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Abstract 

The source coding method referred to as vector quantization (VQ) is used in a speech- 

recognition system to represent an arbitrary speech spectral vector into one of a fixed 

number of codeboolt symbols with the benefit of significantly reduced computation in 

the recognition process. 

I11 low-complexity spealter-independent isolated-word recognition systems with 

multiple codeboolts, the performance of the VQ has a big impact on the overall per- 

fornlance of the system. This t,hesis studies different ways of combining temporal 

and spectral characteristics in the VQ process, with the objective of improving t,he 

recognition, while maintaining or decreasing the storage requirement. Two met,ll- 

ods of incorpora.ting time information directly into the codebooks are presented and 

compared to an existent method, based on considering the probability of the time of 

occurrence of a given spectral vector in the quantization process. 

The recognition system implemented to evaluate these methods consists of modules 

which perform signal pre-processing, feature extraction and vector quantization, with 

a signal-processing front end based on a bank-of-filters model. 

The experimental results show that the methods proposed reduce significantly the 

recognition error rate and have similar memory requirements to the reference method. 
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Chapter 1 

Introduction 

Isolated word recognition represents one of the first efforts in the pursuit of automatic 

speech recognition. The distinguishing feature of an isolated-word recognition syste~n 

is that it requires words to be spoken individually, in isolation from other words, and 

separated by distinct interword pauses. As early as 1952, an isolated digit recognizer 

based on spectral ~neasurements was built at Bell Laboratories [I]. This research 

area produced a viable and usable technology only in the 1970's; however, the goal of 

improving the performance for syste~ns using this technology is still pursued. This is 

due mainly to the fact that the state-of-the-art speaker independent sys tem (which do 

not require speaker specific training) still give error rates of approximately 5% under 

laboratory conditions, i.e. a high-quality ~nicrophone in a low-noise e n v i r o ~ ~ m e ~ ~ t  [2]. 

Such a performance would be unacceptable if the system were part of a commercial 

product to be used in a realistic environment. 

Recently, there has been an increased c o ~ ~ s u m e r  interest in products with voice 

activated user interfaces. As a result, the development efforts to produce error-free, 

cost-effective hardware impler-nentatioi~s of speech recognizers have been intensified. 

The advances in VLSI technology and signal processing capabilities, combined with 

the demand for voice communication, have revived the quest for a reliable isolated- 

word, speaker-independent recognizer. 

A voice recognition chip can be used to implement the user interface of a command- , 
and-control system. In such a system, the user speaks a single co~mnand (either an 

isolated word or phrase), and the machine, upon correctly recognizing the comn~and, 

acts appropriately. The output of the speech recognizer is the index of the word that 
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is most likely to have been spoken based on the recognizer's vocabulary. This index 

is then used to select the corresponding action to be passed on to the physical systern 

under voice control. Several requirenlents are essential for the recognition system to 

be used in a hardware i inple~ne~~tat ion of a user interface for a command-and-control 

system: 

0 The proposed ir~terface must be "user friendly"; it must make the user feel com- 

fortable with the commands and it nlust provide an effective ~neans  of conln~i.i- 

nication. This imposes restrictions on the size and structure of the vocabulary 

used, and determines whether the recognizer is spealier independent or speaker 

dependent. 

The command-and-control system must achieve a specified minirnu~n level of 

performance on the task associated with the recognition decision. User percep- 

tion of the recognizer's effectiveness appears to be non-linear [2], in that the 

absolute level of performance is relatively unimportant as long as the error rate 

stays under a certain level (5%). This requires a n l i ~ ~ i ~ n u r n  degree of recognition 

accuracy for the overall system, as well as a high degree of robustness to noise. 

The response time of the recognition system must be minimized. 

0 The recognit'ion system must be cost effective. 

I11 this context, the system ir~lplernented in this thesis is required to be: 

0 dedicated to a small vocabulary of isolated utterances, 

spealier independent (unrestricted set of speakers), 

0 highly accurate, 

robust and 

0 suitable for a low-cost analog VLSI implementation. 

The recognition method most often used in practical i~nplenlentations is the com- 

parison of spectral patterns and consists of spectral feature extraction followed by 

pattern comparison. The simplest spectral feature extraction analog hardware imple- 

mentation is a bank of analog filters, used in existent recog~~ition chips such as OK1 
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MSM6250, or NEC TC8861F [:3]. The  spectral features are further processed ilsing a 

vector quantizer (VQ) . 
Altliougll a VQ is generally used to compress tlle speech patterns (and thus re- 

duces the computational complexity and storage required by subsequent decision al- 

gorithms), in sorne restricted cases good recognition performance can be obtaine(1 

with straightforward use of tlle VQ as a recognizer [4]. The  recognition accuracy re- 

ported in [4] was of 99% for a speaker-dependent system and of 88% using a speaker- 

i~idependent system for a highly non-confusable 20-word vocabulary. The use of a 

VQ-based decision block brings computational savings in co~nparison to a more SO- 

pliisticated decision block, like the Dynamic Time Warping (DTW) or tlie Hidden 

h4arkov Model (HMM) processors. VQ-based recognition is also knowrl as "millti- 

ple codebook recognition", because it uses one codebook for each vocabulary word, 

or "recognition without t ime alignment", to distinguish it from the DTW olethod, 

whicli uses time alignment of input speech patterns. 

A performance comparison among different recognition nlethods is given in Ta- 

ble 1.1, where the spectral analysis nlethods used for feature extraction are the filter- 

bank (FB) method and the linear predictive coding (LPC) method, producing either 

linear prediction coefficients or cepstral coefficients as the speech pattern to  be iised 

in recognition. The  result of the DTW-FB method corresponds to a VLSI imple- 

~nentat ion of a recognition system [3], and is outperformed by tlie si~nulation results 

obtained using the VQ-FB design presented in this thesis [5]. When LPC features are 

used, both the DTW and the HMM  neth hods outperform tlle VQ nlethod [2], [6]. The  

test set for the DTW, HMM and VQ methods based on LPC features was recorded in 

studio conditions, while for the FB methods a more realistic recording environment 

was used. 

The  baseline recognition system, designed according to the constraints inlposed 

by the hardware i~nple~nentatiorl  targeted, consists of a filter-bank front-end followed 

by a VQ on spectral features and gives an accuracy of almost 90%. To insure t11a.t 

a11 accuracy of a t  least 95% is obtained for the system worl<ing in noisy conditions 

with a test set of speakers with foreign pronunciation, several improvements to  the 

algoritllm needed to be investigated. 

The  approach used in the baseline system does not preserve the sequential charac- 

teristics of tlie utterance class, or the temporal c.1iaracterization of the spectral shape. 



C H A P T E R  1 .  INTROUUCTlON 

Method 

I , L .  I VQ-FB 1 89.1 I 151 1 

Table 1.1 : Small Vocabulary, Speaker Independent, Isolated Word Recognition Sys- 
tems - Performance Comparison 

VQ-LPC 
VQ-cepstral 
HMM-LPC 

In this approach, a single VQ is used for the entire duration of the utterance, while 

the distortion measure used takes into account only the magnitude of the spectral 

feature and ignores its time of occurrence. The lack of explicit characterization of 

the sequential behavior can be remedied either by treating each utterance class as a 

concatenation of segments, each represented by a VQ codebook, or by condining the 

spectral distortion with a temporal distortion. The first approach is referred to as Scg- 

snental VQ [$I. Another technique, using combined spectral and temporal distortions, 

was proposed and evaluated by Pan et al. [7]. Their approach uses an estimated 

probability density function (PDF) of the time of occurrence on a normalized time 

scale, and will be further referred to as the Probability Tables method. 

Two methods of modifying the VQ structure to take into account temporal infor- 

mation in addition to the spectral features are presented in this thesis: 

1. The Temporal Componen t  Method: generates an additional temporal cum- 

ponent to each vector of spectral features. As a result of training, a tem- 

poral codebook is created. The temporal codebook is used in conjunction 

with the existent spectral c.odebook during quantization. 

94 

2. The Overlapped Codebooks Method: time normalizes each utterance and 

then subdivides it into a number of non-overlapping regions. For each 

of these regions a sub-codebook is generated, and the sub-codebooks are 

overlapped to a variable degree. This approach uses the same principle as 

the segmental VQ described by Burton, but gives a more accurate pattern 

kl, [GI 
95.5 , 161 - - 
98 
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representation in codebook space and performs better without significant 

increases in complexity. 

These two methods are compared with the probability tables method, proposed by 

Pan et a1 [7]. The decrease in error rate obtained is 40% relative to the baseline 

system and 30% relative to the Probability Tables metliod for a 12-word vocabiilary 

and recordings performed both in studio and noisy conditions. 

Contributions of the Thesis 

The major contributions of this thesis can be sunmlarized as follows: 

1. The development and perfor~na~lc.e arlalysis of speaker independent isolated 

word recognition algorithms which use a VQ as a recognition processor. 

The error rate was reduced by over 40% by incorporating time informatio~~ 

in the quantization process. 

2. The study of a new method of adding temporal information to a spec- 

tral codebook; the new method gives a 20% improvement in recognition 

rate over the existing probability tables technique [7], while reducing the 

required codebook storage space by 70%. 

3. The evaluation of the improvement due to using overlapping codebooks in 

segmental VQ. The results show a 20% improvement in error rate at a 45% 

reduction in codebook storage space. 

4. The design and i~nplementation of a speech recoguition algorithm which 

simulates a real-time analog VLSI recognizer. 

1.2 Thesis Outline 

Chapter 2 presents an overview of spectral analysis ~nodels in the context of the 

statistical approach to speech recognition. A detailed description of vec.tor quantiza- 

tion, including a discussion of codebook training methods and distortion lneasures is 

presented in Chapter 3. 
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Existent methods of incorporating time information during quantization are pre- 

sented in Chapter 4, while tlie two new ~netliods which incorporate time infornlation 

during quantization are introduced in Chapter 5. 

Cliapter 6 outlines the speech recognition systeni used for tlie evaluation of the 

spectral-temporal VQ methods proposed in tliis thesis. The results of this evaluation 

are presented in Chapter 7. 



Chapter 2 

Spectral Representation of Speech 

Signals 

Different speech sounds can be characterized by spectral and temporal properties that 

depend on the acoustic-phonetic features of the sound. Rased on this characteriza- 

tion, they can be grouped into sound classes. For each such class, or phonetics, the 

properties of the acoustic features are relatively invariant across words and speakers. 

This observation inlplies that the recognition of speech classes is possible, provided a 

suitable analysis of the acoustic properties can be implemented. 

The ideas of acoustic-phonetic characterization of sounds lead to the implemen- 

tation of a speech recognition algorithm based on sequential detection of sounds and 

sound classes, called the acoustic-phonetic approach. This approach is based on the 

theory that postulates that there exist finite and distinctive phonetic units in the spo- 

ken language and that the phonetic units can be identified in the evolution in time of 

the speech signal. The method consists of a segmentat ion and labeling phase, which 

creates a template of phonemes representing the speech, followed by a recognition 

phase, which attempts to determine a valid entry in the vocabulary. This technique 

has a number of practical limitations [2], such as the subjective nature of sound classes 

definitions and difficulty in achieving correct segmentation. 

Statistical pattern comparison is the most reliable and widely used method in prac- 

tical i~llplerrlerltatio~rs of recognition systems, and is therefore the choice for the system 

implemented in this thesis. Pattern recognition systems rely on gross estimation of 

the spectral and temporal properties of speech segments and use pattern classification 
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n ~ e t l ~ o d s  such as DTW, HMM and VQ. The following sections of this chapter present 

a description of spectral analysis methods used in the pattern recognition approach 

to speech recognition. 

The Pat tern Recognition Approach 

Unlike the acoustic-phonetic approach to speech recognition, the pattern-recognition 

approach uses a set of attributes characterizing the entire utterance (which can be a 

sound, a word, or a phrase) as one entity, or pattern, and does not require phonetic: 

decomposition of the utterance to be recognized. In pattern recognition methods, 

spectral analysis is used to produce spectral patterns. A large collection of speech 

patterns is proc.essed during training to extract the templates used during the decision 

stage, wllich produces the recognition result. 

The utterance's pattern is, by definition, the set of spectral and temporal features 

generated by the spectral analysis of the speech signal. The training procedure brings 

into the system information about the nature of the utterances in the dictionary. If 

enough versions of a utterance to be recognized are included in a training set provided 

to the algorithm, the training procedure can adequately characterize (statistically) the 

acoustic properties of that utterance. The output of this procedure is one reference 

template (or collection of templates) of spectral features for each dictionary entry. 

During the decision stage, a direct comparison of the unknown utterance pattern with 

each possible template is performed and the best match represents the recognition 

result . 
This approach is widely used in practical applications due to  its following charac- 

teristics: 

a simplicity of use 

a robustness and invariance to different speech vocabularies, users, feature sets, 

pattern comparison algorithms and decision rules 

a proven high performance 

The block diagram of a recognizer based on spectral analysis methods is is pre- 

sented in Figure 2.1. 



C H A P T E R  2. S P E C T R A L  REPRESENTATION OF SPEECH SIGNALS 9 

Ternplates 
Training (Models) 

Figure 2.1: Rloclt Diagram of a Pat tern-Recog~i t io  Speech Recognizer 

w Recognized 

The Spectral Analysis bloclt performs a series of measurements on the input signal 

to define a pattern. For speech signals the feature measurements are usually the output 

of some type of spectral analysis technique, such as a filter-bank analyzer, a linear 

predictive coding (LPC) analysis, or a discrete Fourier transform (DFT) analysis. 

The Training block analyzes one or more patterns, called training pattei-ns, corre- 

sponding to  speech sounds of the same class, to create a representation of the class' 

features, called the reference pattern. The result can be a template (or a collection of 

templates), derived from some type of averaging or selection technique, or it can be 

a model that characterizes the statistics of the features of the reference pattern. 

Pattern 
) Classifier 3 

The Pattern Classifier compares the unltnown pattern presented as input with 

each of the sound (class) templates and computes a measure of similarity, usually 

called distance, between the test pattern and each template. 

The Decision bloclt uses these distances .to choose the class that best matches the 

unknown test pattern. 

The factors that distinguish different pattern-recognition approaches are: 

Speech 
Decision 

the types of feature measurements 

the choice of templates or models 
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the training method used to create the reference patterns 

0 the classification method and decision criteria. 

The syst,em implemented for this study uses a filter-bank analyzer for feature 

measurement and a vector quantization training procedure for creating templates 

called codebooks. Following training, the statistical characteristics of the source for 

each dictionary word are embedded in the corresponding codebool~ The classifier is a 

vector quantizer (VQ) which uses the set of codeboolcs to compute distances between 

the unl<nown input pattern and each of the codebooks. The decision bloc.lc sinlply 

selects the nlini~llu~n distance codebook to the input pattern. 

The general strengths and wealcnesses of the pattern recognition approach include 

the following: 

1. The perforlnance of the system is influenced by the amount of training 

data available, in that an increase in the training set size decreases the 

sensitivity to noise and increases the degree of speaker dependency. 

2. The reference patterns are sensitive to the speaking environment condi- 

tions. 

3. The nlethod is applicable to a wide range of speech sounds, including 

phrases, whole words and subword units, because the algorithm doesn't 

use vocabulary specific information. 

4. The imple~nentation complexity is linearly proportional to  the number of 

vocabulary words, and is a li~niting factor for tlle vocabulary size of the 

application. 

Spectral Analysis Models 

Spectral analysis methods are at the core of tlle signal processing front end of a speech 

recognition algorithm, because they characterize in a co~lsistent nlamler the events in 

a speech utterance; this is done by providing a set of p&ameters which quantify 

perc.eptua.lly significant characteristics for eac.11 speech segment. The resulting set of 

spectral characteristics extracted for an utterance are used as an input pattern in the 

recognition process. 
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The  speec.11 signal is a slowly time varying signal in the sense that,  when examined 

over a sufficiently short period of time (between 5 and 100 ms),  has approxin~ately 

stationary characteristics; however, over long periods of time (on the order of 200 ~ n s  

or more) the signal characteristics change to  reflect the different sounds being spoken. 

According to  the vocal cords status, the events in a speech utterance can be 

classified in: 

silence (S), wl~en  no speech is produced; 

unvoiced (U),  when the vocal chords are not vibrating, so that the resulting 

speech wavefor~n is aperiodic (random); 

voiced (V), when the vocal chords are tensed and vibrate periodically, producing 

a quasi-periodic speech waveform. 

Spectral representations provide information regarding the intensity of the signal 

in different frequency bands, a fact that can be  illustrated by examining the wide- 

band and narrowband spectrograms of the utterance "It's easy to  tell the depth of a 

well", presented in Figure 2.2 (a) and Figure 2.2 (b),  respectively. The  spectrograms 

are created by performing a spectral analysis on overlapping segments of the speech 

waveform using broad band, and respectively narrow band, filters. (The bandwidth 

is characterized relatively to  the width of the analysis window.) 

The  wideband spectrogram, presented in Figure 2.2 (a) ,  corresponds to performing 

a spectral analysis on 15-msec sections of waveform using a broad analysis filter (125 

Hz bandwidth) with the analysis advancing in intervals of 1 msec. For the narrowband 

spectrogram, shown in Figure 2.2 (b) ,  spectral analysis was performed on 50-msec 

sections of waveforln using a narrow filter (45 Hz bandwidth), with an overlap of 1 

rnsec between adjacent analysis windows. T h e  spectral intensity a t  each point in time 

is indicated by the intensity (darkness) of the plot a t  a particular analysis frequency. 

In the wideband spectrogram, Figure 2.2 (a),  the vertical striations, corresponding 

to the spectral envelope of individual periods of the speech waveform, are well repre- 

sented due to good resolution in time domain. In Figure 2.2 (b),  because of the good 

frequency resolution, individual spectral harn~ollics appear as almost l~orizontal lines 

in the spectrogram. During periods of unvoiced speech high-frequency energy can 

be observed, while during silence there is no spectral activity. This illustrates that a 



C H A P T E R  2. S P E C T R A L  REPRESENTATION OF SPEECH SIGNALS 

(a) Wideband Spectrogram 
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(b) Narrowband Spectrogram 
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Figure 2.2: Speech Representation - Amplitude and Spectrograins 
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Filter 1 

Speech 

Band Pass 
Filter Q x,,(ia~) 

Figure 2.3: Filter-Rank Analysis Model 

trade-off between time and frequency resolution must be achieved for a co~nprehensive 

analysis of the speech segment's features. 

In speech recognition applications, the two most commo~l choices for spectral anal- 

ysls are: 

1. The filter-bank model(Figure 2.3). 

2. The l inear predictive coding ( L P C )  model(Figure 2.4). 

In the filter-bank model, the speech signal, s (n) ,  is passed through a bank of Q 

bandpass filters whose coverage spans the frequency range of interest in the signal 

(e.g., 100-3400Hz for telephone quality signals, 100-8000Hz for broadband signals). 

The individual filters can and generally do overlap in frequency. The center frequency 

of the i-th filter is w;,  

where F, is the sampling frequency. 

The output of the i-th bandpass filter for the n-th input speech frame . s ( n ) ,  

X7L(ejwi), is a short-time spectral representation of the signal. In this model, each 

filter processes the speech signal independently to produce the spectral representa- 

tion X,. 
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Figure 2.4: LPC Analysis Model 

Speech Frames LPC Coefficients Cepstral Coefficients 

In the LPC approach (Figure 2.4), spectral analysis is performed on blocks (frames) 

of speech, where a,, represents the n-th frame of speech input. The resulting spectral 

representation X3,(ejw) is constrained to be of the form a/A(ejw), where A(ejw) is a 

P- th  order polynomial with z-transform 

The order, P, is called the LPC analysis order. The output of the LPG spectral 

aimlysis block, corresponding to the n-th frame, is a vector of LPC coefficients, a,,, of 

dimension equal to the predictor order, P .  The LPC coeffic,ients specify the spectriinl 

of an all-pole model that best matches the signal spectrum over the period of time in 

wllich the frame of speech samples was accumulated. 

Equivalent feature sets, such as cepstral coefficients, have proven to be a lnore 

reliable and robust spectral representation in speech recognition [2]. The cepstral 

vector _c,, can be derived directly from the LPC coefficients, transformation illustrated 

in Figure 2.4 by the LPC parameter conversion block. 

The bank of filters model is used in the i~nple~nentation presented in this thesis 

because it is more suitable to the be implemented in analog VLSI technology than 

the LPC model. The following sections of this chapter present a detailed description 

of a bank-of-filters analyzer. 

S -n LPC 
Parameter 
Conversion 

LPC 
Spectral 
Analysis 

c -n > 
a -n 

) 
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2.3 The Filter Bank Spectral Analyzer 

A deta,iled functional diagram of a feature extrac'tion processor based on the filter 

bank spectral analysis model is presented in Figure 2.5. The purpose of the filter 

bank analyzer is to obtain a nleasure~nent of the speech signal energy in different 

frequency bands. 

The sampled input speech signal, ~ ( n ) ,  is passed through a bank of Q ba11dpa.s~ 

filters, resulting in the signals: 

where hi(m) is the impulse response of the i-th bandpass filter (BPF) in the finite 

impulse response (FIR) irllple~lle~ltatioll, with a duration of Mi samples. Each of the 

bandpass filtered signals, s ; ( r ~ ) ,  is passed through a non-linearity, such as a full-wave 

rectifier. The nonlinearity shifts the bandpass signal spectrum to the low-frequency 

band, as well as creates high frequency images. A low pass filter (LPF) is used to 

eliminate the high-frequency images, giving as output a set of signals, t;(n), Vi = 

1, ..., Q, which represent an estimate of the speech signal energy in each of the Q 

frequency bands. 

Figure 2.5: Filter-Bank Analyzer 

Nonlinearity Filter 1 

Bandpass 
Filter Q 

The effects of the nonlinearity and the LPF are illustrated in Figure 2.6, which 

shows typical waveforms of the following signals: 
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0 input speech, s ( n )  ( a  32 ~nillisecond segment of voiced speech digitized at 8 ]<Hz) 

0 i-th B P F  output s;(n): the BPF used in this example is centered at 500 Hz, a 

frequency around which tlle fornlant frequencies for a few of the most common 

vowel sounds are situated 

non-linearity output, v;(n): the 11011-linearity in this example is the full-wave 

rectifier (FWR) discussed in detail below 

0 LPF output, t;(n): the cut-off frequency for tlle LPF is 80 Hz, with an atten- 

uation of 50 dB over a 20 Hz interval, [80 Hz, 100 Hz]. its choice is related to 

the fastest motion rate of the speech llarrnonics in a narrow band, which is on 

the order of 50-100 Hz. 

as well as their corresponding Fourier transforms. The output 2 ; ( 7 ~ )  of the filter hank 

analyzer shown in Figure 2.3 is a downsampled and amplitude compressed version of 

t;(n) from Figure 2.6. 

A FWR f was used as the nonlinearity: 

s i ( )  for s;(n) > 0 
f (d4) = 

-s;(~L) for s;(n) < 0 

This no~llinearity can be represented as: 

where 

The nonlinearity output can be viewed as a modulation in time, operation which 

translates to convolution in frequency domain: 

where (ejw ), $9; (ejw) and W (ejw ) are the Fourier transfor~ns of the signals vi(n), 

s;(~z)  and ~ ( n ) ,  respectively. It can be seen that ,S';(eiw) has most of its energy in 

the pass band (the maximum at approximately 500 Hz), while the spectrum of the 

signal after the full-wave rectification, x (e jw) ,  shows a corresponding low-frequency 
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Original Speech s(n) 
lo4 

Filtered Speech s (n) i 

Nonlinearity Output v(n) 

LPF Output t ('1 i 

0 0.01 0.02 0.03 

Amplitude vs. Time[s] 

S, DFT of the Original Speech 

S i, DFT of the Filtered Speech 

Vi, DFT of the Nonlinearity Output 

T ;, DFT of the LPF Output 

Log Magnitude[dB] vs. Frequency[Hz] 

Figure 2.6: Filter Bank Analysis of A Speech Waveform 
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concentration of energy. The undesired peaks at higher harmonic frequencies, visible 

in the shape of ~ ( e j ~ )  are eliminated by the LPF, producing the desired spectral 

estimate, t i ( 7 2 ) .  

The bandwidth of the signal v; (n)  is related to the fastest rate of motion of speech 

har~nonics in a narrow band and is on the order of 50-100 Hz. In order to achieve an 

economy in signal representation, the output of the LPF filter is resampled at a rate of 

100-200 Hz. The signal dynamic range is compressed using an amplitude conlpression 

scheme, such as logaritllmic or p-law encoding. 

2.3.1 Types Of Filter Banks 

Among the types of filter banla used for spectral analysis in speech recognition [2], 

the most common one is the uniform filter bank. In this case the filter frequency 

responses are equally spaced, the center frequency f; of the i-th bandpass filter being 

defined as: 
Fs 

f . -- i ,  ' J i = l ,  ..., iV, " 2N 
(2.8) 

where F, is the sampling rate of the speech signal, and N is the number of uniformly 

spaced filters required to span the frequency range of the speech. The bandwidth b; 

generally satisfies the property: 
l7 

with equality meaning that there is no frequency overlap between adjacent filter c.han- 

nels. 

The alternative to the uniforndy spaced frequency plan is the non-uniform spacing 

of filter banks, designed according to a given perceptual criterion. The best l<nown 

criteria for designing non-uniform filter banks are [2]: 

uniform spacing on a logarithmic frequency scale, 

spacing according to the critical band scale, which is based on auditory percep- 

tual studies, 

variants on the critical band scale, such as the me1 scale and the Bark scale. 

The critical band refers to the bandwidth at which subjective responses, such as 

loudness, become significa~ltly different. The loudness of a band of noise remai~:s 
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constant as the noise bandwidth increases up to the width of the critical band; after 

that increased loudness is perceived. Sindarly, a complex sound (composed of only 

several tones) of constant intensity is approxi~nately as loud as an equally intense 

pure tone of frequency equal to  the center of the band. This observation was used to 

obtain the critical bandwidth as a function of frequency ( the center frequency of the 

band) [lo]. 

The  mcl pitch scale was defined as a result of psycl~ophysical studies which liave 

shown that human perception of the frequency content of sounds does not follow a 

linear scale [lo]. This research has led to the idea of defining a subjective pitch of 

pure tones: for each tone with frequency f ,  a subjective pitch is measured on a scale 

called the me1 scale. As a reference point, t,he pitch of a 1 kHz tone, 40 dB above the 

perceptual hearing threshold, is defined as 1000 mels. Other subjective pi tc l~ values 

are obtained by adjusting the frequency of a tone such that  it is half or twice the 

perceived pitch of a reference tone (with known me1 frequency). The  relations hi^:, 

between the me1 frequency M, in mels, and the frequency f ,  in kHz, of the tone, is 

given by: 

,I4 = 100010g2(l + f ) .  (2.10) 

The  pitch is perceived with more accuracy for sounds of low frequency, fact reflected 

also by the linear dependency between the subjective pitch and the logaritllm of the 

frequency, towards high frequencies. 

The  subjective nonlinear perc,eption of frequency has led to an  objective conlpu- 

tational model tha t  provides a mechanism to convert a physically measured spectriim 

of a given sound into a psychological, subjective spec t~wn.  In the Bark scale model, 

each frequency component of the spectrun~ f is replaced by a specific loudness level 

B according to  an  empirical power law over a range of torral~~ess units: 

where ,f is expressed in kHz. A unit of tonalness corresponds in width to a critical 

band and is mlled a Bark. 
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2.4 The Linear Predictive Coding Model 

Linear prediction is used in speech recognition as a method of estinlating the speech 

spectrum over short time intervals (10-30 msec), in which the signal can be approx- 

imated as stationary. In this method, each input sample is estimated, or predictcd, 

from previous input samples. 

In the LPC model, the estimate (or predicted value) .?(n) of a speech sanlple ~ ( n )  

is defined as a linear combination of the past P samples, such that: 

where the LPC coefficients all  n2, ... np are assumed constant over the speech analysis 

frame. 

The prediction error is the difference between tlle original signal and tlle signal 

estimate: 
P 

The prediction error filter transfer function, expressed in the z-transform domain, is: 

and represents the transfer function of the linear predictor with input ~ ( n )  and output 

For the particular case of the infinite order predictor, when P --+ co, it can be 

shown that the stationary input signal is transformed into a white noise process [12], 

and this is why the filter A(z) is also called the whitening filter. The consequence of 

this property is that the inverse of the infinite order whitening filter, l/A(z), will 

reconstruct the original signal x(n) from a white noise signal (where the subscript m 

indicates the optimal infinite-order prediction). 

Another property of the optimal infinite-order predictor is that it contains all the 

information regarding the signal's power spectral density (PSD) shape. For a system 

with transfer function A(z) given by 2.14, the PSD of the input, Px,(w), and that of 

the output, Pee (w), are related by: 
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which becomes, in the case of infinite order prediction: 

wliere a,"s the variance of the white noise process w a t  the output of A,(z). 

Pra.ctically, a good short-time estimate of the speecli signal's PSI) can be obtained 

with a finite order predictor, with order P between 10 and 20 [14]. This property is 

used in spectral esti~nation by the model-based (parametric) approach. 

The  basic problem of linear prediction analysis is to determine the set of predictor 

coefficients, {a;), i = 1, ..., P, directly from the  speech signal so that the spectral 

properties of the filter match those of the speech waveform within the given segment. 

The  criteria for finding the optiiiial predictor coefficients is the minimization of the 

mean-squared prediction error over a speech segment of short duration: 

By replacing e(n) with (2.13), and by taking the derivative with respect to each 

coefficient a; and setting the result to  zero, the following system of equations for 

the optimal predictor coefficients is found (also known as the Wiener-Hopf or the 

Yule- Walker equations) : 

where, if N is the size of the speech segment in samples, then 

r (k)  = E{s(rz)s(n - k))  (2.19) 

is the signal's autocorrelation function. 

Two approaches are used in practical applications to  compute the linear predictor 

coefficients: 

1. The  Autocorrelation Method: uses a weighted version of the input speech 

segment, obtained by ~nultiplication with a finite length window (rect- 

angular, Hamming). The  autocorrelation furiction in (2.19) is in this case 

replaced by an estimate which uses the windowed signal sw(n )  = .s(n)w(n): 
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Figure 2.7: Speech Synthesis - LPC Model 

2. T h e  Covariance Method: minimizes the actual least square error on the 

given speech segment. The predictor coefficients are the solutions of a 

system similar to (2.18): 

in which the autocorrelation function is replaced by the short-term "co- 

variance" of the signal, defined as: 

The  solution to  the autocorrelation method can be obtained using a very efficient al- 

gorithm (Levinson-Durbin), which reduces significantly the computational complexity 

in comparison with solutions obtained using the second method. The  autocorrelation 

method also offers the advantage of always having as solution a stable inverse filter, 

while the covariance method usually requires a stabilization procedure. 
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The  LPC coefficients are related to the vocal tract parameters in the speech pro- 

duction model presented in Figure 2.7. The  model consists of two basic elements: 

the excitation generator, which ~nodels  the effect of the air flow through the 

voc,al chords. The  excitation function is quasiperiodic for voiced segments of 

speech and random for unvoiced speech. 

the vocal tract model, which accounts also for the effect of radiation a t  the lips. 

The  vocal tract parameters vary slowly in voiced sounds, but this approximation 

is not valid for transient sounds [14]. 

The parameters that completely describe the speech production model are: the 

voiced/unvoiced classification, the pitch period for voiced sounds, the excitation gain, 

and the coefficients of the filter modeling the vocal tract, all of which vary with 

time. For the linear system described in Figure 2.7 the input to  the LPC-based 

synthesis filter, e(n),  equals Gu(n) ,  the scaled excitation, where u(n)  is the nornlalized 

excitation and G is the gain of the excitation. The  trarlsfer function H ( z )  is the inverse 

of the whitening filter: 
1 

H(z )  = - 
44 

The LPC Processor for Speech Recognition 

A typical LPC front-end processor used in speech recognition applications is presented 

in Figure 2.8. 

During Preen~phasis, the digitized speech signal, S(TL), is spectrally flattened, to 

compensate for the inherent spectral tilt of the signal. The Preemphasis block consists 

usually of a first order FIR filter. The  preemphasized speech signal is then bloclwd in 

frames of N samples each, with adjacent frames being separated by M samples, with 

M << N (typically, N = 3M [2]). The  overlap insures that the contribution of all 

the samples in the frame is properly considered in the evaluation of the LPC spectral 

estimates, and that the transition between values corresponding to  adjacent frames is 

smooth. 

Each individual frame is multiplied by a window so that the signal disconti~mities 

a t  the extremities of the frame are minimized. The LPC coefficients are computed for 
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Figure 2.8: LPC Processor for Speech Recognition - Block Diagram 
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each frame: the windowed autocorrelation is estimated (the first P values, where I' is 

the predictor order) and then the Levinson-Durbin algorithm is used to determine the 

LPC coefficients. The nulnber of iterations in the algorithm is equal to the predictor 

order chosen. 

0 ther equivalent coefficients, such as the reflection coefficients, the log area ratio 

coefficients, or tlle cepstral coefficients, are determined during the LPC Paramctcr 

Conversiou stage of the block diagram. The cepstral coefficients (which are tlle co- 

efficients of the Fourier transform representation of the log magnitude spectrum) are 

considered as the most robust and reliable feature set, used in recognition, anlong the 

above alternatives [2]. The cepstral representation requires an increase in the number 

of iterations in the Levinson-Ilurbin algorithm, due to the fact that lnore coefficients 

tlmn the predictor order are necessary, to obtain a similar accuracy of the spec?,ral 

representation. 

The Parameter Weighting block c,onsists of bandpass filtering in cepstral domain, 

transformatio~~ which minimizes the variations due to noise of low-order and high- 

order coefficients. 
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Chapter 3 

Vector Quantization In Speech 

Recognit ion 

Quantization is, in the simplest form, the operation which assigns to any scalar value 

from a continuous range the nearest approximation (uniquely defined) fro111 a finite 

set of values. An i~ilmediate example for scalar quantization is the digitization of 

an analog signal. The generalization of the above definition to the quantization of a 

vector (an ordered set of values) is known as vector quantization. 

Vector quantization is co~nmonly used in data compression, due to the high com- 

pression ratios achieved: the input vector is mapped into an index in a finite output 

set, and the index corresponds to the vector selected as the best approximation for tlie 

input vector. Vector quantization can also be viewed as a form of pattern recognition, 

where an input pattern (described by a vector) is assigned to one of a predetermined 

set of standard patterns, or templates. In speech recognition, vector quantization 

is used both as a c.omplexity reduction technique, because it provides an efficient 

representation of data, and as a classificatio~i method for the input. 

This chapter presents an introduction to  vector quantization, tlie design procedure 

of a vector quantizer (VQ), and the application of quantization to speech recognition 

systems. 
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3.1 Vector Quantization 

Vector quantization is a very efficient compression technique, in which every vector 

of consecutive input samples is encoded into an integer, or index, that is associated 

with an entry of a collectiol~ of reproduction vectors, or codebook. The  reproduction 

vector, or codeword, chosen is the one that is closest to the input vector in a specified 

distortion sense. The  coding efficiency is achieved in converting the vector into a 

compact integer representation, which ranges from 1 to N, with N being the size of 

(number of entries in) the codebook. 

More specifically, a VQ performs a mapping Q from a vector J: (in a k-dimensional 

vector space X) into a finite set of output vectors C = {y .)El with y .  E X, V j .  
-J -J 

The set C represents the  codebook, and each vector belonging to  the set is called a 

codevector. The  mapping described above defines also a partition, Sj, of the vector 

space X with N regions, or cells, where ,Sj consists of all the input vec.tors :c whic-11 

will be quantized into codevector y .: 
-3 

Sj = {:EX: Q(g) = y . )  (i3.2) 
-3 

The association of an input vector to  a given cell is based on a "distance" or 

distortion measure between the two vectors, i. e. the input vector and the codevector 

representing the partition. A metric (distance) functiorl d on a vector space X 

satisfies the properties of positive definiteness, symmetry and the triangle inequality 

condition. If a measure of difference satisfies only the positive definiteness property, 

it is referred to  as a distortion measure: 

0 i f g = y  - 
d(:, y) = > 0 otherwise 

The  set of codewords, which forms the VQ codebool<, rnust be chosen such that it 

minimizes the average distortion: 
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where Q is the quantization function and Q(2)  the quantized value of the inpiit. 

In practical systems, the distortion is estimated by considering the average: 

where {gi) is a sequence of L input vectors; the larger the number of input vectors 

over which the estimate is evaluated, the better the estimation accuracy is. 

With the optimality criterion for quantizer design defined by 3.5 ,  it can be shown 

that the necessary conditions for a quantizer to  be optimal are [12]: 

1. The Nearest Neighbor Condition: for a given codebook C, an input vector 

z is assigned to the partition containing the "nearest" codevector: - 

d(g, Q(g))  = min d(z ,  y .) 
Y E C  -J 
-3 

where j spans the entire range for codebook indices. The  condition can 

also be expressed in terms of the quantizer's output,  as: 

2. The Centroid Condition: for a given partition Sj, j = 1, ..., N, of X, the 

optimal codevectors satisfy 

where the centroid is defined as the vector which minimizes the average 

distortion for the given cluster of input vectors ~r: E Sj: 

The  existence of a unique centroid has been proven for distortion lneasures 

of interest [12]. 

For the squared error distortion measure, denoted 

d(&, Q(2)) = 11. - Q(&) 

the op timality conditions become: 
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1. The Nearest Neighbor Condition: for a given codebook, the partition Si, 
j = 1, ..., N of X, rnust satisfy the followirig condition: 

2. The Centroid Condition: the centroid is the ~ninimum niean squared est,i- 

mate of rr: E Sj: 

centroid(Sj) = E { g  1 rr: E Sj} (3.13) 

and is uniquely defined. For a finite input set: 

the centroid condition 3.13 can be evaluated as: 

where Pj( i)  is the probability of each vector 3:; to be clustered in ,Sj. 

The optimality conditions can be used for the improvement of a VQ c;odebooli, 

procedure l<nown as codebook training, by minimizing the average error over a training 

data set. Following codebook training, tlie characteristics of the information source 

that produced the given training data are embedded in the codebook. 

The fact that a VQ is optimally designed for a particular source (i.e. it will achieve 

a lower average distortion for signals generated by the source than any other VQ not 

designed for that particular source) suggests that a VQ can be successfully used as 

a pattern classifier. Details regarding elements of a VQ, such as the training set and 

the distortion measure, are presented in the next section. 

3.2 Structural Properties of a VQ 

The basic VQ training and classification structure is shown in Figure 3.1. It is assumed 

that the input to tlie VQ consists of the results of the spectral feature extraction block, 

which are a series of vectors gl , I = 1, . .. , L, characteristic of the time-varying spectral 

representation of the speech signal. 

The following items are required for i~nplementirig a VQ in the context of speec:h 

recognition: 
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Figure 3.1: Block Diagram of the Basic VQ Training and Classification Structure 
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1. A large set of spectral analysis vectors, which form a training set. 

Input Speech 
Spectral Vectors ) ~ u a n t i z e r j  

2. A spectral distortion measure, which is a measure of similarity, or distance, 

between a pair of spectral analysis vectors, allowing to  cluster the training 

set vectors as well as to associate or classify arbitrary spectral vectors into 

unique codebook entries. 

3. A centroid computation procedure: on the basis of the partitioning that 

classifies the L training set vectors into N clusters, the N codebook vectors 

are chosen as the centroid of each of the clusters. 

Decision 

4. A classification procedure for arbitrary speech spectral vectors that chooses 

the codebook vector closest to the input vector and uses the codebool< 

index as the resulting spectral representation. This is also referred to as 

the nearest-neighbor labeling or optimal encoding procedure. 

Index . 
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3.2.1 The VQ Training Set 

The training set of vectors must be representative of the speech source used in recog- 

nition. For a speaker independent recognizer, it should span a wide range of talkers 

(including ranges in age group, accent, gender, speaking rate, levels) and speal<ing 

conditions (such as quiet room, automobile noise, worltstation noise, etc.). 

The  training set is used to  create the "optimal" set of codebook vectors for rep- 

resenting the spectral variability of the source. Because tlle source distribution is 

generally unl<nown in practical applications, a large nunlber of training vectors must 

be used, to  provide a good empirical characterization of the source. 

Assuming that  the size of the VQ codebook is N = 2B vectors (for a so-called 

B-bit codebook), then L, the size of the training set, must be a factor of 10 to  100 

times larger than N; this ratio is called the training ratio. 

3.2.2 Spectral Distortion Measures 

The distortion measure is a key cornpouent of most pattern-comparison algorithms 

and must be defined according to the nature of the data  to be quantized. When the 

input signal is speech, an important consideration in choosing a distortion measure 

is its subjective meaningfulness. A detailed review of perceptual considerations in 

defining spectral distortion measures can be found in [2]. 

The  distance measures co~mnonly used for comparing filter-bank vectors are: 

the mean absolute spectral distortion, L1 

the root mean square log spectral distortion, L2 

0 the covariance weighted or Mahalanobis spectral difference [12]. 

For LPC vectors a,nd related feature sets, measures such as tlle likelihood and cepstral 

distances are preferred [2]. 

The  set of norms L,, p = 1,2,  ... l<nown as log spectral distances, are defined as: 

where : and c' are two normalized spectral vectors of dimension equal to  the number 

Q of filters in the feature extraction block. 
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Since the perceived loudness of speech is approxinlately logarithmic, the log spec- 

tral distance appears to be closely re1a.te.d to the subjective evaluation of sound dif- 

ferences and is considered a percqjtually relevant distortion measure. It can also be 

sho~vn that the L, measures are metrics bec,ause they satisfy the conditions of positive 

definiteness, symmetry and the triangle ineqmlity. 

The log spectral distances are much smaller for versions of the same sound, than 

wllen different sounds are compared. This property is exploited by accumulating 

spectral distortions over t ime when conlparing utterances. 

The  other type of distortion measure used with filter-bank analyzers is tlle Maha- 

lanobis distortion measure, a particu1a.r case of the weighted squared error measure: 

where W is the inverse of the covariance matrix of the input,  and rt. and - y are coliimn 

spedral  vectors. 

The  cornputation of log spectral features is performed very efficiently by analog 

pre-processors, such as the filter bank, but is very demanding computationally if 

a digital signal processing front-end is used [2]. The  covariance weighted method 

is also demanding computationally, due to  the evaluation of the covariance matrix 

of the input vector. Among the distortion measures presented above, L1 has tlle 

lowest implementation complexity, and was the nlethod of choice for the baseline 

inlplernentation of the rec.ognizer. 

All the distortion measures presented above are designed to compare two static 

spectral representations, usually short-time estimates of the speech signal. These 

distances can be used for sequences of spectra by accumulating their values over 

time, but this procedure does not reflect the dynamic characteristics of the sequence. 

Several metllods of incorporating the spectral dynamic features into the distortion 

measure are discussed in tlle next Chapter. 

VQ Design 

The objective of VQ design is to define a codebook and a partition, or encoding rule, 

that will maximize the VQ performance. The  sufficient conditions of optimality, which 

would generate a closed-for111 solution for tlle optimal quantizer, are not l<nown [12]. 
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The  optimality conditions (which are only necessary conditions) mentioned in Section 

3.1 are a t  the basis of defining iterative inlprovenlents of a given VQ codebooli. The 

Nearest Neighbor condition 3.12 defines a rule for finding the best partition given a 

codebooli C, while the Centroid condition 3.13 defines the optimal codeword --a y . for 

each cell S; in a given partition. 

T h e  iteration begins with a VQ consisting of an  initial codebook C and a training 

set which is clustered into a partition, acc.ording to the Nearest Neighbor condition. 

T h e  next step is finding if there are any empty partition cells, that have no vectors 

assigned after the clustering is finished. The  new centroids of non-empty cells (corn- 

puted according to the centroid condition), together with the codewords assigned as 

centroids to  empty cells (if any), form the improved codebook C'. 

This iterative process is linown as the Lloyd iteration, and is the basis of the 

generalized Lloyd algorithm for VQ design, which is a form of the k-means algorithm. 

The  application of the necessary conditions for optimality a t  each step of the algoritlm 

ensures tliat each iteration reduces or leaves unchanged the average distortion. 

Although this algorithm leads to an improved version of the original codebook, it 

doesn't guarantee the global optimality of the resulting quantizer. However, practical 

implementations of the algorithm have been found t o  be very effective [12]. 

3.3.1 Codebook Initialization 

The  initialization conditions of the iterative algorithm for generating an improved 

codebook assume that a training set of vectors and a codebooli are available as input 

data.  

There are a variety of techniques for generating a codebook tliat have been devel- 

oped in the fields of pattern recognition and vector quantization, such as: 

random selection of the codewords according to  the source distribution; 

pruning the training set unt,il a final set remains as the codebook; 

codebook splitting, 

to  name but a few that were surveyed in [12]. 
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T h e  procedure used for codebook initialization in this implelnentat io~~ is the split- 

ting algorithm or the LRG algorithm, which produces increasingly larger codebool<s, 

until the desired codebook size is reached [Is]. The algorithm is described as follows: 

1. Initialization: start  with a one-vector codebook, which is the centroid of 

the entire training set. 

2. Splitting: a codeword is split in two other codewords, thus increr~lenting 

the size of the codebook: 

y+ = y + '  - (3.18) 

y- = g - E  - (3.19) 

where E is a vector of sn~a l l  euclidean norln compared t o  the other training 

vectors. 

3. Training: iterative improvement of the split codebook using the I<-means 

algorithm. This step does not change the codebook size. 

4. Completion Test: if the size of the codebook has not been reached yet, 

steps 2 and 3 are iterated. 

3.3.2 Codebook Improvement 

The application of the k-means algorithln to a given codebook and co~~s i s t s  of the 

following steps: 

1. Initialization: start  with a codebook, and a large training set. 

2. Nearest Neighbor Search: each of the vectors in the training data  are 

classified into one of the clusters, according to  the lninimum distortion 

measure criterion ( 3.12). 

3. Average Distortion computation: the contribution of each input vec- 

tor to  the distortion measure is the ~ninimunl ~Iistance, determilled during 

step 2, with respect to the codeword selected as the best approxin~ation 

for the input vector. 

4. Centroid Computation: for each non-empty partition, the new code- 

word will be computed according to 3.15 from all the training vectors 
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clustered in it. The codeword assigned to an empty cell can be obtained in 

a number of ways, such as by splitting the centroid of the most populated 

cell or that of the cell with the highest partial distortion. 

5 .  Completion Test: if the change in average distortion falls below sonle 

predetermined threshold, the optimization is complete; otherwise another 

iteration of steps 2 to 4 is performed. 

3.4 Applications to Speech Recognition 

In the design of VQ-based recognition systems, the following factors which influence 

the performa~lc.e must be c,onsidered: 

The level of quantization error in representing the analysis vector. Since there 

is only a finite number of codebook vectors, the process of choosing the "best" 

representation of a given spectral vector is equivalent to quantizing the vec:tor, 

and leads, by definition, to a certain level of distortion. As the size of the code- 

book increases, the size of the quantization error decreases. A compromise rnust 

be reached between how the representation accuracy reflects in the recognition 

performance and the amount of storage available for the codebool<s. 

The codebook storage requirement can become too large for recognition sys tem 

with large vocabularies. Hence a trade-off among quantization error, processing 

for choosing the codebook vector, and storage of codeboolw must be reached. 

The recognition systein irnple~nented for this study has the structure presented 

in Figure i3.2. By cornpari~lg Figure 3.1 to the generic block diagram of a pattern 

recognizer presented in Figure 2.1 it can be seen that the pattern classification struc- 

ture corresponds to the VQ structure. Indeed, suppose there are V utterance classes 

(words, phrases) to be recognized, and a separate codebook is built using as training 

data only utterances corresponding to one class. During quantization, each of the V 

codebooks is used in turn by the VQ to compute an average distortion score, e; for 

i = 1, ..., V, and when V scores are computed, the nlinimunl is selected. The recogni- 

tion decision is the class index corresponding to the mininlum distortion score. The V 

codebooks are analogous to V (sets of) reference patterns (templates) in Figure 2.1. 
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This method of using a VQ in the recognition process is referred to as "pattern 

co~nparison without time alignment", to distinguish it from other procedures that use 

time alignment, and is used for highly non-confusable vocabularies. From the block 

diagram of a VQ-based recognition system, presented in Figure 3.2, it can be seen 

that the decision block can be used not only to find the ~ninimuln distortion score 

candidate, but also to screen out word candidates that are very unlildy to nmtch 

the unl<nown utterance. The VQ can then pass the rest of the candidates to a more 

sophisticated decision block, thus acting as a "pre-processor". 



Chapter 4 

Temporal Information in 

Recognit ion 

The perforrna~ic~~ of VQ-based recognition systems that use the ac~cuinulated spectral 

distortion over the duration of an entire utterance is adequate only if the vocabulary 

of the application is highly 11011-confusable, with non-overlapping pho~ietic content. 

Improvements in recognition accuracy can be obtained by eliminating variations in 

utterance duration and spectral features alignment and by using during quantiza- 

tion discriminability criteria such as the spectral dynamic behavior and the order of 

occurrence of significant features within the spectral profile. 

Utterances representing the same class, or word, have different time durations, a 

fact which can be observed by examining the log energy contours presented in Fig- 

ure 4.1 for two such utterances. Tliis difference in duration can be easily compensated 

by normalizing both utterances to have a fixed length in time. The time normalized 

versions of the two energy profiles are presented in Figure 4.2, which shows that nor- 

malization is not sufficient to produce perfectly aligned patterns: indeed, the temporal 

locations of the vowel peaks are also slightly different. 

Tliis analysis shows that it is desirable to normalize the speaking rate fluctuation 

and to  align the speech patterns before a recognition clecision can be made. The so- 

lution to the problem of time aligning speech patterns is lmown in speech recognition 

as dynamic time warping (DTW), and will be presented in Section 4.1 of this chap- 

ter. DTW increases the recognition performance, but in the same time increases the 

complexity of the recognizer's imple~nentation, due to the co~nputationally intensive.: 
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Non-normalized Spectral Profiles for Word "six" 
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Figure 4.1: Non-normalized Utterances 
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Figure 4.2: Time Normalized Utterances 
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time alignme~lt procedure. 

Less complex VQ-based recognition imple~~lentations, with satisfactory perfor- 

mance for small vocabularies, use the methods l<nown as pat tern recognition witliou t 

time alignment. These recognition systems ~nalte use of the temporal inforlnation dur- 

ing quantization and are presented in Section 4.2. Experimental results have shown 

that dyna~nic features of the speech speckrum contribute significantly to the overall 

recognition [15]. As a result, distortion measures based on the variational spectral 

features have been used to improve the recognition performance. Another factor wl~ich 

i~lfluences the recognition performance is the sequence of occurrence (temporal order) 

of spectral features, especially for vocabularies containing utterances with overlap- 

ping phonetic content, s11c.h as "car" or "racl<". The following VQ based recognition 

methods use temporal informatio~l during quantization: 

0 m a t r i x  VQ, which quantizes an entire block of short-time features; 

trellis VQ, which contains information regarding the relationship between adja- 

cent segments in time; 

0 segmental  VQ, which uses a separate codebool< for each individual segment of 

an utterance. 

A VQ-based recognition method which offers better recognition performance and 

a high reduc.tion in complexity (10-20 times less than DTW) was developed by Pan 

et. al. [7]. In a more formal attempt to characterize the temporal behavior of the 

speech patterns, and to incorporate it in the design of the VQ recognizer, the method 

evaluates the probability density function (PDF) of the time of occurrence for the 

spectral vectors in the codebook and, based on it, creates probability tables which are 

used in conjunction with the spectral codebool<s during quantization. This approach 

is referred to in this thesis as the temporal  probability tables method and is presented 

in more detail in Section 4.2.3. 

Recognizers using segmental VQ and the probability tables method were inlplr- 

merited as a reference for evaluating the perfor~nance of the new spectral-temporal 

quantization methods proposed in this thesis. The comparison results, presented i11 

Chapter 7, show that the new ~netllods offer an ilnprovement in performance, with 

lesser or equal co~nputational and storage requirements, than the existent methods. 
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4.1 Pattern Comparison With Time Alignment 

The essential component of pattern recognition methods with time alignment is the 

normalization and time warping of the patterns in order to eliminate the effects 

of speaking rate variation and pattern length on the recognition accuracy. These 

methods emerged as solutions to the problem of comparing speech utterances which, 

although representing the same vocabulary word (class), can have significantly dif- 

ferent durations and profile dynamics. Normalizatio~l and alignment, perfor~ned in 

the context of preserving the sequential order of the spectral characteristics, generate 

consistent spectral pairs which can then be directly compared in the decision process. 

4.1.1 Time Normalization 

In speech recognition, time normalization of input utterances compensates for the 

negative effects that differences in utterance duration can have on the system's per- 

formance. Normalization is achieved through a transformation, or warping, of the 

original spectral profiles, so that all utterances have a given fixed length in time 

(measured in number of short-time spectral samples). 

To define the time normalizatio~l technique, two speech patterns X and Y, of 

different durations T, and T,, are considered. Assuming that they are represented by 

the spectral sequences (gl ,gz, ..., g ~ ~ )  and (2,. g2, ..., gT9), respectively, where 3; and 

y .  are parameter vectors of the short time acoustic features, the dissimilarity between 
-1 

X and Y can be defined by considering a distance functio~l d of the short-time spectral 

distortions (distortions between short-time spectra) given by: 

dGx, iY) = I Iz& - giy I I ,  (4.1) 

where i, = 1,2,  ..., T, and i, = 1,2, ..., T, denote time indices of X and Y, respectively, 

and i, can be represented as a function of i, in 4.1: 

The simplest solution to the problem of time alignment and nor~nalization is the 

linear time normalization technique. In linear time normalization, the dissin~ilarity 

between X and Y is defined as: 
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Figure 4.3: Linear Time Normalization 

where i, and i, satisfy 

The function r represents a round-off rule which produces an integer result. 

Linear time normalization and alig~mlent is based on the assumption that the 

speaking rate variation is proportional to the duration of the utterance and is in- 

dependent of the sound being spoken. Evaluation of the distortion measure takes 

place along the diagonal straight line of the rectangle in the (i,, i,) plane, as shown 

in Figure 4.3. 

A more general time normalization scheme involves the use of two warping func- 

tions, d,, and d,,, which relate the indices of the two speech patterns, i, and i,, 

respectively, to a common, "normal" time axis k: 

and 

i, = 4,(k), 'dk = 1 ,..., T 

The warping function pair d, = (d,,, 4,) represents the time normalization path in the 

index space. 
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A global pattern dissimilarity measure dd(X, Y) can be defined based on tlie warp- 

ing function 4, as the accumulated distortion over the entire utterance: 

T 
T?L (k) 

k=l 

where: 

d(&(k), d,,(k)) is a short-time spectral distortion defined for xbz(k) and 

m(k) is a non-negative path weighing coefficient and 

Md is a path normalizing factor. 

Figure 4.4 shows an example of the above general time nornialization schenle; the 

solid line in the lower grid, presented Figure 4.4 ( c ) ,  represents the path along which 

d+(X, Y )  is evaluated. The grid points on tlie path are labeled incrementally from 

k = 1 to  k = T, where T is the normalized duration of the two patterns on tlie k 

scale. The indices ix and i,, as functions of the norrnal time scale k, are shown in 

Figure 4.4 (a) and Figure 4.4 (b). The requirement to maintain temporal order in 

tlie spectral representations of X and Y means that the warping functions d,, and d,, 

must be  non no tonically nondecreasing. If the normalization path d, defined above also 

minimizes the overall distortion between tlie two patterns, it can be considered as the 

optimal alignment path. 

4.1.2 Time Alignment 

The problem of finding the "best" alignment between a pair of patterns is equivalent 

to finding the "best" path 4 through a grid mapping the acoustic features of one. 

pattern to  the acoustic features of another pattern. The choice of the path must be 

made such that the overall path dissi~nilarity d can be measured with c,onsistency. 

For patterns representing utterances of the same word, the "best" path minimizes tlie 

distortion d4(X, Y) :  

d(X, Y) = niin dd(X,  Y) (4.8) 
d 

However, since a "correct" time alignment between utterances of different words does 

not exist linguistically, the definition for distortion as a lnini~num over all possible 
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Figure 4.4: Nonlinear Time Normalization to a Co~nrnon Time Index 
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paths can be changed so that  it will reflect the structure of the vocabulary by im- 

proving the discriminability of words differing only on a small, critical portion of 

the spectral profile. For these cases, a discriminative weighing is introduced in the 

colnputation of the distortion measure (equations 4.7 and 4.19). 

The  solution to the t ime alignnlent problem can be found using dyna.nlic: pro- 

gramming techniques, in particular the synclironous sequential decision regarding a 

mini~nilrn path solution tllrougl~ a graph [2]. The algorithm finds the optimal sequence 

in a fixed number, A4, of moves, starting from point A and ending a t  point H in the 

graph presented in Figure 4.4 (c), and the associated minirnu~n distortion d.  

The  optimality principle at  the basis of this algorithln states that ,  at  ex11 step in 

the algoritlim, w h t e v e r  the initial state and decision are, the renlainii~g decisions niust 

be optimal with the respect to the state resulting from the first decision [16]. This 

optimality principle is a t  the basis of a class of computational algorithnls regarding 

minimal paths through graphs. For the esample of finding the best 7n-tll ~ n o v e  in the 

grid from Figure 4.4 (c), with 7n = 1, ..., it is assumed that  the rnininlum path for 

each of tlle N points and their associated distortions after step nL - 1 are known to 

be d7,,-l(A, I) ,  'dl = 1, ..., N. For each point k in the column after the 7n-th move, the 

associated distortion will be, according to t,he optimality principle: 

&,(A, k) = min [d ,,,- 1 (A, I) + d(1, k ) ]  
1 

The  algorithm, as a result of the optimality principle, keeps track of only N 
paths, ending a t  each of the N points, at  the completion of every potential rnove. The 

computa t io~~al  colnplexity of order NA4, low relatively to  the total number of possible 

paths NM-l .  However, in comparison to considering only linear time normalization, 

with no weighing, the storage and computational complexity is increased by a factor 

of M. 

When the dynamic progralnming approach is used to find the time-alignment path 

for comparing a pair of speech patterns, a set of constraints which result from the 

nature of the objects being compared lnust be imposed to restrict tlle domain of the 

search, and thus dec.rease the cornputatiol~al complexity: 

0 endpoint const7.aints When the endpoints of the speech pattern are well defined 

prior to  DTW, the following set of restrictions for the warping functions result: 
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Figure 4.5: Example of Local Continuity Constraints 

Beginning point: 4x = 1 , 4y = 1 (4.10) 

Ending point: 4, = T,, $y = Ty (4.11) 

In cases where the endpoints cannot be reliably determined (utterances in noisy 

environments), the constraints are relaxed to compensate for the possible seg- 

mentation error, with the penalty of increased computational complexity. 

monotonicity co~~straints,  used to maintain the temporal order of the spectral 

sequence in the speech pattern, thus preserving the linguistic significance of the 

pattern. According to  this criteria, any path which is an acceptable solution 

must have non-negative slope: 

local continuity constraints expressed as a set of allowable paths to reach a 

given point. They ensure proper time alignment and reduce the co~nputational 

complexity by restricting the shape of the path and are based on experimental 

results (heuristics). An exa~nple of local continuity constraints is presented in 

Figure 4.5. 

global path constraints, which are a direct result of applying the local continuity 

constraints to exclude certain portions of the plane. The allowable regions can 
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Figure 4.6: Global Continuity Constraints 

be defined using the rnaxi~num and minimum path expansion, Q,,,;,, and Q,,,,,, 
as follows: 

Figure 4.6 illustrates the effects of the global path constraints when the local 

continuity constraints presented in Figure 4.5 are used (with Q,,,, = l/Q,,,;,, = 

2 ). Additional global path constraints exclude any path that involves excessive 

time stretch or conlpression [16]. 

slope ,weighing constraints, used to define the weighing function r n ( k ) ,  which 

controls the contribution of each short time distortion to the overall distortion 
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nleasure. On a global scale, this function can be used to implement an optinla1 

discri~llina~lt analysis for improved recognition accuracy in the case of a confus- 

able vocabulary. On a local scale, it specifies the slope weighing factors for the 

local path constraints presented in Figure 4.5. 111 the latter case the wrigh- 

ing factor is higher for less preferable paths, in order to reflect their increased 

contribution to the distortion measure. 

4.1.3 DTW-Based Pattern Comparison 

The method of pattern comparison with time alignment uses the normalization and 

optimal alignment path  neth hods presented above to process the input pattern. The 

reference patterns used for comparison with unknown patterns are created tllrougll 

template training methods presented below, while recognition is based on the mini- 

mum time warped distortion criteria to the set of reference patterns. 

Template training methods include: 

casual training, 

robust training using unsupervised averaging 

training using the modified k-means algorithm. 

These methods are similar to the vector quantization training procedures presented 

in Chapter 3. The distortion measure used is given by equation 4.19 and the centroid 

computation procedure is a warped version of the clustered average. 

To describe in more detail the robust training training procedure, which requires 

a large number of training vectors (as described in Section 3.2.1), only two training 

patterns X1 and X2 of le~lgths Tl and T2, respectively, are considered: 

and 

x2 = ( ~ 2 1 , ~ 2 2 , : 2 3 ,  ---,?k!T2) 

are used to generate a reference pattern Y of normalized size T, 
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where the vectors 1: and y are short time spectra. - 

The training patterns are compared via a DTW procedure, resulting in a distortion 

sc.ore d(X1, X2) ,  give11 by: 

where 
T m(k) 

(jsr(X,Y) = z d(4:(k), d',(k))- (4.19) 
k = l  Mdf 

is based on a spec.tra1 distortion d and a set of warping functions q5:, 4'2 which map 

tlle indices of XI and X2, respectively, into the norriialized index range [I,  TI; m ( k )  

is the path weighing coefficient and Md is the path nornlalizing factor. 

The elements of tlle reference pattern Y are then computed based 011 tlie optimal 

pat11 4 = (41,432): 
1 

~k = ,(zlm,(k) + ~2&(k)) ,  vk = 1, .-., T (4.20)  
2 

The training methods which use clustering with unsupervised averaging or the 

lnoclified k-means algorithm are completely defined by the type of clistortion measure 

used during clustering and by the cluster center selection criteria. For a cluster 62 of 

L training patterns w = XI, ... XL a dissimilarity or distance matrix D = (&), Vi  = 

1, ..., L, V j  = 1, ..., L is defined based on the dissimilarity measure given in 4.19 where 

dii is calculated as: 
1 

dij = , [d(Xi, Xj) + d(Xj Xi)] - 

With the reference patterns thus defined by the training procedure selected, the recog- 

nition decision is based on tlie mi~lirnurii distortion criteria. 

In addition to the distortion measure defined above, a criteria for selecting the 

cluster center must be defined. There are several possible criteria for defillirlg a 

cluster center: 

as tlle minimax center, defined as the pattern in the cluster whose maxiriiiml 

distance to any other pattern in the cluster is the smallest; 

as the pseudo-average center, wllic.11 is the pattern in the cluster with the largest 

population of neighboring patterns. The subset of neighboring patterns in the 

cluster is defined as those patterns whose distance to tlie pattern analyzed falls 

within a threshold. 
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a as a warped average. For every time index (frame), the new center represents an 

average of all the cluster patterm warped to  the existent cluster center (which 

is either the minimax center or the pseudoaverage center). 

The cluster centers thus defined may not minimize the average i~~tracluster  distance 

and as a result, tlle modified k-means algorithm is not guaranteed to converge in the 

sense of the ~ninimum intrac1uste.r dista11c.e. 

4.2 Pat tern Comparison Without Time Alignment 

Quantization-based recognition systems which incorporate temporal information n~ainly 

in the structure of the quantizers and in the decision process are also known as systems 

without time alignment, to distinguisl~ them from the DTW based systems, which 

perform time nor~nalizatiou independently of the quantization or decision blocks. 

In the VQ design, the following components have been modified to reflect the 

temporal information: 

a the distortion measure used in quantization, as in VQ with spectral variational 

feat uses; 

a the codebook structure, as in segmental VQ and trellis VQ; 

a the clustering procedure, as in the trellis VQ. 

These examples of spectral temporal VQ design are used as a reference for the VQ 

methods described in this thesis. 

4.2.1 Quantization of Spectral Dynamic Features 

The study of modified distortion measures that incorporate spectral dynamic features 

is justified by the connection between perc.eptua1 differentiation of sounds and the 

variations in their spectral profile. 

Spectral transitions play an important role in speech perception. It was demon- 

strated [Is], by using syllables truncated at the initial or final end, that the portion of 

tlle utterance where the spectral variation was locally maximu~n contained the   no st 

important phonetic information in the syllable. This result implies that the dynamic, 
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variational features of the spectrum coutribute significantly to the overall recog~lition 

performance. 

Dynamic features of speech are often represented by a time differential log sprc- 

trum. For example, a first order differential (log) spectrum is defined by: 

8  log S(w , t )  
6 ( t )  = 

at 

where S(w, t )  is the spectral representation of the utterance obtained by performing 

short-time spectral analysis (as discussed in Chapter 2. The corresponding first order 

differential spectral distortion measure is defined as: 

The differential distortion can be combined with the 11011-differential spectral dis- 

tance d to generate the overall distortion D: 

where 71 and y.2 are weighing coefficients. 

It was found experimentally that the distances d and dg are sufficiently uncorre- 

lated to  justify the use of the differential distortion to improve the discriminability of 

a recognition system 1151. 

4.2.2 Vector Quantizers With Memory 

When the utterances are long enough to cause significant overlap in phonetic content 

among different utterance classes, or the sequential (temporal) characteristics of the 

utterance are the only distinguishing factor in recognition, simple, memoryless vector 

quantizers have inadequate recognition performance. As a possible solution, VQs 

with memory, such as matrix VQ and trellis VQ, can be used to capture the temporal 

characteristics of the utterances. 

A matr ix  quantizer is a direct extension of the memoryless VQ which encoctes 

several vectors simultaneously. Matrix quantizers can be designed using the same 

Lloyd algorithm described in Section 3.3.2. If n spectra are encoded at the same 
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time, the codebook C = {y;)gl is then designed to mini~nize 

is a sequence of spectral vectors (and thus a matrix) and 

X t  = arg min dl(Xt,  Y;). 
Y,EC 

The distortion d' is often defined for simplicity by: 

Simultaneous encoding of the s e q u e ~ ~ e  of spectral vectors, as defined by equation 4.28, 

in~plies that the codewords Y; have certain embedded block lnemory constraints. The 

only differences from Lloyd's algorithm are that rn in imu~l~ distortion criteria applies 

to a sequence of spectra and that the centroid computation (a matrix of 7~ vectors) 

involves finding 72 separate centroids for each codeword. 

Another VQ with memory is the trellis VQ in which the interdependence in the 

sequence of input spectra is described by a transition structure represented by a trellis. 

A trellis VQ is a finite state quantizer, specified by a finite state space Q , an initial 

state qo, and three functions: 

an encoder a : A x Q -t N where A denotes the space of spectral observations 

and N is the index set, 

a tratisition, function f : Q x N -+ Q, also l<nown as the next state function, 

and 

a decoder /3 : Q x N -+ A where A is the space of reproduction spectral vectors 

(i.e. codewords). 

During encoding, the input gt E A is assigned to a codeword with index ut E N 

based on the current state qt: 

ut = a(&, (It). (4.29) 
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The state advances according to the tra~lsition function f :  

The decoder ,/3 reconstructs gt by 2,: 

The encoder cr se1ec.t~ ut based on the mini~nunl distortion c,riteria: 

ut = cr(zt, qt) = arg mi11 d(gt ,  P(qt, u ) ) .  
U E N  

The codebook and the next state function are designed to minimize 

which describes the centroid computation procedure in the k-means algorithm. 

The next state function can be defined by eliminating the non-essential transitions 

in a trellis which was generated by a regular rnemoryless VQ. Non-essential transitions 

are defined as those transitions that can be replaced by an alternate tra~lsition with a 

rninimu~n degradation in distortion performance. A detailed description of the trellis 

VQ design and clustering algorithm can be found in [12], [17]. In the case of trellis 

VQ, temporal information is incorporated in the trellis constraints, while in the case 

of matrix VQ, temporal information is incorporated in the block constraints. 

The lack of explicit cllaracterization of the sequential behavior of the utterance 

can also be remedied by treating each utterance class as a concatenation of a rlunlber 

of N, segments, each of which is represented by a VQ codebook; This segment-specific 

VQ approach is l<nown as segmental VQ ['L], [8]. 

For an utterance {t-t)T=l, the simplest way to decompose it into a concatenation 

of N, information subsources is to equally divide the utterance into N, segments. 

This linear scheme is illustrated in Figure 4.7. More sophisticated segmentation 

schemes, based for example on phonetic segmentation, are also possible, and can lead 

to improved performance [9]. 

The training set of utterances corresponding to a given dictionary word are all 

segmerlted using the same schenle and each of the N, codebool<s are trained using the 

corresponding training segments. These codebool<s have an implicit temporal order 
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Utterance 1 

Utterance 2 

Utterance L 

J, J, J, 
Codebook 1 Codebook 2 Codebook 3 

Figure 4.7: Segmental VQ 

because they correspond to different portions of the utterances. The average distortion 

resulting from encoding an unknown utterance with the corresponding succ,essive VQs 

is the discriminant score for the recognition decision. 

Segmental VQ requires the same computatio~ial co~nplexity as the previous utterance- 

based VQ, for the same codebook size. The only complexity increase is in the coctebook 

storage. The preserved seque~ltial relationship of the utterance segments provides an 

increase in performance in comparison with a VQ without segmentation. 

Let V be the number of words in the recognition vocabulary. This implies that 

V multiple segments codeboolts Ck with k = 1, ..., V are used, each comprising of a 

sequence of segment codebooks C k j ,  with j = 1, ..., N,. Each segment codebook Ckj 

is designed using n spectral samples (frames) from the normalized input utterance 

profile, from the [(j - 1)n + 11-th to the jn-th sample. The ratio rL is called the 

compression factor and is rounded off to tlie integer nearest to TIN,  . 

The average distortion resulting from coding the utterance with tlie codebook Cx, 
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is 

where 

and C k j ( l )  is tlle codeword resul 

codebook Ckj .  The utterance is 

vocabulary, where: 

ting from encoding the sample g, with tlie segment 

then classified as tlie r- th word in the rec:ognition 

4.2.3 The Temporal Probability Tables Method 

An alternative procedure for incorporating temporal information in the struc,ture of 

a word-based VQ recognizer without time alignment, the t e m p o r a l  probabil i ty tnblcs  

method co~nputes the PDF of the codebool< vectors' time of occurrence and uses a 

combined spectral and temporal distortion measure. 

In this method, for each codebook vector, the PDF of the time of occurrence (on 

a normalized time scale), esti~nated from the same set of training sequences used 

to derive the codebook vectors, represents the probabi l i ty  table  associated with the 

particular class. The collection of probability tables thus created form a temporal 

codebook. During recognition, for each frame of the unlmown input utterance, a 

spectral distance is computed with respect to the spectral codebooks. The spectral 

distance is then combined with the temporal probability corresponding to the chosen 

spectral codebook vector, of minimu~n spectral distortion, to form the total distortion 

score. 

In the word-based VQ speech recognizer, there is one vector quantizer and one 

separate codebook for each vocabulary word. Each codebook C consists of a set of T L  

spectral vectors y .: 
-1 

and can be generated using any of tlle codebook training procedures described in 

Chapter 3. The input to the recognizer used in the probability tables method requires 

a nor~nalization procedure of the input spectral profiles to a fixed length of I frames. 
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Figure 4.8: Distortion Measure Computation for the Probability Tables Method 

Each vector in the vocabulary is also characterized by a temporal probability table 

P with elements defined as: 

P (k ,  t )  = the probability that codeword y occurs at the normalized time t = ill. 
- k. 

(4.38) 

These probabilities are defined during the training procedure of the spectral code- 

boolq by recording the number of occurrences of codeword k at time t ,  Vt = 1, ..., I. 
For each input training vector, all codebook vectors whose distortion is within a fixed 

threshold, 6, of the rninilnuln distortion score for the input vector, are considered to 

have occurred. The value used for P ( k ,  t )  is the ratio between the number of times 
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codebook vector k ocmrred a t  time t ,  and the number of times any codebook vec- 

tor occurred at time t ,  over the entire training set for the word. This definition is 

consistent with the probability definition, because: 

L 

The telnporal probability tables are defined as: 

-r log P(k ,  t ) ,  if P (k ,  t )  > a 
P ( k ,  t )  = 

-7 log a, if P (k ,  t )  5 a 

The multiplier, r, was chosen so that, averaged over the entire training set, the average 

value of ~ ( k ,  t )  was the same as the average spectral distortion. The clipping level a = 

ensures that the probability tables are consistently defined for null probability 

scores. 

The spectral codebook C and the probability table P for a word in the vocabulary 

are used to compute a combined spectral-temporal distortion between the input vector 

2; and the codebook C: - 

where ds is the spectral distortion and dT is the temporal probability distortion. The 

scaling value a deternli~les the mix of spectral and temporal distortions. A value of 

cr = 0 represents pure spectral distortion, while a value of a = 1 represents pure 

temporal distortion. 

The spectral distance has the form: 

and the value of the index k for which this minimum is reached represents the value 

k; used in equation 4.41. The temporal distance corresponding to k; has the form: 

The average total distortion is computed using equation 4.41 over all the I input 

utterance frames. The word corresponding to the codebook with the lowest average 

distortion is the word selected as the recognition result. 
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T h e  distortion computation procedure is illustrated in the block diagram of Fig- 

ure 4.8, for a recognizer with a vocabulary of size V. Each input vector representing 

the nor~nalized spec.tra1 profile an isolated utterance is quantized with respect to each 

of the spectral codeboolcs, resulting in a spectral distortion score ds.  The code\vord 

index chosen in codeboolc V for frame i is denoted by kv,;, and is the index of the 

temporal distortion score, d T ,  in the corresponding probability table. The spectral 
v and temporal distortion scores for word V are denoted by dTV and ds  , respectively, 

while dV represents the average combined distortion score used in the recognition 

decision. 



Chapter 5 

Spectral-Temporal VQ 

Two alternative rnetliods of incorporating tlie time information in the structure of a 

VQ-based recognition system are proposed and investigated: VQ uiith Time Compo- 

nents, which uses spectral-temporal codeboolts, and VQ with Overlapped S'egnzentd 

Codebooks, which uses ~ilultiple spectral codeboolts for each input utterance. In both 

cases, tlie time information is incorporated in the VQ design directly into the cocle- 

book. The proposed approaches are compared respectively with the approach based 

on probability tables, presented in Section 4.2.3, and with the segmerltal VQ ap- 

proac,ll, presented in Section 4.2.2. The results of this comparison are presented in 

Chapter 7. 

In tlie first approach, VQ with Time Components, each word is represented by 

a codebook having codevectors with spectral co~nponents and temporal components, 

or time components. The codebook is searched using a weighted Euclidean distance 

applied to the log-spectral components arid to the time components. Both cornpo- 

nents are obtained through a joint spectral-ternporal training procedure. The time 

co~nponents approach obtained better recognition results than the probability tables 

approach, although the fornler uses significa~itly less memory than the latter. 

In the second approach, VQ with Overlapped Segmented Codeboolts, the time 

information is built implicitly into the codebook by training each c,odeboolt with 

input vectors corresponding to an utterance segnient defined to start and end at a 

given normalized time. Each linearly time-normalized section of the input utterance is 

represented by a set of codevectors which for a so-called sub-codebook and adjacent su11- 

codeboolts are overlapped to a variable degree. This teclmique is a generalization of 



CHAPTER 5. SPECTRAL-TEMPORAL VQ 6 0 

the segn~ental VQ approach, and increases recognition perforn~ance without increasing 

significantly the system's memory requirements. 

5.1 Quantization of Spectral Patterns with Time 

Components 

The design of a quantizer for spectral patterns with temporal components consists of 

defining the spectral-temporal codebook training procedure and the distortion mea- 

sure used in clustering the spectral-temporal input vectors. The training of a hybrid 

codebook requires a joint spectral-temporal optimization procedure, while clustering 

using a hybrid codebook requires the defi~lition of a conlbined spectral-temporal dis- 

tance measure, used to conlpute the accumulated average distortion for tlle entire 

input utterance. 

Each spectral input vector, combined with the normalized time of occurrence in 

the spectral profile of the utterance, fornls the input vector to the spectral-temporal 

quantization process. The codewords used during quantization consist also of a spec- 

tral part and of a temporal pa,rt. The temporal part of a codeword is defined as 

the most probable tirne(s) of arrival for the associated spectral codeword. Unlike the 

input vector considered in this method, which has only one temporal component, tlle 

temporal part of the codebook may have more than one time component. As a re- 

sult, this approach to spectral-temporal quantization is referred to as VQ with Time 

Compo~~ents. 

5.1.1 VQ with Time Components 

In VQ with Time Components, temporal infornlation is added to the quantization of 

short-time spectral features in two ways: 

by explicitly quantizing the ~lorlnalized time of occurre~~ce (time component) of 

each spectral vec.tor 

by using a conlbined distortion measure which reflects the contribution of both 

spectral and temporal components of the input, to the recognition result. 
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For a consistent definitio~i of the time components, all input utterances are linearly 

time normalized to a fixed length L. Assuming that a time-normalized utterance can 

be represented a.s a sequence of short-time, Q-dimensional, log spectral vectors 

(where i is the normalized time index or time of occurrence), then a spectral-ternl.)ol.al 

represe~itatio~i of the input is: 

x. = (2,;). --a (5.2) 

An example of spectral-temporal representation of an utterance, time normalized to 

length L = 40, is presented in Figure 5.1. A spectral-temporal vector 3; consists of 

16 spectral components, one for each filter band, plus the time index i, represented 

on the abscissa by an ' L ~ " .  For each time index, the vertical 17-component collectio~~ 

of points is a graphical representation of the spectral-temporal feature vector used in 

recognition. 

Considering for the beginning the case of one time component per codeword, in 

the size N codebook, the codevectors are of the form: 

where t k  is the time component (real number in the range [I,  L ] )  and k is the codeword 

index. 

The tra,ining of the codebook is done in two steps: 

1. the spectral components yk are trained independe~itly of the time compo- 

nent using the Euc,lidean distortion measure: 

2. the time compone~it is trained ~ l ~ s t e r i n g  based on the spectral components 

only, and represents the average time of arrival for all the spectral-temporal 

input vectors beloiiging to  the same spectral cluster. Multiple time com- 

ponents describe the distribution of the time of arrival for vectors in the 

same cluster. 
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Figure 5.1: Spectral-Temporal Representation of the Time-Normalized Utterance 
"one" 
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This definition of the time component, as an approximation of the time of occur- 

rence PDF, is consistent with the time index histograms for each spectral codeword, 

which have one or more distinctive peaks corresponding to the time component(s) 

associated with the spectral codeword. Examples of such histograms are presented in 

Figure 5.2, for codewords 13, 14, 15 and 16 in codebook 1. The histogra~n function 

is denoted by H ( k ,  i ) ,  and represents the tlumber of selections of codeword k ,  yk, at 

time index i ,  Vi = 1, ..., L. 
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Figure 5.2: Time Index Histograms 

# Frames 

When the spectral- temporal codevector has one time component, the value of this 

compo~lent is given by the average value of the histogram H :  

as can be seen in Figure 5.3 (a), where the approximation of the one peak is rep- 

resented by the central vertical line in the graph labeled "1 TC". Equation 5.5 is 

equivalent to the centroid computation procedure given by equation 3.15. 

For the case of m time components, histogram averaging is performed by exanlining 

intervals around the m highest histogram peaks. The time index interval, [t,,,, t',,,] , 
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surrounding each peak, is defined in respect with a count threshold T ,  defined as a. 

percentage of the maxi~liuln histogra~n value. Tlle value of the threshold is select,ed 

experimentally to maxi~nize the perfornmnce of the recognition system. Tlle T ~ L - t h  

time component, corresponding to ex11 interval [t,,, , t'l,,], is given by: 

This case is shown in Figure 5.3, where the values of the two time co~npo~ients  are 

represented by the abscissa of lines P1 and P2, respectively, for a threshold T = 30% 

of the rnaxi~nurn histogram value. 

The  average spectral and temporal variances, a,,, is computed for each spectral 

cluster k, during the temporal training process, as follows: 

where I I . I I is defined for a Q-dimensional spectral vector as: 

For the case of one time component, the average temporal variance, a t k ,  is defined as: 

Above, Hk represents the total number of selections of codeword k: 

L 

Hk = x H(k ,  i ) .  
i= l  

Similarly, for the case of multiple time components: 

with 

corresponding to  

t ime components 

the nr-th interval above the threshold T .  If the number of desired 

is less than the number of intervals with histogram values above 7 ,  
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Figure 5.3: Multiple Time Components 

the components tYnk of the intervals with the highest number of selections H,,,,, a.re 

chosen as the temporal part of the codeword. If less intervals than the desired number 

of time co~nyonents are found, the remaining time components are initialized to 0. 

The distortion measure used during the iuantization of an unl<nown input pattern 

xi in searching the codebook - 

is given by 
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where g , k 2  and alk%re the spectral and temporal variances estimated in the training 

process for cluster k .  For the case of multiple time components, the distortion iiieasure 

used in searching is based 011 the time component which is "closest" to the normalized 

time of occurrence of the input vector. 

The  block diagram of the training procedure for a size N codebook is presented 

in Figure 5.4, which summarizes the algorithm described above. 

Time Normalized Spectral 

Figure 5.4: Training Procedure for a Codebook with Time Components 

5.1.2 Recognition System with Time Components 

Utterance x 

For a recognition system based on VQ with tirne components with a size V vocabulary, 

one spectral-temporal codebook resulting from the training procedure described above 

is used for each word. The  block d iagra~n of the system, presented in Figure 5.5 is 

similar to  the diagram of the recognizer based on probability tables, Figure 4.8 of 

tlie previous chapter. The  distortion measure c.oinputation differs between the two 

methods, as well as tlie size of the temporal codeboola used. 

The  temporal part of the codebook used in the VQ with time cornpo~lents is equiv- 

alent to  a compact representation of (partial) temporal P D F  information integrated 

within the codebook. Given the relatively small riurnber of temporal parameters used 

- a time c.o~nponent requires only 2 parameters (one t ime component and the  spec- 

tral to temporal variance ratio), while the P D F  representation in the case of using 

probability tables requires L parameters per codevector, a performance degradation 

is expected with respect to  the probability tables approach (L represents the length 

Spectral Codebook ' Components lk ' k=l:N 
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Figure 5.5: Recognition System with Time Components 

of the linearly time normalized utterance). The experimental results show instead 

a performance improvement, which can be explained by the different nature of the 

distortion measure used in the two cases. 

0 

Decision 

Block 

Spectral- 
Temporal 
VQ 

, 

5.2 Overlapped Segmented Codebooks 

dl > 

The representation of the utterance as a sequence of segments is used during the 

seg~nentation and labeling phase of recognition systems based on acoustic;-pboneti(: 

methods, as well as in VQ-based systems, such as the segmental VQ presented in 

Chapter 4. The results of the former methods show the influence of precise plionenle 

delimitation on the overall recognition performance, while the results of the latter 
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suggest that temporal information can be added to spectral VQ by using separate 

codebooks for each utterance segment. 

However, the segmental approach did not address the fluctuations that ca.n be 

introduced by tlle nornlalization procedure required. I11 this approach, linear time 

normalization results in an imperfect temporal match, and as a consequence, a given 

spectral shape may appea.r at a range of normalized times in different repetitions 

of the same utterance. The fixed lengbll segments corresponding to phonemes niay 

have similar spectral shapes displaced in reference to one another and thus may be 

overlapping. 

The overlapped codebooks method was developed t o  account for the effects of 

normalization and fixed length segrnentatio~l arid the results show that tlle rnetliod 

improves indeed tlle recogllition perfornlance at a similar or slightly larger memory 

requirement than recognition systems based on segmental VQ. 

5.2.1 Training Overlapped Segmented Codebooks 

The training procedure for overlapped codebooks is based on the k-mea~ls algorithnl 

for each of tlle segments defined. The method uses codebooks of different sizes to 

represent the overlapping and non-overlapping segments, with different training do- 

mains in the nornialized input utterance. The overlapped codeboolts method is a 

generalization of the segmental method and includes it  as the special case when the 

overlap between the codebool<s is zero. 

The definition of the mapping between the utterance space and the codebool< 

space used for training in segmental VQ is presented in Figure 4.7, where the train- 

ing utterance is linearly time normalized and then segmented in a fixed ~nmlber of 

segments N,, each represented in codebook space by a sub-codebook with N vectors. 

The generalization to the overlapping codebook method is presented in Figure 5.6 

below, where p represents tlle size of the sub-codebook segment overlapping over an 

adjacent sub-codebook and N, = 4: 

0 (a) only one spectral codebook overlapped with y = N .  This case represents tlle 

original spectral VQ presented in Chapter 3,  Figure 3.2, in which case no time 

information is incorporated in the VQ structure. All the vectors in the input 

utterance are used to train the one resulting codebook; 
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(b) 50% Overlap (p = 0.5N) 
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Figure 5.6: Overlapped Codebook Training 
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(b) segmental sub-codebooks overlapped with p = 0.5N. The first segment 

of the utterance trains the first sub-codebook and together with the sec-ontl 

segment trains the second sub-codebook. The sub-codebooks situated at tlie 

extremities of the utterance are trained by one utterance segrne~lt only, while 

all the other are each trained by two adjacent utterance segments; 

(c) segmental sub-codebooks overlapped with p < 0.5N on each side. Each 

input utterance segment contributes to overlap sub-codebooks, situated at the 

boundaries with segment-specific codebook. 

(d) segmental VQ, overlap factor p = 0. Each sub-codebook corresponds ex(-111- 

sively to one input utterance segment. 

The length of the sub-c.odebool<s in Figure 5.6 is proportional with the number of 

codevectors in each sub-codebook. 

Consistent i~nprove~nents in recognition over segmental VQ, (d), and over the 

baseline system (a) are obtained for all cases when the segmental codebooks do not 

overlap more than 50% (cases (b) and (c)). The overall size Nos of the codebook 

varies with the overlap factor p: 

where Ns is the total number of equal size partitions in the input utterance space and 

N is the size of the partition in codebook space. 

The codebook training procedure is based on the fact that a codevector yk is 

accessed during the search by input vectors with the normalized time indices in the 

range ik,7ni7L 5 i 5 ik,l,Laz, and hence should be trained only by these input vectors. 

The interval limits for training can be determined easily based on the interval limits 

used for search. For example, in Figure 5.6 (c), sub-codebooks 1 ,  3, 5, 7 are trained 

respectively by segments 1 to 4 of the input utterance, while codebooks 2, 4, 6 are 

trained cadi by two adjac,ent input segments: (1, 2), (2, 3) and (3 ,  4), respectively. 

5.2.2 VQ with Overlapped Segmented Codebooks 

The temporal information is built iinplicitly into codebooks by defining a search 

pace for each input vector gi consisting of codevectors gk with indices in the interval 
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ki,l~LilL 5 k 5 k;,,,,,,. These codevectors form a sub-codebook and the sub-codeboolts 

for different neighboring indices are overlapped. 

During the clustering procedure, each input spectral vector is quantized using the 

image in the codeboolt space of the normalized index attached to the spectral vec- 

tor. To determine the index range [k;,,,,;,,, k;,,,,,], the mirror image of Figure 5.6 (b) 

is created in Figure 5.7, where the projection direction indicates the sub-codeboolts 

used in quantizing spectral vectors wit11 time indices in a given normalized segment. 

For example, a spectral index with nor~nalized time index in the interval correspond- 

ing to utterance segment 2 will be quantized using sub-codeboolts 2, 3 and 4. The 

minimum distortion codevector in the sub-codeboolts selected contributes to the dis- 

tortion score of the entire utterance. For simplicity, the boundaries in the codeboolt 

space corresponding to the other utterance segments are not represented. Instead, 

the sub-codebook indices used during quantization are indicated in parentheses above 

each input utterance segment. 

Sub-Codebooks 

1 6 7 

Input 
Utterance 
Se-ment 1 2 3 4 

Figure 5.7: VQ with Overlapped Codeboolts 

A recognition system based on a VQ with overlapped segmented codebooks has 

the same structure as presented in Section 4.2.2, Figure 4.7. The c o ~ ~ ~ p u t a t i o r ~ a l  

requireinents are increased only by the computation of the sub-codeboolt index range, 

while the storage requirements are defined by the overall codebook size No,. 



Chapter 6 

Recognition System Overview 

The joint spectral-temporal VQ methods presented in the previous chapter were de- 

signed to improve the performance of a baseline recognizer based only on spectral 

VQ. The objective was to design a recognizer that can be successfully used in a hard- 

ware implementation for co~mnercial applications, such as a voice controlled cornrnand 

syste~ns for automobiles, or remote control for consumer electronics products (TV, 

VCR). Requirements imposed by the specific hardware implementation intended for 

the recognizer and cost-performance criteria are the premises for the solution pre- 

sented below, and are presented in Section 6.1. 

Figure 6.1 presents on overview of the recognition system implemented and used 

to evaluate the performance of the spectral-temporal VQ rnethods described in the 

previous Chapter. The Pre-Processing block, Figure 6.1 (a), performs signal level 

control on the analog speech signal collected from a microphone, to cover the avail- 

able dynamic range of the sa~npliug device which records the speech in digital for~n 

on permanent storage media. An isolated utterance recording is segmented by the 

Endpoint Detection block, Figure 6.1 (b), wllich extracts the relevant speech segment 

from the background noise, by examining the wide band energy profile estimated, as 

described in Section 6.2. 

The spectral profile of the speech segment, which is a collectior~ of energy esti- 

mates in 16 adjacent frequency bands, is generated by the Feature Extraction block, 

Figure 6.1 (c), based on a filter-bank analyzer for feature measurement, and described 

in Section 6.3. A more detailed structure of Energy Estimation block is sllown in Fig- 

ure 6.2, which indicates that rectification of each band pass filtered signal, followrcl by 
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Figure 6.2: Spectral Energy Estimation 

Band Pass 
Filter Energy 
Output Estimate 

low pass filtering, is performed in order to remove the high frequency cornporients in- 

troduced by the non-linearity. The magnitude of each energy profile is log-cornpressed 

and normalized. The spectral profiles are then time normalized, using re-sampling, 

to a fixed duration. During time normalization, temporal information can be added 

to the feature vectors. 

The resulting profile of features are used by the VQ-Based Decision block eitlier 

in training, to generate the reference patterns (utterance specific codeboolis), or in 

testing, to determine the recognition result (Figure 6.1 (d) ). The VQ-based nletl~ods 

presented in the previous Chapter are used to i~nplement this block, while the parun- 

eters of the other blocks are maintained constant, to provide a consistent testing and 

evaluation environment. 

f (n) 
) 

6.1 Design Requirements 

I11 addition to the functional requirements, prvsented in Chapter 2 for a generic- re(.- 

ognizer that can be used in command-and-co~~trol systems, the recognition systeln 

presented in this thesis has a number of teclmological requirements imposed by the 

structure and functionality of the low-cost analog VLSI hardware implementation 

intended for the system. The analog nature of the signal processing implen~enta- 

tion has the advantage of a fast response time for the recognizer, but restricts the 

available range, complexity and precision of the operations that can be performed 

on the signal. The cost effectiveness criteria imposes a ~ni~~ir l lurn  area recluirement 

on the VLSI impleme~~tation, which translates into filter bank design compromises, 

Full-Wave 

Rectifier (FWR) 
1 (n) r(n) ' Low Pass 

Filter (LPF) 
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due to the fact that the chip area is directly proportional to the  lumber of filters 

implemented. The design solutions were achieved as a trade-off between the overall 

recognition perfor~nance and the development and production cost requirenlents. 

Design specifications for the implementation of each of the functional blocks pre- 

sented in Figure 7.1 can be surn~narized as follows: 

for the Pre-Processing block: 

- input is provided through a low-cost micropllone followed by an amplifi- 

cation and automatic gain control (AGC) block from an off-the-shelf chip, 

ED-2560, 

- at the output the wide-band filter (WBF), the desired frequency range for 

the signal is [I00 Hz, 8 kHz]; 

for the Sampling block: 

- 16 kHz sampling frequency, 

- 2 seconds of digitized speech samples maxi~num storage capacity, 

- 16 bit/sample digital representation; 

due to restrictions on the on-chip nonvolatile memory, the Endpoint Detection 

algorithm has access only to the current speech frame, and cannot use past 

sarnples to determine the boundaries of the utterance; 

for the Feature Extraction block: 

- the design of the filter bank must take into account that the hardware 

implementation will consist of a single band pass Switched Capacitor Filter 

(SCF), which can be tuned at different center frequencies and bandwidths 

by changing its clock frequency, 

- the logaritlmlic compression is approximated by a transfer function imple- 

mented also in SCF technology, and introduces a DC bias, 

- at  each step in the algorithm that requires storage of an intermediate result, 

the quantization effect (equivalent to a %bit linear quantization) of the 

analog memory used must be simulated in the design of the codebooks, 
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- tlle non-volatile memory used for intermediate storage supports only a 

limited number of WRITE accesses, which determine the usage time of the 

chip. As a result, the number of storage steps to the same intermediate 

storage area must be minimized; 

for the VQ-Based Decision b lo~k :  

- the size of tlle codeboolt space is limited by the size of the analog storage 

array, and must be lower than 2001t cells, 

- for the speaker independent recognizer, the codebooks used by the VQ are 

produced by the simulation software and stored during the manufacturing 

process of the chip; 

- no training logic is provided in the VLSI irnplemerltatio~l of the recognizer. 

To minimize the development time and the implementation cost, the simplest so- 

lution was chosen for the VLSI ilnplementation of each given block, althoi~gh alterna- 

tive solutiorls were investigated for comparison and future performance enhatlcements. 

Also, the chip does not contain a micro-controller, and as a result the logic must be 

kept very simple for all the functional bloclts described above. The VQ-based decision 

block and the design of spectral-temporal VQ algorithms presented in Chapter 5 were 

chosen to satisfy the simplicity criteria imposed by the hardware implementation. 

With the above requirenlents, the hardware bloclt diagram of the recognizer chip 

can be represented as in Figure 6.3. The amplified (AGC) and wide band filtered 

(WBF) input speech utterance is stored in the Noi~volatile A4emory under the c-.ontrol 

of the Ei~dpoint Detector Logic. The uttera.nce boundaries determined during Seg- 

mentatioit are also used to determine the down sampling frequency necessary for the 

control of the Time Normalization block, wllich is i~nplemented as a tunable down 

sampler. 

During Feature Extraction, the segmented utterance stored in the 11011-volatile 

memory is passed through the SCF 16 times. The spectral-temporal profile resulting 

at the output of the Time Normalization block is stored in the VQ Memoly. The 

VQ codebooks, pre-computed and stored in the Codebook A4enzory, are then used to 

compute the distortion measures with respect to each word. Finally, the mininl~ml 
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Figure 6.3: Hardware Block Diagram of the Recognizer 

distortion score is selected by the Decision Logic block, to represent the recognition 

result . 

6.2 Endpoint Detection 

A recognition system developed for isolated words must determine the begiming and 

end of the utterance of interest, with higher energy profile than the background noise 

energy (silence). The database recordings used for tests consist each of an isolated 

word, prec.eded and followed by silence or other background noise. The  process of 

separating the speech segments of an utterance from the background is called endpoint 

detection, or segmentation. 

Accurate detection of the endpoiuts of a spoken word is important because it 

is directly related to the recognition performance of the system [18]. Probleins in 

endpoint detection arise frorn transient noise (often the beginning or end of an isolated 

word is accompanied, and thus concealed, by mouth noises such as clicks, pops, lip 
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smacl<ings and heavy breathing) and nonstationary backgrounds where t l~e re  may 

be concurrent conversations and noises due to rnovernents of chairs, door slams, rtc. 

A noise cancellation microphone may be used to eliminate the unwanted effects of 

a no~~sta t ionary  background, and could be added as a further improvement to the 

recognition system; however, the version of tlle eva lua t io~~  setup used for the results 

presented below did not include a noise cancellation system. Segmentation nlethods 

can be classified, according to the lllanner in which the endpoints are specified during 

the recog~iition algorithm, as [18]: 

explicit segmentation, performed prior to  and independently of the recognition 

and decision stages of the recognizer. 

0 implicit detection, when the endpoints are determined only during recogni ti011 

and available only after tlle decision stage is completed. In this case there is no 

separate processing stage for endpoint detection. 

hybrid method, which incorporates ideas from both the explicit and inlplicit 

methods. 

<t 11re Although the hybrid technique produces the best results, due to  the real-time 11, t 

of the endpoint detection algorithm and the hardware requirements of Section 6.1, 

an explicit segmentation method was c,hosen for this implementation. The  algoritlm 

proposed is a simpler version of the explicit endpoint detection algoritlml proposed 

in [18]. 

Endpoint segmentation is performed on the energy profile of the signal segment 

a t  the output of the WBF. The  Wide Band Filter has the frequency characteristic 

shown in Figure 6.4 and has a 150 Hz to 7200 Hz passband (3 dB ripple) with :30 d B  

attenuation a t  60 Hz and 7800 Hz, respectively. The  filter coefficients are provided 

in Section A.1. The  band limited signal is passed through a rectifier, a low pass 

filter (LPF) and then down sampled to generate an estimate of the signal's energy, as 

presented in Figure 6.2, discussed in Section 6.3.2. 

The  segmentation algoritllrn investigated for this design uses heuristically defined 

energy tllresl~olds to separate the relevant speech segment from silence. The  proce- 

dure for defining the thresholds is descxibed in [lt3], and c.onsists of interactive user 
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segmentation, to n~easure the distribution of energy thresholds. The  endpoint detec- 

tion algorithm in its general form refers to the signal segme~lt profile presented in 

Figure 6.5 and consists of the following steps: 

Step 1. Finds the index jo of the first frame with energy above a given energy 

threshold, k2!  referred to  as minimum pulse energy threshold, and represents tlie 

I ~ ~ I I ~ I I ~ U I ~  energy which indicates the presence of a speec.11-like burst of energy 

in the segnlent. 

Step 2. Backs up  ro = 200 ms, where ro is referred to as the back-up tiinc. 

Back-up is necessary because otherwise the real start of the utterance, at  a 

lower energy level on the rising slope of the profile, may be ignored. 

Step 3. Advancing towards the end of the utterance, finds the index jl of the 

first frame wit11 energy above the utterance s tar t  threshold kl, with kl < k 2 .  

This step results from the observation that frames within TO of the 1nini111im 

pulse energy threshold and having energy a t  least equal t o  kl belong also to 

the utterance and could be ignored if the search stops a t  Step 1. The  index jl 

represents the start  of an energy pulse wl~ich could be a word. 

Step 4. Finds the index j2 of the first frame with energy below tlie utterance 

end threshold k3. 

Step 5. (optional) C:l~ecl<s if j2 represents the end of the utterance, by co~nparirig 

the utterance length, j2 - jl, with the minimum pulse duration, denoted by TI. 

If j2 - jl > 71 tlie11 the start  index is jl and the end index is jz, otherwise 

restarts the search from index j2 + 1. 

Step 6. (optional) Checks for the presence of consecutive energy pulses in the 

utterance, by searc.hing for a frame with energy above the utterance st art thresh- 

old k2, a t  a distance equal a t  most with the maximum inter-pulse pause r2. If 

such a frame is found, then Step 4. is performed, otherwise tlie end of the 

utterance is give11 by j2 .  

The  following versions of the above algorithm were tested using the studio datahase 

and the mixed database: 
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Figure 6.5: Energy Thresholds and Time Intervals Used in the Endpoint Detection 
Algorithm 
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Table 6.1 : Recognition Results for Endpoint Algorithm Comparison 

' Segmentation Version Database 
V1 
V2 
V3 

a Version 1 (Vl):  TJses only one energy threshold for both start and end, and has 

no back-up time. Does not check the minimum pulse duration or the ~nax i~nurn  

inter-pulse pause (steps 5 and 6). 

k1 = k ,  = k 3  T O = O  7-1, 7-2 not used. (6.1) 

Studio Database 
98.4 % 
98.08 % 
98.24 % 

a Version 2 (V2): Uses only one energy threshold for both start and end, and has 

fixed back-up time of 200 111s. Does not check the minimum pulse duration or 

the ~ n a x i m u ~ n  inter-pulse pause (steps 5 and 6). 

Mixed Database 
85.87 % 
86.05 % 
89.4 % 

kl = k2 = k3 7-0 = 2007725 7-1, T.. not used. (6.2) 

a Version 3: Implen~ents the generalized algoritlml described above. Uses different 

energy thresholds for both start and end and has fixed back-up time of 200 

ms. Checks the maxi~num inter-pulse pause (step 6), but does not c;hecl< the 

minimum pulse duration (step 5). 

kl < k2 # k3 7-0 = 2007n.s 7-1 not used, 7-2 = 100ms. (6.3) 

The recognition accuracy results for comparing the three versions of the segmen- 

tation algoritllm are presented in Table 6.1. The feature extraction algorith~n and 

the VQ training procedure are the same for all tests. Both the training and the 

test utterances are segmented using the same algorithm version; the codebooks are 

re-trained for each experiment. Only studio database utterances were used for code- 

book training. The recognition method used was based on spectral VQ only (no time 

information was used during quantization). 

For the mixed database, the generalized algorithm V3 has a significant performance 

advantage in comparison with both V1 and V2. The back-up procedure could not 
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be implemented in hardware, due to  restrictions imposed by the limited number of 

WRITE accesses to the nonvolatile memory, where the input utterance is stored. As 

a result, the first version of the segmentation algorithm, V1 with kl = 25&3, was 

used in the recognizer's simulation. 
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Spectral Feature Extraction 

The Feature Extraction block for the simulation of the rec,og~lizer is based on a bauk of 

bandpass filters, as introduced in Section 2.3, and is presented in detail in Figure 6.6. 

The  block consists of a bank of Q = 16 band pass filters BPF, followed by the Energy 

Estimation block, which evaluates the filtered signal energy in the corresponding band 

and the Time Normalization block, which generates the fixed size sequence of spectral, 

or spectral-temporal, vectors used in quantization. A detailed description of the 

Energy Estimation block is given in Figure 6.2. 

I11 Figure 6.6, the input signal vector s(n),'dn = 1, ..., N ,  represents of the seg- 

Magnitude 
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mented utterance produced by the Endpoint Detection block. For each band i = 

L(n) Magnitude -c X ("1 ~i~~ ( Y  (mh m) 

1, ..., Q and each frame TL = 1, ..., N,, an energy estimate z;(iz) is produced. As a 
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result, the bank of Q filters output for frame TL is a Q - dimensional vector ~ ( n )  = 

( z l (n ) ,  ..., zQ(7L)), v7~ = 1, ..., i\. Each spectral veckor ~ ( n )  is the11 norli~alized in 

magnitude to ~ ( T L )  and the11 the signal's dyrmnic range is conlpressed using a log 

transformation, to produce the cornpressed normalized version - z,(n), wliich repre- 

sents the input to the Time Normalization block. Tlie time nor~nalized version of 

x,(rt) is denoted by y(7n). - - 
I11 addition to perforriling a re-sampling of the energy profile in each band, from 

variable length N, to the nor~iialized utterance length M (M = 40 used in this 

simulation), the Time Normalization block also computes the time compo~ient, t ( m ) ,  

associated with each Q-dimensional spectral vector - y(m) = (yl(m), ..., yQ(m)) as : 

The frequency characteristic of tlie bank-of-filters pre-processor consists of adja- 

cent bands and is illustrated in Figure 6.7. 

6.3.1 Filter Design 

In designing the bank of filters, tlie first consideration was the type of filters used. 

The analog impler-nentatiou using tunable switched capacitor filters (SCF) was chosen 

due to its cost efficiency. The digital filters used in the simulation of the recognizers 

are FIR filters with a frequency response close to the corresponding analog filters. 

Tlie number of bandpass filters ca~mot  be smaller than 8 or else the ability of 

the filter bank to resolve the speech spectrum is greatly impaired [2]. If more than 

32 filters are used, the filter bandwidths would be too narrow for some talkers and 

there would be very likely that certain bands would have extremely low speech energy, 

and could not be adequately qua~~t ized  during storage in the analog memory. In this 

implementation, the number of filters was chosen to be 16, with non-uniform spacing, 

to reflect the 11ulna11 perception of speech ['L]. 

It has been tl~eoretically s11ow11 that filter banks wit11 frequency plans based on 

perceptual scaling, such as the Barli scale, improve significantly the performance of 

a recognition system. The improvement is due to the fact that each band on such 

a scale has equal contribution to the intelligibility (perception) of speech ['L]. The 

cut-off frequencies for a bank of 16 filters linearly distributed on the Bark scale for 
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Actual Frequency Response (J vs. Original Frequency Plan (...) 
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1000 2000 3000 4000 5000 6000 7000 8000 
Frequency [Hz] 

Figure 6.7: Filter Bank Frequency Characteristics 
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Table 6.2: Bark Scale vs. SCF Scale - Frequency Plans Comparison 

Band Center Frequency [Hz] 
Bark Scale I SCF Scale 

Bandwidth [Hz] 
Bark Scale I SCF Scale 
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a bank of 16 filters is presented in Table 6.2, columns (a). An approxi~iiation of this 

frequency plan which can be implemented using a tunable filter (SCF) is given in 

Table 6.2, colunms (b).  The penalty in recognition performance for using the S(:F 

frequency plan, as opposed to the original plan based on tlie Bark scale, is less than 

1%. The filter coefficients used in tlie recognition systern are listed in Section A.2. 

6.3.2 Energy Estimation 

Energy estimation is required in the recognition systeni for: 

the W B F  output. The resulting energy profile is further used by the Eridpoi~lt 

Detection block to isolate tlie relevant utterance from silence; 

each BPF output (in tlie bank of & filters). The Q dirnerisional energy profile 

is used as input to the VQ-based decision block. 

I11 both cases, tlie signal a t  the filter output, f (n) ,  is rectified using a Full-Wave 

Rectifier such that: 

~ ( n )  = f (n) for f ( 7 ~ )  2 0 

- f (n)  for ~ ( T L )  < 0. 

The FWR output is then low pass filtered (LPF), producing the energy estimate Z(n), 

as shown in Figure 6.2. The low pass filter was designed to have tlie characteristic 

presented in Figure 6.8, in order to remove tlie high frequency images introduced 

by the non-linearity in the energy spectrum, as discussed in Section 2.3. The filter 

coefficients are given in Section A.3. 

6.3.3 Time Normalization 

Two time normalization methods were iniplemented and tested during the siniulatior~ 

development: 

Resampling, from tlie variable input length N, to tlie fixed length A4, which 

computes tlie output frame index nL as the "closest" input frame index TL: 

as illustrated in Figure 6.9, (a) and (b) for N, > M and N, < M, respectively. 
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Frequency [Hz] 

Figure 6.8: Low Pass Filter Frequency Response 
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Linear Interpolation between the values of consecutive input vectors ~ ( I L ) ,  g(n+ 

I ) ,  where 7~ is given by: 

and 7n is the output frame index. The value of the output vector, - ~ ( 7 7 ~ )  is given 

by : 

y(m) = z ( ~ ~ ) . ( l  - f ) + g ( n ) .  f 'dm,= 1, ... , M ,  - (6.8) 

where 
N, - 1 

f = r n . z - n .  (6.9) 

Input Utterance 

Normalized Output 

Input Utterance 

Normalized Output 

Figure 6.9: Time Normalization Using Resampling 

The i~nprovements in recognition performance obtained using the linear interpo- 

lation method were too small (under 1%) to justify the increase in design complexity. 

As a result, the time ~~orrnalization block is implemented as a tunable down sampler, 

with sampling frequency f adjustable according to the variable input utterance size 

N,. The term "down sampler" is used because in most cases the input utterance size 

N, > M = 40, and as such appears to be sampled at a higher frequency than 1/40. 

The value M = 40 was chosen to provide a valid cornparison with the Probability Ta- 

bles method, which uses the same time nor~nalization length of 40, and to reduce the 

size of the on-chip memory. Doubling M varies only slightly the recognition accuracy 

performance (less than O.Ci%), variation which does not justify the increase in storage 

space. 
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Results 

The isolated words database used for testing was collected to reflect the vocabulary, 

the recording conditions and the audience of the i~ltended application for the product. 

The worst case test conditions for the recognizer's evaluation are obtained wl~en the 

noisy database recordings are combined with a simulation which complies to all the 

algorithmic restrictions imposed by the technical requirements. 

A generic block diagram of the recognizer's evaluation system is presented in 

Figure 7.1, and consists of an Analog Signal Control block, which amplifies and band 

limits the signal collected from a microphone and a Sampling block, which digitizes the 

analog signal. Isolated utterances are then stored in individual files on the file system, 

which can be accessed by the software simulation of the recognizer (represented by the 

Recognition blocks in the diagram). A detailed description of the recording conditions 

and speech database structure is given in Section 7.1. 

An isolated utterance recording stored in the database is processed by the Endpoint 

Detection block, which extracts the relevant speech seg~nent from the background of 

silence. The spectral profile of the speech segment is generated by the Feature Extrac- 

tion block, based on a filter-bank analyzer for feature measurement, and described in 

Section 6.3. The spectral profile can be used by the VQ-Rased Decision block for 

training, to generate the reference patterns (codebooks), or for testing, to deternline 

the recognition result. 

The performance analysis of various quantization methods, with speed] databases 

recorded in a variety of conditions, shows that the recognizer presented can be suc- 

cessfully used in practical applicatio~~s with similar hardware requirenlents, due to its 
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Figure 7.1 : Speech Recognition Evaluation System 
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robustness, siniplicity and high performance. 

7.1 Speech Databases 

The structure and recording conditions of the database used to train and test the 

recognition system were chosen so that tlie i~ifluence of the following factors on the 

recognition performance can be estimated: recording equipment, recording conditions 

(level and type of background noise) and speaker variability. 

Tlie word-based vocabulary was defined based on tlie application intended for the 

product, and contains the digits zero to nine plus oh and the words: sperd, error, 

dial, hang-up, repeat, stop, play, eject, s lou~,  reverse, search, record, pause, r m i n d ,  

forward, O I L ,  off, up ,  ~ O I U P L ,  collected from two sets of talkers: 

set A of 10, with E~iglisll as their  noth her tongue; 

set B of 4, with English as a second language. 

Each set was composed of 50% male arid 50% female talkers. In all cases tlie words 

were spoken with pauses between them so that the tokens were not influenced by any 

context dependency due to neighboring words, and 10 repetitions were collected for 

each word. 

The two different recording environments: 

(a) soundproof room conditions, and 

(b) 11oisy conditions, 

used to collect tlie speech database are presented in detail in Appendix B. 

Tlie Signal Level Control block structure required by the hardware design speci- 

fications of the recognizer, was iniplemented according to the block diagram of Fig- 

ure 7.2, to  provide further noise reductions and a test setup as close as possible to 

the real environ~ilent of the recognizer. The microphone, the amplifier, tlie A G C  and 

the WRF are as specified in Section 6.1. The A C X  dynamically adjusts the gain of 

the internal amplifier A1 to compensate for a wide range of microphone input levels 

and use the dynamic range to the fullest. The gain adjustment varies between -15 

dB and +24 dB. The "attacl?' and "release" times of the AGC can be set using an 
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Compensation ,, 
Microphone f ISD-2560 

Figure 7.2: Signal Level Control Block Diagram 

RC compensation network; during testing, 0.3 seconds was used for the "attack" time 

and 1 second was used for "release" time. 

The results presented below, obtained from recordings of the digits zero to nine 

and the words stop and reverse repeated 10 times each, performed in the conditions 

of setup (a) and (b), for the speaker groups A and B, will further be referred to as: 

Out Band Limited 

'Analog Signal 

-- 
Preamplifier 

studio database: contains accent-free utterances in soundproof room conditions. 

'- AGC 

\ I J 
I 

-9 

mixed database: c,ontains accent-free utterances, A,  in soundproof room condi- 

tions, (a),  plus utterances with foreign accent, B, in noisy conditions, (b).  

noisy  database: contains utterances with foreign accent, B, in ~ioisy conditions, 

(b). 

7.2 Testing Environment Configuration 

The recognition systems used to evaluate the new VQ methods proposed in this thesis, 

in comparison with the existent methods, were designed using the same training set 

for generating the dictionary of codebooks. 
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For a consistent evaluation: the functional structure of the testing environment, 

presented in Figure 7.1, lnust be the same for all the experiments; the fulictiorial bloc:l< 

that c.hanges, to reflect the particular VQ method evaluated, is the Decision blot:lt. 

The  basic structure of a VQ-based decision block was presented in Figure 3.2. Tlie 

structure of the codeboolts in the dictionary and the recognition method are corn- 

pletely characterized by tlie codeboolt training procedure: and the type of distortion 

method used by the algorithnl. According to  these criteria, the recognition systenls 

inlplemented can be classified in: 

Baseline Recognizer: tlie training and the  distortion measure are based on spec- 

tral components only, and presented in detail in Section 3.3. Uses 16 codewords, 

of 16 spectral co~nponents each, for every codeboolt. 

Probability Tables (PT)  Recognizer: with training based on tlie temporal prob- 

ability tables method, presented in Sec.tion 4.2.3, using a cornbined spectral- 

temporal distortion measure during quantization. The  functional block diagram 

is presented in Figure 4.8. Uses 16 codewords (each with 16 spectral compo- 

nents and 40 componerits for tlie associated probability table) per codeboolt. 

l (2)  Time Componeat(s) (TC) Recognizer: inlplernents the spectral-temporal 

VQ design with time componerlts described in Section 5.1, and has the block 

diagram presented in Figure 5.5. Uses 16 codewords per codeboolt . Each 

codeword consists of 16 spectral components and l (2)  time components. 

Overlapped Segmented Codebooks (OSC) Recognizer: uses a  lumber of adja- 

cent overlapping sub-codeboolts for each word in the dictionary and spectral 

distortion measurc? only. Tlie training and quantization procedure are as de- 

scribed in Section 5.2. Each sub-codebook has 16 spectral codewords with 16 

spectral components each. The  overall size of tlie codebook, in codewords, is 

given by equation 5.15, for various overlap factors and number of segments per 

utterance. 

Segmental VQ Recognizer: as described in Section 4.2.2, wit11 zero overlap 

between adjacent sub-codebool<s, having 16 spectral codewords with 16 con~po- 

nents each. The overall size of the codebook is the product between the number 

of segments and the sub-codebook size. 



CHAPTER 7. RES IJLTS' 9 5 

The distortion ~neasure used in the P T  recognizer requires the selection of a value 

for the parameter a, describing the mix of temporal and spectral distortions, so t11a.t 

it optimizes the recognitio11 performance of tlie resulting system. The value selected 

was a = 0.8, correspondirlg to the minimurn error rate of 9.24% in Figure 7.3, which 

represents the recognition error of the P T  recognizer for different values of a. 

Spectral-Temporal Mix (O=spectral only, 1 =temporal only) 

- 
g 20 
Y 

L 

2 
;ii 15-  
c 
0 
:E 10 c 
0, 
0 : 5 -  
CT 

0 

Figure 7.3: Spectral-Temporal Mix Selection 

I I I I I I I 

- 

Spectral 
- - 

- 

I I I I I I I 1 I 

Threshold selection in tlie multiple time component method was performed on a 

similar criteria, of minimizing the recognition error of the system. The graph presented 

in Figure 7.4 shows the error rate for the 2 TC recognizer for the noisy database and 

tlie mixed database test set. The optimal perfor~nance is obtained for a threshold 

value of r = 30%; however, the difference between the two curves suggests that the 

threshold selection depends on the recording conditions, and that a similar calibratio~i 

be performed if these conditions change. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Recognition Results 

The baseline recognizer using only the spectral components obtains a perfornlance of 

about 97% for speakers who contributed to the training data or speakers with similar 

pro~iunciations recorded in conditions identical to those used for training. 
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Figure 7.4: Threshold Definition for VQ with 2 Time Components 
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The performance degrades significantly for foreign pronunciations or different 

recording conditions. To enhance the performance differentiation the mixed studio 

database was used, with a total of 92 tokens per dictionary word (for 12 dictionary 

words) out of which 52 tokens were similar (pronunciation, recording conditions), 

to the training set and 40 tokens were recorded in different conditions using talkers 

with English as a second language (set B). On this test set, the baseline recognizer's 

perfor~nance degrades to about 89%. 

By combining spectral and temporal information in the VQ structure, the perfor- 

mance was improved, and the error rate was reduced by about 40%. 
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I Overlapped Codebooks 
I I 

1 6.:34 1 3.62 1 

MemorylCodeword [KB] 
1 

VQ Method 
S'l~ectral Infornlation Onlv 
Probability Tables 
1 Time Component (TC) 

Table 7.1: Error Rates For Recognition TJsing Spectral Temporal VQ 

Error Rate [%I 
10.87 

T h e  temporal probability tables (PT)  method described in Section 4.2.3 was im- 

plemented to  provide a reference for the c,ornparison of the systems described above. 

For the opt i~nal  value of the parameter a,  representing the mix of spectral and tern- 

poral distortions, the introduction of probability tables reduced the recognition error 

rate 011 the test set by about 1.6% (compared to about 2% for the digit set in [7]). 

The  recognition error rates for the systems presented in this thesis along with the 

required memory in words per dictionary entry is shown in Table 7.1. The  results 

indicate that  using only one time component (TC) results in better performance t l ~ a n  

9.24 
8.06 

the PT approach a t  a lower memory requirement. 

T h e  multiple time component (MTC) approach uses a variable  lumber of time 

co~nponents per dictionary word with an  average of about 1.5 components. The  

result is a further (relatively small), performance improvement. 

The  overlapped segmented c,odebool;s (OSC) approach shows the best recognition 

acc,uracy: an improvement of about 2.9% with respect to the P T  nlethod, at  the 

expense of a slightly larger men~ory  requirement. 

To obtain the result given in Table 7.1 for the OSC method, a nu~nber  of tests were 

performed to measure the recognition rate for a variable number of input intervals 

(partitions) and for different overlap ratios. The  outcome of these tests is shown in 

Figure 7.5. The  best performance is achieved for an overlap ratio of 12.5 % and for 4 

input partitions. 

3.5 
1.06 
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Figure 7.5: Error Rates for the Overlapped Segmented Codebooks Method 
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7.4 Conclusions 

40 

The performance analysis of speaker independent isolated word recognition algorithrlls 

that use a VQ as a recognition processor was presented. The error rate of a baseline 

recognition system based only on spectral VQ was reduced by over 40% by incorpo- 

rating time information in the quantization process. 

A new method, VQ with time components, of adding temporal information to 

a spectral c.odebool;, was proposed and investigated. The new method gives a 20% 

i~nprove~nent  in recognition rate over the existing probability tables technique [7], 

Input Intervals 
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while reducing the required codebook storage space by 70%. The evaluation of the 

improvement due to using overlapping codebooks in seg~nental VQ, shows a 20% 

improve~nent in error rate a t  a 45% reduction in codebook storage space. 

The design and implementation of a speech recognition algorithm which simulates 

a real-time analog VLSI recognizer (which incorporates the new VQ methods) was 

performed. 

7.5 Future Research 

The scope of the two VQ methods presented can be extended to patterns with similar 

ternporal evolution to  speech, with an expectation of increased VQ-based recognition 

performance. 

For the temporal co~nponent method, a generalization of the spectral-temporal 

pattern, as a combination of any two random variables, may be explored. The random 

variables, denoted by A and B, must have a similar dependency, A = f ' (B) ,  to the 

spectral-temporal function, X = f ( T )  (where X is the spectral component, and T 

the temporal component). The analysis of a recognition system based on si~nulated 

patterns (A, B) may be used to determine more thoroughly the optimality of the 

VQ design (choice of distortion measure and joint training procedure) for recognition 

purposes. 

The influence of the choice of spectral analysis method (LPC vs. filter banks) can 

also be evaluated for both methods in order to confirm that similar i~nprovernents in 

recognition accuracy are obtained. This result would mean that either method could 

be used to increase the performance of VQ preprocessors for DTW or HMM based 

recognizers. 
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Appendix A 

Filter Coefficients 

This section contains the coefficients for all the digital filters used in the recognition 

system: 

0 Wide Band Filter, used for input signal control 

16 Band Pass Filters, used for feature extraction 

a Low Pass Filter used to eliminate undesired high frequency images of a spectral 

energy profile. 

All the filters are FIR filters and have the transfer function given by: 

where: 

b(z) = B(1) + B ( ~ ) z - I  + ... + B ( N  + l ) ~ - ~  (A.2) 

a(z)  = A(l )  + ~ ( 2 ) z - '  + ... + A(N + l ) ~ - ~  (A.3) 

and N represents here the filter order. 

A.1 Wide Band Filter 

Wide Band Filter coefficients for band 1.202000e+02 Hz to 7.312310e+03 Hz (Rp 1 

dB, Rs 30 dB) 

WBF Filter Order = 6 

WBF Filter Coefficients: 
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A.2 Band Pass Filters 

Bandpass Filter coefficients for band 1 (143 - 180 Hz), Rp = 33dB 

Order 4 

Filter coefficients for band 2 (205 - 257 Hz) 

Order 4 

Filter coefficients for band 3 (291 - 366 Hz) 

Order 4 
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Filter coefficients for band 4 (367 - 520 Hz) 

Order 6 

Filter coefficients for band 5 (5.878600e+02 - 7.:398600e+02 Hz) 

Order 4 

Filter coefficients for band 6 (7.230300e+02 - 9.100300e+02 Hz) 

Order 4 

Filter coefficients for band 7 (8.898200e+02 - l.l18800e+0:3 Hz) 

Order 4 
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Filter c,oefficients for band 13 (3.080800e+03 - :3.874800e+0:3 Hz) 
Order 4 

Filter coefficients for band 14 (3.789300e+03 - 4.766300e+03 Hz) 
Order 4 

Filter coefficients for band 15 (4.660700e+03 - 5.862700e+03 Hz) 
Order 4 

Filter coefficients for band 16 (5.732800e+03 - 7.210800e+03 Hz) 
Order 6 
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A.3 Low Pass Filter 

Low Pass Filter coefficients for 30 Hz cutoff (Rp 3 dB, Rs 50 dB at 50 Hz) 

LPF Filter Order = 4 

LPF Filter Coefficients: 



Appendix B 

Speech Database Recording 

Environments 

Two different recording environments were used to co1lec.t the database: 

(a) for recordings performed in soundproof roorli conditions, having the block di- 

agram presented in Figure B.1. The micropllone and Signal Level Control blocks 

were supplied by the recording st,udio, while the digitization was performed by 

a DAT tape recorder, at a sampling frequency of 48 KHz. The conversion to 

16 bit speech digitized at 16 KHz was performed using the Ariel S32-C system, 

wl1ic.h has no automatic gain control (AGC). To use most of the dynamic range, 

the amplification gain was selected manually and ~naintained co~ls ta~l t  for each 

speaker. This setup was used to collect data only from talker set A. 

(b) for live recordings (noisier than (a)) ,  having the front end electronics speci- 

fied for the hardware implementation of the recognizer, and the block diagram 

of Figure B.2. The ~nicrophone was connected directly to the Ariel S32-(I: sys- 

tem. The gain control was the same as for (a),  no AGC was used. This setup 

was used to collect data only from talker set B. 
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Figure B. 1 : Soundproof Roorn Recording System 
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Figure B.2: Live Recording System 




