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ABSTRACT 

Context based adaptive entropy coders are used in newer compression 

standards to achieve rates that are asymptotically close to the source entropy: 

separate arithmetic coders are used for a large number of possible conditioning 

classes. This greatly reduces the amount of sample data available for learning. 

To combat this problem, which is referred as the context dilution problem in the 

literature, one needs to balance the benefit of using high-order context modeling 

and the learning cost associated with context dilution. 

In the first part of this dissertation, we propose a context quantization 

method to attack the context dilution problem for non-binary source. It begins 

with a large number of conditioning classes and then uses a clustering procedure 

to reduce the number of contexts into a desired size. The main operational 

difficulty in practice is how to describe the complex partition of the context space. 

To deal with this problem, we present two novel methods, coarse context 

quantization (CCQ) and entropy coded state sequence (ECSS), for efficiently 

describing the context book, which completely specifies the context quantizer 

mappings information. 

The second part of this dissertation considers binarization of non-binary 

sources. Same as non- binary source, the cost of sending the complex context 

description as side information is very high. Up to now, all the context quantizers 



are designed off-line and being optimized with respect to the statistics of the 

training set. The problem of handling the mismatch between the training set and 

an input image has remained largely untreated. We propose three novel 

schemes, minimum description length, image dependent and minimum adaptive 

code length, to deal with this problem. The experimental results show that our 

approach outperforms the JBlG and JBIG2 standard with peak compression 

improvement of 24% and 1 1 Oh separately on the chosen set of halftone images. 

In the third part of this dissertation, we extend our study to the joint design 

of both quantizers and entropy coders. We propose a context-based 

classification and adaptive quantization scheme, which essentially produce a 

finite state quantizer and entropy coder with the same procedure. 

Keywords: context, entropy coding, context quantization, image compression. 
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CHAPTER 1. 
INTRODUCTION 

1 .I. Introduction 

The idea of data compression is much older than our era of digital 

communications and computers. Since the early days of civilization, men have 

always been interested in economical communications. The purpose of data 

compression is to represent information using the minimum amount of medium 

so that it takes less time to transmit and less space to store. In ancient Greece, 

the cost of the papyrus or marble was far more expensive than today's paper. As 

a result, texts were written with no punctuation to save space. The ancient 

Chinese language was much more "compressed", but a bit harder to 

communicate in daily life, than its modern descendant. At that time concise 

expressions were necessary because the words could be only written on narrow 

bamboo plate. Abbreviations and acronyms have been used as a data 

compression technique for ages. 

Data compression becomes more important in modern society due to the 

revolution of the information technology, which has changed the way we 

communicate. The emergence and development of the internet and the growing 

number of mobile phones and digital lV users are part of this revolution. Data 

compression has definitely had a very important role in the development of the 



multimedia technologies. In fact, without the current data compression 

techniques, the internet would not have the size and shape as it does today, and 

the mobile phones and digital W s  would not be as widespread as they are 

today. The music stored in CD1s, the movies stored in DVD's and the images 

stored in digital cameras are all compressed. 

A picture is worth one thousand words. An effective and popular form of 

modern digital communications is pictorial. One can hardly find a page in the 

internet that does not contain at least one image. Also, if we could search the 

information in the computers around the world, maybe it would be difficult to find 

a computer without image files stored in it. 

Digital image compression, or digital image coding, is far more important 

than text compression because a digital image involves a large volume of data if 

uncompressed. lmage compression has been an active research topic for more 

than 80 years, ever since the digitized pictures were first transmitted in the early 

1920s. 

lmage compression techniques are also used in most of the video 

compression algorithms and standards. In fact, in many video compression 

standards, an image compression technique is used to code some non- 

consecutive video frames and the frames between them are interpolated using 

motion compensation techniques [ I ]  to exploit the dependency between the 

frames. 



Entropy coding is an important component in image and video coding 

systems. It performs lossless compression on symbols generated by a transform 

and quantization process to obtain a more efficient representation of source data. 

In the case where the source data possesses certain statistical dependencies 

between symbols, it is advantageous for an entropy coder to consider this 

statistical property in the source data. Furthermore, if an entropy coder can 

dynamically adapt to the statistics of the input symbols, better performance can 

be achieved than with its non-adaptive counterpart. Therefore, context-based 

adaptive entropy coding becomes an essential feature of modern image and 

video compression algorithms. 

The design objective of context-based adaptive entropy coding is to 

asymptotically approach the source entropy. However, the adaptation takes time 

to converge to the source statistics and the compression performance suffers 

when the length of input data is relatively short. In image and video coding the 

problem is compounded by the fact that input sources contain significant memory 

(even after a decorrelation transform). A high-order context needs to be 

employed by conditional entropy coding to approach the source entropy: 

separate arithmetic coders are used for each of a large number of possible 

conditioning states (instances of a chosen context). This greatly reduces the 

amount of sample data available for learning. To deal with this problem, which is 

referred to as context dilution problem in the literature, one needs to balance the 

benefit of using high-order context modelling to fit the input data and the learning 

cost due to data dilution. 



Main Contributions 

In this thesis, first we attack the context dilution problem. Most of the 

former approaches define the context in an ad-hoc manner. In [2], we propose a 

context quantization method which begins with a large number of conditioning 

classes and then uses a clustering procedure to reduce the number of contexts 

to a desired value. We also show that the resulting context quantizer is optimal in 

the sense of minimizing the conditional entropy. 

However, the main operational difficulty in practice, is how to describe the 

complex partition of the context space by the minimum conditional entropy 

context quantizer. The context-based adaptive entropy coder relies on this 

partition that maps the context space into coding states, which we call quantizer 

mapping. Two novel schemes are proposed to deal with the problem of 

quantizer mapping in [3]. Coarse context quantizer method is to decrease the 

size of the context space. Entropy coded state sequence method is designed for 

reducing the bits spending on individual entry of the context book. Some 

encouraging results are obtained. 

We consider binarization of non-binary sources. Since the probability 

simplex space of a binary source is one dimensional, context quantizer design for 

binary sources is reduced to a scalar quantizer design problem. As a result, 

globally optimal context quantizers can be computed by dynamic programming. 

But, same as non-binary sources, the cost of transmitting inverse quantization in 

context space is very high. Therefore, up to now, all the context quantizers are 



designed off-line and being optimized with respect to the statistics of the training 

set. An ensuing question is how to handle any mismatch in statistics between 

the training set and an input image. This problem has remained largely 

untreated. To deal with it, we proposed three novel schemes in [4] and [5]. 

Minimum description length method is to minimize the sum of the bits emitted by 

the conditional entropy coder using the context quantizer and the side 

information to describe the context quantizer mappings. Image dependent 

context quantizer is designed based on input statistics alone to minimize the 

conditional entropy with small side information. Minimum adaptive code length 

context quantizer is aiming to minimize the effect of the mismatch between the 

training set and the input. The actual adaptive code length difference between 

the two sets, the training set plus the input and the training set alone, is 

minimized. Our experiments show that our schemes outperform JBlG and JBIG2 

standard with peak compression improvement of 24% and 8% on the chosen set 

of twelve halftone images, which are among the most difficult binary sources to 

compress. 

We also extend our work to the joint design of both quantizers and entropy 

coders. A context-based classification and adaptive quantization scheme on 

coefficient basis with non-parametric modelling is presented in [6] , which 

essentially produces a finite state quantizer and entropy coder with the same 

procedure. The results show that it has a great potential to improve the overall 

compression system performance. 



1.3. Thesis Outline 

Chapter 2 covers the fundamentals of context based entropy coding and 

quantization, which may be needed for understanding the research materials of 

the subsequent chapters. 

Chapter 3 studies context quantizer design with the objective of optimizing 

context-based entropy coders for non-binary sources. An iterative algorithm to 

overcome the difficulty of context dilution is proposed. Furthermore, two novel 

schemes are developed for compactly describing the partition of the context 

space. 

Chapter 4 is concerned with context quantizer design for binary sources. A 

new MDL (minimum description length) based adaptive context quantization 

scheme is presented first. An image dependent context quantizer with a very 

efficient m of side information is then described. Finally a context quantization 

method to deal with the mismatch statistics between the training set and the input 

image is proposed. This novel method optimizes the context quantizer under the 

criterion of minimum actual adaptive code length. 

Chapter 5 studies the problem of joint design of both quantizer and 

entropy coder using context-based classification techniques. A novel non- 

parametric approach based on histogram quantization is proposed. 



CHAPTER 2. 
BACKGROUND REVIEW 

2.1. Entropy Coding 

2.1 .I. Entropy 

Entropy, a notion first introduced by Shannon [7] , is a measure of 

information. There is high amount of information in an event if the probability of 

the occurring of the event is low and vice versa. As an example, suppose you 

receive a phone call in January from a friend of yours in the Northern Territories. 

He says the weather there is very cold. This sentence really does not carry much 

information, as at that time of the year you do expect the weather to be cold 

there. However, if a top seed tennis player is beaten by a Wimbledon wildcard in 

the first round of tournament, all the sports channels will talk about the 

unexpected news, as there is high information in it. 

Consider a memoryless source modelled by a discrete random variable X , 

with a symbol alphabet of size N , {x, ,x, ,..., x,-,). The random variable X is 

characterized by its probability mass function 



The information content of the source is measured by its entropy (in the 

memoryless case the zeroth-order entropy) [8] 

For binary systems, the logarithm base is two, and the unit of the entropy 

is bit. 

2.1.2. Entropy Coding 

Shannon [7] showed that the average number of bits necessary to encode 

a memoryless source without loss cannot be lower than the entropy of the 

source. However, the zeroth-order entropy does not take the memory among the 

source symbols into account. When memory is present in a source, 

dependencies between the symbols need to be exploited to achieve maximum 

compression. In this case, the achievable lossless bit rate is governed by a high- 

order entropy which is less than zeroth-order entropy. 

The term entropy coding refers to the use of a variable length code to 

losslessly represent a sequence of symbols from a discrete alphabet. The lower 

bound or the minimum achievable average rate for memoryless source is the 

entropy of the source. A practical entropy code must be uniquely decodable, so 

that there is only one possible sequence of codewords for any unique input 

sequence. Currently, three popular entropy coding techniques, Huffman coding, 



Golomb-Rice, and arithmetic coding, are used in modern compression systems 

and standards [9-271. We only discuss arithmetic coding in the following section, 

because it is used in our work. 

2.1.3. Arithmetic Coding 

In arithmetic coding[28-301, a sequence of symbols is uniquely encoded 

as a value, which is an interval in the range [0,1). Because the number of values 

in the unit interval is infinite, it should be possible to assign a unique subinterval 

to each distinct sequence of symbols. The size of this subinterval is determined 

by the cumulative distribution (cdf) of the random variable associated with the 

source [I]. 

Arithmetic coding can be illustrated with an example. Consider a source 

with a three symbol alphabet, denoted as {a, b, c), with symbol probabilities as 

defined in Table 2.1 

When we encode a sequence, the subinterval that represents the whole 

sequence is getting narrowed with respect to each symbol probability. Suppose 

that the sequence abacb is to be encoded. The first symbol, a, falls in the interval 

of [O, 0.6). After a is encoded, the low end and high end of the interval become 0 

and 0.6 separately. The next interval is defined by subdividing [O, 0.6) in 

proportion to the probability of the next symbol b, according to Table 2.1. Instead 

of [0.6, 0.7) with respect to the unit interval, the next interval is [0.6x0.6, 0.7x0.6). 

Applying this procedure will further restrict the range to 10.36, 0.42). 



Table 2.1 Probabilities and intervals associated to three symbols of a source 

Symbol Probability Interval 

This process continues for successive symbols, so that the sequence 

abacb is represented by the final interval [0.3852, 0. 39168). The intervals are 

shown in Figure 2-1, where the size of the interval has been scaled so that the 

small intervals are visible. 

Figure 2-1 Interval for the sequence a b a c b 

10 



The maximum number of bits required to encode the interval is: 

ceil(log(1 l p(xi ))) + 1 ( 2.3 1 

where p ( x , )  is the probability of the sequence [I]. In this example, to encode the 

whole sequence, we need 

ceil (log( 
1 

)) + l  = cei1(8.38)+1 = 10 bits ( 2-4 1 
P ( ~ ) P ( ~ ) P ( ~ ) P ( ~ ) P ( @  

The interval representing a sequence is coded as a string of bits which 

identify the tag. The binary bits are sent in the order of precision from the most 

significant bit. In the example, the first interval [O, 0.6) is not confined to either the 

upper or lower half of the unit interval, so no bits are transmitted for the symbol a. 

The second symbol b restrains the interval between 0.36 and 0.42, which is 

included in the lower half of the unit interval, so a bit "0" is sent. The third 

symbol "a" constrains the tag to [0.36, 0.396), which falls in the upper half of the 

interval [O, 0.5), so a bit "1" is sent. The same process continues until the last 

symbol b is encoded. Table 2.2 illustrates the procedure of encoding, showing 

the transmitted bits, not including the termination bits, and the intervals that they 

are assigned. 



Table 2.2 Encoding the sequence a b a c b 

In the decoding process, first we meet "OM, which constrains the interval to 

[0,0.5). We can obtain the first symbol a, whose probability range is from 0 to 0.6, 

completely containing the binary interval [0,0.5). The second binary bit, "1 ", 

narrows the interval to [0.25,0.5), which can not tell us exactly what the second 

symbol is. The third binary bit "I", continues to refine the interval to [0.375,0.5), 

which still does not define the second symbol of the sequence. After the fourth bit 

"O", we obtain the second symbol, b. We go on decoding with the same logic and 

finally get a b a c b at the end. Table 2.3 describes the decoding procedure. 

In the above example, we assume that both the encoder and decoder 

know the length of the message so that the decoder would not continue the 

decoding process forever. Otherwise, we need to include a special terminating 

12 



symbol so that when the decoder sees this symbol, it stops the decoding 

process. 

Table 2.3 Encoding the sequence a b a c b 

I hput I Binary interval I Decoded Symbol I 

In summary, the encoding process is simply to narrow the interval of 

possible numbers with every new symbol. The new range is proportional to the 

predefined probability attached to that symbol. The output of the encoder is 

binary bits determined by the sequence tag and the incrementally finer binary 

intervals with respect to each output. Conversely, decoding is the procedure 

where the binary interval is narrowed by the input bits, and each symbol is 

extracted according to its probability and the binary interval. 

2.1.4. Adaptive Arithmetic Coding 

We have seen how arithmetic coder works when the distribution of the 

source is available. In many applications the source distribution is not known a 

priori. It is a relatively simple task to modify the algorithm discussed so that the 



coder learns the distribution as the coding progresses. A straightforward 

implementation is to start with a count of 1 for each symbol in the alphabet. We 

need a count of at least 1 for each symbol. If not we will have no way of encoding 

the symbol when it is first encountered. This assumes that we know nothing 

about the distribution of the source. If we do know something about the 

distribution of the source, we can let the initial counts reflect our knowledge. 

After the coding is initiated, the count for a symbol is incremented each 

time it is encountered and encoded. The cumulative count table is updated 

accordingly. This updating takes place at both the encoder and decoder to 

maintain the synchronization between the two. 

2.1.5. Context Based Adaptive Arithmetic Coding 

As mentioned in Section 2.1.2, "unconditional" entropy coding can obtain a 

lossless coding rate that approaches the zeroth-order entropy of the input 

source. Given a finite source X,, X, ,..., X, , compressing this sequence losslessly 

requires one to process the symbols in some order and try to estimate the 

conditional probability distribution for the current symbol based on the previously 

processed symbols [31]. If we use conditional probabilities, we can do better than 

the zeroth-order entropy. The minimum code length of the sequence in bits is 



The design objective of an adaptive arithmetic coder is to attain a code 

length approaching the source entropy given above. Given the numerical 

precision of specific coder implementation (more than sufficient for modern 

computers), the performance of an arithmetic coder is solely determined by the 

context model that drives it. The role of context modelling is to estimate the 

conditional probabilities p(X,+, I X ' )  where X' = X,, ..., X, is the prefix or context 

of X,,, . Indeed, given a model class, the order of the model or the number of 

model parameters needs to be carefully selected so as not to negatively impact 

the code length. If the model order is too low, the true distribution will not be well 

approximated, while if the model order is too high, the model parameters will not 

be well estimated. In the literature, this problem is addressed in various ways. 

The pioneer solution to the problem is Rissanen's algorithm Context [32], which 

dynamically selects a variable-order subset of the past samples in X '  , called the 

context C, . The algorithm structures the contexts of different orders by a tree and 

it can be shown to be, under certain assumptions, universal in terms of 

approaching minimum adaptive code length for a class of finite-memory sources. 

A more recent and increasingly popular coding technique is context tree 

weighting [33]. The idea is to weight the probability estimates associated with 

different branches of a context tree to obtain a better estimate of p(X,+, I X I ) .  

Because the estimation error decreases with increasing data length, in the limit 

both the estimation and approximation error can be made to go to zero by 



increasing the model complexity at the proper rate. This is the basis for universal 

coding. The Context algorithm and context tree weighting can be shown to be 

universal for the class of finite-state Markov (FSMX) sources. 

Although the tree-based context modelling techniques have had 

remarkable success in text compression, applying them to image compression 

poses a great challenge. The context tree can only model a sequence not a two- 

dimension signal like images. It is possible to schedule the pixels (or transform 

coefficients) of an image into a sequence so that context tree weighting algorithm 

can be applied [34-361. In particular, Mrak etal. investigated how to optimize the 

ordering of the context parameters within the context trees [36]. But any linear 

ordering of pixels will inevitably destroy the intrinsic two-dimensional sample 

structures of an image. This is why most imagelvideo image compression 

algorithms choose a priori two-dimensional context model with fixed complexity, 

based on domain knowledge such as correlation structure of the pixels and 

typical input image size, and estimate only the model parameters. For instance, 

the JBlG standard for binary image compression uses the contexts of a fixed size 

causal template [37]. The actual coding is implemented by sequentially applying 

arithmetic coding based on the estimated conditional probabilities. 

Learning the conditional probabilities p(X,+, I X i ) ,  or equivalently 

p(X I C )  , on the fly using count statistics of the input can be slow in converging 

to the source statistics. The compression performance degrades when the 

length of input data is short relative to the size of the context model. In 



imagelvideo compression the problem is aggravated by the fact that image 

signals contain long memory (even after a decorrelation transform). A high-order 

context model is thus required by arithmetic coder to approach the entropy of the 

image source. Since the number of conditioning states increases exponentially in 

the order of the context model, the amount of sample data available per 

conditioning state is diluted exponentially on average, causing the well-known 

problem of context dilution. 

A common practical technique to overcome the difficulty of context dilution 

is context quantization [2] [38-431. The idea is to reduce the number of 

conditioning states by merging those of similar statistics into one. For example, 

the lossless image compression algorithm CALK [26] and the JPEG 2000 

entropy coding algorithm EBCOT [44] quantize a context C of order d into a 

relatively small number M of conditioning states. Denote the context quantizer by 

Q : E~ + {1,2,...,M) . The arithmetic coder is then driven by an estimated 

p ( X  I Q(C)) rather than by an estimated p (X  I C) . But these context quantizers 

and others used in practical imagelvideo compression methods were designed 

largely in an ad hoc way. 

Greene et a/. were the first to optimize context quantizers under the 

criterion of minimum conditional entropy for binary sources such as binary 

images [45]. If X is a binary random variable, then the probability simplex space 

for P(X) is one dimensional. This reduces context quantizer design to a scalar 

quantizer design problem, and consequently the problem can be solved by 



dynamic programming. The same design problem was investigated by 

Forchhammer ef a/. but for the objective of minimizing the actual code length of 

adaptive arithmetic code [40]. Large coding gains were made by their design 

algorithm on MPEG 4 binary mask image sequences. 

Recently, some authors including us proposed context quantizer design 

algorithms that work directly in the context space E~ i.e., the vector space of 

conditioning events [2] [41-421. These algorithms are essentially vector 

quantization (VQ) approach [46] that clusters raw context instances of a training 

set using Kullback-Leibler distance as the VQ distortion metric. The context 

quantizer design is done by some variant of the generalized Lloyd method of 

gradient descent, and consequently the solution is only locally optimal. A 

daunting and unresolved operational difficulty for this approach is the high 

description complexity of quantizer mapping function (inverse quantization 

function). The quantizer cells in the context space are generally not convex, and 

even consist of disjoint regions [39]. This makes the decoder implementation 

unwieldy, requiring a huge look-up table. 

To circumvent the problem of inverse quantization in context space, Wu 

proposed a different context quantizer design technique[38] [47-491, which 

actually predated all other VQ-based context quantization methods. It first 

performs a principal component transform of the context space and then forms a 

convex partition of the context space in the principal direction under the criterion 

of minimum Kullback-Leibler distance. This practical technique was successfully 

applied to Golomb-Rice coding of 3 0  wavelet coefficients for volumetric medical 
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image compression [50] and to adaptive arithmetic coding for high-performance 

lossless image and video compression [51] 

Up to now all the context quantizers are optimized with respect to the 

statistics of a training set. An ensuing question is how to handle any mismatch in 

statistics between the training set and an input image. This problem has 

remained largely untreated. 

2.2. Quantization 

2.2.1. Quantization Basics 

Quantization [46] is the act of mapping a large set of different values to a 

smaller set, which is one of the basic ideas of lossy data compression. Figure 2-2 

is an example of a scalar quantizer, where all the real values in the x axis are 

mapped into only six values in the y axis. In this example the values that reside in 

the range [O, A )  are mapped into A / 2 ,  etc. 

Usually, each of the values on the y axis is assigned a quantization index, 

and the indexes are entropy coded at the coder side. At the decoder, first the 

indexes are entropy decoded, and then since the exact values of the coded 

samples are not known, each index is mapped into a reconstruction value that in 

some sense, optimally represents the samples in that interval. This mapping of 

index to value is usually predetermined and the encoder uses this to decide on 

the quantization index. Also since the exact value of the sample cannot be 

recovered at the decoder, the resulting compression will be lossy. 



Figure 2-2 Example of a uniform scalar quantizer 

The design parameters in every scalar quantizer include the sizes of each 

interval in both of the x and y axes, the number of the quantization levels and the 

reconstruction values. The design, in turn, depends upon the statistics of the 

source samples, and the conditions and constraints that exist in each practical 

problem. 

2.2.2. Adaptive Quantization and Classification 

Chrysafis and Ortega [52] presented a novel approach that combined 

context classification and adaptive quantization together in the coding of the 

image subbands. They used the wavelet and applied a uniform threshold 

quantizer on the subband coefficients. For each symbol, a prediction is made 

using the nearest three "causal" symbols and one parent-band symbol. An 

Entropy Constrained Scalar Quantizer (ECSQ)i is used on the predictor to 

classify the current pixel. The number of output points of the quantizer, the 

context size, is 11 in their experiment [52]. This backward adaptive classification 



technique, which decides each pixel's context state determines the probability 

model for the arithmetic coder. The adaptive quantization in ECSQ is 

implemented with respect to the rate distortion criterion, J = D + mR , where J is 

the rate distortion cost, D and R represent the distortion and the rate needed 

respectively, and m is a Lagrange multiplier, depending only on the statistics of 

the image. In this algorithm, the context information includes the quantized 

coefficients not only in the same subband, but also in its parent subband as 

well.This context model tries to give a more precise predictor for the subband 

coefficient. 

Yoo, Ortega and Yu [53] gave a different consideration for the quantizer sets in 

their work. They couple the context classification and the quantization techniques 

in their algorithm. First, they separate the subband coefficients into different 

classes; then they apply different quantization to each class using a bit allocation 

strategy. The activity of the current coefficient is predicted by a weighted average 

magnitude of six previously transmitted quantized coefficients. The current pixel 

is classified by thresholds on the estimated predictor. Unlike the work by 

Chrysafis [52], the classification thresholds are designed in an iterative procedure 

aiming at maximizing the coding gain due to classification. The iterative merging 

algorithm, which tries to merge the pair of classes with the smallest gain, 

converges to a local optimum at each iteration that increases the classification 

gain. A special class called "zero context" was adopted to separate this kind of 

context (consisting of all zero-quantized coefficients which contain little 

information for estimation) from the others. The classification can be formed on a 



coefficient-by-coefficient basis that overcomes the shortcomings of block-based 

classification. This classification can split subband coefficients into classes of 

different variances and has the advantage of achieving classified regions with 

arbitrary shapes. After the classification, the quantizer is applied to each 

classified subband coefficient. Under the assumption of a Laplacian distribution 

model, an adaptive Uniform Threshold Quantizer (UTQ) can be derived from the 

online estimation of model parameters within each class. 



CHAPTER 3. 
CONTEXT QUANTIZATION FOR ENTROPY CODING 
OF NON BINARY SOURCE 

3.1. Context Quantization 

3.1 .I. Problem Formulation 
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Figure 3-1 Context Quantization 

As discussed in 2.1.5, an adaptive arithmetic coder first classifies the current 

data into a coding state, and then compresses the data using an estimated 

conditional probability for the coding state. Correspondingly, the more precisely 

the coding states distinguish different source distributions, the more efficient the 

coder will be. Therefore, the key to high coding performance is how we classify 

the data, in other words, how to define the coding context. 



Note that only causal context model is studied in our work. A causal context 

model uses a combination of "past" values to form the context. In a raster 

scanned image, the causal context model contains the neighbors to the left and 

at the top of the symbol being coded. As shown in Figure 3-1 the context 

template contains the north, northwest, northeast and west pixel of the pixel 

being coded. No side information is required to decode the sequence of bits, 

because the decoder has reconstructed the previous symbols to obtain the 

context of the current decoded symbol. 

Consider a source X with K different symbols. Given a defined casual 

context template, the context space is composed of all the possible context 

instances. For example, if the context template is defined as four casual 

neighbours as shown in Figure 3-1, the corresponding context space contains 

K~ possible context instances (pixel patterns). However, many of the context 

instances may not appear in a particular source, the actual context space size M 

may then be much smaller than the maximum size. The source data is then 

classified into M states. In traditional context-based adaptive arithmetic coder, 

the conditional probability for each state is estimated on the fly and used to 

generate the code stream. When M is large, many context instances rarely occur 

in a particular image, sometimes only happen once. The amount of data for 

learning will be small for these context instances, which causes severe 

estimation error and consequently leads to poor compression performance. This 

is the well-known problem of context dilution. 



The solution to the context dilution problem is context quantization. The 

context space will be partitioned into N subsets. The context instances in each 

subset will be merged into a coding state in which the data share the same 

probability model when being compressed by an arithmetic coder. Because the 

amount of data for learning the statistics of the merged state increases, more 

accurate probability model will be used to drive the arithmetic coder. However, 

the decrease of the number of coding states may cause an increase in the code 

length . Therefore, the partition needs to be optimized. Intuitively, context 

instances with similar probabilities should be grouped together. Then the 

questions become how to measure the similarity between the probabilities and 

how to find the optimal partition in the sense of achieving the balance between 

the benefit of using many conditioning states to lower the entropy and the cost 

associated with context dilution. 

3.1.2. Histogram Quantization 

Our approach is based upon the notion of a histogram quantizer. It takes any 

input histogram which corresponding to a context instance and matches it to a 

finite set of histograms from a "codebook". More precisely, let T = (T, ,T, ,... T,) be 

one of M conditional probability histograms for a source X having K different 

symbols, with T, being the conditional probability of symbol k. An N-state 

histogram quantizer is a mapping that assigns to each input histogram, T, a 

reconstruction histogram, T' = q(T) that is drawn from a finite-size codebook of N 

histograms, A, = {R' ,i = 1, ..., N )  , where R' denotes the i-th target histogram (a 



codeword in the histogram codebook). The quantizer, q, is completely described 

by two elements: the reconstruction alphabet A and the partition of the input 

histogram space. This partition is defined by the set S = {S, , i  = 1, ..., N )  , with 

S, = {T : q ( T )  = R ' )  . 

Figure 3-2 Illustration of Histogram Quantization 

In data compression practice, the design goal of context quantization 

(histogram grouping) is to achieve the minimum arithmetic code length. This is 

equivalent to, as we will discuss in subsections 3.1.3 and 3.1.5, minimizing the 

relative entropy or Kullback-Leibler distance between the input histogram T and 

its quantized version R' , which is defined by 

K 

~ ( T , R ' )  = H(T 1 1  R ' )  = CT,  log(^, I R ; )  ( 3.1 
k=l 

Although relative entropy can be viewed as a distance measure between 

two distributions, it is not a true distance metric. It is not symmetric nor satisfies 



the triangular inequality. Nevertheless, d(T ,  R ' )  specifies the increase in bit rate 

if one uses the histogram Ri to code a source of the histogram T. 

Context quantization is a problem of vector quantization (VQ). However, 

unlike VQ of signals, context quantizer works in a probability (histogram) space 

instead of a sample vector space. The VQ interpretation of context quantization 

can be seen in Figure 3-2, in which the crosses represent conditional probability 

histograms and the red dots are the centroid histograms. In optimal design of 

context quantizers, we apply the classic VQ design approach of gradient descent 

(commonly known as the generalized Lloyd algorithm) in the probability space 

and use relative entropy as the "distortion" measure The design algorithm is 

formally stated as the following. 

1) Given the desired number of quantized states in the context space, N, start 

with an initial reconstruction histogram codebook, A:) ; average distortion D(') and 

iteration m = 0 .  Selects. 

2) At interation m , determine the N quantizer cells defined by 

s!"' = {T : d(T,  R i )  < d(T,  RJ) ,V j  z i), i = 1 ,..., N ( 3.2 ) 

and compute the average distortion, D'"), between the input and target 

histograms as 



Where p(T) is the probability of histogram and p(~'"))  is the sum probability of 

all the histograms in the cell S, . 

4) Determine the codebook for iteration m + 1 , AF"), by computing the average 

histogram for each s(") ; this is done element by element according to 

5) m = m+ l ,  go to step 2). 

3.1.3. Convergence of Context Quantizer Design Algorithm 

In order to guarantee the convergence of the algorithm, we require that 

D("-') - 0'") be non-negative. It is clear that step 2) above is a nearest neighbor 

calculation and that it can only lower the distortion; however, we need to prove 

that step 4) also reduces the distortion. Since the total distortion is made up of a 

sum of the D, terms, we can treat them individually. Expanding (3.4) using (3.1) 

gives 



Changing R; has no effect on the 1st term and we thus minimize D,'") by 

maximizing the 2" term. Defining 

allows us to write the second term as 

Now, inspection shows that both C Wk = 1 and C R; = 1 , which means that 
k k 

both Wand R' are valid pmfs. Since the relative entropy between two pmf's is 

non-negative, we have 

H(W 1 )  R') 2 0 

Therefore, 

with equality when Wk = R:. We thus see that Awill be maximized if and only if 

this equality is true. Since this is exactly what step 4) forces, this step can never 

result in an increased distortion. 



3.1.4. The Number of Context Instances 

The monotonicity of the objective function as the generalized Lloyd method 

iterates ensures that we obtain locally optimal N coding states. However, there is 

another design parameter to be determined. That is the optimal number of 

coding states N. The value of N governs the trade-off between the accuracy of 

the quantized histogram and the severity of context dilution. The larger the value 

of N, the finer the classification of different histograms, but more samples are 

needed to learn the conditional probability. We need to find the optimal value of 

N that achieves minimum code length in conjunction with an optimal partition of 

probability space. 

We approach the above problem using the technique of quantizer cell 

splitting [46]. As presented below, the number of context instances is constrained 

to be a power of 2; however, this restriction is easily lifted with trivial 

modifications. 

1) Initialization: Let R' be the centroid histogram of the M histograms that form 

the context space. Setn = 1 and define A, = {R1) . 

2) n = 2n. To obtain double the number of contexts, each set S, split by forming 

two new "centroids": R' itself and the histogram in S, that is closest to R' . 

3) Run the histogram-quantizer algorithm to produce a system with n contexts 

4) Repeat 2) and 3) until the actual rate goes up due to the context dilution. 



3.1.5. Optimality of Proposed Context Quantizer 

As stated at the beginning of this chapter, in optimal context quantization our 

goal is to make the conditional entropy with quantized context H ( X  I Q(c)) as 

close to the conditional entropy with the original defined context H ( X  I c)  as 

possible. In other words, the optimal context quantizer should minimize the 

difference between these two conditional entropies H ( X  I Q(c)) - H ( X  I c) . A 

natural question to ask is whether the context quantizer designed using the 

proposed iterative algorithm will achieve this objective. The answer to this 

question is yes, as we will show below. 

A context quantizer Q partitions a context space into N subsets: 

G, ={cI Q(c )=n} ,n= l ,  ..., N (3.11 ) 

The associated sets of probability mass functions are 

The centroid probability mass function of the quantization region B, is 

Then, 



The conditional entropy with the quantized context is 

Since all the contexts in the subset Gn share the same conditional probability, 

p(x I c E G,) can be written as p(x I Q(c))  . Then 

Applying (3.14), we have 

The conditional entropy without context quantization is 

Our goal is to minimize the difference between the conditional entropies 

before and after context quantization 



Apparently, minimization of H ( X  I Q(c)) - H ( X  I c)  equals to minimization of 

the average relative entropy between the conditional probability mass function of 

each context in the context space and its corresponding quantization value. In 

other words, we can find a locally optimal context quantizer in the sense of 

minimizing the conditional entropy with our proposed iterative algorithm. 

3.1.6. Experimental Results 

We test the proposed context quantization algorithm using two types of 

sources with memory. 

Gauss-Markov Sequence with Flipping Sign 

We first test our algorithm on a lSt-order Gauss-Markov source modified to 

have zero correlation by randomly flipping the sign of each sample with a 

probability 0.5 after the sequence has been generated. We call this a GM-F 

source and select it as a test case since we know the correct answer and it 

demonstrates the power of our approach. Memory without correlation is also 

common in wavelet-transformed images. 

We set the correlation coefficient p of GM-F source as 0.9 and generate a 

10" sample sequence. We then apply a 32-level uniform quantizer whose loading 

factorf, is set to 4, a value chosen to balance the overload and granular 



distortion of the quantizer. The context template is defined as the two previous 

samples, X-, and X-, , as shown in Figure 3-3. The resulting context space in 

the generated sequence contains M=774 nonzero histograms out of a possible 

1,024. 

We apply the proposed iterative algorithm on these histograms, with the 

quantization level starting from N = 1. It then increases in power of two. Since the 

source is lst-order Markov, all of the dependency should be in X-, . Therefore, 

we expect no further drop in entropy when N = 32 because there are 32 possible 

values for X-, . However, the sign flipping operation removes any sign distinction. 

As a result, 16 distinct contexts should be sufficient to describe the source. The 

shape of all these 16 conditional probability histograms will be bimodal with the 

two peaks sitting symmetrically on the positive and negative side, as shown in 

Figure 3-4. That means the conditional probability histograms are only based on 

the magnitude ofX-, . 

The experimental results for the GM-F source with p = 0.9are shown in 

Figure 3-5. It is indeed seen that there is little point in using more than 16 

contexts. We can get more information of what is happening by looking at the 

conditional histograms themselves and these are shown in Figure 3.5 in the case 

of N = 16. As expected, the histograms are all bi-modal. Indeed, the curves in 

the figure are essentially identical to the conditional histograms based only on the 

magnitude of the previous sample. 
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Figure 3-3 Context Definition of GM-F Source 

Figure 3-4 Expected Individual Converged Conditional Probability Histogram 

symbol value (16 corresponds to zero) 

Figure 3-5 Actual Converged Conditional Histograms for GM-F Source 



Table 

Wavelet Subband Images 

The second source is an image processed by a three level wavelet transform 

as shown in Figure 3-6. Five 51 2x51 2 gray scale images are used to test the 

performance of our scheme. The filter set is the standard 9-7 configuration [54]. 

In this case, we have no idea of the number of the optimal context quantization 

level and the shape of the converged conditional probability histograms. As with 

the previous source, we quantize the data with a uniform quantizer and vary N 

in an identical pattern. Quantizers are designed for each subband by 

determining the difference between the maximum and minimum values of the 

coefficients and dividing this number by 16, the desired number of quantization 

levels. This last number is set fairly arbitrarily since our focus is on the entropy 

coding. The context template is defined as the four causal nearest neighbors, 

resulting in a raw count of 313,776. However, most of them have empty 

histograms. 
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Figure 3-7 to Figure 3-1 1 plot entropy as a function of N for 10 different 

subbands of five wavelet images. We can see that the estimated conditional 

entropy decreases with increasing N ; however, we also see that the difference 

between the estimated conditional entropy and the true rate obtained from the 

arithmetic coder with the proposed context quantization method is increasing due 

to context dilution. Considering LL, of the image Barbara specifically, we see 

that context dilution begins to have a serious effect when N = 128. At this point, 

the overall rate begins to rise quickly from its lowest value of 1.02 bitslsymbol. 

We found that there are 3020 contexts with non-zero histograms in the context 

space. Using this number of contexts with a real arithmetic coder resulted in a 

rate of 4.51 bitslsymbol, compared with an "ideal" conditional entropy of 0.46 

bitslsymbol. 

3.1.7. Conclusions 

In this section we presented a context quantization method for adaptive 

arithmetic coders. Our method employs a histogram quantizer to partition the 

context space into the desired number of subsets. Similar to VQ, a splitting 

algorithm is used for initialization. Our experiments have showed that our method 

has the potential to automatically discern hidden structure in data and is able to 

find a (locally) optimal context quantizer in the sense of minimizing the 

conditional entropy. Our method can be applied to other entropy coding schemes 

and improve the overall compression efficiency. 



Figure 3-6 The 3-scale Wavelet Transform 
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3.2. Context Quantizer Description 

3.2.1. Motivation 

In the previous section, we proposed a context quantization method that 

uses a clustering procedure to reduce a large set of context instances to a 

manageable number of coding states. This method is proved to be locally optimal 

in the sense of minimizing the conditional entropy given a fixed context template. 

However, if the class definitions are made image adaptive, the context quantizer 

mappings must be known to the decoder and transmitted as side-information. 

Therefore the resulting actual code length will be the sum of the bits of encoding 

the input data using the proposed context quantization scheme and the side 

information for the description of the context quantizer mappings. 

Of course, an alternative to using side information is to use training data to 

design an off-line optimized fixed context book. However, training set is a 

solution that can not be well fitted to single image characteristics, which will result 

in a large reduction of the coding efficiency in the case of mismatch statistics. 

This problem will be more severe when the number of symbols in the context 

template is large orland if the symbol alphabet is large. Furthermore, huge 

training sets will be needed for those cases. 

In this section, we examine two methods for efficiently describing the 

context book, which completely specifies the partition of the context space. One 

strategy is to decrease the number of entries in the context book by automatically 

constructing a new small context space using a metaphor from quantization. The 



other approach is designed to reduce the bits spent on each individual entry in 

the context book. 

3.2.2. Efficient Context Quantizer Description 
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Figure 3-12 Context Quantization and Description 

The simplest way of implementing the optimal context quantizer is to use a 

look-up table. We call this look-up table the context book, and organize it into N 

rows corresponding to the N -partition of the context space. There are a total of 

M different contexts in the context space and each of them belongs to one of N 

subsets according to the optimal context quantizer designed using the scheme 

proposed in section 3.1. The context book describes the mappings of these M 

contexts; each row in the context book is a list of all the contexts in one subset. 

Note that the length of each row is generally not equal, since each row defines a 
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different context subset. Therefore the context book will be a table with M entries, 

which are the context indices organized into N rows. It will be easy to obtain the 

context quantizer output index if we know the specific context index. 

There are two factors that affect the amount of bits required to describe the 

context book: the number of the entries in the context book, M, and the size of an 

individual entry. The number M is quite large for high-order context template, 

especially in the case of non-binary alphabets. Furthermore, the bits required to 

specify an individual context index can be significant since the total number of all 

possible raw contexts is also large. Therefore, it is obviously inefficient, if not 

impossible, to send the context book directly as side information. 

Based on the above observations, two methods, coarse context quantization 

(CCQ) method and entropy coded state sequence (ECSS) method are proposed 

to solve the side information problem. CCQ method is aimed at reducing the 

number of entries in the context book. ECSS method is designed for reducing the 

bits spent on individual entry. 



3.2.2.1. Coarse Context Quantization (CCQ ) 
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Figure 3-13 Illustration of Coarse Context Quantization 

One approach to reducing the side information is to decrease the size of the 

context space. In this section, we present an algorithm that efficiently lowers the 

context space size using a metaphor from quantization. In essence, we use a set 

of coarse quantizers that if applied to the symbols that form the context will 

automatically construct a new context space with fewer contexts. By doing this, 

we make certain groupings in the original context space. Some of these 

groupings will also occur when using the context quantization method described 

in section 3.1. In this case, we actually describe a fraction of the context book 

using a set of coarse quantizers, which is obviously efficient. However, applying 

CCQ also produces some other groupings that do not occur when applying our 

proposed context quantization method on the original context space, which 

means that these groupings are not part of the locally optimal groupings in the 



sense of minimizing the conditional entropy. Nevertheless, we may still allow 

some of these non-optimal groupings to occur if they do not result in a large bit- 

rate penalty for the data-stream. In other words, we are making a trade-off 

between the data and the side information in order to minimize the total bits 

spent to represent both. 

We now seek to reduce the size of the context space through the use of 

structure. Specifically, we requantize the symbols in the specific context template 

in order to reduce their precision. Our task is to find the set of quantizers 

(different ones for each symbol) that will not dramatically increase the data rate. 

In effect, we generally want finer quantizers to be used for the context samples 

that are closely related to the sample being coded. Coarse quantizers should be 

used for those symbols which are almost independent of the target symbol. The 

basic idea of coarse context quantize is illustrated in Figure 3-13. 

We start with a set of full resolution quantizers for all the context pixels 

defined in the context template. We then pick one context pixel and sequentially 

erase the boundaries between the quantization levels. After each erasure we 

evaluate the cost in units of bits associated with the erasure. If the cost is more 

than a threshold, E ,  then we define the logical value of this boundary, b,,, , to frue, 

if the cost is less than r , then we erase the boundary and set b,, = false 

The cost is determined by the difference between F,,,, the conditional entropy 

when the boundary is erased and H,, the conditional entropy of the previous 

stage, when the last boundary is checked. The new rate H,,,, will be F,,, if the cost 



is tolerable; otherwise it will be H,-,. If each source symbol takes on L possible 

values and the size of the context template is K, then for each of the context 

symbols we will have L-1 boundaries to check. The total number of boundaries is 

thus P = K(L-1). 

The algorithm is formally stated as the following: 

1) Initialization: Calculate Ho , the conditional entropy under the definition of the 

original context space; m = 0; set the boundary information bi = t rue ,  for 

1 I i I P ; select E. 

2) Set b ,  = false. Construct the new context space and calculate F, , the 

conditional entropy when the corresponding boundary is erased. 

3) If F,,, - H,,-, 2 s then 

b,,, = false 

H ,  = F,,, 

else 

4) Stop if m = P-I 

5) m = m + 1 , go to step #2. 



Once the last boundary, b,, has been tested, the context quantizers and the 

new context space are both determined. The size of the new context space will 

be much smaller than the original one. Therefore the side information to describe 

its partition will also be reduced. 

The parameter E is critical, since it controls how many boundaries will be 

kept. A large E produces coarser context quantizers, which implies a more 

severe penalty to the data-stream rate. Although the side information in this case 

will be small, the total rate may be very high. On the other hand, if E is too small, 

most boundaries will be kept, which will result in a large amount of side 

information. Therefore E should be chosen carefully to minimize the total bit rate 

of data and side information. 



3.2.2.2. Entropy Coded State Sequence (ECSS) 

Context Index 

Figure 3-14 Illustration of State Sequence 

CQ Output 

Another approach to reducing the side information is to decrease the amount 

of bits spent on the individual entries in the context book. In this section, we 

propose a method to achieve the above goal indirectly. The state sequence, 

which is a sequence of M context quantizer output indices, is sent as side 

information instead of sending the context book. The context index is much larger 

than its corresponding context quantizer output index. The M context quantizer 

output indices will be transmitted in some order such that the corresponding 

context indices can be calculated at both the encoder and the decoder. As a 

result, the context book can be built on the fly instead of being sent as side 

information. 

We now need to determine the order in which to send the context quantizer 

output indices. Let's first look at the input sequence itself, Xo, XI, X2, . . . , XZ . 

The context index, C(Xi), of each symbol Xican be calculated after a causal 

context template is defined. When the input symbols are coded sequentially, 

different contexts occur in order. Of course, most of them appear more than 
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once, that is, C(XJ = C(Xj) for some i # j. This order information can be exploited 

to reduce the bits for side information. Instead of transmitting the large context 

index C(XJ, its context quantizer output index Q(C(Xi)) can be sent when C(Xi) 

first appears. Both the encoder and the decoder will build a context book on the 

fly to memorize the classification information of the contexts that have already 

appeared. Therefore, when the contexts occur again, it is not necessary to 

transmit their corresponding quantizer outputs. At the end of coding the input 

sequence, this context book, built at both encoder and decoder, will be the same 

as the original one which is actually not transmitted. 

The scheme is formally stated as the following. 

1) The original context book is designed using the context quantization method 

proposed in Section 3.1. 

2) Initialization: i = 0, the context book B which will be built on the fly is set to be 

empty. Start coding the input sequence from Xo. 

3) For each Xi, the context C(Xi) is calculated. 

4) Check if C(XJ is already in the context book B . If yes, obtain its context 

quantizer output index and code Xi using arithmetic coder. Otherwise, add 

C(XJ to the subset Q(C(XJ} in B . Send Q(C(Xi)). 

5) Stop if i = Z, which is the end of sequence. 

6) i = i+l  , go to step #3. 



In this scheme, the resulting side information turns out to be a sequence of M 

context quantizer output indices, which we call the state sequence. The number 

of entries in the state sequence is the same as in the context book, however the 

bits spent to represent entries in the state sequence is much less than the bits 

spent to directly represent the entries in the context book. Moreover, the state 

sequence can be further compressed using entropy coding by exploiting the fact 

that the populations of different subsets are unequal. 

3.2.3. Coding Process 

Based on a combination of the techniques in the previous sections, we 

summarize the proposed scheme into the following steps. 

1) Use the coarse context quantization method to generate a reduced context 

space. 

2) Obtain the optimal partition of the reduced context space using the context 

quantization algorithm proposed in Section 3.1. 

3) Store the context mapping information in the form of a context book which 

won't be transmitted directly to the decoder. 

4) Build the state sequence on the fly according to the original context book and 

send entropy coded state sequence as side information when sequentially 

coding the input sequence. 



The resulting side information now consists of the description of the set of 

coarse context quantizers, plus the entropy coded state sequence. This is much 

more efficient than transmitting the original context book directly. 

3.2.4. Experimental Results 

We perform experiments on images processed by a wavelet transform to a 

depth of three, where the filter set is the standard 9-7 configuration [54]. We 

quantize the transformed data using uniform quantizers. Quantizers are designed 

for each subband by determining the difference between the maximum and 

minimum values of the coefficients and dividing this number by 16, the desired 

number of levels. This last number is set fairly arbitrarily since our focus is on the 

entropy coding. The context template is defined using the four causal nearest 

neighbors, resulting in a raw count of 65,536, most of which have empty 

histograms. 

We first apply the context quantization scheme described in Section 3.1 to the 

subband images. If we take a direct approach to describing the context book, the 

amount of information needed to represent it will be very large. Table 3.3 shows 

the results for subband LH2 of image Barbara. The data rate for the bit stream is 

1.41 bpp when the context space is quantized to N =4 subsets, but the side 

information needed to list the context mappings using a straight binary code for 

each context label is another 1.41 bpp, and the total rate of the data and side 

information is 2.82bpp. When we encode it without context quantization, the rate 

is 1.69 bpp. Although it suffers from a severe context dilution problem, it is much 



better than the one applying the context quantization method due to the 

inefficiency of coding the side information. However, the bits spent on the side 

information can be significantly reduced when we transmit the entropy coded 

state sequence instead of the original context book. A minor drawback of the 

state sequence method is the increase in side information rate with N due to the 

increase in possible values for each entry in the state sequence. The bit rate for 

coding the state sequence of all of the subbands in Barbara using arithmetic 

coder when N =2 is given in Table 3.2. In comparison with the direct strategy of a 

binary code for each context label, the side information is drastically reduced by 

90%-95%. Although the improvement for a larger N is not so dramatic, it is still 

strikingly shrunk. 

The side information can be further compressed if the coarse context 

quantization method is used for constructing a small context space. However, in 

this case we need to pay the price of increasing data rate. This trade-off between 

the data rate and side information rate is controlled by the parameter E , and we 

can adjust E to reach the minimum total rate for data and side information. The 

results are shown in Table 3.4 to Table 3.8 for various subbands of three 

512x512 images. As can be seen, the performance is substantially improved 

after applying the proposed methods. Considering LH2 of Barbara specifically, 

the rate drops from 2.82 bpp to 1.56 bpp when only the entropy coded state 

sequence (ECSS) method is applied. Note the large drop in the number of bits 

spent on side information. When the coarse context quantization (CCQ) method 

is applied before context quantization, the side information rate decreases by 



another 0.12 bpp while the data rate increases by 0.05 bpp. Therefore, the 

overall performance is further improved. 

Table 3.2 Side information bit rate (bpp) for subbands in Barb 

Table 3.3 Results for coding subband LH2 (bpp) in Barbara N = 4, E =0.02 



Table 3.4 Results for coding subband LH3 (bpp) in Barb N 4 6 ,  E =0.01 

Table 3.5 Results for coding subband HH, (bpp) in Goldhill N = 2, E =0.06 
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Table 3.6 Results for coding subband HL3 (bpp) in Goldhill N =8, r =0.005 

Table 3.7 Results for coding subband LLo (bpp) in Baboon N = 8, r =0.005 
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3.2.5. Conclusions 

In this section we present two techniques for efficiently describing the 

context book of the context quantizer. 

CCQ is to decrease the number of the entries in the context book by 

automatically constructing a new small context space. In the previous section, we 

presented a locally optimal context quantizer design method to minimize the data 

rate. In this section, our goal is to minimize the sum of code length for both the 

side information and the input data. We allow sub-optimal groupings in the 

sense of minimizing the data rate in this scheme. Although these groupings will 

increase the data rate, the resulting context quantizer mappings are easier to 

describe and it will save the side information bits. Another feature of this scheme 

is that it can pre-process large context space to improve the efficiency of the 

context quantizer design algorithm described in Section 3.1. When high quality 

compression is required in some applications, high bit rate quantizers will be 

applied. In this case, a huge context space will be generated. The context 

quantizer design algorithm described in Section 3.1 will be very slow and 

inefficient. Pre-processing of the context space using CCQ scheme will produce 

a moderate size context space which can be handled more efficiently by the 

context quantizer design algorithm. 

ECSS method is designed for reducing the bits spending on the individual 

entry in the context book. This goal is achieved indirectly. Instead of transmitting 

the context book, the entropy coded state sequence with small context quantizer 



output indices is sent as the side information. The context book can be built on 

the fly at both encoder and decoder according to the state sequence. Unlike 

CCQ, this scheme has no effect on the data rate. The only objective of this 

scheme is to minimize the side information bits. It will be applied to binary 

sources which we will discuss in the next chapter. 



CHAPTER 4. 
CONTEXT QUANTIZATION FOR ENTROPY CODING 
OF BINARY SOURCE 

4.1. Motivation 

In the previous chapter we proposed a context quantizer design algorithm 

for non binary sources. The algorithm is essentially a vector quantization (VQ) 

approach that clusters raw context instances using Kullback-Leibler distance as 

the VQ distortion metric. The context quantizer design is done by a variant of the 

generalized Lloyd method of gradient descent, and consequently the solution is 

only locally optimal. 

In this chapter, we work with binary sources. A non-binary source can be 

converted to a binary source by a sequence of binary decisions and coded as the 

binary sequence. If the source data is binary, then the probability simplex space 

is one dimensional. This reduces context quantizer design to a scalar quantizer 

design problem, and consequently the problem can be solved by dynamic 

programming and the solution can be made globally optimal. 

An important operational issue in context quantization, which has not been 

satisfactorially solved, is how to compactly describe the inverse quantizer 

mapping function to the decoder. We consider two approaches for this. The first 

one is two-pass, involving designing the optimal context quantizer based on the 



count statistics of the input data and sending the quantizer mapping function 

directly using a huge look-up table as side information. The length of this side 

information is usually significant, canceling compression gain made by the 

optimal context quantizer. The second approach is to optimize the context 

quantizer with respect to the statistics of a training set. In this case, the context 

quantizer is fixed and known to both encoder and decoder. There is no need to 

transmit any side information. However, an ensuing question is how to handle 

any mismatch in statistics between the training set and the input. This problem, 

which has remained largely untreated, is the main concern of this chapter. 

Intuitively, the use of training set in context quantizer design can speed up the 

adaptation process of an arithmetic coder that learns from some suitable 

preknowledge rather than from scratch. Unless the statistics of the training set 

and the input source match perfectly, there exists an optimal blend of the two 

statistics to achieve the minimum adaptive code length. 

4.2. Minimum Conditional Entropy Context Quantization - 
Binary Case 

In this section, we first briefly review the work of minimum conditional 

entropy context quantization (MCECQ) for binary case [39]. 

Let X be a discrete random variable, and let C be a jointly distributed 

random vector, possibly real. Given a positive integer M , we wish to find the 

quantizer Q : C --+ {1,2, ..., M )  such that H ( X  I Q(C)) is minimized. Clearly, 

H ( X  I C )  > H ( X  I Q(C)) by the convexity of H .  However, we wish to make 



H ( X  1 Q(C)) as close to H ( X  1 C )  as possible. Equivalently, we wish to minimize 

the non-negative "distortion" of Q 

we> = H ( X  I Q<CN - H<X I c> ( 4.1 1 

The quantized regions A, = {c : Q(c)  = m),  m = 1, ..., M ,  of an (optimal) 

minimum conditional entropy context quantizer are generally quite complex in 

shape, and may not even be convex or connected. However, their associated 

sets of pmfs B, = {P,,,(. I c)  : c E A,) are simple convex sets in the probability 

simplex for X , owing to the necessary condition for optimal Q 

If X is a binary random variable, then its probability simplex is one- 

dimensional. In this case, the quantization regions B, are simple intervals. If the 

random variable Z is defined as P,,,(l( C )  (the posterior probability that X = 1 as 

a function of C ), then the conditional entropy H ( X  I Q(C)) of the optimal context 

quantizer can be expressed by 

for some set of thresholds {q,) specifying the quantization regions B, . 

Therefore the minimum conditional entropy context quantizer (MCECQ) can be 

found by searching over {q,) .  This is a scalar quantization problem, which can 

be solved exactly using dynamic programming [64]. this way, the problem of 

optimal MCECQ design is reduced to one of scalar quantization, regardless of 



the dimensionality of the context space. Once the scalar problem is solved, the 

optimal MCECQ cells A, are given by 

4.3. Structure and Complexity of Context Quantizer Mapping 

Unfortunately, the optimal partition of the context space by 

A, ,m = 1,2, ..., M is highly complex [39]. Now we see that the boundary between 

any two adjacent MCECQ cells consists of vectors c for which the posterior 

probability Pxlc ( 1  I C )  is a constant. Specifically, it follows that P,,, ( 1  I C )  = q, for 

c along the boundary between A, and A,,, . Equivalently, A, can be 

expressed in terms of the likelihood ratio. 

which is a strictly increasing function f of the posterior probability 

px,c (1 I C )  I as 

A, = {c : L(c)  E [f (q,-l ), f (4 ,  ))I ( 4.5 1 

Hence the likelihood ratio L(c)  along the boundary between A, and A,,, 

is a constant. 

The constant likelihood ratio on the boundary of MCECQ cells is a useful 

property to study the geometry of MCECQ in the context space of c . Now 

assume that the conditional densities P(C ( X = 0) and P(C ( X = 1)  belong to the 



family of Kotz-type d-dimensional elliptical distributions in which the density . 

functions take the form 

fCIX(' I o)=ad(ro?so) I ZCl e x ~ { - r O [ ( c - & ) ' Z ; l ( c - ~ O ) ] s O }  

f c I x ( ~  I = a d ( r l , s l )  I 11 l - ' I 2  e x~{ - r l [ ( c -p l ) '  Z i l ( c - p l ) ] s l }  ( 4-6 1 

This family of joint distributions includes the Gaussian distribution as a 

special case. The likelihood ration of (4.6) is given by 

~(d,ro,rl,~o,sl)ex~{ro[(c-p~)~C,~(c-p~)1" - - ,[ (c-p,)*  C, ' (c -p , ) ]"}  

where a(d,ro,r,,so,s,) is a constant independent of c . Since L(c) is a 

constant on the boundary of MCECQ quantizer cell, it follows from that the 

boundary points c satisfy 

r o [ ( ~ - ~ o ) ' ~ ~ l ( ~ - ~ o ) l S O  - - r l [ ( ~ - ~ l ) ' C ~ l ( ~ - ~ l ) l S '  +B(d,ro,rl,so,sl) = O  (4.8 1 

where P(d,ro,rl,so, s,) is another constant independent of c . Thus the 

MCECQ cells are sets bounded by polynomial surfaces. In particular, if both 

fclx (C ( 0)  and fclx (c I 1) are d-dimensional Gaussians, a special case of Kotz- 

type elliptical distribution family with so = 1 and s, = 1 ,  then MCECQ cells are 

bounded by d-dimensional quadratic surfaces as immediately from (4.8). For the 

above quite large class of joint distributions, the context quantization function 

Q(a) can be simply defined as a parametric classifier that maps a point c in 

context space into a coding state Q(c)  . 



In Figure 4.1 and Figure 4.2 we plot MCECQ cells for two different two- 

dimensional Guassian distributions. Figure 4.1 presents the general arrangement 

of PC,, (0 I 0 )  and PC,, (0  I 1 )  , and the corresponding MCECQ of three cells. In 

Figure 4.2, we give a special case and also a worst case of MCECQ in terms of 

improving coding efficiency via context-based coding. In this example P c l x ( ~  10) 

and PC,, (0 11) have identical means, and the two underlying clusters are hence 

least separable from eachother. Nevertheless, as long as the two distributions 

PC,,(. I 0 )  and PC,, (0 11) are not identical, then MCECQ can realize some coding 

gain over non-conditional entropy coding i.e., H ( X  I Q(C)) r H ( X )  . For instance, 

in the situation depicted by Figure 4.2 we have H ( X  I Q(C)) = 0.8 versus 

H ( X )  = l .  



Figure 4-1 Two 2-dimensional Gaussian distributions, and the corresponding MCECQ 3- 
partition of the context space 

-D -+ 3 2 4 6 --I 

Figure 4-2 Two overlapped Gaussian distribution of different covariance matrices, and the 
corresponding MCECQ 3-partition of the context space. 



4.4. Minimum Description Length Context Quantizer Design 

4.4.1. Introduction 

In the discussion above, we did not take the bits required to describe the 

context quantizer cells into account. In this case the MCECQ is only useful as a 

procedure to establish a lower bound on the achievable code length. A real 

challenge in applying an optimal context quantizer to data compression is how to 

describe the quantizer mapping Q(c) with little or no side information, and at a 

reasonable computational complexity. For general P(C 10) and P(C I 1) , the 

quantization cells of MCECQ in context space have a very complex geometry 

and topology. Only for P(C I 0) and P(C 11) that are Gaussian or some variants 

of Gaussian (Kotz-type joint distributions) do we have a tractable analytical 

description for Q(e). 

The simplest way of implementing an arbitrary quantizer mapping Q(e) is 

to use a look-up table. But since I C I ,  the number of all possible raw contexts, is 

very large for high-order contexts, building a huge table of I C I entries for Q(c) is 

clearly impractical. If we make this table image-dependent, the compression gain 

will be cancelled by the high cost of sending large side information. Of course, 

the training set can be used to design the MCECQ and then fix the context 

quantizer in the actual coding. In this case, there is no need of sending side 

information since both encoder and decoder use the same fixed context 

quantizer. However, how to deal with the rare context instance, which are absent 

in the training set but present in the input data to be coded, becomes an issue. A 
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simple way is to lump together all the rare context instances into a single coding 

state, which is clearly suboptimal. In this chapter we propose a method to send 

this information as side information and design the optimal context quantizer to 

minimize the description length which is the sum of the code length of data and 

side information. 

4.4.2. Context Quantizer Design 

4.4.2.1. Optimization of Context Quantization 

When the input source processes a novel context instance that is not in 

the training set, which we call "rare" context instance, the encoder needs to 

signal the event to the decoder and identifies the quantized conditioning state in 

which arithmetic coding is performed. The required side information should be 

factored into the adaptive code length as well. Another design parameter to be 

optimized is the number M of context quantizer cells. The value of M not only 

regulates the impact of context dilution but also affects the length of side 

information to describe the quantizer mapping function to the decoder. The main 

contribution of our work is a unified treatment of all the above design parameters 

in the principle of minimum description length. This allows us to develop an 

optimal context quantizer design algorithm for minimum sum of adaptive 

arithmetic code length and the side information length, given the training set and 

the input source. 



Since the population of the "rare" context instances is relatively small 

compared with the total number of distinct context instances which appear in the 

source data, one can send coded quantizer indexes (labels of coding states for 

the entropy coder) of the rare context instances. Associated with the input 

sequence Xo, Xf,  X2, . . . is the sequence of raw context instances {c(Xi)), with 

respect to a given context template. The first occurrences of different "rare" 

context instances are in the same order as the sequential coding of the input 

symbols. Many of the rare context instances appear more than once, that is, 

c(Xi)= c(Xi) for some i # j. But the encoder only needs to code the first 

occurrence of a quantizer output index Q(c(Xi)). Since the decoder observes the 

same source sequence as the encoder, both the encoder and the decoder can 

build a dictionary of the already appeared rare context instances on the fly. 

Therefore, when a rare context instance occurs again, the decoder knows its 

quantized value, i.e., the coding state for the entropy decoder. 

In this scheme, the resulting side information to code the quantizer 

mapping function Q turns out to be a sequence O of n coding state indices, 

where n is the number of distinct rare context instances in the input sequence, 

which we call the state sequence. The state sequence O can be compressed by 

entropy coding because the distribution of different coding states is non-uniform. 

Given the proposed side information coding scheme, we can formulate the 

problem of adaptive context quantization, in the principle of minimum description 

length (MDL), as one of minimizing the sum of the code length emitted by the 



adaptive arithmetic coding whose conditioning states are the MCECQ cells and 

the length of side information. 

Let Z = P,,, (1 I c) , g = min Z , ; = max Z , and denote Q(r,  m)  the set of all 

possible m-dimensional vectors q = (q,,  q, ,...,q,) such that 

- 
z = q ,  <q ,  < q ,  <-- .<qm-l  < q m  = r < z  - ( 4.9 ) 

Then the optimal context quantizer that minimizes the description length is 

given by 

M n(z E (qm-l 3 qm I )  
= arg min C N{Z E (q,-, , q,  ] ) H ( X  I Z E (q,-l, 9, I )  + n(Z E (9,-1, qm I )  log 

q.Q(z,M) ,=I n(z E [ z , ~ I )  

(4.10 ) 

where N(Z E (9,-,,qm]) is the number of the samples whose conditional 

probabilityz = Pxlc(l I c) fall into the interval (9,-,,q,] and n{Z E (9,-,,qm] is the 

number of the distinct "rare" contexts whose Z = Pxlc(l I c)fall into the interval 

(qm-, , q,] . Clearly, in (4.10) the first term represents the code length of the 

conditional entropy coding based on the resulting optimal context quantizer and 

the second term is the length of the side information. 

Let 

(4.10) can be simplified to be 



The optimal M-level context quantizer q as given by (4.12) cam be 

efficiently computed by observing the following recursion 

The recursion means that the solution for the problem of size j can be 

constructed from the solution of subproblems of size j-1. Because of this property 

that is called the principle of optimality in the optimization literature, we can use a 

straightforward dynamic programming [55] algorithm to solve (4.12) 

Only the resulting optimal context quantizer thresholds{q,) and the 

entropy-coded state sequence O need to be sent as the side information. This 

suffices to specify the context quantizer mapping function Q to the decoder. Note 

that the resulting thresholds {q,) are image-dependent, which is different in 

general from the context quantizer optimized for the training set. Therefore, the 

context quantizer is optimized in the MDL sense for the input image, and made 

robust even if the input image and the training set have different statistics. 



4.4.2.2. Implementation of Context Quantization 

In order to design MDL-based optimal context quantizer, we must have an 

estimate of P ( X  ( C )  . In practice, P(X 1 C )  is seldom known exactly. Otherwise 

one would let an entropy coder directly operate on P ( X  I C )  . In data compression 

applications P ( X  I C )  is either estimated from a suitable set of training data, or 

from the input data. A common estimate of P,,, (1  I c) is given by 

where no and n, are the number of occurrences of 0 and 1, respectively, in 

a given context c , and S E [O,l] is a parameter of the estimator. 

Replacing the probability values with estimates thereof MDL-based 

context quantizer design becomes solving the optimization problem 

We can only claim that dynamic programming algorithm can design the 

context quantizer minimizing the description length, under the constraint that the 

A 

quantizer cells are contiguous intervals on the values of PX,, ( 1  I c)  . It remains an 

open problem whether the constraint leads to the overall minima. 



We use both the statistics of a suitable training set and the sample 

A 

statistics of the input image to estimate P,,, (1 I c) . We refer to those context 

instances that are observed in the training set as "common", and those that only 

appear in the input image as "rare". For the common context instances c we use 

A 

the conditional probability P,,, (1 I c) estimated from the training set. On the other 

hand, for the rare context instances pi,, (1 1 c) are estimated using the sample 

A 

statistics of the input image. These estimated conditional probabilities P,,, (1 I c) 

are sorted in ascending order in the probability simplex space, regardless 

whether c is rare or common. This linear ordering enables an optimization 

approach of dynamic programming described in 4.4.2.1 to design M-level context 

quantizer. This M-level context quantizer can be globally optimized for minimum 

description length, which is better than a gradient descent method that can get 

trapped in a local minimum. 

If we normalize the size of the training set to be the length of an input 

sequence, then the dynamic programming algorithm can automatically decide the 

optimal number M of coding contexts for the input size. This is simply done by 

increasing the number of context quantizer cells one at a time in the bottom-up 

dynamic programming process, until reaching the point when the actual code 

length starts to increase due to context dilution. 



4.4.3. Experimental Results 

We conducted experiments on lossless coding of binary source, halftone 

images, which are among the most difficult to compress. Thus they present great 

challenges to context based entropy coding. Consequently, they serve as good, 

demanding test cases for the performance of different context quantizers. 

Halftoning or analog halftoning is a process that simulates shades of gray 

by varying the size of tiny black dots arranged in a regular pattern. This 

technique is used in printers, as well as the publishing industry. If you inspect a 

photograph in a newspaper, you will notice that the picture is composed of black 

spots even though it appears to be composed of greys. This is possible because 

of the spatial integration performed by our eyes. Our eyes blend fine details and 

record the overall intensity. Digital halftoning is similar to halftoning in which an 

image is decomposed into a grid of halftone cells. Elements of an image are 

simulated by filling the appropriate halftone cells. The more number of black dots 

in a halftone cell, the darker the cell appears. For example, in Figure 4.3 a tiny 

dot located at the center is simulated in digital halftoning by filling the center 

halftone cell; likewise, a medium size dot located at the top-left corner is 

simulated by filling the four cells at the top-left corner. The large dot covering 

most of the area in the third image is simulated by filling all halftone cells. 



Halftoning 
Digital 

halftoning 

Figure 4-3 Digital halftoning 

Two methods for generating digital halftoning images are used in our 

experiments, dithering and error diffusion. 

Dithering technique creates an output image with the same number of 

dots as the number of pixels in the source image. Dithering can be thought of as 

thresholding the source image with a dither matrix. The matrix is laid repeatedly 

over the source image. Wherever the pixel value of the image is greater than the 

value in the matrix, a dot on the output image is filled. Figure 4-4 shows a sample 

of the dithering operation. Figure 4-5 shows a sample of dithering halftone image 

that we use in our experiments. 
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Figure 4-4 Dithering Operation 

Figure 4-5 Sample of dithering halftone image 

Error diffusion is also called spatial dithering. It sequentially traverses 

each pixel of the source image. Each pixel is compared to a threshold. If the pixel 

value is higher that the threshold, a 255 is outputted; otherwise, a 0 is outputted. 

The error, which is the difference between the input pixel value and the output 

value, is dispersed to nearby neighbors. Error diffusion is a neighborhood 

operation since it operates not only on the input pixel, but also its neighbors. 

Generally, neighborhood operations produce higher quality results than point 

operations. Error diffusion, when compared to diterhing, does not generate those 

artifact introduced by fix thresholding matrices. However it is more challenging to 

the context based entropy coding schemes. Figure 4-6 shows an example of 

error diffusion halftone images which we used for tests. 



Figure 4-6 Sample of error diffusion halftone image 

We implemente the proposed MDL-based context quantizers and 

evaluated them in lossless coding of dithering and error diffusion halftone 

images. The training set of raw contexts is generated out of 13 halftone images 

that were converted from benchmark grayscale images on the Internet. The test 

set consisting of images Barbara, Lena, and Mandrill, is disjoint from the training 

set. 

In order to evaluate the performance of our MDL-based context quantizer 

scheme, we compare it with JBIG2 standard. Here we applied the four context 

templates defined in JBIG2 on the test images and chose the one with the best 



performance. Table 4.1 and Table 4.2 show the bit rates obtained by the MDL- 

based context quantizers and the adaptive entropy coders defined in JBIG2. Our 

scheme outperforms JBIG2 on the two sets of halftone images by 16% and 4% 

on average respectively. As the results show, error diffusion halftone images are 

more difficult to compress than the dithering halftone images. 

Table 4.1 Bit rates of dithering halftone images 

Barbara 

Lena 

Mandrill 

Table 4.2 Bit rates of error diffusion halftone images 

Barbara 

Lena 

Mandrill 

Image MDLCQ JBlG2 



4.5. Image Dependent Context Quantizer Design with Efficient 
Side Information 

MDL-based context quantizer described in the previous section is still 

designed mainly based on the training set statistics. The estimated conditional 

A 

probabilities Pxlc (1 I c) are used not only to design the optimal context quantizer 

but also to determine the context quantizer output Q(c) for each context instance 

c .  Q(c) is fixed during the actual coding. For common context instances, 

A 

Pxlc(l I c) are estimated from the training set, while rare ones are from the input. 

However, rare context instances are only a small percentage of the total context 

instances. As a result, the resulting optimal context quantizer, defined by a set of 

thresholds{q,) , is mainly determined by the training set statistics. 

If there is any mismatch in statistics between the input and the training set, 

the optimality of the predesigned context quantizer can be compromised. One 

remedy is to employ an on-line algorithm that redesigns MCECQ for each Xi 

based on past samples Xl,X,,..., Xi-, . Although it can be done in theory, on-line 

MCECQ design is computationally too expensive to be practical. An alternative 

solution (sub-optimal) is to fix a predesigned context quantizere, but update 

@xl,(l 1 c) on the fly as in adaptive arithmetic coding. 

In this section we propose a scheme to design an image dependent 

context quantizer that can be described with very small amount of side 

information. This scheme is two-pass. In the first pass, the optimal context 



quantizer is designed based on the conditional probability estimated from the 

input instead of the training set. Only the centroids of the optimal context 

quantizer are sent as the side information. In the second pass, when the input is 

being coded, the conditional probability of each context instance is initialized as 

the estimate from the training set and then adaptively updated on the fly. These 

estimated conditional probabilities are used to determine the context quantizer 

output. Given the centroids, nearest neighbor search is applied. As a result, the 

context quantizer output of a specific context instance may change according to 

the more accurate estimate of the conditional probability along the way. This will 

improve the overall compression efficiency. 

4.5.1. Context Quantizer Design 

The proposed scheme is two-pass. During the first pass, the input image 

is raster scanned and the statistics, including conditional probabilities 

Z = P,,, ( 1  I c )  and the number of occurrence N ( c )  of each context instance c , 

which appear in the input image, are collected to design MCECQ using dynamic 

programming to minimize 

where Nm is the number of the samples whose conditional probability 

Z = Pxlc ( 1  I c )  fall into the interval (qm-,,qml. Let Pm = Pxl,,,,(l I m) be the mth 

reproduction pmf. These reproduction pmfs are also the centroids of the resulting 
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MCECQ. It is easy to see thatp, = 
n{Z (4,-12 qm 1) 

'm , where nm is the - 

N{Z  E (qm-1, qrn I )  N m  

number of occurrences of 1 when Z = P (1 I c ) fall into the interval 

(q,-,,q,l. The reproduction pmfs are sent as the side information and known by 

both encoder and decoder. 

4.5.2. Estimation of Conditional Probabilities 

For each context instancec , we estimate its conditional probability 

p,,, (1 1 c) first from a suitable training set, which is done off-line. In our 

experiment, a 16-order context template is used to code the input image. The 

default pixel ordering by 2-norm is shown in Figure 4-7 

Figure 4-7 Default ordering of the past with maximum template size of 16 

Let ck be a k-order context. P,,, (1 1 ck) denotes the conditional probability 

in the k-order context template. For the common context instances, which occur 

in the training set in the given 16-order context template, we estimate the 

conditional probability pxlc (1 / c) by P,, (1 1 c16), which is obtained from the training 

set. On the other hand, for the rare context instances, which do not happen in the 

training set, we shrink the context template. That means 



gxIc (I I e) = Pxlc (1 1 ck) (k < 16) are used as the conditional probability estimate. 

Each time we decrease size k by 1 according to the context pixel ordering shown 

in Figure 4-7until ck (k < 16) occur in the training set. 

Note that the probability estimated from the training set is only used as an 

initial one and being continually updated during the process of coding the input 

image, which happens in the second pass. And the nearest neighbor search 

method is applied to determine the context quantizer output Q(c) for each 

context instancec . 

Q ( C ) = ~ :  x , ( l ~ ) - , S x l c ( l ~ ) - ,  for aN jti, l ~ i , ~ < ~ }  

4.5.3. Coding Process 

Update 

(1 I c) 

Figure 4-8 Diagram of the coding process 

1) We use the method stated in section 4.5.1 to design the context quantizer, 
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nm whose centroids are pm = - . 
Nm 

2) The initial conditional probability estimates pxIc(l 1 e) are collected from the 

scheme described in section 4.5.2. 

3) Coding: for each input binary symbol X , determine the context instancec in 

the 16-order context template. Then k x l c ( l  I c) is used to determine the 

context quantizer output Q(c) = m  when 

l c ( l c ) - m < x , c ( l c ) - k ,  for all m + k ,  l i m , k < M .  Thenumberof 

bits spent on coding this symbol X is close to log, Pm . 

4) Update conditional probability estimates ?x,c(l  I c )  for the context instance c 

5) Repeat step2 and step3 until the whole image is coded. 

4.5.4. Experimental Results 

We tested the proposed image dependent context quantizer with little side 

information scheme on halftone images, a binary source which is very difficult to 

compress generated by error diffusion method. The training set and the test set 

are the same as described in section 4.4.3. In order to evaluate the performance 

of the scheme, we compare it with MDL-based method, JBlG and JBIG2 

standard. The results are shown in Table 4.3. As you can see, the image 

dependent context quantizer design method is better than MDL-based method 



and it outperforms JBlG by 13% to 23% and JBIG2 by 4% to 8% for the chosen 

test images. 

Table 4.3 Bit rate comparison between lmage Dependent CQ and other schemes 

Image Image MDLCQ JBlG2 JBIG 
Dependent 

CQ 

Barbara 

Mandrill 1 0.800 0.806 0.841 0.927 

I 
0.71 3 0.722 0.770 0.867 

Lena 

4.6. Context Quantization for Minimum Adaptive Code Length 

0.674 0.686 0.744 0.884 

All context quantizers discussed up to now are designed for static 

arithmetic coding without adaptation. In other words, the arithmetic code is driven 

by a fixed probability estimate B(1 I Q(c)). Static arithmetic coding is suboptimal 

when the source statistics is not stationary. Our next quest is to design the 

context quantizer that can minimize the actual code length of adaptive arithmetic 

coding. 

A problem with the context quantizer described in the previous section is 

that only the input statistics is used to design the MCECQ in the first pass. Since 

the training set statistics may differ from the statistics of the input, we should 



minimize the effect of the mismatch between the training set and the input by 

adaptive arithmetic coding. 

In this section, we are going to improve the previous context quantizer 

designs in the above two regards. 

4.6.1. Context Quantizer Design 

Now consider adaptive context-based arithmetic coding of a binary 

sequence x1 sequentially, using the probability estimate defined in (4.13) in each 

context instance. The probability estimates are updated on the fly for each of the 

I binary input symbols. Given a binary sequencex', its total code length 

L(X' 1 Q(c)) by adaptive context based arithmetic coding may be computed 

based on the set of counts (n , ,n , )  for all contexts without actually coding XI .  

This is because the order of 0 and 1 appearance does not change the adaptive 

code length [40]. Let I ,  be the adaptive code length of all symbols whose 

contexts fall into context quantizer cell ( q m - , , q m ~ .  Then we have [56] 



no = 0 and n, = 0, 

Operationally, it is easy to apply the dynamic programming algorithm to 

the adaptive code length when designing the context quantizer The algorithm 

produces a context quantizer Q* that can minimize the total adaptive code 

length, namely, 

As we stated above, our goal is to design an optimal context quantizer not 

only to minimize the adaptive code length, but also to minimize the effect of 

mismatch between the training set and the input. Taking these two elements into 

account, the objective function defined in (4.15) becomes 

where no' and n, ' are the number of occurrence of 0 and 1 in the training set, no 

and n, are the counts from the input. The first term 1 (ano'+no,anl '+n,) is the 
m 

adaptive code length based on the counts from the training set plus the input. 

The second term 1 (ano',anl ') is estimated based on the training set alone. a is 
m 

a parameter indicating how much we can trust the training set statistics. Our goal 
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is to minimize the difference between these two terms which represents the 

mismatch between the training set and the input. 

Once the context quantizer is predesigned, actual coding remain the same 

as described in Section 4.5.3 

4.6.2. Implementation 

The adaptive code lengths used in the dynamic programming are 

calculated based on the counts, (n,,n,) , for each possible context cell (quantizer 

interval). Since the dynamic programming algorithm uses the actual adaptive 

code length for a given finite sequence and a fixed 6 as the cost function, it can 

automatically decide the optimum number of coding contexts M This is simply 

done by increasing the number of context quantizer cells in the bottom-up 

dynamic programming process, until reaching the point where the actual code 

length starts to increase. 

Given a quantizer interval and the associated 0 and 1 counts, the 

corresponding adaptive code lengths can be computed in O(1) time independent 

of the interval length by a fast algorithm proposed in [56]. The idea is to use look- 

up table to compute the adaptive code length for small values of count, and use 

Stirlings approximation for large values when such an approximation yields high 

precision. With the fast adaptive codelength computation technique, one can 

precompute and store the adaptive code lengths for all possible quantizer 

intervals. This preprocess takes o ( N ~ )  time, where N is the number of distinct 



unquantized raw contexts Aided by the intermediated results of the preprocess 

(adaptive code lengths of all possible quantizer intervals), the dynamic 

programming algorithm can be completed in 0 ( M N 2 )  time. 

Another technique to speed up the dynamic programming algorithm is to 

merge all the raw contexts that have the same counts. This can significantly 

reduce the number of initial contexts subject to quantization. This will not affect 

the optimal solution because those contexts would be merged anyways by the 

CQ scheme above. 

The estimator (4.13) is optimal if the events in a context are independent 

and the prior distribution initially is beta distributed with nuisance parameter 6 .  In 

this view all the contexts of the same counts have the same distribution of the 

parameter kx,,(l I c ) ,  which also suggests that they should be quantized into the 

same context cell. 

4.6.3. Experimental Results 

We implemented the proposed minimum adaptive codelength context 

quantization scheme as described above. In order to evaluate the performance of 

the scheme, we compare it with MDL-based method, JBlG and JBIG2 standard 

on a set of twelve halfttone images. The results are shown in Table 4.4. As you 

can see, the minimum adaptive codelength context quantization is superior to the 

other schemes including MDL-based context quantization method, image 

dependent scheme and two standards, JBlG and JBIG2. The average 



compression gains over JBlG by 17% and JBIG2 by 8%; while the peak 

compression improves 24% to JBlG and 11% to JBIG2. However, there is not 

much improvement when comparing image dependent method and minimum 

adaptive codelength method. The explanation of this is image dependent method 

can achieve the code length very close to the optimal one by adaptively updating 

the context quantizer output on the fly. 



Table 4.4 Bit rate comparison between minimum mismatch CQ by adaptive code length 
scheme and other schemes 
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4.7. Conclusions 

Context quantizer is an effective technique to alleviate context dilution 

problem in conditional entropy coding. Up to now, all the context quantizers are 

optimized with respect to the statistics of a training set. An ensuing question is 

how to handle any mismatch in statistics between the training set and the input 

image. Unless they match perfectly, there exists an optimal blend of the statistics 

to achieve the minimum adaptive code length. Three algorithms are proposed in 

this chapter to handle this problem. 

MDL-based algorithm is to minimize the sum of the bits emitted by the 

conditional entropy coder using the context quantizer and the side information to 

describe the context space partition. This side information is the compressed 

state sequence of rare context instances by entropy coding. Image dependent 

context quantizer is a MCECQ designed based on input statistics alone. The cost 

of the side information is low since only context quantizer centroids are 

transmitted. An efficient method to handling the rare context instances is 

proposed. The conditional probability are initialized from the training set and 

adaptively updated on the fly. As a result, more accurate context quantizer 

outputs will be generated to drive the arithmetic coder and finally the 

compression efficiency will be improved. Minimum adaptive code length context 

quantizer is aiming to minimize the effect of mismatch of the statistics between 

the training set and the input. The actual adaptive code length difference 

between the two sets, the training set plus the input and the training set alone, is 

minimized. 



The main difference between MDL-based algorithm and the other two 

methods is the way of dealing with the rare contexts. In MDL-based method, the 

context quantizer outputs for rare context instances are transmitted as side 

information. In image dependent context quantizer and minimum adaptive code 

length context quantizer design schemes, the conditional probabilities of rare 

context instances are first estimated using the training set under lower order 

context template definition and then adaptively being updated on the fly. These 

conditional probabilites are compared with the centroids of the context quantizer 

to obtain the output index. When the estimates of conditional probability of these 

rare context instances are inaccurate and they also do not occur very often in the 

input image, MDL-based method will show its advantage over the other two 

methods. Because in this case, the conditional probabilities of these rare context 

instances turn to be peaky, which will lead to small data rate. Sending side 

information using ECSS method will become a better choice. 

Not surprisingly, all these three approaches outperform both JBlG and 

JBIG2 standard. The minimum adaptive code length context quantization 

scheme and the image dependent with efficient side information scheme achieve 

the best performance on the chosen data set with peak compression 

improvement of 24% over JBlG and 11 % over JBIG2. When the statistics 

mismatch of the training set and input image is moderate, image dependent 

method can achieve the code length very close to the optimal one by adaptively 

updating the context quantizer output on the fly. The context quantizer design 

algorithm in the image dependent method is MCECQ based only on the input 



image statistics. Its complexity and computational cost is lower than minimum 

adaptive code length context quantizer design scheme, which is aiming to 

minimize the effect of mismatch of the statistics between the training set and the 

input in any circumstance. 



CHAPTER 5. 
CONTEXT BASED CLASSIFICATION AND 
QUANTIZATION 

5.1 Motivation 

Various classification techniques have been shown to be effective in 

adaptive quantization schemes in wavelet image coders. These classification- 

based schemes [53][57-611 separate the subband data into several 

subsequences with different distributions. A set of quantizers are customized to 

the individual distribution components. Then a sequence of quantizers can be 

used rather than a single average quantizer fitted to the overall input statistics. 

Thus the quantization scheme can be adapted to the classification information 

and a better performance can be expected. The difference among various 

algorithms mainly lies in the approach of modeling the mixture of subsources with 

different statistical characteristics. The methods proposed in [60] are all based 

on block-wise classification. Each class is characterized as a generalized 

Gaussian source with different parameter. A different quantizer is then used for 

each class. Context-based classification method is to assign a class to each 

subband coefficient based on the causal and quantized spatial neighbourhood 

context. Two schemes based on this principle are presented in [61] and [53]. In 

both methods, a parametric distribution model for each class is assumed. 

Generalized Gaussian distribution (GGD) is used in [61], while simpler Laplacian 



model is used in [53]. According to the estimated parameters of each class, the 

best quantizer chosen from a set of available quantizers is assigned. The 

advantage of the parametric modeling approach is the small modeling cost. 

However, it can result in significant loss in the coding efficiency in the case of 

mismatched statistics. 

5.2 Non-Parametric Context Based Classification and 
Quantization 

5.2.1 Basic Idea 

Figure 5-1 Diagram for Proposed Scheme 

The whole procedure of our context-based classification and adaptive 

quantization scheme is shown in Figure 5-1. First, we preprocess all data using 

a single initial quantizer with its rate close to the target bit rate. Then the context 

is defined by the previous quantized coefficients. The context model is used to 

accurately estimate the probability mass function (pmf) of the upcoming symbol. 

This pmf estimate is generally made by counting the number of occurrences of 

symbol in each context and computing the relative frequencies. The counts can 

be organized into a histogram for each context, with one entry per symbol. Each 



of these pmfs can be viewed as an estimation of the true probability density 

distribution (pdf) of the coefficient in the corresponding context. The coefficients 

with similar pmf estimates will be assigned to the same class. We applied the 

histogram quantization scheme proposed in section 3.1.2. to make an effective 

classification based on the pmf estimates. According to the statistics of each 

class, the best quantizer will be chosen from a set of uniform dead zone 

threshold quantizers. Bit allocation among the classes is also performed at the 

same time to optimize the overall rate distortion performance. The classic bit 

allocation method based on 1621 is applied in our scheme. An iterative bit 

allocation algorithm is used to determine the Lagrange multiplier A in the cost 

function J = D +AR , where D and R are the overall distortion and rate. For 

each A the algorithm selects the quantizer which minimizes J .  The iteration on 

A terminates until the algorithm finds J =  f for which the R falls within a certain 

range of the target rate. In the above scheme, the side information includes the 

description of the classification map and the quantizer information for each class. 

We adopt entropy coded state sequence method proposed in Section 3.2.2.2 to 

code the classification map. 

5.2.2 Selection of Initial Quantizer 

The initial quantizer is selected from the set of available uniform threshold 

dead zone quantizers. The choice of the initial quantizer affects the accuracy of 

the classification and the amount of the side information spent on describing the 

classification map. A good initial quantizer should meet the following three 



criteria. First, its rate is close to the target bit rate for the classification varies with 

the bit rate. The classification map obtained for a low bit rate initial quantizer will 

not be suitable for high bit rate coding. Secondly, a better rate distortion 

performance of the initial quantizer leads to a more accurate classification. 

Finally, another preferred feature of the initial quantizer is the small size of the 

symbol set. This feature can save bits of the side information spent on describing 

the classification map. 

5.2.3 Context Based Classification 

In our proposed scheme, the classification is made based on the 

estimated pmf of the coefficients. As a result, the coefficients associated with the 

same context instance, which is defined by the initial quantizer, will be assigned 

to the same class because they share the same pmf. Although the simplest way 

is to define each context instance as a single class, the number of the different 

contexts instances could be very large especially if a high resolution initial 

quantizer is used. Because the quantizer information for each class needs to be 

sent as side information, it is obviously inefficient to have too many classes. 

Therefore the number of the classes should be reduced. A natural solution is to 

merge the context instances with similar pmf's until a desired number of the 

classes, N , is achieved. With this motivation, we apply the histogram 

quantization method described in section 3.1.2, in which the dissimilarity of the 

pmfs is measured by the relative entropy. 



Clearly, the classification map needs to be compressed to minimize the 

size of side information. Entropy coded state sequence method, which is 

presented in Section 3.2.2.2, is applied here to code the classification map. 

Instead of sending class index for each of the coefficient, the classification 

indices of the different context instances are sent in the same order that happens 

in the input sequence. Both the encoder and the decoder will build a context 

book on the fly to memorize the classification information of the contexts that 

have already appeared. When the context instances reoccur, it is not necessary 

to transmit their classification indices. At the end of coding the input sequence, 

this context book, built at both encoder and decoder, will be the same as the 

original one which is not actually transmitted. Moreover, the classification map 

can be further compressed using entropy coding by exploiting the fact that the 

population of different groups is unequal. 

One issue to be addressed is that in order to construct the above 

classification map, our choice of the quantizer set, among which the best fit 

quantizer will be chosen for each class, will be limited. The reduced classification 

map is built based on the context under the definition of initial quantizer. 

Therefore in order to obtain the accurate classification information, the context 

should be correctly calculated. However, in the real coding process, the past 

context data is already requantized by the optimal quantizer chosen from the 

quantizer set. As a result, we need to put a restriction on the quantizer set so that 

the reconstruction values using the real quantizer will fall into the same cell as 

the original data under the definition of the initial quantizer. This condition will 



guarantee that the context information under the initial quantizer can be 

recovered at the decoder. 

5.3 Experimental Results 

To demonstrate the effectiveness of the above techniques we perform 

some experiments on the 51 2x51 2 Barbara image processed by a wavelet 

transform to a depth of three, where the filter set is the standard 9-7 configuration 

W I .  

First we generate the operational rate-distortion curve (RD curve) for the 

subband image data using the available uniform threshold dead zone quantizer 

set. The candidates for the initial quantizers will have two features. The one is 

that its (R , D) values are close to the above rate distortion curve. The other one 

is that it should be with small number of cells. The context template was defined 

as the four causal nearest neighbors. After we quantize the data using the 

selected initial quantizer, the histogram quantization method is applied to perform 

the classification. Then the bit allocation is performed among the classes. For 

each of the Lagrange multiplier A ,  we select the quantizer for each class to 

minimize the cost function J = D + AR . By changing theA , a new rate distortion 

curve is produced. 

Figure 5.2 and Figure 5.3 show the results for subband LH2, a 128x128 

highpass image. Figure 5.4 is for subband LH2 In Figure 5.2, two RD curves, 

obtained with two different initial quanizers are compared with the original RD 



curve which is produced without classification. The two initial quantizers are 

chosen around 0.2bpp and 0.5bpp seperately. The performance of classification 

scheme is always better than original one. The RD curve with initial bit rate at 

0.5bpp can not achieve the low bit rate that is because of the scheme we used 

for coding classification map. At high bit rate the RD curve with initial bit rate at 

O.5bpp always outperforms the 0.2bpp one. The complete RD curve can be 

obtained by combining the pieces with the best performance associated with 

different initial quantizers at all rate. Figure 5.3 and Figure 5.4 showed the 

complete RD curve for subband at Oe ecause the scheme we used for codingThe 

one the piecwithinitial it rate of 0.5bpp can not achieve the low bit rate that is 

because of the requirement of the scheme we used for coding the classification 

map. At high bit rate the adaptive quantizer with initial bit rate of O.5bpp always 

outperform than the 0.2bpp one. The complete RD curve can be obtained b y 

combining the pieces with the best performance associated with different initial 

quantizers at all bit rates. Figure 5.3 and Figure 5.4 show the resulting RD curve 

for subband LH2 and subband HL3. 

The experiments also showed that the side information of the system 

could be kept at a very low level. For example, when coding the subband HL3 at 

bit rate of 0.4bpp, the side information rate is as low as 0.0037bpp. 



Figure 5-2 Rate Distortion Curve for Different Initial Quantizer for LH2 Subband 
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Figure 5-4 Overall rate-distortion curve for LH3 Subband 

5.4 Conclusions 

This section has presented a new scheme for context based classification 

and adaptive quantization. Our method employs histogram quantization 

technique to perform the classification. Since a non-parametric model is used, 

the statistics of each class can be estimated more accurately, and therefore, a 

better quanzation scheme can be applied to improve the overall rate distortion 

performance. It is also shown that the side information is kept at a relative low 

level. 



CHAPTER 6. 
CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this dissertation, we develop new techniques for context quantization 

under the criteria of minimum conditional entropy, minimum adaptive code 

length, and for optimal rate-distortion performance in image compression. The 

following contributions have been made. 

First, we propose a context quantization scheme to alleviate the context 

dilution problem in high-order context-based adaptive entropy coding. Our 

method employs a histogram quantizer to reduce a large set of all possible 

context instances to a manageable number of coding states. The resulting 

context quantizer is proved to be (locally) optimal in the sense of minimizing the 

conditional entropy. 

The real challenge to apply the above optimal context quantizer in practice 

is how to describe the resulting complex partition of the context space. We then 

tackle this problem. Two novel methods are proposed. Coarse context 

quantization method is to decrease the size of the context book by preprocessing 

the context space. Entropy coded state sequence method is to reduce the bits for 

coding the individual entry of the context book. The experiments show their 

effectiveness in compressing the side information. 
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The context quantizer design for binary source is studied next. The 

probability simplex space of binary source is one dimensional. This reduces 

context quantizer design to a scalar quantizer design problem and the global 

optima can be achieved by dynamic programming. Currently all the context 

quantizers described in the literature are designed off-line and being optimized 

with respect to the statistics of the training set. We propose three novel schemes 

to deal with the mismatches between the training set and the input image. MDL- 

based context quantizer is to minimize the sum of the bits of coding the input and 

the side information to describe the context quantizer mappings. Image 

dependent context quantizer is a MCECQ with an efficient way of handling the 

rare context instances. Finally, minimum adaptive code length context quantizer 

is to minimize the effect of mismatch between the input and the training set 

statistics. The difference between the two sets, the training set plus the input 

and the training set alone, is minimized. Our schemes superior to JBlG and 

JBIG2 on the chosen set of twelve halftone images with the peak compression 

improvement of 24% and 11 % and average gains of 17% and 8%. 

Finally, we extend our work to the joint design of both quantizers and 

entropy coders. A non-parametric modelling context-based classification and 

adaptive quantization scheme on coefficient basis is presented. A finite state 

quantizer and entropy coder are produced with the same procedure. The results 

show that it has great potential to improve the overall compression system 

performance. 



6.2 Future Work 

6.2.1 Context Shape Optimization 

The context quantizer design we discussed in this thesis require a fixed 

context space. The definition of the initial context space has significant impact on 

the overall compression efficiency. If the initial context space is defined to be too 

large, the computation complexity will be highly increased without any benefit to 

the compression performance. However, if the context space is defined to small, 

some important information is already missed even before applying any context 

quantization scheme. Context shape optimization is a challenging and interesting 

problem, which has remained largely untreated. 

6.2.2 Application to Other ImageNideo Codec 

Although the context based adaptive entropy coding and quantization 

techniques presented in this thesis are studied in the context of image 

compression, they can also be used to improve the video compression system 

performance. When demonstrating the power of our schemes, the experiments 

are performed on wavelet subband images and binary halftone images. 

However, these techniques can be applied to any other type of images. When 

exploiting the context quantizer techniques designed for binary source on non 

binary source, we need to decompose it into a sequence of binary decisions and 

coded using the proposed method. 



6.2.3 Application to Distributed Multimedia Compression 

The problem of data compression with side information at the decoder 

appears in numerous practical applications such as distributed sensor systems, 

network communications, stereo and multi-camera systems and surveillance 

systems [63]. To compress the side information, one needs to build quantizers 

that minimize the rate at which the source can he encoded with a constraint on 

the entropy of the quantized side information. This problem is strongly related to 

our context quantizer design problem. Therefore our context quantization 

techniques presented in this thesis can be applied to a wide range of distributed 

multimedia compression problems. 
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