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Abstract 

With the widespread computerization in business, government, and science, the effi- 
cient and effective discovery of interesting information from large databases becomes 
essential. Data mining or Knowledge Discovery in Database (KDD) emerges as a so- 
lution to the data analysis problems faced by many organizations. Previous studies on 
data mining have been focused on the discovery of knowledge at  a single conceptual 
level, either at  the primitive level or at  a rather high conceptual level. However, it is 
often desirable to discover knowledge at  multiple conceptual levels, which will provide 
a spectrum of understanding, from general to specific, for the underlying data. 

In this thesis, we first introduce the conceptual hierarchy, a hierarchical organiza- 
tion of the data in the databases. Two algorithms for dynamic adjustment of concep- 
tual hierarchies are developed, as well as another algorithm for automatic generation 
of conceptual hierarchies for numerical attributes. In addition, a set of algorithms is 
developed for mining multiple-level characteristic, discriminant and association rules. 
All algorithms developed were implemented and tested in our data mining prototype 
system, DBMiner. The attribute-oriented induction method is extended to discover 
multiple-level characteristic and discriminant rules. A progressive deepening method 
is proposed for mining multiple-level association rules. Several variants of the method 
with different optimization techniques are implemented and tested. The results show 
the method is efficient and effective. Furthermore, a new approach to association rule 
mining, meta-rule guided mining, is proposed. The experiments show that meta-rule 
guided mining is powerful and efficient. Finally, an application of data mining tech- 
niques, cooperative query answering using multiple layered databases, is presented. 

Our study concludes that mining knowledge at  multiple levels is both practical 
and desirable, and thus is an interesting research direction. Some future research 
problems are also discussed. 
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Chapter 1 

Introduction 

With the rapid growth in size and number of available databases in commercial, 

industrial, administrative and other applications, it is necessary and interesting to  

examine how to extract knowledge automatically from huge amounts of data [33, 72, 

361. For example, the Wal-Mart databases collect 20 million transactions every day. 

Knowledge Discovery in Databases (KDD), or data mining, is the effort to un- 

derstand, analyze, and eventually make use of the huge volume of data available. 

Through the extraction of knowledge in databases, large databases will serve as a 

rich, reliable source for knowledge generation and verification, and the discovered 

knowledge can be applied to information management, query processing, decision 

making, process control and many other applications. Therefore, data  mining has 

been considered as one of the most important research topics in databases by many 

database researchers [97, 961. 

Knowledge Discovery in Databases (KDD) is defined as the nontrivial process of 

identifying valid, novel, potentially useful, and ultimately understandable patterns in 

data by Fayyad et al. [86] In their opinion, there are usually several steps in a KDD 

process: data selection, preprocessing, transformation, data mining, and interpreta- 

tion/evaluation of the results [86], as shown in Figure 1.1. Data mining is only one 

step of the process, involving the application of discovery tools to find interesting 

patterns from targeted data. However, since data mining is the central part of the 

KDD process, the term data mining and the term knowledge discovery in databases 
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Figure 1.1: Steps of the KDD process (Fayyad et al. 1996). 

have been used interchangeably by many researchers[97, 3, 50, 81, 591. In this thesis, 

data m in ing  and knowledge discovery in databases are used without distinction. 

The definition of KDD in [S6] gives the basic characteristics of the knowledge 

discovery process, but there are some points we would like to emphasize. First, data 

mining deals with a large amount of data, which makes the efficiencies and scale-up 

abilities of data mining algorithms a very important issue. Second, the data is usually 

stored in databases, and mature technologies of database management (such as data 

storage, indexing, query optimization, etc.) should be employed to  deal with low 

end data processing. Finally, users of data mining systems are typically looking for 

something interesting. Their interests can determine their judgement, regarding the 

usefulness and novelty of the discovered knowledge, for example. 

Based on the a.bove analysis, we give our definition of data mining. 

Definition 1.0.1 Data Mining (or Knowledge Discovery in Databases ) is the extraction 

of interesting patterns in large databases. 

Figure 1.1 gives a very good overview of the data flow in a KDD process. The 
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Figure 1.2: Control flow of the data mining process. 

control flow of the data mining process is shown in Figure 1.2. A data mining session 

is usually an interactive process of data mining query submission, task analysis, data 

collection from the database, interesting pattern search, and findings presentation. 

1.1 Data Mining Tasks 

There have been many interesting studies on knowledge discovery in databases [33, 

72, 871. These studies cover a wide variety of data mining tasks and use different 

methodologies. The most common types of data mining tasks, classified based on the 

kind of knowledge they are looking for, are listed as follows. A survey of different 

methodological approaches to KDD, including machine learning, database-oriented, 

statistics, etc., is given in Chapter 2. 

Characterization is the summariza.tion or abstraction of a set of task-relevant data 

into a relation, called generalized relation, which can then be used for extraction 

of characteristic rules. The characteristic rules present the characteristics of the 

data set, called the target class, and can be at multiple conceptual levels and 

viewed from different angles. For example, the symptoms of a specific disease 

can be summarized by a set of characteristic rules. 
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Discrimination is the discovery of features or properties that distinguish the class 

being examined ( target class) from other classes (called contrasting classes). A 

set of discriminant rules is discovered which summarize the features that dis- 

tinguish the target class from contra.sting classes. For example, to distinguish 

one disease from ot,hers, a discriminant rule summarizes the symptoms that 

differentiate this disease from others. 

Classification is labeling or categorizing of the data into a set of known classes. 

A set of training data (i.e., a set of objects whose class label is known) is given 

and analyzed, and a classification model is constructed based on the features of 

the data in the training set. A set of classification rules is generated from the 

classification model, which can be used to classify future data and develop a 

better understanding of each class in the database. For example, classification 

rules about diseases can be extracted from known cases (training set) and used 

to diagnose new patients based on their symptoms. 

Association rule mining is the discovery of associations or connections among 

objects. An association rule is in the form of "Al A . . . A A; + B1 A . . A Bj" 

which means objects B1,. . , Bj tend to appear with objects Al, .  . . , A; in the 

target data. Association rules at  multiple conceptual levels will reveal such 

kind of association in the relevant set(s) of data in a database. For example, 

one may discover that a set of symptoms often occur together with another set 

of symptoms, and then further study the reasons behind this association. 

Clustering is the identification of classes (clusters) for a set of unclassified objects 

based on their attributes. The objected are so clustered that the intraclass 

similarities are maximized and the interclass similarities are minimized based 

on some criteria. Once the clusters are decided, the objects are labeled with 

their corresponding clusters, and common features of the objects in a cluster are 

summarized to form the class description. For example, a set of new diseases can 

be grouped into several categories based on the similarities in their symptoms, 

and the common symptoms of the diseases in a category can be used to describe 



CHAPTER 1. INTRODUCTION 

that group of diseases. 

Prediction is the estimation or forecast of the possible values of some missing 

data or the value distribution of certain attribute(s) in a set of objects. This 

involves finding the set of attributes relevant to the attribute of interest (by 

some statistical analysis) and predicting the value distribution based on a set 

of data similar to the selected object(s). For example, an employee's potential 

salary can be predicted based on the salary distribution of similar employees in 

the company. 

Evolution mining is the detection and evaluation of data evolution regularities 

for certain objects whose behavior changes over time. This may include char- 

acterization, classification, association, or clustering of time-related data. For 

example, one may find the general characteristics of the companies whose stock 

price has gone up over 20% last year, or evaluate the trend or particular growth 

pat terns of high- tech stocks. 

Deviation mining is the discovery and evaluation of the deviation patterns of 

objects in the target data in a time-related database. The expected behavior 

or norm of the objects is usually given by the user or computed based on some 

assumption, such as average, linear growth, etc. For example, one may discover 

and evaluate a set of stocks whose behavior deviates from the trend of the 

majority of stocks during a certain period of time. 

1.2 Motivation 

Previous research on da.ta mining focused on discovery of knowledge at a single con- 

ceptual level, either primitive or general. The knowledge is said to be at a primitive 

level if the patterns involve only the raw data stored in databases. The knowledge 

is said to be at  a general level if the patterns involve higher level concepts, usually 

abstraction or generalization of some primitive level concepts. 

Most previous research focused on finding knowledge at  the primitive level, i.e., 
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rules, patterns, and regularities among the raw data stored in databases [4, 5, 15, 32, 

56, 73, 85, 82, 89,94, 1151. 

Example 1.2.1 The following rule from Shen et  al. [94] is a primitive level rule 

discovered in a chemical database. 

IF ingredients = "BX89" & "GF102" AND property = PI 

T H E N  Clusters(Pl) = ((2.4, 3.5, 0.97), (202.3, 0.5, 0.03)) 

The rules says that if a compound has ingredients "BX89" and "GF102", its property 

PI falls into a cluster with a mean of 2.4 and a variance of 3.5 with 97% probability, 

and falls in the cluster with a mean of 202.3 and a variance of 0.5 with 3% probability. 

0 

Han and his associates proposed the discovery of rules at  the general conceptual 

level [48, 461. A general level rule is a rule whose concepts (constants) can be at  either 

nonprimitive level (the abstract concepts or values not in the database), or primitive 

level (the data stored in the database). 

Example 1.2.2 The following rule is a general rule from Han et al. [46] which may 

be discovered in a personnel database. 

IF Position is "professor" AND Department is "Applied Science'' 

T H E N  Sex is "male" AND Age is "old" AND 

Birth-place is "Canada" AND Salary is "high". [0.20] 

The number in the square brackets is the confidence of the rule which says that 20% 

of the Applied Science professors are old, male, Cana.dian-born, and with high salary. 

The rule is a general rule since it contains some non-primitive concepts like "high" 

and "old" which are not stored in the database. 

However, there are many cases where knowledge or rules at multiple conceptual 

levels, i.e., multiple-level knowledge or rules, are desired. Several possible scenarios 

are listed below, from the perspectives of users' interests, data mining processing, and 

discovered results, respectively. 
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0 Users' interests may vary from person to person. For example, an executive 

may wa.nt to have a general view or summary of the sales of all products while a 

sales representative may like to see the detailed information about a particular 

product. 

A data mining session usually involves many interactions of "zoom-in" and 

L ' ~ ~ ~ m - ~ ~ t ' ' ,  i.e., specialization to see details and generalization to see sum- 

maries. For example, a sales manager may browse the overall sales, then look 

into each product's sales. 

Strong rules are more likely to exist at  high conceptual levels but may likely 

repeat common knowledge. For example, the strong high level association rule 

"80% of customers who buy milk also buy bread" may be known to store man- 

agers. On the other hand, primitive level rules may be more interesting, but are 

hard to find. For example, the primitive level association rule "40% of customers 

who buy 2% Dairyland milk also buy Oldmill whole-wheat bread" is difficult to 

find and could be mixed with many uninteresting rules. 

It is natural to ask if we can discover both primitive level and high conceptual level 

rules from databases at the same time, in other words, find multiple-level rules. In this 

thesis, we address the issue of discovery of multiple-level rules from large databases. 

1.3 Problem Specification 

The problem of finding single level rules in databases has been studied extensively. 

However, to the best of our knowledge, the problem of discovery of multiple-level 

rules has not been thoroughly addressed. There are several questions that need to  be 

answered. For example, how do we define the levels? Are the levels static or dynamic? 

How can we discover multiple-level rules efficiently? Can we somehow benefit froin 

previous research results? 

Before we formally define multiple-level rules, we introduce the term "conceptual 

hierarchy" which, roughly speaking, is a taxonomic organization for concepts or ob- 

jects in a database. Conceptual hierarchies define the levels of concepts and provide 



C H A P T E R  1 .  Ih iTRODUCTION 

Figure 1.3: A conceptual hierarchy for the provinces of Canada. 

background information for data mining. We will discuss conceptual hierarchies in 

detail in Chapter 3  as well as algorithms for dynamic adjustment and automatic gen- 

eration of conceptual hierarchies. An example of conceptual hierarchy is shown in 

Figure 1.3 for the provinces of Canada. 

The rules found by most data mining algorithms are production rules in the follow- 

ing form: 

where P;(i = 1,. . . : n )  and Qj( j  = 1 , .  . . ,m)  are predicates. A predicate can be a 

user-defined predicate, or an assertion of the form A @ c, where A is an attribute in 

the database, @J is a binary operator, usually a comparison, and c is a constant. We 

will follow the traditional denotation of the rule in this thesis. Logic terms will have 

their common meanings, such as in (411, if not defined otherwise. 

Definition 1.3.1 Multiple-level rules are rules in which the concepts or constants 

may be at  multiple conceptual levels in conceptual hierarchies. 
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Our problem is to discover the rules at different conceptual levels, i.e., multiple- 

level rules, given a large database together with conceptual hierarchies about the data. 

Most rule discovery methods find primitive level rules which only involve concepts at 

the primitive level. Some studies find rules at non-primitive levels, or general rules [48]. 

We extend the previous studies [45, 48, 4, 941 by finding rules at  different levels (as 

opposed to rules at one specific level). 

There are many kinds of rules existing in a large database. It is practically im- 

possible to find all kinds of rules which can be induced from the database. The 

most common kinds of rules that are interesting to data mining users are discussed 

in Section 1.1. We confine our study to the discovery of three types of common rules: 

characteristic rules, discriminant rule, and association rules. Discovery of some other 

kinds of multiple-level rules is discussed in Section 8.3. 

There has been a great deal of research on the discovery of single-level rules. Al- 

though previous results cannot be applied directly for the discovery of multiple-level 

rules, they provide some useful hints. In this thesis, some previous methods for min- 

ing single-level rules are extended to discover multiple-level rules. For example, the 

attribute-oriented induction method [13,45] for discovery of single-level characteristic 

and discriminant rules is extended to find multiple-level characteristic and discrimi- 

nant rules. 

1.4 The DBMiner System 

A data mining prototype system, DBMiner, has been developed along with our re- 

search. The system serves several purposes: 

Our algorithms are implementedin the system a.nd tested against real databases. 

The application of the system to real databases raises more interesting research 

problems and helps us to revise our original designs of the algorithms. 

As a data mining tool, DBMiner can be employed by database users to discover 

interesting knowledge in their databases, and to ultimately benefit society. 
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Figure 1.4: Architecture of the DBMiner system. 

We briefly introduce the architecture of DBMiner and its features in the following 

sections. Detailed descriptions of DBMiner can be found in its user's manual [42]. 

1.4.1 Architecture of DBMiner 

DBMiner is composed of three parts: Graphical User Interface (GUI), DBMiner En- 

gine, and Data Communication Module, as shown in Figure 1.4. DBMiner has two ver- 

sions, the Unix (SunOS) version running on Sun SparcStation and the Windows/NT 

version running on x86 compatible PCs. Both versions have the same architecture. 

We briefly explain the functions of each part, and their implementations. 

The Graphical User Interface (GUI) of DBMiner communicates interactively 

with users for specifying data mining task, setting control parameters, and dis- 

playing results. The GUI of the UNIX version is implemented using XView. 

Visual C++ is used for the GUI of the Windows/NT version. 

0 The engine of DBMiner is the core component of the system. Written in ANSI 

C, the engine is platform independent and transportable between the Unix ver- 

sion and the Windows/NT version. Therefore, both versions have the same 
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DBMiner: Discovery Modules 

Rule Finder Guided Miner 

Evaluator Evaluator 

Figure 1.5: Knowledge discovery modules of DB Miner. 

engine. The engine contains functional modules of DBMiner, including a data 

mining query parser, a conceptual hierarchy module, and the discovery modules 

explained in the next paragraph. 

The data communication component of DBMiner handles data transmissions 

between the engine and the database server (SQL server). We use Sybase as the 

database server on Unix and Microsoft SQL server on Windows/NT. 

The discovery modules of D B Miner, shown in Figure 1.5, include characterizer 

(finding characteristic rules), discriminator (finding discriminant rules), classifier (find- 

ing classification rules), association rule finder, meta-rule guided miner, predictor 

(finding prediction rules), evolution evaluator, deviation evaluator, and some planned 

future modules. The modules in italic have been or are being implemented by other 

researchers in the DBMiner group. 

Note that the DBMiner system has two implementations using different data 

structures: the relational table implementation and the data cube (multidimensional 

database) implementation. The author of this thesis implemented the relational table 

version and helped to implement the data cube version. Of the relational table ver- 

sion, the GUI on Windows/NT and several discovery modules, as mentioned above, 

have been implemented by other researchers. 
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1.4.2 Features of DBMiner 

The DBMiner syst.em has several interesting features. 

The system is built on top of database management systems (DBMSs), but is 

independent of the DBMSs. Many database servers can be used by DBMiner by 

simply providing the data communication primitives in the data communication 

module. 

DBMiner discovers several kinds of rules: characteristic rules, discriminant rules, 

association rules, classification rules, prediction rules, etc. This thesis will only 

discuss the modules I have designed and implemented: the characterizer, the 

discriminator, the association rule finder, and the meta-rule guided miner. 

A data mining language, Data Mining Query Language (DMQL), is proposed 

for the uniform specification of data mining tasks. The DMQL query is parsed 

by a parser written in YACC and LEX and the results are sent to other mod- 

ules. Several examples of DMQL queries will be presented when we discuss the 

discovery of different kinds of rules. A full specification of DMQL can be found 

in [51]. 

Conceptual hierarchies can be dynamically adjusted and interactively revised. 

For numerical attributes, conceptual hierarchies can be generated automatically. 

1.4.3 Testing Databases 

Several real databases are used in our experiments with DBMiner. In this thesis, the 

NSERC research grant database, which contains the information about the research 

grants awarded by the NSERC (Natural Sciences and Engineering Research Council 

of Canada) in each year, is used to  report our results. Other databases are also 

used, including several databases provided by MPR Teltech Ltd., but not reported 

because of the confidential nature of the data. Nevertheless, the performances of the 

algorithms are consistent regardless of the data sets. 
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The NSERC databases of 1991, 1994, 1995, and 1996 are used. Because they have 

the similar structure and almost the same size (about 10% variance), we will just use 

one of them to present the results. The average size of NSERC databases is 12MB. 

There are 8 - 10 tables in NSERC databases. The largest table has 10,000 - 11,000 

tuples and 14 attributes (6 categorical, 8 numerical). 

On the Unix system, the databases are stored in a Sybase Server running on a 

Sun SparcStations 5 with 32MB memory, connected to workstations through Ethernet. 

Indices are built on the primary keys. On the Windows/NT system, the databases 

are stored in a local SQL server and no index is used. 

1.5 Outline of the Thesis 

The remainder of this thesis is organized as follows. In Chapter 2, a brief survey 

of related work in data mining is given. Conceptual hierarchies are introduced in 

Chapter 3, along with some algorithms developed for manipulation of conceptual 

hierarchies. In Chapter 4, methods for the discovery of multiple-level characteristic 

and discriminant rules are investigated. A set of algorithms for the discovery of 

multiple-level characteristic and discriminant rules is proposed, implemented, and 

tested. The discovery of multiple-level association rules is proposed in Chapter 5, 

and a progressive deepening method is presented with some experimental results. 

In Chapter 6, a meta-rule guided mining method is proposed for mining multiple- 

level association rules. Chapter 7 shows the application of data mining techniques 

in cooperative query answering. The study is concluded in Chapter 8, which also 

presents some future research problems. More detailed descriptions of the chapters 

are given as follows. 

In Chapter 2, we briefly survey the related work in data mining. Different ap- 

proaches to data mining, including machine learning, statistics, and many others, are. 

discussed. Some representative data mining systems are also introduced. 

In Chapter 3, the formal definition of conceptual hierarchy is given. Some related 

issues, such as motivations for using conceptual hierarchies, availability of conceptual 
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hierarchies, and specifications of conceptual hierarchies, are also discussed. Two al- 

gorithms for conceptual hierarchy adjustment are presented and examined. Another 

algorithm for the generation of conceptual hierarchies for numerical attributes is also 

proposed and tested. 

In Chapter 4, the Attribute-Oriented Induction (AOI) method, introduced by 

Han et al. [44], and enhanced by Han and Fu [48], for the discovery of general level 

rules, is extended to discover multiple-level characteristic and discriminant rules. A 

set of algorithms for the discovery of multiple-level characteristic and discriminant 

rules is proposed. The algorithms are implemented and tested, and some results are 

presented. 

The concept of multiple-level association rule is introduced in Chapter 5. A pro- 

gressive deepening method for mining multiple level association rules is proposed. 

Several variants of the method are implemented and tested and the results, both on 

synthetic databases and real databases, are reported. 

In Chapter 6, we propose a new approach - meta-rule guided mining - for mining 

multiple-level association rules. A meta-rule is a rule template which specifies the for- 

mat of concrete rules to search for. Two algorithms for mining single-variable rules are 

presented and tested, and their relative performances are compared. The algorithms 

can also be adopted for mining multiple-variable rules with minor modification. 
rb" 

There are many possible applications of data mining techniques. We discuss the 

application of data mining techniques in cooperative query answering in Chapter 7. 

A multiple layered database (MLDB) model is proposed and examined in Chapter 7. 

An MLDB can be constructed using data mining techniques and used for cooperative 

query answering. 

We conclude our study in Chapter 8. My major thesis work is summarized and 

the conclusions from our study are given. Some possible future research problems are 

also discussed. 



Chapter 2 

Related Work in KDD 

There has been a great deal of research in KDD, especially in recent years. In this 

chapter, we will discuss the different approaches to KDD as well as some typical 

data mining systems. Researchers in KDD come from different backgrounds and take 

different approaches. Based on the basic methodology used by researchers, studies 

on KDD are classified into five categories: mathematical and statistical approaches, 

machine learning approaches, database-oriented approaches, integrated approaches, 

and other approaches: 

Mathematical and statistical approaches. 

Usually a mat,hematical or statistical model is built, and then rules, patterns, 

and regularities are drawn from the model. For example, a Bayesian network 

can be constructed from the given training data set and the implications among 

objects can be extracted from the parameters and linkages of the network. 

Machine learning approaches. 

A cognitive model is used by most machine learning approaches to resemble the 

human learning process. For example, in the learning from examples paradigm, 

a set of positive examples (members of the target class) and a set of negative ex- 

amples (nonmembers of the class) are given, and a concept which best describes 

the class is learned or discovered through intelligent search in the concept space. 



CHAPTERZ. RELATED WORKINKDD 16 

Database-oriented approaches. 

Database technologies and da,tabase-specific heuristics are used to exploit the 

characteristics of the data in hand. For example, transactional databases are 

sca.nned iteratively to discover pa.tterns in customer shopping practices. 

0 Integrated approaches. 

Several methods are integrated into a unified framework to exploit the advan- 

tages of different approaches. For example, induction from machine learning can 

be integrated with deduction from logical programming or deductive databases, 

in which the former searches for patterns in the objects collected by the latter, 

while the latter verifies the patterns found by the former. 

0 Other approaches. 

Other approaches include visual exploration, neural networks, knowledge repre- 

sentation and so on. Since there is relatively less research from these approaches 

for KDD, they are put into one category. Nevertheless, they are interesting stud- 

ies and could be important to KDD. 

Each category may be divided into subclasses as described in Section 2.1. 

2.1 Approaches to KDD 

Different approaches to KDD in each of the five categories will be discussed in this 

section by surveying the representative work in each category. 

2.1.1 Mathematical and Statistical Approaches 

Statistical Approaches 

Statistics has been an important tool for data analysis for a long time. Bayesian 

inference is the most extensively studied statistical method for knowledge discovery. 

A Bayesian classifica.tion method, AUTOCLASS was developed by Cheeseman 

et al. [16, 141. Given a set of objects (evidences), E = {El, - .  ,E I ) ,  with unknown 

classes and simple values (logical, integer, or real), AUTOCLASS tries to find clusters 
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of the objects to represent the classes so that it can assign each new object to a class. 

This kind of problem is usually referred to as unsupervised learning or clustering. 

A Bayesian classification model is specified by two sets of parameters: 1) a set of 

discrete parameters, T ,  such as correlationships among attributes, and the number 

of classes, which describes the general form of the model; and 2) a set of continuous 

parameters, V, the variables in the general forms specified by T ,  determining the 

specific model within the description of T .  

In the search space S defined by all available T and possible V, AUTOCLASS 

searches for the pair (T,V) which maximizes the joint belief J (EVTIS) ,  i.e., the most 

probable (T,V) which classifies E. The problem is decomposed into two subproblems. 

1. From a set of possible Ts, which have different attribute dependencies and class 

structures (flat or hierarchical), AUTOCLASS searches for a most probable T 

regardless of V, i.e., the T which maximizes P(T1ES). This is done by approx- 

imating P(TJES) using a probability density function (p.d.f.) of T which can 

be computed from the p.d.f of each attribute. AUTOCLASS assumes Bernoulli 

distributions for discrete attributes and normal distributions for continuous at- 

tributes. 

2. For a given T, AUTOCLASS searches for a most probable V by breaking con- 

tinuous V into regions and finding the region, R, which maximizes the marginal 

joint: 

M(ETR1S) = dP(EVT1S) 
VCR 

Several local maxima of R will be reported. 

AUTOCLASS can find hierarchical clusterings and the local maxima are usually 

sufficient. However, it deals only with simple values. 

The use of Bayesian networks (Directed Acyclic Graph or DAG) for the discovery 

of causal relationships among objects is proposed for KDD by Buntine [ l l ,  121, Spirtes 

et al. [103], and Hackerman et al. [54, 551. Nodes in a Bayesian network represent 

variables or states, and arcs represent the dependencies between nodes, directed from 

the cause to the effect. Figure 2.1 gives a very simple Bayesian network for medical 

problems [l 11. 



CHAPTER 2. RELATED W O R K  IN h'DD 

Figure 2.1: A simple Bayesian network. 

There are usually three steps in constructing a Bayesian network. They involve: 

Deciding which variables to be modeled as nodes. 

Determining the structure of the DAG, for example, the connections from a 

node to other nodes. 

Estimating the parameters of the DAG, i.e., the dependencies among the nodes 

in terms of probability distributions. 

Usually the first step is performed by user or domain expert. Buntine and Hackerman 

et al. used Bayesian metrics, such as maximum a posteriori probability, and heuristic 

search to find the structure and parameters [12,54]. Starting from a given or randomly 

generated network, the algorithms search for a better network (based on the metrics) 

until a local optimum is found. Spirtes et al. [I031 used conditional independence 

tests in their TETRED system to find the optimal network. 

Bayesian networks are powerful tools for analyzing causal relationships in databases. 

However, the complexity of the model grows exponentially with the number of the 

nodes in a network. Usually, a local optimum is found, whose goodness depends highly 

on the heuristics and the application domain. 

To summarize, stat istical approaches have a solid theoretical foundation, namely 

the Bayesian distribution theorem. They perform well for quantitative data and are 

robust with noise. However, almost all of them depend on some statistical assump- 

tions which usually do not hold in real world data. Moreover, results from statistical 

methods can be difficult for nonexperts in statistics to understand. 
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Rough Sets 

Rough sets were first introduced by Pawlak [83]. They were used for knowledge 

discovery by Ziarko [I151 as a tool to find dependencies in data and to derive decision 

tables. A decision table lists the conditions and the classes based on these conditions. 

For example, the following decision table tells how the size, transmission type, and 

weight of a car determines its gas mileage (class). The blank cells mean "doesn't- 

matter". 

medium auto I medium 

size transmission weight 

small I high 

mileage 

I large light I medium I 

t 

I manual medium ( high 1 

auto medium 

heavy 

Given a set of objects, E, called elementary objects, the lower approximation of a 

set X ,  I N D ( E ,  X) is the union of all elementary objects fully subsumed by X :  

medium 

low 

as illustrated in Figure 2.2, in which each basic box is an elementary object, set X is 

the area in the dashed line, and I N D ( X )  is the dark area. 

Let U be the set of all objects. Each object is a tuple that has values for a 

set of attributes A, consisting of determining attributes P ,  whose values determine 

the object's class, and determined attributes Q, the class attributes which label the 

object's class. 

Ziarko defines the equivalence relation, I N D ( X ) ,  of any set of attributes X C P U.Q 

as follows: 

I N D ( X )  = {(a, b)la, b E U A x(a) = x(b)) 

where x(a) is the value of a on an attribute x E X. I N D ( X )  gives a classification of 

objects in U based on their values of attributes in X. All classes in Q' = I N D ( Q )  
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Figure 2.2: Lower approximation of a set. 

can be approximated by the classes in IND(X) :  

where IND( IND(X) ,  Y) is the lower approximation of the set Y in terms of the 

elementary objects - the classes in IND(X) .  POS(X, Q) gives the dependency 

between X and Q because the values of the attributes in Q of any object in POS(X,  Q) 

can be determined solely by the object's values of the attributes in X. A heuristic 

search method is used to find the minimal set P' E P which still keeps the dependency, 

i.e., POS(P1, Q) = POS(P, Q). Decision table are then derived from the minimal set. 

Decision rules (or classification rules) can be obtained from the decision table. 

Hu and Cercone integrated rough sets with attribute-oriented induction to find 

high level rules [57]. A set of objects are first generalized using attribute-oriented 

induction [45]. The rough sets method is then applied on these generalized objects to 

find the decision table at a general level. 

Rough sets provide a tool for KDD with a solid mathematical foundation. How- 

ever, it can only discover qualitative rules, i.e., exact rules. The computational com- 

plexity of finding the best minimal set is exponential to the number of attributes. ' 
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2.1.2 Machine Learning Approaches 

Learning f r om Examples 

Given a set of positive examples (objects in the class) and a set of negative examples 

(objects not in the class), this approach searches for a class description (concept) that 

covers all positive examples and excludes all negative examples, i.e., learning from 

examples. The search space is defined by the attributes of the objects. 

The A Q  algorithm, proposed by Michalski [75], uses a bottom-up generalization 

method to search for the description, as is summarized as follows: 

1. Randomly select a positive example; 

2. Form a star which is a generalization of the example by dropping conditions, 

adding selectors, extending intervals, climbing conceptual trees, etc., but which 

does not cover any negative example. 

3. Form a descript'ion for the star and remove the positive examples covered by it. 

4. Continue the process until all positive example are accounted for. 

5. Form the disjunction of the descriptions as the resulting class description. 

The results of each iteration are examined by users and the process stops if a satisfac- 

tory description is found. Heuristics and background knowledge can be used to guide 

the search in Step 2. 

Mitchell [79,80] proposed a combined top-down and bottom-up approach to search 

for the best description. The algorithm searches for the best description in a version 

space, defined by all descriptions. From the top, a most general description is given 

and specialized against the negative examples. From the bottom, positive examples 

are generalized by similar techniques used in the AQ algorithm. When the two de- 

scriptions meet, a correct concept description is found. 

Methods of learning from examples imitate the human learning process. They 

are better suited to handle qualitative or categorical data rather than quantitative or 

numerical data. Most learning from examples methods assume that the data set can 

be fit in main memory so that many scans of the data set are possible. 
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Conceptual Clustering 

An interesting method for clustering of objects, conceptual clustering, was first intro- 

duced by Michalski and Stepp [76]. Given a set of objects, conceptual clustering finds 

clusters based on conceptual closeness among objects. An object is an n-ary tuple 

represented by a vector of values on a set of attributes. A cluster is a conjunction of 

predicates on the attributes and values. In their algorithm, Cluster/2, a small number 

of random objects, called seeds, are selected as representatives of each cluster, and 

cluster descriptions are derived from the seeds. Other objects are put into clusters 

based on closeness. A hierarchical clustering can be built by splitting clusters into 

sub-clusters. The search for the best clusters, based on some clustering criteria, is 

stopped when a local maxima is found. Heuristics are used in selecting seeds for 

the next round. Clustering criteria may be based on: fitness, complexity, coverage, 

disjointedness, etc., where: 

0 Fitness is ratio of the number of objects in a cluster versus the space covered 

by the cluster. 

0 Complexity of the clustering is decided by the number of clusters and the number 

of predicates in each conjunction. 

Coverage is the number of objects covered by the clusters. 

0 Disjointedness measures the number of objects that are covered by more than 

one cluster. 

A clustering tree is built by Fisher [34] in his COBWEB algorithm. Each node 

in the tree is a cluster and can be split into subclusters as children. Initially, the 

clustering tree has one node, the root. COBWEB incrementally adds objects into the 

clustering tree and adjusts the tree accordingly. COBWEB uses a measure, called 

category utility, which is the increase of the number of objects whose classes (clusters.) 

can be correctly guessed given a clustering compared to that without the clustering. 

Based on this measure, one or more of the following operations takes place: 

0 Adding the object into an existing cluster. 
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0 Creating a new cluster to  accommodate the incoming object. 

0 Splitting a cluster into two. 

0 Merging two clusters into one. 

Conceptual clustering generates more understandable clusters compared to  statis- 

tical approaches, such as Bayesian classification. They perform well for categorical 

data, but are usually poor a t  numerical data. Like the methods of learning from 

examples, conceptual clustering also assumes that the data set can be held in main 

memory, which is often impossible for very large databases. 

Decision Tree Induction 

A decision tree is a tree whose nonleaf nodes are attributes of objects and whose leaf 

nodes are class labels. Branches from a parent node to its children are marked by 

the possible values of the corresponding attribute at the parent node. An object, 

represented by a vector of values on a set of attributes, is classified by tracing the 

path from the root of the tree to a leaf node, and taking the branches (arcs) according 

to its values along the way. The leaf node holds the class prediction of the object. A 

simple decision tree for the gas mileage of cars is given in Figure 2.3. For example, 

the mileage of a medium-sized car with automatic transmission can be determined as 

"medium" from the decision tree. Like the decision table in Section 2.1.1, the decision 

tree classifies the tuples, but uses a different knowledge representation form. 

Given a set of objects whose class labels are known, a decision tree can be induced 

which classifies the objects. Classification rules can be extracted from the decision 

tree. For example, the following classification rule can be extracted from the decision 

tree shown in Figure 2.3: 

IF size(x) = "medium" A N D  transmission(x) = "automatic" 

THEN mileage(x) = medium. 

Quinlan uses entropy to induce decision trees in his ID3 algorithm [MI. Starting 

from an empty tree and a set of objects, ID3 chooses the attribute which generates 

maximum information gain (calculated from entropies) as the root node. A branch 



CHAPTER 2. RELATED WORK IN K D D  

medium 
/ 

I 
transmission weight 

auto manual light medium heavy 

I medium I I high I I medium ( I medium I I low I 
Figure 2.3: A simple decision tree. 

connecting to a to-be-built subtree is created for each value of the attribute. The 

objects are partitioned into subtrees based on their values of the attribute. The 

process repeats for the subtrees until all objects in the subtree are from a single class. 

Utgoff proposed an algorithm for the incremental update of the decision tree based 

on ID3 [107]. Cheng et al. proposed grouping some branches into one to improve the 

quality of the induced tree [17]. Smyth and Goodman [lo21 used a measurement call J- 

measure to induce classification rules directly from databases. Manago and Yodratoff 

induced decision trees from complex structured data [70]. Later enhancement of 

ID3 by Quinlan led to C4.5 which could extract compact classification rules and 

accommodate noise and missing data [91] . Uthurusamy et al. [log] and John [61] also 

discussed how to to deal with noisy or inconclusive data. 

Decision tree induction is the most commonly used method for discovering clas- 

sification rules. Decision trees provide a natural classification of the data, and thus 

are easy for human to understand. The tree induction process can usually generate 

a decision tree that is accurate and robust. However, the induced decision tree may 

be highly influenced by the bias in the training data. Sometimes the decision tree 

can grow too large which makes the derivation of classification rules from the decision 

tree comput ationally expensive. 

To sum up, most machine learning methods have a very good cognitive model so 
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that the results are easy to understand for human. However, they usually assume the 

data set is small (a few hundred or a few thousand tuples) and can be fit into main 

memory. 

2.1.3 Database-Oriented Approaches 

An interesting method, Attribute-Oriented Induction (AOl), was developed by Han 

et al. [48, 461. The method used data focusing and conceptual-hierarchy-based gen- 

eralization to find high level rules from relational databases. A01 assumes that a set 

of conceptual hierarchies is available for the attributes. The basic techniques of A01  

are given as follows. 

1. Data focusing: The task relevant data are collected from the database. Usually, 

an SQL query is formed based on the mining request and sent to a DBMS. 

2. Attribute generalization: If there is a large number of distinct values for an at- 

tribute, and there is a conceptual hierarchy for the attribute, the attribute can 

be generalized by conceptual hierarchy climbing, i.e., replacing the lower level 

concepts of the attribute by the corresponding higher level concepts. 

3. Attribute removal: If there is a large number of distinct values for an attribute, 

and the attribute cannot be generalized or the higher level concepts of the 

attribute are stored in another attribute, the attribute should be dropped. 

4. Count propagation: A new attribute, count, is attached to each tuple and is 

accumulated when merging equivalent tuples during generalization. 

5. Attribute generalization control: Generalization on an attribute A; is performed 

until the concepts in A; has been generalized to a desired level, or the number 

of distinct values in A; in the resulting relation is no greater than a prespecified 

or default attribute threshold. 

Han et  al. [46] discussed the discovery of characteristic and discriminant rules 

from relational databases using AOI. Han and Fu later [48] explored the use of A01 

for the discovery of other kinds of rules, and in other kinds of databases, including 

object-oriented, deductive, and spatial databases. 
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The attribute-oriented induction method is efficient and effective for very large 

databases. A01 finds general, high level knowledge from databases, but leaves the 

detailed information out. It does, however, require domain knowledge in the form of 

conceptual hierarchies. 

Agrawal et al. proposed an iterative searching method, Apriori, for mining associ- 

ation rules in transactional databases (2, 41. Given a transactional database in which 

each transaction is a list of items, the Apriori algorithm finds association rules among 

items, such as "milk -+ bread" which says people who buy milk also buy brea.d. To 

find interesting association rules, two measures, support and confidence, were intro- 

duced. The support of a rule is the frequency of the item set (or itemset) composed 

by all the items in the rule, i.e., the probability a transaction contains the itemset. 

The confidence of a rule is the probability that a transaction contains the items in 

the right hand side of the rule when the transaction contains the left hand side items 

of the rule. The task is to find all association rules whose support and confidence are 

above the given support threshold and confidence threshold. 

The Apriori algorithm [4] finds the association rules in two steps. An itemset is 

called a frequent itemset if its support is no less than the given support threshold. In 

the first step, Apriori finds frequent itemsets by iteratively scanning the database. In 

the second step, association rules are derived from the frequent itemsets and filtered 

out by the given confidence threshold. 

The Apriori algorithm was later extended by Srikant and Agrawal [lo51 to discover 

association rules in relational t,ables. Each tuple in the table is transformed into 

a transaction by treating the attribute values as items. Numerical attributes are 

discretized in a way that the information loss is within the user given threshold. 

Agrawal and Srikant used similar techniques to discover sequential patterns in a 

transactional database [5]. A sequential pattern is a series of items bought by a 

customer, for example, "TV followed by VCR followed by Video Camera". Sequential 

rules, such as "50% of people who buy TV buy VCR next within a year", can be 

extracted from the sequential patterns. They transformed the set of transactions into 

a set of customer shopping sequences. The Apriori algorithm can then be applied to 

the problem with little change. 
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The iterative search method used in Apriori is efficient and scales up well with 

respect to the size of the database. However, it was designed for the mining of 

association rules (or similar types), and can not be employed for mining other kinds 

of rules. 

Database-oriented methods are very efficient and scale up well for large databases. 

They search for empirical patterns rather than models or theories, and therefore are 

robust and objective. However, database-oriented methods may rely on the under- 

lying data model, which restricts their applications for general purpose discovery. 

Sometimes generality is compromised for efficiency as well. 

2.1.4 Integrated Approaches 

Shen et al. proposed using metaqueries as a way to integrate inductive learning meth- 

ods and deductive database techniques [94]. A metaquery is a rule template, such 

as P(X,  Y)  A Q(Y, Z) -t R(X, Z), where P, Q, R, X, Y, Z are variables. A deductive 

database, LDL++, is used to collect data which are clustered using a Bayesian clus- 

tering method. Rules are extracted from the clustering and put into a knowledge base 

from which a user can form metaqueries. 

Simoudis e t  al. introduced a framework which integrates induction and deduc- 

tion [loo]. A deductive database is used to manage concepts, the predicates on data, 

attributes, and relations. Users can query through the deductive database to ver- 

ify their assumptions and define domain knowledge. The induction part searches for 

characteristic and discriminant rules in the databases by incrementally updating the 

existing rules. 

A multistrategy approach was taken by Kaufman et al. [63]. Three sets of opera- 

tors, one for data management, one for knowledge management, and one for knowledge 

discovery, are incorporated into a data and knowledge system, INLEN. The knowledge 

discovery tools include clustering, classification, characterization, discrimination, etc. 

An integrated method may typically have the advantages of its component meth- 

ods, but also inherit their disadvantages. How to make the best use of each method 

is the most important issue when several methods are integrated. 
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2.1.5 Other Approaches 

Knowledge Representation Approaches 

Gaines [40] proposed using exception directed acyclic gra.phs (EDAGs) to represent 

knowledge. An EDAG is a DAG in which nodes are premises (predicates) of rules. 

Some nodes have att,ached conclusions. As with decision trees, a path from a root to 

a leaf node in a EDAG gives the conclusions, usually class label(s), about the objects. 

In contrast to decision trees, EDAGs group common premises of rules into one node 

and allow some conclusions to be default conclusions. 

Knowledge representations are important for KDD. However, methods of knowl- 

edge representations usually employ, explicitly or implicitly, a set of discovery tools. 

These tools are essential in order to take full advantage of the knowledge representa- 

tions. 

Visualization and  Interactive Approaches 

Most KDD systems involve some kind of human interactions. Zytkow and Baker 

showed how a scientific discovery method can be adapted to interactively mine regu- 

larities in databases [116]. Starting from the whole database, the algorithm, FORTY- 

NINER, searches for regularities among two or more attributes. The results are 

presented to the user who then can decide to partition the data, change parameters, 

and so on. 

Keim et al. (641 had some interesting ideas on visualization of data. Data are trans- 

formed and presented in visually contrasting forms, such as graphs, icons, pictures, 

etc. Users can interactively select the interesting parts for further explorations. 

Visualization of data helps to understand the data, however the choice of a proper 

visual form is important. Interactive approaches are suitable for data exploration, but 

may be too slow for large databases, and the discovered results may be incomplete. . 
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Neural Network Approaches 

Lu et al. proposed a neural network approach to  data mining [69]. A neural network 

was built to classify a set of objects whose class labels are-known. Classification rules 

are extracted from the neural network by discretization of the parameters. 

Neural networks are accurate and robust for processing numerical data, but are 

poor at categorical data. Neural networks usua.lly require a long training time, but 

run fast once trained. Like Bayesian inference methods, neural networks also suffer 

from the problem of understandability. 

2.2 Typical KDD Systems 

A few typical KDD systems are discussed in this section. We will focus on their 

structures and the data mining techniques used. More information can be found in 

the GTE lab's Knowledge Discovery Mine WWW page at h t t p :  //info. g t e  . corn/--kdd/. 

Several systems, such as AUTOCLASS, TETRED, ID3 and C4.5, and INLEN, etc., 

were introduced in Section 2.1 and will not be repeated here. DBMiner was discussed 

in Section 1.4. 

2.2.1 The KEFIR System 

KEFIR (KEY FIndings Reporter) was developed by Matheus et al. in the GTE 
Lab [74, 731. The design and process flow of KEFIR are given in Figure 2.4. From a 

medical database, KEFIR finds the trends in the values of the attributes which devi- 

ate  from the expected norm given by the experts. The interestingness of the findings 

are evaluated based on potential actions against the findings and benefits from the 

actions. 

For example, KEFIR found that the "average length of stay" increased 22.6% from 

1992 to 1993 and if this trend continued into 1994, it  would result in $263,000 of extra 

expenses than the expected. KEFIR then explained that the increase was caused by 

the 247.9% increase of average length of stay in "Medical Nervous System". Some 

actions, such as enhancing "chronic care management", were recommended in order to 
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Figure 2.4: Design and process flow in KEFIR (Matheus et  al. 1996). 
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bring the expense back to its expected value. A final report was output summarizing 

all the analysis, recommendations and projected savings [74]. 
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2.2.2 The Quest System 

Quest was developed by Agrawal et al. at IBM Almaden Research Center [3,105,4,5]. 

I t  can find association rules, classification rules, time-series patterns, and sequential 

patterns from large databases. The architecture of Quest is given in Figure 2.5. 

KEFIR Engine 

I\ 

1/ 

Association rules are found using the Apriori algorithm. General level associ- 

ation rules can be found using taxonomy of items. This is the closest work to 

our multiple-level association rules. However, as explained in Chapter 5, there 

are a number of differences. 

Classification rules are extracted from a decision tree. The decision tree is 

induced using a technique, pre-sorting of the values of attributes, and pruned 

using Minimum Description Length (MDL) principle. 

Time-series patterns are discovered by searching for matching patterns in two 

sets of time-series data, for example, the stock prices of two companies. 

Sequential patterns are extracted using an Apriori-like algorithm by transform- 

ing transactional data into customer shopping sequence data. 

Finding Report 

Explanation Generation u 
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Figure 2.5: Architecture of Quest (Agrawal et al. 1996). 

2.2.3 The SKICAT System 

SKICAT is developed by Fayyad et al. [32]. The architecture of SKICAT is shown in 

Figure 2.6. The system automatically searches and classifies sky objects in digitalized 

sky images. These images are processed to generate image segmentations. The fea- 

tures of these segmentations are extracted to represent the objects. The objects are 

classified by a classifier and put into the catalog. 

SKICAT used a generalized ID3 algorithm [17] to induce a decision tree. Some 

objects are classified by the experts (astronomers) and used as training data to  help 

the induction of the decision tree. A set of rules is extracted from the decision tree 

to  form the classifier. 

2.2.4 Other KDD Systems 

Many other data mining systems have been developed, such as IMACS [lo, 91, Re- 

con [99], Explora [66], Spotlight [6], and several others. 

IMACS was developed by Bra.chman et al. at AT&T [lo, 91. It takes a unique ap- 

proach, a human centered discovery process. The system has integrated support 

for human problem solving by visualization, interaction, knowledge representa- 

tion and data processing. 



C H A P T E R  2. RELATED WORK IN KDD 

Image Processing 

Pixel Regions 

Data for 3 Analysis 

I ,  

( Sky Objects 

Classifier 

Astronomer 

4 I easurement 

Figure 2.6: Architecture of SKICAT (Fayyad et al. 1996). 

Recon was developed by Simoudis et al. [loo]. It integrates three kinds of tools, 

data visualization, rule induction and deductive database to support interactive 

data mining. 

Explora was developed by Klosgen [66] at the German National Research Center 

for Computer Science. It integrates a set of basic statistical, machine learning, 

and general artificial intelligence tools, as assistants for interactive knowledge 

discovery. 

Spotlight was developed by Anand et al. at  AT&T [6] to navigate through very 

large databases (gigabytes). 

Summary 

In this chapter, different approaches to KDD are discussed. The studies on KDD are 

classified into five major categories based on their principal methodologies: mathe- 

matical and statistical approaches, machine learning approaches, database-oriented 

approaches, integrated approaches, and other approaches. A representative method 

from each category is surveyed to  explain the basic ideas of each approach. We have 
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also analyzed the features and the limitation of each method, as well as the types of 

data and/or the applicat,ion areas for which the methods are best suited. 



Chapter 3 

Conceptual Hierarchies and Their 

Manipulation 

As mentioned in Chapter 1, concepts in databases are organized into a partial order 

called conceptual hierarchy. Conceptual hierarchies play an important role in the 

knowledge discovery process because they specify background or domain knowledge 

and may affect the discovery processing and the results. In this chapter, we discuss 

basic ideas about conceptual hierarchy and its manipulation. 

This chapter is organized as follows. In Section 3.1, basic terms about conceptual 

hierarchies are introduced and some related issues are discussed, including the mo- 

tivat ions for using conceptual hierarchies, t he specification of conceptual hierarchies, 

and the availability of conceptual hierarchies. In Section 3.2, dynamic adjustment of 

conceptual hierarchies is discussed, with two algorithms presented. Automatic gen- 

eration of conceptual hierarchies for numerical attributes is discussed in Section 3.3, 

with an algorithm presented. We discuss conceptual hierarchy generation for nonnu- 

merical attributes and the use of more general forms of partial orders in Section 3.4. 

Finally, the chapter is summarized in Section 3.5. 
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3.1 Introduction 

Some partial orders among data exist in a database. For example, "B.C." is a part of 

"Canada". Conceptual hierarchies are used to capture such a partial order. 

Definition 3.1.1 A conceptual hierarchy consists of a set of nodes organized in a 

tree, where the nodes in the tree represent values of an attribute, called concepts. A 

special node, "ANY", is reserved for the root of the tree. 

A conceptual hierarchy for an attribute, province, is shown in Fig. 1.3. Terms 

related to trees, such as a leaf node, a nonleaf node, a parent, etc., are used under 

their original meanings. For example, the node "Prairies" is a parent of the node 

"Alberta" which is a leaf node. 

A number is assigned to the level of each node in a conceptual hierarchy. The 

level of the root node is one. The level of a non-root node is one plus the level of 

its parent. This top-down assignment of levels is adopted because it is simple and 

straightforward. Please note that a higher level concept has a smaller level number. 

Also, the level of a node may change after an adjustment of the conceptual hierarchy 

as shown in Section 3.2. 

Since values are represented by nodes, the levels of nodes can also be used to  define 

the levels of values. A concept is a general or higher level concept if its corresponding 

node is a nonleaf node in the conceptual hierarchy. A leaf node in a conceptual 

hierarchy usually represents a primitive concept, i.e., a value stored in a database. 

For numerical attributes, the leaf nodes may represent the lowest level groupings 

or segments, in which case primitive concepts are implicitly stored in a conceptual 

hierarchy. For example, a primitive concept "15" may be a child of a lowest level 

grouping "0-20". Primitive concepts are sometimes called "data" to emphasize the 

fact that they are stored in databases. 

Multiple conceptual hierarchies can be specified for an attribute. However, we 

assume that at  most one conceptual hierarchy is used for an attribute for a particular 

data mining task. Therefore, we may say "an attribute's conceptual hierarchy" which 

refers to the conceptual hierarchy of the attribute used for the current data mining 
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task. Of course, different conceptual hierarchies of an attribute may be used for 

different data mining tasks as we discussed in Section 3.4. 

We confine a conceptual hierarchy to be a tree structure because it is simple, easy 

to use and ma.intain, a.nd usually sufficient for the data mining task. The use of more 

general partial orders is discussed in Section 3.4. 

Sometimes "hierarchy" is used for "conceptual hierarchy" when it is clear from 

the context. 

3.1.1 Motivations for Using Conceptual Hierarchies 

The introduction of conceptual hierarchies into data mining can be justified by the 

following discussions. 

A conceptual hierarchy provides domain knowledge about the data. Such back- 

ground or domain knowledge is necessary and useful in the process of discovery. 

The use of background knowledge is echoed in the scientific discovery process in 

which scientists learn more about nature by conducting experiments designed 

based on a priori belief or knowledge. 

Conceptual hierarchies organize concepts in a hierarchical or tree form. Hier- 

archical organizations are familiar to humans and easy to  understand, such as 

taxonomical classifications. Conceptual hierarchies make it easy for humans to 

understand the discovered results. 

Conceptual hierarchies define levels for concepts elegantly and concisely. This 

is necessary and helpful for the discovery of multiple-level rules. 

0 Conceptual hierarchies are often available and can be adjusted and generated 

automatically. The availability of conceptual hierarchies is discussed in Section 

3.1.3. The dyna,mic adjustment and the automatic generation of conceptual 

hierarchies are discussed in Section 3.2 and Section 3.3. 
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3.1.2 Specifications of Conceptual Hierarchies 

In this section, we discuss two forms of specifications of conceptual hierarchies: the 

instance-based specification and the schema-based specification. 

The instance-based specification of a conceptual hierarchies is to list all children- 

parent pairs. For example, the conceptual hierarchy for the attribute "province" 

in Figure 1.3 can be specified as province : {B . C. , P r a i r i e s )  C {Western), 

{western, Central ,  ~ a r i t i m e )  C { ~ a n a d a )  , etc., in which the attribute 

name is followed by a list of children-parent pairs. The symbol C defines the 

partial order. The set to  the left of c lists the children, and the set to  the right 

of c lists the parent. 

The schema-based specification of a conceptual hierarchy is to specify the hi- 

erarchy in terms of a database schema. For example, given the schema of a 

relation, address(street, city, province), we can define the partial order that a 

street is part of a city, which in turn is part of a province, by stating ( s t r e e t )  

C ( c i t y )  C (province) .  

A schema-based specification involves several attributes in an original schema. 

We introduce a "macro" attribute which "summarizes" all the original attributes 

involved in the specification. The original attributes are replaced by the "macro" 

attribute. The hierarchy is thus specified for the "macro" attribute whose values 

are the union of values of the original attributes. For example, we can introduce 

a "macro" attribute, place, which replaces the original attributes street, city, 

and province. The values of place are the union of the values of street, city, and 

province. The above specification is then for the attribute place. 

A schema-based specification takes the advantage of the database schema, which 

provides meta-data information about the data. It can specify the partial order 

more concisely than by listing all instances of streets, cities, and provinces. 

A conceptual hierarchy can be defined by either an instance-based specification or 

a schema-based specification. Moreover, a schema-based specification can be mapped 
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into an instance-based specification by explicitly listing each tuples in the relation in 

a partial order form. 

However, it is not always possible to map a hierarchy defined by an instance-based 

specification into a schema-based specification. A schema-based specification can be 

used to define a hierarchy whose paths from every leaf node to the root have the same 

length, by transformation of each path into a tuple in a relation which has a field for 

each level of the hierarchy. However, if a hierarchy has paths of various lengths, null 

values have to  be used in the relation, which may cause semantical inconsistence and 

ambiguity. 

Fortunately, a conceptual hierarchy can always be defined by an instance-based 

specification and the transformation of the hierarchy into a schema-based specification 

is not necessary. A schema-based specification may provide an alternative and concise 

way to specify a hierarchy, but only when such a specification is possible. 

3.1.3 Availability of Conceptual Hierarchies 

Because conceptual hierarchies play a central role in our approach, it is essential that 

conceptual hierarchies be available for most data mining tasks. In this section, we 

discuss how conceptual hierarchies can be derived. 

In general, there are three ways to obtain conceptual hierarchies. 

Conceptual hierarchies may be provided by domain experts or users. For exam- 

ple, the user can specify the hierarchy in Fig. 1.3 as discussed earlier. 

Conceptual hierarchies may be derived from the schema of data relations, in the 

form of scheme-based specification, such as the address mentioned above. 

For numerical attributes, it is possible to generate hierarchies automatically. We 

propose an algorithm for generating hierarchies in Section 3.3. 

Based on the above discussion, it is evident that conceptual hierarchies are often 

available. Moreover, the effort to obtain conceptual hierarchies is usually minor. First, 
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the basic understanding of the schema will enable the user to obtain the schema- 

based specifications easily. Furthermore, for a categorical (nonnumerical) attribute, 

the specification of hierarchies does not require much effort from users or experts, 

because there are usually only a small number of concepts, or values. For numerical 

attributes, even though there may be a large number of values, we only need to specify 

the ranges or groupings which are usually few. 

3.1.4 Operations Using Conceptual Hierarchies 

Given a task-relevant set of data and a conceptual hierarchy (which may be automac- 

tically generated) for each attribute of the data set, two operations are possible: 

generalization and specialization. 

Definition 3.1.2 The generalization of a concept of an attribute is the replacement 

of the concept with one of its ancestors in the attribute's hierarchy. The concept is 

generalized to a higher level, 1, if it is replaced by its corresponding ancestor at level 

1. 

Definition 3.1.3 An attribute is generalized to a level, I, if all of its values in the 

data set whose level is lower than 1 are generalized to level I. 

Definition 3.1.4 The specialization of a concept of an attribute is the replacement 

of the concept with one of its descendants in the attribute's hierarchy. The concept is 

specialized to a lower level, 1, if it is replaced by its corresponding descendant at  level 

1. 

Definition 3.1.5 An attribute is specialized to a level, I, if its values in the data set 

which are nonleaf nodes and at  levels higher than 1 are specialized to level I. 

For example, using the hierarchy in Fig. 1.3, the concept "B.C." of the attribute 

province can be generalized to "Western" at level 3. If all values are generalized to 

"Western", "Central", "Maritime", and "Outside Canada", the attribute province is 

generalized to level 3. Similarly, the concept "Western" can be specialized to "B.C." 



CHAPTER 3. CONCEPTUAL HIERARCHIES 4 0 

at level 4. If all values are specialized to individual provinces, the attribute province 

is specialized to level 5 because all provinces are leaf nodes at level 4 or 5. 

To ensure the correctness of the operations, special attention should be paid to 

specializations. A concept should be specialized to the corresponding descendant 

from which the concept is generalized from. For example, if the concept "Western" 

is generalized from the primitive concept "B.C.", it should be specialized to "B.C.", 

not "Alberta" or "Manitoba". More about specialization is discussed in Chapter 4. 

3.2 Dynamic Adjustment of Conceptual Hierar- 

chies 

As mentioned in section 3.1.3, conceptual hierarchies may be provided by users or 

may exist in some data relations. However, sometimes, the given hierarchy is not 

appropriate for the particular mining task. It is therefore necessary to dynamically 

refine or adjust an existing conceptual hierarchy based on the mining task, the set of 

relevant data, and data distribution statistics. 

In this section, two algorithms are given for dynamic adjustment of conceptual 

hierarchies. The first algorithm, prime level focusing, balances the nodes at a level 

of interest to the user, called prime level, which is computed from a given threshold. 

The second algorithm, the v-node insertion algorithm, adjusts nodes at any level by 

inserting "virtual" or "dummy" nodes, called v-nodes, into the hierarchy. 

3.2.1 Dynamic Conceptual Hierarchy Adjustment with At- 

tribute Threshold 

Usually, data mining finds patterns which are presented in terms of concepts of the 

attributes. For an attribute, its attribute threshold is an integer restricting the numbei 

of distinct values of the attribute in the discovered patterns. 
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Basic Ideas 

Definition 3.2.1 The prime level of an attribute is the lowest level such that when 

the attribute is generalized to that level, the number of its distinct values in the data 

set is no more than the given attribute threshold. A prime relation is a relation whose 

attributes are all generalized to their prime levels. 

Given an attribute threshold and a data set, the prime level of an attribute can 

be determined from the given conceptual hierarchy. 

Definition 3.2.2 The prime level of a conceptual hierarchy is the prime level of its 

corresponding attribute. 

Example 3.2.1 Suppose all the leaf nodes of the hierarchy in Fig. 1.3 appear in the 

data set. The prime levels of the attribute, province, for different attribute thresholds 

are shown in Fig. 3.1. The number besides each node is the level of the node. 

attribute threshold = 5 

attribute threshold = 8 

Figure 3.1 : Prime levels and attribute thresholds. 

Example 3.2.2 Suppose the hierarchy in Fig. 3.1 is given for the birth places of 

students of Canadian universities. Such a hierarchy may not fit all data mining tasks. 
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For example, to find the regularities of the birth places of the students in Simon 

Fraser University, it may be desirable to express the generalized level concepts as 

{B.C., Other-Provinces-in-Canada, Outside-Canada), But if the task is to find the 

regularities of the birth places of the students in University of Toronto, the generalized 

level concepts {Ontario, Quebec, Other-Provinces-in-Canada, Outside-Canada) may 

be more suitable. Such adaptation of different data distributions can be achieved by 

dynamic adjustment of conceptual hierarchies based on the set of relevant data. 

0 

Example 3.2.2 indicates that dynamic adjustment of conceptual hierarchies ac- 

cording to the distributions of the relevant set of data should be used in many gen- 

eralization processes. At first glance, dynamic adjustment of an existing conceptual 

hierarchy seems to be an overly complex process since it corresponds to dynamically 

regrouping the data, and its complexity grows exponentially with the size of the hi- 

erarchy. However, since the given conceptual hierarchy provides important semantic 

information about conceptual clustering, it is important to preserve the existing data 

partition as much as possible. This could be done by performing minor refinements 

on the existing clustering, which will substantially reduce the total number of combi- 

nations to be considered. 

The following observations may lead to the design of an efficient and effective 

algorithm for dynamic conceptual hierarchy adjustment. 

First, dynamic adjustment of conceptual hierarchies should not be performed dur- 

ing the collection of the set of relevant data. This is because the data retrieval process 

involves only the mapping of higher level concepts in the query (or mining task) to 

their corresponding lower level data, which should be determined by the semantics 

specified in the existing conceptual hierarchy. 

Secondly, conceptual hierarchy adjustment is a highly dynamic process. The next 

mining task may have a different relevant set of data with a different data distribution, 

which may require the hierarchies to be adjusted differently from the current task. 

Therefore, a.n adjusted hierarchy is usually not stored for future usage. 
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Thirdly, it is often desirable to present the regularities by a set of nodes, which are 

usually generalized or high level concepts, with relatively even data distribution, i.e., 

not a blend of very "big" (i.e., occurring frequently in the data set) nodes and very 

small ones a t  the same level of abstraction. Thus, it is desirable to promote the big 

low-level nodes to  higher levels, and to merge the tiny nodes when presenting final 

results. 

Finally, by giving attribute threshold for an attribute, the users implicitly choose 

the attribute's prime level. Although a conceptual hierarchy could be quite deep, the 

users may be mostly interested in the concepts at  the levels close to the prime level. 

Therefore, the  adjustment of conceptual hierarchies can be focused at the levels close 

to  the prime level. The adjustment of hierarchies at all levels (i.e., without a given 

attribute threshold), is discussed in Section 3.2.2. 

Based on the above observations, we introduce some new terminology and present 

an algorithm, called prime level focusing, for the dynamic adjustment of conceptual 

hierarchies. 

Definition 3.2.3 The count of a node is a number associated with the node, rep- 

resenting, if a leaf node, the number of occurrences of the value in the task-relevant 

data set, or if a nonleaf node, the sum of the count of its children nodes. The total 

count of an attribute is the sum of the counts of all the leaf nodes in the data set. 

Definition 3.2.4 The weight of a node is the ratio of the node's count over the total 

count of the attribute. A node is big if its weight is larger than 1/T where T is the 

attribute threshold. Otherwise, it is a small node. 

The total count and the attribute threshold are changed in the following algorithm 

to reflect the dynamic nature of big nodes. However, these changes are only effective 

in the scope of the algorithm. 

Algorithm for Dynamic Conceptual Hierarchy Adjustment with Attribute 

Threshold 

The prime level focusing algorithm for dynamic hierarchy adjustment is presented 

as follows. This algorithm tries to have evenly weighted nodes at  the prime level 



CHAPTER 3. CONCEPTUAL HIERARCHIES 44 

by top-down big nodes promotion and bottom-up small nodes merging. Other ap- 

proaches such as bottom-up promotion of big-nodes are also possible. However, our 

approach represents one of the interesting features in human exploration in which 

interesting patterns (big nodes) at  higher levels are explored before lower level details 

are examined. 

Algorithm 3.2.1 (Prime Level Focusing) Dynamic adjustment of conceptual hi- 

erarchies based on the data distribution of a given attribute in the initial relation (i.e., 

the set of data relevant to the data mining task) and the attribute's threshold. 

Input. (i) A mining task-relevant initial relation Wo, (ii) an attribute A,  (iii) the 

attribute threshold, T, for A, and (iv) a prespecified conceptual hierarchy H .  

Output. An adjusted conceptual hierarchy H' of attribute A for the derivation of 

the prime relation. 

Method. The adjustment essentially consists of two processes: top-down big nodes 

promotion and bottom-up small nodes merging. 

1. Initialization: 

(a) Assign the levels to the nodes in the hierarchy H ,  i.e., 1 for the root, 

and 1 plus the level of the parent for all other nodes. 

(b) Scan once the corresponding attribute of each tuple in the initial rela- 

tion Wo,  calculate the count c;.count for each leaf node c;, and propa- 

gate the counts to  the corresponding parents in the hierarchy H. The 

total is the sum of the counts of all the leaf nodes in the hierarchy. 

Notice that only the nodes with a nonzero count are considered in the 

following computation. 

2. Top-down adjustment of conceptual hierarchy H. 

(a) Set a buffer set, Prime, initially empty, and another buffer set, Bufl 

to hold the root of H. 

i. Calculate the weight of each node c; as c;.weight := c;.count/total. 
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ii. Set the weight threshold r as r := 1/T.  

iii. Perform node marking: A big leaf node is marked B,  a big nonleaf 

node is marked B', a small leaf node is marked S, and a small 

nonleaf node is marked S'. 

(b) Call expand-bufler, which is implemented as follows. 

i. Move every B-marked node from Buff to  Pr ime;  

ii. Replace every B'-marked node by its children; 

iii. Repeat this process until there is no change (i.e., only the nodes 

marked S or S' are left in BuB.  

(c) Perform weight re-calculation and node re-marking again as following. 

If /Pr ime[  + 1 Bufl1 5 T,  move all the nodes from Bufl to Pr ime,  and 

the process terminates. Otherwise, set T' to T - /Primel,  total' to the 

sum of the counts in Bu& weight' of each node in Buff to countltotal', 

and T' to 1/T1. hlark the nodes based on the weight' and r', and repeat 

the expand-bufler and weight re-calculation processes until there is no 

change. 

3. If there are still nodes left in Buff, perform bottom-up merging of the 

remaining nodes in Bufl as follows. 

Starting at the bottom level, step up one level (suppose, to level i) and 

merge the nodes in Bufl which share a common ancestor at level i. If 

t,he weight' of the merged node is no less than r', move it to Prime (and 

decrement TI). If the total number of nodes in Buflis no more than TI, then 

move all the nodes in Buflto Prime, else perform weight re-calculation, step 

up a level, and repeat the process. 

We have the following convention for naming a merged node. Name a node 

A + B if it is the result of merging two nodes A and B. Otherwise, name' 

it E - A if it is equivalent to an existing node E with one child node A 

removed. Otherwise, name it Other-E if it is equivalent to an existing 

node E with more than one child node removed. 
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4. Let 1 be the lowest level (largest level number) of the nodes in Prime. If 

a nodes in Prime is not at  level I, thus at  level higher than 1, "copies" of 

the node are inserted between the node and its parent to lower the node 

t o  level 1. h "copy" is a node which represents the same concept as a node 

in Prime. 0 

Theorem 3.2.1 There are no more than T (the attribute threshold) nodes in Prime,  

and there exists a (generalization) path between every node in the initial relation and 

a node in the prime relation after the execution of Algorithm 3.2.1. 

Rationale. According to the algorithm, every node moved into Pr ime  must satisfy 

one of the following three conditions: (1) having a weight greater than T or TI, (2) 

when I Prime) + I Bufll is no more than T or TI, or (3) when the remaining nodes are 

grouped into T' groups (i.e., T' new nodes) when there are no more levels to climb. 

Moreover, the computations of TI, T and TI ensure that the number of the accumulated 

nodes is no more than T. Thus the algorithm cannot generate more than T nodes 

in Prime.  In addition, every non-zero count node is either a leaf node moved into 

Pr ime,  or is associated with a nonleaf (ancestor) node that is eventually moved into 

P r ime  according to the algorithm. There should exist a path from every node to  a 

node in P r ime  (thus in the prime relation), after the execution of the algorithm. 0 

Furthermore, Algorithm 3.2.1 is designed based on the consideration that the 

nodes in the prime relation should carry relatively even data distribution, and that 

the shape of the hierarchy should be preserved when possible. Therefore, hierarchy 

adjustment following the algorithm should produce desirable results. 

Experiments with NSERC Databases 

The prime level focusing algorithm is implemented in the DBMiner system. 

The mining query is to find characteristic rules (explained in Chapter 4) of the 

1991 NSERC Research Grants in Computing Science in relevance to provinces. The 

original conceptual hierarchy for the attribute Province is given. Fig. 3.2 shows the 
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Original Hierarchy 

Figure 3.2: Original conceptual hierarchy for province. 

relevant part of the hierarchy. The number besides each node is the node's count. 

The attribute threshold for Province is set to 7. 

Using the original hierarchy without dynamic adjustment, the derived prime rela- 

tion consists of 7 values in the attribute: {';British Columbia" (68)' "Prairies7' (63)) 

"Ontario" (212)) "Quebec" (97)) "New Brunswick" (15), "Nova Scotia"(g), "New- 

foundland" (9)), (where each number in parentheses indicates the count). These 

correspond to the 7 nodes at  level 3 in Fig. 3.2. This is undesirable since the level 4 

node "Alberta" has count 40, whereas each Maritime province (at level 3) has much 

smaller counts. Notice that .some nodes, such as "Ontario" (212)) are leaf nodes which, 

though quite big, cannot be split further. 

Following Algorithm 3.2.1, the dynamic adjustment of hierarchy is performed 

based on the current mining task and the counts of nodes. This results in Fig. 3.3, 

in which "Alberta" is promoted, and the maritime provinces are merged. Note that 

a of the node "hlaritime" is inserted so that "Maritime" will be at the same 

level as others in the Prime. The attribute in the prime relation consists of 6 nodes: 

{"British Columbia" (68)) "Alberta" (40)) LLSas+Mann (23)) 'Ontario" (212), "Que-. 

bet" (97), "Maritime" (33))) with a relatively even distribution among all the nodes 

at  the prime level. 
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Adjusted Hierarchy 

level 

Figure 3.3: Dynamically adjusted conceptual hierarchy for province. 

3.2.2 Dynamic Conceptual Hierarchy Adjustment without 

Attribute Threshold 

The algorithm introduced in the previous section generates a hierarchy whose nodes 

are evenly distributed at the prime level. This solution may be desirable and sufficient 

for many cases. However, there are some restrictions which may affect its usage and 

result. 

Sometimes the athibute threshold is unknown or uncertain to the user. I t  is 

desirable to adjust conceptual hierarchies even if the attribute threshold is not 

available. 

Algorithm 3.2.1 focuses on evenly weighted nodes (even distribution of weight) 

at  the prime level. For multiple-level rules, it would be beneficial to have a 

hierarchy that is evenly weighted at all its levels. 

The original nodes may be removed from the resulting conceptual hierarchy. A 

problem could result if the user wanted to keep all the original nodes. 

Based on the same goal and observations of Section 3.2.1, we present the second 

algorithm for conceptual hierarchy adjustment, v-node insertion. The algorithm has 
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the following features compared wi t.h algorithm 3.2.1. 

0 It does not use the attribute threshold and focuses on all levels instead of only 

the prime level. 

0 The algorithm generates the optimal hierarchy based on an entropy measure, 

while keeping the original conceptual hierarchy as much as possible. 

0 A parameter cu is used to adjust the algorithm's performance. 

Basic Ideas 

Assume we are given a set of task-relevant data, D, and a conceptual hierarchy, H, 

of an attribute A. We remove all nodes in H with count 0 with respect to D since 

they are irrelevant to the current dat,a mining task. 

Definition 3.2.5 A terminal set at  level 1, TI, is the set of nodes at le17el 1 and the 

leaf nodes at higher levels, in H. 

TI = {nln E H, level(n) = 1 or n is a leaf node and level(n) < I) ). 

The terminal set corresponds to  the output values of the attribute A if the data are 

generalized to level 1 using H. 

Definition 3.2.6 A node set is called the specialized set of another set T if it is 

obtained by recursively replacing one of the nodes in T by its children. 

For example, in the conceptual hierarchy shown in Figure 3.2, the sets {B.C., Prairies, 

Central, Maritime) and {B.C., Alberta, h/lanitoba, Saskatchewan, Central, Maritime) 

are specialized sets of the set { Western, Central, Maritime). 

As observed in Section 3.2.1, it is desirable to have relatively even weighted nodes 

at  each level. A measure, entropy, is introduced to  quantitate the evenness of a node 

set. 

Definition 3.2.7 The entropy of a node set T = i n l ,  na, . , nk) ,  E(T) ,  is given as 

follows: 
k 

E (T )  = X p ( n i )  log(l/p(ni)). 
i=l 

where p(n;) is the weight of the node n, as defined in Definition 3.2.4. 
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For simplicity, we say "entropy at level I" which actually means "entropy of the 

terminal set of H at level 1". 

Our goal is to generate a hierarchy which keeps the nodes and orders among the 

nodes in H, but minimizes the entropy at each level. In the meantime, we want to 

have as many "big" nodes as possible at  each level. The two goals are conflicting since 

the more nodes the hierarchy has at a level, the larger the entropy is at  that level, as 

shown in Lemma 3.2.1. 

Lemma 3.2.1 If TI is a specialized set of another set To, E(Tl) > E(T0). 

Proof. Since Tl is obtained by recursively replacing a node by its children, we only 

need to  prove the operation increases entropy. Let a set N have nodes nl ,  . . . , n k ,  

with weights pl , . . . , pk, respectively. Suppose N' is obtained by replacing n; with its 

children, nil, .  . . , n;,, with weights, pil,. . . ,pi, respectively. Obviously, C,"=, p;j = p;. 

To compromise the two conflicti ng goals, a special kj nd of nodes, called v-nodes, is 

introduced, in contrast to the concept node which is a node in the original conceptual 

hierarchy H .  A v-node can be inserted between a "small" node and its parent so 

that the original nodes and orders are kept and each level has as many and as evenly 

weighted "big" nodes as possible. To add more flexibility, a real number, a (0 < a 5 
I),  is introduced to refine the definition of "big" node in algorithm 3.2.1. 

Definition 3.2.8 A node n a t  level 1 is called a-big if p(n) 2 a x l/IZI. Otherwise, 

it is called a-small. 
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Definition 3.2.9 A virtual node, or v-node, is an a-small node which shares the name 

of its only child, called its concrete node, which itself can be a v-node. A v-node, v, 

can only be inserted into a hierarchy by making its concrete node, n,, the child of v 

and by letting the parent of n, become the parent of v. 

The situations before and after the insertion of a v-node are demonstrated in 

Figure 3.4. 

Before insertion After insertion of a v-node 

Figure 3.4: Insertion of a v-node. 

A v-node is different from a "copy" in Section 3.2.1. A v-node can represent an 

a-small node at  any level, but a "copy" can only represent a node at  prime level which 

can be a-big or a-small. 

Definition 3.2.10 A conceptual hierarchy is a-compatible to  H if and only if it is 

obtained by inserting virtual nodes into H. 

Our goal is to generate a hierarchy that is a-compatible to H and has minimum 

entropy at  each level. An algorithm is presented next. 
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Algorithm for Dynamic Conceptual Hierarchy Adjustment without At- 

tribute Threshold 

The basic idea of the algorithm is to push a-small nodes t o  lower levels by inserting 

v-nodes. Thus, a t  each level, we will have the relatively even distributed a-big nodes. 

In other words, the algorithm balances the need for minimum entropy at each level 

and the need to  have as many nodes as possible. 

The algorithm is given as follows. For simplicity, we assume the preprocessing is 

done, that is, the level number and weight of each node is pre-computed, otherwise, 

step 1 of the algorithm 3.2.1 should be executed. 

If all nonleaf nodes are a-small or there is no nonleaf node a t  level 1, the insertion 

of v-node does not change Ti for i = 1, a * ,  max-level(H), and so the process stops. 

Algorithm 3.2.2 (v-node Insertion) Dynamic adjustment of conceptual hierarchies 

by the insertion of v-nodes. 

Input: ( i )  a pre-computed, given conceptual hierarchy, H, (ii) a number 0 < CY < 1. 

Output: An adjusted hierarchy. 

Method. The output hierarchy is obtained by top-down iterative inserting of v-node 

into H .  

1. Remove the irrelevant nodes (those with count 0). 

2. From top to bottom, for all levels do: 

(a) Collect all terminal nodes into a set. 

(b) If a t  least one nonleaf node is a-large 

insert a v-node for each a-small nonleaf node in the set. 

(c) Otherwise, the process stops. 

3. Output the adjusted hierarchy. 

Using C-like syntax, the algorithm can be written as follows. 

remove nodes with count 0; 

1 = 2; /* start from second level */ 
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T = {nllevel(n) = 1 or n is a leaf node and level(n) < 1); /* terminal set at level 1 */ 
while T R U E  do { 

N L  = 0; /* a-small nonleaf nodes */ 
stop = T R U E ;  

for each nonleaf node n in T do 

i f  n is a-small then 

N L  = N L  u { n ) ;  

else stop = FALSE; /* a t  least one nonleaf node is a-large */ 
i f  stop then break; 

for each node n in N L  do 

insert a virtual node between n and n's parent. 

1 = 1 + 1; /* next level */ 
T = {nl level(n)  = 1 or n is a leaf node and l eve l (n)  < I);  

1 
Output the adjusted hierarchy. 

Proposition 3.2.1 The algorithm 3.2.2 terminates. 

Rationale. Consider the nonleaf nodes of H. The while loop processes at least one 

nonleaf node if there is an a-big nonleaf node. Otherwise, it stops. A brief analysis 

will show that the time complexity of the algorithm 3.2.2 is O ( N  x D) where N is the 

number of nonleaf nodes in H and D is the depth (number of levels) of the adjusted 

hierarchy. o 

Theorem 3.2.2 Among all the a-compatible conceptual hierarchies of H ,  the con- 

ceptual hierarchy generated by algorithm 3.2.2, Ho, has the minimum entropy at each 

level. 

Rationale. Suppose there is another cr-compatible hierarchy, HI .  Let T;O and T;' be 

the terminal set at  level i of Ho and H1, respectively. We compare T;O and T;' for 

i = 1,. . . , max-level(H0). Let 1 be the highest level that the two sets disagree. That 

is, T: = T;' for i = 1 , . . . ,  I - 1, and TF # T:. 
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The discrepancy between TP and T: can only be caused by inserting v-node at 

level 1 - 1 in one of Ho and H1, but not the other. We consider the two cases. 

Case 1. A v-node is inserted in Ho but not in HI. Clearly, T/ is a specialized set of TP. 

Based on Lemma 3.2.1, E(TF) 2 E(T:). Due to the nature of terminal sets, 

T;' is a specialized set of T;O for all i 2 1. This means that E(T?) 2 E(Tt) and 

IT,"/ 5 IT/[ for i 2 1. 

Case 2. A v-node, vl, is inserted in HI but not in Ho. Let vo be the counterpart of vl in 

Ho. Since vo is a concept node (i.e., not a v-node), vo must be a a-big node and 

so is vl because T;-,) and Tfi-,) are the same. This contradicts our definition 

of v-node. Using similar analysis and the observation in Case 1, we conclude 

that this case can never occur. 

Therefore, the only possible difference could be inserting a v-node in Ho but not in 

HI, which decreases the entropy. 0 

Experiments with NSERC Databases 

The v-node insertion algorithm is implemented in the DBMiner system. 

Given the same data mining task and conceptual hierarchy as in Section 3.2.1, the 

v-node insertion algorithm will generate different hierarchies given different a values. 

The adjusted hierarchy for a = 0.6 is shown in Figure 3.5 and another is shown in 

Figure 3.6 for cu = 0.9. The v-nodes are in dashed-line circles. The count, rather than 

the weight, is displayed beside each node. 

As shown in Fig. 3.5 and Fig. 3.6, the value of a affects the resulting hierarchy. 

On the one hand, the larger the value of a is, the more v-nodes are to be inserted 

and the resulting hierarchy is more even at each level. On the other hand, the smaller 

the value of cr is, the fewer v-nodes are to be inserted and the resulting hierarchy has . 

more nodes at  each level. The selection of a is usually task dependent and should 

be controlled by the user. In our experiments with NSERC databases, we found that 

suitable values of a were usually from 0.5 to 1.0. 
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Figure 3.5: Adjusted conceptual hierarchy for o = 0.6. 

Figure 3.6: Adjusted conceptual hierarchy for o = 0.9. 
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3.3 Automatic Generation of Conceptual Hierar- 

chies for Numerical Attributes 

As we mentioned in Section 3.2, given conceptual hierarchy may not fit for the cur- 

rent task, or conceptual hierarchies may not exist for some attributes. Adjustment of 

given conceptual hierarchies based on the current situation is discussed in Section 3.2. 

Moreover, for numerical attributes, such as integer, real, etc., which occur frequently 

in databases, conceptual hierarchies can be generated automa'tically by the exami- 

nation of data distribution characteristics. The automatically generated hierarchies 

may reflect the current data distributions and deal with the problem when the hier- 

archies are not available. The automatic generation of hierarchies for nonnumerical 

(categorical) attributes is discussed in Section 3.4. 

3.3.1 Basic Ideas 

The following two standards are used for the automatic generation of conceptual 

hierarchies for numerical attributes. 

1. Completeness: The value ranges of the hierarchy of a numerical attribute should 

cover all of its values in the set of data relevant to the current mining task. 

2. Uniformity: The set of ranges presented in the prime relation should have rela- 

tively even distribution based on the frequency of counts of the attribute values 

in the set of data relevant to the current mining task. 

Example 3.3.1 Suppose the mining task is to study the regularities of NSERC re- 

search grants for computing Science in terms of the recipient's provinces and the 

amount of grants received. The attribute amount is a numerical attribute. For auto- 

matic construction of hierarchy for the attribute amount, the completeness require- 

ment implies that the hierarchy constructed should cover all the amounts in the rele- 

vant data set, which could be in the range of ($2,000 - $97,000), i.e., 2k - 97k. The 

uniformity requirement implies that the ranges of the amounts of the grants in the 

prime relation should be relatively evenly distributed across the whole range. If the 
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attribute threshold value is 4, and more people receive grants in the amount of low 

and medium ranges, the desired distribution could be { [ 2  - 12k),  [12 - 16k),  [16 - 
23k),  [23 - 90k)) .  Such a set of ranges has been generated automatically. 

Algorithm for Automatic Generation of Hierarchies for Numerical At- 

tributes 

Based on the similar observations analyzed in Section 3.2.1, the algorithm for auto- 

matic generation of conceptual hierarchies for numerical attributes of an data set is 

presented as follows. 

Algorithm 3.3.1 (Conceptual hierarchy generation for a numerical attribute) 

Automatic generation of conceptual hierarchy for a numerical attribute based on its 

data distribution in the initial relation. 

Input: An initial relation that contains a numerical attribute A with an attribute 

threshold T. 

Output: A conceptual hierarchy HA on A for the presentation of the prime relation. 

Method. The hierarchy H A  is constructed as follows. 

1. Estimation of the total value range by data sampling. Sample a set of values 

of A in the initial relation. Let low and high be, respectively, the smallest 

and the largest values of the sampled data. 

2. Derivation of interval value. Let interval = (high - l ow) / ( k  x T ) ,  where 

k is a constant reflecting the fineness of the segmentation. Usually, k is set 

between 5 to 10. Rounding or truncating is performed on interval to make 

it customized for human. For example, an interval of 474 is rounded up 

to 500. The range lowlhigh is truncatedJrounded accordingly. 

3. Creation of segments. A set of segments are created based on the range 

and interval. [low, low + interval],  [low + interval, low+ 2 x interval] ,  . . ., 
[low + ( k  x T - 1 )  x interval, high]. 
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I 
I 
I 

4. Merge of segments based on data distribution. Segments are merged into 

nodes based on their count frequency distribution. 

First, a histogram (count frequency) is computed based on the data set 

of the attribute in the initial relation. Each segment is attached a count I 

which is initialized to 0. The computation is performed as follows. 1 
For each tuple t in the  initial relation 

if  there is a segment s = [ I ,  h] such that  1 5 t [ A ]  < h .- 

I I 
then count[s] := count[s] + 1; -- I 

else { create a segment new: [low+ k x interval, low+(k+l) x interval] I 

where k = ( t [ A ]  - low)/interval; 
I 

count[new] := 1 ; )  II 11 

Segments are then merged into nodes SO that these nodes will have rela- 

tively even distribution of count frequencies. This is implemented as fol- 

lows. Arrange segments in ascending order based on their range values. 

Merge the sequence (of segments) whose sum of the counts reaches the 

closest to total-covnt/T into one node, with its low range set to the low 

of the first segment, and high set to the high of the last segment. Repeat 

the process for the remaining segments until there are no segments left. 

sum := 0;  

first := 1 ;  

node-count := 0;  

for i := 1 t o  n do { 
s u m s a v  := sum; 

sum := sum + count[s[i]]; 

if ( s u m  > to tal /T)  or ( i  = n )  then { 
i f  node-count = T - 1 /* This is the  last node. */ 
then i := n 

else i f  sum - totab/T > total/T - s u m s a v  

then i := i - 1; 
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merge segments from f irs t  to i into a new node; 

s u m  := 0; 

node-count := node-count + 1; 

f i r s t  := i + 1;  ) ) 

The above piece of code shows the segment merging process. Note that to 

create more levels in the resulting hierarchy, the segments can be merged 

into subgroups which in turn are merged into a node. Also, the prime level 

nodes can be further merged into higher level nodes. 0 

Theorem 3.3.1 The worst-case time complexity of Algorithm 3.3.1 is O(n), where 

n is the number of tuples in the initial relation. 

Rationale. Step 1 (data sampling) costs less than n since it only takes a proper subset 

of the initial relation and linear time to find high and low. Steps 2 & 3 work on the 

creation of intervals and segments using low, high and T ,  which is much smaller than 

n .  In Step 4,  the computation of the histogram takes O(n) time since i t  scans the 

initial relation once in the computation, where the merge of segment takes the time 

proportional to  the number of segments, which is smaller than n. Obviously, adding 

all the steps together, the worst-case time complexity of the algorithm is O ( n ) .  0 

Notice that when the size of the relevant data set is huge, it may still be costly to 

calculate the histogram, and the histogram of the reasonably-sized sampled data may 

be used instead. Also, if the distribution is known beforehand, nodes can be built 

based on the known distribution. 

Other techniques exist for the automatic generation of conceptual hierarchies for 

numerical attributes. For example, Chiu et al. proposed an algorithm for discretiza- 

tion of data using hierarchical maximum entropy [18]. In their method, the initial 

node is the entire data set. The node is split into several subnodes based on the hier-. 

archical maximum entropy. The expected frequencies of the subnodes are computed 

based on the given statistical assumptions, and are compared with the real frequen- 

cies. If the difference is larger than a threshold, the subnode is split further and the 
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process is called recursively. Our method provides a simpler and more efficient way 

of computa.tion for large data sets and still achieves elegant results. 

3.3.2 Experiments with NSERC Databases 

Algorithm 3.3.1 is implemented in the DBMiner system. 

For the mining task in Example 3.3.1, the algorithm generate the hierarchy for 

the attribute amount as follows. First, data sampling results in "high = 62,35U", 

"low = 5,468' and "interval = 1,000". Segments are then created, and a histogram 

is calculated for the current task following the Algorithm 3.3.1, resulting in Fig. 3.7. 

Then, the hierarchy is built using the histogram, following the segment merge method 

presented in Algorithm 3.3.1. The result is shown in Fig. 3.8. 

O 10000 20000 30000 40000 50000 60000 70000 80000 90000Amount 

Figure 3.7: Histogram of Amount for the current task. 
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n 

Figure 3.8: Conceptual hierarchy generated for the attribute Amount. 

3.4 Discussions 

We discuss the use of general forms of partial orders and the automatic generation of 

conceptual hierarchies for nonnumerical attributes in this section. 

3.4.1 Use of General Forms of Partial Orders 

Conceptual hierarchies are restricted to tree structures which may represent a large 

amount of partial orders existing in data. However, there are some partial orders 

in databases which do not form a tree structure. Many studies on general forms of 

partial orders exist [ I l l ,  301. Our methods can be extended in two ways to deal with 

general partial orders. 

0 A general partial order can be split into several conceptual hierarchies so that 

one of them is used in a particular data mining session. This is based on the 

assumption that there are many ways to organize the concepts, but usually only ' 

one of them is used for a particular data mining task. For example, given a 

partial order for time in Fig. 3.9 which is not a conceptual hierarchy, it can 

be split into two conceptual hierarchies as shown in Fig. 3.10. A company can 

calculate its weekly or monthly sales by choosing the corresponding hierarchy. 
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Quarter Q 

Figure 3.9: A partial order for time. 

Quarter + 
Figure 3.10: Split of a general partial order into hierarchies. 
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If the arcs or edges of a general partial order are attached with probabilities, the 

generalization or specialization can be done by splitting the counts of nodes. For 

example, using the partial order for age as shown in Fig. 3.1 1, we can generalize 

100 young people into 80 adolescents and 20 adults. 

Figure 3.11: A general partial order with probabilities. 

However, more research is needed to use general partial orders for data mining. 

For example, how to split the count when the probabilities are unknown? How to 

handle the generalization when a node has parents who hold parent-child relationship 

themselves? For example, given the partial order for clothing in Fig. 3.12, if we 

generalize "T-shirt" to both "Garments" and "Shirts", we end up presenting both 

concepts at the same time in the patterns. This situation is not desirable because 

"Shirts" are already covered by "Garments". 

3.4.2 Automatic Generation of Conceptual Hierarchies for 

Nonnumerical Attributes 

The algorithm proposed in the previous section can automatically generate conceptual 

hierarchies for numerical attributes. Nevertheless, automatic generation of conceptual ' 

hierarchies for nonnumerical attributes still remains an attractive goal because of the 

substantial efforts for construction and maintenance of conceptual hierarchies in large 

databases. 
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Figure 3.12: A general partial order for clothing. 

There have been many interesting studies on automatic generation of hierarchies 

for nonnumerical data, which can be categorized into different approaches: machine 

mining approaches [76,34], statistical approaches [27], visual feedback approaches [64], 

algebraic (lattice) approaches [78], etc. 

The machine mining approach to conceptual hierarchy generation is the most 

closely related work to our problem. Many influential studies have been performed in 

this, including Cluster/2 by Michalski and Stepp [76], COBWEB by Fisher [34, 351, 

hierarchical and parallel clustering by Hong and Mao [56], and many others. 

These approaches have their own strengths and weaknesses for different applica- 

tions. However, they all use some kind of relevance among attributes to search for the 

best hierarchical clusterings in the representation space defined by related attributes. 

How to develop a conceptual hierarchy without reference to other attributes is not 

evident. Our goal is to develop an efficient algorithm to max imi ze  t he  automat ic  data 

clustering capability for large databases. Careful examination and experimentation is 

required in order to develop the best algorithm. This is an interesting problem for 

future research. 
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3.5 Summary 

The definition of conceptual hierarchy, as well as related terms, is given in this chapter. 

Related issues to conceptual hierarchies are then discussed, including the motivations 

behind the use of conceptual hierarchies, the specifications of conceptual hierarchies, 

the availability of conceptual hierarchies, and the operations using conceptual hier- 

archy. Moreover, two algorithms have been proposed for the dynamic adjustment of 

conceptual hierarchies: the prime level focusing algorithm which balances nodes at 

an interesting level determined by the attribute threshold, and the v-node insertion 

algorithm which balances nodes at  all levels by inserting "virtual" or "dummy" nodes. 

Another algorithm has been proposed for the automatic generation of conceptual hi- 

erarchies for numerical attributes. All three algorithms have been implemented and 

tested, and they have demonstrated desirable performance and efficiency. Two related 

issues, the automatical generation of hierarchies for nonnumerical attributes and the 

use of more general forms of partial orders, are also discussed. 

Conceptual hierarchies are used in the later chapters, including Chapter 4, 5, 6, 

and 7. 



Chapter 4 

Mining Mult iple-Level 

Characteristic and Discriminant 

Rules 

Many kinds of rules exist in a large database. It is impractical to find all kinds 

of possible rules existing in large databases. Our study focuses on the discovery 

of three kinds of common and useful rules: characteristic rules, discriminant rules 

and associa,tion rules. In this chapter, we investigate the discovery of multiple-level 

characteristic and discriminant rules. The discovery of multiple-level association rules 

is discussed in Chapt,er 5. 

4.1 Multiple-Level Characteristic Rules 

Characteristic rules are descriptions of characteristics or properties of the da.ta set 

under study. Usually, the descriptions are in the form of abstractions or summariza- 

tions of the current data set. Some examples of the characteristic rule are: customer . 
profiles in a sales database, calling patterns in a telecommunication database, and 

grant distributions in a research grant database. 
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Definition 4.1.1 A characteristic rule is a rule whose left hand side is the query 

condition of the interested data set and right hand side is a generalized tuple, i.e., a 

conjunction of (attribute, value) pairs. The confidence of a characteristic rule is the 

ratio of the number of primitive tuples (i.e., tuples in the original relation) the rule 

covers over the total number of primitive tuples in the data set. 

A characteristic rule can be presented in logical form as shown in Example 1.2.2 

or in tabular form as in Example 4.1.1. In the tabular form, since the rule antecedent 

(left hand side) is the same for all the rules found, it is omitted and only the right 

hand sides of the rules are presented in a table called the generalized relation [44]. 

Each line (tuple) in the table represents a generalized tuple. 

Example 4.1.1 The follow table, adopted from [46], lists the characteristic rules 
i 

describing professors in Applied Science. The rules are extracted from a university 

employee database. Note that a special attribute, count (called vote in the original 

paper) is added to record the number of primitive tuples covered by the generalized 

tuple. The count of each generalized tuple can be interpreted as the confidence of the 

corresponding rule. 

Han et al. [44] developed a method called Attribute-Oriented Induction to discover . 
high level characteristic rules from large databases. In their work, primitive level data 

are generalized into high level tuples using Attribute-Oriented Induction (AOI). The 

method is summarized as follows [13, 441. 

Sex 

male 

male 

female 

male 

female 

Age 
old 

mid-age 

mid-age 

mid-age 

mid-age 

Birth-place 

Canada 

Canada 

Canada 

foreign 

foreign 

Salary 

high 

medium 

medium 

medium 

medium 

Count 

20 

50 

8 

21 

1 
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1. Initial data collection: The data mining request is transformed into an SQL query 

and executed to collect the set of data relevant to the mining task (as the initial 

relation). 

2. Derivation of the generalization plan for each attribute: If there is a large set of 

distinct values for an attribute of the initial relation, the attribute should be 

generalized by either attribute removal or attribute generalization. The former 

is performed when there is no generalization operator on the attribute, or its 

higher-level concepts are expressed in another attribute. The latter is performed 

otherwise by (1) determining the prime level (generalized) concepts for each 

attribute, (possibly after conceptual hierarchy adjustment), and (2) linking them 

with the data in the initial relation to  form generalization pairs. 

3. Prime relation derivation: Perform attribute-oriented generalization by substitut- 

ing lower level concepts with their corresponding prime level concepts, eliminat- 

ing duplicating tuples, and accumulating the counts in the retained generalized 

tuples. This leads to the prime relation. 

4. Rule generation: Presentation of the generaiized rules in prime relation (i.e., 

tabular form) or logical form. 

Example 4.1.2 Suppose the original relation contains the following primitive tuples. 

During AOI, the attribute Name is removed because there is no generalization oper- 

ator on it. The attribute Sex is untouched beca.use it has only two values, and thus 

is already a t  the prime level. Other attributes are generalized. For example, the 

a t  tribute Birth-place is generalized by replacing the primitive level concepts, such as 

"Toronto", with the prime level concepts, such as "Canada7', using the conceptual 

hierarchy in Figure 1.3. The A01 results in the prime relation in Example 4.1.1. 

Name 

F. Johnson 

S. Smith 

D. Clark 

... 

Sex 

male 

male 

female 
. . . 

Age 
50 

46 

39 
. . , 

Birth-place 

Toronto 

Vancouver 

Montreal 

. . . 

Salary 

$70,000 

$65,000 

$45,000 
... 
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Although A 0 1  is a powerful tool for mining high level characteristic rules [48], 

direct application of the method for mining multiple-level characteristic rules, by 

multiple scanning with various attribute thresholds, is not very efficient. We extend 

the basic algorithm so that it can be used to discover multiple-level characteristic 

rules efficiently. 

4.1.1 Methods for Mining Multiple-Level Characteristic Rules 

There are two basic strategies for mining multiple-level characteristic rules: progres- 

sive specialization and progressive generalization. 

Progressive generalization starts with a conservative generalization process which 

first generalizes the data in the initial relation to slightly higher conceptual levels 

than the primitive data in the relation. Further generalizations can be performed 

on it progressively by selecting appropriate attributes for step-by-step general- 

ization. The selection of the attributes for generalization can be based on some 

selection standards, such as the attributes with a large number of distinct values, 

the attributes with large compression ratios of distinct values, the attributes at  

deep levels in their hierarchies, the attributes with small information loss [go], 

etc. 

Progressive specialization starts with a relatively high-level generalized relation, 

then selectively and progressively specializes some of the generalized tuples or 

attributes to lower conceptual levels. The selection of the generalized tuples or 

attributes for specialization may depend on some selection standards, such as 

splitting the tuples with large counts, specializing the attributes with a small 

number of values, specializing the attributes with many levels in the hierarchy, 

specializing the attributes with large information gain [go], etc. 

From the conceptual point of view, it is often desirable to adopt a top-down, 

progressive specialization process since it is natural to first find general data charac- 

teristics at a high conceptual level and then follow certain interesting paths to step 
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down and study specialized cases. However, from the implementation point of view, 

it is easy to perform generalization rather than specialization because generalization 

replaces low level tuples with high ones by ascension of a conceptual hierarchy. On the 

other hand, since generalized tuples do not register the detailed original information, 

it is difficult to get such information back when specialization is required later. 

Besides the basic strategy, the other two major decisions that have to be made 

before an algorithm is possible are, what process control should be used during the 

mining session, i.e., automatic or manual (interactive), and what rule filtering mech- 

anism should be adopted. 

Automatic mining versus interactive mining. Automatic mining means that 

generalization or specialization is performed automatically, and the results from 

all levels are presented all at once. Interactive mining means that the user 

interactively controls the generalization and specialization during the mining 

session. Interactive mining is suitable if the user is only interested in some of the 

rules while automatic mining is desirable if most or all the rules are interesting. 

Interactive mining is also desirable if the user does not know exactly what he 

or she is looking for and wants to explore the data. 

0 Usually many rules will be discovered in a data mining session, several of which 

may not be of interest to the user. To ensure that only strong or interesting 

rules will be presented, a rule filtering mechanism can be adopted. For example, 

strong characteristic rules can be discovered at  multiple conceptual levels by fil- 

tering out generalized tuples having small counts in the rule generation process. 

Interestingness measurements, such as the IC++ [62], may be used to filter out 

uninteresting rules. 

4.1.2 Minimally Generalized Relation 

Generalization of a relation can be performed by conceptual hierarchy climbing (i.e., 

the replacement of lower level concepts by their corresponding higher level concepts) 

or attribute removal. Since these only involve conceptual hierarchies and the data in 
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the relation, generalization is thus easy to implement. The specialization of a relation 

is more complicated because, for a higher level concept, we cannot decide from which 

lower level concept it was generalized. For example, a high level concept in Figure 

1.3, "Canada", may be generalized from anyone of the three lower level concepts: 

"Central Canada", ''Western Canada", or "Maritime". 

In this section, we illustrate a technique which facilitates specializations of gen- 

eralized relations. The key point is to save a minimally generalized relation, which 

is derived from the initial relation by minimal commitment. That is, each attribute 

in the initial relation is generalized to minimally generalized levels (leaf nodes in the 

conceptual hierarchies) and then identical tuples in such a generalized relation are 

merged together [50]. 

Using the minimally generalized relation, both specialization and generalization 

can be performed with reasonable efficiency: if the current generalized relation R 

is to be further generalized, generalization can be performed directly on R; on the 

other hand, if R is to be specialized (e.g., by progressive specialization), it can be 

performed by generalizing the minimally generalized relation to the appropriate con- 

ceptual level(s) in order to derive the desired generalized relation. 

Example 4.1.3 A possible generalization path for a relation with two attributes, 

province and amount, is shown in figure 4.1. The minimally generalized relation is 

derived from the initial relation by generalizing the attribute amount into the lowest 

level groupings (concepts). Further generalizations of amount will produce higher 

level relations, GI,  Gz, etc. The specialization of Gz,  for example, can be realized by 

generalizing the minimally generalized relation into appropriate level (GI). 
0 

By generalizing the concepts to  the minimal level in the hierarchies, many tuples 

in the original relation will be merged into one in the resulting minimally generalized 

relation. For example, in Example 4.1.3, two tuples in the original relation, ("BC", 

25033) and ("BC", 23500), will be merged into one tuple in the minimally generalized 

relation, ("BC", 25000-26000), as shown in Figure 4.1. The minimally generalized 

relation is usually much smaller than the original relation and can be stored in main 
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Province Amount Count 

Alberta 20000-40000 

British Columbia 20000-40000 

w 

Amount Count 

Alberta 

British Columbia 25000-26000 

Province 

Alberta 

British Columbia 

. . . .  

Minimally Generalized Relation 

Amount 

30000-40000 

20000-30000 

0 0 . .  

Initial Relation 

Count 

8 

25 

0 . .  

Province 

Alberta 

British Columbia 

British Columbia 

. . . .  

Figure 4.1: An example of the minimally 

Amount 

32100 

25500 

25403 

. . . .  

generalized relation. 
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memory. Large minimally generalized relations can be put on disk. The derivation 

of a large minimally generalized relation is still beneficial because, for non-primitive 

characteristic rules, it avoids the query processing (joins, selections, etc.) required to 

obtain the initial relation. 

4.1.3 An Algorithm for Mining Multiple-Level Character- 

istic Rules 

Based on the discussion in the previous sections, an algorithm for mining multiple- 

level characteristic rules is presented here. 

Algorithm 4.1.1 (Mining Multiple-Level Characteristic Rules) Interactive dis- 

covery of multiple-level characteristic rules in  the initial data relation. 

Input: (1) an initial relation, &; (2) a set of conceptual hierarchies, CH, for the 

attributes in &; (3) a set of attribute thresholds, T, for the attributes in &; 
(4) thresholds, I, for rule filtering. 

Output: characteristic rules at  different conceptual levels. 

Method: An interactive progression method using a minimally generalized rela,tion. 

1. A minimally generalized relation, R1, is derived from & by generalizing the 

attributes to the minimal levels in the hierarchies and removing duplicating 

tuples. 

2. The prime level relation is derived by attribute-oriented induction using T 
and CH. It is saved as the current relation. 

3. Repeat the following steps until the user chooses to exit. 

4. Characteristic rules are extracted from the current relation. Strong char- 

acteristic rules are filtered out using I, and presented. 

5. Further progression instructions are accepted from the user. The user may 

select an attribute to generalize or specialize, or may end the session. 
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0 If further generalization is desired, the selected attribute in the current 

relations is generalized. 

If further specialization is desired and the current rela.tion is not at  

the minimal level, the attributes in the minimally generalized relation 

are generalized to the proper levels so as to obtain the new current 

relation. 

If further specialization is desired and the current relation is a t  the 

minimal level, the initial relation is fetched and generalized to obtain 

the new current relation. 

0 If exit is desired, the process stops. 

Theorem 4.1.1 Algorithm 4.1.1 finds characteristic rules at any conceptual level in  

O(n log(n)) time, where n is the number of tuples in  the original relation. 

Rationale. The generalizations use attribute-oriented induction whose time complexity 

is O(mlog(p)) where m is the number of tuples in the current relation and p is the 

number of tuples in the generalized relation [48]. The specializations are done by 

generalizations of the minimally generalized relation or of the initial relation. Since 

current relations and the minimally generalized relation have less than n tuples, the 

discovery of characteristic rules at any level takes at  most O(n log(n)) time. 

4.1.4 Experimental Results 

Algorithm 4.1.1 has been implemented in DBMiner  and used for the discovery of 

multiple-level characteristic rules. Users can interactively control the prime levels 

(by setting attribute thresholds) and select specialization or generalization of the 

current relation, and thus can find rules at multiple levels. Several attribute selection . 

criteria are available: most distinct values, least distinct values, and information 

gain/loss. Users can choose the attribute to be generalized/specialized based on one 

of the criteria or from the attribute list. A simple policy of rule filtering using count 
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threshold is adopted, i.e., a generalized tuple is regarded as noise and discarded if its 

count is less than the given threshold. 

Example 4.1.4 The following data mining query, in DMQL [51], finds multiple- 

level characteristic rules about 1994 NSERC research grants in "Computer Science" 

in terms of the recipients' province, amount of the grant, percentage of the count 

(number of grants), and percentage of the amount. 

use NSERC94 

find characteristic rule for 'CS-Grants' 

from award A, organization 0 

where A.org-code = O.org-code and A.disc-code = 'Computer Science' 

in relevance to province, amount, percentage(count), percentage(amount) 

Using the hierarchy in Figure 1.3 for province, the rules found a t  second and third 

levels are shown as follows. Default count threshold, 0%, is used. 

.......................................... 
* Characteristic Rules at Level 2 * 
.......................................... 

amount province amount% count% 
............................................................ 
60Ks- Central Canada 9.39% 2.40% 
60Ks- Western Canada 5.53% 1.71% 
40Ks-60Ks Central Canada 10.76% 5.14% 
40Ks-60Ks Western Canada 3.08% 1.54% 
20Ks-40Ks Central Canada 23.31% 20.72% 
20Ks-40Ks Maritime 1.17% 1.03% 
20Ks-40Ks Western Canada 14.69% 12.84% 
0-20Ks Central Canada 19.89% 33.56% 
0-20Ks Maritime 3.21% 5.99% 
0-20Ks Western Canada 8.97% 15.07% 
............................................................ 

100.00% 100. 00% 
Total number of primitive tuples: 584 

.......................................... 
* Characteristic Rules at Level 3 * 
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Quebec 
Ontario 
P r a i r i e s  
B r i t i s h  Columbia 
Quebec 
Ontario 
P r a i r i e s  
B r i t i s h  Columbia 
Quebec 
Ontario 
Newfoundland 
Nova Sco t i a  
New Brunswick 
P r a i r i e s  
B r i t i s h  Columbia 
Quebec 
Ontario 
Prince Edward Is1 
Newfoundland 
Nova Sco t i a  
New Brunswick 
P r a i r i e s  
B r i t i s h  Columbia 

............................................................ 
100.00% 100.00% 

Total  number of pr imi t ive  tup le s :  584 

4.2 Multiple-Level Discriminant Rules 

Discriminant rules present the properties that make one data set (the target class) 

distinct from the other(s) (the contrasting class(es)). As for characteristic rules, 

the confidence of a discriminant rule, called t-weight, tells how significant the rule 

is. Unlike the characterist,ic rule, a discriminant rule has another interestingness 
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measure, discriminant weight or d-weight [44], which tells how good the rule is as a 

discriminator. 

Definition 4.2.1 A discriminant rule is a rule whose left hand side is a generalized 

tuple, i.e., a conjunctions of (attribute, value) pairs, and whose right hand side is the 

query condition for the target class. 

The t-weight of a discriminant rule is the ratio of the number of primitive tuples 

covered by the generalized tuple over the total number of tuples, within a class. The 

d-weight of a discriminant rule is the ratio the number of primitive tuples covered 

by the generalized tuple in one class versus the number of tuples covered by the 

generalized tuple in both classes [MI. 

The attribute-oriented induction method proposed by Han et al. also discovers 

high level discriminant rules from large databases [44], as summarized below. 

1. Collect the relevant set of data respectively into the target class and the con- 

trasting class(es). 

2. Extract the prime target relation (the prime relation corresponding to the initial 

relation in the target class) in a similar way as the attribute-oriented induction 

in mining characteristic rules. Generalize the concepts of the initial relation(s) in 

the contrasting class(es) to the same level as those in the prime target relation, 

which results in the prime contrasting relation(s). 

3. To generate discriminant rules, compute the d-weight for each generalized tuple 

in the target class and output these tuples whose d-weight is close to loo%, 

along with the d-weight. 

Similar to characteristic rules, discriminant rules can also be presented in logical 

form or in tabular form by listing the left hand side of rules in a table. 

Example 4.2.1 The following table lists discriminant rules about professors versus 

instructors in Applied Science, discovered from a university employee database. It 

is excerpted from (441 with the transformation of Vote into t-weight and d-weight. 



CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 78 

Tuples appearing in both classes are marked with "*". 

I target class: I male mid-age Canada medium 50% 77% * I 

Class 

I professors I female mid-age Canada medium 8% 100% I 

Sex Age Birth-place Salary t-weight d-weight Mark 

male old Canada high 20% 100% 

I 1 male mid-age foreign medium 21% 95% * I 
female mid-age Canada medium 1% 100% 

60% 100% male young Canada low 

I contrasting class: I male mid-age Canada medium 30% 23% * I 
I instructors I female young Canada low 8% 100% I I male mid-age foreign medium 2% 5% * I 

These tuples in the table can be easily transformed into logical form. For example, 

the first generalized tuple ca,n be transformed into: 

IF Sex(x) is "male" AND Age(x) is "old" AND 

Birth-place(x) is "Canada" AND Salary(x) is "high" 

THEN professor(x). (t=20%, d=100%) 

Similar extensions to A 0 1  for mining multiple-level characteristic rules will enable 

A01 to discover multiple-level discriminant rules. 

4.2.1 Methods for Mining Multiple-Level Discriminant Rules 

Like characteristic rules, we can use progressive specialization and progressive gener- 

alization to find multiple-level discriminant rules. 

0 Progr'essive specialization first generalizes the data in both classes to  a rather 

high level and finds the discriminant rules a t  that level. Some attribute selection 

criteria, such as the ones used for the mining of characteristic rules, can then be 

used to  specialize both classes and discover discriminant rules a t  lower levels. 
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0 Progressive generalization finds discriminant rules at  a very low level first. At- 

tributes are selectively generalized for both classes, and higher level discriminant 

rules are found. 

Similarly, the generalization/specialization process can be performed automati- 

cally, or be controlled by users. Strong discriminant rules can be obtained by fil- 

tering out those rules based on t-weight, d-weight, or some interestingness measure- 

ment [98, 841. 

4.2.2 An Algorit hrn for Mining Mult iple-Level Discrimi- 

nant Rules 

Based on the discussion in the previous section, an algorithm for mining multiple-level 

discriminant rules is presented. For simplicity, we assume there is only one contrasting 

class. However, the algorithm can easily be extended for multiple contrasting classes. 

Furthermore, we assume the target class and the contrasting class have the same set 

of attributes and use the same conceptual hierarchies. 

Algorithm 4.2.1 (Mining Multiple-Level Discriminant Rules) Interactive dis- 

covery of discriminant rules at diferent conceptual levels from the initial relations. 

Input: ( I )  an initial target relation, Rt; (2) an initial contracting relation, R,; (3) 

a set of conceptual hierarchies, CH, for the attributes; (4) a set of attribute 

thresholds, T; (5) thresholds, I, for rule filtering. 

Output: discriminant rules at  different conceptual levels. 

Method: an interactive progression method using minimally generalized relations. 

1. A minimally generalized relation for the target class, R:, is derived from 

Rt by generalizing the attributes to  the minimal levels in the hierarchies 

and removing duplicating tuples. 

2. A minimally generalized relation for the contrasting class, RL, is derived 

from R, similarly. 
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3. The prime level target relation and contrasting relation are derived by 

attribute-oriented induction using CH and T. The relations are saved as 

the current target relation and the current contrasting relation, respec- 

tively. 

4. Repeat the following steps until the user chooses to exit. 

5. Discriminant tuples are extracted by intersecting the current target relation 

and the current contrasting relation. They are passed to a filter which uses 

I. Interesting discriminant rules are presented to the user. 

6. Further progression instructions are accepted from the user. The user may 

select an attribute to generalize or specialize, or may end the session. 

0 If further generalization is desired, the selected attribute in both cur- 

rent relations is generalized. 

a If further specialization is desired and the current relations are not at 

the minimal level, the attributes in the minimally generalized relations 

are generalized to the proper levels in order to obtain the new current 

relations. 

0 If further specialization is desired and the current relations are at the 

minimal level, the initial relations are fetched and generalized in order 

to obtain the new current relations. 

0 If exit is desired, the process stops. 

Theorem 4.2.1 Algorithm 4.2.1 can find discriminant rules at any conceptual level 

in O(nt log(nt) + n,log(n,)) time, where nt is the number of tuples in the original 

target relation and n, is the number of tuples in the original contrasting relation. 

Rationale. Step 1 takes O(nt log(lt)) time where lt is the number of tuples in the 

minimally generalized target relation. Step 2 takes O(n,log(l,)) time where I ,  is 

the number of tuples in the minimally generalized contrasting relation. Step 3 takes 

O(lt log(pt) + I ,  log(p,)) where pt and p, are the number of tuples in the current target 



CHAPTER 4. CHARACTERISTIC AND DISCRIMINANT RULES 

and contrasting relations, respectively. Since intersecting, filtering, and presentation 

are linear to the number of tuples, Step 4 needs O(pt +p,) time. Step 5 takes at  most 

O(nt log(pt) + n, log(p,)) time. Since lt < nt,  pt < nt,  I ,  < n,, p, < n,, the total time 

complexity is O(nt log(nt ) + n, log(n,)). 

0 

It should be pointed out that direct generalization and specialization of discrimi- 

nant tuples may not give correct discriminant rules. For example, a discriminant tuple -. 
(age:"25-30", gpa:"3.5-3.7") may be unique for graduate students, but probably not 

the further generalized tuple, (age: "20-30", gpa: "3.5-3.7"), or the further specialized 

tuple, (age:"28-29", gpa:"3.5-3.7") - because there is simply no such kind of graduate 

students. Therefore, generalization and specialization of both classes in step 6 of the 

algorithm 4.2.1 are necessary. 

4.2.3 Experimental Results 

Algorithm 4.2.1 was implemented in the DBMiner system to find multiple-level dis- 

criminant rules. Users select the first generalization level by specifying attribute 

thresholds, and interactively generalize or specialize the current relations to discover 

discriminant rules at different levels. A difference with respect to the implementation 

for mining multiple-level characteristic rules is that a minimally generalized relation 

is saved for the contrasting class as well. A simple rule filtering mechanism using a 

t-weight threshold and a d-weight threshold is adopted to filter out the uninteresting 

rules. 

Example 4.2.2 The following data mining query, in DMQL [51], finds discriminant 

rules that distinguish 1994 computer science research grants in "Alberta" from those 

in "Newfoundland", in terms of discipline, type of grant, and amount of grant. 

use  NSERC94 

f i n d  discriminant r u l e  f o r  " Alberta-CS-Grants ' ' 
where 0 .province  = "Alberta" 
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in contrast to "Newfoundland-CS-Grants" 

where 0.province = "Newfoundland" 

from award A, organization 0, grant-type G 

where A.grant-code = G.grant-code and 

A.org-code = O.org-code and A.disc-code = "Computer" 

in relevance to disc-code, amount, grant-order 

Default t-weight threshold, 0%, and d-weight threshold, 100% are used. The results 

are shown as follows. The prime level target relation and contrasting relation are 

shown as well as the discriminant tuples. The attribute threshold is set to the default, 

five, for all attributes. Since the lower level of the attribute disc-code (discipline) has 

more than five values, the attribute is generalized to the current level which has no 

more than five values. The overlapping tuples (tuples appeared in both classes) are 

marked with "*". 

........................................... 
* Alberta-CS-Grants * 
........................................... 

................................................................... 
disc-code grant-order amount t-weight d-weight mark 

Computer Operating Grant 0-20Ks 40.74% 73.33% * 
Computer Operating Grant 2OKs-40Ks 44.44% 96.00% * 
Computer Operating Grant 40Ks-60Ks 1 .85% 100.00% 
Computer Structure Grant 0-20Ks 1.85% 100.00% 
Computer Structure Grant 20Ks-40Ks 5.56% 75.00% * 
Computer Structure Grant 60Ks- 5.56% 100.00% 

........................................... 
* Newf oundland-CS-Grants * 
........................................... 

................................................................... 
disc-code grant-order amount t-weight d-weight mark 
................................................................... 
Computer Operating Grant 0-20Ks 80.00% 26.67% * 
Computer Operating Grant 2OKs-40Ks 10.00% 4.00% * 
Computer Structure Grant 20Ks-40Ks 10.00% 25.00% * 
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........................................... 
* Discriminant Tuples * 
........................................... 

............................................................. 
disc-code grant-order amount t-weight d-weight 
............................................................. 
Computer Operating Grant 40Ks-60Ks 20.00% 100.00% 
Computer S t ruc ture  Grant 0-20Ks 20.00% 100.00% 
Computer S t ruc ture  Grant 60Ks- 60.00% 100.00% 

From the tables, we can see tha.t Operating Grants from $40,000 to $60,000 are 

awa,rded to Alberta only. Some tuples, like Operating Grants from $20,000 to $40,000, 

are most probably in Alberta (96%). Lowering the d-weight threshold will qualify this 

kind of tuples as discriminant tuples. 

If the user wants to see more detailed discriminant tuples, he/she can specialize 

an attribute, for example, disc-code (having least distinct values). Lower level target 

relation and contrasting relation are displayed below, together with the discriminant 

tuples at  the lower level. As we can see from the table, the specialization brings out 

some new discriminant tuples, for example, the tuple ("DATABASES", "Operating 

Grant", "0-20KsR), and breaks down the high level discriminant tuples. For example, 

the tuple ("Computer", "Structure Grant", "0-20Ks") is replaced by the lower level 

tuple ("SOFTWARE", "Structure Grant", "0-20Ksn), 

........................................... 
* Albert a-CS-Grant s * 
........................................... 

........................................................................... 
disc-code grant-order  amount t-weight d-weight mark 
........................................................................... 
HARDWARE 
SYS-ORGANIZATION 
SYS-ORGANIZATION 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
THEORY 

Operating Grant 
Operating Grant 
Operating Grant 
Operating G r a n t  
Operating Grant 
Operating Grant 
S t ruc tu re  G r a n t  
S t ruc tu re  Grant 
Operating Grant 
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THEORY 
DATABASES 
DATABASES 
DATABASES 
A 1  
A 1  
A 1  
COMP-METHODS 
COMP-METHODS 
COMP-METHODS 

Operating Grant 
Operating Grant 
Operating Grant 
S t ruc ture  Grant 
Operating Grant 
Operating Grant 
S t ruc tu re  Grant 
Operating Grant  
Operating Grant 
S t ruc tu re  Grant 

disc-code grant  ,order 
.................................... 
HARDWARE Operating Grant 
SOFTWARE Operating Grant 
THEORY Operating Grant 
THEORY Operating Grant 
A 1  Operating Grant 
COMP-METHODS Operating Grant 
COMP-METHODS St ruc ture  Gran t  

amount 
. - - - - - - - - - - - - -  

0-2OKs 
0-20Ks 
0-20Ks 
20Ks -4OKs 
0-20Ks 
0-20Ks 
2OKs-40Ks 

t-weight 
. - - - - - - - - - -  

l o .  00% 
10.00% 
20.00% 
10.00% 
20.00% 
20.00% 
10.00% 

d-weight 
---------- 

........................................... 
* Discriminant Tuples * 
........................................... 

disc-code grant-order amount t-weight d-weight 
....................................................................... 
SYS-ORGANIZATION Operating Grant 0-2OKs 3.23% 100.00% 
SYS-ORGANIZATION Operating Grant 20Ks-40Ks 6.45% 100.00% 
SOFTWARE Operating Grant 20Ks-40Ks 12.90% 100.00% 
SOFTWARE Operating Grant 40Ks-60Ks 3.23% 100.00% 
SOFTWARE St ruc ture  Grant 0-20Ks 3.23% 100.00% 
SOFTWARE St ruc ture  Grant 20Ks-40Ks 3.23% 100.00% 
DATABASES Operating Grant 0-20Ks 6.45% 100.00% 
DATABASES Operating Grant 20Ks-40Ks 3.23% 100.00% 
DATABASES St ruc ture  Grant 20Ks-40Ks 3.23% 100.00% 
A I Operating Grant 20Ks-40Ks 16.13% 100.00% 
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A 1  Structure Grant 20Ks-40Ks 3.23% 100.00% 
COMP-METHODS Operating Grant 20Ks-40Ks 25.81% 100.00% 
COMP-METHODS Structure Grant 60Ks- 9.68% 100.00% 

4.3 Summary and Discussion 

Issues on the discovery of multiple-level characteristic and discriminant rules have 

been examined and a set of algorithms has been developed and tested in our DB- 

Miner system. The experiments show that they can discover interesting multiple-level 

characteristic and discriminant rules effectively and efficiently. 

An interactive progression method has be presented for mining multiple-level 

characteristic and discriminant rules. I t  uses attribute-oriented induction as 

the basic tool for data generalization. A data structure, minimally generalized 

relation, is used to implement the specialization efficiently. 

Interstingness measures, such as the confidence of the characteristic rules, and 

the t-weight and d-weight of the discriminant rules, are employed to filter out 

uninteresting rules. 

The progressive specialization (deepening) method is further studied in the next 

chapter when we discuss the mining of multiple-level association rules. 

4.3.1 Characterization and On-Line Analytical Processing 

On-Line Analytical Processing (OLAP) was introduced by Codd [21] to characterize 

the dynamic enterprise data analysis, such as summarization, grouping, synthesis, 

consolidation, etc. Multidimensional databases are the common approach to support 

OLAP [53, 1, 60, 431. A multidimensional database can be viewed as a hypercube, 

in which each dimension of the hypercube is an attribute and some attributes are 

treated as measures, whose values compose the cell of the hypercube. 

In this section, we discuss the relationships between data mining, especially the 

characterization, and OLAP. 
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Similarities and Differences between Characterization and OLAP 

Characterization and OLAP have several features in common as described below. 

They both perform multi-dimensional analysis on large databases. Character- 

ization may find characteristic rules with multiple attributes, and OLAP are 

usually performed on multidimensional databases. 

0 Several data analysis operations are employed by both, including viewing data 

from different angles ("pivoting"), presenting multiple-level prospects of the data 

("drill-down" and "roll-up"), selecting interesting subset of the data ("slicing" 

and "dicing"), and grouping and aggregation. 

0 Conceptual hierarchies for the attributes (i.e., dimensions) are used to group 

the data and define the levels of the concepts. 

However, characterization and OLAP are quite different as described below. 

0 Multidimensional databases are often built from the entire database and is 

stored for all the OLAP operations, where as characterization mostly works 

on a dynamically collected initial relation. 

0 Multidimensional databases are usually implemented using materialized views [53, 

93,1141, and/or multidimensional indexing structures [68]. Characterization, on 

the other hand, does not use materialized views or special indexing structures. 

0 Conceptual hierarchies can be dynamically adjusted or automatically gener- 

ated for characterization, whereas multidimensional databases usually use given, 

fixed conceptual hierarchies. 

Interactions between Data Mining and OLAP 

It is interesting to study what data mining and OLAP can do for each other. 

0 Algorithms developed for manipulations of conceptual hierarchies can be used 

to enhance the flexibilities of hierarchy processing in OLAP. For example, the 

conceptual hierarchy of a dimension, country, can be dynamic adjusted based 
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on the current sales figures, so that the groupings of the countries reflect the 

current sales distributions. 

Some techniques developed for OLAP can be used for data mining. For example, 

the materialized view techniques can be used to speed up generalization and 

specialization processes by actually storing some intermediate relations. 

4.3.2 More about Discriminant Rules 

In this section, two issues relating to discriminant rules are discussed: the relationships 

between discriminant rules and classification rules, and the visualization of discrimi- 

nant rules. 

Relationships between discriminant rules and classification rules. 

Discriminant rules and classification rules are similar in that they both deal with 

tuples (objects) from different classes and try to model the differences between 

the classes using the attributes of the tuples. However, they are different in 

their purposes and approaches. Their relationships can be further explained as 

follows. 

- The purpose of discriminant rules is to identify the features that distinguish 

the target class from the contrasting classes. A tabular form (relation) 

usually is preferred to give a clear and uniform view. The purpose of 

classification rules is to classify the objects. A classifier consisting of a set 

of classification rules is built from the given objects. The classifier is used 

later to classify future objects. 

- Discriminant rules are centered around the target class whereas classifica- 

tion rules treat all classes equally. To make a full classification, discriminant 

rule should be extracted for each of the classes. 

- Compact classification rules can be extracted by further refinement of dis- 

criminant rules. For example, the contrasting class in Example 4.2.2, "New- 

foundland-CS-Grants", does not have any grants over $40,000. A compact 

rule, 
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IF amount(x) > 40,000 THEN x is a grant in Alberta-CS-Grants. 

can be induced which abstracts the two discriminant tuples at the prime 

level. This can be done using rule reduction techniques [91]. 

- Classification rules cannot replace discriminant rules. For example, the 

above rule covers two tuples which are not presented in the discriminant 

tuples: ("Computer", "Operating Grant", "60Ks-") and ("Computer", 

"Structure Grant", "40Ks-60Ks"). For the same reason, multiple-level dis- 

criminant rules are necessary because rules at different levels give unique 

discriminant tuples which cannot be derived from discriminant rules at  

other levels. 

Visualization of discriminant rules 

Characteristic rules can be presented in textual forms, such as prime relations 

and feature tables [45], and graphical forms, such as bar charts, pie charts, 

etc [48]. For discriminant rules, we can use similar techniques. For example, 

three relations or charts can be presented, one for the target class, one for the 

contrasting class, and one for the discriminant tuples [51]. In the textual forms, 

overlapping tuples in both classes are marked with "*", as shown in Example 

4.2.2. However, it would be interesting to see that tuples in both classes are 

presented in one graph, with the overlapping tuples expressed in a graphical 

form, such as different colors, textures, etc. 



Chapter 5 

Mining Mult iple-Level Association 

Rules 

Introduction 

With widespread applications of computers and automated data collection tools, mas- 

sive amounts of transaction data have been collected and stored in databases. Dis- 

covery of interesting association relationships among huge amounts of data will help 

marketing, decision making, and business management. Therefore, mining association 

rules from large data sets has been a focused topic in recent research into knowledge 

discovery in databases [2, 4, 5, 65, 82, 851. 

Studies on mining association rules have evolved from techniques for discovery 

of functional dependencies [71], strong rules [85], classification rules [46, 911, causal 

rules [77], clustering (341, etc. to disk-based, efficient methods for mining association 

rules in large sets of transaction data [2, 4, 5, 821. However, previous work has been 

focused on mining association rules at a single conceptual level. There are applications 

which need to find associations at  multiple conceptual levels. For example, besides . 
finding that 80% of customers that purchase milk may also purchase bread, it could be 

informative to also show that 75% of customers that purchase wheat bread may also 

purchase 2% milk. The association relationship in the latter statement is expressed at 

a lower conceptual level but often carries more specific and concrete information than 
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that in the former. This requires progressively "deepening" the knowledge mining 

process in the search for refined knowledge from data. The necessity for mining 

multiple-level association rules or for using taxonomy information to aid the mining 

has also been observed by other researchers, e.g., (104, 41. 

In order to confine the association rules discovered to strong ones, that is, patterns 

(or itemsets) which occur relatively frequently and rules which demonstrate relatively 

strong implication relationships, the concepts of minimum support and minimum con- 

fidence have been introduced [2, 41. Informally, the support of an itemset A in a set of 

transactions S is the probability that a transaction in S contains itemset A; and the 

confidence of A -, B in S is the probability that itemset B occurs in S if itemset A 

occurs in S .  
For the mining of multiple-level association rules, a concept taxonomy should be 

provided to allow the generalization of primitive level concepts to high level concepts. 

In many applications, the taxonomy information is either stored implicitly in the 

database, such as "Wonder wheat bread is a wheat bread which is in turn a bread", 

or obtained elsewhere as discussed in Section 3.1.3. Thus, data items can be easily 

generalized to  multiple conceptual levels. However, direct application of the existing 

association rule mining methods to mining multiple-level associations may lead to 

some undesirable results as described below. 

First, large support is more likely to exist a t  high conceptual levels, such as milk 

and bread, rather than at low conceptual levels, such as a particular brand of milk and 

bread. Therefore, if one wants to find strong associations at  relatively low conceptual 

levels, the minimum support threshold must be substantially reduced. However, this 

may lead to the generation of many uninteresting associations, such as "toy -4 milk" 

before the discovery of some interesting ones, such as "Dairyland 2% milk -+ Wonder 

wheat bread", because the former may occur more frequently and thus have larger 

support than the latter. 

Second, it is unlikely to find many strong association rules at  a primitive conceptual 

level, such as the associations among particular bar codes, because of the tiny average 

support for each primitive data item in a very large item set. However, mining 

association rules at  high conceptual levels may often lead to the rules corresponding 
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to prior knowledge and expectations 1651, such as "milk -t bread", or lead to some 

uninteresting attribute combinations, such as "toy + milk". 

In order to remove uninteresting rules generated in knowledge mining processes, 

researchers have proposed some measurements to quantify the "usefulness" or "in- 

terestingness" of a rule [84] and have suggested to  "put a human in the loop" by 

providing tools to allow human guidance of the knowledge discovery process [7 ] .  Nev- 

ertheless, automatic generation of relatively focused, informative association rules is 

obviously more efficient than first generating a large mixture of rules and then having 

to distinguish the interesting rules from the uninteresting ones. 

These observations lead us to examine the methods for mining association rules 

at  multiple conceptual levels, which may not only discover rules at  different levels but 

also have high potential to find nontrivial, informative association rules because of 

its flexibility at  focusing the attention to different sets of data and applying different 

thresholds at different levels. 

Srikant and Agrawal [I041 proposed using a taxonomy of items to find general 

level association rules. However, they used the same thresholds for all of the levels, 

allowing many uninteresting rules to be found with interesting ones. On the contrary, 

we use different thresholds at  different levels and thus are more effective and flexible 

in finding interesting rules. Furthermore, we investigate data focusing and different 

optimization techniques for mining multiple-level association rules in our approach. 

In this chapter, issues for mining multiple-level association rules from large databases 

are examined, with a top-down, progressive deepening method developed by exten- 

sion of some existing algorithms for mining single-level association rules. The method 

first finds large (i.e., frequent) itemsets at the top-most level and then progressively 

deepens the mining process into their large descendants at  lower conceptual levels. 

Some data structures and intermediate results generated while mining high level asso- 

ciations can be shared for the mining of lower level ones, and different sharing schemes , 

lead to different variant algorithms. Algorithm performance identifies the conditions 

that each algorithm is best suited, with regard to different kinds of data distributions 

and thresholds. 

The cha.pter is organized as follows. In Section 5.2, the concepts related to 
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multiple-level association rules are introduced. In Section 5.3, a method for min- 

ing multiple-level association rules in large data sets is studied. In Section 5.4, a set 

of variant algorithms for mining multiple-level association rules are introduced, with 

their relative efficiency analyzed. In Section 5.5, a performance study is conducted 

on different kinds of data distributions and thresholds, which identifies the conditions 

for algorithm selection. Section 5.6 extends the basic ideas to the mining of flexible 

association rules. Section 5.7 discusses related issues on mining multiple-level asso- 

ciation rules, such as using multiple hierarchies, interestingness of rules, and several 

other issues. The study on mining multiple-level association rules is summarized in 

Section 5.8. 

5.2 Multiple-Level Association Rules 

To study the mining of association rules from a large set of transaction data, we 

assume that the database contains (1) a transaction data set, 7, which consists of a 

set of transactions (Ti, {A,, . . . , A,)), where T; is a transaction identifier, A; E Z (for 

i = p, . . . , q), and Z is the set of all the data items in the item data set; and (2) the 

description of the item data set, V, which contains the description of each item in Z 

in the form of (Ai, description;), where A; E Z. 

Furthermore, to facilitate the management of large sets of transaction data, our 

discussion adopts an extended relational model which allows an attribute value to be 

either a single or a set of values (i.e., in non-first-normal form). Nevertheless, the 

method developed here is applicable (with minor modifications) to other represen- 

tations of data, such as a data file, a relational table, or the result of a relational 

expression. 

Definition 5.2.1 An itemset, A, is a set of data items {A;, - - , Aj), where A;, . . . , 
Aj E Z. The support of an itemset A in a set S, u(A/S), is the number of transactions 

(in S) which contain A versus the total number of transactions in S .  The confidence 

of A -, B in S, y(A -+ BIS), is the ratio of u(A U BIS) versus a(A/S), i.e., the 

probability that itemset B occurs in S when itemset A occurs in S.  
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If an itemset contains only one item, the item is sometimes used to represent the 

itemset. It is obvious from the definition that the support of an itemset cannot be 

larger than any of its subsets. 

To find relatively frequently occurring itemsets and reasonably strong rule impli- 

cations, a user or an expert may specify two thresholds: minimum support, a', and 

minimum confidence, 9'. Notice that for finding multiple-level association rules, dif- 

ferent minimum support and/or minimum confidence thresholds can be specified at 

different levels. 

Definition 5.2.2 An itemset A is large in set S at  level 1 if the support of A is 

no less than its corresponding minimum support threshold a;. The confidence of a 

rule "A + B/S" is high at  level I if its confidence is no less than its corresponding 

minimum confidence threshold vi. 

Definition 5.2.3 A rule " A  + B/S7' is strong if, for a set S ,  each ancestor (i.e., the 

corresponding high level item in the taxonomy) of every item in A and B, if any, is 

large at its corresponding level, " A  U B/S" is large (at the current level), and the 

confidence of "A + B/S" is high (at the current level). 

The definition indicates that if " A  -, BJS" is strong, then (1) a (A U B/S) 2 a', 

(and thus, a(A/S)  2 a', and a (B /S )  2 a'), and (2) v ( A  -+ BIS) 2 y', at  its 

corresponding level. It also represents a filtering process which confines the itemsets to 

be examined at  lower levels to be only those with large supports a t  their corresponding 

high levels (and thus avoids the generation of many meaningless combinations formed 

by the descendants of the small (rare) itemsets). For example, in a sales-transaction 

data set, if milk is a large item, its lower level items such as 2% milk will be examined; 

whereas if fish is a small item, its descendants such as salmon will not be examined 

further. 

Based on this definition, the idea of mining multiple-level association rules is ' 

illustrated below. 

Example 5.2.1 Suppose that a shopping transaction database consists of two rela- 

tions: (1) a sales-item (description) relation (Table 5.1), which consists of a set of 
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attributes: bar-code, category, brand, content, size, storage-period, price, and (2) a 

sales-transaction table (Table 5.2), which registers for each transaction, the transac- 

tion number and the set of items purchased. 

Let the query be to find multiple-level strong associations in the database for the 

purchase patterns related to the foods which can only be stored for less than three 

weeks. The query can be expressed as follows in DMQL [51]. 

f ind association rules 

f rom sales-transactions T, salesitem I 

where T.bar-code = I.bar-code and 1.category = "food" and 1.storage-period < 21 

wi th  interested attributes category, content, brand 

Table 5.1 : A salesitem (description) relation. 

I transaction-id ( bar-codeset I 

bar-code 
17325 

Table 5.2: A sales-transaction table. 

category 
milk 

The query is first transformed into a standard SQL query which retrieves all the 

data items within the "food" category (covers high level concepts: beverage, fruit, 

vegetable, bread, milk, meat, fish, cereal, etc.) and with the storage period of less than . 
21 days. 

Since there are only three interested attributes, category, content, and brand in the 

query, the salesitem description relation is generalized into a generalized salesitem 

description table, as shown in Table 5.3, in which each tuple represents a generalized 

brand 
Foremost 

storage-pd 
14 (days) 

content 
2% 

price 
$3.89 

size 

1 jga.) 
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GID 
112 

Table 5.3: A generalized salesitem description table. 

item which is the merge of + group of tuples which share the same values in the 

interested a.ttributes. For example, the tuples with the same category, content and 

brand in Table 5.1 are merged into one, with their bar codes replaced by a bar-code 

set. Each group is then t'reated as an atomic item in the generation of the lowest level 

association rules. For example, the association rule generated regarding milk will only 

be in relevance to (at the low conceptual levels) brand (such as Dairyland) and content 

(such as 2%) but not to size, producer, etc. 

The taxonomy information is provided implicitly in Table 5.3. Let category (such 

as "milk") represent the first-level concept, content (such as "2%") for the second 

level one, and brand (such as "Foremost") for the third level one. The table implies 

a conceptual hierarchy like Figure 5.1. We use a simple coding scheme for fast gen- 

eralization and specialization. Other concise representations for hierarchies are also 

possible [31]. 

The process of mining association rules is expected to first discover large itemsets 

and strong association rules at  the top-most conceptual level. Let the minimum 

support at this level be 5% and the minimum confidence be 50%. One may find the 

following: a set of single large items (each called a large 1-itemset, with the support 

ratio in parentheses): "bread (25%), meat (lo%), milk (20%), . . . , vegetable (30%)", a . 
set of pair-wised large items (each called a large 2-itemset): "{vegetable, bread (19%)), 

{vegetable, milk ( Is%)) ,  . . . , {milk, bread (l7%))", etc. and a set of strong association 

rules, such as "bread + vegetable (76%), . . . , milk + bread (85%)". 

At the second level, only the transactions which contain the large items at the first 

bar-codeset 
{17325, 31414, 91265) 

141 
171 
212 
. . . 
711 

milk 
milk 
bread 
. . . 

fruit -juice 

' {29563, 77454, 89157) 
(73295, 99184, 79520) 
(88452, 35672, 31205) 

{ . . . ,  . . .)  
(32514, 78152) 

category 
milk 

skim 
chocolate 

wheat 
... 

orange 

content 
2% 

Dairyland 
Dairyland 

Wonder 
. . . 

Minutemaid 

brand 
Foremost 
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food 

Dairyland Foremost Old Mills Wonder 

Figure 5.1: A taxonomy for the relevant data items. 

level are examined. Let the minimum support at  this level be 2% and the minimum 

confidence be 40%. One may find the following large 1-itemsets: "lettuce (lo%), wheat 

bread (15%), white bread (lo%), 2% milk (lo%), chicken (5%), . . . , beef (5%)", and 

the following large 2-itemsets: "(2% milk, wheat bread (6%)), {lettuce, 2% milk (4%)), 

ichicken, beef (2.1%))", and the st,rong association rules: "2% milk t wheat bread 

(60%), . . . , beef + chicken (42%)", etc. 

The process repeats at even lower conceptual levels until no more large itemsets 

can be found. 0 

5.3 A Method for Mining Multiple-Level Associ- 

ation Rules 

A method for mining multiple-level association rules is introduced in this section. 

The method uses a hierarchy-information encoded transaction table, instead of the 

original transaction table, in iterative data mining. This is based on the following 

considerations. First, a data mining query is usually in relevance to only a portion of 
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the transaction database, such as food, instead of all the items. It is beneficial to first 

collect the relevant set of data and then work repeatedly on the task-relevant set. Sec- 

ond, encoding can be performed during the collection of task-relevant data, and thus 

there is no extra "encoding pass" required. Third, an encoded string, which represents 

a position in a hierarchy, requires less bits than the corresponding object-identifier 

or bar-code. Moreover, encoding allows more items to be merged (or removed) due 

to their identical encoding, which further reduces the size of the encoded transaction 

table. Thus it is often beneficial to use an encoded table although our method does 

not rely on the derivation of such an encoded table because the encoding can always 

be performed on the fly. 

To simplify our discussion, an abstract example which simulates the real life ex- 

ample of Example 5.2.1 is analyzed as follows. 

Example 5.3.1 As stated above, the taxonomy information for each (grouped) item 

in Example 5.2.1 is encoded as a sequence of digits in the transaction table 7[1] 

(Table 5.4). For example, the item '2% Foremost milk' is encoded as '112' in which 

the first digit, 'l ' ,  represents 'milk' at level-1, the second, 'l', for '2% (milk)' at  level-2, 

and the third, '2', for the brand 'Foremost' at level-3. Similar to [4], repeated items 

(i.e., items with the same encoding) at  any level will be treated as one item in one 

transaction. 

Table 5.4: Encoded transaction table: 7[l]. 

TID 
TI 
T2 
T3 
Tq 
T5 
T6 
T7 

The derivation of the large itemsets at level 1 proceeds as follows. Let the minimum 

support at  level 1 be 4 transactions (i.e., minsup[l] = 4). Notice that since the total 

Items 
(111, 121, 211, 221) 
(111, 211, 222, 323) 
(112, 122, 221, 411) 
(111,121) 
(111, 122, 211, 221, 413) 
(211,323,524) 
(323, 411, 524, 713) 
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number of transactions is fixed, the support is expressed in an absolute value ra.ther 

than a relative percentage, for simplicity. The level-1 large 1-itemset table L[1,1] can 

be derived by scanning 7[l], registering support of each generalized item, such as 

I**, . . . , 4**, if a transaction contains such an item (i.e., the item in the transaction 

belongs to the generalized item I**, . . . , 4**, respectively), and filtering out those 

whose accumulated support count is lower than the minimum support. L[1,1] is 

then used to filter out (1) any item which is not large in a transaction, and (2) 

the transactions in 7[1]  that contain only small items. This results in the filtered 

transaction table 7[2]  of Figure 5.2. Moreover, since there are only two entries in 

L[1,1], the level-1 large-2 itemset table L[1,2] may contain only 1 candidate item 

{I**, 2**), which is supported by 4 transactions in 7[2]. 

Level-1 minsup = 4 
Filtered transaction table: 

Level-1 large 1-itemsets: 
7/21 

According to the definition of multiple-level association rules (hereafter referred 

L[1,1] 

Level-1 large 2-itemsets: 

to  as ML-association rules), only the descendants of the large items a t  level-1 (i.e., in 

L[1,1]) are considered as candidates for the level-2 large 1-itemsets. Let minsup[2] = 

Figure 5.2: Large itemsets a t  level 1 and filtered transaction table: 7[2].  

TID 
TI 
T2 
T3 
T4 
T5 
T6 

3. The level-2 large 1-itemsets L[2,1] can be derived from the filtered transaction 

L ,  

Items 
{ I l l ,  121, 211, 221) 
{111,211,222) 
(112, 122, 221) 
(111, 121) 
{111,122,211,221} 

(211) 

table 7[2]  by accumulating the support count and removing those whose support is 

smaller than the minimum support, which results in L[2,1] of Figure 5.3. Similarly, 

the large 2-itemset table &[2,2] is formed by the combinations of the entries in C[2,1], 
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Level-2 minsup = 3 
Level-2 large 1-itemsets: Level-2 large 3-itemsets: 

Level-3 minsup = 3 
Level-3 large 1-itemsets: 

Level-2 large 2-itemsets: L[3,11 

Level-3 large 2-itemsets: 

LI2721 

Figure 5.3: Large itemsets at levels 2 and 3. 

Itemset 
{ l l* ,  12*) 
{ l l* ,  21*) 
{ l l* ,  22*) 
{12*, 22*) 
{21*, 22*) 

together with the support derived from 7[2],  filtered using the corresponding thresh- 

old. Likewise, the large 3-itemset table L[2,3] is formed by the combinations of the 

entries in L[2,2]. 

Finally, L[3,1] and L[3,2] at  level 3 are computed similarly, with the results shown 

in Figure 5.3. The computation terminates since there is no deeper level in the 

hierarchy. Note that the derivation also terminates when an empty large 1-itemset 

table is generated at any level. D 

Support 
4 
3 
4 
3 
3 

The above discussion leads to the following algorithm for mining strong ML- 

association rules. 

Algorithm 5.3.1 (ML-T2L1) Find multiple-level large itemsets for mining strong 

ML-association rules in a transaction database. 
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Input: (1) T[l], a hierarchy-information-encoded and task-relevant set of a trans- 

action database, in the format of ( T I D ,  Itemset),  in which each item in the 

I temset  contains encoded conceptual hierarchy information, and (2) the mini- 

mum support threshold (minsup[l]) for each conceptual level 1. 

Output: Multiple-level large itemsets. 

Method: A top-down, progressively deepening process which collects large itemsets 

a t  different conceptual levels as follows. 

Starting a t  level 1, derive for each level 1, the large k-items sets, LC:[/, k], for each k, and 

the set of large itemsets, LC:L[1] (for all k's), as follows (presented in a syntax similar 

to C and Pascal, which should be self-explanatory). 

(1) for (1 := 1; t [ l ,  I] # 0 and E < max-level; I + + )  do { 

(2) if 1 = 1 then { 

(3) L[l, 11 := getlarge-l_itemsets(7[1], I); 

(4) 7[2] := get-f iltered-t-table(7[1], L[1,1]); 

( 5 )  1 
(6) else C[l, 11 := getlarge-1-i temsets(7[2],  I); 

(7)  for (k := 2; C[I, k - 11 # 0; k++) do { 

(8) Ck := get-candidateset(C[l, k - 11); 

(9) foreach transaction t E 7[2] do { 

(10) ct := gets?Lbsets(Ck, t); 

(11) foreach candidate c E Ct do c.support++; 

(12) 1 
(13) C[1, k] := {c E Cklc.suppo~t 2 minsup[l]) 

(14) 1 
(15) U [ l ]  := Uk C[1, k]; 

(16) 1 

Explanation of Algorithm 5.3.1. 

According to  Algorithm 5.3.1, the discovery of large support items a t  each level 1 

proceeds as follows. 
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1. At level 1, the large 1-itemsets L[l, 11 is derived from 7[1] by "get-large-1-iternsets(?[l], I)".  

At any other level 1, L[l, 11 is derived from 7[2]  by "get- large-l_i temsets(7[2],  I ) " .  

Notice that when 1 > 2, only the item in L[l- l ,1]  will be considered when exam- 

ining 7121 in t,he derivation of the large 1-itemsets L[1,1]. This is implement.ed 

by scanning the items of each transaction t in 7[l] (or 7[2]) ,  incrementing the 

support count of an item i in the itemset if i's count has not been incremented 

by t. After scanning the transaction table, filter out those items whose support 

is smaller than minsup[l]. 

2. The filtered transaction table 7[2] is derived by "get-f iltered-t-table(7[1], ,C[l,l])", 

which uses L[1,1] as a filter to filter out (1) any item which is not large at  level 

1, and (2) the transactions which contain no large items. 

3. The large k (for k > 1) itemset table at level 1 is derived in two steps: 

(a) Compute the candidate set from L[1, k- 11, as done in the a priori candidate 

generation algorithm [4], apriori-gen, i.e., it first generates a set Ck in which 

ea,ch itemset consists of k items, derived by joining two (k - 1) items in 

L[1, k] which share (k - 2) items, and then removes a k-itemset c from Ck 

if there exists a c's (k - 1) subset which is not in L[l, k - 11. 

(b) For each transaction t in 7[2], for each of t's k-item subset c, increment 

c's support count if c is in the candidate set Ck. Then collect into L[l, k] 

each c (together with its support) if its support is no less than minsup[l]. 

4. The large itemsets at level I, LL[l], is the union of L[l, k] for all the k's. 

After finding the large itemsets, the set of association rules for each level 1 can 

be derived from the large itemsets LL[l] based on the minimum confidence at this 

level, mincon f [l]. This is performed as follows [4]. For every large itemset r ,  if 

a is a nonempty subset of r ,  the rule "a + r - a" is inserted into rule_set[l] if 

support(r)/support(a) 2 minconf [l], where minconf [I] is the minimum confidence 

at  level 1. 
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Algorithm ML-T2L1 inherits several important optimization techniques developed 

in previous studies at finding association rules [2, 41. For example, get-candidate-set 

of the large k-itemsets from the known large (k - 1)-itemsets follows apriori-gen 

of Algorithm Apriori [4]. Function get-subsets(Ck, t )  is implemented by a hashing 

technique from [4]. Moreover, to accomplish the new task of mining multiple-level 

association rules, some interesting optimization techniques have been developed, as 

illustrated below. 

1. Generalization is first performed on a given item description relation to derive 

a generalized item table in which each tuple contains a set of item identifiers 

(such as bar-codes) and is encoded with conceptual hierarchy information. 

2. The transaction table 7 is transformed into 7[1]  with each item in the itemset 

replaced by its corresponding encoded hierarchy information. 

3. A filtered transaction 7[2], which filters out small items at  the top level of T[l] 

using the large 1-itemsets L[1,1], is derived and used in the derivation of large 

k-items for any k (k > 1) at level-1 and for any k (k 2 1) for level I ( I  > 1). 

4. From level 1 to level (1 + I) ,  only large items at  L[1,1] are checked against 7[2]  

for L[1+ 1,1]. 

Notice that in the processing, 7[l] needs to be scanned twice, whereas 7[2]  needs 

to  be scanned p times where p = X I  kl - 1, and kl is the maximum k such that the 

k-itemset table is nonempty a t  level I. 

5.4 Variations of the Algorithm for Potential Per- 

formance Improvement 

Potential performance improvements of Algorithm ML-T2L1 are considered by ex- 

ploration of the sharing of data structures and intermediate results and generating 

maximal results at  each database scan, etc., leading to the following variations of the 

algorithm: (1) ML-TlLA: using only one encoded transaction table (thus T I )  and 
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generahg  L[1,1] for all the levels in one database scan (thus LA), (2) ML-TML1: 

using multiple encoded transaction tables and generating L[1,1] for one corresponding 

conceptual level, and (3) ML-T2LA: using two encoded transaction tables (7[1] and 

7[2])  and generating L[l, 11 for all the levels in one database scan. 

5.4.1 Using Single Encoded Transaction Table: Algorithm 

ML-T1LA 

The first variation is to use only one encoded transaction table 7[1],  that is, no filtered 

encoded transaction table 7[2] will be generated in the processing. 

At the first scan of 7[1], large 1-itemsets L[1,1] for every level 1 can be generated 

in parallel, because the scan of an item i in each transaction t may increase the count 

of the item in every L[1,1] if its has not been incremented by t .  After the scanning 

of 7[1],  each item in L[1,1] whose parent (if 1 > 1) is not a large item in the higher 

level large 1-itemsets or whose support is lower than minsup[l] will be removed from 

L[L 11. 
After the generation of large 1-itemsets for each level I ,  the candidate set for large 

2-itemsets for each level 1 can be generated by the apriori-gen algorithm [4]. The 

getsubsets function will be processed against the candidate sets at all the levels a t  

the same time by scanning 7[1] once, which calculates the support for each candidate 

itemset and generates large 2-itemsets L[1,2]. Similar processes can be processed for 

step-by-step generation of large k-item-sets L[l, k] for k > 2. 

This algorithm avoids the generation of a new encoded transaction table. More- 

over, it needs to scan 7[1] once for generation of each large k-itemset table. Since 

the total number of scanning of 7[1] will be k times for the largest k-itemsets, it is a 

potentially efficient algorithm. However, 7111 may consist of many small items which 

could be wasteful to be scanned or examined. Also, it needs a large space to keep all 

C[l] which may cause some page swapping. 

The algorithm is briefly summarized as follows. 

Algor i thm 5.4.1 (ML-TlLA) A variation to Algorithm ML-T2L1: using only one 

encoded transaction table 7[1]. 
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The input and output specifications are the same as Algorithm ML-T2L1. The 

procedure is described as follows. 

( I )  {L[1, I], . . . , L[maxl ,  11) := get-alllarge-1-itemsets(T[l]); 

(2) moreresults := true; 

(3) for (k := 2; moreresults; k++) do begin 

(4) moreresults := false; 

( 5 )  for ( I  := 1; I < maxl ;  1++) do 

(6) if L[I, I;] # 0 then begin 

(7)  C[l] := get-candidateset(L[l, k - 11); 

(8) foreach transaction t E 7[l] do begin 

(9) D[1] := get-subsets(C[l], t ) ;  // Candidates contained in t 

(10) foreach candidate c E D[l] do c.support++; 

(11) end 

(12) L[1, k] := {c E C[l]lc.support 2 minsup[l]) 

(13) moreresults := true; 

(14) end 
(15) end 

(16) for (1 := 1; 1 < mas-1; 1++) do LL[1] := Uk L[l, k]; 0 

Example 5.4.1 The execution of the same task as Example 5.3.1 using Algorithm 

ML-T1LA will generate the same large item sets L[1, k] for all the 1's and k's but 

in difference sequences (without generating and using 7[2]).  It first generates large 

1-itemsets L[1,1] for d l  the 1's from 7 [ l ] .  Then it generates the candidate sets from 

L[1,1], and then derives large 2-itemsets L[1,2] by passing the candidate sets through 

7[1]  to obtain the support count and filter those smaller than minsup[l]. Th' is process 

repeats to find k-itemsets for larger k until all the large k-itemsets have been derived. 

0 
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5.4.2 Using Multiple Encoded Transaction Tables: Algo- 

rithm ML-TML1 

The second variation is to generate multiple encoded transaction tables 7[1], 7[2], 

. . . , 7 [ m a x l  + 11, where max-1 is the maximal level number to be examined in the 

processing. 

Similar to Algorithm ML-T2L1, the first scan of 7[1] generates the large 1-itemsets 

L[1,1] which then serves as a filter to filter out from 7[l] any small items or transac- 

tions containing only small items. 7[2] results from this filtering process and is used 

in the generation of large k-itemsets at  level 1. 

Different from Algorithm ML-T2L1, 7[2] is not repeatedly used in the processing 

of the lower levels. Instead, a new table 7[1+ 11 is generated at  the processing of each 

level E ,  for I > 1. This is done by scanning 7[ l ]  to  generate the large 1-itemsets C[1,1] 

which serves as a filter to remove from 7 [ I ]  any small items or transactions containing 

only small items and results in 7[1+ 11, which will be used for the generation of large 

k-itemsets (for k > 1) at level 1 and table 7 [ l +  21 at  the next lower level. Notice that 

as an optimization, for each level 1 > 1, 7[1] and C[1,1] can be generated in parallel 

(i.e., at  the same scan). 

The algorithm derives a new filtered transaction table, 7[1+ 11, at the processing 

of each level I. Although the generation of several transaction tables may seem costly, 

it can save a substantial amount of processing if only a small portion of data are 

large items at  each level. Thus it may be a promising algorithm in this circumstance. 

However, it may not be so effective if only a small number of the items will be filtered 

out at  the processing of each level. 

The algorithm is briefly summarized as follows. 

Algorithm 5.4.2 (ML-TML1) A variation to Algorithm ML-T2Ll: using multiple 

encoded transaction tables. 

The input and output specifications are the same as Algorithm ML-T2L1. The 

procedure is described as follows. 
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if 1 = 1 then L[l, 11 := get-large-1-itemsets(T[l],  1 ) ;  

{';Ti1 + l ] , l [ l+  1,1]) := get-f i1te~ed-T-table-andhge-1-ilemsets(T[l], l[1,1]); 

for ( k  := 2; L[1, k - 11 # 0; k++)  do begin 

Ck := get-candidate~et(L[l, k - I]); 

foreach transa,ction t E 7 [ 1 +  11 do begin 

Ct := getsubsets(Ck, t); / /  Candidates contained in t 

foreach candidate c E Ct do c.support++; 

end 

L[l, k] := {c E Cklc.support 2 minsup[l]) 

end 

LL[l] := uk L[l, k]; 

(13) end 

Notice that on line 3, the procedure "get- f iltered-T-table-and-1arge-l-itemseis(?M, L[1,1])" 

scans 7[l] ,  collects only the large items for each transaction containing large items, 

which generates 7[1+ 11, and accumulates the support count for each item for the 

preparation of L[1+ 1,1]. After the scan, it removes small items from the prepared 

L[I + 1,1] based on minsup[l + I]. Thus it generates both 7 [ I  + 11 and L[1+ 1,1] in 

the same scan of 7[1]. 0 

Example 5.4.2 The execution of the same task as Example 5.3.1 using Algorithm 

ML-TML1 will generate the same large itemsets L[l, k] for all the 1's and k's but in 

difference sequences, with the generation and help of the filtered transaction tables 

7[2], . . . , T [ m a z l +  11, where max-1 is the maximum level explored in the algorithm. 

It first generates the large 1-itemsets L[1,1] for level 1. Then for each level 1 (initially 

1 = I), it generates the filtered transaction table 7[1+ 11 and the level-(1 + 1) large 

1-itemsets L[l+ 1,1] by scanning 7[1] using L[1,1], and then generates the candidate 2- 

itemsets from L[l, 11, calculates the supports using 7[1+ 11, filters those with support . 
less than minsup[l], and derives L[1,2]. The process repeats for the derivation of 

L[l, 31, . . . , L[l, k]. 
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5.4.3 Refined Technique Using Two Encoded Transaction 

Tables: Algorithm ML-T2LA 

The third variation uses the same two encoded transaction tables 7[l] and 7[2] as 

in Algorithm ML-T2L1, but it integrates some optimization techniques considered in 

the algorithm ML-TlLA. 

The scan of 7[1] first generates large 1-itemsets L[1,1]. An additional scan of 7[l] 

using L[1,1] will generate a filtered transaction table 7[2] and all the large 1-itemset 

tables for all the remaining levels, i.e., L[l,1] for 1 < 1 5 m a x l  by incrementing the 

count of every L[1,1] at the scan of each transaction and removing small items and 

the items whose parent is small from L[1,1] at the end of the scan of 7[1]. 

The candidate set for the large 2-itemsets at each level 1 can then be generated by 

the apriori-gen algorithm [4], and the getsubsets routine will extract the candidate 

sets for all the level 1 (1 2 1) at the same time by scanning 7[2] once. This will 

calculate the support for each candidate itemset and generate large 2-item-sets L[1,2] 

for 12 1. 

Similar processes proceed step-by-step which generates large k-item-sets L[l, k] for 

k > 2 using the same 7[2]. 

This algorithm avoids the generation of a group of new filtered transaction tables. 

It scans 7[1] twice to generate 7[2] and the large 1-itemset tables for all the levels. It 

then scans 7[2] once for the generation of each large k-itemset, and thus scans 7[2] 

in total k - 1 times for the genemtion of all the k-itemsets, where k is the largest 

such k-itemsets available. Since k-itemsets generation for k > 1 is performed on 7[2] 

which may consist of much less items than 7[1], the algorithm could be a potentially 

efficient one. 

The algorithm is briefly summarized as  follows. 

Algorithm 5.4.3 (ML-T2LA) A variation to Algorithm ML-T2L1: refined tech-. 

nique using two encoded transaction tables. 

The input and output specifications are the same as Algorithm ML-T2L1. The 

procedure is described as follows. 
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(1) L[1,1] := get-large-1-itemsets(T[l], 1); 

(2) {7[2], L[2,1],. . ., L[maz-l,1]) := get-filtered-t-table-and-large-1-itemsets(T[l], L[l, 11); 
(3) moreresults := true; 

(4) for (k := 2; moreresults; k t + )  do begin 

(5) moreresults := false; 

(6) for (1 := 1; 1 < maxJ ;  1++) do 

(7) if L[l, k - 11 # 0 then begin 

(8) C[1] := get-candidateset(L[l, k - 11); 

(9) foreach transaction t E 7[2] do begin 

(10) D[1] := get -subsets(C[l], t); // Candidates contained in t 

(11) foreach candidate c E D[l] do c.support++; 

(12) moreresults := true; 

(13) end 

(14) end 

(15) L[l, k] := { c  E C[l]lc.support > minsup[l]) 

(16) end 

(17) for (I := 1; 1 < max-1; 1++) do LL[I] := Uk L[l, k]; 0 

Example 5.4.3 The execution of the same task as Example 5.3.1 using Algorithm 

ML-T2LA will generate the same large itemsets L[1, k] for all the 1's and k's. It first 

generates large l-itemsets L[l, 11 from T[l], then T[2] and all the large l-itemsets 

L[2,1], . . . , L[maxl ,  11, where mas-1 is the maximum level to  be explored. It then 

generates the candidate sets from L[1, I], and derives large 2-itemsets L[l, 21 by testing 

the candidate sets against 7[2] to obtain the support count, and filters those with 

count smaller than minsup[l]. This process repeats so as to find k-itemsets for larger 

k until all the large I;-itemsets have been derived. 

5.5 Performance Study 1 

To study the performance of the ~roposed algorithms, all four algorithms: ML2'2L1, 

ML-TlLA, ML-TAfL1, and hfL-T2LA, were implemented and tested on a SUN 
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Sparc-2 workstation with 16 megabytes of main memory. 

The testbed consists of a set of synthetic transaction databases generated using a 

randomized item set generation algorithm similar to that described in [4]. 

The following are the basic parameters of the generated synthetic transaction 

databases: (1) the total number of items, I, is 1000; (2) the total number of trans- 

actions is 100,000; and (3) 2000 potentially large itemsets are generated and put into 

the transactions based on an exponential distribution. Table 5.5 shows the database 

used, in which S is the average size (# of items in a potential large itemset) of these 

itemsets, and T is the average size (# of items in a transaction) of a transaction. 

Table 5.5:  Parameters used to generate the transaction tables. 

Database 
DB1 

Each transaction database is converted into an encoded transaction table, denoted 

as 7[1 ] ,  according to the information about the generalized items in the item descrip- 

tion (hierarchy) table. The maximal level of the conceptual hierarchy in the item 

table is set to 4. The number of the top level nodes keeps increasing until the total 

number of items reaches 1000. The fan-outs at  the lower levels are selected based on 

the normal distribution with the mean value being M2, M3, and M4 for the levels 

2, 3, and 4 respectively, and a variance of 2.0. These parameters are summarized in 

Table 5.6. 

S 
2 

The testing results presented in this section are on two synthetic transaction 

T 
5 

Item Table 
I 1  
I 2  

Table 5.6: Parameters settings of the item description (hierarchy) tables. 

#nodes at level-1 
8 
15 

M2 

# of transactions 
100.000 

Size(MBytes) 
2.7MB 

M3 
5 5 5  
6 3 4  

M4 
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databases: one, TI0  (DB2), has an average transaction size (# of item in a transac- 

tion) of 10; while the other, T5 ( D B l ) ,  has an average transaction size of 5. 

Two item tables are used in the testing: the first one, 11, has S, 5, 5 and 5 branches 

a t  the levels 1, 2, 3, and 4, respectively; the second, 12, has 15, 6, 3 and 4 branches 

a t  the corresponding levels. 

5.5.1 Scale Up Experiments 

Figure 5.4 shows the running time of the four algorithms in relevance to the number 

of transactions in the database. The test uses the database T I 0  and the item set 11, 

with the minimum support thresholds being (50,10,4,2), which indicates that the 

minimum support of level 1 is 50%, and that of levels 2, 3 and 4 are respectively lo%, 

4%, and 2%. 

10k 25k 50k 75k 100k 
t of transactions 

Figure 5.4: Performances with thresholds (50, 10, 4, 2). 

The four curves in Figure 5.4 show that ML-T2LA has the best performance, while 

the ML-T1LA has the worst among the four algorithms under the current threshold 

setting. This can be explained as follows. The first threshold filters out many small 

1-itemsets a t  level 1 which results in a much smaller filtered transaction table 7[2]. . 
Moreover, the later filters are not so strong, and parallel derivation of C[l ,  k] without 

derivation of 7 [3 ]  and 7[4] is more beneficial. These lead ML-T2LA to be the best 

algorithm. On the other hand, ML-T1LA is the worst algorithm since it  consults a 

large 7[1] a t  every level. 
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Figure 5.5 shows that AIL-TlLA is the best whereas ML-TML1 is the worst 

among the four algorithms under the following setting: a different test database T5, 

the sa.me item set I l .  and with the minimum support thresholds: (20,8,2,1). This is 

because the first threshold filters out few small 1-itemsets at level 1 which results in 

almost the same sized transaction table 7[2]. The generation of multiple filtered trans- 

action tables is largely wasted, which leads to the worst performance of ML-TML1. 

Thus parallel derivation of LIZ, k] without derivation of any filtered transaction tables 

applied in ML-T1LA leads to the best performance. 

1 I I I 
10k 25k 50k 75k 100k 

# of transactions 

Figure 5.5: Performances with thresholds (20, 8, 2, 1). 

Figure 5.6 shows that ML-T2L1 and ML-TML1 are closely the best whereas 

ML-T2LA and ML-T1LA are the worst under the setting: a test database T10, an 

item set 12, and with the minimum support thresholds: (50,10,5,2). This is be- 

cause the first threshold filters out relatively more 1-itemsets at  level 1 which results 

in a small transaction table 2-12]. Thus the generation of multiple filtered transac- 

tion tables is relatively beneficial. Meanwhile, the generation of multiple level large 

1-itemsets may not save much because one may still obta.in reasonably good sized 

itemsets in the current setting, which leads ML-T2L1 to be the best algorithm in 

terms of performance. 

Figure 5.7 shows that ML-TML1 is the best whereas ML-T1LA is the worst 

under the setting: a test database T5, an item set 12, and with the minimum support 

thresholds: (30,15,5: 2). This is because every threshold filters out relatively many 
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I I I I 
10k 25k 50k 75k lOOk 

t of transactions 

Figure 5.6: Performances with thresholds (50, 10, 5 ,  2). 

1-itemsets at each level, resulting in much smaller transaction tables at each level. 

Thus the generation of multiple filtered transaction tables is beneficial, which leads to 

M L T M L 1  as the best algorithm, followed by ML-T2L1, ML-T2LA and ML-T1LA 

in sequence. 

0 I I I I 
10k 25k 50k 75 k 1 OOk 

X of transactions 

Figure 5.7: Performances with thresholds (30, 15, 5, 2). 

The above four figures show two interesting features. First, the relative perfor- 

mance of the four algorithms under any setting is relatively independent of the number 

of transactions used in the testing, which indicates that the performance is highly rel- 

evant to the threshold setting (i.e., the power of a filter at each level). Thus based on 
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the effectiveness of a threshold, a good algorithm can be selected to achieve good per- 

formance. Second, all the algorithms have relatively good LLscale-up" behavior since 

the increase of the number of transactions in the database will lead to approximately 

the linear growth of the processing time, which is desirable in the processing of large 

transaction databases. 

5.5.2 Comparisons of Relative Performances 

Figure 5.8 shows the running time of the four algorithms in relevance to the mini- 

mum support thresholds. The test uses the database TI0  and the item set 12, with a 

sequence of threshold settings: threl, . . . , thre6. The setting of threl is (60,15,5,2) 

(with the same notational convention). The remaining threshold settings are as fol- 

lows: thre2: (55,15,5,2), thre3 (55,10,5,2), thre4: (50,10,5,2), thre5: (50,10,5, I ) ,  

thre6: (50,5,2,1). The value-decreasing sequence of minimum support thresholds 

indicates that a weaker filtering mechanism is applied to the later portion of the 

sequence. 

The relative performance of the four algorithms shows interesting trends of growth 

as indicated by the four curves in Figure 5.8. The stronger the filtering mechanism, 

the more 1-itemsets are filtered out at  each level, and the smaller large 1-itemsets 

are resulted in. Thus ML-TML1, which generates a sequence of filtered transaction 

tables, has the lowest cost at threl, thre2 and also (but marginally) thre3, but the 

highest cost at  thre5 and thre6 (since few items are filtered out). On the contrary, 

ML-TlLA, which uses only one encoded transaction table but generates the large 

1-itemsets for each level at the beginning has the highest cost at threl, thre2 and 

thre3, but the lowest cost at thre6. The other two algorithms stand in the middle 

with ML-T2LA performing the best at thre5 when the threshold is reasonable small, 

especially at  the lower levels, and ML-T2L1 performing the best at  thre4 when the 

threshold is reasonable small, but the lowest level is not as small as thre5. Since 

ML-T2LA scans 7[1] twice and needs to maintain all large itemsets G[I,Ic] a t  the 

same time, it is outperformed by ML-T2L1 when the thresholds are big enough so 

that a substantial amount of 7[1] is cut and the maximal length of large itemsets at  
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each level is small. hloreover, one may observe the significant performance degradation 

from thre4 to thre5. This, based on our speculation, is because of the limited size of 

main memory. We observed a surge of page swapping when the support threshold is 

dropped significantly. 

Support-Tlme 
1500 [ I I I 1 

Threl Thre2 Thre3 Thre4 The5 The6 
Support Threshold 

Figure 5.8: Relative performances with different thresholds. 

5.5.3 Experiments on NSERC Databases 

The algorithm M L 3 2 L 1  was implemented in our DBMiner system. To apply the 

algorithm which assumes each tuple is a set of items, each attribute in the initial 

relation is generalized to the lowest level in its hierarchy, so that a tuple can be 

treated as a transaction with each attribute value viewed as an item. 

Example 5.5.1 The following data mining query, in DMQL, finds association rules 

in research grants in Computer Science in the 1994 NSERC database, with respect 

t o  the recipients' discipline, organization, and the amount of the grant. The minimal 

support and minimal confidence are set to  (20%, 50%), (lo%, 40%), and (I%, 30%) 

a t  level 1, 2, and 3 respectively. 

use NSERC94 

find association rules for "CS-Grants" 

from award A, organization 0 
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where O.org-code = A.org-code and A.disc-code = "Computer" 

with interested attributes disc-code, org-name, amount 

set minimum support 20%, lo%, 1% 

set minimum confidence 50%: 40%, 30% 

Since the level 1 concepts are always "ANY", the association rules at that level are 

trivial and thus are not shown here. The following are the association rules found at 

level 2. The organizations (org-name) are a t  the provincial level, and the amounts are 

categorized into $20,000 intervals. For example, rule R 1  says that  47% of Ontario's 

grants are less than S20,000, and 14% of all grants (in Computer Science) consist of 

these small Ontario grants. 

R 1  : org-name i n  "ONTARIO" I=> amount i n  "0-20Ks" [ O .  14,0.471 

R2 : amount i n  "20Ks-40Ks" I => disc-code  i n  "Software" LO.  l5 ,O.  601 

R 3  : org-name i n  "ONTARIO" I => disc-code  i n  "Software" L O .  l8 ,O.  611 

R4 : disc-code  i n  "Software" I=> org-name i n  " 0 ~ ~ ~ ~ 1 0 " [ 0 . 1 8 , 0 . 4 3 ]  

R5 : m o u n t  i n  "0-20Ks" I=> disc-code  i n  "Software" [0.22,0.611 

R6 : disc-code  i n  "Software" I=> amount i n  "0-20~s"[0 .22 ,0 .52]  

R7 : m o u n t  i n  "20Ks-40Ks" I=> org-name i n  "ONTARIO" [ O .  11 ,O.43] 

The following are the association rules found a t  level 3. At this level, the orga- 

nizations are specialized into institutions and the amount is categorized into $5,000 

intervals. For example, rule R8 says 43% of the University of Ottawa's grants are 

within $15,000 to  $20,000, which constitute 1% of all grants (in Computer Science). 

R 8  : org-name is "Ottawa" I=> amount i n  "15Ks-20Ks" [O.Ol,O.43] 

R9 : org-name is  "Concordia" I=> amount i n  "15Ks-20Ks"[0.01,0.37] 

R10: d isc-code  i n  "Arch i t ec tu re"  I=> amount i n  "15Ks-20Ks"[0.01,0.30] 

R 1 1 :  d i sc-code  i n  "System Design" I=> amount i n  "15Ks-20Ks"[0.02,0.34] 
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5.6 Generat ion of Flexible Association Rules 

Our study has been confined to mining association relationships level-by-level in a 

fixed hierarchy. It is often necessary or desirable to find flexible association rules 

which are not confined to strict, pre-arranged conceptual hierarchies. 

5.6.1 Mining Cross-Level Association Rules 

We may relax the restriction of mining strong assocjations among the concepts at  

the same level of a hierarchy to allow the exploration of "level-crossing" association 

relationships. This relaxation may lead to the discovery of associations like "2% 

Foremost milk -t Wonder bread" in which the two concepts are at  different levels of 

a hierarchy. This can be achieved by making minor modifications to  our algorithms 

since the new requirement associates the itemsets like ((1 12, 2*1)), as demonstrated 

in the example below. 

Example  5.6.1 For the same transaction tables and conceptual hierarchies as given 

in Example 5.3.1, we examine the mining of strong multiple-level association rules 

which include nodes at different levels in a hierarchy. 

Let minimum support at each level be: minsup = 4 a t  level-1, and minsup = 3 a t  

levels 2 and 3. 

The derivation of the large itemsets at level 1 proceeds in the same way as in 

Example 5.3.1, which generates the same large itemsets tables L[1,1] and L[1,2] at  

level 1, and the same filtered transaction table 7[2], as shown in Figure 5.2. 

The derivation of level-2 large itemsets generates the same large 1-itemsets L[2,1] 

as shown in Figure 5.9. However, the candidate items are not confined to the pairing 

of only those in L[2,1] because the items in L[2,1] can be paired with those in L[1,1] 

as well, such as { l l* ,  I**) (for potential associations like "milk + 2% milk"), or i l l * ,  

2**) (for potential associations like "2% milk + bread"). These candidate large 2- 

itemsets will be checked against 7[2] to find large items (for the level-mixed nodes, 

the minimum support at a lower level, i.e., minsup[2], can be used as a default). Such 

a process generates the large 2-itemsets table L[2,2] as shown in Figure 5.9. 
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Notice that the table does not include the 2-item pairs formed by an item with 

its own ancestor such as ({ll*, I**), 5 )  since its support must be the same as its 

corresponding large 1-itemset in L[2,1], i.e., ( i l l * ) ,  5), based on the set containment 

relationship: any transaction that contains {l l*} must contain {I**) as well. 

Similarly, the level 2 large 3-itemsets L[2,3] can be computed, with the results 

shown in Figure 5.9. Also, the entries which pair with their own ancestors are not 

listed here since it is contained implicitly in their corresponding 2-itemsets. For 

example, ({ll*, 12*), 4) in L[2,2] implies ( i l l * ,  12*, I**), 4) in L[2,3]. 

Level-2 minsup = 3 
Level-2 large 1-itemset: 

m , 1 1  
I Itemset I Sup~or t  I 

Level-2 large 3-itemset: 

Itemset Support 

Level-2 large 2-itemset: 

m , 2 1  

{ l l* ,  12*) 
{ l l* ,  21*) 
{ l l* ,  22*) 
{12*, 22*} 
{21*, 22*) 

1 {21*, 22*, I**) ( 3 I 
Figure 5.9: Cross-level large itemsets at level 2. 

Finally, the large 1-itemset table at level 3, L[3,1], should be the same as Figure 5.3. 

The large Zitemset table includes more itemsets since these items can be paired with 

higher level large items, which leads to the large 2-itemsets L[3, 21 and large 3-itemsets 

L[3, 31 as shown in Figure 5.10. Similarly, the itemsets (111, l l * )  and (111, I**) 

have the same support as (111) in L[3, 11 and are thus not included in L[3,2]. 

Since the large k-itemset (for k > 1) tables do not explicitly include the pairs 

of items with their own ancestors, attention should be paid to include them a t  the 

generation of the association rules. However, since the existence of a specialized item 

always indicates the existence of an item in that class, such as "2% milk t milk 
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(loo%)", such trivial rules should be eliminated. Thus, only nontrivial implications, 

such as "milk -t 2% milk (70%)", will be considered in the rule generation. 

Level-3 minsup = 3 
Level-3 large 1-itemset : 

Itemset Support 

Level-3 large 3-itemset: 
L13,31 . . ,  

I Itemset I S u ~ ~ o r t  I 

Level-3 large 2-itemset: 
JA3, 

Itemset 
(111, 211) 
{ I l l ,  21*) 
(11 1, 22*) 
(111, 2**) 
{11*, 211) 
{I**, 211) 

I 
Support 

3 
3 
3 
4 
3 
3 

Figure 5.10: Cross-level large itemsets at level 3. 

5.6.2 Mining Association Rules in Mixed Hierarchies 

Sometimes, it is necessary or desirable to find associations among the concepts as- 

sociated with alternative, multiple hierarchies. For example, following the hierarchy 

given in Example 5.2.1, one may find relationships like "2% milk + wheat bread". 

Alternatively, one may like to find "Foremost milk + Wonder bread" or "2% milk 

-+ Wonder bread", which may require an alterna.tive conceptual hierarchy, i.e., the 

hierarchy {content, brand, category) C {brand, category) C {category), where brand 

is taken as a higher level structure than content, between category and content. It 

seems to be challenging to explore so many alternatives since there may exist only a 

small number of fixed hierarchies in a database. However, the algorithms presented 

in this chapter can be adapted with slight modification in order to  meet the challenge 

since the new requirement essentially associates the itemsets in some alternative gen- 
' 

eralized forms, such as ({1*2), {2*1)), ({12*), {2*1)), etc. 

Example 5.6.2 (Mining association rules in mixed hierarchies) For the same transac- 

tion and item databases as that of Example 5.3.1, find multiple-level association rules 
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between brands and content specifications of different categories. 

Let the minimum support at each level be the same as in Example 5.3.1, i.e., 

minsup = 4 at level-1, and minsup = 3 at levels 2 and 3. 

The derivation of the large itemsets at level 1 proceeds in the same way as Example 

5.3.1, which generates the same large itemsets tables L[1,1] and L [I, 21 at level 1 and 

the same filtered transaction table 7[2], as shown in Figure 5.2. 

However, the level-2 large itemsets are different from those in Example 5.3.1 be- 

cause our method first generates large 1-itemsets in the forms of both ll*and 1*1, 

i.e., including both hierarchies, then pairs the large 1-items for those from different 

categories, such as {ll*,  2*1), and then finds large 3-itemsets with such properties, 

etc. Therefore, the large itemset tables at level-2 are L[2,1], L[2,2] and L[2,3], as 

shown in Figure 5.11. 

Finally, large itemset tables at level 3 should be the same since two hierarchies 

share the same leaf nodes at level 3. Thus it will generate the same tables L[3,1] 

and L[3,2] as shown in Figure 5.3. Notice that since the two hierarchies (category- 

brand and category-content) share the same level-3 leaf nodes (brand-content), the 

expansions following each hierarchy may lead to redundancy. One may mark the 

lower level nodes once explored, and no marked nodes will be checked again, which 

avoids redundant exploration. 

Notice also that the query is to find associations between diflerent categories. If it 

were to include associations among the items in the same category, such as "2% milk 

+ Foremost milk", more large 2-itemsets would have been found in L[2,2] because 

the 2-itemset {ll*, 1*1) would also form a large 2-itemset as well. Note also that the 

rule "2% milk -+ Foremost milk" indicates that a person who buys 2% milk will also 

buy Foremost milk (which, however, may not necessarily be 2% Foremost milk!). 0 



C H A P T E R  5. MINING MULTIPLE-LEVEL ASSOCIATION RULES 120 

ge 1-itemsets: L[2,1] 
Support 

Level-2 large 3-itemsets: L[2,3] 

Support 
4 
3 
4 
4 
3 
4 
3 
3 

Figure 5.11: Mixed-hierarchy large itemsets a t  level 2. 

5.7 Discussion 

5.7.1 More about Conceptual Hierarchies 

In our discussion, we have assumed desired conceptual hierarchies exist and are pre- 

sented in the form of relational tables (e.g., sales-item in Table 5.1). However, there 

are often cases where portions of conceptual hierarchies do not exist. For example, 

the hierarchy relationships, such as "peanuts, pistachios, . . . , walnuts c nuts", may 

not be stored in the salesitem relation. Therefore, it is often necessary for experts 

or users to specify portions of hierarchies to facilitate mining multiple-level associa- 

tion rules. Specified hierarchies can be mapped into relations with the paths from 

high-level general concepts to low-level specific ones registered in tuples. Null values 

should be allowed in the mapped relational entries if there exist unbalanced nodes in 

a hiera.rchy. 

Note that there may often exist more than one possible way of mapping a relation 

into a conceptual hierarchy. For example, "2% Foremost milk C 2% milk c milk" and 

"2% Foremost milk c Foremost milk c milk" are both meaningful hierarchies, but "2% 

Foremost milk c 2% Foremost c Foremost" may not be. An expert or a user may 
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provide mapping rules at the schema level (i.e., schema hierarchies) to indicate mean- 

ingful or desired mappings, such as "{content, brand, category) c {content, category) 

C category", etc. 

Conceptual hierarchies may not exist for numerical valued attributes but can be 

automatically generated according to  data distribution statistics, as described in Sec- 

tion 3.3. For example, a hierarchy for the price range of sales items can be generated 

based on the distribution of price values. Moreover, a given conceptual hierarchy for 

numerical or nonnumerical data can be dynamically adjusted based on data distri- 

bution as discussed in Section 3.2. For example, if there are many distinct country 

names in the attribute "placemade", countries can be grouped into continents, such 

as Asia, Europe, South-America, etc. Moreover, if most fresh food products are from 

B. C. and Northwest America, the geographic hiera.rchy can be automatically adjusted 

to  reflect this distribution when studying fresh food products. 

5.7.2 Interestingness Measure 

Many multiple-level association rules may be found from the database using the pro- 

gressive deepening method. Sometimes a low level rule can be expected or estimated 

from a high level rule, and thus is not interesting to user. For example, a rule "1% 

milk 4 whole-wheat bread [2%, 20%]" is not interesting if we have a higher level 

rule "milk + bread [40%, 80%]" and 25% of all the milk is the 1% milk and 20% of 

all the bread is the whole-wheat bread. 

Srikant and Agrawal [I041 proposed an interestingness measure to  filter out unin- 

teresting rules. A low level rule is interesting if its support or confidence is different 

by a factor of k from the expectations, computed from the support and confidence of 

a high level rule assuming even distributions among children. Some other interesting- 

ness measures, which detect the deviations from the given norms [84], for example, 

can be adapted as well for mining multiple-level association rules. 

These interestingness measures can be integrated in our method. After the large 

itemsets are found, the rule-generation module will generate rules from top level t o  

primitive level. When a strong rule is found, it is output if it passes the interestingness 



CHAPTER 5. MINING M ULTIPLE-LEVEL ASSOCIATION RULES 

test; otherwise, it is discarded. 

Another direction to focus on interesting rules is using meta-rules which are rule 

templates specifying the format of the rules to be found. The meta-rule guided mining 

of association rules is studied in Chapter 6. 

5.7.3 Re-examination of the Definition of Strong Multiple- 

Level Association Rule 

Strong multiple-level association rules were introduced in Definition 5.2.3 for a large 

class of applications. Algorithms studied in Sections 5.3 and 5.4 follow this definition. 

However, different applications may require finding different kinds of multiple-level 

association rules. We examine how the variations of the rule definition may influence 

the rule mining algorithms. 

First, the multiple-level association rules may include multiple conceptual hierar- 

chies, their mixtures, and the associations among the items at  different levels of a 

hierarchy, etc. Such variations have been examined in Section 5.6. 

Second, our definition examines an item at  level 1 if its parent is a large 1-item 

at  level 1 - 1. An alternative is to examine the associations among k items at level 

1 only if the (k-arity) associations of their k parents are in the large k-itemsets a t  

level I - 1. For example, only if "{bread, milk) " are large 2-itemsets, will their lower 

level combinations of different kinds of milk and bread be examined. This definition 

may exclude many itemsets that have been previously considered and reduce the 

set of candidate itemsets to be examined at  lower levels. Its efficient rule mining 

algorithms can be worked out accordingly. However, since large single items are 

usually interesting enough to warrant detailed examinations, a strict requirement of 

examining only those itemsets whose parents are large k-itemsets (for k > 1) may 

miss many potentially interesting associations. 

Third, our definition concerns a minimum support threshold in relevance to a 

specified set of data instead of to the whole database. The minimum support can be 

specified as a ratio, such as the number of transactions containing particular item- 

sets versus the total number of transactions within a specified domain. The flexible 
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definition of domains at different levels, especially the confinement of the domains be 

smaller at lower levels, not only clarifies the concept of a rule but also reduces the 

search effort. For example, for the top-level, the support of an itemset could be the 

ratio of the set of transactions containing the itemset versus either the whole set of 

transactions in the t,ransaction database or the set of tra.nsactions in relevance only to 

the data mining query (e.g., the transactions containing fresh food items). For level 

two, the support of an itemset could be the ratio of set of the transactions containing 

the itemset versus the set of transactions containing large items (instead of the whole 

set of transactions), etc. As long as the support is well defined and fixed at each level 

(for different large k-itemsets), the computation will be the same as those outlined in 

the algorithms. 

Notice that it is natural to consider using a larger minimum support when deriving 

large 1-itemsets and substantially reduce the minimum support at the derivation of 

large 2-itemsets, etc. However, based on our observation, the restriction on the fixed 

minimum support threshold at  a level for k-itemsets (for all k's) may not be easily 

relaxed. This is because a key optimization technique applied in both single-level 

and multiple-level association rule mining algorithms is to use only the entries in the 

large k-itemsets to derive the candidate large (k + 1)-itemsets. This optimization 

is not applicable if the minimum support changes on different k's. A compromise 

is to derive intermediate large k-itemsets for all the k's by first taking the smallest 

minimum support among the k-itemsets (if they are allowed to be different) and then 

filtering out those which are not large for the current k. By doing so, the current large- 

itemsets-mining algorithms are still applicable by augmenting an additional filtering 

process. Whether there may exist more efficient algorithms under this restriction 

remains a research issue. 

5.8 Summary 

We have extended the scope of the study of mining association rules from single 

level to multiple conceptual levels and have studied methods for mining multiple-level 

association rules from large transaction databases. A top-down progressive deepening 
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technique is developed for mining multiple-level association rules, which extends the 

existing single-level association rule mining algorithms and explores techniques for 

sharing data structures and intermediate results across levels. Based on different 

sharing techniques, a group of algorithms, notably, ML-T2L1, ML-TlLA, ML-TML1 

and ML-T2LA, have been developed. Our performance study shows that different 

algorithms may have the best performance for different distributions of data and 

different thresholds. 

Related issues, including methods for mining flexible multiple-level association 

rules, conceptual hierarchy handling, interestingness measures to  filter out uninter- 

esting rules, and the adaptation to different mining requests are also discussed in the 

paper. Our study shows that mining multiple-level association rules from databases 

has wide applications, and efficient algorithms can be developed for the discovery of 

interesting and strong such rules in large databases. 



Chapter 6 

Meta-Rule Guided Mining of 

Mult iple-Level Association Rules 

6.1 Introduction 

A frequently encountered phenomenon in data mining is that although a mining sys- 

tem may discover a quite large number of rules, many of them could be poorly focused 

or uninteresting to users. Two major factors may contribute to this phenomenon: (1) 

lack of focus on the set of data to be studied, and (2) lack of constraints on the forms 

and/or kinds of rules or knowledge to be discovered. 

The first problem, the lack of focus on the set of data to be studied, can be han- 

dled by introducing a data mining interface which specifies the set of data relevant 

to a particular mining task. For example, the DBMiner system uses an SQL-like 

interface [51] to  specify the task-relevant set of data for a data mining query. Thus, 

in order to find the general characteristics of computer science graduate students in 

Canada, a where-clause is used to retrieve only those students of interest. 

However, the second problem, the lack of constraints on the forms and/or kinds ' 

of rules or knowledge to be discovered, is not so straightforward to  solve. There are 

many ways to  specify the kinds of knowledge or the forms of rules to be discovered. 

For example, one may specify the types of knowledge to be discovered, such as char- 

acteristic rules, classification rules, association rules, and so on [48], or specify the 
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number of disjuncts in a generalized rule, i.e., the expected (or maximum) number of 

distinct values of each generalized attribute or the number of tuples in the generalized 

relation (461. Moreover, one may also specify some syntactic or semantic constraints 

on the forms of discovered rules [4, 651. 

Recently, Shen et al. [94] proposed an interesting technique to specify the form of 

rules to be discovered in data mining, called metaquery, which presents a desired log- 

ical form for the rules to be discovered and serves as an important interface between 

human discoverers and the discovery system. The metaquery approach confines the 

rules to be discovered to be in a specified form, such as "P(x, y) A Q(y, z) + R(x,  z)", 

where P ,  Q and R are predicate variables that can be bound to any concrete predi- 

cates, and x, y, and z are variables that can be bound to some data in the database. 

Such kind of metaqueries can be given by users or revised interactively from initial 

metaqueries formed by the system based on the schema information. Such rule forms 

can also serve as a linkage between deductive and inductive aspects of knowledge dis- 

covery and facilitates a deductive-inductive-human discovery loop. Thus, it represents 

an interesting direction to pursue. 

In their initial study of metaquery-directed data mining [94], the rules to be 

discovered are confined to single conceptual level, whereas the knowledge discovery 

method is confined to Bayesian Data Cluster linked with a deductive database sys- 

tem LDC + +. Based on our observation, the scope of metaquery-directed mining 

could be substantially extended if the discovery of rules at multiple conceptual lev- 

els is explored [37, 471. Moreover, since a metaquery and its instantiated rules are 

in the form of association rules, the performance could be substantially enhanced if 

the database-oriented association rule mining algorithms [4] are adopted in the data 

mining process. 

As we mentioned in the previous chapter, one problem of the current rule mining 

methods is that they often discover a large number of association rules, and some of . 
such rules may not be desirable to users. While some interestingness measures like 

the R-interestingness [lo41 can be used to prune some uninteresting rules, it is more 

desirable and effective to use a rule template, or meta-rule. 

In this chapter, issues for meta-rule guided mining of multiple-level association 
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rules are studied and a set of efficient mining algorithms is developed and tested. 

The study shows that the integmtion of meta-rule guided knowledge mining with the 

mining of multiple-level association rules enhances both the power and performance 

of a data mining system and thus is an interesting direction to  pursue [37]. 

The remainder of the chapter is organized as follows. In Section 6.2, preliminary 

concepts about meta-rule guided mining of multiple-level association rules are intro- 

duced, starting with some motivating examples. In Section 6.3, methods for mining 

meta-rule-guided single-variable rules are studied. In Section 6.4, methods for min- 

ing meta-rule-guided multiple-variable rules are examined. Variation of methods and 

other relevant issues on meta-rule-guided data mining are discussed in Section 6.5, 

and the study is summarized in Section 6.6. 

6.2 Preliminary Concepts 

To simplify our discussion, a relational model is adopted in our study, however, the 

methods developed here can be applied with some modifications to  other data models, 

including extended-relational and object-oriented ones. 

For effective data mining, a particular user is usually interested in only a subset 

of the data stored in a large database. A DMQL data mining query [51] submitted to 

a data mining system should first be transformed into two portions: a data collection 

portion and a knowledge discovery portion. The former is essentially an SQL-query 

which will be executed against the database to collect the interested set of data. The 

latter, i.e., the knowledge discovery portion, will be examined in detail. 

Example 6.2.1 Suppose that a portion of the relational schema of a university 

database is presented as follows. 

student(name, sno, status, major, gpa, birth-date, birth-place, address) 

course(cno, title, dept) 

grading(sno, cno, instructor, semester, grade) 

Let a data mining query ( q l )  be presented as follows, which is to  find the rela- 

tionships between the attributes status, gpa, birth-place, and address, in relevance to 
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major, for the students born in Canada. 

(ql) :discover rules in the form of 

major(s  : student, x) A Q(s, y) -+ R(s, z) 

from student 

where birth-place = "Canada" 

in relevance to major, gpa, status, birth-place, address 

The meta-rule of (ql), "ma jor(s  : student, x)  A Q(s, y)  + R(s, z)", specifies the 

form of the rules to be discovered, that is, each rule to be discovered is a logic rule 

containing two binary predicates, major(s, x) and Q(s, y), serving as the antecedent 

and one binary predicate, R(s, z ) ,  as the consequent, with all the predicates sharing 

the first variable s which is the key of the relation student. Q and R are two predi- 

cate variables which can be instantiated by a list of relevant attributes: gpa, status, 

birth-place, and address. 

By data mining techniques, the following rules may be discovered from the database. 

major(s, "Science") A gpa(s, "Excellent") -, status(s, "Graduate") (60%)(6.2.1) 

major(s, *) A birt h-place(s, "B.C.") + address(s, "Burnaby") (55%) (6.2.2) 

Rule (6.2.1) indicates that 60% of the students majoring in science and having ex- 

cellent gpa are graduate students and rule (6.2.2) indicates that 55% of the students 

majoring in anything and born in B.C. are living in the city of Burnaby. 

The rules expressed by even lower level concepts, such as rules (6.2.3) to (6.2.4), 

can be further discovered if multiple-level information can be mined from the database. 

The semantic meaning of these rules is self-explanatory. 

major(s, "Physics") A gpa(s, "3.8-4.0") + status(s, "M.ScV) (76%) (6.2.3) 

major(s, "CS") A birth-place(s, "Vancouver") 

--+ address(s, "NorthBurnaby") (85%) (6.2.4) 

Moreover, the associations among several relations can be discovered by joining 

these relations together. The relational joins can be explicitly expressed in the meta- 

rules as presented in the following data mining query ( 9 2 ) .  
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( q 2 )  : discover rules in the form of 

major(,, x)  A P(c,  y )  -+ Q(s : S, c : C, 2). 

from student S, grading G, course C 

where S.birth-place = "Foreign" 

The query is to find the relationships among three predicates, one of which is instan- 

tiated to major(s, x) ,  the second contains the key of the course relation, and the 

third one, the consequent predicate, contains two key components from two relations: 
., 

student and course, for the relevant set of the data: the students born in foreign . . 

countries. 

By mining rules from multiple conceptual levels, the following rules may be dis- 

covered from the database. 

major(s, "Science") A dept(c, "CS") --+ grade(s,c, "Good") (60%) (6.2.5) 

major(s, "Math") A cno(c, "CS-400-level") t grade(s, c, " A  - ") (42%) (6.2.6) 

In Example 6.2.1, both the data mining queries and the discovered rules contain 

concepts at nonprimitive levels, i.e., levels higher than those stored in databases, such 

as  "Science", "Graduate", "Excellent", etc. The high level concepts appearing in the 

query help the collection of the relevant set of data, whereas the concepts organized at  

different levels help in progressively deeping the data mining process by first browsing 

the high-level data and then mining detailed regularities at  low levels. 

In this chapter, we assume conceptual hierarchies are provided, which organize 

multiple levels of concepts for mining rules at multiple conceptual levels. However, 

the conceptual hierarchies can also be dynamically adjusted and/or automatically 

generated for flexible data mining as discussed in Chapter 3. 

To confine our study, we assume the rules to be discovered are conjunctive rules, 

i.e., a set of conjuncts in both the rule head and body. Moreover, the predicate vari- ' 

able in the meta-rules can only be instantiated against database schema (attributes). 

Furthermore, each predicate variable in a meta-rule is different from others and is 

instantiated to a distinct and different predicate name. Some relaxations of these 

restrictions will be discussed in Section 5. 
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As a notational convention, a predicate name starting with an upper-case letter 

represents a predicate variable. It can be instantiated by binding it to a concrete 

attribute name (which starts with a lower-case letter) in the schema. For example, a 

predicate variable P(x ,  y) can be instantiated to status(x, "Graduate") in Example 

6.2.1. 

Definition 6.2.1 A meta-rule is a rule template in the form of 

PI A P ~ . . ,  A P ,  + Q1 A Q ,  A * . .  AQ,. (6.2.7) 

where Pi (for i = 1, . . . , rn) and Qj  (for j = 1, . . . , n) are either instantiated predicates 

or predicate variables. 

The rule "major(s,x) A P(c, y) -t Q(s : S, c : C, 2)" in Example 6.2.1 is a meta-rule. 

Definition 6.2.2 A rule, R,, complies with a meta-rule, Rh,, if and only if it can be 

unified with RM. 

For example, rule (6.2.5) complies with the meta-rule "major(s, x)  A P(c, y)  + Q(s : 

S, c : C, 2)" in Example 6.2.1. 

Definition 6.2.3 A pattern, p, is one predicate p; or a set of conjunctive predicate 

p; A - . Apj, where pi, . . . , pj are predicates instantiated against the database schema. 

The support of a pattern p in a set S, a(p/S),  is the number of the tuples in S 

which contain p versus the total number of tuples in S. The confidence of p + q in S ,  

p(p + q/S), is the ratio of u (PA~/S)  versus a(p/S), i.e., the probability that pattern 

q also occurs in S when pattern p occurs in S. 

As in Chapter 5, a minimum support, a', and a minimum confidence, y' are spec- 

ified for each level. 

Definition 6.2.4 A pattern p is large in set S at level I if the support of p is no 

less than its corresponding minimum support threshold a;. The confidence of a rule 

" p  -+ q/S" is high at level 1 if its confidence is no less than its corresponding minimum 

confidence threshold 9;. 
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Definition 6.2.5 A rule " p  -+ q/S" is strong if, for a set S ,  each ancestor (i.e., the 

corresponding high level predicate) of every predicate in p and q, if any, is large at 

its corresponding level, " p  A q/S" is large (at the current level), and the confidence of 

" p  -+ q/Sn is high (at the current level). 

Roughly, a predicate is like an itemset in Chapter 5 The definitions for support, 

confidence, large, and strong are also similar. 

Based on the two mining queries presented in Example 6.2.1, meta-rule guided 

mining of multiple-level association rules can be classified into two categories: (1) 

mining single-variable association rules, and (2) mining multiple-variable association 

rules. The former discovers association rules in the form like (6.2.3)) in which each 

predicate contains only one and the same variable; whereas the latter discovers rules in 

the form like (6.2.5), in which some predicate(s) may contain more than one variable, 

which may often involve join(s) of more than one relation. 

6.3 Meta-Rule- Guided Mining of Single-Variable 

Rules 

In this section, we examine the methods for meta-rule guided mining of single-variable 

association rules. A single-variable association rule represents an association relation- 

ship among a set of properties in a data relation at  different conceptual levels. 

Definition 6.3.1 A single-variable meta-rule is in the form of 

where P, (for i = 1, . . . , n) and Q j  (for j = 1, . . . , m) are either instantiated predicates 

or predicate variables, and the common variable t represents the key of a relation rel. . 

By data mining, each predicate variable in a discovered rule will be instantiated to 

a concrete predicate name which is an attribute name of the relation rel, the common 

variable t will remain as a variable that is an abstraction of the key or key component 



CHAPTER 6. MET4-RULE GUIDED MINING 132 

of the relation, and other variables in the predicates will be instantiated to the high- 

level or primitive level constants (i.e., properties) of the corresponding predicates 

(attributes). 

For example, the meta-rule "major(s : student, x) A Q(s, y )  -+ R(s, 2)" in ( q l )  of 

Example 6.2.1 is a single-variable meta-rule, and the discovered rule (6.2.1) indicates 

that the common variable s remains to be a variable which is an abstraction of the 

key of the relation student, and other variables in the predicates are instantiated to 

constants, such as Science, Excellent, and Graduate in the corresponding predicates, 

such as major, gpa, and status, respectively. 

For efficient mining of multiple-level single-variable association rules, two tech- 

niques: a large-predicate growing technique and a p-predicate testing technique, are 

proposed and examined in the next two subsections. 

6.3.1 A Large-Predicate Growing Technique 

Following our previous study on mining multiple-level association rules [47], a large- 

predicate growing technique is proposed as follows. 

First, the set of relevant data is collected into an initial data relation by executing 

an SQL query specified by the data mining query. Second, large 1-predicate-sets, 

L[1, I], L[2,1], . . . , L[maxl ,  11, are derived at  each conceptual level (from the top- 

most desired conceptual level, level 1 down to  level maxl )  by scanning the initial 

data relation once, where level max l  is the lowest level where a non-empty 1a.rge 

1-predicate-set can be derived. Third, large 2-predicate-sets are derived at each con- 

ceptual level by first generating the candidate la,rge 2-predicate-sets and then scanning 

the initial data relation to compute the large 2-predicate-sets. Fourth, this process 

continues until the large p-predicate-sets are derived at  each conceptual level, where 

p is the total number of predicates in the meta-rule, i.e., p = m + n in rule (6.3.8). Fi- 

nally, the rules in the form of meta-rules are generated from the large p-predicate-sets 

at  each conceptual level based on the specified confidence threshold at  this level. 

This technique is illustrated in the following example. 
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Example 6.3.1 We examine how to derive the multiple-level strong association rules 

for query ( q l )  of Example 6.2.1. 

1. The initial data relation Ro (a fragment shown in Table 6.1) is derived by 

performing selection to collect the students who were born in Canada and then 

projection on the set of relevant attributes: major, gpa, status, birth-place, and 

address. 

Table 6.1: A fragment of student relation in relevance to the data mining task. 

major 
CS 
... 

2. Large 1-predicate-set tables at multiple conceptual levels, (as shown in Table 

6.2), i.e., L[1,1], L[2,1], .... L[max_l, 11, are derived by scanning the initial 

data relation & once. 

gpa 
3.S5 
... 

Science 4,850 

Excellent 2,173 

status 
Senior 

. . .  

... ... 
status I count 

count 

birth-place 
Vancouver, B.C., Canada 

. . .  

I status I count 
I I 

address 
123 Curtis, Burnaby, B.C., Canada 

... 

Table 6.2: A fragment of large 1-predicate tables at different conceptual levels. . 

3. Large 2-predicate-sets at  multiple conceptual levels (as shown in Table 6.3), i.e., 

L[1,2], L[2,2], ..., L[max_l, 21, are derived by first generating the candidate 
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large 2-predicate-sets and then scanning Ro to compute the large 2-predicate- 

sets. 

major 

. . . . . . . . . 

Table 6.3: A fragment of large 2-predicate tables at  different conceptual levels. 

Ll3,21 2, ' major gpa count 

4. This process continues until the large ppredicate-sets at multiple conceptual lev- 

els, i.e., L[1, P], L[2, P], . . . , L[max-1, p], where p is the total number of predicates 

in the meta-rule, are derived. The tables so derived for the large 3-predicate 

sets are presented in Table 6.4. 

Appl.Sci. 3.8-4.0 327 

5. The rules in the form of meta-rules are generated in Table 6.5 from the large 

3-predicate-sets at multiple conceptual levels, based on the specified confidence 

threshold at  each level. 

The above example leads to  the following algorithm for mining meta-rule guided 

single-variable strong hlL-association rules using large predicate growing technique. 

CS 

Algorithm 6.3.1 (large predicate-growing) hleta-rule guided mining of single- 

variable strong ML-association rules using large predicate growing technique. 

3.8-3.9 174 
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. .c[1,31 

Table 6.4: A fragment of large 3-predicate tables at different conceptual levels. 

major 
Science 

. . .  . . .  I 

Input: (1) Dl?, a relational database, (2) 'H, a conceptual hierarchy, (3) minsup[l], 

the minimum support threshold, and mincon f [l], the minimum confidence thresh- 

old, for each conceptual level 1, and (4) m e t a R ,  the meta-rule in the form of 

(6.3.8). 

Output: Multiple-level strong association rules in the form of (6.3.8) discovered in 

relational database VB. 

gPa 
Excellent 

JW, 31 
major 

. . .  
q3,31 

. . .  

Method: A top-down, progressively deepening process which collects large predicate 

sets at  different conceptual levels as follows. 

. . .  

1. The initial data relation & is derived by executing an SQL query specified by 

the data mining query. 

status 
Underg. 

2. Large 1-predicate-set tables at each conceptual level, i.e., L[1, I], L[2,1], . . . , .  
L[max4,1], are derived by scanning the initial data relation & once. Note 

that a predicate p;(t, c;) is large at level 1 (and thus being included in L[l, 11) if 

(1) its support is lower than minsup[l], and its corresponding concept c: a.t a 

higher-level 1 - 1 is large. 

count 
526 
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Rule 
. . . 

major(s, "CS") A gpa(s, "5.8-3.9") 4 status(s, USenior") 5% 25.6% ] 

major(s, uScience") A birth-place(s, uB.C.") -4 address(s, 

"Burnaby ") 

Table 6.5: Rules generated from the large 3-predicate tables a t  different conceptual 
levels. 

Support 
. . .  

3. Derive the large k-predicate-set tables at  each conceptual level and for each k 

from 2 to p, i.e., derive L[1, k], for 1 = 1, .  . . , m a x l ,  and k = 2, .  . . ,p, where p is 

Confidence 
. . . 

25% 

the total number of predicates in the meta-rule. 

55% 

Note that a set of k predicates is large at level 1 if (1) each of its k subsets of 

( k  - 1) predicates is large at level 1, and (2) the support of the k predicates at 

level 1 is no less than rninsup[l]. 

4. For each conceptual level 1 ,  generate the rules in the form of meta-rules from 

the large ppredicate set tables L[1, p] if the confidence of the rule is no less than 

mincon f [1], the specified confidence threshold at  this level. 

6.3.2 A Direct ppredicate Testing Technique 

The previous algorithm is a natural extension of the method developed in the study of 

mining multiple-level association rules [47]. A major difference of the requirements in 

meta-rule guided mining from that in the mining of general multiple-level association 

rules is that p, the number of large predicates in the rules to be generated, is predefined 

by the given meta-rule. This heuristic can be used in the development of the variations - 
of the rule mining algorithms. 

Here we consider one variation of the mining technique: a direct p-predicate gener- 

ation and testing technique. At the third step of Algorithm 6.3.1, instead of deriving 
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large 2-predicate-sets at each conceptual level, and then large 3-predicates, etc., p- 

predicate sets are generated directly from the large 1-predicate sets and tested against 

the support threshold at each level. This technique is illustrated in the following sim- 

ilar example, followed by the algorithm for mining meta-rule guided single-variable 

strong ML-association rules using the ppredicate testing technique. 

Example 6.3.2 We examine the derivation of the multiple-level strong association 

rules for query (q l  ) of Example 6.2.1. 

1. The same as Step 1 and Step 2 of Example 6.3.1. 

2. Large p-predicate-sets at multiple conceptual levels, i.e., L[l,p], L [~ ,P ] ,  . . . , 
C[max_l,p], are derived based on the large 1-predicate sets derived at  previ- 

ous step. This skips the generation of the large 2-predicate tables of Example 

6.3.1 and generates only the large 3-predicate tables as in Table 6.4. 

3. The rules in the form of meta-rules are generated from the large p-predicate-sets 

at each conceptual level based on the specified confidence threshold at this level. 

This generates the same rule table as in Table 6.5. 

Algorithm 6.3.2 (Direct ppredicate testing) Meta-rule guided mining of single- 

variable strong ML-association rules using the direct p-predicate derivation technique. 

Input: The same as Algorithm 6.3.1. 

Output: The same as Algorithm 6.3.1. 

Method: A t,op-down, progressively deepening process which collects large p predi- 

cate sets at  multiple conceptual levels as follows. 

I .  The same as Step 1 and 2 of Algorithm 6.3.1. 

2. Derive the large ppredicate-set tables at  each conceptual level from level 1 to 

rnax-2, j.e., derive L[l,p), for 1 = 1,. . . , max-1, where p is the total number of 

predicates in the meta-rule. 
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Note that a set of p predicates is large a t  level 1 if (1) each of its component 

1-predicates is large at level 1, and (2) the support of the p predicates at  level 1 

is no less than minsup[l]. 

3. For each conceptual level 1, generate the rules in the form of meta-rules from 

the large ppredicate set tables L[l,p] if the confidence of the rule is no less than 

mincon f [l], the specified confidence threshold at this level. 

6.3.3 A Performance Comparison of the Two Algorithms 

We implemented the large-predicate growing and the direct p-predicate testing algo- 

rithms on a SUN SparcStation5 with 32MB main memory. A synthetic database is 

used to test the algorithms. The database has five attributes each of which has 100 

values at  the primitive level. The values are organized into a conceptual hierarchy 

with four levels. The numbers of higher level (nonprimitive) nodes in the hierarchy 

are 1, 5 and 20 at level 1, 2, 3 respectively. Since there is only one node at  the level 

1, it is treated as a virtual level and does not join the computation. The meta-rule 

we used has the form: A( t ,  x)  A B(t ,  y)  -+ C(t ,  2). The minimal confidences are 50% 

at  all levels. 

First, we test the scale-up properties of the two algorithms. They are tested on the 

database with the number of tuples from 10,000 to 100,000. The minimal supports 

are (476, 1%, 0.2%) at levels 2, 3 and 4. The performance data are shown in Figure 

6.1. As we can see, both algorithms scale up well. Algorithm 6.3.1 has better scale-up 

behavior since the overhead of computing L[ l ,  k] for small Ic weights less and less as 

the database size grows. 

We then compared the performance of the algorithms under different minimal sup- 

ports. Figure 6.2 shows the execution times of both algorithms with different minimal 

supports. The database size is fixed at 10,000 tuples. The minimal supports used are: 

T1(6%, l%, 0.5%), T2(4%, 1%, O.l%), T3(4%, 0.5%, 0.1%), T4(2%, 0.5%, 0.1%), 

and T5(2%, 0.5%, 0.05%). When the minimal supports decrease, the execution times 

increase since the filter becomes weaker. We find that Algorithm 6.3.1 is sensitive to 

the minimal supports since it uses them to cut out small patterns at  each iteration. 



C H A P T E R  6. META-RULE GUIDED M I N I N G  

Sca k Up 
I 1 I I 

.. 
1Ok 25 k 50k 75k lOOk 

X of transactions 

Figure 6.1: Scale up of the algorithms. 

On the other hand, Algorithm 6.3.2 is not so sensitive to the change. Algorithm 6.3.1 

outperforms Algorithm 6.3.2 when the minimal supports are large (so the filter is 

strong) while Algorithm 6.3.2 outperforms Algorithm 6.3.1 when the filter is not very 

strong. Generally, we feel Algorithm 6.3.1 should be tried for most reasonable support 

thresholds. Algorithm 6.3.2 is a good candidate when lots of details are interested, 

i.e., when the support thresholds are small. 
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6.4 Meta-Rule Guided Mining of Multiple-Variable 

Rules 

Now we examine the meta-rule guided mining of multiple-variable rules. Since a 

multiple-variable association rule presents relationships among several relations, a 

join of these relations should be performed in the data collection step based on the 

join relationship explicitly expressed in the meta-rules. 

Taking query (qz )  in Example 6.2.1 as an example, we analyze the data mining 

process as follows. 

Example 6.4.1 The meta-rule presented in query (qz )  of Example 6.2.1 contains 

three predicates: major(s,  x), P(c,  y) ,  and Q(s, c, z). The first predicate is from 

the attribute major of the relation student, the second is a property in relevance to 

the relation course because it  contains one variable from course, and the third is a 

property in relevance to the relation grading since it contains two variables, each from 

student and course, respectively. 

The data mining process is to discover the relationships in relevance to  three 

relations: student, course, and grading. It is necessary to perform a join of the three 

relations. Since only one predicate major(s,  x) is from the relation student, only the 

attribute major in the relation student is retained in the joined relation. Therefore, 

the joined relation should have the following schema. 

s-c_g (sno, major, cno, title, dept, instructor, semester, grade) 

The possible instantiations of the two candidate predicates P and Q should be: 

P E {title, dept), and Q E {instructor, semester,grade). Moreover, since title is 

unique in the relation course, which is similar to  the behavior of the key cno, the 

predicate P in the meta-rule can only be instantiated to dept. Therefore, the data 

mining process is essentially t o  find multiple-level association rules in relevance to  the 
' 

following three properties: (1) major(s,  x), (2) dept(c, y),  and (3) one of the following 

three predicates: instructor(s, c, z), semester(s, c, z ) ,  grade(s, c, 2). 

Except for the restriction on the instantiation of predicate variables, the data 

mining methods are like that of mining single-variable association rules. 0 
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Discussion 

This sect,ion discusses some closely-related issues on meta-rule guided mining of multiple- 

level association rules, including meta-rule-guided mining of mixed-level rules and 

variations of constraints on the forms of meta-rules. 

6.5.1 Meta-Rule-Guided Mining of Mixed-Level Rules 

In the method developed in Section 6.3, it is assumed that the concepts of the pred- 

icates in the discovered rules are lined up among different predicates according to 

the levels of their conceptual hierarchies. For example, major "Science" is lined up 

with gpa "Excellent" and birth-place "B.C.", whereas major "CS" is lined up with 

gpa "3.8-3.9" and birth-place "Vancouver", etc. However, it may not be the case in 

practical applications. It could be desirable to line up major "CS" with gpa "Ex- 

cellent" and birth-place "British Columbia", etc. That is, it is often necessary to 

link concepts among different predicates at  multiple levels of hierarchies for effective 

knowledge mining. 

Interestingly, the method studied in the last two sections needs only minor modifi- 

cations in order to accommodate this flexible data mining requirement. For example, 

Algorithm 6.3.1 can be modified as the following for mining rules across multiple 

conceptual levels. At the third step, the candidate large 2-predicate-sets will enclose 

the pairs of two large 1-predicate-sets at any conceptual levels instead of pairing only 

those at  the same conceptual levels. 

6.5.2 Variations of Constraints on the Forms of Meta-Rules 

In our previous discussion, there has been another constraint on the possible forms 

of meta-rules: there are no repetitive predicate variables in the meta-rule, and all the . 
predicates in an instantiated rule will be different. 

Although this restriction may cover a large number of applications, there are 

applications which would like to  study the association relationships involving the same 

predicates. For example, one may like to find the general association relationships 
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among the courses taken by the same student. Such a query could be presented and 

examined in the following example. 

Example 6.5.1 In the university database of Example 6.2.1, one may like to find the 

association relationships among the courses taken by the same student. The query 

can be presented as follows. 

( q 4 )  : discover rules in t he  fo rm o f  

P(s : S, Cl : C, XI) A P(s, CZ : C, xz) -, P(s, Cg : C, xg) 

f rom student S, grading G, course C 

The system may find some meaningful rules like the following. 

grade(s, "CMPTlOO",  excellent")^ grade(s, "MATH1007', "Excellent") 

+ grade(s, "C MPT300n, "A") (82%) 

Note in this case the data mining process can be viewed as a similar process of 

mining association rules in transaction databases [2]. This is because the relational 

table can be compressed into a table consisting of two fields: (1) a set of distinct stu- 

dents, each corresponding t o  a transaction identifier in a transaction database, and (2) 

a set of corresponding grading records associated with each student, each correspond- 

ing a set of data items processed by that transaction. Thus the transaction-based 

data mining algorithms developed in previous studies [4, 471 can be applied in the 

efficient processing of association relationships. However, the previously developed 

transaction-based association rule mining algorithms still need to be modified to  ac- 

commodate more complicated queries. 

6.6 Summary 

We have studied the meta-rule guided mining of multiple-level association rules in 

large relational databases. Meta-rule guided mining of multiple-level association rules 

provides syntactic constraints on the desired rule forms to be discovered, which leads 
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to the constrained and progressive mining of refined knowledge from data and thus 

has interesting applications for knowledge discovery in large databases. 

A top-down progressive deepening data mining technique is developed for rule- 

guided mining of multiple-level association rules, which extends the multiple-level 

association rule mining algorithms for rule-guided mining of association rules. Two 

algorithms, the large-predicate growing and the direct ppredicate testing, have been 

proposed and tested against synthetic databases, and their performance study shows 

that different algorithms may have the best performance for different distributions of 

data. 

Related issues, including methods for mining flexible multiple-level association 

rules and relaxations of constrains on the forms of mete-rules are also discussed in this 

chapter. Our study shows that  meta-rule guided mining of multiple-level association 

rules from databases has wide applications and efficient algorithms can be developed 

for discovery of interesting and strong such rules in large databases. 



Chapter 7 

Cooperative Query Answering 

Using Multiple Layered Databases 

The data mining techniques we discussed in previous chapters can be applied to  many 

areas, such as scheme evolution and integration 1261, cooperative query answering [49], 

knowledge discovery on the Internet [52], etc. 

In this chapter, we discuss the applications of data mining techniques in intelligent 

query answering. 

7.1 Introduction 

Cooperative (or intelligent) query answering refers to a mechanism which answers in- 

formation system queries cooperatively and intelligently by analyzing the intent of a 

query and providing some generalized, neighborhood, or associated answers [20, 24, 

39, 81. Many interesting techniques [58, 25, 19, 38, 631 have been developed for coop- 

erative query answering, by integration of the methods developed in several related 

fields, such as semantic data modeling, deductive databases, knowledge discovery in 

databases, etc. 

In this chapter, we propose a new technique: the construction and application of 

a multiple layered database, and explore its potential and effectiveness in cooperative 

query answering. A multiple layered database (MLDB) is a database composed of 
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several layers of information, with the lowest layer corresponding to the primitive 

information stored in a conventional database, and with higher layers storing more 

general information extracted from lower layers. 

We have the following motivations to promote the idea of multiple layered databases. 

First, with the wide availability of database systems and rapid progress of infor- 

mation technologies, a database may store a huge set of data objects with complex 

structures. A large set of data objects may be organized in classes and class-subclass 

hierarchies and may contain complex structured or unstructured subobjects, texts, 

images, and spatial or multimedia data. Moreover, the data may be distributed to  

different sites and be stored in heterogeneous multi-databases. Queries on such kind 

of databases could be costly to process. A multiple layered database system may 

preprocess and generalize some primitive data, resolve certain semantic ambiguities 

of heterogeneous data, and store the preprocessed data at a more general conceptual 

layer, which may facilitate high-level querying and reduce the cost of query process- 

ing [92, 1091. 

Secondly, a database user may not be familiar with a database schema, a query lan- 

guage, or specific data constraints. It is likely that such a user may pose queries which 

are not exactly what (s)he wants to know. Such kind of queries are better treated 

as information probes and answered by providing general or associated information 

with data distribution statistics, which may help users to better understand the data 

and form more accurate queries [19, 8, 241. In a multiple layered database system, 

probe queries can be mapped to a relatively higher conceptual layer and be processed 

in such a layer. Such answers may provide associative and summary information and 

assist users to refine their queries. 

Thirdly, a multiple layered database may provide a global view of the current con- 

tents in a database with summary statistics. It is a natural resource to assist users to 

browse database contents, pose progressively refined queries, and perform knowledge 
' 

discovery in databases. Some users may even be satisfied with the examination of the 

general or abstract data with associated statistical information in a high layer instead 

of examining the concrete data in every detailed level. 
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Finally, schema-directed semantic query optimization can be performed in a mul- 

tiple layered database. A higher layer database, storing more general and abstract 

information, could be much smaller than its corresponding lower layer one. Thus, it 

is faster and less costly to retrieve data in a higher layer database. Moreover, since 

a multiple layered database provides statistical information of database contents in 

the higher layers, it may provide guided assistance for query processing and query 

optimization of its lower level counterparts. 

In this chapter, we propose a model for a multiple layered database and study 

how to construct a multiple layered database and how to perform cooperative query 

answering using MLDBs. 

The following sections are organized as follows. In Section 7.2, the concept of 

multiple layered database is introduced. The techniques for construction of a multi- 

ple layered database are studied in Section 7.3. Cooperative query answering using 

MLDBs is investigated in Section 7.5. The chapter is summarized in Section 7.6. 

7.2 A Multiple Layered Database 

To facilitate our discussion, we assume that the database to  be studied is constructed 

based on an extended-relational da,ta model with the capabilities to store and handle 

different kinds of complex data, such as structured or unstructured data, hypertext, 

spatial or multimedia data, etc. It is straightforward to extend our study to other 

data models, such as object-oriented, deductive, etc., and to other kinds of databases, 

such as distributed and heterogeneous databases. 

Definition 7.2.1 A multiple layered database (MLDB) consists of 4 major compo- 

nents: (S, H ,  C, D) ,  defined as follows. 

1. S: a database schema, which contains the meta-information about the layered 

database structures; 

2. H :  a set o f  conceptual hierarchies; 

3. C: a set of  integrity constraints; and 
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4. D: a set of database relations, which consists of all the relations (primitive or 

generalized) in the multiple layered database. 0 

The first component, a database schema, outlines the overall database structure 

of an MLDB. It stores general information such as types, ranges, and data statistics 

about the relations at different layers, their relationships, and their associated at- 

tributes. More specifically, it describes which higher-layer relation is generalized from 

which lower-layer relation(s) and how the generalization is performed. Therefore, i t  

presents a route map for schema browsing and database content browsing and for 

assistance of cooperative query answering and query optimization. 

The second component, a set of conceptual hierarchies, is used to generalize lower 

layer relations to high layer ones and map queries to  a.ppropriate conceptual layers 

for processing, as discussed in Chapter 3. 

The third component, a set of integrity constraints, consists of a set of integrity 

constraints to  ensure the consistency of an MLDB. 
The fourth component, a set of database relations, stores data relations, in which 

some of them are primitive (i.e., layer-0) relations, whereas others are higher layer ones, 

obtained by generalization. 

Example 7.2.1 Suppose a real-estate database contains the following four data re- 

lations. 

1. house(house-id, address, construction-date, constructor(. . .), owner(name, 

. . . ), livingroom(1engt h, width), bed-room-1 (. . . ), . . . , surrounding-map, 

house-layout, house-picture, house-video, listingprice). 

2. customer (name, social-insurance-#, birth-date, education, income, work-address, 

home-address, spouse, children (. . .), phone, . . .). 

3. sales (house, buyer, agent, contract-date, sell-price, mortgage (. . .), . . . , notes). 
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These relations are layer-0 relations in the MLDB. Suppose the database contains 

the conceptual hierarchies for geographic locations, occupations, income ranges, etc. 

An MLDB can be constructed as follows. 

First, the relation house can be generalized to a higher layered relation house'. 

The generalization can be performed, for example, as follows: (1) transform the house 

construction date to years-old, e.g., from "Sept. 10, 1980" to 16; (2) preserve the 

owner's name but remove other information associated with the owner; (3) compute 

the total poor area of all the rooms and the number of rooms but remove the de- 

tailed specification for each room; and (4) remove some attributes: surrounding-map, 

house-layout, house-video, etc. The generalized relation house' can be considered as 

the layer-1 information of the house, whose schema is presented as follows. 

house'(house-id, address, years-old, owner-name, poor-area, #-of-rooms, . . . , 
house-picture, list ing-price). 

Secondly, further generalization on house' can be performed to produce an even 

higher layered relation house". For example, generalization may be performed as 

follows: (1) remove the attributes house-id, owner, house-picture, etc.; (2) general- 

ize the address to areas, such as North-Bumaby, East-Vancouver, etc.; (3) generalize 

years-old to year-range, etc.; (4) transform #-of-rooms and other associate informa- 

tion into category, such as 5-bedroom house, 3-bedroom town-house, etc.; and (5) merge 

identical tuples in the relation and store the total count of such merged tuples. The 

generalized relation house" could be as follows. 

housel'(area, year-range, poor-area-range, category, . . . , price-range, count). 

Similarly, customer can be generalized to customer', customer", etc., which forms 

multiple layers of a customer relation. Multiple layers can also be formed in a similar 

way for the relations, sales and agent. 

A higher layered relation can also be formed by joining two or more primitive or 

generalized relations. For example, customer-sales' can be produced by generalization 

on the join of customer' and sales' as long as it follows the regulation(s) for the 

construction of MLDBs (to be presented in the next section). Similarly, one may 

join several relations at different layers to form new higher-layered relations, such as 

housesales-customer', etc. 
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House-Sales-Customer' 

Figure 7.1: The route map of a real-estate DB. 

A possible overall MLDB structure, i.e., the schema of an MLDB, is presented in 

Fig. 7.1. 

Queries can be answered efficiently and intelligently using the MLDB. For example, 

a user may ask the information about the houses with the price range between $250k 

and $300k. The query can be answered intelligently by first using house", which may 

return "none in West Vancouver, 10% in East Vancouver, 15% in South Burnaby, 

etc.". Such an answer may help the user form more accurate queries to search for 

houses in specific regions. 

7.3 Generalization of Different Kinds of Data 

An MLDB is constructed by generalization of the layer-0 (original) database. Since a 

database may contain different kinds of complex data, it is important to examine the 

method for generalization of each kind of data, including unstructured and structured 

values, spatial and multimedia data, etc [70, 281. 
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7.3.1 Generalization of Unstructured Data 

Single valued, numerical and nonnumerical data are the most popularly encountered 

attribute values in databases. The generalization on simple values can be performed 

using conceptual hierarchy climbing, i.e., replacing the lower data or concepts with cor- 

responding high level data or concepts. The generalization may rely on the available 

hierarchies, specified by domain experts or users or implicitly stored in the database, 

as we discussed in Section 3.1.3. In addition, conceptual hierarchies may be dynami- 

cally adjusted based on the data distribution in order to best meet the current request, 

as we discussed in Section 3.2. Moreover, conceptual hierarchies can be automatically 

generated for numerical data as shown in Section 3.3. 

7.3.2 Generalization of Structured Data 

Complex structure-valued data, such as set-valued and list-valued data and data with 

nested structures, can be generalized in several ways in order to be interesting. 

A set-valued attribute may be of homogeneous or heterogeneous types. Typically, 

a set-valued data can be generalized in two ways: (1) generalization of each value 

in a set into its corresponding higher level concepts, or (2) derivation of the general 

behavior of a set, such as the number of elements in the set, the types or value ranges 

in the set, the weighted average for numerical data, etc. Moreover, the generalization 

can be performed by applying different generalization operators to explore alternative 

generalization paths. In this case, the result of generalization is a heterogeneous set. 

For example, the hobby of a person is a set-valued attribute which contains a set 

of values, such as {tennis, hockey, chess, violin, nintendo), which can be generalized 

into a set of high level concepts, such as {sports, music, video-games), or into 5 (the 

number of hobbies in the set), or both, etc. Moreover, a count can be associated with 

a generalized value to indicate how many elements are generalized to the correspond- 

ing generalized value, such as {sports(3), music(l), video-games(l)}, where sports(3) 

indicates three kinds of sports, etc. 

A list-valued or a sequence-valued attribute can be generalized in a way similar to 

the set-valued attribute except that the order of the elements in the sequence should 
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be observed in the generalization. 

Set- and list-valued attributes are simple structure-valued attributes. In general, 

a structure-valued attribute may contain sets, tuples, lists, trees, records, etc. and 

their combinations. Furthermore, one structure can be nested in another structure 

a t  any level. Similar to the generalization of set- and list-valued attributes, a general 

structure-valued attribute can be generalized in several ways, such as (1) generalize 

each attribute in the structure whereas maintain the shape of the structure, (2) flatten 

the structure and generalize on the flattened structure, (3) remove the low-level struc- 

tures or summarize the low-level structures by high-level concepts or aggregation, and 

(4) return the type or an overview of the structure. 

7.3.3 Aggregation and Approximation as a Means of Gen- 

eralizat ion 

Besides conceptual hierarchy ascension and structured data summarization, aggre- 

gation and approxima.tion [101, 951 should be considered as an important means of 

generalization, which is especially useful for generalization of a t  tributes with large 

sets of values, complex structures, spatial or multimedia data, etc. 

Take spatial data as an example. It is desirable to generalize detailed geographic 

points into clustered regions, such as business, residential, industry, or agricultural 

areas, according to  the land usage. Such generalization often requires the merge of a 

set of geographic areas by spatial operations, such as spatial union, or spatial clus- 

tering algorithms. Approximation is an important technique in such generalization. 

In spatial merge, i t  is necessary not only to merge the regions of similar types within 

the same general class but also to  ignore some scattered regions with different types if 

they are unimportant to the study. For example, different pieces of land for different 

purposes of agricultural usage, such as vegetables, grain, fruits, etc. can be merged 

into one large piece of land by spatial merge. However, such an agricultural land may 

contain highways, houses, small stores, etc. If the majority land is used for agriculture, 

the scattered spots for other purposes can be ignored, and the whole region can be 
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claimed as an agricultural area by approximation. The spatial operators, such as spa- 

tial-union, ~patial-overlappin~, spatial-intersection, etc., which merge scattered small 

regions into large, clustered regions can be considered as generalization operators in 

spatial aggregation and approximation. 

7.3.4 Generalization on Multimedia Data 

A multimedia database may contain complex text, graphics, images, maps, voice, mu- 

sic, and other forms of audio/video information. Such multimedia data are typically 

stored as sequences of bytes with variable lengths, and segments of data are linked 

together for easy reference. Generalization on multimedia data can be performed by 

recognition and extraction of the essential features and/or general patterns of such 

data. 

There are many ways to extract the essential features or general patterns from 

segments of multimedia data. For an image, the size and color of the contained 

objects or the major regions in the image can be extracted by aggregation and/or 

approximation. For a segment of music, its melody can be summarized based on 

the approximate patterns that repeatedly occur in the segment and its style can be 

summarized based on its tone, tempo, major musical instruments played, etc. For an 

article, its abstract or general organization such as the table of contents, the subject 

and index terms frequently occurring in the article, etc. may serve as generalization 

results. In general, it is a challenging task to generalize multimedia data to extract 

the interesting knowledge implicitly stored in the data [29]. Further research should 

be devoted to this issue. 
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Construction of MLDB 

7.4.1 Frequently Referenced Attributes and Frequently Used 

Patterns 

With attribute generalization techniques available, the next important question is how 

to selectively perform appropriate generalizations to form useful layers of databases. 

In principle, there could be a large number of combinations of possible generalizations 

by selecting different sets of attributes to generalize and selecting the levels for the 

attributes to reach in the generalization. However, in practice, a few layers containing 

most frequently referenced attributes and patterns will be sufficient to handle most 

practically important cases. 

Frequently used attributes and patterns should be determined before generation 

of new layers of an MLDB by the analysis of the statistics of query history or by 

receiving instructions from users or experts. If users are often interested in one set of 

attributes but rarely asking things related to another set, it is wise to remove those 

rarely used attributes in a higher layer. Similar guidelines apply when generalizing 

attributes to a more general conceptual level. For example, users may like the oldness 

of a house to be expressed by the ranges (of the construction years) such as {below-5, 

6-15, 16-30, over-30) instead of the exact construction date, etc. 

A new layer could be formed by performing generalization on one relation or 

on a join of several relations based on the selected, frequently used attributes and 

patterns. Generalization is performed by removing a set of less-interested attributes, 

substituting the concepts in one or a set of attributes by their corresponding higher 

level concepts, performing aggregation or approximation on certain attributes, etc. [13] 

Since most joins of several relations are performed on their key and/or foreign key 

attributes, whereas generalization may remove or generalize the key or foreign key 

attributes of a data relation, it is important to distinguish the following two classes 

of gensxdizations. 

1. key-preserving generalization, in which all the key or foreign key values are pre- 

served. 
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2. key-altering generalization, in which some key or foreign key values are general- 

ized, and thus altered. The generalized keys should be marked explicitly since 

they cannot be used as join keys at generating subsequent layers. 

It is crucial to identify altered keys since if the altered keys were used to perform 

joins of different relations, it may generate incorrect information. This is observed in 

the following example. 

Example 7.4.1 Suppose one would like to find the relationships between the ages of - .  

. . 
the houses sold and t,he household income level of the house buyers. Let the relations 

house', sales-customer' contain the following tuples. 

house1(945-Austin,. . . , 35(years_old), . . .). 
house1(58-Austin, . . . , 4(years-old), . . .). 
sales-customer1(945-Austin, marklee,  30-40k(income), . . .). 
sales-customer1(58-Austin, t imak l ,  60-70k(income), . . .). 
Their further generalization may result in the relations house", sales-customer" 

containing the following tuples. 

house"(North-Burnuby,. . . , over-30(years_old), . . .). 
house"(North-Burnuby,. . . , belo~-5(~ears-old) ,  . . .). 
sales-customer"(North-Burnaby, 30-40k(income), . . .). 
sales_customer"(North-Burnaby, 60-70k(income), . . .). 
If the join is performed between house' and sales-customer', it will still produce 

the correct information as below. 

house-customer'(945-Austin, 35, markJee, 30-40k,. . .). 
house-customerr(58-Austin, 4, t i m a k l ,  60-70k,. . .). 
Further generalization can still be performed on such a joined relation. 

However, if the join is performed on the altered keys between house" and sales-customer", 

it will generate 4 tuples, which is incorrect. 

house-customer"(North-Burnaby, over30,30-40k,. . .). 
house-customer"(North-Burnaby, over30,60-70k,. . .). 
house~customer"(North~Burnaby, below-5,30-40k,. . .). 
house~customer"(North~Burnaby, belowL5,60-70k,. . .). 
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Obviously, joins on the generalized attributes may produce more tuples than joins 

on the original ones since different values in the a.ttribute may have been generalized 

to identical ones at a high layer. 

This restriction leads to the following regulation. 

Regulation 7.4.1 (Join in MLDB) A join in an MLDB cannot be performed on the 

generalized attributes. 
. . 

Based on this regulation, if the join in an MLDB is performed on the generalized 

attributes, it is called an information-loss join (since the information could be lost by 

such a join). Otherwise, it is called an information-preserving join. 

7.4.2 An MLDB Construction Algorithm 

Based on the previous discussion, the construction of an MLDB can be summarized 

into the following algorithm. 

Algorithm 7.4.1 Construction of an MLDB. 

Input: A relational database, a set of conceptual hierarchies, and a set of frequently 

referenced attributes and frequently used query patterns. 

Output: A multiple layered database. 

Method. An MLDB is constructed in the following steps. 

1. Determine the multiple layers of the database based on the frequently ref- 

erenced attributes and frequently used query patterns. 

2. Starting with the most specific layer, generalize the relation step-by-step 

(using the given conceptual hierarchies) to form multiple layered relations 

(according to the layers determined in Step 1). 

3. Merge identical tuples in each generalized relation and update the count of 

the generalized tuple. 
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4. Construct a new schema by recording all the primitive and generalized 

relations, their relationships and the generalization paths. 

Rationale of Algorithm 7.4.1. 

Step 1 indicates that the layers of an MLDB should be determined based on the 

frequently referenced attributes and frequently used query patterns. This is reasonable 

since to ensure the elegance and efficiency of an MLDB, only a small number of layers 

should be constructed, which should provide maximum benefits to the frequently 

accessed query patterns. 0 bviously, the frequently referenced attributes should be 

preserved in higher layers, and the frequently referenced conceptual levels should be 

considered as the candidate conceptual levels in the construction of higher layers. 

Steps 3 and 4 are performed in a method similar to  attribute-oriented induction [45, 

131. Step 5 constructs a new schema which records a route map and the generalization 

paths for database browsing and cooperative query answering, which is discussed in 

detail below. 

7.4.3 Schema: A Route Map and a Set of Generalization 

Paths 

Since an MLDB schema provides a route map, i.e., a general structure of the MLDB 

for query answering and database browsing, it is important to construct a concise 

and information-rich schema. In addition to the schema information stored in a 

conventional relational database system, an MLDB schema should store two more 

important pieces of information: 

1. A route map, which outlines the relationships among the relations at different 

layers of the database. For example, it shows which higher layered relation is 

generalized from one or a set of lower layered relations. 

2. A set of generalization paths, each of which shows how a higher layered relation 

is generalized from one or a set of lower layered relations. 
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Similar to many extended relational databases, a route map can be represented by 

an extended E-R (entity-relationship) diagram [106], in which the entities and rela- 

tionships at  layer-0 (the original database) can be represented in a conventional E-R 

diagram [67]; whereas generalization is represented by a double-line arrow pointed 

from the generalizing entity (or relationship) to the generalized entity (or relation- 

ship). For example, house' is a higher layered entity generalized from a lower layer 

entity house, as shown in Fig. 7.1. Similarly, sales_customer' is a higher layered rela- 

tionship, obtained by generalizing the join of sales' and customer'. It is represented 

as a generalization from a relationship obtained by joining one entity and one rela- 

tionship in the route map (Fig. 7.1). Since an extended E-R database can be easily 

mapped into an extended relational one [67], our discussion assumes such mappings 

and still adopts the terminologies from an extended relational model. 

A generalization path is created for each high layer relation to represent how the 

relation is obtained in the generalization. Such a high layer relation is possibly ob- 

tained by removing a set of infrequently used attributes, preserving some attributes 

and/or generalizing the remaining set of attributes. Since attribute removing and 

preserving can be obviously observed from a relational schema, the generalization 

path need only register how a set of attributes are generalized. A generalization path 

consists of a set of entries, each of which contains three components: (old-attr(s), 

new-attr(s), rules), which tells how one or a set of old attributes is generalized into 

a set of new (generalized) attributes by applying some generalization rule(s), such 

as generalizing to which conceptual levels of a conceptual hierarchy, applying which 

aggregation operations, etc. If an existing hierarchy is adjusted or a new hierarchy is 

created in the formation of a new layer, such a hierarchy should also be registered in 

H ,  the hierarchy component of an MLDB. 

7.4.4 Maintenance of MLDBs 

Since an MLDB is resulted from extracting extra-layers from an existing database 

by generalization, an MLDB will take more disk space than its corresponding single 

layered database. However, since a higher layer database is usually much smaller 
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than the original database, query processing is expected to be more efficient if done 

in a higher database layer. The rapid progress of computer hardware technology has 

reduced the cost of disk space dramatically in the last decade. Therefore, i t  could be 

more beneficial to trade disk space with intelligent and fast query answering. 

In response to the updates to the original relations, the corresponding higher 

layers should be updated accordingly to  keep the MLDB consistent. Incremental 

update algorithms should be developed to  minimize the cost of update propa- 

gation. Here we examine how to propagate incremental database updates a t  

insertion, deletion and update of tuples in an original relation. 

When a new tuple t is inserted into a relation R, t should be generalized to t' 

according to the route map and be inserted into its corresponding higher layer. 

Such an insertion will be propagated to  higher layers accordingly. However, if 

the generalized tuple t' is equivalent to an existing tuple in this layer, it needs 

only to increment the count of the existing tuple, and further propagations to 

higher layers will be confined to count increment as well. The deletion of a tuple 

from a data relation can be performed simila.rly. 

When a tuple in a relation is updated, one can check whether the change may 

affect any of its high layers. If not, do nothing. Otherwise, the algorithm will 

be similar to  the deletion of an old tuple followed by the insertion of a new one. 

Although an MLDB consists of multiple layers, database updates should always 

be performed at the primitive database (i.e., layer-0) and the updates are then 

propagated to  their corresponding higher layers. This is because a higher layer 

represents more general information, and it  is impossible to  transform a more 

general value to a more specific one, such as from age to  birth-date (but it is 

possible in the reverse direction by applying appropriate generalization rules). 

To response to the changes in the frequently referenced attributes or the fre- 

quently used patterns, the affected layers should be updated accordingly and 

the changes should be recorded in the schema of the MLDB. 
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When an attribute becomes a frequently referenced attribute, it is added into 

higher layer relations and the data of the attribute are generalized into these 

higher layer databases. When an attribute is no longer a frequently referenced 

attribute, i t  may be removed from the higher layer databases. However, a 

"grace" period can be waited before the deletion, in case the attribute became 

a frequently referenced attribute again in the near future. The changes in fre- 

quently used patterns can be assimilated in a similar way, by inserting or deleting 

corresponding relations. All the changes should be recorded in the schema of 

the MLDB. 

An incremental update approach can be taken because only the affected layers or 

rela,tions need to be changed. For example, if the attribute constructor-warranty 

becomes frequently referenced, it can be added into relations house' and house", 

but not others. 

The changes in the schema of primitive layer relations can be assimilated easily, 

by updating the corresponding higher layer relations and the schema of the 

MLDB. 

When a new attribute is added into a relation, it is recorded in the schema of the 

MLDB. The higher layers are not affected unless the attribute is a frequently 

referenced attribute. The deletion of an attribute from a primitive layer relation, 

however, will cause the attribute (if there is any) to be deleted from the higher 

layers. 

Note that the changes can be reported by the database administrators or detected 

automatically by periodical sampling. 

Query Answering in an MLDB 

A query consists of user-provided information (query constants) and inquired infor- 

mation, where the former (query constants) could be the concepts matching different 

layers; whereas the latter may be mapped t o  different layers of an MLDB as well. 
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Moreover, one may expect that the query be answered directly by strictly following 

the request, or intelligently by providing some generalized, neighborhood, or associ- 

ated answers. 

We first examine the mechanisms for direct answering of queries in an MLDB and 

then extend the results to cooperative query answering. 

7.5.1 Direct Query Answering in an MLDB 

Direct query answering refers to answering queries by strictly following query specifi- 

cations without providing (extra) associative information in the answers. Rigorously 

speaking, if all the provided and inquired information of a query are a t  the prim- 

itive conceptual level, a query can be answered directly by searching the primitive 

layer without exploring higher layers. However, a cooperative system should provide 

users with flexibility of expressing query constants and inquiries at a relatively high 

conceptual level. Such kind of "high-level" queries can be answered directly in an 

MLDB. 

At the first glance, it seems to be easy to process such high-level queries by sim- 

ply matching the constants and inquires in the query to a corresponding layer and 

then directly processing the query in this layer. However, there could be dozens of 

attributes in a relation and each attribute may have several conceptual levels. It  is 

impossible and often undesirable to  construct all the possible generalized relations 

whose different attributes are a t  different conceptual levels. In practice, only a small 

number of all the possible layers will be stored in an MLDB based on the analysis 

of the frequently referenced query patterns. This implies that transformations often 

need to  be performed on some query constants to  map those constants to a conceptual 

level corresponding to that of an existing layered database. 

In principle, a high-level query constant is defined in a conceptual hierarchy, based 

on which the high-level constant can be ma.pped to  primitive level concepts. For 

example, "greater Vancouver area" can be mapped to  all of its composite regions, 

and "big house" can be mapped to  "total-floor-area > 3,000(sq. ft.)", etc. Thus, 

a query can always be transformed into a primitive level query and be processed in 
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a layer-0 database. However, to increase processing efficiency and present high-level 

(and more meaningful) answers, our goal is to process a query in the highest possible 

layer, consistent with all of the query constants and inquiries. 

Definition 7.5.1 A database layer L is consistent on an attribute A; with a query q 

if the constants of attribute Ai in query q can absorb (i.e., level-wise higher than) the 

concept(s) (level) of the attribute in the layer. 

For example, if the query constant in query q for the attribute "house-area" is 

"big", whereas the conceptual level for "house-area" in layer L is the same as "big", 

or lower, such as "3,000-4,999", "over-5,00OV, etc., then layer L is consistent with 

query q on the attribute "house-area". 

Definition 7.5.2 The watermark  of a (nonjoin) attribute A; for query q is the top- 

most database layer which is consistent with the conceptual level of query con- 

stants/inquiries of attribute A; in query q. 

Lemma 7.5.1 All the layers lower than the watermark of an attribute A; for query 

q must be consistent with the values of attribute A; in query q. 

We first examine the case that a query references only one generalized relation 

and all the high level query constants are nonnumerical values. 

Proposition 7.5.1 If a query q references only one generalized relation and all the 

high level query constants are nominal (nonnumerical) values, the highest possible 

layer consistent with the query shoudd be the lowest watermark of all the participant 

attributes of q in  the route map of the MLDB. 

Rationale. Suppose layer L is the lowest watermark of all the participant attributes of 

q in the route map of the MLDB. Since a layer lower than the watermark of attribute 

A; must be consistent with the corresponding query constant/inquiry on attribute 

A;, L must be consistent with all the constants and inquiries of all the participant 

attributes of query q. Furthermore, since a watermark for an attribute is the highest 

possible database layer for such an attribute, the layer so derived must be the highest 

possible layer which is consistent with all the participating attributes in the query. 0 
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We then exa.mine the case of queries involving join(s) of two or more relations. 

If such a join or its lower layer is already stored in the MLDB by an information- 

preserving join, the judgement should be the same as the case for single relations. 

However, if no such a join has been performed and stored as a new layer in the 

MLDB, the watermark of such a join attribute must be the highest database layer 

in which generalization has not been performed on this attribute (i.e., on which the 

information-preserving join can be performed). This is because a join cannot be 

performed on the generalized attributes according to  Regulation 1. 

Definition 7.5.3 The watermark of a join attribute A; for query q is the topmost 

database layer which is consistent with the conceptual level of query constants/inquiries 

of attribute A; in query q and in which the information-preserving join can be per- 

formed on A;. 

Thus, we have the following proposition. 

Proposition 7.5.2 If a query q involves a join of two or more relations, and all the 

high level query constants are nominal (nonnumerical) constants, the highest possible 

layer consistent with the query should be the lowest watermark of all the participant 

attributes (including the join attributes) of q in the route map of the MLDB. 

Example 7.5.1 Suppose the query on the real-estate MLDB is to describe the re- 

lationship between house and sales with the following given information: located in 

North-Vancouver, Sbedroorn house, and sold in the summer of 1993. Moreover, sup- 

pose the route map of an MLDB corresponding to  this query is shown in Fig. 7.2. 

The query involves a join of sales and house and the provided query constants are 

all a t  the levels high enough to  match those in house" and sales". However, joins can- 

not be performed at t,hese two high layer relations since the join attributes of house" 

and sales" have been generalized (with their join keys altered). The watermarks of 

the join attributes, house.location and sales.houseJoc, are one layer lower than their 

topmost layers. 

If there exists a relation such as house-sales in the MLDB, which represents the 

join between the two relations and/or their further generalizations, the query can 
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Figure 7.2: Perform joins in an MLDB. 
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be processed within such a layer. Otherwise (as shown in Fig. 7.2), a join must be 

performed on the highest joinable layers (which should be house' and sales', as shown 

in Fig. 7.2). Further generalization can then be performed on this joined relation to 

form appropriate answers. 0 

House.location 

Finally, we examine the determination of the highest possible database layers if the 

query contains numeric attributes. If the value in a numeric attribute in the query is 

expressed as a generalized constant, such as "expensive", or the specified range in the 

query has an exact match with some (generalized) range in a conceptual hierarchy, 

such as "$300-400k7', the numeric value can be treated the same as a nonnumeric 

concept. Otherwise, we have two choices: (1) set the watermark of the attribute 

to  the highest layer in which such numeric attributes has not been generalized, o r .  

(2) relax the requirement of the preciseness of the query answering. In later case, 

the  appropriate layer is first determined by nonnumeric attributes. A coverage test 

is then performed to see whether the generalized range is entirely covered by the 

range provided in the query. For those entirely covered (generalized) ranges, the 
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precision of the answer remains the same. However, for those partially covered, the 

answer provided should be associated with certain probability for uncovered numerical 

ranges (e.g., by assuming that the data are relatively uniformly distributed within the 

generalized range), or be ass~ciat~ed with a necessary explanation to clarify that the 

answer occupies only a portion of the entire generalized range. 

Example 7.5.2 Suppose the query on the real-estate database is to  describe the big 

houses in North-Vancouver with the price ranged from $280k to $350k. Since the 

query is to  describe houses (not to find exact houses), the inquired portion can be 

considered at a high layer, matching any layers located by its query constants. To 

find the layer of its query constants, we have "house-size = big", "address = North- 

Vancouver", and price range = $280k-$350k. The watermarks of the first two are 

at the layer house", whereas the third one is a range value. Suppose in the layer 

house", the generalized tuples may have .the ranges like $250k-$300k, $300k-$350k, 

etc., which do not have the exact match of the range $280k-$350k. Still, the query 

can be processed at this layer, with the information within the range $300k-$350k 

returned without additional explanation, but with the information within the range 

$250k-$300k returned, associated with an explanation that the returned information 

is for the range of $250k-$300k instead of $280k-$300k to avoid misunderstanding. 0 

7.5.2 Cooperative Query Answering in an MLDB 

Since an MLDB stores general database informat,ion in higher layers, many techniques 

investigated in previous research on cooperative query answering in (single layered) 

databases 158, 25, 19, 38, 201 can be extended to  cooperative query answering in 

MLDBs, easily, effectively and efficiently. 

The following reasoning may convince us that an MLDB ca'n greatly facilitate 

cooperative query answering. 

1. Many cooperative query answering techniques need certain kinds of general- 

ization [20, 391; whereas different kinds of frequently used generalizations are 

performed and stored in the higher layers of an MLDB. 
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2. Many cooperative query answering techniques need to compare the "neighbor- 

hood" information [25,  201; whereas the generalized neighborhood tuples are 

usually stored in the same higher layer relations, ready for comparison and 

investigation. 

3. Many cooperative query answering techniques need to  summarize the answer- 

related informat ion, associated with data statistics or with certain aggrega- 

tions [19, 1121. Interestingly, a higher-layered relation not only presents the 

generalized tuples but also the counts of the identical tuples or other computed 

aggregation values (such as sum, average, etc.). Such high-level information 

with counts conveys important information for data summarization and statis- 

tical data investigation. 

4. Since the layer selection in the construction of an MLDB is based on the study 

of the frequently referenced attributes and frequently used query patterns, the 

MLDB itself embodies rich information about the history of the most regular 

query patterns and also implies the potential intent of the database users. It  

forms a rich source for query intent analysis and plays the role of confining the 

cooperative answers to frequently referenced patterns automatically. 

5. An MLDB constructs a set of layers step-by-step, from most specific da ta  to  

more general information. It facilitates progressive query refinement, from gen- 

eral information browsing to  specific data retrieval. Such a process represents a 

top-down information searching process, which matches human's reasoning and 

learning process naturally, thus provides a cooperative process for step-by-step 

information exploration [log, 1131. 

Clearly, with these advantages, MLDB may become a valuable tool in cooperative 

query answering. 

Since the cooperative query answering has been studied relatively thoroughly in 

previous research, instead of "reinventing" the technologies of cooperative query an- 

swering, we briefly present some examples to illustrate the use of MLDBs in the 

implementation of cooperative query answering mechanisms. 
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Example 7.5.3 A query like "what kind of houses can be bought with $300k in the 

Vancouver area?" can be answered using an MLDB efficiently and effectively. Here 

we examine several ways to answer this simple query using the MLDB constructed in 

Example 1. 

1. Relaxation of query conditions using conceptual hierarchies and/or high layer rela- 

tions: 

Instead of answering the query using "house-price = $3001;", the condition can 

be relaxed to about $300k, that is, the price range covering $300k in a high 

layer relation, such as house1', can be used for query answering. This kind of 

relaxation can be done by mapping query constants up or down using conceptual 

hierarchies, and once the query is mapped to  a level which fits a corresponding 

dakabase layer, it can be processed within the layer. 

2. Generalized answers with summarized statistics: 

Instead of printing thousands of houses within this price range, it  searches 

through the top layer house relation, such as house", and print the general- 

ized answer, such as "20% 20-30 years-old, medium-sized, 3-bedrooms house in 

East Vancouver, . . .". With the availability of MLDBs, such kind of generalized 

answers can be obtained directly from a high layered DB by summarization of 

the answers (such as giving percentage, general view, etc.) at a high layer. 

3. Comparison with the neighborhood answers: 

Furthermore, the printed general answer can be compared with its neighbor- 

hood answers using the same top-level relation, such as "10% 3-bedroom 20-30 

years-old houses in the Central Vancouver priced between $250k to $350K, while 

30% such houses priced between $350 to $500k, . . . ". Notice that such cornpar- 

ison information can be presented as concise tables using an existing high layer ' 

relation. 

4. Query answering with associative information: 
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It is often desirable to provide some "extra" information associated with a set 

of answers in cooperative query answering. Query answering with associative 

information can be easily achieved using high layer data relations. For example, 

the query can be answered by printing houses with different price ranges (such as 

$230-280k, $330-380k, etc.) as row extension, or printing houses in neighboring 

cities, printing other interesting features as column extension, or printing sales 

information related to  such houses as table extension. These can be performed 

using high layer relations. 

5. Progressively query refinement or progressive information focusing: 

The query can be answered by progressively stepping down the layers to  find 

more detailed information. The top layer is often examined first, with general 

data and global views presented. Such a presentation often gives a user better 

idea of what should be searched further with additional constraints. For exam- 

ple, a user may focus the search to the East Vancouver area after s(he) finds a 

high percentage of the houses within this price range since it  is likely to  find a 

satisfiable house within this area. Such a further inquiry may lead the search to 

lower layer relations and may also promote users t,o pose more restricted con- 

straints or refine the original ones. In this case, the route map associated with 

the MLDB will a,ct as a tour guide to locate related lower layer relation(s). 

Summary 

We discuss the applications of data mining techniques in cooperative query answer- 

ing in this chapter. A multiple layered database (MLDB) model has been proposed 

and examined. An hlLDB can be constructed using data mining techniques. Data 

generalization and layer construction methods have been developed to guarantee new 

layers can be constructed efficiently, effectively and consistent with the primitive in- 

formation stored in the database. Direct and cooperative query answering in such 

a MLDB are also examined. Our study shows that data mining techniques can be 

applied to facilitate cooperative query answering. 



Chapter 8 

Conclusions and Future Research 

Our study on the discovery of multiple-level rules is concluded in this chapter. My 

major thesis work is summarized in Section 8.2. The conclusions drawn from our study 

are presented in Section 8.2. Finally, in Section 8.3, some future research problems 

are discussed. 

8.1 Summary of My Thesis Work 

In this thesis, we proposed the mining of multiple-level rules from large databases. A 
set of algorithms for the manipulation of conceptual hierarchies was proposed, as well 

as a set of algorithms for mining multiple-level rules, including characteristic rules, 

discriminant rules, and association rules. The algorithms were implemented in our 

data mining system, D B M iner. The experiments showed the algorithms performed 

well on large databases. The major contributions of my thesis work are summarized 

as follows. 

1. The idea of mining multiple-level rules from large databases has been introduced. 

The mining of multiple-level rules was proposed and studied for several kinds 

of rules: characteristic, discriminant, and association rules. As discussed in 

Section 1.2, multiple-level rules can provide richer information than single-level 

rules, and may represent the hierarchical nature of the knowledge discovery 



C H A P T E R  8. CONCLUSIONS A N D  F U T U R E  RESEARCH 

process. The mining of multiple-level rules extends previous KDD studies on 

the discovery of single-level rules. 

2. The use of conceptual hierarchies in data mining has been examined. A set 

of algorithms for conceptual hierarchy manipulation has been developed. Two 

algorithms for conceptual hierarchy adjustment were proposed, one for adjust- 

ment using an attribute threshold and the other for adjustment without the use 

of an attribute threshold. In addition, an algorithm for the generation of con- 

ceptual hierarchies for numerical attributes was also proposed. All algorithms 

have been implemented and tested. The experiments on real databases showed 

very satisfactory results. 

3. The mining of multiple-level characteristic, discriminant, and association rules 

has been investigated. 

An interactive progression method has been proposed for mining multiple-level 

characteristic and discriminant rules. An algorithm for the mining of multiple- 

level characteristic rules was presented as well as an algorithm for the mining 

of multiple-level discriminant rules. Both algorithms were implemented in the 

DBMiner system, and demonstrated the desired performance. 

A progressive deepening method for mining multiple-level association rules has 

been proposed. Several variants of the method, using different optimization 

techniques, were implemented and tested, and their performances were com- 

pared and analyzed. The experiments show that the method finds multiple-level 

association rules efficiently and effectively. 

A meta-rule guided a,pproach for mining multiple-level association rules is pro- 

posed. Two algorithms, the large-predicate growing and the direct ppredicate 

testing, have been proposed and tested. The experiments show that meta-rule 

guided mining of multiple-level association rules is effective for discovery of in- 

teresting and strong such rules in large databases. 

4. The application of data mining techniques in cooperative query answering has 

been studied. A multiple layered database (MLDB) model was proposed and 



CHAPTER 8. CONCLUSIONS A N D  FUTURE RESEARCH 170 

examined in Chapter 7. An hlLDB can be constructed using data mining tech- 

niques. Direct and cooperative query answering in such an MLDB was studied. 

5. A data mining prototype system, DBMiner, has been developed (several func- 

tional modules were developed by other researchers) which can find several kinds 

of knowledge from database. 

Conclusions 

Our study demonstrates that mining multiple level knowledge is both practical and 

desirable. 

a The scope of data mining has been broadened by the study on the mining 

of multiple-level rules. The mining of multiple-level rules can provide more 

information for the users and enhance the flexibility and power of data mining 

systems. Therefore, the discovery of multiple-level rules represents an interesting 

research direction in data mining. 

a The use of conceptual hierarchies facilitates the mining of multiple-level rules. 

Moreover, conceptual hierarchies can be adjusted dynamically to meet the need 

of the current data mining task. For numerical attributes, conceptual hierarchies 

can be generated automatically based on the current data distribution. 

a Interesting mult,iple-level cha'racteristic, discriminant, and association rules can 

be discovered efficiently from large databases. 

- The interactive progression algorithm finds mining multiple-level charac- 

teristic and discriminant rules flexibly and efficiently. 

- The progressive deepening method finds multiple-level association rules . 
effectively and efficiently. 

- Meta-rule guided mining is a powerful tool for mining multiple-level asso- 

ciation rules. Efficient algorithms have been developed for the meta-rule 

guided mining of multiple-level association rules, as we have demonstrated. 
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0 Data mining t.echniques a.re very useful for cooperative query answering. Mul- 

tiple layered databases can be built using data mining techniques in order to 

facilitate cooperative query answering. 

As a data mining prototype system, DBMiner successfully integrates data min- 

ing and database techniques, in order to find multiple-level knowledge from large 

databases. The DBMiner experience is a valuable example for the development 

of future data mining systems. 

8.3 Future Research 

Some interesting fut,ure research problems are presented as follows. 

8.3.1 Discovery of Other Kinds of Multiple-Level Knowl- 

edge 

The idea of mining multiple-level knowledge can be applied to discover other kinds of 

multiple-level rules or pat terns, such as multiple-level sequential pat terns, multiple- 

level deviation patterns, etc. 

0 Mining multiple-level sequential patterns. 

A sequential pattern is a series of items bought together by customers in a 

transactional database. For example, a sequential pattern, "TV followed by 

VCR followed by video camera", reveals that people buy TV, then VCR, and 

then video camera. An Apriori-like algorithm was proposed by Agrawal and 

Srikant [5] for the mining of frequently occurring sequential patterns. 

As for association rules, taxonomical or hierarchical organizations exist for many 

items. For example, a "26-inch Sony TV" is a "Sony TV" which is in turn a 

" TV". A multiple-level sequential pattern is a series of items, at primitive 

or nonprimitive level, occurring in transactions. For example, the search of 

multiple-level sequential patterns may find "Sony TV followed by Sony VCR 
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followed by Sony Video Camera", which gives more specific information than 

the above sequential pattern. 

Mining multiple-level deviation patterns. 

A deviation pattern describes the deviation of a variable from its expected value. 

For example, the following deviation pattern maybe discovered from a stock 

price database, "the price of company ABC's stock rose 30% more than the 

average in the last month". 

Conceptual hierarchies may exist for many attributes, for example, the compa- 

nies can be grouped into several major sectors: service, finance, manufacture, 

etc. The mining of multiple-level deviation patterns may report the low-level 

deviation patterns as in the above example, or high-level deviation patterns, 

such as "the prices of the hi-tech stocks dropped 20% more than the average in 

the last quarter". 

8.3.2 Meta-Rule Guided Mining of Other Kinds of Rules 

Meta-rule guided mining is a powerful tool for specifying the interesting rules. It is 

interesting to investigate the meta-rule guided mining of other kinds of multiple-level 

rules, for example, prediction rules, sequential rules, etc. 

Meta-Rule guided mining of multiple-level prediction rules. 

A method for mining multiple-level prediction rules was proposed by Wang [110]. 

A multiple-level prediction rule can be used to predict an unknown attribute of 

an object based on its other attributes, which may be a t  non-primitive levels 

as well as the primitive level. For example, high-level prediction rules, such as 

"if a car is a subcompact Japanese car, its annual repair cost may range from 

five hundred to one thousand dollars, with 40% probability", may be discovered, . 
together with low-level prediction rules, such as "if a car is a five-year-old Toyota, 

its annual repair cost may range from two hundred to five hundred dollars, with 

60% probability". A meta-rule can specify the expected form of the prediction 

rules. For example, a meta-rule, make(c : car, x)  A Q(c, y )  + repair-cost(c, z ) ,  
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can guide us to find the above rules, which predict a car's potential repair cost 

based on its make and any other attribute. 

Meta-rule guided mining of sequential rules. 

A sequential rule describes the associations of the sequential patterns in a trans- 

actional database. Sequential rules can be derived from sequential patterns. For 

example, a sequential rule, "50% of customers who buy T V  also buy VCR within 

a year", can be derived from a sequential pattern, "TV followed by VCR". 

A meta-rule can specify the kind of sequential rules we are int,erested in. For 

example, a meta-rule, P ( c  : customer, t l )  Q(c ,  t2) A t2 E [tl, t l  + 3651, can 

help us to  find the interesting rules which involve the sequential items bought 

by customers within a year. This may lead to the discovery of the above rule. 

8.3.3 Automatic Generation of Conceptual Hierarchies for 

Nonnumerical Attributes 

We studied the automatic generation of conceptual hierarchies for numerical at- 

tributes. It  is natural to investigate the automatic generation of conceptual hier- 

archies for nonnumerical attributes. There are a number of studies on automatic 

hierarchical clustering, such as Cluster12 (761, COBWEB [34, 351, and many others. 

However, they usually depend on a set of other attributes to  define the search space, 

in which the best hierarchical clustering for the targeted attribute, based on some 

given criteria, is searched. 

Some of the previous algorithms can be adapted to  generate conceptual hierarchies 

for nonnumerical attributes. For example, a relevance analysis can determine the 

attributes that are related to  the targeted attribute, and the objects can be clustered 

based on these relevant attributes. The conceptual hierarchy of the targeted attribute 

can then be extracted from the clusters. For example, the attribute province in 

Example 4.1.4 can be clustered based on the attributes of the geo-location of each 

province, and geographically nearby provinces will be organized into a region. 

A more difficult problem is to  find hierarchy for an attribute, with little or no 
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reference to other attributes, i.e., where the search space is not defined by other 

attributes. 

8.3.4 Data Mining on the Internet (WWW) 

The World Wide Web (W\VW or Web) is rapidly growing and becoming increasingly 

popular. A great deal of information is available now on the Web, which provides 

huge amount of data for data mining. 

Many resource discovery tools have been developed which can search for documents 

containing specific keywords [22, 231. For example, a user can find documents about 

"data mining" through one of the search engines. However, not much research has 

been done on knowledge discovery on the Internet or Web. For example, it is difficult, 

if not impossible, to find all research groups that have published more than five papers 

on data mining since 1994. 

A multiple layered, structured approach was proposed by Han et al. 1.521, in which 

multiple layered databases were constructed by the generalization of raw, primitive 

level information. For example, the description of an image, instead of the image 

itself, can be recorded in a high layer database. 

However, some problems remain unsolved. For example, the extraction of basic 

information from complex data, such as multimedia data and structured data, re- 

quires sophisticated tools. Other problems include the heterogeneity of the data, the 

autonomy of the data, the maintenance of these multiple layered databases, and so 

on. 
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