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Abstract

It is well-known that a language is recognizable iff it is definable in a monadic second-order
logic. The same holds for sets of finite ranked trees (or finite unranked trees, in which case
one must use a counting monadic second-order logic).

Courcelle initiated research into the problem of definability vs. recognizability for finite
graphs. Unlike the case of words and trees, recognizability does not equal definability for
arbitrary families of graphs. Courcelle and others have shown that definability implies
recognizability for partial k-trees (graphs of bounded tree-width), and conjectured that the
converse also holds.

The converse implication was proved for the cases of k = 0, 1,2, 3. It was also established
for families of k-connected partial k-trees.

In this thesis, we show that a recognizable family of partial k-paths (graphs of bounded
path-width) is definable in a counting monadic second-order logic (CMS), thereby proving
the equality of definability and recognizability for families of partial k-paths.

This result is of both theoretical and practical significance. From the theoretical view-
point, it establishes the equivalence of the algebraic and logical approaches to characterizing
yet another recursively defined class of objects, that of partial k-paths. This also adds va-
lidity to Courcelle’s conjecture on partial k-trees. From the practical viewpoint, since a
partial k-path is recognizable in linear time, it establishes that a problem or partial k-paths

is solvable in linear time using a finite automaton iff this problem is definable in CMS.
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Chapter 1

Introduction

In 1960, Biichi [8] showed that a language is regular iff it is definable by some formula in
monadic second-order logic (MS). Here, MS is the extension of the first-order logic that
allows quantification over sets of objects. A set of objects is definable by an MS-formula
if the formula is true exactly on the members of the set. Thus Biichi established that
recognizability is equivalent to MS-definability for words. Doner [13] then extended this
result to ranked trees (tree representations of algebraic terms). A regular set of ranked trees
is recognizable by a tree automaton, the extension of a finite automaton to algebraic terms.

Graphs are algebraic structures since any graph can be constructed from smaller graphs
using certain graph operations. They are also logical structures since any graph is completely
determined by the set of its vertices and the adjacency relation on this set. Thus the notions
of recognizability and definability can be extended to finite graphs. Courcelle [10] proved
that every MS-definable set of finite graphs is recognizable, but not conversely. However,
he was able to extend the result of Doner to unordered unbounded trees using a counting
monadic second-order logic (CMS), an extension of MS that allows modular counting.

The question remained whether there was a sufficiently large class of graphs for which
recognizability would imply CMS-definability. In their study of graph minors, Robertson
ard Seymour [19] introduced the notion of the tree-width of a graph. A graph of tree-width
k exhibits certain tree-like structure: Such a graph can be decomposed into subgraphs of
size k + 1 arranged as nodes of a tree (tree-decomposition) so that the nodes containing a
given vertex form a subtree.

The class of graphs of tree-width at most k coincides with that of partial «-trees.

Among other classes of graphs of bounded tree-width are trees and forests (tree-width < 1),
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e

series-parallel graphs and outerplanar graphs (< 2), and Halin graphs (< 3).

For graphs of tree-width at most &, recognizability is defined using a tree automaton
working on the corresponding tree-decompositions: A set G of partial k-trees (7 is recogniz-
able if there is a tree automaton that accepts any tree-decomposition of cach graph ¢/ € @,
and rejects tree-decompositions of graphs not in G. Since the size of each node in such tree-
decompositions is bounded, to check if a partial k-tree (given with its tree-decomposition)
is recognized takes linear time. Bodlaender [5] gave a linear-time algorithm for constructing
tree-decompositions of tree-width at most k for partial k-trees. Thus it is possible to check
in linear time whether a partial k-tree is recognized, even if its tree-decomposition is not
part of the input.

It follows from the above-mentioned Courcelle’s result that every CMS-definable set of
partial k-trees is recognizable in linear time by a corresponding tree automaton. (In [1],
the explicit construction of a tree antomaton for a given CMS-formula is presented.) This
is particularly interesting since many NP-complete problems on graphs can be described
as properties expressible in MS, and therefore these problems become lincar-time solvable
on the class of partial k-trees. In [4] and [7], a formalism different fromm MS-definability is
proposed so that the properties expressible using this formalism can be solved in linear time
on recursively defiiied families of graphs.

The class of graphs of bounded tree-width plays an important role for another reason.
The monadic second-order theory (MS-theory) of a class of graphs G is the set of all MS-
formulas that are true on each element of G. This theory of G is decidable if it is recursive
(i.e., there is an algorithm that decides whether any given MS-formula holds for all the
elements of G). Courcelle showed in [10] that the MS-theory of the class of partial k-trees is
decidable. Seese [20] proved that if the MS-theory of a class of finite graphs M is decidable,
then the graphs in M have uniformly bounded tree-width. Thus, tree-width “characterizes”
classes of finite graphs having decidable MS-theories.

Courcelle {11] showed that a recognizable set of partial k-trees is CMS-definable for
k =1 and k£ = 2, and conjectured that recognizability implies CMS-definability of partial
k-trees for an arbitrary k. Kaller [17] proved the case of £ = 3 and the case of k-connected
partial k-trees.

In this thesis, we establish that every recognizable set of partial k-paths is CMS-
definable. A partial k-path (graph of bounded path-width) is a partial k-tree for which
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the corresponding tree-decomposition is a path-decomposition. Partial k-paths are recog-
nized by finite automata working on the corresponding path-decompositions.

I their solutions, Courcelle and Kaller show how to define in MS some tree-decompo-
sition of a given partial k-tree. Simulating (in CMS) the behaviour of a tree-automaton on
this tree-decomposition is then a fairly straightforward task.

To solve the problem for partial k-paths, we do the reconstructing of some path-
decomposition of a given partial k-path G and simulating of the corresponding finite au-
tomaton A “in parallel.” In fact, we do not define in CMS any path-decomposition of &,
but only check if some of its path-decompositions is accepted by A.

First, we show how every partial &-path G can be coloured so that some of its path-
decompositions can be reconstructed (although not in CMS) from this colouring. The
structure that we can define in CMS given such a coloured graph is sufficient for us to verify
{in CMS) whether this path-decomposition of G is accepted by the automaton A.

Thus we prove that recognizability implies CMS-definability for properly coloured par-
tial k-paths. To establish this implication for uncoloured partial k-paths, we show then that
the required coloured graph can be defined in MS.

A graph H is a minor of a graph G if H becomes a subgraph of G after a series of
contractions of edges of G. A family of graphs is minor-closed if every minor of every
member of that family also belongs to the family. Robertson and Seymour [18] proved that
every minor-closed family of finite graphs can be characterized by a finite set of obstructions,
graphs outside the family.

Using the fact that the class of partial k-trees is minor-closed, Courcelle [12] proved
that this class is MS-definable. However, to construct the corresponding MS-formula, one
needs to know the finite set of obstructions of the corresponding class of graphs. These sets
are known only for k = 1, k = 2 ([21, 2]), and k£ = 3 ([3]).

On the other hand, the obstruction set of the class of partial k-trees can be determined
from the MS-formula defining that class. To find such a set, one can use graph grammars
(as suggested in [12]) or congruences of finite index (see [14]). This reasoning also applies
to the class of partial k-paths.

In this thesis, we describe how to construct the MS-formula defining the class of partial
k-paths for every given k. As a consequence, we can now compute the obstruction sets of
the classes of partial k-paths for each k.

The remainder of this thesis is organized as follows: In Chapter 2, we give the necessary
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background material from graph theory, logic, and automata theory. We define partial k-
paths, path-decompositions, and definability and recognizability for partial &-paths. We also
give a proof of Biichi’s result that a recognizable set of words is MS-definable. In Chapter
3, we show that recognizability implies CMS-definability for a certain generalization of the
class of connected partial k-paths, the class of (k,1)-paths. This will be a base case of our
solution for arbitrary partial k-paths. In Chapter 4, we prove the case of counected partial
k-paths first, and then extend our proof to possibly disconnected partial k-paths. In the last
chapter, we give concluding remarks and discuss a possible approach to solving the problem

on partial k-trees.



Chapter 2

Preliminaries

The problem studied in this thesis arose at the intersection of three areas of theoretical
computer science: graph theory, logic, and automata theory.

In this chapter, the necessary material from each of those zreas is presented. In the first
section, we recall some basic terminology from graph theory and define partial k-paths. In
the second section, we describe the concept of definability in counting monadic second-order
logic. In the third section, we explain what it means for a graph family to be recognizable.
In the last section, we prove that every recognizable language is MS-definable. (We will
use the technique from this proof when showing the corresponding implication for partial

k-paths.)

2.1 Graphs

2.1.1 Basic Definitions

The majority of definitions in this subsection can be found in any standard reference book
on graph theory (see, e.g., {15] or [6]).

Our graphs are finite and simple. They can be undirected or directed (digraphs). For
a graph G = (Vg, Eg). Vg and Eg are its vertex and edge sets, respectively. (Whenever
this leads to no confusion, we shall drop the subscript.)

If ( is undirected, an edge e € E connecting vertices u and v (u,v € V) is denoted by
e = {u,v}. If G is directed, an edge € € E from u to v (u,v € V'), called an arc, is denoted

by ¢ = (u,v). In both cases, the vertices u and v are called the ends of the edge e. They

(V1]
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are also said to be adjacent to each other and incident to the edge ¢.

A graph H = (Vg, Ey) is called a subgraph of G = (Vg, F¢). denoted by H C G, iff
Vg C Vg and Eg C Eg. If H is a subgraph of G, G is called a supergraph of H.

For a non-empty subset V'’ of V, the subgraph of G with the vertex set V"’ and the
edge set containing those edges of G that have both ends in V' is called the subgraph of ¢
induced by V' and is denoted by G[V'].

Two undirected graphs G and G’ are called isomorphic, denoted by G = i/, iff there
is a bijection 7 : Vg — Vigr such that for any u,v € Vg, {u,v} € Eg iff {n(w),n(v)} € Ley.
The definition for directed graphs is similar.

A path of length s (s > 0) in an undirected graph G going from u to v (u,v € V) is a
sequence of vertices (v),...,vs41) of G such that v; = u, vs41 = v, and {v;, v} € ¥ for
all i € {1,...,s}. The definition for a directed graph is similar.

A chain of length s (s > 0) in a directed graph G going from « to v (u,v € V) is a
sequence of vertices (vy,...,vs41) of G such that v; = u, vs41 = v, and (v;,vi41) € I or
(vig1,v:) € Efor all i € {1,...,s} (i.e., it is a path in the corresponding undirected graph).

An undirected (directed) graph G is called connected iff, for every two distinct vertices
u,v € V, there is a path (chain) going from u to v. The maximal connected induced
subgraphs of G are called the components of G. Clearly, a connected graph has at most one
component.

An undirected graph in which every two distinct vertices are adjacent is called a com-
plete graph. The complete graph on n vertices (which is unique up to isomorphism) is
denoted by K,,.

A clique of an undirected graph G is a subset S of V such that G[S] is a complete
graph.

For a graph G and an equivalence relation p on its set of vertices V, the quotient graph
G/p = (V,, E,) is defined as follows: V, = V/p is the quotient set of V' with respect to p,
and any two djstiqct equivalence classes are adjacent in the quotient graph iff so are at least
a pair of the corresponding vertices in G.

For a graph G and (possibly empty) sequences of vertex subsets 5, = (Vi,...,V,,) and
edge subsets S, = (Ey,..., E,. ), the triple G° = (G, 5y, 5.) is called a coloured graph. A
vertex v € V; (1 < i < m,) and an edge e € E; (1 < i < n,) are called coloured with colour
i. The graph G is said to be the underlying graph of the coloured graph G°.

Two coloured graphs are called isomorphic iff their underlying graphs are isomorphic
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and the bijection realizing that isomorphism preserves the colouring.

2.1.2 Partial k-Paths and Path-Decompositions

Definition 2.1.1 The class of k-terminal k-paths (k > 0) is defined inductively as follows:

i. G = Ky is a k-path with the set of k terminals § = V.

ii. Let G be a k-path with the set of k terminals S = {vy, ..

., Uk }. Any graph G’ obtained

from G by adding a new vertex v € Vz and edges {v,v;} (i € {1,...,k}) is a k-path.

An arbitrary subset of k vertices 5/ C S U {v} can be chosen as the set of terminals of

G'.

ili. No other graphs are k-paths.

Remark 2.1.2 After a k-terminal k-path is constructed, its k terminals can be “forgotten.”

This underlying graph will be called a k-path.

Definition 2.1.3 Any subgraph of a k-path is called a partial k-path.

Example 2.1.4 Graphs Gy (see Fig. 2.1), G (see Fig. 2.2)

, and G (see Fig. 2.3) are 0-

path, 1-path, and 2-path, respectively. (Note that the vertices in Fig. 2.1, Fig. 2.2, and

Fig. 2.3 are numbered according to the order in which they
corresponding k-path.) The subgraph G of G (see Fig. 2.4)

have been added to form the

is a partial 2-path.

le le
20
20 1 1 1 1
3e 4
2 2
3
4o < 3 3
5 4 4
5@ 6o 6 5 6 3

Figure 2.1: A 0-
path Gy.

Figure 2.2: A 1-
path Gl.

Figure 2.3: A 2-
path Go.

Figure 2.4: A par-
tial 2-path GY.

Definition 2.1.5 [Robertson and Seymour {19]] A path-decomposition of a graph G =
(V, F) is a sequence of vertex-subsets (called bags) B = (Bj,...,Bn) such that
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i. every vertex v € V belongs to some bag B; (1 <:i < m),
ii. for every edge e € E, there is a bag B; (1 < ¢ < m) that contains both ends of ¢,
iii. for any 4,1,5€ {1,...,m} such that : <1< j, B;n B, C B,.
Notation 2.1.6 Instead of path-decomposition, we will often use the term decomposition.

Example 2.1.7 Here are possible decompositions of the graphs Gy, GGy, G2, and G, (see Ex-
ample 2.1.4): B(Go) = ({1}, {2}, {3}, {4}, {5}), B(G1) = ({1,2},{2,3},{3,4},{3,5},{3,6}),
B(G,) = ({1,1,2},{1,2,3},{2,3,4},{2,3,5},{2,3,6}), and B(G}) = B(G>).

Definition 2.1.8 The path-width of a decomposition B = (By,...,By,) is

jpax {{Bi{} - 1.

A decomposition of path-width at most k£ will be called a k-decomposition.

Definition 2.1.9 The path-width of a graph G is the minimum path-width over all decomn-

positions of G.

It was not coincidental that the 0-path Gy, 1-path G}, and 2-path (/5 turned out to

have the path-widths 0, 1, and 2, respectively. The following claim is easy to prove.
Fact 2.1.10 A graph G is a partial k-path iff it is of path-width at most k.

Notation 2.1.11 We denote by B, (1 < r < m) the union of the first r bags in the sequence
B ={(By,...,Bn), e, B, =U_;B; for any 7 € {1,...,m}.

Notation 2.1.12 For a partial k-path G = (V, E) with a decomposition B = (By,..., Byn),
first(v) is the number of the bag where a vertex v € V appears for the first time (i.e.,
first(v) = miny<i<m{l|v € Bi}), new(B;) (i € {1,...,m}) is the set of vertices in B; that
appear in the decomposition for the first time (i.e., new(B;) = {u € B;lfirst(u) = 1}), and
old(B;) is the set of vertices in B; that also appear in some earlier bag (i.e., old(B;) =

B; \ IleW(Bi)).

Definition 2.1.13 For a partial k-path G = (V, E) with a decomposition B = (By, ..., By,),
avertex u € B, (1 < r < m)is called a drop vertez of B, iff for every w € V\B,, {v,w} ¢ L.
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Notation 2.1.14 The set of all drop vertices of B, (1 < r < m) will be denoted by
drop(B,).

Definition 2.1.15 A vertex v € B, (1 < r < m) that is not a drop vertex of B, is called a

non-drop vertex of B,.

Notation 2.1.16 The set of all non-drop vertices of B, (1 < r < m) will be denoted by
non-drop(B, ), i.e., non-drop( B, )= B, \drop(B;).

Definition 2.1.17 A decomposition B = (By, By ,..., By, By, is called extended iff drop-

ping old vertices and adding new vertices occur separately, i.e., B = non-drop(B;) for each

ie{l,...,m}.
Example 2.1.18 Here is an extended 1-decomposition of the graph G:

B(G1) = ({1,2},{2},{2,3},{3},{3,4},{3}, {3, 5}, {3}, {3,6},{})-

2.1.3 Nice Decompositions

In this subsection, we define a special kind of decomposition. It has many useful properties

to be fully exploited later in the thesis.

Definition 2.1.19 A decomposition B = (By,...,Bn) of G = (V, E) is called nice iff all
of the following conditions hold:

i. for any vertex v € V, if v € old(B;) (¢ € {2,...,m}), then v could not be dropped

earlier, i.e., v € non-drop(B;-1),
ii. new(B;) # 0 for every i € {1,...,m},
iii. drop(B;) # 0 for every i € {1,...,m},
iv. foranyi € {2,...,m},if [new(B;)| > 1, then the following two conditions are satisfied:

(a) for an arbitrary vertex v € V' \ B;_;, any decomposition (By,..., Bi-1,0ld(B;) U
{v},Cy,...,Cs) of G is such that drop(old(B;) U {v}) = 0 (i.e., for each u €
old(B;) U {v}, there is w € V'\ (B;-1 U {v}) such that {u,w} € E),
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(b) for an arbitrary subset S C new(B;), any decomposition (B, ..., B;_,old( B;)U
5,C1,...,Cs) of G is such that drop(old( B;)US) = 0 (i.e., for each u € old(B;)US,
there is w € V' \ (B;~1 U S) such that {u,w} € E).

Here condition (i) says that vertices are dropped from a bag as soon as possible, con-
dition (ii) that at least one new vertex is always added to form the next bag, condition
(iii) that each bag contains at least one drop vertex, and condition (iv) that if more than
one new vertex is added to form the bag B;, then both (a) there is no single non-added
vertex that could be chosen instead of the set new(B;) so that the new bag contains a drop
vertex and (b) the set new(B;) is a minimal one (with respect to set inclusion) such that B;

contains a drop vertex.
Remark 2.1.20 By definition, nice decompositions cannot be extended decompositions.

Definition 2.1.21 A contiguous subsequence (B;,...,B;y) (1 < i,i 4+ < m) of a nice
decomposition (Bi,...,Bn) is called monotonic iff |new(B;)| > 1 and |new(B;)| = 1 for
eachi<r<i+l1.

Remark 2.1.22 A nice decomposition is defined so that it is monotonic as long as possible,
then there is a “jump” (more than one new vertex is added to a bag) which starts a new

monotonic piece, and so on.
Theorem 2.1.23 FEvery k-decomposition can be converted into a nice k-decomposition.

Proof. A given k-decomposition B = (Bi,..., By,) induces a linear order on vertices of
the original graph through the order in which they are added to that decomposition. That
is, we take the sequence (new(B;),...,new(B,,)) of sets of vertices and, for each new(B;)
(1 £ ¢ < m), order the vertices in new(B;) arbitrarily. This gives us a sequence S of vertices
of the graph.

Step 1. We choose the first bag of the given decomposition as the first bag of the nice
decomposition to be constructed.

Step i (i > 1). A sequence of bags (Bj,...,B!_,) has been constructed. We define the
set B as B!_, without its drop vertices. We go through our sequence of vertices looking
for a non-added vertex v such that B U{v} contains at least one drop vertex (with respect
to the already constructed sequence of bags). If we can find such a vertex, the bag B; is
defined as B! U {v}.
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If no such vertex exists, we choose the sequence S; of the first p non-added vertices
(where p = k + 1 — |B!_,]), take its shortest prefix S such that BY U S/ contains at least
one drop vertex, and form the minimal-size subset S}’ of 5] such that B! U S5/ contains at
least one drop vertex. The bag B; is then defined as B U 5”.

It is not difficult to see that the new sequence (Bj,..., Bi_;, B!) can be completed to
some k-decomposition in both cases.

Indeed, after adding v or S, we just drop all the drop vertices of this new bag (there

is at least one such vertex) and then continue the decomposition by adding the non-added

vertices in the order they appear in our sequence 5. a

Definition 2.1.24 ‘We call a nice k-decomposition B = (B, ..., B,,) of a partial k-path G
a (k, p)-decomposition (for some p € {1,...,k}) iff |new(B;)| < pforalli e {2,...,m}. A
partial k-path allowing a (k, p)-decomposition will be called a (k, p)-path.

Remark 2.1.25 By the above definition, every (k, 1)-decomposition is monotonic.

Example 2.1.26 The decompositions B(Gy), B(G1), and B(G2) (see Example 2.1.7) in

the previous subsection) are (k, 1)-decompositions.

2.1.4 Directed Partial k-Paths

In this subsection, we define a certain labeled digraph induced by a nice decomposition B
of a k-path G. This labeled digraph will allow us to define a partial order on the set Vg, so
that if u is less than v (for any u,v € Vi), then u appears in B no later than v.

A nice decomposition B = (B,,...,B,,) of a partial k-path G = (V, F) induces the
following directed graph G§ = (V, E9):

Given a bag B, = old(B,) Unew(B;) (1 < r < m), where old(B,) = {uy,...,us} and
new(B,) = {v1,..., v}, if {vi,u;} € E, then (v;,u;) € E? (i.e., we direct the edges from
new to old vertices).

If £ > 1, we order the vertices in new(B, ) so that the drop vertices of B, (if any) come
before the non-drop vertices (the order within each of the two sets of vertices new(B,) N
drop(B,) and new(B,) N non-drop(B,) is arbitrary). Then any existing edges are directed
from “last” to “first” vertices, i.e., for v,u € new(B,) such that {v,u} € E, (v,u) € E% iff

v follows u in the above-defined sequence of new vertices.
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Notation 2.1.27 To simplify the notation, we will often omit the superscript in E? and

the subscript in G§.

Remark 2.1.28 Using the definition of a nice decomposition, we can prove that if an old
vertex u; (1 < 7 < 8) is a drop vertex of B, (1 < r < m), then for each new vertex v;,
i € {1,...,t}, there is an arc (v;,u;) € E in G% This holds simultaneously for all the
vertices in old(B,) N drop(B,).

Similarly, if some new vertex v; (1 < z < t) is a drop vertex of B, and is the first
vertex in new(DB,) (according to the linear order defined above), then for each new vertex

v;, § € {1,...,t}\ {i}, thcre is an arc (v;,v;) € E in G°.

Now we label our digraph G¢ as follows:

For a vertex u € old(B,) Ndrop(B,) (1 < r < m), we choose arbitrarily some vertex
v € new(B,) and colour the arc v — u with some new colour. This coloured arc will be
denoted as a double arrow v = w. If there are other drop vertices in old(B,), the arc from

v to each of them also becomes a double arrow.
Notation 2.1.29 The subset of double arrows in F will be denoted by F_,.

If new(B,) is a singleton set containing some vertex » which is the only drop vertex of
B, (i.e., new(B,) = drop(B,)), we colour v with some new colour (the same colour for all
such vertices). Each such coloured vertex will be denoted by having a loop arrow.

We also colour (with some new colour) the vertices of V' that form the first bag B of

the nice decomposition B.

Example 2.1.30 For the 2-path G, and the partial 2-path G, defined earlier, the nice
decomposition B(G3) = B(G}) induces the labeled digraphs G¢ and G% shown in Figs. 2.5
and 2.6, respectively. (Note that double arrows are shown as thick single arrows and that

the labeling of the vertices in the first bag is not shown.)

Remark 2.1.31 In general, the same labeled digraph G¢ can be induced by different nice
decompositions of G. (For example, vertices 4 and 5 can be interchanged in the decompo-
sition B(GY), but the new decomposition will induce the same labeled digraph G’

Notation 2.1.32 Below, whenever we speak of a digraph G¢, we mean the correspondingly

labeled digraph G°.
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Figure 2.5: The labeled digraph G%. Figure 2.6: The labeled digraph G

Definition 2.1.33 Given the digraph G¢ induced by a nice decomposition B of a partial
k-path G = (V, F), we define the following binary relation of strong precedence, denoted by

i, on the set V:
Forany u,ve V,u < v iff either (v,u) € E or there is some w € V such that (u,w) € E

and (v,w) € E= (see Fig. 2.7).

u Ve
or /
ue
Ve v

Figure 2.7: The definition of u X .
The reflexive and transitive closure of i, denoted by <, is called precedence.
Remark 2.1.34 Semantically, u < v means that first(u) < first(v).

Notation 2.1.35 For a partial k-path G = (V, F) given with its nice decomposition B =
(B1,..., Bm), we denote by V the set V' \ By.

Example 2.1.36 For the 2-path G, the relation < induced by G% is, actually, a linear
order on V yielding the sequence (3,4, 5,6).
This is not true for the partial 2-path G*¢, however. Vertices 3, 4, and 5 are pairwise

incomparable with respect to the precedence < induced by G’zd.
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2.2 Logic and Definability

2.2.1 Basic Definitions

Let A be an arbitrary set and let n > 1 be any number. A subset of A” is called an n-ary
relation on A. A map from A" to {True, False} is called an n-ary predicate on A.
Each n-ary relation £ C A" can be uniquely asscciateu with a predicate r so that for
any n-tuple (ay,...,a,) of elements of A, (a;,...,a,) € R iff r(a;,...,a,) = True.
Conversely, any n-ary predicate r can be uniquely associated with the set of n-tuples

on which r assumes the value True. (We call such n-tuples the truth-values of r.)

2.2.2 Logics
Let I = {p;}ic1 (I some countable set) be a family of n(¢)-ary retation symbols p; (¢ € I).
Definition 2.2.1 A relational Il-structure is a pair P = (D, 7), where

i. D # 0 is a set called the domain or universe of P,

ii. 7 is a map defined on II such that 7(p;) = p, is an n(¢)-ary predicate on D.
Let K be a class of relational II-structures.

Definition 2.2.2 The first-order language corresponding to K (denoted by L,(K)) has the
usual logical connectives: - (“not”), A (“and”), V (“or”), = (“if-then”), and & (“if and
only if”), universal (V) and existential (3) quantifiers, equality symbol =, a sequence u, v,

W, ..., of individual variables, and an n(:)-ary predicate p; for each 7 € [I.

Definition 2.2.3 The L;(K)-formulas are defined inductively as follows:
i. Atomic formulas

(a) If u and v are individual variables, then u=v is an L;(K)-formula.

(b) K uy,...,u,(;) are individual variables and p; is an n(t)-ary predicate symbol

(n > 0), then p;(uy, ..., u,()) is an L;(K)-formula.
ii. Compound formulas

(a) If ¢ is an L,(K)-formula, so is —¢.
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(b) If ¢ and 9 are L;(K)-formulas, so are (¢ A 9), (¢ V ¥), (¢ = %), and (¢ & ¥).
(c) If ¢ is an L,(K)-formula and v is an individual variable, then Yv¢ and 3v¢ are
L,(K)-formulas.

ili. No other formulas are L;(K )-formulas.

Monadic second-order logic (MS) is the extension of the first-order logic (F) allowing
quantification over monadic (unary) predicates. Since unary predicates can be identified
with the sets of their truth-values, one can extend the corresponding first-order language
with set variables and the membership symbol € (with the usual interpretation), and allow

quantification over set variables.

Definition 2.2.4 The monadic second-order language corresponding to K (denoted by
L2(K)) is the extension of L;(K) by adding a sequence of set variables U, V, W, ..., and
the membership symbol €.

Definition 2.2.5 The class of L,,2(K)-formulas is the extension of the class of L;(K)-

formulas by allowing the atomic formulas v € V as well as quantification over set variables.

Counting monadic second-order logic (CMS) was defined by Courcelle [10] as the exten-
sion of MS by the unary predicate symbols mod, ; (p < g are non-negative integers), with
the intended meaning: mod, 4(V) = True iff |§| = p mod ¢, where § is the set denoted by
the set variable V. The corresponding language is denoted by L.m2(K).

If ® is a formula (in some language appropriate for K) with free variables xy,...,x,,
we indicate this by writing ®(x;,...,%,). (Recall that free variables in a formula are those
that are not bound by any quantifier.)

For @(xy,...,x,), we denote by ®[d;,...,d,] the result of substituting the elements
dy,...,d, of the domain D for the variables x;,...,x,.

Let L be some language appropriate for K. For an L-formula ® and a II-structure

K € K, we write K |= ® to denote that ® is satisfied by K (i.e., X is a model for ®).

2.2.3 Definability and Colourability

Definition 2.2.6 Let P be some property over a class K of relational II-structures. The
property P is called definable in ¥ (MS, or CMS) over K iff there is an L;(K)-formula
(Lm2(K)-formula, or Lep2(K)-formula) @ such that for each K € K, K satisfies the property
Piff K = &.
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Notation 2.2.7 We call the properties definable in F, MS, and CMS, F-definable, MS-
definable, and CMS-definable, resﬁectively.

Definition 2.2.8 Let R be some n-ary relation over the domain D of a Il-structure A’.
Relation R is called F-definable (MS-definable, or CMS-definable) over K if there is an
F-formula (MS-formula, or CMS-formula) ¢(x,,...,X,) such that for any d,,...,d, € D,
the tuple (dy,...,d,) € D iff §[dy,...,d).

Fact 2.2.9 (Courcelle [10]) Let p be a binary relation over the domain D of a I1-structure

K. If p is MS-definable over K, then so is its reflexive and transitive closure p*.

An undirected (directed) graph G = (V, E) can be considered as a relational {p.,, pe, Pinc }-
structure with the domain D = V U F, where p,, and p, are unary predicates such that for
any d € D, p,(d) = True iff d € V, p.(d) = True iff d € F, and p;,. = Inc is the ternary
incidence predicate, i.e., for any e € E and u,v € V, Inc(e,u,v) = True iff ¢ = {u,v}
(e = (u,0). '

Thus we can have F-definable (MS-definable, or CMS-definable) properties over an
arbitrary class G of graphs.

Example 2.2.10 Connectedness of 2 graph is an MS-definable property. Here are the
corresponding MS-formulas for a graph G = (V, E):

Connected =YV 1YV, (Vi #0 A Va2 £D0 A ViUV, =V) = Adj(V,,V,),
Adj(V1,V2)=3vy Ivy vy € Vi A vy € Vo A adj(vy, va),

adj(vy,v2) = Je Inc(e,vy,v2),

where

(Vi#0)=3v p,(v) A veV; (1=1,2)

and

(ViuVe=V)Y=V¥v p,(v)=(VEV VVveEV,)

Example 2.2.11 We can also define in MS if a given set of edges C' of a graph ¢ forms a
simple path linking two given vertices u and v.

Using the previous example, we can define the MS-formula 8(E, u, v) such that §[C, u, v]
is true iff the graph G¢ = (V¢,C) (where V¢ is the set of ends of edges in (') is connected
and u,v € V. Then the required formula is defined as

8[C,u,v] A VE (E C C AG[E,u,v] = E = C).
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(It should be obvious that the equality and inclusion of sets are MS-definable.)

Definition 2.2.12 A property P over a class J of graphs G is called F-definable (MS-
definable, or CMS-definable) over a class G’ of tl e corresponding coloured graphs

GC = (G, (Vl,. . "Vn,,>7 (El,. - .,Ene>)

iff there is an F-formula (MS-formula, or CMS-formula) ®(X;,...,X,,,Y1,...,Y,,) such
that for every graph G € G, G satisfies P iff ® is true on the corresponding ccloured graph
G° ie., h

GlEBMW,....Va,, Er,..., Enl

Colouring a graph G “properly” imposes some additional structure on G, which is then
used in defining a required formula @ for a property P. A colouring that provides the desired

structure on G will be called admissible with respect to P.

Definition 2.2.13 A property P of a graph G is called F-colourable (MS-colourable, or
CMS-colourable) over a class G of graphs G iff it is possible to colour the graphs G (using
the same constant number of colours for each) so that the property P is F-definable (MS-

definable, or CMS-definable) over the class of thus coloured graphs.

Lemma 2.2.14 Let P be an F-colourable (MS-colourable, or CMS-colourable) property over
a class of coloured graphs G° = (G,{(V1,..., Vo, ), {E1,..., Ep.)). If there is an F-formula
(MS-formula, or CMS-formula) that checks the admissibility of a colouring with respect to P,
then P is F-definable (MS-definable, or CMS-definable) over the class of underlying graphs
G.

Proof. Indeed, let ®(X,,...,X,,,Y1,...,Yy,,) be the formula corresponding to P, and
let ¥(X,,...,Xn,, Y1,-.., Y, ) be the formula that checks the admissibility of a colouring
with respect to P. The required formula for P over the class of underlying graphs is the
following;:

IX;... 3%, 3, .3V (K, K Yy Yo ) AKX Yy, Y )

O

The following definitions are similar to those given by Courcelle [11] for describing

definable graph transductions.
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Let G be a graph (i.e., a {py, Pe, Pinc}-structure (D, 7)), let
G = (G,(Vi,.- s Va, L (Ery ..  EL))
be a coloured graph, and let
Yo(Xis oo oy Xngy Yoo v oy Yoo, 2),
Ye(X1y ooy Xnys Y1, 05 Yo, ,2),

and

Yinc(X1y -+ s Xnys Y1, ooy Yo, 21,22,23)
be CMS-formulas defined over G.
Definition 2.2.15 A tuple (G, 7y, Ye, Yinc) is called admissible iff
i. for any d € D, at most one of the formulas

7U[Vl, . '-aVnu’Ely' . '1E‘nead]

and
7e[V1,"°,VnuaE13~"7Enc7d]
holds, and
ii. for any dy,dy,d3 € D, if
7inc[vla---aVnuaEl,---,Enevd]7d2’d3]
is true, then so are
7e[Vla-'-vVnu’Elv"-aEnesdl]a
7U[Vl7'°-’Vnu’E17'-',En¢ad2]7

and
7U[Vly' . ‘1Vnu7E17 .- ';En¢7d3}~

Definition 2.2.16 The graph defined by an admissible tuple (G°,7y,7e, Yinc), denoted by
A(G®, Yy, Yes Vinc), 15 the {py, Pe, Pinc }-structure (f),ir), where D is the set of those d from
D for which either 7,[Vy, ..., Va,, E1,. .., En yd] or 7e[V1, ...y Vo, E1,y .. .y En,, d) holds, and
for any d € D, #(p,) is true on d iff so is v,[Vi,..., Va,, B, ..., En,,d], #(p.) is true on d
iff sois 7e[V1,. -, Vnys E1,- - - En., d], and for any d,,ds,d3 € D, #(Pinc) is true on dy, dy, dy
iff 50 18 Yinc[Va,-+-5 Vays E1y- - - Ene, di, da, d3).
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Let G and G’ be some graphs (i.e., relational structures (D,7) and (D’, '), respec-
tively).
Definition 2.2.17 A graph G’ is said to be CMS-colourable in terms of G iff there is an
admissible tuple (G, %y, Ye, Tinc) such that the graph G’ = (D’,7’) is isomorphic to the
gfaph A(C"c5 Yus Tes 'Yinc)-

Definition 2.2.18 A graph G’ is said to be CMS-definable in ierms of G iff there exist
CMS-formulas
jl(xla - ,XnvaYla v ,Yne),-
7U(Xl,3 .. -7Xn,,.1Y11 .. -,Yne’z)a

7E(X]""1XnuaY17"-,Yn¢7z)7

and
'Tinc(xla-"ixn.,les--',Yngazl’z2az3)

defined over G such that for any sequence of vertex subsets V3,...,V,, and any sequence
of edge subsets Ey,...,E, of G, the validity of the formula y{V},...,V, ,Eq,..., E,]
implies that the tuple (G° = (G,{(V},..., V0, ), (E1, ..., Bn.)), Yus Ve, Tinc) is admissible and
G’ = A(G,Yus Ve Yinc)-

Theorem 2.2.19 (Courcelle [11]) Let G be a graph and let p be an equivalence relation
on ils sel of vertices V. If p is CMS-definable, then the quotient graph G /p is CMS-definable

in terms of G.

Proof. First we show that G/p is CMS-colourable in terms of G.
Consider a coloured graph G° = (G, (V4), (E})), where

i. V1 € V is such that it contains exactly one vertex from each p-equivalence class in

V/p, and

ii. £y C E is such that it contains exactly one edge from each p-equivalence class in
E/p. (Two edges e; = {uy,v,} and e; = {uy, v2} are p-equivalent iff u; and v; are not

p-equivalent (i = 1,2), and [uy]), = [u2], and [v1], = [v2],.)
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Then
7U(X1,Ylaz) =zc Xl7

76(X13Y1az) =z€ Y17

and

')’inc(XI,Yl,ZI,ZZ,Zg) =Judv p(u?z2) A P(V,Z3) A pinc(z17 U,V)-

It is clear that conditions (i) and (ii) can be checked in MS, which ends the proof. O

We have the following lemmas for our earlier definitions.

Lemma 2.2.20 For any partial k-path G with a nice decomposition B, the digraph G*
induced by B is MS-colourable in terms of G.

Proof. The set of vertices of G? is the same as that of G.

By definition, each vertex of G has at most k outgoing arrows. We colour the edges
and vertices of G with some new k£ + 1 colours as follows:

The vertices in B; are coloured with 1,...,% + 1 so that no two vertices get the same
colour. If for some vertices u and v in B; such that u is coloured with ¢ and » is coloured
with 7 (1 <¢,7 <k +1), (u,v) € E, then the edge {u,v} of G is coloured with j.

For any other vertex w of G¢ with outgoing arrows to some vertices uy,...,uq (d < k)
coloured with j,...,J4, respectively, we colour w with an arbitrary colour from the set
{1,...,k+1}\ {j1s.-.,Jd}, and we colour every edge {w, u;} of G with j; (1 < i< d).

Then an edge e = {u,v} € E is an arc (u,v) in G4 iff e and v are coloured with the
same colour in the coloured graph defined above. This is easily expressible in MS.

To encode the sets of double arrows, vertices with loop arrows, and vertices in the first

bag of B, one just should use three new colours (one for each set). a

Lemma 2.2.21 The precedence relation < induced by a digraph G¢ of G is MS-colourable

over GG.

Proof. The graph G¢ is MS-colourable in terms of G, and < is readily definable in MS over
G u]
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2.3 Automata and Recognizability

2.3.1 Basic Definitions

Here we recall some standard terminology (see, e.g., [16]).

A deterministic finite automaton is a 5-tuple A = (£,Q, 6, qo, F), where ¥ is a finite
set of input symbols, @ is a finite state of states, § is a transition function (i.e., a map from
Q x X toQ), g € Q is the initial state, and F' C @ is a set of final states.

A word w over an alphabet ¥ (i.e., w € £*) is accepted by an automaton A iff §*(¢go, w) €
F, where §* : Q x X* — @ is the eztended transition function of A defined as follows:
6*(g,0) = 8(q,0) for any o € X, 6*(¢,0s) = §*(6(g,0), s) for any o € £ and any word s over
x.

The set of words (language) accepted by an automaton A is denoted by L(A), i.e.,

L(A) = {w € Z*|6*(¢go,w) € F}.

2.3.2 Recognizability of Partial k-Paths

Let G = (V, E) be a partial k-path with an extended k-decomposition B = (By,...,Bp).
Let 8:V — {1,...,k+ 1} be a labeling function on the set of vertices of G such that any
two distinct vertices in the same bag or in two consecutive bags have different labels. We
shall call such labeling functions admissible by B. (It is not difficult to see that £+ 1 colours

always suffice in the case of extended decompositions.)

Notation 2.3.1 For the labeling function 8 and any set of vertices W C V, g(W) =
UwGWﬂ(w)'

For B and § given above, we define a string og(B) of coloured undirected graphs (on
at most k 4 1 vertices) as follows: og(B) = (og(B1),...,08(Bn)), where for a bag B;
(1 <i<m), Ug(B,‘) = (Vg(B,'),Eﬁ(B,‘)) such that

i. Vp(B:) = B(By),
ii. for every u,u’ € B;, {6(u), (')} € Eg(B;) iff {u,u'} € E.

Let X, be the set of all coloured (with colours 1,...,k 4+ 1) undirected graphs on at
most k + 1 vertices. (Clearly, the cardinality of ¥, is bounded by a function of £.)
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Definition 2.3.2 A family G of partial k-paths G is called recogrizable iff there is an
automaton A with the set of input symbols ¥, such that for any partial k-path G with
some extended k-decomposition B and some labeling function 8 (admissible by B), GG € G
iff og(B) € L(A).

Remark 2.3.3 In the above definition, the choice of an extended k-decomposition B and
a labeling function f§ is not important, i.e., for any other extended k-decomposition B’ of G
and a labeling function 3’ admissible by B’, we must have og(B) € L(A) iff og/(B') € L(A).

2.4 Definability vs. Recognizability for Words

Here we consider the solution for the case of words (since decompositions of partial k-paths
are also words over a special alphabet of coloured graphs ¥,).

Let ¥ = {o1,...,05} be a finite alphabet. A word w = gy, ...0;, over the alphabet ¥
can be considered as a labeled digraph (path) G, = (V,,, E,), where V,, = {1,...,n}, for
every j € {1,...,n— 1}, (j,j + 1) € E,, and each vertex j is labeled with o;,.

In our terminology, w is a coloured graph G° = (G, (Vi,...,Vs),()) such that G is
a directed path on n vertices, Vi,...,V, form a partitioning of V (i.e., they are pairwise
disjoint and their union is V), and v € V; (v € V and 1 < ¢ < s) means that a vertex v is
labeled with o;, which will be denoted by a(v) = g;. For G¢, a(G°) = w denotes the word
over ¥ “encoded” by the graph G°.

Let G¢ be some family of coloured graphs G° corresponding to some words over ¥. That

family is recognizable by a DFA A = (%, Q, 6, g0, F') iff L(A) = {a(G®)|G* € G°}.
Theorem 2.4.1 (Biichi [8]) A language over ¥ is recognizable iff it is MS-definable.

We only give a proof of the first part (i.e., that of recognizability implying MS-defin-
ability), since that is what we want to prove for the case of partial k-paths.
Proof. (=) Let A =(%,Q,8,qg0, F) be a DFA with ¥ = {oy,...,0,} and @ = {¢o,...,¢}.
First we assume that L(A) does not contain the empty word e.

A coloured graph G° = (G, (Vl,...,rvs),()) (where G is a path vg — -+ — v,) is
recognized by A iff there is a labeling ¢ : V' — @ such that

i. §(go, a(vo)) = ¢(vo),

ii. for every i€ {0,...,n— 1}, 8(q(v:), a(v)) = ¢(vi41), and
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iii. ¢(v,) € F.

This can be written in MS as follows:
IXy...3X,; “Xg,...,X; form a partitioning of V” A
(Vv 15t(v) = V(k,j): $(g0.0)=g,(V € Ve A v € X)) A
(VuVYv Ve Inc(e,u,v) = V (ki) 6(qion)=¢; (R € Xi A VEX; A vEV))A
(Vv Ist(v) = V. g.er v € Xj),
where v € X; (1 < j < t) has the intended meaning of ¢(v) = g;, fst(v) is true for v, only,
and Ist(v) is true for v, only. Clearly, both fst(v) and Ist(v) are easy to define in MS.

The case of L(A) containing € can also be described in MS. The empty word is repre-

sented by the empty graph, which is accepted by A iff g € F. a



Chapter 3

The Case of Connected (k,1)-Paths

All the graphs considered in this chapter are connected.

We will define certain coloured (k,1)-paths G° and show that recognizability is CMS-
definable for families of these coloured (k,1)-paths. To convert the corresponding CMS-
formula into a formula for the underlying (k,1)-paths G, we give the MS-definable admis-
sibility conditions that check if a colouring of G induces the required structure on G (see
Lemma 2.2.14).

To show that a recognizable family of (coloured) (k,1)-paths G is CMS-definable, it
suffices to define in CMS some extended decomposition of G. (Then one can proceed by
analogy with the case of words (see Theorem 2.4.1).)

A decomposition of G can be defined if some linear order on V is known. Let < be an
arbitrary linear order on V, and let (v;,...,v,) be the sequence of vertices in V ordered

according to <. We define the following sequence of sets B’ = (By, ..., B,), where
B; = {v;} U {vj|j < i and there is j' > i such that {v;,v;} € E}.

Clearly, B’ is a decomposition of G. We will denote the decomposition B’ by Be.

For a partial k-path G, a linear order < on V is called k-generative if the path-width
of the decomposition B¢ is at most k.

Given a (k,1)-decomposition B of GG, one can define the following partial order on V:
For any u,v € V, u is less than v iff first(u) < first(v). Ordering the vertices in By arbitrarily
gives us a linear order on V that is obviously a k-generative linear order on G'.

We will also need the following definition: For a partial k-path G, a partial order on V

is called k-generative if every completion to a linear order on V is k-generative.

24
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We will show that k-generative linear orders are MS-definable over suitably coloured
graphs G°. (More precisely, we define k-generative linear orders on certain quotient graphs
of G¢. Then we show how to get the CMS-formula for recognizability of G¢ by using these

linear orders on the quotient graphs of G©.)

3.1 Extracting a Decomposition

Here we describe how, using a suitable colouring of a (k,1)-path G, one can uniquely re-

construct the string of coloured graphs og(B’) for some decomposition B’ of G and some

labeling function 8 admissible by B’.

3.1.1 A k-Generative Partial Order

Let G be a (k,1)-path, let B = (Bjy,..., By,) be an arbitrary (£, 1)-decomposition of G, and
let G% be the digraph induced by B. In this subsection, we show that a k-generative partial
order on G is MS-definable over G%,.

Remark 3.1.1 By the definition of a (k,1)-decomposition, each vertex of G¢ (except for

those forming the bag B;) has an outgoing double arrow or a loop arrow.

Remark 3.1.2 Since each bag B; (1 < i < m) of the (k,1)-decomposition B contains

exactly one new vertex, for any vertices u,v € V, u < v means that first(u) < first(v).

Lemma 3.1.3 Let G, G%, and B be the same as above. Let S = B, ,or some 1 < r < m and
letveV\S be any verter minimal with respect to < (i.e., for every u € V, u < v implies
that w € S). Then there erists a (k, 1)-decomposition B’ = (By,...,B,,B/.,,...,B;) of G
such that B}, = old(B,+1) U {v}.

Proof. By Remark 3.1.1 and by the definition of <, the bag B], ; contains at least one drop
vertex. Thus we can continue the sequence (By,..., B,, B/,,) to some (k, 1)-decomposition
B’ by adding the non-added vertices of G in the order they were added to the original

decomposition B. a

Here is a nondeterministic algorithm A suggested by Lemma 3.1.3 for constructing
some (possibly different from B) (k,1)-decomposition B’ = (Bj,...,B..) of G given the
digraph G%:
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Algorithm A

Step 1. B} = B;.

Step i (1 < ¢+ < m). Let (Bj,...,B/_,) be an already constructed prefix of the (k,1)-
decomposition B’. Take B! = non-drop(B;_,) U {v}, where v is an arbitrary minimal (with

respect to <) non-added vertex (i.e., v is any minimal vertex in the set V' \ Bi_,).

We extend < so that for any two vertices « € By and v ¢ B; incomparable with respect
to <, u is less than v. Let <! denote the transitive closure of that extension.

Now we can state the following theorem.
Theorem 3.1.4 The relation <! is a k-generative partial order on G.

As shown in Lemma 2.2.21, the precedence < (and therefore, the k-generative partial
order <! on G) is MS-definable over the digraph G?.

We end this subsection with the following lemma.

Lemma 3.1.5 For the (k,1)-decomposition B’ constructed by algorithm A, G%, is isomor-
phic to G’%.

Proof. For any vertex v € V, the vertices adjacent to it can be divided (using the structure
of G%) into two sets: the set of those with incoming arrows from v, denoted by Vi,(v), and
the set of those with outgoing arrows to v, denoted by Voui(v).

By the construction of B’, for every B! (1 < ¢ < m) such that new(B]) = {v} (v € V),
Vin(v) C old(B) and Vou(v) Nold(B!) = @. It is also not difficult to see that the drop
vertices of B! are exactly those that had incoming double arrows from v or had loop arrows
in the digraph G%. Thus, B’ induces the same single arrows, double arrows, and loop arrows
as B. o

3.1.2 A k-Generative Linear Order

Algorithm A from the previous subsection is nondeterministic because there can be more
than one minimal vertex in the set of vertices yet to be added (any of which can be chosen).
In this subsection, we show how one can linearly order those alternatives (or, more precisely,
certain equivalence classes of those alternatives) by dividing the set of vertices V' into a

sequence of (pairwise disjoint) k + 1 sets (Py,..., Pk, L).
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We colour the digraph G% so that the precedence relation < is completed to a linear
order on the set non-drop(B;). (We do so by colouring the non-drop vertices of B; with

colours 1,. ..,k so that no two vertices are coloured the same).
Notation 3.1.6 We will denote this new coloured digraph G% by G4 (or simply G?).

Using G?! enables us to define the following k sets Pi,..., Px:
Foranyv € V,v € P, (1 <7 < k) iff i is the minimum over the labels of the vertices
u € non-drop(Bj) such that there is a path of double arrows in the digraph G%! from v to

u.

Example 3.1.7 The digraphs G§ and G4 from Example 2.1.30 can be considered as GZ!
and G4, respectively. We have the following two sets for them: P; = {1,3,6} and P, = {2}.

Remark 3.1.8 Since no vertex in G¢ can have more than one incoming double arrow, the

induced graph G?![P,] is a path of double arrows for each ¢ € {1,..., k}.

Definition 3.1.9 The vertices in UX_, P; are called nodes. The set of all nodes of G will be
denoted by N.

Definition 3.1.10 The set of leaves is defined as V' \ N and is denoted by L.
Example 3.1.11 For the digraphs G§ and G% from Example 2.1.30, L = {4,5}.
Remark 3.1.12 Leaves are exactly those vertices of G%! that have loop arrows.

Remark 3.1.13 By the definition of a (k,1)-decomposition, each leaf w € L has at most
k outgoing single arrows and no incoming arrows (except for the loop arrow). Thus, all its

arrows point to at most k£ nodes from different sets P, ..., Px.

Below we define a partial order on the set V that will be a linear order on the set of
nodes V. We add new vertices v; and vt to V such that for any v € V, v; < v < vr. We

assume that v; and vt belong to the set P;.
Since each P; (1 < ¢ < k) is linearly ordered by < (see Remark 3.1.8), we can write it

as a corresponding sequence of vertices. Let Py = (v{,...,9}),..., Pe = (vf,...,0f).
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Notation 3.1.14 For any u,v € V, we denote by (u,v] the set {w € V| w < v and w £ u}.
And for any uy,...,us,v1,...,0 € V ( > 1), we denote by ((u1,vy],..., (4, v¢]) the set
(ur,v1] N o O (e V)

We partition N UL into the sets ((v},v},,]), 1 <7 < ;. This partitioning will be called
the partitioning of level 1. The sets ((v},v},;]), 1 <i <[ can be linearly ordered according
to the sequence P;.

Let ((v},v}.]) NP2 (1 <i < 1y) correspond to the subsequence (v%,...,v%) of P,. We
define a new sequence s} = (vf,v%,...,0%,v}, ). Then we can divide ((v},vl]) further
into the sets {(v}, v}, ], (u,w']) for every two consecutive elements u and u’ of s?. These sets
are linearly ordered according to s?. Thus we get another partitioning of N U I, called the
partitioning of level 2.

Continuing in this manner gives us k partitionings (refinements of each other) and the

corresponding k linear orders (each of which is consistent with <).

Remark 3.1.15 Every set of vertices in the partitioning of level £ contains exactly one
node of G.

In view of this remark, the k£ linear orders defined above induce a partial order on V
which is a linear order on the set of nodes N. We will denote this partial order by <.

We have the following two lemmas.

Lemma 3.1.16 Let u and v be two nodes such that u <" v and there is no other node v'
for which u <" v' <™ v. Then any two leaves w, and wy such that u <™ wy,wy <™ v are

incomparable with respect to <.

Proof. Let us suppose that w; < wy. Then there must exist some node v’ such that
w; < v’ < wy (by the definition of <). But this means that u <™ v’ <™ v, which contradicts

the condition of the lemma. 0

Lemma 3.1.17 Any two leaves incomparable with respect to <™ are also incomparable with

respect to <.

Proof. For any two leaves w; and w; incomparable with respect to <™, there will he two

nodes u and v such that <" w;,wy <™ v, with no node v coming between u and v.
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(Otherwise w; and w; would be comparable with respect to <™.) Our claim now follows

from Lemma 3.1.16. 0

We can order some leaves in L (incomparable with respect to <™) according to the set
of nodes they point to (by defining a certain lexicographical ordering), but there can be
leaves that are “structurally indistinguishable” (consider leaves 4 and 5 of the digraph G%,
for example). We will see, however, that it is not necessary to order such indistinguishable
leaves to solve the problem of recognizability implying definability for partial (k,1)-paths.

We will just linearly order certain equivalence classes of leaves (i.e., sets of indistinguishable

leaves).

Notation 3.1.18 For aleaf w € L, P(w) denotes the set of nodes to which there are arrows

from w, i.e., P(w) = {v € N|(w,v) € E}.

We associate with each leaf w € L its characteristic vector x(w) = (x1(w), ..., xx(w)),

where for each ¢ € {1,...,k},

Xi(w):{ 1, if P(w)n P #£0

0 otherwise

Now we extend <™ to a new partial order, denoted by <™, so that for any two leaves
w, and w, incomparable with respect to <™, w; <™ wy iff x(w,) is lexicographically less
than x(ws). (It should be clear that thus defined relation <™ is indeed a partial order on
V)

Lemma 3.1.19 If leaves wy and wy are incomparable with respect to <, then x;(w;) =

xi(wz) ff P(w) N P; = P(w) NP, forany1<i<k.

Proof. If some leaves w; and w, have arrows to distinct nodes v, and v,, respectively, such

that vy,v; € P; (1 <7< k) and vy < vy, then w; < ws. (m]

Definition 3.1.20 We define the following relation of p-equivalence, denoted by £, on the

set of vertices V of G-

For any two vertices wy, wp € V, wy & ws iff wy,ws € L and P(w;) = P(w,).

Let us consider the qustieat graph G, = G/ 2= (V,, E,).
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Notation 3.1.21 We denote by Vp the quotient set V/ X.

We extend <™ to the set V, as follows: For any [u]p,[v]p € Vo, [u]p < [v]p iff there
exist u’ € [u]p and v’ € [v]p such that u' <™ v'.

By Lemmas 3.1.17 and 3.1.19, any two incomparable (with respect to <) leaves « and
v for which x(u) = x(v) are p-equivalent. Thus <™ is a linear order on the set (N U L)/ &.
By arbitrarily ordering the drop vertices of B), we will get the linear order on V,, denoted

by <,.

Notation 3.1.22 We will denote the digraph G¥ with ordered drop vertices of B; by G",‘;"
(or just GV').

Example 3.1.23 For the partial 2-path G%, the order <™ considered over Vp gives the
following sequence of p-equivalence classes: ({3}, {4,5},{6}).

The linear order <, allows us to construct a (k, 1)-decomposition Bj, of the graph G,
as follows: Take B{ = B;/ 2. For a constructed prefix (B},...,B!_|) (i > 1) of B,
take B] = non-drop(B!_,) U {v}, where v is the minimum (with respect to <,) vertex
in the set ¥, \ B;_;. (It <hould be clear that thus constructed sequence B, is indeed a
(k, 1)-decomposition of G,.)

Example 3.1.24 For the partial 2-path G,
B, = ({11,117, [21}, {1, (21, (3]}, {(2], (3], [41}, {[2], [3], [6]}),
where [u] denotes the set of vertices p-equivalent to u (u € V).
Thus we have the lemma.
Lemma 3.1.25 For G, and <, as above, <, is a k-generative linear order on Gp.

We conclude this subsection by showing that the quotient graph G, is MS-definable in
terms of GV and that the linear order <p on G is MS-definable over G,

The following lemma must be obvious.
Lemma 3.1.26 The p-equivalence £ is MS-definable over G4V,

Corollary 3.1.27 The graph G, is MS-definable in terms of GY',
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Lemma 3.1.28 The partial order <™ on the set V, is MS-definable over G,

Proof. Clearly, the relations of “being a node from the set P;” (1 < ¢ < k) are expressible
in MS on G4V,
The k equivalences on V corresponding to the partitionings of V of level 7, 1 <7 < &,

are MS-definable, since for each level ¢, an equivalence class is determined uniquely by some

vector of i pairs of vertices.

Checking the lexicographical order of characteristic vectors for any two leaves can also

be done in MS. a

Thus we have the following lemma.

Lemma 3.1.29 The linear order <, on the set V, is MS-definable over G,

3.1.3 Using <, to Construct a Decomposition of G

In the previous subsection, we defined <, and proved it to be a k-generative linear order on
Gp. In this subsection, we show how to reconstruct a decomposition of the original graph
G using the decomposition of the quotient graph G,,.

Let (vy,...,v) be a sequence of vertices in f/p ordered with respect to <,. The decom-

position B, can then be written out as B, = (B}, B'(v1),..., B'(w)).
Remark 3.1.30 For any w € V,, and any u € Vj,, u € B'(w) iff

i. 4 = w, or

ii. u <, w and there is some w’ € V}, such that w <, w’ and (v',u) € E,.
Notation 3.1.31 We identify B; with B’(v) for any v € Bj.

Remark 3.1.32 Foreveryi € {1,...,l}, new(B'(v;)) = {v;} and every old vertex of B'(v;)

. 4 . .
is a ~-class containing exactly one vertex of G.

We can construct a (k. 1)-decomposition of the graph G as follows: In the sequence
B,, replace By with B;y. For every i € {1,...,I} such that v; is a X_class contain-
ing exactly one vertex w of G, replace B'(vi) = {[w]g,--.,[us]p,[w]p} with the bag

B(w) = {uy,...,us,w}. For every i € {1,...,I} such that v; is a X-class containing t; > 1
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of G (all of which should be X-leaves in this case), replace B'(v;) =

{luilg,- -, [us;]p,[wi]p} with the sequence of bags B(w1) = {uy,...,us;, w1},..., B(w,) =

vertices wy, ..., ws,

1

{u1,...,us;, ws; }. Let B’ denote thus constructed decomposition of G.
Example 3.1.33 For the partial 2-path G, the following two decompositions are possible:
B’ =({1,1,2},{1,2,3},{2,3,4},{2,3,5},{2,3,6})

B = ({1,1,2},{1,2,3},{2,3,5},1{2,3,4},{2,3,6}).

Notation 3.1.34 We identify B, with B(u) for any u € B,.
Notation 3.1.35 For any w € V, we denote by B~ (w) the set non-drop(B(w)).

Remark 3.1.36 The above-mentioned procedure for reconstructing a decomposition B’ of
G does not produce a unique result since X-leaves are ordered arbitrarily. However, the

bags associated with any two X-leaves correspond to two isomorphic su bgraphs of ¢.

Below we show the relationship between the string of coloured graphs associated with
B, and that associated with B'.

Let us convert By, into the extended decomposition B, and colour G,, with some labeling
function B, : V, — {1,...,k+ 1} admissible by B’, (see Section 2.3.2). Let us also convert
the decomposition B’ of G into the extended decomposition B’ and colour the graph ¢ with
the labeling function 8 : V — {1,...,k + 1} such that, for every v € V, 3(v) = By([v])-
(The labeling function 3 is admissible by B’ since no leaf appears in iwo consecutive bags
of B'.)

The string og(B’) is no longer dependent on the order in which %-leaves were added to
the decomposition B’, because the symbols in the alphabet ¥, that correspond to the bags

B'(w;) and B'(wz), for any two X-leaves w; and w,, are identical.

Remark 3.1.37 It is noteworthy that although the string G'g(B) is determined uniquely

on a suitably coloured graph, the colouring itself depends on some arbitrary choices.

Let agp(l;”p) = (00, 0¢',01,011,...,01,0p). (It corresponds to the extended decompo-
sition B', = (B}, By, B'(n1), B"~(v1),---,B'(v), B~ (v)).) Then a3(B’') can be obtained
from agp(E”p) by replacing the subsequence (0;,0;), for each i € {1,...,1} such that v; is
a X-class containing ; > 1 X-leaves, with the subsequence (0i, 0) repeated t; times, i.e.,

with (O‘,’, G’,il)t‘ .
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3.2 A CMS-Formula

In this section, we define a CMS-formula that is true on a graph G iff some decomposition
of G is accepted by the automaton A. First we show that for the coloured graph G4, and

then give the corresponding admissibility conditions for a colouring of G.

3.2.1 CMS-Definability of Recognizability for Coloured (%, 1)-Paths

As a consequence of Remark 3.1.30, we have the following lemma.

Lemma 3.2.1 For any vertices u,w € V,, the relations “u € B'(w)” and “u € B (w)”
y P

are MS-definable over G,

Let 3 be a labeling function admissible by B’,. Its admissibility means the following:
No two vertices appearing in the same bag B'(v) (for any v € V}) are labeled the same, and
no two vertices appearing in two bags B’(u) and B’(v) such that « immediately precedes v
with respect to <, are labeled the same. This is clearly expressible in MS.

For B', and 3 defined above, we have the following statements.

Lemma 3.2.2 For any verlex w € V, and any coloured graph o € X4, there are an MS-
formula ¢,,, which is true iff o5(B'(w)) = o and an MS-formula ¢, which is true iff

og(B~(w))=o.

Proof. This follows from Lemma 3.2.1 and the fact that each ¢ € £, is of size at most

k+ 1. O
Theorem 3.2.3 The string a3(B’;) is MS-definable in terms of G4,

Proof. We will show that a path G, of length |o5(B’,)|/2 each vertex of which is labeled
with a pair of symbols from ¥, so that the string of these pairs corresponds to the word
oa( B’p) is MS-definable in terms of G91". (We consider G, as a {pinc}-relational structure
whose domain D) is the set of vertices of G, and p;,c is the binary incidence relation over
D?)

We take the set ¥, U {ro}, where v is an arbitrary vertex in B, as the domain of G,,.
(Clearly, this set of vertices is MS-definable in terms of Gdl'.)

The incidence relation of G, is defined in an obvious way according to the linear order

<p on ¥;. (Again, this is MS-definable.)
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To check that G, is labeled properly, i.e., that its set vertices is partitioned into the
two families of sets {V;}qex, and {V, },¢x, so that a vertex u of G, is in V, (V;7), 0 € ¥,
iff 03(B'(¢)) & o (0(B'~(u)) = o), we just use the corresponding MS-formulas from
Lemma 3.2.2. a

Recall that one can obtain from o(B’,) the string over the alphabet Y, corresponding

to some decomposition of the original graph G' by repeating the subsequences

(o(B'(w))op(B'™ (u))),

such that u € V, is a p-equivalence class of cardinality ¢, ¢ times.

Let A = (%,,Q,0,90, F) be the automaton recognizing a family G of (k,1)-paths G
(coloured (%, 1)-paths G%'). To define the required CMS-formula for G,, we can proceed
similarly to the case of words (see Theorem 2.4.1). That is, we first “guess” a colouring
of vertices of G, such that every vertex u is associated with the state ¢(u) € @ which the
automaton A enters after having read the string (os(B’(u))og(B'~(u)))?, where ¢ is the
cardinality of the p-equivalence class u € V},. Then we check the admissibility of our guess.

By finiteness of A, it suffices to know ¢ mod a (for some number a dependent on a
state ¢ and the symbols o, = o5(B’(u)) and o, = o5(B’~(u))) to determine the state
q = §*(q,(0102)"). Therefore, the required admissibility check can be expressed in CMS.

Remark 3.2.4 Note that it is not important which particular (k, 1)-decomposition B of a
(k,1)-path G is used for defining the digraph G"};‘l. Our reasoning will hold for any other
(k,1)-decomposition of G.

Thus we have proved the following result.

Theorem 3.2.5 Every recognizable family of coloured connected (k,1)-paths G4 is CMS-
definable.

3.2.2 Admissibility Conditions

Here we state the conditions on a colouring of a (k,1)-path G that check the admissibility
of that colouring with respect to recognizability of (k,1)-paths. That is, they verify that
the colouring induces a digraph G'%I/: for some (k,1)-decomposition B” of G.

Clearly, the digraph G%’ is MS-colourable in terms of a (k, 1)-path G (see Lemma 2.2.20
and the definition of G?''). Let G4 denote the coloured graph that induces GV,
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Let G¢ be a coloured graph having the same format as G°«’. Consider the following

conditions on G°:

i

il.

iii.

iv.

The set denoting the bag B; contains at most £ + 1 vertices, of which at most k£ are

non-drop vertices of By (i.e., at most k£ vertices in B; are adjacent to some vertices

not in By).

G°¢ defines some directed graph G’ over G. That is the k + 1 vertex-sets and k + 1
edge-sets used for directing edges of G are such that they form partitionings of the sets
V and E, respectively, and for any edge e = {u,v} € E, u and v belong to different
vertex sets (i.e., are coloured differently) and e is coloured with the same colour as u

or v (cf. the proof of Lemma 2.2.20).
The labeled digraph G’ = (V, E') (labeled with double and loop arrows) is such that

(a) there is no arc (u,v) € E’ such that u € B, and v ¢ B,

(b) for every v € V' \ drop(B,) with incoming arrow (or arrows), there is exactly one
incoming double arrow,

(c) every vertex with a loop arrow has no outgoing double arrows and no incoming
arrows of any kind,

(d) every vertex in V has either an outgoing double arrow or a loop arrow.

The relation <’ induced by the labeled digraph G’ (as in Definition 2.1.33) is a partial

order on V (i.e., it is reflexive, transitive, and antisymmetric).

The non-drop and drop vertices of B; are ordered. We assume that two sequences of
k vertex-sets are used, the first for ordering the non-drop vertices of B;, the second
for ordering the drop vertices of B;. They should form the partitions of the sets
non-drop(B;) and drop(By ), respectively.

It should be obvious that conditions (i)-(v) are expressible in MS.

Lemma 3.2.6 If G satisfies conditions (i)-(iv) stated above, then the relation <! induced

by that coloured graph is a k-generative partial order on G.

Proof. By condition (iv), <’ is a partial order on V. Let {v1,...,v) be a sequence of

vertices in V' ordered according to some extension of <’ to a linear order on V.
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The vertex v; has at most k& outgoing arrows to non-drop vertices of B, (by conditions
(i) and (iii.a)). By conditions (iii.b), (iii.c), (ili.d), and by the definition of <’, the set
B, = non-drop(B;) U {v;} contains at least one drop vertex.

We can apply the same arguments to the vertex v, and the set non-drop(Bj%), and so

on. 0

Corollary 3.2.7 For an arbitrary graph é, if there exists a coloured graph Ge satisfying
conditions (i)-(iv), then G is a (k,1)-path.

Remark 3.2.8 Corollary 3.2.7 means that there is an MS-formula that checks if a given
graph is a (k,1)-path. This formula can be constructed explicitly.

Let B” be some (k, 1)-decomposition induced by the partial order <! from Lemma 3.2.6.
It follows from Lemma 3.1.5 that the digraph G’ defined above is isomorphic to C;‘dgn. Con-
dition (v) ensures then that G defines the digraph G%..

Remark 3.2.9 For a (k,1)-path G, the coloured graph G°’ satisfies conditions (i)-(v).

Therefore, there alway exists a colouring of a (k,1)-path that satisfies conditions (i)-(v).
Now we can state the principal result of this chapter.
Theorem 3.2.10 A recognizable family of connected (k,1)-paths is CMS-definable.

Proof. It follows from Theorem 3.2.5, Lemma 2.2.14, and Remark 3.2.9. |



Chapter 4

The General Case

Here we consider the case of partial k-paths, i.e., (k,p)-paths for any p € {1,...,k}. First,
we deal with connected partial k-paths. The solution for possibly disconnected partial
k-paths will be given in Section 4.3.5.

As in the case of (k,1)-paths, we define coloured partial k-paths and show that rec-
ognizability implies definability for these coloured graphs. Then we give the corresponding
admissibility conditions on colourings of partial k-paths.

Let B = (By,...,By,) be a nice k-decomposition of a partial k-path G. The family of
sets new(B;), 1 < i < m, forms a partitioning of the vertex-set V' of G. We will call the
equivalence on V' that is induced by that partitioning the I-equivalence (denoted by ,1,),
The decomposition B also induces a linear order on the quotient set V/ ~ (denoted by <;).
Clearly, given the pair (,1,, <1), one can reconstruct the decomposition B of G.

We will show that the 1-equivalence is MS-colourable, but it does not seem possible
to MS-colour the linear order <;. (Recall that we were unable to linearly order in MS the
leaves of a (k,1)-path.)

A nice decomposition B can also be viewed as a sequence of monotonic pieces
(My,...,My),
where M, = (B;,,..., B;,) for each 1 < s < d. We define the sets
new(M;) = U;,<,<j,new(B,), 1 <s<d,

the family of which forms another partitioning of V. The corresponding equivalence on V'

will be called the 2-equivalence (denoted by 2:) (Obviously, ~ is a refinement of 24) This

37
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sequence of monotonic pieces induces a linear order on the quotient set V/ 2 (denoted by
<2).
We denote by new!(M,) the set new(B;,), 1 < s < d. Note that new!(M,) is the only

~-class inside new(M,) of cardinality greater than one.

Remark 4.0.1 By the definition of a nice decomposition, every vertex in the set new(M,)\

new!(M,) has an outgoing double arrow or a loop arrow in the digraph G¢.
We have the following lemma.

Lemma 4.0.2 For a partial k-path G with a nice k-decomposition B = (M,, ..., My), given

the relations i,, 2,, and <, defined above, one can define a k-generative partial order on (.

Proof. We extend the precedence < so that for any two incomparable (with respect to
<) vertices u and v from different sets new(M;) and new(M;), ¢ # j, respectively, u is less
than v iff 7 < j, and for any two incomparable (with respect to <) vertices v and w from
the same new(M;) such that v € new!(M;) and w & new!(M;), v is less than w. Then the
transitive closure of this extension, denoted by <P, is a k-generative partial order on G

Indeed, it is obvious that new!(M;) = B;. By Remark 4.0.1 and the definition of <?,
any vertex in new(M;) \ new!(M;) minimal with respect to <P can be chosen to form the
next bag B (see the proof of Lemma 3.1.3).

Let Bj be the last bag constructed for new(M;). It should be clear that then

non-drop(B;) = non-drop(B;, ).

By the definition of the linear order <,, the set non-drop(B;]) U new!(M;) equals Bj,, thus

we can continue with new(M;) \ new!(M;) as above, and so on. O

Definition 4.0.3 For a partial k-path G, a triple (,.L,’ 3,,, <4), where A and 2 are equiva~
lences on V and <} is a linear order on V/ ,.?,” is called a linear k-generative structure on (4
iff there exists some nice k-decomposition B of G' such that A and 2 are the 1-equivalence
and 2-equivalence, respectively, induced by B, and <) is the linear order on 2-equivalence

classes induced by B.

Definition 4.0.4 For a partial k-path G, a trlple (~ A 42), where ~ and 2 are equiva-
lences on V and <} is a partial order on V/ 2, is called a partial k-generative structure on

G iff any completion of < to a linear order yields a linear k-generative structure on G.
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Again, the 2-equivalence is MS-colourable, but not the linear order <,. Thus, we cannot
MS-colour a linear k-generative structure on G. We will be unable to MS-colour a partial
k-generative structure on G either.

Let us extend the relation of strong precedence to ~-classes (it will be called the strong
2-precedence and denoted by _%2)

For any two distinct ~-classes [u]; and [v]: (u,v € V), [u]; Z [v] iff there are

u' € [u], and v’ € [v], such that o’ X v'. Then the 2-precedence is defined as the reflexive

and transitive closure of strong 2-precedence and denoted by %

The 2-precedence is a partial order on the set of 2 -classes such that for all u,v €V,
[u]2 b [v)2 implies that the vertices in [u]; come before those in [v]; in our decomposition
B, i.e., for any v’ € [u], and v’ € [v],, first(v’) < first(v').

However, ( ,L, r?a, %) is not necessarily a partial k-generative system on G (i.e., we can-
not take just any Z-class minimal with respect to _i_ to continue the decomposition of ¢
constructed so far). One reason is that each 2 -class [u] 2 starts with a set of more than
one vertex all of which must be put into the same bag. The other reason is that [u]z' can
contribute more non-drop vertices than drop vertices. (We did not have the latter problem
in the case of (k,1)-paths, because there adding a new vertex always produced at least one
drop vertex.)

In the following subsections, we define certain (MS-colourable) sets of 2-equivalence
classes on which a desired partial order is MS-colourable. We partition each such set of 2-
equivalence classes into subsets and define a new partial order on these subsets. We continue
in this manner until each set contains exactly one 2-equivalence class. (We will show that
there can be at most & such partitionings.)

We need the following definitions.

! . .
Definition 4.0.5 For a partial k-path G, a triple (,1, s {~* o0y 1<} o) (for some constant
r), where

7 .
i. ~ and ~', 1 <2 < r, are equivalences on V such that every two vertices of V are

~9-equivalent and ~7 is a refinement of ~ for every j > i, and

ii. <'is a linear order on ~*-classes, 0 < 7 < r, such that <7 is a refinement of <' for

every j > 1 (i.e., the restriction of <7 to V/ ~' coincides with <*)
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. . . . . 1! . . .
is called a linear k" -generative structure on G iff the triple (~ , ~", <"} is a linear k-generative

structure on G.

Definition 4.0.6 For a partial k-path G, a triple (,L', {~ Y s {="} o), Where A and ~t
1 <7 < r, are equivalences on V satisfying the same conditions as in Definition 4.0.5 and
<* are partial orders on ~*-classes, 0 < ¢ < r, is called a partial k"-generative structure on
G iff for any completions of <* to linear orders <”, 0 < i < r, such that <" is a refinement
of <" for every j > 1, the triple (,L', {~Y_o, {<"}—g) is a linear k™-generative structure on
G.

We will show that a certain partial k*-generative structure on G is MS-definable over
a suitably coloured graph G°. This will allow us to reconstruct some decomposition of ¢

and to check in CMS if it is accepted by the corresponding automaton A.

4.1 A Partial k*-Generative Structure

In this section, we define a partial k*-generative structure on a partial k-path ' that will
be MS-colourable in terms of G. First we define k£ + 1 so-called 3;-equivalences on V,
0 < i < k, such that every two vertices in V are 3p-equivalent, %4 is a refinement of & for
each 0 <1 < k, and 25 coincides with 2. Then for each 3.;-equivalence class ', 0 <1 < k,

. . . 3i
we partially order the 3;,,-equivalence classes in C/ =,

4.1.1 3-Equivalences

First define the balance of a sequence of Z-classes so that for each sequence with non-positive
balance, the number of non-drop vertices produced by it is at most that of drop vertices.
Let G be a partial k-path, let B be an arbitrary nice k-decomposition of ¢, and let (/¢

be the digraph induced by B.

Notation 4.1.1 For u € V, the monotonic subsequence M of B such that new(M) = {u],
will be denoted by M, = (B;,,...,B;,).

Definition 4.1.2 For u € V and the corresponding monotonic subsequence M, of B, the
cardinality of the set new(B;,) is called the width of the 2-class [u] 2 and is denoted by
width([u]. ), i.e., width([u].) = |new(B;, )|
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Remark 4.1.3 Informally, the width of a Z-class [u]2 (v € V) is a measure of the “jump”

that occurred in the decomposition B at the beginning of the monotonic piece M,,.

Definition 4.1.4 A vertex v in a ~-class [u], (for some u € V) is called a drop vertez of

that ~-class iff every vertex w € V such that (w,v) € E is in the same R-class [u],.

Remark 4.1.5 For M, corresponding to [u], (u € V'), a vertex v € [u], is a drop vertex

of [u], iff there exists r € {i,,...,j.} such that v € drop(B,).

Notation 4.1.6 The set of all drop vertices of a Z-class [u]: (u € V) will be denoted by
drop([u]>).

Definition 4.1.7 A vertex v’ in a 4-class [u]. (u € V) that is not a drop vertex of [u], is

2
called a non-drop verter of that 2. class.
Notation 4.1.8 The set of all non-drop vertices of a ~-class [u]2 (u € V) will be denoted
by non-drop({u], ).

Definition 4.1.9 A vertex w ¢ [u], (u € V) is said to be removable by the 2-class [u], iff
there is v € [u], such that (v,w) € E.

Remark 4.1.10 For M, corresponding to [u], (v € V), a vertex w € V is removable by
[u]: iff w € old(B;,) and there exists r € {i,,...,ju} such that w € drop(B,).

Notation 4.1.11 The set of all vertices removable by a ~-class (u]2 (u € V') will be denoted

by remov([u]2 ).

Definition 4.1.12 The balance of a %-class [u]2 (v € V), denoted by bal({u]; ), is defined

by the formula:
bal([ul;) = [non-drop([u], )| - [remov([ul, )l

2
~

Remark 4.1.13 For M, corresponding to [u], (u € V),

bal([u];) = |non-drop(Bj,)| — lold(B;,)|-

Remark 4.1.14 If we apply our definition of balance to single vertices in a (k, 1)-path, we
will see that the balance of each new vertex of the (&, 1)-decomposition (except for those in
the first bag) is non-positive (because, by definition, each new vertex either “removes” at

least one old vertex or is a drop vertex itself).
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Let S = (S1,...,54) be the sequence of 2 -classes such that Si =new(M;), 1 <i<d,
for our decomposition B = (M, ..., My).

Definition 4.1.15 A contiguovs subsequence of the sequence S will be called a 2-block.
The cumulative balance of a 2-block is defined as the sum of the balances of its components.

A vertex belongs to a 2-block iff it belongs to the union of its components.

Definition 4.1.16 A non-empty 2-block T' = (T1,...,T1) is called balanced iff bal(T) < 0
and no proper non-empty prefix of T' has a non-positive balance, i.e., bal({1y,...,7})) > 0

for every i € {1,...,1—1}.
We extend the definition of width to 2-blocks as follows.

Definition 4.1.17 For a 2-block T = (T3, ...,T}), the width of T, denoted by width(7"), is
defined by the formula:

width(T') = lII<1.'g).é(I{ba.1(<T1, ooy Tim1)) + width(T)) }.

Remark 4.1.18 If (B;,,..., Bj,) is the subsequence of B that corresponds to a 2-block 7',
then
width(T) =  max {|B,|} — |old(Bi,)|.
irsrir

Guided by the analogy with the case of (k,1)-paths, we will split the sequence S into
disjoint 2-blocks T1,...,Tny, so that § = T...T,,, where T} = (5)) and each 2-block T}
(1 < j £ m) is balanced. We do the same for each subsequence T}, 1. < j < m, of length
greater than one. '

Formally, we define k£+1 sequences 7; (0 < ¢ < k) of 2-blocks by the following algorithm:

Algoritkm P

Step 0. 7o = (T?), with TP = .

Step i (1 < i < k). Let Ty = (T{"%,...,T{~!). The partitioning 7; is obtained from
T;—1 by keeping each T}_l of length one and replacing each T;”l = (.5';'1",. . .,S';-;Jl’,_!)
(1 £ 7 < t;—y) of length greater than one with a sequence of 2-blocks T3,...,T;, so that

T}'l =T...Tp, where T} = (S;:;l) and each 2-block T; (1 < j < m) is balanced.

Lemma 4.1.19 Every 2-block in the sequence Ty is of length one.
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Proof. Let T be a balanced 2-block obtained at step i — 1 (1 < 7 < k) which was replaced
with a sequence of 2-blocks Ty,...,Ts (s > 1) at step . Assume that T; (for some 1 < j < s)
was replaced with a sequence of 2-blocks T;,,..., T}, (j: > 1) at step 7 + 1.

Let T correspond to the sequence of bags

(B vy Big s Bin sy Bi sy By

,‘Tl,...,BjTl

in the decomposition B, and let T correspond to the sequence of bags

B ,...,Bi. ,...,B; ,...,B; ).
( iy 0 iy o By oy JTJ-:>

(It is clear that BiTJl = B, 2

By the definition of a balanced 2-block, bal(T;...Ty) > 0 for any 1 < s’ < s, and
bal(T}, ...T;,) > 0 for any 1 < ¢’ < t. Therefore, |old(B,~T5,)l > lold(Biy, )| for any 1 < s’ <
s, and ]old(B,-Tjt' )| > lold(B,‘TJ1 )] forany 1 <t <t.

Thus, we have the inequalities |old(BiTJt' )| > Iold(B,-TJ_)I > |old(B;y, )|. Since there are

at most k old vertices in any given bag, our claim follows. O

Definition 4.1.20 Each sequence 7; = (Tf,...,Ttii) (0 < 7 < k) induces the following
equivalence relation on V, called 3;-equivalence:

For any u,v € V, u 2 v iff there is some 7 € {1,...,t;} such that u and v belong to T]’
Remark 4.1.21 Obviously, every two vertices of G are 3g-equivalent.

The definitions of drop, non-drop, and removable vertices for 3;-equivalence classes
(0 £ ¢ < k), as well as the balance of a 3;-equivalence class, are analogous to those for

2-equivalence classes. The notation is slso similar.

Remark 4.1.22 Every 2 class C (0 £ 2 < k) can be uniquely associated with the 2-block
Tc in the sequence 7; such that the vertices in C are exactly those that belong to T¢. It is
easy to see that for these C' and T¢, bal(C) = bal(T¢).

Definition 4.1.23 For each %-class C (0 <1< k), we define width(C') = width(T¢), where
Tc is as in Remark 4.1.22.
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4.1.2 Ordering 3;-Equivalence Classes

We consider the case of 2-classes first.
Let C = (Cy,...,Cs) be the sequence of X _classes taken in the order their vertices
appear in the decomposition B. Let R denote the set {Ci,...,C,}, and let R = R\ {C}.
We associate with each C;, 1 <i < s, the number b(C;) = bal(Cy) + - - - 4+ bal(C;). By
the definition of 3;-equivalence, bal(C;) < 0 for each j € {2,...,s}, therefore the sequence
(b1,...,bs) is monotonically non-increasing. Thus, for any two 2_classes C,C" e R, if

b(C) > b(C") or if b(C) = b(C") and bal(C) < 0, then C precedes C’ in the sequence (.

Remark 4.1.24 We can extend the definition of balance to any subset U of V' (by extending
the corresponding definitions of drop, non-drop, and removable vertices for 2-equivalence
classes). Then we will have that b(C;) = bal(C; U...UC}).

Note that the following holds for any C € R:

b(C) = Z ba.l(C’) = bal(UC':b(C’)Zb(C)C,)-
Cr:b(C1)>b(C)
Lemma 4.1.25 Let C,C’ € R be such that C immediately precedes C' in C, and C' and ('
are incomparable with respect to the corresponding extension of <. If bal(C) = bal(C’) = 0,
then C and C' can be interchanged in C with the resulting sequence C corresponding to some

nice k-decomposition of G.

Proof. Let us add the vertices in C’ (in the same order as before) instead of those in (', and
the vertices of C instead of those in C’. Since bal(C') = bal(C’) = 0, we will not increase

the path-width of the resulting decomposition. a

Remark 4.1.26 It should also be noted that for the ' and C as in Lemma 4.1.25,
width(C) = width(C).

Definition 4.1.27 We extend the relation of strong precedence to the set R, which will be
3 ]
called strong 3,-precedence and denoted by ij, as follows: For any two distinct 2 _classes
3
C,C'e R,C < Ciff

8
i. u < v for some u € C and some v € C’,
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ii. b(C) > b(C"), or

iii. b(C') = b(C") and bal(C) # 0.

31 R .. 331
The 3;-precedence, denoted by <, is defined as the reflexive and transitive closure of <.

3
Remark 4.1.28 If some X-classes C and C’ in R are incomparable with respect to jl, then

b(C') = b(C") and bal(C) = bal(C’) = 0.

We apply similar reasoning to each 2 class C 5 (1 < j < s) considered as a sequence of
%-classes, and so on. This will give us k 4+ 1 partial orders ?jf, 0<i<k,on . classes. (Note
that analogues of Lemma 4.1.25, Remark 4.1.26, and Remark 4.1.28 hold for each %-class,
1<i<k)

. 3;
Lemma 4.1.29 The triple (~, {i':},-___o, {=}r,) is a partial k*-generative structure on G.

Proof. Let {<'}% , be an arbitrary family of completions of ?ji, 0 < i <k, to linear orders
such that <7 is a refinement of <! for every 0<i< j<k.

Consider a sequence of 2%_classes (within some M1 _class C*-1) linearly ordered by <*.
That sequence can be obtained from the original sequence of these % _classes (i.e., the one
induced by the decomposition B) after a finite number of interchanges of consecutive 2.
classes incomparable with respect to ”;f By Remark 4.1.28 (formulated for 9\'5), any two such
%_classes C' and C’ have balance zero, and therefore, interchanging them will not change
the width of C*-1.

Now let us consider the sequence of 3'5\71—cla,sses (within some 3’7\72-cla,ss C*~?) induced
by B. If we order the %_classes within each 3'f‘Cl—class of C*¥=2 according to <F, the width
of C*¥-? will remain the same, because, as shown above, the width of each such 55 Class
is not changed. Repeating the above arguments, one can show that C*~2 ordered by <*~!
with each *%'-class in C*-2 ordered by <* (i.e., C¥~2 ordered by <*) has the same width
as originally.

Continuing in this manner, we can show that the width of the %-class C° ordered by
<* has the same width as that for the ordering induced by B, which means that <* yields

a linear k-generative structure on G. .
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4.2 MS-Colouring a Partial k*-Generative Structure

Here we prove that the partial k*-generative structure defined in the previous section is MS-

colourable in terms of G. We will show that there always exists some nice k-decomposition
” . 3; 3 . .

of a (k, p)-path G for which ~, %, and % and < (0 €7 < k) are MS-definable over a suitably

coloured graph G°.

4.2.1 MS-Colouring ~ and ~

In this subsection, we prove that for any nice k-decomposition B = (B,,..., B, ) of a partial
k-path G, the equivalences X and 2 induced by B are MS-colourable. (As before, we also

view B as a sequence of monotonic pieces My,..., M,.)
Theorem 4.2.1 The I1-equivalence is MS-colourable over G.

Proof. Since B; is MS-colourable, so is new(B;) = By. For every bag B., | <7 <, the

following is true:
i. drop(B,)Nold(B,) # 0, or
ii. drop(B,)Nold(B,) =0, and therefore, drop(B,) N new(B,) # 0.

By Remark 2.1.28, every new vertex of B, has an outgoing arrow to each vertex in
drop(B;,) N old(B,) (case (i)), or there is some v € drop(B,) N new(B,) such that every
vertex in new(B, )\ {v} has an outgoing arrow to v (case (ii)).

In case (i), we chose some vertex u € drop(B,) N old(B,) and colour each arc w — u,
w € new(B, ), with some colour ¢;. In case (ii), we colour each arc w — v, w € new(B,)\{v},
with some colour ¢s.

We do such colouring for each B,, 1 < r < m. (The same colours ¢; and ¢; can be used
for the corresponding arcs in all the B,, 1 < r < m, since these coloured arcs go into dyop
vertices, and therefore, no two vertices from different sets new(B,) and new(B,), r # 7/,
can have the coloured arcs going into the same vertex of V.)

We say that two vertices » and v’ in V satisfy a relation R, iff either there is some
u € V such that (v,u),(v',u) € E,, (casei) or (v,?') € E,, (case ii).

By its definition, the relation R, is MS-colourable. Therefore, the 1-equivalence (which

is the reflexive and transitive closure of R;) is also MS-colourable (see Fact 2.2.9). a

To show the MS-colourability of the 2-equivalence, we need the following two lemmas.
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Lemma 4.2.2 For every new rertex v of a monotonic piece M, = (B;,,...,B;,) (1<s<

d), there is some vertex u € new( B;,) such that u < v.

Proof. If v € new(B;,), then v < v. Otherwise, let v € new(M;) be the first vertex that is
not preceded by any vertex in new(B,, ), i.e., v is such that first(v) = mincpew(ar,) {first(v')|
u £ v for any vertex u € new(B; )}.

By the definition of a nice decomposition, v should have been added to the decompo-
sition B before the vertices in new(B;,) (see Remark 4.0.1 and condition (iv.a) of Defini-

tion 2.1.19). This contradiction proves the claim. o

Lemma 4.2.3 For any u,v € new(M;) (1 < s < d), u < v iff there are u),...,u; €
new{ M,) such that u -s< 1y i X wy X,

Proof. The only thing to be proved here is that u),...,u; € new(M;), but this easily

follows from the fact that u, v € new(id,). O
These two lemmas imply the following.
Theorem 4.2.4 The 2-equivalence is MS-colourable over G.

Proof. We have by Lemmas 4.2.2 and 4.2.3 that for every v € new(M,) (1 < s < d), there
is u € new(B;,) and there are u,,...,u € new(M;) such that u = ug 2 Uy 2% u i
Hjpy = U.

By the definition of the strong precedence % , the following holds for each u; and ;4

(0<1 <)
i. either the arc u;;, — u; is in E9, or
ii. there is some w € V such that the arcs u; — w and u;y; = w are in E<.

In case (i), we colour the arc u;;;, — u; with some colour ¢3. In case (ii), we colour
both u; — w and u;yy = w with some colour ¢4.

We do such colouring for each M,, 1 < s < d. (It is not difficult to see that we can use
the same colours c3 and c4 for all the M,,1<s<d.)

We say that two vertices r and v’ satisfy a relation Ry iff v ~ ¢/, {v,v') € E, (case i),
or there is some w € V such that (v,w),(v',w) € E,, (case ii).

Then the 2-equivalence is the reflexive and transitive closure of the MS-colourable

reiation R,, and therefore is also MS-colourable. a
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. 3;
4.2.2 MS-Colouring % and =

Here we show that for each partlal k path G, there always exists a nice k-decomposition

which induces MS-colourable % and -< 0<i<k.

Definition 4.2.5 A 2-block T is called locally connected iff for every 2 classes ¢ and ' in T,
there are 2-classes t1,...,t in T such that every two consecutive elements in the sequence
(t = to,t1,...,t,ti41 = t') are comparable with respect to g, i.e., for every i € {0,...,[},
t; :2 t;y1 OT 2,4 542 t;.

Lemma 4.2.6 The equivalence relation on V induced by a partitioning of V into sequence

of locally connected 2-blocks is MS-colourable over G.

Proof. The reasoning is similar to that in the proof of Theorem 4.2.4. a

To achieve the local connectedness of 2-blocks in the sequences 7;, 0 < i < k, generated
by algorithm P, we re-order the sequence S of Z-classes induced by the decomposition I3
of G. The new sequence S’, however, will correspond to some nice k-decomposition B’ of ¢

such that GdB, is isomorphic to G%.

Lemma 4.2.7 Let § = (51,...,5i, Si+1,...,54) (for some 1 < i < d) be the s(’quenw of~-
classes induced by the k-decomposition B of G. Ifbal(5;) > 0, bal(S;4,) < 0, and §; 7( Sit1,
then the sequence 5 = (S1,...,Si+1,5i,...,54) is induced by some nice k-decomposition I3’
of G such that GdB, = GdB.

Proof. Since S; 724 Sit1, we can add the class Sy, to the decomposition B before $;. (We
do so by adding the vertices of S}, in the same order as they were added to B before.) Let,
B! denote the sequence of bags corresponding to the sequence (54,...,5;-1,54+1). The
path-width of B**! is at most k because bal($;) > 0.

Since bal(S;41) < 0, the class S; can “fit in” after S}, and thus B”*! can be completed
to some k-decomposition B’ of G.

For any 2-class S; with non-positive balance that immediately follows S, .9; i 9.
(Indeed, that S; is of non-positive balance means that either all of its vertices will be
dropped before the next 2 class is added (i-e., drop(.5;) = S;) or some of the old vertices
are removed by S; (i.e., remov(S;) # 0). In the first case, since the graph G is connected,

there must be a vertex in 5; that is adjacent to some vertex in 57. In the second case, there
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is a vertex in S, adjacent to some vertex in 5; by the definition of vertices removable by a
2
~-class.)

Thus, the first bag of B’ is B;. It is easy to see that B’ induces the digraph isomorphic
to G%, since the vertices within each S;, 1 < i < d, are added to the decomposition B’ in

the same order as they were added to B. o

Consider the following transformation of the sequence 5

Transformation §
Step 1. If length(S) = 1, stop. Otherwise interchange every two consecutive elements S;

and Siy1 of S such that bal(S;) > 0, bal(Sis1) < 0, and S; £ Sip1.

Step 2. If two consecutive elements S; and S;+; of 5 (1 < ¢ < d) are such that bal(5;) > 0
and bal(S:i41) < 0, but §; i Si+1, “merge” them into one so-called S-block. (The balance
of an S-block is defined as the sum of the balances of its components, and two S-blocks
are comparable with respect to i iff so are some of their components.) Replace S with the

sequence of S-blocks and go to Step 1.

In view of Lemma 4.2.7, it is easy to see that ihe sequence of A classes §' = (S1,-..,5)
resulting from transformation § is induced by some nice k-decomposition B’ of G such that

G‘,‘;, is isomorphic to G%.

Remark 4.2.8 By definition, each S-block constructed in the course of transformation S

is a locally connected 2-block.

Remark 4.2.9 Since G is connected and bal(S) = 0, one can prove that transformation S

merges the sequence § into a single S-block.

Now we apply algorithm P to the sequence S’ to get a new family of 3;-equivalences,

0 <7 < k. As the following lemma shows, these 3;-equivalences are MS-colourable.

Lemma 4.2.10 Let {T;}}_, be the family of sequences of 2-blocks generated by algorithm
P for the sequence S’'. For any sequence T; = (T},.. .,Tt’;.) (0 < ¢ < k), each 2-block Tj
(1 < 7 <t;) is locally connected.

Proof. By the definition of our transformation S of the sequence S, every balanced 2-block

Tj (1 <7 £1)is a single S-block at some step of transformation &.
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Indeed, by the definition of a balanced 2-block, each such TJ‘ is a sequence with an
S-block of positive balance at the beginning and with an S-block of negative balance at
the end for each step of transformation §. (Otherwise, we would have a proper prefix with
non-positive balance.) Therefore, S merges all the S-blocks inside T]i into a single S-block.

Our claim now follows from Remark 4.2.8. 0
Now we can state the following lemma.

Lemma 4.2.11 There always ezists a nice k-decomposition B of a partial k-path G such

that 3;-equivalences, 0 < 7 < k, induced by B are MS-colourable over G.
3¢
. Lemma 4.2.12 FEach partial order <, 0 < 1 < k, is MS-colourable over G.

Proof. One just needs to colour each 3;-equivalence class C with 6(C') and bal(C') (which

are numbers bounded by k). 0
Thus we have proved the following.

. 3
Theorem 4.2.13 The partial k*-generative structure (~, {%}5_, {=X}h,) is MS-colourable

over (5.

4.3 A CMS-Formula

Here we will prove that recognizability implies definability for partial k-paths G. First, we
define another MS-colourable partial k*-generative structure on G. Using this structure
we will be able to define the required CMS-formula for suitably coloured connected partial
k-paths. Then we formulate the MS-definable admissibility conditions on colourings of
partial k-paths. Finally, we solve the problem of recognizability implying definability for
disconnected partial k-paths.

4.3.1 Another Partial k*-Generative Structure

In this subsection, we divide the set of 3;-equivalence classes (for each ¢ € {1,...,k}) into £
sets of nodes and one set of leaves by analogy with the case of (k,1)-paths.

We consider the set of ?\‘:—equiva,lence classes first. Let (C},...,C,) be the sequence of
%—equjva,lence classes induced by the decomposition B of G. (As before, we denote by It

the set {C),...,C;}, and by R the set R\ {C;}.)
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Notation 4.3.1 For a 3 class C; (1 <1 < s), we denote by B((C}) = (Bicl,...,BjCl>
the subsequence of B such that new(B(C;)) = C; (where new(B(C})) = new(Bi, )U...U

new(B; ))-

Since every 2 _class C (1 < I < s) has a non-positive balance, for every ¢ and ¢’ such

that 1 <t < t' < s, we have
]non—drop(Bth,)l < |non-drop(Bj,, )| < |non-drop(Bj,, )|-

Let us define a labeling A; : V — {1,..., k} such that no two vertices in non-drop(Bj, )
(1 <1 < s) have the same label and for any 1 < t < s, Ai(Bj;,) C Ai(Bjg,_,) (for the
corresponding extension of A; to sets of vertices).

Because non-drop(C}) C non-drop(BjCl) (1 <1 < s), each non-drop vertex v of Cy,
1 <t < s, can be thought of as the one “replacing” the non-drop vertex u of Bj, | such
that A;(v) = Ay(u).

We associate with each -class C; (1 < | < s) the sets in(C;) = A;(remov(C))) and
out(Cy) = A1(non-drop(CY)).

Remark 4.3.2 By definition, out(C;) C in(C)) for every [ € {2,...,s}.

We define the following k sets Pf,..., PR of 2 classes in R: For any C € R, C € PJB
(1< < k) iff j = min{jj' € in(C)}.

Remark 4.3.3 It is not difficult to see that each set PJB, 1 < j <k, is linearly ordered by

3
<.

Definition 4.3.4 The 2-classes in U;?:l PJ-T are called the nodes of R. The set of all nodes
of R is denoted by Ng.

Definition 4.3.5 The set R\ Ny is called the set of leaves of R and is denoted by Lg.
Remark 4.3.6 For each leaf C of R, remov(C) = @) and non-drop(C) = 0.

5 v
Now we can extend the partial order _"_% as in the case of (k, 1)-paths so that only certain

3 n

leaves are incomparable. We will denote this new partial order by jl .
We do the same for each 3;-equivalence class, 1 < 7 < k, which will give us & partial

3,n
orders < .
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. 3; 3" . . R
Clearly, the triple (rla,{w}fzo, {< }£,) is a partial k*-generative structure on G. It
is not difficult to see that this structure is MS-colourable over G. Let G’ denote the

corresponding coloured digraph on which this structure is MS-definable.

4.3.2 Constructing a Decomposition of G

Here we describe an algorithm that constructs some nice k-decomposition of (G and checks
if this decomposition is accepted by the automaton A.
~ E 3,
Let B be some nice k-decomposition of G generated by the structure (~, {%}fzo, {=

¥ ) defined in the previous subsection.

Notation 4.3.7 For a 2-class C (0 < i < k), we denote by B(C) the subsequence of bags
in B such that new(B(C)) = C.

For any 2 class C, the old vertices of the first bag in B(C) (the set of such vertices
will be denoted by old(B(C))) are some non-drop vertices of the 2 _classes coming before '
in B. The 2-classes having non-drop vertices are nodes (by definition), and since Sjn is a
linear order on the set of X-classes that are nodes, we have that

old(B(C))CU 3 non-drop(C").
c ,

C'<

More specifically,

. 3"
old(B(C)) = non-drop(U  3,» C’) = non-drop({u € V|[uls, < C}).
crei< C ~
Let C be an arbitrary % _class (1 < i< k) and let v be an arbitrary vertex in C' (i.e.,
C = [v]s;). Then

old(E(C)) = non-drop({u € V[[u]i" gn [v]% V...V [u]3N1 :;_ln [v]s,)-

~

In other words, the set of vertices appearing in B(C') (for any Zoclass C, 1< i< k) is
n
k

) 3
determined uniquely by the structure (,L, {?\5}?___0, {Z }o)
- , 3, (
Notation 4.3.8 Since for any other decomposition B’ generated by ( ~, {25 ko {2 Yy,
old(B’(C)) = old(B(C)) (for every X class C, 1 < i < k), we will denote this set of vertices
simply by old(C).
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Remark 4.3.9 For any two 2 _classes C and C' (1 < 7 < k) that are incomparable (with
3" i ; ~ . N
respect to < ) leaves in some 3rvl~class, B(C) and B(C’) can be interchanged in B, with

the resulting sequence still being a decomposition of G.

Our discussion suggests ine following non-deterministic algorithm for constructing some
n

i 3;
decomposition of G' generated by (rL, {,3\: £ {2 1)

Algorithm R

For each %-class C (which is a monotonic piece), construct the sequence of bags as in
the case of (k,1)-paths, taking the set old(C) Unew!(C) as the first bag of that sequence.
(Here new!(C) denotes the unique ~-~class in C of cardinality greater than one.)

For each % -class ¢ , order th(:.1 sequences of bags constructed for its 25_classes accord-
ing to an arbitrary completion of ?_2 to a linear order on C’/ 2,

Continuing in this way, we will get a sequence of bags for the §3-class, which is a

decomposition of G.

Note that the non-determinism of algorithm R stems from the fact that there can be

i . . . 3i~ . . .
X_classes (1 < i < k) contained in the same “~'-class which are incomparable with respect
n

to ?_<‘ . (Obviously, they are leaves in this case.) To check in CMS whether an automaton
A = (34,0, 6,90, F) recognizes the partial k-path G, it would suffice to define a certain
linear order on such incomparable leaves that is expressible in CMS.

Since there can be an arbitrary large number of incomparable leaves, we should define
a certain equivalence relation on leaves so that the number of equivalence classes is bounded
by a constant, and the behaviour of our automaton is the same on every two equivalent
leaves. (Note that we should define such an equivalence for every r3\3, 0 < ¢ < k, thus we will
have k equivalence relations.)

In the case of (k,1)-paths we defined p-equivalence on leaves and then ordered the
X_classes. This was sufficient for defining the required CMS formula, because any two p-
equivalent leaves w’ and w” corresponded to the bags B’ and B” such that o4(B’) = o3(B")
(for a suitable labeling function £).

Since leaves were single vertices in the case of (k,1)-paths, we could easily determine
if two leaves corresponded to identical symbols in £, by just looking at the set of vertices
(nodes) to which these leaves had outgoing arrows. In the general case, however, leaves

are not necessarily single vertices, and therefore, they can correspond to (arbitrary long)
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sequences of bags (strings of symbols in the alphabet ;).

Calling two incomparable leaves equivalent if the corresponding strings over I, ate
identical will give us an unbounded number of such equivalence classes. Instead, we should
call two such leaves é-equivalent if the corresponding strings over ¥, are equivalent with
respect to the transition function of the automaton A, i.e., if these strings wy and wy are such
that for each ¢ € @, §*(¢q,w;) = 6*(q,ws). (Clearly, the number of thus defined é-equivalence
classes is bounded by a function of |Q].)

To determine if two leaves are §-equivalent, one needs to construct the sequences of
bags corresponding to those leaves (more precisely, to know the behaviour of the automaton
A on those sequences), which is a problem similar to the original one of constructing a
decomposition of G.

As indicated by algorithm R, we can construct sequences of bags correspounding to each
25_class. This will give us all the bags in the decomposition of GG generated by R. (Then we
just need to put those bags in a proper order.) Thus, we can check if a labeling function
p:V —{1,...,k + 1} is admissible by the decomposition constructed by algorithm R.

Consider the following extension of algorithm R. (We assume that @ = {q,...,¢.}.)

Algorithm R’

For each X-class C , construct the corresponding sequence of bags as before. Convert
that sequence to a word over ¥, using the labeling function 8. (Let w denote that word.)
Associate with C the vector ¢(C') = (q1,...,q,), where foreach i € {1,..., 2z}, ¢ = 6*(¢i,w).
(We also consider this vector as a map from @ to Q.)

For each 2651 _class c’, ord:,r the sequences of bags constructed for its % _classes ac-
cording to the completion ?;f ?_2 to a linear order on C’/ 2 such that for any two incom-
parable (with respect to 3;<’f ) leaves C and C’, C is less than C' iff ¢(C') is lexicographi-
cally less than ¢(C’). Let (Cy,...,C,) denote this sequence. Associate with C’ the vector
g(C") =q(C1)o---04(C,), where ¢(C;), 1 < i < r, are considered as maps, and o denotes
the composition.

Continuing in this way, we will get a decomposition of G' as well as a map from @) to
@ that defines the behaviour of A on that decomposition. To see if G is recognized by A,

we just have to check whether ¢ is taken to some final state by the constructed map.
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4.3.3 CMS-Definability of Recognizability for Coloured Connected Par-
tial k-Paths

Here we show that it can be checked in CMS whether the labelings of 3;-equivalence classes
C (0 < i < k) with some vectors g(C) are the ones that would be produced by algorithm
R.

It is not difficult to see that the sets old(C) and new!(C) (defined in the previous
subsection) are MS-definable over the coloured digraph G’ for every % _class C. Thus, we
can proceed as in the case of (k,1)-paths by MS-defining (over G9') the p-equivalence on
C \ new!(C), the linear order on the corresponding quotient set, and the bags induced by
that linear ordering.

We can also verify in MS that a labeling § of our graph G is admissible by the sequence
of bags constructed for each 25 _class C. (Let us denote this sequence of bags by B(C).)
This will ensure the admissibility of 4 by the decomposition generated with algorithm R’.

We MS-define in terms of G%' the word w(C) = ag3(B(C)). Then we check the cor-
rectness of the vector ¢(C) = (¢i,...,q.) associated with every C by guessing z colourings
of the symbols in w(C') with the states of A such that g; is considered the initial state and
g; the final state of A, 1 < 7 < z, and then verifying for every two consecutive symbols of
w(C) that their labels agree with the transition function of A (see the case of (k,1)-paths).

For every 51 class (', we define the §x-equivalence relation on the set of its 25_classes
by saying that two leaves C; a?ld C are bg-equivalent iff ¢(C1) = ¢(C2). This enables us to
MS-define the completion of E%‘ to the linear order on the set C’ = (C'/ 9\'5) / % as described
in algorithm R'.

To check the correctness of ¢(C’), we guess a colouring of the elements C' of C’ with
vectors ¢’'(C) from Q7 such that the first (with respect to the above-mentioned linear order)
element C; of C’ is labeled with ¢(C) and the last element C, with g(C’), and then verify
for every two consecutive elements C; and Cj;; of ' (1 < j < r) that

7(Ci+1) = q'(C) 0 q(Cjt1) 0---o0 9(Cj+1),

t

. T § . "
where ¢ is the cardinality of the ~-class C;;1 and o is the composition of the maps from Q
to @. It should be clear that this is expressible in CMS.
We continue in this manner until we verify the correctness of the vector ¢(C?) associated

with the X-class C°. The graph G is recognized by A iff the state gp is mapped by ¢(C?)
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to some final state.

Thus we have proved the following statement.

Theorem 4.3.10 Every recognizable family of coloured connected partial k-paths G is
CMS-definable.

4.3.4 Admissibility Conditions

Here we state the MS-definable conditions on colourings of partial connected k-paths G such
that any colouring satisfying these conditions induces the partial k*-generative structure on
G required by algorithm R’.

Consider the following conditions on a colouring of G:

i. This colovriug induces a labeled digraph G’ = (V, E’) (wiiich has the format of G%).
ii. The relation < (precedence) induced by G’ is a partial order on V.

iii. The relations ,L’ rga, and ¥ (0 £ 7 < k) induced by that colouring are equivalences on

V such that

(a) & is a refinement of 2,

(b) every two vertices of V are 3p-equivalent,
3 . H .

(c) “R' is a refinement of =, 0 < i < k, and

(d) % coincides with 2.

iv. For any u € V, [u], contains exactly one A-class of cardinality greater than one.
(Below we denote such [u], and A-class of cardinality greater than one contained
in [u], by new(M,) and new!(M,), respectively.} The sets new(M,) and new!(M,)

satisfy the following conditions:

(a) every new!(M,) either contains a drop vertex or has a unique vertex with an
outgoing double arrow to some vertex not in new!(M,),

(b) there is no arc (w,w') € E’ such that w € rew!(M,) and w' € new(M,) \
new!(M,,),

(c) for every w € new(M,)\ drop(new'(M,)) with incoming arrow (or arrows), there

is exactly one incoming double arrow,
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vi.

vii.

viii.

ix.

(d) every vertex with a loop arrow has no outgoiny; double arrows and no incoming
arrows of any kind,

(e) every vertex in new(M,) \ new!(M,) has either an outgoing double arrow or a

loop arrow.

(Compare the above conditions with condition (iii) for the case of (k,1)-paths on

page 35.)
The balances of 3;-equivalence classes (0 < i < k) are encoded correctly by the colour-
ing (i.e., bal(C') = |non-drop(C)| — |remov(C')| for each 2 _class C).
Each 2-class (0 < 7 < k) contains at most one %% class with positive balance.
For each J-class C , 0 < 7 < k, the following two conditions hold (we denote by C the
quotient set C/ 35‘3:1):

(a) For any two %1 lasses C and €’ in € such that bal(C') # 0 and bal(C') # 0,

b(C) # b(C").
(b) For each % class C in C,

Each relation 3ji, 1 < i < k, induced by the colouring is a partial order on C/ % for
every 3fGl—cla,ss C such that no two S-classes contained in different 3£C‘-classes are
comparable w.r.t. :;';, and the partial order on V induced by ?, 1 <1 <k, is consistent
with the precedence < (i.e., they both can be completed to the same linear order on
V.

For the 2-class C?, widthy(C®) < k + 1, where the functions width;, 0 < 7 < &,
mapping V to the set of natural numbers are defined recursively as follows: For any

ueV,
widthy([us,) = |new! (M,)]
for 0 < i < k, width;([u)s,) = max,,e[u]a.{z([v]am) + widthi;1([v]s;,,)}, where for a

%4 Class C contained in a Z-class €, b(C) = b(C) — bal(C).
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[ ]
o

x. For a “S'-class C (0<i< k) let PC,..., PY be the k sets of nodes induced by the

labeling A;. The partial order < induced by the colouring of G must be a linear order
on each set PJC, 1<73<k.

It should be clear that conditions (i)-(x) are expressible in MS.

Lemma 4.3. 11 If a colouring of G satisfies conditions (i)-(iz) stated above, then the triple

A ' 0s < ) induced by that colouring is a partial k*-generative structure on G,
(~, 1_0 1 0 Y p g

Proof. It is not difficult to show that the path-width of any decomposition of G generated
by this triple is equal to widthe(C°) — 1 which is less than k by condition (ix). O

As in the case of (k,1)-paths, we have the following statement.

Corollary 4.3.12 For an arbitrary graph (:?, if there exists a colouring of G satisfying
conditions (i)-(iz), then G is a partial k-path.

Remark 4.3.13 Thus, we have shown how to construct the MS-foimula for each & > 0
that will define the family of all partial k-paths.

.

Condition (x) ensures that the partial orders :-3_5‘ , 1 <7< k, induced by the colouring
of G are linear orders on the set of nodes of each “'-class. By conditions (vi) and (v),
each leaf induced by the colouring of G does not contain any non-drop vertices, therefore
algorithm 7%’ will work correctly on this coloured graph.

So we can formulate the principal result of our thesis.

Theorem 4.3.14 FEvery recognizable family of connected partial k-paths is CMS-definable.

4.3.5 The Case of Disconnected Partial k-Paths

Here we extend Theorem 4.3.14 to disconnected partial k-paths.

Let a partial k-path G have ¢t > 1 components G,...,G,. Obviously, each G, 1 <
J <t,is a connected partial k-path. We apply algorithm R’ to each G';, which will give us
t vectors g(G;) describing the behaviour of the corresponding automaton A on each of the
components of G.

If A recognizes G, then the decomposition of G obtained by arbitrarily ordering the

decompositions of its components should be accepted by A. That is, the composition of the
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maps ¢(G;), 1 < 7 < t, chosen in any order should define the map that takes the initial

state of A to some of its final states.

Since connectedness of a graph is MS-definable, we can simulate in CMS applying
algorithm R’ to each component of G (e.g., we can define the 3g-equivalence as the relation
of being connected). Then we define the §-equivalence (by saying that two components G’
and G" of G are é-equivalent iff ¢(G’) = ¢g(G"')), order these L classes lexicographically, and
compute the correspording composition. Clearly, this is expressible in CMS.

Thus we have the theorem.

Theorem 4.3.15 Every recognizable family of (possibly disconnected) partial k-paths is
CMS-definable.

Combining this with the Courcelle’s result on definability implying recognizability for
partial k-trees yields the following.

Corollary 4.3.16 Definability equals recognizability for partial k-paths.
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Conclusion

We showed that every recognizable family of partial k-paths is CMS-definable, thereby
proving a particular case of Courcelle’s conjecture. Thus, we can now say that a problem
on partial k-paths is solvable in linear time using a finite automaton iff it is CMS-definable.

As a byproduct of our solution, we obtained the MS-formula defining the class of partial
k-paths for every given k. This implies that the obstruction sets for the classes of partial
k-paths are computable.

Our results rely upon the possibility to MS-define a certain partial ordering on the set
of vertices of a given partial k-path. In this respect, it is interesting to note some similarities
between our approach and that of Courcelle in [9]. (Our results were obtained completely
independently.) In his paper, Courcelle was able to MS-define a linear ordering on the
vertex-set of a k-connected partial k-path G that corresponds to the order in which those
vertices are added to some k-decomposition of G (i.e., a k-generative linear order on (7).

A graph G is k-connected if |[V| > k42 and there is no subset U C V of cardinality less
than & such that the removal of U disconnects the graph G. A partial k-path (according
to Courcelle) is a graph that allows a k-decomposition B = (By,..., By,) satisfying the

following conditions:
i. |Bil=k+1foreachie€{l,...,m},
ii. |B;N Byl =kforeachi€ {1,...,m— 1}, and
iti. B;N Biy; # Biy1 N Biyp foreach i € {1,...,m — 2}.

We will prove that a k-connected partial k-path (according to the above definition) is

60
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a particular case of a connected (k,1)-path (see Chapter 3) for which a k-generative linear
order is MS-definable,

By the condition of k-connectedness, non-drop(B;) = k for each i € {1,...,m — 1}.
Combining this with condition (ii) yields that old(B;4;) = non-drop(B;) for each i €
{1,...,m — 1}. Thus, conditions (i) and (ii) and the k-connectedness of G imply that
B is a (k, 1)-decomposition.

Condition (iii) suggests that drop(B;) N new(B;) = @ for each : € {2,...,m — 1}.
Therefore, the digraph G'f; has no vertices with loop arrows, which means that there are
no leaves. So, the partial order <™ is a linear order on the set V' \ drop(B);) that can be
completed (by making the drop vertex of B the minimum) to a k-generative linear order
on (.

Our results show that it is not necessary to MS-define the algebraic structure (path-
decomposition, in our case) of a given graph in order to prove that recognizability implies
CMS-definability.

Actually, it is impossible to MS-define k-decompositions for arbitrary partial k-paths.
Cousider the graphs G,, = ({0,1....,n}, E,), where E, = {{0,j}|1 < j < n}. Clearly, these
graphs are 1-connected 1-paths (according to the general definition of k-paths). If we had
an MS-formula defining a 1-decomposition for each G, n > 1, we could MS-define linear
orderings on the vertex-sets Vg . But no linear orders can be MS-defined on G,,, since these
graphs have nontrivial automorphisms, and the size of G,, can be arbitrary large.

The main open problem is to prove (or disprove) the Courcelle’s conjecture for partial
k-trees. It seems promising to apply the ideas from our solution for partial k-paths to this
general case. A tree-decomposition induces a partial order on the vertex-set of a partial
k-tree. We will need to define certain “nice” tree-decompositions such that this order can
be MS-coloured.

We already know how to MS-colour the parts of a partial k-tree G that are partial
k-paths. We can also define in CMS the behaviour of the corresponding tree-automaton on
such “linear” parts. Thus, it would suffice to be able to MS-define a suitable partial order

on these fragments of G.
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