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Abstract

The source coding method referred to as vector quantization (VQ) is used in a speech-
recognition system to represent an arbitrary speech spectral vector into one of a fixed
number of codebook symbols with the benefit of significantly reduced computation in
the recognition process.

In low-complexity speaker-independent isolated-word recognition systems with
multiple codebooks, the performance of the V() has a big impact on the overall per-
formance of the system. This thesis studies different ways of combining temporal
and spectral characteristics in the VQ process, with the objective of improving the
recognition, while maintaining or decreasing the storage requirement. Two meth-
ods of incorporating time information directly into the codebooks are presented and
compared to an existent method, based on considering the probability of the time of
occurrence of a given spectral vector in the quantization process.

The recognition system implemented to evaluate these methods consists of modules
which perform signal pre-processing, feature extraction and vector quantization, with
a signal-processing front end based on a bank-of-filters model.

The experimental results show that the methods proposed reduce significantly the

recognition error rate and have similar memory requirements to the reference method.
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Chapter 1
Introduction

Isolated word recognition represents one of the first efforts in the pursuit of automatic
speech recognition. The distinguishing feature of an isolated-word recognition system
is that it requires words to be spoken individually, in isolation from other words, and
separated by distinct interword pauses. As early as 1952, an isolated digit recognizer
based on spectral measurements was built at Bell Laboratories [1]. This research
area produced a viable and usable technology only in the 1970’s; however, the goal of
improving the performance for systems using this technology is still pursued. This is
due mainly to the fact that the state-of-the-art speaker independent systems (which do
not require speaker specific training) still give error rates of approximately 5% under
laboratory conditions, i.e. a high-quality microphone in a low-noise environment [2].
Such a performance would be unacceptable if the system were part of a commercial
product to be used in a realistic environment.

Recently, there has been an increased consumer interest in products with voice
activated user interfaces. As a result, the development efforts to produce error-free,
cost-effective hardware implementations of speech recognizers have been intensified.
The advances in VLSI technology and signal processing capabilities, combined with
the demand for voice communication, have revived the quest for a reliable isolated-
word, speaker-independent recognizer.

A voice recognition chip can be used to implement the user interface of a command-
and-control system. In such a system, the user speaks a single command (either an
isolated word or phrase), and the machine, upon correctly recognizing the command,

acts appropriately. The output of the speech recognizer is the index of the word that
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CHAPTER 1. INTRODUCTION 2

is most likely to have been spoken based on the recognizer’s vocabulary. This index
is then used to select the corresponding action to be passed on to the physical system
under voice control. Several requirements are essential for the recognition system to
be used in a hardware implementation of a user interface for a command-and-control

system:

e The proposed interface must be “user friendly”; it must make the user feel com-
fortable with the commands and it must provide an effective means of commu-
nication. This imposes restrictions on the size and structure of the vocabulary
used, and determines whether the recognizer is speaker independent or speaker

dependent.

e The command-and-control system must achieve a specified minimum level of
performance on the task associated with the recognition decision. User percep-
tion of the recognizer’s effectiveness appears to be non-linear [2], in that the
absolute level of performance is relatively unimportant as long as the error rate
stays under a certain level (5%). This requires a minimum degree of recognition

accuracy for the overall system, as well as a high degree of robustness to noise.
e The response time of the recognition system must be minimized.
e The recognition system must be cost effective.
In this context, the system implemented in this thesis is required to be:
e dedicated to a small vocabulary of isolated utterances,
e speaker independent (unrestricted set of speakers),
e highly accurate,
e robust and

e suitable for a low-cost analog VLSI implementation.

The recognition method most often used in practical implementations is the com-
parison of spectral patterns and consists of spectral feature extraction followed by
pattern comparison. The simplest spectral feature extraction analog hardware imple-

mentation is a bank of analog filters, used in existent recognition chips such as OKI
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MSM6250, or NEC TC8861F [3]. The spectral features are further processed using a
vector quantizer (VQ).

Although a VQ is generally used to compress the speech patterns (and thus re-
duces the computational complexity and storage required by subsequent decision al-
gorithms), in some restricted cases good recognition performance can be obtained
with straightforward use of the VQ as a recognizer [4]. The recognition accuracy re-
ported in [4] was of 99% for a speaker-dependent system and of 88% using a speaker-
independent system for a highly non-confusable 20-word vocabulary. The use of a
VQ@-based decision block brings computational savings in comparison to a more so-
phisticated decision block, like the Dynamic Time Warping (DTW) or the Hidden
Markov Model (HMM) processors. VQ-based recognition is also known as “multi-
ple codebook recognition”, because it uses one codebook for each vocabulary word,
or “recognition without time alignment”, to distinguish it from the DTW method,
which uses time alignment of input speech patterns.

A performance comparison among different recognition methods is given in Ta-
ble 1.1, where the spectral analysis methods used for feature extraction are the filter-
bank (FB) method and the linear predictive coding (LPC) method, producing either
linear prediction coefficients or cepstral coefficients as the speech pattern to be used
in recognition. The result of the DTW-FB method corresponds to a VLSI imple-
mentation of a recognition system [3], and is outperformed by the simulation results
obtained using the VQ-FB design presented in this thesis [5]. When LPC features are
used, both the DTW and the HMM methods outperform the VQ method [2], [6]. The
test set for the DTW, HMM and VQ methods based on LPC features was recorded in
studio conditions, while for the FB methods a more realistic recording environment
was used.

The baseline recognition system, designed according to the constraints imposed
by the hardware implementation targeted, consists of a filter-bank front-end followed
by a VQ on spectral features and gives an accuracy of almost 90%. To insure that
an accuracy of at least 95% is obtained for the system working in noisy conditions
with a test set of speakers with foreign pronunciation, several improvements to the
algorithm needed to be investigated.

The approach used in the baseline system does not preserve the sequential charac-

teristics of the utterance class, or the temporal characterization of the spectral shape.
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Recognition | Recognition | Reference
Method Accuracy (%]

DTW-FB 86 (3]
DTW-LPC 98 2]

VQ-FB 89.1 Bl
VQ-LPC 94 4], [6]
VQ-cepstral | 95.5 [6]
HMM-LPC 98 6]

Table 1.1: Small Vocabulary, Speaker Independent, Isolated Word Recognition Sys-
tems - Performance Comparison

In this approach, a single VQ is used for the entire duration of the utterance, while
the distortion measure used takes into account only the magnitude of the spectral
feature and ignores its time of occurrence. The lack of explicit characterization of
the sequential behavior can be remedied either by treating each utterance class as a
concatenation of segments, each represented by a V(Q codebook, or by combining the
spectral distortion with a temporal distortion. The first approach is referred to as Seg-
mental VQ [8]. Another technique, using combined spectral and temporal distortions,
was proposed and evaluated by Pan et al. [7]. Their approach uses an estimated
probability density function (PDF) of the time of occurrence on a normalized time
scale, and will be further referred to as the Probability Tables method.

Two methods of modifying the VQ structure to take into account temporal infor-

mation in addition to the spectral features are presented in this thesis:

1. The Temporal Component Method: generates an additional temporal com-
ponent to each vector of spectral features. As a result of training, a tem-
poral codebook is created. The temporal codebook is used in conjunction

with the existent spectral codebook during quantization.

2. The Owverlapped Codebooks Method: time normalizes each utterance and
then subdivides it into a number of non-overlapping regions. For each
of these regions a sub-codebook is generated, and the sub-codebooks are
overlapped to a variable degree. This approach uses the same principle as

the segmental VQ described by Burton, but gives a more accurate pattern
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representation in codebook space and performs better without significant

increases in complexity.

These two methods are compared with the probability tables method, proposed by
Pan et al [7]. The decrease in error rate obtained is 40% relative to the baseline
system and 30% relative to the Probability Tables method for a 12-word vocabulary

and recordings performed both in studio and noisy conditions.

1.1 Contributions of the Thesis

The major contributions of this thesis can be summarized as follows:

1. The development and performance analysis of speaker independent isolated
word recognition algorithms which use a VQ as a recognition processor.
The error rate was reduced by over 40% by incorporating time information

in the quantization process.

2. The study of a new method of adding temporal information to a spec-
tral codebook; the new method gives a 20% improvement in recognition
rate over the existing probability tables technique [7], while reducing the

required codebook storage space by 70%.

3. The evaluation of the improvement due to using overlapping codebooks in
segmental VQ. The results show a 20% improvement in error rate at a 45%

reduction in codebook storage space.

4. The design and implementation of a speech recognition algorithm which

simulates a real-time analog VLSI recognizer.

1.2 Thesis Outline

Chapter 2 presents an overview of spectral analysis models in the context of the
statistical approach to speech recognition. A detailed description of vector quantiza-
tion, including a discussion of codebook training methods and distortion measures is

presented in Chapter 3.
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Existent methods of incorporating time information during quantization are pre-
sented in Chapter 4, while the two new methods which incorporate time information
during quantization are introduced in Chapter 5.

Chapter 6 outlines the speech recognition system used for the evaluation of the
spectral-temporal VQQ methods proposed in this thesis. The results of this evaluation

are presented in Chapter 7.



Chapter 2

Spectral Representation of Speech
Signals

Different speech sounds can be characterized by spectral and temporal properties that
depend on the acoustic-phonetic features of the sound. Based on this characteriza-
tion, they can be grouped into sound classes. For each such class, or phonetics, the
properties of the acoustic features are relatively invariant across words and speakers.
This observation implies that the recognition of speech classes 1s possible, provided a
suitable analysis of the acoustic properties can be implemented.

The ideas of acoustic-phonetic characterization of sounds lead to the implemen-
tation of a speech recognition algorithm based on sequential detection of sounds and
sound classes, called the acoustic-phonetic approach. This approach is based on the
theory that postulates that there exist finite and distinctive phonetic units in the spo-
ken language and that the phonetic units can be identified in the evolution in time of
the speech signal. The method consists of a segmentation and labeling phase, which
creates a template of phonemes representing the speech, followed by a recognition
phase, which attempts to determine a valid entry in the vocabulary. This technique
has a number of practical limitations [2], such as the subjective nature of sound classes
definitions and difficulty in achieving correct segmentation.

Statistical pattern comparison is the most reliable and widely used method in prac-
tical implementations of recognition systems, and is therefore the choice for the system
implemented in this thesis. Pattern recognition systems rely on gross estimation of

the spectral and temporal properties of speech segments and use pattern classification
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methods such as DTW, HMM and VQ. The following sections of this chapter present
a description of spectral analysis methods used in the pattern recognition approach

to speech recognition.

2.1 The Pattern Recognition Approach

Unlike the acoustic-phonetic approach to speech recognition, the pattern-recognition
approach uses a set of attributes characterizing the entire utterance (which can be a
sound, a word, or a phrase) as one entity, or pattern, and does not require phonetic
decomposition of the utterance to be recognized. In pattern recognition methods,
spectral analysis is used to produce spectral patterns. A large collection of speech
patterns is processed during training to extract the templates used during the decision
stage, which produces the recognition result.

The utterance’s pattern is, by definition, the set of spectral and temporal features
generated by the spectral analysis of the speech signal. The training procedure brings
into the system information about the nature of the utterances in the dictionary. If
enough versions of a utterance to be recognized are included in a training set provided
to the algorithm, the training procedure can adequately characterize (statistically) the
acoustic properties of that utterance. The output of this procedure is one reference
template (or collection of templates) of spectral features for each dictionary entry.
During the decision stage, a direct comparison of the unknown utterance pattern with
each possible template is performed and the best match represents the recognition
result.

This approach is widely used in practical applications due to its following charac-

teristics:
e simplicity of use

e robustness and invariance to different speech vocabularies, users, feature sets,

pattern comparison algorithms and decision rules
e proven high performance

The block diagram of a recognizer based on spectral analysis methods is is pre-

sented in Figure 2.1.
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— Templates
Training (Models)

Test
Speech | Spectral | Pattern
Signal 7} Analysis Recognized
Pattemn Speech
. Classifier| 7| Decision ?

Figure 2.1: Block Diagram of a Pattern-Recognition Speech Recognizer

The Spectral Analysis block performs a series of measurements on the input signal
to define a pattern. For speech signals the feature measurements are usually the output
of some type of spectral analysis technique, such as a filter-bank analyzer, a linear
predictive coding (LPC) analysis, or a discrete Fourier transform (DFT) analysis.

The Training block analyzes one or more patterns, called training patterns, corre-
sponding to speech sounds of the same class, to create a representation of the class’
features, called the reference pattern. The result can be a template (or a collection of
templates), derived from some type of averaging or selection technique, or it can be
a model that characterizes the statistics of the features of the reference pattern.

The Pattern Classifier compares the unknown pattern presented as input with
each of the sound (class) templates and computes a measure of similarity, usually
called distance, between the test pattern and each template.

The Decision block uses these distances to choose the class that best matches the
unknown test pattern.

The factors that distinguish different pattern-recognition approaches are:
o the types of feature measurements

e the choice of templates or models
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e the training method used to create the reference patterns

o the classification method and decision criteria.

The system implemented for this study uses a filter-bank analyzer for feature
measurement and a vector quantization training procedure for creating templates
called codebooks. Following training, the statistical characteristics of the source for
each dictionary word are embedded in the corresponding codebook. The classifier is a
vector quantizer (VQ) which uses the set of codebooks to compute distances‘ between
the unknown input pattern and each of the codebooks. The decision block simply
selects the minimum distance codebook to the input pattern.

The general strengths and weaknesses of the pattern recognition approach include

the following:

1. The performance of the system is influenced by the amount of training
data available, in that an increase in the training set size decreases the

sensitivity to noise and increases the degree of speaker dependency.

2. The reference patterns are sensitive to the speaking environment condi-

tions.

3. The method is applicable to a wide range of speech sounds, including
phrases, whole words and subword units, because the algorithm doesn’t

use vocabulary specific information.

4. The implementation complexity is linearly proportional to the number of
vocabulary words, and is a limiting factor for the vocabulary size of the

application.

2.2 Spectral Analysis Models

Spectral analysis methods are at the core of the signal processing front end of a speech
recognition algorithm, because they characterize in a consistent manner the events in
a speech utterance; this is done by providing a set of parameters which quantify
perceptually significant characteristics for each speech segment. The resulting set of
spectral characteristics extracted for an utterance are used as an input pattern in the

recognition process.
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The speech signal is a slowly time varying signal in the sense that, when examined
over a sufficiently short period of time (between 5 and 100 ms), has approximately
stationary characteristics; however, over long periods of time (on the order of 200 ms
or more) the signal characteristics change to reflect the different sounds being spoken.

According to the vocal cords status, the events in a speech utterance can be

classified in:
e silence (S), when no speech is produced;

e unvoiced (U), when the vocal chords are not vibrating, so that the resulting

speech waveform is aperiodic (random)j;

e voiced (V), when the vocal chords are tensed and vibrate periodically, producing

a quasi-periodic speech waveform.

Spectral representations provide information regarding the intensity of the signal
in different frequency bands, a fact that can be illustrated by examining the wide-
band and narrowband spectrograms of the utterance “It’s easy to tell the depth of a
well”, presented in Figure 2.2 (a) and Figure 2.2 (b), respectively. The spectrograms
are created by performing a spectral analysis on overlapping segments of the speech
waveform using broad band, and respectively narrow band, filters. (The bandwidth
is characterized relatively to the width of the analysis window.)

The wideband spectrogram, presented in Figure 2.2 (a), corresponds to performing
a spectral analysis on 15-msec sections of waveform using a broad analysis filter (125
Hz bandwidth) with the analysis advancing in intervals of 1 msec. For the narrowband
spectrogram, shown in Figure 2.2 (b), spectral analysis was performed on 50-msec
sections of waveform using a narrow filter (45 Hz bandwidth), with an overlap of 1
msec between adjacent analysis windows. The spectral intensity at each point in time
is indicated by the intensity (darkness) of the plot at a particular analysis frequency.

In the wideband spectrogram, Figure 2.2-(3), the vertical striations, corresponding
to the spectral envelope of individual periods of the speech waveform, are well repre-
sented due to good resolution in time domain. In Figure 2.2 (b), because of the good |
frequency resolution, individual spectral harmonics appear as almost horizontal lines
in the spectrogram. During periods of unvoiced speech high-frequency energy can

be observed, while during silence there is no spectral activity. This illustrates that a
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(a) Wideband Spectrogram

4000

2000

Frequency

0
0 0.5 1 1.5 2 2.5

(b) Narrowband Spectrogram Time

4000
>
[@]
c
3 2000
o
L
0
0 0.5 1 1.5 2 2.5
Time
x 10* Speech Amplitude "lt's easy to tell the depth of a well"
T I T i
o 1F .
©
2
5 0
g T
-1} 4
1 |
0 1.5 2
Time « 10°

Figure 2.2: Speech Representation - Amplitude and Spectrograms
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BandPass{ N X (ej ©1 )

Filter 1

Speech
s(n)

Band Pass _____> Xn(e] W, )

Filter Q

Figure 2.3: Filter-Bank Analysis Model

trade-off between time and frequency resolution must be achieved for a comprehensive
analysis of the speech segment’s features.
In speech recognition applications, the two most common choices for spectral anal-

ysis are:

1. The filter-bank model(Figure 2.3).
2. The linear predictive coding (LPC) model(Figure 2.4).

In the filter-bank model, the speech signal, s(n), is passed through a bank of )
bandpass filters whose coverage spans the frequency range of interest in the signal
(e.g., 100-3400Hz for telephone quality signals, 100-8000Hz for broadband signals).
The individual filters can and generally do overlap in frequency. The center frequency

of the 2-th filter is w;,
27 f;
=

(2.1)

Wi

where F is the sampling frequency.

The output of the i-th bandpass filter for the n-th input speech frame s(n),
X7z(ej‘”‘), is a short-time spectral representation of the signal. In this model, each
filter processes the speech signal independently to produce the spectral representa-

tion X,,.
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Speech Frames LPC Coefficients Cepstral Coefficients
S, LPC a, LPC <y
Spectral Parameter N
Analysis Conversion 7

Figure 2.4: LPC Analysis Model

In the LPC approach (Figure 2.4), spectral analysis is performed on blocks (frames)
of speech, where s, represents the n-th frame of speech input. The resulting spectral
representation X,(e?*) is constrained to be of the form o/A(e’¥), where A(e¥) is a

P-th order polynomial with z-transform
Az) =14 a2z + azz 2+ ...+ apzt. (2.2)

The order, P, is called the LPC analysis order. The output of the LPC spectral
analysis block, corresponding to the n-th frame, is a vector of LPC coefficients, a,,, of
dimension equal to the predictor order, P. The LPC coefficients specify the spectrum
of an all-pole model that best matches the signal spectrum over the period of time in
which the frame of speech samples was accumulated.

Equivalent feature sets, such as cepstral coefficients, have proven to be a more
reliable and robust spectral representation in speech recognition [2]. The cepstral
vector ¢, can be derived directly from the LPC coefficients, transformation illustrated
in Figure 2.4 by the LPC parameter conversion block.

The bank of filters model is used in thé implementation presented in this thesis
because it is more suitable to the be implemented in analog VLSI technology than
the LPC model. The following sections of this chapter present a detailed description

of a bank-of-filters analyzer.
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2.3 The Filter Bank Spectral Analyzer

A detailed functional diagram of a feature extraction processor based on the filter
bank spectral analysis model is presented in Figure 2.5. The purpose of the filter
bank analyzer is to obtain a measurement of the speech signal energy in different
frequency bands.

The sampled input speech signal, s(n), is passed through a bank of ¢ bandpass

filters, resulting in the signals:

M;-1
si(n) = s(n) * hi(n) = > hi(m)s(n—m), Vi=1,...,Q (2.3)

m=0
where h;(m) is the impulse response of the i-th bandpass filter (BPF) in the finite
impulse response (FIR) implementation, with a duration of M; samples. Each of the
bandpass filtered signals, s;(n), is passed through a non-linearity, such as a full-wave
rectifier. The nonlinearity shifts the bandpass signal spectrum to the low-frequency
band, as well as creates high frequency images. A low pass filter (LPF) is used to
eliminate the high-frequency images, giving as output a set of signals, t;(n), Vi =
1,...,&, which represent an estimate of the speech signal energy in each of the )

frequency bands.

. Sampling | u (n) . x (n)
Bandpass Sl(n . . vl(n Lowpasy t{“) p Y Amplitude
Filter 1 Nonlinearity Filter E;‘&i ction Compressior!‘é

s(m)

v(ﬁn Lowpass t&n) Sampling uén) Amplitude x(in)

Rate e
Reduction Compressior]

Bandpass S&“ . .
Filter Q Nonlinearity Filter

Figure 2.5: Filter-Bank Analyzer

The effects of the nonlinearity and the LPF are illustrated in Figure 2.6, which

shows typical waveforms of the following signals:
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e input speech, s(n) (a 32 millisecond segment of voiced speech digitized at 8 kHz)

e :-th BPF output s;(n): the BPF used in this example is centered at 500 Hz, a
frequency around which the formant frequencies for a few of the most common

vowel sounds are situated

e non-linearity output, v;(n): the non-linearity in this example is the full-wave
rectifier (FWR) discussed in detail below

o LPF output, ¢;(n): the cut-off frequency for the LPF is 80 Hz, with an atten-
uation of 50 dB over a 20 Hz interval, [80 Hz, 100 Hz]. its choice is related to

the fastest motion rate of the speech harmonics in a narrow band, which is on

the order of 50-100 Hz.

as well as their corresponding Fourier transforms. The output ;(n) of the filter bank
analyzer shown in Figure 2.3 is a downsampled and amplitude compressed version of
ti(n) from Figure 2.6.

A FWR f was used as the nonlinearity:

si(n)  for s;(n) >0

—si(n) for s;(n) <0 (2.4)

f(si(n)) = {
This nonlinearity can be represented as:

vi(n) = f(s:(n)) = si(n)w(n) (2.5)

where

1 if si(n) > 0 |
win) = { T1 ifs) 2 (2.6)
-1 if s4(n) < 0.

The nonlinearity output can be viewed as a modulation in time, operation which

translates to convolution in frequency domain:
Vi(e?) = Si(e™) x W(e*) (2.7)

where Vi(e?), Si(e’*) and W(e/*) are the Fourier transforms of the signals v;(n),
si(n) and w(n), respectively. It can be seen that S;(e’*) has most of its energy in
the pass band (the maximum at approximately 500 Hz), while the spectrum of the

signal after the full-wave rectification, V;(e?*), shows a corresponding low-frequency
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concentration of energy. The undesired peaks at higher harmonic frequencies, visible
in the shape of V;(e’*) are eliminated by the LPF, producing the desired spectral
estimate, t;(n).

The bandwidth of the signal v;(n) is related to the fastest rate of motion of speech
harmonics in a narrow band and is on the order of 50-100 Hz. In order to achieve an
economy in signal representation, the output of the LPF filter is resampled at a rate of
100-200 Hz. The signal dynamic range is compressed using an amplitude compression

scheme, such as logarithmic or p-law encoding.

2.3.1 Types Of Filter Banks

Among the types of filter banks used for spectral analysis in speech recognition [2],
the most common one is the uniform filter bank. In this case the filter frequency
responses are equally spaced, the center frequency f; of the ¢-th bandpass filter being
defined as:

F, . . .
f,’ = ‘_ZWZ’ VZ = 1, ...,17\[, (28)

where Fj is the sampling rate of the speech signal, and N is the number of uniformly
spaced filters required to span the frequency range of the speech. The bandwidth b;

generally satisfies the property:

F.
b > —2
~ 2N

with equality meaning that there is no frequency overlap between adjacent filter chan-

(2.9)

nels.
The alternative to the uniformly spaced frequency plan is the non-uniform spacing
of filter banks, designed according to a given perceptual criterion. The best known

criteria for designing non-uniform filter banks are [2]:
e uniform spacing on a logarithmic frequency scale,

e spacing according to the critical band scale, which is based on auditory percep-

tual studies,
e variants on the critical band scale, such as the mel scale and the Bark scale.

The critical band refers to the bandwidth at which subjective responses, such as

loudness, become significantly different. The loudness of a band of noise remains
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constant as the noise bandwidth increases up to the width of the critical band; after
that increased loudness is perceived. Similarly, a complex sound (composed of only
several tones) of constant intensity is approximately as loud as an equally intense
pure tone of frequency equal to the center of the band. This observation was used to
obtain the critical bandwidth as a function of frequency (the center frequency of the
band) [10].

The mel pitch scale was defined as a result of psychophysical studies which have
shown that human perception of the frequency content of sounds does not follow a
linear scale [10]. This research has led to the idea of defining a subjective pitch of
pure tones: for each tone with frequency f, a subjective pitch is measured on a scale
called the mel scale. As a reference point, the pitch of a 1 kHz tone, 40 dB above the
perceptual hearing threshold, is defined as 1000 mels. Other subjective pitch values
are obtained by adjusting the frequency of a tone such that it is half or twice the
perceived pitch of a reference tone (with known mel frequency). The relationship
between the mel frequency M, in mels, and the frequency f, in kHz, of the tone, is
given by:

M =10001log2(1 + f). (2.10)

The pitch is perceived with more accuracy for sounds of low frequency, fact reflected
also by the linear dependency between the subjective pitch and the logarithm of the
frequency, towards high frequencies.

The subjective nonlinear perception of frequency has led to an objective compu-
tational model that provides a mechanism to convert a physically measured spectrum
of a given sound into a psychological, subjective spectrum. In the Bark scale model,
each frequency component of the spectrum f is replaced by a specific loudness level
B according to an empirical power law over a range of tonalness units:

B =13 arctan(0.76f) + 3.5 arctan(:if;)z, (2.11)
- 5

where f is expressed in kHz. A unit of tonalness corresponds in width to a critical

band and is called a Bark.
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2.4 The Linear Predictive Coding Model

Linear prediction is used in speech recognition as a method of estimating the speech
spectrum over short time intervals (10-30 msec), in which the signal can be approx-
imated as stationary. In this method, each input sample is estimated, or predicted,
from previous input samples.

In the LPC model, the estimate (or predicted value) §(n) of a speech sample s(n)

is defined as a linear combination of the past P samples, such that:
i(n) =as(n—1)+azs(n —2) + ... + aps(n — P) (2.12)

where the LPC coefficients ay, as, ...ap are assumed constant over the speech analysis
frame.
The prediction error is the difference between the original signal and the signal

estimate:
P

e(n) = s(n) — &(n) = s(n) = Y _ ais(n — 1) (2.13)

=1
The prediction error filter transfer function, expressed in the z-transform domain, is:
E(z)

P
A(z) = 50) =1- Z}aiz_i. (2.14)

and represents the transfer function of the linear predictor with input s(n) and output
e(n).

For the particular case of the infinite order predictor, when P — oo, it can be
shown that the stationary input signal is transformed into a white noise process [12],
and this is why the filter A(z) is also called the whitening filter. The consequence of
this property is that the inverse of the infinite order whitening filter, 1/A(2)e will
reconstruct the original signal z(n) from a white noise signal (where the subscript oo
indicates the optimal infinite-order prediction).

Another property of the optimal infinite-order predictor is that it contains all the
information regarding the signal’s power spectral density (PSD) shape. For a system
with transfer function A(z) given by 2.14, the PSD of the input, P (w), and that of
the output, P..(w), are related by:

Pec(w) = |A(™)* Poz(0) (2.15)
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which becomes, in the case of infinite order prediction:

T’

——— 2.16

Po(w) =

where 0,2 is the variance of the white noise process w at the output of A (z).

Practically, a good short-time estimate of the speech signal’s PSD can be obtained
with a finite order predictor, with order P between 10 and 20 [14]. This property is
used in spectral estimation by the model-based (parametric) approach.

The basic problem of linear prediction analysis is to determine the set of predictor
coefficients, {a;}, 1 = 1,..., P, directly from the speech signal so that the spectral
properties of the filter match those of the speech waveform within the given segment.
The criteria for finding the optimal predictor coefficients is the minimization of the

mean-squared prediction error over a speech segment of short duration:

= E{e*(n)} (2.17)

By replacing e(n) with (2.13), and by taking the derivative with respect to each
coeflicient @; and setting the result to zero, the following system of equations for
the optimal predictor coefficients is found (also known as the Wiener-Hopf or the

Yule-Walker equations):

.

E (7 —il) =r(3), Yi=1,..,P (2.18)

where, if N is the size of the speech segment in samples, then

r(k) = E{s(n)s(n — k)} (2.19)

is the signal’s autocorrelation function.
Two approaches are used in practical applications to compute the linear predictor

coefficients:

1. The Autocorrelation Method: uses a weighted version of the input speech
segment, obtained by multiplication with a finite length window (rect-
angular, Hamming). The autocorrelation function in (2.19) is in this case
replaced by an estimate which uses the windowed signal s,(n) = s(n)w(n):

N=1-k]

ro(k) = > su(m)su(m + |k) (2.20)

m=0
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Figure 2.7: Speech Synthesis - LPC Model

2. The Covariance Method: minimizes the actual least square error on the
given speech segment. The predictor coefficients are the solutions of a

system similar to (2.18):

P
Zajd)(i,j) = ¢(:,0), Vi=1,...,P (2.21)

in which the autocorrelation function is replaced by the short-term “co-

variance” of the signal, defined as:

N-1
$(i,7) = > s(m—i)s(m—j), Vi=1,..,P, ¥j=0,..,P. (2.22)
m=0 .
The solution to the autocorrelation method can be obtained using a very efficient al-
gorithm (Levinson-Durbin), which reduces significantly the computational complexity
in comparison with solutions obtained using the second method. The autocorrelation
method also offers the advantage of always having as solution a stable inverse filter,

while the covariance method usually requires a stabilization procedure.
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The LPC coefficients are related to the vocal tract parameters in the speech pro-

duction model presented in Figure 2.7. The model consists of two basic elements:

e the ezcitation generator, which models the effect of the air flow through the
vocal chords. The excitation function is quasiperiodic for voiced segments of

speech and random for unvoiced speech.

o the vocal tract model, which accounts also for the effect of radiation at the lips.
The vocal tract parameters vary slowly in voiced sounds, but this approximation

is not valid for transient sounds [14].

The parameters that completely describe the speech production model are: the
voiced /unvoiced classification, the pitch period for voiced sounds, the excitation gain,
and the coefficients of the filter modeling the vocal tract, all of which vary with
time. For the linear system described in Figure 2.7 the input to the LPC-based
synthesis filter, e(n), equals Gu(n), the scaled excitation, where u(n) is the normalized
excitation and G is the gain of the excitation. The trausfer function H{(z) is the inverse

of the whitening filter:

H(z) = (2.23)

2.5 The LPC Processor for Speech Recognition

A typical LPC front-end processor used in speech recognition applications is presented
in Figure 2.8.

During Preemphasis, the digitized speech signal, s(n), is spectrally flattened, to
compensate for the inherent spectral tilt of the signal. The Preemphasis block consists
usually of a first order FIR filter. The preemphasized speech signal is then blocked in
frames of NV samples each, with adjacent frames being separated by M samples, with
M << N (typically, N = 3M [2]). The overlap insures that the contribution of all
the samples in the frame is properly considered in the evaluation of the LPC spectral
estimates, and that the transition between values corresponding to adjacent frames is
smooth.

Each individual frame is multiplied by a window so that the signal discontinuities

at the extremities of the frame are minimized. The LPC coefficients are computed for
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Figure 2.8: LPC Processor for Speech Recognition - Block Diagram

each frame: the windowed autocorrelation is estimated (the first P values, where P is
the predictor order) and then the Levinson-Durbin algorithm is used to determine the
LPC coefficients. The number of iterations in the algorithm is equal to the predictor
order chosen.

Other equivalent coefficients, such as the reflection coefficients, the log area ratio
coeflicients, or the cepstral coefficients, are determined during the LPC' Parameter
Conversion stage of the block diagram. The cepstral coefficients (which are the co-
efficients of the Fourier transform representation of the log magnitude spectrum) are
considered as the most robust and reliable feature set, used in recognition, among the
above alternatives [2]. The cepstral representation requires an increase in the number
of iterations in the Levinson-Durbin algorithm, due to the fact that more coefficients
than the predictor order are necessary, to obtain a similar accuracy of the spectral
representation.

The Parameter Weighting block consists of bandpass filtering in cepstral domain,
transformation which minimizes the variations due to noise of low-order and high-

order coefficients.
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Chapter 3

Vector Quantization In Speech

Recognition

Quantization is, in the simplest form, the operation which assigns to any scalar value
from a continuous range the nearest approximation (uniquely defined) from a finite
set of values. An immediate example for scalar quantization is the digitization of
an analog signal. The generalization of the above definition to the quantization of a
vector (an ordered set of values) is known as vector quantization.

Vector quantization is commonly used in data compression, due to the high com-
pression ratios achieved: the input vector is mapped into an index in a finite output
set, and the index corresponds to the vector selected as the best approximation for the
input vector. Vector quantization can also be viewed as a form of pattern recognition,
where an input pattern (described by a vector) is assigned to one of a predetermined
set of standard patterns, or templates. In speech recognition, vector quantization
is used both as a complexity reduction technique, because it provides an efficient
representation of data, and as a classification method for the input.

This chapter presents an introduction to vector quantization, the design procedure
of a vector quantizer (VQ), and the application of quantization to speech recognition

systems.
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3.1 Vector Quantization

Vector quantization is a very efficient compression technique, in which every vector
of consecutive input samples is encoded into an integer, or indez, that is associated
with an entry of a collection of reproduction vectors, or codebook. The reproduction
vector, or codeword, chosen is the one that is closest to the input vector in a specified
distortion sense. The coding efficiency is achieved in converting the vector into a
compact integer representation, which ranges from 1 to N, with N being the size of
(number of entries in) the codebook.

More specifically, a VQ performs a mapping ¢} from a vector z (in a k-dimensional

vector space X)) into a finite set of output vectors C' = {Qj}ﬁl with y. € X, Vj.
Q:X—-C (3.1)

The set C represents the codebook, and each vector belonging to the set is called a
codevector. The mapping described above defines also a partition, .S;, of the vector
space X with N regions, or cells, where S; consists of all the input vectors z which
will be quantized into codevector Yy

S;={z€ X:Q(z) =y} (3.2)

J

The association of an input vector to a given cell is based on a “distance” or
distortion measure between the two vectors, i. e. the input vector and the codevector

representing the partition. A metric (distance) function d on a vector space X
d: X xX—R (3.3)

satisfies the properties of positive definiteness, symmetry and the triangle inequality
condition. If a measure of difference satisfies only the positive definiteness property,

it 1s referred to as a distortion measure:

0 ifz=y

d(z,y) = { (3.4)

> ( otherwise

The set of codewords, which forms the VQ codebook, must be chosen such that it

minimizes the average distortion:

D = B{d(z,Q(2)), (3.5)
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where () is the quantization function and Q(z) the quantized value of the input.

In practical systems, the distortion is estimated by considering the average:

- 1
D =

~]

L
Z:d(an(é_E_i)% (3.6)

where {z;} is a sequence of L input vectors; the larger the number of input vectors
over which the estimate is evaluated, the better the estimation accuracy is.
With the optimality criterion for quantizer design defined by 3.5, it can be shown

that the necessary conditions for a quantizer to be optimal are [12]:

1. The Nearest Neighbor Condition: for a given codebook C, an input vector

z 1s assigned to the partition containing the “nearest” codevector:

d(z,Q(z)) = min d(g;,gj) (3.7)

_q].EC

where j spans the entire range for codebook indices. The condition can

also be expressed in terms of the quantizer’s output, as:
Q(z) = y, if and only if d(z,y,) < d(z, gj), Yy # 1. (3.8)

2. The Centroid Condition: for a given partition S;, y = 1,..., NV, of X, the

optimal codevectors satisfy

y. = centroid(5;) (3.9)

where the centroid is defined as the vector which minimizes the average

distortion for the given cluster of input vectors z € .5;:

y, =min ' E{d(z,y) |z € 5;}. (3.10)

25 yeX

The existence of a unique centroid has been proven for distortion measures

of interest [12].
For the squared error distortion measure, denoted by || - ||:

d(z, Q) = ||z — Q(z) |I* (3.11)

the optimality conditions become:
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1. The Nearest Neighbor Condition: for a given codebook, the partition .5},
J=1,..., N of X, must satisfy the following condition:

Sj={ze X:llz—yll <llz=-gll, Vi=1,.. N} (3.12)

2. The Centroid Condition: the centroid is the minimum mean squared esti-
mate of z € S;:

centroid(S;) = E{z |z € 5;} (3.13)

and is uniquely defined. For a finite input set:

7= {21, &3, 2L}, (3.14)

the centroid condition 3.13 can be evaluated as:

L D
centroid(S;) = 21=L_1PJ(Z_)7E1

i=1 Pj(i)

where P;(z) is the probability of each vector z; to be clustered in S;.

(3.15)

The optimality conditions can be used for the improvement of a VQ codebook,
procedure known as codebook training, by minimizing the average error over a training
data set. Following codebook training, the characteristics of the information source
that produced the given training data are embedded in the codebook.

The fact that a VQ is optimally designed for a particular source (i.e. it will achieve
a lower average distortion for signals generated by the source than any other VQ not
designed for that particular source) suggests that a VQ can be successfully used as
a pattern classifier. Details regarding elements of a VQ, such as the training set and

the distortion measure, are presented in the next section.

3.2 Structural Properties of a VQ

The basic VQ training and classification structure is shown in Figure 3.1. It is assumed
that the input to the VQ consists of the results of the spectral feature extraction block,
which are a series of vectors v; , [ = 1, ..., L, characteristic of the time-varying spectral
representation of the speech signal.

The following items are required for implementing a VQ in the context of speech

recognition:
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Figure 3.1: Block Diagram of the Basic VQ Training and Classification Structure

1. A large set of spectral analysis vectors, which form a training set.

2. A spectral distortion measure, which is a measure of similarity, or distance,
between a pair of spectral analysis vectors, allowing to cluster the training
set vectors as well as to associate or classify arbitrary spectral vectors into

unique codebook entries.

3. A centroid computation procedure: on the basis of the partitioning that
classifies the L training set vectors into N clusters, the N codebook vectors

are chosen as the centroid of each of the clusters.

4. A classification procedure for arbitrary speech spectral vectors that chooses
the codebook vector closest to the input vector and uses the codebook
index as the resulting spectral representation. This is also referred to as

the nearest-neighbor labeling or optimal encoding procedure.
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3.2.1 The VQ Training Set

The training set of vectors must be representative of the speech source used in recog-
nition. For a speaker independent recognizer, it should span a wide range of talkers
(including ranges in age group, accent, gender, speaking rate, levels) and speaking
conditions (such as quiet room, automobile noise, workstation noise, etc.).

The training set is used to create the “optimal” set of codebook vectors for rep-
resenting the spectral variability of the source. Because the source distribution is
generally unknown in practical applications, a large number of training vectors must
be used, to provide a good empirical characterization of the source.

Assuming that the size of the VQ codebook is N = 2P vectors (for a so-called
B-bit codebook), then L, the size of the training set, must be a factor of 10 to 100

times larger than N; this ratio is called the training ratio.

3.2.2 Spectral Distortion Measures

The distortion measure is a key component of most pattern-comparison algorithms
and must be defined according to the nature of the data to be quantized. When the
input signal is speech, an important consideration in choosing a distortion measure
is its subjective meaningfulness. A detailed review of perceptual considerations in
defining spectral distortion measures can be found in [2].

The distance measures commonly used for comparing filter-bank vectors are:
e the mean absolute spectral distortion, L, .

e the root mean square log spectral distortion, L,

e the covariance weighted or Mahalanobis spectral difference [12].

For LPC vectors and related feature sets, measures such as the likelihood and cepstral
distances are preferred [2].

The set of norms L,, p = 1,2, ... known as log spectral distances, are defined as:

Q
L, =d(z,z')’ =(d,) = é—z | log(z;) — log(z;")|P. (3.16)

where z and 2’ are two normalized spectral vectors of dimension equal to the number

@ of filters in the feature extraction block.
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Since the perceived loudness of speech is approximately logarithmic, the log spec-
tral distance appears to be closely related to the subjective evaluation of sound dif-
ferences and is considered a perceptually relevant distortion measure. It can also be
shown that the L, measures are metrics because they satisfy the conditions of positive
definiteness, symmetry and the triangle inequality.

The log spectral distances are much smaller for versions of the same sound, than
when different sounds are compared. This property is exploited by accumulating
spectral distortions over time when comparing utterances.

The other type of distortion measure used with filter-bank analyzers is the Maha-

lanobis distortion measure, a particular case of the weighted squared error measure:

d(z,y) =(z—y) W(z—y) (3.17)

where W is the inverse of the covariance matrix of the input, and z and y are column
spectral vectors.

The computation of log spectral features is performed very efficiently by analog
pre-processors, such as the filter bank, but is very demanding computationally if
a digital signal processing front-end is used [2]. The covariance weighted method
is also demanding computationally, due to the evaluation of the covariance matrix
of the input vector. Among the distortion measures presented above, L has the
lowest implementation complexity, and was the method of choice for the baseline
implementation of the recognizer.

All the distortion measures presented above are designed to compare two static
spectral representations, usually short-time estimates of the speech signal. These
distances can be used for sequences of spectra by accumulating their values over
time, but this procedure does not reflect the dynamic characteristics of the sequence.
Several methods of incorporating the spectral dynamic features into the distortion

measure are discussed in the next Chapter.

3.3 VQ Design

The objective of VQ design is to define a codebook and a partition, or encoding rule,
that will maximize the VQ performance. The sufficient conditions of optimality, which

would generate a closed-form solution for the optimal quantizer, are not known [12].
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The optimality conditions (which are only necessary conditions) mentioned in Section
3.1 are at the basis of defining iterative improvements of a given VQ codebook. The
Nearest Neighbor condition 3.12 defines a rule for finding the best partition given a
codebook C', while the Centroid condition 3.13 defines the optimal codeword y. for
each cell S; in a given partition.

The iteration begins with a VQ consisting of an initial codebook C and a training
set which is clustered into a partition, according to the Nearest Neighbor condition.
The next step is finding if there are any empty partition cells, that have no vectors
assigned after the clustering is finished. The new centroids of non-empty cells (com-
puted according to the centroid condition), together with the codewords assigned as
centroids to empty cells (if any), form the improved codebook C".

This iterative process is known as the Lloyd iteration, and is the basis of the
generalized Lloyd algorithm for VQ design, which is a form of the k-means algorithm.
The application of the necessary conditions for optimality at each step of the algorithm
ensures that each iteration reduces or leaves unchanged the average distortion.

Although this algorithm leads to an improved version of the original codebook, it
doesn’t guarantee the global optimality of the resulting quantizer. However, practical

implementations of the algorithm have been found to be very effective [12].

3.3.1 Codebook Initialization

The initialization conditions of the iterative algorithm for generating an improved
codebook assume that a training set of vectors and a codebook are available as input
data.

There are a variety of techniques for generating a codebook that have been devel-

oped in the fields of pattern recognition and vector quantization, such as:
o random selection of the codewords according to the source distribution;
e pruning the training set until a final set remains as the codebook;
e codebook splitting,

to name but a few that were surveyed in [12].
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The procedure used for codebook initialization in this implementation is the split-

ting algorithm or the LBG algorithm, which produces increasingly larger codebooks,

until the desired codebook size is reached [13]. The algorithm is described as follows:

1.

Initialization: start with a one-vector codebook, which is the centroid of

the entire training set.

Splitting: a codeword is split in two other codewords, thus incrementing
the size of the codebook:

yT=y+te (3.18)
y =y—¢ (3.19)

where ¢ is a vector of small euclidean norm compared to the other training

vectors.

Training: iterative improvement of the split codebook using the k-means

algorithm. This step does not change the codebook size.

Completion Test: if the size of the codebook has not been reached yet,

steps 2 and 3 are iterated.

3.3.2 Codebook Improvement

The application of the k-means algorithm to a given codebook and consists of the

following steps:

. Initialization: start with a codebook, and a large training set.

Nearest Neighbor Search: each of the vectors in the training data are
classified into one of the clusters, according to the minimum distortion

measure criterion ( 3.12).

. Average Distortion Computation: the contribution of each input vec-

tor to the distortion measure is the minimum distance, determined during
step 2, with respect to the codeword selected as the best approximation

for the input vector.

Centroid Computation: for each non-empty partition, the new code-

word will be computed according to 3.15 from all the training vectors
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clustered in it. The codeword assigned to an empty cell can be obtained in
a number of ways, such as by splitting the centroid of the most populated

cell or that of the cell with the highest partial distortion.

5. Completion Test: if the change in average distortion falls below some
predetermined threshold, the optimization is complete; otherwise another

iteration of steps 2 to 4 is performed.

3.4 Applications to Speech Recognition

In the design of VQ-based recognition systems, the following factors which influence

the performance must be considered:

e The level of quantization error in representing the analysis vector. Since there
is only a finite number of codebook vectors, the process of choosing the “best”
representation of a given spectral vector is equivalent to quantizing the vector,
and leads, by definition, to a certain level of distortion. As the size of the code-
book increases, the size of the quantization error decreases. A compromise must
be reached between how the representation accuracy reflects in the recognition

performance and the amount of storage available for the codebooks.

e The codebook storage requirement can become too large for recognition systems
with large vocabularies. Hence a trade-off among quantization error, processing

for choosing the codebook vector, and storage of codebooks must be reached.

The recognition system implemented for this study has the structure presented
in Figure 3.2. By comparing Figure 3.1 to the generic block diagram of a pattern
recognizer presented in Figure 2.1 it can be seen that the pattern classification struc-
ture corresponds to the VQ structure. Indeed, suppose there are V' utterance classes
(words, phrases) to be recognized, and a separate codebook is built using as training
data only utterances corresponding to one class. During quantization, each of the V
codebooks is used in turn by the VQ to compute an average distortion score, ¢; for
t=1,...,V, and when V scores are computed, the minimum is selected. The recogni-
tion decision is the class index corresponding to the minimum distortion score. The V

codebooks are analogous to V (sets of) reference patterns (templates) in Figure 2.1.
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This method of using a VQ in the recognition process is referred to as “pattern
comparison without time alignment”, to distinguish it from other procedures that use
time alignment, and is used for highly non-confusable vocabularies. From the block
diagram of a VQ-based recognition system, presented in Figure 3.2, it can be seen
that the decision block can be used not only to find the minimum distortion score
candidate, but also to screen out word candidates that are very unlikely to match
the unknown utterance. The V(Q can then pass the rest of the candidates to a more

sophisticated decision block, thus acting as a “pre-processor”.
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Chapter 4

Temporal Information in

Recognition

The performance of VQ-based recognition systems that use the accumulated spectral
distortion over the duration of an entire utterance is adequate only if the vocabulary
of the application is highly non-confusable, with non-overlapping phonetic content.
Improvements in recognition accuracy can be obtained by eliminating variations in
utterance duration and spectral features alignment and by using during quantiza-
tion discriminability criteria such as the spectral dynamic behavior and the order of
occurrence of significant features within the spectral profile.

Utterances representing the same class, or word, have different time durations, a
fact which can be observed by examining the log energy contours presented in Fig-
ure 4.1 for two such utterances. This difference in duration can be easily compensated
by normalizing both utterances to have a fixed length in time. The time normalized
versions of the two energy profiles are presented in Figure 4.2, which shows that nor-
malization is not sufficient to produce perfectly aligned patterns: indeed, the temporal
locations of the vowel peaks are also slightly different.

This analysis shows that it is desirable th> normalize the speaking rate fluctuation
and to align the speech patterns before a recognition decision can be made. The so-
lution to the problem of time aligning speech patterns is known in speech recognition
as dynamic time warping (DTW), and will be presented in Section 4.1 of this chap-
ter. DTW increases the recognition performance, but in the same time increases the

complexity of the recognizer’s implementation, due to the computationally intensive
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time alignment procedure.

Less complex VQ-based recognition implementations, with satisfactory perfor-
mance for small vocabularies, use the methods known as pattern recognition without
time alignment. These recognition systems make use of the temporal information dur-
ing quantization and are presented in Section 4.2. Experimental results have shown
that dynamic features of the speech spectrum contribute significantly to the overall
recognition [15]. As a result, distortion measures based on the variational spectral
features have been used to improve the recognition performance. Another factor which
influences the recognition performance is the sequence of occurrence (temporal order)
of spectral features, especially for vocabularies containing utterances with overlap-
ping phonetic content, such as "car” or "rack”. The following VQ based recognition

methods use temporal information during quantization:
e matriz V(), which quantizes an entire block of short-time features;

e trellis V@, which contains information regarding the relationship between adja-

cent segments in time;

o segmental V@), which uses a separate codebook for each individual segment of

an utterance.

A VQ-based recognition method which offers better recognition performance and
a high reduction in complexity (10-20 times less than DTW) was developed by Pan
et. al. [7]. In a more formal attempt to characterize the temporal behavior of the
speech patterns, and to incorporate it in the design of the VQ recognizer, the method
evaluates the probability density function (PDF) of the time of occurrence for the
spectral vectors in the codebook and, based on it, creates probability tables which are
used in conjunction with the spectral codebooks during quantization. This approach
is referred to in this thesis as the temporal probability tables method and is presented
in more detail in Section 4.2.3. .

Recognizers using segmental VQ and the probability tables method were imple-
mented as a reference for evaluating the performance of the new spectral-temporal
quantization methods proposed in this thesis. The comparison results, presented in
Chapter 7, show that the new methods offer an improvement in performance, with

lesser or equal computational and storage requirements, than the existent methods.
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4.1 Pattern Comparison With Time Alignment

The essential component of pattern recognition methods with time alignment is the
normalization and time warping of the patterns in order to eliminate the effects
of speaking rate variation and pattern length on the recognition accuracy. These
methods emerged as solutions to the problem of comparing speech utterances which,
although representing the same vocabulary word (class), can have significantly dif-
ferent durations and profile dynamics. Normalization and alignment, performed in
the context of preserving the sequential order of the spectral characteristics, generate

consistent spectral pairs which can then be directly compared in the decision process.

4.1.1 Time Normalization

In speech recognition, time normalization of input utterances compensates for the
negative effects that differences in utterance duration can have on the system’s per-
formance. Normalization is achieved through a transformation, or warping, of the
original spectral profiles, so that all utterances have a given fixed length in time
(measured in number of short-time spectral samples).

To define the time normalization technique, two speech patterns X and Y, of
different durations T, and T}, are considered. Assuming that they are represented by
the spectral sequences (z;,z,,...,z7,) and (y,,Y,, ...,gTy), respectively, where z; and
y, are parameter vectors of the short time acoustic features, the dissimilarity between
X and Y can be defined by considering a distance function d of the short-time spectral

distortions (distortions between short-time spectra) given by:

dizsiy) = Nz, — v, |l (4.)
wherei, = 1,2,...,T; and iy, = 1,2,..., T, denote time indices of X and Y, respectively,

and z, can be represented as a function of ¢; iIn 4.1:
A(iz,1y) = d(iz, 14(22))- (4.2)
The simplest solution to the problem of time alignment and normalization is the

linear time normalization technique. In linear time normalization, the dissimilarity

between X and Y is defined as:

dX,Y) = 3 dlia,iy), (4.3)

i.=1
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Normalization

Figure 4.3: Linear Time Normalization

where ¢, and ¢, satisfy
by =7(=") - g (4.4)
The function r represents a round-off rule which produces an integer result.

Linear time normalization and alignment is based on the assumption that the
speaking rate variation is proportional to the duration of the utterance and is in-
dependent of the sound being spoken. Evaluation of the distortion measure takes
place along the diagonal straight line of the rectangle in the (¢,,1,) plane, as shown
in Figure 4.3.

A more general time normalization scheme involves the use of two warping func-
tions, @, and ¢,, which relate the indices of the two speech patterns, 7, and i,

respectively, to a common, "normal” time axis k:
ie = ¢u(k), Yh=1,...,T (4.5)

and

iy = ¢y(k), Ve=1,..,T (4.6)

The warping function pair ¢ = (¢, ¢,) represents the time normalization path in the

index space.
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A global pattern dissimilarity measure dy(X,Y) can be defined based on the warp-

ing function ¢, as the accumulated distortion over the entire utterance:

m(k )

T
Z (@2(k), by (k)= (4.7)

where:
d(¢:(k), ¢y(k)) is a short-time spectral distortion defined for L, k) and yg, k),
e m(k) is a non-negative path weighing coefficient and
e My is a path normalizing factor.

Figure 4.4 shows an example of the above general time normalization scheme; the
solid line in the lower grid, presented Figure 4.4 (c), represents the path along which
ds(X,Y) is evaluated. The grid points on the path are labeled incrementally from
k= 1to k =T, where T is the normalized duration of the two patterns on the &
scale. The indices i, and 7y, as functions of the normal time scale %, are shown in
Figure 4.4 (a) and Figure 4.4 (b). The requirement to maintain temporal order in
the spectral representations of X and Y means that the warping functions ¢, and ¢,
must be monotonically nondecreasing. If the normalization path ¢ defined above also
minimizes the overall distortion between the two patterns, it can be considered as the

optimal alignment path.

4.1.2 Time Alignment

The problem of finding the "best” alignment between a pair of patterns is equivalent
to finding the ”best” path ¢ through a grid mapping the acoustic features of one
pattern to the acoustic features of another pattern. The choice of the path must be
made such that the overall path dissimilarity d can be measured with consistency.
For patterns representing utterances of the same word, the "best” path minimizes the
distortion d4(X,Y):

dX,Y) = 11211 ds(X,Y) (4.8)

However, since a ”correct” time alignment between utterances of different words does

not exist linguistically, the definition for distortion as a minimum over all possible
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paths can be changed so that it will reflect the structure of the vocabulary by im-
proving the discriminability of words differing only on a small, critical portion of
the spectral profile. For these cases, a discriminative weighing is introduced in the
computation of the distortion measure (equations 4.7 and 4.19).

The solution to the time alignment problem can be found using dynamic pro-
gramming techniques, in particular the synchronous sequential decision regarding a
minimum path solution through a graph [2]. The algorithm finds the optimal sequence
in a fixed number, M, of moves, starting from point A and ending at point 5 in the
graph presented in Figure 4.4 (c¢), and the associated minimum distortion d.

The optimality principle at the basis of this algorithm states that, at each step in
the algorithm, whatever the initial state and decision are, the remaining decisions must
be optimal with the respect to the state resulting from the first decision [16]. This
optimality principle is at the basis of a class of computational algorithms regarding
minimal paths through graphs. For the example of finding the best m-th move in the
grid from Figure 4.4 (c), with m = 1,..., M, it is assumed that the minimum path for
each of the N points and their associated distortions after step m — 1 are known to
be dm-1(A,1), YVl =1,..., N. For each point & in the column after the m-th move, the

associated distortion will be, according to the optimality principle:
dm(A k) = mlin [dm-1(A, 1)+ d(l, k)] (4.9)

The algorithm, as a result of the optimality principle, keeps track of only N
paths, ending at each of the IV points, at the completion of every potential move. The
computational complexity of order N M, low relatively to the total number of possible
paths NM~1. However, in comparison to considering only linear time normalization,
with no weighing, the storage and computational complexity is increased by a factor
of M.

When the dynamic programming approach is used to find the time-alignment path
for comparing a pair of speech patterns, a set of constraints which result from the
nature of the objects being compared must be imposed to restrict the domain of the

search, and thus decrease the computational complexity:

o endpoint constraints When the endpoints of the speech pattern are well defined

prior to DTW, the following set of restrictions for the warping functions result:
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Figure 4.5: Example of Local Continuity Constraints

Beginning point: ¢, =1,¢, =1 (4.10)

Ending point: ¢, = 14,4, =T, (4.11)

In cases where the endpoints cannot be reliably determined (utterances in noisy
environments), the constraints are relaxed to compensate for the possible seg-

mentation error, with the penalty of increased computational complexity.

e monotonicity constraints, used to maintain the temporal order of the spectral
sequence in the speech pattern, thus preserving the linguistic significance of the
pattern. According to this criteria, any path which is an acceptable solution

must have non-negative slope:

balk +1) 2 dalk), VE=1,...

& (4.12)
$y(k +1) > ¢y(k), Vk=1,..,T, '

e local continuity constraints expressed as a set of allowable paths to reach a
given point. They ensure proper time alignment and reduce the computational
complexity by restricting the shape of the path and are based on experimental
resu]té (heuristics). An example of local continuity constraints is presented in

Figure 4.5.

e global path constraints, which are a direct result of applying the local continuity

constraints to exclude certain portions of the plane. The allowable regions can



CHAPTER 4. TEMPORAL INFORMATION IN RECOGNITION 47

0y®) =216, -1]+ 1

(1,T,) / (T, T,)
oo O
== |~
y y Legal Range
& -1
(L1 / (T, 1)

0,0 =2 (0,00 T, 1+ T,

Figure 4.6: Global Continuity Constraints

be defined using the maximum and minimum path expansion, Qyuin and Qpaz,

as follows:

1+ 2L < g, <1 Qi) 1 (4.13)
Tt alh) - Te < 8y < T+ STy -0 )

Figure 4.6 illustrates the effects of the global path constraints when the local
continuity constraints presented in Figure 4.5 are used (with Qmae = 1/@min =
2 ). Additional global path constraints exclude any path that involves excessive

time stretch or compression [16].

e slope weighing constraints, used to define the weighing function m(k), which

controls the contribution of each short time distortion to the overall distortion
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measure. On a global scale, this function can be used to implement an optimal
discriminant analysis for improved recognition accuracy in the case of a confus-
able vocabulary. On a local scale, it specifies the slope weighing factors for the
local path constraints presented in Figure 4.5. In the latter case the weigh-
ing factor is higher for less preferable paths, in order to reflect their increased

contribution to the distortion measure.

4.1.3 DTW-Based Pattern Comparison

The method of pattern comparison with time alignment uses the normalization and
optimal alignment path methods presented above to process the input pattern. The
reference patterns used for comparison with unknown patterns are created through
template training methods presented below, while recognition is based on the mini-
mum time warped distortion criteria to the set of reference patterns.

Template training methods include:

e casual training,
e robust training using unsupervised averaging

e training using the modified k-means algorithm.

These methods are similar to the vector quantization training procedures presented
in Chapter 3. The distortion measure used is given by equation 4.19 and the centroid
computation procedure is a warped version of the clustered average.

To describe in more detail the robust training training procedure, which requires
a large number of training vectors (as described in Section 3.2.1), only two training

patterns X; and X, of lengths T} and T, respectively, are considered:

X1 = (Z11, L2, 2135 - L1y ) (4.15)

and
X2 = (&'217£2275§237“-a§2T2) (416)

are used to generate a reference pattern Y of normalized size T,

Y = (Y5 ¥y Ygo 1Y) (4.17)
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where the vectors z and y are short time spectra.

The training patterns are compared via a DTW procedure, resulting in a distortion

score d(X;,X;), given by:

d(X],Xg) = d¢(X1,X2) = ll})illl dd)’(Xl,X‘Z) (418)
where -
, , m(k
dp(X,Y) = 37 d(d (k). ¢3() L) (1.19)
k=1 M‘ﬁ/

is based on a spectral distortion d and a set of warping functions ¢}, ¢, which map
the indices of X; and X, respectively, into the normalized index range [1,T]; m(k)
is the path weighing coefficient and My is the path normalizing factor.

The elements of the reference pattern Y are then computed based on the optimal
path ¢ = (g1, ¢2):

v = 5 (@) + Taiat)y VE= 1,0, T (4.20)

The training methods which use clustering with unsupervised averaging or the
modified k-means algorithm are completely defined by the type of distortion measure
used during clustering and by the cluster center selection criteria. For a cluster {2 of
L training patterns w = Xy,...X a dissimilarity or distance matrix D = (d;;), Vi =
1,...,L,Vj=1,..., Lis defined based on the dissimilarity measure given in 4.19 where
di; 1s calculated as:

dij = %[d(Xan) +d(X;, X)) (4.21)

With the reference patterns thus defined by the training procedure selected, the recog-
nition decision is based on the minimum distortion criteria.

In addition to the distortion measure defined above, a criteria for selecting the
cluster center must be defined. There are several possible criteria for defining a

cluster center:

e as the minimaz center, defined as the pattern in the cluster whose maximum

distance to any other pattern in the cluster is the smallest;

e as the pseudo-average center, which is the pattern in the cluster with the largest
population of neighboring patterns. The subset of neighboring patterns in the
cluster is defined as those patterns whose distance to the pattern analyzed falls

within a threshold.



CHAPTER 4. TEMPORAL INFORMATION IN RECOGNITION 50

o as a warped average. For every time index (frame), the new center represents an
average of all the cluster patterns warped to the existent cluster center (which

is either the minimax center or the pseudoaverage center).

The cluster centers thus defined may not minimize the average intracluster distance
and as a result, the modified k-means algorithm is not guaranteed to converge in the

sense of the minimum intracluster distance.

4.2 Pattern Comparison Without Time Alignment

Quantization-based recognition systems which incorporate temporal information mainly
in the structure of the quantizers and in the decision process are also known as systems
without time alignment, to distinguish them from the DTW based systems, which
perform time normalization independently of the quantization or decision blocks.

In the VQ design, the following components have been modified to reflect the

temporal information:

e the distortion measure used in quantization, as in VQ with spectral variational

features;
e the codebook structure, as in segmental VQ and trellis VQ;
e the clustering procedure, as in the trellis VQ.

These examples of spectral temporal VQ design are used as a reference for the VQ

methods described in this thesis.

4.2.1 Quantization of Spectral Dynamic Features

The study of modified distortion measures that incorporate spectral dynamic features
is justified by the connection between perceptual differentiation of sounds and the
variations in their spectral profile.

Spectral transitions play an important role in speech perception. It was demon-
strated [15], by using syllables truncated at the initial or final end, that the portion of
the utterance where the spectral variation was locally maximum contained the most

important phonetic information in the syllable. This result implies that the dynamic,
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variational features of the spectrum contribute significantly to the overall recognition
performance.
Dynamic features of speech are often represented by a time differential log spec-

trum. For example, a first order differential (log) spectrum is defined by:

Jdlog S(w,t
5(t) = —gat(’"—) (4.22)

where S(w,1) is the spectral representation of the utterance obtained by performing
short-time spectral analysis (as discussed in Chapter 2. The corresponding first order

differential spectral distortion measure is defined as:
. T

as* = |
-7

The differential distortion can be combined with the non-differential spectral dis-

dlog S'(w,t)  Dlog S(w, 1)’ dw
ot ot 2

(4.23)

tance d to generate the overall distortion D:
D2 = ’71(12 + ")’2(152 (424)

where v, and ~; are weighing coefficients.
It was found experimentally that the distances d and ds are sufficiently uncorre-
lated to justify the use of the differential distortion to improve the discriminability of

a recognition system [15].

4.2.2 Vector Quantizers With Memory

When the utterances are long enough to cause significant overlap in phonetic content
among different utterance classes, or the sequential (temporal) characteristics of the
utterance are the only distinguishing factor in recognition, simple, memoryless vector
quantizers have inadequate recognition performance. As a possible solution, VQs
with memory, such as matrix VQ and trellis VQ, can be used to capture the temporal
characteristics of the utterances.

A matriz quantizer is a direct extension of the memoryless VQ which encodes
several vectors simultaneously. Matrix quantizers can be designed using the same

Lloyd algorithm described in Section 3.3.2. If n spectra are encoded at the same
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time, the codebook C' = {Y;}, is then designed to minimize

1 T—-n+1 .
R — (X, X
b T—n+1 ; (X, Xo)

where
Xt = (Eta Liggy-eey :Et+71—1)

is a sequence of spectral vectors (and thus a matrix) and

X, = arg mm d' (X, Y5).

Y.eC

The distortion d' is often defined for simplicity by:

d Xt, Zd.TH_J 1, 1]

(4.28)

Simultaneous encoding of the sequence of spectral vectors, as defined by equation 4.28,

implies that the codewords Y; have certain embedded block memory constraints. The

only differences from Lloyd’s algorithm are that minimum distortion criteria applies

to a sequence of spectra and that the centroid computation (a matrix of n vectors)

involves finding n separate centroids for each codeword.

Another VQ with memory is the trellis V@) in which the interdependence in the

sequence of input spectra is described by a transition structure represented by a trellis.

A trellis VQ) is a finite state quantizer, specified by a finite state space @) , an initial

state go, and three functions:

e an encoder a: A X ) — N where A denotes the space of spectral observations

and N is the index set,

e a transition, function f : @ x N — @, also known as the next state function,

and

e adecoder B:Q x N — A where A is the space of reproduction spectral vectors

(i.e. codewords).

During encoding, the input z, € A is assigned to a codeword with index u, € N

based on the current state ¢;:

Uy = a(—‘r-t’ Qt)'

(4.29)
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The state advances according to the transition function f:

g1 = fqe, ur)- (4.30)

The decoder 8 reconstructs z, by ;:

I, = B(qe, ue). (4.31)

The encoder « selects u; based on the minimum distortion criteria:

uy = oz, q;) = arg néij{fld(gt,ﬂ(qt, u)). (4.32)

The codebook and the next state function are designed to minimize

_ 1 T N
=7 2z, Age (20, 0))), (4.33)
t:l

which describes the centroid computation procedure in the k-means algorithm.

The next state function can be defined by eliminating the non-essential transitions
in a trellis which was generated by a regular memoryless V(). Non-essential transitions
are defined as those transitions that can be replaced by an alternate transition with a
minimum degradation in distortion performance. A detailed description of the trellis
VQ design and clustering algorithm can be found in [12], [17]. In the case of trellis
VQ, temporal information is incorporated in the trellis constraints, while in the case
of matrix VQ, temporal information is incorporated in the block constraints.

The lack of explicit characterization of the sequential behavior of the utterance
can also be remedied by treating each utterance class as a concatenation of a number
of N; segments, each of which is represented by a V() codebook. This segment-specific
VQ approach is known as segmental VQ [2], [8].

For an utterance {z,}L ,, the simplest way to decompose it into a concatenation
of N information subsources is to equally divide the utterance into N; segments.
This linear scheme is illustrated in Figure' 4.7. More sophisticated segmentation
schemes, based for example on phonetic segmentation, are also possible, and can lead
to improved performance [9].

The training set of utterances corresponding to a given dictionary word are all
segmented using the same scheme and each of the N, codebooks are trained using the

corresponding training segments. These codebooks have an implicit temporal order
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Figure 4.7: Segmental VQ

because they correspond to different portions of the utterances. The average distortion
resulting from encoding an unknown utterance with the corresponding successive VQs
is the discriminant score for the recognition decision.

Segmental VQ requires the same computational complexity as the previous utterance-
based VQ, for the same codebook size. The only complexity increase is in the codebook
storage. The preserved sequential relationship of the utterance segments provides an
increase in performance in comparison with a VQ without segmentation.

Let V be the number of words in the recognition vocabulary. This implies that
V multiple segments codebooks Cy with k£ = 1,...,V are used, each comprising of a
sequence of segment codebooks Cyj, with j = 1,..., N;. Each segment codebook Cj;
is designed using n spectral samples (framés) from the normalized input utterance
profile, from the [(j — 1)n + 1]-th to the jn-th sample. The ratio n is called the
compression factor and is rounded off to the integer nearest to T'/N; .

The average distortion resulting from coding the utterance with the codebook
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%)
1s
1 &
Dp == di (4.34)
L st
where .
mn
dy= S dlznCu() (4.35)

I=(j—-1)n+1
and Ci;(1) is the codeword resulting from encoding the sample z; with the segment
codebook Cy;. The utterance is then classified as the r-th word in the recognition
vocabulary, where:

D, = mkin Dy, (4.36)

4.2.3 The Temporal Probability Tables Method

An alternative procedure for incorporating temporal information in the structure of
a word-based VQ recognizer without time alignment, the temporal probability tables
method computes the PDF of the codebook vectors’ time of occurrence and uses a
combined spectral and temporal distortion measure.

In this method, for each codebook vector, the PDF of the time of occurrence (on
a normalized time scale), estimated from the same set of training sequences used
to derive the codebook vectors, represents the probability table associated with the
particular class. The collection of probability tables thus created form a temporal
codebook. During recognition, for each frame of the unknown input utterance, a
spectral distance is computed with respect to the spectral codebooks. The spectral
distance is then combined with the temporal probability corresponding to the chosen
spectral codebook vector, of minimum spectral distortion, to form the total distortion
score.

In the word-based VQ speech recognizer, there is one vector quantizer and one
separate codebook for each vocabulary word. Each codebook C consists of a set of n

spectral vectors Yt
C={y}L (4.37)

and can be generated using any of the codebook training procedures described in
Chapter 3. The input to the recognizer used in the probability tables method requires

a normalization procedure of the input spectral profiles to a fixed length of I frames.
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Figure 4.8: Distortion Measure Computation for the Probability Tables Method

Each vector in the vocabulary is also characterized by a temporal probability table

P with elements defined as:

P(k,t) = the probability that codeword y, occurs at the normalized time ¢ =/1.
(4.38)
These probabilities are defined during the training procedure of the spectral code-
books, by recording the number of occurrences of codeword k at time ¢, V¢t = 1,...,].
For each input training vector, all codebook vectors whose distortion is within a fixed
threshold, é, of the minimum distortion score for the input vector, are considered to

have occurred. The value used for P(k,t) is the ratio between the number of times
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codebook vector k occurred at time t, and the number of times any codebook vec-
tor occurred at time ¢, over the entire training set for the word. This definition is

consistent with the probability definition, because:

> P(k,t)=1, V¢ (4.39)

k=1

The temporal probability tables are defined as:

. 7 log P(k, 1), if P(k,t
{ T log P(k,t), if P(k,t) > o (4.40)

Pk, t) =
(- 1) —71 log o, if P(k,t) <o

The multiplier, 7, was chosen so that, averaged over the entire training set, the average
value of P(k,t) was the same as the average spectral distortion. The clipping level ¢ =
10~* ensures that the probability tables are consistently defined for null probability
scores.

The spectral codebook C and the probability table P for a word in the vocabulary
are used to compute a combined spectral-temporal distortion between the input vector

z; and the codebook C':
d(z;, C, P) = (1 — @) ds(z;, C) + a dr(ki, P) (4.41)

where dgs is the spectral distortion and dr is the temporal probability distortion. The
scaling value a determines the mix of spectral and temporal distortions. A value of
a = 0 represents pure spectral distortion, while a value of @ = 1 represents pure
temporal distortion. |

The spectral distance has the form:
ds(z;,C) = mkin d(z:,y,) (4.42)

and the value of the index k for which this minimum is reached represents the value

k; used in equation 4.41. The temporal distance corresponding to k; has the form:
dp(ki, P) = P(k,i/I), Vi=1,..,1 (4.43)

The average total distortion is computed using equation 4.41 over all the I input
utterance frames. The word corresponding to the codebook with the lowest average

distortion is the word selected as the recognition result.
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The distortion computation procedure is illustrated in the block diagram of Fig-
ure 4.8, for a recognizer with a vocabulary of size V. Each input vector representing
the normalized spectral profile an isolated utterance is quantized with respect to each
of the spectral codebooks, resulting in a spectral distortion score ds. The codeword
index chosen in codebook V for frame ¢ is denoted by ky;, and is the index of the
temporal distortion score, dr, in the corresponding probability table. The spectral
and temporal distortion scores for word V are denoted by dr¥ and ds”, respectively,
while d¥ represents the average combined distortion score used in the recognition

decision.



Chapter 5
Spectral-Temporal VQ

Two alternative methods of incorporating the time information in the structure of a
VQ-based recognition system are proposed and investigated: VQ with Ttme Compo-
nents, which uses spectral-temporal codebooks, and V@ with QOverlapped Segmented
Codebooks, which uses multiple spectral codebooks for each input utterance. In both
cases, the time information is incorporated in the VQ design directly into the code-
book. The proposed approaches are compared respectively with the approach based
on probability tables, presented in Section 4.2.3, and with the segmental VQ ap-
proach, presented in Section 4.2.2. The results of this comparison are presented in
Chapter 7.

In the first approach, VQ with Time Components, each word is represented by
a codebook having codevectors with spectral components and temporal components,
or time components. The codebook is searched using a weighted Euclidean distance
applied to the log-spectral components and to the time components. Both compo-
nents are obtained through a joint spectral-temporal training procedure. The time
components approach obtained better recognition results than the probability tables
approach, although the former uses significantly less memory than the latter.

In the second approach, V@ with Overlapped Segmented Codebooks, the time
information is built implicitly into the codebook by training each codebook with
input vectors corresponding to an utterance segment defined to start and end at a
given normalized time. Each linearly time-normalized section of the input utterance is
represented by a set of codevectors which for a so-called sub-codebook and adjacent sub-

codebooks are overlapped to a variable degree. This technique is a generalization of
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the segmental VQ} approach, and increases recognition performance without increasing

significantly the system’s memory requirements.

5.1 Quantization of Spectral Patterns with Time

Components

The design of a quantizer for spectral patterns with temporal components consists of
defining the spectral-temporal codebook training procedure and the distortion mea-
sure used in clustering the spectral-temporal input vectors. The training of a hybrid
codebook requires a joint spectral-temporal optimization procedure, while clustering
using a hybrid codebook requires the definition of a combined spectral-temporal dis-
tance measure, used to compute the accumulated average distortion for the entire
input utterance.

Each spectral input vector, combined with the normalized time of occurrence in
the spectral profile of the utterance, forms the input vector to the spectral-temporal
quantization process. The codewords used during quantization consist also of a spec-
tral part and of a temporal part. The temporal part of a codeword is defined as
the most probable time(s) of arrival for the associated spectral codeword. Unlike the
input vector considered in this method, which has only one temporal component, the
temporal part of the codebook may have more than one time component. As a re-
sult, this approach to spectral-temporal quantization is referred to as V@ with Time

Components.

5.1.1 VQ with Time Components

In VQ with Time Components, temporal information is added to the quantization of

short-time spectral features in two ways:

e by explicitly quantizing the normalized time of occurrence (time component) of

each spectral vector

e by using a combined distortion measure which reflects the contribution of both

spectral and temporal components of the input, to the recognition result.
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For a consistent definition of the time components, all input utterances are linearly
time normalized to a fixed length L. Assuming that a time-normalized utterance can

be represented as a sequence of short-time, (J-dimensional, log spectral vectors
z =logS(w,?), Vi=1,..,L, (5.1)

(where 7 is the normalized time index or time of occurrence), then a spectral-temporal

representation of the input is:

An example of spectral-temporal representation of an utterance, time normalized to
length L = 40, is presented in Figure 5.1. A spectral-temporal vector z; consists of
16 spectral components, one for each filter band, plus the time index 7, represented
on the abscissa by an “x”. For each time index, the vertical 17-component collection
of points is a graphical representation of the spectral-temporal feature vector used in
recognition.

Considering for the beginning the case of one time component per codeword, n

the size N codebook, the codevectors are of the form:
Y, = (s k) VE=1,..,N, (5.3)

where ¢, is the time component (real number in the range [1, L]) and k& is the codeword
index.

The training of the codebook is done in two steps:

1. the spectral components y, are trained independently of the time compo-

nent using the Fuclidean distortion measure:
ds(z,y) = [lz — yII* (5.4)

2. the time component is trained clustering based on the spectral components
only, and represents the average time of arrival for all the spectral-temporal
input vectors belonging to the same spectral cluster. Multiple time com-
ponents describe the distribution of the time of arrival for vectors in the

same cluster.
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Figure 5.1:

Spectral-Temporal Representation of the Time-Normalized Utterance
"one”

This definition of the time component, as an approximation of the time of occur-
rence PDF, is consistent with the time index histograms for each spectral codeword,
which have one or more distinctive peaks corresponding to the time component(s)
associated with the spectral codeword. Examples of such histograms are presented in
Figure 5.2, for codewords 13, 14, 15 and 16 in codebook 1. The histogram function

is denoted by H(k,:), and represents the number of selections of codeword &, y,, at
time index :, Vi =1, ..., L.
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Figure 5.2: Time Index Histograms

When the spectral-temporal codevector has one time component, the value of this
component is given by the average value of the histogram H:

FT Sk H (k)

(5.5)

as can be seen in Figure 5.3 (a), where the approximation of the one peak is rep-

4

9.9

resented by the central vertical line in the graph labeled “1 TC”. Equation 5.5 1s
equivalent to the centroid computation procedure given by equation 3.15.
For the case of m time components, histogram averaging is performed by examining

intervals around the m highest histogram peaks. The time index interval, [t,,, t'n],
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surrounding each peak, is defined in respect with a count threshold 7, defined as a
percentage of the maximum histogram value. The value of the threshold is selected
experimentally to maximize the performance of the recognition system. The m-th

time component, corresponding to each interval [t,,,%',], is given by:

1=t
Sim, H(k,1)

This case is shown in Figure 5.3, where the values of the two time components are

Z‘.'mm H(k,e)*1

(5.6)

tmk =

represented by the abscissa of lines P1 and P2, respectively, for a threshold 7 = 30%
of the maximum histogram value.
The average spectral and temporal variances, o, 1s computed for each spectral

cluster k, during the temporal training process, as follows:

, 1 & ‘
o’ = -H—kgllz(” —y % (5.7)
where || - || is defined for a Q-dimensional spectral vector as:
. 1.9 .
12—y, II* = 0 ;(-’E(’)(j) —y(7))". (5:8)

For the case of one time component, the average temporal variance, o, is defined as:

A ,
O'tkz = Y{—; ;(Z - tk)z. (5())

Above, Hj, represents the total number of selections of codeword &:

Similarly, for the case of multiple time components:

1 Hmk' )
F—k Z(Z - tmk) . (511)

=1

2
Otmk =

with
t'm
Hoe =Y H(k,i), (5.12)

1=lm

corresponding to the m-th interval above the threshold 7. If the number of desired

time components is less than the number of intervals with histogram values above 7,
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the components ¢,,; of the intervals with the highest number of selections H,,; are

chosen as the temporal part of the codeword. If less intervals than the desired number

of time components are found, the remaining time components are initialized to 0.
The distortion measure used during the quantization of an unknown input pattern

Z; in searching the codebook

b, = (gt VE= LN 5,13
is given by
2
: Tsk . :
d(zi,y,) = llz; =y, |I* + ~alis tr)” (5.14)
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where 0,2 and o,;? are the spectral and temporal variances estimated in the training
process for cluster k. For the case of multiple time components, the distortion measure
used in searching is based on the time component which is “closest” to the normalized
time of occurrence of the input vector.

The block diagram of the training procedure for a size N codebook is presented

in Figure 5.4, which summarizes the algorithimm described above.

Time Normalized Spectral k=1:N 'Y \
Utterance  x Spectral Codebook | Components Yk > <7
Training Spectral -
Spegtral vQ Variances %k Ok Temporal
Time Index i S Time Component(s) t, | Codebook

Figure 5.4: Training Procedure for a Codebook with Time Components

5.1.2 Recognition System with Time Components

For a recognition system based on VQ with time components with a size V vocabulary,
one spectral-temporal codebook resulting from the training procedure described above
is used for each word. The block diagram of the system, presented in Figure 5.5 is
similar to the diagram of the recognizer based on probability tables, Figure 4.8 of
the previous chapter. The distortion measure computation differs between the two
methods, as well as the size of the temporal codebooks used.

The temporal part of the codebook used in the VQ with time components is equiv-
alent to a compact representation of (partial) temporal PDF information integrated
within the codebook. Given the relatively small number of temporal parameters used
- a time component requires only 2 parameters (one time component and the spec-
tral to temporal variance ratio), while the PDF representation in the case of using
probability tables requires L parameters per codevector, a performance degradation

1s expected with respect to the probability tables approach (L represents the length
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Figure 5.5: Recognition System with Time Components

of the linearly time normalized utterance). The experimental results show instead
a performance improvement, which can be explained by the different nature of the

distortion measure used in the two cases.

5.2 Overlapped Segmented Codebooks

The representation of the utterance as a sequence of segments is used during the
segmentation and labeling phase of recognition systems based on acoustic-phonetic
methods, as well as in VQ-based systems, such as the segmental VQ presented in
Chapter 4. The results of the former methods show the influence of precise phoneme

delimitation on the overall recognition performance, while the results of the latter
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suggest that temporal information can be added to spectral VQ by using separate
codebooks for each utterance segment.

However, the segmental approach did not address the fluctuations that can be
introduced by the normalization procedure required. In this approach, linear time
normalization results in an imperfect temporal match, and as a consequence, a given
spectral shape may appear at a range of normalized times in different repetitions
of the same utterance. The fixed length segments corresponding to phonemes may
have similar spectral shapes displaced in reference to one another and thus may be
overlapping.

The overlapped codebooks method was developed to account for the effects of
normalization and fixed length segmentation and the results show that the method
improves indeed the recognition performance at a similar or slightly larger memory

requirement than recognition systems based on segmental VQ.

5.2.1 Training Overlapped Segmented Codebooks

The training procedure for overlapped codebooks is based on the k-means algorithm
for each of the segments defined. The method uses codebooks of different sizes to
represent the overlapping and non-overlapping segments, with different training do-
mains in the normalized input utterance. The overlapped codebooks method is a
generalization of the segmental method and includes it as the special case when the
overlap between the codebooks is zero.

The definition of the mapping between the utterance space and the codebook
space used for training in segmental VQ is presented in Figure 4.7, where the train-
ing utterance is linearly time normalized and then segmented in a fixed number of
segments N, each represented in codebook space by a sub-codebook with NV vectors.
The generalization to the overlapping codebook method is presented in Figure 5.6
below, where p represents the size of the sub-codebook segment overlapping over an

adjacent sub-codebook and N, = 4:

o (a) only one spectral codebook overlapped with p = N. This case represents the
original spectral VQ presented in Chapter 3, Figure 3.2, in which case no time
information is incorporated in the VQ structure. All the vectors in the input

utterance are used to train the one resulting codebook;
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e (b) segmental sub-codebooks overlapped with p = 0.5N. The first segment
of the utterance trains the first sub-codebook and together with the second
segment trains the second sub-codebook. The sub-codebooks situated at the
extremities of the utterance are trained by one utterance segment only, while

all the other are each trained by two adjacent utterance segments;

e (c) segmental sub-codebooks overlapped with p < 0.5N on each side. Each
input utterance segment contributes to overlap sub-codebooks, situated at the

boundaries with segment-specific codebook.

e (d) segmental VQ, overlap factor p = 0. Each sub-codebook corresponds exclu-

sively to one input utterance segment.

The length of the sub-codebooks in Figure 5.6 is proportional with the number of
codevectors in each sub-codebook.

Consistent improvements in recognition over segmental VQ, (d), and over the
baseline system (a) are obtained for all cases when the segmental codebooks do not
overlap more than 50% (cases (b) and (c)). The overall size N,; of the codebook

varies with the overlap factor p:
Nyy=N;-N—p-(N;,-1) (5.15)

where N; is the total number of equal size partitions in the input utterance space and
N 1s the size of the partition in codebook space.

The codebook training procedure is based on the fact that a codevector y, is
accessed during the search by input vectors with the normalized time indices in the
range tkmin < ¢ < gmaz, and hence should be trained only by these input vectors.
The interval limits for training can be determined easily based on the interval limits
used for search. For example, in Figure 5.6 (c), sub-codebooks 1, 3, 5, 7 are trained

respectively by segments 1 to 4 of the input utterance, while codebooks 2, 4, 6 are

trained each by two adjacent input segments: (1, 2), (2, 3) and (3, 4), respectively.

5.2.2 VQ with Overlapped Segmented Codebooks

The temporal information is built implicitly into codebooks by defining a search

pace for each input vector x; consisting of codevectors y, with indices in the interval
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kimin < k < kimaz. These codevectors form a sub-codebook and the sub-codebooks
for different neighboring indices are overlapped.

During the clustering procedure, each input spectral vector is quantized using the
image in the codebook space of the normalized index attached to the spectral vec-
tor. To determine the index range [k; min, ki,maz], the mirror image of Figure 5.6 (b)
is created in Figure 5.7, where the projection direction indicates the sub-codebooks
used in quantizing spectral vectors with time indices in a given normalized segment.
For example, a spectral index with normalized time index in the interval correspond-
ing to utterance segment 2 will be quantized using sub-codebooks 2, 3 and 4. The
minimum distortion codevector in the sub-codebooks selected contributes to the dis-
tortion score of the entire utterance. For simplicity, the boundaries in the codebook
space corresponding to the other utterance segments are not represented. Instead,
the sub-codebook indices used during quantization are indicated in parentheses above

each input utterance segment.

s

Sub-Codebooks

V2227777007 740

Input
Utterance
Segment 1 4

Figure 5.7: VQ with Overlapped Codebooks

A recognition system based on a VQ with overlapped segmented codebooks has
the same structure as presented in Section 4.2.2, Figure 4.7. The computational
requirements are increased only by the computation of the sub-codebook index range,

while the storage requirements are defined by the overall codebook size N,;.
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Chapter 6
Recognition System Overview

The joint spectral-temporal VQ methods presented in the previous chapter were de-
signed to improve the performance of a baseline recognizer based only on spectral
VQ. The objective was to design a recognizer that can be successfully used in a hard-
ware implementation for commercial applications, such as a voice controlled command
systems for automobiles, or remote control for consumer electronics products (TV,
VCR). Requirements imposed by the specific hardware implementation intended for
the recognizer and cost-performance criteria are the premises for the solution pre-
sented below, and are presented in Section 6.1.

Figure 6.1 presents on overview of the recognition system implemented and used
to evaluate the performance of the spectral-temporal VQ methods described in the
previous Chapter. The Pre-Processing block, Figure 6.1 (a), performs signal level
control on the analog speech signal collected from a microphone, to cover the avail-
able dynamic range of the sampling device which records the speech in digital form
on permanent storage media. An isolated utterance recording is segmented by the
FEndpoint Detection block, Figure 6.1 (b), which extracts the relevant speech segment
from the background noise, by examining the wide band energy profile estimated, as
described in Section 6.2.

The spectral profile of the speech segment, which is a collection of energy esti-
mates in 16 adjacent frequency bands, is generated by the Feature Eztraction block,
Figure 6.1 (c), based on a filter-bank analyzer for feature measurement, and described
in Section 6.3. A more detailed structure of Energy Estimation block is shown in Fig-

ure 6.2, which indicates that rectification of each band pass filtered signal, followed by
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low pass filtering, is performed in order to remove the high frequency components in-
troduced by the non-linearity. The magnitude of each energy profile is log-compressed
and normalized. The spectral profiles are then time normalized, using re-sampling,
to a fixed duration. During time normalization, temporal information can be added
to the feature vectors.

The resulting profile of features are used by the VQ-Based Decision block either
in training, to generate the reference patterns (utterance specific codebooks), or in
testing, to determine the recognition result (Figure 6.1 (d) ). The VQ-based methods
presented in the previous Chapter are used to implement this block, while the param-
eters of the other blocks are maintained constant, to provide a consistent testing and

evaluation environment.

6.1 Design Requirements

In addition to the functional requirements, presented in Chapter 2 for a generic rec-
ognizer that can be used in command-and-control systems, the recognition system
presented in this thesis has a number of technological requirements imposed by the
structure and functionality of the low-cost analog VLSI hardware implementation
intended for the system. The analog nature of the signal processing implementa-
tion has the advantage of a fast response time for the recognizer, but restricts the
available range, complexity and precision of the operations that can be performed
on the signal. The cost effectiveness criteria imposes a minimum area requirement

on the VLSI implementation, which translates into filter bank design compromises,
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due to the fact that the chip area is directly proportional to the number of filters

implemented. The design solutions were achieved as a trade-off between the overall

recognition performance and the development and production cost requirements.
Design specifications for the implementation of each of the functional blocks pre-

sented in Figure 7.1 can be summarized as follows:
e for the Pre-Processing block:

— 1put is provided through a low-cost microphone followed by an amplifi-
cation and automatic gain control (AGC) block from an off-the-shelf chip,

ISD-2560,
— at the output the wide-band filter (WBF), the desired frequency range for
the signal is {100 Hz, 8 kHz|;

e for the Sampling block:

— 16 kHz sampling frequency,
— 2 seconds of digitized speech samples maximum storage capacity,

— 16 bit/sample digital representation;

e due to restrictions on the on-chip nonvolatile memory, the Endpoint Detection
algorithm has access only to the current speech frame, and cannot use past

samples to determine the boundaries of the utterance;
o for the Feature Eztraction block:

— the design of the filter bank must take into account that the hardware
implementation will consist of a single band pass Switched Capacitor Filter
(SCF), which can be tuned at different center frequencies and bandwidths
by changing its clock frequency,

~ the logarithmic compression is approximated by a transfer function imple-

mented also in SCF technology, and introduces a DC bias,

— at each step in the algorithm that requires storage of an intermediate result,
the quantization effect (equivalent to a 8-bit linear quantization) of the

analog memory used must be simulated in the design of the codebooks,
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— the non-volatile memory used for intermediate storage supports only a
limited number of WRITE accesses, which determine the usage time of the
chip. As a result, the number of storage steps to the same intermediate

storage area must be minimized;
o for the V(Q)-Based Decision block:

— the size of the codebook space is limited by the size of the analog storage

array, and must be lower than 200k cells,

— for the speaker independent recognizer, the codebooks used by the V(} are
produced by the simulation software and stored during the manufacturing

process of the chip;

— no training logic is provided in the VLSI implementation of the recognizer.

To minimize the development time and the implementation cost, the simplest so-
lution was chosen for the VLSI implementation of each given block, although alterna-
tive solutions were investigated for comparison and future performance enhancements.
Also, the chip does not contain a micro-controller, and as a result the logic must be
kept very simple for all the functional blocks described above. The VQ-based decision
block and the design of spectral-temporal VQ algorithms presented in Chapter 5 were
chosen to satisfy the simplicity criteria imposed by the hardware implementation.

With the above requirements, the hardware block diagram of the recognizer chip
can be represented as in Figure 6.3. The amplified (AGC) and wide band filtered
(WBF) input speech utterance is stored in the Nonvolatile Memory under the control
of the Endpoint Detector Logic. The utterance boundaries determined during Seg-
mentation are also used to determine the down sampling frequency necessary for the
control of the Time Normalization block, which is implemented as a tunable down
sampler.

During Feature FErtraction, the segmented utterance stored in the non-volatile
memory is passed through the SCF 16 times. The spectral-temporal profile resulting
at the output of the Time Normalization block is stored in the VQ Memory. The
VQ codebooks, pre-computed and stored in the Codebook Memory, are then used to

compute the distortion measures with respect to each word. Finally, the minimum
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Figure 6.3: Hardware Block Diagram of the Recognizer

distortion score is selected by the Decision Logic block, to represent the recognition

result.

6.2 Endpoint Detection

A recognition system developed for isolated words must determine the beginning and
end of the utterance of interest, with higher energy profile than the background noise
energy (silence). The database recordings used for tests consist each of an isolated
word, preceded and followed by silence or other background noise. The process of
separating the speech segments of an utterance from the background is called endpoint
detection, or segmentation.

Accurate detection of the endpoints of a spoken word is important because it
is directly related to the recognition performance of the system [18]. Problems in
endpoint detection arise from transient noise (often the beginning or end of an isolated

word is accompanied, and thus concealed, by mouth noises such as clicks, pops, lip
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smackings and heavy breathing) and nonstationary backgrounds where there may
be concurrent conversations and noises due to movements of chairs, door slams, etc.
A noise cancellation microphone may be used to eliminate the unwanted effects of
a nonstationary background, and could be added as a further improvement to the
recognition system; however, the version of the evaluation setup used for the results
presented below did not include a noise cancellation system. Segmentation methods
can be classified, according to the manner in which the endpoints are specified during

the recognition algorithm, as [18]:

e ezplicit segmentation, performed prior to and independently of the recognition

and decision stages of the recognizer.

e umplicit detection, when the endpoints are determined only during recognition
and available only after the decision stage is completed. In this case there is no

separate processing stage for endpoint detection.

e hybrid method, which incorporates ideas from both the explicit and implicit

methods.

Although the hybrid technique produces the best results, due to the real-time nature
of the endpoint detection algorithm and the hardware requirements of Section 6.1,
an explicit segmentation method was chosen for this implementation. The algorithm
proposed is a simpler version of the explicit endpoint detection algorithm proposed
in [18].

Endpoint segmentation is performed on the energy profile of the signal segment
at the output of the WBF. The Wide Band Filter has the frequency characteristic
shown in Figure 6.4 and has a 150 Hz to 7200 Hz passband (3 dB ripple) with 30 dB
attenuation at 60 Hz and 7800 Hz, respectively. The filter coefficients are provided
in Section A.1. The band limited signal is passed through a rectifier, a low pass
filter (LPF) and then down sampled to generate an estimate of the signal’s energy, as
presented in Figure 6.2, discussed in Section 6.3.2.

The segmentation algorithm investigated for this design uses heuristically defined
energy thresholds to separate the relevant speech segment from silence. The proce-

dure for defining the thresholds is described in {18], and consists of interactive user
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Wide Band Filter (Rp = 1 dB over [120.2,7312] Hz, Rs =-30 dB over [50,7943] Hz)
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segmentation, to measure the distribution of energy thresholds. The endpoint detec-
tion algorithm in its general form refers to the signal segment profile presented in

Figure 6.5 and consists of the following steps:

e Step 1. Finds the index jo of the first frame with energy above a given energy
threshold, k,, referred to as minimum pulse energy threshold, and represents the
minimum energy which indicates the presence of a speech-like burst of energy

in the segment.

e Step 2. Backs up 70 = 200 ms, where 7y is referred to as the back-up time.
Back-up is necessary because otherwise the real start of the utterance, at a

lower energy level on the rising slope of the profile, may be ignored.

e Step 3. Advancing towards the end of the utterance, finds the index j; of the
first frame with energy above the utterance start threshold ky, with ky < kz‘.
This step results from the observation that frames within 7o of the minimum
pulse energy threshold and having energy at least equal to k; belong also to
the utterance and could be ignored if the search stops at Step 1. The index j;

represents the start of an energy pulse which could be a word.

e Step 4. Finds the index j, of the first frame with energy below the utterance

end threshold ki.

e Step 5. (optional) Checks if j; represents the end of the utterance, by comparing
the utterance length, j, — ji, with the minimum pulse duration, denoted by 7.
If j, —j1 > 7 then the start index is j; and the end index is j», otherwise

restarts the search from index j, + 1.

e Step 6. (optional) Checks for the presence of consecutive energy pulses in the
utterance, by searching for a frame with energy above the utterance start thresh-
old k,, at a distance equal at most with the mazimum inter-pulse pause 7,. If
such a frame is found, then Step 4. is performed, otherwise the end of the

utterance is given by 7,.

The following versions of the above algorithm were tested using the studio database

and the mixed database:
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Segmentation Version Database | Studio Database | Mixed Database
Vi 98.4 % 85.87 %

V2 98.08 % 86.05 %

V3 98.24 % 89.4 %

Table 6.1: Recognition Results for Endpoint Algorithm Comparison

e Version 1 (V1): Uses only one energy threshold for both start and end, and has
no back-up time. Does not check the minimum pulse duration or the maximum

inter-pulse pause (steps 5 and 6).

ki =ky=ks 790=0 m, 7 not used. (6.1)

e Version 2 (V2): Uses only one energy threshold for both start and end, and has
fixed back-up time of 200 ms. Does not check the minimum pulse duration or

the maximumn inter-pulse pause (steps 5 and 6).

ki =ky = ks 79 =200ms 7, 73 not used. (6.2)

e Version 3: Implements the generalized algorithm described above. Uses different
energy thresholds for both start and end and has fixed back-up time of 200
ms. Checks the maximum inter-pulse pause (step 6), but does not check the

minimum pulse duration (step 5).

ki < ko # ks 79 =200ms 7 not used, 7, = 100ms. (6.3)

The recognition accuracy results for comparing the three versions of the segmen-
tation algorithm are presented in Table 6.1. The feature extraction algorithm and
the VQ training procedure are the same for all tests. Both the training and the
test utterances are segmented using the same algorithm version; the codebooks are
re-trained for each experiment. Ounly studio database utterances were used for code-
book training. The recognition method used was based on spectral VQ only (no time
information was used during quantization).

For the mixed database, the generalized algorithm V3 has a significant performance

advantage in comparison with both V1 and V2. The back-up procedure could not



CHAPTER 6. RECOGNITION SYSTEM OVERVIEW 83

BPF 1 f l(n) Energy X ()
Segmented o
WBF Estimation x(n)
Output s(n
Ouputsty—— ., S ()
d Estimation
Spectral-Temporal

' Vectors (to VQ)
x(n) Magnitude X (n) Magnitude Kc(n) Time (y. (m), m)
) Normalization Compression Normalization m=1.40 7

Figure 6.6: Feature Extraction Block Diagram

be implemented in hardware, due to restrictions imposed by the limited number of
WRITE accesses to the nonvolatile memory, where the input utterance is stored. As
a result, the first version of the segmentation algorithm, V1 with k; = 25dB, was

used in the recognizer’s simulation.

6.3 Spectral Feature Extraction

The Feature Extraction block for the simulation of the recognizer is based on a bank of
bandpass filters, as introduced in Section 2.3, and is presented in detail in Figure 6.6.
The block consists of a bank of () = 16 band pass filters BPF, followed by the Energy
Estimation block, which evaluates the filtered signal energy in the corresponding band
and the Time Normalization block, which generates the fixed size sequence of spectral,
or spectral-temporal, vectors used in quantization. A detailed description of the
Energy Estimation block is given in Figure 6.2.

In Figure 6.6, the input signal vector s(n),Vn = 1,..., N, represents of the seg-
mented utterance produced by the Endpoint Detection block. For each band ¢ =

I,..,Q and each frame n = 1,..., N,, an energy estimate x;(n) is produced. As a
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result, the bank of @ filters output for frame n is a ) - dimensional vector z(n) =
(z1(n),...,zg(n)),¥n = 1,..., N,. Each spectral vector z(n) is then normalized in
magnitude to z’(n) and then the signal’s dynamic range is compressed using a log
transformation, to produce the compressed normalized version z.(n), which repre-
sents the input to the Time Normalization block. The time normalized version of
z.(n) is denoted by y(m).

In addition to performing a re-sampling of the energy profile in each band, from
variable length N, to the normalized utterance length M (M = 40 used in this
simulation), the Time Normalization block also computes the time component, t(m),

assoclated with each @)-dimensional spectral vector y(m) = (y1(m), ..., yg(m)) as :
t(m)=m, Vm=1,.., M. (6.4)

The frequency characteristic of the bank-of-filters pre-processor consists of adja-

cent bands and is illustrated in Figure 6.7.

6.3.1 Filter Design

In designing the bank of filters, the first consideration was the type of filters used.
The analog implementation using tunable switched capacitor filters (SCF) was chosen
due to its cost efficiency. The digital filters used in the simulation of the recognizers
are FIR filters with a frequency response close to the corresponding analog filters.

The number of bandpass filters cannot be smaller than 8 or else the ability of
the filter bank to resolve the speech spectrum is greatly impaired [2]. If more than
32 filters are used, the filter bandwidths would be too narrow for some talkers and
there would be very likely that certain bands would have extremely low speech energy,
and could not be adequately quantized during storage in the analog memory. In this
implementation, the number of filters was chosen to be 16, with non-uniform spacing,
to reflect the human perception of speech [2]

It has been theoretically shown that filter banks with frequency plans based on
perceptual scaling, such as the Bark scale, improve significantly the performance of
a recognition system. The improvement is due to the fact that each band on such
a scale has equal contribution to the intelligibility (perception) of speech [2]. The

cut-off frequencies for a bank of 16 filters linearly distributed on the Bark scale for
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Band | Center Frequency [Hz] | Bandwidth [Hz]
Bark Scale | SCF Scale | Bark Scale | SCF Scale
(a) (b) (a) (b)
1 107 161 127 34
2 244.8 229 131 53
3 381.4 326 137 75
4 523 463 144 106
5 675.28 659 160 152
6 845.22 811 180 187
7 1034.27 997 198 229
8 1248.62 1227 232 282
9 1504.86 1509 283 347
10 1818.24 1856 347 427
11 2207.26 2283 436 525
12 2703.33 2808 564 646
13 3342 3453 723 794
14 4156.29 4247 917 977
15 5163.02 5224 1105 1202
16 6386.67 6426 1355 1478
Table 6.2: Bark Scale vs. SCF Scale - Frequency Plans Comparison
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a bank of 16 filters is presented in Table 6.2, columns (a). An approximation of this
frequency plan which can be implemented using a tunable filter (SCF) is given in
Table 6.2, columns (b). The penalty in recognition performance for using the SCF
frequency plan, as opposed to the original plan based on the Bark scale, is less than

1%. The filter coefficients used in the recognition system are listed in Section A.2.

6.3.2 Energy Estimation
Energy estimation is required in the recognition system for:

e the WBF output. The resulting energy profile is further used by the Endpoint

Detection block to isolate the relevant utterance from silence;

e cach BPF output (in the bank of @) filters). The () dimensional energy profile

is used as input to the VQ-based decision block.

In both cases, the signal at the filter output, f(n}, is rectified using a Full-Wave

Rectifier such that:
f(n)  for f(n) 20

r(n) =

—f(n) for f(n) <O0.
The FWR output is then low pass filtered (LPF), producing the energy estimate I(n),
as shown in Figure 6.2. The low pass filter was designed to have the characteristic
presented in Figure 6.8, in order to remove the high frequency images introduced
by the non-linearity in the energy spectrum, as discussed in Section 2.3. The filter

coefficients are given in Section A.3.

6.3.3 Time Normalization

Two time normalization methods were implemented and tested during the simulation

development:

o Resampling, from the variable input length N; to the fixed length M, which

computes the output frame index m as the ”closest” input frame index n:

N, -1
M-1

as illustrated in Figure 6.9, (a) and (b) for N, > M and N; < M, respectively.

) Vm=1,..,M, (6.6)

n = round(m -
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Low Pass Elliptic Filter (Rp = 3 dB, cutoff 30 Hz, Rs =50 dB @ 50 Hz)
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o Linear Interpolation between the values of consecutive input vectors z(n), z(n+

1), where n is given by:

N, -1
n = round(m - V1 )s (6.7)
and m is the output frame index. The value of the output vector, y(m) is given
by:
ym)=z(n) - (1 -f)+z(n) - f Ym=1,.., M, (6.8)
where N1
f=m~]‘/[s:1 - n. (6.9)

Input Utterance
N=6 o OO0 O 0~ 0

a) ° N, VAN, N

M=4 o """ " ""0""""0
Normalized Output

Input Utterance

NS=3 o o """~ "7
b) I N A
M=7 OO "D "D 00

Normalized Output

Figure 6.9: Time Normalization Using Resampling

The improvements in recognition performance obtained using the linear interpo-
lation method were too small (under 1%) to justify the increase in design complexity.
As a result, the time normalization block is implemented as a tunable down sampler,
with sampling frequency f adjustable according to the variable input utterance size
N;. The term "down sampler” is used because in most cases the input utterance size
N, > M = 40, and as such appears to be sampled at a higher frequency than 1/40.
The value M = 40 was chosen to provide a valid comparison with the Probability Ta-
bles method, which uses the same time normalization length of 40, and to reduce the
size of the on-chip memory. Doubling M varies only slightly the recognition accuracy
performance (less than 0.5%), variation which does not justify the increase in storage

space.
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Chapter 7

Results

The isolated words database used for testing was collected to reflect the vocabulary,
the recording conditions and the audience of the intended application for the product.
The worst case test conditions for the recognizer’s evaluation are obtained when the
noisy database recordings are combined with a simulation which complies to all the
algorithmic restrictions imposed by the technical requirements.

A generic block diagram of the recognizer’s evaluation system is presented in
Figure 7.1, and consists of an Analog Signal Control block, which amplifies and band
limits the signal collected from a microphone and a Sampling block, which digitizes the
analog signal. Isolated utterances are then stored in individual files on the file system,
which can be accessed by the software simulation of the recognizer (represented by the
Recognition blocks in the diagram). A detailed description of the recording conditions
and speech database structure is given in Section T7.1.

An isolated utterance recording stored in the database is processed by the Endpoint
Detection block, which extracts the relevant speech segment from the background of
silence. The spectral profile of the speech segment is generated by the Feature Ertrac-
tion block, based on a filter-bank analyzer for feature measurement, and described in
Section 6.3. The spectral profile can be used by the VQ-Based Decision block for
training, to generate the reference patterns (codebooks), or for testing, to determine
the recognition result.

The performance analysis of various quantization methods, with speech databases
recorded in a variety of conditions, shows that the recognizer presented can be suc-

cessfully used in practical applications with similar hardware requirements, due to its
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robustness, simplicity and high performance.

7.1 Speech Databases

The structure and recording conditions of the database used to train and test the
recognition system were chosen so that the influence of the following factors on the
recognition performance can be estimated: recording equipment, recording conditions
(level and type of background noise) and speaker variability.

The word-based vocabulary was defined based on the application intended for the
product, and contains the digits zero to nine plus oh and the words: speed, error,
dial, hang-up, repeat, stop, play, eject, slow, reverse, search, record, pause,v reunnd,

forward, on, off, up, down, collected from two sets of talkers:
o set A of 10, with English as their mother tongue;
e set B of 4, with English as a second language.

Each set was composed of 50% male and 50% female talkers. In all cases the words
were spoken with pauses between them so that the tokens were not influenced by any
context dependency due to neighboring words, and 10 repetitions were collected for
each word.

The two different recording environments:
¢ (a) soundproof room conditions, and
e (b) noisy conditions,

used to collect the speech database are presented in detail in Appendix B.

The Signal Level Control block structure required by the hardware design speci-
fications of the recognizer, was implemented according to the block diagram of Fig-
ure 7.2, to provide further noise reductions and a test setup as close as possible to
the real environment of the recognizer. The microphone, the amplifier, the AGC and
the WBF are as specified in Section 6.1. The AGC dynamically adjusts the gain of
the internal amplifier Al to compensate for a wide range of microphone input levels

-

and use the dynamic range to the fullest. The gain adjustment varies between -15

dB and +24 dB. The "attack” and ”release” times of the AGC can be set using an
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RC compensation network; during testing, 0.3 seconds was used for the "attack” time

and 1 second was used for "release” time.
The results presented below, obtained from recordings of the digits zero to nine
and the words stop and reverse repeated 10 times each, performed in the conditions

of setup (a) and (b), for the speaker groups A and B, will further be referred to as:
o studio database: contains accent-free utterances in soundproof room conditions.

e mized database: contains accent-free utterances, A, in soundproof room condi-

tions, (a), plus utterances with foreign accent, B, in noisy conditions, (b).

e noisy database: contains utterances with foreign accent, B, in noisy conditions,

(b).

7.2 Testing Environment Configuration

The recognition systems used to evaluate the new V() methods proposed in this thesis,
in comparison with the existent methods, were designed using the same training set

for generating the dictionary of codebooks.
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For a consistent evaluation, the functional structure of the testing environment,
presented in Figure 7.1, must be the same for all the experiments; the functional block
that changes, to reflect the particular VQ method evaluated, is the Decision block.
The basic structure of a VQ-based decision block was presented in Figure 3.2. The
structure of the codebooks in the dictionary and the recognition method are com-
pletely characterized by the codebook training procedure and the type of distortion
method used by the algorithm. According to these criteria, the recognition systems

implemented can be classified in:

e Baseline Recognizer: the training and the distortion measure are based on spec-
tral components only, and presented in detail in Section 3.3. Uses 16 codewords,

of 16 spectral components each, for every codebook.

e Probability Tables (PT) Recognizer: with training based on the temporal prob-
ability tables method, presented in Section 4.2.3, using a combined spectral-
temporal distortion measure during quantization. The functional block diagram
is presented in Figure 4.8. Uses 16 codewords (each with 16 spectral compo-

nents and 40 components for the associated probability table) per codebook.

e 1(2) Time Component(s) (TC) Recognizer: implements the spectral-temporal
VQ design with time components described in Section 5.1, and has the block
diagram presented in Figure 5.5. Uses 16 codewords per codebook. FEach

codeword consists of 16 spectral components and [(2) time components.

e Overlapped Segmented Codebooks (OSC) Recognizer: uses a number of adja-
cent overlapping sub-codebooks for each word in the dictionary and spectral
distortion measure only. The training and quantization procedure are as de-
scribed in Section 5.2. Each sub-codebook has 16 spectral codewords with 16
spectral components each. The overall size of the codebook, in codewords, is
given by equation 5.15, for various overlap factors and number of segments per

utterance.

o Segmental V() Recognizer: as described in Section 4.2.2, with zero overlap
between adjacent sub-codebooks, having 16 spectral codewords with 16 compo-
nents each. The overall size of the codebook is the product between the number

of segments and the sub-codebook size.
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The distortion measure used in the PT recognizer requires the selection of a value
for the parameter «, describing the mix of temporal and spectral distortions, so that
it optimizes the recognition performance of the resulting system. The value selected
was « = 0.8, corresponding to the minimum error rate of 9.24% in Figure 7.3, which

represents the recognition error of the PT recognizer for different values of «.
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Figure 7.3: Spectral-Temporal Mix Selection

Threshold selection in the multiple time component method was performed on a
similar criteria, of minimizing the recognition error of the system. The graph presented
in Figure 7.4 shows the error rate for the 2 TC recognizer for the noisy database and
the mixed database test set. The optimal performance is obtained for a threshold
value of 7 = 30%; however, the difference between the two curves suggests that the
threshold selection depends on the recording conditions, and that a similar calibration

be performed if these conditions change.

7.3 Recognition Results

The baseline recognizer using only the spectral components obtains a performance of
about 97% for speakers who contributed to the training data or speakers with similar

pronunciations recorded in conditions identical to those used for training.
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Figure 7.4: Threshold Definition for VQ with 2 Time Components

The performance degrades significantly for foreign pronunciations or different
recording conditions. To enhance the performance differentiation the mixed studio
database was used, with a total of 92 tokens per dictionary word (for 12 dictionary
words) out of which 52 tokens were similar (pronunciation, recording conditions),
to the training set and 40 tokens were recorded in different conditions using talkers
with English as a second language (set B). On this test set, the baseline recognizer’s
performance degrades to about 89%.

By combining spectral and temporal information in the VQ structure, the perfor-

mance was improved, and the error rate was reduced by about 40%.
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VQ Method Error Rate [%] | Memory/Codeword [KB])
Spectral Information Only | 10.87 1

Probability Tables 9.24 3.5

1 Time Component (TC) | 8.06 1.06

2 TC 7.52 1.09

Overlapped Codebooks 6.34 3.62

Table 7.1: Error Rates For Recognition Using Spectral Temporal VQ

The temporal probability tables (PT) method described in Section 4.2.3 was im-
plemented to provide a reference for the comparison of the systems described above.
For the optimal value of the parameter «, representing the mix of spectral and tem-
poral distortions, the introduction of probability tables reduced the recognition error
rate on the test set by about 1.6% (compared to about 2% for the digit set in [7]).

The recognition error rates for the systems presented in this thesis along with the
required memory in words per dictionary entry is shown in Table 7.1. The results
indicate that using only one time component (T'C) results in better performance than
the PT approach at a lower memory requirement.

The multiple time component (MTC) approach uses a variable number of time
components per dictionary word with an average of about 1.5 components. The
result is a further (relatively small), performance improvement.

The overlapped segmented codebooks (OSC) approach shows the best recognition
accuracy: an improvement of about 2.9% with respect to the PT method, at the
expense of a slightly larger memory requirement.

To obtain the result given in Table 7.1 for the OSC method, a number of tests were
performed to measure the recognition rate for a variable number of input intervals
(partitions) and for different overlap ratios. The outcome of these tests 1s shown in
Figure 7.5. The best performance is achieved for an overlap ratio of 12.5 % and for 4

input partitions.
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Figure 7.5: Error Rates for the Overlapped Segmented Codebooks Method

7.4 Conclusions

The performance analysis of speaker independent isolated word recognition algorithms
that use a VQ) as a recognition processor was presented. The error rate of a baseline
recognition system based only on spectral VQ was reduced by over 40% by incorpo-
rating time information in the quantization process.

A new method, VQ with time components, of adding temporal information to
a spectral codebook, was proposed and investigated. The new method gives a 20%

improvement in recognition rate over the existing probability tables technique (7],

40
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while reducing the required codebook storage space by 70%. The evaluation of the
improvement due to using overlapping codebooks in segmental VQ, shows a 20%
improvement in error rate at a 45% reduction in codebook storage space.

The design and implementation of a speech recognition algorithm which simulates
a real-time analog VLSI recognizer (which incorporates the new VQ methods) was

performed.

7.5 Future Research

The scope of the two VQ methods presented can be extended to patterns with similar
temporal evolution to speech, with an expectation of increased VQ-based recognition
performance.

For the temporal component method, a generalization of the spectral-temporal
pattern, as a combination of any two random variables, may be explored. The random
variables, denoted by A and B, must have a similar dependency, A = f/(B), to the
spectral-temporal function, X = f(T') (where X is the spectral component, and T
the temporal component). The analysis of a recognition system based on simulated
patterns (A, B) may be used to determine more thoroughly the optimality of the
VQ design (choice of distortion measure and joint training procedure) for recognition
purposes.

The influence of the choice of spectral analysis method (LPC vs. filter banks) can
also be evaluated for both methods in order to confirm that similar improvements in
recognition accuracy are obtained. This result would mean that either method could
be used to increase the performance of VQ preprocessors for DTW or HMM based

recognizers.
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Appendix A

Filter Coeflicients

This section contains the coefficients for all the digital filters used in the recognition

system:

e Wide Band Filter, used for input signal control
e 16 Band Pass Filters, used for feature extraction

o Low Pass Filter used to eliminate undesired high frequency images of a spectral

energy profile.

All the filters are FIR filters and have the transfer function given by:

_ b(z)
h(z) = () (A.1)
where:
b(z) = B(1) + B(2)z"' + ... + B(N + 1)V (A.2)
a(z) = A1)+ A@2)z7 + . 4+ AN+ 1)V (A.3)

and N represents here the filter order.

A.1 Wide Band Filter

Wide Band Filter coefficients for band 1.202000e+02 Hz to 7.312310e+03 Hz (Rp 1
dB, Rs 30 dB)

WBEF Filter Order = 6

WBF Filter Coefficients:
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0.71837450467066
-0.01347488386971
-2.12649578320810
0.0000000000000
2.12649578320811
0.01347488386971
-0.71837450467066

A(1) 1.00000000000000
A(2) -0.46155382185554
A(3) -2.25202059997925
A(4) 0.64653464063571
A(5) 1.84370109359342
A(6) -0.28610725682104
A(7) -0.48948744939138

A.2 Band Pass Filters

Bandpass Filter coefficients for band 1 (143 - 180 Hz), Rp = 3dB

Order 4
B(1) 0.00005224160306 A(1) 1.00000000000000
B(2) 0.00000000000000 A(2) -3.97155676986944
B(3) -0.00010448320613 A(3) 5.92287117772536
B(4) 0.00000000000001  A(4) -3.93096016709417
B(5) 0.00005224160306 A(5) 0.97966134480384
Filter coefficients for band 2 (205 - 257 Hz)
Order 4
B(1) 0.00010276038200 A(1) 1.00000000000000
B(2) -0.00000000000000 A(2) -3.95500151331497
B(3) -0.00020552076399 A(3) 5.88183340065618
B(4) -0.00000000000000 A(4) -3.89830117317275
B(5) 0.00010276038200 A(5) 0.97153426656749
Filter coefficients for band 3 (291 - 366 Hz)
Order 4 '
B(1) 0.00021242247515  A(1) 1.00000000000000
B(2) 0.00000000000000 A(2) -3.92588881470170
B(3) -0.00042484495031 A(3) 5.81191384748465
B(4) 0.00000000000000 A(4) -3.84496501047260
B(5) 0.00021242247515  A(5) 0.95920349965459
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Filter coefficients for band 4 (367 - 520 Hz)

Order 6

0.00002555396912
-0.00000000000000
-0.00007666190737
-0.00000000000000
0.00007666190737
0.00000000000000
-0.00002555396912

A(1) 1.00000000000000
A(2) -5.79351631502136
A(3) 14.07035995752901
A(4) -18.33393286930893
A(5) 13.51775368951552
A(6) -5.34739786336269
A(7) 0.88675724940010

Filter coefficients for band 5 (5.878600e+02 - 7.398600e+02 Hz)

Order 4

) 0.00085442569533
) -0.00000000000000
3) -0.00170885139066
) -0.00000000000000
) 0.00085442569533

) 1.00000000000000
) -3.78501064494205
3) 5.49873944416437
) -3.62851147398423
) 0.91905000195763

Filter coefficients for band 6 (7.230300e+02 - 9.100300e+-02 Hz)

Order 4

) 0.00128109640076
) 0.00000000000000
3) -0.00256219280153
) 0.00000000000000
) 0.00128109640076

) 1.00000000000000
) -3.70013909705517
3) 5.32118520153999
) -3.51278504440851
) 0.90135840643878

Filter coefficients for band 7 (8.898200e+02 - 1.118800e+03 Hz)

Order 4

) 0.00189944068486
) 0.00000000000000
3) -0.00379888136973
) 0.00000000000000
) 0.00189944068436

1.00000000000000
-3.57927907608794
5.07884387767968
-3.35856514058870
0.88058729920613



APPENDIX A. FILTER COEFFICIENTS

106

Filter coefficients for band 8 (1.094400e+03 - 1.376400e+03 Hz)

Order 4

) 0.00284077343489
) -0.00000000000000
3) -0.00568154686978
) -0.00000000000000
) 0.00284077343489

) 1.00000000000000
) -3.40536886301004
A(3) 4.74693150383291
) -3.14850316635546
) 0.85503657515053

Filter coefficients for band 9 (1346 - 1693 Hz)

Order 4

) 0.00422876376876
) 0.00000000000000
3) -0.00845752753753
) 0.00000000000000
) 0.00422876376876

Filter coefficients for band 10 (1.6555

Order 4

) 0.00627263797547
) 0.00000000000000
3) -0.01254527595093
) 0.00000000000000
) 0.00627263797547

Filter coefficients for band 11 (2.036300e+03 -

Order 4
B(1) 0.00924971391535
B(2) -0.00000000000000
B(3) -0.01849942783070
B(4) -0.00000000000000
B(5) 0.00924971391535

) 1.00000000000000
) -3.15710875488731
3) 4.30492116508163
) -2.86645839095400
) 0.82472244548174

00e+03 - 2.082500e+03 Hz)

1.00000000000000
-2.80458730459993
3.73640912814043
-2.48996378405634
0.78888544528158

Al
A(2

A5
2.561300e+03 Hz)

A(1) 1.00000000000000
A(2) -2.31054167525971
A(3) 3.05095709329683
A(4) -1.99554964992515
A(5) 0.74710399217871

Filter coefficients for band 12 (2.504500e+03 - 3.150500e+03 Hz)

Order 4
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) 0.01359086172003  A(1) 1.00000000000000
) -0.00000000000000 A(2) -1.63238655147888
3) -0.02718172344005 A(3) 2.31493228579207
) -0.00000000000000 A(4) -1.36233781571738
) 0.01359086172003  A(5) 0.69856637432951

Filter coefficients for band 13 (3.080800e+03 - 3.874800e+03 Hz)
Order 4

(1) 0.01981145288645 A(1) 1.00000000000000
(2) 0.00000000000000 A(2) -0.73470896791235
B(3) -0.03962290577290 A(3) 1.70054318427316
(4) 0.00000000000000 A(4) -0.58773168065435
(5) 0.01981145288645 A(5) 0.64348953375065

Filter coefficients for band 14 (3.789300e+03 - 4.766300e+03 Hz)
Order 4

) 0.02874299903119  A(1) 1.00000000000000
) -0.00000000000000 A(2) 0.38446385765339
3) -0.05748599806238 A(3) 1.50393938979007
) -0.00000000000000 A(4) 0.29161428040783
) 0.02874299903119  A(5) 0.58141945620473

Filter coefficients for band 15 (4.660700e+03 - 5.862700e+03 Hz)
Order 4

) 0.04137310433702  A(1) 1.00000000000000
) -0.00000000000000 A(2) 1.63713343294644
3) -0.08274620867405 A(3) 2.03212801121938
) -0.00000000000000 A(4) 1.16125363280203
) 0.04137310433702  A(5) 0.51341511023813

Filter coefficients for band 16 (5.732800e+03 - 7.210800e+03 Hz)
Order 6

107
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(1) 0.01477763071382  A(1) 1.00000000000000
(2) -0.00000000000000 A(2) 4.17950567813215
(3) -0.04433289214146 A(3) 7.77512675828897
B(4) -0.00000000000002 A(4) 8.22966185291065
(5) 0.04433289214144  A(5) 5.23432766780934
(6) -0.00000000000001 A(6) 1.89608409864762
(7) (7)

-0.01477763071382 A 0.30764623533518

A.3 Low Pass Filter

Low Pass Filter coefficients for 30 Hz cutoff (Rp 3 dB, Rs 50 dB at 50 Hz)
LPF Filter Order = 4
LPF Filter Coefficients:

) 0.00315251123003 A(1) 1.00000000000000
) -0.01260181988650 A(2) -3.99305764535535
3) 0.01889862029658 A(3) 5.97934313480186
) -0.01260181988650 A(4) -3.97951261319635
) 0.00315251123003  A(5) 0.99322712796432
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Appendix B

Speech Database Recording

Environments

Two different recording environments were used to collect the database:

e (a) for recordings performed in soundproof room conditions, having the block di-
agram presented in Figure B.1. The microphone and Signal Level Control blocks
were supplied by the recording studio, while the digitization was perférmed by
a DAT tape recorder, at a sampling frequency of 48 KHz. The conversion to
16 bit speech digitized at 16 KHz was performed using the Ariel S32-C system,
which has no automatic gain control (AGC). To use most of the dynamic range,
the amplification gain was selected manually and maintained constant for each

speaker. This setup was used to collect data only from talker set A.

e (b) for live recordings (noisier than (a)), having the front end electronics speci-
fied for the hardware implementation of the recognizer, and the block diagram
of Figure B.2. The microphone was connected directly to the Ariel 532-C sys-
tem. The gain control was the same as for (a), no AGC was used. This setup

was used to collect data only from talker set B.
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Figure B.1: Soundproof Room Recording System
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Figure B.2: Live Recording System





