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Abstract 

The propagat ion of plane-polarized, picosecond t imescale, three-dimensional op t k d  

envelopes travelling in a bulk dispersive dielectric medium which possesses an i~ t en -  

sity dependent nonlinear refractive index is governed by the ubiquitous gcnerdizccl 

nonlinear Schrodinger equation (GNLSE). It has been known since the early days of 

nonlinear optics that for the Kerr case characteristic of existing media (where the 

nonlinearity is proportional to the intensity), solitary wave structures in greater than 

one dimension are inherently unstable. A manifestation of this instability is that, a 

sufficiently intense spherical pulse can undergo catastrophic collapse, a result which 

Silberberg envisioned a s  a method for producing extremely high electric field strengths 

in a localized volume. In conclusion, however, Silberberg noted that saturation of the 

nonlinearity could yield a stable self-trapped optical pulse - a "light bullet." 

We have successfully numerically propagated light bullets for a number of qual- 

itatively similar nonlinear index of refraction models that obey a simple stability 

criterion. While collision studies reveal radiative losses, the robustness of these enti- 

ties pragmatically convinces us to label them solitons (much to the dismay of purists), 

Several novel effects are presented, some of which have no one-dimensional analogue, 

including soliton tunnelling and collisions at glancing incidence resulting in spiralling 

light bullets and eventual fusion into a rotating soliton state. 

Our group having a long interest in bistable solitons in optical fibers, we haw 

considered two models which admit bistable light bullets. Bistable solitons have thc 

same energy content but radically different intensity profiles which make them rmtural 

carriers of binary information. We present results whereby relatively low intensity 

d i k  binary zeroes are induced through amplification to  switch to  higher intensity 

radially-compact b i n q  ones, the energy difference between states being shed through 

a sequence of spherical radiative bursts. 

iii 



To quantitatively understand the nature of the interaction, we have carried out 

a comprehensive series of nuaerical scattering experiments between two repulsive 7; - 

phase shifted light bullets at various velocities and impact parameters. With negligible 

radiative losses, we utilize an elastic scattering model and show that the interaction 

potential is of the Yukawa form which is consistent with an asymptotic expansion c~f 

the radial profile. Further, the scattering data scales correctly with velocity and the 

light bullet energy content plays the role of an effective mass. 

Finally, the GNLSE admits higher bound states comprised of a bright central core 

surrounded by a number of spherical halos. In contrast to the Gaussian-like lowest 

bound states described above, these halo states are found to be transversely unstable 

to numsical noise, the spherical shells spontaneously clumping into a number of 

angularly separated fundamental light bullets. A complicated linear stability analysis 

of spherical harmonic modes is able to explain the initial stages of the evolution and 

the symmetry of the broken state. 
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Chapter 1 

Introduction 

In a recent issue of Physics Today [Krgl], the President of the American Physical 

Society stated "in my research over the past two decades, I have been fascinated by a 

set of developments in nonlinear science. A particularly remarkable manifestation is 

the entirely counterintuitive excitation called the soliton . . ." Indeed solitons, localized 

nonlinear waves possessing striking stability properties that allow them to propagate 

without change and survive massive perturbations in the form of collisions, play im 

important role in modern physics. The soliton has been invoked to explain such 

diverse phenomena as: 

0 The famous Fermi-Pasta-Ulam paradox [Fog21 wherein a nonlinearly coupled 

lattice of particles does not display the "expected" equipartition of cncrgy among 

available modes. 

0 Magnetohydrodynamic and ion-acoustic waves in a plasma [Ingo]. 

Energy storage and transport in proteins via the Davydov soliton [Cr94]. 

The propagation of short laser pulses in optical fibers ever  long distances with 

negligible shape change [Ha73a, Mo80]. 

0 The long lived "giant red spot" in the highly turbulent Joviarl atmosphere 

[An86]. 
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The most well-known system possessing soliton solutions is the Korteweg-de Vries 

(KdV) equation, derived at the end of the i9th century to model the 1834 observa- 

tions of Scottish naval engineer J. Scott-Russell. In the less formal style of scientific 

reporting of the day, Scott-Russell wrote [Sc1845], 

I was observing the motion of a boat which was rapidly drawn along a 

narrow channel by a pair of horses, when the boat suddenly stopped - not 

so the mass of water in the channel which it had put in motion; it accu- 

mulated round the prow of the vessel in a state of violent agitation, then 

suddenly leaving it behind, rolled forward with great velocity, assuming 

the form of a large solitary elevation, a rounded smooth and well-defined 

heap of water, which continued its course along the channel apparently 

without change of form or diminution of speed. I followed it on horseback, 

and overtook it still rolling on at a rate of some eight or nine miles an 

hour, preserving its original figure some thirty feet long and a foot to a 

foot and a half in height. Its height gradually diminished, and after a 

chase of one or two miles I lost it in the windings of the channel. Such, 

in the month of August 1834, was my first chance1 interview with that 

singular and beautiful phenomenon . . . 

For nearly seventy years, an article of faith in the physics community was that a 

collision involving two solitary waves would destroy the otherwise stable input pulses 

due to the nonlinear nature of the interaction. It was not until 1965 that Norman 

Zabusky and Martin Kruskal numerically discovered [Za65] that KdV solitary waves 

maintained their identity following collisions (Figure 1. I), the incredulous duo report- 

ing that "[hlere we have a nonlinear ?hysical process in which interacting localized 

pulses do not scatter irreversibly." Zabusky and Kruskal coined the term "soliton" 

to reflect the particle-like nature of these robust travelling solitary waves. In 1967, 

this numerical curiosity was placed on a firm mathematical basis with Gardner et 

lApparently, hck  was on Scott-Russell's side that fateful day. A 1984 attempt to re- 
peat the experiment under similar conditions and at the same spot was a complete failure 
[InSO]. However, a 1995 attempt was successful as described on the World Wide Web at 
<URL:http://www.~na.hw.ac.uk/solitons/pr~.htd>. 
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Figure 1.1: Two-soliton solution to 
the Korteweg-de Vries equation. (Of 
special interest is the phase shift at the 
crossing point .) 

al.'s discovery [Ga67] of the inverse-scattering-transform (IST) method and its use in 

analytically solving the KdV equation for any finite number of interacting solitons. 

Though it is usually avoided due to its inherent intractability, nonlinearity, erntrod- 

ied by the canonical Navier-Stokes equation, has always been an essential ingredient 

of hydrodynamics. In contrast, the field of classical optics, governed by Maxwell's 

equations, has for most of its life operated quite nicely in the linear regime. For a 

hundred years, due to the relatively weak electromagnetic field strengths available, 

analogues of the turbulence, complexity and downright nastiness that are quintessen- 

tial features of a non-laminar fluid were all but absent in the world of light interacting 

with matter. However, with the advent of the laser as a source of coherent high- 

intensity radiation, this changed and physicists were treated to a wealth of nonlinear 

effects including harmonic generation, self-focusing, nonlinearly induced birefringence, 

self-phase modulation, etc. 

Self-focusing, the NLSE and temporal solitons 

In 1964, Chiao et al. [Ch64] provided a physically insightful but somewhat matke- 

matically crude explanation for the "extremely-thin, long streaks of ionization spots 

and damage that sometimes occus in optical materials in which an interne laser beam 

is focused." Beyond the focal point, it was typical to  fin$ a several centimeter-long 
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straight filament of bubbles with a width of only a few optical wavelengths - under 

linear optics, such a squeezed beam would rapidly spiead due to the effects of diffrac- 

tion. However, by proposing that the refractive index n was dependent on the field 

strength 

n = no f 7 2 2 1 ~ 1 ~  (1.1) 

(this fundamental form being known as the Kerr nonlinearity), Chiao et al. demon- 

strated that above a certain critical input power, a diffracting beam of arbitrary diam- 

eter would become self-trapped due to the induced increased refractive index across 

the beam profile. The stability of these solutions to small perturbations was not ad- 

dressed. Soon after, Talanov [Ta65] and Kelley [Ke65] showed that the slowly-varying 

paraxial transverse beam envelope E was governed by the nonlinear Schrodinger equa- 

tion (NLSE) 

where V2 is the transverse Laplacian. Above a critical power threshold, it was found 

that the cylindrical beam was unstable and would catastrophically collzpse. Of course, 

at some point during the collapse process the physical approximations of the NLSE 

break d o v ~ , ~  the collapse halts, and one or more stable filaments of light are formed, 

the number of filaments depending on the initial power [ChGfj]. 

A key development in nonlinear optics came with ZaMaarov and Skabat's discovery 

[Za72] via the IST method that a one-dimensional version of the NLSE is a completely 

integrable system possessing multiple soliton solutions. As shown in Figure 1.2, in 

addition to initially infinitely separated solitons, one finds that initially overlapping 

solitary wave profiles also exhibit soliton-like behaviour. In Zakharov and Shabat's 

seminal work, it was pointed out for the first time that the NLSE also governs the 

temporal propagation of a quasi-monochromatic one-dimensional optical envelope in 

a dispersive medium possessing an instantaneous cubic nonlinearity. Almost twenty 

years later, this result - that the dynamics of one-dimensional spatial solitons are 

identical to the dynamics of one-dimensional temporal solitons - was exploited by 

2See Ref. [Fe88] for an entry point into the literature on the topic of the NLSE's validity with 
regards to the self-focusing problem. 
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Figure 1.2: The dynamics of overlapping NLSE solitons. (a) Initially in-phase solitons 
demonstrate lossless periodic collapse. (b) T-phase shifted solitons repulse. From Ref. 
[Ag89], by permission. 

Yaron Silberberg of Bellcore in a paper [Si90] that provided the impetus for this 

thesis (a point that will be addressed in due course). 

In 1973, Hasegawa and Tappert [Ha73a, Ha73bI showed theoretically and numer- 

ically that the one-dimensional NLSE 

described the propagation of optical pulses in low-loss dispersive dielectric fibers. 

Here, the plus and minus sign govern propagation in the anomalous and normal 

dispersion regimes r e~pec t ive l~ .~  As will be discussed in Chapter 2, the NLSE is 

obtained from Maxwell's equations under certain assumptions. A key assumption ifi 

that the field is polarized in a specific direction which allows the vector wave equation 

to be written as a one-dimensional scalar partial differential equtlon (PDE). 

Although Zakharov and Shabat had already analytically shown the existence of 

3This terminology is explained in Chapter 2. Suffice it to say that there is nothing particularly 
"anomalous" about the former regime; dispersion of both types generally leach to temporal spreading 
of the wavepacket. 
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soliton solutions to Eq. (1.3) in the case of anomalous dispersion, experimental ver- 

ification of the predicted soliton transmission did not occur until 1980 due to the 

exceedingly high loss in these early fibers. At  this time, Mollenauer, Stolen, and Gor- 

don [Mo80] reported the successful propagation of 7 picosecond pulses at the anoma- 

lously dispersive wavelength of 1.5 prn through 700 m of single-mode silica fiber with 

negligible shape change. Below the critical pou7sr necessary to form the fundamental 

soliton, Gaussian-like input pulses spread due to dispersion. Above this threshold, 

pulse narrowing occurred to form the characteristic hyperbolic-secant soliton profile 

consistent with the input power. In addition to such localized pulses with nonvarying 

temporal profiles, the NLSE also admits soliton solutions with periodic behaviour 

known as "breather modes." Breathers, characterized by pulses that alternate as 

they propagate between high-intensity spikes and relatively low-intensity pulses with 

varying numbers of side-lobes, contain considerably more power than the fundamental 

soliton. As expected, Mollenauer et al. experimentally witnessed higher-order soliton 

formation (breathers) when they increased the input power. 

This experimental success and the obvious technological benefits of temporal soli- 

tom as informatio~ carriers in lo~g-distance communication systems provoked a flood 

of work on one-dimensional temporal solitons in optical fibers, the quantity of work 

in this area being so vast that nonlinear fiber optics now qualifies as a field in its 

own right. As an applied example, recently workers at BellCore succeeded in 5 Giga- 

bit/second soliton transmission through 10,000 km of fiber using erbium doped fiber 

amplifiers to compensate for the low but non-negligible loss [Mo88]. 

Optical switching and bistability 

Another application of the temporal soliton in optical fibers is the possibility of pro- 

ducing dl-optical digital logic devices. Electronic transistor-transistor logic (TTL) 

digitd circuits utilize a signal generally in the vicinity of 3.6 Volts to  represent a logic 

' 1 k d  a voltage in the neighbourhood of 0 Volts to represent a logic '0'. The obvious 

optical parallel is to  use a soliton or gap (zero background) to represent a 1 or 0 

respectively such that a string of solitons and gaps would encode a binary message. 
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One method of switching utilizes evanescent coupling between the input fiber and i~ 

signal fiber carrying a retarded pulse that drags on the input pulse, shifting it from its 

expected location and leaving a gap. Unfortunately, such one-dimensional dragging 

gates typically are sensitive to minute phase differences between the pulses. 

A major drawback of the preceding communication and digital switching schemes 

is that the logic '0' (representing, on average, half of the information) is carried hy 

something that, by definition, is nonexistent. Of course, this necessitates s highly ac- 

curate synchronous system whereby gaps can be presumed to represent binary zcrocs. 

An alternative approach is to use two different saliton shapes to represent thc: hi- 

nary logic states, For example, one could use a short squat soliton to rcprcscnt a logic 

'0' and a tall narrow soliton to represent a logic '1'. While (above the power threshold 

for soliton formation) Kerr media admit a continuous spectrum of fundameatill soliton 

shapes, such solutions are not suitable for two reasons: (i) for sufficient peak-height 

contrast between the logic states, the tall '1' soliton will have significantly greater 

energy content than the short '0' soliton, and (ii) as a continuous spectrum of stable 

intermediate profiles is available, there is no natural division between the two states. 

However, as Kaplan has demonstrated [Ka85a, Ka85b], both of these deficiencies can 

be removed by considering non-Kerr media of the form 

where F(IEI2) is a nonlinear refractive index function, appropriately chosen to yield 

bistable solitary waves. Bistable solitary waves have the same energy content hut 

radically different profiles.4 In addition to the attractive property that the two logic 

states have equal energy content, a natural result of bistability is the existence of 

an unstable intermediate regime separating the low and high states. While not the 

focus of this thesis, bistable models me considered and are dealt with in some detail 

in Chapter 3 on ref  active index model construction. 

At this point, a brief semantic diversion is in order. An immediate consequence of 

4Recently, a second definition of bistability has been introduced into the literature IGs91, EiM] 
corresponding to pulses of equal duration but different peak intensities. 
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considering a non-Kerr medium is that NLSE soliton solutions are not solutions to the 

modified equation; thus, one no longer has analytical proof of soliton existence. while 

the new solitary waves are often stable to small perturbations, massive perturbations 

in the form of collisions (see, e.g., Refs. [En87a, En87bl) frequently yield radiative 

losses. These semi-stable nonlinear waves are not solitons in the strict mathematical 

sense. However, despite the radiative losses, one often finds that the pulses survive 

collisions, thus behaving in a quasi-soliton fashion. Despite the protestations of a 

few purists, the prefix "quasi" is usually dropped in the research literature and such 

semi-stable entities have pragmatically come to be known simply as solitons. 

While the unfortunate price to pay for bistability is the sacrifice of the integrable 

Kerr NLSE characteristic of many existing media, physical intuition suggests that 

such an unbounded nonlinearity must saturate at high field ~ t rengths ,~  leading one 

to consider a model of the form 

which is Kerr-like at low intensity I and saturates at the value Isat. Materials with 

saturable nonlinearities are known to exist [Co91] and Enns and Edmundson [En931 

have recently shown how an appropriate mixture of saturable models can produce 

media which support bistable solitons. 

While the stable propagation of bistable pulses is eminently desirable for long 

distance communication purposes, another important application is the creation of 

all-optical digital logic circuits. For example, a NOT gate (inverter) should take low- 

state '0' solitons as input and produce high-state 'I' solitons as output, and vice-versa. 

It has been shown that up and down-switching between bistable soliton states can be 

induced by amplification or damping of the input [En92b]. More recently, numerical 

and theoretical work has shown that passive NOT and AND gates can be created by 

using evanescent coupling between adjacent fibers [Ei96]. 

'Of course, there is an alternative to saturation: dielectric breakdown and irreversible damage to 
the medium. 
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"" T 
Figure 1.3: Theoretical black and grey 
soliton profiles along with their reupec- 
tive intensity profiles. 

black soliton grey soliton 

Despite the obvious technological applications of bistable sczlitons, to date they rc- 

main experimentally unverified, awaiting the necessary advances in materials science. 

Dark temporal solitons 

To this point, all of the solitons presented are qualitatively similar, consisting of a 

localized Gaussian-like6 pulse on a zero background. In optics, this qualitative shape 

is known as a bright soliton. However, in the case of normal dispersion, the NLSE 

becomes 

which permits [Za73, Ha73bI a different class of soliton solutions. Figure 1.3 schemati- 

cally shows such solutions for the field E along with their respective intensity patterns 

I El2. Referring to the intensity profiles, such localized depressions in a constant inten- 

sity background are known as grey or black dark solitary waves depending on whethor 

or not the intensity dips to zero at its lowest point. An obvious practical drawbmk 

of dark solitons is that the integrated intensity of such a pulse is infinite. Due to the 

intrinsic difficulty of creating such input profiles, definitive7 experimental verification 

of the dark soliton did not occur until 1988 when Weiner et al. [We883 propagated 

' "Gaussian-like" is meant to be taken extremely loosely and denote any profile that is bright 
at, the origin and decreases monotonically and asymptotically to zero. Unfortunately, "uech-like,'? a 
better approximation, hasn't yet become part of the vernacular. 

7Previous workers [Em87, Kr88] had suggestive evidence for dark and grey soliton propagation. 
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185 femtosecond dark pulses riding ?n a bright 1-4 picosecond Gaussian background 

in a normally dispersive single-mode fiber. 

Buildixg on their work in the bright case, Enns and Mulder [En891 have consid- 

ered modifications to the NLSE necessary to produce bistable dark solitary waves. 

The soliton character of these entities was confirmed through numerical switching 

simulations. 

Higher-order corrections to the NLSE 

As shown by the experimental successes in the bright and dark cases, the one- 

dimensional NLSE accurately governs the propagation of picosecond pulses in disper- 

sive fibers possessing a Kerr nonlinearity. However, with the inevitable push towards 

progressively shorter pulses, higher-order c~rrections to the NLSE must be considered. 

In 1987, Kodama and Hasegawa [Ko87] used a perturbative approach to rigorously8 

derive the generalized NLSE, 

The term proportional to ,B3 results from including higher-order dispersion and be- 

comes important both in the picosecond regime when operating with pulses centred 

at the zero dispersion wavelength, and in the propagation of ultra-short (femtosec- 

ond) pulses. As shown in Figure 1.4(a), it has the effect of creating asymmetry in the 

pulse with the eventual formation of diminishing oscillatory sidelobes on the leading 

or trailing edge of the pulse, depending on the sign of P3 [;Ag89]. The term propor- 

tional to a1 results from considering time dependence of the nonlinear polarization. 

It is a "shock" term, and, as shown in Figure 1.4(b), results in self-steepening of the 

pulse edge [Ag89]. The final term on the left side of Eq. (1.7) results from considering 

noninstrwntweous nodinear response m d  is responsible for self-frequency shift of the 

pulse [Go86]. Physically, this term reflects the transfer of energy from one frequency 

'The general structure of this equation follows quite naturally from keeping higher-order terms 
in the more transpiwent derivation of Chapter 2. 
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(a) Higher order dispersion leads to 
oscillatory side-lobe formation. 

(b) "Shock" term leads to self- 
steepening of the pulse edge. 

Figure 1.4: Typical effect of higher order terms in the NLSE on an originally Gaussian 
input pulse (dashed curve). Solid curve: field profile a t  a later time. From Ref. [Ag89], by 
permission. 

component of the pulse to a lower frequency component, the energy difference being 

carried off by an optical or acoustical phonon. With I' < 0, the term on the right- 

hand side is a phenomenological damping term used to  account for energy losses due 

to both Rayleigh scattering and other loss mechanisms during pulse propagation. 

Spatial solitons 

As stated, it  has been known since 1972 that the NLSE admits soliton solution~r, 

Perhaps because of the technological ramifications, an enormous amount of effort wm 

subsequently expended on the study of temporal solitons in optical fiberg, iffnoring 

the fact that the NLSE was originally derived to explain two-dimensional spatial d f -  

focusing. The NLSE describing the evolution of the beam front of a one-dimemional 

spatial envelope E is 
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Figure 1.5: Experimental observation of spatial soli- 
tons in a planar glass waveguide. (a) Overlapping ini- 
tial input solitons. (b) Repulsion in the case of a n 
phase difference. (c) Attractive solitons with zero phase 
shift. Scale width is 100pm. Compare, e.g., with the- 
oretical predictions shown in Figure 1.2. From Ref. 
[Ai90], by permission. 

where x is the transverse spatial coordinate, z is the beam propagation direction 

and the plus and minus sign of the final term refers to the case of a self-focusing or 

self-defocusing nonlinearity, respectively. While twedimensional beam propagation 

in a Kerr medium was known to be unstable from the early days of nonlinear optics, 

confinement to one transverse spatial coordinate should yield spatial analogues of 

temporal solitons. A bright spatial soiiton is a self-trapped beam that maintains 

a perfect balance between the spreading effect of diffraction and the effect of self- 

focusing due to the induced increased index of refraction. Conversely, a dark spatial 

soliton consists of a dip in a constant intensity background and survives as a stable 

trapped state due to  a balance between diffraction and self-defocusing. It was not until 

1985 that experimentalists observed bright spatial solitons in a transversely quasi-one- 

dimensional system, namely a multi-mode liquid CS2 filled planar waveglide [Ba85, 

MaSSa, Ma88b]. More recently, a comprehensive set of experiments on interwting 

spatial solitons in a planar glass waveguide was reported [Ai90]. Figure 1.5 shows the 

experimentally observed intensity patterns for two initially overlapping spatial solitons 

(top) with a T-phase shift leading to repulsion (middle) and no phase shift leading 

to periodic collapse (bottom). These examples are extremely important because they 

demonstrate the novel possibility of "light guiding light" whereby one light bean can 

be steered with another as part of an all-optical device. One's intuition with respect 
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to such interactions can be led by recourse to a simple Snell's law-type argument. In 
the eady stages of periodic collapse, each soliton "sees" an index of refraction padienb 

due to  the presence of the other pulse's tail, the beam bending in the direction of the 

increased index. Of course, complete reemergence of each pulse from the nonlinear 

collapse with no radiative release is surprising and can only be understood in ternls 

of soliton theory. In the case of a n-phase difference, the presence af the other pulse 

decreases the local index of refraction and the solitons repel one another. 

In 1991, one-dimensional spatial dark solitonsg were observed by Swtwtxltllider et 

al. [Sw91] in the transverse profile of a laser beam that passes through a wire mesh 

and self-defocusing medium. A striking feature of this experiment is &at the stable 

dark soliton stripes which develop evolve from a decidedly non-soliton initial state; 

the wire mesh used to mask the uniform input beam creates crude dark stripes which 

evolve to the one-dimensional NLSE dark soliton profiles. That is, it is often not 

necessary to begin with an exact soliton input profile, instead the soliton acts as an 

attractor for input states that are suitably nearby. Such attractor-like behaviour is 

very important from a practical point of view where a reasonable degree of system 

robustness to initial perturbations is desired. lo 

Unstable Kerr beams revisited 

Solitons in the optical systems considered so far share the common trait that the 

electric field oscillating beneath the envelope is plane-polarized, i.e., as dcpicted in 

Figure 1.6(a), the electric field is assumed to oscillate in a fixed direction. This is 

not a physical requirement but rather, as mentioned earlier, a means of reducing the 

vector wave equation to a more tractable scalar form from which the rclativoly simple 

(soliton-admitting) NLSE eventually emerges. 

R e d  that the two-dimensional plane-polarized bright circular beam in a Kerr 

medium was known to be unstable from the early days of nonlinear optics, In 1992, 

Snyder et al. [Sn92] considered alternative reductive polarizations of the circularly 

9See, e.g., Ref. [Ki93] for a review of spatial dark solitons. 
''This issue was recently addressed in the context of this thesis by McLeod and et al. jMc951. 
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Figure 1.6: Schematic representations of three reductive electric field polarizations for the 
dark beam. (a) plane polarized. (b) radially polarized. (c) azimuthally polarized. (For 
clarity, only sample polarizations at two beam radii are shown.) 

symmetric beam, two of which being the radially polarized TMol mode and the az- 

imuthally polarized TEol mode shown schematically in Figure 1.6 (b) and (c) re- 

spectively. While no mathematical restrictions are placed on the resulting envelope 

equation, uniqueness of the underlying vector field requires that the envelope be zero- 

valued at the origin. Thud, with the field being "black" at the beam centre, it is 

natural to look for a dark solitary wave profile. Such profiles exist and, due to the 

non-plane polarization, are (in staunch contrast to the bright case) found to be sta- 

ble. These dark optical vortex solitons were subsequently observed experimentally 

by Swartzlander and Law [Sw92]. As Snyder and co-workers comment, this is a very 

important result because it "paves the way for numerous [greater than one spatial- 

dimensional] all-optical devices in which light itself directs and manipulates light in 

a bulk [Kerr] material without any intervening structures." As an example, they en- 

vision a strong dark pump beam guiding a weak signal beam through an o~dinarily 

isotropic uniform bulk medium by vidue of the (linear) waveguide it induces. 

In 1994, Kivshar and Yang [Ki94] theoretically predicted the existence of stable 

plane-polarized two-dimensional structures for the Kerr nonlinearity characteristic of 

existing media. It has been known since 1988 that dark soliton strips are unstable 



Figure 1.7: Interaction of a ring dark solitary wave with a pair of dark-soliton atrips. Frnrn 
Ref. [Ki94], by permission. 

to long-wavelength perturbations [Ku88], later numerical simulations [Mc93, La931 

revealing that the strips decay into a sequence of optical vortex solitons of opposite 

polarities. Kivshar and Yang realized that this transverse instability could potentially 

be averted by forming a closed dark loop with a circumference less than the criticdly 

unstable wavelength. The authors found that in the small-amplitude limit, the loop 

is governed by the cylindrical KdV equation which is known to admit cylindrical and 

spherical pulse solitons [Ma74]. As shown in Figure 1.7, numerical simulations of the 

governing wave equation reveal the ring dark soliton to be a stable entity, undergoing 

elastic collisions with dark soliton strips. This exciting new K e n  spatial soliton wm 

recently observed experimentally by Baluecbev and co-wjrkei.~ [Ba95]. 
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Stability in higher dimensions: Non-Kerr media 

An alternative method of creating stable two (and higher) dimensional spatial struc- 

tures is to allow for deviations from Kerr-like behaviour. For example, while it has 

long been known in plasma physics that saturation of the nonlinearity can induce 

radial stability for otherwise unstable systems [Ka75, Wi75, Ingo], only recently has 

this principle been applied to the types of optical systems discussed above. 

As shown by Snyder et al. [SnSl, Po91), the unstable bright circular beam origi- 

nally considered in the early days of nonlinear optics [Ch64, Ke65] becomes theoreti- 

cally stable when the nonliriearity is sufficiently saturable. In fact, as will be shown in 

Chapter 3, the precise form of the nonlinearity is unimportant, a simple stability cri- 

terion and set of scaling laws [Ko73, Wi75, La841 implying that any  model displaying 

suitable saturation at high intensities will yield radially stable bound states. (This 

criterion does not guarantee stability against transverse perturbations or collisions.) 

In addition to the now familiar bright circular beam that is maximal at the beam 

centre and decreases monotonically with increasing radius, there also exists higher 

bound states that consist of a bright central spot surrounded by a number of concentric 

bright rings. Soto-Crespo and co-workers [So911 demonstrated by means of linear 

stability analysis and numerical experiment that such states are unstable to angular 

perturbations, the initially symmetric rings breaking up into a number of equispaced 

filaments (Figure 1.8). Very recently, Atai et al. [At941 considered the closely related 

problem of an azimuthally polarized field with a dark spot surrounded by rings of 

varying intensities in a saturable medium; not surprisingly, this system was also found 

to be unstable to transverse perturbations. 

Self-trapped three-dimensional pulses: light bullets 

In his Ph.D. dissertation [Za66], V. Zakharov pointed out the now well-known result 

that the dynamics of one-dimensional spatial pulses are identical to those of one- 

dimensional temporal envelopes, both being governed by the nonlinear Schrodinger 

equation. As stated in a recent review paper [Mc95], "one simply needs to replace 
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Figure 1.8: Transverse instability of the 2nd higher bound state in a saturable self-focusing 
medium. From Ref. [SoSl], by permission. 

the spatial quantities of nonlinear self-focusing, diffraction, and spatial frequency (an- 

gle) with their temporal analogues of nonlinear pulse compression, anomalous group- 

velocity dispersion, and temporal frequency (color)." Thus, it is surprising that twenty 

years passed before it was proposed [Ma88c, Si90] that these effects be considered in 

tandem, viz. 

to govern the propagation of plane-polarized three-dimensjonal envelopes in an anonla- 

lously dispersive bulk medium. This remarkable equation, and its generalizat ion to 

an arbitrary refractive index function, permits solitary waves solutions that arc self- 

trapped both in space and time. However, as with the bright case in two-dimensianx, 

Kerr solitary waves are found to be unstable. Above a critical power, Yczron Silbcrbcxg 

predicted [Si90] that a spherical localized pulse could symmetrically collapse in space 

and time under the combined effects of self-focusing and temporal nonlinear compres- 

sion. While mathematically the collapse is unbounded, physically the wsumption~ 

used in deriving the NLSE will break down and either higher-ordcr effects or dielcc- 

tric breakdown will avert the singularity. Silberberg did not attempt to avoid this 

collapse, envisioning it as a means of producing exceptionally high, localized, elcctric 

fields. In conclusion though, Silberberg did note that "saturation of the nctnlincar 
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index [could] bound the collapse and lead to the formation of stable, nondiffracting 

and nondispersing pulses: light bullets." 

Soon afterward, Blagoeva et al. [B191] published the first theoretical and numerical 

work on light bullets. The system they proposed consisted of signal pulses travelling 

down a waveguide induced by a relatively large and powerful pump pulse. While such 

stable localized three-dimensional signal pulses are confined in time and space, they 

are not self-trapped. In addition, such a configuration does not allow non-zero impact 

parameter bullet-bullet interactions, copropagation of different sized pulses, etc. In a 

sense, this work is a generalization of Snyder's proposal for one beam steering another; 

however, in this case the weak signal beam is a finite duration pulse. 

Light bullets, the topic of this thesis, have been the focus of much theoretical 

work over the past five years. Nail Akhmediev and co-workers [Ak92] predicted that 

a continuous-wave bright beam travelling in a bulk saturable medium would be sus- 

ceptible to a temporal modulation instability which would likely cause the formation 

of a train af light bullets - the optical machine gun - a prediction later confirmed by 

numerical experiment [Ak93a]. 

Ermi and Rangnekar [En92a], following up on Silberberg's stability conjecture 

and their earlier work on one-dimensional bistability, devised two non-Kerr models 

that would support bistable light bullets, trapped three-dimensional pulses with the 

same energy content but radically different radial profiles. In the first numerical 

confirmation of these objects, Edmundson and Enns (Ref. [Ed921 and Chapter 4) 

demonstrrzted the soliton-like nature of colliding light bullets and also induced a low- 

state bistable light bullet to switch to a high-state bullet. 

Recall tE& in the normal dispersion regime, the one-dimensional NLSE admits a 

temporal dark soliton. Hayata and Koshiba [Ha931 considered Eq. (1.9) with normal 

dispersion and derived an approximate form fw a symbion solitary wave, a mixed 

separable profile consisting of a dark soliton in the temporal direction multiplied by a 

trapped two-dimensional bright beam in the spatial direction. The topic of symbion 

stability was not addressed nor were symbions propagated numerically - they are 

- .iamdoubtedly unstable in the Kerr case. 

Edmundson and Enns reported a set of novel numerical experiments (Ref. [Ed931 
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and Chapter 4), some of which have no one-dimensional analogue. hllaking use of 

the disparate sizes of bistable light bullets, soliton tunnelling was observed wherel~y 

a small high-state bullet burrows through a much larger low-state bullet. In itddi- 

tion, breaking the cylindrical symmetry, collisions were reported at non-zero impuct, 

parameter. 

In early 1995, generalizing the work of Snyder et al. [Sn92] who predictcd stablp 

black beams with azimuthal polarization in two-dimensional Ksrr media, Chen and 

Atai [Ch95] discovered the analogous dark optical bullet in an anomalously-dispersive 

self-defocusing bulk Kerr medium. As in two dimensions (and in stark contrast to the 

bright Kerr case), these entities are theoretically predicted to be stable. 

In one dimension, introduction of a n-phase difference between solitons leads to 

repulsion (refer back to Figure 1.2(b)). The same is true of light bullets with the 

exception that one is not confined to "head-on" collisions. Edmundson and Enns 

[Ed951 performed a series of scattering experiments at various impact parameters and 

incident velocities for the modified GNLSE with a saturable nonlinearity. As discussed 

in Chapter 5, this scattering data can be used to successfully extract the force law 

between two interacting bullets with overlapping tails. 

In addition to the fundamental bound state, there also exist halo states comprised 

of a bright central core surrounded by a number of bright spherical halos. As discussed 

in Chapter 6 and Ref. [Ed96], this author has recently confirmed that these state8 are 

unstable to transverse perturbations. By virtue of the structure of the NLSE in thrcc 

dimensions (and in contrast to  the situation in two dimensions), the stability analysis 

yields the result that entire families of modes are unstable, a result that leads to 

complex pattern formation. These findings were corroborated by direct airnulation of 

the governing envelope equation. 

Finally, the possible technological applications of one-dimensional temporal soli- 

tons (long distance communications, fiber-coupler logic gates) and spatial solitons 

(optical storage, all-optical switches) are well known and are likely the impetua far 

much of the work1' that has transpired in the last two decades. On the other hand, 

the applications for light bullets are not so obvious. In an exciting new paper entitled 

llOr, at the very least, the source of funding. 
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"(3+1)-dimensional optical soliton dragging logic," McLeod and co-workers [Mc95] 

make a strong case for the use of light bullets as the basic element of all-optical 

digital logic gates. By considering the interaction of orthogonally-polarized bullets, 

it is shown that a phase-insensitive high-gain cascadable gate can be produced. In 

conclusion, these workers optimistically opine that "the possibility of constructing 

all-optical, light-bullet dragging logic circuits with millions of gates operating at (ter- 

ahertz) clock speeds is strong motivation for the continued materials, theoretical, and 

systems research necessary to realize these devices." 

In the chapters that follow, we will present a detailed account of our contributions 

xo the light bullet problem. First, however, we begin with a physically transparent 

derivation of the (3fl)-dimensional generalized nonlinear Schrodinger equation and 

the numerical method used for its solution. 



Chapter 2 

Optical envelope propagation in 

bulk media 

As can be gathered from the introduction, the generalized nonlinear Schrodinger equa- 

tion (GNLSE) plays a central role in nonlinear optics, describing the evolution of 

plane, radial, and azimuthally polarized envelopes in one, t w ~ ,  and three-dirncnsional 

systems possessing an intensity dependent refractive index. The aim of this chapter 

is to present a concise and physically transparent derivation of the three-dimensional 

GNLSE, to understand the general effect of the linear and nonlinear contriloutians, 

and to  develop a beam propagation method necessary for its numerical solution. 

2.1 Derivation of the propagation equation 

Due to  its importance, a derivation of the NLSE is available in any self-respecting 

fi~&hE%E ~ptics textbook (e.g., see Refs. [Ag89, Bo92, Ne921). while a thoroagh 

treatment that rigorously takes into account higher order effects was recently pub- 

lished by Kodarna and Hasegawa [Ko87], the more concise derivation presented here 

follows that of McLeod and co-workers [Mc95]. 
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Naturally enough, one begins with Maxwell's equations in SI units 

where t? and ?? are the electric and magnetic field vectors, respectively, 5 and 'fl are 

the corresponding electric and magnetic flu densities, and the time T is taken to 

be in upper-case in anticipation of future normalization. In a dielectric, the current 

density and free charge density pf, which serve as external sources that drive the 

field, are zero. Coupling of the applied fields to the medium is included through the 

constitutive equations 

where ro is the vacuum permittivity, is the vacuum permeability, and P' and M 
are the induced electric and magnetic polarizations. The electromagnetic quantities 

€0 and are related to the speed of light via l/2 = € 0 ~ 0 .  For the non-magnetic 

media considered in this thesis, M II 0. 

Taking the curl of Eq. (2.1), the time derivative of Eq. (2.2), and making use of 

the constitutive equations and a well known vector identity, one obtains the relation 

In the effective index approximation, V (V 9) N 0 and the first term in Eq. (2.7) 

disappears by virtue of Eq. (2.3) and Eq. (2.5). Assuming that the input field is 

plane-polarized and that the dielectric medium is isotropic and polarization preserving 
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reduces the vector equation (2.7) to 

Rather than consider the polarization explicitly, we will write the constitutive 

equation for D, Eq. ( M ) ,  as 

'D = €06 & (2*9) 

where t: = E(W, 1&12) is the relative permittivity that is both frequency and field da- 

pendent such that Eq. (2.8) becomes 

Assuming that the relative permittivity can be separated into linear and nonlinear 

parts 

where ~ ( w )  has been Taylor expanded to second order under the assumption that 

the bandwidth of the pulse is limited to a small range of frequencies centred about 

the frequency wo. The first term Q, is the familiar linear dielectric constant of the 

medium. The second term determines the group velocity u,, the speed at which the 

optical envelope travels. The subsequent expression is the group velocity dispersion 

(GVD) and, as discussed in Section 2.2, is responsible for temporal spreading of the 

wavepacket. (For the case of extremely short pulses or when operating near the zero- 

dispersion wavelength, one must consider the effects of higher order dispersion.) The 

nonlinear term is free of dispersion as it contains no w dependence. This is equivalent 

to  stating that the nonlinear response of the medium is instantaneous, a reasonable 

assumption for picosecond pulses when the electronic response is on the femtmecond 

timescale. We allow for arbitrary nonlinearities by virtue of the function F. There 
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is no term proportional to JEl due to the existence of an inversion symmetry at the 

molecular level of most dielectrics. Note that X ( 3 ) ,  generally a fourth-rank tensor, has 

been written as a scalar quantity for the case of an isotropic polarization preserving 

medium. 

The familiar optical refractive index is defined by the equation n = &. With the 

reasonable assumption that ENL << EL, to first order 

where no = 6 and the nonlinear coefficient n2 = X(3)/(2no).  

It is useful to isolate the relatively slow modulations of E from the underlying fast 

oscillations at frequency wo by separating the field into an envelope and plan,- wave 

carrier in the propagation direction Z 

with the central wavevector ko = nowo/c. 

With E being frequency dependent, we make use of the Fourier identity a/dT -4 

-i(w - wo) in order to write the wave equation (2.10) in the time domain 

In order to simplify this equation, it is usual to assume the slowly varying envelope 

approximation 

wherein the second-derivative term above is neglected, to neglect all time derivatives 

higher than second order in the crass term and to make the slowly varying nonlinearity 
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approximat ion 

Under these approximations, Eq. (2.14) becomes 

where the group velocity 

and the group velocity dispersion (GVD) coefficient 

tVhen D < 0, the material i s  said to exhibit normal dispersion whereas for D > 0, the 

case considered in this thesis, the materid is said to display anomalous dispersion. 

Using the scalings [Si90] 

1 
(x, y) = - ko ( X ,  Y )  

CT 

1 
z - k o Z  

CT2 

where a is a dimensionless scale factor that sets the pulse duration, Eq. (2.15) can be 

transformed into its final dimensionless form 
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Equation (2.19) is commonly referred to as the generalized nonlinear Schrodinger 

equation (GNLSE) and governs the propagation of plane-polarized optical envelopes 

in an anomalously-dispersive bulk medium. 

Before proceeding, let us make contact with reality and discuss the transforma- 

tion from Eq. (2.15) to the dimensionless GNLSE. The definition of t is a shift into 

a reference frame moving with the pulse at the group velocity (normalized by ko 

and the GVD coefficient). In addition, the laboratory spatial coordinates (X, Y, 2) 

have been scaled by the mean wave number t o  define a dimensionless position vec- 

tor (x, y,z). Immediately, we are struck by the complete symmetry between the 

scaled transverse coordinates and the retarded time which explicitly demonstrates 

the equivalence between spatial self-focusing and temporal compression. In addition, 

the (scaled) GNLSE contains no explicit dependence on the strength of the nonlinear- 

ity. Thus, remarkably, solutions to Eq. (2.19) are unaffected by a change in n2, the sole 

influence being a rescaling of the electric field and a resultant change in the pulse's 

energy content. As values of n2 can span several orders of magnitude, so can the 

self-trapped energy.l A brief glance through this thesis reveds that in dimensionless 

units, the solitary waves that we consider are spherically symmetric. What do such 

pulses look like in the laboratory frame? Admittedly, the answer to this question will 

depend on the specific medium, but as an illustrative example, let us consider silica2 
26 2 at the anomalously dispersive wavelength of 1.5 pm for which D = 1.8 x 10- s /m 

and the group velocity vg e 2 x lo8 m/s. From the scalings above, the conversions 

from simulation values to real distances, times and field strengths are given by 

-- 
'For example, Silberberg [Si90] and McLeod et al. [Mc95] calculate pulse energies of 80pJ and 25 

pJ, respectively, by varying the material parameters and pulse duration while still remaining faithful 
to the assumptions used in deriving the GNLSE. 

2Note, silica possesses a Ken-like nonlinear refractive index, f ( 1 ~ 1 ~ )  = 1EI2, which is characteris- 
tic of many existing materials. Unfortunately, as demonstrated by Silberberg [Si90] (and explained 
at length in Chapter 3), Kerr-like media cannot support stable threedimensional pulses! Still, as 
we will be considering deviations from Kerr behaviour, silica serves as a reasonable and familiar 
baseline. 
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where the scale factor c is determined from the definition of the retarded time and is 

found to  be 

For the parameters of silica, a 1 ps pulse spanning At =: 1 in simulation units yields 

a scale factor o = 2.3 x lo4. Thus, I El = 1 corresponds to a real field strength of 
= 4.8 MV/m which is easily obtainable with existing laser systems. What length 

of bulk material is required for these specific parameter values and pulse duration? 

For the parameters of silica, one finds that every z = 1 travelled in simulation units 

corresponds to a real distance of Z = 53 m. Admittedly this is a prohibitively 

large value for a bulk dielectric, however, as Z scales like a2, this length can be 

reduced to centimeter distances by considering shorter pulse envelopes modulating a 

lower frequency carrier in the presence of larger GVD. (Of course, in doing so, oric 

must be careful to remain reasonably faithful to the assumptions used in deriving the 

propagation equation.) 

In rescaled units our profiles are spherically symmetric so that Ax = Ay = At, 
which, in combination with the above conversion relations yields 

for the transverse size. With the pulse length in the propagation direction given by 

AZ = v, AT = 0.2 mm, in the transverse direction (AX, AY) = 3.6 mm. Therefore, 

while the solitary waves me taken to be spherics! in our dimensionle~s units, in the 

laboratory frame they exist as highly squashed ellipsoidal pulses (at lea& for this 

particular choice of D, and vg). 

As shall be demonstrated in the chapters that follow, fm a general class of index 
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of refraction models, the GNLSE supports the propagation of highly stable spherical 

self-trapped spatio-temporal solitons more commonly referred to  as "light bullets." 

Defining the normalized distance r = dt2 + x2 + ya, spherically symmetric solitary 

wave profiles are found by substituting the assumed form 

into Eq. (2.191, yielding a second-order ordinary nonlinea differential equation for 

the radial profiles, viz. 

The adjustable propagation constant ,O dictates a shift away from the central wavevec- 

tor; mathematieally, is the eigenvalue that governs the general shape of the resultant 

solitary wave. Generally speaking, Eq. (2.24) is analytically intractable and must be 

solved numerically. 

2.2 A balance of forces: dispersion, diffraction, 

and seKphase modulation 

In order to study the dynamics of a given envelope, it is necessary to integrate 

Eq. (2.19) forward in z. Unfortunately, this cannot be done analytically and therefore 

we must evolve the initial condition numerically as described in Section 2.3. How- 

ever, while the full GNLSE is analytically intractable, it is instructive to separately 

examine the effects of the linear and nonlineas terms. 

Consider first the GNLSE without the nonlinearity, 



If we introduce the Fourier transform3 of E 

then in frequency space the linear operator 

becomes simply a scalar phase factor. This being the case, Eq. (2.25) c m  be written 

where we have defined fT2 m f t 2  + f x 2  + f:. This equation is easily solved to give 

While the power spectrum of the pulse 1 ~ 1 ~  is unchanged by dispersion - the ef?%ct 

being a frequency dependent modification of the phase of the spectral components - 
this has definite consequences for the red space profile E ( t )  which can be extracted 

by means of the inverse Fourier transform 

As a simple yet illustrative example, if the initial pulse shape (in our dilrlerlsionless 

coordinates and moving reference frame) is a spherical Gaussian 

the profile at any later distance z is found to be 

3Theoreticians might puzzle over the choice of this cumbersome definition - it ie the de fstcto 
implmerttation far numerical Fourier Transform packages. 
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The pulse's behaviour can be made more transparent by writing E as a real amplitude 

multiplied by a complex phase, 

I 2 
E (r,  z )  = 

e-s e-5&,-i tan-1 22 

d i g 2  

which demonstrates that as the pulse propagates, its peak intensity drops mono- 

tonically while, due to the decreasing decay constant 1/(1 + 427, the pulse width 

concomitantly broadens by the same factor. Dispersion is understood on the physical 

grounds that since the velocity of a given frequency component is itself frequency 

dependent, the various components that comprise the pulse will travel at different 

speeds, resulting in a general spreading of the initial envelope. In particular, in the 

anomalous dispersion regime, red-shifted components (with respect to the central 

wavelength Xo) travel more slowly than their blue-shifted counterparts. Diffraction 

appears in Eq. (2.25) in a mathematically equivalent way and therefore also leads to 

a general spreading of the pulse in the transverse coordinates. 

Let us  next consider the effect of the nonlinearity alone such that the GNLSE 

becomes 

which is readily solved, 

Equation (2.35) reveals that the nonlinearity alone does not 

(2.35) 

affect the envelope shape 

IEl although it does produce an intensity-dependent phase shift known as self-phase 

moduiation (SPM) [Ag89, Sh89j. Such a temporally varying phase implies that the 

instantaneous frequency differs across the pulse from its central value of w ~ ,  the shift 

being given by 

where the minus sign is due to our (conventional) choice of exp(-iwot) for the time 

portion of the rapidly varying plane carrier wave. For the f ((El2) considered in 
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Chapter 3, Aw < 0 (red-shift) on the leading edge of the pulse and A w  > 0 (blue-shift) 

on the trailing edge. While nonlinearity alone does not modify the pulse shape, SPM 

effectively leads to pulse compression as it continually wavelength-shifts tho lcading 

and trailing pulse edges which are then decelerated and accelerated respxtivcly as a 

result of anomalous dispersion. Compression in the transverse direction is more easily 

understood based on the arguments presented in the introduction. 'CI\ITith d f l~llE1~ -2. 

0, the refractive index increases towards the pulse centre. This gradient induces n 

curvature of the phase front as the beam edge travels faster than the beam intmior. 

In the language of geometrical optics, such a refractive index gradient leads to focusing 

of the light rays perpendicular to the phase front. 

Based on the above mguments, we see that dispersion/diffractiori and SPM/self- 

focusing play the role of opposing "forces" acting on the pulse envelopc, With a 

proper balance, it is at least conceivable that the result could be the propsgat,ic>rr of 

a stable three-dimensional optical envelope soliton - a light bullet. 

2.3 Numerical met hod 

We turn now to the numerical method used to propagate a configuration of envclopea 

forward in z according to Eq. (2.19). For the one-dimensional NLSE, it is possi- 

ble to use explicit finite-difference methods, however, in three dimensions, tha short 

timesteps required to maintain accuracy and numerical stability becorne cornputa- 

tionally prohibitive. Therefore, the method used in this thesis is a simple extension 

of the split-step Fourier method [Ag89, Fe781 to three dimensions. 

One begins by noting that the GNLSE, Eq. (2.19), has a formal solution 

where V2 is the Laplace operator in the t ,  a, y cartesian coordinate rjystem and tht? 

exponential function is defined by its power series expansion. 
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The exponential can be approximated as 

where the operator 6 = VZAz and k = J? f (lEI2)dz. This expression is accurate to 

order ( 8 ~ ) ~  as can be seen by Taylor expanding both sides. For small Az, we can 

reasonably approximate & = f ([El2) Az. This being the case, to the order specified 

the formal solution of Eq. (2.37) becomes 

Interpreted physically, in order to evolve the solution a distance Az, the numerical 

scheme (i) uses only dispersion and difiaction for a distance Az/2 (ii) applies a non- 

linear correction using the midpoint value of the field E applied over the full range Az 

(iii) continues for the final half-step using only dispersion and diffraction. Numeri- 

cally, the advantage of the split step Fourier method is the tremendous speed increase4 

one obtains by taking large "timen-steps and using the Fast Fourier Transform (FFT) 

(Co651 to  solve the linear dispersive/diffr active problem. 

Denoting 3 and F-' as the forward and reverse Fourier transl'orms respectively, 

Eq. (2.39) can be written as 

To evolve the solution forward to 2Az, one simply concatenates the string of 

Fourier and exponential operators 

4•˜et! Ref. [Ta84] for e quantitative evaluation of various finite-difference and spectral methods 
applied to the one+dimensional NLSE. To achieve the same degree of accuracy, one often realizes 
time savings of two orders of magnitude over conventional finite difference methods. 



nonlinear 
correction 

Figure 2.1: Propagation using the 
split-step Fourier method. 

The occurrence of 
F-1 e - 2 ~ 2 i  fT2 AZ F F - ~  e - 2 ~ 2 i  fT2Az .? 

simplifies to 

Thus, one begins and ends the calculation with a half step of dispersion and diffraction, 

the inter~nediate stages being full Az steps of alternating nonlinear corrections ard 

dispersive/difiactivc! -tdvance as schematically depicted in Figure 2.1. 

All of the simulations in this thesis were performed on three-dinlunsional rectm- 

gular meshes, either 1403, 140 702, 12g3 or 256 . 12g2, depending on the rluturc of 

the problem and the machine used. LBC, the propagation code, was iimplerner&xl in 

standard Fortrm 77 using existing FFT libraries. The Scientific Subrouti~le Library 

(SSLII) FFT package was utilized for the simulations performed on the 2.5 Gig5tfio;. 

(peak speed) Fujitsu VPX 240/10 vectorizing supercomputer at the High Perforrnancc 

Computing Centre (HPCC) in Calgary, Alberta.5 For earlier simulations performed 

on an IBM RISC/6000 workstation, we used a highly optimized radix-two scalar FFT 

package written by Leonard Gomelsky of NASA Ames Research Center. 

'The majority of the simulations in this thesis were carried out under the atupices of the 
HPCC graduate research scholarship program. HPCC maintains a World Wide Weh presence at 
<URL:http://www.hpc.com/>. 
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In addition to the core routines that handle the alternating stages of disper- 

sion/diffraction and nonlinear advance? there exist subroutines for monitoring the 

accuracy of the evolving solution. The accuracy subroutines calculate the conserved 

quantities of Eq. (2.191, viz. 

corresponding to conservation of the total power, total momentum, and total energy 

of the field. The Ji can either be kept within a predefined tolerance by step-size 

control or reviewed after the simulation. 

Periodic boundary conditions are implicit in the Fourier transform method of 

solving the dispersive/diffractive advance. As a consequence, outgoing radiation that 

would otherwise physically escape to  infinity, instead re-enters the system from the op- 

posing face of the computational mesh. In one-dimensional problems, infinite bound- 

aries (often called radiation boundary conditions) are achieved by the application of 

a suitably crafted damping function over a range of gridpoints near the mesh edge 

[Is81]. This is problematjc in three dimensions where, on a coarse grid, one typically 

cannot afford to sacrifice a sizeable volume of surrounding grid points; the naive ap- 

proach of setting only the boimdary to zero simply results in reflection of the outgoing 

wave.6 After much experimentation we chose to simply accept periodic boundaries as 

a necessary unpleasantness. 

Let us now turn our attention to building refractive index models that will support 

stable light bullets - models whose stability properties and soliton dynamics will be 

examined using the numerical code described above. 

"n additional consequence of applying a sponge filter is that the integrated energy J1 = J I ~ 1 ~ d ~ r  
is no longer numerically conserved. 



Chapter 3 

Towards stable light bullets: model 

building 

This chapter begins with a discussion of unstable Kerr model light bullets, next dis- 

cusses sc?nstruction of the simplest physically realizable model that supports stable 

bullets, and concludes with a discourse on the creation of bistable light bullets. As 

mentioned in the introduction, bistable solitons as defined by Kaplan [Ka85a, Ka85bI 

have the same energy content but radically different radial profiles and are thus ni~t- 

ural carriers of binary information. 

3.1 The unstable Kerr model 

It has long been known that plane-polarized optical solitary wave structures in greater 

than one-dimension are unstable. In 1990, Silberberg predicted [Si90] that a ~uitably 

intense spherical three-dimensional pulse propagating in a bulk nnornalouuly dispersive 

Kerr medium could undergo symmetric radial collapse. While this thesis is concerned 

with the propagation of stable light bullets, it is worthwhile first considering Kerr 

model light bullets for two reasons: (i) to verify the predicted instability, and (ii) m a 

pedagogical device for demonstrating how one can construct a refiwtivc index model 

that will support stable light bullets. 

For the case of the Kerr model, f ( I )  = I, the generalized nonlinear Schriklinrgcr 
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equation, Eq. (2.19), becomes 

As mentioned in the last chapter, in order to find spherical solitary wave solutions to 

Eq. (3.1), one substitutes the assumed form 

into the GNLSE yielding the nonlinear ordinary differential equation 

Under the assumption 

while dU/dr, d2U/dr2 

that the real amplitude U has its maximum value at r = 0, 

--+ 0 as r --+ oo, Eq. (3.3) constitutes a two-point boundary 

value problem. While the Kerr case admits the familiar sech soliton in one-dimension, 

here it admits no known closed form solution and must be solved either numerically 

or approximated using traditional techniques [Ha92].' We use a standard shooting 

method [Pr86] whereby, fixing the propagation parameter P, we search via bisection 

for the U(0) value that when used as an initial condition to Eq. (3.3), yields a profile 

satisfying the above boundaxy conditions. 

For example, Figure 3.1 shows three sample radial field profiles from among the 

infinite spectrum of allowed states. (The steep slope apparent at the origin for the 

top two profiles is an artifact of the horizontal plot scale; a closer view reveals that 

dU/dr --+ 0 as r -+ 0.) As shown in the inset, while the peak intensity rises with 

increasing p, the pulse width narrows as the profiles become more tightly bound. An 

'A new and conceptually novel appr~ach to finding stationary solutions has been introduced into 
the literature by Alan Snyder and co-workers [Sn91, SnS3, Sn95], The problem of determining the 
mode structure rrf a guided wave in a linear medium having a known transverse refractive index 
n(x) is a familiar and often tractable (linear) problem. Their insight was to recognize that since 
every soliton is a mode of the linear waveguide that it induces, its profile can be determined via an 
elementary self-consistency condition: the soliton induces n(x)  which can then be thought of as a 
linear modt+structure problem whose solution has to be the original profile! 
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Figure 3.1: Sample Kerr model radial 
field profiles, Inset: Peak height [solid 
curve) and half-width a t  half-mtwtirnutn 
(dashed line) versus P. 

- 0 

obvious question then arises: what does the total pulse energy (normalized powcr) 

look like as a function of P? Calculating P for a range of values, thc result is plottcxt 

in Figure 3.2, where it is found that despite their higher peak intensity, larger 8 vduc 

light bullets have relatively lower energy content than their lower P siblings, This can 

be seen analytically by realizing that Eq. (3.3) possesses a remarkable sct of scaling 

relationships. A three-dimensional radially symmetric solitary wave can bc scalcd by 

a factor r via the relations 

Thus, for example, beginning with the P = 1 profile, the = 6 profile can be generated 

from this solution by virtue of the above relations with r - d6 N 2.45. T h i ~  11cw 

profile will then have a peak height 2.45 times the original pulse but a power reduced 
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Figure 3.2: Integrated pulse intensity 
versus propagation parameter for Kerr 
model light bullets. 

by the same factor. These scaling relations are ideal for producing small, intense (but 

relatively low energy) pulses. 

The scaling relations also allow one to understand the qualitative shape of the P-P 
energy curve. If (Po, Po) is a point on this curve, the T value for any other point /? is 

given by T = 4% which leads to the power function 

the slope of this curve being given by 

which is negative for ail /? values. Kolokolov has shown via a linear stability analysis 

[Ko73] that when dP/dP < 0, the solitary waves are intrinsically radially unstable 

to propagation. Conversely, solitary waves fbr which dP/dp > 0 are found to be 
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Figure 3.3: Peak field vcrvus prupaga- 
tion distance z for +B - 0.1 ~irnulatiun. 
Solid line: -6 < ( t ,  x, y) 5 6 domain. 
Dashed line: -8 < ( t  , x, y) <_ 8 domain. 

radially stable t o  small perturbations, although they may or may not be stable to 

large perturbations in the form of collisions [En87a, En87bl. Thus, with reference 

to the Kerr model energy curve in Figure 3.2, one expects that, in contrast to the 

well-known one-dimensional NLSE soliton solutions, all spherical three-dirneasiond 

solitary waves will be unstable. Indeed, numerically we find this to be the case. 

As an illustrative example, Figure 3.3 plots the peak field IE(O,O, O)I vc:rsus z 

for the ,O = 0.1 solitary wave positioned at the centre of a 1403 mesh. The GNLSE 

conserves the integrated envelope intensity so the rise in the pulse's peak field is 

accompanied by a general narrowing of the pulse width. As the evolution code does 

not have an adaptable mesh, the simulation results become inaccurate when thc size of 

the collapsing bullet shrinks to the scale of the intramesh spacing. This is a r~eparate 

issue from the physical validity of the equation itself. At some point during the 

collapse process the assumptions used in deriving the GNLSE become untenable arrd 

higher-order corrections should be taken into account. (Recently, Akhrnediev et al. 

[Ak93b] have demonstrated that in the case of critical self-focusing, one cannot even 

assume that the propagation parameter ,8 is constant and independent of x . )  

The pulse collapse of Figure 3.3 was observed for various computational domain 
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sizes (for clarity, only two are shown), the larger domain simulation necessarily ter- 

minating earlier due to the coarser mesh. Until this point, however, both curves show 

excellent agreement which instills a certain amount of faith in the numerical validity 

of the result. 

With the instability of Kerr model light bullets suitably demonstrated, we pro- 

ceed to  developing non-Kerr models that will support st able three-dimensional optical 

solitons, 

3.2 Stable light bullets via saturation 

As mentioned in the previous section, a necessary condition for radial stability is that 

the P-P energy curve possess a region of positive slope [Ko73, Wi751. While this was 

not possible for the Kerr model, this section will show how to design generic models 

that do possess positive slope branches. 

Consider a model of the form 

such that the ordinary differential equation which governs spherical solitary wave 

profiles becomes 

The modified scaling relationships for Eq. (3.9) are 

Then, if (Po, Pi) is a point somewhere on the P-P curve, 
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the slope of which is given by 

with 
-, n > 3/3 

sign (g) = { +, n < 2/3 

Based on the positive slope stability criterion, one then expects that in three dimen- 

sions an In model with n < 2/3 will yield stable light bullets for all allowable P values, 

although a model with explicit sub-linear behaviour is not very physically realistic. 

However, if we are content with a subset of propagation constants, one can postulate 

a model that is Kerr-like at low intensities (n = 1 yielding negative slope at low P )  
but saturates at higher intensities. Bullets with peak intensities in this latter region 

will experience sub-(n = 213) behaviour giving rise to a positive slope branch on tho 

energy curve. A natural choice is the saturable model 

which is Kerr-like at low I but saturates at the value l /a .  The inset of Figure 3.4 shows 

three solitary wave profiles2 for ,O = 0.138, P - 1.03 and P = 4.0 with msociatcd 

normalized energies as shown in the main figure. As expected, solitary wctve8 with low 

p values (which have correspondingly small peak intensities) "see" a refractive index 

model that is Kerr-like and are thus located on the negative slope of the resultant 

energy curve. Conversely, saturation of the nonlinearity at higher intensities leads ta 

a positive slope branch of (presumably) stable light bullets. 

Before proceeding to numerically evolve these solutions, it is worth noting that 

while the quantitative form of the energy curve is a-dependent, the qualitative U- 
shaped behaviour is characteristic of all models that are Kerr-like for small I but 

behave like In with n < 213 at higher intensities, for example, Figure 3.5 shows the 

U-shaped energy curves obtained for varying degrees of saturation. 

2The inset symbols simply identify a particular U ( r )  profile. 
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Figure 3.4: Energy curve for saturable 
model with a = 0.05. Inset: Sample 
radial field profiles for three ,fl values. 

An interesting feature of these curves is that they each possess a minimum indi- 

cating that there is a minimum energy required for light bullet formation. This fact 

and the need for the additional scaling relation Zi = ~ - ~ a  implies that a power scaling 

relationship for a specific medium does not exist. That is, for a fixed 'a' value and a 

given p, one cannot scale to another bullet profile containing arbitrarily small energy 

content. 

As predicted, numerical evolution of various saturable model bullets reveals that 

solitary waves residing on the negative slope of the energy curve are unstable, their 

field profiles changing with propagation distance z. Typically one observes a gradual 

decrease in the central intensity accompanied by a general spreading of the pulse. 

(It is important to note that the U-shaped energy curve should not be thought of as 

a potential well description in which the negative slope bullets "slide" down to the 

minimum position.) For example, Figure 3.6 shows surface plots of the field values 

IE(t, 2, y = 0) ( corresponding to a slice through the centre of the rectangular mesh 

in the t-a: plane for the negative slope light bullet ,f? = 0.138. (The ring patterns in 



Figure 3.5: Sntura;ble n d e l  energy 
curves far varying degrees of mturatian. 

frames (a)-(c) axe artifacts of the plotting process.) While self-focusing tsffcctrs we, not 

sufficient to prevent the decay of the negative slope solitary waves, the nodinemzrity 

does serve to at least impede the process. This can be seen in Figure 3.7 wlme the 

peak height of the radial profile is plotted versus propagation distanct! bath for the 

simulation above and in the case of a linear medium in which self-focusing eBtt lcbs . asc 

absent leading to a rapid decay of the initial field. (The irregularity in the lincuz' 

case is due to interference effects as the expanding wavefront crosses thc periodic 

boundary.) 

We turn now to the positive slope branch of Figure 3.4 with the hope of finally 

creating a stable solution. Propagation of the =I 4.0 light bullet indicated yieltfe 

the desired result - a self-trapped three-dimensional optical soliton -  table at; lewt 

to  small perturbations in the form of numerical n o k 3  (Pictorially, a ~inglc &able 

bullet is unexciting as the input field simply remains constant in 2.) A aytstomatic 

exploration of the positive slope branch for both the a = 0.05 case depicted above 

3While the noise referred to is the inherent numerical noise due to round-off error thnd truncation, 
addition of random noise does not alter the stability. 



Figure 3.6: Evolution of the negative slope ,d = 0.138 light bullet for (a) z = 0, (b) z = 14.8, 
(c) z = 20, and (d) z = 30. 



Figure 3.7: Peak height vcrsus a for 
both the simulation depicted in Fig- 
ure 3.6 (solid curve) and tho corro 
sponding linear medium (dashed curve). 

and a selection of other saturation values leads us to conclude that this is a generic 

result: all pulses living in the dP/d/3 > 0 region are inherently stable to propagation, 

at least for the saturable model in the presence of small mounts of numerical noise. 

The bullets propagated so far have all been exact solutions to thc ODE that 

determines the solitary wave radial profile. An obvious and expcximentally irnpartant 

question then arises: while positive slope guarantees stability for the propulgation aS 

exact initial conditions, what occurs for profiles that are perturbed with respect to 

these initial states? In the one-dimensional Kerr case, one generally finds that ttsalitona 

act as attractors for nearby states - arbitrary pulses with energies greater than the 

soliton threshold self-stabilize, dissipating excess energy as a radiation continuum." 

While we cannot test the infinite number of allowable (relatively large) perturbations 

to an exact solitary wave profile, four years of light bullet work by a number of authors 

[Ak93a, Ed93, Ed96, Mc951 has shown that the light bullet ia an extremely rubwt 

particle-like entity that spontaneously forms in a saturable medium with suflicient 

4This attractor-like behaviour seems to be a general feature of nonlincar syntemn that  upp port, 
solitons. E.g., the seminal Zabusky and Kruskal paper [Za65] on the KdV equation examirm the 
case of a train of solitons emerging from one period of a cosine initial condition. 
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Figure 3.8: Peak height versus z for 
two amplified profiles bracketing the 
marginally stable ,f? = 1.03 light bullet. 

localization of energy. The most dramatic examples of this behaviour occur when a 

radically different envelope configuration leads to light bullet formation as discussed 

in the literature [Ak92, Ak93a, Ed961 and Chapters 4 and 6 of this thesis. 

Of course, if there is insufficient energy available to form the fundamental soliton, 

decay of the solution is ine~itable.~ As an example, consider the marginally stable 

solitary wave in Figure 3.4 with P = 1 .Q3. We can construct nearby initial profiles by 

letting 

U ( r )  -+ A U ( r )  

where A is a real amplification factor, Figure 3.8 plots the peak height IE(0,0,0)I 

versus z for two amplitudes bracketing the true solitary wave solution. The pro- 

file with A = 0.9975 has an energy below that required to form a soliton and so 

disperses. Conversely, the A = 1.0025 pulse has excess energy and drops onto the 

energy curve, the peak height ringing ever so slightly with behaviour characteristic of 

one-dimensional breather modes. 

'Or, at the very least, one cannot form a soliton with a profile that fulfills the spherically sym- 
metric mmtz. However, OW experience has been that such solutions disperse into the background. 
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The ultimate test of solitonic behaviour is stability against massive pert urbatic~rls 

in the form of collisions. To study rudimentary collisions, two bullets with propagation 

constants pl and ,02 respectively are placed onto the computational mesh and offset in 

the t direction at the initial locations f to. Recalling that the mesh is already xnoving 

at the group velocity, small deviations6 from v, can be introduced by taking input 

profiles of the form 

Substitution of Eq. (3.15) into the GNLSE reveals that with a minor rescaling of f l w  

propagation constant ,B, these travelling solitary waves obey the same radial profile 

ODE as their stationary counterparts. In order to collide two light bullets, one there- 

fore has the freedom to multiply the individual profiles by exp(ivlt) and exp(z;v2t) 

with vl # v2. 

Before presenting the results of such a collision, a brief digression on data visu- 

alization is necessary. To visualize the dynamics of the simulations in this thesis, 

volumes of /El data are stored at equispaced steps in z. These datascts are then 

volume rendered and concatenated into animations7 from which selected frames of 

interest can be printed. A potentially misleading artifact of the rendering process i s  

that in order to peer through the low levels of radiation that permeate the compu- 

tational mesh, it is necessary to choose a 1 E I cutoff such that voxels8 having a, field 

value below this level are rendered transparent. Consequently, the bullets will appear 

to  have well defined edges, however, in order to understand the origin of bullet-bullet 

interactions, it is important to remember that optical solitons actually have infinitely 

long tails. 

Figure 3.9 shows a sample saturable model collision for two P = 4.0 light bullets 

initially positioned at to = f 2 with opposing velocities v = f 2.0. (Mesh locatiom 

'Using the scaling relationships, Eq. (2.18), one can easily show that in real units, the fractional 
deviation from the group velocity (vg - vnew)/vg E v g v m / a .  For the parameters of silica and a 
1 ps pulse, v = 1 corresponds to a fractional velocity change of only lo-'! 

7Sel&ed light bullet animations are available on the World Wide Web and can be acwtltxl from 
<URL:http:/ fwww.sfu.ca/-renns / lbulfets.html>. 

8Voxels are the three-dimensional analogue of pixels, or picture elements. 



CHAPTER 3. TOWARDS STABLE LIGHT BULLETS: MODEL BUILDING 48 

Figure 3.9: Sample collision of two P = 4 saturable model light bullets demonstrating 
quasi-soliton behaviour. (a) z = 0, (b) z = 0.61, (c) z = 0.85, (d) r = 1.12, (e) z = 1.55 and 
(f) n = 2.00. Peak field lEpea*l = 13.6 with a transparency cutoff at 5% IEpeak/- 
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of the volume-rendered three-dimensional images with /El < 5% lEI,,,,kl have been 

rendered transparent.) Initially in frame (a) the bullets are well separated but nioving 

towards each other such that by frame (b) the pulses are about to collide, Apprcciahlc 

interaction has already commenced as the leading-edges constructively overlap, raising 

the local field strength above the vlsualizat.ion threshold. The peak /El =. 13.6 value 

is reached in frame (c) where the central cores of the two solitons completely overltq,, 

The nonlinear nature of the interaction is evident from the two pinched side-lobes that, 

appear and the observation that the peak field is less than twice the initial U(0)  valueti 

of the isolated solitons although negligible radiation has been shed by this stage of thc 

simulation. By frame (d), the solitons have passed through each other, the left and 

right-hand lobes moving apart although most of the original energy is still confined 

to the central bulge. 

A three-dimensional animation of the simulation clearly demonstrates the attrac- 

tive nature of the interactiong as the solitons struggle to escape each other before fi- 

nally separating and regaining their spherical profiles. Viewing such three-dimensional 

rendered images can easily give the impression that this simulation represents ct loss- 

less soliton interaction with equal initial and final states. This is untrue as call bc seen 

by viewing equivalent surface plots of the field values I E(t,  z, y = 0) 1. As the collision 

possesses cylindrical symmetry about the t axis, no loss of information occurs if we 

take this approach, although visually the explicit three-dimensional character of the 

light bullets is sacrificed. Surface plots corresponding to the visualizations presented 

above are displayed in Figure 3.10 and confirm that the final states are reduced in 

intensity with respect to the initial profiles, the missing energy being shed in the form 

of radiation faintly visible as small ripples on the surface at frames (e) and (f). The 

two (small) radiation ripples in frame (e) running parallel to the t-axis are interference 

effects due to the periodic nature of the boundary. This effect manifests itself first in 

the t direction due to the shorter transverse distance but is visible in the perpendicular 

direction at the later frame (f). 

'To a certain degree, the reader must accept such statements on faith with the uncler.rstartdixlg 
that viewing the colour-coded threedimensional animatiom of these dynamical sinlulatiom truly 
does make the professed behaviour apparent. 
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Figure 3.10: Surface plots through the middle of the rectangular mesh in the t-z plane 
corresponding to Figure 3.9. 
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Figure 3.11: /3 = 1.34 least-squart?~ 
fit to  the originally sight-most ,fj r= 4.0 
light buliet in Figure 3.9 after thc col- 
lision has occurred. Upper and lowcr 
dashed lines correspond to  profilcs with 
/3 values 3~10% of the fit value. Ir~set: 
comparison of energy contained in the 
input and output states. 

Although radiation is shed during the collision process and in the strict sense 

of the word the emerging light bullets are not true solittons, the wavcpacket;s arc 

certainly soliton-like as they retain their identities after a massive perturbation in 

which they undergo a strong nonlinear interaction. The output statcs can be identified 

by realizing that the only allowable spherical solitons for this medium are chi.lracteriaed 

by the single parameter P. As P decreases with decreasing energy for stable bullcts, the 

final states should be P-downshifted with respect to the original pulses. Figuro 3.11 

shows the field data as a function of r for the originally right-most light bullet 

after the collision at z = 2.0. The solid line is a weighted least-squares fit1' to 

the IE(r)l data for a downshifted propagation constant @ = 1.34. The upper and 

''It is tempting to label this process a one-parameter fit in 0. Strictly speaking, this is not true 
as the origin ro is also a fitting parameter. That is, on a coarse grid, the peak nunrerical IEl value 
does not necessarily occupy the T = 0 location for the underlying continuous function it rt!prwents, 
This is equivalent to allowing for -mcertainity in the locations of T with the caveat that all rnwh 
locations shift in the same direction and by the same amount. Rather than treat the origin a~ art 
explicit fitting parameter for the least squares merit function, we choot;e ro to make the data M 

s m ~ o t h  as possible without reference to the fitting function, A standard one-parameter leaat-sywrtm 
fit then determines the propagation constant. Note, this ordeal is usually not a wmicleration in 
low-dimensional problems where the function spans many mesh points. 
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Figure 3.12: Topological soliton track 
plot for the collision shown in Fig- 
ure 3.9. Contours begin at I El = 1 and 
rise by odd integer values. 

lower dashed curves have ,L? values with f 10% of this value respectively and serve to 

indicate the goodness of fit. The left-hand stacked bar in .ie figure inset depicts the 

energy contained in the two input pulses (with the nul- >i,cal labels corresponding to 

those of Figure 3.9) while the right-hand column plots the energy contained in the 

two downshifted output pulses,11 the difference reflecting the amount of the original 

energy that has been radiated into the background. 

A final method of visualizing the collision is the traditional topological soliton 

"track" plot shown in Figure 3.12. This plot is created from the line of field values 

IE(t, O,O)I as a function of propagation distance z.12 Before the collision occurs, the 

light bullet profiles are moving at a constant velocity as indicated by the fixed slope of 

their respective tracks. After the collision, the solitons emerge travelling at a steeper 

slope corresponding to a reduced velocity. It is worth noting that this reduced velocity 

is not required on energy considerations alone as the input vel.r,city v is (within reason) 

a free parameter and, unlike the KdV soliton, is not correlated to /? which determines 

the radial profile (and thus the energy content). The pulsing behaviour of each light 

bullet at the top of the plot is due to interactions with the background radiation 

permeating the computational mesh. 

The above simulation suggests many more computational experiments. However, 

"'After fitting the output radial profile to determine P, the pulse energy is obtained from the 
saturable model energy m e ,  Figure 3.4. 

12For three-dimensional simul,tions, obviously such a plot does result in loss of information. 
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as this chapter is mai~ily concerned with the construction of stable light bullet madcls, 

further exploration and systematic studies are delayed until the followi~rg cbapt,crs as 

we turn now to the construction of bistable light bullet models. 

3.3 Bistable light bullets 

Bistable solitons have the same energy content but radically different field profiles 

and are thus the natural carriers of binary information. In fact, we have d r e d y  

encountered an example of bistable solitary waves with the saturable model. Referring 

back to Figure 3.4, note that the left and right-most solitary waves possess the same 

energy content but, as shown in the figure inset, have very difierent radial profiles. 

Unfortunately, the negative slope solitary wave is radially unstable <and thus cmmotj 

be put to practical use. To create bistable solitons, it is necessary for the pulses to 

reside on separate positive slope branches of the energy curve. In order to have pulses 

with identical energy content, we therefore require a skewed-N-shaped energy curve 

with two positive slope legs separated by a connecting negative slope branch. 

Recall that the sign of dP/dp is negative, zero, and positive for an I" model with 

n > 2/3, n = 2 13 and n < 2/3, respectively. Qualitatively, we therefore require a 

model that behaves like or flatter in two regions of intensity with an intervening 

steep section to create the necessary negative slope leg. 

3.3.1 SLSS model 

We begin with a somewhat unphysical model that satisfies the above qualitative cri- 

terion. The sub-linear + smooth-step (SLSS) model, 

m th  0 < p < 1 has explicit I l l2  behaviour at low intensity, a steep portion bcgin- 

ning at I = I. to yield a negative slope branch, and then saturation at even higher 

intensities (Figure 3.13). Despite the non-Kerr behaviour near the origin and a cusp 
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Figure 3.13: The sub-linear 3. 
smooth-step (SLSS) nonlinearity 
(Io = 5). 

at I = lo, the SLSS model is a reasonable starting point in the search for bistable 

solitons, (h we shall see, a common theme of this thesis is that while the quantita- 

tive bullet behaviour may be model dependent, qualitative features such as general 

stability and interactions are largely model-independent.) Figure 3.14 plots the re- 

sultant energy curve for the case of p = 0.05 and lo = 5. As expected, the model 

possesses two regions of positive slope with an intervening negative slope branch. The 

discontinuity is an artifact of the f ( I )  cusp at I = I. and, as will be seen shortly, is 

easily removed. The two P values indicated have equal energy but, as shown in the fig- 

ure inset, radically different radial profiles. Solitary waves belonging to the left-most 

branch are referred to as low-state light bullets and axe characterized by relatively low 

intensity centres axid wide profiles. Con~ersely, right-most branch solitary waves are 

denoted high-state light bullets and have very intense centres but relatively compact 

size. 

As this model explicitly fulfills the guidelines for bistability mentioned previously, 

the qualitative shape of the energy curve is insensitive to the choice of parameters. 

Figure 3.15 shows energy curves for the three values of p shown in Figure 3.13. 
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Figure 3.14: Energy curvc for the 
SLSS model with p = 0.05 and IO = 5. 
Inset: Bistable radial profiles for the 
,b' = 0.005 and = 0.41 mlucs indict~tetl 
by filled circles in the main figure. 

Qualitatively, the lower leg with explicit 1'12 behaviour gives rise to the low-state 

linear ramp, the steep section after the cusp produces the negative slope in the energy 

curve, and eventual saturation results in the high-state positive slope branch. The 

figure also confirms our intuition that weaker nonlinearity requires higher power pulslcs 

to produce a similar self-trapped solution. 

Copious simulation results are not included here; suffice it to say that simulations 

of isolated bullets on both positive branches reveal these states to be unconditionally 

stable to small amounts of noise. In addition (and as  expected), solitary waves on the 

intervening negative slope branch are absolutely unstable and disperse. 

As with the saturable model, to  show true solitonic behaviour, the bullets should bc 

robustly stable to massive perturbations. Figure 3.16 depicts the successful u -- M . 5  

collision of two high-state ,63 = 0.2 (filled square on the SLSS energy curvc) light 

bullets with results very similar t o  those shown for the saturable rnodel.'"~ before, 

the ,l? values of the find states can be determined by least squares fitting to the 
- 

13we note that historically this SLSS result preceded numerical work on the saturable rnodd. 
In fact, this particular simulation is part of the first reported numerical evidence fur the citable 
propagation of three-dimensional optical solitons (Ed921. 
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Figure 3.15: SLSS energy cusves cor- ! responding to  the models shown in Fig- 
ure 3.13. 

10-3 10-1 1 00 

available SLSS model profiles and are found to be ,B = 0.16 (not shown) corresponding 

to an energy loss of approximately 30%. This is an another example of collisional 

downswitching from one soliton state to another. 

With drastically disparate sizes, one can envision a host of possible computational 

experiments and, accordingly, a selection of novel results is presented in Chapter 4. 

Here, to continue with bistable model building, we consider an f (I) function that 

removes some of the unphysical defects of the SLSS model. 

3.3.2 DSKC model 

The double-saturable Kerr-cubic (DSKC) model, 
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Figure 3.16: Sample collision of two high-state SLSS model light bullets demonstrating 
quasi-soliton behaviour. (a) z = 0, (b) z = 13.2, (c)  z = 19.2, (d) z = 22.2, (e) z -- 30.6 and 
(f) z = 42.0. 
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Figure 3.17: The double saturable 
Kerr-cubic (DSKC) nonlinearity. 
(Eventual saturation of the top-most 
curve is not apparent due to the figure 
scale.) 

where the positive parameters A, B and C are defined by 

with Fa,, and I. being adjustable model parameters. As shown in Figure 3.17 for 

various Fsat with I. = 3, one should not be disturbed by the apparent complexity 

of the model parameters A, B and C ;  these wieldy expressions simply ensure that 

the first derivative of f ( I )  is continuous at I = la. A Taylor expansion of the I < I. 
branch about I = 0 yields linear behaviour at the origin which is a desirable result as 

existing nonlinear media exhibit Kerr-like behaviour; based on previous experience, 

we expect that this region of the model will yield negative slope for the energy curve. 

The lower leg then has a plateau which, if sufFiciently flat, should result in a positive 

slope branch on the energy curve. For I > 10, the model is steep slightly above 

the transition point but saturates at still higher intensities which can result in an 



Figure 3.18: Energy curve for the 
DSKC model with I. = 3 and =. 3. 
Inset: Bistable radial profiles for t,hc 
,O = 0.36 and j? .= 1.5 values indicated 
in the main figure. 

additional U-shaped section of the energy curve. For appropriate choices of tho two 

model parameters, such a double-saturating nonlinearity should result in a, skewed W- 

shaped energy curve with two positive and two negative slope branches. Figure 3.18 

shows the energy curve obtained for lo = 3 and FSat = 5 with the inset depicting thc 

radial field profiles for the sample bistable solitary wave pair /3 = 0.36 and /3 .- 1.5. 

The energy curves for the three parameter variations depicted in Figure 3.17 arc 

shown in Figure 3.19 where it can be seen that if the saturation intensity is too low, 

the second leg of the model is insufficiently steep to yield the necessary negative slope 

branch, thus precluding bistability. 

3.4 A brief word on fabrication considerations 

While the three-dimensional soiitary wave solutions of the GNLSE stuctiecl in this 

thesis axe of intrinsic interest solely as an intriguing applied mathematics problcm, 

if we wish to observe light bullets in the laboratory, then some discussion of thc? 
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Figure 3.19: DSKC energy curves cor- 
responding to the specific models shown 
in Figure 3.17, 

materials problem must be advanced. 

While the Kerr nonlinearity, f ( I )  = I, is characteristic of many existing nonlinear 

materials, in Section 3.1 we demonstrated that for this case, stable light bullets were 

not possible, Further, to recti@ this instability, it was found that the model should 

display 1" behaviour with n < 213. However, based on (i) our knowledge that Kerr 

behaviour is apparent at "low" intensities, and (ii) a desire to avoid explicit sub-linear 

behaviour, we were naturally led to  consider the saturable model 

for which robustly stable light bullets arere then numerically propagated. While media 

exhibiting saturable behaviour are known to exist (see, e.g., Refs, [Ca91, Co91]), an 

important issue is the timescale with which such nonlinearities respond. Often, as with 

a typical two-level system, saturation involving real particle populations occurs on a 

nanosecond timescde (although Coutaz and Kull reported a 7 ps lifetime in a darkened 

semiconductor d~ped  glass [CoSl] ) ; in such cases, the assumption of inst ant aneous 
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nonlinear response is patently untrue. 

However, Taylor expanding and truncating the saturable model reveals that for 

reasonable intensities, its behaviour is qualitatively similar to a polynomial model 

f ( I )  = I + utl" (3.19) 

with CY < 0 which is precisely the form one would obtain by considering a ncgtltive 

X(5) contribution to  the nonlinear polarization [Pi74]. In this case, the rctsponsv is 

strictly a polarization effect and would therefore be sufficiently fast to stttisfy tho 

assumptions used in deriving the GNLSE. In addition, there is no physical rcstrict,iorl 

that a be positive. For example, as discussed by McLeod and co-workers jMc95j in 

the context of light bullets, recent measurements of organic nonlinear materials such 

as ptoluene sulfanate (PTS) have found large positive n2 and negative n.i X(5)/2.r4, 

at wavelengths of optical interest [La94]. 

Let us briefly address the usual criticisms about the apparent unphysical behaxiour 

(e.g., cusps of step-models) or complexity (e.g., the algebraic form of the DSKC model) 

of the bistable nonlinear refractive index functions introduced earlier. Theoretically, 

certain step and polynomid models in one dimension are attractive tecausc the initial 

solitaxy wave profiles can be analytically determined. The algebraic corrlplcxity is 

simply the result of desiring a smooth model displaying the qualitative dual saturatkxi 

features seen for both the SLSS and DSKC models. It never ceases to arnaze us that 

people fixate on the specifics of the model, ignoring the exciting fact that wildly 

disparate f (I) possessing a few key features give qualitatively similar quasi-soliton 

results! 

It is far beyond the scope of this thesis to consider the materials science prohlcrn of 

fabricating bistable soliton supporting media. However, Enns and Edrnundson [En931 

have attempted to  diffuse some of the criticism by showing that rather thrarr search 

for a single exotic materid possessing the desired f (1); it is possible to achieve the 

same result by combining three properly chosen single satwable media. 

As we shall demonstrate in the chapters that follow, a recurrent theme of this 

thesis is that the light bullet phenomenon does not rely on a specific model and 
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particulx choice of parameters, requiring only that the underlying model satisfy the 

dP/dp stability criterion. 



Chapter 4 

Novel soliton interacti-ons 

In the previous chapter, three nonlinear refractive index models were introduced and 

shown to support the propagation of three-dimensional optical solitor~s. Whilc the 

simplest physically realizable model, a saturable nonlinearity, admits a continuous 

spectrum of stable light bullets, the more complex SLSS and DSKC models possessing 

two saturable jumps admit bistable light bullets, solitary waves with the same energy 

content but radically different radial profiles. 

In this chapter, we present a representative sample of novel results obtained with 

the three-dimensional beam-propagation code used to solve the generalized noriliriear 

Schrodinger equation for an arbitrary initial optical envelope configuration. Thc intent 

of these results is to  demonstrate and reinforce: 

That the extra degrees of fieedom intrinsic to the three-dimensional problcrn 

can result in novel effects that have no one-dimensional analogue. 

That saturable media have a natural tendency to form optical solitons. That 

is, in the space of all envelope functions, light bullets are attractors to nearby 

functions. 

Unfortunately, with limited access1 to the super computing power necessary to 

 he HPCC scholarship program allots 100 hours of cgu time per year to scholariihip holders on 
the 2.5 Gigaflop Fujitsu VPX 240/10. 
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carry out these simulations, one has to be extremely selective about systematic stud- 

ies. Our approach has been to balance systematic studies (Chapters 5 and 6 )  with 

an exploration of the rich parameter space of the light bullet problem. It is worth 

emphasizing that while only a selection of results are presented below, all such sim- 

ulations have been repeated both for different model parameters and, in the case of 

the bistable light bullets, for one or more different models. In four years of simula- 

tions, we have yet to  encounter a simulation scenario where the qualitative results are 

highly model or parameter dependent. That this occurs for models that are quanti- 

tatively dissimilar leads us to infer that light bullet propagation is indeed a universal 

phenomenon, requiring only that the underlying nonlinear model fulfill the minimal 

dP/dp stability condition. 

4.1 Soliton fusion 

Figure 1,2(a) in the introduction of this thesis depicts the periodic temporal collapse of 

solitons for the integrable one-dimensional NLSE. For the exactly analogous situation 

of one-dimensional spatial solitons, a simple Snell's law argument explains the inter- 

action in terms of each soliton "bending" in the direction of the increasing refractive 

index produced by the existence of its soliton neighbour. Gordon [Go831 has analyt- 

ically determined the interaction force between initially overlapping one-dimensional 

solitons, a point we will return to in Chapter 5. Such endless oscillatory behaviour will 

only occur in a nonlinear medium if the pulses are true soliton solutions. However, 

if radiative losses occur, one might expect the amplitude of the oscillation to slowly 

decay or, in the case of an overdamped system, to decrease rapidly and monotonically 

to  zero. While both of these scenarios result in fusion of the two initially separated 

bullets, it is not at $il obvious that the final result will be a stable fused state - this 

is a conjecture that must be confkmed by numerical experiment. 

Returning to the collision of the two /3 = 4 saturable model light bullets discussed 

in Chapter 3 and depicted in Figure 3.9, the attractive force is apparent in frames (d) 

and (e) where the bullets have passed through one another and are struggling to escape 

the induced attractive potential. The intent of this simulation was to demonstrate 
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quasi-soliton collisional behaviour analogous to that seen for true one-dime~lsic~nd 

situations (e.g., KdV or NESE). However, in light of the above discussion, we cm1 

now admit that below the specific incident velocities for this simulation, a threshold 

velocity v, exists beneath which the emerging solitons are unable to break free of the 

attractive binding potential. 

As an example, consider Figure 4.2 which shows volume rendered images for a, 

simulation identical to that of the previous chapter but with incident velocities / v J  -- 
1.6 which are slightly below the critical value. The initial stages of the sinlulatLion 

have been omitted, the evolution preceding the first frame being equivalent to that 

of Figure 3.9 up until frame (d). The light bullets initially pass through onc anothcr 

displaying quasi-soliton behaviour; however, by frame (c) the attractive force due to 

the overlapping tails has brought the bullets to a complete standstill. The propagation 

parameter of these isolated solitons can be determined by least-squares fitting tht: 

profiles and is found to be ,O = 3.1 (not shown), the energy lost to background 

radiation at this stage of the simulation being a mere 18%. Beyond this point, the 

attractive force due to the overlapping tails (which are not apparent in this figure) 

causes the separated pulses to coalesce into a single stable fused soliton state. 

Figure 4.2 is a topological contour plot of the simulation, indicating that tht: find 

fused state is pulsating. To aid in the visualization of this phenomenon, Figure 4.3 

shows the field intensity at the centre of the computational mesh as a function of 

the propagation distance z. Initially l E ( O , O ,  0)( is zero when the two light bullet are 

at their starting locations of to = f 2. The first large peak occurs when the light 

bullets meet and pass through one another. Soliton fusion is indicated by the rise 

preceding the point labelled 'a' which corresponds to the set of concentric rings an 

the contour plot at z e 5. The fused soliton then undergoes a series of oscillations, 

least-squares fitting of the field profiles being able to  determine the instanta~leourj 

propagation parameter at the points 'a7, 'b', 'e' and 'd7. Based on tho observmcc of 

only several periods of the slowly decaying envelope, can we assert that this pulse 

is relaxing to an asymptotic state? Unfortunately, the results of the simulation arc 

questionable beyond z = 8 due to interference from the 50% of the original energy 
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Figure 4.1: Fusion of two satur~ble model light bullets with velocities below v,. Note that 
in frame (a), the simulation is already well underway, qualitatively corresponding to frame 
(d) in Figure 3.9. (a) z = 1.30, (b) z = 1.85, (c) z = 3.00, (d) z = 3.64, (e) z = 4.19 and (f) 
z -- 5.75. Peak IEf = 13.4. 
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Figure 4.2: Topological soliton track 
plot for the collision shown in Fig- 
ure 4.1. Contour levels begin at  I E 1 == 3 
and rise by odd integers. 

that has been released as  background rad ia t i~n .~  However, as we shall see later for 

the case of bistable soliton switching, such ringing patterns typically do decay and it 

is thus reasonable to take the propagation constant at either point 'b' or 'd' as an 

approximation to the asymptotic soliton state. 

In the v > u, quasi-soliton collisions of two light bullets discussed so far, a sig- 

nificant amount of energy was dissipated into the surrounding medium, the energy 

being released as an outgoing continuum of radiation. Alternatively, the radiation 

may be cast off in a quantized form. Consider, for example, the collision of two high- 

state /3 = 0.41 SLSS light bullets with opposing velocities v = f 1.6 as depicted in 

Figure 4.4. Given the earlier results, frames (a) through (c) should be familiar; thc 

bullets pass through one another and undergo a nonlinear interaction. By frame (d) 

the tails of the outgoing light bullets still overlap resulting in an attractive binding 

of the soliton pair that retards their attempt to separate. Beyond this point, the 

interaction is manifestly different. Whereas the bound pair often separate with a 

parting "snap" of the overlapping tails, here we see the tails pinching off to form a 

third isolated soliton. The truly remarkable aspect of this simulation is that, while 

2The fusion process also contributes to the total energy loss. 



CHAPTER 4, NOVEL SOLITON INTERACTIONS 

Figure 4.3: Central field value 
I E(0, 0,O) 1 versus z shows relaxation of 
the fused soliton state. 

fitting of the final states (Figure 4.5) reveals that the outgoing solitons are down- 

shifted, as shown by the figure inset the energy difference is completely accounted for 

by the energy of the newly-formed stationary central light bullet! The pinching can 

be qualitatively understood based on the investigations of Akhmediev and ceworkers 

[Ak92, Ak93a] into the temporal modulation instability of a cont inuous-wave (cw) 

beam in a saturable nonlinear medium. That is, if we loosely consider the optical 

envelope at frame (d) to be a section of a homogenous cw beam with sufficient energy 

to form three solitons, such a configuration is susceptible to an exponentially growing 

longitudinal modulation with a wavelength that will pinch the beam in the two loca- 

tions shown in frame (e). This interpretation does not answer two key questions: (i) 

why is so much of the outgoing pulse energy trapped in the central region, and (ii) 

how does this process eliminate the typical emission of radiation from the front of the 

outgoing pulse? Even though the emerging original pulses are P-downshifted, the fact 

that the lost energy is almost entirely contained in the newly formed third soliton may 

make this a system worthy of analytical analysis by those researchers better prepared 

to do so. Finally, for completeness, Figure 4.6 depicts the soliton contoiir plot for this 
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Figure 4.4: Radiationless quasi-soliton collision of two high-state SLSS light bullet8 yielda 
production of a third stationary bullet. (a) z = 0, (bj z = 29.6, (c) z = 32.8, (d) z = 39.2, 
(e) z = 44.8 and (f) z = 55.2. 
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lnputa output8 

Figure 4.5: Least-squares fits of the fi- 
nal soliton profiles. Dashed curve: orig- 
inal p = 0.41 input states. Top solid 
curve: down-shifted P = 0.37 output 
profiles. Lower solid curve: stationary 
soliton. Inset: schematic energy transi- 
tions. 

8 0  

z 
Figure 4.6: Contour plot correspond- 
ing to  Figure 4.4 soliton production sim- 
ulation. Contour levels begin at /El = 2 
and rise by 5 with each interior line. 
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interaction. The familiar slowing-down of' the outgoing pulses is clearly evidexlt,. 

4.2 Soliton tunnelling 

Recall that a key feature of bistable models is that the two positive slopc k,rmdlcs 

produce light bullets with radically different radial intensity profiles. For example, 

referring back to the SLSS model energy curve Figure 3.14, we see that the bist;a,blc 

light bullets ,B = 0.005 and ,O = 0.41 have equal energy content but grossly dispmutc 

U (r ) profiles. 

As shown in Figure 4.7, one of the more spectacular three-dimensional simult~tions 

occurs when a pair of bistable light bullets is involved in a collision process. En 

frame (a) the low-state soliton is placed at the centre of the computational mesh with 

zero initial velocity (with respect to the group velocity) while the high-state light 

bullet begins its journey at to = -50 with velocity v = 0.5. As can be seen from this 

sequence of  image^,^ the compact, intense, high-state bullet succeeds in tunnelling 

through the relatively larger and less intense low-st ate bullet, both displaying soliton- 

like behaviour. 

Due to  the greyscale cutoff, what cannot be observed in this sequence is the scries 

of hemispheric shock waves that precede the tunnelling bullet. The moving bullet 

displaces energy in its immediate path, resulting in the formation of the circular 

bu3ges apparent in frame (c). These "bow waves" travel to the right and are emitted 

into the surrounding volume as radiation. As we shall see, this lost energy is ~olcly 

to the detriment of the large stationuy bullet. 

To allow visualization of the shock waves, Figure 4.8 shows the surface4 I E(k, z, 0) 1 
at a propagation distance slightly after frame (c) such that the two shocks have now 

propagated to the front of the system and are about to be radiated away. We admit 

t o  having little understanding about the origin of these shocks and can only note 

that their characteristic wavelength is of the same order as the size of the travelling 

3Vd%i& certainly do n ~ t  do justice to the original colour animations! 
'Note that a majolity of the high-state bullet's peak height of lE( = 14.7 has been cropped, the 

reduced scale facilitating viewing of oft;fw tow-level radia;t;icn. 
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Figure 4.7: Bistable tunnelling: a high-state SLSS light bullet hores through a low-state 
state light bullet. (a) z = 0, (b) z = 68, (c)  z = 102 and (d) z = 200. Peak IEl = 16.1. 
Due to the grossly disparate sizes of the two bullets, the data has been nonlinearly scaled to 
make the low lEj features more prominent. The transparency cut-off occurs for [El = 0.17, 
18% of the low-state soliton's peak height. 
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\ 

Figure 4.8: Surftcc plot of 
I E (t, x, 0) I after frame (c) 
(z = 128) in Figure 4.7 showiug 
"bow wave" fornmtion in front of 

o burrowing high-state light bullet 

0 r 8 0 r 40 

(a) P = 0.41 (b) j3 -r 0,0032 

Figupe 4.9: Post-collision ( Z  = 220) least-squared fits to  the light bullet profile data. Upper 
and lower dashed lines are P = 33% of the fit value. Inset: schematic energy trannitiona, 
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Figure 4.10: Contour plot of 
(E(t, 0,O) I reveals slight slowing 
down of the high-state light bullet. 
Contour levels at IE( = 0.25, 0.5, 8.75 
and 1.00. 

soliton. In this figure, the \El depression left in the wake of the travelling bullet, 

which is the energy source GI the emitted waves, is clearly apparent and we therefore 

expect downswitching of the stationary soliton and little or no change to the travelling 

bullet. This is confirmed by performing a least-squares fit of the final radial profiles 

(Figure 4.9). The energy of the high-state soliton is conserved while the propagation 

parameter of the stationary low-state bullet is downshifted from ,O = 0.005 to /3 = 

0.0032 corresponding LO an energy loss of 20%. The low-state data points are widely 

strewn due to asymmetry of the final state, the stationary bullet becoming teniporarily 

oblate due to the impact of the other bullet. 

Finally, does the collision have any discernible effect on the travelling bullet? 

Indeed, while the bullet energy remains fixed, its velocity is slightly reduced as can 

be seen5 by referring to the contour plot Figure 4.10. 

4.3 Glancing incidence: spiralling light bullets 

While, in our opinion, the simulations depicted so far are striking, they share the 

common trait of possessing a collisional symmetry axis and thus the inherent freedom 

SThe deviation is best seen by staring directly along the soliton track just above the plane of the 
paper. (Not an exercise for the astigmatically inclined,) 
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of three spatial dimensions has not been fully e-xphited. Ttlereforc. considt.r Fig- 

ure 4,11 (a) in which two /3 = 4 saturable model light bullets with opposing ve1ot.itic.s 

u = f 1.6 are initially offset in both the t and x directions. For future reft:rence, in 

physics the transverse offset distance between the bullet centres is know11 as thc iw- 

pact parameter which we denote by the symbol b. For this particular. choice of impact 

parameter, b = 1.625, the bullets pass at grazing incidence but, as seen in fruaw (h), 

the overlapping tails create an attractive force that deflects each bullct from its nth- 

erwise f .  ight-line path. As seen in the subsequent images, t,he light bullcts enter 

into orbit around a common centre. By frame (e) , it is clear that due to radiative cn- 

ergy losses as they orbit, the distance between the soliton centres is decrcasiag until, 

by frame (f), the two light bullets have merged into a single rotating soliton s t a h !  

The reader may well ask: how can a spherical envelope be said to rotxte'! While 

asymptotically the soliton assumes a spherical profile, during the relaxation process, 

deviations6 from the eventual spherically symmetric state can be seen to precess or1 

the soliton surface. (This relaxation process can be quantified by a spherical harrnoriic 

decomposition of the envelope versus z,  the harmonic analysis determining deviations 

from perfect sphericity.) Finally, as shown in Figure 4.12, the propagation constarit; 

of the final state can be ascertained by a least-squares fit of the fused profile, t~ntl is 

found to be upswitched to ,O = 5.45 as schematically indicated in the figure insct. 

For this particular choice of initial propagation constants and velocities, increasing 

the impact parameter slightly to b t= 1.65 results in the solitons orbiting each other 

but not coalescing (Figure 4.13), leaving the interaction region with equal arid oppo- 

site transverse components to their velocities. (In the laboratory frame of refercncc, 

these small transverse velocity components manifest themselves a.s a sideways drift 

superimposed on the fast longitudinai motion.) 

This set of simulations leads one to consider the creation of a stable orbiting soliton 

pair. Alas, this does not seem to be possible as radiative losses cause the size sf the 

orbit to  decay with propagation distance resulting in eventual soliton fusion. 

6To put it rather cmdely, "bumps" on the surface. 
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Figure 4.11: Spiralling light bullets and eventual soliton fusion. (a) z .= 0, (b) z -;. 2.75, 
(c) z = 3.10, (d) z = 3.70, (e) z = 4.15 and (f) z --: 5.50. (The "skewer" is added as a vi~ual 
aid to indicate the degree of rotation.) 
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Figure 4.12: Least-squares fit of the fi- 
nal soliton profile. Dashed curve: orig- 
inal p = 4.0 input states. Solid curve: 
p = 5.45. Inset: schematic energy tran- 
sitions. 

4.4 Parasitic solitons: phase controlled interact ions 

Consider modified initial pulses of the form 

where c$ is a real phase factor. Such a transformation is still a solution to the nonlinear 

ODE which governs the shape of the initial profile, therefore, it is also a solitary wave 

solution to the GNLSE itself. An immediate question arises: what occurs for light 

bullets involved in a collision process when q5 is different for each input pulse? That 

is, what is the effect of a global phase difference +diE = - +Z between the input 

states? Referring back to the introduction of this thesis, Figure 1.2(b) illustrates that 

in one dimension, repulsion occurs if overlapping solitons initially have a n phase 

difference. Spatially, this behaviour can be understood via the simple Snell's law 

argument presented earlier, in this case the repulsion being due to a reduction in the 

refractive index that one soliton "sees" based on the presence of the other soliton's T 

phase-shifted tail, 
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Figure 4.13: Spiralling light bullets without capture. For easy comparison, frame8 (a) -$  

(e) correspond to the z values of Figure 4.11, while in frame (f) ,  z = 4.75. 
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The analogous repulsion of three-dimensional optical solitons is depicted in Fig- 

ure 4.14 for the case of two P = 4 saturable model light bullets initially incident with 

velocities u = k1.6. The reason that we have introduced opposite velocities rather 

than stationary overlapping states is for comparison with the earlier non-phase-shifted 

simulations and to illustrate the bullet deformation that occurs at frame (c), the dis- 

tance of closest approach. 

Figure 4.15, the corresponding contour plot for this simulation, illustrates two 

interesting features. First, the magnitude of the pre- and post-collision velocities are 

identical. Second, compression at z = 1.0 results in a temporary increase in the central 

IEl field intensity as evidenced by the ring contours in the middle of the figure. A least- 

squares fit of the final profiles reveals that the propagation constants are unchanged 

(not shown) - to within the numerical fitting accuracy, this is a completely elastic 

collision process. 

Of course, cylindrical symnletry can be broken and similar n phase-shifted colli- 

sions can be performed at non-zero impact parameters. In the language of physics, 

such collisions are scattering equeriments and can act as a probe of the force between 

the incident light bullets. Indeed, this is the approach taken in Chapter 5 where the 

quantitative natqre of the interaction force is determined. 

If one moves away from the symmetric situation of either #diff = 0 or #diff = T ,  

quite bizarre results are observed. For example, consider Figure 4.16 which depicts 

the contour plot for a simulation similar to that above but with the right-most bullet 

initially leading in phase by ~ / 2 .  Erom this figure, it is obvious that the left-most 

pulse loses energy, its peak height at z = 2 being below the second contour level. 

Conversely, the peak height of the right-most pulse has increased. This is more easily 

visualized in Figure 4.17 where we have performed a least-squares fit of the final 

profiles. Amazingly, the total energy loss to the surrounding background is a mere 

1%, a loss that could be due simply to the small uncertainty in the fitting process. As 

shown by the energy diagram in the figure inset, here we have an example of significant 

energy transfer from one pulse to  another, the light bullets naturally assuming radial 

profiles commensurate with their new energy content. 

The downshifted light bullet has a propagation constant and energy in the vicinity 
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Figure 4.14: Repulsion of .rr phase-shifted saturable model light bullets. (a) z = 0, (b) 
z = 0.72, (c) z = 1.12 and (d) z = 2.25. 
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Figure 4.15: Topological soliton track 
piot for the collision shown in Fig- 
ure 4.14. Contour levels are IEl = 2, 
4.5, 7 and 9.5. 

of the minima of the saturable model energy curve (Figure 3.4). From our previous 

experience, we would then expect that any more energy transfer would have left 

the downshifted pulse with insufficient energy to form an optical soliton and that 

the resultant pulse would subsequently disperse. An example of a phase-controlled 

interaction where this occurs is depicted in the contour plot of Figure 4.18 where two 

0 = 4 light bullets collide with velocities v = f 1.6, the right-most bullet leading in 

phase by +dif = 7r/4. The propagation constant of the surviving soliton is found to be 

upshifted to = 5.5, the energy remaining in the downshifted state being insufficient 

to form a saturable model light bullet. 

Switching between bistable soliton states 

In the one-dimensional case, a significant amount of theoretical and numerical research 

has been expended on the problem of switching between bistable soliton  state^.^ As 

discussed in the introduction to this thesis, switching - the conversion of a soliton on 

one brach of the energy curve to the opposite branch - has as its eventual goal the 

7See, e.g,, the review article by Enns and co-workers [En92b]. 
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Figure 4.16: Repulsion and parasitic 
behaviour between light bullets with a 
n/2 phase difference. Contours begin 
at /El = 2 and rise by 2.5 with ctlch 
successive interior line. 

fabrication of all-optical digital logic circuits. Using numerical simulations guided by 

an approximate variational analysis, Eix and Enns [Ei96] have recently demonstratcd 

that cascadable AND and NOT logic circuits can be designed using evancscently 

coupled fibers." 

It is not the intent of this section to imply that a practical logic circuit can bc 

fashioned using bistable light bullets. Rather, the aim is simply to illustrate an intm- 

esting physical phenomenon, namely, that motivated by one-dimensional simulations, 

the conversion of a low-state bistable optical soliton to a high-state light bullet cart 

readily be achieved for both the SLSS and DSKC models. 

Consider first the SLSS model light bullet with propagation parameter P = 0.008. 

For convenience, Figure 4.19 reprints the SLSS energy curveg with the abovc? light 

bullet profile indicated by the solid curve in the figure inset. (The mrowed transition 

will be explained in due course.) In one dimension, addition of a source term to thc 

'A minor clarification is that Eix and Enns utilize the second definition of bistability, pulscrj with 
equal duration but different peak intensities. 

'Although we again choose p = 0.05 and lo = 5, it worth restating that the qualitative r~ttlult~ 
that follow are not dependent either on this specific choice of parameter or the bistable rnorlel. Thc 
qualitatively similar results that will be shown for the DSKC model should hopefully lend credcrlm 
to this assertion. 
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IEi inputs outputs 

Figure 4.18: Parasitic soliton growth 
leading to death of the downshifted 
state. Contours begin at  /El = 2 and 
rise by 2.5 with each successive interior 
line. 

Figure 4.17: Least-squares fits of the 
final states in Figure 4.16. Upper solid 
curve: upshifted right-most light bullet 
with 0 = 5.3. Lower solid curve: down- 
shifted left-most light bullet with = 
0.96. Dashed curve: original ,f? = 4.0 
profile. Inset: schematic energy transi- 
tions. 
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Figure 4.19: SLSS energy curvc 
reprinted. (See accompanying text 
for an explanation of the arrowed 
transition and dashed curves.) 

GNLSE acting over only a small range of z is a crude but effective means of rr~odelling 

a fiber amplifier and allows low-state solitons to gain enough excess energy to bridgc 

the crest of the low-state branch. Here, we achieve the same effect by taking profiles 

of the form 

U(r) 3 A U(r) 

where A is a real amplification factor. As an illustrative example, consider A =-- 1.2 

corresponding to the dashed profile shown in the figure inset and having energy csntcrrt, 

corresponding to the horizontal dashed line indicated in the main figure. (As this 

profile is not a solitary wave solution to the GNLSE, it cannot simply be represented 

as a point on the soliton energy curve.) 

To visualize the dynamics of this soliton located in the centre of thc computational 

mesh, Figure 4.20 plots the modulus of the central field valuc Epeak I E(O,O, 0) / 
versiis propagation distance z. Initially ,he peak height rises relatively slowly until, at 

z = 100, a sudden upswitching tl-sition to the high-state branch comaicnccs. T b i ~  

is followed by a sequence of oscillations relaxing towards an asymptotic soliton stntc. 

Dynamically, the relaxation is achieved by a radiative burst of energy relcacjed m an 
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Figure 4.20: Central field value versus 
z for the A = 1.2 amplified soliton of 
Figure 4.19 (dashed profile in figure in- 
set). 

outgoing spherical wave during each oscillation. This can be seen in Figure 4.21 which 

is comprised of surface plots of lE(t, x, O)( at six interesting stages of the evolution 

corresponding to the labels in Figure 4.20. 

In order to identify the asymptotic state, rather than fritter away our limited com- 

puter cycles waiting for the oscillations to die away, we observe that the oscillation 

envelope appears to be converging to a peak height in the vicinity of label 'f'. Con- 

sequently, we take the pulse profile at this point to be representative of the evolving 

soliton, a least-squares fit (not shown) revealing that the final state has a propagation 

constant ,f3 = 0.24. 

As indicated by the arrowed transition in Figure 4.19, we have succeeded via a 

simple amplification scheme in inducing an otherwise stable low-state light bullet 

to upswitch to  the high-state branch. Given the widely disparate radial profiles of 

these two soliton solutions, this is certainly not an intuitive result but again serves to 

reinforce both the pwallels with medimensional bistable soliton physics and the role 

of these objects as attractors in the space of all possible functions. 

To emphasize that this behaviour is not due to the specific form of the SLSS model, 

Figure 4.22 depicts the switching of an amplified ( A  = 1.1) low-state P = 0.36 DSKC 



Figure 4.21: Switching of low-state SLSS light bullet via arn~,lificar.ic~rr. /a) t - 0,  (h) 
z = 98, (c)  z = 110, (d) z = 126, (e) z = i42 and (f )  z - 370. 
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Figure 4.22: Central field value versus 
z for the p = 0.36 A = 1.1 DSKC am- 
plified soliton. 

soliton near the tip of its associated energy curve (Figure 3.18). While the switching 

transition takes place on a much shorter distance scale and the oscillations are damped 

more quickly than for the SLSS model, the qualitative features are remarkably similar. 

The enhanced switching time and damping are likely due to the less drastic contrast 

between the low and high bistable soliton states; compare, for example, the surface 

plots of the DSKC model Figure 4.23 with those of the SLSS transition discussed 

previously (Figure 4.21). The upswitched state as determined by least-squares fitting 

the profile at frame (f)  is found to be P = 1.4 (not shown). Based on the degree of 

convergence depicted in Figure 4.22, the profile at distance 'f' must certainly be quite 

close to the asymptotic soliton state. 

Finally, based on this demonstration of induced switching by amplification, we can 

now rectify an apparent deficiency with the final sections of Chapter 3 pertaining to 

bistable models. Recall that while an example of a high-state quasi-soliton collision 

was shown for the SLSS model (DSKC high-state collisions being qualitatively simi- 

lar), no mention was made of low-state collisions. This was not an oversight, rather, 

we have delayed discussion of such collisions until the present relevant section. Often, 

one finds that colliding low-state light bullets inadvertegtly switch to the high-state 



Figure 4.23: Switching of low-state DSKC light bullet via am~dification. (a) z =- 0, (b) 
z=2.6 ,  (c)  z =  3.8, jd) z =6.2, (e j  z =8.4and (f) z = 39.8. 
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branch when the pulses overlap. In light of our induced switching simulations, this 

result is not particularly surprising. One would now expect switching to possibly 

occur if the peak ifitensity of the overlapping pulses rises above a certain threshold 

value. 

4.6 Closing comments 

It is hoped that this chapter has succeeded in conveying to the reader the inherent 

richness of the light bullet problem. As this previously unexplored area is a mere five 

years old, one certainly cannot expect to explore all regions of the vast parameter 

space. Instead, as stated at the beginning of this chapter, our approach has been to 

balance the search for novel results with more systematic studies. Consequently, we 

turn now to a more quantitative analysis - that of ascertaining the precise structure 

of the interaction force between colliding light bullets. 



Chapter 5 

The quantitative nature of the 

interaction 

The previous chapter dealing with novel soliton interactions suggests a riumber of 

systematic studies. A suitablc starting point is to elucidate the general nature of 

bullet-bullet interactions. We have already seen several examples of light guiding light, 

that is, the presence of one optical soliton changing the local refractive index such 

that another soliton changes its trajectory, Of course, this scenario is reciprocated and 

both solitons undergo a change of course. In the ca3e of zero initial phase differcncc. 

and non-zero impact parameter, the result is bullet-bullet attraction that can result 

in orbiting behaviour, eventual soliton fusion, and the formation of a single rotating 

soliton state. Alternatively, introduction of a n initial phase difference betwecn bullets 

results in soliton repulsion. 

This latter case is extremely exciting because it opens up the possibility of perform- 

ing scattering experiments whereby a set of collisions at various degrees of glancing 

incidence can reveal the precise form of the interaction force [Ed95], Once nsccr- 

tained, this general force law could then be used to make specific predictions about 

the outcome of other soliton-soliton collision scenarios. 

We will restrict the scattering experiments to light bullets of the saturable model 

which, as has been noted previously, is characteristic of existing media. In section 5.1, 
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the scattering experiments are described in detail and the simulation results are pre- 

sented. In section 5.2, we show that the simulation results can be interpreted within 

the framework of elastic scattering theory and we proceed to derive a well-known 

equation for scattering from a central potential. Using this equation, in section 5.3 

we determine the analytical form of the interaction potential where it is shown that 

the scattering data is accurately fitted by a Yukawa potential, a model consistent with 

assuming that each bullet "sees" only the tail of the other. Further, we demonstrate 

that the scattering data scales correctly with velocity and the light, bullet energy plays 

the role of an effective mass. 

5.1 Scattering experiments 

Consider the simplest physically realizable nonlinear refractive index model that s u p  

ports stable light bullcts, namely, the simple saturable model 

Figure 5.1 depicts the saturable model energy curve (originally shown in Figure 3.4) for 

a = 0.05 along with the /? values used for the scattering studies. The corresponding 

radial field profiles are displayed in the figure inset. 

A typical scattering simulation is depicted schematically in Figure 5.2 where it 

is evident that there are a multitude of parameters to choose. For a given colli- 

sion, the initial symmetric positions of the bullets with respect to  the center of the 

computational mesh are given by the offset parameters f to and f xo. One can also 

introduce initial constant phase factors and cP2 by multiplying the individual input 

profiles by exp(icjl) and e x p ( ~ + ~ )  for bullets 1 and 2 respectively. Finally, velocities 

f w relative to the group velocity are introduced by taking input profiles of the form 

U(r) exp(f id). With 4 the same for both pulses (i.e., - d2 = Q), the bullets are 

attractive, bending towards each other as each bullet "sees" an increased refractive 

index due to the presence of the other bullet's tail.' For the scattering experiments 

li.e., U ( r )  at large r .  
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Figure 5.1: Saturable model energy 
curve reprinted. Inset: radial solitary 
wave profiles corresponding to the three 
,O values indicated below. 

of this chapter, we set & - $9 = T so that the bullets are repulsive and scatter sym- 

metrically from one another. As one moves away from - +z == n, the scattering 

becomes asymmetric with an energy exchange between solitons, the bullet leading in 

phase growing at the expense of the other (Chapter 4 and Ref. [Ed93]). 

Because the simulations are carried out in a box of finite size, the size being limited 

by the computer power used, several practical issues had to be dealt with in order to 

obtain accurate scattering data. Although the solitons tend to look like small billiard 

balls because of the rapid intensity drop-off with increasing r ,  nevertheless the tail of 

each bullet reacts to the tail of the other and one must check that the scattering results 

are independent of the initial separation to. In other words, one must ensure that the 

light bullets are initially infinitely separated. For example, Figure 5.3 deman~trates 

how the asymptotic scattering angle 6 reaches a plateau as to is increased for two 

,O = 6 light bullets initially incident with v = 0.5 and impact parameter b .= 0.8. 

An additional concern is that if the impact parameter b becomes too large, thc 

interaction across the periodic boundary will become problematic and the scattering 

results will again be adverseiy affected. One must also be quite sure that the measwed 
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angle is in fact the asymptotic scattering angle 0. These and other issues connected to 

the finite size of the computational mesh have been carefully considered in presenting 

the final scattering data. 

A typical numerical scattering experiment is rendered in Figure 5.4. Two ,L3 = 

6 light bullets are initially positioned at to = f 2 and xo = f 0.4 (corresponding 

to an impact parameter b = 0.8) with Ivl = 0.5. As the simulation proceeds, the 

bullets approach and meet at z = 3.0, compressing slightly before scattering at an 

angle slightly greater than 6 = n/2. The particle or billiard ball-like nature of the 

light bullets is quite evident, although the light bullets are clearly not hard spheres 

since they compress slightly along their contact edge at z = 3.0. However, the force 

appears to be short-ranged since, following the collision, the bullets rapidly regain 

their spherical shape and settle onto their final outgoing trajectories. 

?Ve have performed a complete set of scattering studies for various impact pararn- 

eters and speeds v = 0.1, 0.25, and 0.5, culminating in curves plotting asymptotic 

scattering angle 6 versus b for P = 3, 6 and 12 (Figures 5.5 - 5.7). These curves have 

1 i - - - - - - - - - - -  :-El---- 
(to9-xd 

the expected behaviour that: 

Figure 5.2: Schematic representation 

plane. of scattering The rightmost experiments bullet in the scatters x - t 
symmetrically to  the leftmost bullet. 

a 8 + n as b + O with the bullets colliding hesd-on and reversing direction. 

8 + 0 f ~ r  increasing b, the solitons passing by each other with decreasing inter- 

action. 
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Figure 5.3: Typical dependence of the 
asymptotic scattering angle 8 on initial 
bullet separation. 

For a given impact parameter 3, the scattering angle is less for collisions at 

higher velocity as the bullets spend less time interacting with each other. 

Before proceeding, we should briefly estimate the error in the 8(b) measurements. 
The 8 values are extracted from 2-dimensional 140.140 pixel animations correspond- 

ing to a slice through the three-dimensional mesh in the 2-t plane. One calculates 

8 by forming a triangle whose hypotenuse is tangent to the asymptotic trajectory. 

Assuming a single pixel error in locating the end-point of the hypotenuse, one can 

determine A8/8 - 3% as representative of the error associated with this procedure. 

The errors in 8 due to the step size (Az), initial to separation, and across-boundary 

effects are believed to be negligible. The numerical (i.e., algorithmicj error due to the 

coarseness of the grid codd be ascertained by performing simulations on much finer 

meshes. Unfortunately, this is beyond our current computational power. However, in 

light of the results that follow, this error is either small or benevolently bitwed. 
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Figure 5.4: Typical scattering simulation for two repulsive light bullets. (a) z = 0, (b) 
r = 1.47, (c) z = 3.22 and (d) z = 5.81. Vertical scale: -2.5 5 y 5 2.5. 
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Figure 5.6: 8 versus b curves for scat- 
tering of two @ = 6 light bullets at three 
collision velocities. 0 

Figure 5.5: Asymptotic scctttering tin- 
gle versus impact parameter curves for 
scattering of two /3 = 3 light bullcts 
at three collision velocities. (Tho solid 
lines are theoretical fits that will he dis- 
cussed in section 5.3). 
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Figure 5.7: 0 versus b curves for ecat- 
tering of two ,L3 = 12 light bullets at 
three collision velocities. 

5.2 Elementary scattering theory 

5.2.1 Hard sphere scattering 

How then does one proceed to determine the nature of the interaction from the raw 

scattering data of Figures 5.5-5.7? The simplest scenario is that of a hard sphere 

collision where two billiard ball-like light bullets with radii A and effective mass m 

collide with speeds f v at impact parameter b. In this case, it is easy to show that 

the asymptotic scattering angle is given by 

For b/2A < 1, expansion of the sine function yields 
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Figure 5.8: Least-squares fit of the 
hard sphere model to the ,f3 .-- 6, v Z: 0.1 
scattering data of Figure 5.6. Irisct: ini- 
tial ,B = 6 profile with effective corc-size 
'A' indicated by vertical dashed lino. 

so that, for a hard sphere interaction, the scattering curve for small inipact pwaxn- 

eters will be linear with a slope inversely proportional to the effective bullet radius. 

However, at b = 2A, Eq. (5.2) (and common sense) dictates that thc bullets will pass 

at grazing incidence and fail to scatter. Figure 5.8 shows a least-squares fit of the 

hard sphere model to  the ,b' = 6, v = 0.1 scattering data of Figure 5.6 revealing 

an effective core size of A = 0.65 as indicated in the figure inset. Obviously such a 

simplistic model with finite range cannot account for the asymptotically decreasing 

tails of our scattering data. Consequently, we are led t~ consider the elastic ~ct~ttering 

of two particles interacting via a separation dependent potential, 

5.2.2 Elastic scattering 

During an elastic scattering event, the particles' kinetic energies are conserved. In 

other words, the collision process should be immune to: 

"Frictional losses" in which the bullets radiate energy. 
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a inputs outputs 

Figure 5.9: Least-squares P = 5.9 fit 
of the initially left-most = 6 light bul- 
let in frame (d) of Figure 5.4. Upper 
and lower dashed curves are &5% of the 
fit value. Inset: schematic energy tran- 
sitions. 

Changes in the internal energy of the light bullets including transfer of energy 

to vibrational (pulsating) modes. 

If these conditions hold, then, as shall be demonstrated, the asymptotic scattering 

angle 8 is determined by a separation-dependent interaction potential, the initial 

light bullet kinetic energies and the impact parameter. The methodology is then to 

compare the results of various reasonable interaction potentials against the scattering 

data obtained by numerical experiment. 

That the collision process is almost completely elastic is confirmed by comparing 

the initial and final bullet profiles and energies. As an example, Figure 5.9 depicts a 

least squares fit to the left-most light bullet in Figure 5.4(d). The filled circles are a 

selection of numerical points taken from the computational mesh while the solid line 

is the best fit profile with P = 5.9. The input profile of P = 6.0 (not shown) is so 

close to the experimental points that it is virtually indistinguishable from the solid 

curve. A very smaH amount of radiation (approximately 2%) has been shed which, 

because of its low intensity and the greyscale cutoff, is not apparent in Figure 5.4. In 

terms of the P(P) curve of Figure 5.1, the final state is still inside the square data 



Figure 5.10: Schematic diagram of 
two point particles moving wit;h respect 
to each other and a fixed origin. 

point shown. That little or no vibrational (pulsating) modes have been excited is 

readily determined by observing a three-dimensional animation of the collision. Thus 

we conclude that the repulsive light bullets are extremely stable and undergo nearly 

elastic collisions with one another. 

The scattering of two point particles under the influence of a central forcc is a 

familiar classical mechanics problem. We provide here a condensed derivation taken 

from J. B. Marion's "Classical Iiynamics of Particles and Systems" [Ma70]. 

Figure 5.10 is a schematic representation of two particles moving with respect, to 

each other and an arbitrary fixed origin. Restricting ourselves to systems where the 

potential energy V is only a function of the separation between particles r -- Iry - fit, 
the Lagrangian is - 

We choose t o  work in the centre of mass frame where r 0 such that 

Expressing ri and r; in terms of r' by virtue of Eq. (5.5), the Lagangiarl can be 

written as 
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Figure 5.11: Scattering from a central 
potential. 

scattering 
centre 

where the reduced mass p is defined to be 

or, as in our case when the two bullets have equal "mass" rr,, p = m/2. Thus, as shown 

in Figure 5.11, the motion of two particles interacting via a sepaxation-dependent 

potential can be thought of as the scattering of a single reduced mass from a fixed 

central potential V(r)  . 
As the potential V ( T )  possesses spherical (rotational) symmetry, angular momen- 

tum of the system is conserved implying that the radius vector r' is confined to a 

2-dimensional plane. It is thus convenient to work in plane polar coordinates where 

the Lagrangian becomes 
-. 

Since L possesses no explicit 9 dependence, the generalized momenta conjugate to 9 

is conserved, viz. 

we cm thus immediately integate Eq. (5.9) to obtain 
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where l is a constant of the motion. With no dissipation, the total energy is :dso 

conserved and 

which can be solved for f t o  yield 

For a repulsive potential, the vanishing of i implies a turning point in the motion, the 

distance of closest approach (label 'tl' in Figure 5.11), r,i,, being given by the real 

root of the function under the square root sign in Eq. (5.12). The differential change 

in angle 

Substitution of 6 = l /pr2 and Eq. (5.12) into Eq. (5.13), and integrating over a range 

of radii yields 
e 

i(m 
" (5.1.4) 

r2 2~ E - W) - 

for the change in angle for a particle travelling between the two radii indicated. For 

the case of a repulsive potential, r,, = oo. At r = oo, the potential cnergy stored in 

the system is zero aad all of the energy is kinetic, viz. 

where vo is the reduced particle's initial velocity. Finally, the angular momentum can 

be specified in terms of the initial kinetic energy and impact parameter b as 
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so that Eq. (5.14) becomes 

From Figure 5.11 

so that the asymptotic scattering angle 

1% now have an equation that determines the asymptotic scattering angle based 

solely on the initial impact parameter, a general central potential, and the initial 

kinetic energy of the system. While Eq. (5.19) can be solved analytically for several 

low-order polynomial models in terms of elliptic functions, e.g., the Coulomb potential 

with n = 1, it must generally be solved n ~ m e r i c a l l ~ . ~  

The nature of the interaction 

As a first naive attempt, let us consider polynomial models of the form 

where C is a real constant and consider the p r= 6 scattering data of Figure 5.6. 

Figure 5.12 depicts least-squares fits of the linear portion of the P = 6, v = 0.5 

scattering data to various polynomial models for integer n. F'rom this figure it is 

clear that the potential is relatively short range with the best fit occurring for n = 7. 

2The value of r& is easily determiad by standard root-finding techniques, e.g., Newton's 
method. However, care must be taken to obtain an accurate numerical determination of 8 as the 
integrand diverges at the lower bound. The standard method [Pr86] is to break the integral into two 
pieces at a point where r is large enough that the integrand is already beginning to asymptotically 
approach zero. Both integrals are then handled by a change of variable, the lower change eliminating 
the integrable singularity while the upper change maps the infinite interval into a finite range. 
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Figure 5.12: Lcast squares fit to /j =. 

6, v = 0.5 scattering data for various 
polynomial models V ( r )  cr: ren.  Inset: 
Optimum least-squares fit to p -- 6, 
v = 0.1 scattering data for the 71 -1: 7 
polynomial model. 

However, as the inset shows, one cannot then accurately fit the v = 0.1 scattering 

data with the n = 7 polynomial model, the best fit occuring for n. = 10 (not shown), 

This scenario holds for all of the scattering data; one finds that any two sets of curves 

at a given /3 value cannot be fitted by the same (even non-integer) r~ value. As it is 

intellectually unappealing to have the force law depend on the velocities of the input 

pulses, we reject the class of polynomial models. 

Having ruled out polynomial models, what should we take as an approximation to 

the correct interaction potential? Let us assume that the interaction is dominated by 

each bullet reacting to the rapidly decreasing tail of the other. For the Kerr cave in 

one dimension, an asymptotic expansion of the solitary wave for large r reveals that 

with decay constant y = m. Gordon theoretically found that coalescence between 

overlapping in-phase one-dimensional solitons is exponential with this same decay 

constant [Go83]. Recall the ordinary differential equation that determines light buIIct 
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radial profiles 

and assume that in the tail region f (U2) << p. That is, for the saturable model, the 

intensity 

For a = 0.05, we require that U << 1.9, 2.9 and 5.5 for @ = 3, 6, and 12, respectively. 

Neglecting the f (U2) term in Eq. (5.22) results in a modified Bessel equation, 

the relevant physical solution3 of which is 

For p = 3, 6, and 12, y = 2.45, 3.46 and 4.90 respectively. 

Let us assume that the interaction is governed by the shape of the bullet tail and 

as a trial potential function in Eq. (5.19) we choose 

(with C and CY real positive parameters) which is of the form of a Yukawa potential. 

The validity of this assumption can only be answered by a comparison between the 

theoretical predictions of the interaction model and the numerical scattering data. 

Thus, we will determine a and C by a least-squares fit of the model to the scattering 

data. If the tails of the bullets do indeed dominate the interaction, we expect to find 

that 

In addition, if this hypothesis is correct, as the kinetic energy To - v2, one would 

expect that fl scales as l l v .  

%e., nonsingular at the origin. 
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Figure 5.13: Contours of const,nnt~ 
merit function L in the a .- C plane 
for /? = 6, v = 0.5 scattering data 
and the Yukawa interaction potential 
V(r)/To = Cexp(-ar)/r.  

In order to quantitatively compare the experimental results with the thcorctictd 

predictions, we define a least squares merit function 

which is positive definite and disappears for an exact fit between theory and numerical 

experiment. (It may be helpful to remember that L corresponds to the mcan vertical 

deviation between points on the numerical and theoretical scattering curves.) We 

then search for a and C that minimize L for a given set of 0(b) scattering data. 

Figure 5.13 shows contours of constant L in the a-C plane for the /3 =. 6, v .= 0.5 

scattering data. One observes a long narrow valley for L = 0.025 and, as the minimum 

lies within this regioq4 a, is restricted to be between 3 and 4. Traversing this valley 

from one end to the other, we obtain the v = 0.5 curve shown in Figure 5.14, the 

minimum of which occurs for a, = 3.32. Repeating this process for the v -- 0.1 

and v = 0.25 scattering data results in the other curves shown in Figure 5-14, each 

of which has a two-dimensional merit function qualitatively similar to Figure 5.13. 

The minima are at a = 3.30 and 3.55 for v = 0.1 and 0.25 respectively. As for the 

polynomial model, we expect the decay constant a to be velocity independent and 

therefore take the optimal CY to be the mean value 5 = 3.40 which differs by only 

4Note that L = 0.025 indicates an extremely small mean deviation between theory and nimerictll 
experiment. 
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Figure 5.14: v = 0.5 curve is a plot of 
I, versus cr along the valley floor of Fig- 
ure 5.13. v = 0.25 and v = 0.5 curves 
are similarly obtained from their respec- 
tive scattering data. E (vertical dashed 
line) calculated as the mean value of the 
three minima shown. 

2% from the "theoretical" value = 3.46. That these L minima do not occur for 

exactly the same a value is likely due to a combination of numerical error, the error in 

extracting 8(b)  from the two-dimensional animations, and slightly inelastic behaviour. 

This procedure is then repeated for the ,O = 3 and ,O = 12 sets of scattering curves, 

yielding qualitatively similar results for which the C and a values are summarized in 

Table 5.1. Although there is a hint of a systematic trend in 5 deviating from f l  
as ,B is increased, given the numerical uncertainty already discussed (on the order of 

several percent), it would be pushing our analysis too far to attempt to calculate next 

order corrections to  the Yukawa potential. 

With the average least squares 5 values determined, we can then identify the 

corresponding C values for each velocity curve by reference to their respective L 

contour map (e.g., Figure 5.13 for ,O = 6, v = 0.5). Both these C values and the 

calculated velocity scaling ratios are presented in Table 5.2. It is these E and C 

values that were used to produce the theoretical fits shown in Figures 5.5 - 5.7. The 

theoretical curves fit the experimental data extremely well (as one expects with mean 

deviations on the order of 0.025). The scaling ratios shown in Table 5.2 are all within 

a few percent of the ideal values of 2.5, 5 and 2, further proof of the validity of the 



CHAPTER 5. THE QUANTITATIVE NATURE OF THE INTER4CTION 108 

Table 5.1: Calculation of and comparison with "ideal" mlue J ! .  

Table 5.2: C values and velocity scaling ratios. 

"Ideal" scaling" 2.50 5.00 2.00 

aIdeal velocity scaling is \lc, 5 = a. VI 
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Table 5.3: Calculation of average Cv2 d u e s  at a given P value. 

elastic scattering model and the choice of the Yukawa interaction potential. 

We can look at our numerical data in still another way by appealing to a familiar 

example. For the (attractive) gravitational force problem involving two identical 

masses m, and using the same initial conditions as in Figure 5.2, one would have 

with C = Nm/v2, N being a numerical factor. Note that the product Cv2, (i) is 

invariant for a given mass and (ii) increases linearly with mass. 

For the light bullet problem, independent of any interpretation, we can also form 

the product Cv2 for different v values as a function of 0. This data is presented in 

Table 5.3. The Cv2 values are approximately constant for each P value, deviating with 

a small error consistent with our estimated numerical uncertainty from the average - - 
value Cv2. Andog~us to the gravitational problem, Cv2 increases with increasing 

,f? or, from Figure 5.1, with increasing bullet energy P. In Figure 5.15, we have 
- 

plotted Cv2 versus P, the experimental points being described by the linear equation - 
Cv2 = 37.5P - 19.2. The vertical cutoff (dashed line) corresponds to P = Pd,, the 
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P 
P 

min 

I 
20 content P 

- 
Figure 5.15: Cv2 versus bullet energy 

minimum energy required for light bullet formation. 
- 

Comparing with conditions (i) and (ii) on Cv2 for the gravitational problem, onr! 

finds that P appears to play the role of an effective mass with the caveat that t h e  

exists a minimum "mass" threshold for light bullet formation. 

In this chapter, we have successfully determined the interaction forcc betwcorr T- 

phase shifted repulsive solitons. We turn now to a completely different analysis, a 

study of the secalled "spherical halo" states of the GNLSE, 



Chapter 6 

Stability of the higher bound states 

Until this point we have considered only solitary wave solutions to the GNLSE of a 

particular qualitative form; namely, localized spherically symmetric pulses that are 

bright at the center and whose intensity decreases monotonically to zero with increas- 

ing radius. Our preoccupation with this form is justified for the following reasons. 

First, for all models considered, such solutions are found to be numerically stable 

against small perturbations for a rmge of propagation parameters. Second, their sim- 

ple Gaussian-like profiles should make them relatively easy to produce with existing 

laser systems. However, there do exist other bullets with more complicated radial 

profiles but which still possess spherical symmetry. In fact, for a given propagation 

parameter p, there exist a family of localized solutions, the intensity profile of each 

member of the family being characterized by a different number of symmetric halos 

surrounding a bright central core. 

An analogous scenario was recently discussed in a beautiful paper by Soto-Crespo 

et al. [So911 for the case of two-dimensional spatial solitons. In fact, it was this paper 

that provided the impetus for the current three-dimensional study [E496]. Soto- 

Crespo et al. considered the case of the transverse patterns formed in a continuous- 

wave beam under the influence of self-focusing in a saturable medium. Mathemat- 

ically, the transverse beam profile is governed by an equation very much like the 

GNLSE but without the temporal dispersion term and using the appropriate two- 

dimensional Laplacian. These researchers considered the stability of solitary wave 
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solutions characterized by a number of symmetric rings surrounding H, bright cen- 

tral spot. Numerical propagation of these higher bound states revealed them to be 

unstable to angular perturbations, the initially synmetric rings breaking up into n 

number of filaments which later underwent complicated dynamicd interactions. A 
linear stability analysis was carried out by studying the evolution of angulnx. pertur- 

bation eigenmodes of the form cos(m@), m an integer. It was found that the most 

unstable mode occurred for finite 'm', the value of m then determining the number of 

filaments formed during the initial beam breakup. Here, we follow a similw appronch 

with perturbation eigenmodes suitable to the three-dimensional problem. 

-We will ignore the practical aspects of experimentally producing such complicatttcd 

three-dimensional profiles except to note that the malogous two-dimensional spatial 

solitary wave solutions studied by Soto-Crespo et al. could be produced by virtue of 

optical mask. The extension to a time dependent mask is certainly non-trivial but still 

within the realm of possibility. Regardless, the stability of the halo states is worthy 

of study as an interesting applied mathematics problem and we take comfort in the 

knowledge that this will not be the first time that theorists have studied the dynamics 

of a system that may weii be impossible to prepare in a laboratory environment. 

Not surprisingly, propagation of the three-dimensional halo states reveals them 

to be transversely unstable, the spherical symmetry of the outer shells being sponta- 

neously broken as a result of the nonlinearity. After propagating a short distance, the 

halos begin to "clump" forming a number of angularly separated light bullets that 

travel off in various directions. As we shall see, while the dynamics of this process 

are quite complicated, the initial decay is understandable in terms of a (somewhat 

complicated) linear st ability analysis. 

The treatment will proceed as follows. Restricting the analysis to the physically 

realizable saturable model, we will choose a separable perturbation composed of an 

unspecified radial function g(r, x) multiplied by a spherical harmonic Yern(@, 4) md 

linearize the GNLSE about an initial halo state. This will result in a linear PDE far 

g (r, z) that depends only upon the propagation parameter P,  the number of halos n, 

and the 'l' index of the spherical harmonic modes under study. For a given hdo &ate 

and 'l' value, we will then seek an exponentially growing radial perturbation functicm 
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g(r, z )  = g(r) exp(bz). This formulation constitutes a difficult eigenvalue problem 

that, when solved, will allow the identification of which spherical harmonic modes are 

exponentially unstable. These predicti~ns will then be compared with data obtained 

from direct simulation of the GNLSE. 

6.1 Initial halo states 

Recall that in a saturable anomalously-dispersive medium, the propagation of a 

three-dimensional plane-polarized envelope is governed by the generalized nonlinear 

Schrodinger equation (GNLSE) , 

where V2 is the Laplace operator in the coordinate system of choice and 

(6.2) 

where a is a reciprocal memure of the saturation intensity. Spherically symmetric 

solitary wave solutions to Eq. (6.1) are found by substituting the assumed form 

where ,O is a real propagation parameter that determines the bullet's radial profile. 

The real amplitude U is assumed to have its maximum value at r = 0, while dU/dr 

and d2U/dr2 -+ 0 as r -t w. With this assumed form, Eq. (6.1) reduces to the 

ordinary nonlinear differential equation 

In Chapter 3, it was shown that Eq. (6.4) admits a localized bright solitary wave 

solution with a Gaussian-like profile. In addition, one finds empirically that for a given 

propagation constant P,  there exist a number of higher bound states characterized by 
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Figure 6.1: Radial field profiles for 
the ,B = 3 family of solutions. Iris&: 
Square-root of the intensity of the onc- 
halo state. 

an increasing number of U = 0 crossings of the field. As a concrete example, Figurc 6.1 

shows the first few members of the p = 3 family of solutions. We label the members 

of a given family by Ui, the subscript i denoting the number of zero crossings. Using 

this nomenclature, Uo corresponds to  the familiar monotonically decreasing solutions 

of the previous chapters which only asymptotically approach U = 0. The solution 

Ul corresponds to a solution whose profile has a single zero crossing, dipping below 

the positive axis to  a minimum before asymptotically tending to U = 0 from below. 

The profile U2 has two such zero crossings, and so on. Experimentally, however, one 

measures not the electric field of the envelope function but the intensity I = I El2. 

Consequently, each extraneous maximum or minimum becomes an intensity halo and 

thus the subscript of the field profile Ui car_ equivalently refer to the number of halos 

surrounding the central core.' For the sake of scale, rdther than plot the square of 

the field, the inset of Figure 6.1 shows the radial profile of the modulus of the field, 

!Ell = m, the first bound state possessing a single halo. 

For Uo bullets, increasing the propagation parameter ,O resulted in taller wider 

solitary wave profiles. Figure 6.2 shows the result of varying P for single-halo solitary 

=Note that the halo solutions do not simply correspond to the regular Uo solutiarw with the 
addition of extraneous shells. 
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Figure 6.2: Effect of varying 
bullet profiles. 

waves, the general trend being an increase in the central field value while the minima 

simultaneously deepen and move outwards towards larger radii; the situation for the 

higher bound states is qualitatively similar. 

In Chapter 5, it was empirically demonstrated that a necessary condition for the 

stability of light bullets to small perturbations was that the propagation parameter 

p reside on a positive slope branch of the associated energy curve.2 Let us then 

determine the energy curves for these higher bound states. For a given profile U(r; ,O), 

we define the power 

P(0) = Jm U(r; P)2 r2 dr 
0 (6.5) 

Numerically computing this integral for a spectrum of the allowable P values and the 

first three bound states results in the energy curves depicted in Figure 6.3. The Po 

curve is that shown previoldy in Figure 3.4. The energy curves for the higher bound 

states are qualitatively simiiar but displaced vertically on the log plot. As is the case 

for Uo bullets, we might initially expect that the positive slope branches of the PI and 

P2 curves are also stable against small perturbations. However, this "rule of thumb" 

is only a necessary condition for stability and pertains only to radial stability. We 

2~uecessive positive slope branches can correspond to optical multistability. 
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Figure 6.3: Energy curves for the first 

6 three bound states. 

will see shortly that the higher states are transversely unstable, these complex solitary 

waves decaying into a number of stable light bullets on the positive-slope Po curve. 

6.2 Sample halo state simulation 

Rather than delve immediately into the stability analysis, this brief section is intended 

to impart a feeling for the typical dynamics of a halo state simulation. Hopefully 

this introduction will provide adequate motivation for the linear stability analysis 

presented in section 6.3. Quantitative simulation results for comparison with the 

predictions of the stability analysis will be presented later in section 6.4. 

As an example, cmsider the ,O = 3, n = 1 radial profile depicted in Figure 6.1 

as an initial condition to the GNLSE. As a slight modification, let the actual initid 

condition be 

Ejr, 0) = [1 4- r(t, 2, y)] U(T)  (6.6) 
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where I' is a small random noise term obeying the statistics 

which is added in order to seed the instability. Although the halo states are unstable 

without this m~dification,~ in such cases the evolving solution possesses the symmetry 

of the underlying computational mesh. With the addition of rmdom noise, this finite- 

size effect disappears and one is left with a symmetry-breaking determined by the 

physics of the problem rather than the numerical method. This assertion was verified 

by varying the computational domain size and repeating the simulations with different 

realizations of the noise term. 

The initial condition, Eq. (6.6), is centred on a 1403 cartesian grid and propagated 

forward in z using the split-step Fourier method described earlier in Section 2.3. 

Figure 6.4 shows the volume rendered results of the simulation at six interesting z 

values. From r = 0 to approximately z = 2.0 (not shown), the initial state remains 

relatively stable. However, by frame (b) the outer shell has become aspherical and has 

begun to clump in two regions. By frame (c) this process is well developed and the 

i d o  has coalesced into a tube-like structure and single ball whereas the central core 

has remained relatively unaffected at the centre of the computational mesh. (This 

structure possesses a well-defined axis of cylindrical symmetry, a point we will return 

to later in a more quantitative fashion.) The lower bullet then begins to move towards 

the bottom-front corner of the mesh and, due to conservation of linear momentum, the 

tube structure begins to drift in the opposite direction, slowly expanding in diameter. 

By frame (d), the instability of the tube is manifestly evident as it begins to pinch 

off at four locations. By & m e  (el, t h i s  pinchi~g effect has completely destroyed the 

tube and we are left with separated "clumps" of light. In frame (f) these clumps have 

stabilized and drifted t o  various parts of the mesh (the two linked bullets in frame (e) 

having fused together). In the final image, the bottom-front soliton begins to  poke 

31etrinsic nul_nerical mist? due to truncation and round-off errors is sufEcient to pravoke the system 
to leave its initially symmetric state. 
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Figure 6.4: Simulation of the P = 3, n = 1 halo state reveals iwtabiiity of' the solution to 
a small amount of random noise. (a) z = 0, (b) z = 2.4, (c) z = 2.8, (d) z 3.2, (e) z =5 3.4 
and If) z = 4.6. Peak IE[ = 14.7. In frame (a), an octant has been rentovcd in order to 
visuaslze the central core. 
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through the back wall as it transits the periodic boundary. 

The goal of the remainder of this chapter will be to  explain this and other equally 

remarkable simulations in terms of a somewhat complicated numerical linear stability 

analysis. 

6.3 Linear stability analysis 

In this section we begin by deriving a linear PDE governing the initial evolution of a 

small perturbation to the halo state. This PDE is then solved using a Crank-Nicholson 

scheme whereupon the shapes m d  exponential growth rates of different perturbation 

eigenmodes are determined. 

6.3.1 Derivation of the linear equation 

Following Soto-Crespo [So91], we choose a separable perturbation to the stationary 

solution 

En (r , z) = Un (r ) exp (ipz) (6.7) 

where n denotes the number of halos for the particular profile under study and y is a 

small expansion parameter. Substitution of (6.8) into (6.1) yields 

Let us first consider the term TI.  In spherical polar coordinates, 
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(6.11) 

Letting R(B, 4) = 0(8) a(#), 

cP d O d2a  
T3 = -- (sin,%) + 7- 

sin 0 do sin 0 d$2 

For reasons that will become apparent, let use choose Q(4) to satisfy the differential 

equation 

Then, Eq. (6.12) can be rewritten as 

Let us further assume that 0 ( 8 )  satisfies the associated Legendre equation 

1 d m2 - - (sin,$) + i ( ~ +  1 ) s  - - 
sin 8 do sin2 , @ = 

That is, we choose a(,) to be Pem(cos O ) ,  an associated Legendre function. This being 

the case, Eq. (6.15) becomes simply 

Note that 

~ ( 8 ,  4) = ~ ( e )  ~ ( 4 )  = P ~ ( C O S  8) ekh4 G k;m(e, 4) (6.18) 
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where y(%,&) are the familiar normalized spherical harmonic functions. The Lapla- 

cian acting on gR can thus be written as 

This is an important point: by choosing R(O,C$) to be an unspecified spherical har- 

monic, we find that Eq. (6.19) contains no explicit angular dependence. Instead, as 

Yern is an eigenfunction of the transverse Laplacian, the angular dependence appears 

solely by virtue of the parameter 'P. In addition, the azimuthal index 'm' does not 

appear in the perturbation equation. This is interpreted as the stability analysis being 

able to distinguish which family of spherical harmonics are unstable but not which 

particular member or mixture dominates the evolution. 

Next, let us consider the term T2 in Eq. (6.9) with 

To first order in the small paxameter p, 

T2 = (En + pkI2 
1 + alEn + pkI2 

(En + k) 

A minor complication is the k* term. Our goal is to  choose functions a(8,  #) such 

xhat the linear equation contains no explicit angular dependence. In other words, S1 

is t o  be an eigenfunction of the linearized equation. This being the case, we require 

As 8(8)* = e ( c o s  e)* = Py (cos 0) = 8(8), we must therefore insist upon a minor 
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restriction on the generality of the solution of Eq. (6.13)) namely, 

such that the azimuthal function is real rather than the complex exponential initially 

proposed in Eq. (6.14). 

The term T2 can thus be written as 

With these simplifications of Tl and T2, Eq. (6.9) then becomes 

Terms 1, 3, and 6 form an identity leaving a linear PDE for the evolution of the radial 

perturbation function 

Note that this equation for g(r,  z )  only depends upon the initial halo profile (deter- 

mined by /3) and the C index of the spherical harmonic family under study. 

To study the stability of a particular family of modes, we then seek exponentially 

growing solutions to the radial perturbation function of the form 

Substitution of Eq. (6.28) into Eq. (6.27) constitutes a challenging eigenvalue prob- 

lem, even computationally. To solve this problem, there are two possible approaches, 

One could perform a truncated Fourier-Bessel decomposition of both En and g( r )  

and then solve a coupled set of linear ODES for the z evolution of the expansion 
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coefficients. This is the approach taken by Kolokolov and Sykov [Ko75] for a similar 

two-dimensional problem but Soto-Crespo and co-workers found that some of their 

conclusions were erroneous. An alternative approach [Sogl], and the one we follow 

here, is to choose a small random initial condition for g(r, z = 0) which is then numeri- 

cally evolved according to Eq. (6.27). If this family of modes is unstable, an exponen- 

tially growing profile should make itself evident. The rationale is that although such 

a random initial condition will contain a mixture of all possible eigenmodes, the long 

term growt,h will be dominated by that particular eigenmode possessing the largest 

growth constant. The modal growth constant de can then be calculated numerically 

according to 
1 

While Eq. (6.29) is true by definition in the limit as Az --+ 0 for the case when g ( r ,  z )  

contains only a single eigenmode, if the above hypothesis is correct, de(z) should 

converge with increasing z. 

6.3.2 Numerical method 

Numerically then, how does one solve Eq. (6.27)? As we are studying stability, it 

seems reasonable to choose a numerical scheme that is unconditionally stable ensuring 

that any exponential growth witnessed is mathematically real and not an artifact of 

the numerical method. Consequently, Eq. (6.27) is solved using a Crank-Nicholson 

(Pr86, St3881 algorithm on a 5Wpoint equispaced radial mesh. 

Letting g = u + iv, and noting that 

where we have dropped the halo index subscript on U for clarity in what follows. 

Equation 6.27 can be written as two real coupled PDEs, viz. 
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and 

where the radial Laplacian 

To solve these equations numerically, define an equally spaced mesh at radii r -- rj 

with j = 1 . . . n where rj = ( j  - 1)Ar and Ar is the intramesh spacing. Thc: v;ducs of 

the fields u and v at the boundaries are allowed to fhat freely but the first derivatives 

are pinned to zero. With superscripts denoting the z direction, implicit discretiz&ions 

for the field u are 

and 

Note that the first discretization is centred mid-mesh at (n+ 1/2). We can also center 

the spatial discretization at (n + 1/2) by averaging with a similar version at timcstep 

n, viz. 

Substitution of these and their analogous discretiaations for the field u into ~~s .{6 .31)  
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and (6.32) followed by a healthy dose of subscript and superscript laden algebra yields, 

and 

Forming the column vector 

Equations (6.37) and (6.38) form a matrix system 
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where the matrix A has the following banded structure 

the empty m d  filled circles representing zero and nonzero matrix elements, respec- 

tively. 

The algorithm is implemented as follows. We begin by choosing a propagation 

constant ,O and halo index n which then uniquely determines the initial radial profile 

( r ) .  One then selects the family of spherical harmonic modes under study by 

choosing the integer parameter 4. Finally, we set x = 0 and load the computational 

mesh with small random initial values for the real fields u and v. Then: 

1. Load the column vector based on the current values of zl and v .  

2. Load the matrix A(r, z). 

3. Solve the banded matrix system of Eq, (6.40) for the solution vector 2. 

4. Extract the new values of the fields u and v from the alternating structure of 5. 

5. Increment z by Az and return to step 1. 

As the simulation proceeds, the modal growth rate is calculated from Eq. (6.28). 

Based on this prescription, 

4 = Je(r) 

and thus the growth rate is calculated at each radial mesh point. Then, EW Igl r?volvca, 

one continues the simulation until the growth rate de converges and each part of the 

emerging eigenmode is seen to be growing at the same rate. 
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(a) Growth of g ( r )  from a small random ini- (b) Solid curve: g ( r ) .  Dashed 
tial condition. curve: initial ,O = 3 one-halo 

state. 

Figure 6.5: Calculation of the radiai perturbation eigenfunction for ,B = 3, n = 1 and 
e =  3. 

6.3.3 Predictions: onehalo modal analysis 

As a concrete example, using the above numerical method to solve Eq. (6.27), let us 

examine the stability of the P = 3, n = 1 halo state simulated in Section 6.2. The 

method requires that we choose a family of spherical harmonic modes for analysis, so, 

with some clairvoyancy, we select t = 3 as being a particularly important family of 

modes. This being the case, one finds that from a very small random initial condition 

for 

g(r, 0) = U ( T ,  0) + v (r, 0) (6.42) 

an exponentially growing radial profile lgl emerges as shown in Figure 6.5(a). The 

vertical scale is omitted as the absolute height of the pulse is not important. Rather, 

the sdieni; feature is that by the end of the simulation, the growth of the entire pulse 

has converged4 to an exponential rate of 63- = 3.75. In Figure 6.5(b), we plot the 

radial profile ig(r)l versus r and for comparison, the initial condition Ul(r). Note 

"his is true for all points across the pulse, i.e., the radial profile grows in a scale-invariant way. 
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Figure 6.6: Real and imaginary components of g scaled to eliminate the exponential growth 
and ease visualization of the periodicity. 

that the perturbation eigenmode is concentrated at the radius of the halo and acts 

negligibly upon the core of the halo state. This turns out to be a result independent 

of the mode under study and explains two features of our sample simulation: (i) why 

the dynamics initially appear confined to the outer shell and (ii) why the central core 

is relatively unaffected by the instability. 

The astute reader may be wondering about the real and imaginary parts of g(r ,  r ) .  

The underlying fields u and u display periodic behaviour but as they are also growing 

exponentially at the rate 63 = 3.75, this periodicity is difficult to visualize. Therefore, 

we introduce the scaled fields 

and 

such that 

remains constant in Z. Figure 6.6 shows the evolution of these two scaled fields from 
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z = 2--6. Recall that the initial state El (T, z) also possessed a phase evolution 

An obvious question then arises, namely, although lg( acts at the halo radius, are 

the periodicities of the real and imaginary parts of g commensurate with the phase 

evolution of El? If, in fact, they ar? not commensurate, the exponentially growing 

modes will not drive the initial state in a "fixed" direction, instead taking energy 

into and out of (@,+) locations that are YSrn mode extrema. From Eq. (6.46), the 

characteristic repeat length is determined by 

so that 

Thus, for /3 = 3, z, = 2.1. Careful measurement of the periodicities of u' and u' show 

that they are equal to 2.1 f 1%. Thus, for d l  intents and purposes, m e  can think of 

the evolution of lEl in terms of the shapes of 191 and the unstable Y,". 
Repeating the above analysis for other modes C = 0,1,2,4,5,6,. . ., one finds that 

only for modes l = 1,2,3,4 do exponentially growing pulses arise; the other modes 

presumably possess either negative or purely imaginary eigenvalues and can thus be 

classified as stable. The growth rates of the four modes determined to be unstable 

are displayed in Figure 6.7. Thus, the C = 3 mode is found to be most unstable and, 

as the growth is exponential, we hypothesize that this mode will dominate the long 

term evoiution and that the simulation results should be consistent with a Y,m-type 

instability. 

At this point we have a perplexing problem. In terms of the simulation results, 

how does a instability manifest itself? As the family consists of the four functions 

Go, Y,1, Y , ~  and G3, does one observe: 

e One particular dominant mode? 
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Figure 6.7: Exponential growth rates of the four 
unstable P = 3, Ypm modes. 

a An equal mixture of modes? 

a An arbitrary linear combination of modes? 

To answer this question, the only recourse is a series of numerical experiments with 

differing realizations of the noise term followed by spherical harmonic analysis of the 

resultant simulation data. Before presenting and analyzing the simulation data, wc 

conclude this section by summarizing the growth rates for all one-halo states. 

The analysis carried out above pertains only to the ,6 = 3 single-halo state Ul . This 

same procedure can be carried out for all bullets in the allowable range 0 < ,i3 < 20 

resulting in the growth rate curves shown in Figure 6.8. An important result is that 

the l = 3 mode dominates for all single halo states. This is in marked contrast to the 

situation in two-dimensions where a crossover occurred at a critical /3 value. Such a 

crossover divides the spectrum of bullets into two classes which have different stability 

properties and resultant long-term evolution. 

6.4 One-halo results and analysis 

Sotu-Crespo et d ' s  cornp~ison between the predictions of linear stability analysis 

and simulation in two dimensions was rela+.vely simple. The analysis predicted a 

specific 'm' mode of the perturbation cos(m$) to be unstable. A visual inspection 

of the numerical data then clearly showed the initially symmetric circular halo break 
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Figure 6.8: Summary of unstable 
growth rates for all single-halo bullets. 

up into m spots - the m-fold symmetry being unmistakable. The situation in three 

dimensions is much more complicated for two reasons: 

1. The linear stability analysis only predicts the t? value of the unstable mode. This 

is interpreted as all members of the Y," family possibly being present. 

2. The functions Y,", defined over the surface of a sphere, are much more com- 

plicated than simple cosine functions. Thus, one cannot depend on the human 

mind to identify a pattern as, for example, being obviously Y32. 

The approach then is to quantitatively analyze the simulation data by the method 

of spherical harmonic analysis. That is, choosing a characteristic radius r*, the field 

E(r*, 8 ,4 )  is decomposed into its spherical harmonic components. Initially, the field 

is sphericdy symmetric and all of the harmonic content will exist in the DC mode 

q. However, as the simulation proceeds, the system decays and energy will flow from 

Go into the unstable exponentially growing modes. 



CHAPTER 6. STABILITY OF THE HIGHER BOUND STATES 

For performing the spherical harmonic analysis of the red function /El, wc? utilize 

the excellent package SPHEREPACK5 written by Paul Swarztrauber of the U.S, Na- 

tional Center for Atmospheric Research. Defining niat as the numbcr of colatitudes 

on the grid and nl,, as the number of distinct longitudinal points, the discretized 

equispaced angles Gi and 4 j  are given by 

Choosing the radius of the halo minimum r* as the radius of interest, wc reqliirc thc 

value of the field I El at these locations. As the simulation data is defined on u cwtcsim 

mesh, this necessitates interpolation [Pr86] of lEl from the regular grid ( t ,  z, y) to 

the locations (r*, G i ,  $ j ) . 6  In addition, with reference to the volume renderings of 

Figure 6.4, we. take the "north-pole" to be vertical, i.e., normal to the t-x plane 

through centre of the mesh. 

SPHEREPACK is able to determine the coefficients AT and B," such that 

where Pp(8) are the normalized associated Legendre functions and m,,, = (nl,,, i- 

2)/2. Rather than considering both A and B, note that 

is invariant to rotations about the pole; as we are not interested in the absolute 

orientation of the system, consideration of the CT will suffice. 

'SPHEREPACK and other scientific computing packages are available over the Intcrnct frcm tha 
software repository Netlib, accessible via the World Wide Web at <Ui3I,:http://www.nc?tlit1.org/>, 

6For the p = 3 simulation presented earlier, the radius for which the peak of tho halo occurs is 
T* = 1.15. How many Oi and bj values should one optimally choose? With a cubic domain of 14F)" 
spanning -3 < (t, x, y) < 3, roughly one requires 4.rr(1.15/3.0 - 70)2 N 9127 points. 
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Figure 6.9 shows the results of the spherical harmonic analysis corresponding to the 

simulation depicted earlier in Figure 6.4. The data is restricted to the modes up to and 

including II = 5, the modes above this value containing negligible energy. In addition, 

due to its large initial content, the DC mode I$' is omitted and displayed separately 

in Figure 6.10. A sharp transition in the DC component occurs in the neighbourhood 

of z = 3 corresponding to the tube and lower forming bullet moving away from 

SPHEREPACK'S radius of interest. As predicted, we see that Y," modes dominate 

the evolution7 although the Y,1 mode is curiously absent. This analysis, however, 

assumes that the north-pole is as chosen, normal to the t - x plane. But we have 

absolutely no justification for this arbitrary choice! In fact, choosing the pole normal 

to the t - y plane would have led to a different mixing of the Y," components. Note, 

however, that as the initially spherical halo decomposes, it spontaneously chooses 

a symmetry axis aligned through the centre of the tube a ~ d  both of the forming 

bullets. Taking the lower soliton to be at the north-pole,8 Figure 6.11 shows the 

harmonic analysis with respect to this new coordinate system. With such a choice, 

all of the interesting harmonic content is contained in the Y: mode. As m = 0, 

Y,'(B, 4) = P!(B) and the dominant unstable growth mode thus possesses azimuthal 

symmetry. The associated Legendre function 

is plotted in Figure 6.12(a) and allows us to explain how both the torus and the 

north-pole light bullet of Figure 6.4(c) coalesce out of the initially symmetric halo. 

(The origin of the central light bullet was already explained in terms of halo localiza- 

tion of the radial perturbation function, i.e., we observed that g(r) acts only at the 

radius of the outer shell and negligibly at the origin.) To facilitate the comparison 

between this curve and the simulation data, Figure 6.12 (b) depicts the interpolated 

field IE(r*, Q, 6) 1 at f i m e  (c) of the simulation. Note that the rotation axis of this 

'At least up until the formation of the tube structure which is already far beyond the realm of 
the linear analysis. 

?€his choice is arbitrary but facilitates later analysis. C is unaffected by such a x rotation of the 
data. 
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Figure 6.10: Harmonic content of the DC 
component. 

0 

Figure 8.9: 2 evoluticru of 
the spherical harmonic corupa- 
nent s. 
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I the spherical harmonic compo- 

figure is not the vertical in the volume rendered frame. Rather, the data has been 

rotated such that the bright bar,b in the southern hemisphere corresponds to the 

torus while the bright spot at the north pole corresponds to the lowermost bullet in 

Figure 6.4(c). This being the case, the correspondence between the simulation data 

and Pf becomes rather obvious. At 6 locations where P: is positive, the field grows. 

Thus, energy will gather at both the north pole and in the vicinity of 5n/8. Due to 

the axial symmetry, the latter case results in the formation of a tube at the given 

latitude. At 8 locations where P3' is negative, the intensity decreases resulting both 

in a dark band in the northern hemisphere and a dark south-pole. 

As in the two-dimensional case, the dynamics following the formation of the torus 

(frames (d)-(f) in Figure 6.4) are complicated. For example, our analysis does not 

predict the subsequent uneven pinching at four azimuthal angles. This should not 

be particularly surprising as the theoretical predictions are based on a perturbation 

treatment about the original symmetric state and not this new metastable torus. The 

propagation constants of the final states can be determined by least-squares fitting the 
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(a) Associated Legendre function 

P:(e>. 

(b) Interpolated iuicl rotatcd simnla- 
tion data. 

Figure 6.12: Comparison between stability analysis and nurncricaI cxpttrirnent. (See uc- 
companying text .) 

radial profiles (not shown), after which it is seen that a nlcrc 17% :;of thc original one- 

halo energy content is unaccounted for and has thus been ractiat,ed away. Although 

the long-term dynamics are complicated, the recurrent thenic !,hat, with sufficient 

localization of energy, saturable media naturally form stable light, hidlets is clearly 

evident. 

Of course, because we are witnessing an instability, the results of a specific sirn- 

ulation will depend on the realization of the noise tcrm. That is, different "sccd" 

values for the random number generator used to numerically perturb the initial state 

can cause the system to choose a different axis of symmetry with rcspcct to our fixed 

frame. In addition, one often finds that azimuthal decay of thc tjorus occurs while it 

is still in the process of formation. Nonetheless, empirically we find that, a torus-like 

structure always forms reveding that, in answer to our earlier qut:stion, the Y;jO mode 
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Figure 6.13: Radial field profiles of the 
p = 6 two-halo state. Inset: Corre- 
sponding ( E  1 curve. 

consistently dominates the one-halo evolution. 

6.5 The plot thickens: two-halo analysis 

To conclude this chapter, let us consider the more complicated two-halo case. As a 

concrete example, Figure 6.13 depicts the radial field profiles for P = 6. Carrying 
out a procedure similar to that performed for the one-halo case, the growth rate 

curves as determined by numerical linear stability analysis are plotted in Figure 6.14. 

The first striking feature of this plot is that in moving from the single-halo case to 

dual-halo profiles, a significant; increase in the number of unstable modes occurs. For 

the /3 = 6 case indicated by the vertical dashed line, at first glance one might infer 

that this state will simply be dominated by a Ygm instability; in fact, the dynamics are 

somewhat m m  complicated. Recall that in the single-haio case, we observed that g ( T )  

was localized at the radius of the first halo. With two halos present, knowledge of the 

localization of the various radial perturbation functions is crucial to an understanding 

of the dynamics of the inner and outer halos. In order of decreasing size, Figure 6.15 
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Figure 6.14: Summary of unstable 
growth rates for all two-halo bullets. 
The vertical dashed line indicates the 
,O = 6 profile of Figure 6.13. (The hor- 
izontal scale stops a t  p -- 12 t o  facili- 
tate viewing of the various growth rate 
curves.) 

shows the normalized g(r)  of the four largest growth modes. The largest three radid 

eigenmodes are all localized about the outer halo and have negligible effect an both 

the inner halo and the central core. The first growth mode that does effect the inner 

halo is the familiar C = 3 mode. We therefore expect markedly different behaviour 

for the inner and outer shells, these halos displaying a Y3* and Yc type instability 

respectively. 

Figure 6.16 shows the result of numerically propagating the ,8 = 6 two-halo state 

in the presence of a small amount of numerical noise at six interesting stages of thc 

evolution. In frame (a), an octant has been removed in order to visualize both the 

central core and the inner halo. Between z = 0 and z = 1.3 (not shown), little change 

occurs in the initial twehalo state. By frame (b), the outer halo has decomposed 

into what looks like a "soccer ball," the faces of this structure having an apparent 

hexagonal symmetry. Note, however, that although the symmetry breaking of the 

outer halo is well advanced, the spherical inner shell is still intact. By frame ( c ) ,  

the soccer-bd has completely disintegrated resulting in the formation of a multitude 
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I 

(a) e = 6 

0 r 4 

(d) e = 3 

Figure 6.16: Solid curves: calculated radial perturbation functions of the fo:c largest 
growth modes for the /? = 8 two-halo case. Dashed curves: U2(r) profile. 
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Figure 6.16: Simulation of the /3 = 6, n = 2 halo state. (a) z - 0, (b) z = 1.95, (c) 
z = 2.20, (d) z = 2.40, ( e )  z = 2.85 and ( f )  z = 3.30. Peak /El .= 33.9. 



CHAPTEX 6. STABILITY OF THE HIGHER BOUND STATES 

Figure 6.17: Harmonic content of the 
DC component. Solid curve: inner halo 
at r* = 0.95. Dashed curve: outer halo 
at r* = 2.0. 

of interacting light bullets moving radially outwards towards the mesh boundaries; 

meanwhile, the decomposition of the inner halo is well underway. In the remaining 

frames, the decay continues and all resemblance to the initial state is lost as the bullets 

fly apart while undergoing complicated dynarnical interactions. 

As an aside unrelated to our analysis (which will only be able to predict the sym- 

metry of the initial decay), consider the two fusing bullets indicated by the arrow in 

frame (c). By frame (d), these overlapping envelopes have apparently coalesced to 

form a single pulse. However, in frame (e) the origiml states reemerge, this oscilla- 

tory behaviour analogous to one-dimensional breather modes repeating two complete 

periods before the simulation terminates. 

In Figure 6.17, the harmonic content of the DC mode at the radius of both halos 

is plotted versus the propagation distance revealing that beyond z = 2.0, the energy 

content drops off quickly as the decomposing shells move outwards. 

Let us begin by considering the outer halo. Figure 6.18 is a volume rendered image 

corresponding to frame (b) but with the inner shell and central core removed, allowing 

us to peer through to  the opposite side of this remarkable structure. The z evolution 
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Figure 6.18: Volunlc rendering corro 
sponding to frame (b) of Figure 6.16 
with the inner halo and central core r e  
moved. 

of the harmonic components is depicted in Figure 6.19 where the symmetry axis 

defining the north-pole has been taken to pierce through the middle of the gap in tho 

hexagon closest to the front-right corner of the image. As predicted by our numerical 

stability analysis, the t>wo largest components present are members of tht: I ]  = 6 

family of modes, the large G5 component resulting in the observed hexagonal pattern. 

Unfortunately, this state possesses other sizeable harmonic components ariclkirig a 

pictorial comparison analogous to that presented for the one-halo case (where we 

observed a single dominant mode) difficult. In addition, while the modal analysi~ 

corroborates the theoretical prediction in terms of the specific dominant family of 

modes, we had no a priori knowledge that a hexagonal structure would form. This 

is in marked contrast to  Soto-Crespo et al.'s two-dimensional problem where specific 

predictions could be made about the final outcome. 

Finally, Figure 6.20 depicts the spherical harmonic analysis at the radius of the 

inner halo where the symmetry axis has been chosen to pierce the evolving tube 

structure in the usual way (not shown). As expected, the inner ha10 is darnintited 

by the & = 3 family of modes, the sizeable Y: component revealing that the torus is 

pinched symmetrically as it forms at three equispaced azimuthal angles. 
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Figure 6.19: z evolution of 
the spherical harmonic compo- 
nents for the outer halo (ro- 
tated pole). 

Figure 6.20: z evolution of 
the spherical harmonic compo- 
nents for the inner halo (ro- 
tated pole). 



Chapter 7 

Conclusions 

In this thesis, we have considered spherical solitary wave solutions to the (3+1)- 

dimensional generalized nonlinear Schrodinger equation (GNLSE) 

which governs the propagation of picosecond timescale plane-polarized optical en- 

velopes in a bulk anomalously dispersive medium possessing an intensity dependent 

refractive index f ( I ) .  

Making use of the simple stability criterion that the solitary wave's propagation 

constant reside on a positive slope branch of the associated energy curve, three sat- 

urable models were introduced and, through extensive numerical simulations, subsc- 

quently shown to support stable non-diffracting non-dispersing self-trapped pulses - 
light bullets. 

A number of novel collision simulations were presented including soliton t ~mnelling, 

spiralling light bullets, and soliton fusion. These results, several of which have no 

one-dimensional analogue, serve to emphasize the inherent richness of the previously 

uaexplored light bullet problem. 

Of special interest are repulsive collisions at non-zero impact parameter between 

bullets possessing a .zr mutual phase difference. For the case of a simple saturablc 

model, a comprehensive set of such scattering simulations acted as a probe of the 

144 
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interaction potential, allowing us to determine the preciss structure of the force law 

under the valid assumption of elastic scattering. The interaction potential was found 

to be of the Yukawa form which is consistent with an asymptotic expansion of the light 

bullet radial profile. Furthermore, the scattering data was found to scale correctly 

with velocity and the energy content was shown to play the role of an effective mass 

with the caveat that there exists a minimum energy for light bullet formation. 

More of a theoretical curiosity than of practical importance, in Chapter 6 we 

considered the stability of the so-called spherical halo states of the GNLSE. That is, 

in addition to the regular Gaussian-like profiles discussed above, there exist higher 

bound states consisting of a central core surrounded by a number of bright spherical 

shells. A linear stability analysis in terms of spherical harmonic modes predicted 

these solitary wave solutions to be transversely unstable and we hypothesized that 

the growth and symmetry of the broken state would be dominated by the largest 

exponentially unstable family of modes. These predictions were corroborated by direct 

simulation of the GNLSE for both one and two-halo profiles. 

To conclude, we wish to stress the following two recurrent themes. First, while 

the refractive index models studied are quantitatively dissimilar - possessing only the 

common trait of saturation - the qualitative simulation results appear to be largely 

model independent. Thus, the applicability of this research does not rely on the exis- 

tence of a single exotic material possessing a very specific nonlinear refractive index. 

Second, light Ld!ets appear to be extremely stable entities, often succeeding in sur- 

vivicg zmssive perturbations in the form of collisions. When quasi-soliton behaviour 

does not occur, one typically finds that a new soliton state is reached rather than a 

dispersal of the original confined energy into the surrounding volume. This behaviour 

is closely tied to the natural tendency of saturable media to form light bullets given 

sufficient localization of energy. (Dramatic evidence for this assertion include the 

switching between bistable soliton states achieved via amplification in Chapter 4 and 

the formation of a multitude of light bullets during decay of the halo state solutions 

of Chapter 6.) Thus, practically, it is often not necessary to begin with an exact 

solitaxy wave profile% light bullets acting as attractor states in the space of all possible 

envelope functions. 



CHAPTE12 7. CONCLUSIONS 

Our understanding of three-dimensional self-trapped pulses - light bullets - has 

progressed enormously over the past five years, from a flippant conjecture to the 

optimistic suggestion that they form the fundamental building block of an dl-optical 

digital switch. As of the writing of this thesis, however, they remain a theoretical 

prediction, unverified by experiment. 
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