, c) .  From the large sample theory for maximum likelihood estimators, 

the asymptotic variance covariance matrix of 4 is I-'(#), where I(+) = E (-$$) . An 

estimate for the variance covariance matrix can be obtained by evaluating I(+) at 6. In 

particular, the standard errors of the maximum likelihood estimates can be estimated as the 

square roots of the diagonal elements of I-'($). Recall that E (-~SF) = D ~ A D .  Now 

consider 

It is easy to see that E [- &] = C:=, ( ) . 
find E (-$) = $. Thus the matrix I ($ )  is given by 

Using standard matrix inversion results (see Rao [51]) we find that the variance covariance 

matrix of b is 

v(e)  = (DTAD)-~ + E'E;~E?, 

where Ez = 3 - 3 [E:=~ (Y)~] (DT AD) [& (9) A (note that E2 is a scalar) and 

F = $ (DTAD)-I (9) .. Since (DTAD)-I is immediately available from the last step of 

the dgorithm we can easily compute the asymptotic variance covariance matrix of e. 

The Newton h p h s o n  algorithm: 

a2 I Before presenting the algorithm we first compute the matrix of second derivatives H = mT 
that is needed in the Newton Raphson algorithm. 

Differentiating equation 3.3 with respect to 6, we get 

where 

f;) 3 2 (yi - fi)2 
0 2  .- 

(3.11) 
1-1 fi" 



Note that A; which is the matrix of second deriwtives of fi with respect to 8 is a symmetric 

matrix of order 3. The elements of A; = (alm)3x3 are: 

The Newton Raphson algorithm for solving the likelihood equations proceeds as follows. 

1. Find an initial estimate for 8. 

2. Estimate a using equation 3.2. 

3. Compute T I  using equation 3.3. 

4. Compute H using equation 3.10. 

5. At the (k + 1)st iteration, 8 is estimated from 

e(k+l) = & - B;' v 

6. Re-estimate sigma from equation 3.2. 

7. Repeat until the desired convergence criteria are met. 

We developed software using the statistical package '5-plus" to implement the above 

algorithm. (We experimented with the built-in procedure "nlmin" sf S-plus but found it 

sometimes failed to  converge.) The convergence criteria were determined as follows: 



1. The absolute vakites of d the components of the gradient vector are all less than 

a small value €1 (in our program we used c1 = x I O - ~ )  and, the eigenvalues of the 

Hessian matrix at the solution point are all negative or, 

2. The absolute difference of the successive iterative points of all the parameters crl ,  crz 

and 0 3  are less than a small value €2 (we used €2 = x lW5)  or, 

3. A maximum number of iterations(e.g. 200) is reached (this was never the case for the 

data sets we analyzed). 

Variance covariance matrix of maximum likelihood estimates: 

Let @ = (eT,c).  From the large sample theory for maximum likelihood estimators, 

the asymptotic variance covariance matrix of 6 is I-'($), where I(#) = E (-&) . An 

estimate for the variance covariance matrix can be obtained by evaluating I ($)  at 6. In 

particular, the standard errors of the maximum likelihood estimates can be estimated as 

the square roots of the diagonal elements of I-'($). 

3.3 Quasi-likelihood Estimates (QL) 

One of the assumptions used in deriving maximum likelihood estimates is that the random 

errors r's follow a standard normal distribution. This distributional assumption is not 

required for deriving quasi-likelihood estimates. Quasi-likelihood estimates only require 

the assumptions made on the first two moments of the distribution of the photon counts. 

Thus, we assume the model y = f(x, @ ) ( I $  a E ) ,  with E(y) = f(x, 8 )  = p and V a r ( y )  = 
2 2 a2 f2(x,  0) = a E (y) = V(p). 

The quasi-likelihood Q introduced by Wedderburn [59] and later extended to  the multi- 

variate case by hricCullaugh [48] is defined as any function of p satisfying 

where V-I is a generalized inverse of V. 



The quasi-likelihood estimates for 6 are obtained as solutions of the quasi-likelihood 

eaustions 

For our model these can be written as 

where the n x p  matrix F denotes the derivative of the n-vector f with respect to  the pvector 

8. 

The Gauss Newton algorithm can be used to solve the quasi-likelihood equations. This 

proceeds as follows. 

If the estimates for 9 (say 80) are close to the true parameter values, the nun linear 

function f ( 8 )  can be approximated by the Taylor expansion 

The derivative vector F ( 0 )  and the variance covariance matrix V ( 0 )  can be approximated 

by Fo and Vo which are the derivative vector and the variance covariance matrix evaluated 

at  80. 

The set of equations 3.12 can therefore be written as 

Let zo = [y - f ( B o ) ]  and 6 = ( 0  - 00). Then, the above system of equations gives 

which are the same set of equations as 

The above equations have the form of the normal equations for a weighted least squares 

regression with the dependent variable z, design matrix F, and parameter 6. 



Thus, the estimates for 6 can be f o r d  by minimizing the weighted error sum of squares 
2 R(6) = Cy==, wik[zi - K ~ G ]  , where 

x; = dose received by the ith subsample, 

Ok = the value of the parameter vector ( a l ,  a2, as) at  the kth iteration, 

f ( ~ ,  0kj = (1 - exp (-(xi 4- %)/as)) 

w;k = f(x;, 6k)-2 is the weight on the ith observation at the kth iteration, 

2; = ( ~ i  - f ( ~ i 7 ~ 0 ) ) 7  

and F; = gradient vector of f (xi, 0) evaluated at  the kth step of the iteration. 

We use an iteratively re-weighted least squares algorithm to solve the above equations. 

The algorithm proceeds as follows. 

1. Calculate the weights w;o using the initial parameter estimates. Let Wo be the diagonal 

matrix of order n that has wiO's as diagonal elements. 

2. New estimates for 6 are given by 60 = ( F ~ w ~ F ~ ) - ~ ( ~ ~ w ~ ~ ~ ) ;  here zo is the n-vector 

with entries yi - f (xi, Bo), i = 1,. . . , n. 

3. New estimates for 0 are given by O1 = Bo + 60. 

4. Recalculate the weight matrix W and the n x p matrix F using the new estimates for 

0 and use it to compute 6. 

5. At the ( r  + 1)st step, the estimates for 0 are given by 

= 0, + 6,, where 6, = (F~~W~F~)- ' (F?W~Z~) ;  here i, is the n-vector with 

entries y; - f(si7 Or), Z = 1,. . . , n. 

6. Repeat the above procedure until the desired convergence. In the algorithms we 

developed the convergence criteria for 0 was taken as when the step size 6 < l e  - 5.  

Remarks: 

At the kth step of the iteration, the quasi-likelihood estimate & minimizes 



So, the estimates 8 k  solve the system of equations 

where vf6 denotes the gradient vector evaluated at 8. In the limit. the estimates solve 

Estimating a 

We note that the quasi-likelihood estimating equations do not involve a. So, we can 

estimate 6 without knowledge of a. We have two choices for estimating a: 

1. For a model with mean function E(yi) = p; and variance function V(y;) = a,, Davidian 

and Carroll f23] suggests estimating G; from the estimating equai-ion 

For our problem this gives 

So, we can estimate a2 as b2 = rr r=f (Y.-i.)l; here f indicates the fitted values, 
f; 

which are f (si, 6) evaluated at 0. For our problem this estimate is identical to the 

maximum likelihood estimate for a. 

2. The parameter a can be estimated by equating the Pearson x2 to its degrees of free- 

dom. This gives 

I - (n  - p )  = 0. 

This suggests the estimate 

where p is the number of components of 8. We use the latter estimate (Equation 3.14) 

when we estimate the error of the quasi-likelihood estimate. We refer to this estimate a3 

the unbiased estimate of a; a small a justification of the jargon is in Chapter 5. 



Variance Covariance matrix of quasi-likelihood estimates: 

The asymptotic v.ariauce covariance matrix of the quasi-likelihood estimates is V(0 )  = 

aZ (F'wF)-' for the matrices F and W defined earlier. An estimate for the variance 

covariance matrix of 8 can be obtained by replacing the unknown parameters by their esti- 

mates. h particular. the diagonal elements of ~ ( 6 )  provide estimates for the errors of the 

quasi-likelihood estimates- 

3.4 Generaked least squares estimates (GLS) 

This is a generalization of the linear generatized least squares procedure. The linear gener- 

ahzed least squares estimate is found by minimizing the weighted error sum of squares 

where f(8) is linear in 8 and V(6)  is the variance covariance matrix of Y. The value of 8 

minimizing S solves 

We used the fMSL sabrontine TU'EQSF to solve these equations starting from an initial 

estimate from quasi-likelihood estimate. This system of equations is different from quasi- 

IIkebhood estimating equations. As in quasi-likelihood, the estimating equations for 8 

does not involve a. Conquently, we estimate 8 without knowledge of a. Once we 

have found the generalized Ieast squares estimates for 6, we can estimate a from ~5~ = 

W wiIf later (,%aim 4.3) see that GGLS estimates are not consistent. Consequently. 

'twianee estimates are not relevant. However, asymptotic theory justifying the procedure 

and producing approximate standard errors is atailable for a small o approximation; see 

Section 3-9. 



3.5 Data weighted least squares (DWLS) 

We now describe another method cited in Berger and Huntley ([12]). This is similar to the 

generalized least squares described in the previous section except for the weights used in the 

minimization. In generalized least squares [ ~ t y ) ] - ~  = [f(zi719)]-' are used as weights. In 

this method, yr2  are used as  weights. Consequently, the estimates 8 minimize the weighted 

error sum of squares 

We refer t o  this method as "Data Weighted Least Squares" and use the abbreviation DWLS. 

The data weighted least squares estimates 8 solve the system of equations 

where vfi denotes the gradient vector evaluated at  8. 
The algorithm described for solving quasi-likelihood equations can be used to solve the 

above equations by modifying the weight matrix accordingly. 

Similar to quasi-likelihood estimating equations, the equations that solve for D W LS 

estimates do not involve a. Once we have found the DWLS estimates, a can be estimated 

1 " 2 = - C;=l ( ~ i - i t ) 2  

( n - p )  i? 
As for GLS, data weighted least squares estimates are not in general consistent; see 

Section 4.1. Again, small a theory is available; see Section 3.9. 

3.6 Maximum likelihood estimates for the gamma model 

Suppose the photon count y; has a gamma distribution with mean p = f (xi, 8) and variance 

V(y) = a2 [f (zi7 0)f2. Assuming that photon counts from different discs are independent, 

the 3kefiiood for the sample yl , . . . , y, caE be written as 

/ -1 
[ E L I  " &-$J/ - c:=1 - 1% (&)I 

Lr(B, a2)  = exp 
u2 

+ b ( ~ l , .  . . ,yn,a2j 



Taking 7t; = -"'- j (3% $1 j 
the log-EkeEhood can be written as 

The maximum likelihood estimate 6 for 8 maximizes the log likelihood function. Since 

b( y17 . . . , y2, a2 j does not involve 8, this is equivalent to maximizing L = Cy=l yiq; + 
Cyzl log(-%) with respect to 8. Consequently, the estimates 0 solves 

which is equivalent to solving 

here ej denotes the j th component of 8. We recall that quasi-likelihood estimates also satisfy 

the set of equations 3.15. Thus for our problem, the maximum likelihood estimates obtained 

assuming photon counts follow a gamma distribution are identical to  the quasi-likelihood 

estimates. 

3.7 Bias of the least squares estimator for parameters in the 

standard nonlinear regression model 

The standard nonlinear regression model is of the form y; = f(z;, 8) + 6; (i = I , . .  . , n), 

where we assume that th? random errors 6; follow a normal distribution with zero mean 

and constant variance. Several authors have addressed the problem of computing the bias 

of least squared estimator for B in this model. (eg. Box [14], Cook [17].). For ease of 

comparison with our formulae, we present the formula derived by Box [14]: 

where 

o2 = Var(ci), 

fk = kth response function, 

f = Gradient vector of the kth response function, 



and 

Hk = Matrix of second derivatives of the lcth response function. 

3.8 Biases of the estimators 

Notation: 

Let 

y; = observed photon count from the ith subsample, 

x; = dose applied to  the ith subsample, 

00 = vector of unknown true parameters = ( a l ,  cuz, a3), 

f (x; , 00) = ith response function = 

a = relative error in a single measurement, 

and n = sample size. 

For notational convenience we further introduce the following. 

We denote f (q, 8 )  and f (xi, Bo) by fi and fo respectively. It is important to note that 

our notation omits the dependence of fo and f8 on i. However, it was decided to use 

this notation to  simplify the work of presenting the lengthy computations that follow. 

We denote the gradient vector and the matrix of second derivatives (i.e. the Hessian 

matrix ) by vf and H respectively; a subscript is used to indicate the parameter 

point at  which each quantity is evaluated. For example, (V fo) indicates the gradient 

vector evaluated a t  the true parameter value O0 whereas fj indicate, the gradient 

vector evaluated at  8. Again note that the quantities vfi and Ho depend on i which 

we sometimes omit for notational convenience. 

Assumptions: 

1. The relative error in a single measurement a is small, so that the terms of order 0 ( a 3 )  

and higher are negligible. 



2. For small o, we approximate 8 by t? = 60 + Clo + Cza2, where Cl and Cz depend 

on f(x7 80) and E but not on a. In Section 3.10, we examine this approximation by a 

Monte Carlo study. 

First we present some calculations that are common to all four methods of estimation. 

For close to 00, the Taylor approximation of f (z;, e )  around 80 can be written as 

Therefore, we find 

1 1 

and 

Since yi = fo + foaei, we find 

and 
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-
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where 

1 " vfo ', of0 
--xc;($)c1 ;=, (i_, +kc: a = 1  (i_). 

Since we assume that 6;'s have mean zero, E(Cl) = 0 (See Equation 3.23.). 

Using the results of Appendix 9.3 we find 

Therefore. 
n vfo n 

of0 
~ ( ~ 2 1 ~  {- i= 1 ( ~ 1 , i  - 3) (x) - 

w2,i (%)I, 2 i=1 
where 

= l$(~)~(y)y]-~ = Variance covariance matrix of Cl 

p = number of components of 3 

and w2,i = f~ [(s) C] . 
fo i 



Noting that e = do + Clo  + C202, with E(Cl )  = 0, the bias in 8 is computed to order 

0(03) as: 

bias in 6 = E ( P )  - go = E(C2)a2, (3.27) 

The quasi-likelihood estimator 6 satisfies the equation 

Equating the coefficients of powers of a;  

where 



Using the results of Appendix 9.3 we find 

Therefore, 

As before, 6 = do + C1o + C202 with E(C1) = 0. Therefore, 

n 
of0 bias in B = B {-$ c w,, (i_)} n2. 

i=l 

3.8.3 Generalized least squares 

The generalized least squares estimator 6 minimizes 

So, 6 satisfies the set of equations 



Equating the coefficients of powers of o; 

oO; 0 = 

* C1 = 

a'; O = 

* O =  

3 C2 = 

where 

i=l i=l 
n 

i=l 

i=l 

Thus, 

T 

n 

t=l 



From the result 4 of Appendix 9.3, 

" of0 vfo of0 of0 

( 7 )  d T  = g w l k ) .  

The expected value of C2 can therefore be written as 

of0 vfo 1 of0 
2 )  = { ( )  - 1 ( )  - - c i=1 w2,i (,) ) a 

As before, 6 = O0 + Cla + C2a2 with E(C1) = 0. Therefore, 

bias in 9 = ~ ( 9 )  - Bo = E ( C ~ ) O ~  

3.8.4 Data weighted least squares 

The data weighted least squares estimator minimizes 

as = 0, which can be written as So, 6 satisfies the set of equations 

Equating the coefficients of powers of a;  





3.9 Mean squared errors of the estimators 

We begin by proving the following results. 

Result 1 If the random errors ~ ; ' s  are independent and follow a distribution that is sym- 

metric about zero, then E ( E ~ M C ~ C ? )  = 0 for any matrix M with non stochastic elements; 

the matrix M is assumed to be of the correct o d e r  to allow the matrix multiplication. 

Proof: Recall that C1 = C C:,, ri (y) . Since C is a symmetric matrix, 

n n 

E (&€C~C?) = M C E  

Since ri7s are independent and E(ci)  = E(<) = 0, we find E ( ~ ; M c ~ c ? )  = 0. 

Result 2 If the random errors ri's are independent and follow a distribution that is sym- 

metric about zeroo, then E ( C ~ M C ~ C ~ )  = 0 for any matrix M with non stochastic elements; 

the matrix M is assumed to be of correct order to allow the matrix multiplication. 

Prod The proof follows as in the previous result. 

Result 3 If the random errors E;'S are independent and follow a distribution that is sym- 

metric about zero, then for all four estimation methods, vectors C1 and C2 are uncorreladed. 

P200fi 

We recall that, with an error of approximation 0(a3), each estimator satisfies the approxi- 

mation 8 = Bo + Cr a + C2a2, where 



for the matrix A defmed in each case. Since E(C1) = 0, we have Coc(C1. C2)  = E ( C ~ C ~ ) .  

Now on substitution for A: it follows that Cou(C1, C 2 )  = 0. 

Mean squared error 

For small a we showed that 8 = Bo + Cla  + C2a2 + 0 <a3), where 

and Cov(C1,C2) = 0. 

y&' -l 
Since ei7s are independent and V(6i) = 1, we find Var(C1) = [x:=, (y)i ( jo J i  ] . 

T -I 
~ h u s ,  ~ a r ( B )  = =a2 + 0 ( a 4 )  = (q)i (%);I 02 + 0(c4)-  

The mean squared error is given by M S E ( ~ )  = var (0 )  + ( b i ~ s ) ~ .  The biases and the 

variances of the estimators are summarized in the Table 3.1; the resulting mean squared 

errors are correct to  the order 0 ( a 4 ) .  In Table 3.1, 

Table 3.1: The biases and the variances of the estimators for single curve fitting 

Xumber of components of 8 

1 

xu2 

co2 
Ca2 

C a 2  

I I 

! Estimation i 

I ML 

QL 1 E {-e cyZl w2,i (y);} c2 

I GLS 

DWLS 

(9). - c:=~ w1.i (9) - 5 w2,i (9) ; } 
1 = (-2 (+) + 2 xZ1 w1.i (9); - 5 E=I w2.i (9) ;) 



3.10 Examination of the assumptions used in estimating the 

bias 

Sow we describe a Monte Carlo study that examines the approximation = Bo + Clo+ C202, 
@-b) vs in our setting. If this assumption holds, then a plot of each of the components of 

~7 should be a straight fine with the intercept and slope the correspo=lding components of 

and C2. 

1. We chose a to be the sequence of dries that divide the interval f0.0001: 0.31 into 20 

equal parts. 

2. We chose the dose levels to  be the same as those used for the data set QNL84-2 of 

Berger and Buntley [i2;. T&s dose ~ ' U G  are presented in Tabie 8.1 of Appendix 9.3 

where they are labeled as PP1. Let XI. . . . z, be the chosen dose values; for this data 

n = 16. 

3. We set the parameters at a1 = 142800.7-a2 = 122.737 and a3 = 391.9965. These are 

the quasi-likelihood estimates obtained for this data set. (The complete data set can 

be found in Berge-r and Bz~ntky [12].) 

4. We generated a s i n e  set of n standard normal random Mates ' .  Let this sample be 

€ I ~ . - * ~ € ~ -  

5. For each a. a sample of y \dues were then generated according t o  the relation 

pi = f (z;. 8)(1+ ae;) for f(zit 8) = a1 (1 - exp [ - (x i  + az )/a3]). 

6. The procedures described in Sections 3.2 - 3.5 were then iollow~d to estimate the 

parameters in the model 

Thus. we have an estimate for ti corresponding to  each d u e  of a. 

Figores 3.1 - 3.6 illnstrate the plot of the kth component of (d - &)/a vs n, (k = 1,2,3). 

'Ke nsed the command "mom' in the statistical package %-plus? to generate the standard normal 
r d m  varl~tes. 



Figure 3.1: Plot of vs r r :  ML and QL 

Figure 3.2: Plot of vs 0: GLS and DWLS 
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Conclusions: 

I. Based on the Figures 3.1 - 3.6, we conclude that when a is smafier than 0.1, the ap- 

proximation 6 = 90 + Cla + C2a2 holds for all the estimation methods we studied. 

This justifies the validity of the above approximation for data collected in thermolu- 

minescence studiese2 The same figures demonstrate that the approximation does not 

hold for the methods ML? GLS and DWLS when a is larger than 0.1. 

2. We also computed estimates for the kth components of C1 and C;! by regressing the 

kth component of (0 - Bo)/o on a ;  (k = 1,2,3). Using the known parameter values 

and the 6; 's, the true values of C1 and C2 were also computed using the formulae 

derived earlier. For aiI four estimation methods the regression estimates were found 

to agree with the values from the formulae when the regression is based on the values 

of a less than 0.1. This justifies the validity of the approximation 6 = & + Cla+ C2a2 

for thermoluminescence data. Using all the points on the plots in the regression, in 

particular points with 0.1 < a < 0.3, the ML, GLS and DWLS estimates for C2 were 

found to show discrepancies from their true values whereas quasi-likelihood estimates 

were still fomd to  agree with the trite d u e s .  

3. We repeated the study by setting the parameters a t  B = (96428.32,193.3713,761.6514)~. 

These are the QL estimates for the bleached data set QKL84-2 (Berger et. al. 1121). 

The dose values were set at the doses used in the same study. These dose levels are 

presented in Table 9.1 of Appendix 9.3 where they are coded as PIB. The results 

were similar to  what we observed for the study reported earlier. 

' ~ s n a l l ~  for data collected for themoluminescence studies u is around 0.03. 



3.11 Assessing the validity of the formulae for estimating the 

biases 

In deriving formulae for the biases of the estimators we assumed is small and the quantity 

@=!! 0 varies roughly linearly with o. While the study described in Section 3.10 indicates no 

evidence for possible violation of this assumption for o in the razge of real data sets, as 

a further diagnostic, we computed the biases from a simulation study and compared with 

the biases from the formulae. In contrast to the study we described in t.he previous section 

here a was fixed at values for which we wish to  study the biases. The parameter vector 

Bo = (a l ,  a2, ag) was set a t  a-1 = 142800.7, a2 = 122.737 and as = 391.9965. The dose 

values used are presented in Tabk 9.1 of Appendix 9.3 where they are coded as P l U .  Using 

each sample of ~ ' s  a sample of y;'s were generated according to y; = f(x;, &)(I  + 06;). 
Using each of the four methods was estimated from each sample. The true value of 

SLh nfn. T -I 
Cl = [C:=l ( ); ( fa ); ] x:=f E; (9) . was computed using the ri's generated in 

step 3. The biases from the simulation study were computed as the average of the values 

for (6 - So - Clo). 

Tables 3.2 t o  3.4 presents the resdts of the Monte Carlo study based on m = 10000 

simdations. In the tables: 

BT = True small a bias using the formulae derived in Section 3.1 1 

B1 = the average of the 6 - Bo - Cla values. 

Remarks: 

It is worth mentioning why we take the average of the differences ( I  - do - Clo), but not 

(ci - $1. Let 

We note that for large enough rn. the average of the rn values of (6 - Bo - Clo) should 

be dose to E(O - Bo - Clo). This is the bias of 6 since E(Cl j is zero. Theoretically, both 



averages and 8 2  should provide reasonable estimates for the bias in 6. However, the large 

variability in C1 produces a large variability in B*. In other words, v ~ T ( B ~ )  > v ~ T ( B ~ ) .  

Therefore, we report B~ as the bias from the simulation study. 

Table 3.2: Comparison of exact bias and estimated bias of b1 

ML 

BT B1 

4.87 1 4.80 

f 

0 :  
I 

ML 1 i QL j GLS i DWLS 1 

Table 3.3: Comparison of exact bias and estimated bias of 6 2  

Q L 

BT B; 

5-73 / 5.71 

19.49 1 19.66 / 22.92 / 22.86 

77.95 1 77.25 / 91.68 1 91.63 
I 

175.40 / 180.01 1 206.28 / 209.44 

i I 487.21 j 503.50 1 573.01 1 590.34 

1948.85 1 2089.49 i 2292.04 / 2502.18 

GLS 

BT 

7.77 

31.09 

124.36 

279.82 

I 

B 1  

7.68 

31.24 

123.78 

284.52 

6.58 

26.32 

59.21 

164.48 

657.91 

DWLS 
I 

BT I B 1  

777.28 1 794.14 

3109.10 1 3366.71 

1 6.54 

27.71 

60.70 

196.62 

1247.42 

1.64 1.77 



1 i ML 1 GLS DM'LS 
I 

Table 3.4: Comparison of exzct bias and estimated bias of cj13 

Conclusions 

Based on the study we draw the following conclusions. 

1. The biases from the simulation study agree well with the biases from the derived 

formulae when a _< 0.1. 

2. For the parameter a*, the DWLS estimator appears t o  have the least bias whereas 

the GLS estimator appears to  have the largest bias. 

3. For the parameters a2 and as, the ML and GLS estimators appears to have almost 

the same bias. 

The above results were obtained using a sample of size 16. A detailed study comparing the 

biases of the four estimators is presented in Chapter 4. 

3.12 Worked example - 
-.!7 we developed software using the s ta t i s t id  package US-phis" (and dso in FORTRAN) to 

implement the suggested methodology. Sext we demonstrate the theoretical results derived 

in this chapter using a real data set- The data set used here can be found in Berger et, 



aE. [12], where it is coded as QNL84-2. Parameter estimates for this data set are given in 

Tables 3.5 and 3.6. 

In Tables 3.5 and 3.6, MSE stands for mean squared error. For maximum likelihood 

we have used the maximum likelihood estimate for a. For the other three methods we have 

used the unbiased estimate for a. The biases in Tables 3.5 and 3.6 are computed using the 

formulae given in Table 3.1 with parameters replaced by estimates; so, for example, the bias 

of ML estimates is computed by using ML estimates in Tables 3.5 and 3.6. 

Data 

QNL84-2 

(Unbleached) 

(n= 16) 

para. 

a1 

a 2  

- -  --- 

Description I Method 

ML QL GLS I DWLS 
- - - 

Estimate / 142852.8 1 142800.7 1 142973.0 1 142461.8 
I 

bias / 150.29 1 237.51 1 323.43 1 64.82 

std. error (se) 1 4117.15 / 4557.60 1 4573.13 1 4546.62 I 

Estimate / 123.18 1 122.74 1 123.18 1 121.86 

bias 1 0.10 / 0.16 1 0.10 / 0.29 

std.error (se) / 6.09 1 6.73 6.76 6.70 
I 

bias/ x 100% / 1.31 2.38 1.48 4.32 

Estimate 
i 
1393.07 392.00 393.07 389.92 

bias 1 1.27 1 1.69 1 1.42 1 2.24 

std-error (se) / 27.79 1 30.68 1 30.82 1 30.56 

bias/v/MSEMSE x 100% 4.13 5.50 4.60 7.31 

Estimate 0.029 0.032 0.032 0.032 

Table 3.5: Parameter estimates for the QNL84-2 unbleached data set 



Data 

QNL84-2 

(Bleached) 

(n=13) 

para. 1 ' Description 1 Met hod 

Mi QL GLS DWLS 

a1 Estimate 96144.8 96428.3 96301.7 96725.0 

bias 983.82 1515.38 1483.55 1615.75 

std.error (se) 8322.65 9611.64 9511.99 9891 -64 

b i a s / d m x 1 0 0 %  11.72 15.57 15.41 16.12 

a 2  Estimate 192.55 193.37 192.54 195.18 

1 bias 0.53 1.02 0.69 1.70 

s t  d.error (se) 16.34 18.75 15.62 19.14 

bias/ JMSE x 100% 3.24 5.43 3.70 8.85 ------ 
a3 

I 
Estimate 756.62 761.65 756.60 772.76 

bias 15.30 22.83 19.86 29.50 

s t  d-error (se) 123.42 142.47 140.60 147.50 

b i a s / d m  x 100% 12.30 15.82 13.99 19.61 

o Estimate 0.040 0.046 0.046 0.046 

Table 3.6: Parameter estimates for the QNL84-2 bleached data set 

3.13 Discussion 

In this chapter, we discussed fitting the saturating exponential model introduced in Chapter 

2. In sections 3.2 to 3.4, we derived Maximum Likelihood (ML), Quasi Likelihood (QL) and 

Generalized Least squares (GLS) estimates for the parameters. In Section 3.5, we obtained 

estimates from a procedure that we referred to  as Data Weighted Least Squares (DWLS). 

In Section 3.6, we obtained maximum likelihood estimates assuming photon counts follow 

a gamma distribution. 

In Section 3.8, we derived formulae for the biases of the estimators assuming: 

1. the relative error in a single measurement a is small. 

2. when o is small, 0 can be approximated by e = Bo + Clo + CzaZ. 



In Section 3.10, we examined this approximation from a Monte Carlo study. We found 

that, when u is small (a < 0.11, all four estimators satisfy the approximation 6 = Oo + 
Cl a + C ~ U ~ .  We also learned that the quasi-likelihood estimates satisfy the. assumption for 

a wider range of a compared to the estimates from other three procedures. Since data sets 

collected for thermoluminescence studies have small a (usually < 5%) ,  we conclude that 

this approximation holds for all four estimators in our model. 

In Section 3.11, we computed the biases from a simulation study z-nd compared with 

the biases from the derived formulae. We found that the biases from the simulation study 

agree well with the biases from the formulae when a is small (a 5 0.1). From the same 

study we found that, for the parameter al, the DWLS estimator has the least bias whereas 

the generalized least squares has the largest bias. For the parameters crz and as,  the DWLS 

estimator was found to have the largest bias. For the parameters cr2 and as, the maximum 

likelihood estimator and the generalized least squares estimator were found to have almost 

the same bias. These results were observed using a siimple of size 16. A detailed study on 

comparing the estimators will be offered in the the next chapter. From the results of the 

real data set we notice that the relative biases of all parameter estimates are small compared 

to  their standard errors so that the biases are aJl negligible. 



Chapter 4 

Comparison of the estimation 

procedures 

In this chapter, we compare the estimators discussed in Chapter 3. Two types of asymptotic 

results are of interest: behavior of the estimators as the sample size n becomes large and the 

behavior of the estimators as the relative error in a single measurement a becomes small. 

The data sets collected in thermoluminescence studies are frequently small in size. (The 

partial bleach data sets we analyzed had n in the range 15 -30.) Moreover, the estimate 

of a is usually small (in the range 0.02-0.05 in most cases). Thus, for thermoluminescence 

studies, a comparison of the methods as a -> 0 is more appropriate. For completeness, we 

investigate both asymptotics. 

In Section 4.1, we examine the large sample asymptotic behavior of the estimators. 

We show that the quasi-likelihood estimator and the maximum likelihood estimator are 

consistent for 0. We also provide distributional approximations for the maximum likelihood 

and quasi-likelihood estimators. In Section 4.2, we analyze the large sample behavior of our 

small o approximation to 9 - 8. In this limiting case, we show that the quasi-likelihood 

estimator and the maximum likelihood estimator are mean squared error consistent. We 

also show that, in general, the generalized least squares and the data weighted least squares 

estimatol, nave biases that do not vanish even asymptotically. However, for the parameter 

of interest in our model, generalized least squares and data weighted least squares were 



dso  found to  produce asymgtoticaUy unbiased estimators. In Section 4.3, we compare the 

biases of the estimators in small samples assuming a is small. For realistic size samples, 

biases of all four estimators were found to  be negligible relative to the standard errors of 

the estimators. Section 4.4 summarizes the chapter. 

4.1 Large n, fixed o asymptotics 

Here we analyze the large sample asymptotic behavior of the estimators when a is fixed 

and n --+ m. We prove that the maximum likelihood estimator and the quasi-likelihood 

estimator are consistent and generalized least squares and data weighted least squares are 

not. 

Notation: 

Let f (0) = ( fi(8), . . . fn(0)) be a real valued vector function. Assume that each component 

f i (B) ,  i = 1,.  . .n is defined on Rk. Let D f (6) be the matrix of derivatives of f  with respect 

to the components of B and 11 f (8) 112= C;=df;2(0) be the Euclidean norm of f .  

We use the notations A- [A] and A,, [A] to denote the smallest and largest eigenvalues 

of a given matrix A. 

We begin by examining the following result which is useful in proving the consistency of 

the maximum likelihood and the quasi-likelihood estimators. 

Result 1 Let R C Rk be a bounded open set. Let dQ denote the boundary of 0. Let 
- 
R = R U 852 be the closure of R. 

- 
Let f : R t-, Ilk be such that: 

1. f is continuous on n. 

3. DDf(8) is not singular in Q. 

4. 30* E R such that, j j  f (8*) 11 < inf { lJ f (0) 11 I 0 E dR) . 

Then, 3 8 rR such that, f (6) = 0. 



Proof: 

Note that the function g defined by g(6) =] I  f (6 )  jI2= CrZl z ( 6 )  is differentiable in R. 

Since f is continuous on a, g is also continuous on G. Therefore, 38 in a such that 

g(8) is a minimum. Condition 4 implies 8 E $2. Therefore, ~ ~ ( 8 )  = 0. This implies that 

D f (8)  f ( 8 )  = 0. But D f (8)  is not singular. Therefore, f ( 8 )  = 0; hence the theorem- 

Now we apply the above result t o  see that the maximum likelihood and quasi-likelihood 

estimators are consistent. Writing fi = f (z;, B ) ,  the maximum likelihood estimates (8.6) 

solve the set of equations Hn(6) defined by 

and 

The quasi-likelihood estimator 8 solves 

So both estimators solve a generd equation of the form 

Under the assumption that yi = f(xi ,8)(1 + oei)  with E(E;)  = 0 and Var(6;) = 1 we have 

E f hi (Y; ,8 ) )  = 0 and VUT (hi (Yi, 8 j) < m. 

Result 2 Let Y1, Yz, . . . , Y, be independent nrndorn variables with mean E(Y,) = f (s;, 9 )  

and V(x) = o2 f 2 ( x i ,  6) .  Under the following assumptions, the mazinzurn likelihood and 

quasi-likelihood estimators are consistent for 8. 



I .  The fanetion hi( E;:, Cij is diflerentiabfe in 8 for each Yi .  

3. As n - ir ,  Var(A,(BoJ] = !C:=, Var(hi) -- C(80), where C(9o) is non- 

singular. 

1 4. 3 I;i such that ; CF!=, E- is OJI) and there ezists a E > 0 such thcst 

here hik is the kth compunent of hi. 

Prwf 

Let Bo be the true parameter value. Let L, be a real number that depends on n such that 

3 is 41) (eg. L, = log(n) or L, = n115) and L, 3 m, as n - m. 

Let 

and 

L ~ I  An[Ln) be the event that 

T&@ f = Bn(8) in Resdt 1- Then, j is continuous in 0 and Assumption 1 implies f is 

&fTerentiabie in ft. To apply Resuit 1. we need to prove that 



2 P A n  - 1. as n + m, or equivalently, for any given e > 0. a positive in tqer  

no(€) exists sack that P (d,(L,)) 2 1 - r ,  for all n 2 n0(c)-  

Proving Condition f: 

kVe prove that DII,(B)  is non-singular in R by proving ( D H , ( o ) ~  ( DH,(O> j is uniformly 

positive definite in R. Equivalently. we prove that xT (0 ~ ~ ( 0 ) ) '  (DH,(O)) I is positive 

for arbitrary x such that zTx = 1. Let Q,(B) = ( D H , ( B ) ) ~  (DHn(B)) and Q,(Bo) = 

2 ti (DH.(BO) jT (DH,(&)) .  Then, zT~ , (B) z  = xT (Q,(B) - Qn($) )  r + X ~ Q , ( B ~ ) ~ .  A~surnp- 

tion 2 implies that +'Q,($)Z 2 f Xk, [MI ; for all z and for a l l  sufficiently large n. 

Sow consider 

Let Uj and Vk be the j t h  row and k th column of the matrix (DH,(B) - DHn(&)) 

respectively. Consider the inner product of r j j  and Vk. Using the Cauchy Schwarz inequality, 

Nov: observe that 

Tbos. the inner product of b> and Vk is of order O p  ($). Similarly, since k D H , ( $ )  

is O(l), we find that the term ( D H , ( & ~ ) ~  (DH,(B) - DH,(Bo)f and its transpose are 

0, (9). Recall that (3) is o( 1). Consequently, for large enough n, for all z, 

Since M is positive definite Amin [MI > 0 and hence r T ~ , ( B ) x  > 0. Thus, 

3 R ( D B , ( @ ) ) ~  (DH,($)) is n n i f o d y  positive definite in R. 



Proving Condition 2: 

Let 6' be such that 

Then, 8' = Bo + %v, for some v such that I /  a ] I 2 =  aTv = 1. 

Taylor expansion of Hn(8*) around 80 gives 

where R, is the remainder term. 

Thus, 

Therefore, 

Use the fact that 11 v fl= 1 to see 

Assumption 2 implies that the eigenvalues of D = (CT=l !Dhi($)) con- 

verges to the eigenvalues of My as n + m. So, for large enough 8, [I D H , ( B ~ ) ~ V  I / >  



$ Jwj~,. The right hand side of this inequality can be made arbitrarily large by 

choosing arbitrarily large L, . 

Assumption 3 and Efio(A,(Oo j) = 0 imply H,(O0) = 0,(1). Therefore, for large enough n, 

L 1 -  
11 &(go f lv) 112 Z\ lL i . (u )Ln  - Op(l)- I I  11  - (4.5) 

f i  
Now consider the remaiainder term 

. L n  - Hn(Q0) - D H n ( @ o t z ~ -  

Let Rnk and Hnk be the k - th components of R, and Hn respectively. Then, 

Since vTu = 1, we find 

Now Assumption 4 implies 

1 Take L, = T Z ' / ~ .  Then, 3 is o,jl) and from Assumption 4, ; x:=, Tz is Op(l ) .  Therefore, 

we find Rmk IS op(l)- For this L,, Equation 4.5 therefore implies 

11 B.(& + L) Ah= 72'1' - 0 ~ 1 )  - op(l) (4.6j Jn - 2  

Since the right h a d  side of Equation 4.6 is free of v and 11 &(go) [ I =  0,(1)? we find 

Then, Resdt 1 implies the existence of 8;, such that I& -sol < 9 = &, and fin(&) = 0. 

Thus, we have established the existence of a root of Ifn(@) in a neighborhood of 80. 



Proving uniqueness 

Suppose there exists more than one root of & ( O )  in Q. Let dl and d2 be two such distinct 

roots. Then, / /  O1 - B2 I j >  0 and Bn(B1) = Bn(B2) = 0. Since 81,82 t R, / /  O1 - O2 I / <  2%. 

Taylor expansion of H n ( B 1  ) around 82 gives 

From the proof of Condition 2, it follows that DII,(B1) ( D H , ( & ) ) ~  is positive definite. 

Therefore, A ~ ,  > 0. Since R, is op{ii el - e2 I ] ) ,  with probability tending to 1, 1 1  Rn I I <  
JGL 11 161 - 02 111 12- 

Now consider 

Since 1 1  el - tI2 [ I f >  0: this contradicts H Hn(B1) - Rn(02) I]= 0. So, there do not exist 81,62 

in fl such that 6, # 62 and Hn(B1) = Hn(B2) = 0. 

~ e t  tfn be the unique root of = O .  AS ltfn - sol < 5, given any t > 0, a positive 

integer no(€)  exists such that* - 801 < E ,  for all n 2 no(€) (eg. take any integer 
- P n > h). This implies that 0, - Bo. Thus, under the Listed assumptions, we have 

P established &5fL - Boy and kL 5 Bo. Hence, maximum likelihood and quasi-likelihood 

estimators are consistent for go. 

Kow we examine the assnmpticns that guarantee the consistency of maximum likelihood 

and quasi-likelihood estimators for our model of interest. 



Quasi-SikeWnood 
1'-f 1 From the quasi-likelihood estimating equations hZk(8) = (v f t ) i  . Thus. for quasi- 
J. 

likelihood DhZk(6) is of the form DhZk{6) = y,G1,(8) + G2,(8). where GI, ( 8 )  and G2,(@) are 

polynomial functions of f ( s , . 8 j  and l / f ( ~ ~ , 8 ) -  For Dhtk(Bf to  be bounded we therefore 

need to  find 6. K: 6 such that for all x > 0.  0 < 6 < f (x,, 9 )  A-. whenever 19 - < b .  

For saturating exponential model this is clearly true provided only f (O,eO) > 0. Moreover, 

we must assume the existence of -&I such that V U T ( ~ )  5 114 for all i. Bote that if j ( x , ,  Ool 

is bounded over d x > 0 and 8 ciose to  €lo, as is the case for saturating exponentials, then ,  

when the model equation y, = f(z , ,Bo)(l  + act) hold with iid c ,  the variance condition is 

simply v a ~ ( ~ , )  < m. 

For the regeneration model that we discuss in Chapter 6, we need the additional condition 

that ! C:.l x, is bonnded. This again is clearly satisfied for sensibly chosen designs. 

Maximum likelihood 

For maximum likelihood DhZk(@) is of the form Dhtk(8) = y:G1,(8) + y,Gz,(8) + G3%(@), 

where again G1;(6),  Gz,(Bf and G3,(@) are polynomial functions of f (x,, 9 )  and l/ f (x,, 8) .  

Thus. in this case in addition to  the conditions discussed for quasi-likelihood we need the 

existence of M such that LLL-ar(X2j < 39. SO, if f ( ~ , , 5 ~ )  is bounded over ail x > 0 and 6 

close to  O0. then when the model equation y, I.= f(x, ,  00)(1 +a€,) hold with iid c, the variance 

condition is simply E(E:) < m. 

Generalized least squares and data weighted least squares 

For fixed a ,  the estimating equations satisfied by the generalized least squares axid the 

data weighted least squares estimators are not unbiased (For GLS it is easy to compute 

the expected value of t5e estimating equations; for DWLS this is difficult in general but  

possible for the gamma model. In both cases the expected d u e  is a multiple of z:=, (9) 
which is 0.). So, generally the generalized least squares and the data weighted least squares 

estimates will not be consistent. 



4.1.1 Distributional approximations for 

QuasLlikefihood estimate 

If E(&) = f ( x i ,  8) the quasi-likelihood estimating equations are unbiased. General large 

sample considerations will then establish that, in large samples and assuming Var(Y;:) < oo, 

( I  - e,) - MVIV (0, E [-~;(e)]-l Var (H,(ej) E [-H;(B)I-') : 

where HA\@) is the derivative of H,48) with respect to  8. It is easy to  see that E [HA(@)] = 
-1 

EL1 (y); (y):. Therefore. E [HA(@)]-' = [~:=l (y) (?):I = z- 
Also notice that 

' """XI ("f) (of)T 
v a w w v )  = C ff .- :-1 f i f i -  

Thus, we find 

For Var(Y,) = a2f2(zj,6) this simplifies to 

(0 - &) - MVN (0, 02z) . 

Maximum likelihood estimate 

Recall that maximum likelihood estimates (4, d) solve the set of equations A,(@) defined by 

Equations 4.1 and 4.2. LI E(Y;:) = f (zi, 9)  and Var(Y,) = a2 f 2 ( ~ i ,  8) these equations are 

unbiased. h large samples, assuming E(x4) < m we find 

(:I: - MVIV (0, E [-E;(B)] -' Var (&(@)I E [-H;(B)]-') , 

where 

As we showed in Chapter 3, E (-.GT) = D ~ A D ,  where D is the n x p matrix with 

(i, j)th entry @ and A is the diagonal matrix with i th diagonal element 2/f2 + l/(02 ff). 



I 
It is easy to see that E [- &] = x:=, ( ) . . 

a2 1 3 - n  y 2  a2 1 Since = 5 - pkZ1  ( 'f, *) we find E (--) = $. 
Now consider 

~ a r  (g) cov (g? C 
V ~ T  (Hn(B))  = [ ar g (~"(a. a,))* (E) 

The components of V U T  (&(9))  are computed as follows: 

Now assuming E [(Y, - fi13] = 0 and E [(Y, - fil41 = 3304f: (the third and fourth moments 
L J 

of normds) the components of v a ~ ( H , ( g ) )  simplify to give 



and Var (g) = 3. 
So for this case, E ( - H h ( 8 ) )  = Var ( H , ( B ) ) .  Therefore, the variance covariance matrix of 

(6,b) reduces to 

Thus, the variance covariance matrix of e is 

1 + 2a2 
v(B) = [( ) ( )  ( )  - I (e (g) ) (2 (g) ')] -' . i=t f i f  i=l f  i i=l f i 

Writing x:=l (y). = (9) the above variance can be rewritten as 
2 

Remarks 

1. Observing that the term {Zr=, [ (Y)~ - (?)I [ (Y)~ - (9 )I is positive def- 

inite, we note that the vakance of the maximum likelihood estimatof is smaller than 

the variance of the quasi-likelihood estimator, provided the errors have the same first 

four moments as the normal distribution. 

2. If a is small? ignoring the second term in Equation 4.8, we find that the above variance 

covariance matrix reduces to the variance covariance matrix derived in Chapter 3, 

based on small a asymptotics. 

4.2 Small cr large n behavior of the estimators 

In this section, we analyze the I q e  sample behavior of our s&& a approximations to 8 - 00. 

In other words, we let a - 0 first and then n - oo- The more general problem in which 



n -- oo and a - 0 simuliarseously is not co~sidered here. Ailother view of the ma.terial 

which follows is t ha twe  analyze the large sample behavior of C1 and C2 in our small CT 

expansions, = go + C 1 c  + C2a2 + 0(03); see Chapter 3. 

Behavior of C1 

Consider first the large sample behavior of C l .  Recall from Chapter 3 that C1 i s  the 

same for all four methods of estimation. If our model has the correct mean structure, i.e., 

E(Y;) = f ( s i ,  8 )  then E(C1) = 0. If in addition, Var(x)  = u2 f 2(2i, 8 )  then Var(C1) = C, 
- 1  

where C = [E:=l (p); (y):] . A natural and mild assumption is that as n - m, 

where C1(9) is non-singular. In this case, neglecting terms of order g2, fi(% 
approximately a N (0, a2C1 (8)) distribution. 

Behavior of C2 

For quasi-likelihood we have 

c2 = 

where 

and 

9) has 

(4.9) 

The weights w2,j are each linear combinations of the entries in C and so on the order, 

typically, of $. The matrix C is on the order O ( l / n )  (see also Halbert [34] (page 15)). 

Thus, E(C2) will be O(!). Examining Equation 4.9 we see that for designs which keep 

f (xi, 00) away from zero, a law of large numbers may be expected to  a.>ply to  Cz yielding 

Cz = O,(l/n). 



In the case of maximum likelihood, C2 (see equation 3.25) contains the term 

which is Op(l / f i ) .  The expected value of C2 for maximum Likelihood is 

The weights wl,i are also linear combinations of the entries in UP and are therefore on the 

order, typically, of i. Thus, E(C2) will be O($). 

Therefore, for quasi-likelihood and maximum likelihood estimators E (e  - Bo) is O(n-I), 

and ~ a r ( 0 )  = Var(bo + Cla $ C2a2) = Co2 + 0(04),  which is O(nV1). Consequently, for 

a small and n large, the maximum likelihood estimator and the quasi-likelihood estimator 

are mean squared error consistent estimators for t90 (see Serfling [56]; technically we have 

established this only for a limit in which a ---t 0 first. 

Turning to generalized least squares and data weighted least squares the situation is 

somewhat different. In Equations 3.33 and 3.39 we see that for these estimators E(C2) 

contains terms such as those above in Equations 4.10 and 4.11 which are O(l /n)  but in 

addition a scalar multiple of the term C CrZl (9)  which appears to  be O(1). 

For response functions of the form f (x, 81, . . , 0,) = 61 f *to2, - . , O p ) ,  where f * is some 

function that does not depend on 4 ,  it is easy to  see that 

and 



Thus, 

The crucial term in C2 giving rise to tht  O i l )  component in E(C2) is C C:=% c: (y), , 
1 

which will normally be (el 0 - . o ) ~  $O,(l/&) (for c;'s with four finite moments). Hence, 

to order a2 ,  is not asymptotically unbiased but all other entries in 0 are asymptoticdly 

unbiased. 

For our model p = 3 and $1 = q. We thus have for generalized least squares the result 

and for data weighted least squares 

Hence, to the order 02, generalized least squares and data weighted least squares estimators 

for ol are not asymptotically unbiased but for a 2  and a3 they are. 

4.3 Small o asymptotic behavior of the estimators in finite 

samples 

For reasons we mentioned earlier, a comparison of the estimators in finite samples as a - 
0 is of more practical value for thermoluminescence studies. Since for small u, all four 

estimators have the s a a e  error of estimation, here we compare the biases of the estimators. 

A comparison of the biases using the derived formulae is not very obvious. Instead, we used 

the derived formulae to compute the biases of the estimators in some arbitrarily chosen 



cases. The results obtained for a selected few cases are given in Tables 4.1-4.4. Similar 

results were observed for the other cases. 

The results given in Tables 4.1 and 4.2 were observed setting the parameters at 

a1 = 142800.7, crz = 122.737, C Y ~  = 391.9965 and cr = 0.029. 

The dose levels were fixed a t  (0,120,240,480,960). These are the quasi-likelihood estimates 

and the dose levels for the unbleached data set 'QNL84-2' given in Berger et. al. [12]. The 

first sample of size 10 was chosen by taking two replicates at each dose level. The rest of the 

samples were obtained by each time doubling the number of replicates a t  each dose level. 

Table 4.1: Comparison of the biases of and G2: Example 1 

Table 4.2: Comparison of the biases of ti3: Example 1 

I a3 
I I ML QL 

10 / 1.49 / 1.78 

20 1 0.75 1 0.89 

GLS / DWLS 

1.49 2.36 

0.75 / 1.17 



We repeated the above procedure setting the parameters at 

= 212138 .3 ,~~  = 0.533,~~s = 5.964, and o = 0.029. 

The dose levels were fixed a t  (0.1,2,4,8,16). These are the quasi-likelihood estimates a,,d the 

dose levels for the unbleached data set. 'STRB87-1' given in Ancient Thermoluminescence 

[12]. The results are given in Tables 4.3 and 4.4. 

Table 4.3: Comparison of the biases of and h2: Example 2 

I R I a3 x low3 
I 

I 
I 

I i ML QL GLS DWLS 

Table 4-4: Comparison of the biases of &: Example 2 

Conclusions 

Based an the results presented in Tables 4.1 - 4.4, we draw the followjng conclusions: 



2. The biases of generalized least squares and data weighted least squares estirnat ors for 

t;he parameters a2 a d  a3 also converge to zero at a rate Of 1 j n ) ,  as 12 is increased 

wMe a is fixed. 

3. Fof the parameters a:! and a-3. the generalized least squares est ixnator and t 11c maxi- 

mum likelihood estimator hase afmost the same bias. (For the additive dose method 

a2 is the parameter of interest.) 

4. For the parameter ax, the absolute values of the biases are i l l  the order Hnri, < 

BQL < BGLS. Depending on the sample size n, the absolute value of the bias of data 

weighted least squares estimator could be larger or smaller than the biases of the other 

estimators. 

5. For parameters a 2  and as* the biases of the estimators in finite samples are in the 

order BML x BGLS k BQL L BDI-IILS- 

From the formulae derived in the last chapter, we notice that for all three parameters 

in the additive dose mrrdd the hi= of the d&a weighted I e a t  squares estimator (DuwLs  f *- 

is related to  the biases of the quasi-likelihood estimator ( I fQL)  and the generalized least 

squares estimator (BGLs) according to, B D W ~ ~  = -2 B G ~ S  + 3 BQL- 

4.4 Discussion 

In this chapter, we compared maximum likelihood, quasi-likelihood, generalized least squares 

and data  weighted least squares estimators for our model. h Section 4.1, we examined 

the behavior of the estimators in large samples, for fixed a. We found that niaximurrl 

ZikeEhoorf and quasi-EkeEhmd estimators are consistent while generatized feast squares arid 

data welgl;ted !east sqazses es';imato:s generdb- not. Least sq.zia;.es estimators in general 

were found to  have biases that do not banish, even asymptotically. We also examined the 

distributiond approximations for the maximum likelihood and quasi-likelihood estjrnator~. 



!Ye fourid that irt large sample2 both estimators are approximatel? normally disrributed: 

the apprmlrfizte as~mprctrir, %ariaace of the maximum likelihood estimator was found to  be 

smaller than that of t h e  quasi-Ekebhood estimator. 

frr Section 4.2, we analyzed the large sample behavior of our small a approximations 

to 9: rtarndy 6 = Bit -+ Cia $- C&+ O(a". For quasi-likelifiood. the terms C1 and Cz 

were found to be of the order O p ! f / ' f i t  and O,(l/n) respectivelv. Recall that C1 is a 

hear  cornbinatiorr of the random errors E arid Cz is a quadratic term in E .  For small a, 

the quasi-likelihood estimator B is approximately normally distributed if n is large enough 

or a is small enough so that a / f i  is small. For maximum likelihood, both C1 and Cz 

were found to be of the order OP!1/Jn). Therefore: the maximum likelihood estimator is 

approximately normally distributed if a is sufficiently small. For generalized least squares 

and data weighted least squares: the terms C1 and C2 are in general of the order O,(l/&) 

and O,(lj respectively Howevert as we clarified in Section 4.2, for our model components 

of C1 and C2 corresponding to ctz and as were found to  be of the order O , ( 1 / f i )  and 

O,( l /Jnj respectively- Therefore. for the limiting case of small a and large 7 ~ .  generalized 

least squares and data weighted least squares were also found to  produce asymptotically 

unbiased estimators for a2 and as. The discussion presented in Section 4.2 is valid for morr 

general response functions than simply the response functions described for the additive 

dose method. the partial bleach method and the regeneration method. 

In Section 4.3, we used the formulae derived in the limit of small a to  examine the 

behavior of the biases of the estimators as sample size grows. For sensible designs for the 

additive dose model we found that: 

1,  The biases of maximum likelihood and quasi-likelihood estimators for all three param- 

eters converge to zero at a rate O ( l / n ) .  

2. The biases of generalized least squares and data weighted least squares estimators for 

the parameters crz and ctg also converge to zero at  a rate O ( l / n ) .  

3. Maximum likelihood and generalized least squares est.imators for a;? (the parameter of 

interest in thermolurninescence studies) and a3 have almost the same bias, for sample 



sizes used in pracrice. 

4. For the parameter 01. the absolute \-dues of the biases are in the ordcr 13.11L < 

BOL < BGLS. For the parameter ax. the absolute value of the bias of data wei~hrcd 

least squares estimator could be larger or smaller than the biases of the other three 

estimators depending on the sample size r i .  

In the limit of smalf a the biases of all four estimatcrs were found to be negligible relativc 

to their standard errors (see Chapter 3). While all four estimators were found to perform 

well for a values and sample sizes used in practice, we favour using the quasi-likelihood 

estimator since it has the advantage that it does not require any assumptions about the 

distribution of the data other than those about the first two moments. Also we found t hat 

the algorithms that sohe quasi-likelihood estimating equations converge faster than those 

for maximum likelihood and generatized least squares estimators. 



Chapter 5 

Equivalent dose from partial bleach 

data 

En the partial bleach method introduced in Chapter 2, two data sets are collected from each 

core; these define the unbleached and bleached dose response curves. These response curves 

are nonlinear, and can be fitted using the techniques discussed in the previous chapters. 

The equivalent dose is defined as the dose corresponding to the intersection point of the un- 

bleached and bleached response curves. In this chapter, we discuss estimating the equivalent 

dose from partial bleach data. 

An initid estimate for the equivalent dose is suggested in Section 5.1. We discuss two 

approaches for estimating the equivalent dose. The first approach fits the unbleached and 

bleached response curves separately using the techniques described in Chapter 3, and then 

finds the equivalent dose as the intersection point of the two fitted response curves. We 

r e m  to this procedure as the 'two stage approach'. This procedure is described in Section 

5.2. For this case, Berger ei.a!.fll] describe the error analysis assuming that a single error 

factor (that is, a common d n e  sf a) describes both unbleached and bleached response 

curves. Their method of error analysis and the construction of confidence i n t e d s  for the 

equivalent dose are described in Subsection 5.2.1, In Subsection 5.2.1, we extend these ideas 

to the case of different error factors for the unbleacled and bleached data. 

We discuss maximrun likelihood, quasi-likelihood, generalized least squares and data 



w@i&~d --0- -- least squares estimators for the equh!ent dose. Formulae for the biases of t ftese 

estimators are derived in Subsection 5.2.2. In Subsection 5.2.3. we examine the bias fro111 a 

Monte Car10 study. X theoretical justification for the suggested confidence intervds is offered 

in Subsection 5.2.4. In Subsection 5.2.5. we describe a simulation study that esamincs the 

finite sample performance of the asymptotic confidence interyak. 

The second method estimates the equivalent dose by fitting the unbleached and blcacl~ed 

curves simultaneously. We refer to  this procedure as -simultaneous curve fitting'. In this 

setting, the equivalent dose Is treated as a parameter that appears explicitly in the estima- 

tion procedure. In Section 5.3-1, we discuss obtaining maximum likelihood estimates for 

the equivalent dose. Under maximum likelihood, we discuss computing profile likelihood 

intervals and symmetric confidence intervals using Z and t critical values. We dso discuss 

obtaining confidence intervals based on a transformation of the likelihood ratio statistic 

using a transformed F c r i t i d  value. Use of the t and F critical values is justified in the 

Emit of small a. In Section 5.3.7, we discuss computing quasi-likelihood estimates. Under 

quasi-likelihood, we discuss computing confidence intervals by inverting the quasi-score test. 

We also discuss computing symmetric confidence intervals based on the quasi-likelihood es- 

timate with a t quantile* In Section 53-10, we obtain generalized least, squares and data 

weighted least squares estimates for the equivalent dose. Symmetric confidence intervals 

based on the least squares estimates are computed with a t critical value. The coverage 

probabilities of the suggested type confidence intervals are examined by a Monte Carlo 

study. Section 5.6 summarizes the chapter. 

5.1 Initial estimates 

Suppose saturating exponential models1 are suitable for both unbleached and bleached re- 

sponse curves. Let @: = (rrl,az,aa), and 8: = (f11,Pz,P3) be the parameter vectors cone- 

spmding to these saturati~g expo~e~ t l z?  models. 

'Saturating exponentid models were introduced in Chapter 2. 



we use the foZiowing notation: 

photon count from the ith sample of the unbleached data, 

photon count from the ith sample of the bleached data, 

dose applied to  the ith sample of the unbleached data, 

dose applied to the ith sample of the bleached data, 

the equivalent dose, 

At low dose values, the thennoluminescence vs added dose is roughly linear. Therefore, the 

difference R between the unbleached and bleached response curves varies roughly linearly 

with the added dose at low dose values so that approximately, R = mx + C, where C and 

m respectively denote the intercept and the slope of the straight line that describes the 

relationship. We need to fmd the dose corresponding to the intersection of the unbleached 

and bleached response curves. This is the dose corresponding to R = 0, which is the absolute 

d u e  of - 5. We estimate C and rn using the average photon counts corresponding to the 

zero dose and the next smallest dose common to both unbleached and bleached data sets. 

Thus, an initial estimate for the equivalent dose is given by 

where 

&[O) = average photon count corresponding to the zero dose for the unbleached data, 

j j2[O) = average photon count corresponding to the zero dose for the bleached data, 

d = smallest positive dose value common t o  both data sets 

~ ~ ( 6 )  = average phstm count corresponding to the dose d for the unbleached data, 



and 

q2(d) = average photon count corresponding to the dose d for the bleached data. 

For the data sets we a n d p e d  (test data from Berger et. a2. 1121). the initial estimates from 

the above formula served as good starting values for the algorithm we describe next.. 

5.2 Estimation from a two stage approach 

The equivalent dose 7 is a root of the equation g(x, 61, 82) = fl(x, 01) - f2(x, 02) = 0. The 

equivdent dose is estimated by 5, which is a root of the equation g(x, d l ,  92) = f~(z, 01) - 

f2(z, $2) = 0 (Berger et. ol. [Ill). First we find the estimates and e2 using the procedures 

described in Chapter 3. Then we solve the nonlinear equation g = 0 using the Newton 

Raphson algorithm described below. 

1. Find an initial estimate for the equivalent dose (Section 5.1). 

2. At the (k + 1)st step of the iteration the equivalent dose is estimated as 

where 

aSl = "I exp [ - (y3w 
as +k a3 

3. Iterate until desired convergence. In the software we developed, the stopping criteria 

was taken as when the absolute difference in the successive iterations is less than 10". 

An estimate far the e m s  of the estimate 

As above, y and i satisfy the respective equations g(7 ,  01, B z )  = 0, and g ( j ,  4, &) = 0. 

The first order Taylor expansion of g(j., & , 82) around (7, Ol , & )  yields 



In this ey~atioft each partid derivative tern indicates partid differentiation of g with respect 

to the estimated parafieters and then evaluation of the resulting quantities at the respective 

true parameter values, and at dose z = y. Since g ( 7 ,  el, 82) = 0, and g(9 ,  el, 62) = 0 the 

above equation gives 

Therefore, 

In equations 5.3 and 5,4: the derivatives of fi and f2 are to be evaluated at  x = y. Here 

onwards we use an additional suffix i to indicate when functions fi and f2 are evaluated 

at  dose level x;. When the functions are evaluated at z = y we suppress this additional 

suffix. The sample sizes of unbleached and bleached data sets will be denoted by nl and 

922 respectively. The error factors for the unbleached and bleached data will be denoted by 

a1 and a2 respectively. When the unbleached and bleached response curves correspond to 

a common error factor (i-e. when a1 = a2), this common error factor will be denoted by a. 

From the fomulae derived in Chapter 3, the variance covariance matrices for &, 82 are 

and 

The vector vfj, ( j  = 1,2) denotes the gradient vector of fi with respect to the components 

of 8. In the different error factor case, we estimate a: and a: by 

and 



- n ~  Seciim .3.r;.rt we SEOW that in the Emii of al7az - 6 ,  the and siiggestci: above 

are approximately unbiased for a1 and q respectively If the two curves correspond to a 

common a we estimate o from 

In Section 5.2.4, we show that the above s2 is an approximately unbiased estimate for c?. 

To estimate the standard error of + we use Equations 5.1 and 5.5 by replacing the  

nnknown parameters by their estimates. 

5.2.1 Confidence intervals 

Let i and s: be the estimates for and V a r ( j )  discussed in Section 5.2. 

Single error factor 

In Section 5.2.4, we show that if the response curves correspond to a common error factor 

cr7 in thelimiting case as o - 0, an approximate lOO(1 - a)% confidence interval for 7 

can be constructed by taking, t(nl+n2-6),a/2S+jr, as lower and upper confidence limits. 

Here t,, indicates the upper a quantile of a t-distribution with v degrees of freedom. 

Different error hctors 

Suppose the two response curves correspond to  different error factors a1 and az. In Section 

5.2.4, using Satterthwaite's approximation 1531, we show that when al,o;! - 0, the dis- 

tribution of can be approximated by a t distribution and provide a formula (Equation 
s'r 

5-17) for the degrees of freedom of the approximate t distribution. Therefore, we propose 

computing confidence intervals with confidence coefficient a by taking j ~f i!df,a/2~=, as lower 

and upper confidence limits. The tdjfft, indicates the upper rr th  quantile of a t-distribution 

with df degrees of freedom. 

It is important t o  note that  for the common error case, we compute confidence intervals 

based on an exact t distribation for the test statistic * valid in the limit of smaU a. IKI 
34 



contrast, for the different error factor caset we compute confidence intervals based on an 

a~yroximate t distribution v&d in the limiting case al, oz - 0. 

5.2.2 Bias in the estirnakor for the equivalent dose 

Notat ion: 

Let gT = (@T, 8;): g(7? 8) = fr (7, O1 j - f2(7, 82): and 

T pT CT = ( C I 1 ,  J I 2 ) :  where 

T' -1 nl 

I = [c( ,=, I )  fi ( ~ l i :  91 ) f i )  . fl  ( ~ l i r  91) 
[ ~ f ~ ( ~ l i .  h)] 

i=l f i ( ~ l i , 6 1 )  

and 

Similarly, let C& and C& be the vectors Cz introduced in Chapter 3 for the curves defined 

by fi f x l  , e l )  and f2(xz ,  &). Let CT = (Cg,  c&). For small a, I and 9 will have Taylor 

expansions of the form 

!6 - 8 )  = Clo + c 2 a 2 ,  (5 .11 )  

and 

(? - 7) = C3a + c 4 a 2 .  

Here C3 and C4 are scalar quati t ies that do not depend on a. We now obtain C3 and C4 

in terms of Cl and &rz so that we can e*,-aluate the small 5 behavior of ;i.. 

The equivalent dose y and the suggested estimate ;jl satisfy the equations g ( y , 9 )  = 

0 and g(4.1) = 0 respectively. Consider the Taylor expansion 



Equations (5.11) to (5.13) gix-e 

Let Bdl and Bi2 denote the biases of & and 82 respectively (these will depend on which 

method of estimation is being discussed). It is easy to see that 

Since G'T (g) is a scalar, we find 

where 



and 

Further note that 

and 

Note that E(C3) = 0 and therefore the bias in is 

To simplify computation of (5.16) we provide explicit formulae for the pieces thereof. The 

derivatives of g are given by 

and 
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where H I  = Hz = are the Hessian matrices of fi and f2 (see Section 
gsag2 

3.2.j; evaiuated at tt = 7. 

The biases B61 and BG2 can be estimated from the formulae given in Table 3.1 of Chspter 

3. Thus, an estimate for the bias of 5; k,: can be obtained by replacing the unknown 

parameters in the Equation (5.16) by their estimates. 

An approximate 10011 - a)% confideace interval corrected for the bias can therefore 

be constructed by taking ( j .  - h-0,) tdl,,/, J= as  lower and upper confidence limits. 

For the single error factor case, df: which is the degrees of freedom for the t-distribution is 

(nl + n2 - 6). For the case of different error factors df is given by Equation (5.17) of Section 

(5-2.4). 

5.2.3 Examination of the bias from a Monte Car10 study 

The formula for the bias derived in f ection 5.2.2 is based on the approximation that for 

small ;j = y + C3a + C402, for coefficients C3 and C4 that do not depend on o. We 

examined the validity of the derived formula for o values in the range of typical TL data 

sets by a Monte Carlo stud_v. Xext we describe the Monte Carlo study. 

The parameter vectors for the two response curves were &osen so that they intersect 

at y . This was achieved by fixing the parameters a1 , a2 a3, p2, ,f13 at desired values 

and then taking, = ax f-. 

The parameter values were set at a1 = 14.2853, a2 = 123.182, a3 = 393.065, ,02 = 

192.54?,f13 = 356.620 and p = -87.45- These are the maximum likelihood estimates 

for the unbleached data set 'QKI.84-2' given in Berger et. d. [12f. 

The dose vectors of lengths nl and n;! chosen for the unbleached a;nd bleached curves 

are presented in Table 9.1 of Appendix 9.3 where they are labeled as P1U and PlB .  

For each study, two sets of random smriates of sizes nl and nz were generated from 

the standard nomai distribution. Let these values be denoted by, Eji, j = 1,2 and 

i = l.....n;. 



.j. The relative error in a sinde measurement, a, was fixed at the d u e s  given in Table 

5.1. 

6. The photon counts, yj;'s, were then simulated using yj; = f(r;,B,)(l + for 

j =  l Y 2 a n d i =  I ,..., nj. 

7. The algorithm described in Section 5.2 was used to estimate the equivalent dose 7. 

8. From Equation (5.14), the d u e  of C3 was computed at the true parameter values 

used in the study. 

9. Estimates for the biases were obtained as the averages of the nz values for i - y - C30. 

and (9 - 7). (m is the size of the study) 

The results based on 10000 simulations are presented in Table 5.1, where we use the 

not ation 

BT = True bias (Equation 5.16) 

BI = average of i - - C3a values 

B2 = average of 9 - values 

Both Bl and B2 provide estimates for the bias of 7. The variability in B1 is smaller than 

the variability in B2. Therefore we ody recorded B1. 

Based on the simulation results given in Table 5.1, we conclude that the derived formulae 

are excellent approximations for small a(< 0.06). For real data sets collected for the partial 

bleach method, a is usually around 0.03. Since the sample sizes used in the sirnulatian study 

are similar to  real sample sizes the derived formulae can safely be used to estimate the biases 

for all four methods. In any case, we observe that the biases are negligible compared to the 

standard errors. 

5.2.4 Theoretic;?! Justification for the use of the t-interval 

Consider the model yi = f ( x i ,  Bo) + f (xi, Bo)ari, i = 1, . . . , n, where E; N N ( O , 1 ) ,  and Bo is 

the 3-vector of d n o w n  trne parameters. 



Table 5-1: Comparison of exact bias and estimated bias of j 

Data 

Set 

1 

2 

3 

4 

5 

6 

Let 8 be an estimator for 60 that satisfies the approximation 8-00 = Cla+C202 discussed 

earlier. Let g, fo, fi, Z denote the n-vectors consisting of the elements yi, f ( x i ,  so), f ( x i ,  8 )  
and (yi  - f ( x i ,  e))/ f (xi, 8 )  ( i  = 1,. . . , n)  respectively. 

I 

QL I GLS 

Theorem 1 As a -t 0, ZTi? 3 X2 with ( n  - 3) degrees offreedom. 

DWLS 0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

Proof: 

Let Fo be the n x 3 matrix with i th row T i  given by rT = 7 f - . The first order 
O - as ,=so 

Taylor expansion of fi around fo can be written as fi a fo + ~ ~ ( 9  - 60). Then, 

ML 

(Y-f - )  Notice that = UP, and = oc. From the results derived in Chapter 3, as o - 
0, = 6 + Clo + 0(0)? where C1 = [x?=, (y)i  (y):] Eel (9). fi = C (9) * 6, 

-1 
=Q.\ [EL, (y)i(fo ,TI = [(3)T($)]-1. 

Taking first order terms in o, 

BT 

-0.054 

-0.217 

-0.489 

-0.869 

-1.358 

-1.955 

-0.046 

BT 

-0.049 

-0.195 

-0.438 

-0.778 

-1.216 

-1.752 

31 

-0.045 

-0.221 

-0.508 

-0.923 

-1.483 

-2.687 

-0,046 

B1 

-0.048 

-0.195 

-0.444 

-0.824 

-1.329 

-1.865 

-0.182 

-0.410 

-0.730 

-1.140 

-0.181 

-0.429 

-0,783 

-1.289 

t 

BT 

-0.046 

-0.183 

-0.412 

-0.733 

-1.146 

-1.650 

31 

-6.045 

-0.182 

-0.414 

-0.784 

-1.267 

-1.760 -1.641 -1.779 



Thus, 2 = (I - B)c + r,(o)_ where B = (E  
\ fo 

Kote that the matrix B is symmetric and idernpotent. ( i s .  BT = 3 and BB = 3.) 

Therefore, iTi -., X2 with degrees of freedom df = t r ( 1 -  3) = n - t r (Bf .  

Trace of the matrix B is 

Thus, iT; = x? r = l  [w] = En- 2-1 [w] has approximately a X2 distribution 

with (n - 3) degrees of freedom. 

Theorem 2 If a is small, the emor sum of squares Z ~ P  and the estimate 8 are independent, 

in the sense that lirn,-oPi and C1 = lim,,o(O - d) /o  ore independent. 

Proof: 

T r T 1-1 
A = C (2) a, and that PE = eT(1 - B)E + o (0 ) .  Since C = [(%) ( )  we find 

A ( 1 -  B )  = aC (2) - a (%)T (9) C (2) = 0. Therefore, using Theorem 4.1'7 of 

Graybill (1961) we find that cT( l  - B)E and C1 are independent. Hence the result. 



Assume that the two response curves have a common a. Then, 

Proof: 

Let wii = l/f; and wzj = l/&. Applying Theorem 1 for the unbleached data we find 

that L-. has a X2 distribution with (nl - 3) degrees of freedom. Similarly for 

the bleached data c;=, w3 (a1 4 2 d 2  

nz has a x2 distribution with (nz - 3) degrees of freedom. 

The two X 2  vafiates are independent. Therefore, . , w z - i i 2  Cf=l~2,(~2J-i23)2 + - - 
I 7  u2 

(nl + n2 - 6 ) s  (where b is the quasi-likelihood estimate for 0 )  bas approximately a X 2  

distribution with (nl + n2 - 6) degrees of freedom. 

C3 = - & q g  (see Section 5.2.2.). Since C1 is a linear combination of the standard normal 
8-, 

random variates ei7s (Chapter 31, it follows that 9 is approximately normally distributed 

with mean y. In Section 5.2 we showed that 

The variance of -i. is estimated by replacing 4, 02, ~f by their estimated values. 

Ndect ing the terms of 0(03) from a Taylor expansion 

and 

Therefore, 



Let U = c3 
,/, and V = ($)"'. Note that. 

U, V are approximately distributed as N(O, 1) and \/($), (v = nl + n2 - 6 ) .  Furthermore. 

we showed that U and V are independent. Therefore, as a - 0, converges in 

distribution to  Student's t with nl + 122 - 6 degrees of freedom. 

Remark: 

Theorem 3 remains valid if we replace by its maximum likelihood estimate, generalized 

least squares estimate or the data weighted least squares estimate. 

When separate error factors a1 and a;! are fitted for the two curves we do not get exact 

t distributions. Instead a Satterthwaite type approximation is available. 

Theorem 4 Assume that the two response curves have diferent error factors al and u2(u1 # 
02). As ol, o2 -+ 0, the distribution of * can be approximated by a Student's t dis- 

tribution with the degrees of freedom 'df' defined as defined in Equation 5.17. 

Let 

fi,i = f(xz?&), 

f2,i = f (xiy e2), 

(V fl); = Gradient vector of fit; with respect to f4, 

(v f2); = Gradient vector of f2,; with respect to 02, 

vl = Variance covariance matrix of 8; = %a:, 

v2 = Variance covariance matrix of e2 = ~ ~ 4 ,  
When the response functions and the derivative vectors are evaluated at x = we drop the 

vf  =v1 vf1 of =v2vf2  snffix i. Let u1 = +., and u2 = --+. Then, df is given by 
( z) (z) 



An estimate for the df can be obtained by replacing 01, 02, crl,az by their estimates t& ? 82: 51, c?;! 

described before. 

Proof: 

In the different error factor case, the variance of 'y is 

As for the common error factor case, we can write as U / V  where U is a standard 
JG- 

v j T v , v f ,  t2 vf  =v2vj2 of T v z v f l  1 /2 normal random variate and V = + (3.) + --+- (3) . Also note 
(2) "1 (9) (c) =2 

1 / 2  
that in the limit of al,  o2 - 0, (nl - 3)  (3) and (n2 - 3)  (3) are each approximately 

distributed as XZ random variates on degrees of freedom nl - 3 and n2 - 3 respectively. 

Furthermore, the two X2 random variates are independent. Therefore, the variance of j in 

this case is a complex estimate of ~a r i ance .~  As in the case of common error factor, U and 

V are independent. 

Thus, using Satterthwaite's approximation [53], we find that the distribution of the 

statistic t = can be approximated by a Student's t distribution with the degrees of 
Jvar(j.t 

freedom 'df' as defined by Equation 5.17. 

5.2.5 Finite sample performance of t-intervals 

In this section we describe a Monte Carlo study that examines the finite sample performance 

of the asymptotic theoretical results presented in Subsections 5.2.1. The parameter values 

were set at a1 = 14.2853, a2 = 123.182, a3 = 393.065, P2 = 192.547,P3 = 756.620 and 

y = -87.45. The sample sizes used for the unbleached and Meached data sets are 16 and 13 

respectively. The dose values used in the study are presented in Table 9.1 of Appendix 9.3 

where they are labeled as data set P I ,  The values chosen for the error factors 01 and a;! are 

given in the Table 5.2. In the single error factor case (SEE'), a1 = a2 = a and this is given 

'~atterthwaite [54] defines a complex estimate of variance a s  one which is a linear combination of two or 
more statistics distributed as Chi square random variates . 



in the column indicated by SEF. The DE-F stands for the different, error factor case a d  the 

chosen a1 and a2 values are given in the column indicated by DEF. Photon counts were 

simulated according to  the model yji = f(zij, Bj)(l + ~ j ~ j ; ) ,  for j = 1,2 and 2: = 1,. . .. . nj. 

Procedures described earlier in this Chapter were used to compute a confidence intervd 

for the equivalent dose from each simulated sample. The fraction of times the confidence 

interval in each case captures the actual equivalent dose is recorded as the observed coverage. 

The results based on 10000 simulations are presented in Table 5.2. 

Table 5.2: Coverage probabilities o f t  intervals for single and different error factor cases 

Study 

1 

2 

3 

4 

5 

In Table 5.2, we use the following notation: 

case 1.1 = the single error factor case, neglecting the bias 

case 1.2 = the single error factor case, corrected for the bias 

case 2.1 = the different error factor case, neglecting the bias 

case 2.2 = the different error factor case, corrected for the bias 

Nominal 

Level 

0.95 

0.95 

0.95 

0.95 

0.95 

Conclusions: 

1. The confidence intervals using t critical values were suggested based on the small u 

asymptotic theory. The range of a values chosen for the study well cover the values of 

a observed in typical TL studies. The close agreement between the observed coverages 

and the nominal coverages therefore justifies the use of suggested confidence intervals 

for the equivdent dose based on the paT bid bleach method. 

SEF 

o 

0.01 

0.02 

0.03 

0.04 

0.05 

Observed Coverage / DEF 

case 1.1 

0.9502 

0.9481 

0.9505 

0.9524 

0.9509 

Observed Coverage 

case 2.1 

0.9506 

0.9515 

0.9465 

0.9500 

0.9534 

case22 

0.9503 

0.9517 

0.9459 

0.9495 

0.9528 

02 

0.02 

0.03 

0.05 

0.05 

0.05 

I 
case 1.2 1 a1 

0.9502 

0.9489 

0.9497 

0.9538 

0.9518 

0.01 

0.01 

0.01 

0.005 

0.04 



2. The agreement of the coverage probabilities in the different error factor case justifies 

the use of symmetric confidence intervals with an approximate t quantile based on the 

degrees of freedom suggested in Subsection 5.2.1. 

3. The confidence intervals without correcting for the bias also have coverage probabilities 

in agreement with the nominal coverages. As we already mentioned, the biases are 

negligible compared to the standard errors of the estimators. Therefore, we did not 

correct for the bias in thz studies described later in this chapter. 

We also examined the coverage probabilities of confidence intervals obtained using a 

single error factor, for data generated using different factors. The results based on 10000 

simulations are presented in Table 5.3. The parameter values for the study were set at 

a1 = 14.2853, cq = 123.182, as = 393.065, pa = 192.547, P3 = 756.620 and y = -87.45. The 

dose values used in the study are presented in Table 9.1 of Appendix 9.3 where they are 

labeled as data set PI. The columns 2 and 3 of Table 5.3 indicate the sample sizes used 

for the unbleached and bl.eached data sets respectively. The different error factors used to 

generate the data are given in the columns 4 and 5. The last two columns indicate the 

coverage probabilities of confidence intervds ignoring the bias and corrected for the bias 

respectively. 

Conclusions 

Based on the results of the study we draw the following conclusions. 

1. When the large sample size is associated with the small a, the coverage probabilities 

of the resulting confidence intervals are larger than their nominal levels. 

2. When the large sample size is associated with the large a, the coverage probabilities 

of the resulting confidence intervals are smaller than their nominal levels. 

The results of this study establish the importance of testing (for eg. using likelihood ratio 

test) whether the unbleached and bleached data sets correspond to a common a or not 

before further analysis. 



Study 

1 

2 

3 

4 

6 

7 

8 

9 

Nominal 

Level 

DEF 0 bserved Coverage 

case 2.1 

Table 5.3: Coverage probabilities o f t  intervals using a common error factor for data corre- 

sponding to different error factors 

5.3 Estimation via simultaneous curve fitting 

In Section 5.2, we described the estimation of the equivalent dose as the intersection of the 

two fitted response curves corresponding to the bleached and unbleached curves. Here we 

describe another technique for the same purpose. We reparametrize so that 7, the quantity 

of interest, is one of our parameters in the new setting. 

Let the parameter vectors corresponding to the unbleached and bleached curves be 

el = (a l ,  a 2 ,  a3lT and O2 = (PI, P2, ~ 3 ) ~ .  Let y be the dose corresponding to the intersection 

of the unbleached and bleached response curves. Then, y satisfies the equation 

This gives 

We eliminate PI using the parameters a1 , az, as,  Pz, ,03, 7 and fit the two response curves 

simurtaneously treating y as a parameter that appears explicitly in the new setting. This 



avoids the prob!em of estimating the intersection point after fitting the nonlinear curves as 

in the previous method described in Section 5.2. This also simplifies the estimation of the 

error of the estimate. Since this is a reparametrization of the problem, the estimate and the 

error of the estimate are unchanged. 

Next we describe the estimation procedures. 

5.3.1 Maximum likelihood estimates 

Suppose first the two curves have a common error factor. The likelihood for a sample of 

n3(= nl + n2) observations is 

where t+ = (a l ,  a 2 ,  as)  and 82 = (PI, ,B2, P3). The parameter vector of interest3 is B = 

l a 1 7  ~ 2 7 ~ 3 7  P27 P37 Y)~. 

The log-likelihood for the sample apart from a constant is 

The maximum likelihood estimates for the parameters maximize the above log-likelihood 

function. The algorithm described in 3.2 is modified as follows to obtain the likelihood 

estimates. As described in Section 3.2, we use a 2-part iteration; see also Green [33]. 

Equating to  zero, we find 

The algorithm that solves for 8 is described by the following steps. 

1. Find an initial estimate & for 8. 

3Equation 5.18 expresses /31 in terms of the components of 8. 



2. Evaluate fl, f2 at  the starting d u e .  

3. Estimate a using Equation 5.20 at the estimate for 6. 

4. Compute the matrix D = g. The n x 6 matrix D consists of the columns 

a f ,  a f ;  aft a f ,  a f i  -- af i  a a l ,  aoz' a*, , G. % and - which are given by the equations 5.21 below; here f is a? 
the n-vector with entries fl(x;, 01) ( for i < nl) and f2(s;, B z )  (for 7x1  < i 5 n). 

5. Compute the n-vector uo = (5.22) and the matrix A (5.23) 

6. Compute bo = ( D ~ A D ) - ' D ~  uo . 

7 .  At the (k + 1)st iteration, estimates for 6 are given by dk+1 = dk + i j k ,  where ,& = 

( D T A ~ D ~ ) - ~ D T u ~ .  The subscript k indicates that the respective terms are evaluated 

using the parameter estimates for 8 a t  the kth iteration. Then update Dk to Dk+1 by 

evaluating D given below at  Bk+1. 

8. Repeat the above procedure until the desired convergence. In the algorithms we 

developed, the convergence criterion for 8 was taken as when the step size ,/3 < 

The matrix D has the following components: 

af; - - - 1 - exp [-(":: a2)] , (for i < i 5 nl)  

= {I-exP [-y]} {I -exP [ - x 2 k ~ P 2 ] }  {l-eXP [-y]}-' 
(for nl  < i < nl + n2); (k = (i  - nl)) 

ah - - - - exp 
dQ2 

"l [-(x1k3+ "2)] , (for i < i 5 nl) 
a3 

- - Y + P2 
"exp a3 [-*I {I - exp [-x2klP2]} {I - 

(for n l  < i < nl + n2); (k = (i - nl)) 

afi - - Ql - - 7 ( ~ l i  + "2) exp 
da3 

[-(":: a2)] , (for 1 < i 5 nl) 

- - Q1 - - (Y++xp[-y-]{1-exP[-  y + Q2 
5 2 k  + ~2 I) 

Q3 
-1 

x{l-exp[-?]) , ( f o r n l < i j n l + n 2 ) ; ( k = ( i - n l ) )  



afi - - - 0, (for 1. < i _< nl )  
w 2  

- 22 + P2 - -5 ~3 { i - e x P [ - ~ ] j { i - e x p  [- P3 1) 
Y + P2 

- 2 
x exp [- 

{I - exp [- y] ) 
5 2 k  + P2 +" $3 ( I - e x p [ - e ] ) e x p [ -  P3 ] 

- 1 

x {1 - exp [-?I) ) (for nl < i 5 n1 + 722); (k = (i  - nl)) 

- = O , ( f o r l < i _ < n l )  
aP3 

- - 2 (1 --exp [-el) (1 
[ - ~ 2 p ] )  P3 

Y + P2 

a1 r +  a 2 l :  5 2 k  + P2 
-- P3 { l - exp  [--.])(X2k+&)exp a3 [- P3 ] 

-- 1 
x (1 - exP [-?I) (for nl  < i 5 nl + n2); (k = (i - nl)) 

af; - - - O , ( f o r l < i _ < n l )  
a 7  

- - "exP [-?I (1 - exp [-Qk; '21) {I - ev [-Y])-l 
0 3  

5 2 k  + P2 y f P 2  -S ~3 ( I - e x p [ - y ] } { l - e r p [  ])exp[-TI 

- 2 

x {I - exP [-91) (5.21) 

The n vector u = consists of the following elements: 



Note that E(y1i - fii) = 0, E ( p ~ i  - f1il2 = g2fi2;. E ( Y ~ ~  - f2k) = 0. and E /hk - J ~ ~ ) ~  = 

0 2 f &  The matrix -4 is diagonal with ith diagonal element 

Let 4 = (8,o) and 4 = (e,ir). From the large sample theory for maximum Likeli- 

hood estimators, the approximate asymptotic variance covariance matrix for 4 is @ven by 

5.3.2 Profile likelihood intervals for the equivalent dose 

Suppose that the parameter vector B = (a l ,  az, a3, PZ, ,&, Y ) T  is partitioned as ( q ,  y ) where 

!B consists of the elements of 0 excluding y. 

Let 0 = (@:?) be the maximum likelihood estimate for B and I,., be the value of the 

log-likelihood function (equation 5.19 ) evaluated at the maximum likelihood estimate 6. 
Let i, be the value of the log-likelihood function evaluated at  (g,,~) where @, maximizes 

the log-likelihood function for fixed 7 .  Then, the profile likelihood interval for the equivalent 

dose with confidence coefficient a is 

where X:,,- ,  is the upper a quantile for a chi squared distribution with 1 degree of freedom. 

Computing !#,: 

Let D' be the n x 5 matrix consisting of the n vectors %, p, p, The restricted 
a 2  a3 & I j 3 -  

maximum likelihood estimate !@? can be computed by replacing the n r 6 matrix D by 

the n x 5 matrix Df in the algcxithm described in Sectioz 5.3.1. The end p i n t s  of the 

2 profile likelihood interval are the roots of R(-,) = 2 (l,,, - i,) - x,,,-, = 0. The following 

algorithm is used to find these roots. We have no convincing evidence that the profile, R(-/), 



must be ttnirnodai brrt oar dgorithm never fded  to converge for small a. We snsgect, but 

have not proved? that Rfr) is unirnodal in the Emit of small a. 

1. Evaluate Rfy) at ';-:I = $ - Z,/2s(qj. Here 9 is the rna;.crimum likelihood estimate 

for 7 and s($j is the estimated standard error for 3, which is the square root of the 

corresponding diagonal element of the inverse of the matrix E (-&) evaluated at 

6 and Za12 is the upper 4 2  t6 quantile for a standard normal distribution. 

2. If R[71) is pmidve, then use the method of bisection stat ing with 31 and j- until the 

absolute value of R, is less than a desired srndl positive number €1. In the software 

we developed we use 61 = 

3. If R ( y l )  is negative, then we keep subtracting s ( T )  until R(rij is positive at a certain 

7i. Again use the method of bisection starting with yi and 7(i-I)(= .y; -+ s(?)) until 

the absolute d u e  of R, is less than el. 

4. To find the right end poiat we start from 7 2  = j. + ZaI2s(-j.) and follow similar steps as 

in the case of left end point but this time adding s(+) if . E ~ ( T ~ )  happens t o  be negative. 

(So, .y(i-,) = -(; - sf?) in this case.) 

5. Let and T 2  be the mtscrf R(?j = 0 described earlier. Then, (rl, -72) is a (1-a)lOO% 

profife likelihood intend for the equivalent dose, 

5.3-3 Confidence intervals using asymptotic normality 

The confidewe intends for 7 carn be constnrcted assuming that the maximum likelihood 

estimator 3 is approximately normally distributed with mean 7 and variance the corre- 

sponding diagonal dement of the inverse of the matrix E(-&&~) The lower and upper 

confidence Emits for an approximate 100(f - a)% confidence in tend for 7 based on the 

of a standard nomd distribntion, We atso computed confidence intervals using a t quantile 

with ( n ~  O n2 - 6)  degrees of freedom instead of the Z quantile. It is important to  note 

that. when coraputhg the fonfidare ietervaIrs based on the t qnantile, the error factor a 



, r  7 1 
n d  &kiated fie= b2 = {x:& [ ( y l i  - fl)/fl)2] + I;?,, [(p2, - f2)/ J z ) - ]  /(nl + n2 - 61, 

in contrast to the maximum likelihood estimate for a used in Z intervals. 

5.3.4 Confidence intervals using transformed F critical values 

The traditional profife likelihood interval is computed by inverting the test based on the ap- 

proximation that 2 (l,, - i,) is distributed as a chi squared random variate with 1 degree 

of freedom. Here we suggest computing confidence intervals using appr0ximat.e transformed 

F critical values instead of the approximate chi squared critical values. 

Notation: 

Let the parameter vector in the regression model be partitioned as /3 = (PI, Pz), where P2 
is the parameter of interest. Let 

z , ~ ,  6) = log likelihood evaluated at the maximum likelihood estimates, 

= maximum likelihood estimate of & for p2 fixed at  P2,0, 

and 

i?(P2,0) = maximum likelihood estimate of a for P2 fixed at  P2.0. 

Let ~(a(&-)), /3z,o, &(&o)) denote the log-likelihood evaluated at the restricted maximum 

likelihood estimates and LR = 2 (l(pl, B2, 6) - l(bl (hVo), PzVo, b ( ~ ~ , ~ ) )  . 

For the linear regression model Y = X,O + E,  it is well known (see, eg., Draper et. al. 

[2?], Seber et. al. [55], Chatterjee et. al. [Is]) that the hypothesis Ho : p2 = Po can be 

tested based on the fact that IS(B1*&~O)-S'B1'B)llp has a F distribution with numerator and 
s (B1  * & ) I ( ~ - - P , )  

denominator degrees of freedom p and n - p j ;  here p is the dimension of P2 while pf is the 

dimension of /3 = (A,&) and S(6) denotes the error sum of squares for the model with 

parameters P fixed at 8. 

For the normal error Enear regression model, this is equivalent to tests based on the fact 
f FP."--P~~ t b t  2ZR % disidxited as - r ~  lug I i -+ ( n - - p l ) ~ , w h e r e F , ~ , ~  denotesanFdistributionon 

nnmeratur and denominator degrees of freedom ul and u2 respectively. 

Remarks: 



- Note that, when p = 1, k;,n_,p, - t:-,, and 

So assuming 2LR has approximately a X: distribution is equivalent to pretending 

This is true in large samples. However, as we already mentioned thermoluminescence data 

sets are frequently small in size. Therefore, using F critical values rather than X 2  critical 

values, is expected to produce more precise coverage probabilities in small samples. 

While the above result does not provide an exact test for our non-linear regression model 

Y = f (xi, @)(I+ mi), we examined confidence intervals based on 

where n(= nl + n2) is the sample size. Next we present these results. 

5.3.5 Finite sample performance of the confidence intervals 

We performed a Monte Carlo study similar to the one described in Section 5.2.5, t~ examine 

the coverage probabilities of the suggested confidence intervals. The parameter vector was 

set at 

8 = (14.2853,123.182,393.065,192.547,756.620, -87.45jT. 

The dose vectors used in the study are indicated in Table 5.4 within brackets in the column 

'Dose'. Table 9.1 of Appendix 9.3 describes these dose vectors. The samples sizes of the 

unbieached and bleached data sets are indicated by nl and n 2  and n = nl + 722. The results 

based on 10000 simulations are given in the Table 5.4. In the Table 5.4, FCRITl and FCRIT2 

indicate the coverage probabilities using the approximations described by Equations 5.24 



and 5.25: 

Dose 

(P1) 

(P1) 

(P2) 

(P3) 

(P3) 

(P4) 

P 4 )  

(P5) 

2LR = nlog [ 1 +  y:!y;] 

Profile FCRITl 

Table 5.4: Coverage probabilities of profile, F, 2 and t intervals 

Conclusions: 

The following conclusions were drawn from the simulation results: 

1. When the sample sizes are small, profile likelihood intervals and the 2 intervals based 

on the maximum likelihood estimate were found to  have smaller coverage probabilities 

than the nominal values. 

2. The coverage probabilities of profile likelihood intervals based on the maximum like- 

lihood estimates are doser to  their nominal values than the corresponding traditional 

2-intervals based on the large sample theory for maximum likelihood estimates. 

3. As the sample size is increased, the coverage probabilities of profile likelihood jntervals 

and the Z intervals approach their nominal values. 



4. The coverage probabilities of the confidence intervals based on the transformed F 

critical value (Equation 5.24) agree with their nominal vdues even when the sample 

sizes are small. 

5. When the sample sizes are small, the confidence intervals based on the approximation 

described in Equation 5.25 were found to be conservative. However, the coverages of 

these confidence intervals were found to converge much faster t o  the nominal coverages 

compared to profile likelihood intervals and the Z intervals. 

6. The coverage probabilities of t intervals based on the maximum likelihood estimates 

agree with their nominal coverages even for small samples. 

7. The coverage probabilities of the confidence intervals do not appear to  be dependent 

on a, if a is small. So, when we simulated large samples we fixed a at  a small value 

to save computational time. 

5.3.6 Robustness of the transformed F test 

The confidence intervals based on the likelihood ratio with a transformed F critical value 

were found to agree well with their nominal coverages, when the observations (x's) are 

normally distributed. We examined the robustness of this test to departures from normality. 

The observed photon counts were simulated from a gamma distribution with mean f (s;, 8) 

and variance a2 f2(zi, 8).  The confidence intervals for the equivalent dose y were computed 

using the transformed F critical value as described in the Section 5.3.4. The observed 

coverage probabilities based on 10000 simulations are given in the Table 5.5. 

Conclusions: 

1. Even with small samples of data from a gamma distribution the coverage probabilities 

of the intervals based on the transformed F critical values were found to  agree with 

their nominal values. 

2. The coverage probabilities of t intervals also agree with their nominal values even when 

the sample sizes are small. 



nominal 

Table 5.5: Coverage probabilities of confidence intervals for gamma distributed data 

3. In small samples, the coverage probabilities of Z intervals are lower than their nominal 

values. As the sample size is increased, the coverage probabilities approach their 

nominal values. 

4. We notice that the shape parameter for the gamma distribution is 1/02. Since we take 

o to  be small, the shape parameter for the gamma distribution is large. Therefore, 

the gamma distributions in question are very close to normal distributions. 

5.3.7 Quasi-likelihood estimates 

The algorithm described in Chapter 3 can be slightly modified to obtain quasi-likelihood 

estimates for 'simultaneous curve fitting'. 

Let y be the n vector of photon counts of unbleached and bleached samylf?s stacked 

together. Let z be the n vector of corresponding dose values. 

Let p be the vector of mean values defined as 

fi(xi, 8)  for i = 1,. . . , n1 
P = f ( 4  = 

f i ( x i , 8 )  for i = (nl + I), . . . ,nl + nl. 



The variance cova;.ia~ce matrix for y is diagonal with diagonal elements 

- i C T ; ~ : ( X ; ,  0 )  for i = 1,. . . , nl 
V( i ,  2 )  - 

a; f i (x i ,O)  for i = (nl + I), . . ., nl + 722. 

The parameters a1 and a2 denote the relative error factors for the unbleached and bleached 

data. We discuss two settings; when the percent error factor does not depend on whether 

or not the samples had received laboratory bleaching (i.e. a1 = 0 2 )  and when different 

error factors are more appropriate for the laboratory bleached and unbleached samples (i.e. 

0 1  # 02.) 

.- &"- 
d. The quasi-likelihood estimates for 8 are obtained as solutions of the quasi-likelihood 

equations 

x,+az (xi+O2 02) For notational convenience, let sli = exp [--I , 92i = exp [- @, ] , 
~ I ' Y + @ ~ )  

53 = exp [ ] and s4 = exp [-91 . The n x 6 matrix P consists of the columns 

Fj,  j = 1, . . . , 6  which are defined as follows: 

for i = (nl + l), . . ., (nl + n2) 

for i = 1,. . .,nl 

a3 l - s r )  for i = (nl + l ) ,  . . . , (nl + n2) 

for i = 1,. . . , nl 

a1 ( T + u ~ ) s ~  (I-s?~) for i = (nl + I ) , .  . .,(nl + n2) 

l o  for i =  1, ..., nl 

for i =  1, ..., nl 
l7' = 

( 1 - ~ 3 ) ( 1 - ~ ~ i ) ( 7 + @ ~ ) ~ ~  - (1-~3)(~+&)~2j /' o 
I for i = (nl + 1) ,  . . . , (nl + n2) 

( 1 - ~ 4 ) ~ @ 3 ~  ( 1 - ~ 4 ) P 3 ~  

for i = 1,. . ., nl 

for i = (nl + I ) ,  ...,( n1 + nz )  



The iterative scheme described in Section 3.3 can be used to solve the system of equations 

5.26. 

5.3.8 Confidence intervals based on the quasi-score test 

Let +T = (ail:a2,a3,P2,/&) and 8T = (+T, y )  be the vector of unknown parameters. Let 

U(6) = (equation 5.25) denote the vector of quasi-score functions. 

We computed confidence intervals for the equivdent dose by inverting the score test 

described in Dean [24]. 

The procedure is as follows. 

1. Fix the equivalent dose a t  a value yo. 

2. Partition ~ ~ ( 8 )  = [U?(B), Uz(8)], where ~:(8) = $$ and U2(B) = g. 
3. Compute )(TO) that solves Ul (4, 70) = 0. 

4. Compute uo = ~z()(~o), yo). For our model ua is a scalar. 

5. Let C be the asymptotic variance covariance matrix for the quasi-likelihood estimator 

for 8 (note that C depends on a2). 

6. The parameter a2 in the variance covariance matrix is estimated4 as 

The f; and fi denote the functions fl (xli, 8) and f2(x2;, 8) evaluated at  the restricted 

maximum likelihood estimate eT = (BT(rn) ,  

7. Partition C as - - 

8- Let 00 be the value of Cz2( oo is a scalar for our problem ) evaluated a t  (#(yo), yo). 

4 N ~ t e  that we estimate u by equating the Pearson Chi Squared to its degrees of freedom from the restricted 
model. Using (nl 3- nz - 5) as the degrees of freedom could be justified following the same steps as in the 
Theorem 1. Dean [24] suggests using the pseudo maximum likelihood estimate for u, which uses (nl + na). 



9. The quasi-score test statistic for testing the hypothesis Ho : y = yo is ui60, and is 

distributed as a chi squared distribution on 1 degree of freedom. 

10. Thus, a (1 - a)100% confidence interval for the equivalerrt dose with confidence coef- 

ficient a is 

{YO 1 460 5 x:.,) 7 

where x;, is the upper o quantile for a chi squared distribution with 1 degree of 

freedom. 

5.3.9 Finite sample performance of the confidence intervals based on the 

score test 

Now we describe the results of a Monte Carlo study that we performed to  examine the finite 

sample performance of the confidence intervals based on the quasi-score test. We fixed the 

parameters at  

The dose vectors used in the study are presented in Table 3.1 of Appendix 9.3 where they 

are coded as indicated in the column 'Dose' of Table 5.6. For each simulated sample, a 

confidence interval for the equivalent dose was computed by inverting the quasi-score test 

as described in Section 5.3.8. The results of the study are given in the Table 5.6. In Table 

5.6, the column 'Qscore' indicates the observed coverage of the confidence intervals obtained 

by inverting the quasi-score test; the column t indicates the coverage probability of the t 

intervals based on the quasi-likelihood estimate. 

Conclusions 

The following conclusions were drawn from the simulation study: 

1. The coverage probabilities of the confidence intervals obtained by inverting the quasi- 

score test agree with their nominal coverages even for small samples. 

2. The coverage probabilities of t intervals based on the quasi-likelihood estimates also 

agree with their nominal coverages. 



Dose nominal Qscore 

0.9528 

0.9547 

0.8974 

0.9936 

0.9572 

0.9043 

0.3948 

0.9478 

0.8964 

0.9923 

0.9481 

Table 5.6: Coverage probabilities of quasi-score and t intervals 

5.3.10 Generalized least squares and data weighted least squares 

The procedures described in the Sections 3.4 and 3.5 could simply be extended to obtain 

the generalized least squares and the data weighted least squares estimates for parameters 

in the simultaneous curve fitting. 

Generalized least squares: 

The generalized least squares estimates minimizes the weighted error sum of squares 

Let n be the total number of observations and y = (ylr ,  - - ylnI y21., . . . 9zn-,) be the 

vector of unbleached data followed by the bleached data. Let x and f respectively denote 

the vectors of corresponding doses and response function values. 



The estimates 6 solve the system of equations 
2 

8.5' - 2 [ ~ i  - f(xi  7 e] [yi - f(xi ,  e)] 
O = - -  

$8 i=l f (X i ,  e)2 0f6+C i=l f (xi , e)3 0 f& 

We used the IMSL subroutine 'NEQNF' to solve the above set of equations. When the 

unbleached and bleached response curves correspond to  a common error factor a, we estimate 

the parameter aZ by its approximately unbiased estimate 82 = & C:=l e. If the r;' 
two curves correspond to  different error factors a1 and 02, we estimate them as 612 = 

1 v1 .-fi. x:A1 and dz2 = C:+l respectively. G f2i 
Let W be the diagonal matrix with ith entry w;; = I/ f;, for i = 1, . . . , n. Let F be 

the n x p matrix with (i, j jth entry, the derivative of fi with respect to the j th component 

of 8,  The s t a r i d d  error of the generalized least squares estimate j is estimated as bs ,  

where s  denotes the corresponding diagonal element of the matrix (FTWP) - I ,  evaluated 

at  j. These standard errors are appropriate only in the small a limit, since otherwise the 

estimates are not consistent. 

Data weighted least squares estimate: 

The data weighted least squares estimate for y minimizes the weighted error sum of squares 

The iterative scherne described for obtaining quasi-likelihood estimates can be used to  obtain 

the data weighted least squares estimates by replacing the diagonal elements of the weight 

matrix W by the observed i / y 2  values. 

The standard errar of the estimate (s?) is estimated as bs ,  where s denotes the corre- 

sponding diagonal element of the matrix (FTWF)-' , evaluated at  the data weighted least 

squares estimate. These standard errors are appropriate only in the small a limit, since 

otherwise the estimates are not consistent. 

Confidence intervals based on least squares estimates: 

The confidence intervals for the equivalent dose can be constructed by taking j td f , l -a /2~j  

as lower and upper confidence limits. For the single error factor case, the degrees of freedom 



(dose) 1 
Table 5.7: Coverage probabilities of t intervals based on GLS and DWLS estimates 

a 

0.01 

0.02 

0.029 

0.04 

0.05 

df is nl +n2 -6 while for the different error factor case is computed using the Satterthwaite's 

formula (Equation 5.17). The use of these confidence intervals in large samples is justified 

nominal 

0.95 

0.95 

0.95 

0.95 

0.95 

by Theorems 3 and 4 of Section 5.2-4. 

5.3.11 Finite sample performance of the confidence intervals 

We performed a study similar to  that which we described for the quasi-likelihood estimates 

(Section 5.2.5) to  examine the performance of the confidence intervals based on the gener- 

alized squares and the data weighted least squares. The results of the simulation study are 

summarized in Table 5.7. 

Based on the simulation results, we conclude that the coverage probabilities of the 

confidence intervals based on the generalized least squares and the data weighted least 

squares estimates agree with their nomind coverages even for small samples. 

5.3.12 Biases of the estimators 

Let 0 = (al, az.cu3, pq, f13, y) be the vector of parameters in the simultaneous curve fitting. 

We denote the vector of first derivatives and the matrix of second derivatives of f with 

respect to  the parameter vector B by vf and H. In each term, we use the subscripts 1 and 

2 to indicate the unbleached and bleached data sets. 



The results derived in Chapter 3 can easily be extended to  arrive at the formulae for the 

biases of the estimators given in the Table 5.8. 

/ Method of I 
I Bias 

Table 5.8: Formulae for the biases and the variances of the estimators: partial bleach method 

L 

GLS 

In Table 5.8, 

where wll,; = 

. - I I 

Variance covariance matrix of C1 

Z {(y) - Wl - tw2} 0 2  

Total number of parameters 

Co2 

nl + 722 = Total number of observations 



p = Number of components of B 

n = Total number of observations = nr + n2 

Remarks: 

1. The two stage curve fitting and the simldtaneous curve fitting yield the same est.imator 

for the equivalent dose. 

2. The biases computed from the formulae given in the Table 5.5 are identical to the 

biases computed using Equation 5.16 for the simultaneous curve fitting. 

5.4 Comparison of the estimators in finite samples 

In Chapter 4, we compared maximum likelihood, quasi-likelihood, generalized least squares 

and data weighted least squares estimators by investigating their behavior in large samples, 

for fixed a. We found that maximum likelihood and quasi-likelihood estimators are consistent 

while generalized least squares and data weighted least squares estimators are generally not. 

Least squares estimators were found to  have biases that do not vanish, even asymptotically. 

However, we found that except for specific parameters, the component of the bias that does 

not vanish asymptotically is essentially zero for certain forms of response functions in models 

with variance function proportional t o  the square of the mean function. Therefore, for these 

models generalized least squares and data weighted least squares also provide asymptotically 

unbiased estimators, except for those specific parameters (see Chapter 4). It is easy to see 

from the results derived in Chapter 4 that the least squares estimators for 7, the parameter 

of our interest are asymptotically unbiased. 

Next we describe the results of a small study that examines the biases of the estimators 

in the model for the partial bleach method. For the study described here the parameters 

were set a t  a1 = 2.121383, a 2  = 0.583,03 = 5.964, P2 = 0.68, P3 = 6.67, y = -0.48 and 

a = 0.029. The dose levels were fixed at, (0,1,2,4,8,16). The procedure is similar to  that 

which we described for the additive dose method in Section 4.3. 

Conclusions 

Based on the results presented in Tables 5.9 - 5.11, we draw the following concIusions. 



Table 5.3: Cbmpa~sc1fr of the biases of and h2: partid bleach method 

Table 5.10: Comparison of tbe biases of k3 and b2: partial bleach method 

Table 5.11: Comparison of the biases cf & and 9: f artiai bleach method 



I. For fixed o, as n increases, the biases of maximum likelihood and quasi-likelihood 

estimators for ail six parameters converge to zero at a rate O(l/n).  

2. Except for the parameter al, the biases of generahzed least squares and data. weighted 

least squares estimators also converge t.o zero at a rate O ( l / n ) ,  as n is increased while 

O. is fixed. 

3. For all the parameters except crl the generalized least squares estimator and the mLy- 

imum likelihood estimator have almost the same bias. 

4. For the parameter a:, the absolute values of the biases are in the order B,+fL < 

BQL < BGLS. Depending on the sample size n, the absolute d u e  of the bias of data 

weighted least squares estimator could be larger or smaller than the biases of the other 

estimators. 

5. For all the parameters except al, the absolute values of the biases are in the order 

1. The conclusions drawn above agree with the theory discussec d in Chapter 4. 

2. We investigated the above results using different parameter vectors and different dose 

levels. The results were similar to  what we described here. 

3. From the formulae derived for the biases of the estimators, it is clear that for all six 

parameters the bias of data weighted least squares estimator (BDwLs) is related to the 

biases of quasi-likelihood estimator (BQL) and the generalized least squares estimator 

(BGLS) according to BDWLS = 36rQL - 2BGLs. 

4. The results of the study show that for the parameter of interest, 7, maximum likelihood 

a d  the generalized least sqnares estimators have ahnost the same bias. 



5.5 Worked example 

Now we demonstrate the theoretical results derived in this chapter using a real data set. 

The data set used here is presented in Berger et. aE. [12] where it is coded as 'QNL84-2'. We 

fitted the model y = f(x, @)(I + a€), using the techniques described earlier in this chapter. 

Here f (x, 8 )  is the saturating exponential model defined by 

a [I - e x  (- ) , (for unbleached data), 

[I - e x  (- ) ]  , (for the bleached data); 

here 6 = (al, a 2 ,  as, A, b, y)T and -7 denotes the equivalent dose (ED), and 

The parameter estimates for this data set assuming a common a for the two curves are 

given in Tables 5.12 and 5.13. 

parameter estimate 

14.28 

123.18 

393.07 

192.55 

756.62 

87.15 

0.0012 

bias 

0.02 

0.12 

1.64 

0.39 

11.20 

0.55 

estimate bias 

0.03 

0.24 

2.46 

0.72 

16.21 

0.72 

Table 5-12: ML and QL estimates assuming common a: Data QNL84-2 

For the common error factor case 95% confidence intervals for the equivalent dose y 

based on the methods discussed earlier in the chapter are given in Table 5.14. 



parameter estimate 

GLS 

bias 

DWLS 

estimate bias 

0.09 

0.41 

3.23 

1.19 

20.63 

0.77 

Table 5.13: GLS and DWLS estimates assuming common a: Data QNL84-2 

Description 

Profile likelihood 

using F critical value (FCRIT1) 

Z interval based on the ML 

t interval based on the ML 

Quasi score interval 

t interval based on the QL 

t interval based on the GLS 

t interval based on DWLS 

Lower bound Upper bound 

Table 5.14: Confidence intervals for ED assuming common a: Data QNL84-2 

124 



We also analyzed the same data set assuming a is different for the unbleached and 

bleac5ed response cnrves. The parameter estimates for this case are presented in Tables 

5.15 and 5.16. 

parameter 

cul x 104 

Q2 

a 3  

P2  

P 3  

ED 

4 
4 

estimate 

14.28 

123.18 

393.07 

192.55 

756.62 

87.20 

0.0008 

0.0016 

bias 

0.01 

0.08 

1.15 

0.53 

15.30 

-0.14 

estimate 

14.28 

122.74 

392.0 

193.37 

761.65 

86.43 

0.0010 

0.0021 

QL 

bias 

0.02 

0.16 

1.69 

1.02 

22.83 

-0.17 

Table 5.15: ML and QL estimates assuming different a: Data QNL84-2 

The 95% confidence intervals for the equivalent dose y assuming unbleached and bleached 

curves correspond to  different error factors are given in Table 5.17. 

Remarks 

The results of the analysis of this data set indicate that fitting a common relative error a or 

fitting two different a's for the unbleached and bleached curves do not change the parameter 

estimates; we demonstrate this below. However, as one might expect, the biases and the 

standard errors of the estimates depend on whether or not the two curves correspond to  a 

common a. 

Data weighted least squares estimating equations do not involve a. Therefore, the DWLS 

estimates are unchanged regardless of whether we fit a common a or two different a's for 

the unbleached and bleached curves. f i r  all the other three methods, the estimating equa- 

tions for the simultaneous curve fitting involve a. For example, quasi-likelihood estimating 



parameter estimate 

GLS 

bias estimate bias 

Table 5.16: GLS and DWLS estimates assuming different a: Data QNL84-2 

/ Description 

Profde likelihood 

using F critical vdue (FCRIT1) 

Z interval based on the ML 

t interval based on the ML 

t interval based on the QL 

t interval based on the GLS 

t interval based on DWLS 

Table 5.17: Confidence intervals for ED 

72.16 106.73 

70.21 110.15 

70.99 

70.09 

67.42 

67.93 

66.31 

103.41 

104.31 

105.45 

106.39 

103.66 

tssuming different a: Data QNL84-2 



equations for the simultaneous curve fitting for the different case are 

Yii - fii 
o f i i  +z Y 2 j  - f i j  

D fii = 0- 
i= 1 0;f;i j=1 ui f ;j 

To obtain the parameter estimates we use a 2-part iteration similar to  what we described 

for obtaining maximum likelihood estimates. This means, we find the estimates for 8 in 

an iterative fashion, each time upgrading a1 and a2 using current parameter estimates and 

solving estimating equations for 8 by replacing unknown a1 and g2 by these estimates. At 

a glance, it appears that the parameter estimates depend on how we estimate uj ( j  = 1,2). 

However, we observed in the example that the estimates did not have such a dependence. 

Since this observatior, appeared puzzling, we examined this more carefully. For a fixed ul,u2 

the QL and GLS estimating equations for 8 are derivatives of a function (the likelihood for 

the gamma model or the weighted error sum of squares) which is being optimized. The 

location of the optimum is invariant under reparametrization of 8. When the curves are 

fitted separately this optimum clearly does not depend on al,02 (the estimating equations 

for 8 for this case do not involve a). For QL and GLS, the invariance then guarantees that 

the same conclusion holds for the simultaneous curve fitting. Thus, the quasi-likelihood 

and the generalized least squares estimates are unchanged regardless of whether we fit a 

common u or not. Furthermore, QL and GLS estimates for 8 do not depend on how we 

estimate a, in particular, whether we use maximum likelihood or least squares estimates 

for a. Turning to maximum likelihood, the situation is somewhat different. As for QL and 

GLS, the invariance property guarantees that the simultaneous curve fitting and two stage 

approaches yield the same estimates by the method of maximum likelihood. However, the 

maximum likelihood equations are coupled with the estimating equations for a, even for two 

stage curve fitting. Therefore, the estimates depend on how we estimate 0. In other words, 

the estimates using maximum likelihood estimates for a and least squares estimates for a 

are not necessarily the s age  as for the QL and GLS. Furthermore, the estimates for u using 

a common error factor are not necessarily the same as those using different error factors. 

However, for the illustrated example, the maximum likelihood estimates for the two cases, 

fitting a common a and fitting two different a's for unbleached and bleached curves were 

virtually the same to the degree of accuracy as reported here. 



5.6 Discussion 

In this chapter, we discussed the estimation of the equivalent dose from partial bleach data. 

We described two approaches for this purpose based on two different paranieterizations of 

the model. Both approaches yield the same parameter estimates. The first approach fits 

response curves for the unbleached and bleached data sets separately and estimates the 

equivalent dose as the intersection of the two fitted curves. For this approach? Berger et. 

al. [ll] describes interval estimation assuming a common error factor for the unbleached 

and bleached data sets. We extended their results t o  the case of different error factors. 

The second approach fits the two curves simultaneously treating the equivalent dose y as a 

parameter. 

For both approaches, we described algorithms for obtaining maximum likelihood, quasi- 

likelihood, generalized least squares and data weighted least squares estimates. Formulae 

were derived for the biases of the estimators. We found that if the relative error in a single 

measurement a is small, which is usually the case with partial bleach data, the bias is 

neghgible relative to  the standard error. 

Under maximum likelihood, we described computing profile likelihood intervals and sym- 

metric intervals using z and t quantiles. We also discussed computing profile type confi- 

dence intervals using a F critical value. Under quasi-likelihood we discussed computing 

profile type confidence intervals by inverting the quasi-score test, and symmetric confidence 

intervals using t quantiles. For generalized least squares and data weighted least squares we 

described symmetric confidence intervals using t quantiles. The finite sample performance 

of the suggested confidence intervals were examined by a Monte Carlo study. The following 

conclusions were drawn from the simulation results: 

1. The coverage probabilities of symmetric t intervals based on the maximum likelihood, 

quasi-likelihood, generalized least squares and the data weighted least squares esti- 

mates agree well with their nominal values even when the sample sizes are small. 

2. When the sample sizes are small, the coverage probabilities of profile likelihood inter- 

vals and z intervals based on the maximum likelihood estimate vvere found to have 



s m d e r  coverage than their nominal values. 

3. The coverage probabilities of profile type confidence intervals with a transformed F 

quantile agree well with their nominal values even in small samples. 

4. The coverage probabilities of profile type confidence intervals based on the quasi-score 

test agree well with their nominal coverages even in small samples. 

5. Large sample sizes are not common in TL studies. Based on the simulation results, 

we recommend using symmetric confidence intervals based on t quantiles, quasi-score 

intervals and profile likelihood intervals with F critical values as opposed to  intervals 

based on the maximum likelihood estimate with z quantiles and profile likelihood 

intervals with X2 critical values. 

6. The t type confidence intervals have the added advantage that they are easier to 

compute than profile type confidence intervals. 

We also examined the robustness of the test with F critical values to  the departures 

from normality of the data. For this study, photon counts were generated from a gamma 

distribution with mean f (xi, 3) and variance a2 fz(x;, 8). A confidence interval for the equiv- 

alent dose was computed from each generated sample using an F critical value. We found 

that the observed coverages still agree well with the nominal values even if the sample sizes 

are small. However, for the values of o occurring in practice, the gamma distributions in 

question have large shape parameters (shape parameter is l/a2) and so were very close to 

normal distributions. 

From the small study we performed to  examine the behavior of the biases of the esti- 

mators for fixed a, as the sample size n becomes large, we found that for all the parameters 

in the simultaneous curve fitting, the biases of maximum likelihood and quasi-likelihood 

estimators converge to zero at a rate O(l/n).  The same is true for the generalized least 

squares and data weighted least squares estimators, except for the parameter cq. For y, 

the parameter of interest in thermoluminescence studies, the maximum likelihood estimator 

and the generalized least squares estimator were found to  have almost the same bias. 



We end this chapter with a brief description of the computational difficulties encoun- 

tered in the simulation work. When a is larger than about 0.84 and the sample sizes are 

small (less than 501, we found that the convergence of the programs that compute profile 

type confidence intervals is poor. Since we are dealing with small samples (n around 29) 

with a non-linear response curve involving about 6 parameters the poor convergence is not 

surprising. Since the estimates for a from the real data sets are usually small, the poor con- 

vergence for large a is not viewed as a serious limitation. Due to poor convergence when a 

is large (> 0.04) the biases and the coverage probabilities were only examined using samples 

of size larger than 50. 

It may be worthwhile exploring the possibilities for improving the convergence of the 

programs when a is large. Perhaps, a transformation of the parameters that removes the 

parameter effects non-linearity as suggested by Bates and Watts [2] could improve the 

convergence. In this work, we did not explore these possibilities. 

We found that the coverage probabilities of the profile likelihood intervals are lower than 

their nominal values when the sample sizes are small. Several authors have addressed this 

problem of narrowing the profile when nuisance parameters are estimated. (See McCullagh 

and Tibshirani [SO], Cox and Reid [20], Fraser and Reid [31]). Further work needs to be 

done in the area of adjusting the profile likelihood for estimating the nuisance parameters 

in our problem. 



Chapter 6 

Equivalent dose from regeneration 

data 

In the regeneration method, a portion of the sample is given a vigorous laboratory bleaching. 

As in the partial bleach method, this portion is used to  define the bleached response curve. 

The other portion is used to define the unbleached dose response curve. The equivalent dose 

is defined as the dose shift required for the unbleached curve to match the bleached curve 

(Aitken [I], Huntley et.  a!. [38]). If such a dose shift does not match the two curves, then 

the two data sets do not represent the same curve and the equivalent dose is not estimated 

from such data sets (Huntley et. at. [38]j. In this chapter, we describe estimating the 

equivalent dose from regeneration data. 

In Section 6.1, we introduce the notation and review the mathematical models for re- 

generation data, Section 6.2 offers initial estimates for the parameters. The methodology 

developed for partial bleach data can be applied to  regeneration data with slight modifica- 

tions. Therefore, we do not intend to elaborate on the theory. We describe the modifications 

that axe necessary and offer the simulation results. The maximum likelihood estimates for 

the parameters are obtained in sections 6.3. Profile likelihood intervals and symmetric con- 

fidence intervals based on the maximum likelihood estimate using Z and t critical values 

are discussed in Section 6.3.1. In Section 6.3, we also discuss confidence intervals using a 



transformation of the likelihood ratio statistic with a transformed F critical vdue. Quasi- 

likelihood estimates for the model parameters are discussed in Section 6.4, h Section 6.4.1, 

we discuss symmetric confidence intervals based on the quasi-likelihood estimate with a t 

critical value and based on inverting the quasi-score test. In Section 6.5, we obtain gen- 

eralized least squares and data weighted least squares estimates for the equivalent dose. 

In Section 6.5.1, we discuss symmetric confidence intervals based on the generalized least 

squares and the data weighted Itlast squares estimates. The finite sample performance sf 

the suggested confidence intervals are examined by a Monte Carlo study. Formulae for the 

biases of the estimators are provided in Section 6.6. 

In Section 6.7, we describe the results of a study that examinos the behavior of the biases 

of estimators for fixed a, as the sample size n gets bigger. We developed software using 

the computing language FORTRAN to implement the suggested methodology. In Section 

6.8, we demonstrate the suggested theory using a real data set. Section 6.9 summarizes the 

chapter. 

6.1 Mat hematical models for regeneration data 

For regeneration data, we discuss fitting a model with a saturating exponential plus a linear 

component. We chose to  use this response function for two reasons: first it is commonly used 

by physicists for regeneration data (physical motivation for using this response function will 

be described later) and second since the techniques we describe for fitting regeneration data 

closely follow those for the partial bleach data we get a slightly different illustration of the 

results we <?rived for general response functions. The model with saturating exponential 

plus a linear component is represented by the function 

where x is the added dose and 13 = (al,cr2,a~,cr4)T is the vector of unknown parame- 

ters. The procedures we describe for fitting these models can easily be adapted with slight 

modifications to  fit other forms of response functions. 



Motivation for using saturating exponential plus a linear component 

Suppose there are two different types of traps approaching saturation a t  different dose levels 

as illustrated in Figure 6.1. In Figure 6.1, the dashed lines indicate the response curves, if 

there were only one type of trap. The solid line indicates the response function we observe 

from the sample as a result of the two types of traps, one approaching saturation while the 

other is still at its trap filling stage so that the corresponding response curve is nearly Linear. 

As discussed in Chapter 5, response curves for each type of trap can be approximated by 

a saturating exponential model. Consequently, the response curve for the photon counts 

observed from the sample can be well approximated by a saturating plus a linear component. 

Response curve for 
the sample 1 

Response curve for 
trap type 2 

- 
Added dose 

Figure 6.1: Plot of response curves for two different types of traps 

Suppose data are collected on nl unbleached and n2 bleached samples. Let XI; and ~ 2 j  

respectively indicate the doses received by the ith unbleached and j t h  bleached samples. 

For the unbleached data: we fit the response function 



For the bleached data, we fit the response function 

The parameter a5 is called a TL intensity scaling factor. Let 9 = ( a l .  az.a3, ad. as, 1 ) bc 

the vector of unknown true parameters. 

Huntley et. al. 1381 reports that the equivalent dose can only be estimated if the 

unbleached and the bleached response curves could be matched by a shift along the  dosc 

axis- This is only possible if the TL intensity scaling factor, as. is unity and the parameter 

a3 is the same for both curves. Therefore, we adhere t o  the following guidance for estimating 

the equivalent dose from the regeneration data. 

1. Fit the response functions described by 6.1 and 6.2 for t5e unbleached and bleached 

data sets respectively. 

2. Perform a formal hypothesis test t o  decide whether the intensity scaling factor is 

significantly different from unity. 

3. If the intensity scaLing factor is not significantly different from unity, refit the data 

with it fixed a t  unity. 

4. From the re-fitted model, estimate the dose shift y required for the unbleached response 

curve to  match the bleached response curve. This dose shift 7 estimates the equivalent 

dose. 

5. If the intensity scaling factor is significantly different from unity the equivalent dose 

cannot be estimated from the given data (Huntley el, al. f38f). 

Remarks: 

1- The regeneration method for estimating the equivalent dose assumes that the labo- 

ratory bleaching does mt cause any sensitivity change of the sample. According to 

Huntley et. al. [38], if the TL intensity (B )  obtained from the bleached curve a t  the 

zero dose (Figure 6.2) is not equal to the therrnoluminescence had it been measured at  



the time of deposition it indicates a sensitivity change in the sample. The latter TL, 

while is unknown, is assumed to be the same as that measured for a modern dune ( M )  

from the same ewironrnent .. Consequently, if the points B and M do not coincide it is 

considered as an indication of sensitivity change due to laboratory bleaching. If there 

is an indication of such sensitivity change. the deduced dose has to be corrected for 

this. Huntfey el. af- [ Z S ]  suggests the correction to be C, which is the dose reading 

from the bleached response curse corresponding to the TL intensity of the modern 

dune [ M ) .  (Fiere 6.2). 

response 

!, 
dose 

Figure 6-2: Correction for sensitivity change 

2, Following the work of Huntfey eb. a1 [38], the hypothesis that the unbleached and 

bleached c u m s  represent the sane curve was examined by testing if the TL intensity 

scaIing factor a5 is not significantly different from unity. Recall that, when writing the 

response function for the bleached data we already assumed that a3 and ~4 are com- 

mon for the unbleached and bleached response functions, The guidance we followed 

therefore imposes the restriction that the parameters as and a4 do not change due to 

bleaching of the sample. ViWe this assumption allows us to  test the hypothesis that 

the two carves reprent the same carve shifted along the dose axis with more power 

this assmpticm is nat cmdd fix +,@hg this. k ! k t i o ~  6.3, we describe procedures 

for testing whether or not the two carves represent the same curve without imposing 

restrictions on ~3 and a4. 



6.2 Initid estimates 

Consider the response function for regeneration data. Note that for large r ,  fx is 

close to a straight Iiae with slope and intercept: 

slope = rl.1 = a d ,  

intercept = ~ 2 . 1  = (al + a2aq). 

For small x values, fi is close t o  a straight line with the slope and the intercept: 

Q1 slope = 73.1 = - + w, 
a 3  
a1 a2 intercept = T ~ . J  = - f ~ a 2 .  

For the bleached data the corresponding terms are: 

Solving the equations 6.3 - 6.10 we get 

Let 

yl[lj = average photon count corresponding to the zero dose for the 



unbleached data, 

x 1 [ 2 ]  = smallest positive dose for the unbleached data, 

y1[2]  = average photon count corresponding to x 1 [ 2 ] ,  

x l [ n l ]  = largest dose for the unbleached data, 

x l [ ( n l  - 1 )I = second largest dose for the unbleached data, 

y1 Enl] = average photon count corresponding to  x l  [nl], 

y l [ ( n l  - I)] = average photon count corresponding to z l [ ( n l  - I)]; 

y2j l j  = average photon count corresponding to zero dose for the 

bleached data, 

x 2 [ 2 ]  = smallest positive dose for the bleached data, 

y2[2] = average photon count corresponding to  z 2 [ 2 ] ,  

x2[n2]  = largest dose for the bleached data, 

x 2 [ ( n 2  - l)] = second largest dose for the bleached data, 

y2[n2]  = average photon count corresponding to  x 2 [ n 2 ] ,  

and y2[(n2 - I)] = average photon count corresponding to  x 2 [ ( n 2  - I)]. 

We estimate the slopes and the intercepts as follows: 

The initial estimates for the parameters are obtained by replacing the slopes and 

intercepts by their estimated d u e s  using equation 6.11. 



6.3 Maximum hikefihocrd estimakes 

We refer to  the model with the parameter as unspecified as the full model. The model 

with a5 fixed a t  unity is called the constrained model. The parameter estimates for 

the constrained model are referred t o  as restricted maximum likelihood estimates. 

To fit regeneration data, we modify the the algorithm described in Section 5.3.1 as 

follows. 

Maximum iikelihood estimates 

The columns of the n x 6 matrix D (Section 5.3.1) are replaced by the columns 

(a ZL. fL i?fL a) given below: 
dal 7 aa2 , da, 3 &Y, , aa5 , a-y 

(for nl < i j nl + n2); (k = (i - nl))  

a f ;  - - - a1 
--(zli + ~ z )  exp 

oas 4 [-('l;3+ a2)]  , (for 1 < i j n l )  

(for nl < i < nl + n2); (k = ( i  - nl ) )  

a fi - = (xli + a2) (for 1 < i L n l )  
aa4 

= a5(zaj  t a2),  (for n1 < i 5 n1+ 122); (k = ( i  - ni ) ) ,  

af i  - - - 0 (for 1 < i < nl )  
aa5 

(for nl < i _< nl + n2); (k = ( i  - nl ) )  



- a1 Q5 - - exp [ - ( X Z ~  + a 2  + Y j] 
a3 a3 

(for nl < i < nl + n2j; (L = (i - nl)) 

The restricted maximum likelihood estimates are obtained by fixing a:, at unity. To 

compute the restricted maximum likelihood estimates, we replace the matrix D by the 

nx,matrix(a a a ,  a a ,k j da l '  6'132 a3 ' aaa' d r  ' 

The standard errors of the maximum likelihood estimates can be computed as de- 

scribed in in Section 5.3.1. 

Tests on the intensity scaling factor 

Recall that the first step in estimating the equivalent dose from the regeneration data 

is to test the hypothesis f i  : ~ l r g  = 1* 

The likelihood ratio test 

Let the values of the loglikelihood function corresponding to the f d  model and the 

restricted model be Zl and I z  respectively. Let x:, denotes the upper a quantile for a 

X2 distribution on 1 degree of freedom. If 2(Z1 - 12) > x:,, , with confidence coefficient 

1 - a we conclude that the intensity scaling factor a5 is significantly different from 

unity. 

The t test 

Let sa, be the standard error of b5. Let t = m. If the absolute value of t is 
s&5 

greater than ta/2,nl+n2-6, we conclude that the intensity scaling factor is significantly 

different from unity. Here t,,, denotes the upper a th  quantile for a t distribution with 

v degrees of freedom. 

Worked Example 

?Ve applied the suggested methodology on the data set SESAl (cited in Huntley et. 

al. [38]). The results for the data collected at the temperatwe 350•‹C are as follows. 

These data were kindly provided to us by D. J. Huntley. 



Maximum likelihood 

ii5 = 0.972, SS, = 0.027 

11 = -537.788, l2  = -538.318 

2(11 - 1 2 )  = 1.06 < Xf,o.gs; ( p  - value = 0.30) 

Both tests lead to  the conclusion that the data do not provide enough evidence to 

reject the null hypothesis that the intensity scaling factor is unity. So we re-fit the 

model by setting the intensity scaling parameter at  unity. From the fitted parameters 

for the restricted model, the maximum likelihood estimate for the equivalent dose = 

73.06, with an error of the estimate s+ = 3.23. 

Will a dose shift bring the two curves into coincidence? 

Now we briefly describe test procedures for testing whether a dose shift would bring 

the two response curves into coincidence without imposing restrictions on any of the 

parameters. The procedures described earlier can be slightly modified to  fit the models 

described below. 

(a) For the unbleached data, fit the response function 

{ [- (xliaT a 2 ) ] }  + a l (x l i  + a z ) -  f i (x l i ,  8 )  = a1 1 - exp (6.12) 

For the bleached data, fit the response function 

f 2 ( ~ 2 j , @ )  = PI 

fb) Test the hypothesis 

LSefifiood ratio test 

{l-exp j - ( x 2 j + a 2 + T )  + P 4 ( ~ 2 j + a 2 + ~ ) -  (6.13) 
P3 I > 

a1 = PI, as = P3, a4 = P4 using the likelihood ratio test. 

1. Fit the two models described by the equations 6.12 and 6.13 for the unbleached and 

bleached data respectively. We refer to this model as the full model. 



2. Now re-fit the models subject to the restriction, a1 = Pliag = /I3$ a4 = 104. We refer 

to this model as the restricted model; it is the same restricted model described in the 

previous section. 

3. Let ll and l2 be the values of the log-likelihood for the full model and the restricted 

model respectively. 

4. If 2(11 - 12) > Xi,, using a significance level a we conclude that the two curves do not 

represent the same curve. 

Worked Example 

For the data set SESAl cited earlier we found that the parameter estimates for the full 

model are: 

ti1 = 78594.0,G2 = 85.72, 63 = 128.19,b4 = 74.97,;Y = -79.51,P1 = 54043.80, 

b3 = 74.63 and fi4 = 121.84. 

The standard errors are: 

s&, = 18146.10, ss, = 18.41, SS, = 59.53, ss, = 31.07,si. = 18.41, sjl = 5251.72, 

= 10.28 and s~~ = 13.10. 

The log-likelihood for the full model is bl = -536.042. 

The parameter estimates for the restricted model are: 

b1 = 62150.1,& = 79.6176,63 = 89.6115,ii4 = 105.644,? = -73.0640, 

The standard errors are: 

sa, = 4886.85,sh2 = 3.41,s&, = 9 . 6 6 , ~ ~ ~  = 11.12,si. = 3.23. 

The log-likelihood for the restricted model is l2 = -538.318. 

Note that 2(11 - 12) = 4.552 < xg,o.ss(= 7.81), (p-value = 0.79). Therefore, at  a level 

of significance a = 0.95, we conclude that the two curves represent the same curve shifted 

over the dose axis. 

The test that uses the additional information that as and a4 are common to the un- 

bleached and bleached response curves is more powerful in detectkg whether the intensity 



scaling factor is unity than the test described here. Since physicists follow the former proce- 

dure we do not intend to  follow the less powerful test procedure described here to determine 

whether the two curves follow the same curve we only examine whether the intensity scding 

factor is equal to  unity. Similar tests as described in this section can be performed based 

on the quasi-likelihood estimate or least squares estimates. 

6.3.1 Profile likelihood intervals 

Recall that, in the regeneration method we estimate the equivalent dose from the restricted 

model. The full model is only used as a guide to  decide whether or not we can estimate the 

equivalent dose from the given data. The simulation results we present here and elsewhere 

in this chapter are therefore obtained using the restricted model. 

The Monte Carlo study is similar t o  what we already described for the partial bleach 

data. Since the response functions we consider for the regeneration data are differelit from 

those for the partial bleach data we need to modify the algorithms accordingly. The nec- 

essary modifications are similar to  what we described for deriving maximum likelihood 

estimates. For example, to compute profile likelihood intervals, the n x 5 matrix D' of 

Section 5.3.2 has to  be replaced by the n x 4 matrix D' with ith row consisting of the partial 

derivatives (U fr % ?A. I aal aa2 7 aa3 7 6'a4 ' 

As for the partial bleach data, we examined the finite sample performance of the profile 

likelihood intervals, symmetric intervals with t and Z quantiles, and the likelihood ratio 

intervals with transformed F critical values. The parameters were set at  

These are the maximum likelihood estimates for the pararneters in the full model obtained 

for the data set SESAl (collected at  the temperature 360%') cited in Huntley et. al. [38]. 

The dose vectors used for the study are presented in Table 9.2 of Appendix 9.3 where it is 

labeled as indicated in the first column of Tabie 6.1. 

The results based on 10000 sindations are given in Table 6.1. In Table 6.1, the calumn 

'PROFILE' indicates the observed coverages for the profile likelihood intervals, The columns 



'FCRITI' and 'FCRIT2' indicate the observed coverages for the confidence intervals using 

the transformed likelihood ratio statistic LR (Section 5.3.4) with the critical values based 

on the approximations: 

2LR = nlog [ 1+ ::!:;] 

The columns Z and t indicate the coverage probabilities of the symmetric confidence 

intervals based on the maximum likelihood estimate with quantiles of standard normal and 

student t with n - 5 degrees of freedom respectively. 

nominal 

0.95 

0.95 

0.95 

0.95 

0.95 

0.95 

0.95 

PROFILE 

0.9375 

0.9369 

0.9442 

0.9389 

0.9493 

0.9487 

0.9419 

FCRIT 1 

0.9507 

0.9475 

0.9502 

0.9454 

0.9527 

0.9514 

0.9456 

Table 6.1: Coverage probabilities of profile, F, Z and t intervals: regeneration data 

Conclusions: 

Based on the simulation results we recommend using t confidence intervals which are easier 

to compute and have coverage probabilities in agreement with the nominal coverages. 11 

profile type confidence intervals are preferred, we recommend using a transformed F critical 

value as oppose to a X2 critical value. 

6.4 Quasi-likelihood estimates 

The algorithm described in Section 5.3.7 can be used to  obtain the quasi-likelihood estimates 

by replacing the matrix F by the matrix D described in Section 6.3. 



The quasi-likelihood estimates for the constrained model are obtained by fixing ft-5 at 

unity. As in the case of restricted maximum likelihood estimates, the columns of the n x 5 

matrix F of partial derivatives have to  be replaced by the columns (z, g, p. p, g) 
a3 a1 

to  obtain the restricted quasi-likelihood estimates. 

Testing t h e  hypothesis Ho : as = 1: 

Let W be the weight matrix, which is diagonal with ith diagonal element equal to the weight 

on the ith observation, f:. Let b5 be the quasi-likelihood estimator for as. Let . s ~ ~  be the 

square root of the corresponding diagonal element of the matrix C T ~ ( F ~ W F ) - ~ .  

Proceeding as in Section 5.2.4, we find that has approximately a t distribution 
sa5 

with (nl + n2 - 6 )  degrees of freedom. If the absolute value of is greater than the 
=ta5 

corresponding quantile of a t distribution with (nl + nz - 6) degrees ad freedom, we reject 

the hypothesis that the intensity scaling factor is unity, at  the significance level a. 

Worked Example continued. 

Quasi-likelihood estimates: 

We applied the suggested methodology to find the quasi-likelihood estimates for the da1,a set 

SESAl (Huntley et. al. [38]). The number of observations for the unbleached and bleached 

data sets are nl = 30 and na = 32. The quasi-likelihood estimates for the model parameters 

are h5 = 0.970, sg5 = 0.028. Thus, = 1.062 < t56,0.975(= 2.00); ( p - v a l z ~  = 0.15). 

So as in the method of maximum likelihood, we conclude that as is not significantly different 

from unity. Therefore, we re-fit the data by fixing a5 at unity. From the fitted parameters 

of the restricted model, quasi-likelihood estimate for the equivalent dose = 73.17, with a 

standard error of the estimate s+ = 3.39. 

6.4.1 Quasi-score intervals 

The procedure described in Chapter 5.3.8 can be used to  obtain confidence intervals for the 

equivalent dose by inverting the quasi-score test. The necessary modifications are similar 

t o  those described for the  profile likelihood intervals. 



Symmetric confidence intervals for the equivalent dose can also be constructed based 

on the quai-likelihood estimate using a t critical vdtte. Since the confidence intervals are 

constructed based on the model with TL intensity scaling factor fixed at  unity, for the 

common error factor case, the degrees of freedom for the t distribution is (nl + nz - 5 ) .  

When a is assumed to be different for the two response curves the corresponding degrees of 

freedom can be obtained from Satterthwaite's approximation (Equation 5.17). 

The results of a simulation study that examines the finite sample performance of these 

confidence intervals are given in Table 6.2. For this study the parameters were set at  

These are the parameters used for examining confidence intervals based on the maximum 

likelihood estimate. The dose vectors used for the study are presented in Table 9.2 of 

Appendix 9.3 where they are labeled as indicated in the first column of Table 6.1. In this 

table, columns '&score' and t indicate the observed coverages for the confidence intervals 

based on the quasi-score and symmetric t intervals. 

nominal Qscore 

0.9448 

0.9429 

0.9467 

0.9407 

0.9493 

0.9495 

0.9449 

0.9475 

Table 6.2: Coverage probabilities of quasi-score and t intervals 



Conclusions: 

Except for the quasi-score intervals in one case, the coverage probabilities of both i intervals 

and quasi-score intervals agree with the nominal coverages even in small samples. Based 

on the simulatio~ results we conclude that the small sigma asymptotic results are valid for 

sigma in the range of real data sets collected for the regeneration method (The estimates 

for c2 in real data sets collected for the regeneration method are usually around 0.004.). 

6.5 Generalized least squares and data weighted least squares 

We commonly refer t o  the generalized least squares estimates and the data weighted least 

squares estimates as least squares estimates. The algorithms described for obtaining least 

squares estimates for the partial bleach data can be slightly modified to obtain least squares 

estimates for the regeneration data. Since the necessary modifications are similar to  those 

described for the maximum likelihood estimates we do not elaborate. 

Testing the hypothesis Ho : a5 = 1: 

Let h5 be any of the least squares estimators for as. Let s ~ ,  be the estimate for the error 

of the estimate obtained as described in Section 5.3.10 for the partial bleach data. 

As in Section 5.2.4, it can be shown that has approximately a t distribution 
%is 

with (nl + nz - 6) degrees of freedom. If the absolute value of is greater than the 
s&5 

corresponding quantile of a t distribution with (nl + n2 - 6) degrees of freedom, we reject 

the hypothesis that the intensity scaling factor is unity, at the significance level a. 

Worked Example cont hued. 

We applied the suggested methodology to obtain the least squares estimates for the data 

set SESAl cited in Huntley et. al. [38]. The complete data set was kindly provided to us 

by D. J. Uuntley. A summary of the results are given below. 

Generaked least squares 

Estimate for as is, = 0.972, with an error of estimate s&, = 0.099. Thus, I 8% / = 



0.287 < t56,0.975(= 2.00); ( p  - valve = 0.39). So, as in the method of maximum likelihood, 

we conclude that as is not significantly different from unity. Therefore, we re-fit the data by 

fixing as at unity. From the fitted parameters of the restricted model, the generalized least 

squares estimate for the equivalent dose = 73.06, with an error of the estimate s+ = 3.37. 

Data weighted least squares 

The estimate for a5 is, = 0.967, with a standard error sc, = 0.029. Thus, 1-1 = 
=a5 

1.122 < t56,0.975(= 2.00); ( p  - value = 0.13). As before, we conclude that a5 is not 

significantly different from unity and re-fit the data by fixing a5 at unity. From the fitted 

parameters of the restricted model, data weighted least squares estimate for the equivalent 

dose = 73.56, with an error of the estimate SL?, = 3.50. 

6.5.1 Confidence intervals based on least squares estimates 

Let -j. be the least squares estimate and SL?, be the standard error of the estimate computed 

as described under each method. The confidence intervals for the equivalent dose can be 

constructed by taking + t d j , l - a / 2 ~ j  as lower and upper confidence limits. For the single 

error factor case, the degrees of freedom df is (nl + n2 - 5). For regeneration data, we do 

not have justification for using different error factors. The use of these confidence intervals 

in large samples can be justified as in Theorems 3 and 4 of Section 5.- 4. 

The results of a simulation study that examines the finite sample performance of these 

confidence intervals are given in Table 6.3. For this study the parameters were set at  

These are the parameters used for examining confidence intervals based on the maximum 

likelihood estimate. The dose vectors used for the study are presented in Table 9.2 of 

Appendix 9.3 where they are labeled as indicated in the first column of Table 6.3. 

Conclusions: Based on the simulation resuits we conclude that the small sigma asymptotic 

resuits for the generalized least squares a d  dzta least sqaares estimates h d d  for 

a values typical of real data sets. 



/ Dose j o2 

(Rl) I 0.004 

(R.3) / 0.006 

(R3) 0.008 j I (R3) j 0.010 

nominal / GLS 

C.95 1 0.9486 
i 

i DWLS / nl 1 nz 

0.9497 / 30 32 

0.9169 30 32 

Table 6.3: Coverage probabiiities of f intervals based on GLS and DWLS estimates 

6.6 Biases of the estimators 

6.6.1 Formulae for the biases 

Let 6 = (aI ,  a 2 . c ~ ~  CQ, Y)T denote the vector of unknown true parameters of the restricted 

model. The equivalent dose is estimated as y- We denote the vector of first derivatives and 

the matrix of second derivatives of f with respect to the parameter vector 6 by v f and N. 

In each term? we use the subscripts 1 and 2 to indicate unbIeached and bleached data scts. 

The results derived in Chapter 3 can easily be extended to arrive at the following formula 

for the bias of T. 

1 I 1 Method of i 
t 
! 

i 
Estimation 

Bias 

t 
GLS f 

I C {c:,, ( y )  - W, - +wz} o2 1 Ca2 / 5 

Tabk 6.4: The estimators ior the bias and the iraritfj: regeneration data 



IB Table 5.4 

E; = 

P = 

'a = 

w1 = 

and W2 = 

where wll = 

and w22 = 

nl + nz = m d  number of observations. 

6.6.2 Biases from a &mufation study 



compared with the biases from the simulation study. The results based on 25000 simulations 

are gi.;en in Tables 6.5 and 6.6. In the Tables 6.5 and 6.6, BT. B1 and B2 respectively denote 

the true bias, the average of -j. - y - Clc values, and average of -7 - .t. values. 

I ! 
Dose / o2 1 

Table 6.5: Results of the Monte Carlo study 6.l(a) 

Study o2 1 
I 

GLS 
! 
f Br Bl 

DWLS 

B1 / B2 

Table 6.6: Results of the Monte Carlo study 6.l(b) 

Based on the simulation results given in Tables 6.5 and 6.6, we conclude that the derived 

formulae are valid for srn& o(< 0.09). For real data sets collected for the regeneration 

method, a is usnaiiy around 0.08. Since sample sizes used in the simulation study are 

around the real sample sizes, the derived formulae can safely be used to estimate the biases 

of iLU four estimators for real data sets. For a in the range of real data sets, we notice that 

the biases are negligible compared to  the standard errors. 



6.7 Comparison of the estimators in finite samples 

Next we describe the results of a small study that examines the biases of the estimators in 

the model for the regeneration method. For the study described here the parameters were 

set a t  crl = 57486.4, a 2  = 76.3545, as = 86.9160, a4 = 95.3052, y = -68.8792 and a = 0.029. 

The dose levels were Sxed at  (0,40,80,120,300,394,700). The procedure is similar to that 

which we described for the additive dose method in Section 4.3. 

Table 6.7: Comparison of the biases of ti1 and Liz: regeneration method 

I 
14 

28 

56 

112 

Table 6.8: Comparison of the biases of ir3 and 64:  regeneration method 

14 

Concfusions 

Based on the results presented in Tables 5.9 - 5.11, we draw the following conclusions. 

ML 

1130.95 

655.47 

282.74 

141.40 

I. For fixed a, as n increases, the biases of maximum likelihood and quasi-likelihood 

estimators for all five parameters converge to  zero at a rate O(l/n). 

ML 

0.33 

0.16 

0.08 

0.04 

$i 

962.02 

481.00 

240.50 

120.28 

QL 

0.44 

0.22 

0.11 

0.05 

GLS 

0.33 

0.16 

0.08 

0.04 

ML 

-1.99 

DWLS 

0.70 

ML 

2.16 

DWLS 

0.67 

0.33 

0.17 

0.08 

GLS 

1590.83 

1025.36 

742.63 

601.31 

DWLS 

-295.63 

-607.72 

-763.78 

-841.73 

QL 

-1.46 

QL GLS 

1.68 

GLS 

-1.22 2.16 

DWLS I 
-1.94 / 



Table 6.9: Comparison of the biases of T: the regeneration method 

2. Except for the parameters a1 and a4, the biases of generalized least squares and 

data weighted least squares estimators also converge to  zero at  a rate O(l/n), as n is 

increased while a is fixed. 

3. For all the parameters except crl and a4 the generalized least squares estimator and 

the maximum likelihood estimator have almost the same bias. 

4. It is easy to see from the results derived in Chapter 4 that the least squares estimators 

for y , the parameter of our interest are asymptotically unbiased. 

5. The results we observed here agree with the theoretical results presented in Chapter 

4. 

6.8 Worked example 

We andyzed the data set 'SESAl' (collected a t  350•‹C) cited in Berger et. el [12] using 

the techniques described earlier in this chapter. Now we present the results for fitting the 

response functions 

and 



T for the unbleached and bleached data respectively; here 8 = (a l ,  a2, a s ,  a4,7) . 

The parameter estimates for this data set are given in Tables 6.10 and 6.11. 

parameter estimate bias 

0.40 

0.08 

0.69 

-0.75 

0.08 

estimate 

QL -- 
bias 

0.37 

0.08 

0.58 

-0.58 

0.08 

Table 6.10: ML and QL estimates for the model parameters: Data SESAl 

1 1 GLS I DWLS 

Table 6.11: GLS and DWLS estimates for the model parameters: Data SESAl 

The 95% confidence intervals for the equivalent dose (ED) are given in Table 6.12. 

parameter 

a1 X 

QI2 

a3 

Q4 

ED 

CT 
L 

I 

estimate 

62.42 

bias 

0.74 

std-error 

5.13 

79.62 1 0.08 3.57 

10.09 

11.67 

3.37 

89.61 

106.12 

73.06 

0.0694 

estimate 

62.60 

0.75 

-0.30 

0.08 

79.85 

90.70 

103.52 

73.56 

0.0719 

bias 

-0.41 

std.error 

5.34 

0.06 

0.23 

-1.16 

0.06 

3.68 

10.50 

12.07 

3.50 



Description Lower bound 

Profile likelihood 

using F critical value 

Z intervd based on the ML 

t interval based on the ML 

Quasi-score interval 

t interval based on the QL 

t interid based on the GLS 

t interval based on DWLS 

Upper bound 

Table 6.12: Co~fidence intervals for the equivalent dose: Data SESA l 

6.9 Discussion 

In this chapter we described procedures for estimating the equivalent dose from regeneration 

data. The techniques developed for partial bleach data were slightly modified to fit the re- 

generation data. As for the partial bleach data, finite sample performance of the asymptotic 

results were e x a ~ n e d  by Monte Car10 sinodatims. Coverage probabilities of the following 

confidence intervals were found to agree with the nominal coverages even in small samples: 

1. symmetric confidence intervats with t critical values 

2. quasi-score intervals 

3. profile likelihood intert-als with transformed F critical d u e s  

When the sample sizes are smalt, profile likelihood intervals and symmetric confidence in- 

t e n d s  with Z criticd values were found to have lower coverage probabilities than their 

nomind d u e s .  Based on the simalation results we recommend symmetric confidence inter- 

-r& ~ < i h  i &id d u e s .  These csnfirience intervals have the added advantage that they 

are computationally inwh simpler than profile likelihood intervals. 



all four estimators (maximum likelihood, quasi-likelihood, generalized least squares and 

data weighted least squares) were found to have negligible biases compared to  their standard 

errors, when the relative error in a single measurement a is small, and in particular for 

sample sizes and values of a typical of careful experimental work. 



Chapter 7 

Equivalent dose from plateau data 

In the previous chapters we focused on estimating the equivalent dose from the data collected 

at a given temperature. In thermoluminescence studies, data are collected at  a series of 

temperatures. The equivalent dose estimated at each temperature is then plotted against 

the temperature. Figure 2.3 given in section 2.2 demonstrated such a plot. The plateau 

region, where the estimated equivalent dose does not vary with the temperature, is believed 

to represent traps which have not been subjected to  leakage over the burial time. Therefore, 

ody  those traps comesponcting to the plateau region can provide reliable information for 

dating purposes; see Aitken [I]. From separate analyses at each temperature on the plateau, 

we have several estimates for the equivalent dose corresponding to  the plateau. Here we 

address the problem of combining these estimates to obtain a more precise estimate for the 

equivalent dose. 

We have to face two problems in using the observations at  several temperatures. First we 

need to  correctly identify the temperatures belonging to  the plateau. From experience with 

red  data sets we understand that it is not clear cut whether or not certain temperatures 

belong to the plateau. However we do not intend to  deal with this problem in this work. 

The second problem arises from using the same subsamples to collect data at  several tem- 

peratures. Consequently, the observations collected at  temperatures over the plateau are 

positively correlated. On the other hand over the range of plateau temperatures the same 

traps are being emptied. This could produce a negative correlation between the photon 



counts taken over adjacent temperatures on the plateau. The real data sets we analyzed 

show that the observations taken on the plateau are highly positively correlated. 

In section 7.1, we introduce our notation. Section 7.2 proposes a procedure closely 

related to that of Liang and Zeger [43] for estimating the equivalent dose from the data 

corresponding to the plateau region assuming all the response curves correspond to  a com- 

mon o (relative error in a single measurement). In section 7.2.2, we investigate large sample 

properties of the suggested estimate and provide an estimate for the approximate error of 

the estimate. In section 7.2.3, we investigate small o asymptotic properties of the derived 

estimate. In section 7.2.4, we propose symmetric confidence intervals for the equivalent 

dose with a t quantile and provide a formula for an approximate degrees of freedom of the 

suggested t quantile. Finite sample performance of the proposed asymptotic results are 

examined by a simulation study which we describe in Section 7.2.5. From the simulation 

study we find that the coverage probabilities of symmetric confidence intervals using stan- 

dard normal quantiles are lower than their nominal levels. The t confidence intervals were 

found to  have coverage probabilities close t o  their nominal confidence coefficients. 

As we clarify in section 7.3, if bleaching could cause a change in the variability of the 

emitting grains relative to the mean number of emitting grains in a sample, the physical 

model we proposed in Chapter 2 suggests different o values for the unbleached and bleached 

response curves. Section 7.3 proposes a procedure for estimating the equivalent dose assum- 

ing unbleached and bleached response curves correspond to  different o. 

We developed software using the programming language FORTRAN t o  implement the 

suggested methodology. In section 7.4, we demonstrate the suggested methodology using a 

red data set. Section 7.5 summarizes the chapter. 

7.1 Introduction to the problem 

Whes analyzing the data at. a given temperature, we described estimating the e q ~ v d e n t  

dose from a simultaneous fitting of unbleached and bleached response curves. In this chapter, 

we e-xtend this idea and estimate the equivalent dose from a simultaneous fitting of all tLe 

curves corresponding to the platean region. The temperatures corresponding to  the plateau 



region are assumed to have been correctly identified by some other technique. 

We explain the estimation procedure for partial bleach data. To fit regeneration data, 

the same estimation procedure can be used, by suit.ab1y modifying the vectors of response 

functions and derivatives of response functions with respect to the components of the param- 

eter vector. In simultaneous curve fitting, the equivalent dose (y)  is treated as a. parameter 

common to all the response curves. We notice that, the expected photon count correspond- 

ing to  the equivalent dose depends on the temperature, but is common to the unbleached 

and the bleached response curves at a given temperature. We denote the expected photon 

count corresponding to the equivalent dose at temperature T by bT. From a practical point, 

of view, 6T represents the photon count had the sample been measured at  the time of deposi- 

tion. Consequently, ST plotted against the temperature represents a typical glow curve that 

would have been observed, if the sample was collected at  the time of deposition. (Figure 

7.1 demonstrates a plot of estimated hT against the temperature for the Data WFP2-7R1 

cited earlier.) Therefore, we feel that bT is a physically meaningful parameter that could 

perhaps provide insight into the study of thermoluminescence dating. For this reason, we 

decided to treat ST as another parameter in the new setting. 

In the partial bleach method, the unbleached and bleached response cmves corresponding 

to  a given temperature are represented by the response functions: 

and 

When x = y, fl = f2 = 6 .  Therefore,crl = 

Thus, the parameters crl and Dl can easily be eliminated using the parameters 7 and 6. 

Figure 7.2 illustrates the response curves corresponding to two temperatures TI and T2. 

In the simultaneous curve fitting for partial bleach data, (6, a*, a3, P2, P3, 7) is treated as 

the set of parameters for the response curves at a given temperature1. When we refer to the 

'We observe that if it is possible to regard the response curves corresponding to the plateau region as 
the same set of unbleached and bleached response curves shifted along the temperature axis then they can 
be dexribed with fewer parameters than used in our model. However, since physicists believe that (D.J. 
Enntley, personal communication) this is not the case we did not investigate this possibility. 
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Figure 7.1: Photon count vs temperature at the plateau 

response functions at a given temperature we drop the suffix T for notational convenience; 

however, except for the parameter y all the other five parameters (6, crz, a3, P2, P3) depend 

on the temperature T. 

Suppose there are no temperatures on the plateau. Then the parameter vector 8 has 

(5no + 1) components; the equivalent dose common to all the curves and 5 parameters 

(6, CLZ, a3, P2, P3) corresponding to  the unbleached and bleached response curves at each 

temperature. If there are no missing values, there are no measurements from each disc 

(replicate subsample). Suppose observations are taken on nl unbleached and n2 bleached 

subsamples. Let n3(= nl + n2) be the total number of replicate subsamples. Let us denote 

the photon counts taken on the Ith replicate subsample by yll, . . . , yrnO . We stack all the 

obser\rzt!ons corresponding to the unbleached data followed by the bleached data to obtain 

the Y vector with entries 311,. . ., yl,, . . ., y,,~, . . .,ynIn,, . . .,yn31,. . ., y,,,,. The vector 

of dose values is obtained by stacking together the corresponding dose values. We note 
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Figure 7.2: Response curves at the plateau 

that the variance covariance matrix of Y is block diagonal, since the observations taken on 

different discs are assumed to be independent. Each block matrix is no x no. For notational 

convenience let p(= 5no + 1) and n(= n3no = (nl + nz)no) denote the total number of 

parameters and the total number of observations respectively. 

We first discuss estimation assuming that the correlation between any two photon counts 

taken on the same disc does not depend on the dose received by the sample but may depend 

on whether or not the sample was subjected to laboratory bleaching. We employ p;j (or 

p t )  to denote the correlations between the observations taken on the same unbleached 

(or the bleached) disc at temperatures i and j respectively. Suppose QU and QB denote 

the correlation matrices for vectors of unbleached and bleached photon counts respectively. 

'I Bleached curve at temperature TI 

ST2 

Under the assumed model, the 

1 f.------) I -C 

A .- 
x 8  ". -. 

/ ' / 

J ,  

G' 

6l-1 

correlation matrix for Y takes the form 



and flB = 

Note that pij = pji, p:, -- &, and pi; = pCi = 1, Vi, j = 1, . . . , no. We denote the corre!ation 

matrices for the observations taken on the ith unbleached and j th  bleached subsample (disc) 

as Stli and 02j respectively. The assumption that correlation between observations taken 

on the same sample does not depend on the dose received by  the sample leads us to believe 

that 521; = $21, for i = 1,. . .,nl and RZj = R2 for j = 1,. . ., n s .  As we later clarify, this 

assumption is not crucial for the proposed estimating procedures to be valid. 

As in the fitting of data at  a single temperature, we assume that standard deviations 

of photon counts are proportional to  their means. We further assume that the constant of 

proportionality, a, does not depend on the temperature, nor on whether or not the samples 

had received laboratory bleaching. Later we show how to extend the results if a is different 

for the unbleached and bleached data. 

Let f l  , . . . , f ,  denote the mean functions of the observations and Df denotes the diagonal 

matrix with f l ,  . . . , f ,  along its diagonal. The variance covariance matrix for Y takes the 

form V = a2DfRDf, where R is the correlation matrix for Y. Let 6 be the vector of 

parameters we wish to estimate. Let F be the n x p matrix of partid derivatives off  with 



respect t o  the components of 8. As described in Chapter 3. quasi-'Likelihood estimates for 8 

are found as solutions of the quasi-likelihood estimating equations F*W(Y - f) = 0, where 

W = D;'(cr2~)-* D;'. Often. the correlation matrix R is unknown. Liang and Zeger [43] 

suggest replacing the unknown correlaticn matrix S2 by what they c d  a working correlation 

matrix R. 

First we develop an estimation procedure for our model closely related to that proposed 

by Liang and Zeger [43j for the linear regression model. 

7.2 GEE estimates when ulzbleached and bleached curves 

correspond to a common relative error 

Let Y; denote the vector of observations collected from the ith sample with component K j  
denoting the photon count observed from the ith sample a t  temperature j .  In the following, 

we denote the components of B corresponding to the j t h  temperature by B j .  This means 

Bj has entries Sj, a2,,~33j,P~~,P~~,7. The entries of Bj are used to  evaluate the response 

function E(Ej).  Let fi denote the vector of response functions corresponding to the i t h  

disc. Then fi has entries E ( X j ) ,  j = I,. . .,no. The model is: 

Let D ji denote the .iao x diagonal matrix with f (x;, Bj), j = 1, . . - , no along its diagonal. 

Zn general the covariance matrix for K can be written as 

where St; is the unknown correlation matrix of Y;;, 

Motivation far the proposed scheme: 

If we assume each 32; is known, then the usual quasi-likelihood equations for estimating B 

are 
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0 R2 0 - 0 
and RB = 

0 0 - - .  
I - 
I /  

O O 0 - - -  R2 1 
here R1 and R2 denote the no x no working correlation matrices for observations taken an 

ith unbleached and j t h  bleached discs. Since we assume that correlation matrices do not 

depend on the doses received by the samples it is reasonable to take R1 (or R z )  to be the 

same for all the unbleached /or bleached) samples. 

In this section* we assnme that a is the same for all the response curves. In section 

3.3, we suggest estimating equations and present an algorithm for estimating 6 when u is 

different for unbleached and bleached curves. 

KO-,v we present an algorithm for solving Equations 7.2 to obtain an  estimate for 0. 

1. Find initial estimates for the parameters. We used the parameter estimates obtained 

for separate curve fit at different temperatures as initial estimates. 

2. Compute the fitted values 11,. . . , j, at the current estimate 0. 

3. Find a working correiation matrix R. We computed the Pearson residuals for 
ft 

the  unbleached and bleached data, and used the sample correlation matrices com- 

p t e d  from Pearson residuals for unbleached data and bleached data as Rl and Rz 

respectively. 

4. Let t;@) = D!*)R(')D(,';) be an estimate for the variance covariance matrix for Y 
f J 

evaluated at the cment estimate Bk. Let Wfk) denote the inverse of ~ ( ~ 1 .  

At the (k + 1)st iterationr 6 is estimated from 0(*+') = lfk) + ( ( k ) ,  where 



The superscript k indicates that each term is evaluated at the parameter estimates 

from the kth iteration. 

.5. Iterate until desired convergence. h the software we developed, the convergence cri- 

terim was met when the absolute difference in the parameter estimates of successive 

iterations was less than low3. 

Following the notation of Liang and Zeger 1431, we refer to the estimate obtained as a 

solution to the set of equations 7.2 as the GEE estimate. 

7.2.2 Large sample asymptotics 

The proposed estimate 6 solves 

U(0, R) = 0. 

Assume that the working correlation matrix R converges to some fixed correlation matrix 7Ji 

(this symbol is "mhon); Crowder [21] shows that there are fairly natural natural examples 

of working correlation matrices and corresponding true correlation matrices for which this 

assumption fails. For notational convenience, let cr and /3 be s x 1 (1 5 s 5 no(no - 1)/2) 

vectors which fully characterize the elements of R and O respectively. Taylor series expansion 

of U(B, R )  around U(B,  0) gives 

From equation 7.2, we find 

Observe that each [v]R=u aai is a sum of ns independent mean zero terms (since 

each is a non-random bounded quantity times (Y, - f;) which has mean zero). Hence, un- 
' BR) aU(B R) der mild regularity conditions Vor (1-1 1 is O(ns) and [ aa: I,, is Op(@) .  . L J &3/ 

Since R converges to U, as n3 --+ cat (a; - pi) is o,(l). It follows that, C:='=l(~i - 

Di)  [FTl]R=tl  aai is o p ( m .  Thus, provided R converges as n3 i m to  some determin- 

istic U, 



It is worth ootixg that we do not have to believe tJ = coi-r(fi). 

Wow consider the following: 

2U 6 R) Observing that C;=,(ai - Pi)  [*] R=U is op(ns) ,  (e - 8 )  is a,(-&), and (ni - p,) 

is o,(l), we find [ ~ ( d ,  R) - U(6, R)] - [ ~ ( 8 ,  D) - U(8, u)] is o,(JiT;). Recall that 8 solves 

U(8,  R)  = 0. Since U(6 ,  R) differs from U ( 8 ,  O) by a quantity which is o,(&) we conclude 

that ~ ( e ,  U) = 0 with an error of approximation which is op(&). 

As usual in estimating equations, under regularity conditions which we have not invtz- 

tigated in detail, u(B^,O) = 0 can be expanded about 8 to produce 

Since U(O,U)  is approximately zero (error of approximation is o,(@)) we find 

Bext from Equation 7.2, we observe that 

Hence, 
n3 -1 n3 

e - s, = (i F: ( D ~ U D ~ ) - ~  E )  (L uip7 u)) , 
n3 i=1 @ ;=I 

where Ui = qT ( D ~ U D ~ , ) - '  (Y, - k) . For notational convenience we write 

M.ir = ( D f ,  OD1, )-' ; notice that W& depends on i. Thus, 

For large n3, the right hand side of Equation 7.4 is approximately normal with mean zero 

and variance of 6 given by 



1. If we are willing to  assume that ITi is close to the true correlation matrix for K ,  then 

we can replace V a r ( x )  by 02DiiYD; to get ~ a r ( @ )  zz a2 (c:& K T , T W ~ ~ ; )  -'. We can 

estimate the approximate variance of g by replacing the unknown parameters a2 and 

0 by their estimates. In section 7.2.3, we provide an estimate for u2 valid in the limit 

of small measurement error. Hereafter we refer to  this estimate as variance estimate 

1. An estimate for a2 can also be computed as suggested in Liang and Zeger 1431. 

2. Assuming all the x's have the same correlation matrix $2, we can write 

Then 

and can be estimated by replacing the unknown a2 and SZ by their estimates; the 

correlation matrix SZ can be estimated as the sample correlation matrix calculated 

from the Pearscn residuals to  the fit. This estimate does not require U to be close 

to  the true correlation matrix for Y;:. Hereafter we refer to  this estimate as variance 

estimate 2. 

3. Without assuming that ZJ is close to  the true correlation matrix for Y;:, and following 

suggestions of Liang and Zeger [43], we can replace Var(K)  in Equation 7.5 by (Y,  - 

( I  - & ) .  As in the previous case, an estimate for the approximate variance can 

be obtained by replacing the unknown parameter 8 by 8;. Hereafter we refer to  this 

estimate as variance estimate 3. 

Confidence intervals with standard normal quantiles 

Let 6 be a solution of F ~ w ( ~  - f) = 0 and ~ a r ( B )  be an approximate variance covariance 

matrix for 6 defined by equation 7.5. Let P(6) be an estimate for ~ ( 0 )  obtained from any 

of the three methods discussed in the previous section. Let be the pth component of 



- 
a d  sjr he the sqnare rmt of the pth &agad element of T'fB). Using the results of section 

7.2.2, an approximate confidence interval for the equivalent dose can be computed by taking 

;f i s+z,p as lower and upper confidence limits. 

From simulation studies (see Section 11-25) we learned that zonfidence intervals for the 

equivalent dose using normal quantiles have lower coverage probabilities than corresponding 

nominal levels. In this regard we notice the following. The response function f(x. 0) in 

our problem is non-linear in 8. Moreover. in our model the equivalent dose 3 and the 

relative error in single neasarernent r are the only parameters that are common to aU 

the temperatures on the plateau. The rest of the parameters (&al, a ~ , / 3 ~ , & )  are different 

for different temperatures. Consequently, as the number of plateau temperatures increases 

the number of parameters also increases. ?Ve wish to make inference about the parameter 

and rest of the parameters are considered as nrzisance parameters. The appearance of a 

large number of nuisance parameters in the model makes the effective sample sizes much 

smaller than the nominal sample sizes. As we mentioned in earlier chapters, for our problem 

the relative error in a single measurement a is small. This motivated us to find a better 

approximation for the distribution of the test statistic in small samples valid in the limit of 

small neasnrement errors. 

7.2.3 Small o asymptotics 

In this section, we examine small a asymptotic properties of the estimate suggested in 

section 7.2.1. We do not necessarily assame that sample sizes are large. However, we need 

to  assume thzt the working correlation matrix R is chosen in such a way that R when 

evaluated at  (6 = go, a = 0) is some fixed correlation matrix U. It is possible to choose such 

R (but the estimate based on the Pearson residual does not have the desired property). 

For example one may choose any fixed correlation matrix such as the identity matrix in 

independent estimating equations proposed by Liang and Zeger [43] as  R. Recall that ZJ 

need not be the trne correlation matrix 52; in fact, often $2 is unknown. Liang and Zeger [43] 

snggests that, the estimates 0 are consistent given only that the regression model for E ( Y )  

is correctly specified. It is not required to  specify a correct working correlation matrix; this 



makes these estimating equations more attractive since often the true correlation matrix is 

rrnknown. However, having zhe working correlation matrix converging to a fixed correlation 

matrix which is close to  the true correlation matrix makes the resulting estimates more 

efficient. Therefore, one might perhaps choose a working correlation matrix based on prior 

knowledge about the data or according t o  some physical model that suggests the correlation 

structure. In section 7.2.5- we investigate the performance of the suggested procedure for 

estimating 6 by examining the estimates obtained using a few chosen working correlation 

matrices. 

Kext, we examine the small u asymptotic properties of 6. As in Chapter 3, we begin 

by approximating 8 using = & $ Clo + Czo2, for small a. Then, C1 = - l and 
Ela &o9.,=o 

a26 Cz = l i = *  ,,=o . The estimates 6 solse the system of equations 

- 1 
where we write Wn = ( D ~ R ( B ^ ,  o, j5, ?).Di) for notational convenience. Let fl , . . . , f, 
denote the response functions evaluated at the true parameter go. Let Do denote the 

diagonal matrix with fi : . . . , f,, along its diagonal. Using the introduced notation, the 

model equations can be written as Y = f + uDOc Thus, 

where j denotes f ( t ? ) ,  which is f(0) evaluated a t  0 = 8. When (6 = Bo, o = 0). the term in 

the square brackets is zero. Therefore, 



Therefore, 

Since = 0; we find 

We notice that the t&ance covariance matrix derived in the limit of small mcasurenient 

errm (Eqnatkm 7.6) is Idratid to that derived for the large sample asymptotic case f Equa- 

tion 7.3). Also, if the observations are independent, by substituting 75 = fi = I we find that 

this variance estimate reduces to the one derived in Chapter 5. 

Remarks: Our working correlation matrix suggested in section 7.2.1 uses 

u2Cll, only if nl is large. 

s i d & ?  x a2$I2, only if nz is large. 

When nl and n2 are not large enough, Rll,eo,,,o is quadratic in 6 and is not a fixed 

matrix 0 as required by the theory discussed under small a asymptotics. Since Wu = 

Dcl ~ 1 : ~  @do ,U=O Dc1> we find that Cl is a complicated form in c. Therefore, the results we 

propose under small a asymptotics are taiid only when nl and nz are iarge enough so that 

Rk* ,o,o 02C, ~r if we me s f;-xed working corre!&,t,!on matrix B at  each Iterztion. A~EU 

we note that if we use R in place of U when nl and n2 are not large enough for Rli,a,,g,o 

tc be close t o  a2Q, formula 7.6 underestimates the true variance of e. 



Distribution of the test statistic 

Let he an estimate for the equivalent dose obtained as the pth component of the GEE 

estimate t? suggested in section 7.2.2. Let P(e) be an estimate for the approximate variance 

covariance matrix (Equation 7.6) obtained as discussed in steps 1 or 2 of section 7.2.2. Let 

SZ, be an estimate fur the approximate error of -j. obtained as the square root of the pth 

diagonai element of v(B) .  Further assume that o2 is estimated by the estimate s2 described 

below. In this section: we study the distribution of ( j .  - y)/s+ 

Estimate for a: 

Let = ( h ( x l ,  e ) , .  . . , fn(xn. dlT be the vector of fitted values and Di be the diagonal 

matrix with entries of f along the diagonal. Let fo = (fo,l(xl,Oo), . . . , f ~ , ~ ( x , ,  Oo)T be the 

vector of response functions evaluated at the true parameter Bo and Do be the diagonal 

matrix with entries of fo along the diagonal. Let Z = Dj' [Y - j] be the vector of fitted 

standardized residuals. Taylor expansion off;: around Bo gives 

Thus, 

and 

DT' f r D;' { I  - D;' F ( F ~ W ~ F ) - '  F7m Do+ = D;' + *(a ) .  

Now notice that 



Observe that 

Thus, the matrix H is idempotent. The error sum of squares can be written, to order g2, 

Let Q = ( I  - H ~ ) ( I  - H ) .  Since 6 .V ;MVN(O, Q), we find 

E(zTz)  = 0213 [tr ( Z Q C ) ]  

= 0213 [tr  re^)] = 02tr  (Q E [ecT] ) 
= a 2 t ~  ( Q R ) .  

An unbiased estimate for o2 is therefore given by ii2 = a, where Q = (I - x ~ ) ( I  - H). 

To estimate a using the above formula we need R, which is often unknown. In applications, 

we replace SZ by the sample correlation matrix obtained from the Pearson residuals to the 

fit. In section 7.2.5, we examine the finite sample performance of the suggested results by a 

simulation study. 

Next we show that the test statistic t = (q  - y ) / s +  is approximately distributed as 

a t variate and propose a formula to  compute an a-pproximate degrees of freedom using 

Satterthwaite's [53] approximation. 

Our expansions described earlier lead to the following. 

Result 1 Let 8 denote the GEE estimate described in section 7.1 and t̂  denote the vector 

of Pearson residuals. Let SZ denote the correlation matrix of the random errors c's. Then, 

where zi are iid N(0,l) m n d m  variables and A; are the eigenvalues of the matrix QQ. 

It is easy t o  see that the eigenvdues of Q 9  are the same as those of f i ' /2~311/2 .  Since 

is symmetric, it follows that eigenvalues of QSt are real. 



Theorem 5 I n  the limit of small measurement error, (i.e. if a is small), the error sum 

of squares iTi, and the estimate 8 defined in  section 7.1 are independent, in the sense that 

e T ~ e  and C1 are independent. 

Proof: In the small a asymptotic case, we showed that (section 7.2.3) 

Since c - M V N ( 0 ,  R), 0 - €Jo ( 3 " ~ ~  F )  -' FTwu  D o ~ e l ,  where AAT = R and q - 
M V N ( 0 ,  I ) .  On the other hand the error sum of squares is asymptotic, as a  ---+ 0 ,  to 

02eT(I-HT)(I-A)€ = O ~ C : A ~ ( I -  HT) ( r -  H ) A ~ ,  where H = D,' F ( F ~  wU F ) - ' F ~ w ~ D ~ .  

If U is close to R,  then Wu = D ~ ' Q - ' D ~ ' .  Therefore, we find 

Now notice that 

and 

Thus, B A ~ ( I  - I I T ) ( l  - H ) A  = 0. Therefore, using Theorem 4.17 of Graybill (1961) we 

find that C ~ Q E  and Cl are independent. 



Theorem 6 Let y be the equivalent dose and j be the estimate for y suggested in section 7.1, 

Let sq be an estimate for the error of the estimate obtained as defined in variance es tha te  

1 of section 7.2.3. If the response curves belonging to the plateau region ail corw,cpond 

to a common a, then as a -+ 0,  the distribution of the statistic t = ( j  - y)/s+ can be 

approximated by a t distribution with degrees of freedom df = la; here Xi's are the 

eigenvalues of the matrix QR (or the matrix Q'/~QR'/~) .  

Proof: 

Using small a asymptotics we showed that, 8 a 8, + Clo, where C1 - - 2 Ii=*, ,c=o - - 

( F T W ~ F ) - ~  F ~ W ~ D ~ C .  Thus, 6 - is a linear combination of c7s. Notice that, i. - 7 = 

aT(e - 0), where a is a p vector with first ( p  - 1) elements equal to zero and the pth 

element unity. Thus, ( j  - y) is a linear combination of the random errors 6's. Since c's 

follow a multivariate normal distribntion with mean zero and covariance matrix R,  Central 

limit theorem implies that, ( j  - y) is approximately normally distributed. The estimate 
-1 

S+ is the square root of the pth diagonal element of the matrix o2 (FTWUF) I I  . Suppose 

tT i o2 is estimated by i;igiij. If 6 is close to  8, ( F T W ~ F ) - ~ I ~  a (FTwUF)-'.  Therefore, 

k2 = 6, where U = 5-7 a n d V =  
aztr(QS2) ' Then, U is approximately normally 

s4 J ~ ~ ( F T w ~ F ) - ~  

distributed with zero mean and unit variance. From Theorem 5, U is independent of V. 

From Result 1, it follows that the error sum of squares is a linear combination of indepen- 

dent X: random variables. Therefore, V is a complex estimate for the variance as defined 

by Satterthwaite [53]. Applying Satterthwaite7s approximation, we arrive at the form~lla 

where Xi's are the eigenvalues of the matrix QR (or the matrix R ' / ~ Q R ' / ~ )  df = (E A;) 
for the approximate degrees of freedom. To obtain aD estimate for the degrees of freedom we 

suggest replacing R by the sample correlation matrix computed from the Pearson residuals 

to  the fit. In section 7.2.5, we present the results of a simulation study that examines the 

finite sample performance of the suggested asymptotic results. 

7.2.4 Confidence intervals 

Let 6 be the GEE estimate defined as a solution of F ~ w ( ~  - f )  = 0 and v a ~ ( 8 )  he the 

approximate asymptotic variance covariance matrix given by equation 7.5. Let ~ ( 6 )  be an 



estimate for the variance covariance matrix for 6 obtained as described in step 1 of section 

7.2.2. Let j be the pth component of 0 and s+ be the square root of the pth diagonal 

element of ~ ( 8 ) .  Using the results of section 7.2.2, an approximate confidence interval for 

the equivalent dose can be computed by taking 7 s X , ~ , ~ ~ ~ ~ ~  as lower and upper confidence 

limits. An approximate degrees of freedom for the corresponding t distribution (df) can be 

computed as described in Theorem 6. 

7.2.5 Simulation results 

Now we describe the results of a simulation study that examines the finite sample perfor- 

mance of the suggested asymptotic results. The photon counts for the study were generated 

according to the model described in section 7.1. The FORTRAN subroutine 'RNMVN' 

was used to generate the multivariate normal random errors E'S. The doses given for the 

unbleached and bleached discs are presented in Table 9.1 of Appendix 9.3 where they are ' 

coded as P6U and P6B respectively. The data were generated assuming correlation does 

not depend on the dose received by the sample. However, for unbleached and bleached 

data we used different correlation matrices. Correlation matrices used for the study are 

presented in Tables 9.3 ax~d 9.4 of Appendix 9.3. These are the sample correlation matrices 

computed from the Pearson residuals to the fit for the data set (for temperatures in the 

range (270 - 320•‹C) described in Section 7.4. For each generated sample, we computed a 

confidence interval for the equivalent dose as described in section 7.2.4 by: 

1. pretending correlation matrices are known and replacing them by the correlation ma- 

trices used to  generate the data and usicg variance estimate 1, defined in section 

2. replacing the unknown correlation matrices by the sample correlation matrices com- 

puted from the Pearson residuals and using variance estimate 1. 

3. replacing the unknown correlation matrix by an arbitrarily chosen fixed correlation 

matrix and-using variance estimate 2 defined in section 7.2.2; we chose the same 

fixed correlation ma+-% for both unbleached and bleached data. In the chosen fixed 



correlation matrices all off diagonal elements were set at t.he correlation coefficients, 

p, given in Table 7.2. 

Results using known correlation matrices and Pearson residuals are presented in Table 7.1. 

Results using fixed correlation matrices are given in Table 7.2. Results given in these t3ables 

are based on 10000 simulations. The fraction of confidence intervals that capture thc t i  ue 

equivdentr dose used t o  generate the data are recorded as the actual coverage. For both 

cases, the actual coverages were examined using z quantiles and t quantiles with degrees of 

freedom estimated as described in section 7.2.3. 

Dose Nominal 

level 

-.-- 

0.95 

0.95 

0.95 

0.95 

0.93 

0.95 

0.9.5 

0.95 

0.95 

0.95 

0.95 

0.95 

Observed coverage 

corr. matrix known 

Observed coverage 

corr, matrix unknown 

Table 7.1: Coverage probabilities using correlations calculated from Pearson residuals 

We also examined the mean squared errors of the estimators from the simulation study 

(Tables 7.1 and 7.2) by computing the averages of the ( j  - values. These are presented 

in Table 7.3. 



Table 7.2: Coverage probabilities using fixed correlation matrices: nominal level =0.95 

Conelusions 

Based on the simulation results we conclude the following. 

1. When the correlation matrix is known, the coverage probabilities of confidence inter- 

vals using a t quantile with an approximate degrees of freedom (Section 7.2.3) agree 

with their nominal levels, even in small samples. 

2. Coverage probabilities of confidence intervals with a standard normal quantile are 

lower than their nominal levels, even if the correlation matrix is assumed to be known. 

3- When the correlation matrix is replaced by the sample correlation matrix computed 

from Pearson residuals, the suggested theory appear to hold with few temperatures 

on the plateau. However, when we have more than four plateau temperatures the 

coverages probabifities tend to  be lower than the nominal levels. As we mentioned in 



Csing true 

correlat ions 

3.79 

15.44 

35.76 

64.44 

3.01 

12.46 

28.0-5 

50.52 

3.24 

13.54 

25.59 

53.5.5 

Pearson 

residuals 

Using fixed correlations 

Table 7.3: Comparison of mean squared errors 

section 7.2.3, when the sample sizes are not large enough variance estimate 1 under- 

estimates the true variance of 6 and therefore we may expect the actual coverages to 

be lower than the nominal levels. 

4. When fixed working correlation matrices are used at  each iteration, the coverage prob- 

abilities of confidence intervals using variance estimate 2 (section 7.2.2) agree well with 

their nominal levels. even in small samples, regardless of whether the fixed correlation 

matrix is close to the true correlation matrix or not. 

5. Based on the study, we conclude that the mean squared errors of the estimators is min- 

imal when we use Pearson residuals to estimate the correlation matrices rather than 

using arbitrarily chosen fixed correiation matrices. Therefore, we favour using Pearson 



residuals to estimate the correlation matrices. Recall that when lye use Pearson rcsid- 

a d s  to estimate the comelarion matrices our formula (Equation 7 . G )  underestimates 

the error of the esximate x-hen the sample sizes are small. lye hope to pursue f ~ r t  her 

work in this area to find a more accurate estimate for the error of the estimate wtmt 

using Pearson residuals: this might bring the coverage probabilities cf the resulting 

confidence intervals closer to their nominal values. 

6. Comparing mean squared errors of the estimators with the same number of tempera- 

tures on the plaxean. we conclude that the mean squared errors of the estimators arc 

roughly proportional to  g2.  as we expect based on the small ti limiting results. 

7. Independence estimating equations appear to produce confidence intervals with correct 

coverage probab%ries, H O ~ P V ~ _ T _  mesa squaed errors of the estimators appear to grow 

as the number of plateau temperatures is increased. 

7.3 GEE estimates when unbleached and bleached curves 

correspond to different relative errors 

Recall that from the physical model suggested in Chapter 2, a2 = Vf N,,k -A E Z ( N + )  ' where NZjk  

denotes the number of emitting grains of the ikth sample at  the j th  temperature. Suppose 

j and j' are two adjacent temperatures belonging to  the plateau region. It is reasonable 

to  assume that number of emitting grains a t  temperature j is close to that of temperature 

jf. This suggests that first two moments of Nijk are close to those of Nr3lk which in turn 

suggests that a for different response curves over the plateau temperature are not very 

different. However, if the bleaching had an effect on the variability of emitting grains 

relative to  the mean number of emitting grains, the unbleached and bleached curves may 

correspond to different a. The theory derived so far assumes that all the response curves 

correspond to  a common a. In this section we suggest the necessary modifications for finding 

estimates when all the nnbleached ciirves cmrespond io  a common cr but this is different 

from the common a for the bleached curves. 



7.3 1 Solution of estimating equations 

We denote the different a's for unbleached and bleached curves by a1 and a 2  respectively. 

In this section, we use the same notation as for the common a case. However, since we now 

need to distinguish unbleached and bleached data we use an additiozal subscript 1 or 2 on 

each term indicating whether it corresponds to the unbleached data or the bleached data 

respectively. Let nr and nz denote the total number of unbleached and bleached samples 

and $21; arid f22j denote the correlation matrices for the vectors of observations taken on ith 

unbleached (i = I ? .  . ., nl) and j th  bleached ( j  = I , .  . . , n2) samples. -4s for the common 0 

c z e ,  we begin with the estimating equations for the case of known correlation matrices 

n1 ,' 722 

C i= 1 {'z ( " ~ D j ~ a ~ l i ' f ~ z )  ( Y ~ i  - fii)) + C {F; ( o , z D ~ ~ ~  n 2 j ~ / , )  (y2) - f2j 1) = 0. 
j=1 

Again, we discuss two procedures for estimating the equivalent dose: 

1. We assume that the correlation between observations taken at  different temperatures 

on the plateau does not depend on the dose received by the sample. This suggests 

that for all the unbleached observations Cor(Y,) is some unknown correlation matrix 

which we denote by Stv. Note that 

Thus, o:Ro can be estimated as S1 = & CrL, . The subscript I 
fi r 

indicates lth unbleached disc, Similarly for the bleached data, O ~ R B  can be estimated 
T 

as S2 = $ x;zl [v] [TI . Therefore, we can estimate 6 without knowl- 

edge of a1 and 02. We refer t o  this procedure as Scheme 1. The notion of estimating 

u:Ro and o:Rs using Pearson residuals is similar to  that of using Pearson residuals to  

estimate the correlation matrices in the common cr case; however we note that o$&~ 

and c r g S t ~  are not correlation matrices. 

2. Assume that the ratio 2 is some known fixed quantity A. In practice, A can be chosen 

based on prior knowledge or in our problem using the results for individual curve 



fittings. In this case, Eqzation 7.7 simplilies to  give 

Sow as suggested in Liang and Zeger i-431. we can obtain generalized estimating equa- 

tions by replacing the unknown correlation matrices by some working correlation mn- 

trices R1 and R2. fVe do not upgrade X at each iteration. but once we find the cstknates 

8 we can use the error sum oi squztres for the unbleached and bleached response curves 

to  estimate X (See section 7.3.2). Thus, we estimate 6 assuming X is known. However, 

when we estimate the variance of the suggested estimate we do not necessarily believe 

that X is correctly specified. In section 7.3.2, we provide a formula for the standard 

error of the suggested estimate, The estimating equations we introduce here can be 

considered as modifications of those using working correlation matrices for the corn- 

mon a case; as before we have twe choices for choosing working correlation matrices: 

We can use Pearson residuals at each iteration to find suitable working correlation 

matrices or we can use fixed correlation matrices at each iteration. We refer to this 

procedure as Scheme 2. (It is not crucial to treat X as fixed at each iteration. We 

may estimate X at each iteration using the error sums of squares for the unbleached 

and bleached data. In this case, we need to  assume that X converges (as 7~ - DZ) to 

some fixed ratio Xo; however we do not have to  believe that A. is the true ratio 2,) 

Xext we describe an algorithm for solving the suggested estimating equations. 

1. Find initial estimates for the parameters. We used the parameter estimates obtained 

for the independent curve fittings at different temperatures as initial estimates. 

2. Compute the fitted values fl,. . .,h at the current estimate e; note that the first 

nl x no fitted values are computed from the unbleached response function while the 

remaining na x fitted ~ d a e s  are computed from the bleached response function. 

Let j denote the n x 1 vector whose entries are jl,. . ., j,. Let Di denote the n x n 

diagonal matrix with entries of along its diagonal. 



3. To obtain estinmtes using Scheme 1, let R be the n x n block diagonal matrix with 

the first n~ isbcks equal to S1 and the last n2 blocks equal ifto S2 for S1 and S2 defined 

earlier. To obtain estimates using Scheme 2, let R be the n x n block diagonal matrix 

with the first nl blocks equal to the working correlation matrix for the unbleached 

data (say R E )  and the last nz blocks equal to the correlation matrix for the 

bleached data f say Rz)  with each of the entries multiplied by X2 (i.e. iast n:! blocks 

are equal to A2Rzj. 

lk l  4. Let If(*) = D',*~R(")D; . where we use the superscript k to indicate that each term 
J J 

is evaluated a t  BFr (the parameter estimates from the kth iteration). Let w ( ~ )  denote 

the inverse of vfkl. 

5. Let F(';) denote the n x p matrix whose (i, j) th element is evaluated a t  61;; note 

that the first nl x no rm=s of F are computed as the derivatives of unbleached response 

function with respect to  the components of B while the remaining n;! x no rows are 

those for the bleached data. 

6. At the (k + I)st iteration. B is estimated from @(*+'I = &" + $*), where 

7. Iterate uatil desired convergence. In the software we developed, the convergence cri- 

terion was met when the absolute difference in the parameter estimates of successive 

iterations was less than 

7-3.2 Error of the estimate 

Estimating a1 and 02: 

Let and ria denote the total number of unbleached and bleached observations respectively. 

Let Dl and D2 denote the n, x n, and ng x nb diagonal matrices with ~PSPQTIS~  functions 

for unbleached arid bleached data as diagoilal entries respectively. Let Fl denote the nu x p 

matrix shose (i, j) th element is p; simiIx1p let F2 be the corresponding partid derivative 



matrix for the bleached data. Let 1-F-U, and Ilk, be the n, x n, and nb x n* niatrices defined 

I?>-: 

The results for the common a case (Section 7.2.3)  can simply be extended to arrive at the 

following formulae for estimating a: and a: : 

62 *E; 
and = 

tr(Q2Q2 j ' 
where Qz = ( I  - fl:)(I - HZ) and A2 = D;' F~(F:W, f2)-' FT wtf2 D2.  

To estimate a; and a; we need to  replace the unknown correlation matrices with their 

estimates using Pearson residuals. 

Estimating X 

Once we estimate a1 and oz we can estimate X as the ratio $. 

Variance covariance matrix for 6 

Assuming 

1. &: R1 where R1 = $ x;21 [y and U1 is some fixed 

correlation matrix (not necessarily the true correlation matrix Ql and 

we can i3erive the foiiowing formula for the variance covariance matrix for 8 from Scheme 1: 



I Dji ,a~UIDt . , ,  for i =  1. .... nl 

I 
- -- where '-Wu = 

X2Dhlo&Dfa, for i = nl + 1,. . ., n3 and j = i - 721- 
The same result holds for the estimate B^ from Scheme 2: under the assumption that the 

working correlation matrices R1 and Rz converge to some fixed correlation matrices IE1 and 

u2. 
W e  have two choices for estimating ~ar(B^j .  

we can write 

We can estimate ~ o r ( 0 f  by replacing the unknown a:, 022, R1 and Rz by their estimates. 

For ease of presentation, we refer to  this estimate as variance estimate 4. 

Following suggestions of Liang and Zeger f43], we can replace Var(Y,) in Equation 

7.5 by (Y, - f i ) ( ~  - h)*. As in the previous case, an estimate for the approximate 

variance can be obtained by replacing the unknown parameter 9 by 0. We refer to 

this estimate as variance estimate 3. 

7.3.3 Confidence intends 

Let 4 be the estimate for the equivalent dose obtained as the pth component of the GEE 

estimate suggested for the case of different relative errors. Let F be the n x p matrix whose 

(i, j)th element is p. Let t(6) be an estimate for the variance of 6 obtained as suggested 
63 

in &mce estimate 4 or variance estimate 5. Let S+ be the square root of the pth diagonal 

element of P(8). Then. an approximate (1 - a)100% confidence interval for the equivalent 

dose can be constructed by taking 5 s+,/z zs lower and upper confidence limits (z,,~ 

daot,es  the n p p r  0//2th gua=tAe far a sta~bard ~ ~ i m d  di~idxii i t~ij .  



We developed software using the progra~nning language F O R T E 0  to implement the pro- 

cedures described earlier in this chapter. Sow we demonstrate the suggested methodology 

using a real data set. The data set used for this example (code ?YFP2-731) was kindly 

prosided to us by D.J.Ifuntfe_v, ,A plot of the quasi-likelihood estimates for the equivalent 

dose by fitting the saturating exponential model (see Chapter 2) a: different temperatures i:; 

illustrated in Figure '7.3. The vertical bars indicate plus or minus one standard error linlits. 

-4n immediate observation from this plot is that the standard errors of the estimate begin to 

220 260 280 360 320 340 3tiO 
Temperature 

Figure 7.3: Plot of vs temperature with error limits: WFP2-7R1 

grow over the temperature region 320•‹C to 360•‹C. (We have observed similar pattern with 

a few other real data sets WG have analyzed.) At the moment we do not understand why 

this is so. As we already mentioned, it is not clear cut whether or not certain temperatures 

b e h g  to the plateau. From the plot of? vs temperature (Figure 7-31, we notice a plateau 

starting around 25Q•‹C. According to  Aitken [I], the stable traps usually means traps for 

which the glow peak occurs at 300OC or higher. However, for preheated samples the plateau 

could begin at temperatures lower than 300•‹C (Huntley, personal communication). For 

iUostration, we estimated the equivalent dose treating the observations corresponding to 



the temperatares given in labia 7.4 and 325 as being belonging to the plateau.. The re- 

suEts given in these tables were obtained assuming correlation matrices for the unbleached 

and blezched data are difFereni. The estimates given in Table 7.4 were obtained using the 

sample correfation matrices computed from the Pearson residuals to estimate the unknown 

correlation matrices. The results described in Table 7.5 were obtaiued as described in Sec- 

tion 7.3. For the common a case? the reported confidence intends were obtained using 

a t quantile with an approximate degrees of freedom as described in Theorem 6. For the 

different a case, we used the sum of the approximate degrees of freedom for the error sum 

of squares for the unbleached and bleached data. Tables 7.4 and 7.5 present the results for 

fitting a common relative error o and different o's for the unbleached and bleached curves 

respectivelyY In these taE!q the first. cr,hmn [ lzo) h&cates the numkr of temperatures on 

the plateau; the corresponding temperatures are given in column 2. For the different a case, 

with 6 observations corresponding to the temperature range 270-320 the program did not 

converge. For a given type of electron trap, the glow curve is a single p a k  about 50OC in 

width (Aitken fl]). It is possible that at  270OC and 320'~  we are emptying different type 

of traps. 

Conctusions 

The estimates for ax and a2 from fitting separate error factors for -unbleached and bleached 

curves indicate that a common error factor is sensible for this data. The parameter estimates 

obtained by fitting separate error factors and a common error factor are not very different. 

h o t h e r  important observation is that  in the range 330•‹C - 360•‹C, the standard errors of 

the estimates have gone up even though the common error factor a has gone down. The 

large standard errors for the estimates using data collected in the range 330%' - 360•‹C 

makes the estimates from anaiyses at a single temperature only, less useful in practice (for 

example for the common a case, the standard errors of the estimates using only 340•‹C, 350•‹C 

and 360%' were 51.48, 72-49 and 83.40). fB this temperature range, use of the suggested 

procedartits ior obtaining combined estimazes has clearly resuited in a gain in precision 

of the estimate. However. in the range 270•‹C - 310'C the gain in precision using more 

observations in the plateau region is quite smaQ in fact in some cases the standard error 



Temperatures 

on the plateau 

Standard 

Error of 

16.63 

15-79 

15.82 

13.32 

12.23 

13.19 

34.84 

22.84 

22.07 

An approximate 95% CT 

Lower bound Upper bound 

111.01 

111.92 

117.45 

111.30 

105.10 

115.34 

144.73 

120.82 

120.56 

Table 7.4: Estimate for the equivalent dose ($j using a common o: WFP2-7R1 data 

Temp. 

270 

270-280 

210-290 

270-300 

270-310 

330 

330-340 

330-350 

Standard 

Error of i 

An approximate 95% CI 

Lower bound 

48.87 

52.20 

33.49 

57.83 

51.39 

9.45 

31.15 

34.61 

Upper bound 

111.56 

1 14-48 

109.13 

106.28 

91.87 

138.39 

11 '7.66 

117.16 

Table 7.5: Estimate for the equivalent dose (y) using different a: WFP2-7R1 data 
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rJf the resulting estimate may even increase. This is not surprising; since the correlations 

between the observations are very high, increasing the number of plateau temperatures only 

provides a little extra information about the value of y while with each added temperature 

we have to add more nuisance parameters. Furthermore, when we take a wide range of 

temperatures as  belonging to the plateau, it is possible that observations corresponding to  

the added temperatures may not relate to the same type of trap. Thus, it is important to 

note that taking more observations over the plateau may not necessarily improve the quality 

of the resdting estimate. 

7.5 Discussion 

In the previous chapters, we discussed wtimating the equivalent dose from the data collected 

at  a given temperature. These estimates are plotted against the temperature. The region 

over which these estimates do not vary with the temperature is believed to  represent electron 

traps that have not been subjected to  leakage over the burid time. It is therefore assumed 

that all estimates for the equivalent dose corresponding to the plateau region estimate the 

same quantity, which is the equivalent dose corresponding to  the stable traps (Aitken [I]). 

In this chapter, we discussed the problem of combining these several estimates to  obtain a 

more precise estimate for the equivalent dose. 

Since data collected a t  different temperatures are obtained using the same samples, 

observations collected over the plateau region are correlated (in fact the correlations are 

very high). We proposed a procedure closely related to  that of Liang and Zeger [43] to 

estimate the equivalent dose from the correlated data. Algorithms were presented for solving 

the suggested estimating equations for the case where all the response curves correspond 

to a common a (relative error in a single measurement) and also for the case where all 

the unbleached curves correspond to a common cr which is different from the common a 

for the bleached respcmse curves. The estimation procedures proposed for estimating the 

model parameters have to  be augmented by some procedure for estimating the unknown 

correlation matrices. Following the terrninoIogy of Liang and Zeger 1431, we referred to  these 

as "working correlation matrices". We examined two plausible working correlation matrices: 



uslag working eorrela~ion matrices computed from the Pearson residuals at each iteration 

and using arbitrarily chosen kxed correlation matrices (derived. in practice, from experience 

with other data sets) as working correlation matrices. 

Since different nuisance parameters have to be fitted at each dose level. the numbcr of 

parameters increases with the addixion of each observatioa on the plateau. In fact, t h t  

parameter of interest and the relative error in a single measurement cr (if it is assul~~lcct 

to be common for all the curves) ale the only parameters that are common to all the 

temperatures. Since many nuisance parameters have to  be estimated, the effective sari1 plc 

size is much smaller thzn the nominal sample size. Consequendy, confidence intervals usirtg 

standard normal quantiles were found to  have lower coverage probabilities than their nornir~al 

levels. As the number of plateau temperatures increases, the discrepancy between observed 

coverages and nominal levels was found to  grow. For thermo~uminescence data, sample sizes 

are quite small (usually under 40 discs). The relative error in a single measurement, 0. is 

quite small (around 8%). We examined the small a asymptotic behavior of the sugges tcii 

estimates 2nd proposed using a t quantile for computing confidence intervals; a formula 

for the approximate degrees of freedom for the corresponding t distribution was provided 

nsing Satterthwaite [533 foimda. FirJie sample performance of the suggested asymptotic 

theory was examined by a Monte Car10 study. Confidence intervals with an approximatr* 1 

quantile based on the estimate from the iterative scheme that uses fixed correlatiori matrices 

as working correlation matrices were found to have coverage probabilities closer to their 

nominal levels. -4s the number of plateau temperatures increases, confidence intervals baseif 

on the estimate from the iterative scheme that uses sample correlation matrices of Pearson 

residuals as working correlation matrices were found to  have lower coverages than their 

nominal levels, even with the suggested 2 quantile. As we clarified in section 7.2.3, whcn the 

sample sizes are not large enough, the suggested formula underestimates the true error of 

the estimate from the scheme that uses working correlation matrices computed from Yearson 

residuals. However, since estimates from the latter scheme were found to have smaller mean 

squared errors than those using fixed working correlation matrices (see Section 7.2.5 ), we 

favour nsing Pearson residuals t o  compute working correlation matrices. We hope to  pursue 



further research in this area to find a better estimate for the error of the estimate from the 

scheme that uses Pearson residuals. 

In section 7.4, we demonstrated the proposed methodology using a real data set. It is 

worth noting that the increase in the precision of the estimate (i.e. the reduction in the 

standard error) for taking more observations on the plateau is quite small; in fact in some 

cases the standard error of the resulting estimate may even increase. &o, it is worth noting 

that, for sorne data sets it is not clear cut whether or not certain temperatures belong to the 

plateau. Addition of an observation which does not belong to the plateau makes the resulting 

estimate less accurate (more biased). Taking these facts into consideration, we suggest not 

using observations which are not convincingly obvious as belonging to the plateau. 



Chapter 8 

Testing the normality of random 

errors 

In this chapter, we describe procedures for testing the normality of random errors. Section 

8.1 briefly describes the tests based on the empirical distribution function (EDF) of the 

residuals for this purpose. 

In Section 8.2, we describe a procedure based on the EDF to test the assumption of 

normality without assuming that the fitted model is correct. We refer to this less restricted 

model as Model 1. In this model we fit different mean and variance parameters at each dose 

l e d .  Thus, as we collect more observations, the number of fitted parameters also increases. 

Usually, in thermoluminescence studies not more than five observations are collected at 

each dose level. Therefore, the fitted standardized residuals need not be asymptotically 

normally distributed even if the random errors are. We derive the true distribution of the 

fitted standardized residuals assuming that the random errors are normally distributed. 

we test the assumption of normality of the random errors by checking to see if the fitted 

s tadadized  residnds io!!cm the derived trne distributicm. 

Section 8.3 outlines a procedure for testing the assumption of normality of random errors 

assuming that the fitted model is correct, We assume that the observed Xj's have mean 

~ ( 8 )  and variance azp?(8). Uie refer to  this model as Model 2. In Model 2, both mean 

and variance are functions of a fixed number of unknown parameters. Therefore, we cart 



find consistent estimates for mean pif8) and variance %(a1 8) by choosing a large enough 

sample. If the random errors are normally distribnted, the fitted standardized residuals are 

approximately normally distributed. Here we test the assumption of normality of random 

errors by checking to see if the fitted residuals are approximately normally distributed. Weak 

convergence of the empirical processes is established in Section 8.2.6. In 8.5, we demonstrate 

the theoretical results discussed in this chapter using a real data set. Section 8.6 summarizes 

the chapter. 

We begin by reviewing EDF tests in the context of iid sampling and then extend the dis- 

cussion to tests of the distributions of residuals. Let XI < x2 - - -  _< x, denote the order 

statistics (that is, the observations arranged in the increasing order) from a sample of n 

values of some variate X with cumulative distribution function (cdf) G. Let F ( z )  be some 

hypothesized distribution function of the data. For the moment we take any parameter in 

F to be known and discuss tests of the simple null hypothesis that G = F. The empirical 

distribution function (EDF) is defined as, F,(x) = Cy=l I [x; < z]. Here I denotes the 

indicator function, 

1, if the condition A holds 
1'4 = { 

0, otherwise. 

8.1.1 EDF statistics 

Any statistic which measures the difference between F,(x) and F(x)  is called an EDF 

statistic. Here we describe only the Cram&-von Mises statistic and the Anderson-Darling 

statistic that we used in this work. A discussion of these statistics can be found in Stephens 

(1986). The Cramkr-von Miss  statistic is defined as 

The Anderson-Darling statistic is defined as 



Computirg formulae for the above statistics: 

Let F be the hypothesized distribution function and z; = F ( x ; )  be the probability inte- 

gral transforms of the xi's. The following computing formulae for the above statistics are 

provided in Stephens (1986): 

8.1.2 Computing p-values 

Let Wn(t) = {I[zi 5 t] - t ) .  Then, under the null hypothesis, the process Wn(t) fi 
converges weakly in D[O, l j  to  the Brownian Bridge -a Gaussian process W with mean 0 

and the covariance function p(s, t )  = Cov(W(s), W(t)) = min(s, t) - st (cf. Billingsley [13] .) 

The limiting distribution of the Cramkr-von Mises statistic (w) is then that of w 2  = 

C ~ J ~ Z ? ,  where the 2;'s are independent N(0, l )  variables and the Xi ' s  are the eigen- 

values of the covariance kernel p(s,t), namely, the solutions of the eigenvalue equation 

p(s,  t )  f (t)dt = X f (s). For the case at  hand (iid sample and simple null hypothesis) these 

eigenvalues can be found analytically. When we discuss fitted residuals a numerical method 

is required; this is discussed in Section 8.4. 

Let w be the value of the test statistic obtained using the computing formulae (Equation 

8.1) provided earlier. An approximate pvalue for testing the hypothesis that xi's follow 

the hypothesized distribution function F ( x )  is P(GZ1 Xix3 > w) where ~ 3 ' s  denote a set 

of independent Chi-squared random variables with 1 degree of freedom and Xi's are the 

estimated eigenvalues for p(s, t )  truncating the sum to a finite mmber of terms. We have 

software that uses Imhof's [39j method to compute the above probability. Literature related 

t o  the computation of the above probability together with a comparison of the methods c a n  

be found in Chen [16]. 



For the Anderson-Darling statistic the same procedure can be used replacing the covari- 

ance kernel p(s,  t )  by p k t )  
& i q t ( l - t )  - 

5ow we describe how to apply the EDF tests for our problem. The key problems in 

applying the EDF tests are, 

1. Finding the probability integral transforms to  compute the zi's needed in computing 

the test statistic (Equation 8.1). 

2. Finding the covariance kernel of the appropriate Gaussian process needed in computing 

the p-value. 

In Section 8.2, we describe testing the assumption of normality without assuming that 

the fitted model is correct. In Section 8.3, we describe testing the assumption of nornral- 

ity assuming that the fitted model is correct. In each case, we describe how to compute 

the probability integral transforms and the colrariance kernel of the appropriate Gaussian 

process. 

8.2 Application of EDF tests: Model 1 

We refer to the model with no assumptions about the mean and variance functions as 

Model 1. This less restricted model is expressed as Y,j = p; + oicij, ~ i j  - N ( 0 , l ) ;  i = 

1,. . ., k, j = 1,. . ., n;; the suffixes i and j respectively denote the dose level and the 

replicate. We wish to test the assumption of normality of the random errors. 

8.2.1 Computing the test statistic 

Let bi = & x;:, xj be the least squares estimate for pi and ;'ij = xj - pi. Note that 

E ( & ~ )  = 0 and ~ ( 2 , ~ )  = w c f .  ni We study the standardized fitted residuals Gj = 
(Y -i.)' where 67 = C;& w-. The Zij7s replace the zi7s in the discussion of he 

n1 - 
previous section. Note, however, that the Zjj's are not iid. Let Gn,(-j be the true distribu- 

tion of Zi j  when the random errors are normally distributed (G,,(-) depends on n; but not 

on p;,a, or j). 



P-1) Let v = (n; - 1) and Fij = Cij,,/&. According to Beckman et. ol. [q, the variates 4, 
u-€ 

'3  

follow the distribution tUwl ,  xhich is the univariate student t distribution with degrees of 

freedom v - 1. The probability integrd transforms of tjj are therefore given by 

We notice that in a sample of identicdly distributed observations, if the sample values 

are in ascending order, so are the corresponding probability integral transforms. But this 

does not hold for our case of non identically distributed standardized residuals. Therefore, 

it is required to  arrange the uij's in ascending order after computing the probability integral 

transforms. Let 2 1 , .  . .: ZN ( N  = xfz1 ni)  be the uij7s arranged in ascending order. The 

computing formulae (Equation 8.1) given in Section 8.1.1 can then be used to compute the 

test statistic, with n replaced by N. 

8.2.2 An approximate p-value 

Let WN(S) = & ~ f = ~  zy& { I  [aij 5 S ]  - S) , and 

In Section 8.2.3 we show that the covariance kernel for the process WN(s)  is 

and show how to compute pzfni(s7t). The procedure described in Section 5.1.2 can be used 

to  compute a pvalue by replacing the Xi 's  by the eigenvalues of p(s,  t). 

Next we summarize the test procedure. 

2. Compute the standardized fitted residuals Zij = 

3. Compute the probability integral t.ransforms Gni(Zij). 



4. Order the probability integral transforms in ascending order. Let zl , .  . . ,ZN be the 

ordered probability integral transforms. 

5. Compute the CramQ-von Mises statistic 

or, the Anderson-Darling statistic 
h- 

4 e 

6. Find the eigenvaiues of the covariance kernel p(s, t) defined by the Equation 8.2. We 

compute approximations for these eigenvalues as described below: 

(a) Create the matrix Q whose elements are 

1 1 Q(s7t) = --p(s7t), for s 7 t  = - m 

m ( m + l )  7 - - ' ? (m+l) ' 

(Here m is the number of subdivisions of the unit interval. We chose m = 150. ) 

For the Anderson-Darling statistic replace p(s, t )  by pA(s, t j = p(s,t) 
&(I - s ) t ( l - t )  

(b) Compute the eigenvalues X I , .  . . , A, of the matrix Q. These eigenvalues provide 

estimates for the eigenvalues of p(s7t). (See Section 8.4.) 

Compute the pvalue based on the asymptotic distribution of the test statistic as 

P (C Ajx; 2 w) where X;7s denote a set of independent Chi-squared random variables 

each on 1 degree of freedom and zo is the value of the test statistic computed in step 

3. 

Reject (or, do not reject) the null hypothesis if the pvalue is less than (or, greater 

than) the desired significance level a. 

8.2.3 Covariance kernel p(s,  t )  

In this section we prove that the covariance kernel for the process 
?P., 

MTX(s) = -& ctZl zjZl { I  [uii 5 s] - s) is 



The process W;v(s) can be rewritten as 

Hence, Cov (WX(s)- Wr\i(t)) 

Note that 

for these correspond to different doses 
cm (1 (Gni (zij ) < s) I ( ~ n ,  (zitj!) 5 t )  ) 

= i pl(s,t), if i =  it, j = j' 

( pzTni (s ,  t ) ,  if i = it, j # j' 

where pl(s, t ) = Cm (1 (Gn, ( G j )  5 S) , I (Gn; (2;j) < t)) , and 

~2,ni(s, t) = Cov ( 1  (Gni(Gj) F S) , I (Gni (Zij) < t)) . We use the subscript n; to indicate 

that ~ 2 , ~ ;  (s, t) depends on n;. 

Computing pl(s, t) and pz,,,(s, t): 

If A and B are two events then Cov (IA, IB) is easily seen to be P ( A  n B) - P ( A ) P ( B ) .  So, 

pl (s, t) = min(s, t) - st and 

where G;:(.) denotes the inverse of the true distribution of the standardized residuals and 

G(2,ni)(-,-,pijjl) is the joint cdf of Zij and Zijl. Let g( - ,  -) denote the joint density function 



of Z i j  and E i j t .  Noting that the correlation between two fitted standardized residuals is 

- l/(ni - 1) (see Section 13.2.41, we find GzYni(x, y) = J_Zcc, coo g(x, y: -(n; - ~)-~)dzd~. We 

give an expression for GzZni as a univariate integral in Section 8.2.4. 

Xow from Equation 8.3 the covariance kernel for the Cramdr-von Mises statistic is found 

to be 

The covariance kernel for the Anderson-Darling statistic is 

P A ( S ,  t) = 
ds7 t) 

Js(1 - s)t(l - t)' 

To evaluate the above cova-~iance functions we need the inverse distribution function of Zij 

(ie. G;: (-)I and the joint distribution function of Z i j  and Z i j ,  (i.e. G2,,; (., ., pijjf)-) 

To compute the inverse of the distribution function at y we note that, 

Hence, t&l)(y) = z \ / ~ .  Thus, 

where t ~ : ~  denotes the inverse of the student t distribution function with v - 1 degrees of 

freedom; recall that v = n; - 1. 

8.2.4 The joint density of the standardized residuals 

Efienberg [29] provides the joint density of the standardized residuals for the linear regression 

model. First we brieiiy mention their result and use their result t o  obtain the joint density 

of the residuals in our probIe?-11. 

Consider the general linear regression model, Y = XP + E ,  where /3 is a k dimensional 

vector of unknown parameters, and X is fixed and of full rank. Let M = -x(xTx)-'xT, 



where 1, denotes the n x n identity matrix Let iii = - x;$, where -Y; is the ith m w  of 

X and a is the least squares estimate for . Let S2 = C:=, @. 

1 /2 Ellenberg [29] defines the standardized residuals as Ci = iii/(S,mii 1 i = 1.. . ., n,  

where m;; is the ith diagonal element of .A$. Consider a subset of p residuals. Without loss 

of generality take these t o  be the first p residuals. Let kip be the corresponding ( p  x p) 

principal minor of M. If M,' exists, according to Ellenberg [29] , the joint density of the p 

standardized residuals can be written as 

where mi, are the elements of M;', v = (n - k - p ) / 2 ,  and the probability density function 

is defined over the region 
P P  

Ellenberg [29] uses S2 = CF=Lc, 6; which is actually n - k times the usual estimate for 

02. In this work we defined standardized residuals replacing S by s where s2 = S2/(n - k )  

1/2 and use the notation Z; = ii;/(smii ). 
m .  I . . 

Note that COTT(&~, iijj.) = m .  (= p say). Let m'3 be the i j th  element of M-' . It 
33 3 9 

is easy to  check that m"mjj = f and mjj' J- = -&. Thus, the joint density 
1 P 1 P )  

of Cj and Cjt can be written as 

. . 
and is defined over the region c:,, ~ & , ~ ( m ~ ~ m ~ ~ ) ~ / ~ m " ~ ~ ~  < 1 which is the region 

u 2 - Z ~ + Y 2  1 - 5 1, or, in elliptical polar coordinates the region r2 < 1. Thus, the sup- 

port of the joint density of two fitted residuals <;j's (as defined by Ellenberg [29]) is the unit 

circle . 

Next we apply the above result t o  obtain the joint density of two residuals in our prob- 

lem. When two residuals come from different temperatures they are independent. For two 

residuals from the same dose level, we need to compute the correct correlation p. But this 
- is simply the correlation between E; - Z and C j  - c in a sample of size n;. This is easily seen 



to be -I/(n; - 1). For notational convenience we now drop the suffix i and compute the 

joint cdf of two residuals from a sample of size n. 

Note that 

where Fz(u, v; p, v) is the joint cdf corresponding to f (u, v; p, v). So, we only need to  show 

how to compute the joint distribution function of two fitted residuals as defined in Ellenberg 

[29]. In the next section, we show how to compute this joint cdf of two residuals for the 

more general linear model = XiP + a€; discussed in Ellenberg [29]. We are able to  do 

We specialize the answers to  our case at this for general p, not just p of the form - m. 
the end. 

8.2.5 The joint distribution function of two fitted residuals 

We closely follow the work of Dunnet et .  al. [28] to evaluate the the integral 

for given values of h and k. First we show the calculations for h and k positive, and extend 

the results for the negative values of h and k. So, assume h and k are positive unless specified 

otherwise. 

Consider the new coordinate axes 

and X = ( u  - P> 
= cos *' 

The Jacobian for this transformation is r J m .  In the new coordinates the joint density 

can be written as, g(r, 6, p) = f r [1 - r2]  ("-')  . Since tan0 = v D, the lines 8 = 
( u - p v )  

constant are straight lines through the origin. The line U = 0 can be written as Y = 

- 1-P ) CX. So, depending on whether p is negative or positive the axis U makes an acute 
P 



If A 
f line "1" 

Figure 8.1: The probability integrals for p < 0 

or obtuse angle with the Y axis. The direction of positive U can be identified by considering 

the coordinates of (h, k) (for p negative) and (-h, k) (for p positive). 
2 

Definer2-[  - -fk& ] + k2. Note that r is the distance from the origin to the point of 4 0  
intersection of the two lines v = k and u = h. Thus, the two lines intersect outside or inside 

the unit circle according as r > 1 or < 1. (See Figure 8.1.). 

We first evaluate the double iotegral for the case r > 1. Then we suggest the sui t~ble  

modifkations and evaluate the integral for the case r < 1. Let 

Rk = The region inside the unit circle outside the line v = k, 

Rh = The region inside the unit circle outside the line u = h, 

C = The point of intersection of v = k and u = h, 

A, A' = The points where v = k meets the unit circle, 

and B, B' = The points where u = kt meets the unit circle. 

Suppose p is negative. Then ( h  - pk) and (k - ph) are both positive for all positive values 

of h and k (Figure 8.1), and 



line "1" 

I;. v t  

Figure 8.2: The probability integrals for p > 0 

Now suppose p is positive, Then if (h - pk) < 0, then (k - ph) > 0 (since ph < h < 
pk < k). But if (h - pk) > 0, then (k - ph) can be either negative or positive. We need to 

consider these three cases separately. 

Case 1: (h - pk) < 0 (Thus (k - ph) > 0.) If r > 1, (Figure 8.2), then 

k 

L: L f (u, U; p, U ) ~ U ~ V  = 1 - J /fib 9(r, 8, p)drd@. 

Case 2: (h - pk) > 0 and (k - ph) < 0. Then 

Case 3: ( h  - pk) > 0 and (k - ph) > 0. Then 

Limits for the integrals over the regions Rk and Rh: 

Let B be the angle measured from the axis perpendicular to the Y(= V) axis at the origin. 

Let 0a4 be the angle corresponding to  A. We note that, if r 2 1 (Figure l ) ,  then BA = 



f k \  arctan and 8-41 = T - arctan i l l  
\d*i , for O < k < I. For b 2 1, the integral 

over Rk is 0, whereas for k = 0 it is 0.5. 

Kote that over the region Rk; 8 varies from 8.4 to 8+41. For fixed 8, r varies from k csc 8 

Now let 8 be the angle measured from the axis perpendicular to the 1: axis at the origin, 

As before, let BB and 8g1 be the angles corresponding to the points B and B' respcctivcly. 

If r > 1, then BB = arctan (\/&) , and 8g1 = *-arctan . f o r  0 < Ir < 1. 

Over the region Rh B varies from BB to BBi. For fixed 8,  r varies from h csc B to 1. 

Now we describe the modifications required when r < 1. When T < 1, ~c slightly modify 

the definitions of Rk itnd Rh as foll~ws. 

We take the line joining the origin and the point C (the point of intersection of v = k 

and u = h) as a boundary line for the regions. For notational convenience, we refer to 

this line as line I (See Figure 8.1.) The region Rk is now defined as the region bounded by 

the curve r = 1, the line I, and the line v = k. Similarly, the region Rh is defined as the 

region bounded by the curve r = 1, the line I ,  and the line u = h. Accordingly the angles 

corresponding to the boundary lines for the regions Rk and Rg take the following values. 

When r < 1, regardless of the signs of ( I t  - pk)  and (k - pi.,), 

lh rk f jzs: v; p, vjdudv = i - I kk g(r ,  6, p)drd@ - J-, I-, 
We notice that, regardless of whether or not the point of intersection is inside or outside 



Considering t he  symmetry and taking 

the integrds over the regions and Rh can be written as 

[if [ h - pk) > 01, 
12 1 9lr$ @, pIdrde - JIA I.,@ dr: P ) ~ T ~ ~  

( (it ( h  - pk) < 0). 

Vsiag the notation 



the above integrals can be written as 

and 

r f 2  1 a/2 1 

JJ,. g(r, 8, P W ~ O  = iB, csc6 uc e 
g(r; 0, p)drde + sgn(k - phj iB Jh ~ ( r .  @, ~ ) d r d @ -  

(8.5) 

Evaluating the integrals: 

We only need to  evaluate the double integral over the region Rk, since by interchanging h 

and k we caE obtain the value of the integral over the region Rh. For notational convenience 

let us denote the lower and upper Emits for the variable 6 over the region Rk by Cl(h, I ; ,  p )  

and C2(h, k, p )  respectively. We need to  evaluate 

where g(r, 8,p) = 5r [I- r2](Y-1) . Note that g(r ,  8,  p ) d ~  = & [ I -  k2 csc2 81" . Let 

Then, 



Substituting z = .& cot2 8, we can write the integral Iu(h, k ,  p) as follows: 

where 

and z 2 ( h 7 k 7 p )  = 1. 

Let I,(', q) = J: $ $ f $ y p - ' ( l  - y)q-'dy be the incomplete beta function. Then I,(h, k ,  p) 

can be written as 

k - - - k 2 )  (u-1'2) I U ( h , k 7 p )  = 4Jii r(") 11 + sgn(h - pk)Iz(h7 k7 p)}  1 (8 .7)  r ( ~  + 1/2) 

if ( r  > 1) 
where t = 

if ( r  < 0 
Combining Equations 8.6 and 8.7 we get 

(8.8)  
Using the recurrence formula (Equation 8.8), we can obtain the following expression for 

Q,(k k, PI (Y = (n - 3 ) P )  : 

(when n is odd) 
QAh7 k, p) = [ 

L Ct i.1 - k z ) j  W+$) I Q t - 4 6  3-1 r( j+l) ( 1  + sgn(h - ~ k ) I z  [i, j + $1 ) 
(when n is even). 

(8.9)  



The formulae given in Dunnet et. al. [28] can be used to  evaluate the incomplete beta 

functions. These are 

/, + 3 J--j-l di(i!12 
- 'I C (2i + I)!  (1 - + ?  1 - 2  i = O  

Computing Qo and Q112: 

Recall that 

Therefore, 

where 

and 
arctan (&) for ( r  > I )  

C l ( k  k7 P )  = k- 
arctan ( ( h - p k )  ) for ( r  < I). 

To compute Q1/2(h, k7 p )  we first compute [l - k2 csc2 61 'I2 dB. We write 

-1/2 
Observe that 

sin 6 

= J J (  1 
dz, where z = d m .  

1 - k2) - 22 



and 

cote 
= k arcsin ( ) . &F 

For notational convenience let cr = arcsin (s) and ,O = arcsin ( )  we 

tabulate some specific values of 8 and the corresponding values of a and ,B which we need 

in the sequel. 

Substituting corresponding limits (see the table), we find 

0 I 2 

where 

X - 
2 
k 1-p2 a r c t a n ( G )  

and 

( h - p k )  
(1-p2)-[h2+k2-2phk] 

7r 

k (1-p2)-[h2+k2-2phk] 
c t a n  

We note that, according to  the above formula, when r > 1 and (h - p k )  < 0, the integral 

over the region Rk is zero. Simila;rly if r > 1 and (k - ph) < 0, then the integral over 

the region Rh is zero. Therefore, regardless sf the signs of (h - pk) and (k - ph) we can 

0 

arctan(, ( ~ - ~ * ) - [ f ~ ~ + k ~ - a p h k ]  (h-pk)  



h k  use the formula, I-, I-, f ( a ,  v ;  p, v)dudv = 1 - I JRk g(r,  0, p)drd@ - j' JRh g(r, 8, p)drdO to 

compute the joint distribution function of u and v at ( h ,  k )  for dl positive values of h. and 

k. 

Computing t h e  distribution function for negative values of h and  I ; :  

RecaIl that F2(u7 v; p, v )  = J!, J!, f ( u ,  v; p, v)dudv. 

Case 1: h 2 0 and k < 0 

Let kl = -k then kl > 0. Observe that 

P ( U s h , V < k )  = P ( U _ < h , V <  - k l )  

= P(U < h )  - P(U < h ,  V > - k l )  

= P(U < h,V < 1)  - P(U < h ,  -V < k l )  

(Since the density is zero when V > 1.) 

= F2(h, 1; p, v)  - F2(h, k l ,  -p ,  v) .  

Case 2: h < 0 and k 3 0 

Letting hl = -h, as in Case 1, we find 

Case 3: h < 0 and k < 0 

Let hl = -h and kl = -k and write 

Thus, we can use the formulae already derived for positive h and k to evaluate the cumulative 

distribution function even if either h or k is negative. 



Evaluating the integral when h = k = 0. 

Now we describe computing the probability integral when h = k = 0. We show that the 

probability integral for this case is identical to the result for the bivariate normal integral. 

We note that the results for h = k = 0 can also be derived from the result we derived earlier 

as a limiting case far h i 0 and k -t 0. 

t 

Figure 8.3: The probability integrals for h = k = 0 

When h = t = 0, the required integral i_h_ J!_ f (u, v; p, v)dudv can be computed as 

follows (See Figure 8.3): 

For ease of reference we now summarize the resdts derived in this section. 

To evaluate the cumulative distribution function, f (u, v; p, u)dudv, for positive 



values of h and k we proposed the recurrence relation: 

where 

(when n is odd) 
(v- L) 2 j W+l)  

Q+ -&Cj=I2 ( 1 - k  ) ~ - { l + s ~ n ( h - ~ k ) l z  [i , j+f]) 
( (when n is even), 

The term Qo was found to be 

where 

and 

C2(h, k, p) = arctan 
k 

arctan (*) for ( r  > 1) 

c " h ~ k 7 p ~ =  { arctan (a) for jr < I). 

The term Q1p was found to be 

where 

and 
ir if ( r  > I)  

arctan (h-pk) 
-2phkl 

i f ( r  < 1). 

The double integral over the region Rh can be obtained from that of & by interchanging h  

and k. 



f i r  Ron positive values of h and k we can use the results derived for positive values of 

h and k as 

G(h, 1, p )  - G(h, k l ,  - p ) ,  when h 2 0 and k < 0 

G(1, k, F )  - G(h17 k7 -P) ,  when h < 0 and k > 0 

when h < 0 and k < 0 

1 , when h = 0 and k = 0. Garc tan( -  ) 
8.2.6 Justification for using the approximate pvalue 

We provide theoretical justification for using the suggested test procedure by proving weak 

convergence of the related empirical process. Validity of the suggested asymptotic results 

in finite samples is justified by a simulation study. 

Weak convergence of t h e  empirical process 

Let k denotes the number of dose levels and ni denotes the number of replicates at  the 

ith dose level. Let N = c:=~ ni be the total number of observations. We prove the weak 

convergence of the process 

for the case of equal number of replicates at  each dose level (i.e. ni = n for all i). We fix n 

and let k .- oo. In this case the process 

can be rewritten as 

where each WN,(t)  = -&EL, [I (uij 5 t )  - t] and uij = Gn(Zij). For each fixed j, the 

variables ulj ,  . . . , ukj  are, under the null hypothesis, iid uniformlo, I] variables and so each 



HTNj converges weakly in D[0,1] to a Brownian Bridge, that is, a Gaussian process IVj 

with mean 0 and covariance min(s,t) - st. Therefore, WNj is tight in D[O, 11. This in 

turn implies that for each j, there is a compact Kj C D[O, 11 such that P (WNj E K j  ) 2 

1 - 2 n for any e > 0. Since Ki is compact in D[O, 11, K = Kl x . . . x Ir', is compact 

in (D[O, Illn and P ((WN1,. . . , WNn)cK) 2 1 - E. Since E is arbitrary it follows that the 

process (WNl7. . . , WNn) is tight in (D[O, 11)". 

Now consider 0 _< tl < . . . < t ,  5 1. The matrix Mk whose t j th entry is WNj(tI) can be 

written as zfz1 &Qi where the matrices Qi7s are iid and Qi has 1 j th  entry i (,uij < t !) - ti . 
Each Qi has mean 0 and so Mk converges in distribution by the usual Central Limit Theorem, 

to  a Gaussian matrix M with E ( M )  = 0 and 

COV (Mlj mtjl) = COV (I (tiij < tl) 7 I (tiijl < tl')) 
= G2 ( ~ - ' ( t ~ ) ,  G-'(tit), pjjt) - tltlt (See Section 8.2.3.), 

wherepjjt = 1 if j =  j f a n d  -&if j #  j'. 

Thus, (WNl,. . . , WNn) converges weakly in (D[O, l])n to a Gaussian process (Wl, . . . , Wn) 

with mean 0 and Cov (Wj(tl), Wjt(tll)) = Gz (G-l(tl),G-l(tl,),pjj~) - tltr~. 

Since each W j  is in C[O, 1) (each is a Brownian Bridge) it follows that WN = & x&, WNj 

converges weakly in D[O, l] to  W = -& CEl Wj which is a mean 0 Gaussian process with 

covariance 

= rnin(s, t )  - st + - { ~ z  ( ~ - ' ( s ) , ~ - ' ( t ) ,  - 
n . .  

3 f  3' 

Simulation results 

Now we describe a Monte Carlo study that we performed to examine the approximate p- 

value suggested in Section 8.2.2 for testing the normality of the random errors c i j  in the 



in this study we used equal numbers of replicates at  each dose level (i.e. n; = n, Qi = 

1,. . . , k.), The chosen numbers of replicates, n,  are given in Table 8.1. The mean pi and 

the variance (r;2 at each dose level were set at  0 and 1 respectively. In other words the Kj7s 

were chosen to be standard normal random variates. We generated 1000 such samples. For 

each simulated sample, we computed a p-value based on the Cram&-von Mises statistic 

for testing normality as described in section in 8.2.2. Thus, we have 1000 p-values. If 

the suggested asymptotic theory holds, these pvalues should be approximately uniformly 

distributed. The validity of the asymptotic theory was tested by checking to see if these 

p-values are approximately uniformly distributed. We used the Anderson-Darling statistic 

as a measure of uniformity of pvalues. The null hypothesis to  be tested is Ho : the p-values 

are uniformly distributed on [0,1]. Thus, under Ho the distribution is completely specified. 

According to Stephens(l986) it falls under Case 0. We arrange the p-values in ascending 

order and we note that the probability integral transforms zi7s are exactly the values itself 

because the distribution of interest is the uniform distribution. The value of the test statistic 

is computed using the formula for A2 given in Section 8.1.1. The p-values for the Anderson- 

Darling test are computed by first estimating the eigenvalues of the covariance kernel for 

and then using these eigenvalues as weights t o  compute the pvalues as described in Section 

8.1.2. The results using Cram&-von Mises statistic and Anderson-Darling statistic are given 

in Tables 8.1 and 8.2 respectively. We also compute the observed levels of nominal 1, 5, and 

10% level tests, that is, the fraction of p-values smaller than these nominal levels. 

Conclusions 

Base$ on the simulation results, we draw the following conclusions. 

1. The Anderson-Darling test does not reject the null hypothesis that the pvalues are 

uniformly distributed in any of the above cases. This justifies the use of the approx- 

imate pvalues suggested in Section 8.1.2 for testing the normality of random errors 

without assuming that  fitted model is correct. 



Data 

Set 

Data 

Set 

1 

2 

3 

4 

5 

6 

Table 8.1: Results for testing normality using W2: Model 1. 

Anderson 

test statistic 

0.76 

1.77 

1.60 

1.51 

2.24 

1 .O? 

n 

6 

5 

4 

4 

3 

pvalue Observed level for 

Table 8.2: Results for testing normality using A2: Model 1 

k 

30 

30 

30 

10 

10 

3 5  

pvalue 

0.08 

0.82 

0.65 

0.76 

0.15 

0.30 

Anderson 

test statistic 

2.15 

0.42 

0.59 

0.48 

1.60 

l.12 

Observed level for 

cx = 0.01 

0.008 

0.007 

0.011 

0.009 

0.007 

0.008 

a = 0.10 

0.088 

0.093 

0.100 

0.108 

0.107 

0.098 

a = 0.05 

0.046 
I 

0.057 

0.056 

0.050 

0.049 

0.049 



2. The observed levels from the simulation study agree well with the nominal levels. 

3. The suggested asymptotic theory appears to hold for sample sizes as small as 15. The 

typical sample sizes for thermoluminescence studies are around 30. Therefore, the 

suggested procedure could safely be used for testing the normality assumption in the 

model described for thermoluminescence data. 

8.2.7 Sensitivity of the tests to departures from normality 

In the previous section, we described a simulation study that examines the validity of the 

approximate p-value for testing normality of random errors without assuming that the 

fitted model is correct. Here we describe a small study that investigates the sensitivity of 

the suggested tests in detecting departures from normality. 

The simulation study is similar to that we described in Section 8.2.6 except that, instead 

of normal random variates we generated data from different alternative distributions. When 

generating data from the gamma distribution we fixed the shape parameter a t  values given 

in Table 8.6. Since we assume that Y has mean f and variance a2 f2 we find that a2 is 

the reciprocal of the shape parameter. The scale parameter for the corresponding gamma 

distribution is o2 f2. So we only report the shape parameter of the gamma distribution we 

used to  generate the data Y. For each generated sample, we computed an approximate 

pvalue for testing the hypothesis that the random errors are normally distributed. We 

examined the performance of both the Anderson-Darling statistic and the Cram&-von Mises 

statistic as test statistics for testing the normality. The powers of the tests were computed 

as the proportion of samples rejected by each test. The chesen distributions, sample sizes, 

and the results are given in Table 8.3. 

Conclusions: 

Based on the simulation results (Table 8.3), we draw the foll~wing conclusions. 

1. For the alternative distributions considered in the study, the tests appear to detect 

the departure from normality with reasonably large sample sizes. Since we are fitting 

different me= and variance parameters at each dose level, the number of fitted pa- 

rameters is quite large. Therefore, the effective sample size is much smaller than the 



Data 

Set 

1 

2 

3 

4 

5 

6 

7 

Distribution 

gamma(0.5) 

gamma(2) 

gamma(4) 

gamma(6) 

t 2  

t 5  

t 5  

The power of 

Cram&-von Mises 

Table 8.3: Summary of test results for departures from normality: Model 1 

nominal sample sizes used. 

2. When the sample sizes are small? the Anderson-Darling test appears to perform better 

than the Cram&-von Mises test. 

3. Since the computationd burden is very much the same for both statistics we recom- 

mend using the Anderson-Darling statistic - particularly so if the sample sizes arc 

small. 

4. Based on the study it appears that the proposed EDF test is more sensitive to skew rtess 

than to heavy tai ls.  

8.3 Application of EDF tests: Model 2 

Consider the model, = pi($) + opi(8)cij;.: i = 1,.  . .;k, and j = I;. . .+rc,, where the 

random errors €;j's have zero mean and unit variance. Here we assume that both inearl arid 

variance of Xj's are functions of the unknown parameterf 0, and that the variance of tire 

'In our problem 8 is a vector of parameters. 



Y&% are proportimid :to the square crf the mean function. We refer to this model as Model 

2. We wish to test the assumption of narmafir_v of the random errors E,. 

83 .1  Computing the test statistic 

In this modelt the number of fitted parameters does not increase with the number of obser- 

M ~ ~ O A S  as in Model 1. Therefore: we can estimate the mean and variance consistently by 

ehoasing a large enough sample. Let 8 and 6 be the maximum likelihood estimates for 0 and 

n respectively. The maximum likelihood estimate for pi(0) is Bi(Bl .  Let N = EL, ni be the 
.. (x2 - - P , ~ I )  r n d  n a m k r  r>,rob~watb~s, W e  define the sta;rdar&ed fitted reduds as ~ ; j  = 

(0) . 
The i,, are approximately normally distributed, for large enough AT. The probability integral 

xrrnsforrns of i;, 's are therefore given by uij = @ ( Z i j ) ,  where @( -) denotes the distribution 

--- ~ ~ ~ & i o n  of ~ h e  standard nomd distribution. Let 21, . . . ,z.w be the ordered probability inte- 

grid traasforms, or the ammged In ascending order. Fumdae (Equation 8.1) provided 

in Section 8.1.1 can be used to  compute the test statistic for these z values. 

8.3.2 An approximate p d u e  

In !kction 8.33, we show h e m i s t i d y  that the approximate cot-auiance kernel for the 

Crm&-von b ;ses statistic is 



and I ( [ )  denotes the average Fisher information per observation. The covariance kernel 

for the Anderson-Darling statistic i s  

Next we summarize the test procedure. 

1. Find the maximum likelihood estimates 6 and 6 for the parameters 8 and 0. The 

maximum likelihood estimate for pi(@) is then 

2. Compute the standardized fitted residuals Oij = ('i-"(*)). (As we described earlier, 
.pi (s^) 

we test the assumption of normality of random errors by testing whether the fitted 

residuais are approximately normally distributed.) 

3. Compute the probabity integral transforms @ (Zij). 

4. Order the probability integral transforms in ascending order. Let 21,. . . ,ZN be the 

ordered probability integrd transforms. 

5. Compute the Cram&-von Mises statistic 

ai the Anderson-Duhg statistic 

6. E d u a t e  the covariance kernel p(s, t) given by Equation 8.10 at the estimated parame- 

ter values 6 and 5. (If the Anderson-Darling statistic is used pfs, t) has to be replaced 

by  PA(^,^)-) 

7. Find the eigenvalues of p(st t ) .  We computed approximations for the eigenvalues as 

follows: 

(a) Create the matrix Q whose elements are 

1 1 m 
Q(s, t )  = --pjs, t ) ,  for S, t = 

rn f m  + I ) ' - - - '  ( m  + 1 ) .  

(Here m is the nnmber of subdivisions of the unit interval. We chose m  = 150. j 



(b) Compute the eigenvalues XI,. . . , A, of the matrix Q.  These eigenvalues provide 

estimates for the eigenvdies of p(s,  t ) .  (See Section 8.1.1.) 

8. Compute the pvalue based on the asymptotic distribution of the test statistic as 

described in Section 8.1.2. 

9. Reject (or do not reject) the null hypothesis if the p-value 3s less than (or greater than) 

the desired significance level a. 

8.3.3 Covariance kernel p(s ,  t )  

In this section we use standard expansions to derive an asymptotic Gaussian approximation 

to  the process WN(t)  = & c:=~ C;Ll { I  [dij 5 @-'(t)] - t )  . Our derivation is heuristic 

rather than rigorous though we believe that results of Loynes [45] can be used to provide 

rigorous justification. Note that 

where 

Hi@) = cp 
>pi(fi)@-'(t) + (p i (@)  - pi(") 

(0) 

Taylor expansion of Hi( t )  around 6 = 8 gives 

where 



and a(t) = 4 [@-'(t)] {$a-'(t)} . Therefore, 

In the last step we used the fact that, when d is close to 8 ,  H i ( t )  is dose to  1. This step 

can probably be justified rigorously by following Loynes [45] but we have not tried to give 

precise conditions under which this is possible. Note that the same argument does not hold 

for the second term since H i ( t )  - t is o,(N-''~). 
Letting tT = (oT,  G) and $(t)  = (+'(t), ?i(t)) we write 

Now the covariance kernel of the process WN (-) can be computed as 

Computing Cov ( U N ( S ) ,  U N ( ~ ) )  : 

The process UN is the standard empirical process of the N iid variates r i j .  Hence, 

Cov ( U N ( s ) ,  U N ( t ) )  = m i n ( s ,  t )  - st. Note that UN converge, as in Section 8.2.6, to a 

Brownian Bridge. 



Computing Cov (VN(s), VN(t)) : 

Consider 

where 

The maximum likelihood estimates i solves the set of equations zgl C;L1 S i j ( B 7 ~ )  = 0, 

where SZ(6,o) = (G, g)  and I is the log-likelihood for the sample. Taylor expansion of 

sij(6, 6 )  around Sij(9, a) gives 

Hence, 



AS usual in maximum likelihood theory, 

Thus, ~ o u ( i  - E )  z where I ( ( )  is the average Fisher information per observat.ion. 

It is easy to  see that the matrix I ( t )  has the following components: 

Now from equation 8.12 we find 

Computing Cov (UN(s ) ,  V N ( t ) ) :  

Now consider 

k ni 1 k nil 

COV (UN(", V ~ i t ) )  = C  ( { I  ( i j )  5 - ( - C ) T ~ ~ ( ~ ) )  
i= l  j= l  i1=1 jl=l 

Recall that 

where I = [ I ( )  . Observing ~ ( i  - () = 0, we write 

To evaluate the above covariance we need the following terms: 



- - 1 -- 
6 

exp { [ ~ - l ( s ) ]  /2) = -4 [~-1(s ) ]  . 

E (c$ I [eii 5 !I?-'(s)]) z2e-x2/2dz, where y = @-'(s) 

Now it is easy to see using Equation 8.13 that 

1 T Now from Equation 8.14 we find Cov (UN(s), VN(t)) = - ; i ~ r  (s)l-'(E)r(t). 

Therefore, Cm(WN(s), WN(t ) )  = min(s, t )  - st - &rT(s)I-l([)r(t), where I(C) is 

the average Fisher information per observation. To apply the suggested test procedure we 

need an estimate for I(6) .  We have two choices for estimating I(<). 

1. We can estimate I ( [ )  by replacing the unknown parameters in the formula for I ( ( )  by 

their maximum likelihood estimates. 

2. Let II be Hessian matrix, that is, the matrix of second derivatives of the log likelihood 

with respect to  the parameters (i-e. components of 9 and a). The average Fisher 

information matrix i fc)  can be replaced by - H / N ,  where H is evaluated a t  the 

maximum likelihood estimates for 8 and a. In this case, we therefore find p-values 



from the distribution of ji Y2(t)dt where Y is a mean zero Gaussian process with 

covariance function mints, t) - st - &rT(s) (*) r(t) .  

8.3.4 Justification for using the approximate p-value 

Now we describe a Monte Carlo study that examines the performance of the approximate 

p-value suggested in Section 8.3.2 for testing the normality of random errors ~ , j  in the 

model, Xj = pi(8) + ap i (8 )~ .  2 3  . 7 i = 1, .  . ., k, j = 1 , .  . .,n;. We chose the mean function 

pi(#)  = a1 (1 - exp [-MI), where al ,  a2 and as are the components of 8. This is 
a3 

the mean response function for the unbleached (or bleached) data for the partial bleach 

method described in chapter 3. We set the parameters at a1 = 14.28528, a2 = 123.1816 and 

as = 393.0665, which are the maximum likelihood estimates obtained for the unbleached 

data set QNL84-2 given in Berger et. al. [12]. The vector of dose values used is given in 

Appendix 9.3 where it is labeled with the code 1A. The values of a and the sample sizes, 

n, used are given in Tables 8.4 and 8.5. The standard normal random variates cij were 

generated using the IMSL subroutine RNNOA. 

For each sample we computed pvalues for testing the normality of random errors using 

the Cram&-von Mises statistic and Anderson-Darling statistic as described in Section 8.3.2. 

If the suggested asymptotic theory holds these pvalues should be uniformly distributed, 

The results based on 1000 simulations for using Cram&-von Mises statistic and Anderson- 

Darling statistic are given in Tables 8.4 and 8.5 respectively. For both tests, the uniformity of 

pvalues was tested using the Anderson-Darling statistic. To conserve space in the tables, we 

denote Cram&-von Mises statistic and Anderson-Darling statistic as W 2  and respectively. 

For each set of 1000 pvalues we also report the actual levels (fraction of p-values less than 

the nominal value of a )  observed from the study for values of cu equal t o  0.01,0.05 and 0.10. 

Based on the simulation results we conclude the following. 

1. When we use the least squares estimate for a, the Anderson-Darling test does not 

reject the null hypothesis that the pvalues are uniformly distributed except in one 

case; including this case the observed coverages were found to  agree well with the 

22.5 



Least squares b 

Observed level for Observed level for 
- 

AZ 

stat 

- 
A2 

stat 

0.60 

0.94 

2.06 

1.92 

0.45 

1.10 

0.89 

1.79 

p-value pvalue 

0.33 

0.13 

0.00 

0.03 

0.65 

0.39 

0.31 

0.11 

Table 8.4: Table of p-values for testing normality using W2 statistic: Model 2 

Least squares 6 

Observed level for 
- 

A2 

stat - 
0.96 

3.02 

5.20 

4.54 

0.56 

0.37 

0.80 

1.15 

- 
A2 

stat - 
3.09 

1.01 

0.49 

0.79 

0.26 

1 .oo 
0.59 

1.33 

pvalue p value 0 bserved level for 

Table 8.5: Table of pvaiues for testing normality using statistic: Model 2 



nominal coverages for significance levels a = 0.0 1,0.05,0.10. This justifies the use of 

the approximate pvalues using least squares estimate for a suggested in Section 8-13), 

for testing the normality of random errors. 

2. When we use the maximum likelihood estimate for a, the Anderson-Darling test was 

found to reject the null hypothesis that the p values are uniformly distributed in 

cases when the sample sizes are small and a is large. The Anderson-Darling test 

is more sensitive to  departnres in the tails of the distribution. However, for dl the 

cases, the observed coverages for levels cr = 0.01,O.M, 0.10 still agree well with the 

norlinal coverages. In goodness of fit problems, often we are interested in the lower 

tail probabilities. Since, in the lower tails the coverage probabilities agree well, we 

conclude that we can safely use the approximate pvalues using maximum likelihood 

estimate for a suggested in Section 8.l.2), for testing the normality of random errors. 

3. The suggested asymptotic theory appears to hold for sample sizes as small as 16. The 

typical sample sizes for thermoluminescence studies are around 30. Therefore, the 

suggested procedure could safely be used for testing the normality assumption in the 

model described for thermoluminescence data. 

Remarks: 

The procedure we described here uses single mean and variance functions for all the data. 

This is equivalent to  assuming all the data correspond to  a single response function. For 

the partial bleach method and the regeneration method two data sets are collected at a 

given temperature. The observed photon counts for unbleached and bleached data have 

different mean and variance functions. The procedure described here can easily be extended 

to  situations where the data corresponds to more than one response function. For example, 

to  apply the test procedure for a situation where we haye two response curves (sach as the 

partial bleach method or the regeneration method) each corresponding to a common a ,  first 

compute the maximum likelihood estimates for 8 as described in Chapters 5 or 6. Then 

compute the fitted residuals for the unbleached and bleached data sets as described earlier 

by using the corresponding mean and variance functions. The assumption of normality 



of the random errors can then Be tested hy examining whether the fitted residuals are 

approximatdy normdy distributed. 

8.3.5 Sensitivity of the tests to  departures from normality 

Now we describe a simulation study that we performed to  examine the power of the EDF 

tests described in Section 8.3 for detecting the departures from normality. The simulation 

study is similar to  that which we described in Section 8.3.4 except that, instead of normal 

random variates we generated data from different alternative distributions. When generating 

data from the gamma distribution we fix the shape parameters at  values given in Table 8.6. 

Since the mean of Y is f and variance of Y is u2f2, cr2 is the reciprocal of the shape 

parameter and the scde parameter for Y is u2f. So, we only report the shape parameter 

for the gamma distribution. 

For each generated sample, we computed an approximate p-value for testing the hypoth- 

esis that the random errors are normally distributed. We examined the performance of both 

the Anderson-Darling statistic and the Cram&-von Mises statistic as test statistics for test- 

ing the normality. The power of the test was computed as the proportion of samples rejected 

by each test- The chosen distributions, sample sizes, and the results are given in Tables 8.6 

and 8.7. The parameter vector 0 = (az, a2, ~ g )  was fixed a t  cxl = 14.28528, a2 = 123.1816 

and a3 = 393.0665. The dose vector used for the study is coded as data 1A in the Appendix 

9.3. 

Results based on 1000 simulations are summarized in Tables 8.6 and 8.7 respectively. 

Conclusions 

Based on the simulation study we draw the following conclusions. 

1. The tests appear to  detect the departure from normality with reasonably large sample 

sizes. 

2. The Anderson-Darling test appears to  be slightly more powerful than the Cram&-von 

Mises statistic. 



Distribution The power of W 2  

for mle 6 for least squares B 

Table 8.6: Results for power studies using W2: Model 2 

3. Comparing the results of Table 8.3 and 8.7 we conclude that the test that assumes 

fitted model is correct is substantially more powerful than the test that do not assume 

the fitted model is correct. 

8.4 Estimates for the eigenvalues of p(s,  t )  

We used the same approach used by Lockhart et. al. [44] to find estimates for the eigenvalues 

of p(s, $1. 
Divide the interval [0,1] into m sub intervals each of length -&. Then, 

for sufficiently large m. 

Let V be the m-vector consisting of the elements (f ( l / ( m +  I))?.  . . , f (m/(m+ I))), and 

Q be the m  x m matrix whose (i, j) th element is Qij = i p ( i / ( m  f I) ,  j / (m+ 1)). Then the 

above set of equations can be written as, XV = QV. Thus, finding the eigenvalues of p(8, t )  



Data 

Set 

1 

2 

3 

4 

5 

6 

Distribution 

gamma(0.5) 

gamma(1) 

gamma(0 -5) 

gamma(1) 

gamma(2) 

gamma(4) 

The power of A2 

for mle 6 for least squares 6 

Table 8.7: Results for power studies using A2: Model 2 

is reduced to the discretized problem of finding the eigenvalues of Q. Suppose X I , .  . .,A, 

are the eigenvalues of Q. These eigenvalues are approximations to  the true eigenvalues of 

p(s, t) .  The accuracy of this approximation could be increased by increasing the number of 

subdivisions m. The results we presented were based on 150 subdivisions. 

8.5 Worked examples 

In this section, we demonstrate the theoretical results suggested in this chapter using real 

data sets from the partial bleach method and the regeneration method. 

8.5.1 Example from partial bleach data 

The data set we used here is presented in Berger et. al. [I23 where i t  is coded as QNL84-2. 

The sample sizes of the unbleached and bleached data sets are respectively n,l = 16 aod 

n2 = 13. 

First we describe the results for testing normality of random errors without assuming 

the fitted model is correct. As we mentioned in Section 8.2, for testing normality without 

assuming the fitted model is correct, it is necessary to  have at  least three observations at 



-- 
each dose level. Hoxever for rhe data set QNE84-2, the dose level 960 of the unbleached 

data set had only t T w  i-epZca:es. (These dose levels are presented in Table 9.2 of Appendis 

9.3 where they are coded as P i . )  For the bleached data set. each of the dose levels 120 

and 960 had only TW-o replicates. So, we had to ignore these dose levels when testing 

normality without assuming the fitted model is correct. Since different mean parameters 

are to be fitted for the un5Iezched and bleached data, we have to consider the dose levels 

of the unbleached. 2nd bleached data sets as  different dose !evels. Consequently. for testing 

normality without zzmrning t h e  f~rted model is correct, we only have 23 observations taken at 

7 different dose levels. Figure S .-? Illustrates the histogram and the plot of ordered probability 

integral wansf~rm.  ---s :inih:m ?<ilant iles (probability plot) for the residuals obtained by 

fitting different mezr: palarrteie:; at each dose level. 

010 0.2 0.4 0.6 0.8 1.0 
Quantiles of Uniform distribution 

Figure 8-4: Hiimgram and probability plot of probability integral transforms of residuals: 

partid bleach method 

The results for t es t kg  cormabty of random errors without assuming the fitted model is 

correct are as folloxs: 



Gramkr-von Mi= test statistic = 0.014 pvalue = 0.98 

Anderson-Darling test statistic = 0.145; p-%due = 0.95. 

3ow we dexribe %fie r d t s  for testing normality assuming the fitted model is correct. 

For this data set: we plotted the fitted residuals against the applied dose; see Figure 8.5. This 

Figure 8.5: Plot of residuals vs applied dose: Data QPJL84-2 

plot does not indicate any evidence against the hypothesis that the fitted model is correct. 

For testing normality assuming the fit,ted model is correct, we have 29 observations. As 

we presented in Section 5.5, the maximum likelihood estimates for this data set are = 

14.28~ lv, 62 = 123.18, &3 = 393.07, = 192.55, ir2 = 0.0012. Summary statistics for these 

residuals are as follows: I% = 29, mean=l.Ze-05, median = 0.155, standard deviation=1.018 

and the first and the third pnartiles = -0.611,0.878. Figure 8.6 illustrates the histogram and 

the normal quantile plot for the residuals to the fit from the method of maximum likelihood. 

1% computed approximate ptalnes using the maximum likelihood estimate for a and dso 

using the least squares estimate for o. The results are as follows: 
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Figure 8.6: Histogram and normal probability plot of residuals: partial bleach method 

Using maximum likelihood estimate for a: 

Cram&-von Mises test statistic = 0.046; pvalue = 0.58 

Anderson-Darling test statistic = 0.307; pvalue = 0.58. 

Using least squares estimate for a: 

Cram&-von Mises test statistic = 0.051; pvalue = 0.50 

Anderson-Darling test statistic = 0.344; pvalue = 0.48. 

Based on the above results we conclude that, we do not have enough evidence to reject the 

null hypothesis that the random errors in the photon counts are normally distributed. 

8.5.2 Example from regeneration data 

For this exampie we used the data SESAl collected at  temperature 360•‹C cited in Nuntley 

et. aI [38]. This data set had 62 observations (30 unbleached and 32 bleached), The un- 

bleached data set had only two replicates a t  dose level 120. (The dose levels for this data 

set are presented in Table 9.2 of Appendix 9.3, where they are labeled with the code RI.) 



Consequently, we trad to ignore this dose level when testing goodness of fit without assuming 

the fitted model is correct. So we had only 60 observations taken at 14 different dose levels 

for testing gorjdr:ess of fit using the procedure proposed in Section 8.2. Figure 8.7 illustrates 

the histogram and the plot of ordered probability integral transforms vs uniform quantiles 

(probability plot] for the residuals obtained by fitting different mean parameters at each 

dose level. 

0.0 0.2 0.4 0.6 0.8 1.0 
prob. integral transforms of residuals 

0.0 0.2 0.4 0.6 0.8 1.0 
Quantiles of Uniform distribution 

Figure 8.7: Histogram and probability plot of probability integral transforms of residuals 

The results for testing normality without assuming the fitted model is correct are as follows: 

Cramkr-von Mises test statistic = 0.057; pvalue = 0.34 

Anderson-Darling test statistic = 0.507; p value = 0.24 

Now we describe the test results assuming the fitted model is correct. The plot of fitted 

residuais against the a p $ d  dose f ~ r  this data set is illustrated in Figure 8.8. This plot does 

not indicate any evidence against the hypothesis that the fitted model is correct. For testing 

normality assuming the fitted model is correct, we have 62 observations. The maximum 



Figure 8.8: Plot of residuals vs dose: Data STRB87-1 

likelihood estimates for the parameters are iil = 57363.2,& = 80.72,& = 91.33,Zu4 = 

91-98,? = 73.11 and 6 = 0.06. For the goodness of fit test, we used the residuals to the fit 

(from fitting the restricted model discussed in Chapter 6) from the method of maximum 

likelihood. Summary statistics for the residuals are as follows: N = 62, Mean=-9.9e-07, 

Median = -0.0320, standard deviation=1.0081 and the first and the third quartiles = - 

0.611116,0.878173. Figure 8.9 illustrates the histogram and the normal probability plot of 

these residuals. 

Again, we computed approximate pvalues using the maximum likelihood estimate for a and 

also using the least squares estimate for a. The results are as follows: 

Using maximum Likelihood estimate for a: 

Cram&-von Mises test statistic = 0.083 ; pvalue = 0.19 

iAadersan-D~Zirtg test statistic = 0.618; p vahe = 0.1 1. 
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Figure 8.9: Histogram and normal probability plot of residuals: regeneration method 

Using least squares estimate for a: 

Cram&-von Mises test statistic = 0.010; pvalue = 0.10 

Anderson-Darling test statistic = 0.755; p value = 0.05. 

From the plots of residuals, we notice that there is an unusual observation in this data 

set (an observation from a disc receiving no added dose in the bleached data set). Since 

this might have a large influence on the goodness offit tests, in particular for the Anderson- 

Darling test, we dso computed approximate p values disregarding this observation. The 

results are as follows. 

Using maximum likelihood estimate for a: 

Cram&-von Mises test statistic = 0.062 ; pvalue = 0.36 

Anderson-Darling test statistic = 0.401; p d u e  = 0.33. 

Using least squares estimate for a: 

Cram&-von Mises test statistic = 0.059; p d u e  = 0.40 



Anderson-Darling test statistic = 0.421; p value = 0.321 . 

Based on the above results we conclude that, we do not have enough evidence to reject 

the null hypothesis that the random errors in the photon counts are normally distributed. 

8.6 Discussion 

In this chapter we proposed tests based on the empirical distribution function (EDF tests) 

of the standardized residuals for testing the assumption of normality of random errors. We 

outlined two test procedutes. The first procedure can be used to test the assumption of 

normality without assuming the fitted model is correct. In this model different mean and 

variance parameters are fitted at each dose level. Usually for thermoluminescence data, not 

more than five replicates are available at  each dose level. Consequently, mean and variance 

parameters cannot be estimated consistently. Therefore, the fitted standardized residuals 

need not be asymptotically normally distributed even if the random errors are. We derived 

the true distribution and the joint distribution function of two fitted standardized residuals 

and use these to compute the EDF statistics and corresponding pvalues. The assumption 

of the normality of random errors is tested by checking to see if the fitted standardized 

residuals follow the derived true distribution. 

The second test procedure can be used if tbe fitted model is assumed to be correct. For 

each case, we show how to  compute the test statistic and an approximate p-value for testing 

the assumption of normality. The finite sample performance of the suggested asymptotic 

theory is tested by a Monte Carlo study. The procedure which assumes fitted model is 

correct was found to be substantially more powerful than the test that do not assume the 

fitted model is correct. 

Weak convergence results for the empir id  process of residuais are established rigorously 

in Section 8.2.6 for the case of Model 1 and heuristically in Section 8.3.2 for the case of Model 

2. 



Chapter 9 

Concluding remarks 

In this chapter, we summarize the conclusions of this study and provide some guidance 

for analyzing data collected in thermoiuminescence studies based on the experience of this 

work. Suggestions are made for further research. 

9.1 Summary of work and conclusions 

In thermoluminescence studies, the age of the sample is determined by estimating the dose 

impinging on the sample during its burial period and comparing with the radiation dose 

rates of the surroundiilg soil. The radiation dose impinging on the sample is quantified 

as the equivalent dose, which is a known laboratory dose required to  produce the same 

amount of luminescence a s  that given off by a natural sample upon gentle heating in the 

laboratory. Lack of knowledge about the sample at the time of deposition distinguishes 

sedimentary dating from pottery dating. Unlike pottery dating, not much is known about 

the sample at  the time of deposition. Therefore, part of the luminescence produced upon 

gentle heating in the laboratory could have been due to emptying of traps that were already 

Wed at the time of deposition. This makes the estimation of the dose acquired during 

burial more di8icult. The partid bleach method and the regeneration method are widely 

used tsh&rjrIes in s&me;rtaq bating that avoid the necessity to  know the amount of 

thennoluminescence at the time of deposition. In this work, we focused our attention 



on the estimation of the equivalent dose from the data collected in thermoluminescence 

studies. The theoretical results developed in this work have a range of applications outside 

the framework of thermoluminescence studies. 

In Chapter 2, we proposed physical models that motivate generalized non-linear modeling 

of the TL data. We examined the performance of the traditional estimation procedures 

(maximum likelihood, quasi likelihood and generalized least squares) for estimating the 

unknown parameters in these models. We also examined another estimation procedure used 

by physicists that is closely related to  generalized least squares. In this procedure, they 

use observed data y in place of the expected values E(y) appearing in the weight function. 

These estimation techniques were compared by examining the statistical properties of these 

estimators. Large samples are not common in thermoluminescence studies. Usual sample 

sizes are around 40, but the effective sample sizes are much smaller than this due to the 

presence of several nuisance parameters (about six nuisance parameters for each model). 

Bowever, the measurement errors are quite small, the relative error in a single measurement, 

a, being around 3% to 8%. Consequently, small sigma asymptotics are more appropriate for 

thermoluminescence data. However, for completeness we examined both large sample and 

small o asymptotics. Examining the large sample properties of the estimators we found that 

the maximum likelihood and quasi likelihood estimates are consistent while generalized least 

squares and data weighted least squares are generally not. We also presented distributional 

approximations t o  maximum likelihood and generatized least squares estimators. The large 

sample asymptotic variances of maximum likelihood estimates were found to be smaller 

than those of quasi likelihood estimates assuming the errors are normally distributed. We 

derived approximate formulae for the biases and mean squared errors of the suggested 

estimators valid in the small a asymptotic case. In the limiting case of small a and large 

samples, maximum likelihood and quasi likelihood estimators were found to produce mean 

squared error consistent estimators. The generatized least squares and data weighted least 

squares estimators were found to have biases that do not vanish asymptotically. However, 

for parmeters  ~f interest in onr model, gneralizeti least squares a d  data weighted least 

squares were also fonnd t o  produce asymptotically unbiased estimators when a is small. 



In realistic size samples, all four estimators were found to have negligible biases compared 

to their standard errors. Furthermore, formulae derived based on asymptotic results were 

found to hold for sample sizes and values of a typical of real data sets. The approximate 

formulae for the biases and the mean squared errors derived in this work are valid for any 

response function f (x, 01, not just those discussed for thermoluminescence data. 

In the partial bleach method and the regeneration method two data sets are collected: 

one set from a portion of the untreated sample and the other set from a portion of the 

sample Ieft in the sunlight for a desired period of time or subjected to  optical bleaching 

in the laboratory. The data collected on the sample that has been subjected to bleaching 

are called bleached data whereas the other data are called unbleached data. Berger et. 

al. ill] have shown how to compute quasi likelihood estimates and confidence intervals for 

the equivalent dose based on the quasi likelihood estimate assuming a single error factor is 

suitable for both unbleached and bleached data. We extended their results to the case of 

different error factors using a Satterthwaite type approximate degrees of freedom. 

We examined profile likelihood intervals and symmetric confidence intervals based on 

the maximum likelihood estimate using t and t critical values. We also proposed confidence 

intervals for the equivalent dose based on a transformation of the likelihood ratio test with 

a transformed F critical value. Based on the quasi likelihood estimate, we examined quasi 

score intervals and symmetric confidence intervals using t critical values. Based 011 the 

generalized least squares and data weighted least squares estimates, we examined symmet- 

ric confidence intervals using t critic& values. Finite sample performance of the suggested 

confidence intervals were examined by a Monte Carlo study. When sample sizes are small 

(n < 40), coverage probabilities of proiile likelihood intervals and symmetric confidence in- 

tervals with standard normal quantiles were found to  have lower coverage probabilities than 

their nomind levels. The coverage probabilities of quasi score intervals and confidence inter- 

vals based on the transformation of the likelihood ratio statistic and symmetric confidence 

intervals based on the t quantiIes were found to  agree well with their nominal levels even in 

smalt samples. Usualfy, data sets collected for thermoIuminescence studies are s m d  in size 

(n < 40). Therefore, we recommend confidence intervals based on t quantiles as opposed to 



profde type confidence intervals. Symmetric confidence int ervds have the added advantage 

that they are cornputat.iondy much simpler. Of the symmetric confidence intervals we bis- 

cussed in this work we favour those based on quasi likelihood estimates since they deperkd 

on fewer assumptions about the random errors. 

In thermoluminescence studies. data are collected on a single sample at a series of ttrn- 

peratures. The equivalent dose is estimated from data collected at each temperature and 

the estimates are then plotted against the temperature. If the sample is capable of pro- 

ducing a reliable estimate for the equivalent dose it is expected to see a plateau (a region 

where the estimated equivalent dose does not vary with the temperature). This plateau is 

believed to represent the stable traps (traps that have not been subjected to leakage over 

the burial time). It is the equivalent dose estimated from the data corresponding to these 

traps that can provide reliable information for dating purposes; see Aitken [I]. Since the 

same samples are used to  collect the observations over the plateau these observations are 

correlated (in fact the correlations are very high). We proposed a procedure closely related 

to  that of generalized estimating equations suggested in Liang and Zeger [43] for estimating 

the equivalent dose from the correlated data. Finite sample performance of the asymptotic 

theoretical results was examined by a Monte Carlo study. For realistic sample sizes, cov- 

erage probabilities of symmetric confidence intervals using standard normal quantiles were 

found to  be lower than their nominal levels. Using small a asymptotics, we showed that the 

estimated variance of the estimate for the equivalent dose can be approximated by a sum of 

independent chi-squared random variables. Hence, we proposed confidence intervals with a t 

quantile. Using Satterthwaite7s [53] approximation, a formula was proposed to compute the 

approximate degrees of freedom for the appropriate t quantile. The coverage probabilities 

of confidence intervals with t quantiles were found to be closer to their nominal levels than 

those with standard normal quantiles. 

When the number of temperatures on the plateau is increased up to about four we 

found that the coverage probabilities begin to  drop from their nominal levels. This may be 

attributed to  having to  fit a large number of nuisance parameters (five additional nuisance 

parameters need t o  be fitted with the addition of each temperature on the plateau) with only 



a small number of replicate samples (usually around 40). So we further imposed restrictions 

or. the correlations abont the samples at different temperatures which we feel are not too 

stringent; for example we assumed that the correlation between two observations on the same 

disc over the region of the plateau depends only on the difference between the temperatures 

but not on the temperature at  which the measurements were taken. This suggests that the 

correlations along the diagonals at equal distance about the main diagonal are the same. 

Thus, we have fewer correlation coefficients to estimate. The data were generated with such 

correlation structures and the coverage probabilities were examined. These restrictions were 

found to improve the precision of the coverage probabilities of the confidence intervals. 

In Chapter 8, we proposed tests based on the empirical distribution function (EDF tests) 

of the fitted standardized residuals for testing distributional assumptions of the random 

errors. We proposed two test procedures for this purpose. First we showed how to test 

the distributional assumptions without relying on the assumption that the fitted model is 

correct. In this model, different mean and variance functions are fitted a t  each dose level. 

Consequently, with the number of dose levels the number of fitted parameters also increases. 

Therefore, the fitted standardized residuals need not be asymptotically normally distributed 

even if the random errors are. Using the results of Beckman et. al. [3] we derived the true 

distribution function of the fitted standardized residuals. The joint distribution function of 

two fitted residuals was derived using the results of Ellenberg [29]. Formulae were derived to 

compute the joint distribution function of two fitted residuals needed in the proposed EDF 

tests. The second test procedure for testing the normality of random errors is suitable if the 

fitted model is correct. For both situations, we showed how to compute the test statistic 

and an approximate pvalue based on the related Gaussian processes. Weak convergence 

properties of the related empirical processes were examined for both procedures. Finite 

sample performance of the suggested asymptotic results were examined by a Monte Carlo 

study. The tests we proposed based on the asymptotic theoretical results were found to  work 

for realistic sample sizes. We dso  examined the power of the suggested test procedures in 

detecting the departures from normality. Si~llulation results show that using a sample of size 

30 (10 dose levels with three replicates at each level) the powers of the tests for normality 



based on the Cram&-von Mises statistic without assuming the fitted model is correct were 

around O.60,O. 15,O.IO ( a  = 0.05) for gamma alternatives with shape parameters 0.5,2,3 

respectively. For the test that assumes the fitted model is correct the corresponding powers 

were found to be around 0.84, 0.31 and 0.11. 

Using the computing language FORTRAN, software was developed to implement the 

theoretical results suggested in this work. In each chapter, suggested theoretical results 

were illustrated using real data sets. Real data sets for illustration were chosen to  cover the 

experimental designs (the additive dose method, partial bleach method and regeneration 

method) described in this work. 

9.2 Some guidance for analyzing data collected in thermolu- 

rainescence studies 

In this section, we provide some guidance for analyzing data collected in thermoluminescence 

studies, based on the results of our study. 

9.2.1 Estimating the equivalent dose using data at a single temperature 

For estimating the parameters using data collected at  a single temperature we recommend 

the method of quasi likelihood for reasons listed below: 

1. Quasi likelihood estimating equations are based on fewer assumptions about the un- 

known distribution of the data. 

2. They perform almost as well as the maximum likelihood estimates in terms of their 

asymptotic statistical properties. Even though the asymptotic variances of quasi like- 

lihood estimates are slightly larger than those of maximum likelihood provided errors 

are normally distributed, our small a expansions to 6 indicate that both estimators 

have almost the same variance if a is small, which certainly is true for thermolurni- 

nescence data. 



3. Both quasi likelihood and maximum likelihood estimates are consistent. Furthermore, 

distributional approximations for quasi likelihood estimates are based only on the first 

two moments of the distribution for the random errors while for maximum likelihood 

distributional approximations require assumptions on the fist four moments. 

4. The quasi likelihood estimates for the parameters in the mean functions are more 

robust in the sense that they do not depend on how we estimate the unknown relative 

error factor 0. 

5. Programs for solving quasi likelihood estimating equations were found to  converge 

much faster than those for maximum likelihood and generalized least squares. 

9.2.2 Confidence intervals for the equivalent dose using data at a single 

temperature 

For obtaining confidence intervals for the equivalent dose using data collected at  a single 

temperature, we recommend using symmetric t intervals with appropriate degrees of freedom 

as discussed in this work. The advantages of using the suggested intervals are: 

1. The symmetric t confidence intervals are computationally much simpler than profile 

type confidence intervals. 

2. The symmetric t intervals were found hase coverage probabiities close to their nominal 

levels in samples sizes of typical themoluminescence data sets. 

It is important t o  note that the  above conclusions were drawn based on our experience 

with response functions considered in this work and for small measurement 3rrors typical in 

thermoIuminescence data sets. Care needs to  be taken when extending these conclusions for 

cases with large q it is possible that the parameter effects of non-linearity of the response 

functions might then favour using likelihood based confidence intervals. In situations where 

the likelihood based intervals are preferred, we recommend using transformed F critical 

\dues as opposed to X' critic4 values; the coverage probabiities based on approximate F 

criticat d u e s  were found to be closer t o  their nomind levels than those using xZ critical 

d u e s ,  in particular when the sample sizes are s m d .  



9.2.3 Utilizing the data collected at several temperatures 

The purpose of using the data coliected over a series of temperatures is to utilize the estra 

information delivered by these added observations about the type of traps we are interested 

in. According to  Aitken [I], a single type of trap corresponds to a glow peak of about 50'C 

in width. Therefore, taking too wide a range of observations as belonging to the plateau, 

we izcrease the risk of confounding the information related to different types of traps. Fur- 

thermore, as we learned in Chapter 7, using more data over the plateau may not necessarily 

produce a more precise estimate. Therefore, we recommend not using observations that are 

not convincingly obvious as belonging to the plateau. 

-4 few red data sets we analyzed have shown that over certain ranges of plateau temper- 

atures, the s tandad enms ~f the estimate for the equivalent dose using separate analyses 

of single temperatures are quite large so that they are less useful in practice. However, 

using data at several such temperatures was found to produce estimates with much smaller 

standard errors. Therefore, the procedures for combining data collected at several such 

temperatures have certainly resulted a gain in the precision of the estimate. 

The procedures we proposed for combining data at several temperatures need to be 

augmented by procedures for estimating the unknown correlation matrices. We recommend 

using the sample correlation matrices to  estimate the unknown correlation matrices rather 

than using arbitrarily chosen fixed correlation matrices, unless there is evidence that such 

chosen fixed correlation matrices are good approximations to  unknown true correlation 

matrices; the mean squared errors of the estimators using the former was found to be 

smaller than for those using arbitrarily chosen fixed correlation matrices. 

9.2.4 Testing model assumptions 

Examining the assumpticm used in modeling the data is an essential component of any data 

analysis. fn Chzpter 8, we proposed two procedures for testing distributionai assumptions 

about the random errors.. -We favour using the second test procedure where we assume that 

the fitted model is correct, in p a r t i d a r  when we have few replicates at  each dose level. 

Since estimates for o computed from the residuals to the fit were found to be small for 



thermdnminscence data, we have reason to believe that the fitted model is correct. Also, 

It is important to look at the plots of fitted residuals against the applied dose (see Figures 

4.5 wid 8.8) to see if there is any indication that the fitted model is not correct. Since data 

sets for themoluminescence data are quite small and not many replicates are available at  

a given dose level, the second test procedure is more powerful in detecting departures from 

normality. However, we feel that i t  is always good practice to test the results also by using 

the procedure which does not assume the fitted model is correct. If this procedure does not 

reject the hypothesis that the errors are normally distributed but the other does, then this 

may be an indication that the fitted model is not correct. Based on the simula.tion results, 

we recommend using the tests based on the Anderson-Darling test statistic, in particular 

when the sample sizes are small. Procedures based on the Anderson-Darling statistic were 

fomd t~ be more powerfd in d e t ~ ~ t h g  depaxtlxes from normality than those based on the 

Gram&-von Mises statistic, while computational burden is the same for both procedures. 

9.3 Further research 

In this section we offer suggestions for further research. 

In Chapter 2, we descrified phfi-&eat mod& motivating general id  nun-linear models. 

Under the assumptions listed in Chapter 2, the mean and variance functions of the total 

emission per unit mass of grains at temperature j from the ikth the sample (i.e. kth replicate 

sample receiving d w  i )  C~EE be written as 

where It;t3k is the number of mns producing thermoluminescence, or emitting grains as 

they are ~~sn&y cdkd, In the i&h sample 2% temperature j. As suggested in Berger et. 
R* lr . r - . I * -  x . 3  at. [I 11. ignoring the term q comparing wlm v (n+jA;, (of the order 105 - 10" 

us lo6 - 108) ) we d i s d  fitting the model TLijk = f (ze, @,)(I + utZijk)- We referred to 



this model as Model 1. A natural extension of this model is therefore described by 

and 

V(TLijk) = 6:E(TLuk) + 62 E2(T'~ijk),  (9.4) 

1 where 61 = ;;;;; and 62 = ( N  ). The mass of the sample mik is assumed to be known w 
without error. Thus, S1 is known and the variance function for TLijk has the additional 

parameter 62 that needs t o  be estimated. In this work, we discussed fitting of Model 1. 

We referred t a  this extended model as Model 2. Model 1 is a simplified version of Model 2 

that require the additional assumption that the term E (Nijk)Xij is negligible compared to 

V ( N ~ ~ ~ ) X $ .  Methodology for estimating additional parameters in the variance function are 

available in the literature jeg. pseudo likelihood methods; see Davidian and Carroll 1221). 

These methods can be used to  fit Model 2. The fitting of Model 2 would provide room 

for assessing the additional assumption that leads to Model 1. Moreover, the estimate for 

S2 obtained by fitting Model 2 gives information about the coefficient of variation of the 

distribution for the number of emitting grains. 

We also proposed a physical model for the total emission treating the mass of the emitting 

grains in the i t t h  sample, -&, as a rvldorrr subsample of the total mass of the ikth sample 

mik. This leads to  the model 

E(TLijk) = cf (zik, oj), (9,5) 

v M, where 6% = & is a known quantity, and C = and 62 = ,* are unknown 

parameters. We referred to  this model as Model 3. In a given sample, only a few particles 

produce most of the thermoluminescence (See Huntley et. al. [36].). The mass of the 

e n i i t h g  ga ins  is &own. An estimate for 62 gives information about the coefficient of 

variation on the emitting mass Mik. h Model 3; we assume that the rate of emission per 

wit mass of emitting grains at temperature j ,  Xij, is related to the dose received by the 

smpk X i  according to Xi,- = f(zi7 Bj ) ,  where tI j  is the vector of parameters corresponding 



t o  temperature j and f is the dose response function. If there is a large variation between 

the mass of emitting grains in different saaples, this model might be more appropriate. 

We would like to investigate including the Mik7s as explicit random effects in the model, 

noting that given the Mik7s the model would be a non-linear Poisson regression. With data 

a t  several temperatures on the plateau, if Mik depended little on temperature we might be 

able to estimate individual values and improve our fits. 

In the partial bleach method described in Chapter 5, a portion of the sample is given 

an artificial bleaching. Huntley et. QZ. [60] suggest (see also Aitken [l]) that the method 

works wel! as long as the artificial bleaching is less severe than that caused by the unknown 

natural bleaching prior to  the deposition (or the burial) of the sediments. It would be useful 

to  investigate if there is any optimal design that would suggest the amount of bleaching 

fperbap as a fraction of the ihemoiuminescence from the unbleached data) that would 

produce more precise estimates for the equivalent dose. We have not looked at this problem 

in this work. 

In the regeneration method as  discussed ,n Jhis work two response curves are fitted, one 

for the unbleached data and the other for the bleached data. If a reliable estimate for the 

equivalent dose can be deduced from the given data then the two curves should be able to 

match by a shift along the dose axis (Huntley et. id. [38]). Huntley et. al. 1381 suggests 

estimating the equivalent dose as the dose shift required to match the two curves. Aitken [I] 

describes estimating the equivalent dose from the blezched curve as the dose corresponding 

to  the thermoluminescence produced by the natural sample (i.e. with no laboratory added 

dose). Since the dose shift required to  match the two curves is the same at any dose level 

if the regeneration method works both procedures should provide equivalent results. From 

a statistical point of view the two methods can be distinguished as follows. The method as 

described in Huntley et. al. [38) has the advantage tsat  it allows one to  test the assumption 

that unbleached and bleached curves describe the same curve shifted along the dose axis. 

It may also allow one to estimate the model parameters used to describe the curves more 

preciseiy. On the other hand, as described in Aitken [I], if only the bleached curve is fitted 

a d  all the samples used to estimate the unbleached curve are instead used to  estimate the 



naturd thermoluminescence then one can estimate the natural thermoluminescence more 

pecisdy. This would in turn allow t o  estimate the dose corresponding to  the nakurd 

thermolurninescence more precisely. From an economic point of view the latter method has 

the advantage that it is less costly since it is not necessary to provide artificial laboratory 

doses for samples defining the unbleached curve. Furthermore, the estimation procedure 

is much simpler in the latter situation. Therefore, it is worth comparing the precisions of 

the estimates for the two situations: assuming al l  the unbleached samples are used only to 

measure the natural thermoluminescence as described in Aitken [I] and assuming unbleached 

samples are given different laboratory doses and are used to define the unbleached curve as 

described in Huntley et. ad. [38]. Using all the samples for the unbleached curve only to 

estimate the natural therrnoluminescence conceals the opportunity to examine whether the 

bieaching had caused any sensitivity change of the sample; perhaps only a few replicates 

could be used to  define the unbleached curve while more of the unbleached discs could be 

used to  estimate the natural thermoluminescence. This leads to  the question that can we 

find any optimal design that suggests how we should allocate the samples? 

As we mentioned earlier in this chapter, simulation studies have shown that profile like- 

lihood intervals for the equivalent dose have lower coverage probabilities than their nominal 

levels when the sample sizes are srrrall. This could possibly be due to  the narrowing of the 

profile when nuisance parameters are estimated. Several authors (McCullagh and Tibshi- 

raIli [50], Cox and Reid f201, Fraser and Reid f311) have described adjustments to  profile 

likelihood to  account for estimating the nuisance parameters. It would be useful to examine 

the coverage probabilities of the profile likelihood intervals based on the modified profile 

Eketihood as suggested by these authors. 

The discrepancy between the observed coverages and nominal levels of confidence inter- 

vals based on the large sample normai approximations could possibly be due t o  non-linearity 

of the response functions. Bates and Watts 121 describe two components of non-linearity. 

The parameter effects non-linearity is that part of non-linearity which can be removed 

by a transformation of the parameters. The intrinsic non-linearity is that component of 

non-linearity which c w o t  be removed. Bates and Watts [2] define curuature mewures of 



non-linearity that quantify this non-linearities of the response functions. It would be useful 

to  investigate the effects of no;;-linearity a d  to see if it is possible to reduce the parameter 

effects non-linearity by a suitable transformation of the parameters. 

When investigating the biases and the mean squared errors of the estimators in finite 

samples we encountered computational difficulties when the relative error in a single mea- 

surement is large. A suitable transformation of the parameters might also improve the 

convergence of the algorithms. 

In estimating the equivalent dose using the observations on the plateau, we assumed that 

the temperatures bdmging to the plateau are already identified by some other method. It 

would be useful to investigate the problem of identifying the temperatures on the plateau. 

Taking more temperatures on the plateau should reduce the standard error of the estimate. 

However, if we incorrectly identify a temperature as belonging to the plateau using that 

temperature might increase the error (bias) of the estimate. The problem of making this 

trade off would be worth studying. 

The observations collected at different temperatures along the plateau were found to be 

highly correlated. Estimating equations suggested for the parameters in the regression model 

were therefore augmented by a method for estimating the d o w n  correlation matrices. 

W e  examined two approaches: wing f earsea residuals to estimate the correlation matrices 

and using asbitrarily chosen fixed correlation matrices. Using Pearson residuals was found 

to produce estimators with smaller mean squared errors thm those using arbitrarily chosen 

fixed correlation matrices. Therefore, we favour using Pearson residuals to  estimate the 

correlation matrices. However7 our simulation results presented in Chapter 7 show that 

the coverage probabilities of the confidence inter& based on the estimates using Pearson 

residuals are lower than the nominal levels, when more than four temperatures on the 

plateau are used. As we described in Chapter 7, when the sample sizes are not large enough 

for the asymptotic theory to  hold, our formula (Equation 7.6) underestimates the error of 

the  estimate if we use Pearson residuals. We hope to pursue further work in this area to find 

a more accurate estimate for the error of the estimate when using Pearson residuals; this 

might bring the coverage probabilities of the resulting confidence intenrats closer to their 



nominal values. Also we hope t o  derive formulae for the biases of the estimators from data 

using sevetd temperatiirest idowing the same steps as for the single temperature case. 



Appendix: Data sets 

In Tables 9.1 and 9.2 we present the dose vectors used in the thesis. For ease of reference, 

we give a label (code nnmber) to each dose vector. Each label has three characters: The 

first character indicates the method of data collection where we use P for the partial bleach 

method and R for the regen-tim metkiod. The second character is a serial number arbi- 

trarily given to identify the dose vector. The third character indicates the level of bleaching 

where we use U for the unbleached data and B for the bleached data. When we refer to  the 

complete data set (unbleached and bleached) we omit the last character. For example data 

set Pi refers to using PlU as the unbleached data and P I 3  as the bleached data. When 

we have used the same dose levels for the unbleached and bleached data we only report 

the unbleached dose levels and we indicate this by an equal sign in the first collunn, The 

second column indicates bhe sample size of each dose vector (nl for unbleached and n:! for 

bleached). The third column indicates the dose levels. 
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Code 

P1 LT 

P1B 

size 

TabIe 9.1: Dose values used in the thesis: partial bleach method 
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Sample 

, size 

nl = 30 

nz = 32 

.rtl = 40 

Dose values 

Table 9.2: Dose values used in the thesis: regeneration method 
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Correlation matrix 

I 

Table 9.3: Correlation matrices for the unbleached data 
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:orrelation matrix 

Table 9.4: Correlation matrices for the bleached data 



Appendix: Supplement to chapter 

Consider the model, y = f (x, Bo)(l + a€), i = 1,2, ..., n, where Oo is the vector of unknown 

true parameter values. Let I!? be an estimator for 60. Suppose for small a, 6 = Bo t C1a + 
C202, where C1 and C2 depend on f ( z ,  Oo) and E ,  but not on a. We employ jo and j6 

t o  indicate f (s ,  9) and f (z, 00) respectively. The gradient vector and the matrix of second 

derivatives (i.e. the Hessian matrix ) evaluated at  the true parameter values are respectively 

de~o ted  by fo and Ho. 

In chapter 3, we examined four methods of estimation: maximum likelihood (ML), quasi 

likelihood (QL), generalized least squares (GLS) and data weighted least squares (DWLS) . 
Each method of estimation resulted the same formula for C1, which is 

Under the assumption that the random error ri are independent mean zero random variables 

we find E(C1) = 0 and the variance covariance matrix of C1, C, is given by 

With the above notation we prove the following results. 

Result 1 

T V f o  (c. ( fo ) (T)T cl) = E [ IT (CT (Y) (y)= G)] 
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