
DISCOVERY OF MULTIPLE-LEVEL RULES FROM
LARGE DATABASES

Yongjian Fu

B. Sc. Zhejiang University, China 1985

M. Sc. Zhejiang University, China 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREhLENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ Yongjian Fu 1996

SIMON FRASER UNIVERSITY

July 1996

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Yongjian Fu

Degree: Doctor of Philosophy

. Title of thesis: Discovery of Multiple-Level Rules from Large Databases

Examining Committee: Dr. Robert F. Hadley

Chair

Dr. Jiawei Han

Senior Supervisor

-
Dr. Veronica Dahl'

Supervisor

Dr. Tiko Kameda

SFU Examiner

I

Dr. Len Shapiro

External Examiner, Portland State University

Date Approved:

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

Discovery of Multiple-Level Rules from Large Databases

Author: H z - -
V

(signature)

(name)

August 15,1996

(date)

Abstract

With the widespread computerization in business, government, and science, the effi-
cient and effective discovery of interesting information from large databases becomes
essential. Data mining or Knowledge Discovery in Database (KDD) emerges as a so-
lution to the data analysis problems faced by many organizations. Previous studies on
data mining have been focused on the discovery of knowledge at a single conceptual
level, either at the primitive level or at a rather high conceptual level. However, it is
often desirable to discover knowledge at multiple conceptual levels, which will provide
a spectrum of understanding, from general to specific, for the underlying data.

In this thesis, we first introduce the conceptual hierarchy, a hierarchical organiza-
tion of the data in the databases. Two algorithms for dynamic adjustment of concep-
tual hierarchies are developed, as well as another algorithm for automatic generation
of conceptual hierarchies for numerical attributes. In addition, a set of algorithms is
developed for mining multiple-level characteristic, discriminant and association rules.
All algorithms developed were implemented and tested in our data mining prototype
system, DBMiner. The attribute-oriented induction method is extended to discover
multiple-level characteristic and discriminant rules. A progressive deepening method
is proposed for mining multiple-level association rules. Several variants of the method
with different optimization techniques are implemented and tested. The results show
the method is efficient and effective. Furthermore, a new approach to association rule
mining, meta-rule guided mining, is proposed. The experiments show that meta-rule
guided mining is powerful and efficient. Finally, an application of data mining tech-
niques, cooperative query answering using multiple layered databases, is presented.

Our study concludes that mining knowledge at multiple levels is both practical
and desirable, and thus is an interesting research direction. Some future research
problems are also discussed.

Dedication

To my parents and my wife.

Acknowledgements

I would like to thank Prof. Jiawei Han, my senior supervisor, for his continuous help,

encouragement, and support, during my study. Prof. Han always find time in his busy

schedule for frequent discussions with me and his creative thinking and insight make

our discussions fruitful and interesting. My endeavors would not have been successful

without him.

I would also like to thank Prof. Veronica Dahl for serving on my supervisory

committee. Prof. Dahl gave me good advice on my research.

My deepest thanks to Prof. Tiko Kameda and Prof. Len Shapiro for serving as

examiners of this thesis.

I wish to express my gratitude to many people in the School of Computing Science.

Prof. Lou Hafer, Prof. Arvind Gupta, and Prof. Qiang Yang provided various kinds

of help when they were most needed. Mrs. Kersti Jaager and other secretaries were

always available for help.

Micheline Kamber read this thesis and gave many useful comments. The discus-

sions with Prof. David Cheung of Hong Kong University helped me understand more

about the mining of association rules. My thanks also go t o many fellow graduate

students who made my days at SFU enjoyable: Krzysztof (Kris) Koperski, Wei Wang,

Osmar Zaiane, Andrew Fall, Jiashua Liu, Tong Lu, Jie Wei, Yao Liang, Martin Vor-

beck, Jenny Chiang, Hui Li, Wan Gong, Yijun Lu, Nebojsa Stefanovic, Betty Xia,

Hongshen Chin, and Ye Lu.

I am very grateful to my wife, Lei Jiang, who always energizes me with her love,

understanding, and support. I am also indebted to my parents for their everlasting

understanding and encouragement.

Contents

... Abstract 111

Dedication iv

Acknowledgements v

1 Introduction 1

1.1 Data Mining Tasks . 3
. 1.2 Motivation 5

1.3 Problem Specification . 7
. 1.4 The DBMiner System 9

. 1.4.1 Architecture of DBMiner 10

. 1.4.2 Features of DBMiner 12

. 1.4.3 Testing Databases 12

. 1.5 Outline of the Thesis 13

2 Related Work in KDD 15

. 2.1 Approaches to KDD 16

. 2.1.1 Mathematical and Statistical Approaches 16

. 2.1.2 Machine Learning Approaches 21

. 2.1.3 Database-Oriented Approa.ches 25

. 2.1.4 Integrated Approaches 27

. 2.1.5 Other Approaches 28

. 2.2 Typical KDD Systems 29

. 2.2.1 The KEFIR System 29

. 2.2.2 The Quest System 30

. 2.2.3 The SKICAT System 31

. 2.2.4 OtherKDDSystems 31
. 2.3 Summary 32

3 Conceptual Hierarchies and Their Manipulation 34

. 3.1 Introduction 35

3.1.1 Motivations for Using Conceptual Hierarchies 36

. 3.1.2 Specifications of Conceptual Hierarchies 37

. 3.1.3 Availability of Conceptual Hierarchies 38

. 3.1.4 Operations Using Conceptual Hierarchies 39

. 3.2 Dynamic Adjustment of Conceptual Hierarchies 40

3.2.1 Dynamic Conceptual Hierarchy Adjustment with Attribute Thresh-

old . 40

3.2.2 Dynamic Conceptual Hierarchy Adjustment without Attribute

. Threshold 48

3.3 Automatic Generation of Conceptual Hierarchies for Numerical At-

. tributes 56
. 3.3.1 Basic Ideas 56

. 3.3.2 Experiments with NSERC Databases 60
. 3.4 Discussions 61

. 3.4.1 Use of General Forms of Partial Orders 61

3.4.2 Automatic Generation of Conceptual Hierarchies for Nonnu-

. merical Attributes 63
. 3.5 Summary 65

4 Mining Multiple-Level Characteristic and Discriminant Rules . 66

. 4.1 Multiple-Level Chamcteristic Rules 66

. . . 4.1.1 Methods for Mining Multiple-Level Characteristic Rules 69

. 4.1.2 Minimally Generalized Relation 70

vii

4.1.3 An Algorithm for Mining Multiple-Level Characteristic Rules . 73

4.1.4 Experimental Results . 74

. 4.2 Mult.iple-Level Discriminant Rules 76

. . . . 4.2.1 Methods for Mining Multiple-Level Discriminant Rules 78

4.2.2 An Algorithm for Mining Multiple-Level Discriminant Rules . 79

. 4.2.3 Experimental Results 81

. 4.3 Summary and Discussion 85

4.3.1 Characterization and On-Line Analytical Processing 85
4.3.2 More about Discriminant Rules 87

5 Mining Multiple-Level Association Rules 89

. 5.1 Introduction 89

. 5.2 Multiple-Level Association Rules 92

. 5.3 A Method for Mining Multiple-Level Association Rules 96

5.4 Variations of the Algorithm for Potential Performance Improvement . 102

5.4.1 Using Single Encoded Transaction Table: Algorithm ML-T1LA 103

5.4.2 Using Multiple Encoded Transaction Tables: Algorithm ML-TML1105

5.4.3 Refined Technique Using Two Encoded Transaction Tables: Al-

. gorithm ML-T2LA 107

. 5.5 Performance Study 108

. 5.5.1 Scale Up Experiments 110

. 5.5.2 Comparisons of Relative Performances 113

. 5.5.3 Experiments on NSERC Databases 114

. 5.6 Generation of Flexible Association Rules 116

. 5.6.1 Mining Cross-Level Association Rules 116

. 5.6.2 Mining Association Rules in Mixed Hierarchies 118

. 5.7 Discussion 120

. 5.7.1 More about Conceptual Hierarchies 120

. 5.7.2 Interestingness Measure 121

5.7.3 Re-examination of the Definition of Strong Mult.ip1 e-Level As-

. sociation Rule 122

...
Vl l l

. 5.8 Summary 123

6 Meta-Rule Guided Mining of Multiple-Level Association Rules 125

. Introduction 125
. Preliminary Concepts 127

. Meta-Rule-Guided Mining of Single-Variable Rules 131

. 6.3.1 A Large-Predicate Growing Technique 132

. 6.3.2 A Direct p-predicate Testing Technique 136

. 6.3.3 A Performance Comparison of the Two Algorithms 138
. Meta-Rule Guided Mining of Multiple-Variable Rules 140

. Discussion 141

. 6.5.1 Meta-Rule-Guided Mining of Mixed-Level Rules 141

. 6.5.2 Variations of Constraints on the Forms of Meta-Rules 141
. Summary 142

7 Cooperative Query Answering Using Multiple Layered Databases 144

. 7.1 Introduction 144

. 7.2 A Multiple Layered Database 146
. 7.3 Generalization of Different Kinds of Data 149

. 7.3.1 Generalization of Unstructured Data 150
. 7.3.2 Generalization of Structured Data 150

7.3.3 Aggregation and Approximation as a Means of Generalization 151
. 7.3.4 Generalization on Multimedia Data 152

. 7.4 Construction of MLDB 153

7.4.1 Frequently Referenced Attributes and Frequently Used Patterns 153

. 7.4.2 An MLDB Construction Algorithm 155

. . . 7.4.3 Schema: A Route Map and a Set of Generalization Paths 156

. 7.4.4 Maintenance of MLDBs 157
. 7.5 Query Answering in an MLDB 159

. 7.5.1 Direct Query Answering in an MLDB 160
. 7.5.2 Cooperative Query Answering in an MLDB 164

. 7.6 Summary 167

8 Conclusions and Future Research

. 8.1 Summary of My Thesis Work

. 8.2 Conclusions

. 8.3 Future Research

8.3.1 Discovery of Other Kinds of Multiple-Level Knowledge
8.3.2 Meta-Rule Guided Mining of Other Kinds of Rules
8.3.3 Automatic Generation of Conceptual Hierarchies for Nonnu-

merical Attributes .
8.3.4 Data Mining on the Internet (WWW)

List of Tables

5.1 A salesitem (description) relation. 94

5.2 A sales-transaction table. 94

5.3 A generalized salesitem description table. 95

5.4 Encoded transaction table: 'T[l]. 97

5.5 Parameters used to generate the transaction tables. 109

5.6 Parameters settings of the item description (hierarchy) tables. 109

6.1 A fragment of student relation in relevance to the data mining task. . 133

6.2 A fragment of large 1-predicate tables a t different conceptual levels. . 133

6.3 A fragment of large 2-predicate tables at different conceptual levels. . 134

6.4 A fragment of large 3-predicate tables at different conceptual levels. . 135

6.5 Rules generated from the large 3-predicate tables at different concep-

tual levels. 136

List of Figures

1.1 Steps of the KDD process (Fayyad et a1 . 1996) 2

1.2 Control flow of the data mining process 3

1.3 A conceptual hierarchy for the provinces of Canada 8

. 1.4 Architecture of the DBMiner system 10

. 1.5 Knowledge discovery modules of DBMiner 11

. 2.1 A simple Bayesian network 18

. 2.2 Lower approximation of a set 20

. 2.3 A simple decision tree 24

2.4 Design and process flow in KEFIR (Matheus et a1 . 1996) 30

. 2.5 Architecture of Quest (Agrawal et a1 . 1996) 31

. 2.6 Architecture of SKICAT (Fayyad et a1 . 1996) 32

. 3.1 Prime levels and attribute thresholds 41

. 3.2 Original conceptual hierarchy for province 47

3.3 Dynamically adjusted conceptual hierarchy for province 48

. 3.4 Insertion of a v.node 51

3.5 Adjusted conceptual hierarchy for a = 0.6. 55

. 3.6 Adjusted conceptual hierarchy for a = 0.9. 55

. 3.7 Histogram of Amount for the current task 60

3.8 Conceptual hierarchy generated for the attribute Amount 61

. 3.9 A partial order for time 62

. 3.10 Split of a general partial order into hierarchies 62

. 3.11 A general partial order with probabilities 63

xii

3.12 A general partial order for clothing . 64

. 4.1 An exa.mple of the minimally generalized relation 72

5.1 A taxonomy for the relevant data items 96

5.2 Large itemsets at level 1 and filtered transaction table: 7[2] 98

5.3 Large itemsets at levels 2 and 3 . 99

. 5.4 Performances with thresholds (50, 10, 4, 2) 110

. 5.5 Performances with thresholds (20. 8. 2. 1) 111

. 5.6 Performances with thresholds (50. 10. 5. 2) 112

. 5.7 Performances with thresholds (30. 15. 5. 2) 112

. 5.8 Relative performances with different thresholds 114

. 5.9 Cross-level large itemsets at level 2 117

. 5.10 Cross-level large itemsets at level 3 118

. 5.11 Mixed-hierarchy large itemsets at level 2 120

. 6.1 Scale up of the algorithms 139

6.2 Relative performance with respect to minimal support 139

. 7.1 The route map of a real-estate DB 149

. 7.2 Perform joins in an MLDB 163

...
X l l l

Chapter 1

Introduction

With the rapid growth in size and number of available databases in commercial,

industrial, administrative and other applications, it is necessary and interesting to

examine how to extract knowledge automatically from huge amounts of data [33, 72,

361. For example, the Wal-Mart databases collect 20 million transactions every day.

Knowledge Discovery in Databases (KDD), or data mining, is the effort to un-

derstand, analyze, and eventually make use of the huge volume of data available.

Through the extraction of knowledge in databases, large databases will serve as a

rich, reliable source for knowledge generation and verification, and the discovered

knowledge can be applied to information management, query processing, decision

making, process control and many other applications. Therefore, data mining has

been considered as one of the most important research topics in databases by many

database researchers [97, 961.

Knowledge Discovery in Databases (KDD) is defined as the nontrivial process of

identifying valid, novel, potentially useful, and ultimately understandable patterns in

data by Fayyad et al. [86] In their opinion, there are usually several steps in a KDD

process: data selection, preprocessing, transformation, data mining, and interpreta-

tion/evaluation of the results [86], as shown in Figure 1.1. Data mining is only one

step of the process, involving the application of discovery tools to find interesting

patterns from targeted data. However, since data mining is the central part of the

KDD process, the term data mining and the term knowledge discovery in databases

C H A P T E R 1. INTRODUCTION

Figure 1.1: Steps of the KDD process (Fayyad et al. 1996).

have been used interchangeably by many researchers[97, 3, 50, 81, 591. In this thesis,

data m in ing and knowledge discovery in databases are used without distinction.

The definition of KDD in [S6] gives the basic characteristics of the knowledge

discovery process, but there are some points we would like to emphasize. First, data

mining deals with a large amount of data, which makes the efficiencies and scale-up

abilities of data mining algorithms a very important issue. Second, the data is usually

stored in databases, and mature technologies of database management (such as data

storage, indexing, query optimization, etc.) should be employed to deal with low

end data processing. Finally, users of data mining systems are typically looking for

something interesting. Their interests can determine their judgement, regarding the

usefulness and novelty of the discovered knowledge, for example.

Based on the a.bove analysis, we give our definition of data mining.

Definition 1.0.1 Data Mining (or Knowledge Discovery in Databases) is the extraction

of interesting patterns in large databases.

Figure 1.1 gives a very good overview of the data flow in a KDD process. The

CHAPTER 1. INTROD UCTIOI"V'

Figure 1.2: Control flow of the data mining process.

control flow of the data mining process is shown in Figure 1.2. A data mining session

is usually an interactive process of data mining query submission, task analysis, data

collection from the database, interesting pattern search, and findings presentation.

1.1 Data Mining Tasks

There have been many interesting studies on knowledge discovery in databases [33,

72, 871. These studies cover a wide variety of data mining tasks and use different

methodologies. The most common types of data mining tasks, classified based on the

kind of knowledge they are looking for, are listed as follows. A survey of different

methodological approaches to KDD, including machine learning, database-oriented,

statistics, etc., is given in Chapter 2.

Characterization is the summariza.tion or abstraction of a set of task-relevant data

into a relation, called generalized relation, which can then be used for extraction

of characteristic rules. The characteristic rules present the characteristics of the

data set, called the target class, and can be at multiple conceptual levels and

viewed from different angles. For example, the symptoms of a specific disease

can be summarized by a set of characteristic rules.

C H A P T E R 1. INTRODUCTION 4

Discrimination is the discovery of features or properties that distinguish the class

being examined (target class) from other classes (called contrasting classes). A

set of discriminant rules is discovered which summarize the features that dis-

tinguish the target class from contra.sting classes. For example, to distinguish

one disease from ot,hers, a discriminant rule summarizes the symptoms that

differentiate this disease from others.

Classification is labeling or categorizing of the data into a set of known classes.

A set of training data (i.e., a set of objects whose class label is known) is given

and analyzed, and a classification model is constructed based on the features of

the data in the training set. A set of classification rules is generated from the

classification model, which can be used to classify future data and develop a

better understanding of each class in the database. For example, classification

rules about diseases can be extracted from known cases (training set) and used

to diagnose new patients based on their symptoms.

Association rule mining is the discovery of associations or connections among

objects. An association rule is in the form of "Al A . . . A A; + B1 A . . A Bj"

which means objects B1,. . , Bj tend to appear with objects Al, . . . , A; in the

target data. Association rules at multiple conceptual levels will reveal such

kind of association in the relevant set(s) of data in a database. For example,

one may discover that a set of symptoms often occur together with another set

of symptoms, and then further study the reasons behind this association.

Clustering is the identification of classes (clusters) for a set of unclassified objects

based on their attributes. The objected are so clustered that the intraclass

similarities are maximized and the interclass similarities are minimized based

on some criteria. Once the clusters are decided, the objects are labeled with

their corresponding clusters, and common features of the objects in a cluster are

summarized to form the class description. For example, a set of new diseases can

be grouped into several categories based on the similarities in their symptoms,

and the common symptoms of the diseases in a category can be used to describe

CHAPTER 1. INTRODUCTION

that group of diseases.

Prediction is the estimation or forecast of the possible values of some missing

data or the value distribution of certain attribute(s) in a set of objects. This

involves finding the set of attributes relevant to the attribute of interest (by

some statistical analysis) and predicting the value distribution based on a set

of data similar to the selected object(s). For example, an employee's potential

salary can be predicted based on the salary distribution of similar employees in

the company.

Evolution mining is the detection and evaluation of data evolution regularities

for certain objects whose behavior changes over time. This may include char-

acterization, classification, association, or clustering of time-related data. For

example, one may find the general characteristics of the companies whose stock

price has gone up over 20% last year, or evaluate the trend or particular growth

pat terns of high- tech stocks.

Deviation mining is the discovery and evaluation of the deviation patterns of

objects in the target data in a time-related database. The expected behavior

or norm of the objects is usually given by the user or computed based on some

assumption, such as average, linear growth, etc. For example, one may discover

and evaluate a set of stocks whose behavior deviates from the trend of the

majority of stocks during a certain period of time.

1.2 Motivation

Previous research on da.ta mining focused on discovery of knowledge at a single con-

ceptual level, either primitive or general. The knowledge is said to be at a primitive

level if the patterns involve only the raw data stored in databases. The knowledge

is said to be at a general level if the patterns involve higher level concepts, usually

abstraction or generalization of some primitive level concepts.

Most previous research focused on finding knowledge at the primitive level, i.e.,

CHAPTER 1. INTRODUCTION 6

rules, patterns, and regularities among the raw data stored in databases [4, 5, 15, 32,

56, 73, 85, 82, 89,94, 1151.

Example 1.2.1 The following rule from Shen et al. [94] is a primitive level rule

discovered in a chemical database.

IF ingredients = "BX89" & "GF102" AND property = PI

T H E N Clusters(Pl) = ((2.4, 3.5, 0.97), (202.3, 0.5, 0.03))

The rules says that if a compound has ingredients "BX89" and "GF102", its property

PI falls into a cluster with a mean of 2.4 and a variance of 3.5 with 97% probability,

and falls in the cluster with a mean of 202.3 and a variance of 0.5 with 3% probability.

0

Han and his associates proposed the discovery of rules at the general conceptual

level [48, 461. A general level rule is a rule whose concepts (constants) can be at either

nonprimitive level (the abstract concepts or values not in the database), or primitive

level (the data stored in the database).

Example 1.2.2 The following rule is a general rule from Han et al. [46] which may

be discovered in a personnel database.

IF Position is "professor" AND Department is "Applied Science''

T H E N Sex is "male" AND Age is "old" AND

Birth-place is "Canada" AND Salary is "high". [0.20]

The number in the square brackets is the confidence of the rule which says that 20%

of the Applied Science professors are old, male, Cana.dian-born, and with high salary.

The rule is a general rule since it contains some non-primitive concepts like "high"

and "old" which are not stored in the database.

However, there are many cases where knowledge or rules at multiple conceptual

levels, i.e., multiple-level knowledge or rules, are desired. Several possible scenarios

are listed below, from the perspectives of users' interests, data mining processing, and

discovered results, respectively.

CHAPTER 1 . INTRODUCTION 7

0 Users' interests may vary from person to person. For example, an executive

may wa.nt to have a general view or summary of the sales of all products while a

sales representative may like to see the detailed information about a particular

product.

A data mining session usually involves many interactions of "zoom-in" and

L ' ~ ~ ~ m - ~ ~ t ' ' , i.e., specialization to see details and generalization to see sum-

maries. For example, a sales manager may browse the overall sales, then look

into each product's sales.

Strong rules are more likely to exist at high conceptual levels but may likely

repeat common knowledge. For example, the strong high level association rule

"80% of customers who buy milk also buy bread" may be known to store man-

agers. On the other hand, primitive level rules may be more interesting, but are

hard to find. For example, the primitive level association rule "40% of customers

who buy 2% Dairyland milk also buy Oldmill whole-wheat bread" is difficult to

find and could be mixed with many uninteresting rules.

It is natural to ask if we can discover both primitive level and high conceptual level

rules from databases at the same time, in other words, find multiple-level rules. In this

thesis, we address the issue of discovery of multiple-level rules from large databases.

1.3 Problem Specification

The problem of finding single level rules in databases has been studied extensively.

However, to the best of our knowledge, the problem of discovery of multiple-level

rules has not been thoroughly addressed. There are several questions that need to be

answered. For example, how do we define the levels? Are the levels static or dynamic?

How can we discover multiple-level rules efficiently? Can we somehow benefit froin

previous research results?

Before we formally define multiple-level rules, we introduce the term "conceptual

hierarchy" which, roughly speaking, is a taxonomic organization for concepts or ob-

jects in a database. Conceptual hierarchies define the levels of concepts and provide

C H A P T E R 1 . Ih iTRODUCTION

Figure 1.3: A conceptual hierarchy for the provinces of Canada.

background information for data mining. We will discuss conceptual hierarchies in

detail in Chapter 3 as well as algorithms for dynamic adjustment and automatic gen-

eration of conceptual hierarchies. An example of conceptual hierarchy is shown in

Figure 1.3 for the provinces of Canada.

The rules found by most data mining algorithms are production rules in the follow-

ing form:

where P;(i = 1,. . . : n) and Qj(j = 1 , . . . ,m) are predicates. A predicate can be a

user-defined predicate, or an assertion of the form A @ c, where A is an attribute in

the database, @J is a binary operator, usually a comparison, and c is a constant. We

will follow the traditional denotation of the rule in this thesis. Logic terms will have

their common meanings, such as in (411, if not defined otherwise.

Definition 1.3.1 Multiple-level rules are rules in which the concepts or constants

may be at multiple conceptual levels in conceptual hierarchies.

CHAPTER 1. INTRODUCTION 9

Our problem is to discover the rules at different conceptual levels, i.e., multiple-

level rules, given a large database together with conceptual hierarchies about the data.

Most rule discovery methods find primitive level rules which only involve concepts at

the primitive level. Some studies find rules at non-primitive levels, or general rules [48].

We extend the previous studies [45, 48, 4, 941 by finding rules at different levels (as

opposed to rules at one specific level).

There are many kinds of rules existing in a large database. It is practically im-

possible to find all kinds of rules which can be induced from the database. The

most common kinds of rules that are interesting to data mining users are discussed

in Section 1.1. We confine our study to the discovery of three types of common rules:

characteristic rules, discriminant rule, and association rules. Discovery of some other

kinds of multiple-level rules is discussed in Section 8.3.

There has been a great deal of research on the discovery of single-level rules. Al-

though previous results cannot be applied directly for the discovery of multiple-level

rules, they provide some useful hints. In this thesis, some previous methods for min-

ing single-level rules are extended to discover multiple-level rules. For example, the

attribute-oriented induction method [13,45] for discovery of single-level characteristic

and discriminant rules is extended to find multiple-level characteristic and discrimi-

nant rules.

1.4 The DBMiner System

A data mining prototype system, DBMiner, has been developed along with our re-

search. The system serves several purposes:

Our algorithms are implementedin the system a.nd tested against real databases.

The application of the system to real databases raises more interesting research

problems and helps us to revise our original designs of the algorithms.

As a data mining tool, DBMiner can be employed by database users to discover

interesting knowledge in their databases, and to ultimately benefit society.

CHAPTER 1. INTRODUCTION

Graphical User Interface

: I (command 1nterprete9 [Discovery ~ o d u l e s)

I
I

I [Hierarchy Module 1 DBMiner Engine I
I

I

Data Communication Module
4 4
JI

Database
JI

~once~tualHierarchleg l

Figure 1.4: Architecture of the DBMiner system.

We briefly introduce the architecture of DBMiner and its features in the following

sections. Detailed descriptions of DBMiner can be found in its user's manual [42].

1.4.1 Architecture of DBMiner

DBMiner is composed of three parts: Graphical User Interface (GUI), DBMiner En-

gine, and Data Communication Module, as shown in Figure 1.4. DBMiner has two ver-

sions, the Unix (SunOS) version running on Sun SparcStation and the Windows/NT

version running on x86 compatible PCs. Both versions have the same architecture.

We briefly explain the functions of each part, and their implementations.

The Graphical User Interface (GUI) of DBMiner communicates interactively

with users for specifying data mining task, setting control parameters, and dis-

playing results. The GUI of the UNIX version is implemented using XView.

Visual C++ is used for the GUI of the Windows/NT version.

0 The engine of DBMiner is the core component of the system. Written in ANSI

C, the engine is platform independent and transportable between the Unix ver-

sion and the Windows/NT version. Therefore, both versions have the same

C H A P T E R 1. INTRODUCTION 11

DBMiner: Discovery Modules

Rule Finder Guided Miner

Evaluator Evaluator

Figure 1.5: Knowledge discovery modules of DB Miner.

engine. The engine contains functional modules of DBMiner, including a data

mining query parser, a conceptual hierarchy module, and the discovery modules

explained in the next paragraph.

The data communication component of DBMiner handles data transmissions

between the engine and the database server (SQL server). We use Sybase as the

database server on Unix and Microsoft SQL server on Windows/NT.

The discovery modules of D B Miner, shown in Figure 1.5, include characterizer

(finding characteristic rules), discriminator (finding discriminant rules), classifier (find-

ing classification rules), association rule finder, meta-rule guided miner, predictor

(finding prediction rules), evolution evaluator, deviation evaluator, and some planned

future modules. The modules in italic have been or are being implemented by other

researchers in the DBMiner group.

Note that the DBMiner system has two implementations using different data

structures: the relational table implementation and the data cube (multidimensional

database) implementation. The author of this thesis implemented the relational table

version and helped to implement the data cube version. Of the relational table ver-

sion, the GUI on Windows/NT and several discovery modules, as mentioned above,

have been implemented by other researchers.

CHAPTER 1. INTRODUCTION 12

1.4.2 Features of DBMiner

The DBMiner syst.em has several interesting features.

The system is built on top of database management systems (DBMSs), but is

independent of the DBMSs. Many database servers can be used by DBMiner by

simply providing the data communication primitives in the data communication

module.

DBMiner discovers several kinds of rules: characteristic rules, discriminant rules,

association rules, classification rules, prediction rules, etc. This thesis will only

discuss the modules I have designed and implemented: the characterizer, the

discriminator, the association rule finder, and the meta-rule guided miner.

A data mining language, Data Mining Query Language (DMQL), is proposed

for the uniform specification of data mining tasks. The DMQL query is parsed

by a parser written in YACC and LEX and the results are sent to other mod-

ules. Several examples of DMQL queries will be presented when we discuss the

discovery of different kinds of rules. A full specification of DMQL can be found

in [51].

Conceptual hierarchies can be dynamically adjusted and interactively revised.

For numerical attributes, conceptual hierarchies can be generated automatically.

1.4.3 Testing Databases

Several real databases are used in our experiments with DBMiner. In this thesis, the

NSERC research grant database, which contains the information about the research

grants awarded by the NSERC (Natural Sciences and Engineering Research Council

of Canada) in each year, is used to report our results. Other databases are also

used, including several databases provided by MPR Teltech Ltd., but not reported

because of the confidential nature of the data. Nevertheless, the performances of the

algorithms are consistent regardless of the data sets.

CHAPTER 1. INTRODUCTION 13

The NSERC databases of 1991, 1994, 1995, and 1996 are used. Because they have

the similar structure and almost the same size (about 10% variance), we will just use

one of them to present the results. The average size of NSERC databases is 12MB.

There are 8 - 10 tables in NSERC databases. The largest table has 10,000 - 11,000

tuples and 14 attributes (6 categorical, 8 numerical).

On the Unix system, the databases are stored in a Sybase Server running on a

Sun SparcStations 5 with 32MB memory, connected to workstations through Ethernet.

Indices are built on the primary keys. On the Windows/NT system, the databases

are stored in a local SQL server and no index is used.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, a brief survey

of related work in data mining is given. Conceptual hierarchies are introduced in

Chapter 3, along with some algorithms developed for manipulation of conceptual

hierarchies. In Chapter 4, methods for the discovery of multiple-level characteristic

and discriminant rules are investigated. A set of algorithms for the discovery of

multiple-level characteristic and discriminant rules is proposed, implemented, and

tested. The discovery of multiple-level association rules is proposed in Chapter 5,

and a progressive deepening method is presented with some experimental results.

In Chapter 6, a meta-rule guided mining method is proposed for mining multiple-

level association rules. Chapter 7 shows the application of data mining techniques

in cooperative query answering. The study is concluded in Chapter 8, which also

presents some future research problems. More detailed descriptions of the chapters

are given as follows.

In Chapter 2, we briefly survey the related work in data mining. Different ap-

proaches to data mining, including machine learning, statistics, and many others, are.

discussed. Some representative data mining systems are also introduced.

In Chapter 3, the formal definition of conceptual hierarchy is given. Some related

issues, such as motivations for using conceptual hierarchies, availability of conceptual

C H A P T E R 1 . INTROD UCTION 14

hierarchies, and specifications of conceptual hierarchies, are also discussed. Two al-

gorithms for conceptual hierarchy adjustment are presented and examined. Another

algorithm for the generation of conceptual hierarchies for numerical attributes is also

proposed and tested.

In Chapter 4, the Attribute-Oriented Induction (AOI) method, introduced by

Han et al. [44], and enhanced by Han and Fu [48], for the discovery of general level

rules, is extended to discover multiple-level characteristic and discriminant rules. A

set of algorithms for the discovery of multiple-level characteristic and discriminant

rules is proposed. The algorithms are implemented and tested, and some results are

presented.

The concept of multiple-level association rule is introduced in Chapter 5. A pro-

gressive deepening method for mining multiple level association rules is proposed.

Several variants of the method are implemented and tested and the results, both on

synthetic databases and real databases, are reported.

In Chapter 6, we propose a new approach - meta-rule guided mining - for mining

multiple-level association rules. A meta-rule is a rule template which specifies the for-

mat of concrete rules to search for. Two algorithms for mining single-variable rules are

presented and tested, and their relative performances are compared. The algorithms

can also be adopted for mining multiple-variable rules with minor modification.
rb"

There are many possible applications of data mining techniques. We discuss the

application of data mining techniques in cooperative query answering in Chapter 7.

A multiple layered database (MLDB) model is proposed and examined in Chapter 7.

An MLDB can be constructed using data mining techniques and used for cooperative

query answering.

We conclude our study in Chapter 8. My major thesis work is summarized and

the conclusions from our study are given. Some possible future research problems are

also discussed.

Chapter 2

Related Work in KDD

There has been a great deal of research in KDD, especially in recent years. In this

chapter, we will discuss the different approaches to KDD as well as some typical

data mining systems. Researchers in KDD come from different backgrounds and take

different approaches. Based on the basic methodology used by researchers, studies

on KDD are classified into five categories: mathematical and statistical approaches,

machine learning approaches, database-oriented approaches, integrated approaches,

and other approaches:

Mathematical and statistical approaches.

Usually a mat,hematical or statistical model is built, and then rules, patterns,

and regularities are drawn from the model. For example, a Bayesian network

can be constructed from the given training data set and the implications among

objects can be extracted from the parameters and linkages of the network.

Machine learning approaches.

A cognitive model is used by most machine learning approaches to resemble the

human learning process. For example, in the learning from examples paradigm,

a set of positive examples (members of the target class) and a set of negative ex-

amples (nonmembers of the class) are given, and a concept which best describes

the class is learned or discovered through intelligent search in the concept space.

CHAPTERZ. RELATED WORKINKDD 16

Database-oriented approaches.

Database technologies and da,tabase-specific heuristics are used to exploit the

characteristics of the data in hand. For example, transactional databases are

sca.nned iteratively to discover pa.tterns in customer shopping practices.

0 Integrated approaches.

Several methods are integrated into a unified framework to exploit the advan-

tages of different approaches. For example, induction from machine learning can

be integrated with deduction from logical programming or deductive databases,

in which the former searches for patterns in the objects collected by the latter,

while the latter verifies the patterns found by the former.

0 Other approaches.

Other approaches include visual exploration, neural networks, knowledge repre-

sentation and so on. Since there is relatively less research from these approaches

for KDD, they are put into one category. Nevertheless, they are interesting stud-

ies and could be important to KDD.

Each category may be divided into subclasses as described in Section 2.1.

2.1 Approaches to KDD

Different approaches to KDD in each of the five categories will be discussed in this

section by surveying the representative work in each category.

2.1.1 Mathematical and Statistical Approaches

Statistical Approaches

Statistics has been an important tool for data analysis for a long time. Bayesian

inference is the most extensively studied statistical method for knowledge discovery.

A Bayesian classifica.tion method, AUTOCLASS was developed by Cheeseman

et al. [16, 141. Given a set of objects (evidences), E = {El, - . ,E I) , with unknown

classes and simple values (logical, integer, or real), AUTOCLASS tries to find clusters

CHAPTER 2. RELATED WORK IN KDD 17

of the objects to represent the classes so that it can assign each new object to a class.

This kind of problem is usually referred to as unsupervised learning or clustering.

A Bayesian classification model is specified by two sets of parameters: 1) a set of

discrete parameters, T , such as correlationships among attributes, and the number

of classes, which describes the general form of the model; and 2) a set of continuous

parameters, V, the variables in the general forms specified by T , determining the

specific model within the description of T .

In the search space S defined by all available T and possible V, AUTOCLASS

searches for the pair (T,V) which maximizes the joint belief J (EVTIS) , i.e., the most

probable (T,V) which classifies E. The problem is decomposed into two subproblems.

1. From a set of possible Ts, which have different attribute dependencies and class

structures (flat or hierarchical), AUTOCLASS searches for a most probable T

regardless of V, i.e., the T which maximizes P(T1ES). This is done by approx-

imating P(TJES) using a probability density function (p.d.f.) of T which can

be computed from the p.d.f of each attribute. AUTOCLASS assumes Bernoulli

distributions for discrete attributes and normal distributions for continuous at-

tributes.

2. For a given T, AUTOCLASS searches for a most probable V by breaking con-

tinuous V into regions and finding the region, R, which maximizes the marginal

joint:

M(ETR1S) = dP(EVT1S)
VCR

Several local maxima of R will be reported.

AUTOCLASS can find hierarchical clusterings and the local maxima are usually

sufficient. However, it deals only with simple values.

The use of Bayesian networks (Directed Acyclic Graph or DAG) for the discovery

of causal relationships among objects is proposed for KDD by Buntine [l l , 121, Spirtes

et al. [103], and Hackerman et al. [54, 551. Nodes in a Bayesian network represent

variables or states, and arcs represent the dependencies between nodes, directed from

the cause to the effect. Figure 2.1 gives a very simple Bayesian network for medical

problems [l 11.

CHAPTER 2. RELATED W O R K IN h'DD

Figure 2.1: A simple Bayesian network.

There are usually three steps in constructing a Bayesian network. They involve:

Deciding which variables to be modeled as nodes.

Determining the structure of the DAG, for example, the connections from a

node to other nodes.

Estimating the parameters of the DAG, i.e., the dependencies among the nodes

in terms of probability distributions.

Usually the first step is performed by user or domain expert. Buntine and Hackerman

et al. used Bayesian metrics, such as maximum a posteriori probability, and heuristic

search to find the structure and parameters [12,54]. Starting from a given or randomly

generated network, the algorithms search for a better network (based on the metrics)

until a local optimum is found. Spirtes et al. [I031 used conditional independence

tests in their TETRED system to find the optimal network.

Bayesian networks are powerful tools for analyzing causal relationships in databases.

However, the complexity of the model grows exponentially with the number of the

nodes in a network. Usually, a local optimum is found, whose goodness depends highly

on the heuristics and the application domain.

To summarize, stat istical approaches have a solid theoretical foundation, namely

the Bayesian distribution theorem. They perform well for quantitative data and are

robust with noise. However, almost all of them depend on some statistical assump-

tions which usually do not hold in real world data. Moreover, results from statistical

methods can be difficult for nonexperts in statistics to understand.

C H A P T E R 2. RELATED W O R K IN KDD

Rough Sets

Rough sets were first introduced by Pawlak [83]. They were used for knowledge

discovery by Ziarko [I151 as a tool to find dependencies in data and to derive decision

tables. A decision table lists the conditions and the classes based on these conditions.

For example, the following decision table tells how the size, transmission type, and

weight of a car determines its gas mileage (class). The blank cells mean "doesn't-

matter".

medium auto I medium

size transmission weight

small I high

mileage

I large light I medium I

t

I manual medium (high 1

auto medium

heavy

Given a set of objects, E, called elementary objects, the lower approximation of a

set X , I N D (E , X) is the union of all elementary objects fully subsumed by X :

medium

low

as illustrated in Figure 2.2, in which each basic box is an elementary object, set X is

the area in the dashed line, and I N D (X) is the dark area.

Let U be the set of all objects. Each object is a tuple that has values for a

set of attributes A, consisting of determining attributes P , whose values determine

the object's class, and determined attributes Q, the class attributes which label the

object's class.

Ziarko defines the equivalence relation, I N D (X) , of any set of attributes X C P U.Q

as follows:

I N D (X) = {(a, b)la, b E U A x(a) = x(b))

where x(a) is the value of a on an attribute x E X. I N D (X) gives a classification of

objects in U based on their values of attributes in X. All classes in Q' = I N D (Q)

C H A P T E R 2. RELATED W O R K IN KDD

Figure 2.2: Lower approximation of a set.

can be approximated by the classes in IND(X) :

where IND(IND(X) , Y) is the lower approximation of the set Y in terms of the

elementary objects - the classes in IND(X) . POS(X, Q) gives the dependency

between X and Q because the values of the attributes in Q of any object in POS(X, Q)

can be determined solely by the object's values of the attributes in X. A heuristic

search method is used to find the minimal set P' E P which still keeps the dependency,

i.e., POS(P1, Q) = POS(P, Q). Decision table are then derived from the minimal set.

Decision rules (or classification rules) can be obtained from the decision table.

Hu and Cercone integrated rough sets with attribute-oriented induction to find

high level rules [57]. A set of objects are first generalized using attribute-oriented

induction [45]. The rough sets method is then applied on these generalized objects to

find the decision table at a general level.

Rough sets provide a tool for KDD with a solid mathematical foundation. How-

ever, it can only discover qualitative rules, i.e., exact rules. The computational com-

plexity of finding the best minimal set is exponential to the number of attributes. '

CHAPTER 2. RELATED WORK IN KDD

2.1.2 Machine Learning Approaches

Learning f r om Examples

Given a set of positive examples (objects in the class) and a set of negative examples

(objects not in the class), this approach searches for a class description (concept) that

covers all positive examples and excludes all negative examples, i.e., learning from

examples. The search space is defined by the attributes of the objects.

The A Q algorithm, proposed by Michalski [75], uses a bottom-up generalization

method to search for the description, as is summarized as follows:

1. Randomly select a positive example;

2. Form a star which is a generalization of the example by dropping conditions,

adding selectors, extending intervals, climbing conceptual trees, etc., but which

does not cover any negative example.

3. Form a descript'ion for the star and remove the positive examples covered by it.

4. Continue the process until all positive example are accounted for.

5. Form the disjunction of the descriptions as the resulting class description.

The results of each iteration are examined by users and the process stops if a satisfac-

tory description is found. Heuristics and background knowledge can be used to guide

the search in Step 2.

Mitchell [79,80] proposed a combined top-down and bottom-up approach to search

for the best description. The algorithm searches for the best description in a version

space, defined by all descriptions. From the top, a most general description is given

and specialized against the negative examples. From the bottom, positive examples

are generalized by similar techniques used in the AQ algorithm. When the two de-

scriptions meet, a correct concept description is found.

Methods of learning from examples imitate the human learning process. They

are better suited to handle qualitative or categorical data rather than quantitative or

numerical data. Most learning from examples methods assume that the data set can

be fit in main memory so that many scans of the data set are possible.

C H A P T E R 2. RELATED W O R K IN KDD

Conceptual Clustering

An interesting method for clustering of objects, conceptual clustering, was first intro-

duced by Michalski and Stepp [76]. Given a set of objects, conceptual clustering finds

clusters based on conceptual closeness among objects. An object is an n-ary tuple

represented by a vector of values on a set of attributes. A cluster is a conjunction of

predicates on the attributes and values. In their algorithm, Cluster/2, a small number

of random objects, called seeds, are selected as representatives of each cluster, and

cluster descriptions are derived from the seeds. Other objects are put into clusters

based on closeness. A hierarchical clustering can be built by splitting clusters into

sub-clusters. The search for the best clusters, based on some clustering criteria, is

stopped when a local maxima is found. Heuristics are used in selecting seeds for

the next round. Clustering criteria may be based on: fitness, complexity, coverage,

disjointedness, etc., where:

0 Fitness is ratio of the number of objects in a cluster versus the space covered

by the cluster.

0 Complexity of the clustering is decided by the number of clusters and the number

of predicates in each conjunction.

Coverage is the number of objects covered by the clusters.

0 Disjointedness measures the number of objects that are covered by more than

one cluster.

A clustering tree is built by Fisher [34] in his COBWEB algorithm. Each node

in the tree is a cluster and can be split into subclusters as children. Initially, the

clustering tree has one node, the root. COBWEB incrementally adds objects into the

clustering tree and adjusts the tree accordingly. COBWEB uses a measure, called

category utility, which is the increase of the number of objects whose classes (clusters.)

can be correctly guessed given a clustering compared to that without the clustering.

Based on this measure, one or more of the following operations takes place:

0 Adding the object into an existing cluster.

CHAPTER 2. RELATED W O R K IN KDD

0 Creating a new cluster to accommodate the incoming object.

0 Splitting a cluster into two.

0 Merging two clusters into one.

Conceptual clustering generates more understandable clusters compared to statis-

tical approaches, such as Bayesian classification. They perform well for categorical

data, but are usually poor a t numerical data. Like the methods of learning from

examples, conceptual clustering also assumes that the data set can be held in main

memory, which is often impossible for very large databases.

Decision Tree Induction

A decision tree is a tree whose nonleaf nodes are attributes of objects and whose leaf

nodes are class labels. Branches from a parent node to its children are marked by

the possible values of the corresponding attribute at the parent node. An object,

represented by a vector of values on a set of attributes, is classified by tracing the

path from the root of the tree to a leaf node, and taking the branches (arcs) according

to its values along the way. The leaf node holds the class prediction of the object. A

simple decision tree for the gas mileage of cars is given in Figure 2.3. For example,

the mileage of a medium-sized car with automatic transmission can be determined as

"medium" from the decision tree. Like the decision table in Section 2.1.1, the decision

tree classifies the tuples, but uses a different knowledge representation form.

Given a set of objects whose class labels are known, a decision tree can be induced

which classifies the objects. Classification rules can be extracted from the decision

tree. For example, the following classification rule can be extracted from the decision

tree shown in Figure 2.3:

IF size(x) = "medium" A N D transmission(x) = "automatic"

THEN mileage(x) = medium.

Quinlan uses entropy to induce decision trees in his ID3 algorithm [MI. Starting

from an empty tree and a set of objects, ID3 chooses the attribute which generates

maximum information gain (calculated from entropies) as the root node. A branch

CHAPTER 2. RELATED WORK IN K D D

medium
/

I
transmission weight

auto manual light medium heavy

I medium I I high I I medium (I medium I I low I
Figure 2.3: A simple decision tree.

connecting to a to-be-built subtree is created for each value of the attribute. The

objects are partitioned into subtrees based on their values of the attribute. The

process repeats for the subtrees until all objects in the subtree are from a single class.

Utgoff proposed an algorithm for the incremental update of the decision tree based

on ID3 [107]. Cheng et al. proposed grouping some branches into one to improve the

quality of the induced tree [17]. Smyth and Goodman [lo21 used a measurement call J-

measure to induce classification rules directly from databases. Manago and Yodratoff

induced decision trees from complex structured data [70]. Later enhancement of

ID3 by Quinlan led to C4.5 which could extract compact classification rules and

accommodate noise and missing data [91] . Uthurusamy et al. [log] and John [61] also

discussed how to to deal with noisy or inconclusive data.

Decision tree induction is the most commonly used method for discovering clas-

sification rules. Decision trees provide a natural classification of the data, and thus

are easy for human to understand. The tree induction process can usually generate

a decision tree that is accurate and robust. However, the induced decision tree may

be highly influenced by the bias in the training data. Sometimes the decision tree

can grow too large which makes the derivation of classification rules from the decision

tree comput ationally expensive.

To sum up, most machine learning methods have a very good cognitive model so

CHAPTER 2. RELATED WORK IN KDD 25

that the results are easy to understand for human. However, they usually assume the

data set is small (a few hundred or a few thousand tuples) and can be fit into main

memory.

2.1.3 Database-Oriented Approaches

An interesting method, Attribute-Oriented Induction (AOl), was developed by Han

et al. [48, 461. The method used data focusing and conceptual-hierarchy-based gen-

eralization to find high level rules from relational databases. A01 assumes that a set

of conceptual hierarchies is available for the attributes. The basic techniques of A01

are given as follows.

1. Data focusing: The task relevant data are collected from the database. Usually,

an SQL query is formed based on the mining request and sent to a DBMS.

2. Attribute generalization: If there is a large number of distinct values for an at-

tribute, and there is a conceptual hierarchy for the attribute, the attribute can

be generalized by conceptual hierarchy climbing, i.e., replacing the lower level

concepts of the attribute by the corresponding higher level concepts.

3. Attribute removal: If there is a large number of distinct values for an attribute,

and the attribute cannot be generalized or the higher level concepts of the

attribute are stored in another attribute, the attribute should be dropped.

4. Count propagation: A new attribute, count, is attached to each tuple and is

accumulated when merging equivalent tuples during generalization.

5. Attribute generalization control: Generalization on an attribute A; is performed

until the concepts in A; has been generalized to a desired level, or the number

of distinct values in A; in the resulting relation is no greater than a prespecified

or default attribute threshold.

Han et al. [46] discussed the discovery of characteristic and discriminant rules

from relational databases using AOI. Han and Fu later [48] explored the use of A01

for the discovery of other kinds of rules, and in other kinds of databases, including

object-oriented, deductive, and spatial databases.

C H A P T E R 2. RELATED WORK IN h'DD 26

The attribute-oriented induction method is efficient and effective for very large

databases. A01 finds general, high level knowledge from databases, but leaves the

detailed information out. It does, however, require domain knowledge in the form of

conceptual hierarchies.

Agrawal et al. proposed an iterative searching method, Apriori, for mining associ-

ation rules in transactional databases (2, 41. Given a transactional database in which

each transaction is a list of items, the Apriori algorithm finds association rules among

items, such as "milk -+ bread" which says people who buy milk also buy brea.d. To

find interesting association rules, two measures, support and confidence, were intro-

duced. The support of a rule is the frequency of the item set (or itemset) composed

by all the items in the rule, i.e., the probability a transaction contains the itemset.

The confidence of a rule is the probability that a transaction contains the items in

the right hand side of the rule when the transaction contains the left hand side items

of the rule. The task is to find all association rules whose support and confidence are

above the given support threshold and confidence threshold.

The Apriori algorithm [4] finds the association rules in two steps. An itemset is

called a frequent itemset if its support is no less than the given support threshold. In

the first step, Apriori finds frequent itemsets by iteratively scanning the database. In

the second step, association rules are derived from the frequent itemsets and filtered

out by the given confidence threshold.

The Apriori algorithm was later extended by Srikant and Agrawal [lo51 to discover

association rules in relational t,ables. Each tuple in the table is transformed into

a transaction by treating the attribute values as items. Numerical attributes are

discretized in a way that the information loss is within the user given threshold.

Agrawal and Srikant used similar techniques to discover sequential patterns in a

transactional database [5]. A sequential pattern is a series of items bought by a

customer, for example, "TV followed by VCR followed by Video Camera". Sequential

rules, such as "50% of people who buy TV buy VCR next within a year", can be

extracted from the sequential patterns. They transformed the set of transactions into

a set of customer shopping sequences. The Apriori algorithm can then be applied to

the problem with little change.

CHAPTER 2. RELATED W O R K IN KDD 27

The iterative search method used in Apriori is efficient and scales up well with

respect to the size of the database. However, it was designed for the mining of

association rules (or similar types), and can not be employed for mining other kinds

of rules.

Database-oriented methods are very efficient and scale up well for large databases.

They search for empirical patterns rather than models or theories, and therefore are

robust and objective. However, database-oriented methods may rely on the under-

lying data model, which restricts their applications for general purpose discovery.

Sometimes generality is compromised for efficiency as well.

2.1.4 Integrated Approaches

Shen et al. proposed using metaqueries as a way to integrate inductive learning meth-

ods and deductive database techniques [94]. A metaquery is a rule template, such

as P(X, Y) A Q(Y, Z) -t R(X, Z), where P, Q, R, X, Y, Z are variables. A deductive

database, LDL++, is used to collect data which are clustered using a Bayesian clus-

tering method. Rules are extracted from the clustering and put into a knowledge base

from which a user can form metaqueries.

Simoudis e t al. introduced a framework which integrates induction and deduc-

tion [loo]. A deductive database is used to manage concepts, the predicates on data,

attributes, and relations. Users can query through the deductive database to ver-

ify their assumptions and define domain knowledge. The induction part searches for

characteristic and discriminant rules in the databases by incrementally updating the

existing rules.

A multistrategy approach was taken by Kaufman et al. [63]. Three sets of opera-

tors, one for data management, one for knowledge management, and one for knowledge

discovery, are incorporated into a data and knowledge system, INLEN. The knowledge

discovery tools include clustering, classification, characterization, discrimination, etc.

An integrated method may typically have the advantages of its component meth-

ods, but also inherit their disadvantages. How to make the best use of each method

is the most important issue when several methods are integrated.

C H A P T E R 2. RELATED W O R K IN KDD

2.1.5 Other Approaches

Knowledge Representation Approaches

Gaines [40] proposed using exception directed acyclic gra.phs (EDAGs) to represent

knowledge. An EDAG is a DAG in which nodes are premises (predicates) of rules.

Some nodes have att,ached conclusions. As with decision trees, a path from a root to

a leaf node in a EDAG gives the conclusions, usually class label(s), about the objects.

In contrast to decision trees, EDAGs group common premises of rules into one node

and allow some conclusions to be default conclusions.

Knowledge representations are important for KDD. However, methods of knowl-

edge representations usually employ, explicitly or implicitly, a set of discovery tools.

These tools are essential in order to take full advantage of the knowledge representa-

tions.

Visualization and Interactive Approaches

Most KDD systems involve some kind of human interactions. Zytkow and Baker

showed how a scientific discovery method can be adapted to interactively mine regu-

larities in databases [116]. Starting from the whole database, the algorithm, FORTY-

NINER, searches for regularities among two or more attributes. The results are

presented to the user who then can decide to partition the data, change parameters,

and so on.

Keim et al. (641 had some interesting ideas on visualization of data. Data are trans-

formed and presented in visually contrasting forms, such as graphs, icons, pictures,

etc. Users can interactively select the interesting parts for further explorations.

Visualization of data helps to understand the data, however the choice of a proper

visual form is important. Interactive approaches are suitable for data exploration, but

may be too slow for large databases, and the discovered results may be incomplete. .

CHAPTER 2. RELATED WORK IN KDD

Neural Network Approaches

Lu et al. proposed a neural network approach to data mining [69]. A neural network

was built to classify a set of objects whose class labels are-known. Classification rules

are extracted from the neural network by discretization of the parameters.

Neural networks are accurate and robust for processing numerical data, but are

poor at categorical data. Neural networks usua.lly require a long training time, but

run fast once trained. Like Bayesian inference methods, neural networks also suffer

from the problem of understandability.

2.2 Typical KDD Systems

A few typical KDD systems are discussed in this section. We will focus on their

structures and the data mining techniques used. More information can be found in

the GTE lab's Knowledge Discovery Mine WWW page at h t t p : //info. g t e . corn/--kdd/.

Several systems, such as AUTOCLASS, TETRED, ID3 and C4.5, and INLEN, etc.,

were introduced in Section 2.1 and will not be repeated here. DBMiner was discussed

in Section 1.4.

2.2.1 The KEFIR System

KEFIR (KEY FIndings Reporter) was developed by Matheus et al. in the GTE
Lab [74, 731. The design and process flow of KEFIR are given in Figure 2.4. From a

medical database, KEFIR finds the trends in the values of the attributes which devi-

ate from the expected norm given by the experts. The interestingness of the findings

are evaluated based on potential actions against the findings and benefits from the

actions.

For example, KEFIR found that the "average length of stay" increased 22.6% from

1992 to 1993 and if this trend continued into 1994, it would result in $263,000 of extra

expenses than the expected. KEFIR then explained that the increase was caused by

the 247.9% increase of average length of stay in "Medical Nervous System". Some

actions, such as enhancing "chronic care management", were recommended in order to

C H A P T E R 2. RELATED WORK IN KDD

Figure 2.4: Design and process flow in KEFIR (Matheus et al. 1996).

Final Report

bring the expense back to its expected value. A final report was output summarizing

all the analysis, recommendations and projected savings [74].

Evaluation
&

Ordering

2.2.2 The Quest System

Quest was developed by Agrawal et al. at IBM Almaden Research Center [3,105,4,5].

I t can find association rules, classification rules, time-series patterns, and sequential

patterns from large databases. The architecture of Quest is given in Figure 2.5.

KEFIR Engine

I\

1/

Association rules are found using the Apriori algorithm. General level associ-

ation rules can be found using taxonomy of items. This is the closest work to

our multiple-level association rules. However, as explained in Chapter 5, there

are a number of differences.

Classification rules are extracted from a decision tree. The decision tree is

induced using a technique, pre-sorting of the values of attributes, and pruned

using Minimum Description Length (MDL) principle.

Time-series patterns are discovered by searching for matching patterns in two

sets of time-series data, for example, the stock prices of two companies.

Sequential patterns are extracted using an Apriori-like algorithm by transform-

ing transactional data into customer shopping sequence data.

Finding Report

Explanation Generation u

CHAPTER 2. RELATED WORK IN KDD

/ I Data Definition I Mining 1 I Export]
A > A

I

Mining Kernels

I Data Access API

ata ase Pa
Figure 2.5: Architecture of Quest (Agrawal et al. 1996).

2.2.3 The SKICAT System

SKICAT is developed by Fayyad et al. [32]. The architecture of SKICAT is shown in

Figure 2.6. The system automatically searches and classifies sky objects in digitalized

sky images. These images are processed to generate image segmentations. The fea-

tures of these segmentations are extracted to represent the objects. The objects are

classified by a classifier and put into the catalog.

SKICAT used a generalized ID3 algorithm [17] to induce a decision tree. Some

objects are classified by the experts (astronomers) and used as training data to help

the induction of the decision tree. A set of rules is extracted from the decision tree

to form the classifier.

2.2.4 Other KDD Systems

Many other data mining systems have been developed, such as IMACS [lo, 91, Re-

con [99], Explora [66], Spotlight [6], and several others.

IMACS was developed by Bra.chman et al. at AT&T [lo, 91. It takes a unique ap-

proach, a human centered discovery process. The system has integrated support

for human problem solving by visualization, interaction, knowledge representa-

tion and data processing.

C H A P T E R 2. RELATED WORK IN KDD

Image Processing

Pixel Regions

Data for 3 Analysis

I ,

(Sky Objects

Classifier

Astronomer

4 I easurement

Figure 2.6: Architecture of SKICAT (Fayyad et al. 1996).

Recon was developed by Simoudis et al. [loo]. It integrates three kinds of tools,

data visualization, rule induction and deductive database to support interactive

data mining.

Explora was developed by Klosgen [66] at the German National Research Center

for Computer Science. It integrates a set of basic statistical, machine learning,

and general artificial intelligence tools, as assistants for interactive knowledge

discovery.

Spotlight was developed by Anand et al. at AT&T [6] to navigate through very

large databases (gigabytes).

Summary

In this chapter, different approaches to KDD are discussed. The studies on KDD are

classified into five major categories based on their principal methodologies: mathe-

matical and statistical approaches, machine learning approaches, database-oriented

approaches, integrated approaches, and other approaches. A representative method

from each category is surveyed to explain the basic ideas of each approach. We have

C H A P T E R 2. RELATED WORK IN KDD 33

also analyzed the features and the limitation of each method, as well as the types of

data and/or the applicat,ion areas for which the methods are best suited.

Chapter 3

Conceptual Hierarchies and Their

Manipulation

As mentioned in Chapter 1, concepts in databases are organized into a partial order

called conceptual hierarchy. Conceptual hierarchies play an important role in the

knowledge discovery process because they specify background or domain knowledge

and may affect the discovery processing and the results. In this chapter, we discuss

basic ideas about conceptual hierarchy and its manipulation.

This chapter is organized as follows. In Section 3.1, basic terms about conceptual

hierarchies are introduced and some related issues are discussed, including the mo-

tivat ions for using conceptual hierarchies, t he specification of conceptual hierarchies,

and the availability of conceptual hierarchies. In Section 3.2, dynamic adjustment of

conceptual hierarchies is discussed, with two algorithms presented. Automatic gen-

eration of conceptual hierarchies for numerical attributes is discussed in Section 3.3,

with an algorithm presented. We discuss conceptual hierarchy generation for nonnu-

merical attributes and the use of more general forms of partial orders in Section 3.4.

Finally, the chapter is summarized in Section 3.5.

CHAPTER 3. COAJCEPTUAL HIERARCHIES

3.1 Introduction

Some partial orders among data exist in a database. For example, "B.C." is a part of

"Canada". Conceptual hierarchies are used to capture such a partial order.

Definition 3.1.1 A conceptual hierarchy consists of a set of nodes organized in a

tree, where the nodes in the tree represent values of an attribute, called concepts. A

special node, "ANY", is reserved for the root of the tree.

A conceptual hierarchy for an attribute, province, is shown in Fig. 1.3. Terms

related to trees, such as a leaf node, a nonleaf node, a parent, etc., are used under

their original meanings. For example, the node "Prairies" is a parent of the node

"Alberta" which is a leaf node.

A number is assigned to the level of each node in a conceptual hierarchy. The

level of the root node is one. The level of a non-root node is one plus the level of

its parent. This top-down assignment of levels is adopted because it is simple and

straightforward. Please note that a higher level concept has a smaller level number.

Also, the level of a node may change after an adjustment of the conceptual hierarchy

as shown in Section 3.2.

Since values are represented by nodes, the levels of nodes can also be used to define

the levels of values. A concept is a general or higher level concept if its corresponding

node is a nonleaf node in the conceptual hierarchy. A leaf node in a conceptual

hierarchy usually represents a primitive concept, i.e., a value stored in a database.

For numerical attributes, the leaf nodes may represent the lowest level groupings

or segments, in which case primitive concepts are implicitly stored in a conceptual

hierarchy. For example, a primitive concept "15" may be a child of a lowest level

grouping "0-20". Primitive concepts are sometimes called "data" to emphasize the

fact that they are stored in databases.

Multiple conceptual hierarchies can be specified for an attribute. However, we

assume that at most one conceptual hierarchy is used for an attribute for a particular

data mining task. Therefore, we may say "an attribute's conceptual hierarchy" which

refers to the conceptual hierarchy of the attribute used for the current data mining

CHAPTER 3. CONCEPTUAL HIERARCHIES 3 6

task. Of course, different conceptual hierarchies of an attribute may be used for

different data mining tasks as we discussed in Section 3.4.

We confine a conceptual hierarchy to be a tree structure because it is simple, easy

to use and ma.intain, a.nd usually sufficient for the data mining task. The use of more

general partial orders is discussed in Section 3.4.

Sometimes "hierarchy" is used for "conceptual hierarchy" when it is clear from

the context.

3.1.1 Motivations for Using Conceptual Hierarchies

The introduction of conceptual hierarchies into data mining can be justified by the

following discussions.

A conceptual hierarchy provides domain knowledge about the data. Such back-

ground or domain knowledge is necessary and useful in the process of discovery.

The use of background knowledge is echoed in the scientific discovery process in

which scientists learn more about nature by conducting experiments designed

based on a priori belief or knowledge.

Conceptual hierarchies organize concepts in a hierarchical or tree form. Hier-

archical organizations are familiar to humans and easy to understand, such as

taxonomical classifications. Conceptual hierarchies make it easy for humans to

understand the discovered results.

Conceptual hierarchies define levels for concepts elegantly and concisely. This

is necessary and helpful for the discovery of multiple-level rules.

0 Conceptual hierarchies are often available and can be adjusted and generated

automatically. The availability of conceptual hierarchies is discussed in Section

3.1.3. The dyna,mic adjustment and the automatic generation of conceptual

hierarchies are discussed in Section 3.2 and Section 3.3.

CHAPTER 3. CONCEPTUAL HIERARCHIES

3.1.2 Specifications of Conceptual Hierarchies

In this section, we discuss two forms of specifications of conceptual hierarchies: the

instance-based specification and the schema-based specification.

The instance-based specification of a conceptual hierarchies is to list all children-

parent pairs. For example, the conceptual hierarchy for the attribute "province"

in Figure 1.3 can be specified as province : {B . C. , P r a i r i e s) C {Western),

{western, Central , ~ a r i t i m e) C { ~ a n a d a) , etc., in which the attribute

name is followed by a list of children-parent pairs. The symbol C defines the

partial order. The set to the left of c lists the children, and the set to the right

of c lists the parent.

The schema-based specification of a conceptual hierarchy is to specify the hi-

erarchy in terms of a database schema. For example, given the schema of a

relation, address(street, city, province), we can define the partial order that a

street is part of a city, which in turn is part of a province, by stating (s t r e e t)

C (c i t y) C (province) .

A schema-based specification involves several attributes in an original schema.

We introduce a "macro" attribute which "summarizes" all the original attributes

involved in the specification. The original attributes are replaced by the "macro"

attribute. The hierarchy is thus specified for the "macro" attribute whose values

are the union of values of the original attributes. For example, we can introduce

a "macro" attribute, place, which replaces the original attributes street, city,

and province. The values of place are the union of the values of street, city, and

province. The above specification is then for the attribute place.

A schema-based specification takes the advantage of the database schema, which

provides meta-data information about the data. It can specify the partial order

more concisely than by listing all instances of streets, cities, and provinces.

A conceptual hierarchy can be defined by either an instance-based specification or

a schema-based specification. Moreover, a schema-based specification can be mapped

CHAPTER 3. CONCEPTUAL HIERARCHIES 38

into an instance-based specification by explicitly listing each tuples in the relation in

a partial order form.

However, it is not always possible to map a hierarchy defined by an instance-based

specification into a schema-based specification. A schema-based specification can be

used to define a hierarchy whose paths from every leaf node to the root have the same

length, by transformation of each path into a tuple in a relation which has a field for

each level of the hierarchy. However, if a hierarchy has paths of various lengths, null

values have to be used in the relation, which may cause semantical inconsistence and

ambiguity.

Fortunately, a conceptual hierarchy can always be defined by an instance-based

specification and the transformation of the hierarchy into a schema-based specification

is not necessary. A schema-based specification may provide an alternative and concise

way to specify a hierarchy, but only when such a specification is possible.

3.1.3 Availability of Conceptual Hierarchies

Because conceptual hierarchies play a central role in our approach, it is essential that

conceptual hierarchies be available for most data mining tasks. In this section, we

discuss how conceptual hierarchies can be derived.

In general, there are three ways to obtain conceptual hierarchies.

Conceptual hierarchies may be provided by domain experts or users. For exam-

ple, the user can specify the hierarchy in Fig. 1.3 as discussed earlier.

Conceptual hierarchies may be derived from the schema of data relations, in the

form of scheme-based specification, such as the address mentioned above.

For numerical attributes, it is possible to generate hierarchies automatically. We

propose an algorithm for generating hierarchies in Section 3.3.

Based on the above discussion, it is evident that conceptual hierarchies are often

available. Moreover, the effort to obtain conceptual hierarchies is usually minor. First,

CHAPTER 3. CONCEPTUAL HIERARCHIES 39

the basic understanding of the schema will enable the user to obtain the schema-

based specifications easily. Furthermore, for a categorical (nonnumerical) attribute,

the specification of hierarchies does not require much effort from users or experts,

because there are usually only a small number of concepts, or values. For numerical

attributes, even though there may be a large number of values, we only need to specify

the ranges or groupings which are usually few.

3.1.4 Operations Using Conceptual Hierarchies

Given a task-relevant set of data and a conceptual hierarchy (which may be automac-

tically generated) for each attribute of the data set, two operations are possible:

generalization and specialization.

Definition 3.1.2 The generalization of a concept of an attribute is the replacement

of the concept with one of its ancestors in the attribute's hierarchy. The concept is

generalized to a higher level, 1, if it is replaced by its corresponding ancestor at level

1.

Definition 3.1.3 An attribute is generalized to a level, I, if all of its values in the

data set whose level is lower than 1 are generalized to level I.

Definition 3.1.4 The specialization of a concept of an attribute is the replacement

of the concept with one of its descendants in the attribute's hierarchy. The concept is

specialized to a lower level, 1, if it is replaced by its corresponding descendant at level

1.

Definition 3.1.5 An attribute is specialized to a level, I, if its values in the data set

which are nonleaf nodes and at levels higher than 1 are specialized to level I.

For example, using the hierarchy in Fig. 1.3, the concept "B.C." of the attribute

province can be generalized to "Western" at level 3. If all values are generalized to

"Western", "Central", "Maritime", and "Outside Canada", the attribute province is

generalized to level 3. Similarly, the concept "Western" can be specialized to "B.C."

CHAPTER 3. CONCEPTUAL HIERARCHIES 4 0

at level 4. If all values are specialized to individual provinces, the attribute province

is specialized to level 5 because all provinces are leaf nodes at level 4 or 5.

To ensure the correctness of the operations, special attention should be paid to

specializations. A concept should be specialized to the corresponding descendant

from which the concept is generalized from. For example, if the concept "Western"

is generalized from the primitive concept "B.C.", it should be specialized to "B.C.",

not "Alberta" or "Manitoba". More about specialization is discussed in Chapter 4.

3.2 Dynamic Adjustment of Conceptual Hierar-

chies

As mentioned in section 3.1.3, conceptual hierarchies may be provided by users or

may exist in some data relations. However, sometimes, the given hierarchy is not

appropriate for the particular mining task. It is therefore necessary to dynamically

refine or adjust an existing conceptual hierarchy based on the mining task, the set of

relevant data, and data distribution statistics.

In this section, two algorithms are given for dynamic adjustment of conceptual

hierarchies. The first algorithm, prime level focusing, balances the nodes at a level

of interest to the user, called prime level, which is computed from a given threshold.

The second algorithm, the v-node insertion algorithm, adjusts nodes at any level by

inserting "virtual" or "dummy" nodes, called v-nodes, into the hierarchy.

3.2.1 Dynamic Conceptual Hierarchy Adjustment with At-

tribute Threshold

Usually, data mining finds patterns which are presented in terms of concepts of the

attributes. For an attribute, its attribute threshold is an integer restricting the numbei

of distinct values of the attribute in the discovered patterns.

CHAPTER 3. COATCEPTUAL HIERARCHIES

Basic Ideas

Definition 3.2.1 The prime level of an attribute is the lowest level such that when

the attribute is generalized to that level, the number of its distinct values in the data

set is no more than the given attribute threshold. A prime relation is a relation whose

attributes are all generalized to their prime levels.

Given an attribute threshold and a data set, the prime level of an attribute can

be determined from the given conceptual hierarchy.

Definition 3.2.2 The prime level of a conceptual hierarchy is the prime level of its

corresponding attribute.

Example 3.2.1 Suppose all the leaf nodes of the hierarchy in Fig. 1.3 appear in the

data set. The prime levels of the attribute, province, for different attribute thresholds

are shown in Fig. 3.1. The number besides each node is the level of the node.

attribute threshold = 5

attribute threshold = 8

Figure 3.1 : Prime levels and attribute thresholds.

Example 3.2.2 Suppose the hierarchy in Fig. 3.1 is given for the birth places of

students of Canadian universities. Such a hierarchy may not fit all data mining tasks.

CHAPTER 3. CONCEPTUAL HIERARCHIES 42

For example, to find the regularities of the birth places of the students in Simon

Fraser University, it may be desirable to express the generalized level concepts as

{B.C., Other-Provinces-in-Canada, Outside-Canada), But if the task is to find the

regularities of the birth places of the students in University of Toronto, the generalized

level concepts {Ontario, Quebec, Other-Provinces-in-Canada, Outside-Canada) may

be more suitable. Such adaptation of different data distributions can be achieved by

dynamic adjustment of conceptual hierarchies based on the set of relevant data.

0

Example 3.2.2 indicates that dynamic adjustment of conceptual hierarchies ac-

cording to the distributions of the relevant set of data should be used in many gen-

eralization processes. At first glance, dynamic adjustment of an existing conceptual

hierarchy seems to be an overly complex process since it corresponds to dynamically

regrouping the data, and its complexity grows exponentially with the size of the hi-

erarchy. However, since the given conceptual hierarchy provides important semantic

information about conceptual clustering, it is important to preserve the existing data

partition as much as possible. This could be done by performing minor refinements

on the existing clustering, which will substantially reduce the total number of combi-

nations to be considered.

The following observations may lead to the design of an efficient and effective

algorithm for dynamic conceptual hierarchy adjustment.

First, dynamic adjustment of conceptual hierarchies should not be performed dur-

ing the collection of the set of relevant data. This is because the data retrieval process

involves only the mapping of higher level concepts in the query (or mining task) to

their corresponding lower level data, which should be determined by the semantics

specified in the existing conceptual hierarchy.

Secondly, conceptual hierarchy adjustment is a highly dynamic process. The next

mining task may have a different relevant set of data with a different data distribution,

which may require the hierarchies to be adjusted differently from the current task.

Therefore, a.n adjusted hierarchy is usually not stored for future usage.

CHAPTER 3. CONCEPTUAL HIERARCHIES 43

Thirdly, it is often desirable to present the regularities by a set of nodes, which are

usually generalized or high level concepts, with relatively even data distribution, i.e.,

not a blend of very "big" (i.e., occurring frequently in the data set) nodes and very

small ones a t the same level of abstraction. Thus, it is desirable to promote the big

low-level nodes to higher levels, and to merge the tiny nodes when presenting final

results.

Finally, by giving attribute threshold for an attribute, the users implicitly choose

the attribute's prime level. Although a conceptual hierarchy could be quite deep, the

users may be mostly interested in the concepts at the levels close to the prime level.

Therefore, the adjustment of conceptual hierarchies can be focused at the levels close

to the prime level. The adjustment of hierarchies at all levels (i.e., without a given

attribute threshold), is discussed in Section 3.2.2.

Based on the above observations, we introduce some new terminology and present

an algorithm, called prime level focusing, for the dynamic adjustment of conceptual

hierarchies.

Definition 3.2.3 The count of a node is a number associated with the node, rep-

resenting, if a leaf node, the number of occurrences of the value in the task-relevant

data set, or if a nonleaf node, the sum of the count of its children nodes. The total

count of an attribute is the sum of the counts of all the leaf nodes in the data set.

Definition 3.2.4 The weight of a node is the ratio of the node's count over the total

count of the attribute. A node is big if its weight is larger than 1/T where T is the

attribute threshold. Otherwise, it is a small node.

The total count and the attribute threshold are changed in the following algorithm

to reflect the dynamic nature of big nodes. However, these changes are only effective

in the scope of the algorithm.

Algorithm for Dynamic Conceptual Hierarchy Adjustment with Attribute

Threshold

The prime level focusing algorithm for dynamic hierarchy adjustment is presented

as follows. This algorithm tries to have evenly weighted nodes at the prime level

CHAPTER 3. CONCEPTUAL HIERARCHIES 44

by top-down big nodes promotion and bottom-up small nodes merging. Other ap-

proaches such as bottom-up promotion of big-nodes are also possible. However, our

approach represents one of the interesting features in human exploration in which

interesting patterns (big nodes) at higher levels are explored before lower level details

are examined.

Algorithm 3.2.1 (Prime Level Focusing) Dynamic adjustment of conceptual hi-

erarchies based on the data distribution of a given attribute in the initial relation (i.e.,

the set of data relevant to the data mining task) and the attribute's threshold.

Input. (i) A mining task-relevant initial relation Wo, (ii) an attribute A, (iii) the

attribute threshold, T, for A, and (iv) a prespecified conceptual hierarchy H .

Output. An adjusted conceptual hierarchy H' of attribute A for the derivation of

the prime relation.

Method. The adjustment essentially consists of two processes: top-down big nodes

promotion and bottom-up small nodes merging.

1. Initialization:

(a) Assign the levels to the nodes in the hierarchy H , i.e., 1 for the root,

and 1 plus the level of the parent for all other nodes.

(b) Scan once the corresponding attribute of each tuple in the initial rela-

tion Wo, calculate the count c;.count for each leaf node c;, and propa-

gate the counts to the corresponding parents in the hierarchy H. The

total is the sum of the counts of all the leaf nodes in the hierarchy.

Notice that only the nodes with a nonzero count are considered in the

following computation.

2. Top-down adjustment of conceptual hierarchy H.

(a) Set a buffer set, Prime, initially empty, and another buffer set, Bufl

to hold the root of H.

i. Calculate the weight of each node c; as c;.weight := c;.count/total.

CHAPTER 3. COAJCEPTUAL HIERARCHIES

ii. Set the weight threshold r as r := 1/T.

iii. Perform node marking: A big leaf node is marked B, a big nonleaf

node is marked B', a small leaf node is marked S, and a small

nonleaf node is marked S'.

(b) Call expand-bufler, which is implemented as follows.

i. Move every B-marked node from Buff to Pr ime;

ii. Replace every B'-marked node by its children;

iii. Repeat this process until there is no change (i.e., only the nodes

marked S or S' are left in BuB.

(c) Perform weight re-calculation and node re-marking again as following.

If /Pr ime[+ 1 Bufl1 5 T, move all the nodes from Bufl to Pr ime, and

the process terminates. Otherwise, set T' to T - /Primel, total' to the

sum of the counts in Bu& weight' of each node in Buff to countltotal',

and T' to 1/T1. hlark the nodes based on the weight' and r', and repeat

the expand-bufler and weight re-calculation processes until there is no

change.

3. If there are still nodes left in Buff, perform bottom-up merging of the

remaining nodes in Bufl as follows.

Starting at the bottom level, step up one level (suppose, to level i) and

merge the nodes in Bufl which share a common ancestor at level i. If

t,he weight' of the merged node is no less than r', move it to Prime (and

decrement TI). If the total number of nodes in Buflis no more than TI, then

move all the nodes in Buflto Prime, else perform weight re-calculation, step

up a level, and repeat the process.

We have the following convention for naming a merged node. Name a node

A + B if it is the result of merging two nodes A and B. Otherwise, name'

it E - A if it is equivalent to an existing node E with one child node A

removed. Otherwise, name it Other-E if it is equivalent to an existing

node E with more than one child node removed.

CHAPTER 3. COil'CEPT UAL HIERARCHIES 4 6

4. Let 1 be the lowest level (largest level number) of the nodes in Prime. If

a nodes in Prime is not at level I, thus at level higher than 1, "copies" of

the node are inserted between the node and its parent to lower the node

t o level 1. h "copy" is a node which represents the same concept as a node

in Prime. 0

Theorem 3.2.1 There are no more than T (the attribute threshold) nodes in Prime,

and there exists a (generalization) path between every node in the initial relation and

a node in the prime relation after the execution of Algorithm 3.2.1.

Rationale. According to the algorithm, every node moved into Pr ime must satisfy

one of the following three conditions: (1) having a weight greater than T or TI, (2)

when I Prime) + I Bufll is no more than T or TI, or (3) when the remaining nodes are

grouped into T' groups (i.e., T' new nodes) when there are no more levels to climb.

Moreover, the computations of TI, T and TI ensure that the number of the accumulated

nodes is no more than T. Thus the algorithm cannot generate more than T nodes

in Prime. In addition, every non-zero count node is either a leaf node moved into

Pr ime, or is associated with a nonleaf (ancestor) node that is eventually moved into

P r ime according to the algorithm. There should exist a path from every node to a

node in P r ime (thus in the prime relation), after the execution of the algorithm. 0

Furthermore, Algorithm 3.2.1 is designed based on the consideration that the

nodes in the prime relation should carry relatively even data distribution, and that

the shape of the hierarchy should be preserved when possible. Therefore, hierarchy

adjustment following the algorithm should produce desirable results.

Experiments with NSERC Databases

The prime level focusing algorithm is implemented in the DBMiner system.

The mining query is to find characteristic rules (explained in Chapter 4) of the

1991 NSERC Research Grants in Computing Science in relevance to provinces. The

original conceptual hierarchy for the attribute Province is given. Fig. 3.2 shows the

CHAPTER 3. CONCEPTUAL HIERARCHIES

Original Hierarchy

Figure 3.2: Original conceptual hierarchy for province.

relevant part of the hierarchy. The number besides each node is the node's count.

The attribute threshold for Province is set to 7.

Using the original hierarchy without dynamic adjustment, the derived prime rela-

tion consists of 7 values in the attribute: {';British Columbia" (68)' "Prairies7' (63))

"Ontario" (212)) "Quebec" (97)) "New Brunswick" (15), "Nova Scotia"(g), "New-

foundland" (9)), (where each number in parentheses indicates the count). These

correspond to the 7 nodes at level 3 in Fig. 3.2. This is undesirable since the level 4

node "Alberta" has count 40, whereas each Maritime province (at level 3) has much

smaller counts. Notice that .some nodes, such as "Ontario" (212)) are leaf nodes which,

though quite big, cannot be split further.

Following Algorithm 3.2.1, the dynamic adjustment of hierarchy is performed

based on the current mining task and the counts of nodes. This results in Fig. 3.3,

in which "Alberta" is promoted, and the maritime provinces are merged. Note that

a of the node "hlaritime" is inserted so that "Maritime" will be at the same

level as others in the Prime. The attribute in the prime relation consists of 6 nodes:

{"British Columbia" (68)) "Alberta" (40)) LLSas+Mann (23)) 'Ontario" (212), "Que-.

bet" (97), "Maritime" (33))) with a relatively even distribution among all the nodes

at the prime level.

CHAPTER 3. CONCEPTUAL HIERARCHIES

Adjusted Hierarchy

level

Figure 3.3: Dynamically adjusted conceptual hierarchy for province.

3.2.2 Dynamic Conceptual Hierarchy Adjustment without

Attribute Threshold

The algorithm introduced in the previous section generates a hierarchy whose nodes

are evenly distributed at the prime level. This solution may be desirable and sufficient

for many cases. However, there are some restrictions which may affect its usage and

result.

Sometimes the athibute threshold is unknown or uncertain to the user. I t is

desirable to adjust conceptual hierarchies even if the attribute threshold is not

available.

Algorithm 3.2.1 focuses on evenly weighted nodes (even distribution of weight)

at the prime level. For multiple-level rules, it would be beneficial to have a

hierarchy that is evenly weighted at all its levels.

The original nodes may be removed from the resulting conceptual hierarchy. A

problem could result if the user wanted to keep all the original nodes.

Based on the same goal and observations of Section 3.2.1, we present the second

algorithm for conceptual hierarchy adjustment, v-node insertion. The algorithm has

CHAPTER 3. CONCEPTUAL HIERARCHIES

the following features compared wi t.h algorithm 3.2.1.

0 It does not use the attribute threshold and focuses on all levels instead of only

the prime level.

0 The algorithm generates the optimal hierarchy based on an entropy measure,

while keeping the original conceptual hierarchy as much as possible.

0 A parameter cu is used to adjust the algorithm's performance.

Basic Ideas

Assume we are given a set of task-relevant data, D, and a conceptual hierarchy, H,

of an attribute A. We remove all nodes in H with count 0 with respect to D since

they are irrelevant to the current dat,a mining task.

Definition 3.2.5 A terminal set at level 1, TI, is the set of nodes at le17el 1 and the

leaf nodes at higher levels, in H.

TI = {nln E H, level(n) = 1 or n is a leaf node and level(n) < I)).

The terminal set corresponds to the output values of the attribute A if the data are

generalized to level 1 using H.

Definition 3.2.6 A node set is called the specialized set of another set T if it is

obtained by recursively replacing one of the nodes in T by its children.

For example, in the conceptual hierarchy shown in Figure 3.2, the sets {B.C., Prairies,

Central, Maritime) and {B.C., Alberta, h/lanitoba, Saskatchewan, Central, Maritime)

are specialized sets of the set { Western, Central, Maritime).

As observed in Section 3.2.1, it is desirable to have relatively even weighted nodes

at each level. A measure, entropy, is introduced to quantitate the evenness of a node

set.

Definition 3.2.7 The entropy of a node set T = i n l , na, . , nk) , E(T) , is given as

follows:
k

E (T) = X p (n i) log(l/p(ni)).
i=l

where p(n;) is the weight of the node n, as defined in Definition 3.2.4.

CHAPTER 3. COArCEPT UA L HIERARCHIES 50

For simplicity, we say "entropy at level I" which actually means "entropy of the

terminal set of H at level 1".

Our goal is to generate a hierarchy which keeps the nodes and orders among the

nodes in H, but minimizes the entropy at each level. In the meantime, we want to

have as many "big" nodes as possible at each level. The two goals are conflicting since

the more nodes the hierarchy has at a level, the larger the entropy is at that level, as

shown in Lemma 3.2.1.

Lemma 3.2.1 If TI is a specialized set of another set To, E(Tl) > E(T0).

Proof. Since Tl is obtained by recursively replacing a node by its children, we only

need to prove the operation increases entropy. Let a set N have nodes nl , . . . , n k ,

with weights pl , . . . , pk, respectively. Suppose N' is obtained by replacing n; with its

children, nil, . . . , n;,, with weights, pil,. . . ,pi, respectively. Obviously, C,"=, p;j = p;.

To compromise the two conflicti ng goals, a special kj nd of nodes, called v-nodes, is

introduced, in contrast to the concept node which is a node in the original conceptual

hierarchy H . A v-node can be inserted between a "small" node and its parent so

that the original nodes and orders are kept and each level has as many and as evenly

weighted "big" nodes as possible. To add more flexibility, a real number, a (0 < a 5
I), is introduced to refine the definition of "big" node in algorithm 3.2.1.

Definition 3.2.8 A node n a t level 1 is called a-big if p(n) 2 a x l/IZI. Otherwise,

it is called a-small.

CHAPTER 3. CONCEPTUAL HIERARCHIES 5 1

Definition 3.2.9 A virtual node, or v-node, is an a-small node which shares the name

of its only child, called its concrete node, which itself can be a v-node. A v-node, v,

can only be inserted into a hierarchy by making its concrete node, n,, the child of v

and by letting the parent of n, become the parent of v.

The situations before and after the insertion of a v-node are demonstrated in

Figure 3.4.

Before insertion After insertion of a v-node

Figure 3.4: Insertion of a v-node.

A v-node is different from a "copy" in Section 3.2.1. A v-node can represent an

a-small node at any level, but a "copy" can only represent a node at prime level which

can be a-big or a-small.

Definition 3.2.10 A conceptual hierarchy is a-compatible to H if and only if it is

obtained by inserting virtual nodes into H.

Our goal is to generate a hierarchy that is a-compatible to H and has minimum

entropy at each level. An algorithm is presented next.

CHAPTER 3. CONCEPTUAL HIERARCHIES 52

Algorithm for Dynamic Conceptual Hierarchy Adjustment without At-

tribute Threshold

The basic idea of the algorithm is to push a-small nodes t o lower levels by inserting

v-nodes. Thus, a t each level, we will have the relatively even distributed a-big nodes.

In other words, the algorithm balances the need for minimum entropy at each level

and the need to have as many nodes as possible.

The algorithm is given as follows. For simplicity, we assume the preprocessing is

done, that is, the level number and weight of each node is pre-computed, otherwise,

step 1 of the algorithm 3.2.1 should be executed.

If all nonleaf nodes are a-small or there is no nonleaf node a t level 1, the insertion

of v-node does not change Ti for i = 1, a * , max-level(H), and so the process stops.

Algorithm 3.2.2 (v-node Insertion) Dynamic adjustment of conceptual hierarchies

by the insertion of v-nodes.

Input: (i) a pre-computed, given conceptual hierarchy, H, (ii) a number 0 < CY < 1.

Output: An adjusted hierarchy.

Method. The output hierarchy is obtained by top-down iterative inserting of v-node

into H .

1. Remove the irrelevant nodes (those with count 0).

2. From top to bottom, for all levels do:

(a) Collect all terminal nodes into a set.

(b) If a t least one nonleaf node is a-large

insert a v-node for each a-small nonleaf node in the set.

(c) Otherwise, the process stops.

3. Output the adjusted hierarchy.

Using C-like syntax, the algorithm can be written as follows.

remove nodes with count 0;

1 = 2; /* start from second level */

CHAPTER 3. CONCEPTUAL HIERARCHIES 53

T = {nllevel(n) = 1 or n is a leaf node and level(n) < 1); /* terminal set at level 1 */
while T R U E do {

N L = 0; /* a-small nonleaf nodes */
stop = T R U E ;

for each nonleaf node n in T do

i f n is a-small then

N L = N L u { n) ;

else stop = FALSE; /* a t least one nonleaf node is a-large */
i f stop then break;

for each node n in N L do

insert a virtual node between n and n's parent.

1 = 1 + 1; /* next level */
T = {nl level(n) = 1 or n is a leaf node and l eve l (n) < I);

1
Output the adjusted hierarchy.

Proposition 3.2.1 The algorithm 3.2.2 terminates.

Rationale. Consider the nonleaf nodes of H. The while loop processes at least one

nonleaf node if there is an a-big nonleaf node. Otherwise, it stops. A brief analysis

will show that the time complexity of the algorithm 3.2.2 is O (N x D) where N is the

number of nonleaf nodes in H and D is the depth (number of levels) of the adjusted

hierarchy. o

Theorem 3.2.2 Among all the a-compatible conceptual hierarchies of H , the con-

ceptual hierarchy generated by algorithm 3.2.2, Ho, has the minimum entropy at each

level.

Rationale. Suppose there is another cr-compatible hierarchy, HI . Let T;O and T;' be

the terminal set at level i of Ho and H1, respectively. We compare T;O and T;' for

i = 1,. . . , max-level(H0). Let 1 be the highest level that the two sets disagree. That

is, T: = T;' for i = 1 , . . . , I - 1, and TF # T:.

CHAPTER 3. CONCEPTUAL HIERARCHIES 54

The discrepancy between TP and T: can only be caused by inserting v-node at

level 1 - 1 in one of Ho and H1, but not the other. We consider the two cases.

Case 1. A v-node is inserted in Ho but not in HI. Clearly, T/ is a specialized set of TP.

Based on Lemma 3.2.1, E(TF) 2 E(T:). Due to the nature of terminal sets,

T;' is a specialized set of T;O for all i 2 1. This means that E(T?) 2 E(Tt) and

IT,"/ 5 IT/[for i 2 1.

Case 2. A v-node, vl, is inserted in HI but not in Ho. Let vo be the counterpart of vl in

Ho. Since vo is a concept node (i.e., not a v-node), vo must be a a-big node and

so is vl because T;-,) and Tfi-,) are the same. This contradicts our definition

of v-node. Using similar analysis and the observation in Case 1, we conclude

that this case can never occur.

Therefore, the only possible difference could be inserting a v-node in Ho but not in

HI, which decreases the entropy. 0

Experiments with NSERC Databases

The v-node insertion algorithm is implemented in the DBMiner system.

Given the same data mining task and conceptual hierarchy as in Section 3.2.1, the

v-node insertion algorithm will generate different hierarchies given different a values.

The adjusted hierarchy for a = 0.6 is shown in Figure 3.5 and another is shown in

Figure 3.6 for cu = 0.9. The v-nodes are in dashed-line circles. The count, rather than

the weight, is displayed beside each node.

As shown in Fig. 3.5 and Fig. 3.6, the value of a affects the resulting hierarchy.

On the one hand, the larger the value of a is, the more v-nodes are to be inserted

and the resulting hierarchy is more even at each level. On the other hand, the smaller

the value of cr is, the fewer v-nodes are to be inserted and the resulting hierarchy has .

more nodes at each level. The selection of a is usually task dependent and should

be controlled by the user. In our experiments with NSERC databases, we found that

suitable values of a were usually from 0.5 to 1.0.

CHAPTER 3. CONCEPTUAL HIERARCHIES

Figure 3.5: Adjusted conceptual hierarchy for o = 0.6.

Figure 3.6: Adjusted conceptual hierarchy for o = 0.9.

CHAPTER 3. CONCEPTUAL HIERARCHIES 56

3.3 Automatic Generation of Conceptual Hierar-

chies for Numerical Attributes

As we mentioned in Section 3.2, given conceptual hierarchy may not fit for the cur-

rent task, or conceptual hierarchies may not exist for some attributes. Adjustment of

given conceptual hierarchies based on the current situation is discussed in Section 3.2.

Moreover, for numerical attributes, such as integer, real, etc., which occur frequently

in databases, conceptual hierarchies can be generated automa'tically by the exami-

nation of data distribution characteristics. The automatically generated hierarchies

may reflect the current data distributions and deal with the problem when the hier-

archies are not available. The automatic generation of hierarchies for nonnumerical

(categorical) attributes is discussed in Section 3.4.

3.3.1 Basic Ideas

The following two standards are used for the automatic generation of conceptual

hierarchies for numerical attributes.

1. Completeness: The value ranges of the hierarchy of a numerical attribute should

cover all of its values in the set of data relevant to the current mining task.

2. Uniformity: The set of ranges presented in the prime relation should have rela-

tively even distribution based on the frequency of counts of the attribute values

in the set of data relevant to the current mining task.

Example 3.3.1 Suppose the mining task is to study the regularities of NSERC re-

search grants for computing Science in terms of the recipient's provinces and the

amount of grants received. The attribute amount is a numerical attribute. For auto-

matic construction of hierarchy for the attribute amount, the completeness require-

ment implies that the hierarchy constructed should cover all the amounts in the rele-

vant data set, which could be in the range of ($2,000 - $97,000), i.e., 2k - 97k. The

uniformity requirement implies that the ranges of the amounts of the grants in the

prime relation should be relatively evenly distributed across the whole range. If the

CHAPTER 3. COKCEPTUAL HIERARCHIES 57

attribute threshold value is 4, and more people receive grants in the amount of low

and medium ranges, the desired distribution could be { [2 - 12k), [12 - 16k), [16 -
23k), [23 - 90k)) . Such a set of ranges has been generated automatically.

Algorithm for Automatic Generation of Hierarchies for Numerical At-

tributes

Based on the similar observations analyzed in Section 3.2.1, the algorithm for auto-

matic generation of conceptual hierarchies for numerical attributes of an data set is

presented as follows.

Algorithm 3.3.1 (Conceptual hierarchy generation for a numerical attribute)

Automatic generation of conceptual hierarchy for a numerical attribute based on its

data distribution in the initial relation.

Input: An initial relation that contains a numerical attribute A with an attribute

threshold T.

Output: A conceptual hierarchy HA on A for the presentation of the prime relation.

Method. The hierarchy H A is constructed as follows.

1. Estimation of the total value range by data sampling. Sample a set of values

of A in the initial relation. Let low and high be, respectively, the smallest

and the largest values of the sampled data.

2. Derivation of interval value. Let interval = (high - l ow) / (k x T) , where

k is a constant reflecting the fineness of the segmentation. Usually, k is set

between 5 to 10. Rounding or truncating is performed on interval to make

it customized for human. For example, an interval of 474 is rounded up

to 500. The range lowlhigh is truncatedJrounded accordingly.

3. Creation of segments. A set of segments are created based on the range

and interval. [low, low + interval], [low + interval, low+ 2 x interval] , . . .,
[low + (k x T - 1) x interval, high].

C H A P T E R 3. COXCEPTUA L HIERARCHIES 58

I
I
I

4. Merge of segments based on data distribution. Segments are merged into

nodes based on their count frequency distribution.

First, a histogram (count frequency) is computed based on the data set

of the attribute in the initial relation. Each segment is attached a count I

which is initialized to 0. The computation is performed as follows. 1
For each tuple t in the initial relation

if there is a segment s = [I , h] such that 1 5 t [A] < h .-

I I
then count[s] := count[s] + 1; -- I

else { create a segment new: [low+ k x interval, low+(k+l) x interval] I

where k = (t [A] - low)/interval;
I

count[new] := 1 ;) II 11

Segments are then merged into nodes SO that these nodes will have rela-

tively even distribution of count frequencies. This is implemented as fol-

lows. Arrange segments in ascending order based on their range values.

Merge the sequence (of segments) whose sum of the counts reaches the

closest to total-covnt/T into one node, with its low range set to the low

of the first segment, and high set to the high of the last segment. Repeat

the process for the remaining segments until there are no segments left.

sum := 0;

first := 1 ;

node-count := 0;

for i := 1 t o n do {
s u m s a v := sum;

sum := sum + count[s[i]];

if (s u m > to tal /T) or (i = n) then {
i f node-count = T - 1 /* This is the last node. */
then i := n

else i f sum - totab/T > total/T - s u m s a v

then i := i - 1;

CHAPTER 3. CONCEPTUAL HIERARCHIES

merge segments from f irs t to i into a new node;

s u m := 0;

node-count := node-count + 1;

f i r s t := i + 1;))

The above piece of code shows the segment merging process. Note that to

create more levels in the resulting hierarchy, the segments can be merged

into subgroups which in turn are merged into a node. Also, the prime level

nodes can be further merged into higher level nodes. 0

Theorem 3.3.1 The worst-case time complexity of Algorithm 3.3.1 is O(n), where

n is the number of tuples in the initial relation.

Rationale. Step 1 (data sampling) costs less than n since it only takes a proper subset

of the initial relation and linear time to find high and low. Steps 2 & 3 work on the

creation of intervals and segments using low, high and T , which is much smaller than

n . In Step 4, the computation of the histogram takes O(n) time since i t scans the

initial relation once in the computation, where the merge of segment takes the time

proportional to the number of segments, which is smaller than n. Obviously, adding

all the steps together, the worst-case time complexity of the algorithm is O (n) . 0

Notice that when the size of the relevant data set is huge, it may still be costly to

calculate the histogram, and the histogram of the reasonably-sized sampled data may

be used instead. Also, if the distribution is known beforehand, nodes can be built

based on the known distribution.

Other techniques exist for the automatic generation of conceptual hierarchies for

numerical attributes. For example, Chiu et al. proposed an algorithm for discretiza-

tion of data using hierarchical maximum entropy [18]. In their method, the initial

node is the entire data set. The node is split into several subnodes based on the hier-.

archical maximum entropy. The expected frequencies of the subnodes are computed

based on the given statistical assumptions, and are compared with the real frequen-

cies. If the difference is larger than a threshold, the subnode is split further and the

CHAPTER 3. COA'CEPTUAL HIERARCHIES 60

process is called recursively. Our method provides a simpler and more efficient way

of computa.tion for large data sets and still achieves elegant results.

3.3.2 Experiments with NSERC Databases

Algorithm 3.3.1 is implemented in the DBMiner system.

For the mining task in Example 3.3.1, the algorithm generate the hierarchy for

the attribute amount as follows. First, data sampling results in "high = 62,35U",

"low = 5,468' and "interval = 1,000". Segments are then created, and a histogram

is calculated for the current task following the Algorithm 3.3.1, resulting in Fig. 3.7.

Then, the hierarchy is built using the histogram, following the segment merge method

presented in Algorithm 3.3.1. The result is shown in Fig. 3.8.

O 10000 20000 30000 40000 50000 60000 70000 80000 90000Amount

Figure 3.7: Histogram of Amount for the current task.

CHAPTER 3. CONCEPTUAL HIERARCHIES

n

Figure 3.8: Conceptual hierarchy generated for the attribute Amount.

3.4 Discussions

We discuss the use of general forms of partial orders and the automatic generation of

conceptual hierarchies for nonnumerical attributes in this section.

3.4.1 Use of General Forms of Partial Orders

Conceptual hierarchies are restricted to tree structures which may represent a large

amount of partial orders existing in data. However, there are some partial orders

in databases which do not form a tree structure. Many studies on general forms of

partial orders exist [I l l , 301. Our methods can be extended in two ways to deal with

general partial orders.

0 A general partial order can be split into several conceptual hierarchies so that

one of them is used in a particular data mining session. This is based on the

assumption that there are many ways to organize the concepts, but usually only '

one of them is used for a particular data mining task. For example, given a

partial order for time in Fig. 3.9 which is not a conceptual hierarchy, it can

be split into two conceptual hierarchies as shown in Fig. 3.10. A company can

calculate its weekly or monthly sales by choosing the corresponding hierarchy.

CHAPTER 3. CONCEPTUAL HIERARCHIES

Quarter Q

Figure 3.9: A partial order for time.

Quarter +
Figure 3.10: Split of a general partial order into hierarchies.

CHAPTER 3. COXCEPTUAL HIERARCHIES 63

If the arcs or edges of a general partial order are attached with probabilities, the

generalization or specialization can be done by splitting the counts of nodes. For

example, using the partial order for age as shown in Fig. 3.1 1, we can generalize

100 young people into 80 adolescents and 20 adults.

Figure 3.11: A general partial order with probabilities.

However, more research is needed to use general partial orders for data mining.

For example, how to split the count when the probabilities are unknown? How to

handle the generalization when a node has parents who hold parent-child relationship

themselves? For example, given the partial order for clothing in Fig. 3.12, if we

generalize "T-shirt" to both "Garments" and "Shirts", we end up presenting both

concepts at the same time in the patterns. This situation is not desirable because

"Shirts" are already covered by "Garments".

3.4.2 Automatic Generation of Conceptual Hierarchies for

Nonnumerical Attributes

The algorithm proposed in the previous section can automatically generate conceptual

hierarchies for numerical attributes. Nevertheless, automatic generation of conceptual '

hierarchies for nonnumerical attributes still remains an attractive goal because of the

substantial efforts for construction and maintenance of conceptual hierarchies in large

databases.

CHAPTER 3. CONCEPTUAL HIERARCHIES

Figure 3.12: A general partial order for clothing.

There have been many interesting studies on automatic generation of hierarchies

for nonnumerical data, which can be categorized into different approaches: machine

mining approaches [76,34], statistical approaches [27], visual feedback approaches [64],

algebraic (lattice) approaches [78], etc.

The machine mining approach to conceptual hierarchy generation is the most

closely related work to our problem. Many influential studies have been performed in

this, including Cluster/2 by Michalski and Stepp [76], COBWEB by Fisher [34, 351,

hierarchical and parallel clustering by Hong and Mao [56], and many others.

These approaches have their own strengths and weaknesses for different applica-

tions. However, they all use some kind of relevance among attributes to search for the

best hierarchical clusterings in the representation space defined by related attributes.

How to develop a conceptual hierarchy without reference to other attributes is not

evident. Our goal is to develop an efficient algorithm to max imi ze t he automat ic data

clustering capability for large databases. Careful examination and experimentation is

required in order to develop the best algorithm. This is an interesting problem for

future research.

CHAPTER 3. CONCEPTUAL HIERARCHIES

3.5 Summary

The definition of conceptual hierarchy, as well as related terms, is given in this chapter.

Related issues to conceptual hierarchies are then discussed, including the motivations

behind the use of conceptual hierarchies, the specifications of conceptual hierarchies,

the availability of conceptual hierarchies, and the operations using conceptual hier-

archy. Moreover, two algorithms have been proposed for the dynamic adjustment of

conceptual hierarchies: the prime level focusing algorithm which balances nodes at

an interesting level determined by the attribute threshold, and the v-node insertion

algorithm which balances nodes at all levels by inserting "virtual" or "dummy" nodes.

Another algorithm has been proposed for the automatic generation of conceptual hi-

erarchies for numerical attributes. All three algorithms have been implemented and

tested, and they have demonstrated desirable performance and efficiency. Two related

issues, the automatical generation of hierarchies for nonnumerical attributes and the

use of more general forms of partial orders, are also discussed.

Conceptual hierarchies are used in the later chapters, including Chapter 4, 5, 6,

and 7.

Chapter 4

Mining Mult iple-Level

Characteristic and Discriminant

Rules

Many kinds of rules exist in a large database. It is impractical to find all kinds

of possible rules existing in large databases. Our study focuses on the discovery

of three kinds of common and useful rules: characteristic rules, discriminant rules

and associa,tion rules. In this chapter, we investigate the discovery of multiple-level

characteristic and discriminant rules. The discovery of multiple-level association rules

is discussed in Chapt,er 5.

4.1 Multiple-Level Characteristic Rules

Characteristic rules are descriptions of characteristics or properties of the da.ta set

under study. Usually, the descriptions are in the form of abstractions or summariza-

tions of the current data set. Some examples of the characteristic rule are: customer .
profiles in a sales database, calling patterns in a telecommunication database, and

grant distributions in a research grant database.

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 67

Definition 4.1.1 A characteristic rule is a rule whose left hand side is the query

condition of the interested data set and right hand side is a generalized tuple, i.e., a

conjunction of (attribute, value) pairs. The confidence of a characteristic rule is the

ratio of the number of primitive tuples (i.e., tuples in the original relation) the rule

covers over the total number of primitive tuples in the data set.

A characteristic rule can be presented in logical form as shown in Example 1.2.2

or in tabular form as in Example 4.1.1. In the tabular form, since the rule antecedent

(left hand side) is the same for all the rules found, it is omitted and only the right

hand sides of the rules are presented in a table called the generalized relation [44].

Each line (tuple) in the table represents a generalized tuple.

Example 4.1.1 The follow table, adopted from [46], lists the characteristic rules
i

describing professors in Applied Science. The rules are extracted from a university

employee database. Note that a special attribute, count (called vote in the original

paper) is added to record the number of primitive tuples covered by the generalized

tuple. The count of each generalized tuple can be interpreted as the confidence of the

corresponding rule.

Han et al. [44] developed a method called Attribute-Oriented Induction to discover .
high level characteristic rules from large databases. In their work, primitive level data

are generalized into high level tuples using Attribute-Oriented Induction (AOI). The

method is summarized as follows [13, 441.

Sex

male

male

female

male

female

Age
old

mid-age

mid-age

mid-age

mid-age

Birth-place

Canada

Canada

Canada

foreign

foreign

Salary

high

medium

medium

medium

medium

Count

20

50

8

21

1

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 68

1. Initial data collection: The data mining request is transformed into an SQL query

and executed to collect the set of data relevant to the mining task (as the initial

relation).

2. Derivation of the generalization plan for each attribute: If there is a large set of

distinct values for an attribute of the initial relation, the attribute should be

generalized by either attribute removal or attribute generalization. The former

is performed when there is no generalization operator on the attribute, or its

higher-level concepts are expressed in another attribute. The latter is performed

otherwise by (1) determining the prime level (generalized) concepts for each

attribute, (possibly after conceptual hierarchy adjustment), and (2) linking them

with the data in the initial relation to form generalization pairs.

3. Prime relation derivation: Perform attribute-oriented generalization by substitut-

ing lower level concepts with their corresponding prime level concepts, eliminat-

ing duplicating tuples, and accumulating the counts in the retained generalized

tuples. This leads to the prime relation.

4. Rule generation: Presentation of the generaiized rules in prime relation (i.e.,

tabular form) or logical form.

Example 4.1.2 Suppose the original relation contains the following primitive tuples.

During AOI, the attribute Name is removed because there is no generalization oper-

ator on it. The attribute Sex is untouched beca.use it has only two values, and thus

is already a t the prime level. Other attributes are generalized. For example, the

a t tribute Birth-place is generalized by replacing the primitive level concepts, such as

"Toronto", with the prime level concepts, such as "Canada7', using the conceptual

hierarchy in Figure 1.3. The A01 results in the prime relation in Example 4.1.1.

Name

F. Johnson

S. Smith

D. Clark

...

Sex

male

male

female
. . .

Age
50

46

39
. . ,

Birth-place

Toronto

Vancouver

Montreal

. . .

Salary

$70,000

$65,000

$45,000
...

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

Although A 0 1 is a powerful tool for mining high level characteristic rules [48],

direct application of the method for mining multiple-level characteristic rules, by

multiple scanning with various attribute thresholds, is not very efficient. We extend

the basic algorithm so that it can be used to discover multiple-level characteristic

rules efficiently.

4.1.1 Methods for Mining Multiple-Level Characteristic Rules

There are two basic strategies for mining multiple-level characteristic rules: progres-

sive specialization and progressive generalization.

Progressive generalization starts with a conservative generalization process which

first generalizes the data in the initial relation to slightly higher conceptual levels

than the primitive data in the relation. Further generalizations can be performed

on it progressively by selecting appropriate attributes for step-by-step general-

ization. The selection of the attributes for generalization can be based on some

selection standards, such as the attributes with a large number of distinct values,

the attributes with large compression ratios of distinct values, the attributes at

deep levels in their hierarchies, the attributes with small information loss [go],

etc.

Progressive specialization starts with a relatively high-level generalized relation,

then selectively and progressively specializes some of the generalized tuples or

attributes to lower conceptual levels. The selection of the generalized tuples or

attributes for specialization may depend on some selection standards, such as

splitting the tuples with large counts, specializing the attributes with a small

number of values, specializing the attributes with many levels in the hierarchy,

specializing the attributes with large information gain [go], etc.

From the conceptual point of view, it is often desirable to adopt a top-down,

progressive specialization process since it is natural to first find general data charac-

teristics at a high conceptual level and then follow certain interesting paths to step

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

down and study specialized cases. However, from the implementation point of view,

it is easy to perform generalization rather than specialization because generalization

replaces low level tuples with high ones by ascension of a conceptual hierarchy. On the

other hand, since generalized tuples do not register the detailed original information,

it is difficult to get such information back when specialization is required later.

Besides the basic strategy, the other two major decisions that have to be made

before an algorithm is possible are, what process control should be used during the

mining session, i.e., automatic or manual (interactive), and what rule filtering mech-

anism should be adopted.

Automatic mining versus interactive mining. Automatic mining means that

generalization or specialization is performed automatically, and the results from

all levels are presented all at once. Interactive mining means that the user

interactively controls the generalization and specialization during the mining

session. Interactive mining is suitable if the user is only interested in some of the

rules while automatic mining is desirable if most or all the rules are interesting.

Interactive mining is also desirable if the user does not know exactly what he

or she is looking for and wants to explore the data.

0 Usually many rules will be discovered in a data mining session, several of which

may not be of interest to the user. To ensure that only strong or interesting

rules will be presented, a rule filtering mechanism can be adopted. For example,

strong characteristic rules can be discovered at multiple conceptual levels by fil-

tering out generalized tuples having small counts in the rule generation process.

Interestingness measurements, such as the IC++ [62], may be used to filter out

uninteresting rules.

4.1.2 Minimally Generalized Relation

Generalization of a relation can be performed by conceptual hierarchy climbing (i.e.,

the replacement of lower level concepts by their corresponding higher level concepts)

or attribute removal. Since these only involve conceptual hierarchies and the data in

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 7 1

the relation, generalization is thus easy to implement. The specialization of a relation

is more complicated because, for a higher level concept, we cannot decide from which

lower level concept it was generalized. For example, a high level concept in Figure

1.3, "Canada", may be generalized from anyone of the three lower level concepts:

"Central Canada", ''Western Canada", or "Maritime".

In this section, we illustrate a technique which facilitates specializations of gen-

eralized relations. The key point is to save a minimally generalized relation, which

is derived from the initial relation by minimal commitment. That is, each attribute

in the initial relation is generalized to minimally generalized levels (leaf nodes in the

conceptual hierarchies) and then identical tuples in such a generalized relation are

merged together [50].

Using the minimally generalized relation, both specialization and generalization

can be performed with reasonable efficiency: if the current generalized relation R

is to be further generalized, generalization can be performed directly on R; on the

other hand, if R is to be specialized (e.g., by progressive specialization), it can be

performed by generalizing the minimally generalized relation to the appropriate con-

ceptual level(s) in order to derive the desired generalized relation.

Example 4.1.3 A possible generalization path for a relation with two attributes,

province and amount, is shown in figure 4.1. The minimally generalized relation is

derived from the initial relation by generalizing the attribute amount into the lowest

level groupings (concepts). Further generalizations of amount will produce higher

level relations, GI, Gz, etc. The specialization of Gz, for example, can be realized by

generalizing the minimally generalized relation into appropriate level (GI).
0

By generalizing the concepts to the minimal level in the hierarchies, many tuples

in the original relation will be merged into one in the resulting minimally generalized

relation. For example, in Example 4.1.3, two tuples in the original relation, ("BC",

25033) and ("BC", 23500), will be merged into one tuple in the minimally generalized

relation, ("BC", 25000-26000), as shown in Figure 4.1. The minimally generalized

relation is usually much smaller than the original relation and can be stored in main

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

Province Amount Count

Alberta 20000-40000

British Columbia 20000-40000

w

Amount Count

Alberta

British Columbia 25000-26000

Province

Alberta

British Columbia

. . . .

Minimally Generalized Relation

Amount

30000-40000

20000-30000

0 0 . .

Initial Relation

Count

8

25

0 . .

Province

Alberta

British Columbia

British Columbia

. . . .

Figure 4.1: An example of the minimally

Amount

32100

25500

25403

. . . .

generalized relation.

C H A P T E R 4. CHARACTERISTIC AND DISCRIMINANT RULES 73

memory. Large minimally generalized relations can be put on disk. The derivation

of a large minimally generalized relation is still beneficial because, for non-primitive

characteristic rules, it avoids the query processing (joins, selections, etc.) required to

obtain the initial relation.

4.1.3 An Algorithm for Mining Multiple-Level Character-

istic Rules

Based on the discussion in the previous sections, an algorithm for mining multiple-

level characteristic rules is presented here.

Algorithm 4.1.1 (Mining Multiple-Level Characteristic Rules) Interactive dis-

covery of multiple-level characteristic rules in the initial data relation.

Input: (1) an initial relation, &; (2) a set of conceptual hierarchies, CH, for the

attributes in &; (3) a set of attribute thresholds, T, for the attributes in &;
(4) thresholds, I, for rule filtering.

Output: characteristic rules at different conceptual levels.

Method: An interactive progression method using a minimally generalized rela,tion.

1. A minimally generalized relation, R1, is derived from & by generalizing the

attributes to the minimal levels in the hierarchies and removing duplicating

tuples.

2. The prime level relation is derived by attribute-oriented induction using T
and CH. It is saved as the current relation.

3. Repeat the following steps until the user chooses to exit.

4. Characteristic rules are extracted from the current relation. Strong char-

acteristic rules are filtered out using I, and presented.

5. Further progression instructions are accepted from the user. The user may

select an attribute to generalize or specialize, or may end the session.

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 74

0 If further generalization is desired, the selected attribute in the current

relations is generalized.

If further specialization is desired and the current rela.tion is not at

the minimal level, the attributes in the minimally generalized relation

are generalized to the proper levels so as to obtain the new current

relation.

If further specialization is desired and the current relation is a t the

minimal level, the initial relation is fetched and generalized to obtain

the new current relation.

0 If exit is desired, the process stops.

Theorem 4.1.1 Algorithm 4.1.1 finds characteristic rules at any conceptual level in

O(n log(n)) time, where n is the number of tuples in the original relation.

Rationale. The generalizations use attribute-oriented induction whose time complexity

is O(mlog(p)) where m is the number of tuples in the current relation and p is the

number of tuples in the generalized relation [48]. The specializations are done by

generalizations of the minimally generalized relation or of the initial relation. Since

current relations and the minimally generalized relation have less than n tuples, the

discovery of characteristic rules at any level takes at most O(n log(n)) time.

4.1.4 Experimental Results

Algorithm 4.1.1 has been implemented in DBMiner and used for the discovery of

multiple-level characteristic rules. Users can interactively control the prime levels

(by setting attribute thresholds) and select specialization or generalization of the

current relation, and thus can find rules at multiple levels. Several attribute selection .

criteria are available: most distinct values, least distinct values, and information

gain/loss. Users can choose the attribute to be generalized/specialized based on one

of the criteria or from the attribute list. A simple policy of rule filtering using count

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

threshold is adopted, i.e., a generalized tuple is regarded as noise and discarded if its

count is less than the given threshold.

Example 4.1.4 The following data mining query, in DMQL [51], finds multiple-

level characteristic rules about 1994 NSERC research grants in "Computer Science"

in terms of the recipients' province, amount of the grant, percentage of the count

(number of grants), and percentage of the amount.

use NSERC94

find characteristic rule for 'CS-Grants'

from award A, organization 0

where A.org-code = O.org-code and A.disc-code = 'Computer Science'

in relevance to province, amount, percentage(count), percentage(amount)

Using the hierarchy in Figure 1.3 for province, the rules found a t second and third

levels are shown as follows. Default count threshold, 0%, is used.

..
* Characteristic Rules at Level 2 *
..

amount province amount% count%
..
60Ks- Central Canada 9.39% 2.40%
60Ks- Western Canada 5.53% 1.71%
40Ks-60Ks Central Canada 10.76% 5.14%
40Ks-60Ks Western Canada 3.08% 1.54%
20Ks-40Ks Central Canada 23.31% 20.72%
20Ks-40Ks Maritime 1.17% 1.03%
20Ks-40Ks Western Canada 14.69% 12.84%
0-20Ks Central Canada 19.89% 33.56%
0-20Ks Maritime 3.21% 5.99%
0-20Ks Western Canada 8.97% 15.07%
..

100.00% 100. 00%
Total number of primitive tuples: 584

..
* Characteristic Rules at Level 3 *

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

Quebec
Ontario
P r a i r i e s
B r i t i s h Columbia
Quebec
Ontario
P r a i r i e s
B r i t i s h Columbia
Quebec
Ontario
Newfoundland
Nova Sco t i a
New Brunswick
P r a i r i e s
B r i t i s h Columbia
Quebec
Ontario
Prince Edward Is1
Newfoundland
Nova Sco t i a
New Brunswick
P r a i r i e s
B r i t i s h Columbia

..
100.00% 100.00%

Total number of pr imi t ive tup le s : 584

4.2 Multiple-Level Discriminant Rules

Discriminant rules present the properties that make one data set (the target class)

distinct from the other(s) (the contrasting class(es)). As for characteristic rules,

the confidence of a discriminant rule, called t-weight, tells how significant the rule

is. Unlike the characterist,ic rule, a discriminant rule has another interestingness

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 77

measure, discriminant weight or d-weight [44], which tells how good the rule is as a

discriminator.

Definition 4.2.1 A discriminant rule is a rule whose left hand side is a generalized

tuple, i.e., a conjunctions of (attribute, value) pairs, and whose right hand side is the

query condition for the target class.

The t-weight of a discriminant rule is the ratio of the number of primitive tuples

covered by the generalized tuple over the total number of tuples, within a class. The

d-weight of a discriminant rule is the ratio the number of primitive tuples covered

by the generalized tuple in one class versus the number of tuples covered by the

generalized tuple in both classes [MI.

The attribute-oriented induction method proposed by Han et al. also discovers

high level discriminant rules from large databases [44], as summarized below.

1. Collect the relevant set of data respectively into the target class and the con-

trasting class(es).

2. Extract the prime target relation (the prime relation corresponding to the initial

relation in the target class) in a similar way as the attribute-oriented induction

in mining characteristic rules. Generalize the concepts of the initial relation(s) in

the contrasting class(es) to the same level as those in the prime target relation,

which results in the prime contrasting relation(s).

3. To generate discriminant rules, compute the d-weight for each generalized tuple

in the target class and output these tuples whose d-weight is close to loo%,

along with the d-weight.

Similar to characteristic rules, discriminant rules can also be presented in logical

form or in tabular form by listing the left hand side of rules in a table.

Example 4.2.1 The following table lists discriminant rules about professors versus

instructors in Applied Science, discovered from a university employee database. It

is excerpted from (441 with the transformation of Vote into t-weight and d-weight.

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 78

Tuples appearing in both classes are marked with "*".

I target class: I male mid-age Canada medium 50% 77% * I

Class

I professors I female mid-age Canada medium 8% 100% I

Sex Age Birth-place Salary t-weight d-weight Mark

male old Canada high 20% 100%

I 1 male mid-age foreign medium 21% 95% * I
female mid-age Canada medium 1% 100%

60% 100% male young Canada low

I contrasting class: I male mid-age Canada medium 30% 23% * I
I instructors I female young Canada low 8% 100% I I male mid-age foreign medium 2% 5% * I

These tuples in the table can be easily transformed into logical form. For example,

the first generalized tuple ca,n be transformed into:

IF Sex(x) is "male" AND Age(x) is "old" AND

Birth-place(x) is "Canada" AND Salary(x) is "high"

THEN professor(x). (t=20%, d=100%)

Similar extensions to A 0 1 for mining multiple-level characteristic rules will enable

A01 to discover multiple-level discriminant rules.

4.2.1 Methods for Mining Multiple-Level Discriminant Rules

Like characteristic rules, we can use progressive specialization and progressive gener-

alization to find multiple-level discriminant rules.

0 Progr'essive specialization first generalizes the data in both classes to a rather

high level and finds the discriminant rules a t that level. Some attribute selection

criteria, such as the ones used for the mining of characteristic rules, can then be

used to specialize both classes and discover discriminant rules a t lower levels.

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 79

0 Progressive generalization finds discriminant rules at a very low level first. At-

tributes are selectively generalized for both classes, and higher level discriminant

rules are found.

Similarly, the generalization/specialization process can be performed automati-

cally, or be controlled by users. Strong discriminant rules can be obtained by fil-

tering out those rules based on t-weight, d-weight, or some interestingness measure-

ment [98, 841.

4.2.2 An Algorit hrn for Mining Mult iple-Level Discrimi-

nant Rules

Based on the discussion in the previous section, an algorithm for mining multiple-level

discriminant rules is presented. For simplicity, we assume there is only one contrasting

class. However, the algorithm can easily be extended for multiple contrasting classes.

Furthermore, we assume the target class and the contrasting class have the same set

of attributes and use the same conceptual hierarchies.

Algorithm 4.2.1 (Mining Multiple-Level Discriminant Rules) Interactive dis-

covery of discriminant rules at diferent conceptual levels from the initial relations.

Input: (I) an initial target relation, Rt; (2) an initial contracting relation, R,; (3)

a set of conceptual hierarchies, CH, for the attributes; (4) a set of attribute

thresholds, T; (5) thresholds, I, for rule filtering.

Output: discriminant rules at different conceptual levels.

Method: an interactive progression method using minimally generalized relations.

1. A minimally generalized relation for the target class, R:, is derived from

Rt by generalizing the attributes to the minimal levels in the hierarchies

and removing duplicating tuples.

2. A minimally generalized relation for the contrasting class, RL, is derived

from R, similarly.

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 80

3. The prime level target relation and contrasting relation are derived by

attribute-oriented induction using CH and T. The relations are saved as

the current target relation and the current contrasting relation, respec-

tively.

4. Repeat the following steps until the user chooses to exit.

5. Discriminant tuples are extracted by intersecting the current target relation

and the current contrasting relation. They are passed to a filter which uses

I. Interesting discriminant rules are presented to the user.

6. Further progression instructions are accepted from the user. The user may

select an attribute to generalize or specialize, or may end the session.

0 If further generalization is desired, the selected attribute in both cur-

rent relations is generalized.

a If further specialization is desired and the current relations are not at

the minimal level, the attributes in the minimally generalized relations

are generalized to the proper levels in order to obtain the new current

relations.

0 If further specialization is desired and the current relations are at the

minimal level, the initial relations are fetched and generalized in order

to obtain the new current relations.

0 If exit is desired, the process stops.

Theorem 4.2.1 Algorithm 4.2.1 can find discriminant rules at any conceptual level

in O(nt log(nt) + n,log(n,)) time, where nt is the number of tuples in the original

target relation and n, is the number of tuples in the original contrasting relation.

Rationale. Step 1 takes O(nt log(lt)) time where lt is the number of tuples in the

minimally generalized target relation. Step 2 takes O(n,log(l,)) time where I , is

the number of tuples in the minimally generalized contrasting relation. Step 3 takes

O(lt log(pt) + I , log(p,)) where pt and p, are the number of tuples in the current target

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

and contrasting relations, respectively. Since intersecting, filtering, and presentation

are linear to the number of tuples, Step 4 needs O(pt +p,) time. Step 5 takes at most

O(nt log(pt) + n, log(p,)) time. Since lt < nt, pt < nt, I , < n,, p, < n,, the total time

complexity is O(nt log(nt) + n, log(n,)).

0

It should be pointed out that direct generalization and specialization of discrimi-

nant tuples may not give correct discriminant rules. For example, a discriminant tuple -.
(age:"25-30", gpa:"3.5-3.7") may be unique for graduate students, but probably not

the further generalized tuple, (age: "20-30", gpa: "3.5-3.7"), or the further specialized

tuple, (age:"28-29", gpa:"3.5-3.7") - because there is simply no such kind of graduate

students. Therefore, generalization and specialization of both classes in step 6 of the

algorithm 4.2.1 are necessary.

4.2.3 Experimental Results

Algorithm 4.2.1 was implemented in the DBMiner system to find multiple-level dis-

criminant rules. Users select the first generalization level by specifying attribute

thresholds, and interactively generalize or specialize the current relations to discover

discriminant rules at different levels. A difference with respect to the implementation

for mining multiple-level characteristic rules is that a minimally generalized relation

is saved for the contrasting class as well. A simple rule filtering mechanism using a

t-weight threshold and a d-weight threshold is adopted to filter out the uninteresting

rules.

Example 4.2.2 The following data mining query, in DMQL [51], finds discriminant

rules that distinguish 1994 computer science research grants in "Alberta" from those

in "Newfoundland", in terms of discipline, type of grant, and amount of grant.

use NSERC94

f i n d discriminant r u l e f o r " Alberta-CS-Grants ' '
where 0 .province = "Alberta"

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

in contrast to "Newfoundland-CS-Grants"

where 0.province = "Newfoundland"

from award A, organization 0, grant-type G

where A.grant-code = G.grant-code and

A.org-code = O.org-code and A.disc-code = "Computer"

in relevance to disc-code, amount, grant-order

Default t-weight threshold, 0%, and d-weight threshold, 100% are used. The results

are shown as follows. The prime level target relation and contrasting relation are

shown as well as the discriminant tuples. The attribute threshold is set to the default,

five, for all attributes. Since the lower level of the attribute disc-code (discipline) has

more than five values, the attribute is generalized to the current level which has no

more than five values. The overlapping tuples (tuples appeared in both classes) are

marked with "*".

...
* Alberta-CS-Grants *
...

...
disc-code grant-order amount t-weight d-weight mark

Computer Operating Grant 0-20Ks 40.74% 73.33% *
Computer Operating Grant 2OKs-40Ks 44.44% 96.00% *
Computer Operating Grant 40Ks-60Ks 1 .85% 100.00%
Computer Structure Grant 0-20Ks 1.85% 100.00%
Computer Structure Grant 20Ks-40Ks 5.56% 75.00% *
Computer Structure Grant 60Ks- 5.56% 100.00%

...
* Newf oundland-CS-Grants *
...

...
disc-code grant-order amount t-weight d-weight mark
...
Computer Operating Grant 0-20Ks 80.00% 26.67% *
Computer Operating Grant 2OKs-40Ks 10.00% 4.00% *
Computer Structure Grant 20Ks-40Ks 10.00% 25.00% *

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 83

...
* Discriminant Tuples *
...

...
disc-code grant-order amount t-weight d-weight
...
Computer Operating Grant 40Ks-60Ks 20.00% 100.00%
Computer S t ruc ture Grant 0-20Ks 20.00% 100.00%
Computer S t ruc ture Grant 60Ks- 60.00% 100.00%

From the tables, we can see tha.t Operating Grants from $40,000 to $60,000 are

awa,rded to Alberta only. Some tuples, like Operating Grants from $20,000 to $40,000,

are most probably in Alberta (96%). Lowering the d-weight threshold will qualify this

kind of tuples as discriminant tuples.

If the user wants to see more detailed discriminant tuples, he/she can specialize

an attribute, for example, disc-code (having least distinct values). Lower level target

relation and contrasting relation are displayed below, together with the discriminant

tuples at the lower level. As we can see from the table, the specialization brings out

some new discriminant tuples, for example, the tuple ("DATABASES", "Operating

Grant", "0-20KsR), and breaks down the high level discriminant tuples. For example,

the tuple ("Computer", "Structure Grant", "0-20Ks") is replaced by the lower level

tuple ("SOFTWARE", "Structure Grant", "0-20Ksn),

...
* Albert a-CS-Grant s *
...

...
disc-code grant-order amount t-weight d-weight mark
...
HARDWARE
SYS-ORGANIZATION
SYS-ORGANIZATION
SOFTWARE
SOFTWARE
SOFTWARE
SOFTWARE
SOFTWARE
THEORY

Operating Grant
Operating Grant
Operating Grant
Operating G r a n t
Operating Grant
Operating Grant
S t ruc tu re G r a n t
S t ruc tu re Grant
Operating Grant

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

THEORY
DATABASES
DATABASES
DATABASES
A 1
A 1
A 1
COMP-METHODS
COMP-METHODS
COMP-METHODS

Operating Grant
Operating Grant
Operating Grant
S t ruc ture Grant
Operating Grant
Operating Grant
S t ruc tu re Grant
Operating Grant
Operating Grant
S t ruc tu re Grant

disc-code grant ,order
....................................
HARDWARE Operating Grant
SOFTWARE Operating Grant
THEORY Operating Grant
THEORY Operating Grant
A 1 Operating Grant
COMP-METHODS Operating Grant
COMP-METHODS St ruc ture Gran t

amount
. - - - - - - - - - - - - -

0-2OKs
0-20Ks
0-20Ks
20Ks -4OKs
0-20Ks
0-20Ks
2OKs-40Ks

t-weight
. - - - - - - - - - -

l o . 00%
10.00%
20.00%
10.00%
20.00%
20.00%
10.00%

d-weight

...
* Discriminant Tuples *
...

disc-code grant-order amount t-weight d-weight
...
SYS-ORGANIZATION Operating Grant 0-2OKs 3.23% 100.00%
SYS-ORGANIZATION Operating Grant 20Ks-40Ks 6.45% 100.00%
SOFTWARE Operating Grant 20Ks-40Ks 12.90% 100.00%
SOFTWARE Operating Grant 40Ks-60Ks 3.23% 100.00%
SOFTWARE St ruc ture Grant 0-20Ks 3.23% 100.00%
SOFTWARE St ruc ture Grant 20Ks-40Ks 3.23% 100.00%
DATABASES Operating Grant 0-20Ks 6.45% 100.00%
DATABASES Operating Grant 20Ks-40Ks 3.23% 100.00%
DATABASES St ruc ture Grant 20Ks-40Ks 3.23% 100.00%
A I Operating Grant 20Ks-40Ks 16.13% 100.00%

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

A 1 Structure Grant 20Ks-40Ks 3.23% 100.00%
COMP-METHODS Operating Grant 20Ks-40Ks 25.81% 100.00%
COMP-METHODS Structure Grant 60Ks- 9.68% 100.00%

4.3 Summary and Discussion

Issues on the discovery of multiple-level characteristic and discriminant rules have

been examined and a set of algorithms has been developed and tested in our DB-

Miner system. The experiments show that they can discover interesting multiple-level

characteristic and discriminant rules effectively and efficiently.

An interactive progression method has be presented for mining multiple-level

characteristic and discriminant rules. I t uses attribute-oriented induction as

the basic tool for data generalization. A data structure, minimally generalized

relation, is used to implement the specialization efficiently.

Interstingness measures, such as the confidence of the characteristic rules, and

the t-weight and d-weight of the discriminant rules, are employed to filter out

uninteresting rules.

The progressive specialization (deepening) method is further studied in the next

chapter when we discuss the mining of multiple-level association rules.

4.3.1 Characterization and On-Line Analytical Processing

On-Line Analytical Processing (OLAP) was introduced by Codd [21] to characterize

the dynamic enterprise data analysis, such as summarization, grouping, synthesis,

consolidation, etc. Multidimensional databases are the common approach to support

OLAP [53, 1, 60, 431. A multidimensional database can be viewed as a hypercube,

in which each dimension of the hypercube is an attribute and some attributes are

treated as measures, whose values compose the cell of the hypercube.

In this section, we discuss the relationships between data mining, especially the

characterization, and OLAP.

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES

Similarities and Differences between Characterization and OLAP

Characterization and OLAP have several features in common as described below.

They both perform multi-dimensional analysis on large databases. Character-

ization may find characteristic rules with multiple attributes, and OLAP are

usually performed on multidimensional databases.

0 Several data analysis operations are employed by both, including viewing data

from different angles ("pivoting"), presenting multiple-level prospects of the data

("drill-down" and "roll-up"), selecting interesting subset of the data ("slicing"

and "dicing"), and grouping and aggregation.

0 Conceptual hierarchies for the attributes (i.e., dimensions) are used to group

the data and define the levels of the concepts.

However, characterization and OLAP are quite different as described below.

0 Multidimensional databases are often built from the entire database and is

stored for all the OLAP operations, where as characterization mostly works

on a dynamically collected initial relation.

0 Multidimensional databases are usually implemented using materialized views [53,

93,1141, and/or multidimensional indexing structures [68]. Characterization, on

the other hand, does not use materialized views or special indexing structures.

0 Conceptual hierarchies can be dynamically adjusted or automatically gener-

ated for characterization, whereas multidimensional databases usually use given,

fixed conceptual hierarchies.

Interactions between Data Mining and OLAP

It is interesting to study what data mining and OLAP can do for each other.

0 Algorithms developed for manipulations of conceptual hierarchies can be used

to enhance the flexibilities of hierarchy processing in OLAP. For example, the

conceptual hierarchy of a dimension, country, can be dynamic adjusted based

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 87

on the current sales figures, so that the groupings of the countries reflect the

current sales distributions.

Some techniques developed for OLAP can be used for data mining. For example,

the materialized view techniques can be used to speed up generalization and

specialization processes by actually storing some intermediate relations.

4.3.2 More about Discriminant Rules

In this section, two issues relating to discriminant rules are discussed: the relationships

between discriminant rules and classification rules, and the visualization of discrimi-

nant rules.

Relationships between discriminant rules and classification rules.

Discriminant rules and classification rules are similar in that they both deal with

tuples (objects) from different classes and try to model the differences between

the classes using the attributes of the tuples. However, they are different in

their purposes and approaches. Their relationships can be further explained as

follows.

- The purpose of discriminant rules is to identify the features that distinguish

the target class from the contrasting classes. A tabular form (relation)

usually is preferred to give a clear and uniform view. The purpose of

classification rules is to classify the objects. A classifier consisting of a set

of classification rules is built from the given objects. The classifier is used

later to classify future objects.

- Discriminant rules are centered around the target class whereas classifica-

tion rules treat all classes equally. To make a full classification, discriminant

rule should be extracted for each of the classes.

- Compact classification rules can be extracted by further refinement of dis-

criminant rules. For example, the contrasting class in Example 4.2.2, "New-

foundland-CS-Grants", does not have any grants over $40,000. A compact

rule,

CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 88

IF amount(x) > 40,000 THEN x is a grant in Alberta-CS-Grants.

can be induced which abstracts the two discriminant tuples at the prime

level. This can be done using rule reduction techniques [91].

- Classification rules cannot replace discriminant rules. For example, the

above rule covers two tuples which are not presented in the discriminant

tuples: ("Computer", "Operating Grant", "60Ks-") and ("Computer",

"Structure Grant", "40Ks-60Ks"). For the same reason, multiple-level dis-

criminant rules are necessary because rules at different levels give unique

discriminant tuples which cannot be derived from discriminant rules at

other levels.

Visualization of discriminant rules

Characteristic rules can be presented in textual forms, such as prime relations

and feature tables [45], and graphical forms, such as bar charts, pie charts,

etc [48]. For discriminant rules, we can use similar techniques. For example,

three relations or charts can be presented, one for the target class, one for the

contrasting class, and one for the discriminant tuples [51]. In the textual forms,

overlapping tuples in both classes are marked with "*", as shown in Example

4.2.2. However, it would be interesting to see that tuples in both classes are

presented in one graph, with the overlapping tuples expressed in a graphical

form, such as different colors, textures, etc.

Chapter 5

Mining Mult iple-Level Association

Rules

Introduction

With widespread applications of computers and automated data collection tools, mas-

sive amounts of transaction data have been collected and stored in databases. Dis-

covery of interesting association relationships among huge amounts of data will help

marketing, decision making, and business management. Therefore, mining association

rules from large data sets has been a focused topic in recent research into knowledge

discovery in databases [2, 4, 5, 65, 82, 851.

Studies on mining association rules have evolved from techniques for discovery

of functional dependencies [71], strong rules [85], classification rules [46, 911, causal

rules [77], clustering (341, etc. to disk-based, efficient methods for mining association

rules in large sets of transaction data [2, 4, 5, 821. However, previous work has been

focused on mining association rules at a single conceptual level. There are applications

which need to find associations at multiple conceptual levels. For example, besides .
finding that 80% of customers that purchase milk may also purchase bread, it could be

informative to also show that 75% of customers that purchase wheat bread may also

purchase 2% milk. The association relationship in the latter statement is expressed at

a lower conceptual level but often carries more specific and concrete information than

CHAPTER 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 90

that in the former. This requires progressively "deepening" the knowledge mining

process in the search for refined knowledge from data. The necessity for mining

multiple-level association rules or for using taxonomy information to aid the mining

has also been observed by other researchers, e.g., (104, 41.

In order to confine the association rules discovered to strong ones, that is, patterns

(or itemsets) which occur relatively frequently and rules which demonstrate relatively

strong implication relationships, the concepts of minimum support and minimum con-

fidence have been introduced [2, 41. Informally, the support of an itemset A in a set of

transactions S is the probability that a transaction in S contains itemset A; and the

confidence of A -, B in S is the probability that itemset B occurs in S if itemset A

occurs in S .
For the mining of multiple-level association rules, a concept taxonomy should be

provided to allow the generalization of primitive level concepts to high level concepts.

In many applications, the taxonomy information is either stored implicitly in the

database, such as "Wonder wheat bread is a wheat bread which is in turn a bread",

or obtained elsewhere as discussed in Section 3.1.3. Thus, data items can be easily

generalized to multiple conceptual levels. However, direct application of the existing

association rule mining methods to mining multiple-level associations may lead to

some undesirable results as described below.

First, large support is more likely to exist a t high conceptual levels, such as milk

and bread, rather than at low conceptual levels, such as a particular brand of milk and

bread. Therefore, if one wants to find strong associations at relatively low conceptual

levels, the minimum support threshold must be substantially reduced. However, this

may lead to the generation of many uninteresting associations, such as "toy -4 milk"

before the discovery of some interesting ones, such as "Dairyland 2% milk -+ Wonder

wheat bread", because the former may occur more frequently and thus have larger

support than the latter.

Second, it is unlikely to find many strong association rules at a primitive conceptual

level, such as the associations among particular bar codes, because of the tiny average

support for each primitive data item in a very large item set. However, mining

association rules at high conceptual levels may often lead to the rules corresponding

C H A P T E R 5. A4IA'ING MULTIPLE-LEVEL ASSOCIATION RULES 9 1

to prior knowledge and expectations 1651, such as "milk -t bread", or lead to some

uninteresting attribute combinations, such as "toy + milk".

In order to remove uninteresting rules generated in knowledge mining processes,

researchers have proposed some measurements to quantify the "usefulness" or "in-

terestingness" of a rule [84] and have suggested to "put a human in the loop" by

providing tools to allow human guidance of the knowledge discovery process [7] . Nev-

ertheless, automatic generation of relatively focused, informative association rules is

obviously more efficient than first generating a large mixture of rules and then having

to distinguish the interesting rules from the uninteresting ones.

These observations lead us to examine the methods for mining association rules

at multiple conceptual levels, which may not only discover rules at different levels but

also have high potential to find nontrivial, informative association rules because of

its flexibility at focusing the attention to different sets of data and applying different

thresholds at different levels.

Srikant and Agrawal [I041 proposed using a taxonomy of items to find general

level association rules. However, they used the same thresholds for all of the levels,

allowing many uninteresting rules to be found with interesting ones. On the contrary,

we use different thresholds at different levels and thus are more effective and flexible

in finding interesting rules. Furthermore, we investigate data focusing and different

optimization techniques for mining multiple-level association rules in our approach.

In this chapter, issues for mining multiple-level association rules from large databases

are examined, with a top-down, progressive deepening method developed by exten-

sion of some existing algorithms for mining single-level association rules. The method

first finds large (i.e., frequent) itemsets at the top-most level and then progressively

deepens the mining process into their large descendants at lower conceptual levels.

Some data structures and intermediate results generated while mining high level asso-

ciations can be shared for the mining of lower level ones, and different sharing schemes ,

lead to different variant algorithms. Algorithm performance identifies the conditions

that each algorithm is best suited, with regard to different kinds of data distributions

and thresholds.

The cha.pter is organized as follows. In Section 5.2, the concepts related to

CHAPTER 5. MINING A6 ULTIPLE-LEVEL ASSOCIATION RULES 92

multiple-level association rules are introduced. In Section 5.3, a method for min-

ing multiple-level association rules in large data sets is studied. In Section 5.4, a set

of variant algorithms for mining multiple-level association rules are introduced, with

their relative efficiency analyzed. In Section 5.5, a performance study is conducted

on different kinds of data distributions and thresholds, which identifies the conditions

for algorithm selection. Section 5.6 extends the basic ideas to the mining of flexible

association rules. Section 5.7 discusses related issues on mining multiple-level asso-

ciation rules, such as using multiple hierarchies, interestingness of rules, and several

other issues. The study on mining multiple-level association rules is summarized in

Section 5.8.

5.2 Multiple-Level Association Rules

To study the mining of association rules from a large set of transaction data, we

assume that the database contains (1) a transaction data set, 7, which consists of a

set of transactions (Ti, {A,, . . . , A,)), where T; is a transaction identifier, A; E Z (for

i = p, . . . , q), and Z is the set of all the data items in the item data set; and (2) the

description of the item data set, V, which contains the description of each item in Z

in the form of (Ai, description;), where A; E Z.

Furthermore, to facilitate the management of large sets of transaction data, our

discussion adopts an extended relational model which allows an attribute value to be

either a single or a set of values (i.e., in non-first-normal form). Nevertheless, the

method developed here is applicable (with minor modifications) to other represen-

tations of data, such as a data file, a relational table, or the result of a relational

expression.

Definition 5.2.1 An itemset, A, is a set of data items {A;, - - , Aj), where A;, . . . ,
Aj E Z. The support of an itemset A in a set S, u(A/S), is the number of transactions

(in S) which contain A versus the total number of transactions in S . The confidence

of A -, B in S, y(A -+ BIS), is the ratio of u(A U BIS) versus a(A/S), i.e., the

probability that itemset B occurs in S when itemset A occurs in S.

CHAPTER 5. MINING MULTIPLE- LE VEL ASSOCIATION RULES 93

If an itemset contains only one item, the item is sometimes used to represent the

itemset. It is obvious from the definition that the support of an itemset cannot be

larger than any of its subsets.

To find relatively frequently occurring itemsets and reasonably strong rule impli-

cations, a user or an expert may specify two thresholds: minimum support, a', and

minimum confidence, 9'. Notice that for finding multiple-level association rules, dif-

ferent minimum support and/or minimum confidence thresholds can be specified at

different levels.

Definition 5.2.2 An itemset A is large in set S at level 1 if the support of A is

no less than its corresponding minimum support threshold a;. The confidence of a

rule "A + B/S" is high at level I if its confidence is no less than its corresponding

minimum confidence threshold vi.

Definition 5.2.3 A rule " A + B/S7' is strong if, for a set S , each ancestor (i.e., the

corresponding high level item in the taxonomy) of every item in A and B, if any, is

large at its corresponding level, " A U B/S" is large (at the current level), and the

confidence of "A + B/S" is high (at the current level).

The definition indicates that if " A -, BJS" is strong, then (1) a (A U B/S) 2 a',

(and thus, a(A/S) 2 a', and a (B /S) 2 a'), and (2) v (A -+ BIS) 2 y', at its

corresponding level. It also represents a filtering process which confines the itemsets to

be examined at lower levels to be only those with large supports a t their corresponding

high levels (and thus avoids the generation of many meaningless combinations formed

by the descendants of the small (rare) itemsets). For example, in a sales-transaction

data set, if milk is a large item, its lower level items such as 2% milk will be examined;

whereas if fish is a small item, its descendants such as salmon will not be examined

further.

Based on this definition, the idea of mining multiple-level association rules is '

illustrated below.

Example 5.2.1 Suppose that a shopping transaction database consists of two rela-

tions: (1) a sales-item (description) relation (Table 5.1), which consists of a set of

C H A P T E R 5. MINING MULTIPLE- LEVEL ASSOCIATION RULES 94

attributes: bar-code, category, brand, content, size, storage-period, price, and (2) a

sales-transaction table (Table 5.2), which registers for each transaction, the transac-

tion number and the set of items purchased.

Let the query be to find multiple-level strong associations in the database for the

purchase patterns related to the foods which can only be stored for less than three

weeks. The query can be expressed as follows in DMQL [51].

f ind association rules

f rom sales-transactions T, salesitem I

where T.bar-code = I.bar-code and 1.category = "food" and 1.storage-period < 21

wi th interested attributes category, content, brand

Table 5.1 : A salesitem (description) relation.

I transaction-id (bar-codeset I

bar-code
17325

Table 5.2: A sales-transaction table.

category
milk

The query is first transformed into a standard SQL query which retrieves all the

data items within the "food" category (covers high level concepts: beverage, fruit,

vegetable, bread, milk, meat, fish, cereal, etc.) and with the storage period of less than .
21 days.

Since there are only three interested attributes, category, content, and brand in the

query, the salesitem description relation is generalized into a generalized salesitem

description table, as shown in Table 5.3, in which each tuple represents a generalized

brand
Foremost

storage-pd
14 (days)

content
2%

price
$3.89

size

1 jga.)

CHAPTER 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES

GID
112

Table 5.3: A generalized salesitem description table.

item which is the merge of + group of tuples which share the same values in the

interested a.ttributes. For example, the tuples with the same category, content and

brand in Table 5.1 are merged into one, with their bar codes replaced by a bar-code

set. Each group is then t'reated as an atomic item in the generation of the lowest level

association rules. For example, the association rule generated regarding milk will only

be in relevance to (at the low conceptual levels) brand (such as Dairyland) and content

(such as 2%) but not to size, producer, etc.

The taxonomy information is provided implicitly in Table 5.3. Let category (such

as "milk") represent the first-level concept, content (such as "2%") for the second

level one, and brand (such as "Foremost") for the third level one. The table implies

a conceptual hierarchy like Figure 5.1. We use a simple coding scheme for fast gen-

eralization and specialization. Other concise representations for hierarchies are also

possible [31].

The process of mining association rules is expected to first discover large itemsets

and strong association rules at the top-most conceptual level. Let the minimum

support at this level be 5% and the minimum confidence be 50%. One may find the

following: a set of single large items (each called a large 1-itemset, with the support

ratio in parentheses): "bread (25%), meat (lo%), milk (20%), . . . , vegetable (30%)", a .
set of pair-wised large items (each called a large 2-itemset): "{vegetable, bread (19%)),

{vegetable, milk (Is%)) , . . . , {milk, bread (l7%))", etc. and a set of strong association

rules, such as "bread + vegetable (76%), . . . , milk + bread (85%)".

At the second level, only the transactions which contain the large items at the first

bar-codeset
{17325, 31414, 91265)

141
171
212
. . .
711

milk
milk
bread
. . .

fruit -juice

' {29563, 77454, 89157)
(73295, 99184, 79520)
(88452, 35672, 31205)

{ . . . , . . .)
(32514, 78152)

category
milk

skim
chocolate

wheat
...

orange

content
2%

Dairyland
Dairyland

Wonder
. . .

Minutemaid

brand
Foremost

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES

food

Dairyland Foremost Old Mills Wonder

Figure 5.1: A taxonomy for the relevant data items.

level are examined. Let the minimum support at this level be 2% and the minimum

confidence be 40%. One may find the following large 1-itemsets: "lettuce (lo%), wheat

bread (15%), white bread (lo%), 2% milk (lo%), chicken (5%), . . . , beef (5%)", and

the following large 2-itemsets: "(2% milk, wheat bread (6%)), {lettuce, 2% milk (4%)),

ichicken, beef (2.1%))", and the st,rong association rules: "2% milk t wheat bread

(60%), . . . , beef + chicken (42%)", etc.

The process repeats at even lower conceptual levels until no more large itemsets

can be found. 0

5.3 A Method for Mining Multiple-Level Associ-

ation Rules

A method for mining multiple-level association rules is introduced in this section.

The method uses a hierarchy-information encoded transaction table, instead of the

original transaction table, in iterative data mining. This is based on the following

considerations. First, a data mining query is usually in relevance to only a portion of

C H A P T E R 5. h4IlYING MULTIPLE-LEVEL ASSOCIATION RULES 97

the transaction database, such as food, instead of all the items. It is beneficial to first

collect the relevant set of data and then work repeatedly on the task-relevant set. Sec-

ond, encoding can be performed during the collection of task-relevant data, and thus

there is no extra "encoding pass" required. Third, an encoded string, which represents

a position in a hierarchy, requires less bits than the corresponding object-identifier

or bar-code. Moreover, encoding allows more items to be merged (or removed) due

to their identical encoding, which further reduces the size of the encoded transaction

table. Thus it is often beneficial to use an encoded table although our method does

not rely on the derivation of such an encoded table because the encoding can always

be performed on the fly.

To simplify our discussion, an abstract example which simulates the real life ex-

ample of Example 5.2.1 is analyzed as follows.

Example 5.3.1 As stated above, the taxonomy information for each (grouped) item

in Example 5.2.1 is encoded as a sequence of digits in the transaction table 7[1]

(Table 5.4). For example, the item '2% Foremost milk' is encoded as '112' in which

the first digit, 'l ' , represents 'milk' at level-1, the second, 'l', for '2% (milk)' at level-2,

and the third, '2', for the brand 'Foremost' at level-3. Similar to [4], repeated items

(i.e., items with the same encoding) at any level will be treated as one item in one

transaction.

Table 5.4: Encoded transaction table: 7[l].

TID
TI
T2
T3
Tq
T5
T6
T7

The derivation of the large itemsets at level 1 proceeds as follows. Let the minimum

support at level 1 be 4 transactions (i.e., minsup[l] = 4). Notice that since the total

Items
(111, 121, 211, 221)
(111, 211, 222, 323)
(112, 122, 221, 411)
(111,121)
(111, 122, 211, 221, 413)
(211,323,524)
(323, 411, 524, 713)

CHAPTER 5. MINIhTG MULTIPLE-LEVEL ASSOCIATION RULES 9 8

number of transactions is fixed, the support is expressed in an absolute value ra.ther

than a relative percentage, for simplicity. The level-1 large 1-itemset table L[1,1] can

be derived by scanning 7[l], registering support of each generalized item, such as

I**, . . . , 4**, if a transaction contains such an item (i.e., the item in the transaction

belongs to the generalized item I**, . . . , 4**, respectively), and filtering out those

whose accumulated support count is lower than the minimum support. L[1,1] is

then used to filter out (1) any item which is not large in a transaction, and (2)

the transactions in 7[1] that contain only small items. This results in the filtered

transaction table 7[2] of Figure 5.2. Moreover, since there are only two entries in

L[1,1], the level-1 large-2 itemset table L[1,2] may contain only 1 candidate item

{I**, 2**), which is supported by 4 transactions in 7[2].

Level-1 minsup = 4
Filtered transaction table:

Level-1 large 1-itemsets:
7/21

According to the definition of multiple-level association rules (hereafter referred

L[1,1]

Level-1 large 2-itemsets:

to as ML-association rules), only the descendants of the large items a t level-1 (i.e., in

L[1,1]) are considered as candidates for the level-2 large 1-itemsets. Let minsup[2] =

Figure 5.2: Large itemsets a t level 1 and filtered transaction table: 7[2].

TID
TI
T2
T3
T4
T5
T6

3. The level-2 large 1-itemsets L[2,1] can be derived from the filtered transaction

L ,

Items
{ I l l , 121, 211, 221)
{111,211,222)
(112, 122, 221)
(111, 121)
{111,122,211,221}

(211)

table 7[2] by accumulating the support count and removing those whose support is

smaller than the minimum support, which results in L[2,1] of Figure 5.3. Similarly,

the large 2-itemset table &[2,2] is formed by the combinations of the entries in C[2,1],

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES

Level-2 minsup = 3
Level-2 large 1-itemsets: Level-2 large 3-itemsets:

Level-3 minsup = 3
Level-3 large 1-itemsets:

Level-2 large 2-itemsets: L[3,11

Level-3 large 2-itemsets:

LI2721

Figure 5.3: Large itemsets at levels 2 and 3.

Itemset
{ l l* , 12*)
{ l l* , 21*)
{ l l* , 22*)
{12*, 22*)
{21*, 22*)

together with the support derived from 7[2], filtered using the corresponding thresh-

old. Likewise, the large 3-itemset table L[2,3] is formed by the combinations of the

entries in L[2,2].

Finally, L[3,1] and L[3,2] at level 3 are computed similarly, with the results shown

in Figure 5.3. The computation terminates since there is no deeper level in the

hierarchy. Note that the derivation also terminates when an empty large 1-itemset

table is generated at any level. D

Support
4
3
4
3
3

The above discussion leads to the following algorithm for mining strong ML-

association rules.

Algorithm 5.3.1 (ML-T2L1) Find multiple-level large itemsets for mining strong

ML-association rules in a transaction database.

CHAPTER 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 100

Input: (1) T[l], a hierarchy-information-encoded and task-relevant set of a trans-

action database, in the format of (T I D , Itemset), in which each item in the

I temset contains encoded conceptual hierarchy information, and (2) the mini-

mum support threshold (minsup[l]) for each conceptual level 1.

Output: Multiple-level large itemsets.

Method: A top-down, progressively deepening process which collects large itemsets

a t different conceptual levels as follows.

Starting a t level 1, derive for each level 1, the large k-items sets, LC:[/, k], for each k, and

the set of large itemsets, LC:L[1] (for all k's), as follows (presented in a syntax similar

to C and Pascal, which should be self-explanatory).

(1) for (1 := 1; t [l , I] # 0 and E < max-level; I + +) do {

(2) if 1 = 1 then {

(3) L[l, 11 := getlarge-l_itemsets(7[1], I);

(4) 7[2] := get-f iltered-t-table(7[1], L[1,1]);

(5) 1
(6) else C[l, 11 := getlarge-1-i temsets(7[2], I);

(7) for (k := 2; C[I, k - 11 # 0; k++) do {

(8) Ck := get-candidateset(C[l, k - 11);

(9) foreach transaction t E 7[2] do {

(10) ct := gets?Lbsets(Ck, t);

(11) foreach candidate c E Ct do c.support++;

(12) 1
(13) C[1, k] := {c E Cklc.suppo~t 2 minsup[l])

(14) 1
(15) U [l] := Uk C[1, k];

(16) 1

Explanation of Algorithm 5.3.1.

According to Algorithm 5.3.1, the discovery of large support items a t each level 1

proceeds as follows.

CHAPTER 5. MINING M ULTIPLE-LEVEL ASSOCIATION RULES 101

1. At level 1, the large 1-itemsets L[l, 11 is derived from 7[1] by "get-large-1-iternsets(?[l], I)".

At any other level 1, L[l, 11 is derived from 7[2] by "get- large-l_i temsets(7[2], I) " .

Notice that when 1 > 2, only the item in L[l- l ,1] will be considered when exam-

ining 7121 in t,he derivation of the large 1-itemsets L[1,1]. This is implement.ed

by scanning the items of each transaction t in 7[l] (or 7[2]) , incrementing the

support count of an item i in the itemset if i's count has not been incremented

by t. After scanning the transaction table, filter out those items whose support

is smaller than minsup[l].

2. The filtered transaction table 7[2] is derived by "get-f iltered-t-table(7[1], ,C[l,l])",

which uses L[1,1] as a filter to filter out (1) any item which is not large at level

1, and (2) the transactions which contain no large items.

3. The large k (for k > 1) itemset table at level 1 is derived in two steps:

(a) Compute the candidate set from L[1, k- 11, as done in the a priori candidate

generation algorithm [4], apriori-gen, i.e., it first generates a set Ck in which

ea,ch itemset consists of k items, derived by joining two (k - 1) items in

L[1, k] which share (k - 2) items, and then removes a k-itemset c from Ck

if there exists a c's (k - 1) subset which is not in L[l, k - 11.

(b) For each transaction t in 7[2], for each of t's k-item subset c, increment

c's support count if c is in the candidate set Ck. Then collect into L[l, k]

each c (together with its support) if its support is no less than minsup[l].

4. The large itemsets at level I, LL[l], is the union of L[l, k] for all the k's.

After finding the large itemsets, the set of association rules for each level 1 can

be derived from the large itemsets LL[l] based on the minimum confidence at this

level, mincon f [l]. This is performed as follows [4]. For every large itemset r , if

a is a nonempty subset of r , the rule "a + r - a" is inserted into rule_set[l] if

support(r)/support(a) 2 minconf [l], where minconf [I] is the minimum confidence

at level 1.

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 102

Algorithm ML-T2L1 inherits several important optimization techniques developed

in previous studies at finding association rules [2, 41. For example, get-candidate-set

of the large k-itemsets from the known large (k - 1)-itemsets follows apriori-gen

of Algorithm Apriori [4]. Function get-subsets(Ck, t) is implemented by a hashing

technique from [4]. Moreover, to accomplish the new task of mining multiple-level

association rules, some interesting optimization techniques have been developed, as

illustrated below.

1. Generalization is first performed on a given item description relation to derive

a generalized item table in which each tuple contains a set of item identifiers

(such as bar-codes) and is encoded with conceptual hierarchy information.

2. The transaction table 7 is transformed into 7[1] with each item in the itemset

replaced by its corresponding encoded hierarchy information.

3. A filtered transaction 7[2], which filters out small items at the top level of T[l]

using the large 1-itemsets L[1,1], is derived and used in the derivation of large

k-items for any k (k > 1) at level-1 and for any k (k 2 1) for level I (I > 1).

4. From level 1 to level (1 + I) , only large items at L[1,1] are checked against 7[2]

for L[1+ 1,1].

Notice that in the processing, 7[l] needs to be scanned twice, whereas 7[2] needs

to be scanned p times where p = X I kl - 1, and kl is the maximum k such that the

k-itemset table is nonempty a t level I.

5.4 Variations of the Algorithm for Potential Per-

formance Improvement

Potential performance improvements of Algorithm ML-T2L1 are considered by ex-

ploration of the sharing of data structures and intermediate results and generating

maximal results at each database scan, etc., leading to the following variations of the

algorithm: (1) ML-TlLA: using only one encoded transaction table (thus T I) and

CHAPTER 5. h4INIA'G MULTIPLE-LEVEL ASSOCIATION RULES 103

generahg L[1,1] for all the levels in one database scan (thus LA), (2) ML-TML1:

using multiple encoded transaction tables and generating L[1,1] for one corresponding

conceptual level, and (3) ML-T2LA: using two encoded transaction tables (7[1] and

7[2]) and generating L[l, 11 for all the levels in one database scan.

5.4.1 Using Single Encoded Transaction Table: Algorithm

ML-T1LA

The first variation is to use only one encoded transaction table 7[1], that is, no filtered

encoded transaction table 7[2] will be generated in the processing.

At the first scan of 7[1], large 1-itemsets L[1,1] for every level 1 can be generated

in parallel, because the scan of an item i in each transaction t may increase the count

of the item in every L[1,1] if its has not been incremented by t . After the scanning

of 7[1], each item in L[1,1] whose parent (if 1 > 1) is not a large item in the higher

level large 1-itemsets or whose support is lower than minsup[l] will be removed from

L[L 11.
After the generation of large 1-itemsets for each level I , the candidate set for large

2-itemsets for each level 1 can be generated by the apriori-gen algorithm [4]. The

getsubsets function will be processed against the candidate sets at all the levels a t

the same time by scanning 7[1] once, which calculates the support for each candidate

itemset and generates large 2-itemsets L[1,2]. Similar processes can be processed for

step-by-step generation of large k-item-sets L[l, k] for k > 2.

This algorithm avoids the generation of a new encoded transaction table. More-

over, it needs to scan 7[1] once for generation of each large k-itemset table. Since

the total number of scanning of 7[1] will be k times for the largest k-itemsets, it is a

potentially efficient algorithm. However, 7111 may consist of many small items which

could be wasteful to be scanned or examined. Also, it needs a large space to keep all

C[l] which may cause some page swapping.

The algorithm is briefly summarized as follows.

Algor i thm 5.4.1 (ML-TlLA) A variation to Algorithm ML-T2L1: using only one

encoded transaction table 7[1].

CHAPTER 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 104

The input and output specifications are the same as Algorithm ML-T2L1. The

procedure is described as follows.

(I) {L[1, I], . . . , L[maxl , 11) := get-alllarge-1-itemsets(T[l]);

(2) moreresults := true;

(3) for (k := 2; moreresults; k++) do begin

(4) moreresults := false;

(5) for (I := 1; I < maxl ; 1++) do

(6) if L[I, I;] # 0 then begin

(7) C[l] := get-candidateset(L[l, k - 11);

(8) foreach transaction t E 7[l] do begin

(9) D[1] := get-subsets(C[l], t) ; // Candidates contained in t

(10) foreach candidate c E D[l] do c.support++;

(11) end

(12) L[1, k] := {c E C[l]lc.support 2 minsup[l])

(13) moreresults := true;

(14) end
(15) end

(16) for (1 := 1; 1 < mas-1; 1++) do LL[1] := Uk L[l, k]; 0

Example 5.4.1 The execution of the same task as Example 5.3.1 using Algorithm

ML-T1LA will generate the same large item sets L[1, k] for all the 1's and k's but

in difference sequences (without generating and using 7[2]). It first generates large

1-itemsets L[1,1] for d l the 1's from 7 [l] . Then it generates the candidate sets from

L[1,1], and then derives large 2-itemsets L[1,2] by passing the candidate sets through

7[1] to obtain the support count and filter those smaller than minsup[l]. Th' is process

repeats to find k-itemsets for larger k until all the large k-itemsets have been derived.

0

CHAPTER 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 105

5.4.2 Using Multiple Encoded Transaction Tables: Algo-

rithm ML-TML1

The second variation is to generate multiple encoded transaction tables 7[1], 7[2],

. . . , 7 [m a x l + 11, where max-1 is the maximal level number to be examined in the

processing.

Similar to Algorithm ML-T2L1, the first scan of 7[1] generates the large 1-itemsets

L[1,1] which then serves as a filter to filter out from 7[l] any small items or transac-

tions containing only small items. 7[2] results from this filtering process and is used

in the generation of large k-itemsets at level 1.

Different from Algorithm ML-T2L1, 7[2] is not repeatedly used in the processing

of the lower levels. Instead, a new table 7[1+ 11 is generated at the processing of each

level E , for I > 1. This is done by scanning 7[l] to generate the large 1-itemsets C[1,1]

which serves as a filter to remove from 7 [I] any small items or transactions containing

only small items and results in 7[1+ 11, which will be used for the generation of large

k-itemsets (for k > 1) at level 1 and table 7 [l + 21 at the next lower level. Notice that

as an optimization, for each level 1 > 1, 7[1] and C[1,1] can be generated in parallel

(i.e., at the same scan).

The algorithm derives a new filtered transaction table, 7[1+ 11, at the processing

of each level I. Although the generation of several transaction tables may seem costly,

it can save a substantial amount of processing if only a small portion of data are

large items at each level. Thus it may be a promising algorithm in this circumstance.

However, it may not be so effective if only a small number of the items will be filtered

out at the processing of each level.

The algorithm is briefly summarized as follows.

Algorithm 5.4.2 (ML-TML1) A variation to Algorithm ML-T2Ll: using multiple

encoded transaction tables.

The input and output specifications are the same as Algorithm ML-T2L1. The

procedure is described as follows.

CHAPTER 5. MIRIA'G MULTIPLE-LEVEL ASSOCIATION RULES 106

if 1 = 1 then L[l, 11 := get-large-1-itemsets(T[l], 1) ;

{';Ti1 + l] , l [l+ 1,1]) := get-f i1te~ed-T-table-andhge-1-ilemsets(T[l], l[1,1]);

for (k := 2; L[1, k - 11 # 0; k++) do begin

Ck := get-candidate~et(L[l, k - I]);

foreach transa,ction t E 7 [1 + 11 do begin

Ct := getsubsets(Ck, t); / / Candidates contained in t

foreach candidate c E Ct do c.support++;

end

L[l, k] := {c E Cklc.support 2 minsup[l])

end

LL[l] := uk L[l, k];

(13) end

Notice that on line 3, the procedure "get- f iltered-T-table-and-1arge-l-itemseis(?M, L[1,1])"

scans 7[l] , collects only the large items for each transaction containing large items,

which generates 7[1+ 11, and accumulates the support count for each item for the

preparation of L[1+ 1,1]. After the scan, it removes small items from the prepared

L[I + 1,1] based on minsup[l + I]. Thus it generates both 7 [I + 11 and L[1+ 1,1] in

the same scan of 7[1]. 0

Example 5.4.2 The execution of the same task as Example 5.3.1 using Algorithm

ML-TML1 will generate the same large itemsets L[l, k] for all the 1's and k's but in

difference sequences, with the generation and help of the filtered transaction tables

7[2], . . . , T [m a z l + 11, where max-1 is the maximum level explored in the algorithm.

It first generates the large 1-itemsets L[1,1] for level 1. Then for each level 1 (initially

1 = I), it generates the filtered transaction table 7[1+ 11 and the level-(1 + 1) large

1-itemsets L[l+ 1,1] by scanning 7[1] using L[1,1], and then generates the candidate 2-

itemsets from L[l, 11, calculates the supports using 7[1+ 11, filters those with support .
less than minsup[l], and derives L[1,2]. The process repeats for the derivation of

L[l, 31, . . . , L[l, k].

C H A P T E R 5. h4INING MULTIPLE- LEVEL ASSOCIATION RULES 107

5.4.3 Refined Technique Using Two Encoded Transaction

Tables: Algorithm ML-T2LA

The third variation uses the same two encoded transaction tables 7[l] and 7[2] as

in Algorithm ML-T2L1, but it integrates some optimization techniques considered in

the algorithm ML-TlLA.

The scan of 7[1] first generates large 1-itemsets L[1,1]. An additional scan of 7[l]

using L[1,1] will generate a filtered transaction table 7[2] and all the large 1-itemset

tables for all the remaining levels, i.e., L[l,1] for 1 < 1 5 m a x l by incrementing the

count of every L[1,1] at the scan of each transaction and removing small items and

the items whose parent is small from L[1,1] at the end of the scan of 7[1].

The candidate set for the large 2-itemsets at each level 1 can then be generated by

the apriori-gen algorithm [4], and the getsubsets routine will extract the candidate

sets for all the level 1 (1 2 1) at the same time by scanning 7[2] once. This will

calculate the support for each candidate itemset and generate large 2-item-sets L[1,2]

for 12 1.

Similar processes proceed step-by-step which generates large k-item-sets L[l, k] for

k > 2 using the same 7[2].

This algorithm avoids the generation of a group of new filtered transaction tables.

It scans 7[1] twice to generate 7[2] and the large 1-itemset tables for all the levels. It

then scans 7[2] once for the generation of each large k-itemset, and thus scans 7[2]

in total k - 1 times for the genemtion of all the k-itemsets, where k is the largest

such k-itemsets available. Since k-itemsets generation for k > 1 is performed on 7[2]

which may consist of much less items than 7[1], the algorithm could be a potentially

efficient one.

The algorithm is briefly summarized as follows.

Algorithm 5.4.3 (ML-T2LA) A variation to Algorithm ML-T2L1: refined tech-.

nique using two encoded transaction tables.

The input and output specifications are the same as Algorithm ML-T2L1. The

procedure is described as follows.

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 108

(1) L[1,1] := get-large-1-itemsets(T[l], 1);

(2) {7[2], L[2,1],. . ., L[maz-l,1]) := get-filtered-t-table-and-large-1-itemsets(T[l], L[l, 11);
(3) moreresults := true;

(4) for (k := 2; moreresults; k t +) do begin

(5) moreresults := false;

(6) for (1 := 1; 1 < maxJ ; 1++) do

(7) if L[l, k - 11 # 0 then begin

(8) C[1] := get-candidateset(L[l, k - 11);

(9) foreach transaction t E 7[2] do begin

(10) D[1] := get -subsets(C[l], t); // Candidates contained in t

(11) foreach candidate c E D[l] do c.support++;

(12) moreresults := true;

(13) end

(14) end

(15) L[l, k] := { c E C[l]lc.support > minsup[l])

(16) end

(17) for (I := 1; 1 < max-1; 1++) do LL[I] := Uk L[l, k]; 0

Example 5.4.3 The execution of the same task as Example 5.3.1 using Algorithm

ML-T2LA will generate the same large itemsets L[1, k] for all the 1's and k's. It first

generates large l-itemsets L[l, 11 from T[l], then T[2] and all the large l-itemsets

L[2,1], . . . , L[maxl , 11, where mas-1 is the maximum level to be explored. It then

generates the candidate sets from L[1, I], and derives large 2-itemsets L[l, 21 by testing

the candidate sets against 7[2] to obtain the support count, and filters those with

count smaller than minsup[l]. This process repeats so as to find k-itemsets for larger

k until all the large I;-itemsets have been derived.

5.5 Performance Study 1

To study the performance of the ~roposed algorithms, all four algorithms: ML2'2L1,

ML-TlLA, ML-TAfL1, and hfL-T2LA, were implemented and tested on a SUN

CHAPTER 5. MINING M ULTIPLE-LEVEL ASSOCIATION RULES 109

Sparc-2 workstation with 16 megabytes of main memory.

The testbed consists of a set of synthetic transaction databases generated using a

randomized item set generation algorithm similar to that described in [4].

The following are the basic parameters of the generated synthetic transaction

databases: (1) the total number of items, I, is 1000; (2) the total number of trans-

actions is 100,000; and (3) 2000 potentially large itemsets are generated and put into

the transactions based on an exponential distribution. Table 5.5 shows the database

used, in which S is the average size (# of items in a potential large itemset) of these

itemsets, and T is the average size (# of items in a transaction) of a transaction.

Table 5.5: Parameters used to generate the transaction tables.

Database
DB1

Each transaction database is converted into an encoded transaction table, denoted

as 7[1] , according to the information about the generalized items in the item descrip-

tion (hierarchy) table. The maximal level of the conceptual hierarchy in the item

table is set to 4. The number of the top level nodes keeps increasing until the total

number of items reaches 1000. The fan-outs at the lower levels are selected based on

the normal distribution with the mean value being M2, M3, and M4 for the levels

2, 3, and 4 respectively, and a variance of 2.0. These parameters are summarized in

Table 5.6.

S
2

The testing results presented in this section are on two synthetic transaction

T
5

Item Table
I 1
I 2

Table 5.6: Parameters settings of the item description (hierarchy) tables.

#nodes at level-1
8
15

M2

of transactions
100.000

Size(MBytes)
2.7MB

M3
5 5 5
6 3 4

M4

CHAPTER 5. MINING AIULTIPLE-LEVEL ASSOCIATION RULES 110

databases: one, TI0 (DB2), has an average transaction size (# of item in a transac-

tion) of 10; while the other, T5 (D B l) , has an average transaction size of 5.

Two item tables are used in the testing: the first one, 11, has S, 5, 5 and 5 branches

a t the levels 1, 2, 3, and 4, respectively; the second, 12, has 15, 6, 3 and 4 branches

a t the corresponding levels.

5.5.1 Scale Up Experiments

Figure 5.4 shows the running time of the four algorithms in relevance to the number

of transactions in the database. The test uses the database T I 0 and the item set 11,

with the minimum support thresholds being (50,10,4,2), which indicates that the

minimum support of level 1 is 50%, and that of levels 2, 3 and 4 are respectively lo%,

4%, and 2%.

10k 25k 50k 75k 100k
t of transactions

Figure 5.4: Performances with thresholds (50, 10, 4, 2).

The four curves in Figure 5.4 show that ML-T2LA has the best performance, while

the ML-T1LA has the worst among the four algorithms under the current threshold

setting. This can be explained as follows. The first threshold filters out many small

1-itemsets a t level 1 which results in a much smaller filtered transaction table 7[2]. .
Moreover, the later filters are not so strong, and parallel derivation of C[l , k] without

derivation of 7 [3] and 7[4] is more beneficial. These lead ML-T2LA to be the best

algorithm. On the other hand, ML-T1LA is the worst algorithm since it consults a

large 7[1] a t every level.

CHAPTER 5. MINING M ULTIPLE-LEVEL ASSOCIATION RULES 11 1

Figure 5.5 shows that AIL-TlLA is the best whereas ML-TML1 is the worst

among the four algorithms under the following setting: a different test database T5,

the sa.me item set I l . and with the minimum support thresholds: (20,8,2,1). This is

because the first threshold filters out few small 1-itemsets at level 1 which results in

almost the same sized transaction table 7[2]. The generation of multiple filtered trans-

action tables is largely wasted, which leads to the worst performance of ML-TML1.

Thus parallel derivation of LIZ, k] without derivation of any filtered transaction tables

applied in ML-T1LA leads to the best performance.

1 I I I
10k 25k 50k 75k 100k

of transactions

Figure 5.5: Performances with thresholds (20, 8, 2, 1).

Figure 5.6 shows that ML-T2L1 and ML-TML1 are closely the best whereas

ML-T2LA and ML-T1LA are the worst under the setting: a test database T10, an

item set 12, and with the minimum support thresholds: (50,10,5,2). This is be-

cause the first threshold filters out relatively more 1-itemsets at level 1 which results

in a small transaction table 2-12]. Thus the generation of multiple filtered transac-

tion tables is relatively beneficial. Meanwhile, the generation of multiple level large

1-itemsets may not save much because one may still obta.in reasonably good sized

itemsets in the current setting, which leads ML-T2L1 to be the best algorithm in

terms of performance.

Figure 5.7 shows that ML-TML1 is the best whereas ML-T1LA is the worst

under the setting: a test database T5, an item set 12, and with the minimum support

thresholds: (30,15,5: 2). This is because every threshold filters out relatively many

CHAPTER 5. MIArING MULTIPLE-LEVEL ASSOCIATION RULES 112

I I I I
10k 25k 50k 75k lOOk

t of transactions

Figure 5.6: Performances with thresholds (50, 10, 5 , 2).

1-itemsets at each level, resulting in much smaller transaction tables at each level.

Thus the generation of multiple filtered transaction tables is beneficial, which leads to

M L T M L 1 as the best algorithm, followed by ML-T2L1, ML-T2LA and ML-T1LA

in sequence.

0 I I I I
10k 25k 50k 75 k 1 OOk

X of transactions

Figure 5.7: Performances with thresholds (30, 15, 5, 2).

The above four figures show two interesting features. First, the relative perfor-

mance of the four algorithms under any setting is relatively independent of the number

of transactions used in the testing, which indicates that the performance is highly rel-

evant to the threshold setting (i.e., the power of a filter at each level). Thus based on

CHAPTER 5. A/llATING MULTIPLE-LEVEL ASSOCIATION RULES 113

the effectiveness of a threshold, a good algorithm can be selected to achieve good per-

formance. Second, all the algorithms have relatively good LLscale-up" behavior since

the increase of the number of transactions in the database will lead to approximately

the linear growth of the processing time, which is desirable in the processing of large

transaction databases.

5.5.2 Comparisons of Relative Performances

Figure 5.8 shows the running time of the four algorithms in relevance to the mini-

mum support thresholds. The test uses the database TI0 and the item set 12, with a

sequence of threshold settings: threl, . . . , thre6. The setting of threl is (60,15,5,2)

(with the same notational convention). The remaining threshold settings are as fol-

lows: thre2: (55,15,5,2), thre3 (55,10,5,2), thre4: (50,10,5,2), thre5: (50,10,5, I) ,

thre6: (50,5,2,1). The value-decreasing sequence of minimum support thresholds

indicates that a weaker filtering mechanism is applied to the later portion of the

sequence.

The relative performance of the four algorithms shows interesting trends of growth

as indicated by the four curves in Figure 5.8. The stronger the filtering mechanism,

the more 1-itemsets are filtered out at each level, and the smaller large 1-itemsets

are resulted in. Thus ML-TML1, which generates a sequence of filtered transaction

tables, has the lowest cost at threl, thre2 and also (but marginally) thre3, but the

highest cost at thre5 and thre6 (since few items are filtered out). On the contrary,

ML-TlLA, which uses only one encoded transaction table but generates the large

1-itemsets for each level at the beginning has the highest cost at threl, thre2 and

thre3, but the lowest cost at thre6. The other two algorithms stand in the middle

with ML-T2LA performing the best at thre5 when the threshold is reasonable small,

especially at the lower levels, and ML-T2L1 performing the best at thre4 when the

threshold is reasonable small, but the lowest level is not as small as thre5. Since

ML-T2LA scans 7[1] twice and needs to maintain all large itemsets G[I,Ic] a t the

same time, it is outperformed by ML-T2L1 when the thresholds are big enough so

that a substantial amount of 7[1] is cut and the maximal length of large itemsets at

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 114

each level is small. hloreover, one may observe the significant performance degradation

from thre4 to thre5. This, based on our speculation, is because of the limited size of

main memory. We observed a surge of page swapping when the support threshold is

dropped significantly.

Support-Tlme
1500 [I I I 1

Threl Thre2 Thre3 Thre4 The5 The6
Support Threshold

Figure 5.8: Relative performances with different thresholds.

5.5.3 Experiments on NSERC Databases

The algorithm M L 3 2 L 1 was implemented in our DBMiner system. To apply the

algorithm which assumes each tuple is a set of items, each attribute in the initial

relation is generalized to the lowest level in its hierarchy, so that a tuple can be

treated as a transaction with each attribute value viewed as an item.

Example 5.5.1 The following data mining query, in DMQL, finds association rules

in research grants in Computer Science in the 1994 NSERC database, with respect

t o the recipients' discipline, organization, and the amount of the grant. The minimal

support and minimal confidence are set to (20%, 50%), (lo%, 40%), and (I%, 30%)

a t level 1, 2, and 3 respectively.

use NSERC94

find association rules for "CS-Grants"

from award A, organization 0

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES

where O.org-code = A.org-code and A.disc-code = "Computer"

with interested attributes disc-code, org-name, amount

set minimum support 20%, lo%, 1%

set minimum confidence 50%: 40%, 30%

Since the level 1 concepts are always "ANY", the association rules at that level are

trivial and thus are not shown here. The following are the association rules found at

level 2. The organizations (org-name) are a t the provincial level, and the amounts are

categorized into $20,000 intervals. For example, rule R 1 says that 47% of Ontario's

grants are less than S20,000, and 14% of all grants (in Computer Science) consist of

these small Ontario grants.

R 1 : org-name i n "ONTARIO" I=> amount i n "0-20Ks" [O . 14,0.471

R2 : amount i n "20Ks-40Ks" I => disc-code i n "Software" LO. l5 ,O. 601

R 3 : org-name i n "ONTARIO" I => disc-code i n "Software" L O . l8 ,O. 611

R4 : disc-code i n "Software" I=> org-name i n " 0 ~ ~ ~ ~ 1 0 " [0 . 1 8 , 0 . 4 3]

R5 : m o u n t i n "0-20Ks" I=> disc-code i n "Software" [0.22,0.611

R6 : disc-code i n "Software" I=> amount i n "0-20~s"[0 .22 ,0 .52]

R7 : m o u n t i n "20Ks-40Ks" I=> org-name i n "ONTARIO" [O . 11 ,O.43]

The following are the association rules found a t level 3. At this level, the orga-

nizations are specialized into institutions and the amount is categorized into $5,000

intervals. For example, rule R8 says 43% of the University of Ottawa's grants are

within $15,000 to $20,000, which constitute 1% of all grants (in Computer Science).

R 8 : org-name is "Ottawa" I=> amount i n "15Ks-20Ks" [O.Ol,O.43]

R9 : org-name is "Concordia" I=> amount i n "15Ks-20Ks"[0.01,0.37]

R10: d isc-code i n "Arch i t ec tu re" I=> amount i n "15Ks-20Ks"[0.01,0.30]

R 1 1 : d i sc-code i n "System Design" I=> amount i n "15Ks-20Ks"[0.02,0.34]

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 116

5.6 Generat ion of Flexible Association Rules

Our study has been confined to mining association relationships level-by-level in a

fixed hierarchy. It is often necessary or desirable to find flexible association rules

which are not confined to strict, pre-arranged conceptual hierarchies.

5.6.1 Mining Cross-Level Association Rules

We may relax the restriction of mining strong assocjations among the concepts at

the same level of a hierarchy to allow the exploration of "level-crossing" association

relationships. This relaxation may lead to the discovery of associations like "2%

Foremost milk -t Wonder bread" in which the two concepts are at different levels of

a hierarchy. This can be achieved by making minor modifications to our algorithms

since the new requirement associates the itemsets like ((1 12, 2*1)), as demonstrated

in the example below.

Example 5.6.1 For the same transaction tables and conceptual hierarchies as given

in Example 5.3.1, we examine the mining of strong multiple-level association rules

which include nodes at different levels in a hierarchy.

Let minimum support at each level be: minsup = 4 a t level-1, and minsup = 3 a t

levels 2 and 3.

The derivation of the large itemsets at level 1 proceeds in the same way as in

Example 5.3.1, which generates the same large itemsets tables L[1,1] and L[1,2] at

level 1, and the same filtered transaction table 7[2], as shown in Figure 5.2.

The derivation of level-2 large itemsets generates the same large 1-itemsets L[2,1]

as shown in Figure 5.9. However, the candidate items are not confined to the pairing

of only those in L[2,1] because the items in L[2,1] can be paired with those in L[1,1]

as well, such as { l l* , I**) (for potential associations like "milk + 2% milk"), or i l l * ,

2**) (for potential associations like "2% milk + bread"). These candidate large 2-

itemsets will be checked against 7[2] to find large items (for the level-mixed nodes,

the minimum support at a lower level, i.e., minsup[2], can be used as a default). Such

a process generates the large 2-itemsets table L[2,2] as shown in Figure 5.9.

C H A P T E R 5. A,lIAIING M ULTIPLE-LEVEL ASSOCIATION RULES 117

Notice that the table does not include the 2-item pairs formed by an item with

its own ancestor such as ({ll*, I**), 5) since its support must be the same as its

corresponding large 1-itemset in L[2,1], i.e., (i l l *) , 5), based on the set containment

relationship: any transaction that contains {l l*} must contain {I**) as well.

Similarly, the level 2 large 3-itemsets L[2,3] can be computed, with the results

shown in Figure 5.9. Also, the entries which pair with their own ancestors are not

listed here since it is contained implicitly in their corresponding 2-itemsets. For

example, ({ll*, 12*), 4) in L[2,2] implies (i l l * , 12*, I**), 4) in L[2,3].

Level-2 minsup = 3
Level-2 large 1-itemset:

m , 1 1
I Itemset I Sup~or t I

Level-2 large 3-itemset:

Itemset Support

Level-2 large 2-itemset:

m , 2 1

{ l l* , 12*)
{ l l* , 21*)
{ l l* , 22*)
{12*, 22*}
{21*, 22*)

1 {21*, 22*, I**) (3 I
Figure 5.9: Cross-level large itemsets at level 2.

Finally, the large 1-itemset table at level 3, L[3,1], should be the same as Figure 5.3.

The large Zitemset table includes more itemsets since these items can be paired with

higher level large items, which leads to the large 2-itemsets L[3, 21 and large 3-itemsets

L[3, 31 as shown in Figure 5.10. Similarly, the itemsets (111, l l *) and (111, I**)

have the same support as (111) in L[3, 11 and are thus not included in L[3,2].

Since the large k-itemset (for k > 1) tables do not explicitly include the pairs

of items with their own ancestors, attention should be paid to include them a t the

generation of the association rules. However, since the existence of a specialized item

always indicates the existence of an item in that class, such as "2% milk t milk

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 118

(loo%)", such trivial rules should be eliminated. Thus, only nontrivial implications,

such as "milk -t 2% milk (70%)", will be considered in the rule generation.

Level-3 minsup = 3
Level-3 large 1-itemset :

Itemset Support

Level-3 large 3-itemset:
L13,31 . . ,

I Itemset I S u ~ ~ o r t I

Level-3 large 2-itemset:
JA3,

Itemset
(111, 211)
{ I l l , 21*)
(11 1, 22*)
(111, 2**)
{11*, 211)
{I**, 211)

I
Support

3
3
3
4
3
3

Figure 5.10: Cross-level large itemsets at level 3.

5.6.2 Mining Association Rules in Mixed Hierarchies

Sometimes, it is necessary or desirable to find associations among the concepts as-

sociated with alternative, multiple hierarchies. For example, following the hierarchy

given in Example 5.2.1, one may find relationships like "2% milk + wheat bread".

Alternatively, one may like to find "Foremost milk + Wonder bread" or "2% milk

-+ Wonder bread", which may require an alterna.tive conceptual hierarchy, i.e., the

hierarchy {content, brand, category) C {brand, category) C {category), where brand

is taken as a higher level structure than content, between category and content. It

seems to be challenging to explore so many alternatives since there may exist only a

small number of fixed hierarchies in a database. However, the algorithms presented

in this chapter can be adapted with slight modification in order to meet the challenge

since the new requirement essentially associates the itemsets in some alternative gen-
'

eralized forms, such as ({1*2), {2*1)), ({12*), {2*1)), etc.

Example 5.6.2 (Mining association rules in mixed hierarchies) For the same transac-

tion and item databases as that of Example 5.3.1, find multiple-level association rules

CHAPTER 5. MlA'lNG MULTIPLE-LEVEL ASSOCIATION RULES

between brands and content specifications of different categories.

Let the minimum support at each level be the same as in Example 5.3.1, i.e.,

minsup = 4 at level-1, and minsup = 3 at levels 2 and 3.

The derivation of the large itemsets at level 1 proceeds in the same way as Example

5.3.1, which generates the same large itemsets tables L[1,1] and L [I, 21 at level 1 and

the same filtered transaction table 7[2], as shown in Figure 5.2.

However, the level-2 large itemsets are different from those in Example 5.3.1 be-

cause our method first generates large 1-itemsets in the forms of both ll*and 1*1,

i.e., including both hierarchies, then pairs the large 1-items for those from different

categories, such as {ll*, 2*1), and then finds large 3-itemsets with such properties,

etc. Therefore, the large itemset tables at level-2 are L[2,1], L[2,2] and L[2,3], as

shown in Figure 5.11.

Finally, large itemset tables at level 3 should be the same since two hierarchies

share the same leaf nodes at level 3. Thus it will generate the same tables L[3,1]

and L[3,2] as shown in Figure 5.3. Notice that since the two hierarchies (category-

brand and category-content) share the same level-3 leaf nodes (brand-content), the

expansions following each hierarchy may lead to redundancy. One may mark the

lower level nodes once explored, and no marked nodes will be checked again, which

avoids redundant exploration.

Notice also that the query is to find associations between diflerent categories. If it

were to include associations among the items in the same category, such as "2% milk

+ Foremost milk", more large 2-itemsets would have been found in L[2,2] because

the 2-itemset {ll*, 1*1) would also form a large 2-itemset as well. Note also that the

rule "2% milk -+ Foremost milk" indicates that a person who buys 2% milk will also

buy Foremost milk (which, however, may not necessarily be 2% Foremost milk!). 0

C H A P T E R 5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 120

ge 1-itemsets: L[2,1]
Support

Level-2 large 3-itemsets: L[2,3]

Support
4
3
4
4
3
4
3
3

Figure 5.11: Mixed-hierarchy large itemsets a t level 2.

5.7 Discussion

5.7.1 More about Conceptual Hierarchies

In our discussion, we have assumed desired conceptual hierarchies exist and are pre-

sented in the form of relational tables (e.g., sales-item in Table 5.1). However, there

are often cases where portions of conceptual hierarchies do not exist. For example,

the hierarchy relationships, such as "peanuts, pistachios, . . . , walnuts c nuts", may

not be stored in the salesitem relation. Therefore, it is often necessary for experts

or users to specify portions of hierarchies to facilitate mining multiple-level associa-

tion rules. Specified hierarchies can be mapped into relations with the paths from

high-level general concepts to low-level specific ones registered in tuples. Null values

should be allowed in the mapped relational entries if there exist unbalanced nodes in

a hiera.rchy.

Note that there may often exist more than one possible way of mapping a relation

into a conceptual hierarchy. For example, "2% Foremost milk C 2% milk c milk" and

"2% Foremost milk c Foremost milk c milk" are both meaningful hierarchies, but "2%

Foremost milk c 2% Foremost c Foremost" may not be. An expert or a user may

CHAPTER 5. A~INILVG A4ULTIPLE-LEVEL ASSOCIATION RULES 121

provide mapping rules at the schema level (i.e., schema hierarchies) to indicate mean-

ingful or desired mappings, such as "{content, brand, category) c {content, category)

C category", etc.

Conceptual hierarchies may not exist for numerical valued attributes but can be

automatically generated according to data distribution statistics, as described in Sec-

tion 3.3. For example, a hierarchy for the price range of sales items can be generated

based on the distribution of price values. Moreover, a given conceptual hierarchy for

numerical or nonnumerical data can be dynamically adjusted based on data distri-

bution as discussed in Section 3.2. For example, if there are many distinct country

names in the attribute "placemade", countries can be grouped into continents, such

as Asia, Europe, South-America, etc. Moreover, if most fresh food products are from

B. C. and Northwest America, the geographic hiera.rchy can be automatically adjusted

to reflect this distribution when studying fresh food products.

5.7.2 Interestingness Measure

Many multiple-level association rules may be found from the database using the pro-

gressive deepening method. Sometimes a low level rule can be expected or estimated

from a high level rule, and thus is not interesting to user. For example, a rule "1%

milk 4 whole-wheat bread [2%, 20%]" is not interesting if we have a higher level

rule "milk + bread [40%, 80%]" and 25% of all the milk is the 1% milk and 20% of

all the bread is the whole-wheat bread.

Srikant and Agrawal [I041 proposed an interestingness measure to filter out unin-

teresting rules. A low level rule is interesting if its support or confidence is different

by a factor of k from the expectations, computed from the support and confidence of

a high level rule assuming even distributions among children. Some other interesting-

ness measures, which detect the deviations from the given norms [84], for example,

can be adapted as well for mining multiple-level association rules.

These interestingness measures can be integrated in our method. After the large

itemsets are found, the rule-generation module will generate rules from top level t o

primitive level. When a strong rule is found, it is output if it passes the interestingness

CHAPTER 5. MINING M ULTIPLE-LEVEL ASSOCIATION RULES

test; otherwise, it is discarded.

Another direction to focus on interesting rules is using meta-rules which are rule

templates specifying the format of the rules to be found. The meta-rule guided mining

of association rules is studied in Chapter 6.

5.7.3 Re-examination of the Definition of Strong Multiple-

Level Association Rule

Strong multiple-level association rules were introduced in Definition 5.2.3 for a large

class of applications. Algorithms studied in Sections 5.3 and 5.4 follow this definition.

However, different applications may require finding different kinds of multiple-level

association rules. We examine how the variations of the rule definition may influence

the rule mining algorithms.

First, the multiple-level association rules may include multiple conceptual hierar-

chies, their mixtures, and the associations among the items at different levels of a

hierarchy, etc. Such variations have been examined in Section 5.6.

Second, our definition examines an item at level 1 if its parent is a large 1-item

at level 1 - 1. An alternative is to examine the associations among k items at level

1 only if the (k-arity) associations of their k parents are in the large k-itemsets a t

level I - 1. For example, only if "{bread, milk) " are large 2-itemsets, will their lower

level combinations of different kinds of milk and bread be examined. This definition

may exclude many itemsets that have been previously considered and reduce the

set of candidate itemsets to be examined at lower levels. Its efficient rule mining

algorithms can be worked out accordingly. However, since large single items are

usually interesting enough to warrant detailed examinations, a strict requirement of

examining only those itemsets whose parents are large k-itemsets (for k > 1) may

miss many potentially interesting associations.

Third, our definition concerns a minimum support threshold in relevance to a

specified set of data instead of to the whole database. The minimum support can be

specified as a ratio, such as the number of transactions containing particular item-

sets versus the total number of transactions within a specified domain. The flexible

CHAPTER 5. MIil'lNG A4ULTIPLE-LEVEL ASSOCIATION RULES 123

definition of domains at different levels, especially the confinement of the domains be

smaller at lower levels, not only clarifies the concept of a rule but also reduces the

search effort. For example, for the top-level, the support of an itemset could be the

ratio of the set of transactions containing the itemset versus either the whole set of

transactions in the t,ransaction database or the set of tra.nsactions in relevance only to

the data mining query (e.g., the transactions containing fresh food items). For level

two, the support of an itemset could be the ratio of set of the transactions containing

the itemset versus the set of transactions containing large items (instead of the whole

set of transactions), etc. As long as the support is well defined and fixed at each level

(for different large k-itemsets), the computation will be the same as those outlined in

the algorithms.

Notice that it is natural to consider using a larger minimum support when deriving

large 1-itemsets and substantially reduce the minimum support at the derivation of

large 2-itemsets, etc. However, based on our observation, the restriction on the fixed

minimum support threshold at a level for k-itemsets (for all k's) may not be easily

relaxed. This is because a key optimization technique applied in both single-level

and multiple-level association rule mining algorithms is to use only the entries in the

large k-itemsets to derive the candidate large (k + 1)-itemsets. This optimization

is not applicable if the minimum support changes on different k's. A compromise

is to derive intermediate large k-itemsets for all the k's by first taking the smallest

minimum support among the k-itemsets (if they are allowed to be different) and then

filtering out those which are not large for the current k. By doing so, the current large-

itemsets-mining algorithms are still applicable by augmenting an additional filtering

process. Whether there may exist more efficient algorithms under this restriction

remains a research issue.

5.8 Summary

We have extended the scope of the study of mining association rules from single

level to multiple conceptual levels and have studied methods for mining multiple-level

association rules from large transaction databases. A top-down progressive deepening

CHAPTER 5. MINING M ULTIPLE-LEVEL ASSOCIATION RULES 124

technique is developed for mining multiple-level association rules, which extends the

existing single-level association rule mining algorithms and explores techniques for

sharing data structures and intermediate results across levels. Based on different

sharing techniques, a group of algorithms, notably, ML-T2L1, ML-TlLA, ML-TML1

and ML-T2LA, have been developed. Our performance study shows that different

algorithms may have the best performance for different distributions of data and

different thresholds.

Related issues, including methods for mining flexible multiple-level association

rules, conceptual hierarchy handling, interestingness measures to filter out uninter-

esting rules, and the adaptation to different mining requests are also discussed in the

paper. Our study shows that mining multiple-level association rules from databases

has wide applications, and efficient algorithms can be developed for the discovery of

interesting and strong such rules in large databases.

Chapter 6

Meta-Rule Guided Mining of

Mult iple-Level Association Rules

6.1 Introduction

A frequently encountered phenomenon in data mining is that although a mining sys-

tem may discover a quite large number of rules, many of them could be poorly focused

or uninteresting to users. Two major factors may contribute to this phenomenon: (1)

lack of focus on the set of data to be studied, and (2) lack of constraints on the forms

and/or kinds of rules or knowledge to be discovered.

The first problem, the lack of focus on the set of data to be studied, can be han-

dled by introducing a data mining interface which specifies the set of data relevant

to a particular mining task. For example, the DBMiner system uses an SQL-like

interface [51] to specify the task-relevant set of data for a data mining query. Thus,

in order to find the general characteristics of computer science graduate students in

Canada, a where-clause is used to retrieve only those students of interest.

However, the second problem, the lack of constraints on the forms and/or kinds '

of rules or knowledge to be discovered, is not so straightforward to solve. There are

many ways to specify the kinds of knowledge or the forms of rules to be discovered.

For example, one may specify the types of knowledge to be discovered, such as char-

acteristic rules, classification rules, association rules, and so on [48], or specify the

CHAPTER 6. RIE TA - R ULE GUIDED MINING 126

number of disjuncts in a generalized rule, i.e., the expected (or maximum) number of

distinct values of each generalized attribute or the number of tuples in the generalized

relation (461. Moreover, one may also specify some syntactic or semantic constraints

on the forms of discovered rules [4, 651.

Recently, Shen et al. [94] proposed an interesting technique to specify the form of

rules to be discovered in data mining, called metaquery, which presents a desired log-

ical form for the rules to be discovered and serves as an important interface between

human discoverers and the discovery system. The metaquery approach confines the

rules to be discovered to be in a specified form, such as "P(x, y) A Q(y, z) + R(x, z)",

where P , Q and R are predicate variables that can be bound to any concrete predi-

cates, and x, y, and z are variables that can be bound to some data in the database.

Such kind of metaqueries can be given by users or revised interactively from initial

metaqueries formed by the system based on the schema information. Such rule forms

can also serve as a linkage between deductive and inductive aspects of knowledge dis-

covery and facilitates a deductive-inductive-human discovery loop. Thus, it represents

an interesting direction to pursue.

In their initial study of metaquery-directed data mining [94], the rules to be

discovered are confined to single conceptual level, whereas the knowledge discovery

method is confined to Bayesian Data Cluster linked with a deductive database sys-

tem LDC + +. Based on our observation, the scope of metaquery-directed mining

could be substantially extended if the discovery of rules at multiple conceptual lev-

els is explored [37, 471. Moreover, since a metaquery and its instantiated rules are

in the form of association rules, the performance could be substantially enhanced if

the database-oriented association rule mining algorithms [4] are adopted in the data

mining process.

As we mentioned in the previous chapter, one problem of the current rule mining

methods is that they often discover a large number of association rules, and some of .
such rules may not be desirable to users. While some interestingness measures like

the R-interestingness [lo41 can be used to prune some uninteresting rules, it is more

desirable and effective to use a rule template, or meta-rule.

In this chapter, issues for meta-rule guided mining of multiple-level association

CHAPTER 6. hdETA-RULE GUIDED MINING 127

rules are studied and a set of efficient mining algorithms is developed and tested.

The study shows that the integmtion of meta-rule guided knowledge mining with the

mining of multiple-level association rules enhances both the power and performance

of a data mining system and thus is an interesting direction to pursue [37].

The remainder of the chapter is organized as follows. In Section 6.2, preliminary

concepts about meta-rule guided mining of multiple-level association rules are intro-

duced, starting with some motivating examples. In Section 6.3, methods for mining

meta-rule-guided single-variable rules are studied. In Section 6.4, methods for min-

ing meta-rule-guided multiple-variable rules are examined. Variation of methods and

other relevant issues on meta-rule-guided data mining are discussed in Section 6.5,

and the study is summarized in Section 6.6.

6.2 Preliminary Concepts

To simplify our discussion, a relational model is adopted in our study, however, the

methods developed here can be applied with some modifications to other data models,

including extended-relational and object-oriented ones.

For effective data mining, a particular user is usually interested in only a subset

of the data stored in a large database. A DMQL data mining query [51] submitted to

a data mining system should first be transformed into two portions: a data collection

portion and a knowledge discovery portion. The former is essentially an SQL-query

which will be executed against the database to collect the interested set of data. The

latter, i.e., the knowledge discovery portion, will be examined in detail.

Example 6.2.1 Suppose that a portion of the relational schema of a university

database is presented as follows.

student(name, sno, status, major, gpa, birth-date, birth-place, address)

course(cno, title, dept)

grading(sno, cno, instructor, semester, grade)

Let a data mining query (q l) be presented as follows, which is to find the rela-

tionships between the attributes status, gpa, birth-place, and address, in relevance to

CHAPTER 6. META-RULE GUIDED MINING

major, for the students born in Canada.

(ql) :discover rules in the form of

major(s : student, x) A Q(s, y) -+ R(s, z)

from student

where birth-place = "Canada"

in relevance to major, gpa, status, birth-place, address

The meta-rule of (ql), "ma jor(s : student, x) A Q(s, y) + R(s, z)", specifies the

form of the rules to be discovered, that is, each rule to be discovered is a logic rule

containing two binary predicates, major(s, x) and Q(s, y), serving as the antecedent

and one binary predicate, R(s, z) , as the consequent, with all the predicates sharing

the first variable s which is the key of the relation student. Q and R are two predi-

cate variables which can be instantiated by a list of relevant attributes: gpa, status,

birth-place, and address.

By data mining techniques, the following rules may be discovered from the database.

major(s, "Science") A gpa(s, "Excellent") -, status(s, "Graduate") (60%)(6.2.1)

major(s, *) A birt h-place(s, "B.C.") + address(s, "Burnaby") (55%) (6.2.2)

Rule (6.2.1) indicates that 60% of the students majoring in science and having ex-

cellent gpa are graduate students and rule (6.2.2) indicates that 55% of the students

majoring in anything and born in B.C. are living in the city of Burnaby.

The rules expressed by even lower level concepts, such as rules (6.2.3) to (6.2.4),

can be further discovered if multiple-level information can be mined from the database.

The semantic meaning of these rules is self-explanatory.

major(s, "Physics") A gpa(s, "3.8-4.0") + status(s, "M.ScV) (76%) (6.2.3)

major(s, "CS") A birth-place(s, "Vancouver")

--+ address(s, "NorthBurnaby") (85%) (6.2.4)

Moreover, the associations among several relations can be discovered by joining

these relations together. The relational joins can be explicitly expressed in the meta-

rules as presented in the following data mining query (9 2) .

C H A P T E R 6. META-RULE GUIDED MINING

(q 2) : discover rules in the form of

major(,, x) A P(c, y) -+ Q(s : S, c : C, 2).

from student S, grading G, course C

where S.birth-place = "Foreign"

The query is to find the relationships among three predicates, one of which is instan-

tiated to major(s, x) , the second contains the key of the course relation, and the

third one, the consequent predicate, contains two key components from two relations:
.,

student and course, for the relevant set of the data: the students born in foreign . .

countries.

By mining rules from multiple conceptual levels, the following rules may be dis-

covered from the database.

major(s, "Science") A dept(c, "CS") --+ grade(s,c, "Good") (60%) (6.2.5)

major(s, "Math") A cno(c, "CS-400-level") t grade(s, c, " A - ") (42%) (6.2.6)

In Example 6.2.1, both the data mining queries and the discovered rules contain

concepts at nonprimitive levels, i.e., levels higher than those stored in databases, such

as "Science", "Graduate", "Excellent", etc. The high level concepts appearing in the

query help the collection of the relevant set of data, whereas the concepts organized at

different levels help in progressively deeping the data mining process by first browsing

the high-level data and then mining detailed regularities at low levels.

In this chapter, we assume conceptual hierarchies are provided, which organize

multiple levels of concepts for mining rules at multiple conceptual levels. However,

the conceptual hierarchies can also be dynamically adjusted and/or automatically

generated for flexible data mining as discussed in Chapter 3.

To confine our study, we assume the rules to be discovered are conjunctive rules,

i.e., a set of conjuncts in both the rule head and body. Moreover, the predicate vari- '

able in the meta-rules can only be instantiated against database schema (attributes).

Furthermore, each predicate variable in a meta-rule is different from others and is

instantiated to a distinct and different predicate name. Some relaxations of these

restrictions will be discussed in Section 5.

CHAPTER 6. META-RULE GUIDED MINING 130

As a notational convention, a predicate name starting with an upper-case letter

represents a predicate variable. It can be instantiated by binding it to a concrete

attribute name (which starts with a lower-case letter) in the schema. For example, a

predicate variable P(x , y) can be instantiated to status(x, "Graduate") in Example

6.2.1.

Definition 6.2.1 A meta-rule is a rule template in the form of

PI A P ~ . . , A P , + Q1 A Q , A * . . AQ,. (6.2.7)

where Pi (for i = 1, . . . , rn) and Qj (for j = 1, . . . , n) are either instantiated predicates

or predicate variables.

The rule "major(s,x) A P(c, y) -t Q(s : S, c : C, 2)" in Example 6.2.1 is a meta-rule.

Definition 6.2.2 A rule, R,, complies with a meta-rule, Rh,, if and only if it can be

unified with RM.

For example, rule (6.2.5) complies with the meta-rule "major(s, x) A P(c, y) + Q(s :

S, c : C, 2)" in Example 6.2.1.

Definition 6.2.3 A pattern, p, is one predicate p; or a set of conjunctive predicate

p; A - . Apj, where pi, . . . , pj are predicates instantiated against the database schema.

The support of a pattern p in a set S, a(p/S), is the number of the tuples in S

which contain p versus the total number of tuples in S. The confidence of p + q in S ,

p(p + q/S), is the ratio of u (PA~/S) versus a(p/S), i.e., the probability that pattern

q also occurs in S when pattern p occurs in S.

As in Chapter 5, a minimum support, a', and a minimum confidence, y' are spec-

ified for each level.

Definition 6.2.4 A pattern p is large in set S at level I if the support of p is no

less than its corresponding minimum support threshold a;. The confidence of a rule

" p -+ q/S" is high at level 1 if its confidence is no less than its corresponding minimum

confidence threshold 9;.

CHAPTER 6. A4ETA-R ULE GUIDED MINING 131

Definition 6.2.5 A rule " p -+ q/S" is strong if, for a set S , each ancestor (i.e., the

corresponding high level predicate) of every predicate in p and q, if any, is large at

its corresponding level, " p A q/S" is large (at the current level), and the confidence of

" p -+ q/Sn is high (at the current level).

Roughly, a predicate is like an itemset in Chapter 5 The definitions for support,

confidence, large, and strong are also similar.

Based on the two mining queries presented in Example 6.2.1, meta-rule guided

mining of multiple-level association rules can be classified into two categories: (1)

mining single-variable association rules, and (2) mining multiple-variable association

rules. The former discovers association rules in the form like (6.2.3)) in which each

predicate contains only one and the same variable; whereas the latter discovers rules in

the form like (6.2.5), in which some predicate(s) may contain more than one variable,

which may often involve join(s) of more than one relation.

6.3 Meta-Rule- Guided Mining of Single-Variable

Rules

In this section, we examine the methods for meta-rule guided mining of single-variable

association rules. A single-variable association rule represents an association relation-

ship among a set of properties in a data relation at different conceptual levels.

Definition 6.3.1 A single-variable meta-rule is in the form of

where P, (for i = 1, . . . , n) and Q j (for j = 1, . . . , m) are either instantiated predicates

or predicate variables, and the common variable t represents the key of a relation rel. .

By data mining, each predicate variable in a discovered rule will be instantiated to

a concrete predicate name which is an attribute name of the relation rel, the common

variable t will remain as a variable that is an abstraction of the key or key component

CHAPTER 6. MET4-RULE GUIDED MINING 132

of the relation, and other variables in the predicates will be instantiated to the high-

level or primitive level constants (i.e., properties) of the corresponding predicates

(attributes).

For example, the meta-rule "major(s : student, x) A Q(s, y) -+ R(s, 2)" in (q l) of

Example 6.2.1 is a single-variable meta-rule, and the discovered rule (6.2.1) indicates

that the common variable s remains to be a variable which is an abstraction of the

key of the relation student, and other variables in the predicates are instantiated to

constants, such as Science, Excellent, and Graduate in the corresponding predicates,

such as major, gpa, and status, respectively.

For efficient mining of multiple-level single-variable association rules, two tech-

niques: a large-predicate growing technique and a p-predicate testing technique, are

proposed and examined in the next two subsections.

6.3.1 A Large-Predicate Growing Technique

Following our previous study on mining multiple-level association rules [47], a large-

predicate growing technique is proposed as follows.

First, the set of relevant data is collected into an initial data relation by executing

an SQL query specified by the data mining query. Second, large 1-predicate-sets,

L[1, I], L[2,1], . . . , L[maxl , 11, are derived at each conceptual level (from the top-

most desired conceptual level, level 1 down to level maxl) by scanning the initial

data relation once, where level max l is the lowest level where a non-empty 1a.rge

1-predicate-set can be derived. Third, large 2-predicate-sets are derived at each con-

ceptual level by first generating the candidate la,rge 2-predicate-sets and then scanning

the initial data relation to compute the large 2-predicate-sets. Fourth, this process

continues until the large p-predicate-sets are derived at each conceptual level, where

p is the total number of predicates in the meta-rule, i.e., p = m + n in rule (6.3.8). Fi-

nally, the rules in the form of meta-rules are generated from the large p-predicate-sets

at each conceptual level based on the specified confidence threshold at this level.

This technique is illustrated in the following example.

C H A P T E R 6. META-RULE GUIDED A4INING 133

Example 6.3.1 We examine how to derive the multiple-level strong association rules

for query (q l) of Example 6.2.1.

1. The initial data relation Ro (a fragment shown in Table 6.1) is derived by

performing selection to collect the students who were born in Canada and then

projection on the set of relevant attributes: major, gpa, status, birth-place, and

address.

Table 6.1: A fragment of student relation in relevance to the data mining task.

major
CS
...

2. Large 1-predicate-set tables at multiple conceptual levels, (as shown in Table

6.2), i.e., L[1,1], L[2,1], L[max_l, 11, are derived by scanning the initial

data relation & once.

gpa
3.S5
...

Science 4,850

Excellent 2,173

status
Senior

. . .

... ...
status I count

count

birth-place
Vancouver, B.C., Canada

. . .

I status I count
I I

address
123 Curtis, Burnaby, B.C., Canada

...

Table 6.2: A fragment of large 1-predicate tables at different conceptual levels. .

3. Large 2-predicate-sets at multiple conceptual levels (as shown in Table 6.3), i.e.,

L[1,2], L[2,2], ..., L[max_l, 21, are derived by first generating the candidate

CHAPTER 6. META-RULE GUIDED MINING 134

large 2-predicate-sets and then scanning Ro to compute the large 2-predicate-

sets.

major

.

Table 6.3: A fragment of large 2-predicate tables at different conceptual levels.

Ll3,21 2, ' major gpa count

4. This process continues until the large ppredicate-sets at multiple conceptual lev-

els, i.e., L[1, P], L[2, P], . . . , L[max-1, p], where p is the total number of predicates

in the meta-rule, are derived. The tables so derived for the large 3-predicate

sets are presented in Table 6.4.

Appl.Sci. 3.8-4.0 327

5. The rules in the form of meta-rules are generated in Table 6.5 from the large

3-predicate-sets at multiple conceptual levels, based on the specified confidence

threshold at each level.

The above example leads to the following algorithm for mining meta-rule guided

single-variable strong hlL-association rules using large predicate growing technique.

CS

Algorithm 6.3.1 (large predicate-growing) hleta-rule guided mining of single-

variable strong ML-association rules using large predicate growing technique.

3.8-3.9 174

C H A P T E R 6. M E T A - R U L E GUIDED M I N I N G

. .c[1,31

Table 6.4: A fragment of large 3-predicate tables at different conceptual levels.

major
Science

. I

Input: (1) Dl?, a relational database, (2) 'H, a conceptual hierarchy, (3) minsup[l],

the minimum support threshold, and mincon f [l], the minimum confidence thresh-

old, for each conceptual level 1, and (4) m e t a R , the meta-rule in the form of

(6.3.8).

Output: Multiple-level strong association rules in the form of (6.3.8) discovered in

relational database VB.

gPa
Excellent

JW, 31
major

. . .
q3,31

. . .

Method: A top-down, progressively deepening process which collects large predicate

sets at different conceptual levels as follows.

. . .

1. The initial data relation & is derived by executing an SQL query specified by

the data mining query.

status
Underg.

2. Large 1-predicate-set tables at each conceptual level, i.e., L[1, I], L[2,1], . . . , .
L[max4,1], are derived by scanning the initial data relation & once. Note

that a predicate p;(t, c;) is large at level 1 (and thus being included in L[l, 11) if

(1) its support is lower than minsup[l], and its corresponding concept c: a.t a

higher-level 1 - 1 is large.

count
526

CHAPTER 6. A4ETA- RULE GUIDED h4INlNG 136

Rule
. . .

major(s, "CS") A gpa(s, "5.8-3.9") 4 status(s, USenior") 5% 25.6%]

major(s, uScience") A birth-place(s, uB.C.") -4 address(s,

"Burnaby ")

Table 6.5: Rules generated from the large 3-predicate tables a t different conceptual
levels.

Support
. . .

3. Derive the large k-predicate-set tables at each conceptual level and for each k

from 2 to p, i.e., derive L[1, k], for 1 = 1, . . . , m a x l , and k = 2, . . . ,p, where p is

Confidence
. . .

25%

the total number of predicates in the meta-rule.

55%

Note that a set of k predicates is large at level 1 if (1) each of its k subsets of

(k - 1) predicates is large at level 1, and (2) the support of the k predicates at

level 1 is no less than rninsup[l].

4. For each conceptual level 1 , generate the rules in the form of meta-rules from

the large ppredicate set tables L[1, p] if the confidence of the rule is no less than

mincon f [1], the specified confidence threshold at this level.

6.3.2 A Direct ppredicate Testing Technique

The previous algorithm is a natural extension of the method developed in the study of

mining multiple-level association rules [47]. A major difference of the requirements in

meta-rule guided mining from that in the mining of general multiple-level association

rules is that p, the number of large predicates in the rules to be generated, is predefined

by the given meta-rule. This heuristic can be used in the development of the variations -
of the rule mining algorithms.

Here we consider one variation of the mining technique: a direct p-predicate gener-

ation and testing technique. At the third step of Algorithm 6.3.1, instead of deriving

CHAPTER 6. MET.4-RULE GUIDED MINING 137

large 2-predicate-sets at each conceptual level, and then large 3-predicates, etc., p-

predicate sets are generated directly from the large 1-predicate sets and tested against

the support threshold at each level. This technique is illustrated in the following sim-

ilar example, followed by the algorithm for mining meta-rule guided single-variable

strong ML-association rules using the ppredicate testing technique.

Example 6.3.2 We examine the derivation of the multiple-level strong association

rules for query (q l) of Example 6.2.1.

1. The same as Step 1 and Step 2 of Example 6.3.1.

2. Large p-predicate-sets at multiple conceptual levels, i.e., L[l,p], L [~ ,P] , . . . ,
C[max_l,p], are derived based on the large 1-predicate sets derived at previ-

ous step. This skips the generation of the large 2-predicate tables of Example

6.3.1 and generates only the large 3-predicate tables as in Table 6.4.

3. The rules in the form of meta-rules are generated from the large p-predicate-sets

at each conceptual level based on the specified confidence threshold at this level.

This generates the same rule table as in Table 6.5.

Algorithm 6.3.2 (Direct ppredicate testing) Meta-rule guided mining of single-

variable strong ML-association rules using the direct p-predicate derivation technique.

Input: The same as Algorithm 6.3.1.

Output: The same as Algorithm 6.3.1.

Method: A t,op-down, progressively deepening process which collects large p predi-

cate sets at multiple conceptual levels as follows.

I . The same as Step 1 and 2 of Algorithm 6.3.1.

2. Derive the large ppredicate-set tables at each conceptual level from level 1 to

rnax-2, j.e., derive L[l,p), for 1 = 1,. . . , max-1, where p is the total number of

predicates in the meta-rule.

CHAPTER 6. META-R ULE GUIDED MINING 138

Note that a set of p predicates is large a t level 1 if (1) each of its component

1-predicates is large at level 1, and (2) the support of the p predicates at level 1

is no less than minsup[l].

3. For each conceptual level 1, generate the rules in the form of meta-rules from

the large ppredicate set tables L[l,p] if the confidence of the rule is no less than

mincon f [l], the specified confidence threshold at this level.

6.3.3 A Performance Comparison of the Two Algorithms

We implemented the large-predicate growing and the direct p-predicate testing algo-

rithms on a SUN SparcStation5 with 32MB main memory. A synthetic database is

used to test the algorithms. The database has five attributes each of which has 100

values at the primitive level. The values are organized into a conceptual hierarchy

with four levels. The numbers of higher level (nonprimitive) nodes in the hierarchy

are 1, 5 and 20 at level 1, 2, 3 respectively. Since there is only one node at the level

1, it is treated as a virtual level and does not join the computation. The meta-rule

we used has the form: A(t , x) A B(t , y) -+ C(t , 2). The minimal confidences are 50%

at all levels.

First, we test the scale-up properties of the two algorithms. They are tested on the

database with the number of tuples from 10,000 to 100,000. The minimal supports

are (476, 1%, 0.2%) at levels 2, 3 and 4. The performance data are shown in Figure

6.1. As we can see, both algorithms scale up well. Algorithm 6.3.1 has better scale-up

behavior since the overhead of computing L[l , k] for small Ic weights less and less as

the database size grows.

We then compared the performance of the algorithms under different minimal sup-

ports. Figure 6.2 shows the execution times of both algorithms with different minimal

supports. The database size is fixed at 10,000 tuples. The minimal supports used are:

T1(6%, l%, 0.5%), T2(4%, 1%, O.l%), T3(4%, 0.5%, 0.1%), T4(2%, 0.5%, 0.1%),

and T5(2%, 0.5%, 0.05%). When the minimal supports decrease, the execution times

increase since the filter becomes weaker. We find that Algorithm 6.3.1 is sensitive to

the minimal supports since it uses them to cut out small patterns at each iteration.

C H A P T E R 6. META-RULE GUIDED M I N I N G

Sca k Up
I 1 I I

..
1Ok 25 k 50k 75k lOOk

X of transactions

Figure 6.1: Scale up of the algorithms.

On the other hand, Algorithm 6.3.2 is not so sensitive to the change. Algorithm 6.3.1

outperforms Algorithm 6.3.2 when the minimal supports are large (so the filter is

strong) while Algorithm 6.3.2 outperforms Algorithm 6.3.1 when the filter is not very

strong. Generally, we feel Algorithm 6.3.1 should be tried for most reasonable support

thresholds. Algorithm 6.3.2 is a good candidate when lots of details are interested,

i.e., when the support thresholds are small.

f
H
1
F
e -
C

2

Figure 6.2:

I I I J
T I T2 T3 T4 T5

Minimal Supports(Deaeasing)

Relative performance with respect to minimal support.

C H A P T E R 6. META-RULE GUIDED MINING 140

6.4 Meta-Rule Guided Mining of Multiple-Variable

Rules

Now we examine the meta-rule guided mining of multiple-variable rules. Since a

multiple-variable association rule presents relationships among several relations, a

join of these relations should be performed in the data collection step based on the

join relationship explicitly expressed in the meta-rules.

Taking query (qz) in Example 6.2.1 as an example, we analyze the data mining

process as follows.

Example 6.4.1 The meta-rule presented in query (qz) of Example 6.2.1 contains

three predicates: major(s, x), P(c, y) , and Q(s, c, z). The first predicate is from

the attribute major of the relation student, the second is a property in relevance to

the relation course because it contains one variable from course, and the third is a

property in relevance to the relation grading since it contains two variables, each from

student and course, respectively.

The data mining process is to discover the relationships in relevance to three

relations: student, course, and grading. It is necessary to perform a join of the three

relations. Since only one predicate major(s, x) is from the relation student, only the

attribute major in the relation student is retained in the joined relation. Therefore,

the joined relation should have the following schema.

s-c_g (sno, major, cno, title, dept, instructor, semester, grade)

The possible instantiations of the two candidate predicates P and Q should be:

P E {title, dept), and Q E {instructor, semester,grade). Moreover, since title is

unique in the relation course, which is similar to the behavior of the key cno, the

predicate P in the meta-rule can only be instantiated to dept. Therefore, the data

mining process is essentially t o find multiple-level association rules in relevance to the
'

following three properties: (1) major(s, x), (2) dept(c, y), and (3) one of the following

three predicates: instructor(s, c, z), semester(s, c, z) , grade(s, c, 2).

Except for the restriction on the instantiation of predicate variables, the data

mining methods are like that of mining single-variable association rules. 0

CHAPTER 6. AIETA-RULE GUIDED MINING

Discussion

This sect,ion discusses some closely-related issues on meta-rule guided mining of multiple-

level association rules, including meta-rule-guided mining of mixed-level rules and

variations of constraints on the forms of meta-rules.

6.5.1 Meta-Rule-Guided Mining of Mixed-Level Rules

In the method developed in Section 6.3, it is assumed that the concepts of the pred-

icates in the discovered rules are lined up among different predicates according to

the levels of their conceptual hierarchies. For example, major "Science" is lined up

with gpa "Excellent" and birth-place "B.C.", whereas major "CS" is lined up with

gpa "3.8-3.9" and birth-place "Vancouver", etc. However, it may not be the case in

practical applications. It could be desirable to line up major "CS" with gpa "Ex-

cellent" and birth-place "British Columbia", etc. That is, it is often necessary to

link concepts among different predicates at multiple levels of hierarchies for effective

knowledge mining.

Interestingly, the method studied in the last two sections needs only minor modifi-

cations in order to accommodate this flexible data mining requirement. For example,

Algorithm 6.3.1 can be modified as the following for mining rules across multiple

conceptual levels. At the third step, the candidate large 2-predicate-sets will enclose

the pairs of two large 1-predicate-sets at any conceptual levels instead of pairing only

those at the same conceptual levels.

6.5.2 Variations of Constraints on the Forms of Meta-Rules

In our previous discussion, there has been another constraint on the possible forms

of meta-rules: there are no repetitive predicate variables in the meta-rule, and all the .
predicates in an instantiated rule will be different.

Although this restriction may cover a large number of applications, there are

applications which would like to study the association relationships involving the same

predicates. For example, one may like to find the general association relationships

CHAPTER 6. META-RULE GUIDED hlINING 142

among the courses taken by the same student. Such a query could be presented and

examined in the following example.

Example 6.5.1 In the university database of Example 6.2.1, one may like to find the

association relationships among the courses taken by the same student. The query

can be presented as follows.

(q 4) : discover rules in t he fo rm o f

P(s : S, Cl : C, XI) A P(s, CZ : C, xz) -, P(s, Cg : C, xg)

f rom student S, grading G, course C

The system may find some meaningful rules like the following.

grade(s, "CMPTlOO", excellent")^ grade(s, "MATH1007', "Excellent")

+ grade(s, "C MPT300n, "A") (82%)

Note in this case the data mining process can be viewed as a similar process of

mining association rules in transaction databases [2]. This is because the relational

table can be compressed into a table consisting of two fields: (1) a set of distinct stu-

dents, each corresponding t o a transaction identifier in a transaction database, and (2)

a set of corresponding grading records associated with each student, each correspond-

ing a set of data items processed by that transaction. Thus the transaction-based

data mining algorithms developed in previous studies [4, 471 can be applied in the

efficient processing of association relationships. However, the previously developed

transaction-based association rule mining algorithms still need to be modified to ac-

commodate more complicated queries.

6.6 Summary

We have studied the meta-rule guided mining of multiple-level association rules in

large relational databases. Meta-rule guided mining of multiple-level association rules

provides syntactic constraints on the desired rule forms to be discovered, which leads

CHAPTER 6. META-RULE GUIDED MINING

to the constrained and progressive mining of refined knowledge from data and thus

has interesting applications for knowledge discovery in large databases.

A top-down progressive deepening data mining technique is developed for rule-

guided mining of multiple-level association rules, which extends the multiple-level

association rule mining algorithms for rule-guided mining of association rules. Two

algorithms, the large-predicate growing and the direct ppredicate testing, have been

proposed and tested against synthetic databases, and their performance study shows

that different algorithms may have the best performance for different distributions of

data.

Related issues, including methods for mining flexible multiple-level association

rules and relaxations of constrains on the forms of mete-rules are also discussed in this

chapter. Our study shows that meta-rule guided mining of multiple-level association

rules from databases has wide applications and efficient algorithms can be developed

for discovery of interesting and strong such rules in large databases.

Chapter 7

Cooperative Query Answering

Using Multiple Layered Databases

The data mining techniques we discussed in previous chapters can be applied to many

areas, such as scheme evolution and integration 1261, cooperative query answering [49],

knowledge discovery on the Internet [52], etc.

In this chapter, we discuss the applications of data mining techniques in intelligent

query answering.

7.1 Introduction

Cooperative (or intelligent) query answering refers to a mechanism which answers in-

formation system queries cooperatively and intelligently by analyzing the intent of a

query and providing some generalized, neighborhood, or associated answers [20, 24,

39, 81. Many interesting techniques [58, 25, 19, 38, 631 have been developed for coop-

erative query answering, by integration of the methods developed in several related

fields, such as semantic data modeling, deductive databases, knowledge discovery in

databases, etc.

In this chapter, we propose a new technique: the construction and application of

a multiple layered database, and explore its potential and effectiveness in cooperative

query answering. A multiple layered database (MLDB) is a database composed of

CHAPTER 7. AIULTIPLE LAYERED DATA BASES 145

several layers of information, with the lowest layer corresponding to the primitive

information stored in a conventional database, and with higher layers storing more

general information extracted from lower layers.

We have the following motivations to promote the idea of multiple layered databases.

First, with the wide availability of database systems and rapid progress of infor-

mation technologies, a database may store a huge set of data objects with complex

structures. A large set of data objects may be organized in classes and class-subclass

hierarchies and may contain complex structured or unstructured subobjects, texts,

images, and spatial or multimedia data. Moreover, the data may be distributed to

different sites and be stored in heterogeneous multi-databases. Queries on such kind

of databases could be costly to process. A multiple layered database system may

preprocess and generalize some primitive data, resolve certain semantic ambiguities

of heterogeneous data, and store the preprocessed data at a more general conceptual

layer, which may facilitate high-level querying and reduce the cost of query process-

ing [92, 1091.

Secondly, a database user may not be familiar with a database schema, a query lan-

guage, or specific data constraints. It is likely that such a user may pose queries which

are not exactly what (s)he wants to know. Such kind of queries are better treated

as information probes and answered by providing general or associated information

with data distribution statistics, which may help users to better understand the data

and form more accurate queries [19, 8, 241. In a multiple layered database system,

probe queries can be mapped to a relatively higher conceptual layer and be processed

in such a layer. Such answers may provide associative and summary information and

assist users to refine their queries.

Thirdly, a multiple layered database may provide a global view of the current con-

tents in a database with summary statistics. It is a natural resource to assist users to

browse database contents, pose progressively refined queries, and perform knowledge
'

discovery in databases. Some users may even be satisfied with the examination of the

general or abstract data with associated statistical information in a high layer instead

of examining the concrete data in every detailed level.

CHAPTER 7. MULTIPLE LAYERED DATA BASES 146

Finally, schema-directed semantic query optimization can be performed in a mul-

tiple layered database. A higher layer database, storing more general and abstract

information, could be much smaller than its corresponding lower layer one. Thus, it

is faster and less costly to retrieve data in a higher layer database. Moreover, since

a multiple layered database provides statistical information of database contents in

the higher layers, it may provide guided assistance for query processing and query

optimization of its lower level counterparts.

In this chapter, we propose a model for a multiple layered database and study

how to construct a multiple layered database and how to perform cooperative query

answering using MLDBs.

The following sections are organized as follows. In Section 7.2, the concept of

multiple layered database is introduced. The techniques for construction of a multi-

ple layered database are studied in Section 7.3. Cooperative query answering using

MLDBs is investigated in Section 7.5. The chapter is summarized in Section 7.6.

7.2 A Multiple Layered Database

To facilitate our discussion, we assume that the database to be studied is constructed

based on an extended-relational da,ta model with the capabilities to store and handle

different kinds of complex data, such as structured or unstructured data, hypertext,

spatial or multimedia data, etc. It is straightforward to extend our study to other

data models, such as object-oriented, deductive, etc., and to other kinds of databases,

such as distributed and heterogeneous databases.

Definition 7.2.1 A multiple layered database (MLDB) consists of 4 major compo-

nents: (S, H , C, D) , defined as follows.

1. S: a database schema, which contains the meta-information about the layered

database structures;

2. H : a set o f conceptual hierarchies;

3. C: a set of integrity constraints; and

C H A P T E R 7. MULTIPLE LAYERED DATABASES 147

4. D: a set of database relations, which consists of all the relations (primitive or

generalized) in the multiple layered database. 0

The first component, a database schema, outlines the overall database structure

of an MLDB. It stores general information such as types, ranges, and data statistics

about the relations at different layers, their relationships, and their associated at-

tributes. More specifically, it describes which higher-layer relation is generalized from

which lower-layer relation(s) and how the generalization is performed. Therefore, i t

presents a route map for schema browsing and database content browsing and for

assistance of cooperative query answering and query optimization.

The second component, a set of conceptual hierarchies, is used to generalize lower

layer relations to high layer ones and map queries to a.ppropriate conceptual layers

for processing, as discussed in Chapter 3.

The third component, a set of integrity constraints, consists of a set of integrity

constraints to ensure the consistency of an MLDB.
The fourth component, a set of database relations, stores data relations, in which

some of them are primitive (i.e., layer-0) relations, whereas others are higher layer ones,

obtained by generalization.

Example 7.2.1 Suppose a real-estate database contains the following four data re-

lations.

1. house(house-id, address, construction-date, constructor(. . .), owner(name,

. . .), livingroom(1engt h, width), bed-room-1 (. . .), . . . , surrounding-map,

house-layout, house-picture, house-video, listingprice).

2. customer (name, social-insurance-#, birth-date, education, income, work-address,

home-address, spouse, children (. . .), phone, . . .).

3. sales (house, buyer, agent, contract-date, sell-price, mortgage (. . .), . . . , notes).

C H A P T E R 7. MULTIPLE LAYERED DATABASES 148

These relations are layer-0 relations in the MLDB. Suppose the database contains

the conceptual hierarchies for geographic locations, occupations, income ranges, etc.

An MLDB can be constructed as follows.

First, the relation house can be generalized to a higher layered relation house'.

The generalization can be performed, for example, as follows: (1) transform the house

construction date to years-old, e.g., from "Sept. 10, 1980" to 16; (2) preserve the

owner's name but remove other information associated with the owner; (3) compute

the total poor area of all the rooms and the number of rooms but remove the de-

tailed specification for each room; and (4) remove some attributes: surrounding-map,

house-layout, house-video, etc. The generalized relation house' can be considered as

the layer-1 information of the house, whose schema is presented as follows.

house'(house-id, address, years-old, owner-name, poor-area, #-of-rooms, . . . ,
house-picture, list ing-price).

Secondly, further generalization on house' can be performed to produce an even

higher layered relation house". For example, generalization may be performed as

follows: (1) remove the attributes house-id, owner, house-picture, etc.; (2) general-

ize the address to areas, such as North-Bumaby, East-Vancouver, etc.; (3) generalize

years-old to year-range, etc.; (4) transform #-of-rooms and other associate informa-

tion into category, such as 5-bedroom house, 3-bedroom town-house, etc.; and (5) merge

identical tuples in the relation and store the total count of such merged tuples. The

generalized relation house" could be as follows.

housel'(area, year-range, poor-area-range, category, . . . , price-range, count).

Similarly, customer can be generalized to customer', customer", etc., which forms

multiple layers of a customer relation. Multiple layers can also be formed in a similar

way for the relations, sales and agent.

A higher layered relation can also be formed by joining two or more primitive or

generalized relations. For example, customer-sales' can be produced by generalization

on the join of customer' and sales' as long as it follows the regulation(s) for the

construction of MLDBs (to be presented in the next section). Similarly, one may

join several relations at different layers to form new higher-layered relations, such as

housesales-customer', etc.

C H A P T E R 7. A4ULTIPLE LAYERED DATABASES

House-Sales-Customer'

Figure 7.1: The route map of a real-estate DB.

A possible overall MLDB structure, i.e., the schema of an MLDB, is presented in

Fig. 7.1.

Queries can be answered efficiently and intelligently using the MLDB. For example,

a user may ask the information about the houses with the price range between $250k

and $300k. The query can be answered intelligently by first using house", which may

return "none in West Vancouver, 10% in East Vancouver, 15% in South Burnaby,

etc.". Such an answer may help the user form more accurate queries to search for

houses in specific regions.

7.3 Generalization of Different Kinds of Data

An MLDB is constructed by generalization of the layer-0 (original) database. Since a

database may contain different kinds of complex data, it is important to examine the

method for generalization of each kind of data, including unstructured and structured

values, spatial and multimedia data, etc [70, 281.

CHAPTER 7. MULTIPLE LAYERED DATABASES

7.3.1 Generalization of Unstructured Data

Single valued, numerical and nonnumerical data are the most popularly encountered

attribute values in databases. The generalization on simple values can be performed

using conceptual hierarchy climbing, i.e., replacing the lower data or concepts with cor-

responding high level data or concepts. The generalization may rely on the available

hierarchies, specified by domain experts or users or implicitly stored in the database,

as we discussed in Section 3.1.3. In addition, conceptual hierarchies may be dynami-

cally adjusted based on the data distribution in order to best meet the current request,

as we discussed in Section 3.2. Moreover, conceptual hierarchies can be automatically

generated for numerical data as shown in Section 3.3.

7.3.2 Generalization of Structured Data

Complex structure-valued data, such as set-valued and list-valued data and data with

nested structures, can be generalized in several ways in order to be interesting.

A set-valued attribute may be of homogeneous or heterogeneous types. Typically,

a set-valued data can be generalized in two ways: (1) generalization of each value

in a set into its corresponding higher level concepts, or (2) derivation of the general

behavior of a set, such as the number of elements in the set, the types or value ranges

in the set, the weighted average for numerical data, etc. Moreover, the generalization

can be performed by applying different generalization operators to explore alternative

generalization paths. In this case, the result of generalization is a heterogeneous set.

For example, the hobby of a person is a set-valued attribute which contains a set

of values, such as {tennis, hockey, chess, violin, nintendo), which can be generalized

into a set of high level concepts, such as {sports, music, video-games), or into 5 (the

number of hobbies in the set), or both, etc. Moreover, a count can be associated with

a generalized value to indicate how many elements are generalized to the correspond-

ing generalized value, such as {sports(3), music(l), video-games(l)}, where sports(3)

indicates three kinds of sports, etc.

A list-valued or a sequence-valued attribute can be generalized in a way similar to

the set-valued attribute except that the order of the elements in the sequence should

C H A P T E R 7. MULTIPLE LAYERED DATABASES

be observed in the generalization.

Set- and list-valued attributes are simple structure-valued attributes. In general,

a structure-valued attribute may contain sets, tuples, lists, trees, records, etc. and

their combinations. Furthermore, one structure can be nested in another structure

a t any level. Similar to the generalization of set- and list-valued attributes, a general

structure-valued attribute can be generalized in several ways, such as (1) generalize

each attribute in the structure whereas maintain the shape of the structure, (2) flatten

the structure and generalize on the flattened structure, (3) remove the low-level struc-

tures or summarize the low-level structures by high-level concepts or aggregation, and

(4) return the type or an overview of the structure.

7.3.3 Aggregation and Approximation as a Means of Gen-

eralizat ion

Besides conceptual hierarchy ascension and structured data summarization, aggre-

gation and approxima.tion [101, 951 should be considered as an important means of

generalization, which is especially useful for generalization of a t tributes with large

sets of values, complex structures, spatial or multimedia data, etc.

Take spatial data as an example. It is desirable to generalize detailed geographic

points into clustered regions, such as business, residential, industry, or agricultural

areas, according to the land usage. Such generalization often requires the merge of a

set of geographic areas by spatial operations, such as spatial union, or spatial clus-

tering algorithms. Approximation is an important technique in such generalization.

In spatial merge, i t is necessary not only to merge the regions of similar types within

the same general class but also to ignore some scattered regions with different types if

they are unimportant to the study. For example, different pieces of land for different

purposes of agricultural usage, such as vegetables, grain, fruits, etc. can be merged

into one large piece of land by spatial merge. However, such an agricultural land may

contain highways, houses, small stores, etc. If the majority land is used for agriculture,

the scattered spots for other purposes can be ignored, and the whole region can be

CHAPTER 7. MULTIPLE LAYERED DATABASES

claimed as an agricultural area by approximation. The spatial operators, such as spa-

tial-union, ~patial-overlappin~, spatial-intersection, etc., which merge scattered small

regions into large, clustered regions can be considered as generalization operators in

spatial aggregation and approximation.

7.3.4 Generalization on Multimedia Data

A multimedia database may contain complex text, graphics, images, maps, voice, mu-

sic, and other forms of audio/video information. Such multimedia data are typically

stored as sequences of bytes with variable lengths, and segments of data are linked

together for easy reference. Generalization on multimedia data can be performed by

recognition and extraction of the essential features and/or general patterns of such

data.

There are many ways to extract the essential features or general patterns from

segments of multimedia data. For an image, the size and color of the contained

objects or the major regions in the image can be extracted by aggregation and/or

approximation. For a segment of music, its melody can be summarized based on

the approximate patterns that repeatedly occur in the segment and its style can be

summarized based on its tone, tempo, major musical instruments played, etc. For an

article, its abstract or general organization such as the table of contents, the subject

and index terms frequently occurring in the article, etc. may serve as generalization

results. In general, it is a challenging task to generalize multimedia data to extract

the interesting knowledge implicitly stored in the data [29]. Further research should

be devoted to this issue.

CHAPTER 7. MULTIPLE LAYERED DATABASES

Construction of MLDB

7.4.1 Frequently Referenced Attributes and Frequently Used

Patterns

With attribute generalization techniques available, the next important question is how

to selectively perform appropriate generalizations to form useful layers of databases.

In principle, there could be a large number of combinations of possible generalizations

by selecting different sets of attributes to generalize and selecting the levels for the

attributes to reach in the generalization. However, in practice, a few layers containing

most frequently referenced attributes and patterns will be sufficient to handle most

practically important cases.

Frequently used attributes and patterns should be determined before generation

of new layers of an MLDB by the analysis of the statistics of query history or by

receiving instructions from users or experts. If users are often interested in one set of

attributes but rarely asking things related to another set, it is wise to remove those

rarely used attributes in a higher layer. Similar guidelines apply when generalizing

attributes to a more general conceptual level. For example, users may like the oldness

of a house to be expressed by the ranges (of the construction years) such as {below-5,

6-15, 16-30, over-30) instead of the exact construction date, etc.

A new layer could be formed by performing generalization on one relation or

on a join of several relations based on the selected, frequently used attributes and

patterns. Generalization is performed by removing a set of less-interested attributes,

substituting the concepts in one or a set of attributes by their corresponding higher

level concepts, performing aggregation or approximation on certain attributes, etc. [13]

Since most joins of several relations are performed on their key and/or foreign key

attributes, whereas generalization may remove or generalize the key or foreign key

attributes of a data relation, it is important to distinguish the following two classes

of gensxdizations.

1. key-preserving generalization, in which all the key or foreign key values are pre-

served.

C H A P T E R 7. MULTIPLE LAYERED DATABASES 154

2. key-altering generalization, in which some key or foreign key values are general-

ized, and thus altered. The generalized keys should be marked explicitly since

they cannot be used as join keys at generating subsequent layers.

It is crucial to identify altered keys since if the altered keys were used to perform

joins of different relations, it may generate incorrect information. This is observed in

the following example.

Example 7.4.1 Suppose one would like to find the relationships between the ages of - .

. .
the houses sold and t,he household income level of the house buyers. Let the relations

house', sales-customer' contain the following tuples.

house1(945-Austin,. . . , 35(years_old), . . .).
house1(58-Austin, . . . , 4(years-old), . . .).
sales-customer1(945-Austin, marklee, 30-40k(income), . . .).
sales-customer1(58-Austin, t imak l , 60-70k(income), . . .).
Their further generalization may result in the relations house", sales-customer"

containing the following tuples.

house"(North-Burnuby,. . . , over-30(years_old), . . .).
house"(North-Burnuby,. . . , belo~-5(~ears-old) , . . .).
sales-customer"(North-Burnaby, 30-40k(income), . . .).
sales_customer"(North-Burnaby, 60-70k(income), . . .).
If the join is performed between house' and sales-customer', it will still produce

the correct information as below.

house-customer'(945-Austin, 35, markJee, 30-40k,. . .).
house-customerr(58-Austin, 4, t i m a k l , 60-70k,. . .).
Further generalization can still be performed on such a joined relation.

However, if the join is performed on the altered keys between house" and sales-customer",

it will generate 4 tuples, which is incorrect.

house-customer"(North-Burnaby, over30,30-40k,. . .).
house-customer"(North-Burnaby, over30,60-70k,. . .).
house~customer"(North~Burnaby, below-5,30-40k,. . .).
house~customer"(North~Burnaby, belowL5,60-70k,. . .).

C H A P T E R 7. MULTIPLE L A Y E R E D DATA BASES 155

Obviously, joins on the generalized attributes may produce more tuples than joins

on the original ones since different values in the a.ttribute may have been generalized

to identical ones at a high layer.

This restriction leads to the following regulation.

Regulation 7.4.1 (Join in MLDB) A join in an MLDB cannot be performed on the

generalized attributes.
. .

Based on this regulation, if the join in an MLDB is performed on the generalized

attributes, it is called an information-loss join (since the information could be lost by

such a join). Otherwise, it is called an information-preserving join.

7.4.2 An MLDB Construction Algorithm

Based on the previous discussion, the construction of an MLDB can be summarized

into the following algorithm.

Algorithm 7.4.1 Construction of an MLDB.

Input: A relational database, a set of conceptual hierarchies, and a set of frequently

referenced attributes and frequently used query patterns.

Output: A multiple layered database.

Method. An MLDB is constructed in the following steps.

1. Determine the multiple layers of the database based on the frequently ref-

erenced attributes and frequently used query patterns.

2. Starting with the most specific layer, generalize the relation step-by-step

(using the given conceptual hierarchies) to form multiple layered relations

(according to the layers determined in Step 1).

3. Merge identical tuples in each generalized relation and update the count of

the generalized tuple.

CHAPTER 7. MULTIPLE LAYERED DATABASES 156

4. Construct a new schema by recording all the primitive and generalized

relations, their relationships and the generalization paths.

Rationale of Algorithm 7.4.1.

Step 1 indicates that the layers of an MLDB should be determined based on the

frequently referenced attributes and frequently used query patterns. This is reasonable

since to ensure the elegance and efficiency of an MLDB, only a small number of layers

should be constructed, which should provide maximum benefits to the frequently

accessed query patterns. 0 bviously, the frequently referenced attributes should be

preserved in higher layers, and the frequently referenced conceptual levels should be

considered as the candidate conceptual levels in the construction of higher layers.

Steps 3 and 4 are performed in a method similar to attribute-oriented induction [45,

131. Step 5 constructs a new schema which records a route map and the generalization

paths for database browsing and cooperative query answering, which is discussed in

detail below.

7.4.3 Schema: A Route Map and a Set of Generalization

Paths

Since an MLDB schema provides a route map, i.e., a general structure of the MLDB

for query answering and database browsing, it is important to construct a concise

and information-rich schema. In addition to the schema information stored in a

conventional relational database system, an MLDB schema should store two more

important pieces of information:

1. A route map, which outlines the relationships among the relations at different

layers of the database. For example, it shows which higher layered relation is

generalized from one or a set of lower layered relations.

2. A set of generalization paths, each of which shows how a higher layered relation

is generalized from one or a set of lower layered relations.

C H A P T E R 7. MULTIPLE LAYERED DATABASES 157

Similar to many extended relational databases, a route map can be represented by

an extended E-R (entity-relationship) diagram [106], in which the entities and rela-

tionships at layer-0 (the original database) can be represented in a conventional E-R

diagram [67]; whereas generalization is represented by a double-line arrow pointed

from the generalizing entity (or relationship) to the generalized entity (or relation-

ship). For example, house' is a higher layered entity generalized from a lower layer

entity house, as shown in Fig. 7.1. Similarly, sales_customer' is a higher layered rela-

tionship, obtained by generalizing the join of sales' and customer'. It is represented

as a generalization from a relationship obtained by joining one entity and one rela-

tionship in the route map (Fig. 7.1). Since an extended E-R database can be easily

mapped into an extended relational one [67], our discussion assumes such mappings

and still adopts the terminologies from an extended relational model.

A generalization path is created for each high layer relation to represent how the

relation is obtained in the generalization. Such a high layer relation is possibly ob-

tained by removing a set of infrequently used attributes, preserving some attributes

and/or generalizing the remaining set of attributes. Since attribute removing and

preserving can be obviously observed from a relational schema, the generalization

path need only register how a set of attributes are generalized. A generalization path

consists of a set of entries, each of which contains three components: (old-attr(s),

new-attr(s), rules), which tells how one or a set of old attributes is generalized into

a set of new (generalized) attributes by applying some generalization rule(s), such

as generalizing to which conceptual levels of a conceptual hierarchy, applying which

aggregation operations, etc. If an existing hierarchy is adjusted or a new hierarchy is

created in the formation of a new layer, such a hierarchy should also be registered in

H , the hierarchy component of an MLDB.

7.4.4 Maintenance of MLDBs

Since an MLDB is resulted from extracting extra-layers from an existing database

by generalization, an MLDB will take more disk space than its corresponding single

layered database. However, since a higher layer database is usually much smaller

CHAPTER 7. MULTIPLE LAYERED DATABASES 158

than the original database, query processing is expected to be more efficient if done

in a higher database layer. The rapid progress of computer hardware technology has

reduced the cost of disk space dramatically in the last decade. Therefore, i t could be

more beneficial to trade disk space with intelligent and fast query answering.

In response to the updates to the original relations, the corresponding higher

layers should be updated accordingly to keep the MLDB consistent. Incremental

update algorithms should be developed to minimize the cost of update propa-

gation. Here we examine how to propagate incremental database updates a t

insertion, deletion and update of tuples in an original relation.

When a new tuple t is inserted into a relation R, t should be generalized to t'

according to the route map and be inserted into its corresponding higher layer.

Such an insertion will be propagated to higher layers accordingly. However, if

the generalized tuple t' is equivalent to an existing tuple in this layer, it needs

only to increment the count of the existing tuple, and further propagations to

higher layers will be confined to count increment as well. The deletion of a tuple

from a data relation can be performed simila.rly.

When a tuple in a relation is updated, one can check whether the change may

affect any of its high layers. If not, do nothing. Otherwise, the algorithm will

be similar to the deletion of an old tuple followed by the insertion of a new one.

Although an MLDB consists of multiple layers, database updates should always

be performed at the primitive database (i.e., layer-0) and the updates are then

propagated to their corresponding higher layers. This is because a higher layer

represents more general information, and it is impossible to transform a more

general value to a more specific one, such as from age to birth-date (but it is

possible in the reverse direction by applying appropriate generalization rules).

To response to the changes in the frequently referenced attributes or the fre-

quently used patterns, the affected layers should be updated accordingly and

the changes should be recorded in the schema of the MLDB.

CHAPTER 7. MULTIPLE LAYERED DATABASES 159

When an attribute becomes a frequently referenced attribute, it is added into

higher layer relations and the data of the attribute are generalized into these

higher layer databases. When an attribute is no longer a frequently referenced

attribute, i t may be removed from the higher layer databases. However, a

"grace" period can be waited before the deletion, in case the attribute became

a frequently referenced attribute again in the near future. The changes in fre-

quently used patterns can be assimilated in a similar way, by inserting or deleting

corresponding relations. All the changes should be recorded in the schema of

the MLDB.

An incremental update approach can be taken because only the affected layers or

rela,tions need to be changed. For example, if the attribute constructor-warranty

becomes frequently referenced, it can be added into relations house' and house",

but not others.

The changes in the schema of primitive layer relations can be assimilated easily,

by updating the corresponding higher layer relations and the schema of the

MLDB.

When a new attribute is added into a relation, it is recorded in the schema of the

MLDB. The higher layers are not affected unless the attribute is a frequently

referenced attribute. The deletion of an attribute from a primitive layer relation,

however, will cause the attribute (if there is any) to be deleted from the higher

layers.

Note that the changes can be reported by the database administrators or detected

automatically by periodical sampling.

Query Answering in an MLDB

A query consists of user-provided information (query constants) and inquired infor-

mation, where the former (query constants) could be the concepts matching different

layers; whereas the latter may be mapped t o different layers of an MLDB as well.

C H A P T E R 7. MULTIPLE LAYERED DATABASES 160

Moreover, one may expect that the query be answered directly by strictly following

the request, or intelligently by providing some generalized, neighborhood, or associ-

ated answers.

We first examine the mechanisms for direct answering of queries in an MLDB and

then extend the results to cooperative query answering.

7.5.1 Direct Query Answering in an MLDB

Direct query answering refers to answering queries by strictly following query specifi-

cations without providing (extra) associative information in the answers. Rigorously

speaking, if all the provided and inquired information of a query are a t the prim-

itive conceptual level, a query can be answered directly by searching the primitive

layer without exploring higher layers. However, a cooperative system should provide

users with flexibility of expressing query constants and inquiries at a relatively high

conceptual level. Such kind of "high-level" queries can be answered directly in an

MLDB.

At the first glance, it seems to be easy to process such high-level queries by sim-

ply matching the constants and inquires in the query to a corresponding layer and

then directly processing the query in this layer. However, there could be dozens of

attributes in a relation and each attribute may have several conceptual levels. It is

impossible and often undesirable to construct all the possible generalized relations

whose different attributes are a t different conceptual levels. In practice, only a small

number of all the possible layers will be stored in an MLDB based on the analysis

of the frequently referenced query patterns. This implies that transformations often

need to be performed on some query constants to map those constants to a conceptual

level corresponding to that of an existing layered database.

In principle, a high-level query constant is defined in a conceptual hierarchy, based

on which the high-level constant can be ma.pped to primitive level concepts. For

example, "greater Vancouver area" can be mapped to all of its composite regions,

and "big house" can be mapped to "total-floor-area > 3,000(sq. ft.)", etc. Thus,

a query can always be transformed into a primitive level query and be processed in

C H A P T E R 7. MULTIPLE L A Y E R E D DATABASES 161

a layer-0 database. However, to increase processing efficiency and present high-level

(and more meaningful) answers, our goal is to process a query in the highest possible

layer, consistent with all of the query constants and inquiries.

Definition 7.5.1 A database layer L is consistent on an attribute A; with a query q

if the constants of attribute Ai in query q can absorb (i.e., level-wise higher than) the

concept(s) (level) of the attribute in the layer.

For example, if the query constant in query q for the attribute "house-area" is

"big", whereas the conceptual level for "house-area" in layer L is the same as "big",

or lower, such as "3,000-4,999", "over-5,00OV, etc., then layer L is consistent with

query q on the attribute "house-area".

Definition 7.5.2 The watermark of a (nonjoin) attribute A; for query q is the top-

most database layer which is consistent with the conceptual level of query con-

stants/inquiries of attribute A; in query q.

Lemma 7.5.1 All the layers lower than the watermark of an attribute A; for query

q must be consistent with the values of attribute A; in query q.

We first examine the case that a query references only one generalized relation

and all the high level query constants are nonnumerical values.

Proposition 7.5.1 If a query q references only one generalized relation and all the

high level query constants are nominal (nonnumerical) values, the highest possible

layer consistent with the query shoudd be the lowest watermark of all the participant

attributes of q in the route map of the MLDB.

Rationale. Suppose layer L is the lowest watermark of all the participant attributes of

q in the route map of the MLDB. Since a layer lower than the watermark of attribute

A; must be consistent with the corresponding query constant/inquiry on attribute

A;, L must be consistent with all the constants and inquiries of all the participant

attributes of query q. Furthermore, since a watermark for an attribute is the highest

possible database layer for such an attribute, the layer so derived must be the highest

possible layer which is consistent with all the participating attributes in the query. 0

C H A P T E R 7. MULTIPLE LAYERED DATABASES 162

We then exa.mine the case of queries involving join(s) of two or more relations.

If such a join or its lower layer is already stored in the MLDB by an information-

preserving join, the judgement should be the same as the case for single relations.

However, if no such a join has been performed and stored as a new layer in the

MLDB, the watermark of such a join attribute must be the highest database layer

in which generalization has not been performed on this attribute (i.e., on which the

information-preserving join can be performed). This is because a join cannot be

performed on the generalized attributes according to Regulation 1.

Definition 7.5.3 The watermark of a join attribute A; for query q is the topmost

database layer which is consistent with the conceptual level of query constants/inquiries

of attribute A; in query q and in which the information-preserving join can be per-

formed on A;.

Thus, we have the following proposition.

Proposition 7.5.2 If a query q involves a join of two or more relations, and all the

high level query constants are nominal (nonnumerical) constants, the highest possible

layer consistent with the query should be the lowest watermark of all the participant

attributes (including the join attributes) of q in the route map of the MLDB.

Example 7.5.1 Suppose the query on the real-estate MLDB is to describe the re-

lationship between house and sales with the following given information: located in

North-Vancouver, Sbedroorn house, and sold in the summer of 1993. Moreover, sup-

pose the route map of an MLDB corresponding to this query is shown in Fig. 7.2.

The query involves a join of sales and house and the provided query constants are

all a t the levels high enough to match those in house" and sales". However, joins can-

not be performed at t,hese two high layer relations since the join attributes of house"

and sales" have been generalized (with their join keys altered). The watermarks of

the join attributes, house.location and sales.houseJoc, are one layer lower than their

topmost layers.

If there exists a relation such as house-sales in the MLDB, which represents the

join between the two relations and/or their further generalizations, the query can

CHAPTER 7. MULTIPLE LAYERED DATABASES

: WRONG

Figure 7.2: Perform joins in an MLDB.

Topmost layer o - - - - - - - - - - - - House"
House.location

Watermark of

be processed within such a layer. Otherwise (as shown in Fig. 7.2), a join must be

performed on the highest joinable layers (which should be house' and sales', as shown

in Fig. 7.2). Further generalization can then be performed on this joined relation to

form appropriate answers. 0

House.location

Finally, we examine the determination of the highest possible database layers if the

query contains numeric attributes. If the value in a numeric attribute in the query is

expressed as a generalized constant, such as "expensive", or the specified range in the

query has an exact match with some (generalized) range in a conceptual hierarchy,

such as "$300-400k7', the numeric value can be treated the same as a nonnumeric

concept. Otherwise, we have two choices: (1) set the watermark of the attribute

to the highest layer in which such numeric attributes has not been generalized, o r .

(2) relax the requirement of the preciseness of the query answering. In later case,

the appropriate layer is first determined by nonnumeric attributes. A coverage test

is then performed to see whether the generalized range is entirely covered by the

range provided in the query. For those entirely covered (generalized) ranges, the

Watermark of
House'

L J Sales. house-loc

/

House

\

C H A P T E R 7. MULTIPLE LAYERED DATABASES 164

precision of the answer remains the same. However, for those partially covered, the

answer provided should be associated with certain probability for uncovered numerical

ranges (e.g., by assuming that the data are relatively uniformly distributed within the

generalized range), or be ass~ciat~ed with a necessary explanation to clarify that the

answer occupies only a portion of the entire generalized range.

Example 7.5.2 Suppose the query on the real-estate database is to describe the big

houses in North-Vancouver with the price ranged from $280k to $350k. Since the

query is to describe houses (not to find exact houses), the inquired portion can be

considered at a high layer, matching any layers located by its query constants. To

find the layer of its query constants, we have "house-size = big", "address = North-

Vancouver", and price range = $280k-$350k. The watermarks of the first two are

at the layer house", whereas the third one is a range value. Suppose in the layer

house", the generalized tuples may have .the ranges like $250k-$300k, $300k-$350k,

etc., which do not have the exact match of the range $280k-$350k. Still, the query

can be processed at this layer, with the information within the range $300k-$350k

returned without additional explanation, but with the information within the range

$250k-$300k returned, associated with an explanation that the returned information

is for the range of $250k-$300k instead of $280k-$300k to avoid misunderstanding. 0

7.5.2 Cooperative Query Answering in an MLDB

Since an MLDB stores general database informat,ion in higher layers, many techniques

investigated in previous research on cooperative query answering in (single layered)

databases 158, 25, 19, 38, 201 can be extended to cooperative query answering in

MLDBs, easily, effectively and efficiently.

The following reasoning may convince us that an MLDB ca'n greatly facilitate

cooperative query answering.

1. Many cooperative query answering techniques need certain kinds of general-

ization [20, 391; whereas different kinds of frequently used generalizations are

performed and stored in the higher layers of an MLDB.

CHAPTER 7. MC'LTIPLE LAYERED DATABASES

2. Many cooperative query answering techniques need to compare the "neighbor-

hood" information [25, 201; whereas the generalized neighborhood tuples are

usually stored in the same higher layer relations, ready for comparison and

investigation.

3. Many cooperative query answering techniques need to summarize the answer-

related informat ion, associated with data statistics or with certain aggrega-

tions [19, 1121. Interestingly, a higher-layered relation not only presents the

generalized tuples but also the counts of the identical tuples or other computed

aggregation values (such as sum, average, etc.). Such high-level information

with counts conveys important information for data summarization and statis-

tical data investigation.

4. Since the layer selection in the construction of an MLDB is based on the study

of the frequently referenced attributes and frequently used query patterns, the

MLDB itself embodies rich information about the history of the most regular

query patterns and also implies the potential intent of the database users. It

forms a rich source for query intent analysis and plays the role of confining the

cooperative answers to frequently referenced patterns automatically.

5. An MLDB constructs a set of layers step-by-step, from most specific da ta to

more general information. It facilitates progressive query refinement, from gen-

eral information browsing to specific data retrieval. Such a process represents a

top-down information searching process, which matches human's reasoning and

learning process naturally, thus provides a cooperative process for step-by-step

information exploration [log, 1131.

Clearly, with these advantages, MLDB may become a valuable tool in cooperative

query answering.

Since the cooperative query answering has been studied relatively thoroughly in

previous research, instead of "reinventing" the technologies of cooperative query an-

swering, we briefly present some examples to illustrate the use of MLDBs in the

implementation of cooperative query answering mechanisms.

C H A P T E R 7. MULTIPLE LAYERED DATABASES

Example 7.5.3 A query like "what kind of houses can be bought with $300k in the

Vancouver area?" can be answered using an MLDB efficiently and effectively. Here

we examine several ways to answer this simple query using the MLDB constructed in

Example 1.

1. Relaxation of query conditions using conceptual hierarchies and/or high layer rela-

tions:

Instead of answering the query using "house-price = $3001;", the condition can

be relaxed to about $300k, that is, the price range covering $300k in a high

layer relation, such as house1', can be used for query answering. This kind of

relaxation can be done by mapping query constants up or down using conceptual

hierarchies, and once the query is mapped to a level which fits a corresponding

dakabase layer, it can be processed within the layer.

2. Generalized answers with summarized statistics:

Instead of printing thousands of houses within this price range, it searches

through the top layer house relation, such as house", and print the general-

ized answer, such as "20% 20-30 years-old, medium-sized, 3-bedrooms house in

East Vancouver, . . .". With the availability of MLDBs, such kind of generalized

answers can be obtained directly from a high layered DB by summarization of

the answers (such as giving percentage, general view, etc.) at a high layer.

3. Comparison with the neighborhood answers:

Furthermore, the printed general answer can be compared with its neighbor-

hood answers using the same top-level relation, such as "10% 3-bedroom 20-30

years-old houses in the Central Vancouver priced between $250k to $350K, while

30% such houses priced between $350 to $500k, . . . ". Notice that such cornpar-

ison information can be presented as concise tables using an existing high layer '

relation.

4. Query answering with associative information:

CHAPTER 7. MULTIPLE LAYERED DATABASES 167

It is often desirable to provide some "extra" information associated with a set

of answers in cooperative query answering. Query answering with associative

information can be easily achieved using high layer data relations. For example,

the query can be answered by printing houses with different price ranges (such as

$230-280k, $330-380k, etc.) as row extension, or printing houses in neighboring

cities, printing other interesting features as column extension, or printing sales

information related to such houses as table extension. These can be performed

using high layer relations.

5. Progressively query refinement or progressive information focusing:

The query can be answered by progressively stepping down the layers to find

more detailed information. The top layer is often examined first, with general

data and global views presented. Such a presentation often gives a user better

idea of what should be searched further with additional constraints. For exam-

ple, a user may focus the search to the East Vancouver area after s(he) finds a

high percentage of the houses within this price range since it is likely to find a

satisfiable house within this area. Such a further inquiry may lead the search to

lower layer relations and may also promote users t,o pose more restricted con-

straints or refine the original ones. In this case, the route map associated with

the MLDB will a,ct as a tour guide to locate related lower layer relation(s).

Summary

We discuss the applications of data mining techniques in cooperative query answer-

ing in this chapter. A multiple layered database (MLDB) model has been proposed

and examined. An hlLDB can be constructed using data mining techniques. Data

generalization and layer construction methods have been developed to guarantee new

layers can be constructed efficiently, effectively and consistent with the primitive in-

formation stored in the database. Direct and cooperative query answering in such

a MLDB are also examined. Our study shows that data mining techniques can be

applied to facilitate cooperative query answering.

Chapter 8

Conclusions and Future Research

Our study on the discovery of multiple-level rules is concluded in this chapter. My

major thesis work is summarized in Section 8.2. The conclusions drawn from our study

are presented in Section 8.2. Finally, in Section 8.3, some future research problems

are discussed.

8.1 Summary of My Thesis Work

In this thesis, we proposed the mining of multiple-level rules from large databases. A
set of algorithms for the manipulation of conceptual hierarchies was proposed, as well

as a set of algorithms for mining multiple-level rules, including characteristic rules,

discriminant rules, and association rules. The algorithms were implemented in our

data mining system, D B M iner. The experiments showed the algorithms performed

well on large databases. The major contributions of my thesis work are summarized

as follows.

1. The idea of mining multiple-level rules from large databases has been introduced.

The mining of multiple-level rules was proposed and studied for several kinds

of rules: characteristic, discriminant, and association rules. As discussed in

Section 1.2, multiple-level rules can provide richer information than single-level

rules, and may represent the hierarchical nature of the knowledge discovery

C H A P T E R 8. CONCLUSIONS A N D F U T U R E RESEARCH

process. The mining of multiple-level rules extends previous KDD studies on

the discovery of single-level rules.

2. The use of conceptual hierarchies in data mining has been examined. A set

of algorithms for conceptual hierarchy manipulation has been developed. Two

algorithms for conceptual hierarchy adjustment were proposed, one for adjust-

ment using an attribute threshold and the other for adjustment without the use

of an attribute threshold. In addition, an algorithm for the generation of con-

ceptual hierarchies for numerical attributes was also proposed. All algorithms

have been implemented and tested. The experiments on real databases showed

very satisfactory results.

3. The mining of multiple-level characteristic, discriminant, and association rules

has been investigated.

An interactive progression method has been proposed for mining multiple-level

characteristic and discriminant rules. An algorithm for the mining of multiple-

level characteristic rules was presented as well as an algorithm for the mining

of multiple-level discriminant rules. Both algorithms were implemented in the

DBMiner system, and demonstrated the desired performance.

A progressive deepening method for mining multiple-level association rules has

been proposed. Several variants of the method, using different optimization

techniques, were implemented and tested, and their performances were com-

pared and analyzed. The experiments show that the method finds multiple-level

association rules efficiently and effectively.

A meta-rule guided a,pproach for mining multiple-level association rules is pro-

posed. Two algorithms, the large-predicate growing and the direct ppredicate

testing, have been proposed and tested. The experiments show that meta-rule

guided mining of multiple-level association rules is effective for discovery of in-

teresting and strong such rules in large databases.

4. The application of data mining techniques in cooperative query answering has

been studied. A multiple layered database (MLDB) model was proposed and

CHAPTER 8. CONCLUSIONS A N D FUTURE RESEARCH 170

examined in Chapter 7. An hlLDB can be constructed using data mining tech-

niques. Direct and cooperative query answering in such an MLDB was studied.

5. A data mining prototype system, DBMiner, has been developed (several func-

tional modules were developed by other researchers) which can find several kinds

of knowledge from database.

Conclusions

Our study demonstrates that mining multiple level knowledge is both practical and

desirable.

a The scope of data mining has been broadened by the study on the mining

of multiple-level rules. The mining of multiple-level rules can provide more

information for the users and enhance the flexibility and power of data mining

systems. Therefore, the discovery of multiple-level rules represents an interesting

research direction in data mining.

a The use of conceptual hierarchies facilitates the mining of multiple-level rules.

Moreover, conceptual hierarchies can be adjusted dynamically to meet the need

of the current data mining task. For numerical attributes, conceptual hierarchies

can be generated automatically based on the current data distribution.

a Interesting mult,iple-level cha'racteristic, discriminant, and association rules can

be discovered efficiently from large databases.

- The interactive progression algorithm finds mining multiple-level charac-

teristic and discriminant rules flexibly and efficiently.

- The progressive deepening method finds multiple-level association rules .
effectively and efficiently.

- Meta-rule guided mining is a powerful tool for mining multiple-level asso-

ciation rules. Efficient algorithms have been developed for the meta-rule

guided mining of multiple-level association rules, as we have demonstrated.

CHAPTER 8. COA'CLUSIONS AND FUTURE RESEARCH 171

0 Data mining t.echniques a.re very useful for cooperative query answering. Mul-

tiple layered databases can be built using data mining techniques in order to

facilitate cooperative query answering.

As a data mining prototype system, DBMiner successfully integrates data min-

ing and database techniques, in order to find multiple-level knowledge from large

databases. The DBMiner experience is a valuable example for the development

of future data mining systems.

8.3 Future Research

Some interesting fut,ure research problems are presented as follows.

8.3.1 Discovery of Other Kinds of Multiple-Level Knowl-

edge

The idea of mining multiple-level knowledge can be applied to discover other kinds of

multiple-level rules or pat terns, such as multiple-level sequential pat terns, multiple-

level deviation patterns, etc.

0 Mining multiple-level sequential patterns.

A sequential pattern is a series of items bought together by customers in a

transactional database. For example, a sequential pattern, "TV followed by

VCR followed by video camera", reveals that people buy TV, then VCR, and

then video camera. An Apriori-like algorithm was proposed by Agrawal and

Srikant [5] for the mining of frequently occurring sequential patterns.

As for association rules, taxonomical or hierarchical organizations exist for many

items. For example, a "26-inch Sony TV" is a "Sony TV" which is in turn a

" TV". A multiple-level sequential pattern is a series of items, at primitive

or nonprimitive level, occurring in transactions. For example, the search of

multiple-level sequential patterns may find "Sony TV followed by Sony VCR

CHAPTER 8. COSCL USIONS AND FUTURE RESEARCH 172

followed by Sony Video Camera", which gives more specific information than

the above sequential pattern.

Mining multiple-level deviation patterns.

A deviation pattern describes the deviation of a variable from its expected value.

For example, the following deviation pattern maybe discovered from a stock

price database, "the price of company ABC's stock rose 30% more than the

average in the last month".

Conceptual hierarchies may exist for many attributes, for example, the compa-

nies can be grouped into several major sectors: service, finance, manufacture,

etc. The mining of multiple-level deviation patterns may report the low-level

deviation patterns as in the above example, or high-level deviation patterns,

such as "the prices of the hi-tech stocks dropped 20% more than the average in

the last quarter".

8.3.2 Meta-Rule Guided Mining of Other Kinds of Rules

Meta-rule guided mining is a powerful tool for specifying the interesting rules. It is

interesting to investigate the meta-rule guided mining of other kinds of multiple-level

rules, for example, prediction rules, sequential rules, etc.

Meta-Rule guided mining of multiple-level prediction rules.

A method for mining multiple-level prediction rules was proposed by Wang [110].

A multiple-level prediction rule can be used to predict an unknown attribute of

an object based on its other attributes, which may be a t non-primitive levels

as well as the primitive level. For example, high-level prediction rules, such as

"if a car is a subcompact Japanese car, its annual repair cost may range from

five hundred to one thousand dollars, with 40% probability", may be discovered, .
together with low-level prediction rules, such as "if a car is a five-year-old Toyota,

its annual repair cost may range from two hundred to five hundred dollars, with

60% probability". A meta-rule can specify the expected form of the prediction

rules. For example, a meta-rule, make(c : car, x) A Q(c, y) + repair-cost(c, z) ,

CHAPTER 8. COSCLUSIONS AND FUTURE RESEARCH 173

can guide us to find the above rules, which predict a car's potential repair cost

based on its make and any other attribute.

Meta-rule guided mining of sequential rules.

A sequential rule describes the associations of the sequential patterns in a trans-

actional database. Sequential rules can be derived from sequential patterns. For

example, a sequential rule, "50% of customers who buy T V also buy VCR within

a year", can be derived from a sequential pattern, "TV followed by VCR".

A meta-rule can specify the kind of sequential rules we are int,erested in. For

example, a meta-rule, P (c : customer, t l) Q(c , t2) A t2 E [tl, t l + 3651, can

help us to find the interesting rules which involve the sequential items bought

by customers within a year. This may lead to the discovery of the above rule.

8.3.3 Automatic Generation of Conceptual Hierarchies for

Nonnumerical Attributes

We studied the automatic generation of conceptual hierarchies for numerical at-

tributes. It is natural to investigate the automatic generation of conceptual hier-

archies for nonnumerical attributes. There are a number of studies on automatic

hierarchical clustering, such as Cluster12 (761, COBWEB [34, 351, and many others.

However, they usually depend on a set of other attributes to define the search space,

in which the best hierarchical clustering for the targeted attribute, based on some

given criteria, is searched.

Some of the previous algorithms can be adapted to generate conceptual hierarchies

for nonnumerical attributes. For example, a relevance analysis can determine the

attributes that are related to the targeted attribute, and the objects can be clustered

based on these relevant attributes. The conceptual hierarchy of the targeted attribute

can then be extracted from the clusters. For example, the attribute province in

Example 4.1.4 can be clustered based on the attributes of the geo-location of each

province, and geographically nearby provinces will be organized into a region.

A more difficult problem is to find hierarchy for an attribute, with little or no

CHAPTER 8. CONCLUSIONS A N D FUTURE RESEARCH 174

reference to other attributes, i.e., where the search space is not defined by other

attributes.

8.3.4 Data Mining on the Internet (WWW)

The World Wide Web (W\VW or Web) is rapidly growing and becoming increasingly

popular. A great deal of information is available now on the Web, which provides

huge amount of data for data mining.

Many resource discovery tools have been developed which can search for documents

containing specific keywords [22, 231. For example, a user can find documents about

"data mining" through one of the search engines. However, not much research has

been done on knowledge discovery on the Internet or Web. For example, it is difficult,

if not impossible, to find all research groups that have published more than five papers

on data mining since 1994.

A multiple layered, structured approach was proposed by Han et al. 1.521, in which

multiple layered databases were constructed by the generalization of raw, primitive

level information. For example, the description of an image, instead of the image

itself, can be recorded in a high layer database.

However, some problems remain unsolved. For example, the extraction of basic

information from complex data, such as multimedia data and structured data, re-

quires sophisticated tools. Other problems include the heterogeneity of the data, the

autonomy of the data, the maintenance of these multiple layered databases, and so

on.

Bib liography

[I] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In
IBM Research Report, 1996.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of
Data, pages 207-216, Washington, D.C., May 1993.

[3] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T. Bollinger. The
Quest data mining system. In Proc. 1996 Int'l Conf. on Data Mining and Knowledge
Discovery (KDD'96), Portland, Oregon, August 1996.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
1994 Int. Conf. Very Large Data Bases, pages 487-499, Santiago, Chile, September
1994.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf. Data
Engineering,,pages 3-14, Taipei, Taiwan, March 1995.

[6] T. Anand and G. Kahn. Oppotunity explorer: Navigating large databases using
knowledge discovery templates. In Proc. AAAI-93 Workshop on Knowledge Discovery
in Databases, pages 45-51, Washington DC, July 1993.

[7] A. Borgida and R. J. Brachman. Loading data into description reasoners. In Proc.
1993 ACM-SIGMOD Int. Conf. Management of Data, pages 217-226, Washington,
D.C., May 1993.

[8] P. Bosc and 0. Pivert. Some approaches for relational databases flexible querying.
Journal of Intelligent Information Systems, 1:323-354, 1992.

[9] R. Brachman, P. Selfridge, L. Terveen, B. Altman, F. Halper, T. Kirk, A. Lazar,
D. McGuinness, L. Resnick, and A. Borgida. Integrated support for data archaeology.
Inter. J. Intelligent and Cooperative Information Systems, 2:159-185, June, 1993.

BIBLIOGRAPHY 176

[lo] R. J. Brachman and T. Anand. The process of knowledge discovery in databases :
a first sketch. In Proc. AAA1794 Workshop on Knowledge Discovery in Databases
(KDD'94), pages 1-12, Seattle, WA, July 1994.

[ll] W. Buntine. Graphical models for discovering knowledge. In U.M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 59-82. AAAIIMIT Press, 1996.

[12] W. L. Buntine. Theory refinement on bayesian networks. In Proc. 7th Conference on
Uncertainty in Artificial Intelligence, pages 52-60, San Francisco, CA, 1991.

1131 Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases.
In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in
Databases, pages 213-228. AAAIIMIT Press, 1991.

[14] P. Cheeseman, J. Kelly, M. Self, J . Stutz, W. Taylor, and D. Freeman. Autoclass: a
bayesian classification system. In Proc. Fifth Int. Conf. on Machine Learning, pages
54-64, San Mateo, California, 1988.

[15] P. Cheeseman and J. Stutz. Bayesian classification (Autoclass): Theory and results.
In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, pages 153-180. AAAIIMIT Press,
1996.

[16] P. Cheeseman and J. Stutz. Bayesian classification (AUTOCLASS): Theory and
results. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining. AAAIIMIT Press, 1996.

[17] J. Cheng, 'u. M. Fayyad, K. B. Irani, and Z. Qian. Improved decision trees: a gener-
alized version of id3. In Proc. Fifth Int. Conf. on Machine Learning, pages 100-107,
San Mateo, California, 1988.

[18] D. K. Y. Chiu, A. K. C. Wong, and B. Cheung. Information discovery through hier-
archical maximum entropy discretization and synthesis. In G. Piatetsky-Shapiro and
W. J. Frawley, editors, Knowledge Discovery in Databases, pages 125-141. AAAIIMIT
Press, 1991.

[19] W. W. Chu and Q. Chen. Neighborhood and associative query answering. Journal of
Intelligent Information Systems, 1:355-382, 1992.

[20] W. W. Chu, Q. Chen, and R. Lee. Cooperative query answering via type abstraction
hierarchy. In S.M Dee, editor, Cooperating Knowledge Based System, pages 271-292.
Now York: Elsevier, 1990.

BIBLIOGRAPHY

[all E. F. Codd, S. B. Codd, and C. T.
Salley. Providing OLAP (On-Line Analytical Processing) to User-Analysis: An I T
Mandate. http://www.arborsoft.com/papers/coddTOC.html, E. F. Codd Associates,
1993.

[22] Infoseek Corporation. Infoseek. http://guide.infoseek.com/, 1995-96.

[23] Yohoo! Corporation. Yahoo. http://www .yahoo.com/, 1994-96.

[24] F. Cuppens and R. Demolombe. Cooperative answering: a methodology to provide
intelligent access to databases. In Proc. 2nd Int. Conf. Expert Database Systems,
pages 621-642, 1989.

[25] F. Cuppens and R. Demolombe. Extending answers to neighbor entities in a cooper-
ative answering context. Decision Support Systems, 7:l-11, 1991.

[26] S. Dao and B. Perry. Applying a data miner to heterogeneous schema integration.
In Proc. First Int. Conf. on Knowledge Discovery and Data Mining, pages 63-68,
Montreal, Canada, Aug. 1995.

[27] G. Dunn and B. Everitt. An Intorduction to Mathematical Taxonomy. Cambridge
Press, 1982.

[28] T. Duong and J. Hiller. Modelling the real world by multi-world data model. In Proc.
1st Int. Conf. Cooperative Information Systems, pages 279-290, 1993.

[29] Jr. F. S. Hill, S. Walker, and I?. Gao. Interactive image query system using progressive
transmission. Computer Graphics, 17, July 1983.

[30] A. Fall. keasoning with taxonomies. In Ph.D. Dissertation, Simon Fraser University,
Burnaby, B.C., Canada, 1996.

[31] A. Fall. Sparse logical terms. Appl. Math. Lett., 8:ll-15, 1996.

1321 U. M. Fayyad, S. G. Djorgovski, and N. Weir. Automating the analysis and cata-
loging of sky surveys. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 471-493.
AAAI/MIT Press, 1996.

[33] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in
Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

[34] D. Fisher. Improving inference through conceptual clustering. In Proc. 1987 A A A I
Conf., pages 461-465, Seattle, Washington, July 1987.

BIBLIOGRAPHY 175

[35] D. Fisher, M. Pazzani, and P. Langley. Concept Formation: Knowledge and Experience

in Unsupervised Learning. Morgan Kaufmann, 1991.

(361 W. J. Frawley, G. Piatetsky-Shapiro, and C. J . Matheus. Knowledge discovery in
data.bases: An overview. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowl-
edge Discovery in Databases, pages 1-27. AAAI/MIT Press, 1991.

[37] Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases.
In Proc. 1st Int'l Workshop on Integration of Knowledge Discovery with Deductive and
Object-Oriented Databases (KDOODY95), pages 39-46, Singa,pore, Dec. 1995.

[38] T. Gaasterland. Restricting query relaxation through user constraints. In Proc. 1st
Int. Conf. Cooperative Information Systems, pages 359-366, 1993.

[39] T. Gaasterland, P. Godgrey, and J. Minker. Relaxation as a platform for cooperative
answering. Jovrnal of Intelligent Information Systems, 1:293-321,1992.

[40] B. R. Gains. Exception dags as knowledge structures. In Proc. AAAI'94 Workshop on
Knowledge Discovery in Databases (KDD'94), pages 13-24, Seattle, WA, July 1994.

[41] M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, 1987.

[42] DBMiner group. DBMiner User's Manual. Database Systems Lab, Simon Fraser
University, 1996.

[43] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in da ta ware-
housing environment. In Proc. 21st Int. Conf. Very Large Data Bases, pages 358-369,
Zurich,,Switzerland, Sept. 1995.

[44] J. Han, Y. Cai, and N. Cercone. Concept-based data classification in relational
databases. In 1991 AAAI Workshop on Knowledge Discovery in Databases, pages

77-94, Anaheim, CA, July 1991.

[45] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An attribute-
oriented approach. In Proc. 18th Int. Conf. Very Large Data Bases, pages 547-559,

Vancouver, Canada, August 1992.

[46] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in rela-
tional databases. IEEE Trans. Knowledge and Data Engineering, 5:29-40, 1993.

[47] J . Han and Y. Fu. Discovery of multiple-level association rules from large databases.
In Proc. 1995 Int. Conf. Very Large Data Bases, pages 420-431, Zurich, Switzerland,

Sept. 1995.

BIBLIOGRAPHY 179

[48] J . Han and Y. Fu. Exploration of the power of attribute-oriented induction in data
mining. In U.M. Fayya.d, G . Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advarzces in Knowledge Discovery and Data Mining, pages 399-421. AAAIIMIT Press,
1996.

(491 J. Han, Y. Fu, and R. Ng. Cooperative query answering using multiple-layered
databases. In Proc. 2nd Int. Conf. Cooperative Information Systems, pages 47-58,
Toronto, Canada, May 1994.

[50] J . Han, Y. Fu, W. Wang, J . Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan,
N. Stefanovic, B. Xia, and 0 . R. Zaiane. DBMiner: A system for mining knowledge in
large relational databases. In Proc. 1996 Int'l Conf. on Data Mining and Knowledge
Discovery (KDD996), Portland, Oregon, August 1996.

[51] J . Han, Y. Fu, W. Wang, K. Koperski, and 0. R. Zaiane. DMQL: A data mining
query language for relational databases. In Proc. 1996 SIGMODY96 Workshop on
Research Issues on Data Mining and Knowledge Discovery (DMKD996), Montreal,
Canada, June 1996.

[52] J . Han, 0. R. Zakne, a.nd Y. Fu. Resource and knowledge discovery in global informa-
tion systems: A scalable multiple layered database approach. In Proc. of a Forum on
Research and Technology Advances in Digital Libraries (ADL'95), McLean, Virginia,

May 1995.

[53] V. Harinarayan, A. Rajaraman, and J . D. Ullman. Implementing data cubes efficiently.
In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data, Montreal, Canada,
June 1996.

[54] D. Heckerman. Bayesian networks for knowledge discovery. In U.M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 273-306. AAAIIMIT Press, 1996.

[55] D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: the
combination of knowledge and statistical data. In Proc. AAA1794 Workshop on Knowl-
edge Discovery in Databases (KDD794), pages 85-96, Seattle, WA, July 1994.

[56] J. Hong and C. Mao. Incremental discovery of rules and structure by hierarchical and.
parallel clustering. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge

Discovery in Databases, pages 177-193. AAAIJMIT Press, 1991.

[57] X. Hu and N. Cercone. Rough set similarity-based learning from databases. In Proc.
First Int. Conf. on Knowledge Discovery and Data Mining, pages 162-167, Montreal,

Canada, Aug. 1995.

BIBLIOGRAPHY 180

[58] T . Imielinski. Intelligent query answering in rule based systems. J. Logic Programming,
4:229-257, 1987.

[59] T. Imielinski and A. Virmani. DataMine - interactive rule discovery system. In Proc.
1995 ACM-SIGMOD Int. Conf. Management of Data, page 472, San Jose, CA, May
1995.

[GO] Microstrategy
Inc. The Case for Relational OLAP. http://www.strategy.com/dwf/wp~b~al.htm,
1995.

[GI] G. H. John. Robust decision trees: Removing outliers from databases. In Proc.
First Int. Conf. on Knowledge Discovery and Data Mining, pages 174-179, Montreal,
Canada, Aug. 1995.

[62] M. Kamber and R. Shinghal. Evaluating the interestingness of characteristic rules. In
Proc. 1996 Int? Conf. on Data Mining and Knowledge Discovery (KDD796), Portland,
Oregon, August 1996.

[63] K. A. Kaufman, R. S. Michalski, and L. Kerschberg. Mining for knowledge in
databases: Goals and general description of the INLEN system. In G. Pjatetsky-
Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 449-462.
AAAI/MIT Press, 1991.

[64] D. Keim, H. Kriegel, and T. Seidl. Supporting data mining of large databases by visual
feedback queries. In Proc. 10th of Int. Conf. on Data Engineering, pages 302-313,
Houston, TX, Feb. 1994.

[65] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding
[interesting rules from large sets of discovered association rules. In Proc. 3rd Int '1 Conf.
on Information and Knowledge Management, pages 401-408, Gaithersburg, Maryland,
Nov. 1994.

[66] W. Klosgen. Explora: a multipattern and multistrategy discovery assistant. In U.M.
Fayyad, G . Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pages 249-271. AAAI/MIT Press, 1996.

[67] H. F. Korth and A. Silberschatz. Database System Concepts, 2ed. McGraw-Hill, 1991.

[68] H. Leslie, R. Jain, D. Birdsall, and H. Yaghmai. Efficient search of multidimen-
sional b-tree. In Proc. 21st Int. Conf. Very Large Data Bases, pages 710-719, Zurich,
Switzerland, Sept. 1995.

BIBLIOGRAPHY 181

[69] H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach to data mining.
In Proc. 21st Int. Conf. Very Large Data Bases, pages 478-489, Zurich, Switzerland,
Sept. 1995.

[70] M. Manago and Y. Kodratoff. Induction of decision trees from complex structured
data. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in
Databases, pages 289-306. AAAI/MIT Press, 1991.

[71] H. Mannila and K-J. Raiha. Dependency inference. In Proc. 1987 Int. Conf. Very
Large Data Bases, pages 155-158, Brighton, England, Sept. 1987.

[72] C. Matheus, P. K. Chan, and G. Piatetsky-Shapiro. Systems for knowledge discovery
in databases. IEEE Trans. Knowledge and Data Engineering, 5:903-913, 1993.

[73] C. J. Matheus and G. Piatesky-Shapiro. An application of kefir to the analysis of
healthcare information. In Proc. AAAI'94 Workshop on Knowledge Discovery in
Databases (KDD'94), pages 441-452, Seattle, WA, July 1994.

[74] C.J. Matheus, G. Piatetsky-Shapiro, and D. McNeil. Selecting and reporting what is
interesting: The KEFIR application to healthcare data. In U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, pages 495-516. AAAI/MIT Press, 1996.

[75] R. S. Michalski. A theory and methodology of inductive learning. In Michalski et al.,
editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, pages 83-134.
Morgan Kaufmann, 1983.

[76] R. S. Michalski and R. Stepp. Automated construction of classifications: Conceptual

clustering versus numerical taxonomy. IEEE Trans. Pattern Analysis and Machine
Intelligence, 5:396-410, 1983.

[77] R. S. Michalski and G. Tecuci. Machine Learning, A Multistrategy Approach, Vol. 4.
Morgan Kaufmann, 1994.

[78] R. Missaoui and R. Godin. An incremental concept formation a.pproach for learning
from databases. In V.S. Alagar, L.V.S. Lakshmanan, and F. Sadri, editors, Formal
Methods in Databases and Software Engineering, pages 39-53. Springer-Verlag, 1993.

[79] T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning.
In Proc. 5th Int. Joint Conf. Artificial Intelligence, pages 305-310, Cambridge, MA,

1977.

[80] T. M. Mitchell. An analysis of generalization as a search problem. In Proc. 6th Int.
Joint Conf. Artificial Intelligence, pages 577-582, Tokyo, Japan, 1979.

BIBLIOGRAPHY

[81] R. Ng. Spatial data mining: Discovering knowledge of clusters from maps. In Proc.
1996 SIGMOD296 Workshop on Research Issues on Data Mining and h'nowledge Dis-
covery (DMKD296), Montreal, Canada, June 1996.

[82] J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining
association rules. In Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data,
pages 175-186, San Jose, CA, May 1995.

[83] Z. Pawlak. Rough sets. Inter. J. of Computer and Information Sciences, 11:341-356,
1995.

[84] G. Piatesky-Shapiro and C. J . Matheus. The interestingness of deviations. In Proc.
AAAI'94 Workshop on h'nowledge Discovery in Databases (KDD'94), pages 25-36,
Seattle, WA, July 1994.

[85] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In
G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases,
pages 229-238. AAAIIMIT Press, 1991.

[86] G. Piatetsky-Shapiro, U. Fayyad, and P. Smith. From data mining to knowledge dis-
covery: An overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 1-35.
AAAIIMIT Press, 1996.

[87] G. Piatetsky-Shapiro and W. J . Frawley. Knowledge Discovery in Databases.
AAAI/MIT Press, 1991.

[88] J . R. Quinlan. Discovering rules by induction from large collections of examples. In
D. Michie, editor, Expert Systems in the Micro Electronic Age. Edinburgh, England,

' 1979.

[89] J. R. Quinlan. Learning efficient classification procedures and their application t o chess
end-games. In Michalski et al., editor, hlachine Learning: An Artificial Intelligence
Approach, Vol. I , pages 463-482. Morgan Kaufmann, 1983.

[go] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[91] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufma.nn, 1993. .

[92] R.L. Read, D.S. Fussell, and A. Silberschatz. A multi-resolution relational data model.
In Proc. 18th Int. Conf. Very Large Data Bases, pages 139-150, Vancouver, Canada,
Aug. 1992.

BIBLIOGRAPHY 183

[93] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and
integrity constraint checking: Trading space for time. In Proc. 1996 ACM-SIGMOD
Int. Conf. Management of Data, pages 447-458, Montreal, Canada, May 1996.

[94] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for data mining. In
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages 375-398. AAAIIMIT Press, 1996.

(953 C. Shum and R. Muntz. An information-theoretic study on aggregate responses. In
Proc. 14th Int. Conf. Very Large Data Bases, Los Angeles, USA, August, 1988.

[96] A. Silberschatz, If. Stonebraker, and J. D. Ullman. Database systems: Achievements
and opportunities. Comm. ACM, 34:94-109,1991.

[97] A. Silberschatz, M. Stonebraker, and J . D. Ullman. Database research: Achievements
and opportunities into the 21st century. SIGMOD Record, 25:52-63, March 1996.

[98] A. Silberschatz and A. Tuzhilin. On subjective measure of interestingness in knowledge
discovery. In Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining (KDD'95),
pages 275-281, Montreal, Canada, Aug. 1995.

[99] E. Simoudis, B. Livezey, and R. Kerber. Using Recon for da ta cleaning. In Proc.
First Int. Conf. on Knowledge Discovery and Data Mining, pages 258-262, Montreal,
Canada, Aug. 1995.

[loo] E. Simoudis, B. Livezey, and R. Kerber. Integrating inductive and deductive reasoning.
In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, pages 353-376. AAAIIMIT Press,
1996.

[to l l J.M. Smith and D.C.P. Smith. Database abstractions: Aggregation and generalization.
ACM Tmns. Database Syst., 2:105-133, June 1977.

[I021 P. Smyth and R.M. Goodman. Rule induction using information theory. In
G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases,
pages 159-176. AAAIIMIT Press, 1991.

[I031 P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Springer.
Verlag, 1993.

[I041 R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. 1995 Int.
Conf. Very Large Data Bases, pages 407-419, Zurich, Switzerland, Sept. 1995.

BIBLIOGRAPHY 184

[105] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational
tables. In Proc. 1996 AChl-SIGhlOD Int. Conf. Management of Data, Montreal,
Canada, June 1996.

[I061 T. J. Teorey, D. Yang, and J . P. Fry. A logical design methodology for relational
databases using the extended entity-relationship model. A CAI Comput. Surv., 18: 197-
222, 1986.

[I071 P. E. Utgoff. An incremental id3. In Proc. Fif2h Int. Conf. on Machine Learning,
pages 107-120, San hiateo, California, 1988.

[I081 R. Uthurusamy, P. 51. Fayyad, and S. Spnggler. Lea.rning useful rules from inconclu-
sive data. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery
in Databases, pages 141-158. AAAI/MIT Press, 1991.

[log] S.V. Vrbsky and J. W. S. Liu. An object-oriented query processor that returns mono-
tonically improving answers. In Proc. 7th IEEE Conf. on Data Engineering, pages
472-481, Kobe, Japan, April 1991.

[110) W. Wang. Predictive hlodelingfor Knowledge Discovery in Databases. hhster's Thesis,
Simon Fraser University, 1996.

[I l l] R. Wille. Conceptual lattices and conceptual knowledge systems. Computers Math.
Applic., 23:493-515, 1992.

(1121 C. Wittemann and H. Kunst. Intelligent assistance in flexible decisions. In Proc. 1st
Int. Conf. Cooperative Information Systems, pages 377-381, 1993.

[I131 M.F. Wolf. Successful integration of databases, knowledge-based systems, and human
judgement. In Proc. 1st Int. Conf. Cooperative Information Systems, pages 154-162,
1993.

[I141 Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehousing environment. In Proc. 1995 ACM-SIGMOD Int. Conf. Management of
Data, pages 316-327, San Jose, CA, May 1995.

[I151 W. Ziarko. The discovery, a.nalysis, and representation of data dependancies in
databases. In G . Piatetsky- Shapiro and W. J . Frawley, editors, Knowledge Discovery
in Databases, pages 195-209. AAAIIXIIT Press, 1991.

[116] J. Zytkow and J. Baker. Interactive mining of regularities in databases. In
G . Piatetsky-Shapiro and LIT. J. Frawley, editors, Knowledge Discovery in Databases,
pages 31-54. AAXIIMIT Press, 1991.

