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Abstract 

Tethered membranes are a natural two-dimensional generalization of linear polymers. They 

can be thought of as a collection of monomers that are permanently connected to  their 

neighbours in two-dimensions. When embedded in three dimensions a generalized Flory 

theory predicts that the membrane should be crumpled. However, computer simulations 

indicate that membranes remain flat except in models where the monomers occupy no 

volume. I report on simulations done on membranes embedded in four and five dimensions. 

It is found that membranes in four dimensions remain flat, even with a limited amount of 

excluded volume. In five dimensions the membranes are crumpled even with a very high 

degree of excluded volume. 

The remaining chapters focus on the vulcanization transition of linear polymers. This 

transition is normally described by incorporating crosslinks into a melt of linear polymers. 

Both the classical theory of vulcanization and a more recent model proposed by Goldbart 

et al. are reviewed. In the latter model, when the density of crosslinks in a polymer melt 

is increased beyond a critical number n,, then a fraction of monomers acquire fixed mean 

positions. The localized monomers fluctuate normally about these mean positions. Both 

the critical density of crosslinks and the distribution of localization lengths are predicted. 

Also, an order parameter that differentiates liquid from amorphous solid is derived. 

I report on computer simulations of randomly crosslinked melts of linear polymers. The 

density of crosslinks is varied and both the order parameter and the distribution of localiza- 

tion lengths are monitored. The order parameter describes the crosslinked melt as predicted. 

The distribution of localization lengths collapses to a universal function when scaled by an 

appropriate variable. The collapse occurs for a wide range of crosslink densities and for 

different system sizes. 

A final study examines how the shear modulus varies with crosslink density in the 



crosslinked polymer melts. The system acquires a non-zero shear modulus at  approximately 

the same density of crosslinks that the order parameter becomes non-zero. 
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Chapter 1 

Introduction 

1.1 Introduction 

Polymers are long linear and highly flexible molecules. Their material attributes such as 

thermal, optical and elastic properties are very useful to chemists and materials scientists 

developing new compounds. Polymers attract the interest of biologists, since biopolymers 

such as DNA and RNA play a pivotal role in most biological processes. A polymer consists of 

a single unit or monomer repeated hundreds or thousands of times to form a long chain. The 

monomers can be quite simple molecules such as CH2 or can be formed of tens or hundreds 

of atoms. The synthesis of the chains usually occurs by the addition of single monomer 

units or by short chains merging together. Simple linear polymers are not the only type 

of polymer available. Polymers can take on other shapes such as a comb formation, where 

there is a long backbone from which emanate many smaller chains, or polymer stars, where 

many long polymers meet at a central junction. In this thesis the discussion of polymers is 

limited to linear polymers. 

Polymers do not follow the simple phase diagram of low-molecular-weight substances. A 

gas of polymers is difficult to obtain except in the most extreme experimental conditions. On 

the other hand a very dilute solution of polymer can be considered gaseous since the chains 

are far apart and practically non-interacting. As the concentration of polymers in solution 

is increased a semi-dilute melt is created. If the concentration of polymer is increased to the 

point of where there is solvent, then a pure polymer system or dense melt is created. A pure 

polymer system can exist in several phases, including crystalline, glassy and viscoelastic. 

The crystalline phase is similar to the low-molecular-weight crystal except that due to the 



long chain nature of polymers defect-free crystals are impossible to obtain, and this phase 

is generally only partially crystalline. The glassy phase is actually a liquid but one with 

so large a viscosity that there is generally no observable flow during a reasonable period 

of observation. Many common plastics are really glassy polymers. The viscoelastic phase 

is very striking in its properties. This system is fluid but does not behave as a simple 

fluid. The long chains are highly entangled, which limits the motion of the polymers. This 

entanglement results in a behaviour which is a combination of liquid and solid, so that on 

appropriate timescales the melts have the viscosity of fluids and the elasticity of solids. For 

example, when a finite strain is imposed on a melt the initial deformation is that of a solid, 

but then the system continues to flow like a fluid. Alternatively, the stress required to  keep 

the system at constant deformation diminishes with time. 

A polymer network is a solid made from a dense melt of polymers by creating new 

chemical links between randomly chosen monomers. The links can be made by the addition 

of a chemical, for example, sulphur, that joins two units or by subjecting the melt to ionizing 

radiation. One example of such a network is vulcanized rubber. The addition of a few 

crosslinks traps the entanglements present in the melt while still leaving a lot of flexibility 

of the chains between the junction points. The most remarkable property of rubber is its 

elasticity. While a typical low-molecular-weight crystal has a maximum extensibility of less 

than 1%, most rubbers have extensibilities in the range of 500 - 1000%. Only a few links 

per chain are necessary to achieve this state. This means that between the crosslinks the 

chains are highly coiled and as entangled as in the melt. When a tensile force is applied 

the polymers become less coiled and are, thus, highly extensible. The elasticity of rubber 

is primarily entropic, depending on the number of configurations that the monomers of the 

chains can have for a particular end-to-end length of the polymer. On the other hand the 

elasticity of a crystal is due almost entirely to changes of internal energy, when the crystal 

is deformed. 

1.2 Properties of Single Polymer Chains 

The model of an ideal polymer melt is a useful simplification of a system of real polymers. 

In this model the intrachain repulsion that the monomers experience is screened by other 

polymer chains. In a melt the preferred conformation of a polymer is generally more coiled 

than if the polymer were stretched end-to-end. Thermal motion prevents the polymer 



molecule from having an unchanging geometrical size. For this reason an average measure 

of size must be calculated, which can be considered to be the time average that would be 

obtained from the measurement of the size of the polymer at random times. One common 

measure is the mean square end-to-end length of the polymer R;,, which is the square of the 

straight line distance between the two ends of the molecule. To calculate R:, we consider 

a very simple model of a polymer: a freely orienting chain. In this model each monomer is 

a fixed distance a0 from its immediate neighbour on the chain, but the bonds are free to 

take any direction. The monomers have no excluded volume, which means that different 

parts of the chain can overlap, as in Fig. 1.1. The number of bonds is M ,  and the i-th 

bond is designated by a vector ai which stretches from one monomer to its neighbour, and 

lail = ao. The position of the i-th monomer ri is simply the sum of all the vectors of the 

previous bonds: ri = C$=l aj. The end-to-end length squared of the polymer is the sum of 

the square of the bond vectors taking one end of the polymer as the origin, and 

because, for i # j, (ri . rj) = 0. The result that JRze = m a o  indicates that the polymer 

is quite crumpled compared to its fully stretched length 6 = Mao. A polymer is self- 

similar in the sense that a subsection of the chain is expected to behave in the same way as 

the whole chain. 

One can then ask what is the probability distribution function of this polymer. Since 

each bond is a randomly oriented vector of length a0 the probability distribution of each 

bond is 

where 6(lail - ao) is a delta-function, and ai is a vector describing the i-th bond. We want 

to find the probability distribution function that the end-to-end vector of a chain consisting 

of mb bonds connecting M monomers is he, and we denote this function by q. We get 



and we use the integral representation of the delta-function 

(1.3) becomes 

Each of the integrals in the square bracket in the previous equation can be solved in a 

straightforward manner by transforming to spherical coordinates and results in a factor of 

sin(kao)/kao. Substituting this in (1.5) we get 

where we use the large mb approximation, so that ( ~ i n ( k a ~ ) / k a ~ ) ~ b  is small unless kao is 



small, so that 

s i n  mb = [ 1 - - x:,] mb 

This equation can now be substituted in (1.5), and the integral over k can be solved for 

each component by completing the square. The result of this is 

Equation (1.8) gives the probability distribution function for a polymer of mb bonds having 

end-to-end distance Ree. 

This model is highly simplified in that all excluded volume effects are ignored, the 

neighbour distance is considered fixed and successive bond vectors are randomly oriented. 

More realistic models correct for some of these problems, for example, the freely rotating 

chain model is similar to the random flight model except that i-th bond is connected to 

the i - 1-th bond with a fixed angle 6 but is free to move about that angle. The end- 

to-end vector is found to be RZe = ~ a i  (1 + cos 6) / (1 - cos O), which again shows that 

a. Another model is the Gaussian chain where the monomers are modelled as 

points connected by springs of average length a. In this case calculation of the end-to-end 

vector gives RZe = Ma2. In each of these models, the monomer is not meant to represent 

a particular submolecule, but rather a group of them. The calculations are not sensitive to 

the exact number of submolecules in the group as long as the the number of such groups 

used to form the chain is M >> 1. 

Another measure of polymer size is the radius of gyration R:. Qualitatively the radius 

of gyration measures the average distance of the mass of the polymer from the centre of 

mass, 

The calculation for the freely jointed chain proceeds in a manner similar to that of the 

end-to-end distance: 



Thus, we see the relationship 

For more realistic models of polymers, such as the freely rotating chain or Gaussian chain, 

the relationship (1.13) still holds but with the length of neighbouring bonds a0 replaced by 

the average length of neighbouring bonds (ao). The relationship R$~/MUO is known as 

the Kuhn statistical length LK and is one measure of the stiffness of the chain. Different 

polymers will be more or less flexible depending on their composition and on external 

parameters such as temperature. The degree of flexibility affects the various transport 

coefficients such as diffusion rate and viscosity of the polymer. For the freely orienting 

chain LK is simply ao, but it varies for other models. Its intuitive value is seen as this: if 

we know the length of the fully stretched polymer Mao, then we can treat a real polymer as 

if it consisted of Mef = Mao/LK segments and the above calculations hold. It is related 

to the stiffness of the chain in the sense that the stiffness will determine how entangled the 

polymer can become, and hence the value of LK [I]. 

A related quantity is known as the persistence length lp .  It  is the length over which 

the polymer remains relatively straight on a microscopic level, i.e., length over which the 

chain remembers its direction. This length is related to the flexibility or energy required 

to bend the chain [2]. Chain segments with length lP can be regarded as practically stiff 

since their end-to-end distance is approximately l p .  A more precise definition of persistence 

length can be obtained by considering segments of the chain. For many polymer models two 

successive segments of the chain are correlated. Considering two randomly chosen segments 

of the chain a distance sp  apart we can define ( cos 8 ( s p ) )  as the mean cosine of the angle 

between the chain segments. The persistence length defines the degree of correlation of the 



segments through the relation ( cosO(sp)) = exp(-sp/lp). Thus the persistence length has 

a clear microscopic meaning whereas the Kuhn statistical length is more easily obtained 

experimentally [I]. Both quantities measure the degree of flexibility of the real polymer. 

1.3 Tethered Membranes 

Although polymers have a very rich phase diagram and many interesting properties, there 

is even more diversity in the properties of membranes. These objects are topologically two- 

dimensional. Most membranes are fluid, which is a phase inaccessible to linear objects. 

One example of such a fluid membrane is a lipid bilayer. The lipid bilayer can be thought 

of as a highly simplified model for many complex biological structures, and one example 

is a red blood cell. In the laboratory it is possible to make a model for a red blood cell 

by dispersing amiphiphilic lipids in aqueous solution. The lipids spontaneously form closed 

spherical shells known as vesicles. The two-dimensional system is fluid in the sense that the 

molecules can diffuse in the plane and there is no resistance to shear deformations. The 

shape of the overall membrane is primarily governed by its bending rigidity and has large 

out-of-plane fluctuations. Experiments show that the vesicles have a rich variety of shapes 

and phase transitions. 

More closely related to the linear polymers described above are tethered membranes. 

In this case there is an underlying lattice structure to the arrangement of monomers, so 

that the nearest neighbours of a given particle are fixed. Thus the monomers are no longer 

free to diffuse in the plane, and the membrane has a non-zero shear modulus. The network 

structure means that in-plane strains caused by out-of-plane undulations are suppressed, 

giving the membrane a large entropic bending rigidity. Experimental realizations of tethered 

membranes are difficult to create, but some examples are the spectrin network of red blood 

cells' cytoskeleton, polymers of chiral precursors [3], and sheets of graphite oxide (GO) [4]. 

Graphite oxide membranes are sheets of micron size that are formed by exfoliating carbon 

with an oxidizing agent. The latest experiment [4] indicates that these membranes are flat, 

but with large fluctuations near the edges of the membrane. Nevertheless, if these sheets are 

suspended in a 'poor' solvent is some long-range attraction between the monomers creates a 

highly compact configuration, as is seen in some computer simulations [5] and in experiments 

[4, 61. 



1.4 Organization of the Thesis 

This thesis is structured as follows. In the next chapter computer simulations of tethered 

membranes are discussed. The membranes are embedded in d = 4,5 dimensions and the 

role of this embedding dimension is explored. Monomer size is varied for fully self-avoiding 

membranes in both embedding dimensions. As well, for d = 4, the effect of self-avoidance 

is investigated through a model which varies both the size of the monomer and the degree 

of self-avoidance. In Chapter 3 the classical theory of vulcanization is described, and then 

a new theory is discussed. The latter incorporates the ideas of quenched random variables 

into the semi-microscopic treatment of randomly crosslinked polymer systems. An order 

parameter capable of distinguishing liquid, crystal and amorphous solid is presented. It is 

found that the amorphous solid state is characterized by the fraction of localized monomers 

and the distribution of the monomers' localization lengths. The results of an extensive set 

of simulations on randomly crosslinked polymers are presented in Chapter 4. Starting from 

equilibrated melts, crosslinks are imposed between randomly chosen monomers. Some prop 

erties of the melt and the crosslinking procedure are discussed. Results of the calculation 

of the order parameter as well as the localization of the monomers and scaling exponents 

are discussed. In Chapter 5 calculations of the shear modulus of the randomly crosslinked 

polymers are presented. The analytical theory of the shear modulus for a polymer network 

is reviewed. The results of a series of simulations on randomly crosslinked polymer networks 

is presented. 



Chapter 2 

Tethered Membranes 

2.1 Introduction 

A natural generalization of a one-dimensional polymer is a two-dimensional membrane. 

Just as linear polymers are formed by connecting a large number of monomers in a linear 

structure, a membrane is formed by connecting monomers in a planar structure. In other 

words, if the bonds between monomers are fully stretched, one could map the structure 

of a membrane onto a plane. There are many examples of this straightforward structure. 

For example, a simple model of a red blood cell is a spherical shell consisting of a lipid 

bilayer. Bilayers can be prepared artificially in the laboratory and can exhibit a variety of 

phases. At low temperatures the bilayer can be in a crystalline or hexatic phase, whereas 

at  higher temperature the molecules diffuse freely in the plane with zero shear modulus. If 

the internal structure of the membrane is fixed, that is, the nearest neighbours are fixed, 

the membrane becomes a polymerized membrane. An example of this is the cytoskeleton 

network found under the bilayers of cells, or sheets of graphite oxide [4]. 

The work in this thesis is restricted to the tethered membrane model, introduced by 

Kantor et  a1 [7]. In this model the connectivity of the monomers is fixed. Most of the 

existing work has focused on the shapes that tethered membranes can take on. Although 

a fully stretched membrane is a planar object, when embedded in a dimension d where 

d > D = 2 and allowed to fluctuate, it can take on a variety of conformations. 

The simplest version of a tethered membrane is one where the only interaction between 

particles is that of nearest-neighbour (nn) attraction to enforce the connectivity constraint. 

Since there is no energy cost to monomers overlapping, this model is called a phantom 



membrane. In this approximation the Hamiltonian is 

where U is the interaction potential, ri is the position of the i th monomer in d-space. In 

analogy to  ideal polymers, U is chosen to be a spring potential, U(rij) = ~ r & / 2 .  In this 

case (2.1) becomes 

In the continuum limit, for a D-dimensional network, 

where x denotes the internal space of the D-dimensional membrane, and V r  is the derivative 

of r with respect to x (in D dimensions). 

A more realistic model that restricts the monomers from overlapping is the generalized 

version of the Edwards model [7]: 

Here v represents the strength of the two-body interaction. Dimensional analysis can be 

performed on this equation, where the variable x of the internal space is rescaled by length 

1 as x' = x/l. If the membrane is isotropic r(x) is then rescaled as r' = r/ lv,  where v is 

the exponent characterizing the scaling behaviour of the membrane in the embedding space. 

With these substitutions, (2.4) becomes 

By using a scheme devised by Flory to find the scaling behaviour of a chain, we balance the 

Gaussian and the excluded volume terms in (2.5). We require that both terms scale in the 

same way with 1, and obtain 
ID-2+2v 12D-dv , (2.6) 

or D - 2 + 2v = 2 0  - dv, and v = B. For a two-dimensional network in three dimensional 

space this predicts v = 415. If the upper critical dimension is defined as the embedding 

dimension where the self-avoidance no longer plays a role, then we must have 2 0  - dv = 0, 

or substituting for v, d = &. Thus, self-avoidance should be relevant in any embedding 



-- 

dimension for D = 2. We also note that if v = 0 scale invariance produces v = 9 for the 

Gaussian model a result that can also be easily derived by direct calculation [7]. 

The thermodynamic phases of the membrane can be partially characterized by the shape 

of the membrane in the thermodynamic limit L -+ oo, where L is a characteristic linear size 

of the membrane. To describe this shape we use the moment of inertia tensor, 

where ria is the a-component of the position vector of the 6 th  particle, a, P run over the 

dimension of the embedding space, and N is the number of particles in the membrane. 

The eigenvalues A, of the matrix Iap are the principal moments of inertia. We order those 

eigenvalues in the following way: A, 5 Xp when a < P. The radius of gyration Rg is the 

sum of the eigenvalues: 

The scaling of the radius of gyration and the eigenvalues of the inertia tensor with linear size 

L of the membrane provides information about the shape of the membrane. The relations 

define the scaling exponents vi and v. The range of v is restricted by some straightforward 

geometrical constraints: 0 5 v 5 1, where v = 1 holds when the membrane is fully stretched. 

A self-avoiding membrane has a further constraint due to the volume of the particles. When 

the membrane has the most compact conformation in d-space, its mass occupies a volume 

proportional to R$ in the embedding space; thus L~ - R$ and Rg - L ~ I ~ ,  which gives 

Dld 5 v. 

The phases of the membrane, or its conformation in the embedding space, can be de- 

termined by the scaling behaviour of X i  with L. The two phases that are of interest in this 

work are flat and crumpled. In the flat phase the scaling exponents vary as 

while in the isotropically crumpled phase they are identical, 



In the case of phantom membranes ui = 0, i = 1,. . . , d. Thus phantom membranes increase 

in size with L more slowly than any power. 

Assuming only nearest neighbour interactions as in (2.2), Kantor et a1 [7] were able 

to predict that the radius of gyration Rg increases as (In L ) ' / ~  for a phantom membrane 

embedded in d 2 3. In the presence of only excluded volume interactions, they found 

that Rg N LV, u = 0.8 for d = 3. They attempted to verify these predictions with Monte 

Carlo simulations of a system in which the particles interacted via an infinite square well 

potential. That is, for the particles to be closer than the hard-core size, or farther than the 

maximum tether length cost an infinite amount of energy; any other distance had no energy 

cost associated with it. These simulations, for rather small systems, seemed to be consistent 

with the theoretical predictions. Despite this promising start, later simulations 18, 9, 10, 111 

on larger membranes with full self-avoidance showed conclusively that such membranes are 

flat: v3 = v2 = 1, u1 w 0.7. 

One possible explanation for this unexpected flat state 1121 is the presence of an "implicit 

bending rigidity." This rigidity is not explicit in the microscopic Hamiltonian but rather is 

generated through self-avoidance. It is expected to be related to  the size of the particles. The 

idea that an explicit bending rigidity by itself could cause a membrane to remain flat was 

tested for phantom membranes. The Hamiltonian consisted of the tethering potential, with 

an added bending rigidity term. The membranes showed a transition from a phantom state 

to  a flat state [13, 141 for large enough bending rigidity. A similar transition was obtained 

for a membrane with a slightly different model 1121. In this case the potential describing 

the monomers had a self-avoiding constraint for first and second neighbours only, and the 

length of the tethering potential was systematically shortened. A transition occurred from 

a crumpled state with a long tether to a flat state with a short tether length. 

This last study indicates that entropic bending rigidity drives the system toward the flat 

phase for short enough tether lengths in a membrane with limited self-avoidance. Conversely, 

in a membrane with full self-avoidance it is possible that the crumpled state may be recovered 

if the size of the particles were small compared to the tether length. Computer simulations 

with variable sized hard cores so far have failed to find a crumpled state for non-zero hard 

core 191. It  has been conjectured that, at  least for d = 3, there is a single fixed point which 

controls the large scale behaviour of the membrane for any non-zero hard core. 

If an entropic bending rigidity induces the membranes to remain flat, it is possible that 

increased entropy causes the membranes to crumple. One way to increase the entropy is 



to remove some fraction of the monomers. In this case, the connectivity of the lattice is 

still fixed, but the lattice contains some defects. A study done on site-diluted membranes 

[15] indicated that the membranes are flat above the percolation threshold. A related study 

on bond-diluted membranes [16] indicated that membranes also are flat above the bond- 

percolation threshold. Another way to reduce excluded volume effects is to reduce the 

number of self-avoiding interactions that any given monomer has. This was studied for a 

variable number of such self-avoiding interactions [17]. These authors estimated the "critical 

value of the hard-core size" as a function of the number of self-avoiding interactions. They 

found that the critical value of the hard-core size was zero for a fully self-avoiding membrane, 

indicating that any non-zero size of particle would stabilize the membrane to  remain flat. 

Theoretical work on tethered membranes yields conflicting predictions about the di- 

mension in which these membranes should crumple. Renormalization-group calculations 

[7, 18, 19, 201 and e-expansions [21] suggest that the flat phase is unstable in d = 3, although 

later work using a gaussian variational approximation [22] indicates that the membranes are 

flat below d = 4. As well, lld-expansion that include self-avoidance also predict that the 

membranes are flat until d = 4 [23]. 

Prior to the work reported here, there were two simulation studies done on membranes 

embedded in dimensions greater than three. The first study found that membranes in 

d = 4,5  were asymptotically flat [lo]. The second study found that membranes were flat 

for d = 4, and crumpled for d 2 5 [24]. The first study was limited to relatively small 

membranes, while the latter used a tethering potential that might cause a rather rigid 

membrane, and hence increase the effective bending ridigity. 

Most computer simulations have been carried out for models in which the interactions 

between particles are short ranged. This is not necessarily the most appropriate model. 

If membranes immersed in solvent behave as polymers do , the type of solvent that the 

membrane is immersed in will have some effect. In analogy to polymers, the monomers of 

membranes immersed in poor solvents are expected to attract at  long distances. Models 

where only nearest neighbours attract are related to experiments on membranes in good 

solvents [25]. As well, most simulations have been done for open topologies. However, 

one recent study done on tethered membranes in the shape of closed spherical shells [26] 

indicated that the membranes remain flat in the sense that R: N, with N particles on 

the shells. 

The rest of this chapter is organized as follows: in the next section I describe the 



model and the general molecular dynamics technique used. In the subsequent two sections 

I describe the results of the simulations in d = 5 and d = 4, respectively. 

2.2 Method and Model 

The technique used to do all the studies reported in this thesis is constant-energy molecular 

dynamics, which is described in detail below. This type of simulation samples points from a 

microcanonical ensemble. Since the microcanonical ensemble has constant volume, energy 

and number of particles, a straighforward way to implement the dynamics is to  integrate 

forward in time Newton's equations of motion. The numerical integration can be done in 

several ways, including predictor-corrector methods and Verlet schemes, [27]. The canonical 

ensemble, where temperature instead of energy is kept constant, can be sampled using 

different molecular dynamics techniques. A direct, but time consuming, method to keep 

the temperature constant is to rescale the velocities every time the equations of motion 

are integrated forward. A more sophisticated way to generate the canonical ensemble is to 

couple the system to a heat bath. One way to implement this coupling is to cause a collision 

between a randomly selected particle and an imaginary heat-bath particle. In practice this 

is done by changing the velocity of the particle to a value chosen from a Maxwell-Boltzmann 

distribution, which causes the system to jump from one constant-energy surface to another. 

A second way to  generate a constant temperature is the Nos6Hoover [28] dynamics scheme, 

which couples the system directly to a heat bath. A new degree of freedom which represents 

the thermal resevoir is included and associated with it is a conjugate momentum which 

relates to the velocities of the real particles, and extra terms are included in the potential 

energy. A comparison of elastic constants generated from traditional molecular dynamics 

and constant temperature molecular dynamics found that both methods efficiently generated 

elastic constants, although the results from the constant-energy calculations more closely 

matched those from Monte Carlo methods [29]. 

In a constant-energy molecular dynamics simulation the classical equations of motion 

are integrated forward in time to produce successive values of the positions and velocities 

of the particles. If U(lr, - r, I )  is the potential describing the interaction between particles 

i and j then the force acting on particle i due to this interaction is 



where 
d d d  

0 r, = - (- - -). 
dxi ' dyi ' dzi 

The total force on particle i is found by summing over all the particles in the system that i 

interacts with, 

Once the initial positions of particles and their velocities are chosen, the system is 

integrated forward in time according to the velocity Verlet [27] method: 

1 
ri (t + 6t) = ri ( t)  + 6tvi ( t )  + ( S t )  2ai ( t )  

1 
vi (t + S t )  = vi ( t )  + -St [ai ( t)  + ai ( t  + St)] 

2  

where f i ( t )  is the total force acting on particle i, and m is its mass. At this stage there are new 

particle positions and velocities, new forces can be calculated, and the whole procedure is 

repeated. In doing the simulation, care must be taken in choosing the integration parameter 

St. If St is chosen to  be too small, a great deal of computer time will be required to  advance 

the positions and velocities of the system to equilibrium values; if it is too large, particles 

will violate the tethering or self-avoiding constraints and energy will not be adequately 

conserved. To find the optimal values I started out with larger values of St, and gradually 

chose smaller ones until the particles no longer violated the constraints of the potential in 

a simulation run. 

In implementing such a scheme the system evolves through phase space. The ergodic 

hypothesis states that an ensemble average is equal to  a time average over a given trajectory, 

but there is no guarantee that a system started from an arbitrary non-equilibrium point in 

phase space will reach an equilibrium state during the length of a simulation, i.e., it is 

possible that the system can be trapped in a subspace of the constant energy surface. To 

avoid this one can do several repetitions with different initial conditions. The system then 

traces different paths through phase space, and, presumably, not all of these paths confine 

the system to a particular region. Furthermore, there must be sufficient time for the system 

to  evolve to equilibrium. Equilibrium is determined by monitoring some representative 

quantity A of the system as a function of time. Since the integration parameter St is small, 



successive values of the positions and velocities of equation (2.16) are highly correlated. If A 

is sampled every few time steps and plotted as a function of the number of time steps, then 

typical behaviour of A is shown in Fig. 2.1: A decays from its initial value to an equilibrium 

value about which it fluctuates normally. The data acquired during the non-equilibrium 

period are discarded when analyzing A. 
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Figure 2.1: Typical behaviour of a system quantity, in this case the largest eigenvalue of the 
inertia tensor of a membrane with a = 1.200 and L = 41. There is a very fast decay of the 
eigenvalue from its initial to its equilibrium value. 

The potential used to describe the particle interactions is similar in form to that used 

in [24]. Nearest neighbours are tethered by the attractive potential, 

which has the virtue that it is not necessary to compute a square root when calculating the 



force between the particles. Self-avoidance is imposed by the repulsive potential 

where the maximum extension of nearest neighbours Ro and the measure of size of each 

particle a are measured in units of a 0  which is a unit of length. 

The membrane is a hexagonal section of a triangular lattice with the number of particles 

N related to the longest diagonal through N = (3L2 + 1)/4. The initial conformation of 

the membrane was a flat, nearly stretched, configuration. Although starting far from the 

equilibrium shape increases the running time, the initial configuration does not determine 

the final shape of the membrane. Numerical studies [lo, 121 have shown that the eventual 

equilibrium shape of the membrane is independent of the initial configuration. The initial 

configurations tested in these studies were flat, collapsed, folded and crumpled. 

As mentioned above, the starting configuration used is a flat, nearly stretched one, and 

the monomers were given random velocities such that the initial temperature 

During the first phase of a run, the velocities were periodically rescaled to this temperature 

to remove some of the effects of the potentially atypical starting configuration. After this 

transient the kinetic energy fluctuated about this mean value. The time step used for the 

integration was 6t = O . O l a o m ,  which is small enough to ensure energy conservation to 

one part in lo4 even for a very long run. The centre of mass velocity and angular momentum 

were set to zero at the beginning of each simulation, and periodically reset to zero during 

long simulations to correct for accumulated numerical roundoff errors. We monitored the 

potential and total energies and the eigenvalues of the moment of inertia tensor, 

every 200-300 time steps. To determine when equilibrium was reached, a time series of the 

eigenvalues was taken. The eigenvalues are expected to decay to their equilibrium values 

and then to oscillate normally about those mean values. Once the equilibrium values were 

believed to have been reached, the autocorrelation function C(t)  was examined. For a 



quantity A, where A is a measurable system quantity such as the radius of gyration, C(t) 

is defined as 

where the angular brackets denote a local time average of the samples. Successive config- 

urations are highly correlated and the autocorrelation function determines the number of 

molecular dynamics steps or, equivalently, the length of time between independent configu- 

rations (Fig. 2.2). 

Figure 2.2: The autocorrelation function C(t) of the largest and smallest eigenvalues of the 
system L = 7, o/oo = 1.0 for a membrane in d = 5. The 'A' symbol corresponds to XI and 
the lo' to X5. 

As mentioned in the introduction, one way to describe the shape of the membrane is 

to determine how the eigenvalues Xj  scale with the linear size of the membrane L, namely 

Xj  N L2Vj. The most straightforward way is to plot X j  = a ~ ~ ~ j  for different system sizes 



and to do a least squares fit to find v j .  This method treats equally the data points from 

membranes of different sizes. The results from larger systems are expected to have smaller 

finite size effects and thus be more representative of the thermodynamic limit. In an attempt 

to minimize some of the finite-size effects, one can calculate the effective exponents, ~ j , ~ f f .  

These are defined as the scaling exponents between two successive values of L, 

Taking Lz > L1, one then plots ~ j , ~ f f  versus L;' and extrapolates to L;' = 0. 

In addition to examining the scaling properties of the eigenvalues, one can look at the 

shape anisotropy. This function is defined as the ratio of the smallest eigenvalue to the 

largest, 

A1 = (Xl/Xd). (2.23) 

The anisotropy reflects the shape in the following way: In the thermodynamic limit, if 

A1 -t 0, then the membrane is flat, since the largest eigenvalue increases at a greater rate 

than the smallest one; otherwise, if the limit is a non-zero constant, then the membrane 

is considered to be crumpled, since both eigenvalues increase at a comparable rate. These 

methods are used to analyze the results for the simulations done in embedding dimensions 

d = 4,5. 

2.3 Five Dimensions 

In d = 5, the parameters used in equations (2.17) and (2.18) were Ro/ao = 1.5, ICO;/E = 4.0, 

a/ao = 0.4 - 1.3 and the simulations were done for system sizes of length L = 7,11,21,41, 

and for the cases of a/ao = 0.4,1.0, L = 71. I will illustrate the methods of extracting 

the scaling exponents for the case of a/ao = 1.0 and will report the results for the other 

parameters. The equilibrium values for the eigenvalues were found from analyzing the time 

series of the data, as described in the previous section. 

For most of the range a/ao and L 5 71 several different computer runs were done. For 

given parameter values, each simulation had different values of initial velocity and some had 

slightly different values of initial position. F'rom each simulation a value of the uncertainty of 

Xi can be found by plotting Xi versus time and doing a least-squares fit to Xi once equilibrium 

is reached. The quoted uncertainties of the eigenvalues are a weighted average of the errors 



found from least squares fit for the different runs. When only one simulation was done, the 

uncertainty of Xi was due solely to the least-squares fit. 

Figure 2.3: Eigenvalues of the moment of inertia tensor as a function of L for u/uo = 1.0 in 
d = 5. The slopes of the straight lines are the scaling exponents 2v. 

To determine the scaling exponents vi, we assume a functional form Xi = aL2Vi and 

do a least-squares fit to find vi. Fig. 2.3 shows a plot of lnXi versus In L. This figure 

provides initial evidence that the membrane is crumpled, since the scaling exponents, which 

are the slopes of straight lines, are roughly equal. A least-squares fit of the data leads to 

the exponents shown in Table 2.1. 

The anisotropy factor A is shown in Fig. 2.4. It is clear from this figure that for large 

L, A tends to a non-zero constant. This means that the largest and smallest eigenvalues 



are increasing at the same rate, indicating that the membrane is crumpled. As well, this 

figure gives some indication of the finite-size effects: The anisotropy of the smallest system 

is significantly different from that of the larger ones. The finite-size effects are emphasized 

by examining the effective exponents, shown in Fig. 2.5. Only the smallest and largest 

eigenvalues are shown, for clarity. This figure suggests that vl and v5 approach the same 

limit as L -+ m. 

Figure 2.4: Anisotropy X 1 / X 5  for a/ao = 1.0 in d = 5. A tends toward a non-zero constant 
for large L. 

The results for the scaling exponents of all the parameters are shown in Table 2.1. The 

results are consistent with a crumpled membrane and vi = v = 0.80 f 0.05 for i = 1.. .5. 

There is no evidence for a flat phase, even when the particle size is almost 90% the size of 

the maximum tether length. This result is in agreement with one previous simulation [24] 

in which it was found that v = 0.85 f 0.05, and with recent analytical calculations [23, 221 



Figure 2.5: The effective exponents of the smallest and largest eigenvalues for a/ao = 1.0 
in d = 5. The remaining exponents are not shown, for clarity. 



that indicate v w 0.8. 

Table 2.1: 2v and a/ao for membranes in d = 5. 

2.4 Four Dimensions 

Two previous studies [lo, 241 of membranes embedded in d = 4 have indicated that mem- 

branes are flat. Both studies used parameters that might lead to fairly stiff membranes and, 

hence, favour the flat phase. We simulated fully self-avoiding membranes with a range of 

particle sizes so as to examine the effects of variable stiffness on the membranes. The model 

and methods of equilibration and analysis of the eigenvalues are the same as described in the 

previous two sections. The parameters used in equations (2.17), (2.18) were: Ro/ao = 4.0, 

k / ~  = 4.0 and a/ao = 0.1,0.2,1.0. Both the parameters of the potential and the range of 

particle sizes lead to  a much more flexible membrane than ones previously studied [24]. The 

sizes of the longest diameter of the membrane were L = 7,11,21,41,71. 

For a/ao = 0.2 a plot of the eigenvalues as a function of membrane size is shown in Fig. 

2.6. Despite some curvature for small size, the plot shows that the two smallest and the two 

largest eigenvalues increase at different rates. The difference in scaling exponents indicates 

that the membrane is not isotropically crumpled but rather is flat. A similar plot for 

a/ao = 1.0 is shown in Fig. 2.7. Again, there is curvature in the data but v3,4 = 0.98 k 0.05 

and vl,2 = 0.81 f 0.05 provide reasonable fits, especially for large L. 

The curvature is emphasized by examining the effective exponents, Fig. 2.8. This plot 

clearly shows the change in exponents with system size. As well, it indicates that extracting 

the scaling exponents by merely doing a linear regression of In(&) and ln(L) may not give 

the correct values for the exponents. Since the regression treats all point equally, it would 



Figure 2.6: The eigenvalues of the moment of inertia tensor as a function of L for a/ao = 0.2 
in d = 4. The eigenvalues are fit to the lines L1.l, L1.6. The error bars are not 
shown but are smaller than the symbol size. 



Figure 2.7: Eigenvalues of the moment of inertia tensor as a function L for o/ao = 1.0 in 
d = 4. As before, the error bars are smaller than the symbol size. The eigenvalues are fit 
to the lines Xl ,2  N L ~ . ~ ~ ,  w L'.'~. 



Figure 2.8: Effective exponents for a/ao = 0.2 in d = 4. The exponents are in two different 
groups. The extrapolated limits are 2 q 2  = 1.6 f 0.1, 2 ~ ~ , ~  = 1.9 f 0.1 



be biased by the smaller system sizes, which are more sensitive to finite size effects. In 

contrast to what happens in d = 5, the larger and smaller effective exponents extrapolate 

to different limits, which suggests that the membrane is in a flat state. 

Further evidence that the membrane is flat is obtained by examining the anisotropy 

parameter A1 in Fig. 2.9. Except for the smallest system there is a clear decrease of A1 

with system size. This again suggests that the largest eigenvalue is increasing at a much 

faster rate than the smallest one, supporting the conclusion that the membrane is flat. 

Figure 2.9: Anisotropy of the membrane in d = 4 for a/ao = 0.2. There is a clear decrease 
of A1 with system size, except for the smallest system L = 7. This is indicative of a flat 
membrane. 

The data for the scaling exponents are summarized in Table 2.2 for the particle diameters 

studied. All the data indicate that the membrane embedded in d = 4 is flat even for very 

small particle diameter. The largest two scaling exponents are clearly different from the 

smallest two, even for a small value of the particle diameter, and this is characteristic of the 



flat phase. This suggests that a bending rigidity proportional to  the amount of excluded 

volume is not responsible for the flat phase but that a non-phantom membrane is always 

flat in d = 4. As mentioned a t  the beginning of this section, two previous studies done on 

membranes embedded in d = 4 found that such membranes were flat. These results are 

in agreement with a more recent theoretical prediction [22] that membranes remain flat for 

d 5 4. 

Table 2.2: The scaling exponents 221 for the different particle sizes a/oo studied in d = 4. 

Although the three cases of particle size studied lead to asymptotically flat membranes, 

this does not mean that particle size has no effect on the calculation of the scaling exponents 

for finite membranes. As can be seen from a comparison of Figs. 2.6 and 2.7, the simulations 

with the value of a/ao = 1.0 attain the thermodynamic value of the scaling exponent a t  

a smaller membrane size L than those of a/ao = 0.2. The observation that the particle 

diameter had a role to play in the simulations provided the motivation to  conduct a study 

of how the size of the particle and the degree of self-avoidance affect the phase of the 

membrane. To this end we adapted a method introduced by Kantor and Kremer [17] where 

the self-avoidance is limited to a fixed distance about each particle. They used this method 

of limited self-avoidance to estimate the size of particle necessary for a transition to an 

apparent crumpled phase in d = 3. This method and the results of simulations done in 

d = 4 are reported in this section. 

As mentioned above, this model restricts the self-avoidance experienced by any given 

particle i. When a hexagonal membrane is stretched the six nearest neighbours of any 

given particle are a fixed distance away. One can characterize the nearest neighbours by 

this distance, or by the number of particles enclosed in the hexagon bounded by these six 

neighboursl, which is n,, = 7. Similarly the 6 next-nearest-neighbours can be characterized 

by their distance away from the central particle, or by the n,, = 13 particles enclosed in 

'Note that the degree of self-avoidance n,, is denoted by n in ref.1171. 

28 



the shape bounded by the next-nearest neighbours, Fig. 2.10. Then, for each particle i 

the repulsive interaction is restricted to a neighbourhood about i characterized by n,,. In 

the thermodynamic limit any membrane would behave as a phantom membrane for fixed 

n,,. The goal of this analysis is to examine how the size of the particle a and the strength 

of the purely local repulsive interaction characterized by n,, determine the point at which 

crossover to  the large L limit sets in. In particular, it is known that for a = 0 or equivalently 

n = 1 the membrane behaves as a phantom, that is, Rg - d m .  Conversely, for a fully 

self-avoiding membrane and a relatively large value of a all the simulation evidence indicates 

that the membrane is flat Rg - L. 

The parameter values in equations (2.17) and (2.18) were: a/ao = 0.1,1.0,2.0,3.0, 

l c / ~  = 4 and Ro/ao = 4. The range of self-avoidance measured by n,, is 7 5 n,, 5 91. The 

linear sizes of the membranes were L = 7,11,21,41. The equilibration and determination 

of the eigenvalues and scaling exponents were the same as described in previous sections. 

For each value of a/ao the membranes behaved as phantom membranes for small n,, 

and as flat membranes for large n,,, Fig. 2.11. For intermediate values of n,, the largest 

two scaling exponents u3,4 < 1, but they were clearly different from the smallest exponents 

and increased with increasing n,,. For a given value of a/ao and size L, Rg increased with 

increasing n,,. In order to obtain a relationship between c/oo, n and the crossover point 

a critical diameter a,(n,,(c)) was defined. In our analysis a,(n,,(c)) is the value of a and 

n,, such that for n,, < n,,(c) the membrane is phantom in the sense that R, <  LO.^, and 

for n,, > n,,(c) Rg - LV, with u > 0.5. This criterion does not distinguish an isotropically 

crumpled phase from a flat phase. A plot a,(n,,) versus n,, is shown in Fig. 2.12. This 

plot shows that as n,, increases the value of a/ao needed to make the membrane phantom 

decreases. One cannot draw any firm conclusion from this analysis, other than that the rate 

of decrease of a/ao is rapid, and an extrapolated limit of a/ao w 0 for n,, + oo, indicating 

that the membrane may be flat for any non-zero value of a /ao.  As well, it should be noted 

that, for intermediate values of n,,, no isotropically crumpled phase was found: As the value 

of n,, was increased the membrane changed from a phantom-crumpled phase to a phase 

where u3,4 > U I , ~ .  There was no range of n,, for which the four scaling exponents were 

equal. This data seems to suggest that there is no isotropically crumpled phase in d = 4 

even for small but finite particle size. 



Figure 2.10: For the central particle, the solid particles are nearest neighbours n,, = 7, the 
horizontally striped particles next-nearest-neighbhours n,, = 13, and the vertically striped 
particles are the third nearest neighbours n,, = 19. 



Figure 2.11: Variation of R: with the degree of self-avoidance n,,. The upper plot shows 
the typical behaviour of the membrane with n,, = 91, the curve is a power-law with scaling 
exponent v = 0.8. The lower curve is typical of phantom membranes: R: ln(L), n,, = 13. 
Both curves are for a/ao = 1. 



Figure 2.12: The variation of a,/ao with n,,. 



2.5 Conclusions 

Extensive molecular dynamics simulations on tethered membranes in d = 4 and d = 5 

have been done [30]. In d = 5 it was found that regardless of the size of the monomer the 

membrane is always crumpled with Rg .v LV, with v = 0.80 f 0.05. There was no evidence 

to suggest that the membranes would be flat, even for very large hard-core repulsion. 

In d = 4 a study was done on the relationship between the degree of self-avoidance, the 

size of the monomer, and the thermodynamic phase. For the sizes of monomer studied, the 

membrane was always flat with a large degree of self-avoidance, Rg N L. For a membrane 

with only partial self-avoidance, a parameter that determines the crossover from phantom 

to flat behaviour was calculated. Extrapolating to the thermodynamic limit indicates that 

all membranes in d = 4 will be flat, regardless of the size of hard-core repulsion. Both the 

four- and five-dimensional results are consistent with the predictions of recent analytical 

work [22, 231. 



Chapter 3 

Theory of Polymer Networks 

3.1 Introduction 

The vulcanization of rubber is a transition from a liquid to a solid of a dense melt of linear 

polymers. It  occurs when chemical bonds which create links between monomers that were 

not previously attached to one another are added to the melt. The bonds or crosslinks are 

generally created by the addition of chemical agents, typically sulphur, or by using ionizing 

radiation to, for example, a melt of polyisoprene. In either case the effect is to link two 

randomly chosen monomers in a permanent way. This means that there is no restriction 

placed on whether the monomers belong to different polymers. The crosslinks are not truly 

permanent but the bonds are usually as strong as the intrapolymer bonds that link one 

monomer to the next along the polymer and are not broken by thermal fluctuations. The 

crosslinks have the same effect as the intrapolymer bonds in that crosslinked monomers are 

constrained to be close to each other, although the pair can move about in the system. 

The addition of a small number of crosslinks to a melt of polymers creates clusters of 

different sizes but does not solidify the system. The system as a whole still behaves as a 

liquid with finite viscosity and no shear modulus. As more crosslinks are added the clusters 

become larger and eventually most polymers are connected to one large cluster. At this 

extreme the system acts like a solid with an infinite viscosity and a finite shear modulus. 

This transition as a function of the number of crosslinks occurs even if not all polymers are 

attached to the large cluster. 

The rest of this chapter is as follows: I will review the classical theory of vulcanization 

in the next section. Then I will discuss a new theory of vulcanization incorporating replica 



methods. 

3.2 Classical Theory 

The classical theory of vulcanization [31] is based on a 'tree' approximation, Fig. 3.1. Each 

monomer is assumed to have the same number of potential links zt. Closed loops are not 

allowed to  form, only new branches can emanate from the tree. The branches occur freely, 

never limited in their growth by the presence of other branches, which means that excluded 

volume effects are ignored. This model is precisely percolation on a Bethe lattice and is a t  

the level of a mean field theory. An important assumption in this theory is that percolation 

coincides with the acquisition of a non-zero shear modulus or rigidity. Thus, to find when 

the liquid-solid transition occurs as a function of the number of crosslinks, it suffices to  find 

when the system percolates. 

Figure 3.1: The tree approximation where each monomer has zt = 3 neighbours. 

Each vertex on the tree is occupied by a monomer, but the bonds between neighbouring 

monomers are formed with a probability p. For small p there are a large number of small 

clusters, but for large enough p there will be a single cluster spanning the entire network 



and a few unconnected small clusters. This value is known as the percolation probability 

p,, and as stated above it is assumed that solidification coincides with p,. 

The derivation of the percolation probability follows that of Essam 1321. To find p, 

we assume that neighbouring monomers in the tree are linked with probability p. The 

probability of no bond is 1 - p. The probability that a walk from a chosen vertex is infinite 

is P, and the probability that the walk from a chosen vertex is finite is P = 1 - 13. The 

probability that the walk in a given direction is finite is denoted by Q .  It is evident that 

P = Qzt and thus P = 1 - QZt. Therefore Q satisfies the following equation 

This recurrence relationship is straightforward: starting from a particular monomer either 

there is no bond with the next monomer in a given direction with probability 1 - p ,  or there 

is a bond with probability p but the walk terminates with probability Qzt-l.  This equation 

always has the solution Q = 1 which corresponds to no spanning cluster, which is true for 

small p. As p becomes large another solution emerges continuously from Q = 1. In general 

there are zt - 1 solutions to this equation but the one describing the infinite cluster is the 

one that emerges continuously from Q = 1. 

To solve (3.1) the equation is rewritten as A = 1 - p  +pQzt-l - Q. The implicit function 

theorem 1331 can now be applied. It states that if a A / a Q  # 0 at a point (Qo ,  po) then there 

is a unique solution for Q(p) .  Since we are looking for a second solution we set d A / d Q  = 0. 

and p, = l / ( z t  - 1) where Q = 1. To examine the behaviour just above the critical point 

p > p,, we can do a Taylor expansion of A around & = 1. Keeping only the first two terms, 

we get 

Then the probability of an infinite walk is 



Thus P increases linearly with p,/p near the transition, so P - (1 - p,/p)l. Other critical 

exponents are [31]: the 'gel7 fraction i.e., the fraction of monomers belonging to the infinite 

cluster S - (1 - the correlation length f - (1 - p,/p)-1/2; the shear modulus 

E - (1 - pc/p)3. An important aspect of this theory is that the number of potential 

neighbours zt increases with the length of the polymer. 

Although these results are based on mean field theory, deGennes [34] argued that the 

classical exponents should be valid everywhere except in a narrow range around p,. For a 

value of p is just above threshold p > p,, he examined the fluctuations of the gel fraction 

6 s  in a volume of size i3, which is large compared to the size of a monomer. In this volume 

there are a total of ST monomers, where ST = ci3 and c is the concentration. Of this 

total, the number of monomers belonging to the infinite cluster (gel fraction) is SG, and 

the remainder SF belong to finite-sized clusters. In terms of the gel fraction S, the number 

of monomers in the gel fraction can be written SF = S - ST. The fluctuation of the total 

number of monomers in this volume is negligible, and so the fluctuations of the number 

of monomers in the infinite and finite clusters are related by SSG + SSF = 0. If the SF 

are found in clusters of average size Z,, then we use a Ginzburg criterion to estimate the 

fluctuations of SF and find ( 6 s ~ ) ~  - SF&. Since the percolation probability is just above 

the critical value, very few of the monomers in the volume belong to the infinite cluster, 

and SF w ST. The relative importance of the fluctuations of the infinite cluster is denoted 

Using the classical values of the scaling exponents, deGennes found that X N ~ - l / ~ ( p , / ( p -  

P , ) ) ~ / ~ ,  where M is the length of the polymer. For small X the fluctuations are small and so 

the classical exponents are valid. The classical exponents no longer apply when X is large 

which occurs when p - pc N p c ~ - l I 3 .  For example, if the system is composed of polymers 

of size M = 1000 units, the classical exponents are valid everywhere except when p - 1 . 1 ~ ~ .  

The shear modulus E is not proportional to the gel fraction, because the gel fraction 

includes many dangling ends, which do not contribute to the shear modulus. If the dangling 

ends are removed from the system the remaining chains are said to be elastically active, 

because they form the backbone of the spanning cluster and are thought to give rise to the 



shear modulus. De Gennes [35] argued that the conduction of random resistors is analogous 

to the elasticity and, by using this analogy he derived the scaling law for the shear modulus. 

He based his calculation on the number of active network chains per monomer and derived 

the elasticity as a function of this number. This yields the result E - ( p  - pt)Pt  with 

pt = 1.7, a number that is known from computer simulations of random resistor networks, 

and pt denotes the critical probability for rigidity. As pointed out by Feng and Sen [36], 

DeGennes' argument strictly holds only if the potential between the neighbours on a lattice 

is "separable", for example, a Hookean spring U ( r i j )  = l/2r;(ri - r j ) 2 .  For more general 

central force fields it is not possible to map the force balance equations onto Kirchoffs 

laws for circuits. Besides calling into question the connection between the exponents of 

the resistor network and the rigidity, Feng and Sen also raised the issue of whether or not 

rigidity sets in at the percolation threshold. Indeed, computer simulations indicate that in 

general rigidity does not set in at the percolation concentration but rather at a separate, 

larger rigidity percolation concentration for both triangular and fcc lattices with central 

forces between the particles [36, 37, 381. An explanation for this is that although a single 

line of connected bonds can carry all the current in the random resistor, more connections 

need to be made for rigidity to occur. 

Although the tree theory provides a good starting point for an understanding of the 

vulcanization transition, it is not descriptive of the experimental process. The simplifying 

assumptions of no loops and no self-avoidance are unrealistic. Finally, it is not a theory 

that lends itself to calculating a partition function or thermal averages. 

3.3 Replica Theory of Vulcanization 

Building on the work of Deam and Edwards [40], Goldbart et al. [39] have devised a mean 

field theory of vulcanization from microscopic principles. In their theory, as the density n 

of crosslinks in a melt of polymers is increased beyond some critical density n,, there is a 

second-order transition from a liquid to an amorphous solid. This theory merges the spin- 

glass techniques of Edwards and Anderson with the polymer theory of Deam and Edwards. It  

attempts to reproduce the experimental situation more accurately than the classical theory. 

In the liquid state all the monomers may explore any position in the system, whereas in the 

amorphous solid state it is expected that a non-zero fraction of the monomers are localized 

about positions that are randomly distributed in the volume occupied by the solid. The 



fraction of localized monomers depends on the number of crosslinks. 

The crosslinks act as quenched random variables, analogous to the random exchange 

interactions of spin glasses. That they are quenched variables means that the system cannot 

change the monomers chosen for the crosslinks or the polymers they link in order to reduce 

the free energy. The set of pairs of linked monomers alone is not sufficient to  describe 

the new state of the system. Polymers are not able to pass through each other and so 

merely listing the linked monomers does not completely characterize the topology. Fig. 3.2 

illustrates this: the monomers linked in (a) and (b) are identical, yet the resulting topology 

is quite different. Not only do the crosslinks restrict the phase space available to the system, 

but so does the particular topology. There can be two systems of identical crosslinks, but 

different topologies that are mutually inaccessible in phase space. The complications due to 

the different topologies will not be dealt with in the analytic theory as there is at  present no 

means to incorporate this into the semi-microscopic treatment presented here. An inherent 

feature of the incorporation of crosslinks is broken ergodicity. Different sets of crosslinks 

restrict the evolution of the system in configuration space. The configuration space that is 

accessible to the system as a liquid is broken into disjoint regions once the crosslinks are 

imposed. 

Figure 3.2: As this picture shows, merely knowing the position of the links isn't sufficient 
to determine the topology of the system. 



The aim of this section is to give an overview of the methods that Goldbart e t  a1 used in 

their calculations. Details of the calculations and the work which do not directly relate to 

the simulations discussed in the next chapter are not included. The order parameter that 

distinguishes liquid from solid, the fraction of localized monomers, and the distribution of 

localization lengths in the solid state are the main points of interest. 

The general scheme of the method used by Goldbart e t  al. is as follows. Initially a Hamil- 

tonian that describes the polymer melt is defined. This Hamiltonian is used to construct the 

partition function of the crosslinked system. The partition function is used in turn to define 

the probability of a particular realization of crosslinks. Before the statistical mechanics is 

tackled, an order parameter is defined. This order parameter is capable of distinguishing 

three different states: liquid, crystalline and amorphous solid. It is a straightforward quan- 

tity depending only on how the monomers are localized. A more detailed order parameter 

can be defined which utilizes only the fraction of localized monomers and the distribution 

of localization lengths. The statistical mechanics focuses mainly on calculating the free en- 

ergy. Firstly the quenched random variables are eliminated using the replica method. The 

price for this elimination is the introduction of an effective coupling between the replicated 

polymers. The replicated polymers are treated in a field-theoretic description by the intro- 

duction of stochastic fields. The polymers interact indirectly at this point - only through 

the fields. The average of the free energy is approximated in a mean-field way using the 

saddle point method. Within this approximation the free energy is found to have only a 

single solution below a critical density of crosslinks. This describes the liquid state. At the 

critical density of crosslinks a second solution continuously emerges - that of amorphous 

solid. The probability distribution of localization lengths is found within this saddle point 

approximation. 

Model 

The model of the polymer melt consists of N identical polymers in a cubical volume V. 

Each of the polymers is characterized by a length Lp and persistence length 1, so that the 

effective number of independent segments on each polymer is Lp/l >> 1. A version of the 

Edward's Hamiltonian is used to describe this melt: 

In this equation x  labels the distance of a monomer from one end of the polymer, R i ( x )  = R, 

is the position of the monomer at x  of polymer i in d-dimensional space. v is the excluded 



r 

! volume parameter and i, i' are polymer labels. The 6-function in the excluded volume part 
k is understood to be a d-dimensional &function. Using this Hamiltonian, expectation values 

are defined in the usual way, 

where A is an arbitrary function. 

If M  crosslinks are simultaneously and instantaneously imposed, the partition function 

of that crosslinked system relative to that of the melt is 

The 6-function implements the crosslinks: the e-crosslink constrains monomer x of polymer i 

to  be at  the same place as monomer x' of polymer 2 ' .  Defining the partition function relative 

to that of the melt means that the free energy calculated from this partition function is the 

increase of free energy due to the crosslinks. This partition function, as defined, is not the 

true partition function. In the melt there are N  indistinguishable polymers, leading to a 

factor of N !  in the partition function describing the melt. This is no longer true once the 

crosslinks are imposed. The numerical factor required for the crosslinked system involves 

the product of the factorials of the number of all the segments of identical chain length. 

Since the difference between (3.7) and the true partition function is merely a numerical 

factor it only adds a constant to the calculation of the free energy and is not relevant to  the 

ideas presented below. 

The partition function is defined for one particular realization of crosslinks. It  is of 

greater interest to develop a method that predicts typical properties of vulcanized systems, 

instead of the properties of one given crosslink distribution. To do this a probability distri- 

bution that assigns a sensible statistical weight to each possible realization of M is required. 

This distribution of crosslinks is due to Deam and Edwards [40], 

where p2 is a parameter that controls the crosslink density. The average density of crosslinks 

M / N  is a smooth, increasing function of p2[M/N] .  In principle it is possible t o  calculate p2 

from this equation, but it is sufficient to know that p2 is a monotonically increasing function 

of M I N .  It  is important to note that the probability distribution for the crosslinks M  is 



itself dependent upon the partition function and hence the polymer melt so the correlations 

of this probability distribution incorporate the correlations of the melt itself. In particular, 

different realizations of crosslinks only acquire an appreciable statistical weight if they are 

compatible with a reasonably probable configuration of the liquid. 

Order Parameter 

For a specific crosslink realization one can define the quantity, 

where k1,2 are non-zero k-space vectors and < eik'R~(x) > is the Fourier transform of the 

static density < 6(r-Rj(x)) >. Furthermore, if a given monomer is localized near a position 

bj, then 
( ,ik.RJ ( X I  ) = eik'b~p(k), (3.10) 

where p(k) is the Fourier transform of the density profile of a monomer localized near the 

origin. To see that this order parameter distinguishes liquid, amorphous and crystalline 

solid, we examine how the order parameter behaves in the different cases. 

For a liquid no monomer is localized about a particular position in the system. That 

is, each monomer is free to explore the entire configuration space so that each monomer is 

localized, but only within the volume of the system. The density is 

1 
( 6(r - Rj (x))) -. v (3.11) 

The only term that survives in the Fourier transform is the k = 0 term, and 

Therefore, for a liquid q = 0, unless both kl and k2 are zero. For a solid 

In a crystal the mean positions of the particles b j  are periodically spaced and q is non- 

zero when kl + k2 E G ,  where G is the reciprocal lattice. For an amorphous solid, where 

the particles are localized but their positions are randomly distributed through the system 

the order parameter is non-zero only when kl + k2 = 0. Even if not all the particles are 

localized, this is an effective order parameter: In that case the only non-zero contributions 



come from the localized particles; the delocalized particles contribute nothing to  the sum. 

Thus, knowing for which values of k q is non-zero, we can distinguish between liquid, crystal 

and amorphous solid. 

A more sophisticated measure of the degree of localization is found, if we assume that 

Q monomers are localized about their mean positions and (1 - Q) monomers are delocal- 

ized. Furthermore, we assume that each localized monomer is characterized by a Gaussian 

distribution about its mean position. In this case the localization length J is easily defined. 

The square of the localization length is J2 = J: + ,!$ + Jz, where is the variance of the 

distribution of positions in the x direction. The inverse of the square of the localization 

length1 is C = 1/J2. The order parameter can be written 

where P(<)  is the distribution of inverse-square localization lengths. Note that this distri- 

bution explicitly excludes all delocalized monomers. 

Free Energy 

The evaluation of the free energy proceeds in a manner similar to  that for spin-glasses. 

The probability distribution (3.8) is summed over the quenched random variables to give 

the total free energy. If f is the free energy, then 

where f (M)  is the free energy and Z(M),  the partition function of a system with M 

crosslinks. To evaluate this we use the standard replica trick: ln(Z) = limn,o(Zn - l ) / n .  

We will concentrate on the factor EM PMZn. Then 

Using dimensionless variables, s = x/l and c = R/&, and suppressing the arguments 

of ci(s) = ci and cit(s) = cit, the n + 1 factors of Z can written as: 

'Note that the inverse square localization length C is denoted by T in ref.1391. 



where the n +  1 factors of the partition function have been written in terms of a new variable 

ca, where a ranges over (0, . . . , n). Each element of ca is a different replica of the position 

vector c. Using (3.17), the sum over M in (3.16) is now seen to be the expansion of an 

exponential: 

The numerator and denominator of this expression contain similar expressions, the difference 

being that the numerator contains an interaction (via product and sum) of the replicated 

position variables ca, whereas the denominator contains a single (i.e., non-replicated) vari- 

able c.  We recognize that this expression can be written as: e-n4/e-n40, where 40 indicates 

that the expression does not include any replicas. If e-n4/e-n40 = EM PMZn, then 

f = - lim (x pMzn - l ) / n  
7 2 4 0  

M 

= - lim 
1 - n(4  - 40) + 0 ( n 2 )  - 1 

n 4 0  n 

= (4-40) .  

This allows us to focus on the factor ePn4 i.e., the numerator of (3.18), to  find the free 

energy. 

At this stage we have managed to write the products of Z in terms of a new variable 

ca. As well, we have removed the explicit interaction of the quenched variables which has 

reappeared as an exponential of products of 6-functions of the new variable ca. Note that 

in this case all the replicas interact simultaneously (sum over all the replicas), whereas in 

spin glass models the replicas interact pairwise. 



The next step in this process is to write the 6-functions in terms of their Fourier trans- 

forms. The following identity is useful: 

where k = {ko, kl, . . . , kn). The sum over k ranges over all possible values of each of the 

vectors k". We now define the function 

and apply these results to the 6-functions that appear in (3.18). The result is 

The free energy can now be written as 

The sum over pairs of polymers has been eliminated at the expense of the introduction of 

a new variable Qk, which implicitly sums over all polymers. The sum over all the polymers 

is eliminated by again introducing a new variable z. The following identity is useful 

where z* is the complex conjugate of z, and a is a constant. 

An integral of this type is included for each factor of Qk. If Dz is defined so that 



then (3.21) becomes 

Now the N replicated polymers have been decoupled: There is only the sum over all the 

polymers, implicit in the factor Qk. This sum is eliminated by use of the following identity 

[411 
( E l  i = ,Nln( exP Me))) , (3.25) 

where g is an arbitrary function of the monomer position ci7 and c is the position of a single 

monomer. Applying (3.25) to Qi of (%%I), we get 

where 

A mean-field approximation is now made. This is done by replacing the functional 

integral of (3.24) by the value of the integrand which is stationary with respect to variations 

of zh. Fluctuations and correlations of the fields zh are ignored. One consequence of this is 

that the excluded-volume parameter does not appear explicitly in any of the equations, but is 

implicit through the expectation values. Treating the fluctuations and the excluded volume 

properly means that the tendency for molecules to avoid each other would be incorporated 

and, thus, the topologically distinct character of the quenched random variables would be 

described. 

The value of zk which makes (3.24) stationary is 

where Q is the fraction of localized monomers. 

A variational free energy is defined as 

f = lim 4, = min f var. 
n--+o Q , P ( ~ )  

If the density of crosslinks is just above the transition value, then we can write p2 = 1 + ~ / 3  

with E a parameter that is small. One result of the stationarity condition is that Q = 2 ~ 1 3 .  

This allows the replacement of both parameters p2 and Q by functions of E. Now we can 



focus on how fvar depends on the distribution of localization lengths p(C). The following 

assumptions are made: only crosslink densities in the vicinity of the transition will be 

considered, i.e., E << 1, with T of order E. Since the inverse square localization lengths C are 

small, this means that the localization lengths J = 1/f i  are large compared to the size of 

a free polymer. 

These assumptions and substitutions are used and the integrals in (3.27) are performed. 

The resultant equation is Laplace transformed and then fvar is made stationary with respect 

to @((), which is the Laplace transform of p(C). The result is a differential equation for @((), 

To solve this nonlinear differential equation, it is easier to rewrite (3.30) in terms of scaled 

variables: 19 = 2</& and ~ ( 6 )  = &p(C). This replacement allows both variables E and C to be 

combined into a single scaled variable 19. The differential equation satisfied by +(8), which 

is the Laplace transform of ~(19), becomes 

No analytic solution has been found to this equation. Instead the inverse Laplace transform 

is taken to obtain the equation, 

subject to the normalization Jp d19~(19) = 1. This equation can be solved numerically, but 

the asymptotic properties can be found analytically. For 19 << 1 we find ~ ( 1 9 )  - 6-2e-2/0 

by neglecting the the second term in (3.32). When 19 >> 1 we solve (3.31) approximately 

near the value of 8 at which .ir diverges. The inverse Laplace transform is taken and the 

asymptotic form ~ ( 1 9 )  N (19 - 3/5)e-' is obtained. The distribution of scaled localization 

lengths can be found numerically from the solution of (3.32) and is shown in Fig. 3.3. In 

this graph the localization length J is scaled by the value of the average localization length 
- 
J. There is a single maximum of the scaled localization length which can be associated with 

the most probable value of the localization lengths Jtyp. 

As a final note it should be added that some of the density fluctuations have been taken 

into consideration. The effect of the 1-replica sector gaussian density fluctuations is to 



Figure 3.3: The distribution of scaled localization lengths J/? is shown. 



of the fraction of localized monomers Q and the crosslink density at the transition (p2 = 1) 

are unchanged. The distribution of localization lengths is changed by the renormalization 

of the factor E' = &/(I + E).  This renormalization is finite and does not change the form of 

the scaling function. 

In summary, the liquid to solid transition of a system of randomly crosslinked polymers 

occurs when the density of crosslinks M / N  exceeds a critical value. The critical value 

corresponds to p2 N 1, or about one crosslink per polymer. The solid state can be described 

by a fraction of localized monomers or gel fraction Q. The gel fraction grows with a classical 

exponent p = 1 or Q N p2 - 1. The solid state is also characterized by a statistical 

distribution of localization lengths. In the vicinity of the transition this distribution can 

be rewritten in terms of scaled variables 4 6 ) ,  valid for all near-critical crosslink densities. 

Since this distribution has a single maximum, one can define a typical localization length, 

ttyp. This length obeys the scaling relation byp N (p2 - 1)-'12. 



Chapter 4 

Localization and Ergodicity 

Breaking 

The main focus of this chapter is a set of simulations of the vulcanization transition based 

on the theory presented in Chapter 3. The starting point of the simulations is a well 

equilibrated polymer melt, and this chapter begins by a description of various properties of 

such melts. I then discuss the microscopic model used in the study of this transition before 

describing the results for the order parameter and the distribution of localization lengths. 

As well, the issue of broken ergodicity is discussed, and I present evidence that, at least 

according to one criterion, ergodicity is not broken in these systems except when crosslinks 

are imposed. 

4.1 Properties of Polymer Melts 

There is a significant body of work pertaining to various properties of polymer melts and 

vulcanized rubber. In this section I will describe various properties of the polymer melts 

that the simulations were based on, since an equilibrated polymer melt is the basis for 

vulcanization. 

A dense melt of linear polymers is ideal in the sense that the polymers obey random walk 

statistics for the end-to-end vector and for the radius of gyration, as discussed in Chapter 

1. The dynamics of polymers are typically described in terms of the Rouse and reptation 

models which are discussed in turn. The Rouse model neglects entanglements. It  is useful 



for describing the dynamics on short timescales when topological constraints are not felt, or 

for short polymers where entanglements do not play a dominant role. The model consists 

of a Gaussian polymer which experiences a local viscosity. Each monomer on the polymer 

is described as a bead connected by springs to its neighbours. The rest of the polymers and 

solvent are modelled as random thermal noise, so that the monomers of the test polymer feel 

a random force of zero average. The Rouse model is useful when the polymer is making small 

enough displacements so that the rest of the monomers in the melt can be characterized by 

a local viscosity. 

When the length M of the polymer exceeds some length Me for a given density, then 

the polymer is likely to become intertwined with other polymers. These other polymers 

prevent Brownian motion of the centre of mass that the Rouse model describes. In the 

reptation model, the monomers not belonging to the test polymer are pictured as being 

fixed constraints, Fig. 4.1. The test polymer then moves along its own contour where the 

shape of this contour is determined by the positions of the surrounding polymers. If the 

polymer were to move perpendicular to its contour many other polymers would have to be 

displaced at a tremendous cost in energy. While this is a more sophisticated model than 

the Rouse model it does not take into consideration that the background chains themselves 

are moving so that on a long enough time scale the constraints are not fixed but continually 

reform. One limitation of both models is that they are single chain models, where a test 

chain moves through an idealized background. 

The most comprehensive computer simulation of dense melts of which I am aware was 

done by Kremer and Grest [42]. They had a large range of number of monomers per polymer 

5 5 M 5 400. The model they used is described in the next section. One quantity of interest 

is the entanglement length Me which roughly corresponds to the number of monomers per 

chain necessary to achieve a sufficiently entangled system that reptation dynamics apply. 

They used two methods to estimate Me. A direct method involves monitoring the motion of 

the centre of mass of each polymer RCM. In the Rouse picture the mean square displacement 

of RCM from its original position ( RcM(t)  - ~ ~ ~ ( 0 ) ) ~  follows the standard t 1 I 2  law of 

diffusion. In the reptation model the dynamics are slowed down because the entanglements 

limit the motion and ( R~~ ( t )  - R~~ ( o ) ) ~  follows a characteristic t1I4 law. By noting which 

length of chain reached the t 1 I 4  regime they were able to estimate that the entanglement 

length was Me rn 35 monomers. This estimate was consistent for all chains 50 5 M 5 200. 

A second estimate of the entanglement length can be deduced from an 'effective' shear 



Figure 4.1: A model of the chain in the reptation mode. A single chain encounters fixed 
constraints which are the other polymers in the melt, modelled here by thick dots. 

modulus, the plateau modulus Go1. The characteristic decay of Go for viscoelastic materials 

differentiates Rouse dynamics from reptation, and based on this an estimate of 20 < Me < 60 

was obtained. They concluded that Me = 35 is a reasonable estimate of the entanglement 

length for their system of polymers. This number is noted here, since our simulations use 

the same model for polymers and the same density of melt. 

While polymer melts are relatively well understood there are no models for the dynamics 

of vulcanized melts. The hypothesis of Goldbart et al. [39] is that there are a certain fraction 

of monomers Q that will be localized about mean positions and 1 - Q delocalized monomers. 

On very short time scales each segment of chain between crosslinks probably behaves as a 

Rouse chain, feeling just random noise from the rest of the polymers. On longer timescales 

it is possible that the crosslinks act as fixed constraints envisioned by the reptation picture, 

except that reptation is also inhibited. 

re or a polymeric liquid the shear modulus eventually decays to zero, as for a typical fluid. However, 
because the entanglements in a melt of polymers can act as constraints, the time to reach Go = 0 is 
characteristic of the polymeric liquid and is different for the Rouse and reptation models [2, 441. 



4.2 Microscopic Model 

As before, we denote the number of polymers by N and the number of monomers per chain 

by M. The systems studied were M = 10 monomers on N = 25,100 chains, M = 20 

monomers on N = 30,100 chains and one larger system with M = 50, N = 60. The 

potential describing the interaction between the monomers is similar to that used in Ch.2. 

Successive monomers on the chain were tethered by the attractive potential, 

Self-avoidance was imposed by the repulsive potential, 

which acted between all monomers. The parameters chosen for this simulation were Ro = 

1 .Soo as the maximum extension of tethered particles, the 'size' of each particle is a = 1 .Offo, 

where ao is the basic unit of length, and the strength of the potential was k = 30.06. These 

parameters are the same as those used in the simulations of Kremer and Grest [42] and do 

not allow chains to pass through each other. 

The simulations were constant energy molecular dynamics with the equations of motion 

integrated forward in time with a standard velocity Verlet algorithm, as was described 

previously. The time step was chosen to be 6t  = O.Olao ,h+ which was sufficient to keep 

the energy constant to one part in lo4 for the length of a run and at average temperature of 

kBT = 6. To achieve the proper density of the melt, the chains are initially placed in a very 

large cubical box which is slowly compressed until the density of N~;/V = 0.85 is reached, 

where N = N M is the total number of particles, and V is the volume of the box. The 

melts were further equilibrated for up to 1.2 x lo7 integration steps. For these parameters 

there are data available with which to compare the properties of the melts. Quantities such 

as the end-to-end distance of the polymer, the radius of gyration and the eigenvalues of the 

moment of inertia tensor were consistent with expected values [42, 451 (see Table 4.1). 

Once the melts were sufficiently equilibrated, crosslinks were imposed between monomers 

in the following manner. A monomer was chosen at random, and all monomers within a 

radius of r, = 1.25ao were enumerated. This radius is roughly the persistence length of the 



Table 4.1: A table of the values of some polymer properties of the melt in units of 08. The 
starred data (*) is from [42]. A previous simulation [45] of very long random walks has given 
the ratio of eigenvalues as 1.0 : 2.69 : 11.80. 

systems, calculated using R,!e = (U~)~Z;(M - I), where (ao) is the average distance between 

successive monomers on a polymer. A monomer at random was chosen from this list and 

the link was made by enforcing the attractive potential (4.1). A link was not allowed if there 

already existed a link between the two chosen monomers, which could arise from previous 

crosslinking or if the two particles were successive monomers in a chain. This procedure was 

repeated until the desired number of crosslinks had been attained. The crosslinks formed 

in this way are identical in all respects to the binding of nearest neighbours. The number 

of crosslinks per particle was in principle restricted to be less than or equal to six, but in 

practice this restriction did not come into effect. Even in the heavily crosslinked regime a 

particle rarely had more than two links, excluding links to  nearest neighbours. This method 

of crosslinking is most similar to irradiation crosslinking, where the crosslinks are formed 

rapidly. 

The method described above is adapted from studies done by Grest and Kremer [46,47]. 

These are the only previous studies of which I am aware that have considered fully self 

avoiding dense melts with randomly crosslinked monomers. Using a melt of similar density 

p = 0.85/0; they added random crosslinks in the manner described above. They did a 

thorough investigation of the crosslinked melt and found that, if they imposed a density of 

crosslinks n = nd/N on the melt, where n,l is the number of crosslinks then the resulting 

distribution of crosslinks per chain is normal. The distribution is centred on the average 

number of crosslinks per chain and becomes more symmetric as the number of crosslinks 

increases. This result, although not surprising, indicates that the crosslinking procedure is 

reasonable. They found that the strand length, that is, the number of monomers between 



crosslinks on a polymer, follows an exponential curve when plotted as a function of n. This 

distribution of lengths holds for a large range of crosslink densities but can only be defined 

on a given polymer when there are at least two crosslinks. The above results were found 

to be insensitive to the radius r, used when making the crosslinks. These properties of 

the crosslinked melt were also found to hold when the density of the melt was reduced 

to p = 0.40/ag, or when the analysis was done on a system of random walks of density 

p = 0.85/0:. They also did a study on the percolation probability of the melt [47]. In this 

study they found that the density of crosslinks required to make one cluster percolate from 

one side of the box to the other was p, = 0.77. This number decreased to p, = 0.60 when 

they allowed only different polymers to link. The percolation probability was calculated 

for our melts. We found for the systems of N = 100 polymers and M = 10,20 monomers 

per polymer p, = 0.7, and for a system of N = 60 polymers and M = 50 monomers per 

polymer p, = 0.75. These figures are only rough estimates, as the systems studied are too 

small to arrive at precise estimates of p,. Nevertheless, classical exponents were found for 

the increase in cluster size with crosslink probability, Fig. 4.2. 

4.3 Order Parameter 

After the imposition of crosslinks the order parameter was calculated as follows. The average 

temperature was raised from T = €/kB to between 4e/kB and 6c/kB. Although a smaller 

time step of S t  = . 0 0 6 a o f l  was required to guarantee energy conservation, the sampling 

of configuration space was speeded up. From (3.9) the order parameter can be written as 

where Rj is the position vector of the j-th monomer and kl = -k2 for an amorphous solid. 

We can define a value of q for each particle j in the system, so that q = C j  qj. Then the 

equation for qj becomes 



Figure 4.2: The average size of the clusters SF excluding the largest one. The slope of the 
line is -0.95 consistent with the classical exponent y = -1. 



where the smallest k-vector k = 27r (l/L,, l /Ly,  l/L,) appropriate to the box size was used. 

During the simulation the value of qj was recorded as a function of time, 

where Rj (t) is the position of the j-th monomer at  time t. By construction qj (t, = 1) = 1 

and so qj(t,) decreases as a function of time (Fig. 4.3). At each time step the terms 

cos(k. Rj) and sin(k Rj) were recorded for each monomer j. The value of q(t,) was found 

by periodically summing all the values for qj(t,). The simulations ran for a finite amount 

of time, typically on the order of 1000OOts where t, is the number of time steps used in the 

calculation of q or the number of elements in the sum of (4.5). For most of the range of 

crosslink density this time was not sufficient to reach equilibrium values of q. By plotting 

q(t,) versus t ~ " ~ ,  (Fig. 4.4) an extrapolation can be made to  t, i oo after disregarding an 

initial transient period. This is the method used to estimate the value of q. In several cases 

the simulations were carried out for up to four times the standard length of run to ensure 

that the extrapolation procedure was an adequate way of finding the equilibrium values of 

q. This empirical method of extrapolation slightly underestimates the equilibrium value of 

q, and the underestimate is worse for highly crosslinked systems. When the systems were 

highly crosslinked the terminal value of q was reached, and the extrapolation procedure was 

not used, rather the value of q was estimated by a least-squares fit to  a straight line over 

the portion of data that remained unchanged in time. The value of q(t,) as a function of 

t;'I2 is shown in Fig. 4.5 for three different values of crosslink density n. 

When random crosslinks are incorporated into a system, the actual location of those 

crosslinks has a bearing on the resultant value of q. Two possible extremes of this effect are 

polymers linked only internally when the crosslinks are introduced, and links only between 

different polymers. These two situations should produce different values of q. It  was thus 

necessary to  calculate q from up to fifteen different realizations of the same number of 

crosslinks in a given system. The value q(t,) is shown in Fig. 4.6 for two different realizations 

of the same number of crosslinks. To ensure that the realizations of crosslinks were not 

unduly influenced by the underlying melt a second melt was created. The new melt was made 

from the original by integrating forward in time the equations of motion for t, = 1.5 x lo6 
time steps. During this time each polymer moved an average of 2.4Rg from its original 

position. There was no significant difference in the values of q obtained from the two melts 



-112 Figure 4.3: The value of the order parameter q as a function of t ,  . This value is for 
the system of N = 100 polymers with M = 20 monomers per polymer. The number of 
crosslinks in the system is 170 and the simulation time is t ,  5 121000. 



-112 Figure 4.4: The value of the order parameter q as a function of t, . This extrapolation 
is shown for the same system shown in Fig. 4.3. The time frame used in the extrapolation 
was 25000 5 t ,  2 121000, a least squares fit to the data gives a value of q(t, = m) = 

0.338 f 0.002. 



Figure 4.5: The value of q as a function of t,ll2 for three different crosslink densities. The 
number of polymers is N = 30 with M = 20 monomers per polymer. The upper curve is 
for 180 crosslinks a t  a maximum time of t, = 170000, the middle curve for 135 crosslinks 
for a maximum time of t, = 250000, and the lower curve for 55 crosslinks for a maximum 
time oft ,  = 250000. 



as shown in Table 4.2. The properties of crosslinked melts including the value of q quoted 

henceforth are the combination of q from the two melts. 

Figure 4.6: The value of the order parameter q as a function of t i l l 2  for two different 
realizations of the same number of crosslinks in the same melt. The system shown has 
N = 100 polymers M = 10 monomers per polymer and 130 crosslinks. 

Table 4.2: A table of a selection of the values of q derived from two different melts. 

As noted previously, to speed up the calculations of the order parameter, the temperature 

6 1 



of the system was raised. The order parameter was also evaluated for the temperature of 

k B T / e  = 1,  although there were fewer realizations for each value of crosslink density. Results 

for both high and low temperature calculations are shown in Table 4.3.  

Table 4.3: A comparison of q for different values of temperature. The data for k B T / e  = 1 
do not have uncertainties quoted because there were too few realizations to accurately 
determine the standard deviation. 

A final variation of some of the parameters was done. In select systems, when the 

crosslinks were imposed on the melt, a radius of r ,  = 1.3500 was used, instead of r ,  = 1 . 2 5 ~ 0 ,  

used until this point. The method of imposing the crosslinks and of evaluating q for the 

larger value of r ,  remained identical to the method used with the smaller radius r,.  The 

results are compared in Table 4.4. As was found previously by Grest and Kremer [47] for 

other properties of the system, there is no significant difference in the estimated value of q 

for a larger value of crosslinking radius. 

r x / a o  = 1.25 0.38 f 0.04 0.48 f 0.03 0.72 f 0.01 
r ,  I a n  = 1.35 0.35 0.50 0.74 

Table 4.4: A table of the values q for systems made with different crosslinking radii. The 
uncertainties are not quoted as there are too few realizations with rx/ao = 1.35 to get a 
reliable estimate of the standard deviation. 

The results for q as a function of the number of crosslinks n for the different systems 

studied are shown in Figs. 4.7-4.8. In each case the data are fit to the equation q = 

A, (n  - n,)Oq where A, is a constant, and n, is the critical number of crosslinks necessary to 

solidify the melt. A striking feature of the data is the system-size dependence for both the 



Figure 4.7: For M = 10 monomers per polymer the value of q is shown for the two systems 
studied. The critical number of crosslinks is 37 for N = 25 and 117 for N = 100. The 
exponent ,Oq is 0.54 for N = 25 and 0.66 for N = 100 



Figure 4.8: For M = 20 monomers per polymer the value of q is shown for the two systems 
studied. The critical number of crosslinks is 52 for N = 30 and 101 for N = 100. The 
exponent pq is 0.50 for N = 30 and 0.96 for N = 100. 



exponent pq and n,. For systems with M = 10 the exponent increases from 0.54 f 0.02 to 

0.66 f .17 when N increases from 25 to 100, while n, decreases from 1.48 f 0.01 to 1.17 f 0.6. 

When there are 20 monomers per polymer the changes are even more evident: pq increased 

from 0.50 f 0.08 to 0.96 f 0.22 for N increasing from 30 t o  100 while n, decreases from 

1.7 f 0.1 to 1.01 f 0.13. The trend is similar as the number of monomers per polymer 

is increased. It  is difficult to estimate the actual value of 0, and n, due to  these strong 

finite-size effects. I t  is important to note that the systems that we have simulated are not in 

the range of validity of the theory of reference [39]. In this theory the density of crosslinks 

in the amorphous solid state is n - 1 = nd/N - 1 << 1. Thus, the results presented here 

serve only to show that the order parameter q  as envisioned by [39] is a good measure of 

localization in the solid state and that their predicted critical density of crosslinks n, = 1 

cannot be excluded. 

4.4 Localization Lengths 

A second important prediction of Goldbart et al. [39] is the distribution of localization 

lengths of the localized monomers. It was assumed in their theory that the localized particles 

were distributed around their average positions according to  a Gaussian distribution. This 

hypothesis was verified for our crosslinked melts for selected particles and for a wide range 

of crosslink densities. A normal distribution of monomer positions gives the probability of 

finding the monomer j at position Rj to  be 

where Rj is the mean position of monomer j and tj is the standard deviation of the distri- 

bution or the localization length of monomer j. The order parameter qj as defined in (4.5) 

becomes 

This integral can be calculated by completing the square in Rj and results in 

q .  - e-"€;/2 
3 - 



Figure 4.9: For a particular monomer j ,  we find the probability distribution P(xj) of the 
x component of position rj is gaussian. This figure illustrates the distribution of xj where 
-L 5 xj 5 L for a monomer in the box. 



so that the localization length is 

where the substitution k = 2r lL  was made. 

The localization length of each monomer was calculated from the data kept in the calcu- 

lation of the order parameter. To find the distribution P ( J )  for each system the localization 

lengths were binned, after having been scaled by the average localization length. Generally 

70 bins were used, but the overall results are insensitive to the exact number of bins used 

in the range 50 - 100 bins. In the highly crosslinked regime the distribution of localization 

lengths does not change much over the course of a simulation run as illustrated in Fig. 4.10. 

Results for a moderate to high density of crosslinks are shown in Figs. 4.11 and 4.12. 

Figure 4.10: The distribution of localization lengths for three different simulation times of 
a system of M = 20, N = 100 with nd  = 170 crosslinks. 



Figure 4.11: The distribution of localization lengths for a system of M = 10, N = 100 for 
the number of crosslinks in the range 170 < nd < 220. 



Figure 4.12: The distribution of localization lengths for a system of M = 20, N = 100 for 
the number of crosslinks in the range 150 < nd < 200. 



The form of the curve for P(J)  as a function of J changes character as the number of 

crosslinks is increased starting from the fluid regime. The distribution of localization lengths 

is much broader and the primary peak is lower, while a secondary peak is more prominent 

in the fluid compared to the moderately crosslinked state. This variation is shown in Fig. 

4.13. 

Figure 4.13: The distribution of localization lengths for three different densities of crosslinks, 
for the system M = 20, N = 30. When there are fewer crosslinks the distribution becomes 
wider, as expected, since we cannot clearly distinguish the localized and delocalized particles. 

The calculation of P(J) is different from that envisioned by Goldbart et al. [39]. In their 

formalism only the fraction Q of localized particles contribute to P(J),  and there should be 

a second peak of weight 1 - Q at J = co. For simulations of finite duration it is impossible 

to clearly distinguish the localized from the delocalized monomers. Very close to the critical 

crosslink density P(E) develops a small secondary peak at large J. This is presumably due 

to the delocalized particles which will eventually sample the entire computational box. If 



the data were extensive enough we could attempt to subtract the secondary peak from the 

distribution and obtain a function more closely related to that of [39]. 

Goldbart et al. predict that there is a single universal curve for the distribution of 

localization lengths. In Fig. 4.14 P(J)  is plotted as a function of J for several different 

systems. This graph clearly shows that the data collapse to a single curve. However, as is 

Figure 4.14: The distribution of localization lengths is plotted for one crosslink density for 
each of the different system sizes studied. All the data collapse to a single curve. 

shown in Fig. 4.15, the curve that is predicted by Goldbart et al. is quite different than the 

curve we find. 

A plot of the average localization length f as a function of crosslink density is shown in 

Fig. 4.16. The theory predicts the dependence of average localization length on crosslink 

density to be > (nln, - 1)-'12. From the data the results are that for M = 20, N = 30 

the exponent PC = -0.24 f 0.03; for M = 10, N = 100 then = -0.24 f 0.03; and for 



Figure 4.15: The universal curve predicted by Goldbart is plotted with the distribution of 
localization lengths for the system of N = 25 polymers and M = 10 monomers. 



M = 20, N = 100 ,Bg = -0.22 f 0.03. If fewer data points are used, to be closer to the 

regime appropriate to the theory, then the exponents actually increase to ,Bt = -0.13 f 0.05 

and ,Bs = -0.17 f 0.04 for the larger two systems, respectively. For the systems simulated 

the largest localization length found corresponds to J 5 1.9Rg. In the calculation of P ( J )  

in reference [39], it is assumed that < >> R,, i.e., the polymers have a great deal of mobility, 

although the system is rigid. It will be very difficult to access this regime in simulations 

and certainly the present ones do not do so. Nevertheless, the universal nature of P(J)  

somewhat away from the transition point seems well established by the results presented 

here. 

Figure 4.16: The average localization length as a function of crosslink density. 

We have also measured the fraction of localized monomers Q. As mentioned above, in 

a simulation of finite length there is no unambiguous measure of localization. Monomers 

were considered localized if the localization length J was less than some fraction f of the 



box length, typically f = L/5 or f = L/3. The variation in Q with crosslink density for two 

different systems is shown in Figs. 4.17 and 4.18. The exponents PQ are obtained by fitting 

Figure 4.17: The variation of Q with the number of crosslinks is shown for the system 
of M = 20 and N = 30. The upper curve is Q when f = L/3, the middle curve is for 
f = L/4, and the bottom curve is for f = L/5. All curves are forced through the critical 
point n, = 52. 

Q to  the equation Q = A ( n  - n c ) P ~ .  In all cases n, was chosen to be the same as that found 

for q. If n, were allowed to be a parameter to be fit then in all cases n,(Q) was found to 

be essentially the same as n,(q). The results for PQ are shown in Table 4.5. The exponents 

quoted in this table are obtained by a fit to the values of Q closer to the transition, but the 

values remain the same if all the data shown in Figs. 4.17, 4.18 are included. The exponent 

predicted by [39] is PQ = 1, from my data I cannot exclude this value. As discussed in the 

last chapter Goldbart et al. consider only the fraction of localized monomers to obtain the 

value of PQ = 1, and clearly this is impossible to do in these simulations. 



Figure 4.18: The variation of Q with the number of crosslinks is shown for the system of 
M = 20 and N = 100. The upper curve is Q when f = L / 3 ,  the middle curve is for 
f = L / 4 ,  and the bottom curve is for f = L/5 .  All curves are forced through the critical 
point n, = 101. 

Table 4.5: A table showing the variation of ,OQ with the fraction of the box f that was used 
as a criterion for localization. 



4.5 Ergodicity Breaking 

A central concept of statistical mechanics is that systems in equilibrium are ergodic. The 

ergodic hypothesis states that the time average of a quantity is equal to the phase-space 

average. This hypothesis is especially useful in numerical simulations. In this section I will 

discuss a technique developed by Thirumalai et al. [48] that distinguishes ergodic and non- 

ergodic behaviour in liquids and glasses with a particular focus on numerical simulations. 

Since simulations cannot reach t  + oo, 'ergodicity' is only 'effective ergodicity' in the sense 

that the system is ergodic only over an observational time to. An ergodic system samples 

every point of a constant energy surface in phase space given infinite time. For t  = to the 

system is ergodic if effectively all regions of the energy surface are sampled. In the case 

of a non-ergodic system, the constant energy surface is decomposed into disjoint regions, 

and the barriers between the regions are large enough so that the system remains effectively 

trapped in one region over the observational time. 

The following method was used by Thirumalai et al. to demonstrate broken ergodicity 

in a liquid to glass transition. An energy metric is defined as 

where N is the total number of particles in the system, t  is the time, j is a particle index and 

~ ~ ( t )  is the time-averaged energy of particle j at time t ,  t j ( t )  = Ej( t l )  where Ej( t l )  

is the total energy of particle j at time t'. The labels a and b denote two different initial 

states of the system. The behaviour of d(t) should characterize the degree of ergodicity 

of the system - if d(t) decays rapidly to zero, then the two systems sample effectively the 

same region phase so that there are no barriers on the energy surface. However, if d(t) 

approaches a non-zero plateau that decays very slowly, then the two systems are trapped 

in different regions of phase space, and over the observation time ergodicity is broken. This 

slow decay indicates the presence of energy barriers large enough to prevent the two states 

from sampling the same region of phase space. It should be noted that the two initial states 

of the system a,  b should be widely separated in phase space, so as to start in different 

regions. Thirumalai et al. applied this method to liquids and supercooled glasses and found 

that the liquids were ergodic, while the glasses were not, over the length of the simulations. 

The system considered by Thirumalai et al. is different from ours in that they have no 

quenched random variables, analogous to the crosslinks. I examined the function d(t)  for 



different circumstances. For all crosslink densities, ranging from no crosslinks to well into the 

solid phase, d ( t )  was monitored in the following way. Firstly, the crosslinks were imposed. 

Then, for a given realization of crosslinks two different systems were created by imposing 

different temperatures, and letting the system evolve in time. After a sufficient period of 

time had elapsed, approximately lo8 integration steps, the two systems were brought to the 

same temperature and d ( t )  was measured from this point on. Typical results for this are 

shown in curve a of Fig. 4.19. For all crosslink densities the curves d ( t )  quickly decayed 

to a value close to zero. More disorder can be introduced by changing the distribution of 

crosslinks. In this case crosslinks were imposed on the melt, and from this crosslinked system 

a second system is created by changing one of the crosslinks. The two systems are allowed 

to relax at the same temperature before the comparison necessary for d ( t )  is made. Results 

for this are shown in curve b of Fig. 4.19. The curve decays quickly to a value that is close 

to zero, but the difference in energy due to a single crosslink probably prevents d ( t )  from 

actually attaining the value of zero. Finally, curve c of Fig. 4.19 compares two completely 

different distributions of crosslinks. Since d ( t )  decays to a non-zero value, and only slowly 

decays from that value these systems are in different regions of phase space. Thus, once 

the crosslinks are imposed, the system is effectively ergodic by this measure, but, different 

distributions of crosslinks place the system in different regions of phase space, where the 

systems remain trapped for the length of a simulation and probably for much longer. 

4.6 Conclusion 

This chapter reported on the results of numerical simulations of randomly crosslinked poly- 

mer melts [43]. The aim of the simulations was to test some predictions of a recent theory 

of vulcanization, proposed in [39]. As a function of the number of crosslinks incorporated 

into the system Goldbart et al. predict an order parameter that is zero for the system 

in the liquid phase and non-zero when there is a sufficient density of crosslinks to form a 

solid, where this density is expected to be n, N 1. They are able clearly to distinguish 

localized monomers from delocalized ones. The fraction of localized monomers is expected 

to increase with crosslink density as Q - ( n  - n,)l. The distribution of localization lengths 

of the localized monomers is predicted to be a single universal curve, when properly scaled. 

We find that the order parameter q is zero until a critical density n, of crosslinks. Due 

to strong system size fluctuations we are unable to confirm that n, = 1 for all systems; but, 



Figure 4.19: The function d(t) for M = 20, N = 30, and n d  = 60 crosslinks. Time is 
measured in units of lo7 integration steps. The different curves are explained in the text. 



we do note that n, decreases with increasing system size and that for the largest system 

n, FZ 1. We are unable to find an unambiguous way of determining the fraction of localized 

particles. We have arbitrarily taken a fraction of the box size f ,  such that, if the average 

localization length of a monomer 6 < f L, it was considered localized. For different values 

of f the exponent PQ was calculated. Again, there was strong system-size dependence of 

the exponent, but the values of ,OQ for the larger systems were consistent. The values of PQ 
were extremely dependent on the particular value of f chosen. Finally, we considered the 

distribution of localization lengths. This distribution is expected to be a universal curve, 

and indeed this was found to be the case, when the localization lengths were scaled by the 

average localization length. Not only was the curve universal for a particular system, it was 

found that all systems collapsed to the same curve, although this curve is different from the 

one predicted by [39]. 

Finally, we implemented a test for ergodicity developed by Thirumalai et al. [48]. We 

find that, once the crosslinks are imposed, the system remains effectively ergodic, although 

the imposition of different realizations of crosslinks effectively places the system in different 

regions of phase space. 



Chapter 5 

Rigidity 

5.1 Introduction 

The elastic properties of vulcanized rubber are characteristically different from those of a 

crystalline solid. As noted in Chapter 1, rubber is capable of large elastic deformations on 

the order of hundreds of percent change. This is remarkable in that the deformations are 

reversible but the stress-strain relations are non-linear. For a crystalline solid the change 

in free energy due to external stresses arises primarily from the change in internal energy: 

The molecules change position relative to each other and their energy of interaction changes 

[49]. In vulcanized rubber the response to external stress is primarily entropic, that is the 

number of conformations available to the constituent chains changes. 

In this section I describe the classical theory of high elasticity. In the next section I 

describe the implementation of this method to obtain the shear modulus as a function of 

crosslink density in the randomly crosslinked melts described in the previous chapter. The 

subsequent section describes the results of extensive simulations. 

For the development of the analytic theory, a 'chain' denotes a segment of polymer 

between two crosslinking points. Defects such as dangling ends are not considered, although 

a significant fraction of monomers may be found in the dangling ends [46, 501. Although 

there are many different chain lengths in a real network, the contour length or the number 

of monomers per chain is taken to be the same for each chain. 

Starting from a polymer network in the shape of a cube, a deformation is applied to 

transform it to a rectangular parallelepiped, Fig. 5.1. The principal axes are stretched by 

amounts X1,X2,X3. The deformation is assumed to be affine, which means that, if a chain 



Figure 5.1: A deformation applied to a cube (left) results in a rectangular parallelepiped 
(right). 

in the unstrained system has end-to-end vector length Re, = (x, y, z), then in the deformed 

system this vector length is RLe = (XI$, X2 y, X3z). TO calculate the total entropy change 

due to the deformation we begin by calculating the change in entropy of a single chain. 

This can be calculated by counting the number of configurations available to a random walk 

chain with end points fixed a distance Re, apart. The entropy of this chain is 

where b2 = 31 (2Mai)  is a constant related to the number M of monomers along the chain, 

ao is the bond length, and A, is a constant. This is the proper form of the entropy for a 

chain whose ends are fixed. 

The entropy after deformation is 

Thus, the contribution to the entropy of a single chain due to the deformation of the cube 

is 

A S  = - r o b 2  ((A: - 1)x2 + ( X i  - l)y2 + ( X j  - 1)z2) . (5.3) 

In a unit volume of the cube there are NM chains each with A4 monomers and the entropy 



change due to all these chains is 

NM NM 

(A: - 1) C st + (A; - 1) C y: + (A: - 1) 1 zi , 
i=l i= 1 

NM 2) (5.4) 
i=l 

where bM = 3/ (2Ma;) is the appropriate constant for M monomers on a chain. Since these 

chains can be randomly oriented in the cube, on average 

where ( R ~ ~ ( M ) ) " ~  is the average end-to-end length of a chain with M monomers. Now the 

assumption is made that we can replace ( ~ 2 , )  by the expectation value of this quantity, for 

Gaussian chains 

(see Chapter 1). This gives for the change in entropy due to the NM chains 

Now we sum the contributions from all the different lengths of chain M, N = EM N M .  

Thus the total change in entropy due to the deformation is 

AS = -- kBN (A: + A; + A: - 3 ) .  
2 

The change in entropy due to the deformation arises purely from the change in the number 

of configurations available to the chains when their endpoints are deformed and in this 

approximation, is insensitive to the particular details of the network. That means the 

entropy is not dependent upon the values of the lengths of chains in the network, the 

distribution of these lengths or other details of the chemistry, so long as the chains are long 

and flexible enough that the Gaussian model describes them accurately. 

The change in free energy due to the deformation is 

but, since the change is purely entropic, AF = -TAS. Thus, 

E 
AF = - (A: + A; + A: - 3 ) ,  

2 



where E = NkBT is the appropriate elastic modulus. For a volume-conserving deformation 

E becomes the shear modulus. 

From basic thermodynamics, for a reversible process the work done on a system is related 

to the internal energy by the relation dEint = dW + TdS. This reduces to A W = -TAS, 

since the change in internal energy is negligible in this case. Considering only deformations 

which are explicitly volume conserving means that XlX2X3  = 1. For small changes in 

deformation this becomes 

Combining (5.11) with the change in work required to deform the system, we get 

If the force per unit area on component a in the unstrained state is f, and in the strained 

state is t,, then t, = f,X,. The work done by the applied forces to achieve the deformation 

is 

Equating (5.12) and (5.13) for any variation of stretch dX, gives the result 

Since these equations are a function of the difference between the principal stresses and 

not their absolute values, the individual stresses can only be determined up to an overall 

hydrostatic pressure. This is a direct consequence of the imposition of a constant volume 

deformation, which is equivalent to stating that a polymer network is incompressible. This 

assumption is not unreasonable for vulcanized rubber. The work done on a polymer network 

due to a uniaxial stress f and a hydrostatic pressure is dW = f dl - P dV, where dV is the 

change in volume due to a hydrostatic pressure P. The change in P d V  is a factor of 

smaller than f dl, [51], so at least to a first approximation the volume is constant. 

The equations (5.14-5.16) relating the stress to the strain are the main result of the 

statistical theory of elasticity. In order to derive (5.14-5.16) there were several important 



assumptions made. The first assumption was that Gaussian statistics adequately describe 

the end-to-end length of the chains. This assumption is justified only in a restricted set 

of conditions, because the network properties are sensitive to the method of formation 

of the network. In particular, Gaussian statistics are appropriate for a network formed 

by incorporating crosslinks via chemical agents or ionizing radiation into a dense melt of 

polymers [I]. If crosslinks were incorporated into a semi-dilute melt or into a dense melt into 

which is injected a good solvent the chains would not be ideal. Even if the melt itself is ideal, 

merely introducing crosslinks changes the equilibrium properties of the polymers. Monomers 

move to new equilibrium positions as a result of the crosslinks and the fluctuations of the 

chains are diminished by the presence of crosslinks [51]. An assumption related to that of 

Gaussian statistics is that the mean-square vector length of the chains in the network is the 

same as the mean square vector length of a polymer in the melt which was introduced in 

equation (5.6). A third assumption is that the deformation is affine, which implies that the 

ends of the chains remain fixed, or at least highly localized. 

A more general theory of elasticity was created by James and Guth [52]. In their 

formulation the only fixed monomers are those that are at  the surface. All other monomers 

including crosslink points are allowed complete freedom of movement. As well, they do not 

make the assumption that the mean square vector length of the chains is the same as a 

free chain in the melt, or that chains in the melt are Gaussian. They find a result similar 

to (5.14-5.16), but with E renormalized by factors not related to  the strain. A limitation 

common to  both theories is that only elastically active chains are considered. Defects such 

as dangling ends or self links are not included. 

A series of experiments on natural rubber vulcanized with sulphur were done to test 

the validity of (5.14-5.16) [51]. Different types of stresses were imposed on the rubber, 

such as uniaxial elongation, two dimensional elongation, and various other compressions 

and shearing stresses. Deformations were reversible for up to 500% elongation. Equations 

(5.14-5.16) were verified for deformations up to loo%, i.e., X = 2, in that the measured value 

of E was found to be independent of A. 

The method described above is not the only way to  derive the elastic moduli. The 

isothermal elastic constants can be found by following a method first described by Squire 

et al., [53]. This method is useful for systems that can be described by a potential U that 

depends only on the differences of positions of particles, taken pairwise. A set of orthonormal 

basis vectors (a,, +, a,) are defined for an undeformed system. A deformation is imposed 



on the system, and the resultant strain tensor qij is calculated in terms of the basis vectors 

as 
1 7 . .  = - S..) 

2.7 .2 2.7 2.7 (5.17) 

where Sij is the Kronecker delta, aij = ai -aj and the indices i, j range over the labels x, y, z. 

The strain tensor 

deformed system. 

disappears in the undeformed system as expected, but is non-zero in a 

The difference in position of any two particles k and 1 can be written as 

where r k  is the position of the k-th particle and can be expressed in basis vectors in the 

strained system ai as rk = xkiai, where repeated indices are summed over. If we use this 

result, (5.18) becomes 

where in the last step equation (5.17) was used. In such a system the partition function Z 

depends only on the potential U, so that 

The elastic moduli are defined as the derivatives of the free energy F with respect to the 

strain tensor, 

Using (5.20) in the above equation leads to an expression for the elastic moduli Cijpq in 

terms of expectation values of the derivatives of the potential with respect to rij. In a 

simulation these expectation values can easily be found as the time-averaged fluctuations 

of derivatives of U and, therefore, it is straightforward to apply this formalism to a system 

such as the one described in the previous chapter. Unfortunately, the implementation of 

this method for the calculation of elastic moduli leads to unstable results. That is, the 

uncertainties of the elastic constants were several times larger than the mean values. 

Although much of the simulation work has focussed on polymer melts, there has been 

some work done on the shear modulus in crosslinked networks. Gao and Weiner [54] did 

simulations on a model of a crosslinked polymer network. Preserving some of the assump 

tions in the theory, their polymers had fixed end-to-end distance R, and the polymers were 



randomly oriented in a melt. Although the individual chains were not linked together, the 

orientations of the chains were fixed and the chains were allowed to diffuse through the sys- 

tem. They separately monitored the stresses arising from the connectivity of the monomers 

and the excluded volume interactions by varying the size of monomers a while keeping the 

nearest-neighbour distance fixed. The range of variation of a was sufficient to pass from 

the regime where the chains can easily pass through one another to the regime where they 

cannot. For small values of elongation, X 5 1.5, the stress-strain curves and, hence, the 

shear modulus were found to be virtually identical for all values of a. For a substantial 

amount of elongation, X > 2, the excluded volume contributions to the stress increased 

with increasing a. This result is surprising only to the extent that the classical theory com- 

pletely ignores the excluded volume effect, but, the result is consistent with the previously 

mentioned experiments in that the classical theory holds up to elongations of X = 2. 

Another set of simulations was done by Everaers, Kremer and Grest [55] who tested the 

effects of entanglements by slowly switching on the excluded volume interaction in a system 

of polymers set on interpenetrating diamond lattices. This system was fully mobile and the 

interpenetrating lattices explicitly created knots to entangle the polymers. The differing 

amounts of excluded volume allowed the knots to be trapped in some instances, while not 

in others. For extensions up to X = 2 they found no difference in the force - elongation 

relationship for systems with and without knots. 

5.2 Method 

The details of the molecular dynamics simulations and of the equilibrated melts are described 

in Chapter 4. A number nd of random crosslinks were imposed in the manner detailed in the 

last chapter. The shear modulus was measured by imposing a volume conserving uniaxial 

elongation, so that X1 = X and X2 = X3 = 116 and stress was calculated by measuring the 

pressure tensor. In each of the principal directions the force per unit area was calculated 

by summing the force contributions from each of the monomers. The relation between the 

pressure tensor and the shear modulus is 



Thus, once the elongation is known, the pressure can be measured and the shear modulus 

is easily found. 

The sizes of the systems were N = 30 polymers with M = 20 monomers per polymer; 

N = 100 polymers with each of M = 10,20 monomers per polymer; and N = 60 polymers 

with M = 50 monomers. Three different values of elongation were applied of values l . lL ,  

1.2L and 1.3L, where L is the length of the simulation box. These values of X are small 

enough to  ensure that the value of the shear modulus for each elongation will be the same, 

since the stress-strain relations are still in the linear regime. To calculate the shear modulus 

different values of crosslink density n  = n d / N  were applied to each system. For each value 

of crosslink density at  least seventy and often more than one hundred different realizations 

of crosslinks were used for the smaller systems. For the largest system of M = 50, N = 60 

reasonably well converged results were obtained for fifteen to  thirty samples. Before the 

incorporation of crosslinks, the monomers in the melt were assigned random velocities, such 

that kbT /e  = 4, and the equations of motion were integrated forward by 1000 time steps. 

The pressure tensor had a correlation time of approximately 50 - 100 time steps, which 

was sufficient to randomize the force that each monomer experienced. This procedure was 

done so that the initial distribution of monomer positions would not unduly influence the 

calculation of the shear modulus. Once the crosslinks were imposed the pressure tensor was 

measured over a period of lo5 time steps. 

5.3 Results 

A selection of the results is presented in Tables 5.1-5.2, and all the results are plotted in 

Figs. 5.2-5.4, the units of the shear elasticity are omitted but are €/a:. The uncertainties 

are not shown in the figures but are quoted in the tables. The results for the tables and 

figures are the averages of the shear modulus for all the samples. The quoted uncertainties 

are obtained in the usual way as the standard deviation of the mean. The Figs.5.2 - 5.4 

clearly show that the value of E is independent of the value of X in this regime, as expected. 

As can be seen from Tables 5.1-5.2 one consistent feature of these data is the decrease 

in standard deviation of E for a given number of crosslinks as X is increased. The decrease 

in standard deviation is also evident for a given value of E as the system size is increased. 

A direct comparison of the effects of polymer length is made in Fig.5.6. For N = 100 



Table 5.1: A selection of the results for the shear modulus E for M = 10, N = 100. Entries 
are blank when there was not sufficient data to make an accurate estimate. 

ncl X = 1.1 X = 1.2 X = 1.3 

0 -0.005 f 0.02 0.003 f 0.009 -0.002 f 0.008 
50 0.04 f 0.05 0.02 f 0.02 
150 0.11 f 0.13 0.08 f 0.06 0.08 f 0.06 
170 0.14 f 0.15 0.10 f 0.07 0.10 f 0.04 
185 0.16 f 0.14 0.11 f 0.08 0.11 f 0.05 
200 0.18 f 0.15 0.15 f 0.07 0.13 f 0.07 
220 0.21 f 0.15 0.18 f 0.08 0.23 f 0.06 
250 0.30 f 0.14 0.25 f 0.09 0.29 f 0.06 

Table 5.2: A selection of the results for the shear modulus E for M = 



Figure 5.2: The shear modulus E a s  a function of the number of crosslinks for N = 30, 
M = 20. 



Figure 5.3: The shear modulus E as a function of the number of crosslinks for N = 100, 
M = 10. 



Figure 5.4: The shear modulus E as a function of the number of crosslinks for N = 100, 
M = 20. 



Figure 5.5: The shear modulus E as a function of the number of crosslinks for N = 60, 
M = 50. 



Figure 5.6: The shear modulus E for N = 100 polymers and M = 10,20 monomers. 



polymers the shear modulus as a function of crosslink density is plotted for M = 10,20. 

The shear modulus increases at a much slower rate for longer polymers. This is contrary to 

the theoretical derivation of the shear modulus, where the change in entropy and hence the 

change in the value of the E is independent of the length of the chains, and the assumption 

that all the monomers were part of the infinite network was made. It is important to note 

that the incorporation of crosslinks partitions the chains into segments. A monomer or chain 

segment is considered to be elastically active if there are two independent paths which lead 

to the backbone of the network. This means that the elastically active part of a polymer, if 

there is one, is the section of chain between two crosslinks, or strand length. The average 

strand length of the chains has been measured, and was roughly constant as a function of 

the number of crosslinks but increased linearly with polymer length M. Although the chains 

in the melt obeyed Gaussian statistics, the elastically active part of the chains may be too 

short to be described in this way. This may be one reason for the discrepancy between our 

results and the theory as described in Section 5.1. As well, there is a clear decrease in the 

value of E with system size, for a given crosslink density, indicating that finite-size effects 

are non-negligible factors in the data. 

An interesting comparison of the data is made by calculating the scaling exponents of 

E as a function of n. The exponent Pt is defined through E (n - n,)Pt. Values for n, 

can be estimated through a fit of the data. For M = 10,20 the results of this fit give the 

same value of n,, to within one standard deviation, as that found from the order parameter 

calculations. The values of n, as found from the calculation of q will be used, and they are 

n, = 116,101 for N = 100, M = 10,20, respectively, and n, = 1.7 for N = 30, M = 20. For 

M = 50, N = 60 an independent estimate of n, is not available. A free fit to the data in 

Fig. 5.5 gives an estimate of n, = 1.33 f 0.05, and this is the value used to calculate the 

scaling exponent. The values of the scaling exponent are shown in Table 5.3. 

As with the previous calculations there is a clear decrease in the scaling exponent with 

the system size. The value of the exponents for the four smaller systems are less than 

1, which is somewhat surprising since the Figs. 5.2-5.4 might indicate that an exponent 

pt > 1 may be more appropriate. The data used for the scaling exponents was close to the 

critical point, n < 2, and the forcing of the curves through the critical value n, lowered the 

calculated value of Pt. 
Clearly the scaling exponents predicted by the classical theory Pt = 3 or by percolation 

theory ,Ot = 1.8 [31] do not describe the data. Both these models assume that there are 



Table 5.3: The values of the scaling exponents Pt for shear modulus. The values of E used 
for the fit were close to the transition regime, generally 1 5 n, < 2. The large uncertainties 
arise because a weighted fit was done and the standard deviations of E were large, except 
in the case of M = 50, N = 60 where a weighted fit was not done. 

few defects in the form of closed loops or dangling clusters. Previous computer simulations 

[56] have indicated that in systems similar to ours almost half of the monomers are found 

in dangling clusters. Since the theories seriously underestimate the number of monomers 

that are in the defects, this may account for some of the discrepancy in the values for the 

scaling exponent. As well, the shear modulus decreases to zero at a density of crosslinks 

greater than the percolation threshold. For a system with N = 100 chains, the percolation 

threshold occurs at a crosslink density of n N 0.75, whereas localization and rigidity occur 

at n > 1. This is consistent with previous studies that indicate that geometric percolation 

has a lower threshold than rigidity percolation [36]. 

5.4 Conclusion 

In this chapter I have described a set of simulations performed to estimate the shear modulus 

of a system of polymer melts that were randomly crosslinked. The shear modulus E was 

calculated by performing a uniaxial extension on the polymer system and monitoring the 

resulting pressure along the principal axes. A large number of realizations of the calculations 

were necessary to obtain a stable estimate of E, and the standard deviation of E decreased 

with increasing system size, indicating that finite-size effects may be important. 

There was a strong system-size dependence for the value of the shear modulus, contrary 

to the theoretical derivation. The origin of the inconsistency in not clear, but it is probably 

due to finite-size effects. Scaling exponents Pt were obtained by fitting the shear modulus 

to the equation E N (n - nc)Pt. The value of the exponent decreased from Pt = 0.93 for 

the smallest system to ,Bt = 0.52 for the largest. For the smaller systems the value of these 



exponents may be affected by the fit through the critical crosslink density. Although there is 

a large uncertainty associated with these numbers because of the large standard deviations 

of the shear modulus, these exponents are clearly different from the classical prediction of 

,Bt = 3, or the percolation prediction of ,Bt = 1.8. The values of n, calculated from the shear 

modulus data were the same as those estimated from the order parameter calculation, when 

the comparison could be made, indicating that rigidity and localization occur in concert. 
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