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Abstract 

It is well-known that a language is recognizable iff it is definable in a monadic second-ordcs 

logic. The same holds for sets of finite ranked trees (or finite unranked trees, in which cilsc 

one must use a counting monadic second-order logic). 

Courcelle initiated research into the problem of definability vs. recogrzizability for finite 

graphs. Unlike the case of words and trees, recognizability does not equal definability I'or 

arbitrary families of graphs. Courcelle and others have shown that defi nabili ty implics 

recognizability for partial k-trees (graphs of bounded tree-width), and conjectured that, the 

converse also holds. 

The converse implication was proved for the cases of k = 0,1 ,2 ,3 .  It was also establishctl 

for families of k-connected partial k-trees. 

In this thesis, we show that a recognizable family of partial. k-paths (graphs of bou~ldcd 

path-width) is definable in a counting monadic second-order logic (CMS), thercby proving 

the equality of definability and recognizability for families of partial k-paths. 

This result is of both theoretical and practical significance. From the theoretical vicw- 

point, i t  establishes the equivalence of the algebraic and logical approaches to characterizing 

yet another recursively defined class of objects, that of partial k-paths. This also adds va- 

lidity to  Courcelle's conjecture on partial k-trees. From the practical viewpoint, sirrw a 

partial k-path is recognizable in linear time, it establishes that a problem or: partial k- paths 

is solvable in linear time using a finite automaton iff this problem is definable in  CMS. 
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Chapter 1 

Introduction 

In 1960, Biichi [8] showed that a language is regular iff it is definable by some formula in 

monadic second-order logic (MS). Here, MS is the extension of the first-order logic that 

allows quantification over sets of objects. A set of objects is definable by an MS-formula 

if the  formula is trire exactly on the members of the set. Thus Biichi established that 

recognizability is equivalent to  MS-definability for words. Doner [13] then extended this 

result to ranked trees (tree representations of algebraic terms). A regular set of ranked trees 

is recognizable by a tree automaton, the extension of a finite automaton to  algebraic terms. 

Graphs are algebraic structures since any graph can be constructed from smaller graphs 

using certain graph operations. They are also logical structures since any graph is completely 

determined by the set of its vertices and the adjacency relation on this set. Thus the notions 

of recognizability and definability can be extended to finite graphs. Courcelle [lo] proved 

that every MS-definable set of finite graphs is recognizable, but not conversely. However, 

he was able to extend the result of Doner to  unordered unbounded trees using a counting 

monadic second-order logic (CMS), an extension of MS that allows modular counting. 

The question remained whether there was a sufficiently large class of graphs for which 

recognizability would imply CMS-definability. In their study of graph minors, Robertson 

a d  Seymour 1191 introduced the notion of the tree-width of a graph. A graph of tree-width 

A- exhibits certain tree-like structure: Such a graph can be decomposed into subgraphs of 

size k + ! arranged as nodes of a tree (tree-decomposition) so that the nodes containing a 

given vertex form a subtree. 

The class of graphs of tree-width a t  most k coincides with that of partial ,+trees. 

t h o n g  other classes of graph of bounded tree-width are trees and forests (tree-width 5 I), 



series-parallel graphs and outerphnar graphs ( 5  2). and Halin graphs (< 3). 

For graphs of tree-width at most b, recognizability is defined using a t rcc. au tornilton 

working on the corresponding tree-decompositions: A set G of partial k-trccs (; is rcvmglri~- 

a3le if ehere is a tree automaton that accepts any tree-decomposition of rarh graph i; E <;, 

and rejects tree-decompositions of graphs not ir! 5'. Since the sizc of each node i u  such t r r c  

decompositions is bounded, to check if a partial k-tree (given with its t r~c~-dcc'o~rlposit ion ) 

is recognized takes linear time. Bodlaender 1.51 gave a linear-time algorithm for cotrht rurti~ig 

tree-decompositions of tree-width at most k for partial k-trees. Thus it is possible to c11cc.k 

in linear time whcther a partial k-tree is recognized, even if its tree-tlecompositiori is r~ot 

part of the input. 

It follows from the above-mentioned Courcelle's result that every ChllS-t1cfi11al)lc st.1 of 

partial k-trees is recognizable in linear time by a corresponding trcc aotomat,otr. (111 [ I ] ,  

the explicit construction of a tree automaton for a given CMS-formula is prcscntcd.) 'l'l~is 

is particularly interesting since many NP-complete problems on graph:, cat1 bc. dcscribctl 

as properties expressible in MS, and therefore these problems bccon~c 1int.ar-time solvaldr~ 

on the class of partial k-trees. In [4] and [Ti], a formalism different from MS-t1efin;ll)ility is 

proposed so that the properties expressible using this formalism can be solvctl i r ~  lir~car t i r t w  

on recursively deLed families of graphs. 

The class of graphs of bounded tree-width plays an important role for allot her rclason. 

The monadic second-order theory (MS-theory) of a class of graphs G is tire set of all MS- 

formulas that are true on each element of G. This theory of G is decidable if it is rclrrlrsive 

(i.e., there is an algorithm that decides whether any given MS-formula lidds for all t.11tl 

elements of G). Courcelle showed in [lo] that the MS-theory of the class of partial k-lrt\cs is 

decidable. Seese (203 p rov~d  that if the MS-theory of a class of finite graphs M is dcxcid a t~lo, 

then the graphs in M have uniformly bounded tree-width. Thus, tree-width "c.tlarartcrisl,tIs" 

classes of finite graphs having decidable MS-theories. 

Courcelle [ l l ]  showed that a recognizable set of partial k-trees is CMS-tfcfinablc for 

l = I and k = 2, and conjectured that recognizability implies OMS-d~finahiiity of part211 

1-trees for an arbitrary k. Iialler 1171 proved the case of k = 3 and the case of k-conrrcc4r*tl 

part id b- trees. 

IB this thesis, we establish that every recognizable set of partial k-paths is C:MS- 

definable. A partial k-path (graph of bounded path-width) is a pa;?iaI k-tree for which 



the corresponding tree-decomposition is a path-decomposition. Partial k-paths a.re recog- 

nizrtd by finitc automata working on the corresponding path-decompositions. 

III their solutions, Courcelle and Ka!ler show how to define in MS some tree-decompo- 

sitiort of a given partial k-tree. Simulating (in CMS) the behaviour of a tree-automaton on 

this tree-decomposition is then a fairly straightforward task. 

To solve the problem for partial k-paths, we do the reconstructing of some path- 

decomposition of a given partial k-path G and simulating of the corresponding finite au- 

tomaton A "in parallel." In fact, we do not define in CMS any path-decomposition of G, 

hut orily check if some of its path-decompositions is accepted by A. 

First, we show how every partial k-path G can be coloured so that some of its path- 

decompositions can be reconstructed (althoagh not in CMS) from this colouring. The 

structure that we can define in CMS given such a coloured graph is sufficient for us to verify 

(in CMS) whether this path-decomposition of G is accepted by the automaton A. 

Thus we prove that recognlmbility implies CMS-definability for properly coloured par- 

tial k-paths. To establish this implication for uncoloured partial k-paths, we show then that 

the required coloured gra,ph can be defined in MS. 

A graph H is a minor of a graph G if H becomes a subgraph of G after a series of 

contractions of edges of G. A family of graphs is minor-closed if every minor of every 

member of that family also belongs to the family. Robertson and Seymour [18] proved that 

every minor-closed family of finite graphs can be characterized by a finite set of obstructions, 

graphs outside the family. 

Using the fact that the c1a.s~ of partial I;-trees is minor-closed, Courcelle [12] proved 

that this class is MS-definable. However, to construct the corresponding MS-formula, one 

needs to  know the finite set of obstructions of the corresponding class of graphs. These sets 

are known only for k = 1, k = 2 ([21, 2]), and k = 3 ([3]). 

On the other ha.nd, the obstruction set of the class of partial k-trees can be determined 

from the MS-formula defining that class. To find such a set, one can use graph grammars 

(a.s suggested - in [12]) or congruences of finite index (see [14]). This rea.soning also applies 

t.o the class of partial k-pat.ils. 

In this thesis, we describe how to construct the MS-formula defining the class of partial 

k-paths for every given b. As a consequence, we can now compute the obstruction sets of 

the cla.sses of partial k-paths for each k. 

The remainder of this thesis is organized as follows: In Chapter 2, we give the necessary 



CHAPTER 2 .  INTRODUCTION 

background material from graph theory, logic, and automata theory. We define jtarti;ii k -  

paths. path-decompositions, and definability and recognizability for partial k-paths. also 

give a proof of Biichi's result that 2 recognizable set of words is RIS-definable. In  ( 'Itapt vr 

3: we show that recognizability implies CMS-definability for a certai~t ge~wralizatiolr of t tw 

class of connected partial Kpaths, the class of ( I ; ,  1)-paths. This will be a base case of our 

solution for arbitrary partial b-paths. In Chapter 4, we pr ,m t itc case of councctid partial 

k-paths first, and then extend our proof to possibly disconnected partial k-paths. 111 thc last 

chapter, we give concluding remarks and discuss a possible approach to solviitg t,tw j)rol)loitt 

on partial k-trees. 



Chapter 2 

Preliminaries 

The problem studied in this thesis arose a t  the intersection of three areas of theoretical 

computer science: graph theory, logic, and automata theory. 

In this chapter, the necessary material from each of those rzreas is presented. In the first 

section, we recall some basic terminology from graph theory and define partial k-paths. In 

the .second section, we describe the concept of deftnability in counting monadic second-order 

logic. In the third section, we explain what it means for a graph family to  be recognizable. 

In the last section, we prove that every recognizable language is MS-definable. (We will 

use the technique from this proof when showing the corresponding implication for partial 

k-paths.) 

2.1 Graphs 

2.1.1 Basic Definitions 

The majority of definitions in this subsection can be found in any standard reference book 

on graph theory (see, e.g., f15] or [S]). 

Our graphs are finite and simple. They can be undirected or directed (digraphs). For 

a graph G = (ti-;, EG). VC and EG are its vertex and edge sets, respectively. (Whenever 

this kads to no confusion, we shall drop the subscript.) 

If G IT ~ndir~r ' fed~ an edge P E E connecting vertices u, and D (u, 2, f V )  is denoted by 

4 = ( u ,  r ) .  If G is directed, an edge e E E from u to  v (u, o E V), called an arc, is denoted 

by e = ( U. a). In both cases, the vertices u and v are called the ends of the edge e. They 
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are also said to be adjacent to each other and incident to the edge c. 

A graph H = (VH7EH) is called a subgmph of G = (Cb. K c ) ,  denoted by I1 (;, iff  

l/H C FG and EH & EG. If H is a subgraph of G, G is called a supergmph of If. 

For a non-empty subset V' of V ,  the subgraph of G with the vertex sct 1" and t lrct 

edge set containing those edges of G that have both ends in 1," is called tho subgraph of C; 

induced by V' and is denoted by G[Vt]. 

Two undirected graphs G and G' are called isomorphic, denoted by G' E GI, iff '  t Iic%rc 

is a bijection 77 : T/G - VG1 S U C ~  that for any u,v E VG, { s r ,  v) E Ec iff { q ( u ) ,  7 j ( u ) }  E I:'(;,. 

The definition for directed graphs is similar. 

A path of Eength s ( s  2 0) in an undirected graph G going from u to v (ti, i 1  E V )  is a 

sequence of vertices (vl,. . ., of G such that vl = u, vs+l = v, and {o, ,v,+~} E 1 for 

all i E {I, .  . . , s). The definition for a directed graph is similar. 

A chain of length s (s 2 0) in a directed graph G' going from 11 to L? ( u , 1 1  E V )  is ik 

sequence of vertices (vl,. . .,us+1) of G such that vl = u, v,+l = v, and ( v , ,  o,+l)  E 15 or 

(v;+~, u,) E E for all i E (1 , .  . . , s) (i.e., it is a path in the correspondir~g uridirectcd graph). 

An undirected [directed) graph G is called connected iff, for every two distinct vcrticos 

u,u E V, there is a path (chain) going from u to v. The ~naxi~rial C O I I I I ~ C ~ , ~ ~  ilidu~cd 

subgraphs of G are called the components of G. Clearly, a connected graph has at nlosl, onck 

component. 

An undirected graph in which every two distinct vertices arc adjacent is called a corn- 

plete graph. The complete graph on n vertices (which is unique up to isomorphisnl) is 

denoted by fi,. 

A clique of an undirected graph G is a subset S of V such that G[S]  is a cortiple1,c: 

$raphe 

For a graph G and an equivalence relation p on its set of vertices V, thc quolienl pup11 

G / p  = (V,, E,) is defined as follows: V, = V/p is the quotient set of V with rospc?ct to p, 

and any two distinct equivalence classes are adjacent in the quotient graph iff so are at, lc!a,st. 

a pair of the corresponding vertices in G. 

For a graph G and (possibly empty) sequences of vertex subsets S, = (Y l , .  . . , V,,) ard 

edge subsets S, = ( E l , .  . . , En,), the triple GC = (G, S,, $5,) is called a coloured grqh .  A 

vertex v E I/i (1 5 i 5 n,) and an edge e E Ei (1 < i < n,) are called colourd with colour 

i. The graph G is said t o  be the underlying graph of the coloured graph Cc.  

Two coloured graphs are called isomorphic iff their underlying graphs are isomorphic 
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and the bijection realizing that isomorphism preserves the colouring. 

2.1.2 Partial k-Paths and Path-Decompositions 

Definition 2.1.1 The class of k-terminal k-paths (k 2 0) is defined inductively as follows: 

i .  G = Kk is a k-path with the set of k terminals S = VG. 

ii. Let G be a k-path with the set of k 1 erminals S = {vl , . . . , vk). Any graph G' obtained 

from G by adding a new vertex v $ VG and edges {v, v;) (i  E (1,. . . , k)) is a k-path. 

An arbitrary subset of k vertices S' C S U {v) can be chosen as the set of terminals of 

GI. 

iii. No other graphs are k-paths. 

Remark 2.1.2 After a k-terminal k-path is constructed, its k terminals can be "forgotten." 

This underlying graph will be called a k-path. 

Definition 2.1:3 Any subgraph of a k-path is called a partial k-path. 

Example 2.1.4 Graphs Go (see Fig. 2.1), GI (see Fig. 2.2), and G2 (see Fig. 2.3) are 0- 

path, 1-path, and 2-path, respectively. (Note that the vertices in Fig. 2.1, Fig. 2.2, and 

Fig. 2.3 are numbered according to  the order in which they have been added to  form the 

corresponding k-path.) The siibgraph GL of G2 (see Fig. 2.4) is a partial 2-path. 

Figure 2.1: A 0- Figure 2.2: A 1- Figure 2.3: A 2- Figure 2.4: A par- 
path Go. path GI. path Gz. tial 2-path G;. 

Definition 2.1.5 [Robertson and Seymour [19]] A path-decomposition of a graph G = 

(V? EE) is a sequence of vertex-subsets (called bags) B = (B1,. . . , B,) such that 
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i. every vertex v E V belongs to  some bag B; (1 5 i 5 m),  

ii. for every edge e E E ,  there is a bag B; (1 5 i 5 m.) that cont.ains both ends of e, 

iii. for any i, 1 ,  j E {I , .  . . , m} such that i 5 I 5 j ,  Bi n Bj BI. 

Notation 2.1.6 Instead of path-decomposition, we will often use the term decoinposition. 

Definition 2.1.8 The path-width of a decomposition B = (B1,. . . , B,,) is 

max {IB;l) - 1. 
ISiSrn 

A decomposition of path-width at most k will be called a k-decomposition. 

Definition 2.1.9 The path-width of a graph G is the minimum path-width over all dccoin- 

positions of G. 

It was not coincidental that the 0-path Go, 1-path G1, and 2-path C2 turlled out Lo 

have the path-widths 0, I, and 2, respectively. The following claim is easy to prove. 

Fact 2.1.10 A graph G is a partial k-2ath iff it is of path-width at most k. 

Notation 2.1.11 We denote by B, (I < T 5 m) the union of the first T bags in the scquencc: 

B = (B1,. . . , B,), i.e., B, = UI=l B; for any r E {I, .  . . , m}. 

Notation 2.1.12 For a partial k-path G = (V, E) with a decomposition U = (I l l , .  . . , & j ,  

first(v) is the number of the bag where a vertex v E V appears for the first time (i.c., 

first(v) = minl<l<m(llv - E BI}), new(&) (i  E (1, . . . , m)) is the set of vertices in B; that 

appear in the decomposition for the first time.(i.e., new(&) = {u E B;lfirst(u) = i)), and 

old(B;) is the set of vertices in B; that also appear in some earlier bag (i.e., old(Ui) = 

Bi \ new(Bi)). 

Definition 2.1.13 For a partial k-path G = (V, E) with a decomposition B = (B1,. . . , Dm) ,  
a vertex u E B, (1 < T < mj is called a drop vertex of B, iff for every w E V\B,, {u, w} 6 1;:. 
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Notation 2-1-14 The set of all drop vertices of B, (1 5 r 5 m) will be denoted by 

drop(&). 

Definition 2.1.15 A vertex v E Br (1 _< r 5 m) that is not a drop vertex of B, is called a 

non-drop vertex of B,. 

Notation 2.1.16 The set of all non-drop vertices of B, (1 < r 5 m) will be denoted by 

non-drop(Br ), i.e., non-drop(B,)= B, \drop(&). 

Definition 2.1.17 A decomposition B = (B1, BT, . . . , B,, B;) is called extended iff drop- 

ping old vertices and adding new vertices occur separately, i.e., B; = non-drop(B;) for each 

i E {I7- . . ,m}.  

Example 2.1.18 Here is an extended 1-decomposition of the graph GI: 

2.1.3 Nice Decompositions 

In this subsection, we define a special kind of decomposition. It has many useful properties 

to  be fully exploited later in the thesis. 

Definition 2.1.19 A decomposition B = (B1, . . . , B,) of G = (V, E) is called nice iff all 

of the following conditions hold: 

i .  for any vertex v E V ,  if v E old(Bi) ( i  E (2,. . ., m}), then v could not be dropped 

earlier, i.e., v E n o n - d r ~ p ( B ~ - ~ ) ,  

ii. new(Bi) # 0 for every i E {I,. . . , m), 

iii. drop(Bi) # 0 for every i E {I,. . . , m}, 

iv. for any i E (2,. . . , m), if Inew(Bi)( > 1, then the following two conditions are satisfied: 

(a) fur an arbitrary vertex v E V \ Bib17 any decomposition (B1, . . . , old(B;) U 

{v), C1, . . . , Gs) of G is such that drop(old(Bi) U {v}) = 0 (i.e., for each u E 

old(B;) u (v), there is w E V \ U {v}) such that {u,  w} E E ) ,  
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(b) for an arbitrary subset S C new(B;), any decomposition ( B1, . . . . U;- old(f1;) u 
S, C1,. . . , C,) of G is such tha.t d r ~ p ( ~ l d ( B ~ ) ~ S )  = 8 (i.e+, for ea.cll 7~ E o ld (D, )~S ,  

there is w E V \ (aiel U S) such that { u ,  w} E E ) .  

Here condition (i) says that vertices are dropped from a bag as soon as possible, con- 

dition (ii) that at least one new vertex is always added to form the nest bag, conclition 

(iii) that each bag contains at least one drop vertex, and condition (iv) that if mow t l iat i  

one new vertex is added to  form the bag Bi, then both (a) there is no single nort-adtled 

vertex that could be chosen instead of the set new(B,) so that the new bag contains a drop 

vertex and (b) the set new(Bi) is a minimal one (with respect to  set inclusion) such that 13, 

contains a drop vertex. 

Remark 2.1.20 By definition, nice decompositions cannot be extended decompositions. 

Definition 2.1.21 A contiguous subsequence (Bi, . . . , B;+,) (1 5 i, i + 1 < m )  of a nicc 

decomposition (B1,. . ., B,) is called monotonic iff !new(Bi)l > 1 and Inew(B,)I = 1 for 

each i < T 5 i + l .  

Remark 2.1.22 A nice decomposition is defined so that it is monotonic as long as possible, 

then there is a "jump" (more than one new vertex is added to a bag) whish starts a new 

monotonic piece, and so on. 

Theorem 2.1.23 Every k-decomposition can be converted into a nice k-decorrzpositiorz. 

Proof. A given k-decomposition B = (B1,. . ., B,) induces a linear order on vertkos of 

the original graph through the order in which they are added to  that decomposition, That 

is, we take the sequence (new(B1), . . ., new(B,)) of sets of vertices and, for each n(:w(Ui) 

(1 _< i < m), order the vertices in new(Bi) arbitrarily. This gives us a sequence S of verticcs 

of the graph. 

Step 1. We choose the first bag of the given decomposition as the first bag of the nice 

decomposition t o  be constructed. 

Step i (i > 1). A sequence of bags (Bi, . . . , B:-l) has been constructed. We define the 

set Br as Bf-l without its drop vertices. We go through our sequence of vertices lookha 

for a non-added vertex v such that Br U {v) contains a t  least one drop vertex (with respect 

to  the already constructed sequence of bags). If we can find such a vertex, the hag Bi is 

defined as Br IJ {v). 
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If no such vertex exists, we choose the sequence S; of the first p non-added vertices 

(where p = k + 1 - IBf-,j), take its shortest prefix SI such that By U Si contains at least 

one drop vertex, and form the minimal-size subset S;" of 5': such that B;" U S;" contains a t  

least one drop vertex. The bag B;' is then defined as B;" U S;". 

It is not difficult to  see that the new sequence (B',, . . . , Bf-, , Bf) can be completed to 

some k-decomposition in both cases. 

Indeed, after adding v or S:, we just drop all the drop vertices of this new bag (there 

is at least one such vertex) and then continue the decomposition by adding the non-added 

vertices in the order they appear in our sequence S. 0 

Definition 2.1.24 We call a nice k-decomposition B = (B1,. . . , B,) of a partial k-path G 

a (I;, p)-decomposition (for some p E (1, . . . , k)) iff Inew(B;)l _< p for all i E (2, . . . , m). A 

partial k-path allowing a (k,p)-decomposition will be called a (k,p)-path. 

Remark 2.1.25 By the above definition, every (k, 1)-decomposition is monotonic. 

Example 2.1.26 The decompositions B(Go), B(G1), and B(G2) (see Example 2.1.7) in 

the previous subsection) are (k, 1)-decompositions. 

2.1.4 Directed Partial k-Paths 

In this subsection, we define a certain labeled digraph induced by a nice decomposition B 

of a k-path G. This labeled digraph will allow us to define a partial order on the set VG, so 

that if u is less than v (for any u, v E VG), then u appears in B no later than v. 

A nice decomposition B = (B1,. . . , B,) of a partial I;-path G = (V, E) induces the 

following directed graph G$ = (V, E ~ ) :  

Given a bag B, = old(B,) LJ new(B,) (1 < r _< m), where old(B,) = (211,. . . ,us)  and 

new(3,) = {vl,. . . ,vt),  if (vi,aj} E E, then (v;, uj) E E~ (i.e., we direct the edges from 

new to  old vertices). 

If t > 1, we order the vertices in new(&) so that the drop vertices of B, (if any) come 

before the non-drop vertices (the order within each of the two sets of vertices new(&) n 
drop(B,) and new(B,) Il non-drop(B,) is arbitrary). Then any existing edges are directed 

from "iast" to  "first" vertices, i-e., for v, a E new(B,) such that {v, u} E E, (v, u) E E~ iff 

2. follows u in the ab0t.e-dehed sequence of new vertices. 
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Notation 2.1.27 To simplify the notation, we will often oni t  the superscript i n  h'ff aud 

the subscript in G;. 

Remark 2.1.28 Using the definition of a nice decomposition, wc can prove that i f  an old 

vertex u j  (1 < j < s) is a drop vertex of B, (1 < r < m,), then for each new vertex u,, 

i E {I, . . . , t } ,  there is an arc (vi, u3) E E in Gd. This holds simultaneous~y for all thc 

vertices in old(B,.) n drop(B,). 

Similarly, if some new vertex v; (1 < i 5 t )  is a drop vertex of R,. and is the first 

vertex in new(B,.) (according to  the linear order defined above), then for each new vcrtcx 

vj, j E {I,. . . , t }  \ {i}, thcre is an arc (vj, vi) E E in Gd. 

Now we label our digraph G~ as follows: 

For a vertex u E old(B,.) n drop(B,) (1 < r < m), we choose arbitrarily some vertex 

v E new(B,.) and colour the arc v -+ u with some nea  colour. This coloured arc will bc 

denoted as a double arrow v + u. If there are other drop vertices in old(B,.), the arc front 

v to  each of them also becomes a double arrow. 

Notation 2.1.29 The subset of double arrows in E will be denoted by E,  

If new(B,) is a singleton set containing some vertex v which is the only drop vertex of 

B, (i.e., new(B,.) = drop(B,)), we colour v with some new colour (the same colour for all 

such vertices). Each such coloured vertex will be denoted by having a loop arrow. 

We also colour (with some new colour) the vertices of V tlgat form the first bag 13, of 

the nice decomposition R. 

Example 2.1.30 For the 2-path G2 and the partial 2-path Gh defined earlier, the nice 

decomposition B(G2) = B(GL) induces the labeled digraphs G$ and Gid shown in Figx. 2.5 

and 2.6, respectively. (Note that double arrows are shown as thick single arrows arid that, 

the labeling of the vertices in the first bag is not shown.) 

Remark 2.1.31 In generd, the same labeled digraph G~ can be induced by different rricc? 

decompositions of G. (For example, vertices 4 and 5 can be interchanged in the decompo- 

sition B(GL), but the new decomposition will induce the same labeled digraph Cf.j 

Notation 2.1-32 Below, whenever we speak of a digraph Gd, we mean the correspondingly 

labeled digraph G ~ .  



Figure 2.5: The labeled digraph G;. Figure 2.6: The labeled digraph ~ 5 ~ .  

Definition 2.1.33 Given the digraph Gd induced by a nice decomposition B of a partial 

k-path G = (V, E ) ,  we define the following binary relation of strong precedence, denoted by 

;:on the set V: 

For any u, v E V, u 1: v iff either (17, u) E E  or there is some u E V such that (u, w) E E  

and (v, w) E E j  (see Fig. 2.7). 

Figure 2.7: The definition of u v. 

The reflexive and transitive closure of <, denoted by j, is called precedence. 

Remark 2.1.34 Semantically, u 4 v means that first(u) 5 first(v). 

Notation 2.1.35 For a partial k-path G = (V, E) given with its nice decomposition B = 

( B 1 , .  . ., B,), we denote by V the set V \ B1. 

Example 2.1.36 For the 2-path G2, the relation 5 induced by G$ is, actually, a linear 

order on V yielding the sequence (3,4,5,6). 

This is not true for the partial 2-path Gid, however. Vertices 3, 4, and 5 are pairwise 

incomparable with respect to  the precedence 4: induced by G;~. 
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2.2 Logic and Definability 

2.2.1 Basic Definitions 

Let A be an arbitrary set and let n > 1 be any number. A subset of .An is called an n-nry 

relation on A. A map from -4n to {True,False) is called an n-ary predicate 012 A. 

Each n-ary relation Ii C A" can be uniquely asscciatc; with a predicate T so thal, f o r  

any n-tuple (al, .  . . ,a , )  of elements of A, (a l , .  . .,a,) E R iff r ( a l , .  . . , a , )  = True. 

Conversely, any n-ary predicate T can be uniquely associated with the set of 71-tuplcs 

on which r assumes the value True.  (We call such n-tuples the trtrth-values of T . )  

2.2.2 Logics 

Let II = {pi}iE1 (I some countable set) be a family of n(i)-ary relation symbols pi (1: I ) .  

Definition 2.2.1 A relational II-structure is a pair P = (D, n), where 

i. D # 0 is a set called the domain or vniverse of P ,  

ii. T is a. map defined on II such that ~ ( p ; )  = pi is an n(i)-ary predicate on I). 

Let K be a class of relational 11-structures. 

Definition 2.2.2 The first-order language corresponding to K (denoted by L1(IC))  has lilc 

usual logical connectives: 1 ("not"), A ("and"), v ("or"), + ("if-then"), arid ("if and 

mly if"), universal (V) and existential (3) quantifiers, equality symbol =, a sequence u, v, 

w, . . ., of individual variables, and an n(i)-ary predicate pi for each i E f. 

Definition 2.2.3 The L1(K)-formulas are defined inductively as follows: 

i. Atomic formulas 

(a) If u and v are individual variables, then u=v  is an L1 (XI-formula. 

(b) If u l , .  . .,%(;I are individual variables and pi is an n(i)-ary prcdicate syrnbol 

(n 2 0), then pi(ul,. . . , %(;)) is an L1(lC)-formula. 

ii. Compound formulas 

(a) If 4 is an Ll(K)-formula, so is 14. 
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(b j If 4 and II, are L1(K)-formulas, so are (4 A $), (4 V $), (d, + $), and (4 u $). 

(c) If d, is an L1(K)-formula and v is an individual variable, then \Jv$ and 3v4 are 

L1 (K)-formulas. 

iii. No other formulas are L1(K)-formulas. 

Monadic second-order logic (MS) is the extension of the first-order logic (F) allowing 

quantification over monadic (unary) predicates. Since unary predicates can be identified 

with the sets of their truth-values, one can extend the corresponding first-order language 

with set variables and the membership symbol E (with the usual interpretation), and allow 

quantification over set variables. 

Definition 2.2.4 The monadic second-order language corresponding to X: (denoted by 

Lm2(K)) is the extension of Ll(K) by adding a sequence of set variables U , V ,  W, . . ., and 

the membership symbol E. 

Definition 2.2.5 The class of Lm2(K)-formulas is the extension of the class of L1(K)- 

formulas by allowing the atomic formulas v E V as well as quantification over set variables. 

Counting monadic second-order logic (CMS) was defined by Courcelle 1101 as the exten- 

sion of MS by the unary predicate symbols mod,,, (p < q are non-negative integers), with 

the intended meaning: modp,,(V) = True iff /SI = p mod q, where S is the set denoted by 

the set variable V. The corresponding language is denoted by LCm2(IC). 

If Q, is a formula (in some language appropriate for K) with free variables XI,. . . , x,, 

we indicate this by writing @(xl, .  . . , q). (Recall that free variables in a formula are those 

that are not bound by any quantifier.) 

For @(xl, . . . , x,), we denote by @[dl, . . . , d,] the result of substituting the elements 

dl,. . . , d, of the domain D for the variables XI, .  . . , G. 

Let L be some language appropriate for K. For an L-formula @ and a 11-structure 

A- K, we write Ii' @ to denote that Q, is satisfied by I{ (i.e., X is a model fm a). 

2.2.3 Definability and Colourability 

Definition 2.2.6 Let P be some property over a class K of relational It-structures. The 

property P is called definabie in F (MS, or CIMS) over K iff there is an L1(IC)-formula 

(Lmz(K)-formula, or Lma(K)-formula) @ such that for each K E K, K satisfies the property 

P iff M + ch. 
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Notation 2.2.7 We call the properties definable in F, MS. and CMS, F-dcfinablc, MS- 

definable, and CMS-definable, respectively. 

Definition 2.2.8 Let R be some n-ary relation over the domain U of a Il-structure h'. 

Relation R is called F-definable (MS-definable, or CMS-definable) ozw I< if thmc is an 

F-formula (MS-formula, or CMS-formula) 4(x1,. . .,x,) such that for any d l , .  . . , d,, E I), 

the tuple (dl,. . . , d,) E D iff q5[dl,. . . , d,]. 

Fact 2.2.9 (Courcelle [lo]) Let p be a binary relation over the domain D of a 1 3 - s t r ~ ~ ~ ' t t ~ r c  

K. I f p  is MS-definab[e over h', then so is its reflexive and transitive C ~ O S Z ~  p*. 

An undirected (directed) graph G = (V, E )  can be considered as a relational (p , , ,  pc ,  pint)- 

structure with the domain D = V U E, where p, and p, are unary predicates such that for 

any d E D,  p,(d) = True iff d E V, p,(d) = True  iff d E El and pi,, = Inc  is the ternary 

incidence predicate, i-e., for any e E E and u, v E V, Inc(e,u, v).= T rue  iff e = {u, 1 ) )  

(e = (a, 4). 
Thus we can have F-definable (MS-definable, or CMS-definable) properties ovcr an 

arbitrary class G of graphs. 

Example  2.2.iO Connectedness of a graph is an MS-definable property. Here are tfic 

corresponding MS-formulas for a graph G = (V, E): 

Connected r VV1 VV2 (V1 # 0 V2 # 0 A V l  U V2 = V) + Adj(V1, V2), 

Adj(Vl,V2) r 3vl 3v2 vl E V1 A v2 E V2 A adj(vZ,v2), 

adj(vl , v2) r 3e Inc(e, vl , v2), 

where 

(V; # @) - 3v p,(v) v E V; (i = 1,2) 

and 

(V1 U V z  = V ) _ ' d v  P,(v)+ ( v E V ~  V V E  V2). 

J orms a Example  2.2.11 We can dso  define in MS if a given set of edges C of a graph C' f 

simple path linking two given vertices u and v. 

Using the previous example, we can define the MS-formula B(E, u, v) such that B[C, u, v ]  

is true iff the graph Gc = (Vc,C) (where Vc is the set of ends of edges in C) is connected 

and u, v E Vc. Then the required formula is defined as 

8[C,ss;w] A VE(Ec C/\B[E,u,v] + E =  C). 
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(It should be obvious that the equality and inclusion of sets are MS-definable.) 

Definition 2.2,12 A property P over a class j: of graphs G is called F-definable (MS- 

definable, or CMS-definable) over a class G' of tl e corresponding coloured graphs 

iff there is an F-formula (MS-formula, or CMS-formula) @(XI, . . . , Xnu , Y1, . . . , Yne ) such 

that for every graph G E G, G satisfies P iff @ is true on the corresponding coloured graph 
* 

GC, i-e., 

G b  @[Vl,+*.>VnV7El>--~~Ene]- 

Colouring a graph G "properly" imposes some additional structure on G, which is then 

used in defining a required formula cf, for a property P. A colouring that provides the desired 

structure on G will be called admissible with respect to P. 

Definition 2.2.13 A property P of a graph G is called F-colourable (MS-colourable, or 

CMS-colourable) over a class G of graphs G iff it is possible t o  colour the graphs G (using 

the same constant number of colours for each) so that the property P is F-definable (MS- 

definable, or CMS-definable) over the class of thus coloured graphs. 

Lemma 2.2.14 Let P be an F-colourable (MS-colourable, or CMS-colourable) property over 

a class of C O ~ O U R ~  g ~ ~ p h s  GC = (G, (Vl, . . . , VnV), (El,. . . , En,)), If there is an F-form~la 

(1\1iSSfornula, or CMS-fornula) that checks the admissibility of a colouring with respect to P ,  

then P is F-definable (MS-definable, or CMS-definable) over the class of underlying graphs 

G. 

Proof. Indeed, let @(XI, .  . . , Xnv, YI, . . . , Yne) be the formula corresponding t o  P, and 

leb 9(X1,. . . , Xn,,Y1,. . . ,Yn,) be the formula that checks the admissibility of a colouring 

with respect t o  P. The required formula for P over the class of underlying graphs is the 

following: 

The following definitiozls axe similar t o  those given by Courcelle [ll] for describing 

definable gmph tmnsductwns. 



Let G be a graph (i-e., a {p,,  p,, pinC)-structure (D, r ) ) ,  let 

be a coloured graph, and let 

Definition 2.2.15 A tuple (Gc, y,, ye, yinc) is called admissible iff 

i. for any d E D, at  most one of the formulas 

and 

~e[Vl,.-.,Vn,,E1,..-7En,,d] 

holds, and 

ii. for any dl,d2,d3 E D ,  if 

Definition 2.2.16 The gmph defined by an admissible tuple (Gc, ru, y,, mi;,,), denoted by 

A(Gc,r,,re, yinC), is the (p,,pe,pinc}-structure (D, ii), where D is the set of those d from 

D for which either r,[V17.. . , Vn,, El,. . .,En,, dl or ye[Vl,. . . , V,,, E l , .  . . , En,, dl holds, and 

for any d E D, ii(p,) is true on d iff so is 7JV1, . - . , Vn, , E l ,  . . . , En,, dl, ii(pe) i~ true on d 

iff SO is re[Vl, . . . , TJn, , El, . . . En,, 4, and for any dl, d2, d3 E B, %(pin,) is true on dl , dz, ds 

iff SO is ~inc[Vl, - - Vn,, El, - - - En,, dl, d2, d3]- 



Let (; and G" be some graphs (i-e., relational structures (D,n) and (Dl. TI), respec- 

ti vely ). 

Definition 2.2.17 A graph G' is said to  be CMS-colourable in terms of G iff there is an 

admissible tuple (GE,y,,,;~e.yi,,) such that the graph G1 = (Df,d) is isomorphic to the 

graph A(GC> y v ,  ?e,  ~ i m c ) -  

defined over G such that for any sequence of vertex subsets Vl,. . .,I/,, and any sequence 

of edge subsets E l , .  . . , En, of G, the validity of the formula y [Vl, . . . , Vn, , El,  . . . , En,] 
implies that the tuple f Gc = f G, (15, . . . , lLn,), (El, . . . , En,)), T,, ye, xnc) is admissible and 

G' .3(GC, y,, "ie9 xinc j- 

Theorem 2.2.19 (Courcelle f113) Let G be a graph and let p be an equivalence relation 

on its set oftw-tices V .  I fp  is CIWS-definable, then the quotient gnrph G/p is CMS-definable 

in dems of G. 

Proof. First we show that G/p is CMS-colourable in terms of G. 

Consider a coloured graph GC = (G, (Vl), ( E l ) ) ,  where 

i. E tr is such that it contains exactly one vertex from each p-equivalence class in 

V/p ,  and 

ii.  El C E is such that it contains exactly one edge from each p-equivalence class in 

E / p .  (Two edges el = { a l ,  all and ez = {az ,  v2) are p-equivalent iff ui and v; are not 

pequivalent ( i  = 1,2), and [ul f, = [a2], and [vI], = [v~],.) 
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Then 

and 

Yinc(X1 , Yl,zl ,  ~ 2 ~ 2 3 )  3~ 3~  P ( U ,  5%) A P(V ,  5%) A pinc(zl t U, v). 

It is clear that conditions (i) and (ii) can be checked in MS, which ends the proof. 

We have the following lemmas for our earlier definitions. 

Lemma 2.2.20 For any partial k-path G with a nice decomposition B, Ihe ctiyrnyh G" 

induced b y  B is MS-colourable in terms of G. 

Proof. The set of vertices of Gd is the same as that of G. 

By definition, each vertex of Gd has at most k outgoing arrows. We colour the edges 

and vertices of G with some new k + 1 colours as follows: 

The vertices in B1 are coloured with 1,. . . , k + 1 so that no two vertices get the samc 

colour. If for some vertices u and v in B1 such that u  is coloured with .i and v is colo~~rcd 

with j (1 < i ,  j < k + I), (u,v) E E, then the edge {u, v) of G is coloured with j .  

For any other vertex w of G~ with outgoing arrows to some vertices 211,. . . , u d  ( d  5 k )  

coloured with jl , . . . , jd, respectively, we colour w with an arbitrary colour frorn the set 

(1, . . . , k + 1) \ {jl + . . . , jdj, and we colour every edge {w, u i )  of G with j; ( 1 < i 5 d ) .  

Then an edge e = {u , v )  E E is an arc (u,v) in Gd iff e and v are coloured with the 

same colour in the coloured graph defined above. This is easily expressiblc in MS. 

To encode the sets of double arrows, vertices with loop arrows, and verticcs i n  the first 

bag of B, one just should use three new colours (one for each set). a 

Lemma 2.2.21 The precedence relation 5 induced b y  a digraph G~ of G is MS-colouruDle 

over G. 

Proof. The graph Gd is MS-colourable in terms of G, and -( is readily definable in MS over 

Gd. 0 
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2.3 Automata and Recognizability 

2.3.1 Basic Definitions 

Here we recall some standard terminology (see, e.g., [16]). 

A deterministic finite automaton is a 5-tuple A = (C, Q, 6, qo, F ) ,  where C is a finite 

set of input symbols, Q is a finite state of states, 6 is a transition function (i.e., a map from 

Q x C to Q), qo E Q is the initial state, and F 5 Q is a set of final states. 

A word w over an alphabet C (i.e., w E C*) is accepted by an automaton A iff 6*(qo, w) E 

F, where 6' : Q x C* -+ Q is the extended transition function of A defined as follows: 

6*(q, a )  = d(q, o) for any a E C, 6*(q, us) = 6*(S(q, a ) ,  s) for any a E C and any word s over 

The set of words (language) accepted by an automaton A is denoted by L(A), i.e., 

L ( A )  = {w E C*1G*(qo, w) E F). 

2.3.2 Recognizability of Partial k-Paths 

Let G = (V, E )  be a partial k-path with an extended k-decomposition B = (B1, .  . . , B,). 

Let 0 : V -+ (1,. . . , k + 1) be a labeling function on the set of vertices of G such that any 

two distinct vertices in the same bag or in two consecutive bags have different labels. We 

shall call such labeling functions admissible by B. (It is not difficult to  see that k+ 1 colours 

always suffice in the case of extended decompositions.) 

Notation 2.3.1 For the labeling function and any set of vertices W V, P(W) = 

utLGwP(wj. 

For B and /3 given above, we define a string ap(B) of coloured undirected graphs (on 

a t  most k + 1 vertices) as follows: ap(B) = (ap(Bl), . . . , ap(B,)), where for a bag B; 

(1 5 i < m), up(B;) = (Vp(Bij7 Ep(B;)) such that 

ii. for every u,ul E B;, @juj,p(ul)) E Ep(Bi) iff {u,ul) E E. 

Let 6, be the set of d coloured (with colours 1,. . . , k + 1) undirected graphs on a t  

most k + I S~ertices. (Clearly, the cardinality of Cg is bounded by a function of k.) 



Definition 2.3.2 A family G of partial k-paths G is called recog~aixble iff thcrc is at1 

automaton A with the set of input symbols Cg such that for any partial k-path G with 

some extended k-decomposition B and some labeling function /? (admissible by B), G E 5' 
iff ap(B) E L(A). 

Remark 2.3.3 In the above definition, the choice of an extended k-decomposit.ion B and 

a labeling function ,b' is not important, i.e., for any other extended k-decornpositior~ f1' of (? 

and a labeling function P' admissible by B', we must have ap(B) E L( A )  iff apt( B') r L( A) .  

2.4 Definability vs. Recognizability for Words 

Here we consider the solution for the case of words (since decompositions of partial k-paths 

are also words over a special alphabet of coloured graphs C,). 

Let C = {al,. . . ,a,) be a finite alphabet. A word w = a;, . . .ai, over the alphabet C 

can be considered as a labeled digraph (path) G, = (V,, Ew), where V, = (1,. . ., n}, for 

every j E (1,. . . , n  - I), (j, j + 1) E E,, and each vertex j is labeled with aiJ. 

In our terminology, w is a coloured graph Gc = (G, (Vl,. . ., V,), 0) such that G is 

a directed path on n vertices, Vl,. . . , V, form a partitioning of V (i.e., they are pairwisc 

disjoint and their union is V ) ,  and v E T/i (v E V and 1 5 i 5 s)  means that a vertex v is 

labeled with a;, which will be denoted by a(v) = ai. For Gc, ct(GC) = w denotes thc word 

over C "encoded" by the graph Gc. 

Let F be some family of coloured graphs GC corresponding t o  some words over C. That 

family is recognizable by a DFA A = (C, Q, 6, qo, F) iff L( A) = {a(Gc)IGc E GC). 

Theorem 2.4.1 (Biichi [8]) A language over C is recognizable iSf it is MS-definable. 

We only give a proof of the first part (i.e., that of recognizability implying MS-defin- 

ability), since that is what we want to  prove for the case of partial k-paths. 

Proof. (+) Let A = (C, Q, 6, qo, F) be a DFA with C = {al,. . . ,us)  and Q = (yo,. . . , yl}+ 

First we assume that L(A) does not contain the empty word t. 

A coloured graph GC = (G, (Ifr,. . . , V,), ()) (where G is a path vo -+ . - 4 v,) is 

recognized by A iff there is a labeiing q : V -t Q such that 

ii. for every i E (0,. . . , n - 1), 6(q(vi), a(v;)) = q ( ~ ; + ~ ) ,  and 
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This can be written in MS as follows: 

3 x 0 . .  . 3Xt "Xo, . . . , Xt  form a partitioning of V" A 

(vv fst(v) * V(k, j ) :  6(qopk)=q3 ( v E  V k  A V E  Xj))  A 

(Vu tfv Y e  Inc(e, u,v)  * V(k,i , j) :  6(q,,o,)=q, (U E Xi A E X j  A E Vk)) A 

(Vv lst(v) Vj: q , E ~  v E Xj),  
where v E X j  (1 < j < t )  has the intended meaning of q(v) = qj, fst(v) is true for vo only, 

and lst(v) is true for v, only. Clearly, both fst(v) and lst(v) are easy to  define in MS. 

The case of L(A)  containing r can also be described in MS. The empty word is: repre- 

sented by the empty graph, which is accepted by A iff qo E F ,  EI 



Chapter 3 

The Case of Connected (k,l)-Paths 

All the graphs considered in this chapter are connected. 

We will define certain coloured (k, 1)-paths GC and show that recognizability is CMS- 

definable for families of these coloured (k, 1)-paths. To convert the corresponding CMS- 

formula into a formula for the underlying (k, 1)-paths G, we give the MS-definable admis- 

sibility conditions that check if a colouring of G induces the required structure on G (scc 

Lemma 2.2.14). 

To show that a recognizable family of (coloured) (k, 1)-paths G is CMS-definable, it 

suffices to  define in CMS some extended decomposition of G. (Then one can procecd by 

analogy with the case of words (see Theorem 2.4.1).) 

A decomposition of G can be defined if some linear order on V is known. Let 5 be an 

arbitrary linear order on V, and let (vl , . .  . , v,) be the sequence of vertices in V ordered 

according t o  <. We define the following sequence of sets B' = (B1,. . . , B,), where 

B; = (v;} U (vjlj  < i and there is j' 2 i such that {vj, vjt} E E ) ,  

Clearly, B' is a decomposition of G. We will denote the decomposition B' by B<.  - 
For a partial k-path G, a linear order 5 on V is called k-generative if the path-width 

of the decomposition B< - is a t  most k. 

Given a (k, 1)-decomposition B of G, one can define the following partial order on V: 

For any u, v E V, u is less than v iff first(u) < first(v). Ordering the vertices in  B1 arbitrarily 

gives us a Linear order on V that is obviously a b-generative linear order on C.  

We will also need the following definition: For a partial k-path G, a partial order on V 

is called k-generative if every completion to a linear order on V is k-generative. 
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We will show that k-generative linear orders are MS-definable over suitably coloured 

graphs GC. (More precisely, we define k-generative linear orders on certain quotient graphs 

of GC. Then we show how to  get the CMS-formula for recognizability of GC by using these 

linear orders on the quotient graphs of GC.) 

3.1 Extracting a Decomposition 

Here we describe how, using a suitable colouring of a (k, 1)-path G, one can uniquely re- 

construct the string of coloured graphs ap(Bf) for some decomposition B' of G and some 

labeling function /3 admissible by B'. 

3.1.1 A k-Generative Partial Order 

Let G be a (k, 1)-path, let B = (B1,. . . , B,) be an arbitrary (k, 1)-decomposition of G, and 

let G~ be the digraph induced by B. In this subsection, we show that a k-generative partial 

order on G is MS-definable over G$. 

Remark 3.1.1 By the definition of a (k, 1)-decomposition, each vertex of G~ (except for 

those forming the bag B1) has an outgoing double arrow or a loop arrow. 

Remark 3.1.2 Since each bag Bi (1 < i 5 m) of the (k,l)-decomposition B contains 

exactly one new vertex, for any vertices u, v E V ,  u < v means that first(u) < first(v). 

Lemma 3.1.3 Let G,  Gd,  andB be the same as above. Let S = Br ,dr some 1 5 r < m and 

let v E V \ S be any vertex minimal with respect to 5 (i.e., for every u E V ,  u < v implies 

that u f S ) .  Then thew exists a (k, 1)-decomposition 3' = (B1,. . . , B,, . . , BL) of G 
such that B:+l = old(B,+l) u { v ) .  

Proof. By Remark 3.1.1 and by the definition of 3, the bag Bi+l contains a t  least one drop 

vertex. Thus we can continue the sequence (B1, . . . , B,, BC+l) to  some (k, 1)-decomposition 

B' by adding the non-added vertices of G in the order they were added to  the original 

decomposition B. 

Here is a nondeterministic algorithm A suggested by Lemma 3.1.3 for constructing 

some (possibly different from B )  (k, 1)-decomposition B' = (Bi, . . . , B&) of G given the 

digraph G&: 
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Algorithm A 
Step 1. Bi = B1. 

Step i (1 < i 5 m). Let (Bi , . . . , B:-,) be an alre~dy constructed prefix of the (k, 1)- 

decomposition Bf. Take Bi = non-dr~p(B;_~) U {vj, where v is an arbitrary minimal (with 

respect to ) non-added vertex (i.e., v is any minimal vertex in the set V \ l3:-,). 

We extend 5 so that for any two vertices u E B1 and u 4 B1 incomparable with respect 

to 5, u is less than v. Let 5' denote the transitive closure of that extension. 

Now we can state the following theorem. 

Theorem 3.1.4 The relation 5' is a k-generative partial order on G. 

As shown in Lemma 2.2.21, the precedence 5 (and therefore, the k-generative partial 

order 5' on G) is MS-definable over the digraph Gd. 

We end this subsection with the following lemma. 

Lemma 3.1.5 For the (k, 1)-decomposition B' constructed by algorithm A, G& is iso~nor- 

phic to G$. 

Proof. For any vertex v E V, the vertices adjacent to it can be divided (using the structure 

of G$) into two sets: the set of those with incoming arrows from v, denoted by V;,(v), and 

the set of those with outgoing arrows to  v, denoted by VOut(v). 

By the construction of B', for every Bi (1 < i 5 m) such that new(BI) = {v) (v E V), 

t<.,,(v) old(Bi) and V&(v) n old(3:) = 0. It is also not difficult to  see that the drop 

vertices of B: are exactly those that had incoming double arrows from v or had loop arrows 

in the digraph G i .  Thus, B' induces the same single arrows, double arrows, and loop arrows 

as B. 0 

3.1.2 A E-Generative Linear Order 

Algorithm A from the previous subsection is nondeterministic because there can bc more 

than one minimal vertex in the set of vertices yet to be added (any of which can be chosen). 

In this subsection, we show how one can linearly order those alternatives (or, more precisely, 

certain equivalence classes of those alternatives) by dividing the set of vertices V into a 

sequence of (pairwise disjoint) k + 1 sets ( P I , .  . . , Pk, L )  . 
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We colour the  digraph Gg  so that the precedence relation 5 is complete3 to  a linear 

order on the s6t non-drop(B1). (We do so by colouring the non-drop vertices of B1 with 

colours 1,. . . , k so that no two vertices are coloured the same). 

Notation 3.1.6 We will denote this new coloured digraph Gg  by Gil  (or simply Gdl). 

Using Gdl enables us to define the following k sets PI, . . . , Pk: 

For any v E V, v E Pi (1 _< i _< k )  iff i is the minimum over the labels of the vertices 

u E non-drop(B1) such that there is a path of double arrows in the digraph Gdl from v to  

u. 

Example 3.1.7 The digraphs G$ and Gid from Example 2.1.30 can be considered as G$' 

and Gyl ,  respectively. We have the following two sets for them: PI = {1,3,6) and P2 = (2). 

Remark 3.1.8 Since no vertex in Gd can have more than one incoming double arrow, the 

induced graph Gd'[P;] is a path of double arrows for each i E {I, .  . . , k). 

Definition 3.1.9 The vertices in U;==,P, are called nodes. The set of all nodes of G will be 

denoted by N. 

Definition 3.1.10 The set of leaves is defined as v \ N and is denoted by L. 

Example 3.1.11 For the digraphs G$ and G/zd from Example 2.1.30, L = {4,5). 

Remark 3.1.12 Leaves are exactly those vertices of Gdl that have loop arrows. 

Remark 3.1.13 By the definition of a (k, 1)-decomposition, each leaf w E L has at most 

k outgoing single arrows and no incoming arrows (except for the loop arrow). Thus, all its 

arrows point to  at most k nodes from different sets PI, . . . , Pk. 

Below we define a partial order on the set V that will be a linear order on the set of 

nodes N. We add new vertices v l  and VT to  V such that for any v E V, v l  3 v 5 V T .  We 

assume that ~1 and v~ belong t o  the set PI. 

Since each Pi (1 < i 5 k) is linearly ordered by 5 (see Remark 3.1.8), we can write it 

as a corresponding sequence cf vertices. Let fi = (v:, . . . , vtl),  . . . , Pk = ( v f ,  . . . , $) .  
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Notation 3.1.14 For any u ,  v E V ,  we denote by (u, v] the set (zu E I/[ to 5 1)  and zo $ u ) .  

And for any u1, . . . , ut, vl , . . . , vt E V ( t  2 l), we denote by ( ( u l ,  v l ] ,  . . . , ( ut ,  v t ] )  the set 

( ~ 1 ,  vl] n - - - n (ut7 vt]. 

We partition NU L into the sets ((v:, v & ~ ] ) ,  1 < i < 11. This partitioning will be callcd 

the partitioning of level 1 .  The sets ( ( v f ,  v k l ] ) ,  1 5 i < ZI can be linearly ordered according 

to the sequence PI.  

Let ((v:, v:+,]) n P2 ( 1  5 i < 2 , )  correspond to the subsequence (v:, , . . . , of fi. We 

define a new sequence s: = (v:, v:, , . . . , v;~, v:+~ ). Then we can divide ((v: , o:+ , I )  furt,her 

into the sets ( ( v i ,  v k l ] ,  ( u ,  u'l) for every two consecutive elements u and TL' of s:. 'T'llesc. sets 

are linearly ordered according to s:. Thus we get another partitioning of N U L7 callcd the 

partitioning of level 2 .  

Continuing in this manner gives us k partitionings (refinements of each other) and the 

corresponding k linear orders (each of which is consistent with 5) .  

Remark 3.1.15 Every set of vertices in the partitioning of level k contains exact,ly one 

node of G. 

In view of this remark, the k linear orders defined above induce a partial order on V 

which is a linear order on the set of nodes N. We will denote this partial order by 9. 
M7e have the following two lemmas. 

Lemma 3.1.16 Let u and v be two nodes such that u 9 v and there is no othw node v' 

for which u 3" v' in v. Then any two leaves wl and w2 such that u -in wl ,  w2 5" v are 

incomparable with respect to 5 .  

Proof. Let us suppose that wl i wz. Then there must exist some node vf  such that 

w1 4 v' 4 w2 (by the definition of 5).  But this means that u sn v' in v,  which contradicts 

the condition of the lemma. 0 

Lemma 3.1.17 Any two leaves incompar~ble with respect to in are also incornporclble with 

respect to 5. 

Proof. For any two leaves wl and wz incomparable with respect to sn, there will he two  

nodes u and v such that u in wl ,  w2 5n v ,  with no node v' coming between u and v. 
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(Otherwise wl and w2 would be comparable with respect to  I n . )  Our claim now follows 

from Lemma 3.1.16. a 

We can order some leaves in L (incomparable with respect to < n )  according to  the set 

of nodes they point to  (by defining a certain lexicographical ordering), but there can be 

leaves that are "structurally indistinguishable" (consider leaves 4 and 5 of the digraph G ; ~ ,  

for example). We will see, however, that it is not necessary t o  order such indistinguishable 

leaves to solve the problem of recognizability implying definability for partial ( k ,  1)-paths. 

We will just linearly order certain equivalence classes of leaves (i.e., sets of indistinguishable 

leaves). 

Notation 3.1.18 For a leaf w E L, P(w) denotes the set of nodes to which there are arrows 

from w, i.e., P(w) = {v E Nl(w, v) E E). 

We associate with each leaf w E L its characteristic vector ~ ( w )  = (xl(w), . . . , xk(w)), 

where for each i E {I, .  . . , k), 

1, if P ( w ) n  Pi # 0 
xi(w) = 

0 otherwise 

Now we extend sn to a new partial order, denoted by 9', so that for any two leaves 

wl and w2 incomparable with respect to rin, wl 5"' w2 iff x(wl) is lexicographically less 

than x(w2). (It should be clear that thus defined relation snl is indeed a partial order on 

V.)  

Lemma 3.1.19 If leaves wl and w2 are incomparable with respect to 5, then xi(wl) = 

xi(w2) ifl P(wl) n Pi = P(w2) n Pi for any 1 5 i 5 k. 

Proof. If some leaves wl and w2 have arrows to distinct nodes vl and v2, respectively, such 

that vl, v2 E Pi (1 _< i < k) and vl 4 v2, then w1 4 wz. 

Definition 3.1.20 We define the following relation of pequivalence, denoted by z, on the 

set of vertices V of G: 

For any two vertices wl, w2 E V, wl .?: w2 iff wl, w2 E L and P(wl)  = P(w2). 

Let us consider the qaotient graph Gp = G/ = (Vp, Ep). 
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Notation 3.1.21 We denote by V, the quotient set i'/ z. 

We extend sn' to the set Vp as follows: For any [uIp, [u] p E V,, [u] 5 [ a ] ,  iff tlirrc 
N N h N 

exist u' E [uIp ,v and v' E [vIp such that u' 5"' v'. 
N 

By Lemmas 3.1.17 and 3.1.19, any two inco~parable (with respect to  5") lea,ves 11 and 

v for which ~ ( u )  = ~ ( v )  are pequivalent. Thus 5"' is a linear order on the set (fV U L)/ R .  
By arbitrarily ordering the drop vertices of B1, we will get the linear order on C;,, tlcnot.ccl 

by Lp. 

Notation 3.1.22 We will denote the digraph G$ with ordered drop vertiars of BI by c$' 
(or just G ~ "  ). 

Example 3.1.23 For the partial 2-path Gb, the order sn1 considered over \'p givcs the 

following sequence of pequivalence classes: ({3), {4,5), (6)). 

The linear order 5, allows us to  construct a (k, 1)-decomposition B; of the graph (7, 

as follows: Take Bi = B l /  z. For a constructed prefix (B;, . . . , B:-,) ( i  > 1 )  o f  B;,, 

take B: = non-dr~p(B,!_~) U {v), where v is the minimum (with respect to 5,) vert,cx 

in the set Vp \ B:-l. (It should be clear that thus constructed sequence 13: is indrctl a 

( k ,  1)-decomposition of G,.) 

Example 3.1.24 For the partial 2-pa$h Gb, 

where [u] denotes the set of vertices pequivalent to u ( u  E V). 

Thus we have the lemma. 

Lemma 3.1.25 For Gp and <, as above, 5, is a k-generative lineur order on G p .  

We conclude this subsection by showing that the quotient graph G, is MS-definable in 

terms of G~''  and that the h e a r  order 5, on G, is MS-definable over G ~ " .  

The following lemma must be obvious. 

Lemma 3.1.26 The p-equivalence is MS-definable over Gd". 

Corollary 3.1.27 The gmph Gp is MS-definable in terms of Gd". 
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Lemma 3.1.28 The partial order <n' on the set Vp is MS-definable over ~ ~ l ' .  

Proof. Clearly, the relations of "being a node from the set Piv (1 < i 5 k)  are expressible 

in MS on G*". 

The k equivalences on V corresponding to the partitionings of V of level i ,  1 < i < k,  

are MS-definable, since for each level i, an equivalence class is determined uniquely by some 

vector of i pairs of vertices. 

Checking the lexicographical order of characteristic vectors for any two leaves can also 

be done in MS. 0 

Thus we have the following lemma. 

Lemma 3.1.29 The linear order <* on the set V, is MS-definable over G~".  

3.1.3 Using <, to  Construct a Decomposition of G 

In the previous subsection, we defined 5, and proved it to be a k-generative linear order on 

Gp. In this subsection, we show how to  reconstruct a decomposition of the original graph 

C using the decomposition of the quotient graph G,. 

Let ( v l , .  . . , vl) be a sequence of vertices in V, ordered with respect to 5,. The decom- 

position BL can then be written out as BL = (Bi ,  B1(vl), . . ., B1(vl)). 

Remark 3.1.30 For any w E VP and any u E V,, u E B1(w) iff 

ii. u F p  w and there is some wi E VP such that w <, wi and (w', u)  E Ep. 

Notation 3.1.31 We identify Bi with Bf(v)  for any v E B;. 

Remark 3-1.32 For every i E {I, . . . , I ) ,  new(B1(v;)) = {v;) and every old vertex c;f B' ( v i )  

is a c-class containing exactly one vertex of G. 

We can construct a (k. 2)-decomposition of the graph G as follows: In the sequence 
P B;, replace Bi with Bl. For every i E {I,. . . , l )  such that vi is a -class contain- 

ing exactly one vertex w of G, replace B1(vi) = {[ulJE, - - . , [usilR, [ w ] ~ ]  with the bag 
P B(w) = (al,. . . , uSi, w), For every i E (1,. . . , l )  such that v; is a -class containing ti > 1 
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P vertices wl ,  . . . , wt, of G (all of which should be --leaves in this case), replace U'j71;) := 

{[u1Ig,. . . , [ ~ l ] ; )  with the sequence of bags B ( w I )  = {ul,. . . , us, ,  1 4 ) ,  . . . , 13(urtl) = 
{ul,  . . . , us,, wt,). Let B' denote thus constructed decomposition of G 

Example 3.1.33 For the partial 2-path Gi,  the following two decompositions are possible: 

Notation 3.1.34 We identify B1 with B(u) for any u E B I .  

Notation 3.1.35 For any UI 6 V, we denote by B-(w) the set non-drop(D(w)). 

Remark 3.1.36 The above-mentioned procedure for reconstructing a decomposition B' of 
P G does not produce a unique result since -leaves are ordered arbitrarily. Howcver, t l ~ c  

P bags associated with any two -leaves correspond to two isomorphic subgraphs of G'. 

Below we show the relationship between the string of coloured graphs associatctl with  

Bh and that associated with B'. 

Let us convert BL into the extended decomposition B ' ~  and colour G,, with s o ~ r ~ e  lithcli ilg 

function & : V, - {I , .  . . , k + 1) admissible by BJp (see Section 2.3.2). Let us also cortvtvt, 

the decomposition B' of G into the extended decomposition B' and colour the graph G with 

the labeling function P : V - (1,. . . , k + 11) such that, for every v E V, P(u )  = / ~ J [ V ]  ,,). 
N 

(The labeling function ,O is admissible by B' since no leaf appears in two consecutive b a g  

of B'.) 
The string ap(B1) is no longer dependent on the order in which $-leaves were added to 

the decomposition B', because the symbols in the alphabet C, that correspond t o  the hags 

Bf(wl) and ~'(?LQ), for any two g-leaves wl and wz, are identical. 

Remark 3.1.37 It is noteworthy that although the string ~ ~ ( 8 )  is determined t~niqiicly 

on a suitably coloured graph, the colouring itself depends on some arbitrary choices. 

Let app(aFP) = (00~ ow7 01,011,  . . . , 0 1 ,  up). (It corresponds t o  the extended dccom po- 

sition = (B;? Bi-, B' j~i~) ,  Br-(vl),. . -, Bf{vI), B f - ( v )  Then uO(Bf) can be oblair~c!d 

from O ~ ~ ( B ~ , )  by replacing the subsequence (q, a;#), for each i E (1, . . . ,1) such that u, is 
P a --class containing ti > 1 2-leaves, with the subsequence (a;, a;,) repeated ti times, ix., 

with (a;, a;,)' S.  
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In this sectioi~, we define a CMS-formula that is true on a graph G iff some decomposition 

of G is accepted by the automaton A. First we show that for the coloured graph G ~ " ,  and 

then give the corresponding admissibility conditions for a colouring of G. 

3.2.1 CMS-Definabifity of Recognizability for Coloured (k, 1)-Paths 

A s  a consequence of Remark 32.30, we have the following lemma. 

Lemma 3.2.1 For any zw-bices 21, w E Vp, the relations "u E B1(w)" and "u E B1-(w)" 

are MS-definable over c*". 

Let i3 be a labeling function admissible by B'~. Its admissibility means the following: 

No two vertices appearing in the same bag B1(v) (for any v E I f p )  are labeled the same, and 

no two vertices appearing in two bags Bt(u) and B1(v)  such that u immediately precedes v 

with respect to Sp are labeled the same. This is clearly expressible in MS. 

For Dlp and 13 defined above, we have the following statements. 

Proof, This foLlows from Lemma 3.2.1. and the fact that each a E C, is of size at most 

k +  I .  CI 

Theorem 3.2.3 PXr string a j ( f i l p )  is M.5-definable in ternas of Gd". 

Pmf .  We will show that a path G, of length I U ~ ( B ' ~ ) ~ / ~  each vertex of which is labeled 

with a pair of symbols from X, so that the string of these pairs corresponds to  the word 

O ~ ~ ( B ' ~ )  is MS-definable in terms of G~". (We consider G, as a Ip;,,)-relational structure 

witwe domain L) is the set of vertices of r;6 and pi,, is the biaary incidence relation over 

uZ .) 
We take the set 't:;, u ( t ~ ] ,  where vo is an arbitrary vertex in Bi,  as the domain of G,. 

{Cteariy. this set of vertices is MS-definable in terms of Gd".) 

The incidence relation of C, is defined in an obvious way according t o  the linear order 

5, on 2-b. (Again, this 3s MS-definable.) 
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To check that Go is labeled properly, i.e., that its set vertices is partitioned into the 

two families of sets (Vu}cEC, and (V;},Ec, so that a vertex u of Go is in I/, (Ti-), a E X;',, 

iff ap(B'(u)) 2 a (ap(BJ-(u)) a ) ,  we just use the corresponding MS-formulas fronr 

Lemma 3.2.2. 

Recall that one can obtain from U~(B',) the string over the alphabet Z, corresponding 

to  some decomposition of the original graph G by repeating the subsequences 

such that u E Vp is a p-equivalence class of cardinality t ,  t times. 

Let A = (Cg,Q,5,qo,F) be the automaton recognizing a family 6 of ( b ,  1)-pa.t,tis G 

(coloured (k, 1)-paths Gdl'). To define the required CMS-formula for G,, we call proccccl 

similarly t o  the case of words (see Theorem 2.4.1). That is, we first "guess" a colouring 

of vertices of G, such that every vertex u is associated with the state q(u) E Q which the 

automaton A enters after having read the string (op(B'(u))ap(BJ-(u)))f, where t is tlw 

cardinality of the p-equivalence class u E V,. Then we check the admissibility of our guess. 

By finiteness of A, it suffices to  know t mod a (for some number a tiepender~t OH a 

state q and the symbols ol = oP(B1(u)) and 0 2  = op(Br-(u))) to determinth the state 

q' = S*(q, ( U ~ ~ T ~ ) ~ ) .  Therefore, the required admissibility check can be expressed in CMS. 

Remark 3.2.4 Note that it is not important which particular (b, I)-deconipositior~ Ll of a 

(k, 1)-path G is used for defining the digraph GF. Our reasoning will hold fbr any otllcr 

(k, 1)-decomposition of G. 

Thus we have proved the following result. 

Theorem 3.2.5 Every recognizable family of coloured connected (k, 1)-paths G"'I is C'M.6 

definta ble. 

3.2.2 Admissibility Conditions 

Here we state the conditions on a colouring of a (k, 1)-path that check the admissibility 

of that colouring with respect t o  recognizability of (k, 1)-paths. That is, they verify that 

the colouring induces a digraph 8i1,: for some (k, 1)-decomposition Bl1 of t'. 
Clearly, the digraph G~''  is MS-colourable in terms of a (k ,  1)-path G (see Lemma 2.2.20 

and the definition of G~"). Let GCdll denote the coloured graph that induces G ~ " .  
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Let @ be a coloured graph having the same format as G c d l ' .  Consider the following 

conditions on 6': 

i. The set denoting the bag B1 contains at most k $ 1 vertices, of which at most k are 

non-drop vertices of B1 (i.e., at  most k vertices in B1 are adjacent to some vertices 

not in B1). 

ii. @ defines some directed graph G;' over 6. That is the k f 1 vertex-sets and k + 1 

edge-sets used for directing edges of G are such that they form partitionings of the sets 

V and E, respectively, and for any edge e = {u ,  v) E E, u and v belong to  different 

vertex sets (i.e., are coloured differently) and e is coloured with the same colour as u 

or v (cf. the proof of Lemma 2.2.20). 

iii. The labeled digraph G;' = (V, El) (labeled with double and loop arrows) is such that 

(a) there is no arc (u, a )  E El such that u E B1 and v 4 B1, 

(b) for every v E V \ drop(B1) with incoming arrow (or arrows), there is exactly one 

incoming double arrow, 

(c) every vertex with a loop arrow has no outgoing double arrows and no incoming 

arrows of any kind, 

(d) every vertex in v has either an outgoing double anow or a loop arrow. 

iv. The relation 3' induced by the labeled digraph G' (as in Definition 2.1.33) is a partial 

order on V (i-e., i t  is reflexive, transitive, and antisymmetric). 

v. The non-drop and drop vertices of B1 are ordered. We assume that  two sequences of 

k vertex-sets are used, the first for ordering the non-drop vertices of B1, the second 

for ordering the drop vertices of B1. They should form the partitions of the sets 

non-drop(&) and drop(B1), respectively. 

It should be obvious that conditions (i)-(v) are expressible in MS. 

Lemma 3.2.6 if @ satisfies conditions (i)-(ivj stated above, then the relation 5'' induced 

by that coloured gmph is a k-genemtive partial order on G .  

Proof. By condition (iv), 5' is a partial order on V. Let (vl, . . . , vl) be a sequence of 

vertices in v ordered according to  some extension of 5' to  a linear order on V .  



CHAPTER 3. THE CASE OF CONNECTED ( K ,  1)-PATHS 36 

The vertex ul has at most k outgoing arrows to non-drop vertices of B1 (by conditious 

(i) and (iii.a)). By conditions (iii.b), (iii.~), (iii.d), and by the definition of 5', the set 

Bk = non-drop(&) U (vl) contains at least one drop vertex. 

We can apply the same arguments to the vertex vz and the set non-drop(B$), and su 

on. U 

Corollary 3.2.7 For an arbitrary graph G, if there exists a coloured graph G' ,satisj?jrtg 

conditions (9-(iv), then G is a (k, 1)-path. 

Remark 3.2.8 Corollary 3.2.7 means that there is an MS-formula that checks if a given 

, graph is a (k, 1)-path. This formula can be constructed explicitly. 

Let B" be some (k, 1)-decomposition induced by the partial order i ' l  from I,emma, 3.2.6. 

It follows from Lemma 3.1.5 that the digraph @ defined above is isomorphic to c&,. Con- 

dition (v) ensures then that & defines the digraph G$\. 

Remark 3.2.9 For a (k, 1)-path G, the coloured graph GCdl' satisfies conditions (;)-(v). 

Therefore, there alway exists a colouring of a (k, 1)-path that satisfies conditions ( i ) - (v) .  

Now we can state the principal result of this chapter. 

Theorem 3.2.10 A recognizable family of connected (k, 1)-paths is CMS-definable. 

Proof. It follows from Theorem 3.2.5, Lemma 2.2.14, and Remark 3.2.9. 



Chapter 4 

The General Case 

Here we consider the  case of partial k-paths, i.e., (k,p)-paths for any p E (1,. . . , k). First, 

we deal with connected partial k-paths. The solution for possibly disconnected partial 

k-paths will be given in Section 4.3.5. 

As in the case of (k ,  1)-paths, we define coloured partial k-paths and show that rec- 

ognizability implies definability for these coloured graphs. Then we give the corresponding 

admissibility conditions on colourings of partial k-paths. 

Let B = (B1, . . . , B,) be a nice k-decomposition of a partial k-path G. The family of 

sets new(B;), 1 5 i _< m, forms a partitioning of the vertex-set V of G. We will call the 

equiva!snce on V that is induced by that partitioning the 2-equivalence (denoted by A). 
The decomposition B also induces a linear order on the quotient set V/  .? (denoted by 51). 

Clearly, given the pair (A, jl), one can reconstruct the decomposition B of G. 

We will show that the 1-equivalence is MS-colourable, but it does not seem possible 

to MS-colour the linear order 51. (Recall that we were unable to  linearly order in MS the 

leaves of a (k,  1)-path.) 

A nice decomposition B can also be viewed as a sequence of monotonic pieces 

where Ms = (Bi,, . . . , Bj,)  for each 1 < s < d. We define the sets 

the family of which forms another partitioning of V. The corresponding equivalence on V 
1 2 will be called the kepuiualence (denoted by 2). (Obviously, -. is a refinement of N.) This 
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2 sequence of monotonic pieces induces a linear order on the quotient set IF/  - (denotd by 

52). 

We denote by newl(Ms) the set new(B,,), 1 5 s < d. Note that new1(M8) is tohc only 

$-class inside new(&) of cardinality greater than one. 

Remark 4.0.1 By the definition of a nice decomposition, every vertex in the set new(M,)\ 

newl(Ms) has an outgoing double arrow or a loop arrow in the digraph Gd.  

We have the following lemma. 

Lemma 4.0.2 For a partial k-path G with a nice k-decomposition B = ( A I ! , .  . . , M d ) ,  giver4 
1 2  the relations N ,  N ,  and s2 defined above, one can define a k-generative partial older on G. 

Proof. We extend the precedence 5 so that for any two incomparable (wit>h respec4 to 

4)  vertices u and v from different sets new(Mi) and new(Mj), i # j ,  respectively, u is less - 

than v iff i < j, and for any two incomparable (with respect to 5) vertices v and UI from 

the same new(Mi) such that v E newl(Mi) and w 4 newl(Mi), v is less than u). Ttwi thc 

transitive closure of this extension, denoted by sp ,  is a k-generative partial order on C. 

Indeed, it is obvious that n e w l ( ~ 1 )  = B1. By Remark 4.0.1 and the definition o f  SP, 
any vertex in new(Ml) \ newl(M1) minimal with respect to S P  can be chosen to forrrl t hi? 

next bag Bi  (see the proof of Lemma 3.1.3). 

Let Bi be the last bag constructed for new(M1). It should be clear that then 

By the definition of the linear order s2, the set non-drop(Bi) U new1(M2) equals B;, , thufi 

we can continue with new(M2) \ new1 (M2) as above, and so on. 0 

1' 2 '  2 '  Definition 4.0.3 For a partial k-path G, a triple ( N  , -. , <;), where .?I and - arc: equiva- 
2 '  lences on V and s', is a linear order on V/  - , is called a linear k-generative structure on G 

1 ' 2 '  iff there exists some nice k-decomposition B of G such that and N are the 1-equivalert ce 

and 2-equivalence, respectively, induced by B, and F', is the linear order on 2-equivalc?ncc? 

classes induced by B. 

1' 2 '  
Definition 4.0.4 For a partial k-path G, a triple (A', l', $), where and N are oquiva, 

2 ' 
lences on V and <', is a partial order on V/  , is called a partial k-generative structure on 

G iff any completion of 5; to  a linear order yields a linear k-generative structure on G'. 
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Again, the 2-equivalence is MS-colourable, but not the linear order L2. Thus, we cannot 

MS-colour a linear k-generative structure on G. We will be unable to  MS-colour a partial 

k-generative structure on G' either. 
2 Let us extend the relation of strong precedence to --classes (it will be called the strong 

s2 
2-precedence and denoted by 5): 

2 s2 Fbr any two distinct -classes [u], and [v] (u, v 6 V), [a] -i [v] iff there are 
N N N N 

u' t [u] and v' E [v], such that u' i v'. Then the 2-preceden.ce is defined as the reflexive 
N N 

2 
and transitive closure of strong 2-precedence and denoted by 5. 

The 2-precedence is a partial order on the set of 2-classes such that for all a , v  E V, 
2 

[u]? 4 [v] implies that the vertices in [u]2 come before those in [v], in our decomposition 
N N N 

B, i.e., for any a' E [uI2 and v' E [vI2, first(ul) < first(vl). 
N N 

1 2 2  However, ( N ,  -, 5 )  is not necessarily a partial k-generative system on G (i.e., we can- 
2 2 not take just any N-class minimal with respect to  5 to  continue the decomposition of G 

2 constructed so far). One reason is that each --class [u] starts with a set of more than 
N 

one vertex all of which must be put into the same bag. The other reason is that [u] can 
N 

contribute more non-drop vertices than drop vertices. (We did not have the latter problem 

in the case of (k, 1)-paths, because there adding a new vertex always produced at least one 

drop vertex.) 

In the following subsections, we define certain (MS-colourable) sets of 2-equivalence 

classes on which a desired partial order is MS-colourable. We partitjm each such set of 2- 

equivalence classes into subsets and define a new partial order on these subsets. We continue 

in this manner until each set contains exactly one Zequivalence class. (We will show that 

there can be at most k such partitionings.) 

We need the following definitions. 

1 ' Definition 4.0.5 For a partial R-path G, a triple (N , {N~}Z=~ ,  { l i}~=O) (for Some constant 

T ) ,  where 

. I '  
1. - and N', 1 _< i 5 T, are equivalences on V such that every two vertices of V are 

-'-equivalent and -j is a refinement of wi for every j > i, and 

ii. <' is a linear order on -i-classes, 0 _< i 5 r, such that 53 is a refinement of si for 

every j > i (i.e., the restriction of < j  t o  V /  wi coincides with 5;) 
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1' is called a linear kr-generative structure on G iff the triple (-J , J ,  jr) is a, linear b-generative 

structure on G. 

1' 1 '  Definition 4.0.6 For a partial k-path G, a triple ( N  , {N~):=~,  {5i)z=O), where N and N ~ ,  
1 5 i 5 r, are equivalences on V satisfying the same conditions as in Definition 4.0.5 and 

si are partial orders on wi-classes, 0 5 i 5 r, is called a partial kr-generatiue struclurr o~b 

G iff for any completions of ii to  linear orders <Ii, 0 5 i 5 r ,  such t.hat I1J is a refinerupnt, 
1 I of <Ii for every j > i, the triple ( N  , { N ~ } ~ = ~ ,  {L~'}:=~) is a linear kr-generative stmcture on 

G. 

We will show that a certain partial kk-generative structure on G is MS-dti' lruable over 

a suitably coloured graph Gc. This will allow us to reconstruct some decomposition of C; 

and t o  check in CMS if it is accepted by the corresponding automaton A. 

4.1 A Partial kk-~enerative Structure 

In this section, we define a partial ~c~-~enera t ive  structure on a partial k-path G that will 

be MS-colourable in terms of G. First we define k f 1 so-called 3;-equivalences on V,  

0 < i < k, such that every two vertices in V are lo-equivalent, 3 ~ 1  is a refinement of % for 
2 each 0 5 i < k, and 3* coincides with -. Then for each li-equivalence class C, 0 _< i < k, 

3,+ 1 we partially order the 3i+l-equivalence classes in C/ N . 

2 First define the balance of a sequence of N-classes so that for each sequence with nan-positive 

balance, the number of non-drop vertices produced by it is at most that of drop vertices. 

Let G be a partial k-path, let B be an arbitrary nice k-decomposition of C, and let, G"' 

be the digraph induced by B. 

Notation 4.1.1 For u E V, the monotonic subsequence M of B such that ncw(M) = [u] 
hl 

will be denoted by Mu = (Bi,, . . . , Bj,). 

Definition 4.1.2 For u E V and the corresponding monotonic subsequence Mu of ll, thc! 
2 cardinality of the set new(Biy) is called the width of the -class [uj2 and is denoted by 

N 

width([u] *), i-e., width([u] ) = Inew(Bi,)l. 
N rU 
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2 Remark 4.1.3 Informally, the width of a --class [uj2 (U E V) is a measure of the "jump" 
N 

that occurred in the decomposition B at the beginning of the monotonic piece Mu. 

2 Definition 4.1.4 A vertex v in a -class [u], (for some u E V) is called a drop vertex of 
N 

2 2 that -class iff every vertex w E V such that (w, v) E E is in the same N-class [u], . 
N 

Remark 4.1.5 For M, corresponding to [uI2 (u E V), a vertex v E [u], is a drop vertex 
N N 

of [u] , iff there exists r E {i,, . . . , j,) such that v E drop(&). 
N 

2 Notation 4.1.6 The set of all drop vertices of a --class [uI2 (u E V) will be denoted by 
N 

drop([uI2). 

2 Definition 4.1.7 A vertex v' in a -class [u] , ( U  E V) that is not a drop vertex of [u] is 
N N 

2 called a non-drop vertez of that --class. 

2 Notation 4.1.8 The set of all non-drop vertices of a -class [uI2 (U E V) will be denoted 
N 

by non-drop([u] N ). 

2 Definition 4.1.9 A vertex w @ [u], (u E V) is said to be removable by the --class [u] iff 
N N 

there is v E [u], such that (v, w) E E,. 
N 

Remark 41.10 For Mu corresponding to  [uI2 (u E V), a vertex w E V is removable by 
N 

[u] iff w E old(Bi,) and there exists T E {i,, . . . , j,) such that w E drop(Br). 
N 

2 Notation 4.1.11 The set of all vertices removable by a -class [uIz (u E V) will be denoted 
N 

by remov([u] N ,). 

2 Definition 4.1.12 The balance of a -class [u] (u E V), denoted by bal([u] ), is defined 
N N 

by the formula: 

bal([u] .-u 2 ) = Inon-drop([u] P4 ) I  - (remov([u], N ) I .  

Remark 4.1 .I3 For hi, corresponding to  [u] , (U E V), 
N 

Remark 4.1 .I4 If we apply our definition of balance t o  single vertices in a (k, 1)-path, we 

will see that the balance of each new vertex of the (k, 1)-decomposition (except for those in 

the first bag) is non-positive (because, by definition, each new vertex either "removes" a t  

feast one old vertex or is a drop vertex itself). 
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2 
Let S = (S1,. . . , Sd)  be the sequence of -classes such that S; = new(i\d;), 1 < i 5 d ,  

for our decomposition B = (MI, . . . , Md). 

Definition 4.1.15 A contignolrs subsequence of the sequence S will be c a k d  a 2-block. 

The cumulative balance of a 2-Mock is decried as the sum of the balances of its cotnpontwts. 

A vertex belongs to  a 2-block iff it belongs to the union of its components. 

Definition 4.1.16 A non-empty 2-block T = (TI,. . . , Tr) is called balanced i f f  ba.l(?') 0 

and no proper non-empty prefix of T has a non-positive balance, i.e., baJ((T1,. . . ,'I:)) > 0 

for every i E (1,. . .,l - 1). 

We extend the definition of width to 2-blocks as follows. 

Definition 4.1 .I7 For a 2-block T = (TI, . . . , q), the width of T, dcnotcd by widt h(7'), is 

defined by the formula: 

Remark 4.1.18 If (B;,, . . . , BjT) is the subsequence of B that corresponds to a 2-block T ,  

then 

width(T) = , max, (IB,I) - lold(BiT)I. 
~ T L ~ L J T  

Guided by the analogy with the case of (k,  1)-paths, we will split the sequence S into 

disjoint 2-blocks TI,. . . , T,, so that S = TI . . .T,, where Tl = (S1) and each 2-Mock 'G 
(1 < j < m) is balanced. We do the same for each subsequence Tj, 1, < j 5 m, of It?llgth 

greater than me.  

Formally, we define k + 1 sequences ?; (0 < i < k )  of 2-blocks by the following algorit, h rrr : 

Algorithm P 

Step 0. '& = (T:), with T: = S. 

Step i (1 < i 5 k ) .  Let x-1 = ( T , .  * T )  The partitioning ?; is obtained from 
r i-1 by keeping each T;-' of length one and replacing each f j  = (.5;';', . . ., . 9 - I  & - I  ) 

(1 < j < tiWl) of length greater than one with a sequence of 2-blocks 7; , . . . ,7:, so that 

T;-' = TI.. .T,, where TI = (S$') and each 2-block Tj  (1 < j < m) is balanced. 

Lemma 4.1.19 Every 2-block in  the sequence 'Tk is of length one. 
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Proof. Let 1' be a balanced 2-block obtained at step i - 1 (1 < i < k)  which was replaced 

with a sequence of 2-blocks TI , .  . . , T, (s  > 1) at step i. Assume that Tj (for some 1 < j < s)  

was replaced with a sequence of 2-blocks Tjl, . .  . , Tjt ( j t  > 1) a t  step i + 1. 

Let T corr~spond to  the sequence of bags 

in the decomposition B ,  and let Tj correspond to the sequence of bags 

(It is clear that BiT = BiT, .) 
I1 

By the definition of a balanced 2-block, bal(Tl . . .T,I) > 0 for any 1 5 s' < s, and 

bal(Tjl . . .Tjtl) > 0 for any 1 5 t' < t. Therefore, lold(BiTS,)l > lold(BiTJI for any 1 < s' < 
s, and lold(BiTJt1)I > lold(BiTJ1 )/ for any 1 < t' < t. 

Thus, we have the inequalities lold(BiT ) /  > lold(BiTl ) (  > lold(BiTl )I. Since there are 
3 t' 

at most k old vertices in any given bag, our claim follows. 

Definition 4.1.20 Each sequence I; = (T:, . . .,T:,) (0 5 i < k )  induces the following 

equivalence relation on V, called 3;-equivalence: 

For any u, v E V, u % iff there is some j E (1, . . . , ti} such that u and v belong to T,. 

Remark 4.1.21 Obviously, every two vertices of G are 30-equivalent. 

The definitions of drop, non-drop, and removable vertices for 3i-equivalence classes 

(0 < i < k), as well as the balance of a 3;-equivalence class, are analogous to  those for 

2-equivalence classes. The notation is also similar. 

Remark 4.1.22 Every "class C (0 5 i 5 k) can be uniquely associated with the 2-block 

Tc in the sequence I; such that the vertices in C are exactly those that belong to  Tc. It is 

easy to  see that for these C and Tc, bal(C) = bal(Tc). 

Definition 4.1.23 For each %-class C (0 < i 5 k),  we define width(C) = width(Tc), where 

Tc is as in Remark 4.1.22. 
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4.1.2 Ordering 3;-Equivalence Classes 

We consider the case of 2-classes first. 
3 1 Let c = (C1,. . .,C,) be the sequence of -classes taken in the order thcir vcrt,ic.cs 

appear in the decomposition B. Let R denote the set {Cl,.  . . , C,), and let 12 = II \ {CI) .  

We associate with each C;, 1 5 i < s, the number b(C;) = bal(C1) + . . + ba.l(f',). lly 

the definition of 31-equivalence, bal(Cj) 5 0 for each j E ('2, . . . , s), therefore the scqucacc 
3 I (bl,.. ., b,) is monotonically non-increasing. Thus, for any two -classes C.',C1 E: I t ' ,  i f  

b(C) > b(C1) or if b(C) = b(Ct) and bal(C) < 0, then C precedes C in the sequetlce 6.  

Remark 4.1.24 We can extend the definition of balance to any subset U of I.' (by  estc~~cling 

the corresponding definitions of drop, non-drop, and removable vertices for 2-ccjuivalcricc 

classes). Then we will have that b(Ci) = bal(C1 U . . . U C;). 

Note that the following holds for any C E R: 

Lemma 4.1.25 Let C, C1 E R be such that C immediately precedes C" in C, and C c u d  C!' 

are incomparable with respect to the corresponding extension of 5 .  If bal(C) = bal(Ct) = 0, 

then C and C' can be interchanged in c with the resulting sequence C corresponding l o  some 

nice k-decomposition of G. 

Proof. Let us add the vertices in Ct (in the same order as before) instead of thosc i n  C, and 

the vertices of C instead of those in C'. Since bal(C) = bal(C1) = 0, we will not increasc 

the path-width of the resulting decomposition. 0 

Remark 4.1.26 It should also be noted that for the C and C as in Lemma 4.1.25, 

Definition 4.1.21 We extend the relation of strong precedence to the set R, which will be 
931 3, 

called strong S1-precedence and denoted by 5, as follows: For any two distinct --clas~cfi 

c,cf E R, c l i f f  

i. u < v for some u E C and some v E C', 
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ii. b(C) > b[Cf), or 

iii. b(C') = b(C1) and bal(C) # 0. 

31 s3 1 
The 31-precedence, denoted by 5, is defined as the reflexive and transitive closure of 5 .  

31 
Remark 4.1 .Z8 If some %-classes C and C' in R are incomparable with respect to  5,  then 

b(C) = b(C1) and bal(C) = bal(C1) = 0. 

3 We apply similar reasoning to  each 2-class Cj (1 < j < s) considered as a sequence of 
3; 

%-classes, and so on. This will give us k + 1 partial orders j, 0 < i < k, on %-classes. (Note 

that analogues of Lemma 4.1.25, Remark 4.1.26, and Remark 4.1.28 hold for each %-class, 

1 5 i 5 k.) 

3; 
Lemma 4.1.29 The triple ( A ,  {qiZo, { j } k o )  is a partial kkqenemtive structure on G 

3, 
Proof. Let {<i)f=o be an arbitrary family of completions of 5 ,  0 < i 5 k, to linear orders 

such that < j  is a refinement of si for every 0 < i < j 5 k. 
3k-1 Consider a sequence of %-classes (within some - -class c"') linearly ordered by sk. 

That sequence can be obtained from the original sequence of these 5-classes (i.e., the one 
3 k  induced by the decomposition B) after a finite number of interchanges of consecutive N- 

3k 
classes incomparable with respect t o  j. By Remark 4.1.28 (formulated for 3*), any two such 
3k --classes C and C' have balance zero, and therefore, interchanging them will not change 

the width of Ck-l. 
3k-1 3k-2 Now let us consider the sequence of - -classes (within some - -class c ~ - ~ )  induced 

3k-1 by B. If we order the %-classes within each - -class of c ~ - ~  according to  <k,  the width 
3k-1 of Ck-2 will remain the same, because, as shown above, the width of each such - -class 

is not changed. Repeating the above arguments, one can show that c ~ - ~  ordered by sk-' 
3k-1 with each - -class in CkV2 ordered by sk (i.e., Ck-2 ordered by s k )  has the same width 

as originally. 

Continuing in this manner, we can show that the width of the %-class C0 ordered by 

sk has the same width as that for the ordering induced by B, which means that sk yields 

a linear k-generative structure on G. 
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4.2 MS-Colouring a Partial kk-~enerative Structure 

Here we prove that the partial kk-generative structure defined in the previous section is ?,!S- 

colourable in terms of G. We will show that there always exists some nice k-clt~com~~osit.io~r 
1 2  3 3, 

of a (k,p)-path G for which -, -, and 4 and 5 (0 _< i < k) are MS-definable over a slrititbly 

coloured graph Gc. 

2 4.2.1 MS-Colouring A and -- 

In this subsection, we prove that for any nice E-decomposition R = (U1 ,  . . . , B,,,) of i t  pitrtiiil 

1 2 k-path G, the equivalences w and - induced by 3 are klS-eolourablc. ( A s  heforc, wcx i i . 1 ~ 0  

view B as a sequence of monotonic pieces MI,. . . , I L f d . )  

Theorem 4.2.1 The 1-equivalence is MS-colouruble over. G. 

Proof. Since B1 is MS-colourable, so is new(B1) = B1. For every bag f3,, 1 < r 5 r r r ,  tlic 

following is true: 

ii. drop(B,) n old(B,) = 0, and therefore, drop(B,) 0 new(&) # V). 

By Remark 2.1.28, every new vertex of B, has an out*going arrow to mch vc r t~x  i n  

drop(B,) n old(3,) (case (i)), or there is some v E drop(B,) n ncw(I3,) such that wery 

vertex in new(&) \ { u }  has an outgoing arrow to v (case (ii)).  

In case (i), we chose some vertex u E drop(&) n oId(3,) and colotlr each arc 71) - 1 1 ,  

w E new(B,), with some colour cr. In case ( i i ) ,  we colour each arc w -- v ,  lu E now( 11,. ) \ { o) , 
with some colour CZ. 

We do such colouring for each B, , 1 < r < rn. (The same colours cl and cz can hri 11scd 

for the corresponding arcs in all the B,, 1 < T < m, since these coloured arcs go in to dr 01) 

vertices, and therefore, no two vertices from different sets new(&) and new( H , ) ) ,  r # r', 

can have the coloured arcs going into the same vertex of V.) 

'We say that two vertices o and rf in V satisfy a relation Rl iff either titwc: ik  f jorrre  

u E V such that ( a ,  a), (v', u )  E E,, (case i) or (u, u') E EC, (case i i  ). 

By its definition, the relation fit is MS-colourahle. Therefore, tht. 1-eq~iivalerrce (which 

is the reflexive and transitive closure of R1)  is also MS-colourabfe (see Fu-t 22.9). a 

To show the PAS-colourability of the 2-equivalence, we need the following two Iernrnw. 
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Lemma 4.2.2 For every new wrtex z7 of a monotonic piece 1% = (B, , ,  . . . . B,,) (1 5 s 5 
d), there is some vertez 11 E neufB,,) such that u 5 v. 

Proof. If v E new(B,,), then z. 5 z.. Otherwise, let v E new(il.i,) be the first vertex that is 

not preceded by any vertex in new(R,,), i-e., v is such that first(uj = minvtE,,,~~~fs~{first(v')~ 

u f i  'tr' for any vertex u E new(B*,)). 

Hy the definition of a nice decomposition, v should have been added to  the decompo- 

sitioa R before the vertices in new(B,J (see Remark 4.0.1 and condition (iv.a) of Defini- 

tion 2.1.19). This contradiction proves the claim. 0 

Lemma 4.2.3 h r  any u. v E new(r2-rlSj (1 _< s 5 d), u -( u i f f  there are ul,. . .,ul E 
S s S 9 

neu<Ms) such that u + ul -i - - - 4 ur 4 V. 

Proof.  The only thing t o  be proved here is that ul,. . . , ul E new(MS), but this easily 

fulfows from the fact that  u, 2: E new(Xs). 

These two lemmas imply the following. 

Theorem 4.2.4 The 2-equivalence is n;lS-colourable over G. 

Proof. We have by Lemmas 4.2.2 and 4.2.3 that for every v E new(Ms) (1 5 s 5 d), there 

is u E new(&s) and there are ul.. . . . ul t new(M, j such that u = uo 1: UI . . - 2 ul < 
U l + l  = 1'. 

Rg the definition of the strong precedence i ,  the following holds for each ui and u;+l 

(0  < i < I ) :  

i .  &her the arc u;+l -- uj is in E ~ ,  or 

ii. there is some a? E E such that the arcs u; + w and u;+l + w are in E ~ .  

In case ( i ) .  we colour the arc u,+l - ui with some colour c3. In case (ii), we colour 

both ti, - u+ and &,+I =. u* with some colour cq. 

We do such ccllouring for each MS, 1 < s 5 d. (It is not difficult t o  see that we can use 

the same colours Q and c4 for dl the Ms. 1 < s 5 d . )  
1 WP sa? that tare ;-ertices r aid t' satisfy 5 i&ihi R2 I f f  o - 6, (ZI, dj E Ec3 (case i), 

or there is some ti: E t' such that (.v, w),(cf. te) E LC, (case ii). 

Then the 2-equidence is the reffexive and transitive closure of the MS-colourable 

reiat ion Rz, and therefore is also XS-colonrable. CI 
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3 3,  4.2.2 MS-Colouring :̂ and 5 

Here we show that for each partial k-path G ,  there always esists a nice b-tlecon~posit,iou 
3; 

which induces MS-colourable 3' and 5 ,  0 < i < k. 

2 Definition 4.2.5 A 2-block T is called locally connected iff for every --4a.sses t and t' i u  ' I ' ,  
2 there are -classes t l ,  .. . , tl in T such that every two consecutive elements in the sequcnec 

82 
( t  = to , t l , . .  . , tl, tl+l = t') are comparable with respect to 4 ,  i.e., for every i E (0, .  . . , I ) ,  

s2 s2 
ti 4 t;+l or t;+l 4 t;. 

Lemma 4.2.6 The equiaalence relation on V induced by a partitioning of V irdo sequcrwc 

of 2ocally connected 2-blocks is MS-colourable over G .  

Proof. The reasoning is similar to  that in the proof of Theorem 4.2.4. 

To achieve the local connectedness of 2-blocks in the sequences ?;, 0 < d < k ,  gcneratctl 

by algorithm P,  we reorder the sequence S of 2-classes induced by the decon~posit~ion /I 

of G. The new sequence S', however, will correspond to some nice k-decornposit.ion U' of CI;' 

such that Gg,  is isomorphic to  G;. 

2 Lemma 4.2.7 Let S = (S1, .  . . , Si7 S;+l,. . . , Sd)  (for some 1 5 i < d) be the seqrierm of -- 
a 

classes induced by the k-decomposition B ojG. If bal(S;) > 0, bal(S;+l) < 0, and S; + S,+, , 
then the sequence S' = ( S l y  . . . , Si+l, S;, . . . , Sd)  is induced by some nice k-decompositim 11' 

of G such that G$, Z G;. 

2 
Proof. Since S; jE Si+1, we can add the class Sttl to the decomposition B befort! Si. (We 

do so by adding the vertices of in the same order as they were added to 11 bcl'orc!.) I d  

B"+' denote the sequence of bags corresponding to the sequence (Sly . . . , Si- ,, St+ I ). The 

path-width of B'~+' is at most k because bal(Si) 2 0. 

Since bal(Si+l) < 0, the class S ,  can "fit in" after and thus B'~+' can he cornplt!tctf 

t o  some k-decomposition B' of G. 
2 2 For any --class S; with non-positive balance that immediately follows ,5', , ,S1 4 S;. 

(indeed, that Si is of non-positive balance means that either all of its vertices will he 
2 dropped before the next -class is added (i.e., drop(Si) = S;) or some of the old verticcs 

are removed by S; (i.e., remov(S;) # 0). In the first case, since the graph C if: conncxtcd, 

there must be a vertex in S; that is adjacent to  some vertex in S1. In the second case, t h e  
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is a vertex in S1 adjacent to  some vertex in S; by the definition of vertices removable by a 
2 -class.) 

Thug, the first bag of B' is B1. It  is easy to see that B' induces the digraph isomorphic 

to G$, since the vertices within each Si, 1 < i 5 d, are added to  the decomposition B' in 

the same order as they were added t o  B. 0 

Consider the following transformation of the sequence S:  

Transformation S 

S t e p  1. If length(S) = 1, stop. Otherwise interchange every two consecutive elements Si 
2 

and of S such that bal(S;) 2 0, bal(S;+l) < 0, and S; 74 
S t e p  2. If two consecutive elements S; and of S (1 5 i < d )  are such that bal(S;) > 0 

2 
and bal(S;+l) < 0, but Si < S'i+'i+17 "merge" them into one so-called S-block. (The balance 

of an S-block is defined as the sum of the balances of its components, and two S-blocks 

are comparable with respect to f: iff so are some of their components.) Replace S with the 

sequence of S-blocks and go to  Step 1. 

2 In view of Lemma 4.2.7, it is easy t o  see that Ihe sequence of -classes S' = (Si, . . . , Si) 
resulting from transformation S is induced by some nice k-decomposition B' of G such that 

G$, is isomorphic to G;. 

R e m a r k  4.2.8 By definition, each S-block constructed in the course of transformation S 

is a locally connected 2-block. 

R e m a r k  4.2.9 Since G is connected and bal(S) = 0, one can prove that transformation S 

merges the sequence S into a single S-block. 

Now we apply algorithm P to  the sequence S' to get a new family of 3;-equivalences, 

0 < i < I;. As the following lemma shows, these 3i-equivalences are MS-colourable. 

L e m m a  4.2.10 Let (~)f=, be the family of sequences of 2-blocks generated by algorithm 

P for the sequence S'. For any sequence Z = (Ti, . . . , Tji) (0 5 i 5 k),  each 2-block Tj 

(1 < j < t i )  is locally coranected. 

Proof. By the definition of our transformation S of the sequence S, every balanced 2-block 

T: (1 < j 5 ti) is a single S-block at some step of transformation S. 
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Indeed, by the definition of a balanced %block, each such Ti is a sequence with ill1 

S-block of positive balance at the beginning and with an S-block of negativc bi&.nc.c a t  

the end for each step of transformation S. (Otherwise, we would have a proper prclis with 

non-positive balance.) Therefore, S merges all the S-blocks inside I;' into a single S-block. 

Our claim now follows from Remark 4.2.8. a 

Now we can state the following lemma. 

Lemma 4.2.11 There always exists a nice k-decomposition B of a partial k-path G such 

that Si-equivalences, 0 5 i < k, induced by B are MS-colourable over G. 

3i 
Lemma 4.2.12 Each partial order 5 ,  0 5 i 5 k, is MS-colourable over G. 

Proof. One just needs t o  colour each 3i-equivalence class C with b(C) and bal(C) (which 

are numbers bounded by k). a 

Thus we have proved the following. 

1 3' k 3, Theorem 4.2.13 The partial ~c~-~enerat ive  structure ( N ,  {d)i=O, {5)t=O) is M S - ~ ~ l ~ x ~ r ( ~ b l ~ :  

over G. 

Here we will prove that recognizability implies definability for partial k-paths G. Firfit, we 

define another MS-colourable partial kk-generative structure on G'. Using this structure 

we will be able to define the required CMS-formula for suitably coloured con~lectetl partial 

k-paths. Then we formulate the MS-definable admissibility conditions on colourings o f  

partial k-paths. Finally, we solve the problem of recognizability implying tiefinability for 

disconnected partial k-paths. 

4.3.1 Another Partial kk-Generative Structure 

In this subsection, we divide the set of 3;-equivalence classes (for each i E (1,. . . , k } )  into k 

sets of nodes and one set of leaves by analogy with the case of (k,  1)-paths. 

We consider the set af 2-equivalence classes first. Let (CI, . . . , C.) he the sequence of 
3 
2-equivalence classes induced by the decomposition B of G'. (As before, we denote by R 

the set (C1;. . ., C,), and by R the set R \ (C1).) 
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3 Notation 4.3.1 For a 2-class Cl (1 5 I 5 s), we denote by BICl) = (Bicl,. . . , Bk,) 

the subsequence of B such that new(B(Cl)j = Cl (where new(B(C1)) = new(Bicl) U . . . U 

new(Uic, ))- 

Since every 2-class Cl (1 < I < s) has a non-positive balance, for every t and t' such 

that 15 t < t's s, we have 

Let us define a labeling X1 : V -+ {I,. . . , k} such that no two vertices in non-drop(BjCl ) 
(1 5 1 5 s j  have the same label and for any 1 < t 5 s ,  XI(Bkt) c X1(Bj,t-l) (for the 

corresponding extension of XI to  sets of vertices). 

Because non-drop(Cl) c non-drop(BjCl) (1 5 1 5 s), each non-drop vertex v of Ct, 

1 < t 5 s, can be thought of as the one "replacing" the non-drop vertex u of Bj,t-l such 

that Xl(v) = Xt(u). 

We associate with each 2-class C1 (1 < 1 j s)  the sets in(Cl) = Xl(rernov(Cl)) and 

out(Cl) = Xl(non-drop(C/)). 

Remark 4.3.2 By definition, out(Cz) C in(Cr) for every 1 E (2,. . . , s). 

We define the following k sets P:, . . . , PR of %-classes in R: For any C E fi, C E P: 
. ( l < j < k ) i f f j = m i n ( j ' l j ' ~ i n ( C ) } .  

Remark 4.3.3 It  is not difficult to  see that each set PP, 1 5 j < k, is linearly ordered by 
31 
5- 

31 Definition 4.3.4 The --classes in u:,~ P? are called the nodes of R. The set of all nodes 

of R is denoted by NR.  

Definition 4.3.5 The set R \ NR is called the set of leaves of R and is denoted by LR. 

Remark 4.3.6 For each leaf G of R, remov(C) = 0 and non-drop(C) = 0. 

31 
Now we can extend the partial order 5 as in the case of (k, 1)-paths so that only certain 

31n 
leaves are incomparable. We will denote this new partial order by 5 . 

We do the same for each Si-equivalence class, 1 5 i 5 k, which will give us k partial 
3; 

orders 5 . 
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3, 
Clearly, the triple ( A ,  { ~ ) f . o ,  {s }f=O) is a partial kk-generative s t r u c t ~ ~ r r  on O. It 

is not difficult to see that this structure is ivf S-colourable over G. Lct (?lk' denote tlw 

corres2onding coloured digraph on which this structure is MS-definable. 

4.3.2 Constructing a Decomposition of G 

Here we describe an algorithm that constructs some nice k-decomposition of G and c,hccks 

if this decorrrposition is accepted by the automaton A. 
3,  

Let 8 be some nice k-decomposition of G generated by the stnlct ere (A,  (%}f=, , { 5 
defined in the previous subsection. 

3 
Notation 4.3.7 For a 4-class C (0 5 i 5 k), we denote by B ( C )  the subsequence of b i~gs  

in B such that new(B(C)) = C. 

3 
For any .?-class C, the old vertices of the first bag in B(C) (the set of such vertices 

31 will be denoted by o l d ( ~ ( C ) ) )  are some non-drop vertices of the -classes corning before C 
31 

in fl. The 2-classes having non-drop vertices are nodes (by definition), and since j is a 

linear order on the set of 2-classes that are nodes, we have that 

o l d ( ~ ( C ) )  & u 31n non-drop(Cf). 
C':C'5 C 

More specifically, 

31 
o ~ ~ ( B ( c ) )  = non-drop(il a l n  C') = non-drop({u E V l [ ~ ] 3 ~  5 C))- 

C1:Cl< c CV 

3 .  
Let C be an arbitrary 2-class (1 5 i 5 k)  and let v be an arbitrary vertex in C (ix,, 

C = [ v ] ~ ~ ) .  Then 
N 

In other words, the set of vertices appearing in B(C) (for any %-class C ,  L < i < k )  in 
1 3 k  

3, 
determined uniquely by the structure (N ,  (4)i=07 ( 5  )LO). 

1 3 k  3, 
Notation 4.3.8 Since for any other decomposition l? generated by (-, (4)i=07 ( 5  )f=O), 

3 
~ i d ( B ~ ( c ) )  = o l d ( B ( ~ ) )  (for every 2-class C, 1 < i _< k), we will denote this set of vertices 

simply by old(C). 
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Remark 4.3.9 For any two -classes C and C' (1 5 i 5 k) that are incomparable (with 
3, 3;-1 

respect to 5 ) leaves in some N -class, B(C) and B(c') can be interchanged in B, with 

the resulting sequence still being a decomposition of G. 

Our discussion suggests ine following non-deterministic algorithm for constructing some 
1 3 -  3; 

decomposition of G generated by (N, { ~ l f i ) f = ~ ,  (5 )fZO): 

Algorithm R 
For each %-class C (which is a monotonic piece), construct the sequence of bags as in 

the case of (k, 1)-paths, taking the set old(C) U newl(C) as the first bag of that sequence. 
1 (Here newl(C) denotes the unique -class in C of cardinality greater than one.) 

3k-1 For each N -class C', order the sequences of bags constructed for its %-classes accord- 
3kn 

ing to an arbitrary completion of j: to a linear order on C'/ 2. 
30 Continuing in this way, we will get a sequence of bags for the -class, which is a 

decomposition of G. 

Note that the non-determinism of algorithm R stems from the fact that there can be 
3i-1 %-classes (1 5 i 5 k) contained in the same -class which are incomparable with respect 

3, 
to 5 . (Obviously, they are leaves in this case.) To check in CMS whether an automaton 

A = (C,, Q, 6, qo, F) recognizes the partial k-path G, it would suffice to define a certain 

linear order on such incomparable leaves that is expressible in CMS. 

Since there can be an arbitrary large number of incomparable leaves, we should define 

a certain equivalence relation on leaves so that the number of equivalence classes is bounded 

by a constant, and the behaviour of our automaton is the same on every two equivalent 

leaves. (Note that we should define such an equivalence for every " 0 < i 5 k, thus we will 

have k equivalence relations.) 

In the case of (k, 1)-paths we defined p-equivalence on leaves and then ordered the 

&-classes. This was sufficient for defining the required CMS formula, because any two p- 

equivalent leaves w' and w" corresponded to the bags B' and B" such that op(B') = ofi(BU) 

(for a suitable labeling function P) .  
Since leaves were single vertices in the case of (k,  1)-paths, we could easily determine 

if two leaves corresponded to  identical symbols in C, by just looking a t  the set of vertices 

(nodes) to which these leaves had outgoing arrows. In the general case, however, leaves 

are not necessarily single vertices, md therefore, they can correspond to  (arbitrary long) 
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sequences of bags (strings of symbols in the alphabet C,). 

Calling two incomparable leaves equivalent if the corresponding strings over 2, arc 

identical will give us an unbounded number of such equivalence classes. Instead, wc shollld 

call two such leaves 6-equivalent if the corresponding strings over C, are ecy ivah t  with 

respect t o  the transition function of the automaton A,  i.e., if these strings wl a,nd u ) ~  are such 

that for each q E Q, S*(q, wl) = 6*(q, wz). (Clearly, the number of thus defined 6-equivalcnrc 

classes is bounded by a function of I & [ . )  
To determine if two leaves are 6-equivalent, one needs to construct the sequences of 

bags corresponding t o  those leaves (more precisely, to know the behaviour of the automaton 

A on those sequences), which is a problem similar to the original one of constructing a 

decomposition of G. 

As indicated by algorithm R, we can construct sequences of bags corresponding to ca,cll 

3-class. This will give us all the bags in the decomposition of G generated by 'R. (rl'l~ee wc. 

just need to  put those bags in a proper order.) Thus, we can check if a labeling filnction 

/3 : V -t (1,. . . , k + 1) is admissible by the decomposition constructed by algorithm R. 

Consider the following extension of algorithm R. (We assume that Q = {ql , . . . , qz )  .) 

Algorithm R1 
3 k  For each --class C, construct the corresponding sequence of bags as before. Convcst 

that sequence to  a word over C,, using the labeling function /3. (Let w denote that word.) 

Associate with C the vector q(C) = (qi, . . ., q;), where for each i E (1,. . . , z ) ,  qi = 6*((/;, w) .  

(We also consider this vector as a map from & to  Q.) 
3k-1  For each - -class C', order the sequences of bags constructed for its %-classes ac- 

3 k n  
cording t o  the completion of j t o  a linear order on C1/ 3* such that for any two incorn- 

3 k n  
parable (with respect to  j ) leaves C and C', C is less than C' iff q(C) is lexicographi- 

cally less than q(C1). Let (C1,. . . ,C,) denote this sequence. Associate with C1 the vector 

q(Cf) = q(CI) o o q(Cr), where q(Ci), 1 < i < T ,  are considered as maps, and o denotes 

the composition. 

Continuing in this way, we will get a decomposition of G' as well as a map from & to 

Q that defines the behaviour of A on that decomposition. To see if G is recog~lized by A, 

we just have t o  check whether qo is taken to some final state by the constructed map. 
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4.3.3 CMS-Definability of Recognizability for Coloured Connected Par- 
tial k-Paths 

Here we show that it can be checked in CMS whether the labelings of 3;-equivalence classes 

C (0 _< i 5 k) with some vectors q(C) are the ones that would be produced by algorithm 

72. 

It is not difficult t o  see that the sets old(C) and newl(C) (defined in the previous 

subsection) are MS-definable over the coloured digraph Gdk' for every %-class C. Thus, we 

can proceed as in the case of (k, 1)-paths by MS-defining (over Gdk') the p-equivalence on 

C \ newl(C), the linear order on the corresponding quotient set, and the bags induced by 

that linear ordering. 

We can also verify in MS that a labeling P of our graph G is admissible by the sequence 
3 

of bags constructed for each 2-class C. (Let us denote this sequence of bags by B(C).) 

This miU ensure the admissibility of P by the decomposition generated with algorithm Rf .  

We MS-define in terms of G ~ ~ '  the word w(C) = co(B(C)). Then we check the cor- 

rectness of the vector q(C) = (qi, . . . , qi) associated with every C by guessing z colourings 

of the symbols in w(C) with the stztes of A such that q; is considered the initial state and 

qi the final state of A, 1 5 i 5 z, and then verifying for every two consecutive symbols of 

w(C) that their labels agree with the transition function of A (see the case of (k, 1)-paths). 
3k-1 3k For every N -class CI', we define the Sk-equivalence relation on the set of its --classes 

by saying that two leaves C1 and Cz are &-equivalent iff q(C1) = q(Cz). This enables us to 
3kn  

MS-define the completion of j to the linear order on the set C' = (Cf/ %)/ % as described 

in algorithm Rf. 

To check the correctness of q(Cf), we guess a colouring of the elements C of C' with 

vectors qf(C) from Qz such that the first (with respect to the above-mentioned linear order) 

element C1 of C' is labeled with q(C1) and the last element C,. with q(Cf), and then verify 

for every two consecutive elements Cj and Cj+l of 6" (1 5 j < r )  that 

5, where t is the cardinality of the -class Cj+i and o is the composition of the maps from Q 

to  Q. It should be clear that this is expressible in CMS. 

We continue in this manner until we verify the correctness of the vector q(Co j associated 

with the %-class CO. The graph G is recognized by A iff the state qo is mapped by q(CO) 
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to some final state. 

Thus we have proved the following statement. 

Theorem 4.3.10 Every recognizable family of coloured connected partial k-paths eik' is 

CMS-defina ble. 

4.3.4 Admissibility Conditions 

Here we state the MS-definable conditions on colourings of partial connected k-paths G such 

that any colouring satisfying these conditions induces the partial ~c~-~enerative structure on 

G required by algorithm R'. 

Consider the following conditions on a colouring of G: 

i. This colo~r;i..g induces a labeled digraph G' = (V, El) (which has the format of @). 

ii. The relation 5 (precedence) induced by G' is a partial order on V. 

1 2  3i iii. The relations -, N,  and - (0 < i < k) induced by that coiouring are equivalences on 

V such that 

1 2  (a) N is a refinement of .v, 

(b) every two vertices of V are 30-equivaknt, 
3 - 

( c )  321 is a refinement of L, 0 < i < k, and 

2  (d) 3" coincides with -. 

1 iv. For any u E V, [u], contains exactly one --class of cardinality greater than one. 
N 

1 
(Below we denote such [u], and -class of cardinality greater than one contained 

N 

in [ % I z  N by new(-Mu) and newl(Mu), respective1y.j The sets new(M,) and newl(M,) 

satisfy the following conditions: 

(a) every newl(Mu) either contains a drop vertex or has a unique vcrtcx with an 

outgoing double anow to some vertex not in newl(Mu), 

(b) there is no arc (w, w') E E' such that w E c e ~ ' ( M . ~ )  and w' E new(M,) \ 
new1 (Mu), 

(c) for every w E new(kfta) \ drop(new'(JWu)) with incoming arrow (or arrows), there 

is exactly one incoming double arrow, 
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(d) every vertex with a loop arrow has no outgoink; double arrows and no incoming 

arrows of any kind, 

(e) every vertex in new(&) \ newl(A&) has either an outgoing double arrow or a 

loop arrow. 

(Compare the above conditions with condition (iii) for the case of (k, 1)-paths on 

page 35.) 

v. The balances of 3;-equivalence classes (0 5 i < k) are encoded correctly by the colour- 
3. 

ing (i.e., bal(C) = lnon-drop(C)( - Iremov(C)I for each 2-class C). 

vi. Each %lass (0 5 i < k) contains at  most one 32'-class with positive balance. 

vii. For each %-class C, 0 5 i < k, the following two conditions hold (we denote by the 

quotient set C/ 321): 

3i+1 
(a) For any two .- -classes C and C' in 6 such that bal(C) # 0 and bal(C1) # 0, 

b(C) # b(C'). 

(b) For each 3~1-c1ass C in 6 ,  

3: 
viii. Each relation 5,  1 < i 5 k, induced by the colouring is a partial order on C /  5 for 

31-1 3. 3,-1 
every N -class C such that no two 4-classes contained in different N -classes are 

3: 3, 
compar&k w.r.t. 5, a ~ d  the partial order on V induced by 5 ,  1 5 i 5 k, is consistent 

with the precedence 5 (i.e., they both can be completed to the same linear order on 

V ) .  

ix. For the 2-class C\ widtho(CO) < k + 1, where the functions widthi, 0 < i < k, 

mapping V to the set of natural numbers are defined recursively as follows: For any 

= E V ,  

3.+i - -class (7 contained in a %-clzs C, b(C) = b(C) - bal(C). 
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3 8 - 1  x. For a N -class C (0 < i 5 k), let PIC,. . . , Pf be the k sets of nodes induced hy tllr 
3, 

labeling Xi. The partial order 5 induced by the colouring of G must be a. linear ortier 

on each set P?, 1 < j 5 k. 

It should be clear that conditions (i)-(x) are expressible in MS. 

Lemma 4.3.11 If a colouring of G satisfies conditions (i)-(ix) stated above, then the triple 
3i (A, $!~)li_~, (j]t=O) induced by that colouring is a partial kkgeneratiue strtrelurr on C .  

Proof. It is not difficult to show that the path-width of any decomposition of G generated 

by this triple is equal t o  widtho(CO) - 1 which is less than k by condition (ix). E l  

As in the case of (k, 1)-paths, we have the following statement. 

Corollary 4.3.12 For an arbitrary graph G, if there exists a coloriring of G mtisfyimj 

conditions (i)-(iz), then G i s  a partial k-path. 

Remark 4.3.13 Thus, we have shown how to construct the MS-fo~mula for e x h  k > 0 

that will define the family of all partial k-paths. 

3, 
Condition (x) ensures that the partial orders 5 , 1 5 i < k, induced by the colourir~g 

of G are linear orders on the set of nodes of each 3~1-class.  By conditions (vi) and (v) ,  

each leaf induced by the colouring of G does not contain any non-drop vertices, thcreforc 

algorithm 72' will work correctly on this coloured graph. 

So we can formulate the principal result of our thesis. 

Theorem 4.3.14 Every recognizable family of connected partial k-paths is CMS-definable. 

4.3.5 The Case of Disconnected Partial k-Paths 

Here we extend Theorem 4.3.14 t o  disconnected partial k-paths. 

Let a partial k-path G have t > 1 components GI,. . . , GL. Obviously, each CJr 1 < 
_i 5 t ;  is a connected yxt ia l  L-path. We apply algorithm R' to  each G j ,  which will give u r j  

t vectors q(Gj) describing the behaviour of the corresponding automaton A on each of the 

components of G. 

If A recognizes G, then the decomposition of G' obtained by arbitrarily ordering the 

decompositions of its components should be accepted by A. That is, the composition of the 
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maps y(Gj), 1 5 j 2 t ,  chosen in any order should define the map that takes the initial 

state of A to some of its final states. 

Since connectedness of a graph is MS-definable, we can simulate in ChfS applying 

algorithm Rf to each component of G (e-g., we can define the 30-equivalence as the relation 

of being connected). Then we define the &equivalence (by saying that two components G' 
6 

and G"' of G are &-equivalent iff q(Gf) = q(Gff)), order these -classes lexicographically, and 

compute the correspo~ding composition. Clearly, this is expressible in CMS. 

Thus we have the theorem. 

Theorem 4.3.15 Every recognizable family of (possibly disconnected) partial k-paths is 

CMS-defina ble. 

Combining this with the Courcelle's result on definability implying recognizability for 

partial k-trees yields the following. 

Corollary 4.3.16 Definabilzty equals recognizability for partial k-paths. 



Chapter 5 

Conclusion 

We showed that every recognizable family of partial k-paths is CMS-dcfi~iablc, tticrchy 

proving a particular case of Courcelle's conjecture. Thus, we call now say that, a proI)lc~n 

on partial k-paths is solvable in linear time using a finite automaton iff it is CMS-dcfi ~~al)lr. 

As a byproduct of our solution, we obtained the MS-formula defining the class of partial 

k-paths for every given k. This implies that the obstruction sets for the classes of partial 

k-paths are computable. 

Our results rely upon the possibility to MS-define a certain partial orcfering on tlit. sct, 

of vertices of a ejven partial k-path. In this respect, it is interesting to note sonlcl sirnilariti~s 

between our approach and that of Courcelle in 191. (Our results were obtained c.ornpletc!ly 

independently.) In his paper, Courcelle was able to MS-define a linear orderir~g oa th: 

vertex-set of a k-connected partial k-path G that corresponds to the order in which tticlsc. 

vertices are added to some k-decomposition of G (i.e., a k-generative linear order oli G). 

A graph G is Is-connected if [V( 2 k +2 and there is no subset U C_ V of car(iiria1ity Icss 

than k such that the removal of U disconnects the graph G. A partial k-path (according 

to Courcelle) is a graph that allows a k-decomposition B = (Dl , .  . . , H,) satisfying tjlic! 

following conditions: 

iii- B; n B;+, # B+, n B;+z for each i E (1,. . . , m - 2). 

We wilt prove that a k-connected partid 6-path (according to the above defi ni tim f is 



a particular case of a connected (k, 1)-path (see Chapter 3) for which a k-generative linear 

ordrr is MS-definable, 

By the condition of k-connectedness, non-drop(B;) = k for each i E (1,. . . , m  - 1). 

Combining this with condition (ii) yields that ~ l d ( B ; + ~ )  = non-drop(B;) for each i E 

( I , .  . ..m - I ) .  Thus ,  conditions (i) and (ii) and the k-connectedness of G imply that 

U is a (k, 1)-decomposition. 

CJondition (iii) suggests that drop(Bi) n new(&) = 0 for each i E (2,. . ., n - 1). 

Thcrcforc, the digraph G'; has n o  vertices with loop arrows, which meam that there are 

no leaves. So, the partial order 5" is a linear order on the set 1,' \ drop(B1) that can be 

completed (by making the drop vertex of B1 the minimum) to a k-generative linear order 

oa G. 

Our results show that it is not necessary to MS-define the algebraic structure (path- 

decompositjon. in our case) of a given graph in order to  prove that recognizability implies 

CMS-definability. 

Actually, it is impossible t o  MS-define k-decompositions for arbitrary partial k-paths. 

Coiisider t he graphs G,, = ( (0 , l . .  . . , n ) ,  En): where En = ( ( 0 ,  j )  11 5 j 5 n) .  Clearly, these 

graphs are 1-connected 1-paths (according to  the general definition of k-paths). If we had 

a n  MS-formu!a defining a 1-decomposjtion for each G,, n 2 1, we could US-define linear 

orderings on the vertex-sef t8&- But- no linear orders can be MS-defined on G,, since these 

graphs have nontrivial automorphisms, and the size of G, can be arbitrary large. 

The main open problem is t o  prove (or disprove) the Courcelle's conjecture for partial 

k-trees. It seenis promising t o  apply t6he ideas from our solution for partial k-paths to this 

general case. A tree-decomposition induces a partial order on the vertex-set of a partial 

b-tree. ?Ve will  teed to  define certain "nicen tree-decompositions such that this order can 

be XIS-roloured. 

tVc already know how to  XIS-colour the parts of a partial k-tree G that are partial 

k-paths. We can also define in CMS the behaviour of the corresponding tree-automaton on 

such "linear" parts. Thus, it would suffice to be able t o  hlSdefine a suitable partial order 

m th- fngnxnts  cf G. 
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