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Abstract

The mobile and indoor wireless communications environment is usually modelled as
a frequency selective Rayleigh fading channel. Frequency selectivity implies that the
received signal exhibits intersymbol interference (ISI). When transmitting with high
data rates over these channels, the IS becomes severe. One common techniques to

combat the ISI is the adaptive equalization.

In this thesis, we propose a simplified channel model and develop two maximum

likelihood sequence estimators for the Rayleigh fading channel with ISL.

Instead of using the whole channel impulse respouse tap gains to describe the
Rayleigh fading channel as usual, the proposed reduced dimensionality channel model
uses only a few random gain parameters to represent the whole discrete channel im-
pulse response. The analysis of the modeling error shows that for chanuels having
small delay spread the modeled channel do not deviate much from the original chan-
nel. This model is utilized in the development of an adaptive receiver using Viterbi
decoder. The receiver uses a known inserted pilot training sequence to estinate the
multipath time varying channel. The error performance of the receiver is analyzed
and it is demonstrated that the receiver has simple structure and good bit error rate
performance. We also design in the thesis a maximum likelihood sequence estimation
- Viterbi algorithm (MLSE-VA ) receiver that does not need the training sequence
in the channel estimator. Techniques, such as the signal spatial diversity, receiver
multiple sampling, and VA state reduction, are investigated to improve the error per-
formance and reduce the complexity of the adaptive receiver. The perforimance of this
receiver is evaluated through simulation. The numerical results show that the pilot
assisted receiver has better performance and less computational complexity than the

recetver that does not use pilot sequence.
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Chapter 1

Introduction

Technical problems of digital wireless communications can be categorized into various
aspects, such as speech coding. coded and uncoded channel modulation, networking
protocols, cryptography, adaptive receivers and so on and so forth. This thesis deals
with adaptive receivers, in particular the maximum likelihood sequence (MLSE) re-
ceiver, for frequency selective Rayleigh fading channels. In this iatroductory chapter
we give an general overview of the popular techniques employed in adaptive receivers
and a brief thesis outline. Since wireless receiver technology depends heavily on the

signal propagation environment. we begin our introduction with a brief review of

digital mobile channei characteristics.

1.1 Characterization of the multipath fading prop-

agation channel

The wireless communications environment is characterised by random time-varying
impulse response. Many mobile radio and indoor wireless communication channels
exhibit frequency selective Rayleigh fading, which produces randomly time varying

mtersymbol interference (ISI) in digital transmission [1]. The Telecommunications
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Industry Association has characterized the digital cellular chanuel as a frequency-

selective Rayleigh fading channel.

Basically, the frequency-selective Ravleigh fading channel is characterized by two

distinct phenomena, i.e. multipath and Doppler effects [2].

Multipath channel is where energy arrives via several paths, usually as a result of
reflections, or of inhomogeneities in the physical medium that produce ray-splitting
or scattering effects. Thus the received signal (apart from any additive noise) can he
viewed as a weighted sum of delayed versions of the transmitted waveform. As the
terminal is moved from one location to another or as people move around close to the
transmitter or the receiver, the multipath affects the expected average received signal
power and causes the received power to fluctuate. In most cases, the equivalent ampli-
tude and phase fluctuations of the sum of the received signals have the same statistical
characteristics as those of narrow-band additive white Gaussian noise (AWGN), and
the corresponding envelope is Rayleigh-distributed, so the transmission channel is a
Rayleigh fading channel. The distortion caused by the multipath is called frequency
selectivity, which meauns the different frequency components of the transmitted sig-
nals are subject to different fading effects and thus the signal is severely distorted by
the channel. The frequency selectivity depends quantitively on the multipath spread,
or equivalently the coherence bandwidth of the channel, relative to the transmitted

signal bandwidth.

Another important phenomenon in the mobile wireless transinission is the Doppler
effect. Whenever a transmitter and a receiver are in relative motion, the received
carrier frequency differs from the transmitted carrier frequency. This shift of frequency
is refered to as the Doppler Shift and can be calculated according to the velocity of
the mobile and the carrier frequency [1]. In a realistic environment, the received
signal arrives along multipath and the velocity of movement in the direction of cach

arriving path is in general different from that of another path. Thus a transmitted
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“sinusoid, subjected not only to a single Doppler shift, is received as a spectrum which
is refered to as the Doppler spectrum. This effect of spreading of the transmitted
signal frequency is called in a general way as the Doppler spread of the channel, and
the resulting signal attenuation is referred to as Doppler fading. Doppler spread also
occurs when the propagation path characteristics is time varying. Doppler fading is

grossly described by the coherence time or, equivalently, by the Doppler spread.

A detailed mathematical description of the Rayleigh fading multipath channel as
well as its parameters and discrete model can be found in [2] and [3] and is also

discussed in Chapter 2.

Due to the multipath, the maximum digital symbol transmission rate for a wireless
communication system is bounded by the delay spread. As the symbol transmission
rate increases, the duration of a transmitted symbol becomes comparable to or even
smaller than the delay spread. As a result, the pulses arriving along multiple paths
associated with one symbol interval will interfere with the multiple pulses associated
with the neighboring symbol intervals. This intersymbol interference (ISI) is mani-
fested as an irreducible error rate observed at high signal to noise ratio (SNR). As the
symbol transmission rate increases, the worsening intersymbol interference created by
the multipath increases the irreducible error rate of the receiver. Various techniques
in the receiver can be used to increase the data rate for ISI channel, e.g. diversity re-
ception, RAKE matched filter, adaptive equalization techniques, as well as employing
modulation and coding techniques [2]. We will concentrate this introduction on the

development of the equalization techniques which lead to optimum adaptive receiver.
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1.2 Adaptive Equalization Techniques

For IST channels, the communication receiver often adopts adaptive equalization tech-
niques to achieve better performance [2]. For example, the European and North
America digital wireless communications standards GSM and IS-54 both have the

equalizer at the receiver [4].

An adaptive equalizer is an adaptive filter at the receiver whose frequency response
adapts approximately to the inverse of the frequency response of the chanuel. Equal-
1zation techniques can be subdivided into two general types - linear and nonlinear

equalization [5].

The linear equalizer is usually implemented as a FIR or IIR filter with appropriate
coefficients adaption algorithms [2], e.g. least mean square (LMS) algorithm and
recursive least square (RLS) algorithm [6]. In an attempt to compensate for the
channel distortion, the linear equalizer places a large gain in the viciuity of the spectral
null and as a consequence significantly enhances the additive noise present in the
received signal. Thus it does not perform well on channels with spectral nulls in their
frequency response characteristics [2]. Therefore in channels with severe {requency-
selective fading, which often result in spectral nulls in received signal, the widely used
techniques are the adaptive nonlinear equalizers, which utilize decisions to either

cancel the interference or enhance the signal.

Two types of very effective adaptive nonlinear equalizer have been studied by many
researchers over the past three decades, i.e. the adaptive decision feedback equalizer
(DFE) [5] [7] [8] [9], and the adaptive version of the maximum-likelihood sequence
estimation (MLSE) [10] [11] [12] [13] [7]. A summary of the nonlinear equalization
techniques, DFE and MLSE, is presented in [15] . A detailed description of the DFE
and MLSE structures and the associated class of algorithms that are employed to

adaptively adjust the equalizer parameters is given in [5] [2].
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The basic idea in the DFE is that once an information symbol has been detected,
the ISI that it causes on future symbols may be estimated and subtracted out prior
to symbol detection. To accomplish this, DFE adopts two sections of filters, a feed-
forward section and a feed back section. The received signal sequence with ISI is sent
into the feedforward section, while the feedback section has as its input the sequence
of decisions on previous detected symbols. The function of the feedback section is to
remove the part of the ISI from the present estimate caused by previously detected
symbols [2]. In an adaptive mode, the coefficients of the feedforward and feedback
filters are adjusted recursively to follow time variations in the channel response. LMS
algorithm, RLS algorithin and their derivatives are used for this purpose. With these

rapidly adapting algorithm DFE can track the fast fading channel.

Compared with the linear equalization, the DFE yields a significant improvement
in performance, mainly due to the inclusion of the decision-feedback section which
eliminates the ISI from previously detected symbols. However simulation results show
that there is still a significant degradation in performance of the DFE due to the resid-
ual intersymbol interference, especially on channels with severe distortion [2]. Also
there is a significant performance loss due to incorrect decisions being feed back, i.e.
error propagation, in DFE, caused by the sensitivity of the LMS and RLS algorithms

to error propagation [14].

Among different equalization techniques, maximum likelihood sequence estima-
tion, which is efficiently implemented by means of the Viterbi algorithm (MLSE-VA)

is optimal in the sense that it minimizes the probability of the error in the receiver
[2] [10] [11] [15] [16].

The MLSE is based on the computation of a-posteriori probabilities, with a known
received signal sample sequence. Hypotheses are made for all the possible transmitted
information sequences. The detector chooses, among these hypothetic sequences, the

one that has the largest posteriori probability. The VA is used for efficiently searching
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among these possible sequences.

Unlike the linear and decision-feedback equalization techniques, the MLSE needs
to know the probability density function of the received signal. In linear equalization,
the estimate of the information symbol in any particular signaling interval is some
linear combination of the received signal samples from the output of the matched filter.
In DFE, there is the additional linear combination of previously detected symbols.
The tap weights in these linear combinations are determined by minimizing cither the
mean square error or the peak distortion. Thus the adjustment of the weights does
not require knowledge of the statistics of the signal and the channel. In MLSLE, in
order to calculate the a-posteriori probability and hence the decision metric in VA,

the statistics of the transmission environment must be known a-priori.

To eliminate the ISI, the MLSE-VA algorithms also require explicit or implicit
identification of the channel characteristics in order to compute the metries for making
decisions. To accommodate a channel that is unknown, a channel estimator may be
included in parallel with the detection algorithm. The channel estimator is usually
an FIR transversal filter with adjustable coefficients which is computed recursively to
minimize the mean square error (MSE) between the actual received sequence and the
output of the estimator. These estimated coefficients are fed to the MLSE-based VA
for use in the metric computations. Considerable research has been performed on the

channe] estimation and the corresponding digital signal structure [15].

These studies have resulted in two main channel estimation technigues. One sug-
gests the use of a known training sequence prior to each information sequence to help
the channel estimation. This technique is commonly known as the pilot assisted de-
tection techniques [17] - [20]. With this approach the signaling format of the system
is designed such that the information data sequence is organized in blocks with each
block pfeceded by a known training pilot sequence. The trainirng sequence at the

begining of each block is used to estimate the channel response within the training
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sequence duration. The channel response at other times is tracked either through the
fast tracking algorithms like LMS and RLS algorithms or through a channel interpo-
lator [20]. Generally, the whole channel estimation process is performed in two stages,
a periodic channel estimation stage and a channel tracking or interpolation stage [21]-
[23]. The main concerns with the channel estimation using the pilot training are the
processing delay, the signalling efficiency, and the buffer space required at the receiver

for interpolation.

In order to accomplish the fast fading channel identification in a short time, the
other proposed techmque estimates jointly the channel response and the transmitted
sequence, despite the dilemma of the so-called Blind Problem : ” Sequence detection
1s never successful without the knowledge of the channel response. But the channel
response cannot be estimated without referring to the transmitted sequence.” Joint
channel response estimation and signal detection is usually carried through a received
signal whitening filter implemented as a Kalman filter. The filtered signal output is
then compared with the original received signal to determined the decoding metric in

MLSE-VA algorithm [24] [25] [26] [27] [28] [29].

The main considerations in these channel estimation methods are the receiver
complexity, propagation lag error, and the signal detection delay. A comparision of

the advantages and disadvantages of these techniques can be found in [22].

This thesis studies the optimal equalization techniques, i.e. MLSE-VA, in the
frequency selective Rayleigh fading channel. The objective is to derive an efficient
and yet accurate equalizer structure to combat the ISI. The channel estimation both
with and without the pilot sequence assistance is investigated. The pilot sequence
assisted channel estimation scheme proposed in the thesis utilizes a novel reduced
dintensionality channel model developed in Chapter 3, which results in a receiver
“with simple structure and not much loss of performance. The MLSE-VA under study

without training sequence uses a bank of Wiener optimal filters for the fading channel
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prediction. Its application under fast and slow fading environments are studied. Tech-
niques such as multi-sampling per symbol at the receiver and the antenna diversity

are investigated. The thesis outline is given below.

1.3 Thesis Outline

Following the introductory chapter, the signal and channel models for frequency se-
lective Rayleigh fading channel are developed in Chapter 2. Concepts, such as fast
and slow fading, mean square delay spread are defined and discussed in detail. In or-
der to develop a simple and precise equalizer, the multipath Rayleigh fading channel
characterization is studied and a new reduced dimensionality channel model (RDCM)
1s proposed in Chapter 3. The channel considered is the wide sense stationary uncor-
related scattering (WSSUS) channel, which specifies that the attenuation and phase
shift of the channel associated with path delay 7, 1s uncorrelated with those associ-
ated with path delay 7,. This is the case in most radio transmission media [29] [30)
. The derived simplified discrete channel model has only a few random parameters,
when the delay spread is less than the 20% of the signal symbol duration. The esti-
mation can be carried out for these parameters instead of the whole channel impulse
response. Applying this novel technique, both the simplicity and accuracy of the

channel estimator can be increased as found in Chapter 3.

With the RDCM derived in Chapter 3, a reduced complexity channel estimator is
proposed in Chapter 4. This channel estimator utilizes the RDOM and pilot training
sequence to enhance the channel estimation accuracy. The obtained estimator is thus
simple in structure and in computation and yet very accurate. The perforinance of
the estimator is evaluated both under the mean squared measure criteria and bit error
probability of the corresponding VA receiver that uses this channel estimator. The

result is very satisfactory.
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In Chapter 5 of the thesis, an MLSE-VA equalizer using the joint channel esti-
mation and signal detection is studied. No training sequences are used. An implicit
channel estimat.on technique and the VA state reduction scheme is applied so that the
complexity of the conventional MLSE-VA is greatly reduced without loss of accuracy

m the sense of the bit error rate of the receiver.

The thesis is summarized in Chapter 6.



Chapter 2

Signal and Channel Model

In this chapter, we define the digital signal model over the frequency selective Rayleigh
fading channel. Most of the material can be found in [2]. Concepts of delay power
profile, fast and slow fading are discussed. The discrete signal and channel model
derived for the signaling over Rayleigh channels with intersymbol interference and

additive white gaussian noise will be applied throughout the thesis.

2.1 Transmitted Signal

The baseband model of a high-speed communication system over a frequency selective

Rayleigh fading channel is shown in Fig. 2.1.

The transmitted data is represented by a sequence {c(k)} of complex symbols,

and the complex envelope of the transmitted signal is

SW)=A Y ck)alt - kT) (2.)

k=—oc

10



(CHAPTER 2. SIGNAL AND CHANNEL MODEL 11

=kT + T MLSE !/\m) |
k (i ® - fn]l ML (X
-———--,‘c o Pulse ¢ (1; v Fading v F;“ce“’"; AL ol VA b————
H ‘ ter 1
Shaping Channet qf Digital
Processor

Figure 2.1: Block Diagram of the Communication System.

where A is the amplitude, and without loss of generality we set A = 1 in the following
of the thesis. The transmitter pulse shaping function ¢,(¢) has unit energy, and the

symbol rate is 3. The expected value Eflc(k)[*] = 1.

2.2 Rayleigh Fading Dispersive Channel

The signal is transmitted over a frequency selective Rayleigh fading channel with
an equivalent low-pass time-variant impulse response u(7,t), which represents the
channel response at time ¢ due to an in-pulse applied at time t — 7. 7 is the delay
in the scatters. u(r,t) is usually modeled as a wide sense stationary uncorrelated
scattering (WSSUS) process [39]. For Rayleigh fading, u(7,?) is a Gaussian process
with zero mean. It is completely characterized by its correlation function which is

defined as [2]

féu(E:TlvT2) - El‘)_E[u(Tlst)u*(T27t+£)]
= éu(E,T])(‘)‘(T]*Tz) (2.2)

where * represents the complex conjugate. ¢,(£, ) gives the average power output
as a function of the time delay 7 and the difference between observation times, €.
It reflects both the multipath spread and the fading rate of the channel. When

assuming the autocorrelation function in time is the same for each delay, ¢,(£,7) is
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usually represented as
ou(€. 7) = G(7)du(é) (2.3)

where G(7) is refered to as the delay power profile. and ¢,(£) is the autocorrelation

function normalized to unit power.

The total fading power is normalized to unity, so that

/G(T)dT ~ (2.4)

For convenience, we will take the first moment of (/(7), the average delay, to be
zero, as given by

/T(:(T)dr =0

—_
38
i |

—

The second central moment of GG(7) is the mean square delay spread, with square

root equal to the root mean square (rms) delay spread, given by
2 2,0 9 @
T = /T G(7)dr (2.6)
The channel additive noise, n,(t) is a zero mean complex white Gaussian process
with power density Ny. The baseband equivalent of the received signal, »(1), is

r(t) = u(7,t) @ s(t) + ny,(t)
_ /u(r, t)s(t — 7)dr + () (2.7)

% represents the convolution.
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2.3 A General Discrete Model for Rayleigh Fad-
ing Channel

The receiver front end consists of a filter followed by a sampler. Denote the impulse

response of the receiver filter by the unit energy ¢.(t), Its output is

y(t) = [r(t) +nu(t)] 2 ¢ (1)
- Zc(k)//u(r, t+ @)t +a — kT — 7)g (—a)drda + n(t)  (2.8)

P
where n(t) is the filtered white Gaussian noise with autocorrelation function

: N, . _
by (t) = TO /qr(;':)qr(:v — t)dzx (2.9)
To simplify the general expression (2.8), we need to specify the pulse shaping
functions ¢,(¢) and ¢, () as well as the channel impulse reponse u(r,t), which all rely
on the fading channel characteristics. For different fading characteristics the pulse

shaping filters can be chosen to optimize the receiver.

In slow fading, it is usual to match the receiver filter to the transmitted pulse,
which usually has a square root raise cosine shape, in order to maximize the detected
signal to noise ratio. In this case, ¢,(t) = ¢;(—¢). Although the integration in (2.8)
with respect to o covers the whole « axis, most of energy of the integrand centered
around peaks of ¢,(—a) and ¢,(t+ & — kT — 1), so the practical integration region lies
in a small interval from about a = 0 to about a = kT + 7 — ¢, the peak locations of
the two pulses ¢.(—a) and ¢(t + a — kT — 7). Therefore for slow fading, the channel
impulse response u(7,f + @) in (2.8) is considered approximately constant over the
integration with respect to «. By arbitrarily identifying this value with the value at

a = 0, we can move u(7,1) outside the a integration. Thus we have
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y(t) = Zc(k) /lL(T.f)p(f — kT — 7)d7 + n{t) (2.10)

k

where p(t) = q,(t) =3 q;{—1) is the composite pulse shape.

In very fast fading, pulse distortion from the multiplicative fading can result. in
ISI and loss of SNR, resulting in a significant error floor [32]. One of several remedies
1s to make the receiver filter a rectangular lowpass with bandwidth large enongh to
accommodate the Doppler-spread signal, and transmit full Nvquist pulses. Therefore
with ¢,(?) a full Nyquist pulse, usually a raised cosine pulse, and ¢, (1) a lowpass filter,

(2.8) can still be simplified to (2.10), with p{t) = q(¢).

We see in both slow and fast fading. the received signal can be at least approxi-
mately represented as in (2.10) with p(#) being a full Nyquist pulse. In this thesis, we

take p(t) as a raised cosine pulse.

The filter output is sampled before further processing as shown s Fig. 2.1. The
sampling instant is »T; + 7 and for convenience in this study, we assume that the
timing recovery algorithm locks to the mean delay, so that 7 equals zero. Generally
to combat the fast fading in the channel, multiple samples are made in per symbol

duration. Let the number of samples per symbol be an integer

. T
N, = — (2.11)
T
where 71,: is the sampling rate at the receiver filter output.

To simplify the notation we can define an equivalent transimission sequence as

c(k/Ns) if k/N,is integer

0 otherwise

a—
(™
—
B

~—r

b(k) =
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conststing of the mmformation data interleaved with (N; — 1) zeros. The information
sequence {c{k}} of rate 1 is then extended to an equivalent sequence {b(k)} of rate
;,L Note that for sampling at transmission baud rate, 1.e. Ny = 1, we have T = T
and bkj = clk).

The sampled filter output at time nT; is

y(nT,) = E b(k)/u(r, nTs)pl(n — k)Ts — 7)dT + e(nTy) (2.13)
k

where e(nTy) is a filtered white noise sample with correlation given in (2.9). For re-
ceiver matched filter and one sample per baud case, i.e. N; = 1, the different e(nT})’s
are independent identically distributed (iid) complex Gaussian random variables, each

having a zero mean and a variance equal to Ng.

Substitute (2.11) into (2.13) and use square braces to indicate a sample of a con-

tinuous waveform, e.g.. y{n] = y(nT}), we have

y[n] = Eb(k)/ u(r.nTs)p[(r — k)Ts — 7)]dT + €[n] (2.14)
k

This is a general discrete signal model. In the following we will derive the discrete

“signal model for the discrete multipath Rayleigh fading channel.

2.4 A Signal Model over the Discrete Multipath
Rayleigh Fading Channel

Section 2.2 ouilined a model for the continuous fading dispersive channel. For discrete

mutipath Rayleigh fading channel, the impulse response of the time varying dispersive
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fading channel is given by

M
u(r,t) = Z,Si(t)é(r - 7i). (2.15)
=1
We adopt a WSSUS model, so that the paths (8;(¢), 7)., 7 = 1,2...., M are statistically

independent of each other. giving

%E[ﬂ{(t)ﬁj(t +8)] =

&

{ ¢i(€) fori=j (2.16)

0 otherwise.

We further assume that the channel scattering is separable, so that each delay has

the same normalized autocorrelation function, resulting in
. 2 . N —
@i(£) = o7 p(€) (2.17)

where o7 is the power of the z-th path and p(£) is the autocorrelation function nor-
malized to unit power. In mobile communications, p(£) is frequently taken to he
Jo(27 fp€), where fp is the maximum Doppler frequency [1]. The delay power profile
15
M
G(1) =20‘,~25(T—T,») (2.18)
=1

For convenience, we take the mean delay to be zero
Mo
> nol=0 (2.19)
i=1
so that the root mean squared delay spread, 7.,,;, is given by
M
2 2 2 §) ¢
Trms = E T, 0 (')”ZU)
i=0
Substituting (2.15) into (2.10) and taking samples at nT,, we obtain the discrete

signal model over discrete multipath fading channel
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M
yin = 325 bR {ulpllon — KT, — 7] + eln) (221)

k i=1

where the information sequence {c(k)} is replaced by the equivalent sequence {b(k)}.

In the remainder of the thesis, for simplicity, we will use the signal model for dis-
crete multipath fading channel for all the derivations. The derivations can be extended

to the continuous fading channels, i.e. according to (2.14), without much difficulty.

In the next chapter we will derive a reduced dimensionality channel model based

on the signal model and notations developed in this chapter.



Chapter 3

A Reduced Dimensionality
Propagation Model for Frequency
Selective Rayleigh Fading

Channels

As discussed in the last chapter, the mobile communication channels exhibit frequency
selective Rayleigh fading, which produces randomly time varying intersymbol inter-
ference (ISI) in digital transmission. For ISI channels, the optimum detector uses
maximum likelihood sequence estimation (MLSE), normally with the Viterbi algo-
rithm. However, the Viterbi receiver reqaires an estimate of the chanuel impulse
response (CIR) and, depending on the pulse shaping filter used and the delay spread
in the channel, the CIR may span many symbols, resulting in a large number of pa-
rameters to estimate. The estimation can be facilitated by embedding known training

sequences in the data [21]. According to [20], the number of training symbols required

18
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is approximately twice the duration of the CIR. Thus, treating the CIR as a long un-
constrained sequence leads to questions of accuracy in the estimation and efficiency

in the transmission format.

We present in this chapter a simple, yet accurate, alternative model to describe
frequency selective channel fading. It expresses the CIR in terms of only a few param-
eters, rather than explicitly in terms of the full set of channel taps as is usually done
[2]. There are several advantages with such a reduced dimensionality model (RDM).
First, since there are fewer parameters involved, they can be estimated more accu-
rately; second, significantly fewer training symbols are needed when compared to a
system that estimates explicitly the full CIR; and third, simulations of such channels
are simplified through reduction of the number of complex gain generators required.
We show that a RDM for the frequency selective fading channel with a small delay
spread can be obtained by truncating a Taylor series representation of the transmitted
signal. In a related work [31], a different mathematical transformation of CIR, i.e.
chaunel orthogonalization, is shown to lead to a simplied channel simulator, though

it has not been applied to detection in receivers.

The chapter is organized as follows. We show in Section 3.1 how the original
channel model can be described in terms of a reduced dimensionality model. The
accuracy of the RDM, measured in terms of the mean squared error between the
original and modeled channel impulses responses, as well as the bit error rate difference
of the Viterbi receiver, is given in Section 3.2. Finally the summary of the chapter is

given in Section 3.3.
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3.1 Reduced Dimensionality Channel Model

In this section we propose the reduced dimensionality channel model for the slow
fading channel discussed in chapter 2. The block diagram of our communication

system is shown in Fig. 3.1.

f® | Matched , KT+7 |
Filter q (-)
ey LA A A
‘ yin] Viterbi | e (1) 02,000
c=(c(D) c(2),...) Pulse s(t)
o q(®) Channel Decoder >
Shaping
Channe!
Estimator

Figure 3.1: Block diagram of the system.

Recall from (2.10) that

y(t) = Zc(k)/u(r,t)p(t — kT — 7)dr + n(t) (3.1)

k
where p(t) = ¢¢(t) @ ¢;(—1) is the composite pulse shape.

As shown in Fig. 3.1, the receiver samples y(¢) at the symbol rate so that in
expressions (2.11) and (2.12) we have T = T, N, = 1 and b(k) = ¢(k). According to

(2.14), the received signal sample is

y[n] = Zc(lz)/u(T, nT)pl(n — kYT — 7]dr + €[n] (3.2)

k

where e[n] are iid complex Gaussian random variables.

It is clear from (3.2) that the ISI, and therefore the discrete impulse response,

can span many symbol times, even for relatively modest delay spreads. Use of the
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impulse response to characterize the channel, therefore, leads to high dimensionality
in both channel estimaticn and channel simulation. We now show that an alternative

description gives an effective dimensionality that 1s much lower for small to moderate

delay spreads.

Since the transmitted sigual is bandlimited, we can expand it in a Taylor series
and expect that only the first few terms are required for accurate representation over
a significant fraction of a symbol. Accordingly, we expand the pulse p((n — k)T — 7;)

in (3.2) as

p((n—k)T —7)= i d (3.3)

where pU)(t) is the j-th derivative of the pulse p(¢). By substituting (3.3) into (3.2)
and changing the time index by letting n — k = £ and hence k£ = n — £, we can rewrite
y[n] as

sl = Y g0 3 el — (A + <l (3.4

£

where

g;ln] = /u(r, nT)(—-;;)de
T
pilf] = p\¥ (eT) =5
We can interpret (3.4) as a sum of fixed parallel subchannels, in which the j*
impnulse response is p;[€], each weighted by a complex gain g;[n], see Fig. 3.2.

The g;[n), which are Gaussian random variables, are successive moments (in delay
7) of complex channel gain. They can also be interpreted in frequency domain as

derivatives at f = 0 of the Fourier transform

U(f,1) = / u(r, t)e= 727 47 (3.5)
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e

pﬂ{ll

{c®)} 1

)

Figure 3.2: The parallel subchannel model.

L),

gj["’] = (_jzﬂ') d/- =0

(13.6)
i.e. tilt, curvature, etc of U(f,1).

The correlation of g;{l] and gi[l — n] can be obtained using (2.2) and (2.3) for the
WSSUS channel

1 .
Airln] = 5 E{g;llgill —nl}
= %//‘U(T,ZT)(—%)JU*(O',U-’Il)T)(-—%)k(/,T(],O'
= //(,f)u(nT,T,d)(—%)j(—%)k(lr(la
= /(;(T)¢U(TLT)(—;})j+k(lT
= u(nT) / G(T)(-_ff)frkdr (3.7)

Note the integration in (3.7) is the moments of the channel power delay profile

defined in section 2.2.
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In the following, we take the WSSUS discrete channel as an example to derive our
reduced dimensionality channel model. By substituting (2.15) - (2.17) as appropriate,

we can obtain y[n] as

yln] => e(n — O)hyg[n] + €[n] (3.8)
where -
heln] = Z:.(lj[n]l)j [4], (3.9)
oilnl =3 Al (F) (3.10)
and

0oy L |
pilf] = p” (IZT)—]T (3.11)

The set of coefficients {.. ., h_1[n], ho[n], h1[n], ...} is the discrete time channel impulse
response (CIR) at timenT. These are complex Gaussian random variables constructed
as set of fixed, known impulse responses p;[f] of increasing order j, each weighted by
a time-varying complex gain g;[n]. Fig. 3.3 depicts the discrete time channel model

in (3.9), where altogether 2L + 1 channel tap coefficients are shown.

The reduction in dimensionality stems from the observation that for a small delay
spread, the infinite sum in (3.9) can be approximated by the first J + 1 terms, as
shown by the covariance

Tk

Aiulnl = 5 E{osllgill = nl} = ¥ ol (%) (312)

If all the 7;’s are much less than the symbol duration T, then the covariance decreases
rapidly with increasing order j + &, and we can truncate the sum in (3.9) after the

Jth derivative. This leads to the reduced dimensionality channel model

J
heln) = Z,; gi[n]p;14] (3-13)
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c(n+L) c(n+L-1) c(n) ¢(n-L.)
- - D

...... Cx h (o]

’QT(/ y(n]

e[n]

Figure 3.3: The discrete time channel model.

where J is the order of the channel model. With a proper choice of .J, we see from
(3.13) that the entire channel response, which strictly speaking consists of an infinite
number of taps, is well approximated by only J + 1 random processes. We will show
later on that for delay spreads up to 20% of a symbol, only J = 2 derivatives are

required.

According to (3.7), the covariance (3.12) can also be expressed as

2 T 7tk
Meln) = ol Yot (7))
= p[n]]\/lg+k) (3.14)

where ,Mgc) is the kth central moment of the delay-power profile, the second such
moment being the mean square delay spread. Thus we have an expansion in the
moments of the delay spread, which decrease quickly with order. In particular, we
have assumed that timing recovery locks to the mean delay, so that the first moment, is

zero and the processes go[n] and ¢1[n] are independent. If a different value is returned
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from timing recovery, the moments are non-central, and the first two processes are

correlated,

The reduced dimensionality model has several advantages. Since there are fewer
parameters, the receiver is likely to estimate them more accurately than in the case
of estimating the full impulse response he(n) (The point is illustrated by examples
in Appendix A). On the other hand, the result is still an approximation of the true
CIR. Similarly, a simulator based on the reduced dimensionality model can generate

the effects of a fading dispersive channel with fewer random number generators.

3.2 Accuracy of the Model

Having established the reduced dimensionality channel model, we now evaluate its
accuracy. Two criteria are used for this purpose. One is the mean squared difference
between the CIRs of the RDM and the original model. The other is the bit error
probability difference of the respective Viterbi receivers. Numerical results are given

in both cases.

3.2.1 Mean Squared Modeling Error

One measure for the accuracy of the RDM is the mean squared difference (MSD)

between the original and the modeled responses of the channel, i.e.,

E, = %; E {lfu[n] — hg[?l]r}

= S ol - S ol o lrleld - 5 o))
L o0 oo M i+7
= 2 > X ZUZ‘(ZT'“-) pil€lp; 1] (3.15)

C=~L i=J+1 3=J41 k=1
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For a numerical comparison, we used for the composite pulse shape p(t) a vaised
cosine characteristic with 50% excess bandwidth, truncated to L = 5; that is, we
assume that most of the signal energy is contained in the center 11 taps of the discrete
CIR. Fig. 3.4 shows the dependence of MSD on the normalized rms delay spread
(Trms/T) for a channel with a uniform power-delay power profile. A similar plot is

given in Fig. 3.5 for a two-ray profile. These two profiles are given respectively by

1

. —Tu ZESTST’IL( R

G(r) = { Zrmas - naz (3.16)
0 otherwise

with rms delay spread equal to 7,,.,/v/3 and

G(r) = o6(r — ) + 028(1 — 1), (3.17)

with mean delay oim +o2m, = 0 and rms delay spread equal to \/ oloi(ry — 71)%. Since
both channels have a normalized power of unity, the MSDs shown in Figs 3.4 and 3.5

actually represent normalized differences between the original and the modeled CIRs.

Evident from these figures is that for rms delay spread less than 5% of the symbol
duration, a first order model, t.e. .J = 1, is sufficient to represent the actual channel
with a MSD around 107°. On the other hand, if a flat fading model is assumed, i.e
J =0, then the MSD is approximately 1072 for a 5% delay spread. Although there
may not exist a simple relationship between the MSD and the bit error rate of the
receiver, it is clear from the above figures that a receiver design based on a flat fading

assumption will exhibit an error floor even with a few percent of delay spread.

If the rms delay spread in the channel is up to 10% of a symbol, then a second
order model, .JJ = 2, is needed to keep the MSD to within 10~ for the 2-ray channel.
The channel with the uniform profile requires a higher model for this range of delay
spread. Though not shown, we have calculated the MSD for different power split
ratios In the two ray channel and find that the more evenly distributed the power

1s in the two rays, the smaller the MSD between the reduced dimeunsionality channel
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model and the original channel model. This is because, for a given rms delay spread,
more uneven power splits correspond to larger delay differences between the two rays,

and therefore require more terms in the Taylor series for sufficient accuracy.

3.2.2 Bit Error Probability of the Viterbi Receiver

In this section, we assess the effect of the reduced dimensionality model on the bit
error probability (BEP) of an MLSE receiver implemented using the Viterbi algorithin.
Specifically, we compare a receiver that determines the first J + 1 complex gains g;[n]
of the RDM CIR with perfect accuracy, using them in a Viterbi detector, with a
similar receiver that has perfect knowledge of the true CIR. To evaluate the BEP of

the Viterbi receivers, we apply the method in [33].

If perfect CSI can be obtained for he[n] in (3.13), the optimal receiver is a Viterbi

'

decoder that selects the sequence ¢ = (é(1),---,¢é(K)) that minimizes the metric [2]

K L B
J(@&) =Y lyln]— > én- ﬂ)ﬁg[n]l (3.18)
n=1 £=—L

where 2L is the length of the CIR and ¢(—L),---,¢(0) are known to the receiver.
Given the transmitted sequence ¢ = (¢(1),---,¢(K)), a decoding error occurs if for

some erroneous sequence ¢, the random variable D, defined as
D =J(¢c)—J(c) (3.19)

is less than zero. The metric J(c) is given as

L

K
J(€) =Y lylnl — D e(n — O)he[n])? (3.20)

n=1 =L

Let P(c — ¢€) denote the pairwise error event probability for a particular pair of ¢

and c, 1.e the chance that D is less than zero. In addition let a(c,¢) be the Hamming
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%

0 0.05 0.1 0.156 0.2 0.25
Normalized rms delay spread

Figure 3.4: The mean squared difference vs normalized rms delay spread plot for a
channel with a uniform power-delay profile; solid line : J=0, dashed line : J=1, and
star : J=2.
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b

%

0 0.05 0.1 0.15 0.2 0.25
Normalized rms delay spread

Figure 3.5: Same as the previous figure except that a 2-ray profile is considered
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distance between the two corresponding information sequences. Then the overall hit

error probability of the Viterbi receiver can be approximated as [33] [34]

_ 1 aled) L
Pb~ZZ B > P(c—¢) (3.21)

c ¢#c

where B is the number of the information bits per channel symbol, and Z is the
number of the possible transmitted sequences. It is obvious from this equation that
the key o determining the bit error performance of the receiver lies in obtaining
an expression for the pairwise error probability. Using the characteristic function

approach suggested in [33] we can show that the pairwise error probability is given by
P(e — ¢)
p(D < 0)
= —Restdue[®p(s)/s]rpotes (3.22)

I

where ®p(s) is the characteristic function of the random variable ). The structure

of the characteristic function can be found in equation (4B.1) of [35].
The details in obtaining the characteristic function ®p(s) is shown below.

Substitute (3.8) into (3.18) and (3.20) respectively, we have

K L L
J(@) =Y leln]+ > d(n— O)hn] + > én— N\ Abs[n]l? (3.23)

=1 =1 =1
and
K L ) B
Je) =Y le[n]+ D c(n — £)Ahy[n]f* (3.21)
n=} f=—1
where dik) = c(k) — &(k), Ahen] = hofn] — heln] = 22 41 gi[nlp;14)-



CHAPTER 3. A Reduced Dimensionality Propagation Model

Define zero mean complex Gaussian random variables a,,, b, and t, as follows.

L
a, = Y d(n—0hn],
=—L

L
b= Y &(n— )Ahn],
f=—L
L
t, = Z e(n — £)Ahy[n].
f=—L
Let
aq bl t]
a = . b = R t —_ .
ay bx 147%
1 0 0
I= . 0=
0 1 KxK 0

Write the complex random variable D in matrix form

D = J(&)-—J(c)
K

= Z[(e[n] + an + by)(e[n] + @, + b.)* — (e[n] + t,)(e[n] + £.)*]

n=l1

= z!Fz

where

o o T

~ “ 4K x1

KxK

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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and

I 1
I 1
00
11

0
0
o |
—1I

0

< 4K x4k

The superscript | represents the Hermitian transpose.

The correlation matrix of z is obtained formally without much difficulty.

R,

Iha

_OKxK

[ a

Ok K

b t

e

*

a't a'e

b*t b¥e

t't tre

e't e'e |
Rat  Oxxk
Rbt  Onxk
Ret  Orxx
Oxxk Ree

(3.34)

Note that e is uncorrelated with a, b, and t, and R, is a Hermitian matrix. De-

termination of the submatrices of Ry is straightforward, but detailed. To simplify the

expression, define
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f(w)vz ny, 7121]117‘71117]21)]211,)
Jih  J2h

L L
= > > wm = (na—m) Y, Y p;[dp}[m]

I =Ju J2=ja

f=~L m=—L
M o

3" ¢i(nl — n2)r7 *72], (3.35)
1=1

where w and v are vectors with elements {w(z),: =nl—L,--- ,nl+ L} and {v(¢),7 =

nl — L,---,nl+ L} respectively.

The (ny,n3)'th element, ny, ny, = 1,---, K, in submatrices Raa, Rab, Rat, Ebb,

Rpt, Rit, and Ree can be obtained respectively as follows.

Tan an, = F(d,d,n1,m2,0, 00,0, 00),
Tanbn, = F(d,€,n1,12,0,00,J + 1,00),
Tan, tn, = F (d, €,121,72,0,00,J + 1, 00),

Tbo by = F (€ €,19, 022, + 1,00, J + 1, 00),
Tbo tny = F (€, €, 11,09, J +1,00,J + 1, 00),
= F(c,e,ny,n,J +1,00,J + 1, 00),
Ve eny = Nob(n1 — ny).

Where d = ¢ — ¢ and all the symbol meanings are consistent throughout the thesis.

(3.36)

Tty tn,

With the matrix F and correlation matrix R, the characteristic function of D is

obtained as

1
dp(s) =
ol8) = TTTmF
1
3.37
AN (1 + 2s);) (3:37)

where {A;,i1=1,---,4K} are 4K real eigenvalues of R;F.
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The pairwise error probability in (3.22) can be calculated from (3.37).

Using the technique described above, we calculated the bit error probability for a
BPSK signal transmitted over the two ray channel defined in section 3.2.1. A raised
cosine p(t) with a 50% roll-off is used as the overall pulse shaping filter. Since the
main purpose of the analysis 1s to study the effect of the order of the RDM on the
receiver performance, we truncate the overall CIR to 3 taps (L = 1). Although the
result may not produce the exact BEP, it is nevertheless suitable for comparison
of the two receivers, because, for small delay spreads, most of the energy of the
CIR, and hence most of the energy of the representation error of the RDM, will he
concentrated in the first 3 taps. The motivation, of course, is that use of such a short
CIR length greatly simplifies the bit error probability calculation, since there are fewer
erroneous sequences to consider. Fig. 3.6 shows the trellis diagram of BPSK for a
3-tap channel, with the circles being the channel states and the numbers associaled
with the transitions being the BPSK symbols. To simplify our error probability
calculation further, we assume a transmitted sequence of (=1, —1, =1, -1, =1, —1,...)

and consider only those erroneous paths that merge with it in no more than 4 steps.

Fig. 3.7 shows the computed BEP versus the signal to noise ratio (SNR) for a
normalized rms delay spread of 0.1, with the order of the reduced dimensionality
channel model as a parameter. Also shown in this figure is the BEP of the optimal
receiver, i.e. the one based on the actual CIR (i.e., the infinite order model). A
similar plot 1s shown in Fig. 3.8 for a normalized rms delay spread of 0.2. In both
figures, the two rays in the channel are assumed to have equal power. It can be
observed from these two figures that a receiver based on the flat fading assumption
(J = 0) leads to an irreducible error floor. The magnitude of the error floor increases
with the actual delay spread in the channel. With a first order model, the error

floor can be suppressed significantly, and, with a second order model, it completely
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disappears in the range of SNR shown. As a matter of fact, the performance of the
receiver based on the second order model is almost indistinguishable from the optimal
receiver. Although not shown, we also studied the effect of the power split ratio o7 /o3
in the 2-ray model on the bit error probability. We found that even power split gives

the best performance, and this result is consistent with those found in [36].

Finally, we plot in Fig. 3.9 the BEP vs normalized 7,,,; curves for different reduced
dimensionality channel models. Also shown is the curve for the the optimal receiver.
A channel SNR of 40 dB is considered in this figure. It is observed that up to a
delay spread of 1/5 of a symbol, the performance of the second order receiver tracks
perfectly that of the optimal receiver, whereas the first order receiver tracks perfectly
up to about 5% of delay spread. These numbers are consistent with those found in
the mean squared channel difference analysis in Figs 3.4 and 3.5. As in [36], it is also
observed here that as the delay spread increases, the BEP actually improves. This
stems from the diversity effect provided by multipath fading. It is necessary to note
that in the North America digital mobile standard, the mobile channel delay spread
is 5 10 us, and the symbol duration is 45us. So the second order RDCM model is

applicable to the standard.

States | Information Bits
0 -1,-D
1 1.1
2 (1.,-D
3 a, v

Figure 3.6: Trellis diagram for a BPSK system with a channel memory of 2 symbols
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Figure 3.7: Bit error probability vs SNR plot for a 2-ray power-delay profile with a
rms delay spread of 0.1 symbol; solid line : full order receiver, dashed line : zero
order receiver, crosses : first order receiver, stars : second order receiver.
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Figure 3.8: Same as the previous figure except that the normalized rms delay spread

1s increased to 0.2.



Bit Error Probability

CHAPTER 3. A Reduced Dimensionality Propagation Model 38

YTy

A

0 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Normalized rms delay spread

Figure 3.9: Bit error probability vs delay spread plot for a 2-ray power-delay profile;
solid line : full order receiver, dashed line : zero order receiver, crosses : first order
receiver, stars : second order receiver.
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3.3 Conclusions

We have presented a reduced dimensionality channel model for digital transmission
over frequency selective Rayleigh fading channels. The model is general, in the sense
that, by selecting a proper value for the model order J, we can vary our assumption
about the channel from flat fading (J = 0) tc the original frequency selective fading
model (.J = oo). For a given delay spread, the correct choice of the model order is
determined through a mean squared difference analysis of the original and modeled
channel impulse responses. For a delay spread less than 20% of a symbol, we can safely
use a second order model to design the receiver without sacrificing any performance.
This is confirmed through analysis of the bit error rates of a Viterbi receiver using the
RDM CIR and one using the full CIR, both with perfect knowledge of their respective
channel parameters. In a real system, estimation of the two or three parameters of
the RDM is likely to be more accurate, as well as simpler, than the corresponding
estimation of the 2L + 1 parameters of the fuil CIR. We can therefore speculate that
the an MLSE receiver based on estimating and using the RDM in its metric will have
better performance than a similar one based on the full CIR. The channel estimation

based on the reduced dimensionality model is the subject of the next chapter.



Chapter 4

A Reduced Complexity Channel
Estimator for Linear Modulations
Operating in Fading Dispersive

Channels

The design and performance of communication systems primarily depend on the chan-
nel characteristics and modeling. Using the digital signaling model proposed in chap-
ter 1, we design in this chapter a reduced complexity, pilot symbol assisted channel
estimator integrated with the VA receiver for linear modulations operating in the

frequency selective Rayleigh fading channel.

As discussed in chapter 1, the optimal adaptive receiver over time varying, multi-
path radio channels requires identification of the transmission enviroument in order to
eliminate the ISI. One approach for the dispersive fading channel estimation is to use a
training sequence; see for examples [17]-{20]. With this approach the signaling format.

of the system is designed such that the data sequence is divided into frames, with each

40
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frame further divided into a training (or pilot symbol) block and a data block; see Fig.
4.1. The estimation process is carried out in two stages, a periodic channel estima-
tion stage and a channel tracking or interpolation stage [21]-[23]. The advantages of

pilot symbol assisted channel estimation over other approaches are summarized in [22].

Pilot Symbol  Data Block A Data Frame
Block _
P D P D P D P D
X X sssccsrcrsvrcscvscssensen x X

Figure 4.1: Structure of the transmitted frames and the associated channel estimator.
A periodic channel estimator is used to estimate the channel impulse responses at
those locations marked "X”. An interpolator is then used to generate the estimates

at those locations marked ™....7

In most of the proposed pilot symbol assisted channel estimation techniques (see
for examples [20]-[22]). the *snapshot’ assumption is used to simplify the design of the
channel estimator. This means the channel impulse response (CIR) is assumed either
constant over the entire frame or at least assumed constant over the training block.
Though this assumption is probably valid for an indoor microcellular type of operating
cnvironment, it imposes a serious limitation on the underlying channel estimation
techniques in applications where the delay and Doppler spreads are relatively large.
Note that for a channel with an impulse response that spans € symbol intervals, the
length of the training block required for accurate channel estimation is approximately
241 [20] - [22]. For a fast fading channel, such as the one encountered in an outdoor
cellular environment, it becomes unreasonable to assume the channel remains constant

over the tramning interval.

We introduce in this chapter a two stage, reduced complexity channel estimation

strategy for linear modulations transmitted over a multipath fast fading environment.
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The reduction in complexity is a result of using the reduced dimensionality model
(RDM} in the last chapter to model the dispersive fading channel. This means only
a few channel related parameters, rather than the entire channel nnpulse response,
needed to be estimated. In addition. 1t also permits us to use shorter pilot symbol
blocks, since the length of these blocks now depends on the munber of parameters
that needed to be estimated, rather than on the length of the C'IR. Another feature
in our estimator design is that in the periodic channel estimation stage we take into
account the fact that the channel parameters can vary significantly over the training

block.

The chapter is organized as follows. After a brief review of the RDM for the chan-
nel, the optimal filter required for periodic channel parameters estimation is derived
in Section 1. Also presented in Section 1 is the optimal interpolation filter. The
performance of the channel estimator, measured in terms of the bit error probability
of the corresponding Viterbi equalizer. is presented in Section 2. Finally, a smmmary

of the findings in the present study is given in Section 3.

4.1 Channel Estimation Using Pilot Symbols

Use the notations in the last chapter. it was derived that the multipath Rayleigh
fading channel. specially the WSSU channel, is modeled as the weighted infinite st

of the random gain processes in (3.9).

It was demonstrated that for small delay spreads, this infinite sum can be approx-

imated by the first .JJ + 1 terms as follows :
. .
ol = 3 g, 10 (4.1)
1=0

The above represents a reduced dimensionality channel inodel with ./ being the order
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of the model. It was shown that for a rms delay spread up to 20% of a symbol,
the second order model is sufficient to accurately represent the channel impulse re-
spouse. Conseguently. only three fading gain terms, go[k]. ¢1[k]. and go[k]. need to be
estimated. The channel estimator is significantly simpler than the one that need to

estimate the entire CIR which may contain up to 7 to 10 coefficients.

As shown in Fig. 4.2, the received signal samples {y[n]} are passed to the channel
estimator. The channel estimator first generates the estimate g;[k] for the derivative
fading process g;[k]. Then these estimates are applied to (4.1) to reconstruct an esti-
nate of the CIR. These CIR estimates, denoted by {/s[n]} are then passed, along with
the received samples. to a maximum likelihood sequence estimator (MLSE) imple-
mented as a Viterbi decoder. It should be pointed out that the number of coefficients
used in the CIR reconstruction depends strongly on the computational complexity
allowed in the Viterbi algorithm: however this potential limitation is not unique to

our RDM approach and is common to all Viterbi equalization.

it} KT+t ¥in
Matched |/ ___
Filter q (-1
=tk radly .y o= ikl T E¥ 4] Viterbi A A A
o . e=(c{1) ,c(2)....)
Pilot Syrmbed Tramsmasseon Dispersive
>} Insemon Filter {fing channel | Decoder
AR 1
[
,'{ Periodic }{ Channel ". )
1 \estimation Lutor) !
B S |

Channel Estimator

Figure 4.2: System diagram

Since the whole channel estimation is performed in two stages : (1) periodic chan-
nel estimation. and (2) interpolation. we will first consider the subject of periodic

channel estimation based on the reduced dimensionality channel model in (4.1).
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4.1.1 Periodic Channel Estimation

Assuming the channel is accurately represented by the .J 4+ | derivative processes
golk]. 1lk]. - - .. gs[k]. Then the received sample y[n] can be written as

L J
yil = 3 Y gslnle(n — D[] + efn) (1.2)

f=—1 3=0
Without loss of generality. let’s assume we want to estimate the derivative processes
N f s
glk] = (golkl gulk], - .. gulk]), (4.3)

at time k = 0, from the received samples
Y = (y[=N]y[=-N+ 1], y[N]), (4.4)

where (®)! represents a matrix transpose. It can be shown that the optimal estimator,

in the minimum mean squared error sense, is given by [37] [38]
g=(2y%5))Y (4.5)
where g is the short hand notation for g[0], g the corresponding estimale, @,y is the

correlation of g and Y, and ®yy is the covartance matrix of Y.

To determine @, and ®yy, and consequently the optimal estimation lilter
H=&,%;,, (4.6)
we can make use of the fact that the received vector Y can be written as

Y = FG (4.7)
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where ) ]
gl-N - Lj
—-N
c-| 8N (4.5)
g[—N+1]
| glN+1] |
contains 2(N 4 L) 4+ 1 g vectors and F is partitioned into 2N + 1 by 2(N + L) + 1
submatrices, with the (z, k)-th submatrix, 7 =1,2,... ,)2N+1land k = 1,2,...,2(N+

L)+ 1, given by
fir=clk=N—-L—-1)[polt —k+ Ll,pli =k + L],...,psli —k+ L] (4.9

Note that by definition, p;[k] = 0 for |k| > L. Consequently, the matrix F is uniquely

determined if

P=[c(—N—L),c(1=N—1L),...,¢(N + L)] (4.10)

are the known pilot symbols. Given the above structure for the received vector Y, it

is straightforward to determine the matrices ®,y and ®yy.

Py = (9 YJ[)

1
;Z——__—
= Sl (FG))]

= &,F! (4.11)

®yy = (YY)

1
2
= SI(FG)(FG)T)

= F®qF! (4.12)
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where | represents Hermitian transpose. ®,¢; is the correlation matrix of g[k] and G.
® . is the correlation matrix of G and G. All work left in obtaining these matrices is
the correlation element of g;[k1]g;[k2] at times &y and k,. This correlation expression
is given in (3.12).

The mean squared estimation error for the estimator in (4.5) equals

. l—
2 __ AT
¢ = 3lg—g

= 3le- (@ 973) Y] [s- (2.0951) ¥)'
= {race (Qgg — ngi';ly@yg) \ (4.13)

where @,/ is the covariance matrix of glk], and ®y, is the Hermitiau trauspose of the
correlation matrix ®,y. Note that the mean squared error is a function of the pilot,
symbol sequence P in (4.10). In this study, we use a computer search to select the
optimal pilot symbol sequence that minimizes the normalized mean squared error :

2
€
NMSE = ——— 4.14
trace (®y,) (1.14)

For BPSK with N =1, L =1, fdT = 0.003, SNR = 30d0b, the optimal pilot symbol
sequence is (1,—1,—1,—1,1), which is different from the one reported in [20] with the

same length.

4.1.2 Interpolation of the Derivative Processes

The periodic estimates (..., g[— K], g[0], g[K], . . .) obtained from the estimation filter
in (4.5) are passed to an interpolator to generate the fading gain estimates at other
instants. Without loss of generality, let’s consider the estimation of glk] for k =

1,2,..., K — 1, where K is the frame size.
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Assume the interpolator A has an order of () = 27 + 1 and let
[ E[-IK + K]

.| gl-IK +2K |
G- |8 _ M (4.15)

gl/K]

be the collection of the @ relevant periodic estimates. Using a minimum mean squared

error criterion, the optimal estimate of glk], k = 1,2,..., K — 1, is [37] [38]

glk] = AG (4.16)
where
A=9 .8, (4.17)

with @ ~ being the correlation of g[k] and G, and ®;; the covariance of G. It
is understood that the optimal interpolator A depends on the time index k. As
in the last subsection, the determination of ® ~ and @, and consequently the
optimal interpolator A is quite straight forward, especially when the signal structure
reported in Section 3.1.1 is being exploited. The correlation submatrix involved in

the computation is
| S —
Byl = 590k]gT[ke]
1 -
= Solk] [(®or @7}) Y]

= 3,(87)) 2y, (4.18)

which can be evaluated as in the last subsection.
The mean squared error of the interpolator is
. I/
2 _ AT
@ = ;lg—8l

= le- (@.0%5) 6] 6 - (3,085) &'
= trace (B, — @ ;8758 ), (4.19)
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Once the estimates of the derivative processes at a given time instant are obtained,
they will be converted into a channel impulse response estimate according to (.1).

The estimated channel response is denoted by h[n] = (iz,_b[vz.], iz,_,,“[n], e iz,,[n])

with the £-th coefficient given by

. J

heln] = Y~ g;[n] p;[0] (4.20)

7=0

4.1.3 Numerical Results

The performance of the channel estimator presented in subsections 3.1.1 and 3.1.2 is
evaluated according the normalized mean squared error (NMSE) between g[k] and g[A]
at the interpolator output. The definition of the NMSE was given earlier in (4.14) for
the periodic estimator. A similar expression can be easily derived for the interpolator.
Although the optimal interpolator varies with the symbol position within a data frame,
we found that the NMSE is rather insensitive to the data symbol position. For the
two examples in Figs 4.3 and 4.4, the NMSE being reported are those that would bhe
encountered in the center of a {frame. It should be pointed out, that pulse shape p(1)
being considered in these figures is a raised cosine pulse with a roll-off factor of 0.5

and that the order of the reduced dimensionality channel model, .J, is equal to 2.

Fig. 4.3 illustrates the effect of the interpolator order () on the accuracy of the
estimates. Here a uniform delay-power profile with a rms delay spread of 0.2 symbol
and a normalized fade rate of f;T = 0.003 is considered. The frame size K is sef, {o 100
symbols and the channel and the periodic channel estimation filter have parameters
L =1 and N = 1 respectively . It should be pointed ouf that the signal-to-noise
ratio, SNR, 1s defined as the area under the delay-power profile, divided by the power
spectral density of the channel noise, Ny. It is observed from Fig. 4.3 that the

3 curves run almost in parallel. The difference between the () = 2 and the @ =
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10 curve is about 4 dB in channel SNR. Although using a 10-th order interpolator
can provide a significant improvement in terms of the SNR, the price to pay is the
additional computational complexity and the extra delay introduced by using a longer

interpolator.

Fig 4.4 illustrates the effect of fade rate on the estimator accuracy. Once again,
a uniform delay power profile is assumed. The interpolator order is fixed at ¢) = 2
while the fade rate varies. It is observed that up to a channel SNR of 35 db, the
pilot-symbol assisted channel estimator can track the channel accurately even at a
fade rate as high as 3 % the symbol rate. Note that in the context of the North
American digital cellular standard 1S-54, a f;T = 0.03 corresponds to a vehicle speed

of approximately 600 km/hr !

The NMSE curves in Figs 4.3 and 4.4 decay inversely with the SNR. However, the
corresponding bit error rate in the Viterbi equalizer will decrease at a much faster rate,
due to the diversity effect provided by the multipath channel. In the next section, we

provide an analysis of the bit error rate of the Viterbi equalizer.

4.2 Bit Error Probability of the Viterbi Equalizer

The sequence of received samples {y[n]} and the corresponding channel estimates
{ﬁ[n]} are the input to a Viterbi receiver. The Viterbi receiver selects the sequence

¢ = (é(1),---,€é(K)) that minunizes the metric

K L 2
J(@) =Y lyln] = 3 én — O)he[n] (4.21)
n=1 {=—L

where K is the frame size. Note that both the initial and the terminating states in

the Viterbi receiver are determined by the pilot symbols in (4.10).



CHAPTER 4. A Reduced Complexity channel Estimator 50

NMSE

Figure 4.3: The normalized mean squared error in the reduced complexity channel
estimator. The fade rate is f;7 = 0.003 and a uniform power delay profile with
Trms = 0.2 1s used. The different curves correspond to different interpolator orders.

Solid line: Q=2, dashed line: Q=4, star: Q=10.
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NMSE

Figure 4.4: The normalized mean squared error of the channel estimator as a function
of the fade rate. A uniform delay power profile with 7,,,, = 0.2 and an interpolator
with () = 2 was used.  Solid line : f;T = 0.03, dashed line: f,T = 0.003, star:
JaT = 0.0003. The frame sizes are respectively 15, 100, and 1000 symbols.
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Given the transmitted sequence ¢ = (¢(1), -, ¢(K)), a decoding error occurs if

for some erroneous sequence ¢, the random variable D, defined as
D= J(C) - J(C), (4.22)

is less than zero. Let P(c — ¢) denotes the pairwise error event probability for a par-
ticular pair of ¢ and &, i.e the chance that D is less than zero. In addition, let «(c, ¢) be
the Hamming distance between the two corresponding information sequences. Then
the overall bit error probability of the Viterbi receiver can be approximated as [33)

[34]
1 a(c, €) ) .. o
b= Z———~ Z P(ec — ¢) (4.23)
< B
#e
where B is the number of the information bits per channel symbol, and Z is the
number of possible transmitted sequences. Using the characteristic function approach

suggested in [33], the pairwise error probability is given by

(I)[)(.‘_'w‘)

5

P(c—¢&)=p(D < 0)=—)_ Residue { (4.24)

] RPpoles

where ®p(s) is the characteristic function of the random variable D and the sum is
over all the residues calculated at the right plane poles. The structure of the charac-

teristic function can be found in equation (4B.1) of [35].

The calculation of the characteristic function ®p(s) is very similar to that in

section 3.2.2. The detailed derivation is given in Appendix B.

4.2.1 Numerical Results

The bit error rate of BPSK, using a Viterbi equalizer in conjunction with a sccond

order (J = 2) reduced dimensionality channel estimator, was determined analytically
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and the results are shown in Figs 4.5 and 4.6. The fade rate in both figures is
JuT = 0.003 and the underlying raised cosine pulse shape, p(t) has a 50% spectral
roll-off. In addition, a uniform delay-power profile with a ris delay spread of 0.2
symbol is used. The two figures differ in the number of taps used in the channel
impulse response estimates, and consequently in the number of states in the Viterbi

receiver. Note that we use only the shortest and the next shortest error events in the

error analysis.

It is observed from these figures that a good choice for the interpolator order is
() = 8. There is practically no gain in the bit error performance in going from ¢ = 8
to () = 10. However, when () is too small, say () = 4, there exists an irreducible error

foor in both figures.

In comparing the two figures, we can clearly see the effect of the length of the
CIR, relative to number of symbols in the Viterbi algorithm state, on the bit error
performance. For example, at a bit error rate of 107°, the Q = 8 receiver in Fig. 4.6
is about 3 dB better than the corresponding one in Fig. 4.5. In addition, the @ = 8
error curve in Fig. 4.6 is able to track the ideal performance curve, while the one in
Fig. 4.5 begins to diverges from the ideal performance curve. Of course, the price
to pay for this performance improvement is the computational complexity. Note that

the receiver in Fig. 4.5 has 4 states, while the one in Fig. 4.6 has 16 states.

4.3 Conclusions

We present in this chapter a reduced complexity, pilot symbol assisted channel esti-
mation technique for linear modulations operating in fading dispersive channels. The

reduction in complexity is made possible by adopting a reduced dimensionality model
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BER

Figure 4.5: Bit error rate of a 4 states Viterbi equalizer for BPSK. A uniform
delay power profile with 7.,,; = 0.2, and a fade rate of f; = 0.003 was used.
Solid line: perfect channel information, dashed hne: Q=10, star: Q=4
circle: Q=4.
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BER

0 5 10 15 20 25 30 35 40
SNR db

Figure 4.6: Same as the previous Figure, except that the Viterbi equalizer now has
16 states. Solid line : perfect channel information, dashed line: Q=10,
star: Q=8, arcle: Q=4.
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for this type of channel. According to the model, instead of unnecessarily estimat-
ing the entire channel response. which may contain many taps. it s suflicient just to

estimate 2 to 3 derivative channel processes.

We illustrate in the chapter how to performm channel estimation based on the
reduced dimensionality channel model. The mean squared error of the estimator is
presented, along with the bit error performance of the companon Viterbi equalizer.
It was found that for a delay spread of up to 20% of a symbol, a Viterbi equalizer, in
conjunction with a reduced complexity channel estimator. can provide good diversity
effect for BPSK operating in a dispersive fading channel. The larger the number of
states in Viterbi equalizer, the better the diversity effect will be achieved. It was
also found that for all practical situations of interest, the performance of the Viterhi

equalizer is relatively insensitive to the fade rate.



Chapter 5

A Semi-Blind Maximum
Likelihood Sequence Estimation
Receiver for Fading Dispersive

Channels with Multiple Antennas

It 1s well known that the MLSE coupled with VA is an optimal receiver for the signal
detection in the fading multipath channel [2] {11]. Due to the two kinds of channel
mpairments in wireless environment. i.e. the rapidly time varying and occasional
null spectrum in the transmission band., the receiver in mobile communication should
estimate jointly the channel response and the transmitted sequence in a short time
[28]. In this chapter we proposed a ‘semi-blind’ MLSE-VA receiver that meets these
requirements. The term ‘semi-blind” comes from the fact that the receiver requires

approximate knowledge of the fading spectrum.

The MLSE-VA receiver structures without forced pilot training sequence for ex-

plicit channel estimation have been studied for a long time since D.J. Forney’s pioneer

=7
yi
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paper [11]. Recent work on this topic centered on utilizing a bank of whitening filters,
usually Kalman filters, for the implicit channel estimation purpose, and then deriving

a corresponding decoding metric for the VA [25] [28] [29] .

Following the same track, we design a MLSE-VA receiver which differs from those
of others, e.g. [25] [28] [29], in three aspects. Firstly, our channel model is different
from the commonly used model, in that we considered in the model the intersymbol
interference coming not only from the previous transmitted symbols but also from
limited future symbols. " This phenomenon appears when the transmission time is
comparable with a symbol duration or the receiver has a delay of a couple of symbol
durations in the processing of data, which is common in wireless communications,
Utilizing this channel model, the Viterbi algorithm needs to incorporate future sym-
bols in the state trellis diagram. Secondly, our channel estimator uses a Wiener filter
while the Kalman filter is widely used in other papers. The Kalman filter is based
on finite order model - an approximation. We use the Wiener filter, a FIR filter but
truncated, which is a different approximation model. The rationale is that a Wiener
filter is optimal in a complex Gaussian channel {37], and it provides the exact infor-
mation we need while the Kalman filter provides extra information tha is not used
in the VA [25]. Thirdly, in order to reduce the computation complexity we make use
in our branch metric calculation the survivor sequence in the state trellis of the VA,

By so doing, we can reduce greatly the number of states in the trellis.

These three new features in our MLSE-VA, make our receiver accurate and effi-

cient.

This chapter is organized as follows. After a brief review of the signal model
(derived mainly in chapter 2) for the discrete multipath fading channels in Section
5.1, we describe our semi-blind MLSE-VA receiver in Section 5.2. The hranch metric
in the VA state transition is derived and the algorithm using diversity antennas is

investigated. In Section 5.3, we provide some simulaiton results and the chapter is
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concluded in Section 5.4.

5.1 Signal Model

This section gives a review of the communications signal model over multipath fading
channels. Since our MLSE-VA is demonsttrated numerically for discrete channels,
we will concentrate our detailed derivation for the discrete case only. By following
through the signal model in chapter 2, it is easy to derive the specific MLSE-VA for-

mulations for the continuous channels.

The block diagram of our system is shown in Fig. 2.1. The discrete channel model

is given in (2.15). Rewrite the received sampled signal in (2.21) here

y[n] = ZZ() VBi[n)p[(n — k)YTs — 1] + €¢[n] (5.1)

k=1
where {b(k)} is the equivalent information sequence defined in (2.12). 3; is the ran-
dom gain in the ¢** path, ana 7; is the corresponding delay. p(¢) is the composite
pulse shape. e[n]’s are correlated white gaussian random samples with the correlation
given in (2.9). Recall that - is the receiver sampling rate, . is the transmission data
rate, and the number of salnp]es per baud defined in (2.11) is N,. Also recall that in
obtaining (5.1) we assume the timing recovery circuit produces the mean delay of the
received signal (which is assumed to be zero in previous chapters) so that the sample

with index 1N, is nominally associated with information symbol ¢(z).

When using the orignal information data sequence sequence {c(k)}, we can rewrite
y[fl] as

vin) = % (kN T Ailnlpl(n — EN)T, — 7] + eln] (5.2)

k i=1
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Practically, if we assume the transmission channel has a limited memory of 2L
signal symbols (with duration T') centered around sampling imstant n7y, by letting

n—k=4{ and hence k=n—1, (5.1) can be written as

N:L
yln] = Y . b(—l){Z;’ﬂ,-[n]p(lTs — 1)} + eln] (5.3)

I=—N.

Note that in (5.3) the received signal sample is related to L previous and L fu-
ture transmitted data symbols, besides the current data symbol associatiug with time
istance nT;. This is because of the multipath as well as the transmission and pro-

cessing delay in the channel and receiver.

We can rewrite (5.3) more compactly as
N.L

ylnl= > bn—Dhn]+ ] (h.4)

l=—N.L
where h[n] = Y; Binlp(—ITs — 7).
(5.4) is the discrete signaling model which we will use throughout this chapter
for the Rayleigh fading channel. #[n] is our channel impulse response tapped delay

line model. The relationship between the data sequence {¢(k)} and received sanpled

sequence {y[n]} can be modelled as a finite state machine shown in Fig. 5.1.

5.2 Maximum Likelihood Sequence Estimation and

Viterbi Algorithm

The received signal sample y[n] in (5.4) is a sufficient statistics for data signal de-

tection [11]. Since the channel kfn] as well as additive noise ¢[n] are all correlated
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c(k-L) clk-L+1) c(k) c(k+L)

h, o]

| ®

yin]
e{n]

Figure 5.1: Finite state machine channel model.

complex GGaussian processes, the sigral y[n] is also correlated complex Gaussian ran-
dom process. This process can be whitened by a whitening filter implemented as a
Wiener filter. The whitened sufficient statistics are then used for the metric compu-
tation in MLSE-VA. In this section we derive the MLSE and VA that evaluates the
derived metric recursively. Since the search computation complexity and the number
of whitening filters in the VA grows exponentially with the number of trellis states
[2], we design in section 5.2.2 a state reduction scheme for VA that makes use of the
survival sequence to each trellis state. The total trellis states required to carry out

VA is thus greatly reduced.
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5.2.1 Maximum Likelihood Sequence Estimation with Wiener
Whitening Filter

In the following, a boldface symbol represents vector. In our communications system,
consider transmission of S q-ary data symbols ¢, thus the equivalent information
sequence b has a length N,S and the received sampled sequence y has a length of

N;S. Denote the possible transmitted data sequences as
by, by, -+, by

whereb;, i = 1,---, N hasa length N,S and N = ¢°. Lety, = (y[1],9[2],-- -, y[n]) be
the output sequence up to n’th symbol, y be the whole received information sequence
of length S, and ym[n] = (y[n - M + 1l],y[n — M + 2],---,y[n]) be the length M

sequence up to sample n.
The maximum likelihood sequence estimation chooses the decoded data sequence
“b; if
p[Ylbl] > p[Yle']a wherej =1,2,---, Na] 7£ . (53-)

It is clear that since b; is equivalent to the information sequence ¢; of length 5, the

sequence b; is also a maximum likelihood estimate of c;.

By applying the conditional probability repeatedly as in [25] we have

N.S

plylbi] = I:[ ply[n]lyan-1,bi] (5.6)

Taking the logarithm of both sides in (5.6) we obtain the log-likelihood function

NS ,
log ply[b:] = Y _ log ply[n]|ya-1, bi]. (5.7)

n=]
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Since each received sample y[n] is complex Gaussian distributed, the conditional
probability ply[n]|y.—1,b:] in (5.7) is also a complex Gaussian density function [38].
The mean and the variance of the conditional random process are respectively ,,},,—1 (2)

and o2 (). Therefore we have the following simplification

[_ !y[n] - gnln—l (Z)lz]

log plylb] = "{jllog{ mf’ 2Tpr)

N.S l - -
y[n — Ynjn-1 (l)l 1
= { - lOg[..;’T nin— (l)]} (5'8)
1; 207 nin~1 (Z) et
Now the decision rule in (5.5) becomes: choose a sequence b; among by, ---, by

which has the minimum metric

Ay = (LB OF o2 ), =120 69)
n=1 nin—~1

In the metric calculation in (5.9), the conditional mean and variance need to be

estimated. The estimation can be made through a Wiener prediction filter which is

optimal for the Gaussian processes [37] [38]. Practically the prediction filter will have

a limited order, say order M. Thus given the received length M sample sequence up

to sample n — 1, i.e. yuy[n — 1], the Wiener filter will produce the sample estimate

Unjn—1 With the variance &:ln_l.

Fntn—t = Pypnlyabn-1) By 5, fr1ly prln—1y Ml — 1] (5-10)

and
G-t = Pufulytn) — Pufnly elbn1] By, furly aefu-1) By ael—1lulnl (5.11)
where function @}y, =-1] is the correlation matrix of y[n] and vector ypin — 1],
Py [n—11yin] 15 the Hermitian transpose of Dypnlyarln—1]- Pyum—1lyaln—1] is the covari-

ance matrix of ya(n — 1], and @ s is the covariance of y[n]. These correlation
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matrices can be computed without difficulty from the definitions as we did in the
previous chapter. The (n;,n2)* correlation element involved in these matrices is

obtained from (5.4) as

1 ,
Populslna = 5 Elylnaly™[n]] ,
1 N.L N.L |
= EE{[ > bihy [na]] + efm]| > bahuy[na] + e[nal]
i=—No(L+1)+1 ly=—No(L+1)+1
N.L N.L |
= Z Z b1 b, Zp(ll Ts — m)p(Ts — 1) sl{ny — na) 1Y)
1 == No(L+1)+1 L=—No(L+1)+1 i
+N0Rq,[(n1 - ng)TS] (5 12)

where [-] is the ceiling function, by = b(—1 + [F+]N,), and by = b(~1z + [3#1N,).

Now we see the conditional mean and variance in (5.9), .. §up-1(2) and ,p,—1(2),
can be estimated by using this Wiener filter. Although (5.12) is a relatively complex
expression, fortunately the receiver only has to compute it once to obtain a set of
precalculated prediction fiiter coefficients. Practically a bank of filters will be usc '
for al' the hypothesed data sequence ¢y, ¢y, - ,cn. The receiver structure using a

bank of Wiener filters are given in the next subsection regarding the VA.

5.2.2 Viterbi Algorithm for the Sequence Detection

From above subsection we see the maximum likelihood sequence can be selected among
other possible data sequences using a Wiener whitening filter to provide the estimate
Ynjn—1 and the associated estimation variance den_l. Since the channel memory is
finite, the relationship between the input data sequence ¢ and the received sample
sequence y can be described by a trellis. The VA can be used to carry out the sequen-

tial estimation by traversing through a state trellis and evaluating the metric A4(y)
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recursively in the state transition process.

To facilitate the use of the above metric in Viterbi algorithm to decode the data
sequence c, and by realizing the information sequence has length S and symbol rate
%, the metric needs to be broken into a sum over the information symbols and a sum
over the samples associated with each symbol. We have the metric to be minimized

with respect to the data sequence as

S N — \ (2
i S yINs(ne — 1) + n5] ~ Un, (ne—1)4n. (2)] p .
Mty) = 3 3 (e DA vt OF gz Gy

ne=1n.=1 0.12\,75(11.:—1)+n5 (Z)
S
= Z /\i(yﬂl[nc]ac(nc))r 1= 1’2’_”’(16 (51")’)
ne=1

where we use a short-hand notation ¥, (n.1)n.(2) and afv‘(nc_l) 4n.(2) to represent
. - . - —_ . 2 . .
the previous notation YN.(nc—1)4ne|Ne(ne—1)+ne—1 and UNs(nc—1)+ns]Ns(nc—1)+ns-1(Z) re-

spectively.

Xi(ym[nc), e(n.)) is the i** branch metric defined as

= Ailym[nc], e(n.))
N- AT — . 2
- ] *’\s c—1 s) — s(ne—1)+ns .
— Z { ly[ (n )2+ n ] yNn( e—1)+ns (Z)l + lOg 0'}2\]5(-,,_6_])_{.71_‘ (Z)} (514)
ne=1 O.N_.(nc—l)+n, (l)

It should be pointed out that in the above branch metric A\;(ym[n ], c(n.)), we
assumed that the number of the correlated output samples at time & is M, which
corresponds to the order of the Wiener prediction filter discussed in the last subsection.
In reality, M can be generally determined by the truncated length of the bandlimited
transmission pulse shaping ¢¢() and the multipath spread of the transmission channel

fapal
129].

There are in total M +42L information symbols involved in the above branch metric

calculation. As defined in 5.4, each received sample y[n] is associated with L previous



CHAPTER 5. A Semi-Blind MLSE Receiver 66

and L future data symbols as well as the data symbol at time instant A7. Therefore
the VA trellis in total needs ¢! states if we use the usuai VA sequence estimation
as in [2] [29] and [25] or the blind sequence detection as in [28]. The computation

complexity can be excessive.

Realize that associated with each state in the trellis there 1s a survivor sequence,
which is determined in the previous sequential detection iteration. We can make use
of this survivor sequence in the calculation of the branch metric for all transitions
emanating from that state. By doing so, we don’t need to consider the 'nrevious’
data symbols in the trellis state design. Therefore the state trellis can be defined with
only L future symbols. In this way, we have the same detection acenracy and the

number of states in the trellis can be reduced to qL.

The correlation expression needed in the Wiener filter estimation of the conditional

quantities in (5.13) can be obtained in terms of the information sequence as

®(n, T, n,T5)
1
= ;y(ﬂlTs)y’(WTs)
T L
= Z Z 1y Z])[—lleTs — 1pi—LN, T, — 7]
llz—L lz:—L m
Pil(n1 — na)Ts] + NoRy [(ny — ng) T (h.15)
where ¢; = c[(—L N, + ny)Ts] and ¢, = c[(—=LN; + ny)T5).

As an example, state trellis in our VA with L = 2 is the same as in Fig. 3.6. The

MLSE-VA receiver structure is shown in Fig. 5.2.
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Whitening | N(n -1+ n (1), % M B Metri
2 Y\, g+ S( ) 1Nq(ﬂ c_1)+n < ranch f.',mc
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yla) —= - - . VA L (k)
T
E—
¥ @ o @H .
WhiteninE yli(ﬂc-l)'l' ng .q\L(ﬂc-l)+ ng Branch Metric
Filter q Ns=12, .. Ns Calculation

Figure 5.2: Diagram of the MLSE-VA receiver with a bank of whitening filters.

5.2.3 MLSE-VA Metric for Receiver with Diversity Chan-

nels

To this point, the development has been concerned with single channels. If measure-
ments from D statistically independent channels are available, then performance can
be improved significantly. Extending (5.6), we note that the maximum likelihood

recetver maximizes

D
ply<”.--,y<P b = [] ply < |bi] (5.16)

1=1
where the superscripts identify the channel and the product follows from the assumed
independence of the channels. The log likelihood in (5.7) and the rest of the devel-
opment are similar to the single channel case and the symbol branch metric (5.13) is

rewritten as the sum of symbol branch metric calculated for each channel, given by

D - . -
AP(ygiD[uf}, S ,y}f,.D>[n€}, c(n.)) = Z X(ysiTnd,e(ne)) i = 1,2,---,¢"  (5.17)

=1
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where

- J‘Vs ly<j>[j\r5(7lc — 1) + ns] —_ :lj:\<,’.7>;l )an (I)I
Ai(y§;>[7lc],c(nc)) = Z{ = Ne(ne=1)4n,

ns=1 01V5(1lc—1)+115 (l)

IR x
+10g CTNS(“‘.‘_ [ R LTIN (1 ) }
(h.1R)
This is a simple replication of the single channel metric calculation.

A diversity communication system for Rayleigh fading channels with IS1 is shown

i Fig. 5.3.

=kT_ 55
Channel s y’"]
a () No. 1 a0 —"
=kT . 240 1y i
7 Channel '/lE s ;']'n] [)lg"dl ‘/C\(k)’
(c(k)) q () No. 2 a(® SN
Processor
Channel =T Y)';]
" I
q [(t) No.D q Sl) 4

Figure 5.3: A communication system with diversity antennas.

5.3 Simulation Results

To evaluate the error performance of MLSE-VA we presented in the previous sections,

computer simulations are done for two-ray dispersive channel.
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In these examples, the transmission pulse shape ¢,(t) and the receiver filter ¢, (¢)

both are the squared raised cosine function with a 50% spectral rool-off. The trans-

mitted data symbol rate is 7 = 1, while the receiver sampling rates are Ti =1 and
7 = 2 respectively. The channel memory length considered is 5 data symbols, i.e.

L = 2. Using our state reduction strategy, the VA contains 4 states. The channel

estimation filter discussed in section 5.2 has a highest order of M = 5.

The bit error rates of BPSK in slow and fast fading channels are obtained in
Fig. 5.5 and Fig. 5.4. The fading rates considered are f,T = 0.03 in Fig. 5.4, and
ST = 0.003 in Fig. 5.5. In both figures, the channel rms delay is 7.,,, = 0.2, and

power split ratio in the two rays is 1.

Both figures show that the double sampling VA with TL = 2 sracks the fading
channel much better than the single sample scheme, although the BER is still high
compared with the VA with perfect channel impulse respinse (CIR). It is observed
that bit error rate curve corresponding to the VA with the sampling rate of TL =1
departs largely from the curve for VA with perfect CIR when the SNR becomes hi gh.
For high fade rate of f;T = 0.03, the BER of the double sampling VA receiver is
roughly 1.4db worse than the one with the perfect CIR VA. There is an error floor of
the order 1072 in one sample per baud case and an error floor in the order of 1073
in the two samples per baud case. In the slow fading channel with f;T = 0.003, the
VA performance is a bit closer to that of the perfect CIR VA, when comparing with

the fast fading case. No obvious error floor is observed within the scope of the SNR

under study.

It needs to be pointed out that according to {29], an irreducible error rate exists

in their type of MLSE-VA receiver.
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BER

5 10 15 20 25 30

Figure 54: Bit error rate of MLSE-VA for BPSK. A two-ray delay

power profile with 7.,, = 0.2, and a fade rate of [, = 0.03.
Solid line: perfect channel information with 7, = 0.5, dashed line: T, = 0.5,

star: Ty = 1, circle: perfect channel information with 7, = 1
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Figure 5.5:

Same as

the previous figure except that f,77 = 0.003.
perfect channel information with 7, = 0.5, dashed line: T, = 0.5,
circle: perfect channel information with T, = 1

Solid Line :
star: T, = 1.
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b

In Fig. 5.6 and Fig. 5.7. we show the bit error rate versus the normalized rms
delay spread (wrt symbol rate) for SNRE = 30db and 20db respectively. The lading

rate considered is f;T = 0.03.

We see that the performance of the 2 samples per symbol VA s much better than
that of the one sample per baud VA. Note the diversity effect in the VA when we have
the perfect channel state information. For small delay spread, i.e. 7., < 0.3, the 2
sample per baud VA receiver shows the diversity effect. For higher SNR, the BER
performance of our VA receiver departs largely from that of the VA receiver having
perfect knowledge of C'SI. This result agrees with that shown in Fig. 5.4 and Fig. 5.5.
The findings are the same for slow fading chaunel when [,T° = 0.003, which is not

shown here.

We investigated the applications of multiple receive antennas in the MLSE-VA,
which is developed in Section 5.2.3. The simulation results are shown in Fig. 5.8

performance is compared with the one using only one antenna.

Fig. 5.8 shows the BER vs. SNR for VA receiver using one and two antennas. [t
shews that the BER performance of VA receiver for T, = | using two independent,
antennas is at least as good as that of the VA receiver with T = 0.5 using only one
antenna. The BER performance of VA receiver with 2 sample per symbol sampling
and 2 independent antennas is very close to and can be better (for small SNR) than
that of the the 2 sample per symbol receiver with perfect CSI using only oue receive
antenna. We see from the figure that there is a BER performance improvement of

around 10db when 2 independent receive

when 2 en ceiver antennas are in nse instead of only one

antenna. In the graph, no irreducible error floor is observed for VA receiver with two



(CHAPTIER 5. A Semi-Blind MLSE Receiver 73
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0’5 l J ; ;

Figure 5.6: Bit error rate of MLSE-VA for BPSK. A two-ray channel with fading rate
of 4T = 0.03 and SNR = 30db. Solid line: perfect channel information with
T, =0.5, dashed hne: T, = 0.5, star: T; =1
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BER

1 i 1 l H i
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Figure 5.7: Same as the previous figure except that SN R = 20db. Solid line :
perfect channel information with 7, = 0.5, dashed line: 7, = 0.5, star: T, = |
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antennas.

Fig. 5.9 shows the BER versus normalized rms delay spread for the application
of 2 independent antennas. Again we see similar findings shown in Fig. 5.8 when
comparing the performance of VA receivers using one and two antennas. Similar to
the result shown in Fig. 5.8, there is a large BER performance improvement with
the applicaiton of two independent receiver antennas. The performance of the two-
antenna VA receiver is very close to that of the receiver with perfect CSI using one
receiver antenna. Note the range of the diversity effect of the VA receiver using 2
antennas is now extended to 7,,,; < 0.5, as compared with the performance of VA

receiver using only one antenna which is shown in Fig. 5.6.

In our simulations, we also studied the situation when we don’t know the whole
channel delay power profile but only some statistics of it, as is usually the case in
practice. Though not shown here, we find that, for small delay spread, the MLSE-VA
receiver designed with only the knowledge of the first and second moments of the
delay power profile has very close BER performance to the one designed with the
whele channel delay power profile. This agrees with the results found in Chapter 3

and 4.

5.4 Conclusions

In this chapter, we present a novel semi-blind MLSE-VA receiver for fading dispersive
channels that requires ro training sequences, performs ne CIR tracking and makes use
of one or more antenna signals, as available. Both the fading channel response and the
-transmitted data sequence are estimated jointly by utilizing a Wiener prediction filter

incorporated in the VA. A state reduction scheme which uses the survival sequence
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Figure 5.8: Bit error rate of MLSE-VA for BPSK. A two-ray delay
power profile with 7,, = 02, and a fade rate of [,77 = 0.03
Solid line: perfect channel information with T, = 0.5 using 2 antennas,  daslied
line: T, = 0.5, 2 antennas  cross: perfect channel information with T, = 0.5 using |
antenna star: 75 = 1, 2 antennas circle: T; = 0.5, | antenna.
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Figure 5.9: Bit error rate of MLSE-VA for BPSK. A two-ray channel with fading rate
of fiT = 0.03 and SNR = 30db. Solid line: perfect channel information with
T, = 0.5 using 2 antennas, dashed line: T; = 0.5, 2 antennas  cross: perfect
channel information with 7T, = 0.5 using 1 antenna  star: T, = 1, 2 antennas circle:
T, = 9.5, | antenna.
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T

to each state mn VA is proposed to reduce greatly the number of states in the VA,
The multiple sampling rate scheme is studied and the result is compared with MLSE-
VA using data symbol rate at the receiver filter output. The MLSE-VA is applied
to a multiple antenna environment, where i1t enjoys both performance enhancement

through diversity and reduction of complexity.

In addition to derivations of the receiver structure and metric, we present simula-
tion results for performance. including the effect of Doppler and delay spread, state
reduction methods, effect of muitiple sampling and multiple antennas. It is illustrated
through the simulation that the double sampling scheme at the receiver output results
in a simple MLSE-VA whose performance is reasonably close to the MLSE-VA with
perfect CIR, especially for the slow fading channels. The antenna diversity improves
the performance. It is demonstrated through the chapter that the proposed MLSE-VA

is simple in structure with a fair accuracy.



Chapter 6
Conclusions

Communication systems such as mobile radio and indoor wireless communication typ-
ically are modeled as Rayleigh fading channels. As data rates for these channels are
increased, intersymbol interference (ISI) may result from both the multipath spread

and the chanuels having a finite bandwidth.

Inn this thesis, we developed maximum likelihood sequence estimation with Viterbi
algorithm for Rayleigh fading channels with ISI. The MLSE-VA receivers with and
without training sequence assistance are presented, along with a reduced dimension-

ality channel model which is utilized to simplify the receiver structure.

We demonstrate that for small to moderate channel delay spread the dispersive
Rayleigh fading channel can be modeled by only a few random gain parameters in-
stead of by the whole discrete channel impulse tap gains. Especially in the scope of
our study our. for rms delay spread less than 20% of the transmitted symbol duration

3 random parameters are enough to describe the multipath Rayleigh fading channel.
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By utilizing this novel channel modeling technigue, we designed a reduced com-
plexity channel estimator which use the inserted pilot training sequence to estimate
the time varying fading channel. The channel estimator uses a block adaptation tech-
nique in which two stages, periodic channel estimation and channel interpolation, are
involved in order to track the time varying channel. It is shown that this channcl
estimator has a simple structure due to the contribution of the simplified channel
model and can track the dispersive fading channel very well. For small delay spread
channel. the Viterbi receiver using our rcduced complexity chaunel estimator shows
the same diversity effect and very close bit error rate performance as the one that

utilizes the perfect channel state information.

In the thesis, we also proposed a semi-blind MLSE-VA receiver which uses a bank
of Wiener filters to estimate the channel information. No pilot sequence is necessary.
Technignes such as multiple sampling at the receiver, VA state reduction, antenna
diversity, and ect. are investigated. Simulation results show that onr MLSIS-VA
receiver has fairly close performance comparing with the VA receiver that has the
perfect knowledge of the channel information. It is demmonstrated that the MLSE-VA
receiver using antenna diversity technique has a simple structure and better bit error

rate performance.

When comparing the proposed VA receivers with and without the pilot training
sequence, we found that, considering the complexity and the bit error performance,
the receiver using pilot assisted channel estimator shows a great advantage. The cost

is that the training sequence occupies certain channel bandwidth.
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Estimation error examples

This appendix gives two trivial examples to illustrate the point that estimating fewer
channel parameters from received signal is likely to be more accurate than estimating

the full impulse response.

Case 1: Assume the total statistical independence among the transmitted signal

samples and noise samples.

The received signal is

r:S+n (Al)

where r, s and n are respectively received signal vector, transmitted signal vector and
noise vector, all of length N. The independent transmitted signal samples and addi-
tive noise samples are respectively denoted as s;, i = 1,---,Nand n;, i=1,---, V.

Assume s; and n; have variances o2 and o2 respectly forz =1,---, N.

81
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The best linear estimate (minimum mean square estimate) for s is [38)

2
. o]
S = —/———=T A2
o2+ o2 ( )
and the total estimation error is
t 2 o5
(s —§)(s—8)=No*|{l - ——— A3
( ) ) s o2 1 o2 (A1)

where { denotes the Hermitian transpose.

From (A.3) we see the mean squared estimation error is propotional to N. The

error becomes smaller if fewer elements s;, 7 = 1,--- are estimated.
Case 2: Assume transmitted signal samples are exactly the same.

Assume all the transmitted signal elements are the same x. The received signal

vector is

r = s+n

= lr+n (/\4)

where r, 1 and n are respectively received signal vector, unit vector and noise vector,
all of length N. The signal vector s = 1x and z is a scalar. Assume the transmitbed
signal elements x is statistically independent with the noise elements n;,é = 1,--- | N,

2

2, and n; has the

also n; and n; are independent when ¢ # j. Assume z has energy o

- 2 - T
variance o, fort: =1,--- N.

The best linear estimate for the transmitted signal sample = is [38]

i= (9,8 )r (A.5)
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where @, is the covariance matrix of r, and ®,, is the correlation vector of & and r.

The total estimation error is
;2
Noz

—&fW(s—8)=No?|] - —= _
(s—8)'(s—s)=No_ |1 No? ¢ o2

(A.6)

Again we see the mean squared estimation error becomes smaller if fewer elements

s; 1s estimated.
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Calculation of Characteristic
Function in (4.24)

The calculation of the characteristic function ¢p(s) in (4.24) is shown in this appendix

following the procedure similar to that in section 2.2.

The optimal receiver selects the sequence ¢ = (é(1),---, (K ;) that minimizes the

metric

K | L P
@)= = 3 én— Ohlu]] (13.1)

n=1 i =1 ;
where 2L is the length of the CIR and «f—L),---,¢(0) are known to the receiver,
Given the transmitted sequence ¢ = (¢(1).---,¢( K)). a decoding error ocenrs if for

some erroneous sequence ¢, the random variable D, defined as
D = J(c)— J(c) {13.2)

is less than zero. The metric J(c) is given as

L

K . "
Jey=Y lyni— Y eln~Hinjf* (13.3)
n=1

f=—L
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Substitute (3.8) into {B.1) and (B.3) respectively, we have

K L L
J(&) =" leln]+ > e(n— O)hn] — > &= Okeln]
n=1 ; f=—L f=— L
and
K L .
J(c) = Z eln] + Z n — €)he[n] — Z é(n— O)hi[n]
n=1 f=—L f=—FL

2o gilnlp;l€] and heln] = T dilnlp;[d)-

where h[n| =

b

e

.

,«
el

(13.4)

Define zero mean complex Gaussian random variables a,,, b, and {,, as follows.

L
a, = Z e(n — O)hen],
yuy)
L ~
b, = Z é(n — O)he[n],
f=—L
L A~
tw= > c(n—"{)hsn].
f=—L
Let
a1 -I bl ty
a= N b= t= e=
ax by 197
1 0 0 0 ]
I = T. , 0= ..
0 1] 0 0 J
KxK

Write the complex random variable D) in matrix form
J(¢c)— J(c)
K

= z [(e[n] + ¢

n=1

= z'Fz

D =

— b, )(e[n] + a, — b.)" — (¢[n] + ay —

KK

L) (e[n] + a, —

(1.6)

(B.7)

(13.8)

(B.9)

(B.10)

(B.11)

)]

(B.12)
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where

, (B.13)

Sl = -

0"

and

F = . (B.14)

- 4K x4K

The superscript { represents the Hermitian transpose.

The correlation matrix of z is obtained formally without much difficulty.

R, = ;Ez"‘z'
_a-.f‘
1 b
= -E [a bt el
2 t
-e—

a*a a*b a*t a‘e
b*a b*b b*t b*e
2 t*a tb t*t t*e

e*a e*b e*t e*e
Raa Rab Rat OK xK
Rba Rub Rpt Okxx
Ria Ry Rig Oxxx

| Okxk Oxxx Orxk Ree



Appendix B. Calculation of characteristic function ST

Note that e is uncorrelated with a, b, and t, and R, is a Hermitian matrix.

Determination of the submatrices of Ry is straighttorward, but detailed.

The (ny,n2)th element, ny, ny = L,---, K, in submatrices Ban. Rab. Rats fbb.
Rut, Rit, and Ree can be obtained respectively as follows.

Tan an, = %‘lz_ Zﬁ;:_L c(ny — 1) c(ny — €)he, [ ]he, [112],
Tanbny = Z:[Ll___L Z;LZ —_p c(ny = €)é(ny — £y)hy, [n]]lAng [122],
Tan tny, — Ze,z_L Zez =1 ¢(n1 — b )c(ng — )he, [n
Vb, b Zl’l_—L Zzz —p, €(ny — £1)é(n. Ve,
Ty, tny = Z&_—L 2[2__L é(ny — b)e(ny — pz)ilg] (14
Tingtng = Zz,:~L Z@:—L c(ny — £)e(n: )

= N06(72-1 - 71,2).

(B.16)

7 €nj Eny

Alhough the expression for auto-correlation and cross-correlation between by, [1n]
and hy,[n], where m and n represent different time instants, are lenthy, they can be

obtained from their defination without much difficulty.

With the matrix F and correlation matrix R, the characteristic function of D is

obtained as
Pp(s) = l
PV et (T + 25 R F)

1
.17
T, (1 25)) (B1T)

where {A;,2 =1,---,4K} are 4K real eigenvalues of R;F.

The pairwise error probability in (4.24) can be calculated.
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