Perfect Sets of Euler Tours of Complete Graphs

by
Helen Verrall
B.Sc. University of Victoria, 1988
M.Sc. Simon Fraser University, 1991
A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy
in the Department
of
Mathematics and Statistics
(c) Helen Verrall 1996 SIMON FRASER UNIVERSITY
April 1996

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, ioan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auṫeur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay
perfect Set of Euler Torus of Complete Graphs
\qquad
\qquad
\qquad

Author:
(signature)

APPROVAL

Name:	Helen Verrall
Degree:	Doctor of Philosophy
Title of thesis:	Perfect Sets of Euler Tours of Complete Graphs

Examining Committee: C. Schwarz

Chair
K. Heinrich
Senior Supervisor
L. Goddyn
N. Reilly
P. Horwein
B. Jackson, Professor

Goldsmith's College
External Examiner

Date Approved:
April 25, 1996

Abstract

In this thesis we investigate perfect sets of Euler tours of complete graphs K_{n} and Hamilton decompositions of the line graphs of complete graphs $L\left(K_{n}\right)$. We also present some partial results in the area of pairwise compatible Hamilton path decompositions of the graph $K_{2 k}$ and pairwise compatible Hamilton decompositions of the graph $K_{2 k+1}$.

Chapter 1 contains definitions and notation, and an introduction that outlines some of the work that has been done in the areas of pairwise compatible Euler tours of graphs, Hamilton decompositions of $L\left(K_{n}\right)$, and Dudeney sets. We also present the problems that will be considered in the thesis.

Kotzig conjectured in 1979 that $K_{2 k+1}$ has a perfect set of Euler tours for all positive integers k. In Chapter 2 we give a constructive proof of his conjecture. McKay conjectured that $L\left(K_{n}\right)$ has a Hamilton decomposition for all n. When n is odd, this conjecture is a corollary of Kotzig's conjecture.

In Chapter 3 we consider one way in which we could extend the definition of a perfect set of Euler tours to include $K_{2 k}$, a graph that has no Euler tour. Since our goal is to have a Hamilton decomposition of $L\left(K_{2 k}\right)$ as a corollary, we define a perfect set of Euler tours of $K_{2 k}+I$, where I is a 1 -factor of $K_{2 k}$, to be a set of Euler tours of $K_{2 k}+I$ such that every 2-path of $K_{2 k}$ is in exactly one of the tours and such that for every edge $a b \in I$, each of the Euler tours either uses the digon $a b a$ or the digon $b a b$. We then give a constructive proof of a perfect set of Euler tours of $K_{2 k}+I$, and thereby give a completion of the proof of McKay's conjecture.

The results in Chapter 4 were motivated by another question of Kotzig's: What is the smallest k for which there is a perfect set of Hamilton decompositions of $K_{2 k+1}$?

We prove for all $k>1$ that $K_{2 k}$ has at least $2 k-2$ pairwise compatible Hamilton path decompositions. This is one less than the maximum possible of $2 k-1$. In the case of K_{4}, it is straightforward to show it is best possible. We then construct a set of $4 k-2$ Hamilton path decompositions of $K_{2 k}$ that between them contain every 2-path of the graph exactly twice. We also find a lower bound on the number of pairwise compatible Hamilton decompositions of $K_{4 m+1}$.

We present our conclusions in Chapter 5.

Acknowledgements

I would like to thank my supervisor, Kathy Heinrich, for all her help and advice, and for financial support. I would also like to thank NSERC and Simon Fraser University for financial support. I am very grateful to Peter and Susan for getting me through comps.

Contents

Abstract iii
Acknowledgements v
List of Figures vii
1 Introduction 1
1.1 Definitions and notation 1
1.2 Background and a Description of the Problems 6
2 A Perfect Set of Euler Tours of $K_{2 k+1}$ 12
2.1 Main Result 12
2.2 A Perfect Set of Euler Tours of $K_{4 m+1}$ 14
2.3 A Perfect Set of Euler Tours of $K_{4 m+3}$ 24
2.4 A Corollary of the Main Result 32
3 A Perfect Set of Euler Tours of $K_{2 k}+I$ 34
3.1 Main Result 34
3.2 A Perfect Set of Euler Tours of $K_{4 m}+I$ 35
3.3 A Perfect Set of Euler Tours of $K_{4 m+2}+J$ 51
3.3.1 A Perfect Set of Euler Tours of $K_{6}+J$ 51
3.3.2 A Perfect Set of Euler Tours of $K_{4 m+2}+J, m>1$ 51
4 Another Question of Kotzig's 70
4.1 Pairwise Compatible Hamilton Path Decompositions 70
4.2 Pairwise Compatible Hamilton Cycle Decompositions 7 C
5 Conclusions 80
Bibliography 82

List of Figures

$3.1 \quad H_{0}$ and σ 36
$3.2 \quad T_{a}$ and T_{b} when m is odd and $m \geq 3$. 50
$3.3 T_{a}$ and T_{b} when m is even. 52
$3.4 C_{0}$ and τ 34
3.5 S_{a} when m is odd and $m \geq 3$. 65
$3.6 \quad S_{b}$ when m is odd and $m \geq 3$. 66
3.7 S_{a} when m is even and $m \geq 4$. 68
$3.8 S_{b}$ when m is even and $m \geq 4$. 69
$4.1 P$ and ρ 73

Chapter 1

Introduction

This chapter consists of two sections. Section 1.1 contains the definitions and notation that will be used in the thesis. Section 1.2 is background and a description of the problems that will be considered in the following chapters.

1.1 Definitions and notation

We will use K_{n} to denote the complete graph on n vertices. The line graph of K_{n}, denoted $L\left(K_{n}\right)$ is defined as follows: $V\left(L\left(K_{n}\right)\right)=E\left(K_{n}\right)$ and two vertices $e_{1}, e_{2} \in V\left(L\left(K_{n}\right)\right)$ are adjacent in $L\left(K_{n}\right)$ if and only if ϵ_{1} and e_{2} are adjacent edges in K_{n}.

Let G be a finite graph on n vertices. A trail in G is a finite sequence

$$
v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

of vertices and edges in G such that for $1 \leq i \leq k, v_{i-1} v_{i}=e_{\text {; }}$, and for $1 \leq i<j \leq k$, $\epsilon_{i} \neq \epsilon_{j}$. We will write this trail as $v_{0} v_{1} \cdots v_{k}$. A tour in G is a trail with the added condition that $v_{0}=v_{k-1}$ and $v_{1}=v_{k}$, (implying $e_{1}=e_{k}$). Note that this definition allows a trail to begin and end on the same vertex and yet still not be a tour. (A tour is said to be a closed trail.) An Euler tour is a tour that contains every edge of the graph. If G has an Euler tour, G is said to be Eulerian. Similarly, if G does not have
an Euler tour, G is non-Eulerian. A walk in G is a finite sequence

$$
v_{0}, \epsilon_{1}, v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

of vertices and edges in G such that for $1 \leq i \leq k, v_{i-1} v_{i}=e_{i}$, so the condition that the edges be all different is removed. Exactly as with a tour, a walk can be closed. A path (cycle) is a trail (tour) in which all the vertices are different, (except of course for the fact that in a tour $v_{0}=v_{k-1}$ and $v_{1}=v_{k}$). A Hamilton path (Hamilton cycle) is a path (cycle) containing all n vertices. We will call a decomposition of $E(G)$ into tours a tour-decomposition. An Euler tour of an Eulerian graph G is clearly a tour-decomposition of G into one tour. A $k-p a t h$ is a path on $k+1$ vertices. We will mostly be concerned with 2 -paths, which we will write as $v_{0} v_{1} v_{2}$. We will call v_{0} and v_{2} the end vertices of the $2-$ path $v_{0} v_{1} v_{2}$, and v_{1} its centre vertex, and we will say that $v_{0} v_{1} v_{2}$ is centred at v_{1}. Trails, tours and tour-decompositions of G can obviously be described by listing the set of $2-$ paths they contain. This idea will be used in all of the constructions in this thesis. A digon is a sequence of vertices and edges $v_{0}, \epsilon_{1}, v_{1}, \epsilon_{2}, v_{0}$, where $v_{0} \neq v_{1}$, and $\epsilon_{1}=e_{2}=v_{0} v_{1}$; we will write this digon as $v_{0} v_{1} v_{0}$.

If ρ is an automorphism of G, and t is the trail $v_{0} v_{1} v_{2} \cdots v_{l-1} v_{l}$, then $\rho(t)=$ $\rho\left(v_{0} v_{1} v_{2} \cdots v_{l-1} v_{l}\right)$ is the trail $\rho\left(v_{0}\right) \rho\left(v_{1}\right) \rho\left(v_{2}\right) \cdots \rho\left(v_{l-1}\right) \rho\left(v_{l}\right)$. We will call two trails (and hence two tour-decompositions) t_{1} and t_{2} in G similar if there exists an automorphism ρ of G such that $t_{2}=\rho\left(t_{1}\right)$. We are mostly concerned with complete graphs in this thesis so it will be enough for ρ to be a permutation of $V(G)$.

The constructions in Chapters 2 and 3 involve removing a 2 -path from a trail. This does not mean that the edges in the 2-path are removed, only that the trail is broken. So, if t is the trail

$$
v_{0} v_{1} v_{2} \cdots v_{l-1} v_{l}
$$

then $t-v_{i-1} v_{i} v_{i+1}$, where $1 \leq i \leq l-1$, is simply the following two trails:

$$
v_{0} v_{1} \cdots v_{i-1} v_{i} \text { and } v_{i} v_{i+1} \cdots v_{l-1} v_{l}
$$

Suppose n is even. Let $a b$ be an edge and v a vertex in G. By $v[a b]$ we mean the 2-path avb. A 1 -factor in G is a spanning subgraph of G in which every vertex
has degree 1. In Chapter 2, we will be using 1 -factors of $K_{2 k}$ to determine the end vertices of 2 -paths in Euler tours of $K_{2 k+1}$. Let F be a 1-factor of $K_{2 k}$. If $\left(v_{1} w_{1}, v_{2} w_{2}, \ldots, v_{k} w_{k}\right)$ is an ordering of the edges in F, we will call $v_{i} w_{i}$ the $i^{\text {th }}$ edge of F, for $i \in\{1,2, \ldots, k\}$, and denote it by $[F: i]$. Let $V\left(K_{2 k+1}\right)=V\left(K_{2 k}\right) \cup\{\infty\}$. For $u \in V\left(K_{2 k}\right), u[F]$ will be the set of $2-$ paths

$$
\left\{v_{i} u w_{i}: 1 \leq i \leq k \text { and } v_{i} \neq u \neq w_{i}, v_{i} w_{i} \in E(F)\right\}
$$

together with the 2-path
$\infty u v_{i}$, where $u=w_{i}$, for some i.

By $\infty[F]$ we mean the set of 2 paths $\left\{v_{i} \infty w_{i}: 1 \leq i \leq k\right\}$. We will often use the notation $v[F: i]$ intead of $v\left[u_{i} v_{i}\right]$, where $v \in V\left(K_{2 k+1}\right)$. We will sometimes use $v[F: i]\left[F_{j}\right]$ for the two 2-paths $v[F: i]$ and $v[F: j]$, where $v \in V\left(K_{2 k+1}\right)$, and $1 \leq i, j \leq k$,

A 1 -factorization of G is a partition of the edges of G into 1 -factors. A 1 factorization \mathcal{F} is said to be perfect if the union of any two of the 1 -factors in \mathcal{F} forms a Hamilton cycle in G. A partition of the edges of a graph G into Hamilton cycles or into Hamilton cycles and a 1 -factor - depending on the parity of n - is called a Hamilton decomposition of G. In Chapter 3, we will be using Hamilton cycles of $K_{2 k-1}$ to determine the end vertices of 2-paths in Euler tours of the multigraph $K_{2 k}+I$, where I is a 1 -factor of $K_{2 k}$. Let $V\left(K_{2 k}\right)=V\left(K_{2 k-1}\right) \cup\left\{\infty_{1}\right\}$. Let H be a Hamilton cycle of $K_{2 k-1}$. If $\left(v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{2 k-1} v_{1}\right)$ is an ordering of the edges in H, we will call $v_{i} v_{i+1}$ the $i^{t h}$ edge of H, for $1 \leq i \leq 2 k-1$, and denote it by $[H: i$], where addition on the subscripts of the vertices is modulo $2 k-1$ with residue classes $1,2, \ldots, 2 k-1$. If $v_{i} \neq v \neq v_{i+1}$, then by $v[H: i]$, we mean the $2-$ path $v_{i} v v_{i+1}$. If v_{i} equals v, then $v[H: i]$ is the $2-$ path $\infty_{1} v v_{i+1}$. Similarly, if $v=v_{i+1}$, $v[H: i]=v_{i} v \infty_{1}$. When it is obvious which Hamilton cycle the end vertices of the 2 -paths centered at a vertex v are coming from, we will abbreviate $v[H: j]$ to $v[j]$.

The list of 2-paths and digons centred at vertex v in an Euler tour of $K_{2 k}$ in Chapter 3 will be specified in one of six ways. Let $1 \leq t \leq k-1$. By $v[H$: $1,3,5, \ldots, 2 t-1,2 t, 2 t+2, \ldots, 2 k-2]$, we mean the set of 2 -paths $\{v[H: j]: j \in$
$\{1,3,5, \ldots, 2 t-1,2 t, 2 t+2, \ldots, 2 k-2\}\}$. By $v[H: 2,4,6, \ldots, 2 t, 2 t+1,2 t+3, \ldots, 2 k-$ 1], we mean the set of 2-paths $\{v[H: j]: j \in\{2,4,6, \ldots, 2 t, 2 t+1,2 t+3, \ldots, 2 k-1\}\}$. By $v[H: 1,3,5, \ldots, 2 t-1,2 t+2,2 t+4, \ldots, 2 k-2]$, we mean the set of 2 -paths $\{v[H: j]: j \in\{1,3,5, \ldots, 2 t-1,2 t+2,2 t+4, \ldots, 2 k-2\}\}$ as well as the digon $u v u$, where $u=[H: 2 t] \cap[H: 2 t+1]$. By $v[H: 2,4,6, \ldots, 2 t, 2 t+3,2 t+5, \ldots, 2 k-1]$, we mean the set of 2 -paths $\{v[H: j]: j \in\{2,4,6, \ldots, 2 t, 2 t+3,2 t+5, \ldots, 2 k-1\}\}$ as well as the digon $u v u$, where $u=[H: 2 t+1] \cap[H: 2 t+2]$. Towards the end of each of the two proofs in Chapter 3 we will also use $v[H: 1,3,5, \ldots, 2 k-1]$ to mean the set of 2-paths $\{v[H: j]: j \in\{1,3,5, \ldots, 2 k-1\}\}$, and $v[H: 2,4,6, \ldots, 2 k-2]$ to mean the set of 2 -paths $\{v[H: j]: j \in\{2,4,6, \ldots, 2 k-2\}\}$ as well as the digon $u v u$, where $u=[H: 1] \cap[H: 2 k-1]$. If in this last case $v=u$, then the digon will be $\infty_{1} v \infty_{1}$.

Since the degree of every vertex of $K_{2 k+1}$ is even, $K_{2 k+1}$ is Eulerian. An Euler tour of $K_{2 k+1}$ contains $k(2 k+1) 2$-paths. In total, $K_{2 k+1}$ contains $k(2 k+1)(2 k-1)$ 2 -paths. It is natural to ask if a set of $2 k-1$ Euler tours of $K_{2 k+1}$ can be found so that every 2 -path of $K_{2 k+1}$ is in exactly one of the tours. Towards this end, we make the following two definitions: two tour-decompositions of an Eulerian graph are compatible if they have no 2-path in common; and a perfect set of Euler tours of $K_{2 k+1}$ is a set of $2 k-1$ pairwise compatible Euler tours of $K_{2 k+1}$. In other words, it is a set of $2 k-1$ Euler tours that partition the set of 2 -paths in $K_{2 k+1}$. In Chapter 2, we construct a perfect set of Euler tours of $K_{2 k+1}$ for all k.

On the other hand, $K_{2 k}$ has no Euler tour because the degree of every vertex is odd. There are several ways we could modify the graph $K_{2 k}$ so that we could define for it something that approaches the idea of a perfect set of Euler tours of $K_{2 k+1}$. We choose the following definition because it implies the existence of a Hamilton decomposition of $L\left(K_{2 k}\right)$. A perfect set of Euler tours of $K_{2 k}+I$, where I is a 1factor of $K_{2 k}$, is a set of $2 k-2$ Euler tours of $K_{2 k}+I$ such that every 2-path of $K_{2 k}$ is in exactly one of the Euler tours, and for each of the edges $a b \in I$, each Euler tour either uses the digon $a b a$ or the digon bab, but not both. In Chapter 3, we construct a perfect set of Euler tours of $K_{2 k}+I$ for all $k>1$.

Finally, for Chapter 4, we need the following definitions. A Hamilton path decomposition of $K_{2 k}$ is a decomposition of $E\left(K_{2 k}\right)$ into Hamilton paths. Since a Hamilton decomposition of $K_{2 k+1}$ is also a tour-decomposition, we have already defined two Hamilton decompositions of $K_{2 k+1}$ to be compatible if no 2-path in the graph is in more than one of the Hamilton cycles. We extend the definition of compatibility to a non-Eulerian graph by saying that two Hamilton path decompositions of $K_{2 k}$ are compatible if no 2-path in the graph is in more than one of the Hamilton path decompositions. We also define a perfect set of Hamilton decompositions (Hamilton path decompositions) of $K_{2 k+1}\left(K_{2 k}\right)$ to be a set of $2 k-1$ pairwise compatible Hamilton decompositions (Hamilton path decompositions) of the graph.

We will use the notation (a, b) for the greatest common factor of two integers a and b, and $\phi(n)$ for the Euler ϕ function. We will use $2^{-1} a(\bmod 2 k-1)$ to indicate either $\frac{a}{2}(\bmod 2 k-1)$, if a is even, or $\frac{a+2 k-1}{2}(\bmod 2 k-1)$, if a is odd. This is multiplication by 2^{-1} in the ring $Z_{2 k-1}$.

Finally, a Dudeney set in K_{n} is a set of $\frac{(n-1)(n-2)}{2}$ Hamilton cycles of K_{n} so that every 2 -path of the graph is in exactly one of the Hamilton cycles.

1.2 Background and a Description of the Problems

In Chapter 2 we prove the following conjecture:
Conjecture 1.2.1 (Kotzig [12]) The graph $K_{2 k+1}$ has a perfect set of Euler tours for all positive integers k.

This is a special case of the following problem suggested by Hilton in 1985 at an Open University Combinatorics Workshop (see Jackson [7]).

Problem 1.2.2 (Hilton) Determine the maximum number of pairwise compatible Euler tours in a given Eulerian graph G.

In a related area, Bermond [2] has conjectured
Conjecture 1.2.3 (Bermond [2]) If a graph G has a Hamiiion decomposition then its line graph $L(G)$ can be decomposed into Hamilton cycles.

More specifically, B. McKay (personal communication) conjectured
Conjecture 1.2.4 (McKay) The line graph of the complete graph $L\left(K_{n}\right)$ can be decomposed into Hamilton cycles.

The existence of a perfect set of Euler tours of $K_{2 k+1}$ immediately implies the existence of a Hamilton decomposition of $L\left(K_{2 k+1}\right)$: each Euler tour of $K_{2 k+1}$ induces a Hamilton cycle of $L\left(K_{2 k+1}\right)$, and since the Euler tours partition the 2 paths of $K_{2 k+1}$, the induced Hamilton cycles partition the edges of $L\left(K_{2 k+1}\right)$. Therefore, when n is odd, a proof of McKay's conjecture is an immediate corollary of the validity of Kotzig's conjecture. The two conjectures are probably not equivalent: the two edges $a b b c$ and $b c b d$ in a line graph could certainly be adjacent in some cycle in the line graph, but, back in the original graph. the two 2 -paths $a b c$ and $c b d$ could not be adjacent in a tour.

It is not hard to construct a perfect set of Euler tours of K_{3} or K_{5}, but, to my knowledge, no other perfect sets of Euler tours of complete graphs had been found until now.

In Chapter 3 we present results on one way of extending the idea of a perfect set of Euler tours to the graph $K_{2 k}$, which itself has no Euler tour. We choose to define a perfect set of Euler tours of $K_{2 k}$ as we do because as a corollary we immediately have a Hamilton decomposition of $L\left(K_{2 k}\right)$. This seems to justify our definition as it parallels the odd case. Thus our construction of a perfect set of Euler tours of $K_{2 k}+I$ completes the proof of McK^{-}- conjecture since it implies that the graph $L\left(K_{2 k}\right)$ does have a Hamilton decomposition for all $k>1$. Again there is no reason to suppose that the two results are equivalent.

There has been much work done trying to solve Problem 1.2.2. Jackson gives a review in [7]. We use $d(v)$ to indicate the degree of a vertex $v \in V(G)$ and $\delta(G)$ to indicate the minimum degree of G. A block in a graph is a maximal 2-connected subgraph. In giving an overview of the results in this area, we will assume for simplicity that the Eulerian graphs have no vertices of degree 2.

Suppose G is an Eulerian graph with $\delta(G) \geq 4$, and let v be a vertex of G of degree $\delta(G)$. If $u v \in E(G)$ then there are $\delta(G)-12$-paths $u v w, w \in V(G)$. Therefore, there are at most $\delta(G)-1$ pairwise compatible Euler tours of G. Moreover, if there is a $2-$ path $u v x$ such that $G-u v-v x$ is disconnected, then no Euler tour of G could use the $2-$ path $u v x$, so there are at most $\delta(G)-2$ pairwise compatible Euler tours of G. Jackson conjectured that one of these bounds must hold:

Conjecture 1.2.5 (Jackson [6]) The maximum number of pairwise compatible Euler tours of an Eulerian graph G is either $\delta(G)-1$ or $\delta(G)-2$.

This conjecture is valid for $\delta(G)=4[13]$ and for $\delta(G)=6[8]$. Although it has not been possible to prove this conjecture in general, Jackson and Wormald, by extending a result from [6], were able to prove:

Theorem 1.2.6 (Jackson and Wormald [9]) An finite Eulerian graph G with $\delta(G) \geq$ 4 has at least $\frac{1}{2} \delta(G)$ pairwise compatible Euler tours.

Fleischner et al. [4] proved the following two theorems, using the first to prove the second.

Theorem 1.2.7 Given a 1 -factor L of $K_{2 k}$, there is a 1 -factorization $L_{1}, L_{2}, \ldots, L_{2 k-2}$ of $K_{2 k}-L$ such that $L \cup L_{i}$ is a Hamilton cycle of $K_{2 k}$ for $i \in\{1,2, \ldots, 2 k-2\}$.

Theorem 1.2.8 If G is a connected, finite, Eulerian graph with $\delta(G) \geq 4$ such that every cycle in G is a block of G, then G has $\delta(G)-2$ pairwise compatible Euler tours.

Note that in Theorem 1.2.8 the number $\delta(G)-2$ is best possible.
Results about Hamilton decompositions of $L\left(K_{n}\right)$ tend to appear as corollaries to more general theorems.

Theorem 1.2.9 (Muthusumy and Paulraja [14]) If G has a Hamilton decomposition into an even number of Hamilton cycles, then $L(G)$ has a Hamilton decomposition.

Corollary 1.2.10 The line graphs $L\left(K_{4 m+1}\right)$ and $L\left(K_{4 m+2}\right)$ each have a Hamilton decomposition for all m.

Theorem 1.2.11 (Cox and Rodger [3]) Let $l \equiv 0(\bmod 4)$. If $n \equiv 1(\bmod 2 l)$, or $n \equiv 0$ or $2(\bmod l)$, then there exists a partition of the edges of $L\left(K_{n}\right)$ into cycles of length l.

Corollary 1.2.12 The line graph $L\left(K_{4 m}\right)$ has a Hamilton decomposition for all m.
Theorem 1.2.13 (Muthusumy and Paulraja [14], Zhan [16]) If G has a Hamilton decomposition into an odd number of Hamilton cycles, then the edges of $L(G)$ can be partitioned into Hamilton cycles and a 2-factor.

Corollary 1.2.14 The edges of the line graph $L\left(K_{4 m+3}\right)$ can be decomposed into Hamilton cycles and a 2-factor for all m.

We also mention a result of Pike's that has implications for the existence of Hamilton decompositions of $L\left(K_{2 k}-I\right)$.

Theorem 1.2.15 (Pike [15]) If G is a $2 k$-regular graph that has a perfect 1 -factorization, then $L(G)$ has a Hamilton decomposition.

Corollary 1.2.16 The line graph of $K_{2 k}-I$ has a Hamilton decomposition whenever $K_{2 k}$ has a perfect 1-factorization, where I is a 1 -factor of $K_{2 k}$.

Pike provides a list of the values of k for which perfect 1-factorizations of $K_{2 k}$ exist. It includes k prime, $2 k-1$ prime, and 16 other values.

This is of interest here because the graph $K_{2 k}-I$ is Eulerian, and asking for a perfect set of Euler tours of $K_{2 k}-I$ would be another way of extending the idea behind Kotzig's Conjecture 1.2.1 to the graph $K_{2 k}$. Corollary 1.2.16 would also be a corollary to such a result.

Chapter 4 is motivated by another question of Kotzig's [12]:
Problem 1.2.17 (Kotzig [12]) What is the smallest $k>1$ for which there is a perfect set of Hamilton decompositions of $K_{2 k+1}$?

It is possible that no such k exists. It is not hard to show that there cannot be two compatible Hamilton decompositions of K_{5}, let alone three, which is the number needed for a perfect set. Kotzig states in [12] that it is known that K_{7} does not have a perfect set of Hamilton decompositions, but does not say how many pairwise compatible Hamilton decompositions are possible. The fact that perfect sets of Hamilton decompositions do not exist for these small cases leads us to ask instead:

Problem 1.2.18 Given k, what is the maximum number of pairwise compatible Hamilton decompositions in $K_{2 k+1}$?

Since a set of l pairwise compatible Hamilton decompositions of $K_{2 k+1}$ implies the existence of a set of l pairwise compatible Hamilton path decompositions of $K_{2 k}$, we can back up still further and ask:

Problem 1.2.19 Given k, what is the maximum number of pairwise compatible Hamilton path decompositions in $K_{2 k}$?

Problems 1.2.17 and 1.2.18 are related to the existence of Dudeney sets in $K_{2 k+1}$ because a perfect set of Hamilton decompositions of $K_{2 k+1}$ is simply a resolvable Dudeney set. Also, since whenever there exists a Dudeney set of K_{n}, we immediately have a set of Hamilton paths of K_{n-1} that partition the 2-paths of K_{n-1}, results about Dudeney sets may have implications for Problem 1.2.19. Since Dudeney sets in K_{n} when n is odd have proven hard to find, we should perhaps assume that solving Problem 1.2.17 will be difficult. There is only one known infinite family of Dudeney sets of $K_{2 k+1}$:

Theorem 1.2.20 (Heinrich, Kobayashi, Nakamura [5]) There is a Dudeney set in K_{p+2} if p is prime and 2 is a generator of the multiplicative subgroup of $G F(p)$.

There are also a few sporadic cases known: see [10].
However, when n is even, the existence of Dudeney sets has been solved completely.
Theorem 1.2.21 (Kobayashi, Kiyasu-Zen'iti, Nakamura [10]) There exists a Dudeney set in K_{n} when n is even.

Before proving Theorem 1.2.21, Kobayashi and Nakamura [11] gave an elegant construction of the following result.

Theorem 1.2.22 (Kobayashi, Nakamura [11]) There exists a set of Hamilton cycles of K_{n} when n is even that between them contain every $2-$ path of K_{n} exactly twice.

As a corollary, there is a set of Hamilton paths of $K_{2 k-1}$ that between them contain every 2-path of $K_{2 k-1}$ exactly twice. Similarly, if we change Problem 1.2.19 to ask for every 2--path twice instead of once, we are able to find a set of Hamilton path decompositions of $K_{2 k}$ so that every 2 -path is in exactly two of the Hamilton paths.

We also give a construction for a set of $2 k-2$ pairwise compatible Hamilton path decompositions of $K_{2 k}$ and thereby show that the solution to Problem 1.2.19 is either $2 k-2$ or $2 k-1$. (A perfect set of Hamilton path decompositions of $K_{2 k}$ would contain $2 k-1$ Hamilton path decompositions.) In the case of $k=2$, two Hamilton path decompositions is best possible. These results are the first section of Chapter 4.

In the second section of Chapter 4 , we give a lower bound to Problem 1.2.18 when $k>2$ is even. The first and last vertices in a Hamilton path determine an edge, and the set of such edges determined by a Hamilton path decomposition is a 1 -factor in $K_{2 k}$. If we construct a set of l pairwise compatible Hamilton path decompositions of $K_{2 k}$ with the added condition that the 1-factors induced by each Hamilton path decomposition are pairwise disjoint, then we immediately have a set of l pairwise compatible Hamilton decompositions of $K_{2 k+1}$.

When $k>2$ is even we are able to show that there are at least

$$
\max \left(\left\lceil\frac{2 k}{3}\right\rceil-\left(k-1-\frac{\phi(2 k-1)}{2}\right), 3\right)
$$

pairwise compatible Hamilton decompositions of $K_{2 k+1}$. When $k>2$ is even and $2 k-1$ is prime, this means we have at least $\left\lceil\frac{2 k}{3}\right\rceil$ pairwise compatible Hamilton decompositions of $K_{2 k+1}$.

Chapter 2

A Perfect Set of Euler Tours of $K_{2 k+1}$

2.1 Main Result

In this chapter we prove the following theorem and corollaries.

Theorem 2.1.1 For all $k, K_{2 k+1}$ has a perfect set of Euler tours.

Corollary 2.1.2 For all $k, L\left(K_{2 k+1}\right)$ has a Hamilton decomposition.

Corollary 2.1.3 There exists a closed walk of $K_{2 k+1}$ in which every 2-path occurs exactly once.

The proof of Corollary 2.1.2 is straightforward and we give it here. The proof of Corollary 2.1.3 requires details of the proof of Theorem 2.1.1, so we will present it in the last section of this chapter.

Proof of Corollary 2.1.2. Given a perfect set of Euler tours of $K_{2 k+1}$, simply replace each 2-path $a b c$ in each of the tours by the edge $a b b c$ in $L\left(K_{2 k+1}\right)$. Since each tour covers each edge of $K_{2 k+1}$ exactly once, in the line graph the corresponding subgraph will cover each vertex exactly once, and hence be a Hamilton cycle. Since each 2 -path of $K_{2 k+1}$ is used exactly once in exactly one of the tours, every
edge of $L\left(K_{2 k+1}\right)$ is covered exactly once in the Hamilton cycles, giving a Hamilton decomposition.

Since $K_{2 k+1}$ contains $k(2 k+1)(2 k-1)$ 2-paths, and an Euler tour of $K_{2 k+1}$ contains $k(2 k+1) 2-$ paths, a perfect set of Euler tours of $K_{2 k+1}$ would have $2 k-1$ Euler tours. The Euler tours in the perfect set of Euler tours of $K_{2 k+1}$ that we construct here are pairwise similar. In fact there exists a permutation σ of $V\left(K_{2 k+1}\right)$ such that if T is one of the Euler tours, then $\left\{\sigma^{i}(T): 0 \leq i \leq 2 k-2\right\}$ is the set of all the Euler tours. Thus, there exists a permutation τ of $V\left(L\left(K_{2 k+1}\right)\right)$, such that if H is one of the Hamilton cycles of $L\left(K_{2 k+1}\right)$, then $\left\{\tau^{i}(H): 0 \leq i \leq 2 k-2\right\}$ generates all of the Hamilton cycles in the Hamilton decomposition.

The proof of Theorem 2.1.1 is divided into two sections, the first for the case when k is even, and the second for the case when k is odd. The constructions are divided into a series of claims and proofs of the claims. In both sections, the key to the construction of the Euler tours is the choice of a particular 1-factorization \mathcal{F} of $K_{2 k}$. Let $V\left(K_{2 k}\right)=$ $\{1,2, \ldots, 2 k\}$. It is well known that the following generates a 1-factorization of $K_{2 k}$. Let σ_{1} be the permutation ($234 \cdots 2 k-22 k-12 k$) of the vertices of $K_{2 k}$ that fixes vertex 1 and cyclically rotates the others. Then $\mathcal{F}=\left\{F_{0}, F_{1}, \ldots, F_{2 k-2}\right\}$, where F_{0} is the 1 -factor $\{12,32 k, 42 k-1, \ldots, k+1 k+2\}$ and $F_{i}=\sigma_{1}^{i}\left(F_{0}\right), 1 \leq i \leq 2 k-2$, is a 1-factorization of $K_{2 k}$.

It is fundamental (though perhaps trivial) to understand how we will be joining together trails and 2-paths to form Euler tours. Given a trail in $K_{2 k+1}$ that ends at vertex v and another that starts at v, suppose we want to join them together at v to form a single trail. It is first necessary to know more about them. We need to know which 2-path centred at v this larger trail would use. In order to know that, we need to know the last edge of the first trail, say it is $u v$, and the first edge of the second, say $v w$. We can then take the two trails and the $2-$ path $u v w$ and form a single trail.

The main idea of the proof when k is even is to construct one Euler tour T_{0} of $K_{2 k+1}$ and a permutation σ of the $V\left(K_{2 k+1}\right)$ so that $\left\{\sigma^{i}\left(T_{0}\right): 0 \leq i \leq 2 k-2\right\}$ is a perfect set of Euler tours. We describe T_{0} by listing the 2 -paths that are centred at each of the vertices in it. It should be clear that in an Euler tour, or indeed, in
a tour decomposition of $K_{2 k+1}$, that if we construct edges from the end vertices of each of the $2-$ paths centred at a given veitex v, then these edges form a 1 -factor of $K_{2 k}=K_{2 k+1}-\{v\}$. Also, the union of the 1-factors formed by the end vertices of the $2-$ paths centred at v in each of the Euler tours in a perfect set of Euler tours forms a 1-factorization of $K_{2 k}$. With this in mind, in listing the 2-paths centred at v in T_{0}, we start with a 1 -factor F_{0} of $K_{2 k}$, such that $\left\{\sigma^{i}\left(F_{0}\right): 0 \leq i \leq 2 k-2\right\}$ is a 1 -factorization of $K_{2 k}$. We then say that the 2-paths centered at v in T_{0} are $\left\{u v w: u w \in E\left(\sigma^{j}\left(F_{0}\right)\right)\right\}$, where the cnoice of j depends on v. When we take $\sigma^{i}\left(T_{0}\right)$ for $0 \leq i \leq 2 k+2$, we are effectively generating 2 -paths centred at v with end vertices from each of the 1 -factors $\sigma^{j+i}\left(F_{0}\right), 0 \leq i \leq 2 k+2$. In other words, from a 1-factorization of $K_{2 k}$. The difficulty lies in choosing which 1-factor $\sigma^{j}\left(F_{0}\right)$ will determine the end vertices of the 2 -paths centred at a given vertex v. Having provided a list of the 2 -paths in T_{0}, it is then necessary to prove that they do indeed form an Euler tour of $K_{2 k+1}$, and not just a tour decomposition. (We necessarily have at least have constructed a tour decomposition.) To prove this, we consider T_{0} minus the $2-$ paths centred at a fixed vertex ∞, and hence investigate and make use of the underlying structure of T_{0}.

The proof when k is odd, is similar to and relies heavily on the proof when k is even.

2.2 A Perfect Set of Euler Tours of $K_{4 m+1}$

Let $k=2 m$. Denote the $4 m-1$ Euler tours required in a perfect set of Euler tours of $K_{4 m+1}$ by $\left\{T_{0}, T_{1}, \ldots, T_{4 m-2}\right\}$. We will construct T_{0} by providing a list of the 2 paths that it contains, and construct $T_{i}, 1 \leq i \leq 4 m-2$, by defining a permutation σ of $V\left(K_{4 m+1}\right)$, and letting $T_{i}=\sigma^{i}\left(T_{0}\right)$. Thus the tours will be pairwise similar and it will only be necessary to prove that T_{0} is an Euler tour and that the $T_{i}, 0 \leq i \leq 4 m-2$, partition the 2 -paths of $K_{4 m+1}$.

Construct the following 1-factorization of $K_{4 m}$ using the idea described in Section 2.1. Let $V\left(K_{4 m}\right)=A \cup B \cup C$, where $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$,
and $C=\left\{c_{1}, c_{2}, \ldots, c_{2 m}\right\}$. Let $V\left(K_{4 m+1}\right)=V\left(K_{4 m}\right) \cup\{\infty\}$, and let σ be the permutation

$$
\begin{gathered}
(\infty)\left(c_{1}\right)\left(a_{1} b_{1} c_{2 m} c_{3} a_{m} b_{2} c_{2 m-2} c_{\overline{5}} \cdots a_{m-i+2} b_{i} c_{2 m-2 i+2} c_{2 i+1} \cdots\right. \\
\left.\cdots a_{3} b_{m-1} c_{4} c_{2 m-1} a_{2} b_{m} c_{2}\right)
\end{gathered}
$$

of $V\left(K_{4 m+1}\right)$ that fixes ∞ and generates a 1-factorization of $K_{4 m}$ on the vertex set $A \cup B \cup C$, beginning with the initial 1-factor F_{0}, where F_{0} is given by $\left\{a_{i} c_{2 i-1}: 1 \leq i \leq\right.$ $m\} \cup\left\{b_{i} c_{2 i}: 1 \leq i \leq m\right\}$. We now have the 1-factorization $\mathcal{F}=\left\{F_{0}, F_{1}, \ldots, F_{4 m-2}\right\}$, where $F_{i}=\sigma^{i}\left(F_{0}\right), 0 \leq i \leq 4 m-2$.

Since we want every edge of $K_{4 m+1}$ to be in T_{0} exactly once, every vertex of T_{0} will have $2 m$ edge-disjoint 2 -paths centred at it. The set of 2 -paths used to specify T_{0} will be based on the 1-factors $F_{4 m-2}, F_{0}$, and F_{1}, and is listed below. From now on we will denote $F_{4 m-2}$ by F_{-1} in order to emphasize that $\sigma^{-1}\left(F_{0}\right)=F_{-1}$. The 2-paths in T_{0} are:

$$
\begin{aligned}
& a_{j}\left[F_{-1}\right], \text { for all } a_{j} \in A, \\
& b_{j}\left[F_{1}\right], \text { for all } b_{j} \in B, \\
& c_{j}\left[F_{0}\right], \text { for all } c_{j} \in C, \text { and } \\
& \infty\left[F_{0}\right]
\end{aligned}
$$

where notation is as in Section 1.1.
Now let $T_{i}=\sigma^{i}\left(T_{0}\right)$, for $1 \leq i \leq 4 m-2$. By definition the T_{i} are pairwise similar.
Claim 2.2.1 The $T_{i}, 0 \leq i \leq 4 m-2$, partition the 2 -paths in $K_{4 m+1}$.
Proof. Since σ fixes both ∞ and c_{1}, and \mathcal{F} is a 1 -factorization of $K_{4 m}$, it is clear that the T_{i} partition all the 2 -paths centered at either of these vertices.

Let $v \in V\left(K_{4 m}\right)-\left\{c_{1}\right\}$. Let $t v s$ be a $2-$ path in $K_{4 m+1}$, and assume $t \neq \infty$ and $s \neq \infty$. Then the edge $t s=\left[F_{i}: k\right]$ for a unique $i \in\{0,1,2, \ldots, 4 m-2\}$ and a unique $k \in\{1,2, \ldots, 2 m\}$. There are three cases. If $v=\sigma^{i}\left(c_{j}\right)$ for some $c_{j} \in C$, then $t v s=\sigma^{i}\left(c_{j}\left[F_{0}: k\right]\right)$, and since $c_{j}\left[F_{0}: k\right] \in T_{0}, t v s \in T_{i}$. If $v=\sigma^{i}\left(a_{j}\right)$ for some $a_{j} \in A$, then $v=\sigma^{i-1}\left(b_{l}\right)$ for some $b_{l} \in B$. So $t v s=\sigma^{i-i}\left(b_{l}\left[F_{1}: k\right]\right)$, and since $b_{l}\left[F_{1}: k\right] \in T_{0}, t v s \in T_{i-1}$. If $v=\sigma^{i}\left(b_{j}\right)$ for some $b_{j} \in B$, then $v=\sigma^{i+1}\left(a_{l}\right)$ for some $a_{l} \in A$. So tvs $=\sigma^{i+1}\left(a_{l}\left[F_{-1}: k\right]\right)$, and since $a_{l}\left[F_{-1}: k\right] \in T_{0}, t v s \in T_{i+1}$.

Now assume that $t=\infty$. Then there exist i and k such that $v s=\left[F_{i}: k\right]$. An argument similar to the above will show that $\infty v s \in T_{j}$ for some j. follows.

Our goal now is to show that T_{0} is an Euler tour. To accomplish this we give an exact description of the order in which the 2 -paths occur in T_{0}. It is obvious that the removal of any one vertex divides an Euler tour of $K_{4 m+1}$ into exactly $2 m$ trails. We consider the removal of vertex ∞ from T_{0}. Our first step is to partition all the 2 -paths in T_{0} except those centred at vertex ∞ into $2 m$ parts, $G_{i}, 1 \leq i \leq 2 m$, and to prove that each part forms a single trail that begins and ends at vertex ∞; our second step is to prove that the 2 -paths centred at vertex $\infty, \infty\left[F_{0}\right]$, join these trails together in such a way that they form an Euler tour.

We begin by ordering the edges in the three 1-factors used in the construction of T_{0}.

$$
\begin{array}{rlrl}
{\left[F_{0}: 2 j-1\right]} & =a_{j} c_{2 j-1}, & & 1 \leq j \leq m \\
{\left[F_{0}: 2 j\right]} & =b_{j} c_{2 j}, & & 1 \leq j \leq m, \\
{\left[F_{1}: 1\right]} & =b_{1} c_{1}, & & \\
{\left[F_{1}: 2 j-1\right]} & =a_{j} b_{j}, & & 2 \leq j \leq m, \\
{\left[F_{1}: 2 j\right]} & =c_{2 j} c_{2 j+1}, & 1 \leq j \leq m-1, \\
{\left[F_{1}: 2 m\right]} & =a_{1} c_{2 m}, & & \\
& & \\
{\left[F_{-1}: 2 j-1\right]} & =c_{2 j-1} c_{2 j}, & 1 \leq j \leq m, \\
{\left[F_{-1}: 2 j\right]} & =b_{j} a_{j+1}, & & 1 \leq j \leq m-1, \\
{\left[F_{-1}: 2 m\right]} & =b_{m} a_{1} . & &
\end{array}
$$

We now define a partition of all the 2 -paths in T_{0} except those centred at vertex ∞ and label the parts $G_{i}^{\prime}, 1 \leq i \leq 2 m$. To prove each G_{i} forms a single trail, we will show that for $i \leq m-1, G_{i+1}$ contains a subtrail similar to G_{i} minus one 2-path, as well as nine other 2 -paths, and for $i \geq m+2, G_{i-1}$ contains a subtrail similar to G_{i} minus one 2-path, as well as nine other 2 -paths. Before showing each G_{i} is a trail we $1: l l$ determine which 2 -paths in G_{i} contain vertex ∞. This is necessary as we ultimately need to determine how the trails G_{i} will fit together when joined by the

2-paths centred at vertex ∞. In listing the 2 -paths in G_{i} we will use the notation $u\left[F_{i}: j\right]$ described in the introduction in Chapter 1. If j should happen to be less than 1 or greater than $2 m$, we assume that no 2 -path results. To reiterate, we first simply assign certain 2 -paths to G_{i}, and then, in a series of claims, verif, that they do indeed produce the trails as described.

The 2-paths in $G_{i}, i \in\{1,2, \ldots, m\}$ are:

$$
\begin{array}{ll}
a_{1}\left[F_{-1}: 2 i-1\right], & \\
a_{k}\left[F_{-1}: 2 i-2 k+1\right]\left[F_{-1}: 2 i-2 k+2\right], & 2 \leq k \leq i, \\
b_{k}\left[F_{1}: 2 i-2 k\right]\left[F_{1}: 2 i-2 k+1\right], & 1 \leq k \leq i, \\
c_{k}\left[F_{0}: 2 i-k\right]\left[F_{0}: 2 i-k+1\right], & 1 \leq k \leq 2 i
\end{array}
$$

The 2 -paths in $G_{i}, i \in\{m+1, m+2, \ldots, 2 m\}$ are:

$$
\begin{array}{ll}
a_{1}\left[F_{-1}: 2 i-2 m\right], & \\
a_{k}\left[F_{-1}: 2 i-2 k+1\right]\left[F_{-1}: 2 i-2 k+2\right], & i-i . \iota+1 \leq k \leq m, \\
b_{k}\left[F_{1}: 2 i-2 k\right]\left[F_{1}: 2 i-2 k+1\right], & i-m \leq k \leq m, \\
c_{k}\left[F_{0}: 2 i-k\right]\left[F_{0}: 2 i-k+1\right], & 2 i-2 m \leq k \leq 2 m .
\end{array}
$$

Claim 2.2.2 The $G_{i}, 1 \leq i \leq 2 m$, partition the 2-paths in $T_{0}-\infty\left[F_{\mathbf{0}}\right]$.
Proof. It is straightforward to check that in the union of the G_{i}^{\prime} each vertex in $V\left(K_{4 m}\right)$ occurs as the centre vertex of $2 m 2$-paths with end vertices determined by the edges of the appropriate 1-factor of $K_{4 m}$.

Claim 2.2.3 There are precisely two vertices in each G_{i} that are centres of 2-paths with vertex ∞ as an end vertex. These vertices are $b_{\frac{i+1}{2}}$ and c_{i} if i is odd, $a_{\frac{i}{2}+1}$ and c_{i} if i is even and $i \leq 2 m-2$, and a_{1} and $c_{2 m}$ if $i=2 m$.

Proof. It is easy to check that the 2 -paths $c_{1} b_{1} \infty$ and $a_{1} c_{1} \infty$ are in G_{1}, that $a_{\frac{i+1}{2}} b_{\frac{i+1}{2}} \infty$ and $a_{\frac{i+1}{2}} c_{i} \infty$ are in $G_{i}, i>1$ odd, that $b_{\frac{i}{2}} a_{\frac{i}{2}+1} \infty$ and $b_{\frac{i}{2}} c_{i} \infty$ are in G_{i}, $i<2 m$ even, and that $b_{m} a_{1} \infty$ and $b_{m} c_{2 m} \infty$ are in $G_{2 m}$.

By construction, there are exactly $4 m$ 2-paths in T_{0} that have ∞ as an end vertex. Since we have accounted for $4 m$ such 2 -paths, we are done.

In order to prove that each G_{i} is a trail, we shail show that if $1 \leq i \leq m-1$, then G_{i+1} contains a subtrail similar to all of G_{i} minus one 2-path, and if $m+2 \leq i \leq 2 m$, then G_{i-1} contains a subtrail similar to all of G_{i} minus one 2 -path. Towards this end, let γ be the following permutation on the vertices of $K_{4 m+1}$:

$$
\begin{aligned}
& \eta\left(c_{i}\right)=c_{i+1}, \quad 1 \leq i \leq 2 m-1 \\
& \gamma\left(c_{2 m}\right)=c_{1} \\
& \gamma\left(a_{i}\right)=b_{i}, \quad 1 \leq i \leq m \\
& \gamma\left(b_{i}\right)=a_{i+1}, \quad 1 \leq i \leq m-1, \\
& \gamma\left(b_{m i}\right)=a_{1} \\
& \gamma(\infty)=\infty
\end{aligned}
$$

We next determine where ; maps the edges in the three 1 -factors. F_{0}, F_{1} and F_{-1}.

$$
\begin{array}{ll}
& \gamma\left(\left[F_{0}: 2 j-1\right]\right)=\gamma\left(a_{j} c_{2 j-1}\right)=b_{j} c_{2 j}=\left[F_{0}: 2 j\right], \\
& 1\left(\left[F_{0}: 2 j\right]\right)=\gamma\left(b_{j} c_{2 j}\right)=a_{j+1} c_{2 j+1}=\left[F_{0}: 2 j+1\right], \\
& 1 \leq j \leq m, \\
& \prime\left(\left[F_{0}: 2 m\right]\right)=\gamma\left(b_{m} c_{2 m}\right)=a_{1} c_{1}=\left[F_{0}: 1\right], \\
\gamma\left(\left[F_{1}: 1\right]\right)=\gamma\left(b_{1} c_{1}\right)=a_{2} c_{2}, & \\
\gamma\left(\left[F_{1}: 2 j-1\right]\right)=\gamma\left(a_{j} b_{j}\right)=b_{j} a_{j+1}=\left[F_{-1}: 2 j\right], & 2 \leq j \leq m-1, \\
\gamma\left(\left[F_{1}: 2 m-1\right]\right)=\gamma\left(a_{m} b_{m}\right)=b_{m} a_{1}=\left[F_{-1}: 2 m\right], & \\
\gamma\left(\left[F_{1}: 2 j\right]\right)=\gamma\left(c_{2 j} c_{2 j+1}\right)=c_{2 j+1} c_{2 j+2}=\left[F_{-1}: 2 j+1\right] . & 1 \leq j \leq m-1 . \\
\gamma\left(\left[F_{1}: 2 m\right]\right)=\gamma\left(a_{1} c_{2 m}\right)=b_{1} c_{1} . \\
& \\
\gamma\left(\left[F_{-1}: 2 j-1\right]\right)=\gamma\left(c_{2 j-1} c_{2 j}\right)=c_{2 j} c_{2 j+1}=\left[F_{1}: 2 j\right], & 1 \leq j \leq m-1 . \\
\gamma\left(\left[F_{-1}: 2 m-1\right]\right)=\gamma\left(c_{2 m-1} c_{2 m}\right)=c_{2 m} c_{1}, & \\
\gamma\left(\left[F_{-1}: 2 j\right]\right)=\gamma\left(b_{j} a_{j+1}\right)=a_{j+1} b_{j+1}=\left[F_{1}: 2 j+1\right], & 1 \leq j \leq m-1, \\
\gamma\left(\left[F_{-1}: 2 m\right]\right)=\gamma\left(b_{m} a_{1}\right)=a_{1} b_{1} .
\end{array}
$$

So for $1 \leq k \leq 2 m-1, \gamma\left(\left[F_{0}: k\right]\right)=\left[F_{0}: k+1\right]$; for $2 \leq k \leq 2 m-1, \gamma\left(\left[F_{1}: k\right]\right)=$ $\left[F_{-1}: k+1\right] ;$ and for $1 \leq k \leq 2 m-2, \gamma\left(\left[F_{-1}: k\right]\right)=\left[F_{1}: k+1\right]$.

Claim 2.2.4 For $1 \leq i \leq m-1$, all the 2 -paths in $\gamma\left(G_{i}\right)$ are in G_{i+1}, except for $\gamma\left(b_{i}\left[F_{1}: 1\right]\right)$.

Proof. We know exactly which 2 -paths are in $G_{i}, 1 \leq i \leq m-1$, and how γ behaves on the vertices of $K_{4 m}$ and on the edges of F_{0}, F_{1} and F_{-1}. We can therefore list the 2-paths in $\gamma\left(G_{i}\right), 1 \leq i \leq m-1$.

$$
\begin{aligned}
& \gamma\left(a_{1}\left[F_{-1}: 2 i-1\right]\right)=b_{1}\left[F_{1}: 2 i\right]=b_{1}\left[F_{1}: 2(i+1)-2\right], \\
& \gamma\left(a_{k}\left[F_{-1}: 2 i-2 k+1\right]\left[F_{-1}: 2 i-2 k+2\right]\right), \quad 2 \leq k \leq i \\
& =b_{k}\left[F_{1}: 2 i-2 k+2\right]\left[F_{1}: 2 i-2 k+3\right] \\
& =b_{k}\left[F_{1}: 2(i+1)-2 k\right]\left[F_{1}: 2(i+1)-2 k+1\right], \quad 2 \leq k \leq(i+1)-1 \\
& \gamma\left(b_{k}\left[F_{1}: 2 i-2 k\right]\left[F_{1}: 2 i-2 k+1\right]\right), \quad 1 \leq k \leq i-1 \\
& =a_{k+1}\left[F_{-1}: 2 i-2 k+1\right]\left[F_{-1}: 2 i-2 k+2\right] \\
& =a_{k+1}\left[F_{-1}: 2(i+1)-2(k+1)+1\right]\left[F_{-1}: 2(i+1)-2(k+1)+2\right] \text {, } \\
& 2 \leq k+1 \leq(i+1)-1 \\
& \gamma\left(b_{i}\left[F_{1}: 1\right]\right)=a_{i+1}\left[a_{2} c_{2}\right], \quad \notin G_{i+1} \\
& \gamma\left(c_{k}\left[F_{0}: 2 i-k\right]\left[F_{0}: 2 i-k+1\right]\right), \quad 1 \leq k \leq 2 i-1 \\
& =c_{k+1}\left[F_{0}: 2 i-k+1\right]\left[F_{0}: 2 i-k+2\right] \\
& =c_{k+1}\left[F_{0}: 2(i+1)-(k+1)\right]\left[F_{0}: 2(i+1)-(k+1)+1\right] \text {, } \\
& 2 \leq k+1 \leq 2(i+1)-2 \\
& \gamma\left(c_{2 i}\left[F_{0}: 1\right]\right)=c_{2(i+1)-1}\left[F_{0}: 2\right]
\end{aligned}
$$

All of the resulting 2 -paths above are in G_{i+1} except for $\gamma\left(b_{i}\left[F_{1}: 1\right]\right)$.
We now prove by induction that each $G_{i}, 1 \leq i \leq m$, is a single trail. The following two claims contain the basis of the induction and the induction step, respectively.

Claim 2.2.5 The part G_{1} is a single trail, and $G_{1}-b_{1}\left[F_{1}: 1\right]$ is the unic.a of a trail with first edge ∞c_{1} and last edge $c_{1} b_{1}$, and the single edge $b_{1} \infty$.

Proof. It is easy to see from the list of the 2-paths in G_{1} that G_{1} is the trail $\infty c_{1} a_{1} c_{2} c_{1} b_{1} \infty$. The second point in the statement of the claim is obviously true.

Claim 2.2.6 Each of the parts, $G_{i}, 1 \leq i \leq m$, is a trail, and $\left.G_{i}-b_{i}\left[F_{1}: 1\right]\right)$ is one trail from ∞c_{i} to $c_{1} b_{i}$, and a second from $b_{i} b_{1}$ to $b_{\frac{i+1}{2}} \infty$, if i is odd, and to $a_{\frac{1}{2}+1} \infty$, if i is even.

Proof. Assume $i \leq m-1$ is odd. By induction we can assume G_{i} is a trail and $G_{i}-b_{i}\left[F_{1}: 1\right]$ is two trails: one from ∞c_{i} to $c_{1} b_{i}$; and one from $b_{i} b_{1}$ to $b_{\frac{i+1}{2}} \infty$. By Claim 2.2.4, we know that $\gamma\left(G_{i}-b_{i}\left[F_{1}: 1\right]\right)=\gamma\left(G_{i}-c_{1} b_{i} b_{1}\right)$ is a subset of G_{i+1}^{\prime}. So, G_{i+1} contains one trail from $\propto c_{i+1}$ to $c_{2} a_{i+1}$, and one trail from $a_{i+1} a_{2}$ to $a_{\frac{+1}{2}+1} \infty$. Define these two subtrails of G_{i+1} to be t_{1} and t_{2}, respectively. Note that t_{2} is the single edge $a_{2} \infty$ if $i=1$. From the list of the 2 -paths in G_{i+1} and the proof of Claim 2.2.4, we see that the 2-paths in G_{i+1} that are not in $\gamma\left(G_{i}\right)$ are:

$$
\begin{aligned}
b_{1}\left[F_{1}: 2(i+1)-1\right] & =a_{i+1} b_{1} b_{i+1} \\
b_{i+1}\left[F_{1}: 1\right] & =b_{1} b_{i+1} c_{1} \\
a_{1}\left[F_{-1}: 2(i+1)-1\right] & =c_{2 i+1} a_{1} c_{2 i+2} \\
a_{i+1}\left[F_{-1}: 1\right]\left[F_{-1}: 2\right] & =c_{1} a_{i+1} c_{2} \text { and } b_{1} a_{i+1} a_{2} \\
c_{1}\left[F_{0}: 2(i+1)-1\right]\left[F_{0}: 2(i+1)\right] & =a_{i+1} c_{1} c_{2 i+1} \text { and } b_{i+1} c_{1} c_{2 i+2} \\
c_{2(i+1)-1}\left[F_{0}: 1\right] & =a_{1} c_{2 i+1} c_{1} \\
c_{2(i+1)}\left[F_{0}: 1\right] & =a_{1} c_{2 i+2} c_{1} .
\end{aligned}
$$

Then G_{i+1} is the trail

$$
t_{1} c_{1} c_{2 i+1} a_{1} c_{2 i+2} c_{1} b_{i+1} b_{1} t_{2}
$$

When $i=1$ note that $a_{2}\left[F_{-1}: 2\right]=b_{1} a_{2} \infty$.
Now suppose $i \leq m-1$ is even.
The only difference in this case is that the final edge in G_{i} is $a_{\frac{1}{2}+1} \infty$. If we again let t_{1} and t_{2} be the two subtrails in $\gamma\left(G_{i}-c_{1} b_{i} b_{1}\right)$, then t_{1} is still a trail from ∞c_{i+1} to $c_{2} a_{i+1}$, but t_{2} is now a trail from $a_{i+1} a_{2}$ to $b_{\frac{i}{2}+1} \infty$. The new 2 -paths fit in exactly as in the case when i was odd.

The second result in the statement of the claim is easily seen by inspecting the above trail.

We also know which 2 -paths are in G_{i} when $m+2 \leq i \leq 2 m$, and so can list the 2-paths in $\gamma^{-1}\left(G_{i}\right)$. Note that $b_{i-m}\left[F_{1}: 2 m\right]$ is a 2-path in G_{i}.

Claim 2.2.7 For $m+2 \leq i \leq 2 m$, all of the $2-$ paths in $\gamma^{-1}\left(G_{i}\right)$ are in G_{i-1}, except for $\gamma^{-1}\left(b_{i-m}\left[F_{1}: 2 m\right]\right)$.

Proof. Recall that for $2 \leq k \leq 2 m, \gamma^{-1}\left(\left[F_{0}: k\right]\right)=\left[F_{0}: k-1\right]$; and for $3 \leq k \leq 2 m$, $\gamma^{-1}\left(\left[F_{-1}: k\right]\right)=\left[F_{1}: k-1\right] ;$ and for $2 \leq k \leq 2 m-1, \gamma^{-1}\left(\left[F_{1}: k\right]\right)=\left[F_{-1}: k-1\right]$. We obtain the following:

$$
\begin{aligned}
& \gamma^{-1}\left(a_{1}\left[F_{-1}: 2 i-2 m\right]\right)=b_{m}\left[F_{1}: 2 i-2 m-1\right]=b_{m}\left[F_{1}: 2(i-1)-2 m+1\right] \\
& \gamma^{-1}\left(a_{k}\left[F_{-1}: 2 i-2 k+1\right]\left[F_{-1}: 2 i-2 k+2\right]\right), \quad i-m+1 \leq k \leq m \\
& =b_{k-1}\left[F_{1}: 2 i-2 k\right]\left[F_{1}: 2 i-2 k+1\right] \\
& =b_{k-1}\left[F_{1}: 2(i-1)-2(k-1)\right]\left[F_{1}: 2(i-1)-2(k-1)+1\right] \text {, } \\
& (i-1)-m+1 \leq k-1 \leq m-1 \\
& \gamma^{-1}\left(b_{i-m}\left[F_{1}: 2 m\right]\right) \\
& =a_{i-m}\left[\gamma^{-1}\left(a_{1}\right) \gamma^{-1}\left(c_{2 m}\right)\right]=a_{i-m}\left[b_{m} c_{2 m-1}\right] \notin G_{i-1} \\
& \gamma^{-1}\left(b_{k}\left[F_{1}: 2 i-2 k\right]\left[F_{1}: 2 i-2 k+1\right]\right), \quad i-m+1 \leq k \leq m \\
& =a_{k}\left[F_{-1}: 2 i-2 k-1\right]\left[F_{-1}: 2 i-2 k\right] \\
& =a_{k}\left[F_{-1}: 2(i-1)-2 k+1\right]\left[F_{-1}: 2(i-1)-2 k+2\right] \text {. } \\
& (i-1)-m+2 \leq k \leq m \\
& \gamma^{-1}\left(c_{2 i-2 m}\left[F_{0}: 2 m\right]\right), \\
& =c_{2(i-1)-2 m+1}\left[F_{0}: 2 m-1\right] . \\
& \gamma^{-1}\left(c_{k}\left[F_{0}: 2 i-k\right]\left[F_{0}: 2 i-k+1\right]\right), \quad 2 i-2 m+1 \leq k \leq 2 m \\
& =c_{k-1}\left[F_{0}: 2 i-k-1\right]\left[F_{0}: 2 i-k\right] \\
& =c_{k-1}\left[F_{0}: 2(i-1)-(k-1)\right]\left[F_{0}: 2(i-1)-(k-1)+1\right] \text {, } \\
& 2(i-1)-2 m+2 \leq k-1 \leq 2 m-1
\end{aligned}
$$

The resulting $2-$ paths are all in G_{i-1} except $\gamma^{-1}\left(b_{i-m}\left[F_{1}: 2 m\right]\right)$.
We again use induction to prove in the following two claims that each of the parts $G_{i}, m+1 \leq i \leq 2 m$, is a trail.

Claim 2.2.8 The part $G_{2 m}$ is a single trail. Also, $G_{2 m}-b_{m}\left[F_{1}: 2 m\right]$ is made up of a trail from $\infty c_{2 m}$ to $c_{2 m} b_{m}$, and a trail from $b_{m} a_{1}$ to $a_{1} \infty$.

Proof. The part $G_{2 m}$ consists of the trail $\infty c_{2 m} b_{m} a_{1} \infty$. The second statement in the claim is obvious.

Claim 2.2.9 Each of the parts, $G_{i}, m+1 \leq i \leq 2 m-1$, is a trail, and $G_{i}-b_{i-m}\left[F_{1}\right.$: $2 m$] is one trail from ∞c_{i} to $c_{2 m} b_{i-m}$, and a second trail from $b_{i-m} a_{1}$ to $b_{\frac{i+1}{2}} \infty$, when i is odd. When i is even, the second trail starts on the edge $b_{i-m} a_{1}$ and goes to the edge $a_{\frac{i}{2}+1} \infty$.

Proof. Assume by induction that G_{i} is a trail for some $i, m+2 \leq i \leq 2 m$, and that $G_{i}-b_{i-m}\left[F_{1}: 2 m\right]$ is as described in the statement of the claim.

If i is even then G_{i} is a trail from ∞c_{i} to $a_{\frac{i}{2}+1} \infty$, unless $i=2 m$, and then it is a trail to $a_{1} \infty$. By Claim 2.2.7, $\gamma^{-1}\left(G_{i}-b_{i-m}\left[a_{1} c_{2 m}\right]\right)$ is a subset of G_{i-1}, we know by induction that G_{i-1} must contain a trail from ∞c_{i-1} to $c_{2 m-1} a_{i-m}$, and one from $a_{i-m} b_{m}$ to $b_{\frac{i}{2}} \infty$. Define these two subtrails of G_{i-1} to be t_{1} and t_{2}, respectively.

From the list of 2 paths in G_{i-1} and the proof of Claim 2.2.7, we know that the 2-paths that are in G_{i-1} that are not in $\gamma^{-1}\left(G_{i}\right)$ are:

$$
\begin{aligned}
a_{1}\left[F_{-1}: 2(i-1)-2 m\right]= & a_{i-m} a_{1} b_{i-1-m} \\
a_{i-m}\left[F_{-1}: 2 m-1\right]\left[F_{-1}: 2 m\right]= & c_{2 m-1} a_{i-m} c_{2 m} \text { and } \\
& b_{m} a_{i-m} a_{1} \\
b_{m}\left[F_{1}: 2(i-1)-2 m\right]= & c_{2(i-1-m)} b_{m} c_{2(i-m)-1} \\
b_{i-1-m}\left[F_{1}: 2 m\right]= & a_{1} b_{i-1-m} c_{2 m} \\
c_{2 m}\left[F_{\mathbf{0}}: 2(i-1)-2 m\right]\left[F_{0}: 2(i-1)-2 m+1\right]= & b_{i-1-m} c_{2 m} c_{2(i-1-m)} \text { and } \\
& a_{i-m} c_{2 m} c_{2(i-m)-1} \\
c_{2(i-1)-2 m}\left[F_{\mathbf{0}}: 2 m\right]= & b_{m} c_{2(i-1-m)} c_{2 m} \\
c_{2(i-m)-1}\left[F_{0}: 2 m\right]= & b_{m} c_{2(i-m)-1} c_{2 m}
\end{aligned}
$$

So G_{i-1} is:

$$
t_{1} c_{2 m} c_{2(i-m)-1} b_{m} c_{2(i-1-m)} c_{2 m} b_{i-1-m} a_{1} t_{2}
$$

If i is odd then $G_{i}-b_{i-m}\left[a_{1} c_{2 m}\right]$ is a trail from ∞c_{i} to $c_{2 m} b_{i-m}$, and a trail from $b_{i-m} a_{1}$ to $b_{\frac{i+1}{2}} \infty$. So G_{i-1} must contain a trail from ∞c_{i-1} to $c_{2 m-1} a_{i-m}$, and one from $a_{i-m} b_{m}$ to $a_{\frac{i+1}{2}} \infty$. The new 2 -paths fit in exactly as they did when i was odd. Note that after removing the $2-$ path $b_{i-1-m}\left[F_{1}: 2 m\right]$ from G_{i-1}, we obtain the desired subtrails for the second part of the statement of the claim.

Since each G_{i} is a trail by Claims 2.2.6 and 2.2.9, and since G_{i} starts and ends on the edges specified in Claim 2.2.3, we can now show that the union of the G_{i}, $1 \leq i \leq 2 m$, with the 2 -paths centred at vertex ∞ yields an Euler tour. We have seen that ∞c_{i} is the first edge of G_{i}, for all i. Let f_{i} be the vertex such that $f_{i} \infty$ is the last edge in G_{i}. Then $\left\{f_{i}: 1 \leq i \leq 2 m\right\}=A \cup B$. So $F^{*}=\left\{f_{i} c_{i}: 1 \leq i \leq 2 m\right\}$ is a 1-factor of $K_{4 m}$. By construction, the end vertices of the 2 -paths centred at vertex ∞ are from F_{0}. The following claim proves that the union of these two 1-factors is a Hamilton cycle and thus that T_{0} is an Euler tour.

Claim 2.2.10 The union of the following two 1 -factors of $K_{4 m}$ on the vertex set $A \cup B \cup C$ is a Hamilton cycle:

$$
\begin{gathered}
F_{0}=\left\{a_{i} c_{2 i-1}, b_{i} c_{2 i}: 1 \leq i \leq m\right\} \text { and } \\
F^{*}=\left\{b_{i} c_{2 i-1}: 1 \leq i \leq m-1\right\} \cup\left\{a_{i} c_{2 i-2}: 2 \leq i \leq m\right\} \cup\left\{a_{1} c_{2 m}\right\} .
\end{gathered}
$$

Proof. The proof of this claim is easily seen. The Hamilton cycle is

$$
\left(a_{1} c_{1} b_{1} c_{2} \cdots a_{i} c_{2 i-1} b_{i} c_{2 i} \cdots a_{m} c_{2 m-1} b_{m} c_{2 m}\right)
$$

This completes the construction of a perfect set of Euler tours of $K_{4 m+1}$.

2.3 A Perfect Set of Euler Tours of $K_{4 m+3}$

Now let $k=2 m+1$. The construction of a perfect set of Euler tours of $K_{4 m+3}$ is very similar to our construction in Section 2.2. The proof requires the Euler tour T_{0} that was constructed for $K_{4 m+1}$, so, to avoid confusion, we will partition the 2 -paths in $K_{4 m+3}$ into $\left\{S_{0}, S_{1}, \ldots, S_{4 m}\right\}$, where each S_{i} is a tour-decomposition of $K_{4 m+3}$. The S_{i} will be pairwise similar so that we need only check that S_{0} is an Euler tour to be sure they all are.

We also want to let $\mathcal{F}=\left\{F_{0}, F_{1}, \ldots, F_{4 m-2}\right\}$ be the same 1-factorization of $K_{4 m}$ as in Section 2.2, so we will let $\mathcal{E}=\left\{E_{0}, E_{1}, \ldots, E_{4 m}\right\}$, as defined below, be the 1-factorization of $K_{4 m+2}$ on which we base the S_{i}.

Recall that $V\left(K_{4 m}\right)=A \cup B \cup C$, where $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$, and $C=\left\{c_{1}, c_{2}, \ldots, c_{2 m}\right\}$. Let $V\left(K_{4 m+2}\right)=V\left(K_{4 m}\right) \cup\left\{d_{1}, d_{2}\right\}$ and $V\left(K_{4 m+3}\right)=$ $V\left(K_{4 m+2}\right) \cup\{\infty\}$. We use the same idea as before to construct the 1 -factorization \mathcal{E}. Let τ be the following permutation of $V\left(K_{4 m+3}\right)$:

$$
\begin{aligned}
& \tau=(\infty)\left(c_{1}\right)\left(a_{1} b_{1} c_{2 m} c_{3} a_{m} b_{2} c_{2 m-2} c_{5} a_{m-1}\right. \\
& \cdots b_{i} c_{2 m-2 i+2} c_{2 i+1} a_{m-i+1} \\
& \cdots b_{\frac{m}{2}} c_{m+2} c_{m+1} d_{2} d_{1} a_{\frac{m}{2}+1} b_{\frac{m}{2}+1} c_{m} c_{m+3} a_{\frac{m}{2}} \\
& \cdots b_{i} c_{2 m-2 i+2} c_{2 i+1} a_{m-i+1} \\
&\left.\cdots b_{m-1} c_{4} c_{2 m-1} a_{2} b_{m} c_{2}\right), \text { if } m \text { is even, and } \\
& \tau=(\infty)\left(c_{1}\right)\left(a_{1} b_{1} c_{2 m} c_{3} a_{m} b_{2} c_{2 m-2} c_{5} a_{m-1}\right. \\
& \cdots b_{i} c_{2 m-2 i+2} c_{2 i+1} a_{m-i+1} \\
& \cdots b_{\frac{m+1}{2}} d_{2} d_{1} c_{m+1} c_{m+2} a_{\frac{m+1}{2}} b_{\frac{m+3}{2}} c_{m-1} c_{m+4} a_{\frac{m-1}{2}} \\
& \cdots b_{i} c_{2 m-2 i+2} c_{2 i+1} a_{m-i+1} \\
&\left.\cdots b_{m-1} c_{4} c_{2 m-1} a_{2} b_{m} c_{2}\right), \text { if } m \text { is odd. }
\end{aligned}
$$

Let $\mathcal{E}=\left\{E_{0}, E_{1}, \ldots, E_{4 m}\right\}$, where E_{0} is the 1 -factor $F_{0} \cup\left\{d_{1} d_{2}\right\}$ and $E_{i}=\tau^{i}\left(E_{0}\right)$, $0 \leq i \leq 4 m$.

The set of 2-paths for specifying S_{0} will be based on the 1-factors $E_{4 m}, E_{0}$, and E_{1}, as well as E_{2} or E_{3}, and is listed below. We will refer to $E_{4 m}$ as E_{-1}.

$$
\begin{aligned}
& a_{j}\left[E_{-1}\right], \text { for all } a_{j} \in A, \\
& b_{j}\left[E_{1}\right], \text { for all } b_{j} \in B, \\
& c_{j}\left[E_{0}\right], \text { for all } c_{j} \in C, \\
& d_{1}\left[E_{0}\right], \\
& d_{2}\left[E_{0}\right], \text { and } \\
& \infty\left[E_{2}\right], \text { if } m>1, \text { or } \infty\left[E_{3}\right], \text { if } m=1
\end{aligned}
$$

Now let $S_{i}=\tau^{i}\left(S_{0}\right)$, for $0 \leq i \leq 4 m$, so that the S_{i} are all pairwise similar. The proof of the following claim is very like that of Claim 2.2.1 and is not given.

Claim 2.3.1 The $S_{i}, 0 \leq i \leq 4 m$, partition the 2 -paths in $K_{4 m+3}$.

Before listing the 2-paths in S_{0} and proving they form an Euler tour, we determine the edges in E_{-1}, E_{0}, E_{1}, and write them in terms of F_{-1}, F_{0}, and F_{1}.

When m is even, we have

$$
\begin{aligned}
E_{\mathbf{0}} & =\left\{\left[F_{0}: j\right], 1 \leq j \leq 2 m\right\} \\
& \cup\left\{d_{1} d_{2}\right\} \\
E_{\mathbf{1}} & =\left\{\left[F_{1}: j\right], 1 \leq j \leq 2 m, j \neq m+1\right\} \\
& \cup\left\{a_{\frac{m}{2}+1} d_{1}\right\} \\
& \cup\left\{b_{\frac{m}{2}+1} d_{2}\right\} \\
E_{-1} & =\left\{\left[F_{-1}: j\right], 1 \leq j \leq 2 m, j \neq m+1\right\} \\
& \cup\left\{c_{m+1} d_{2}\right\} \\
& \cup\left\{c_{m+2} d_{1}\right\}
\end{aligned}
$$

Note that the edges $\left[F_{1}: m+1\right]=a_{\frac{m}{2}+1} b_{\frac{m}{2}+1}$ and $\left[F_{-1}: m+1\right]=c_{m+1} c_{m+2}$ have each been removed and replaced by two new edges.

When m is odd, we have

$$
\begin{aligned}
E_{0} & =\left\{\left[F_{0}: j\right], 1 \leq j \leq 2 m\right\} \\
& \cup\left\{d_{1} d_{2}\right\} \\
E_{1} & =\left\{\left[F_{1}: j\right], 1 \leq j \leq 2 m, j \neq m+1\right\} \\
& \cup\left\{c_{m+1} d_{1}\right\} \\
& \cup\left\{c_{m+2} d_{2}\right\} \\
E_{-1} & =\left\{\left[F_{-1}: j\right], 1 \leq j \leq 2 m, j \neq m+1\right\} \\
& \cup\left\{b_{\frac{m+1}{2}} d_{2}\right\} \\
& \cup\left\{a_{\frac{m+3}{2}} d_{1}\right\}
\end{aligned}
$$

Note that the edges $\left[F_{1}: m+1\right]=c_{m+1} c_{m+2}$ and $\left[F_{-1}: m+1\right]=b_{\frac{m+1}{2}} a_{\frac{m+3}{2}}$ have again each been removed and replaced by two new edges.

Now partition all the 2 -paths in S_{0} except those centred at vertex ∞ into $2 m+1$ parts, $H_{i}, 0 \leq i \leq 2 m$. For some of the $i \in\{1,2, \ldots, 2 m\}, H_{i}$ will equal G_{i}. For the
rest, H_{i} will be a copy of G_{i} with two of its 2 -paths replaced by ten new 2 -paths. The part H_{0} is new. We will prove that each H_{i} is a trail starting and ending at vertex ∞, and then that the 2 -paths centred at vertex ∞ do indeed join these trails into an Euler tour. To do this, we will show that the first and last edges of $H_{i}, 1 \leq i \leq 2 m$, are the first and last edges of G_{i}.

First consider m even. Since the H_{i} will be described in terms of the G_{i}, we need to determine which G_{i} will be affected by changing the 2 -paths with end vertices from the edges $\left[F_{1}: m+1\right]$ or $\left[F_{-1}: m+1\right]$. Since $m+1$ is odd, in both cases we would need $2 i-2 k+1=m+1$, implying $i=\frac{m}{2}+k$. Since $1 \leq k \leq m$, the only G_{i} that contain such 2 -paths are those for which $\frac{m}{2}+1 \leq i \leq \frac{3 m}{2}$.

Construct the partition of the $2-$ paths of S_{0} as follows:
The 2 -paths in H_{0} are simply $d_{1}\left[\infty d_{2}\right]$ and $d_{2}\left[\infty d_{1}\right]$.
For $1 \leq i \leq \frac{m}{2}$, and $\frac{3 m}{2}+1 \leq i \leq 2 m, H_{i}=G_{i}$.
For $\frac{m}{2}+1 \leq i \leq \frac{3 m}{2}$,

$$
\begin{aligned}
H_{i}=G_{i} & \cup d_{1}\left[F_{0}: 2 i-m-1\right]\left[F_{0}: 2 i-m\right] \\
& \cup d_{2}\left[F_{0}: 2 i-m-1\right]\left[F_{0}: 2 i-m\right] \\
& \cup a_{i-\frac{m}{2}}\left[c_{m+1} d_{2}\right]\left[c_{m+2} d_{1}\right] \\
& -a_{i-\frac{m}{2}}\left[c_{m+1} c_{m+2}\right] \\
& \cup b_{i-\frac{m}{2}}\left[a_{\frac{m}{2}+1} d_{1}\right]\left[b_{\frac{m}{2}+1} d_{2}\right] \\
& -b_{i-\frac{m}{2}}\left[a_{\frac{m}{2}+1} b_{\frac{m}{2}+1}\right] \\
& \cup c_{2 i-m-1}\left[d_{1} d_{2}\right] \\
& \cup c_{2 i-m}\left[d_{1} d_{2}\right] .
\end{aligned}
$$

Claim 2.3.2 When m is even, the $H_{i}, 0 \leq i \leq 2 m$, partition all the 2-paths of S_{0} except those centred at vertex ∞.

Proof. We show that for each vertex $v \in V\left(K_{4 m+2}\right)$, the H_{i} partition the 2-paths centred at v.

It is clear that the H_{i} partition the 2-paths centred at any vertex in $A \cup B \cup C$, given the way H_{i} is based on G_{i}.

We pick up the two 2 -paths centred at vertex $d_{1}, d_{1}\left[F_{0}: 2 i-m-1\right]\left[F_{0}: 2 i-m\right]$ in the part H_{i} for $i \in\left\{\frac{m}{2}+1, \frac{m}{2}+2, \ldots, \frac{3 m}{2}\right\}$. Similarly for d_{2}. The part H_{0} contains the $2-$ paths $\infty d_{1} d_{2}$ and $\infty d_{2} d_{1}$.

Claim 2.3.3 When m is even, the part H_{0} is a trail beginning on the edge ∞d_{I} and ending on the edge $d_{2} \infty$. Each $H_{i}, 1 \leq i \leq 2 m$, is a trail beginning and ending on the same edges as G_{i}.

Proof. Obviously H_{0} is the trail $\infty d_{1} d_{2} \infty$.
When $1 \leq i \leq \frac{m}{2}$ and $\frac{3 m}{2}+1 \leq i \leq 2 m, H_{i}=G_{i}$, and so H_{i} is a single trail beginning on the edge ∞c_{i} for all i, and ending on the edge $b_{\frac{i+1}{2}} \infty$ if i is odd, on the edge $a_{\frac{i}{2}+1} \infty$ if i is even and $i \leq 2 m-2$, and on the edge $a_{1} \infty$ if $i=2 m$.

When $\frac{m}{2}+1 \leq i \leq \frac{3 m}{2}$, we use the fact that G_{i} is a trail containing the 2-paths $c_{m+1} a_{i-\frac{m}{2}} c_{m+2}$ and $a_{\frac{m}{2}+1} b_{i-\frac{m}{2}} b_{\frac{m}{2}+1}$, not necessarily in this order. In H_{i}, the $2-$ path $c_{m+1} a_{i-\frac{m}{2}} c_{m+2}$ in G_{i} becomes the trail

$$
c_{m+1} a_{i-\frac{m}{2}} d_{2} c_{2 i-m-1} d_{1} a_{i-\frac{m}{2}} c_{m+2}
$$

and the 2-path $a_{\frac{m}{2}+1} b_{i-\frac{m}{2}} b_{\frac{m}{2}+1}$ in G_{i} becomes

$$
a_{\frac{m}{2}+1} b_{i-\frac{m}{2}} d_{1} c_{2 i-m} d_{2} b_{i-\frac{m}{2}} b_{\frac{m}{2}+1} .
$$

Since this includes all 2-paths in H_{i}, H_{i} is a trail. Since these trails do not contain vertex ∞, H_{i} begins and ends on the same edges as G_{i}.

Now consider m odd. (Again we want to describe the H_{i} in terms of the G_{i}, show that each H_{i} is a trail, and prove that the first and last edges of H_{i} are the same as those of H_{i}, for $i \in\{1,2 \ldots, 2 m\}$.)

We again consider which 2-paths in G_{i} have end vertices from the edges $\left[F_{1}: m+1\right]$ and $\left[F_{-1}: m+1\right]$. In this case, $m+1$ is even, so we have to consider the vertices in A and the vertices in B separately.

For any $b_{k} \in B$, the 2 -path $b_{k}\left[F_{1}: m+1\right]$ is in the part G_{i} when $2 i-2 k=m+1$, or $i=\frac{m+1}{2}+k$. Since $1 \leq k \leq m$, the 2 -paths in G_{i} that are centred at a vertex in B only have end vertices from $\left[F_{1}: m+1\right]$ if $\frac{m+3}{2} \leq i \leq \frac{3 m+1}{2}$.

The 2-path $a_{1}\left[F_{-1}: m+1\right]$ is in $G_{\frac{3 m+1}{2}}$.
Now consider vertex $a_{k} \in A$, where $2 \leq k \leq m$. The 2-path $a_{k}\left[F_{-1}: m+1\right]$ is in the part G_{i} when $2 i-2 k+2=m+1$, or $i=\frac{m-1}{2}+k$. Since $2 \leq k \leq m$, the 2 -paths in G_{i} that are centred at a vertex in $A-\left\{a_{1}\right\}$ have end vertices from $\left[F_{-1}: m+1\right]$ when $\frac{m+3}{2} \leq i \leq \frac{3 m-1}{2}$.

The net result is that we define $H_{i}=G_{i}$ for $1 \leq i \leq \frac{m+1}{2}$ and for $\frac{3 m+3}{2} \leq i \leq 2 m$. Now construct the remaining H_{i}. The 2-paths in H_{0} are $d_{1}\left[\infty d_{2}\right]$ and $d_{2}\left[\infty d_{1}\right]$.
For $\frac{m+3}{2} \leq i \leq \frac{3 m-1}{2}$,

$$
\begin{aligned}
H_{i}=G_{i} & \cup d_{1}\left[F_{0}: 2 i-m-1\right]\left[F_{0}: 2 i-m\right] \\
& \cup d_{2}\left[F_{0}: 2 i-m-1\right]\left[F_{0}: 2 i-m\right] \\
& \cup a_{i-\frac{m-1}{2}}\left[b_{\frac{m+1}{2}} d_{2}\right]\left[a_{\frac{m+3}{2}} d_{1}\right] \\
& -a_{i-\frac{m-1}{2}}\left[b_{\frac{m+1}{2}} a_{\left.\frac{m+3}{2}\right]}\right. \\
& \cup b_{i-\frac{m+1}{2}}\left[c_{m+1} d_{1}\right]\left[c_{m+2} d_{2}\right] \\
& -b_{i-\frac{m+1}{2}}\left[c_{m+1} c_{m+2}\right] \\
& \cup c_{2 i-m-1}\left[d_{1} d_{2}\right] . \\
& \cup c_{2 i-m}\left[d_{1} d_{2}\right]
\end{aligned}
$$

When $i=\frac{3 m+1}{2}$,

$$
\begin{aligned}
H_{\frac{3 m+1}{2}}=G_{\frac{3 m+1}{2}} & \cup d_{1}\left[F_{0}: 2 m\right]\left[F_{0}: 1\right] \\
& \cup d_{2}\left[F_{0}: 2 m\right]\left[F_{0}: 1\right] \\
& \cup a_{1}\left[b_{\frac{m+1}{2}} d_{2}\right]\left[a_{\frac{m+3}{2}} d_{1}\right] \\
& -a_{1}\left[b_{\frac{m+1}{2}} a_{\frac{m+3}{2}}\right] \\
& \cup b_{m}\left[c_{m+1} d_{1}\right]\left[c_{m+2} d_{2}\right] \\
& -b_{m}\left[c_{m+1} c_{m+2}\right] \\
& \cup c_{1}\left[d_{1} d_{2}\right] \\
& \cup c_{2 m}\left[d_{1} d_{2}\right] .
\end{aligned}
$$

The proof of the following claim is similar to that of Claim 2.3.2 and is not given.

Claim 2.3.4 When m is odd, the $H_{i}, 0 \leq i \leq 2 m$, partition all of the 2 -paths in S_{0}, except those centred at vertex ∞.

Claim 2.3.5 When m is odd, the part H_{0} is a trail beginning on the edge ∞d_{1} and ending on the edge $d_{2} \infty$. Each $H_{i}, 1 \leq i \leq 2 m$, is a trail beginning and ending on the same edges as G_{i}.

Proof. H_{0} is again the trail $\infty d_{1} d_{2} \infty$.
When $1 \leq i \leq \frac{m+1}{2}$ and $\frac{3 m+3}{2} \leq i \leq 2 m, H_{i}=G_{i}$.
When $\frac{m+3}{2} \leq i \leq \frac{3 r z-1}{2}, G_{i}$ is a trail containing the 2 -paths $b_{\frac{m+1}{2}} a_{i-\frac{m-1}{2}} a_{\frac{m+3}{2}}$ and $c_{m+1} b_{i-\frac{m+1}{2}} c_{m+2}$, not necessarily in this order. In $H_{i}, b_{\frac{m+1}{2}} a_{i-\frac{m-1}{2}} a_{\frac{m+2}{2}}$ becomes the trail

$$
b_{\frac{m+1}{2}} a_{i-\frac{m-1}{2}} d_{2} c_{2 i-m} d_{1} a_{i-\frac{m-1}{2}} a_{\frac{m+3}{2}},
$$

and $c_{m+1} b_{i-\frac{m+1}{2}} c_{m+2}$ becomes the trail

$$
c_{m+1} b_{i-\frac{m+1}{2}} d_{1} c_{2 i-m-1} d_{2} b_{i-\frac{m+1}{2}} c_{m+2} .
$$

When $i=\frac{3 m+1}{2}, G_{\frac{3 m+1}{2}}$ is a trail containing the 2-paths $b_{\frac{m+1}{2}} a_{1} a_{\frac{m+3}{2}}$ and $c_{m+1} b_{m} c_{m+2}$. In $H_{\frac{3 m+1}{2}}$, the first of these 2-paths, $b_{\frac{m+1}{2}} a_{1} a_{\frac{m+3}{2}}$, becomes the trail

$$
b_{\frac{m+1}{2}} a_{1} d_{2} c_{1} d_{1} a_{1} a_{\frac{m+3}{2}},
$$

and the second, $c_{m+1} b_{m} c_{m+2}$. becomes

$$
c_{m+1} b_{m} d_{1} c_{2 m} d_{2} b_{m} c_{m+2}
$$

As before, we have not affected the first and last edges of G_{i} in constructing H_{i}.

It remains to prove that the 2 paths centred at vertex \propto join the H_{i} together to form an Euler tour. For $4 m+3 \geq 11$, we consider the union of the 1 -factor E_{2} of $K_{4 m+2}$, which dictates the end vertices of the $2-$ paths centred at vertex ∞ in S_{0}, with the 1 -factor $F^{*} \cup\left\{d_{1}, d_{2}\right\}$. Recall that F^{*} is the 1 -factor of $K_{4 m}$ whose $i^{\text {th }}$ edge is $u v$ if ∞u and $v \infty$ are the first and last edges of G_{i}. When $4 m+3=7$, we use the 1-factor E_{3} instead of E_{2}.

The proof of the following claim is easily seen.

Claim 2.3.6 When $4 m+3=11$, the union of the two 1 -factors of $K_{10}, E_{2}=$ $\left\{c_{1} c_{4}, b_{1} c_{3}, b_{2} a_{2}, d_{1} c_{2}, d_{2} a_{1}\right\}$ and $F^{*} \cup d_{1} d_{2}=\left\{d_{1} d_{2}, c_{1} b_{1}, c_{2} a_{2}, c_{3} b_{2}, c_{4} a_{1}\right\}$ is a Hamilton cycle of K_{10}.

Claim 2.3.7 When m is even and $4 m+3>11$, the union of

$$
\begin{aligned}
\Gamma_{2} & =\left\{b_{i} c_{2 i-2}: 2 \leq i \leq \frac{m}{2}, \frac{m}{2}+2 \leq i \leq m\right\} \\
& \cup\left\{a_{i} c_{2 i+1}: 2 \leq i \leq \frac{m}{2}, \frac{m}{2}+2 \leq i \leq m-1\right\} \\
& \cup\left\{c_{1} c_{2 m}, b_{1} c_{3}, a_{1} a_{m}, d_{1} c_{m}, d_{2} c_{m+3}, a_{\frac{m}{2}+1} b_{\frac{m}{2}+1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
F^{*} \cup\left\{d_{1}, d_{2}\right\} & =\left\{a_{i} c_{2 i-2}, 2 \leq i \leq m\right\} \\
& \cup\left\{b_{i} c_{2 i-1}, 1 \leq i \leq m\right\} \\
& \cup\left\{a_{1} c_{2 m}, d_{1} d_{2}\right\}
\end{aligned}
$$

is a Hamilton cycle of $K_{4 m+2}$.

Proof. It is straightforward to check that the union of the two 1 -factors is the following Hamilton cycle.

$$
\begin{gathered}
\left(b_{2} c_{2} a_{2} c_{5} \cdots b_{\frac{m}{2}} c_{m-2} a_{\frac{m}{2}} c_{m+1}\right. \\
b_{\frac{m}{2}+1} a_{\frac{m}{2}+1} c_{m} d_{1} d_{2} c_{m+3} b_{\frac{m}{2}+2} c_{m+2} a_{\frac{m}{2}+2} c_{m+5} \cdots b_{m-1} c_{2 m-4} a_{m-1} c_{2 m-1} \\
\left.b_{m} c_{2 m-2} a_{m} a_{1} c_{2 m} c_{1} b_{1} c_{3}\right)
\end{gathered}
$$

The proof of the next claim is again easily seen.
Claim 2.3.8 When $4 m+3=\bar{T}$, the union of the two 1 -factors of $K_{6}, E_{3}=$ $\left\{c_{1} d_{1}, d_{2} c_{2}, a_{1} b_{1}\right\}$ and $F^{*} \cup\left\{d_{1} . d_{2}\right\}=\left\{d_{1} d_{2}, c_{1} b_{1}, c_{2} a_{1}\right\}$ is a Hamilton cycle.

Claim 2.3.9 When m is odd and $4 m+3>7$, the union of

$$
\begin{aligned}
E_{2} & =\left\{b_{i} c_{2 i-2}: 2 \leq i \leq \frac{m+1}{2}, \frac{m+5}{2} \leq i \leq m\right\} \\
& \cup\left\{a_{i} c_{2 i+1}: 2 \leq i \leq \frac{m-1}{2}, \frac{m+3}{2} \leq i \leq m-1\right\} \\
& \cup\left\{c_{1} c_{2 m}, b_{1} c_{3}, a_{1} a_{m}, d_{1} a_{\frac{m+1}{2}}, d_{2} b_{\frac{m+3}{2}}, c_{m+1} c_{m+2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
F^{*} \cup\left\{d_{1}, d_{2}\right\} & =\left\{a_{i} c_{2 i-2}, 2 \leq i \leq m\right\} \\
& \cup\left\{b_{i} c_{2 i-1}, 1 \leq i \leq m\right\} \\
& \cup\left\{a_{1} c_{2 m}, d_{1} d_{2}\right\}
\end{aligned}
$$

is a Hamilton cycle of $K_{4 m+z}$.

Proof. The two 1-factors form the following Hamilton cycle.

$$
\begin{gathered}
\left(b_{2} c_{2} a_{2} c_{5} \cdots b_{\frac{m-1}{2}} c_{m-3} a_{\frac{m-1}{2}} c_{m} b_{\frac{m+1}{2}} c_{m-1} a_{\frac{m+1}{2}} d_{1} d_{2}\right. \\
b_{\frac{m+2}{2}} c_{m+2} c_{m+1} a_{\frac{m+3}{2}} c_{m+4} b_{\frac{m+5}{2}} c_{m+3} a_{\frac{m+5}{2}} c_{m+6} \cdots \\
\left.b_{m-1} c_{2 m-4} a_{m-1} c_{2 m-1} b_{m} c_{2 m-2} a_{m} a_{1} c_{2 m} c_{1} b_{1} c_{3}\right) .
\end{gathered}
$$

By Claims 2.3.6 and 2.3.T, the 2-paths centred at vertex x join the parts H_{i}, $0 \leq i \leq 2 m$, together so that S_{0} is an Euler tour when m is even. Similarly. by Claims 2.3.8 and 2.3.9. S_{0} is an Euler tour when m is odd. We hąve shown that $K_{4 m+3}$ has a perfect set of Euler tours for all m.

This completes the proof of Theorem 2.1.1.

2.4 A Corollary of the Main Result

We now prove Corollary 2.1.3 which states that it is possible to traverse the edges of $K_{\mathbf{2 k + 1}}$ so that every 2-path occurs exactly once.

Proof of Corollary 2.1.3. Case 1: Suppose $k=2 m$ is even. The Euler tour T_{i} constructed in Section 2.2 contains the 2 -path $\sigma^{i}\left(a_{1}\right) \propto c_{1}$ for all $i \in\{0,1,2, \ldots, 4 m-$ $2\}$. Let T_{i}^{*} be the trail $T_{i} \backslash\left\{\sigma^{i}\left(a_{1}\right) \infty c_{1}\right\}$ for all $i \in\{0,1,2, \ldots, 4 m-2\}$ and assume that T_{i}^{*} goes from ∞c_{1} to $\sigma^{i}\left(a_{1}\right) \infty$. Then the following union of trails and 2-paths is the required walk in $K_{4 m+1}$:

$$
T_{0}^{*} a_{1} \propto c_{1} T_{1}^{*} \sigma^{1}\left(a_{1}\right) \propto c_{1} T_{2}^{*} \sigma^{2}\left(a_{1}\right) \propto c_{1} \cdots T_{4 m-2}^{*} \sigma^{4 m-2}\left(a_{1}\right) \propto c_{1}
$$

Case 2: Now suppose $k=2 m+1$ is odd. If $m>1$, then the Euler tour S_{i} constructed in Section 2.3 contains the 2 -path $\sigma^{i}\left(c_{2 m}\right) \infty c_{1}$ for all $i \in\{0,1,2, \ldots, 4 m\}$. Let S_{i}^{*} be the trail $S_{i} \backslash\left\{\sigma^{i}\left(c_{2 m}\right) \infty c_{1}\right\}$ for all $i \in\{0,1,2, \ldots, 4 m\}$ and assume that S_{i}^{*} goes from $\propto c_{1}$ to $\sigma^{i}\left(c_{2 m}\right) \propto$. Then the following union of trails and 2 -paths is the required walk in $K_{4 m+3}$:

$$
S_{0}^{*} c_{2 m} \propto c_{1} S_{1}^{*} \sigma^{1}\left(c_{2 m}\right) \propto c_{1} S_{2}^{\approx} \sigma^{2}\left(c_{2 m}\right) \propto c_{1} \cdots S_{4 m}^{*} \sigma^{4 m}\left(c_{2 m}\right) \propto c_{1}
$$

When $m=1$, we had to use a different 1 -factor to determine the 2 -paths centred at ∞. The result follows exactly as before but now we have the 2 -path $d_{1} \infty c_{1}$ in S_{0} instead of $c_{2 m} \infty c_{1}$, so replace every occurrence $c_{2 m}$ in the above traversal by d_{1}.

It is interesting to note that since we are merely tracing out the edges of one Euler trail after another, this ordering of the edges has the added property that each edge in $K_{2 k+1}$ is traversed exactly j times before any edge is traversed more than j times, for all $j \in\{1,2, \ldots, 2 k-2\}$.

Chapter 3

A Perfect Set of Euler Tours of $K_{2 k}+I$

3.1 Main Result

In this chapter we prove the following theorem and corollary.

Theorem 3.1.1 For all $k>1, K_{2 k}+I$ has a perfect set of Euler tours.

Recall that we defined a perfect set of Euler tours of $K_{2 k}+I$, where I is a 1-factor of $K_{2 k}$ to be a set of $2 k-2$ Euler tours of $K_{2 k}+I$ such that every 2-path of $K_{2 k}$ is in exactly one of the Euler tours, and for each of the edges $a b \in I$, each Euler tour either uses the digon $a b a$ or the digon $b a b$.

Corollary 3.1.2 For all $k>1, L\left(K_{2 k}\right)$ has a Hamilton decomposition.
Proof. Given a perfect set of Euler tours of $K_{2 k}+I$, replace each 2-path $a b c$ with the edge $a b b c$ in $L\left(K_{2 k}\right)$, and ignore the digons. (A sequence of 2 -paths and digons such as $a b c, b c b, c b d$ will become the two adjacent edges $a b b c$ and $c b b d$ in $L\left(K_{2 k}\right)$.) The proof now follows in exactly the same way as that of Corollary 2.1.2.

This chapter is divided into two sections as the two cases of k even and k odd are again considered separately. In both sections we use the following well-known
construction of a Hamilton decomposition \mathcal{H} of $K_{2 k-1}$: Let $V\left(K_{2 k-1}\right)=\{1,2, \ldots, 2 k-$ $1\}$. Let σ_{1} be the permutation

$$
(1)(234 \cdots 2 k-32 k-22 k-1)
$$

of the vertices of $K_{2 k-1}$ that fixes vertex 1 and cyclically rotates the others. Then $\mathcal{H}=\left\{H_{0}, H_{1}, \ldots, H_{k-2}\right\}$, where H_{0} is the Hamilton cycle

$$
(122 k-132 k-24 \cdots k k+1),
$$

and $H_{i}=\sigma_{1}^{i}\left(H_{0}\right), 0 \leq i \leq k-2$, is a Hamilton decomposition of $K_{2 k-1}$. We actually want to construct $H_{i}=\sigma_{1}^{i}\left(H_{0}\right)$, for $0 \leq i \leq 2 k-3$, so that we generate each Hamilton cycle twice. Thus for all $i \in\{0,1,2, \ldots, 2 k-3\}, H_{i+k-1}=H_{i}$, where subscript addition is modulo $2 k-2$ on the residue classes $0,1, \ldots, 2 k-3$.

3.2 A Perfect Set of Euler Tours of $K_{4 m}+I$

Let $k=2 m$. Let $V\left(K_{4 m-1}\right)=\left\{\infty_{2}\right\} \cup A \cup B \cup C \cup D$, where $A=\left\{a_{1}, a_{2}, \ldots, a_{m-1}\right\}$, $B=\left\{b_{1}, b_{2}, \ldots, b_{m-1}\right\}, C=\left\{c_{0}, c_{1}, c_{2}, \ldots, c_{m-1}\right\}$ and $D=\left\{d_{1}, d_{2}, \ldots, d_{m-1}, d_{m}\right\}$. Let $V\left(K_{4 m}\right)=V\left(K_{4 m-1}\right) \cup\left\{\infty_{1}\right\}$.

We use the above construction of a Hamilton decomposition of $K_{4 m-1}$ but with the new labeling on the vertex set. Let σ be the following permutation of $V\left(K_{4 m}\right)$

$$
\left(\infty_{1}\right)\left(\infty_{2}\right)\left(a_{1} b_{1} a_{2} b_{2} \cdots a_{m-1} b_{m-1} d_{m} c_{m-1} d_{m-1} c_{m-2} d_{m-2} \cdots c_{1} d_{1} c_{0}\right)
$$

that fixes ∞_{1} and generates a Hamilton decomposition of $K_{4 m-1}$ on the vertex set $\left\{\infty_{2}\right\} \cup A \cup B \cup C \cup D$. The Hamilton cycle H_{0} (shown in Figure 3.1) is

$$
\left(\infty_{2} c_{0} d_{1} a_{1} c_{1} b_{1} d_{2} a_{2} c_{2} b_{2} \cdots d_{i} a_{i} c_{i} b_{i} \cdots d_{m-1} a_{m-1} c_{m-1} b_{m-1} d_{m}\right)
$$

and we now have the Hamilton decomposition $\mathcal{H}=\left\{H_{0}, H_{1}, \ldots, H_{2 m-2}\right\}$, where $H_{i}=$ $\sigma^{i}\left(H_{0}\right), 0 \leq i \leq 2 m-2$. As mentioned in Section 3.1, we actually want to consider $H_{i}=\sigma^{i}\left(H_{0}\right), 0 \leq i \leq 4 m-3$.

We order the edges of $H_{i}, i \in\{0,1,2, \ldots, 4 m-3\}$, so that $\infty_{2} \sigma^{i}\left(c_{0}\right)$ is its first edge, $\sigma^{i}\left(c_{0}\right) \sigma^{i}\left(d_{1}\right)$ is its second edge, and so on, counting off the edges around the

Figure 3.1: H_{0} and σ
cycle, so that $\sigma^{i}\left(b_{m-1}\right) \sigma^{i}\left(d_{m}\right)$ and $\sigma^{i}\left(d_{m}\right) \infty_{2}$ are its $(4 m-2)^{t h}$ and $(4 m-1)^{t h}$ edges, respectively. (We will be using that fact that $\left[H_{i}: j\right]=\left[H_{i+2 m-1}: 4 m-j\right]$.)

Our aim is to find a perfect set of Euler tours of $K_{4 m}+I$. We choose the 1-factor I to be those edges of $K_{4 m}^{\prime}$ that are fixed by $\sigma^{2 m-1}$, so that I is itself fixed (setwise) by σ. Thus,

$$
I=\left\{\infty_{1} \infty_{2}, c_{0} d_{m}\right\} \cup\left\{a_{i} c_{m-i}: 1 \leq i \leq m-1\right\} \cup\left\{b_{i} d_{m-i}: 1 \leq i \leq m-1\right\}
$$

We call the $4 m-2$ Euler tours of $K_{4 m}+I$ that we will construct $T_{j}, 0 \leq j \leq 4 m-3$. It is sufficient to specify each T_{j} by providing a li:+ of the 2 -paths and digons it contains. It is then necessary to prove that the T_{j} do indeed partition the set of ${ }^{2}$-paths of $K_{4 m}$ and to prove that each T_{j} is really an Euler tour of $K_{4 m}+I$ that satisfies the condition on the digons.

In order to construct $T_{j}, 0 \leq j \leq 4 m-3$, we first construct $T_{j}^{\prime}, 0 \leq j \leq 4 m-3$, where each T_{j}^{\prime} contains only the $2-$ paths in T_{j} that are centred at vertices in $A \cup B \cup$ $C \cup D$, and not those that are centred at ∞_{1} or ∞_{2}. We do this because the T_{j}^{\prime} will all
be pairwise similar, and we can establish their basic structure merely by considering T_{0}^{\prime}. Once we have proved that T_{0}^{\prime} is a set of $2 m$ trails that start at vertex ∞_{1} and end at vertex ∞_{2}, we will know that the same is true of each T_{j}^{\prime}. We can then find ${ }^{2}$ paths centred at vertices ∞_{1} and ∞_{2} that will join the trails in each T_{j}^{\prime} into the Euler tour, T_{j}.

The set of 2-paths for specifying T_{0}^{\prime} will be based on the edges in the Hamilton cycles $H_{4 m-3}, H_{0}$, and H_{1}. As usual, we denote $H_{4 m-3}$ by H_{-1} in order to emphasize that $\sigma^{-1}\left(H_{0}\right)=H_{4 m-3}$. The edges of these three Hamilton cycles are ordered as described above and listed below.

$$
\begin{aligned}
{\left[H_{0}: 1\right] } & =\infty_{2} c_{0}, \\
{\left[H_{0}: 2\right] } & =c_{0} d_{1}, \\
{\left[H_{0}: 4 k-1\right] } & =d_{k} a_{k}, 1 \leq k \leq m-1, \\
{\left[H_{0}: 4 k\right] } & =a_{k} c_{k}, 1 \leq k \leq m-1, \\
{\left[H_{0}: 4 k+1\right] } & =c_{k} b_{k}, 1 \leq k \leq m-1, \\
{\left[H_{0}: 4 k+2\right] } & =b_{k} d_{k+1}, 1 \leq k \leq m-1, \\
{\left[H_{0}: 4 m-1\right] } & =d_{m} \infty_{2} \\
{\left[H_{1}: 1\right] } & =\infty_{2} a_{1}, \\
{\left[H_{1}: 4 k-2\right] } & =a_{k} c_{k-1}, 1 \leq k \leq m-1, \\
{\left[H_{1}: 4 k-1\right] } & =c_{k-1} b_{k}, 1 \leq k \leq m-1, \\
{\left[H_{1}: 4 k\right] } & =b_{k} d_{k}, 1 \leq k \leq m-1, \\
{\left[H_{1}: 4 k+1\right] } & =d_{k} a_{k+1}, 1 \leq k \leq m-2, \\
{\left[H_{1}: 4 m-3\right] } & =d_{m-1} d_{m}, \\
{\left[H_{1}: 4 m-2\right] } & =d_{m} c_{m-1}, \\
{\left[H_{1}: 4 m-1\right] } & =c_{m-1} \infty_{2} .
\end{aligned}
$$

$$
\begin{aligned}
{\left[H_{-1}: 1\right] } & =\infty_{2} d_{1} \\
{\left[H_{-1}: 2\right] } & =d_{1} c_{1} \\
{\left[H_{-1}: 3\right] } & =c_{1} c_{0}, \\
{\left[H_{-1}: 4\right] } & =c_{0} d_{2}, \\
{\left[H_{-1}: 4 k+1\right] } & =d_{k+1} a_{k}, 1 \leq k \leq m-1, \\
{\left[H_{-1}: 4 k+2\right] } & =a_{k} c_{k+1}, 1 \leq k \leq m-2 \\
{\left[H_{-1}: 4 k+3\right] } & =c_{k+1} b_{k}, 1 \leq k \leq m-2 \\
{\left[H_{-1}: 4 k+4\right] } & =b_{k} d_{k+2}, 1 \leq k \leq m-2 \\
{\left[H_{-1}: 4 m-2\right] } & =a_{m-1} b_{m-1}, \\
{\left[H_{-1}: 4 m-1\right] } & =b_{m-1} \infty_{2} .
\end{aligned}
$$

We use the notation described in Chapter 1 to list the 2-paths in T_{0}^{\prime} :

$$
\begin{aligned}
& a_{i}\left[H_{-1}: 1,3,5, \ldots, 4(m-i)-3,4(m-i), 4(m-i)+2,4(m-i)+4, \ldots, 4 m-2\right] \\
& b_{i}\left[H_{1}: 1,3,5, \ldots, 4(m-i)-1,4(m-i)+2,4(m-i)+4,4(m-i)+6, \ldots, 4 m-2\right], \\
& c_{i}\left[H_{0}: 1,3,5, \ldots, 4(m-i)-1,4(m-i), 4(m-i)+2,4(m-i)+4, \ldots, 4 m-2\right] \\
& d_{i}\left[H_{0}: 1,3,5, \ldots, 4(m-i)+1,4(m-i)+2,4(m-i)+4,4(m-i)+6, \ldots, 4 m-2\right]
\end{aligned}
$$

all for $1 \leq i \leq m-1$, as well as

$$
c_{0}\left[H_{0}: 1,3,5, \ldots, 4 m-3\right] \text { and } d_{m}\left[H_{0}: 1,2,4, \ldots, 4 m-2\right]
$$

For each centre vertex v, the two adjacent edges at which the change from an odd numbered edge to an even numbered edge is made are the two edges that contain v^{\prime}, where $v v^{\prime} \in I$. This ensures that the correct digons are included in the tour.

Now let $T_{j}^{\prime}=\sigma^{j}\left(T_{0}^{\prime}\right)$, for $1 \leq j \leq 4 m-3$. Since σ fixes I, σ is an automorphism of $K_{4 m}+I$. Therefore, the $T_{j}^{\prime}, 0 \leq j \leq 4 m-3$, are pairwise similar. We need to prove they partition the set of 2-paths of $K_{4 m}$ that are not centred at ∞_{1} or ∞_{2}.

Claim 3.2.1 The $T_{j}^{\prime}, 0 \leq j \leq 4 m-3$, partition the set of $2-p a t h s$ in $K_{4 m}$ that are centred at a vertex in $A \cup B \cup C \cup D$.

Proof.

We show that for each vertex v in $A \cup B \cup C \cup D$, for each $r \in\{1,2, \ldots, 4 m-1\}$, and each $j \in\{0,1,2, \ldots, 2 m-2\}$, we have each 2 -path $\sigma^{j}\left(v\left[H_{0}: r\right]\right)$ in one of the T_{l}^{\prime}. These 2-paths are all different and we have $(4 m-2)(2 m-1)(4 m-1)$ of them. As this is the number of 2-paths in $K_{4 m}$ that are not centred at ∞_{1} or ∞_{2}, we must have every such 2-path exactly once. Addition on the subscripts of the T_{j}^{\prime} will be modulo $4 m-2$.

Case 1: Consider $c_{i} \in C, 1 \leq i \leq m-1$. By construction, the 2 paths in $c_{i}\left[H_{0}: 1,3, \ldots, 4(m-i)-1,4(m-i), 4(m-i)+2, \ldots, 4 m-2\right]$ and in $b_{m-i}\left[H_{1}:\right.$ $1,3, \ldots, 4 i-1,4 i+2,4 i+4, \ldots, 4 m-2]$ are in T_{0}^{\prime}. Now $\sigma^{2 m-2}\left(b_{m-i}\right)=c_{i}$ for all $i \in\{1,2, \ldots, m-1\}$, and $\sigma^{2 m-2}\left(H_{1}\right)=H_{2 m-1}$. Therefore, $T_{2 m-2}^{\prime}=\sigma^{2 m-2}\left(T_{0}^{\prime}\right)$ will contain the 2 -paths in:

$$
\begin{aligned}
& \sigma^{2 m-2}\left(b_{m-i}\left[H_{1}: 1,3, \ldots, 4 i-1,4 i+2,4 i+4, \ldots, 4 m-2\right]\right) \\
= & c_{i}\left[H_{2 m-1}: 1,3, \ldots, 4 i-1,4 i+2,4 i+4, \ldots, 4 m-2\right] \\
= & c_{i}\left[H_{0}: 2,4, \ldots, 4(m-i)-2,4(m-i)+1,4(m-i)+3, \ldots, 4 m-1\right]
\end{aligned}
$$

using the fact that $\left[H_{j+2 m-1}: k\right]=\left[H_{j}: 4 m-k\right]$.
Therefore, we have each of the 2 -paths $c_{i}\left[H_{0}: r\right], r \in\{1,2, \ldots, 4 m-1\}$, at least once in one of T_{0}^{\prime} or $T_{2 m-2}^{\prime}$, and hence each of the 2-paths $\sigma^{j}\left(c_{i}\left[H_{0}: r\right]\right), r \in$ $\{1,2, \ldots, 4 m-1\}$, in one of $T_{j}^{\prime}=\sigma^{j}\left(T_{0}^{\prime}\right)$, or $T_{2 m-2+j}^{\prime}=\sigma^{j}\left(T_{2 m-2}^{\prime}\right)$, for each $j \in$ $\{0,1,2, \ldots, 4 m-3\}$. This is equivalent to having each of the 2 -paths $\sigma^{j}\left(c_{i}\left[H_{0}: r\right]\right)$, $r \in\{1,2, \ldots, 4 m-1\}, 0 \leq j \leq 2 m-2$, and $\sigma^{j}\left(a_{m-i}\left[H_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m-1\}$, $0 \leq j \leq 2 m-2$, in some T_{I}^{\prime}, since $\sigma^{2 m-1}\left(c_{i}\right)=a_{m-i}$, for all $i \in\{1,2, \ldots, m-1\}$, and since $H_{0}=H_{2 m-1}$.

Case 2: Consider $d_{i} \in D, 1 \leq i \leq m-1$. The 2-paths in $d_{i}\left[H_{0}: 1,3, \ldots, 4 m-\right.$ $4 i+1,4 m-4 i+2,4 m-4 i+4, \ldots, 4 m-2]$ and in $a_{m-i}\left[H_{-1}: 1,3, \ldots, 4 i-3,4 i, 4 i+\right.$ $2, \ldots, 4 m-2]$ are in T_{0}^{\prime}, and $\sigma^{2 m}\left(a_{m-i}\right)=d_{i}$, for all $i \in\{1,2, \ldots, m-1\}$, and
$\sigma^{2 m}\left(H_{-1}\right)=H_{2 m-1}$. Thus $T_{2 m}^{\prime}$ contains the 2-paths in

$$
\begin{aligned}
& \sigma^{2 m}\left(a_{m-i}\left[H_{-1}: 1,3, \ldots, 4 i-3,4 i, 4 i+2, \ldots, 4 m-2\right]\right) \\
= & d_{i}\left[H_{2 m-1}: 1,3, \ldots, 4 i-3,4 i, 4 i+2, \ldots, 4 m-2\right] \\
= & d_{i}\left[H_{0}: 2,4, \ldots, 4 m-4 i, 4 m-4 i+3,4 m+4 i+5, \ldots, 4 m-1\right] .
\end{aligned}
$$

Therefore, we have each of the 2 -paths $d_{i}\left[H_{0}: r\right], r \in\{1,2, \ldots, 4 m-1\}$, at least once in one of T_{0}^{\prime} or $T_{2 m}^{\prime}$, and hence each of $\sigma^{j}\left(d_{i}\left[H_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m-1\}$, in at least one of T_{j}^{\prime} or $T_{2 m+j}^{\prime}$, for each $j \in\{0,1,2, \ldots, 4 m-3\}$. This is equivalent to having each of the 2-paths $\sigma^{j}\left(d_{i}\left[H_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m-1\}, 0 \leq j \leq 2 m-2$, and $\sigma^{j}\left(b_{m-i}\left[H_{0}: r\right]\right),\{1,2, \ldots, 4 m-1\}, 0 \leq j \leq 2 m-2$, at least once, since $\sigma^{2 m-1}\left(d_{i}\right)=$ b_{m-i}, for all $i \in\{1,2, \ldots, m-1\}$,

Case 3: Finally, we consider the vertex c_{0}. The 2-paths in $c_{0}\left[H_{0}: 1,3,5, \ldots, 4 m-\right.$ 3] and in $d_{m}\left[H_{0}: 1,2,4, \ldots, 4 m-2\right]$ are in T_{0}^{\prime}. Also, $\sigma^{2 m-1}\left(d_{m}\right)=c_{0}$, and $\sigma^{2 m-1}\left(H_{0}\right)=$ $H_{2 m-1}$. Therefore, $T_{2 m-1}^{\prime}$ contains the 2 -paths in

$$
\begin{aligned}
& \sigma^{2 m-1}\left(d_{m}\left[H_{0}: 1,2,4, \ldots, 4 m-2\right]\right) \\
= & c_{0}\left[H_{2 m-1}: 1,2,4, \ldots, 4 m-2\right] \\
= & c_{0}\left[H_{0}: 2,4, \ldots, 4 m-2,4 m-1\right],
\end{aligned}
$$

giving $c_{0}\left[H_{0}: r\right], r \in\{1,2, \ldots, 4 m-1\}$, at least once in one of T_{0}^{\prime} or $T_{2 m-1}^{\prime}$. Therefore, we have the 2-paths $\sigma^{j}\left(c_{0}\left[H_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m-1\}$ in either T_{j}^{\prime} or $T_{2 m-1+j}^{\prime}$, for each $j \in\{0,1,2, \ldots, 4 m-3\}$. This is equivalent to having $\sigma^{j}\left(c_{0}\left[H_{0}: r\right]\right), r \in$ $\{1,2, \ldots, 4 m-1\}, 0 \leq j \leq 2 m-2$, and $\sigma^{j}\left(d_{m}\left[H_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m-1\}$, $0 \leq j \leq 2 m-2$, each at least once.

In total, for $v \in A \cup B \cup C \cup D$, we have $\sigma^{j}\left(v\left[H_{0}: 1,2, \ldots, 4 m-1\right]\right)$ for all $j \in\{0,1, \ldots, 2 m-2\}$.

The following claim establishes the structure of T_{0}^{\prime}. It will be important to know the first and last edges of each trail in T_{0}^{\prime} when we come to put in the 2-paths centred at ∞_{1} and ∞_{2}.

Claim 3.2.2 The list of 2-paths given for T_{0}^{\prime} forms a set of $2 m-1$ trails, each of which starts on ∞_{1} and ends on ∞_{2}. We will call the trail that starts on the edge
$\infty_{1} v, P_{v}$, for all $v \in A \cup B \cup C \cup D$. The trails, with their first and last edges, are as follows:
$P_{a_{i}}, 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1$, a trail from $\infty_{1} a_{i}$ to $a_{2 i} \infty_{2}$,
$P_{b_{i}}, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$, a trail from $\infty_{1} b_{i}$ to $c_{2 i-1} \infty_{2}$,
$P_{c_{i}}, 0 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1$, a trail from $\infty_{1} c_{i}$ to $c_{2 i} \infty_{2}$,
$P_{d_{i}}, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$, a trail from $\infty_{1} d_{i}$ to $a_{2 i-1} \infty_{2}$,
$P_{c_{\frac{m}{2}}}$ when m is even, a trail from $\infty_{1} c_{\frac{m}{2}}$ to $d_{m} \infty_{2}$,
$P_{d_{\frac{m+1}{2}}}$, when m is odd, a trail from $\infty_{1} d_{\frac{m+1}{2}}$ to $d_{m} \infty_{2}$,
$P_{a_{i}}{ }^{2},\left\lceil\frac{m}{2}\right\rceil \leq i \leq m-1$, a trail from $\infty_{1} a_{i}$ to $b_{2(m-i)-1} \infty_{2}$,
$P_{b_{i}},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, a trail from $\infty_{1} b_{i}$ to $d_{2(m-i)} \infty_{2}$,
$P_{c_{i}},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, a trail from $\infty_{1} c_{i}$ to $b_{2(m-i)} \infty_{2}$, and
$P_{d_{i}},\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m$, a trail from $\infty_{1} d_{i}$ to $d_{2(m-i)+1} \infty_{2}$.

Proof.

To prove this claim, we list the order in which the 2 -paths occur in the trails. We will not mention which Hamilton cycle the edges that determine the end vertices of a 2-path come from, as it should be clear that 2-paths centred at a vertex in A, B or $C \cup D$, h., we their end vertices from H_{-1}, H_{1}, or H_{0}, respectively. Some of the 2-paths have a superscript. These superscripts are relevant only in Section 3.3.2.

In order to check that we have covered every edge exactly once, it is enough to verify that every 2 -path listed below is actually in T_{0}^{\prime}, that every two adjacent 2 -paths overlap in an edge, and to count the number of edges covered by the trails. Since any edge containing ∞_{1} or ∞_{2} is in only one 2 -path in T_{0}^{\prime}, these edges must determine the ends of trails. If these trails cover $8 m^{2}-2$ edges, then we have covered all the edges in $K_{4 m}-\left\{\infty_{1} \infty_{2}\right\} \cup\left(I-\left\{\infty_{1} \infty_{2}\right\}\right)$ exactly once. It is not necessary to check that the edges covered are all distinct: once you start a trail at an edge, say, $\infty_{1} v$, then the rest of the trail is completely determined because every edge (except those containing ∞_{1} or ∞_{2}) is in exactly two 2 -paths. It is obvious that the following trails all start on different edges.

Counting the edges in the P_{v} does yield $8 m^{2}-2$ edges, as required.
The trails are as follows and the verification of the above although dreadfully
tedious is not difficult. Within each trail there are several patterns on sets of four 2 -paths. We will show a pattern and specify that it occurs for $q_{1} \leq j \leq q_{2}$, for some q_{1} and q_{2}. We will also show the pattern for $j=q_{1}$ and $j=q_{2}$ because this helps when verifying that every pair of adjacent 2-paths do overlap in an edge. A 2 -path will be underlined if it happens to be the end of a pattern for some j.

$[t-(t-u) 8]^{0}$ | $P_{b_{i}}\left\lceil\frac{m}{2}\right]+1=i \leq m-1:$ |
| :--- |
| $b_{i}[4 i]$ |
| $b_{i+j}[4 i-4 j]$ |
| $b_{m-2}[8 i-4 m+8]$ |
| $b_{m-1}[8 i-4 m+4]$ |
| $\frac{b_{2 i-m}[4 m-2]^{*}}{}$ |
| $b_{2 i-m-j}[4 m-4 j-2]$ |
| $b_{i-\left\lceil\frac{m}{2}\right]+1}\left[4\left(\left\lfloor\frac{3 m}{2}\right\rfloor-i\right)+2\right]^{*(0)}$ |
| $b_{i-\left[\frac{m}{2}\right]}\left[4\left(\left\lfloor\frac{3 m}{2}\right\rfloor-i\right)-3\right]$ |
| $b_{i-\left\lceil\frac{m}{2}\right]-j}\left[4\left(\left\lfloor\frac{3 m}{2}\right]-i-j\right)-3\right]$ |
| $b_{2}[8(m-i)+5]$ |

 $d_{3}[4 m-6]$
$d_{2}[4 m-2]$
$d_{2}[4 m-4]^{\dagger(o)}$ $[v+u z]^{\frac{z}{1+w} p}$

 $u_{i-1}[4 i+4]$
$u_{i-j-1}[4 i+4 j+4]$
$u_{2 i-m+1}[4 m-4]$
$a_{m-1}[8 i-4 m]$
$a_{m-j-1}[8 i-4 m-4 j]$
$a_{\left\lfloor\frac{1 m}{2}\right\rfloor-i}\left[1\left(i-\left\lceil\frac{m}{2}\right]+1\right)\right]^{*(o)}$
$a_{\left\lfloor\frac{3 m}{2}\right\rfloor-i-1}\left[4\left(i-\left\lceil\frac{m}{2}\right\rceil\right)-1\right]$
$a_{\left\lfloor\frac{3 m}{2}\right\rfloor-i-j-1}\left[4\left(i-\left[\frac{m}{2}\right\rceil-j\right)-1\right]$
$a_{2(m-i)+1}[7]$
$a_{2(m-i)}[3]$

 $c_{i+1}[1 i-4]$
$c_{i+j+1}[4 i-4 j-4]$
$c_{m-1}[8 i-4 m+4]$
$a_{2 i-m-1}[4 m-4]$
$a_{2 i-m-j-1}[4 m-4 j-1]$
$a_{i-\left\lfloor\frac{m}{2}\right\rfloor}\left[4\left(\left\lceil\frac{3 m}{2}\right\rceil-i\right)\right]^{*(c)}$
$b_{\left[\frac{3 m}{2}\right\rceil-i-2}\left[1\left(i-\left\lfloor\frac{m}{2}\right\rfloor\right)-7\right]$
$b_{\left\lceil\frac{3 m}{2}\right\rceil-i-j-2}\left[1\left(i-\left\lfloor\frac{m}{2}\right\rfloor-j\right)-7\right]$
$b_{2(m-i)}[1]$ $c_{i+1}[4 i-4]$
$c_{i+j+1}[4 i-4 j-4]$
$c_{m-1}[8 i-4 m+4]$
$a_{2 i-m-1}[4 m-4]$
$a_{2 i-m-j-1}[4 m-4 j-4]$
$a_{i-\left\lfloor\frac{m}{2}\right\rfloor}\left[4\left(\left\lceil\frac{3 m}{2}\right\rceil-i\right)\right]^{*(c)}$
$b_{\left[\frac{3 m}{2}\right\rceil-i-2}\left[1\left(i-\left\lfloor\frac{m}{2}\right\rfloor\right)-7\right]$
$b_{\left[\frac{3 m}{2}\right\rceil-i-j-2}\left[1\left(i-\left\lfloor\frac{m}{2}\right\rfloor-j\right)-7\right]$
$b_{2(m-i)}[1]$ $c_{i+1}[4 i-4]$
$c_{i+j+1}[4 i-4 j-4]$
$c_{m-1}[8 i-4 m+4]$
$a_{2 i-m-1}[4 m-1]$
$a_{2 i-m-j-1}[4 m-4 j-4]$
$a_{i-\left\lfloor\frac{m}{2}\right\rfloor}\left[4\left(\left\lceil\frac{3 m}{2}\right\rceil-i\right)\right]^{*(c)}$
$b_{\left[\frac{3 m}{2}\right\rceil-i-2}\left[1\left(i-\left\lfloor\frac{m}{2}\right\rfloor\right)-7\right]$
$b_{\left[\frac{3 m}{2}\right\rceil-i-j-2}\left[1\left(i-\left\lfloor\frac{m}{2}\right\rfloor-j\right)-7\right]$
$b_{2(m-i)}[1]$

$\left[8-\left(!-\left\lceil\left.\frac{t}{u} \right\rvert\,-!\right) b\right.\right.$ $[8+(t-u) 8]^{5}$
 $[8]^{1+(?-1 u) \pi} 0$
 $d_{i-1}[4 i+2]$
$d_{i-j-1}[4 i+1 j+2]$
$d_{2 i-m}[1 m-2]$

$(1-\imath-u=!)$
$1-\imath-u>\zeta>0$
$(0=!)$
$P_{d_{i}},\left\lfloor\frac{m}{2}\right\rfloor+2 \leq i \leq m$

$$
\begin{aligned}
& b_{\frac{m}{2}+1}[2 m] \\
& b_{\frac{m}{2}+j+1}[2 m-1 j] \\
& b_{m-1}[8] \\
& c_{m-1}[6]^{1(c)} \\
& d_{m-1}[1]
\end{aligned}
$$

$$
\begin{gathered}
d_{i+1}[4 i-5] \\
d_{i+j+1}[4 i-1 j-5] \\
d_{2 i-1}[3]
\end{gathered}
$$

$$
\begin{aligned}
& d_{2}[4 m-2] \\
& d_{2}[4 m-4]^{t(c)}
\end{aligned}
$$

$$
\begin{array}{r}
(j=0) \\
0 \leq j \leq i-2 \\
(j=i-2)
\end{array}
$$

$P_{\varepsilon \frac{m}{2}}$, when m is even :

$$
\begin{aligned}
& c_{\frac{m}{2}}[2 m]^{-(\epsilon)} \quad a_{\frac{m}{2}} \quad c_{\frac{m}{2}}[2 m-1]^{\ddagger(e)} \\
& d_{\frac{m}{2}}[2 m+1]^{t(\epsilon)} \quad b_{\frac{m}{2}} \quad d_{\frac{m}{2}}[2 m+2]^{*(e)} \\
& d_{\frac{\pi}{2}+1}[2 m-2]^{-(\epsilon)} \quad b_{\frac{m}{2}-1} \quad d_{\frac{m}{2}+1}[2 m-3]^{\ddagger(e)} \\
& c_{\frac{m}{2}-1}[2 m+3]^{f(\epsilon)} \quad a_{\frac{m}{2}+1} \quad c_{\frac{m}{2}-1}[2 m+4]^{-(e)} \\
& c_{\frac{m}{3}+j}[2 m-4 j]^{(e)} \quad a_{\frac{m}{2}-j} \quad c_{\frac{m}{2}+j}[2 m-4 j-1]^{\ddagger(\epsilon)} \\
& d_{\frac{m}{2}-j}[2 m+4 j+1]^{\text {tie }} \quad b_{\frac{m}{2}+j} \quad d_{\frac{m}{2}-j}[2 m+4 j+2]^{-(e)} \\
& d_{\frac{m}{2}+j+1}[2 m-4 j-2]^{-(\epsilon)} \quad b_{\frac{m}{2}-j-1} \quad d_{\frac{m}{2}+j+1}[2 m-4 j-3]^{f(e)} \\
& c_{\frac{m}{2}-j-1}[2 m+4 j+3]^{f(e)} \quad a_{\frac{m}{2}+j+1} \quad c_{\frac{m}{2}-j-1}[2 m+4 j+4]^{*(e)} \quad 0 \leq j \leq \frac{m}{2}-2 \\
& \begin{array}{rcll}
c_{m-2}[8]^{-(\epsilon)} & a_{2} & c_{m-2}[7]^{\ddagger(e)} & \\
d_{2}[4 m-7]^{\sharp(e)} & b_{m-2} & d_{2}[4 m-6]^{*(e)} & \\
d_{m-1}[6]^{(e)} & b_{1} & d_{m-1}[5]^{1(e)} & \\
c_{1}[4 m-5]^{+(e)} & a_{m-1} & c_{1}[4 m-4]^{-(e)} & \left(j=\frac{m}{2}-2\right)
\end{array} \\
& c_{m-1}[4]^{-(e)} \quad a_{1} \quad c_{m-1}[3]^{1(e)} \\
& d_{1}[4 m-3]^{(t)} \quad b_{m-1} \quad d_{1}[4 m-2]^{(e)} \\
& \boldsymbol{d}_{m}[2]^{(e)} \quad c_{0} \quad d_{m}[1]^{(t e)}
\end{aligned}
$$

$$
P_{d_{\frac{m+1}{2}}}, m \text { odd : }
$$

$$
\begin{array}{ccll}
d_{\frac{m+1}{}}[2 m]^{*(o)} & b_{\frac{m-1}{2}} & d_{\frac{m+1}{2}}[2 m-1]^{\ddagger(o)} & \\
c_{\frac{m-1}{2}}[2 m+1]^{\ddagger(0)} & a_{\frac{m+1}{2}} & c_{\frac{m-1}{2}}[2 m+2]^{*(o)} & \\
c_{\frac{m+1}{2}}[2 m-2]^{*(o)} & a_{\frac{m-1}{2}} & c_{\frac{m+1}{2}}[2 m-3]^{\ddagger(o)} & \\
d_{\frac{m-1}{2}}[2 m+3]^{\ddagger(o)} & b_{\frac{m+1}{2}} & d_{\frac{m-1}{2}}[2 m+4]^{*(o)} & (j=0) \\
& & & \\
d_{\frac{m+1}{2}+j}[2 m-4 j]^{*(o)} & b_{\frac{m-1}{2}-j} & d_{\frac{m+1}{2}+j}[2 m-4 j-1]^{\ddagger(o)} & \\
c_{\frac{m-1}{2}-j}[2 m+4 j+1]^{\ddagger(o)} & a_{\frac{m+1}{2}+j} & c_{\frac{m-1}{2}-j}[2 m+4 j+2]^{*(o)} & \\
c_{\frac{m+1}{2}+j}[2 m-4 j-2]^{*(o)} & a_{\frac{m-1}{2}-j} & c_{\frac{m+1}{2}+j}[2 m-4 j-3]^{\ddagger(o)} & \\
d_{\frac{m-1}{2}-j}[2 m+4 j+3]^{\ddagger(o)} & b_{\frac{m+1}{2}+j} & d_{\frac{m-1}{2}-j}[2 m+4 j+4]^{*(o)} & 0 \leq j \leq \frac{m-3}{2} \\
& & \\
d_{m-1}[6]^{*(o)} & b_{1} & d_{m-1}[5]^{\ddagger(o)} \\
c_{1}[4 m-5]^{\ddagger(o)} & a_{m-1} & c_{1}[4 m-4]^{*(o)} \\
c_{m-1}[4]^{*(o)} & a_{1} & c_{m-1}[3]^{\ddagger(o)} & \\
d_{1}[4 m-3]^{\ddagger(o)} & b_{m-1} & d_{1}[4 m-2]^{*(o)} & \left(j=\frac{m-3}{2}\right) \\
& & & \\
d_{m}[2]^{*(o)} & c_{0} & d_{m}[1]^{\ddagger(o)} &
\end{array}
$$

We are now at the point of joining the trails in each of the T_{i}^{\prime} together with 2 -paths centred at ∞_{1} and ∞_{2} to form the Euler tours T_{i}. Currently, the T_{i}^{\prime} are all pairwise similar. However, in order to use every 2-path centred at ∞_{1} or \propto_{2} exactly once, we have to have some Euler tours that contain the digon $\infty_{1} \infty_{2} \infty_{1}$, and some that contain the digon $\infty_{2} \infty_{1} \infty_{2}$. The following two claims, covering the two cases of m odd and m even, show how to join the trails in T_{0}^{\prime} together with 2-paths centred at ∞_{1} and ∞_{2} to construct one Euler tour of $K_{4 m}+I$ that contains the digon $\infty_{1} \infty_{2} \infty_{1}$ and another that contains the digon $\infty_{2} \infty_{1} \infty_{2}$. We then use these two Euler tours to generate a perfect set of Euler tours.

Claim 3.2.3 Assume m is odd. Let

$$
\begin{gathered}
T_{a}=T_{0}^{\prime} \cup \infty_{1}\left[H_{0}: 2,4,6, \ldots, 4 m-2\right] \cup \infty_{2}\left[H_{0}: 1,3,5, \ldots, 4 m-1\right] \text { and } \\
T_{b}=T_{0}^{\prime} \cup \infty_{1}\left[H_{0}: 1,3,5, \ldots, 4 m-1\right] \cup \infty_{2}\left[H_{m}: 2,4,6, \ldots, 4 m-2\right] .
\end{gathered}
$$

Then

1. T_{a} and T_{b} are Euler tours of $K_{4 m}+I$, and
2. The set of Euler tours, $\left\{T_{i}: 0 \leq i \leq 4 m-3\right\}$, where $T_{i}=\sigma^{i}\left(T_{a}\right)$ if $0 \leq i \leq$ $2 m-2$ and $T_{i}=\sigma^{i}\left(T_{b}\right)$ if $2 m-1 \leq i \leq 4 m-3$, is a perfect set of Euler tours of $K_{4 m}+I$.

Proof.

Assume $m>1$.
Proof of 1): To construct T_{a} we need to know that the 2-paths and digon that are in $\infty_{1}\left[H_{0}: 2,4, \ldots, 4 m-2\right]$ are $c_{0} \infty_{1} d_{1}, a_{j} \infty_{1} c_{j}, 1 \leq j \leq m-1, b_{j} \infty_{1} d_{j+1}$, $1 \leq j \leq m-1$, and $\infty_{2} \infty_{1} \infty_{2}$. The 2 -paths in $\infty_{2}\left[H_{0}: 1,3, \ldots, 4 m-1\right]$ are $\infty_{1} \infty_{2} c_{0}$, $d_{j} \infty_{2} a_{j}, 1 \leq j \leq m-1, c_{j} \infty_{2} b_{j}, 1 \leq j \leq m-1$, and $d_{m} \infty_{2} \infty_{1}$.

To construct T_{b} we need to know that the 2 -paths in $\infty_{1}\left[H_{0}: 1,3, \ldots, 4 m-1\right]$ are $\infty_{2} \infty_{1} c_{0}, d_{j} \infty_{1} a_{j}, 1 \leq j \leq m-1, c_{j} \infty_{1} b_{j}, 1 \leq j \leq m-1$, and $d_{m} \infty_{1} \infty_{2}$. The 2 -paths in $\infty_{2}\left[H_{m}: 2,4, \ldots, 4 m-2\right]$ are $a_{j} \infty_{2} b_{m-j}, 1 \leq j \leq m-1$, and $c_{j} \infty_{2} d_{m-j}$, $0 \leq j \leq m-1$, together with the digon $\infty_{1} \infty_{2} \infty_{1}$.

The left-hand diagram in Figure 3.2 shows how the 2 -paths centred at ∞_{1} and ∞_{2} join the trails in T_{0}^{\prime} together to form the Euler tour T_{a}. As well as ∞_{1} and ∞_{2}, there are two columns of vertices in the diagram, each containing $V\left(K_{4 m-2}\right)$. A dashed line between vertex l in the left-hand column and vertex r in the right-hand column indicates the trail in T_{0}^{\prime} that starts on the edge $\infty_{1} l$ and ends on the edge $r \infty_{2}$. This is the trail labeled P_{l} in Claim 3.2.2. A solid line between two vertices l_{1} and l_{2} in the left-hand column indicates the 2 -path $l_{1} \infty_{1} l_{2}$. A solid line between two vertices r_{1} and r_{2} in the right-hand column indicates the 2 -path $r_{1} \infty_{2} r_{2}$. Finally, the dotted lines represent actual edges in the Euler tour T_{0}.

In exactly the same manner, the right-hand diagram in Figure 3.2 shows how the ${ }^{2}$-paths centred at ∞_{1} and at ∞_{2} join the trails in T_{0}^{\prime} together to form the Euler tour T_{b}.

Proof of 2): It is not hard to see that the set of Euler tours $\left\{T_{i}: 0 \leq i \leq 4 m-3\right\}$ contains every 2 -path centred at ∞_{1} or ∞_{2} exactly once, and hence that we have construcied a perfect set of Euler tours of $K_{4 m}+I$.

Figure 3.2: T_{a} and T_{b} when m is odd and $m \geq 3$.
When $m=1$ the diagrams in Figure 3.2 do not apply. It is however easy to check this case separately.

Claim 3.2.4 Assume m is even. Let

$$
\begin{gathered}
T_{a}=T_{0}^{\prime} \cup \infty_{1}\left[H_{0}: 2,4,6, \ldots, 4 m-2\right] \cup \infty_{2}\left[H_{0}: 1,3,5, \ldots, 4 m-1\right] \text { and } \\
T_{b}=T_{0}^{\prime} \cup \infty_{1}\left[H_{0}: 1,3,5, \ldots, 4 m-1\right] \cup \infty_{2}\left[H_{m+1}: 2,4,6, \ldots, 4 m-2\right] \text { if } m>2 \text { and } \\
T_{b}=T_{0}^{\prime} \cup \infty_{1}\left[H_{1}: 1,3,5, \ldots, 4 m-1\right] \cup \infty_{2}\left[H_{1}: 2,4,6, \ldots, 4 m-2\right] \text { if } m=2 .
\end{gathered}
$$

Then T_{a} and T_{b} are Euler tours of $K_{4 m}+I$, and the set of Euler tours, $\left\{T_{i}: 0 \leq i \leq\right.$ $4 m-3\}$, where $T_{i}=\sigma^{i}\left(T_{a}\right)$ if $0 \leq i \leq 2 m-2$ and $T_{i}=\sigma^{i}\left(T_{b}\right)$ if $2 m-1 \leq i \leq 4 m-3$, is a perfect set of Euler tours of $K_{4 m}+I$.

Proof.

When $m>2$ is even the only difference in 2 -paths centred at ∞_{1} or ∞_{2} from the odd case is the set of 2-paths centred at ∞_{2} in T_{b}. These 2-paths are $a_{j} \infty_{2} b_{m+1-j}$, $2 \leq j \leq m-1, c_{j} \infty_{2} d_{m-1-j}, 0 \leq j \leq m-2, a_{1} \infty_{2} c_{m-1}, b_{1} \infty_{2} d_{m}$ and $\infty_{1} \infty_{2} \infty_{1}$.

Figure 3.3 proves that T_{a} and T_{b} are Euler tours. The result follows exactly as in the odd case.

The case $m=2$ is readily verified.
This completes the construction of a perfect set of Euler tours of $K_{4 m}+I$.

3.3 A Perfect Set of Euler Tours of $K_{4 m+2}+J$

We have constructed a perfect set of Euler tours of $K_{2 k}+I$ when k is even. Now assume k is odd and let $k=2 m+1$.

3.3.1 A Perfect Set of Euler Tours of $K_{6}+J$

The general construction that follows in Section 3.3.2 for a perfect set of Euler tours of $K_{4 m+2}+J$ does not work when $m=1$, so we do this case separately by giving four Euler tours $T_{0}, T_{1}, T_{2}, T_{3}$, that form a perfect set of Euler tours. Let $V\left(K_{6}\right)=$ $\{1,2,3,4,5,6\}$ and let $J=\{12,34,56\}$.

$T_{0}:$	4	1	2	1	3	2	5	1	6	2	4	3	4	5	6	5	3	6	4	1
$T_{1}:$	4	2	1	2	3	4	3	6	2	5	6	5	1	3	5	4	6	1	4	2
$T_{2}:$	5	1	2	1	6	3	1	4	3	4	6	5	6	2	3	5	2	4	5	1
$T_{3}:$	5	2	1	2	6	4	2	3	6	5	6	1	3	4	3	5	1	4	5	2

3.3.2 A Perfect Set of Euler Tours of $K_{4 m+2}+J, m>1$

Let $V\left(K_{4 m+1}\right)=\left\{\infty_{2}\right\} \cup A \cup B \cup C^{\prime} \cup D^{\prime}$, where $C^{\prime}=C \cup\left\{c_{m}\right\}$ and $D^{\prime}=D \cup\left\{d_{m+1}\right\}$ and A, B, C and D are as in Section 3.2. Let $V\left(K_{4 m+2}\right)=V\left(K_{4 m+1}\right) \cup\left\{\infty_{1}\right\}$. We construct a perfect set of Euler tours of $K_{4 m+2}+J$, where J is a 1-factor of $K_{4 m+2}$,

Figure 3.3: T_{a} and T_{b} when m is even.
by partitioning the 2 -paths of $K_{4 m+2}$ into $4 m$ parts, and then showing that the $2-$ paths in each part do indeed form an Euler tour of $K_{4 m+2}+J$. We will be using the trails in T_{0}^{\prime} that were constructed for $K_{4 m}+I$ to accomplish the latter half of this, so in this section we will partition the 2 -paths in $K_{4 m+2}$ into $\left\{S_{0}, S_{1}, \ldots, S_{4 m-1}\right\}$. For $i \in\{0,1,2, \ldots, 4 m-1\}$, let S_{i}^{\prime} be only those 2-paths in S_{i} that are centred at a vertex in $A \cup B \cup C^{\prime} \cup D^{\prime}$.

We use the construction mentioned in Section 3.1 to obtain a Hamilton decomposition of $K_{4 m+1}$. We label the vertices so that as many of the trails as possible in S_{0}^{\prime} will be the same as, or similar to, a trail in T_{0}^{\prime}. Let τ be the following permutation

$$
\left(\infty_{1}\right)\left(\infty_{2}\right)\left(a_{1} b_{1} a_{2} b_{2} \ldots a_{m-1} b_{m-1} d_{m+1} c_{m} d_{m} c_{m-1} d_{m-1} \ldots c_{1} d_{1} c_{0}\right)
$$

of $V\left(K_{4 m+2}\right)$ that fixes ∞_{1} and generates a Hamilton decomposition

$$
\mathcal{C}=\left\{C_{\mathbf{0}}, C_{1}, \ldots, C_{2 m-1}\right\}
$$

of $K_{4 m+1}$ on the vertex set $\left\{\infty_{2}\right\} \cup A \cup B \cup C^{\prime} \cup D^{\prime}$. The Hamilton cycle C_{0} (shown in Figure 3.4) is given by

$$
\left(\infty_{2} c_{0} d_{1} a_{1} c_{1} b_{1} d_{2} a_{2} c_{2} b_{2} \cdots d_{i} a_{i} c_{i} b_{i} \cdots d_{m-1} a_{m-1} c_{m-1} b_{m-1} d_{m} d_{m+1} c_{m}\right)
$$

and we now have the Hamilton decomposition \mathcal{C}, where $C_{i}=\tau^{i}\left(C_{0}\right), 0 \leq i \leq$ $2 m-1$. We can obtain a set of $4 m$ Hamilton cycles by letting $C_{i}=\tau^{i}\left(C_{0}\right)$ for $i \in\{0,1,2, \ldots, 4 m-1\}$. Note that $C_{i}=C_{i+2 m}$, for all i, where addition on the subscripts is modulo $4 m$. It is easy to see from Figure 3.4 that when we choose edges that are fixed by $\tau^{2 m}$ to be the 1 -factor J of $K_{4 m+2}$, we have

$$
\begin{aligned}
J & =\left\{\infty_{1} \infty_{2}, c_{0} c_{m}, d_{1} d_{m+1}\right\} \\
& \cup\left\{a_{i} d_{m-i+1}: 1 \leq i \leq m-1\right\} \\
& \cup\left\{b_{i} c_{m-i}: 1 \leq i \leq m-1\right\}
\end{aligned}
$$

which is itself fixed (setwise) by τ.
We will use the Hamilton cycles C_{0}, C_{1} and $C_{4 m-1}=C_{-1}$ to list the 2-paths in S_{0}^{\prime}. Order the edges in these three cycles as follows:

Figure 3.4: C_{0} and τ

$$
\begin{aligned}
{\left[C_{0}: 1\right] } & =\infty_{2} c_{0}, \\
{\left[C_{\mathbf{0}}: 2\right] } & =c_{0} d_{1}, \\
{\left[C_{0}: 4 k-1\right] } & =d_{k} a_{k}, 1 \leq k \leq m-1, \\
{\left[C_{0}: 4 k\right] } & =a_{k} c_{k}, 1 \leq k \leq m-1, \\
{\left[C_{0}: 4 k+1\right] } & =c_{k} b_{k}, 1 \leq k \leq m-1, \\
{\left[C_{0}: 4 k+2\right] } & =b_{k} d_{k+1}, 1 \leq k \leq m-1, \\
{\left[C_{0}: 4 m-1\right] } & =d_{m} d_{m+1}, \\
{\left[C_{0}: 4 m\right] } & =d_{m+1} c_{m}, \\
{\left[C_{\mathbf{0}}: 4 m+1\right] } & =c_{m} \infty_{2} .
\end{aligned}
$$

$$
\left[C_{1}: 1\right]=\infty_{2} a_{1}
$$

$$
\left[C_{1}: 4 k-2\right]=a_{k} c_{k-1}, 1 \leq k \leq m-1,
$$

$$
\begin{aligned}
{\left[C_{1}: 4 k-1\right] } & =c_{k-1} b_{k}, 1 \leq k \leq m-1, \\
{\left[C_{1}: 4 k\right] } & =b_{k} d_{k}, 1 \leq k \leq m-1, \\
{\left[C_{1}: 4 k+1\right] } & =d_{k} a_{k+1}, 1 \leq k \leq m-2, \\
{\left[C_{1}: 4 m-3\right] } & =d_{m-1} d_{m+1}, \\
{\left[C_{1}: 4 m-2\right] } & =d_{m+1} c_{m-1}, \\
{\left[C_{1}: 4 m-1\right] } & =c_{m-1} c_{m}, \\
{\left[C_{1}: 4 m\right] } & =c_{m} d_{m}, \\
{\left[C_{1}: 4 m+1\right] } & =d_{m} \infty_{2},
\end{aligned}
$$

$$
\begin{aligned}
{\left[C_{-1}: 1\right] } & =\infty_{2} d_{1}, \\
{\left[C_{-1}: 2\right] } & =d_{1} c_{1}, \\
{\left[C_{-1}: 3\right] } & =c_{1} c_{0}, \\
{\left[C_{-1}: 4\right] } & =c_{0} d_{2}, \\
{\left[C_{-1}: 4 k+1\right] } & =d_{k+1} a_{k}, 1 \leq k \leq m-1, \\
{\left[C_{-1}: 4 k+2\right] } & =a_{k} c_{k+1}, 1 \leq k \leq m-1, \\
{\left[C_{-1}: 4 k+3\right] } & =c_{k+1} b_{k}, 1 \leq k \leq m-1, \\
{\left[C_{-1}: 4 k+4\right] } & =b_{k} d_{k+2}, 1 \leq k \leq m-1, \\
{\left[C_{-1}: 4 m+1\right] } & =d_{m+1} \infty_{2} .
\end{aligned}
$$

The 2-paths in S_{0}^{\prime} are:

$$
\begin{gathered}
a_{i}\left[C_{-1}: 1,3,5, \ldots, 4(m-i)-1,4(m-i)+2,4(m-i)+4,4(m-i)+6, \ldots, 4 m\right] \text { and } \\
b_{i}\left[C_{1}: 1,3,5, \ldots, 4(m-i)+1,4(m-i)+4,4(m-i)+6,4(m-i)+8, \ldots, 4 m\right]
\end{gathered}
$$

for $i \in\{1,2, \ldots, m-1\}$,

$$
\begin{gathered}
c_{i}\left[C_{0}: 1,3,5, \ldots, 4(m-i)+1,4(m-i)+2,4(m-i)+4,4(m-i)+6, \ldots, 4 m\right] \text { and } \\
d_{i}\left[C_{0}: 1,3,5, \ldots, 4(m-i)+3,4(m-i)+4,4(m-i)+6,4(m-i)+8, \ldots, 4 m\right]
\end{gathered}
$$

for $i \in\{1,2, \ldots, m\}$, and

$$
c_{0}\left[C_{0}: 1,3,5, \ldots, 4 m-1\right] \text { and } d_{m+1}\left[C_{0}: 1,4,6,8, \ldots, 4 m\right]
$$

Define $S_{i}^{\prime}=\tau^{j}\left(S_{0}^{\prime}\right), 0 \leq j \leq 4 m-1$. Since τ is an automorphism of $K_{4 m+2}+I$, the S_{i}^{\prime} are all pairwise similar.

Claim 3.3.1 The $S_{j}^{\prime}, 0 \leq j \leq 4 m-1$, partition the set of 2 -paths in $K_{4 m+2}$ that are centred at a vertex in $A \cup B \cup C^{\prime} \cup D^{\prime}$.

Proof. The proof is very similar to the proof of Claim 3.2.1.
Case 1: Let $c_{i} \in C^{\prime} \backslash\left\{c_{0}, c_{m}\right\}$. Then the 2 -paths

$$
c_{i}\left[C_{0}: 1,3, \ldots, 4(m-i)+1,4(m-i)+2,4(m-i)+4, \ldots, 4 m\right]
$$

are in S_{0}^{\prime} and the 2-paths

$$
\tau^{2 m+1}\left(a_{m-i}\left[C_{-1}: 1,3, \ldots, 4 i-1,4 i+2,4 i+4, \ldots, 4 m\right]\right)
$$

are in $S_{2 m+1}^{\prime}$. This second set of $2-$ paths is equal to

$$
c_{i}\left[C_{0}: 2,4, \ldots, 4(m-i), 4(m-i)+3,4(m-i)+5, \ldots, 4 m+1\right]
$$

Combining these two sets, we have each 2 - path in $c_{i}\left[C_{0}: r\right], r \in\{1,2, \ldots, 4 m+1\}$, at least once in S_{0}^{\prime} or $S_{2 m+1}^{\prime}$. Therefore, we have each 2-path in $\tau^{j}\left(c_{i}\left[C_{0}: r\right]\right), r \in$ $\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq 4 m-1$, at least once somewhere in the S_{l}^{\prime}. This is equivalent to having each 2-path in $\tau^{j}\left(c_{i}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq 2 m-1$, and in $\tau^{j}\left(b_{m-i}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq 2 m-1$, at least once, since $\tau^{2 m}\left(c_{i}\right)=b_{m-i}$ for all $i \in\{1,2, \ldots, m-1\}$.

Case 2: Let $d_{i} \in D^{\prime} \backslash\left\{d_{1}, d_{m+1}\right\}$. Then the 2-paths

$$
d_{i}\left[C_{0}: 1,3, \ldots, 4(m-i)+3,4(m-i)+4,4(m-i)+6, \ldots, 4 m\right]
$$

are in S_{0}^{\prime} and the 2-paths

$$
\tau^{2 m-1}\left(b_{m-i+1}\left[C_{1}: 1,3, \ldots, 4 i-3,4 i, 4 i+2, \ldots, 4 m\right]\right)
$$

are in $S_{2 m-1}^{\prime}$. This second set of 2 -paths is equivalent to

$$
d_{i}\left[C_{0}: 2,4, \ldots, 4(m-i)+2,4(m-i)+5,4(m-i)+7, \ldots, 4 m+1\right]
$$

Combining these two sets, we have each 2-path in $d_{i}\left[C_{0}: r\right], r \in\{1,2, \ldots, 4 m+1\}$, at least once in S_{0}^{\prime} or $S_{2 m-1}^{\prime}$. So we get each 2-path in $\tau^{j}\left(d_{i}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+$ $1\}, 0 \leq j \leq 2 m-1$, and in $\tau^{j}\left(a_{m-i+1}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq 2 m-1$, at least once, since $\tau^{2 m}\left(d_{i}\right)=a_{m-i+1}$ for all $i \in\{2,3, \ldots, m\}$.

Case 3: The 2-paths $c_{0}\left[C_{0}: 1,3, \ldots, 4 m-1\right]$ in S_{0}^{\prime} and the 2-paths

$$
\tau^{2 m}\left(c_{m}\left[C_{0}: 1,2,4, \ldots, 4 m\right]\right)=c_{0}\left[C_{0}: 2,4, \ldots, 4 m, 4 m+1\right]
$$

in $S_{2 m}^{\prime}$ together give $c_{0}\left[C_{0}: r\right], r \in\{1,2, \ldots, 4 m+1\}$, at least once in S_{0}^{\prime} or $S_{2 m}^{\prime}$. Therefore, we have each 2- path in $\tau^{j}\left(c_{0}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq 2 m-1$, and in $\tau^{j}\left(c_{m}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq 2 m-1$, at least once somewhere in the S_{l}^{\prime}.

Case 4: The 2-paths $d_{1}\left[C_{0}: 1,3, \ldots, 4 m-1,4 m\right]$ in S_{0}^{\prime} and the 2-paths

$$
\tau^{2 m}\left(d_{m+1}\left[C_{0}: 1,4,6, \ldots, 4 m\right]\right)=d_{1}\left[C_{0}: 2,4, \ldots, 4 m-2,4 m+1\right]
$$

in $S_{2 m}^{\prime}$ together give $d_{1}\left[C_{0}: r\right], r \in\{1,2, \ldots, 4 m+1\}$, at least once in S_{0}^{\prime} or $S_{2 m}^{\prime}$. Therefore, we have each 2 -path in $\tau^{j}\left(d_{1}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq$ $2 m-1$, and in $\tau^{j}\left(d_{m+1}\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}, 0 \leq j \leq 2 m-1$, at least once.

Altogether, for each $v \in A \cup B \cup C^{\prime} \cup D^{\prime}$ and each $j \in\{0,1, \ldots, 2 m-1\}$ we have $\tau^{j}\left(v\left[C_{0}: r\right]\right), r \in\{1,2, \ldots, 4 m+1\}$, at least once. This means we have every 2 -path at least once, and hence, exactly once.

Claim 3.3.2 The 2 -paths in S_{0}^{\prime} fit together to form $2 m$ trails. Of these, $2 m-2$ start on an edge containing ∞_{1} and end on an edge containing ∞_{2}. Label such a trail P_{v}^{\prime}, where $\infty_{1} v$ is the first edge of the trail. The trails in S_{0}^{\prime} with their first and last edges are as follows:
$P_{a_{i}}^{\prime}, 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1$, from $\infty_{1} a_{i}$ to $a_{2 i} \infty_{2}$,
$P_{b_{i}}^{\prime}, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$, from $\infty_{1} b_{i}$ to $c_{2 i-1} \infty_{2}$,
$P_{c_{i}}^{\prime}, 0 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1$, from $\infty_{1} c_{i}$ to $c_{2 i} \infty_{2}$,
$P_{d_{i}}^{\prime}, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$, from $\infty_{1} d_{i}$ to $a_{2 i-1} \infty_{2}$,
$P_{c \frac{m}{2}}^{\prime}$, when m is even, from $\infty_{1} c \frac{m}{2}$ to $c_{m} \infty_{2}$,
$P_{d_{\frac{m+1}{}}}^{\prime 2}$, when m is odd, from $\infty_{1} d_{\frac{m+1}{2}}^{\prime 2}$ to $c_{m} \infty_{2}$,
$P_{a_{i}}^{\prime},\left\lceil\frac{m}{2}\right\rceil \leq i \leq m-1$, from $\infty_{1} a_{i}$ to $b_{2(m-i)-1} \infty_{2}$,
$P_{b_{i}}^{\prime},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, from $\infty_{1} b_{i}$ to $d_{2(m-i)} \infty_{2}$,
$P_{c_{i}}^{\prime},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, from $\infty_{1} c_{i}$ to $b_{2(m-i)} \infty_{2}$,
$P_{d_{i}}^{\prime},\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m$, from $\infty_{1} d_{i}$ to $d_{2(m-i)+1} \infty_{2}$.
In addition we have the two trails

$$
\begin{gathered}
c_{m}[4 m] d_{m+1}[4 m]=\infty_{1} c_{m} d_{m+1} \infty_{1} \text { and } \\
d_{m+1}[1] c_{0}[4 m-1] d_{m}[1]=\infty_{2} d_{m+1} c_{0} d_{m} \infty_{2} .
\end{gathered}
$$

Proof.

There are relatively few 2-paths on which T_{0}^{\prime} and S_{0}^{\prime} differ and we can use the trails in $T_{0}^{\prime \prime}$ to determine the structure of the trails in S_{0}^{\prime}. We will do this by considering where the 2 -paths in S_{0}^{\prime} differ from those in T_{0}^{\prime}. For most pairs α and $k, \alpha \in\{-1,0,1\}$, $k \in\{1,2, \ldots, 4 m-2\}$, the edges $\left[H_{\alpha}: k\right]$ and $\left[C_{\alpha}: k\right]$ are the same. The edges that differ that will affect 2-paths in S_{0}^{\prime} are $C_{1}[4 m-2] \neq H_{1}[4 m-2]$ and $C_{-1}[4 m-2] \neq$ $H_{-1}[4 m-2]$. Also, any $2-$ path in S_{0}^{\prime} that is centred at c_{m} or d_{m+1}, or has end vertices from the $4 m^{t h}$ or $(4 m-1)^{\text {th }}$ edge of one of the Hamilton cycles, C_{0}, C_{-1} or C_{1}, must be new.

From now on we will no longer mention which Hamilton cycle C_{0}, C_{1}, or C_{-1} the end vertices of the 2-paths in S_{0}^{\prime} come from, since 2-paths centred at a vertex in A always have end-vertices from $C_{-1}, 2$-paths centred at a vertex in B always have end-vertices from C_{1}, and 2-paths centred at a vertex in $C^{\prime} \cup D^{\prime}$ always have end-vertices from C_{0}. We will however mention which Hamilton cycle, H_{-1}, H_{0}, or H_{1}, the 2-paths in T_{0}^{\prime} come from, mostly to stress that we are considering a 2 -path in T_{0}^{\prime} and not one in S_{0}^{\prime}.

The 2-paths that are in T_{0}^{\prime} but not in S_{0}^{\prime} are those that are marked in the trais of T_{0}^{\prime} with a superscript *,*(o) (only applies when m is odd), or $*(e)$ (only applies when
m is even). Whether m is odd or even, the 2 -paths that are marked in this way are:

$$
\begin{gathered}
a_{i}\left[H_{-1}: 4(m-i)\right], 1 \leq i \leq m-1, \\
b_{i}\left[H_{1}: 4(m-i)+2\right], 1 \leq i \leq m-1, \\
c_{i}\left[H_{0}: 4(m-i)\right], 1 \leq i \leq m-1, \\
d_{i}\left[H_{0}: 4(m-i)+2\right], 1 \leq i \leq m, \\
a_{j}\left[H_{-1}: 4 m-2\right], \text { for all } j \in\{1,2, \ldots, m-1\}, \text { and } \\
b_{j}\left[H_{1}: 4 m-2\right], \text { for all } j \in\{2,3, \ldots, m-1\} .
\end{gathered}
$$

The 2-paths that are in S_{0}^{\prime} but not in T_{0}^{\prime} are:

$$
\begin{aligned}
& v[4 m], \text { for all } v \in A \cup B \cup C^{\prime} \cup D^{\prime} \backslash\left\{c_{0}\right\}, c_{0}[4 m-1], \text { and } d_{1}[4 m-1], \\
& \qquad \begin{array}{c}
c_{m}[1,2,4,6, \ldots, 4 m-2] \text { and } d_{r_{+1}}[1,4,6,8, \ldots, 4 m-2], \\
a_{i}[4(m-i)-1], 1 \leq i \leq m-1, \\
b_{i}[4(m-i)+1], 1 \leq i \leq m-1, \\
c_{i}[4(m-i)+1], 1 \leq i \leq m-1, \\
\\
d_{i}[4(m-i)+3], 2 \leq i \leq m,
\end{array} \\
& \left.a_{j}[4 m-2], \text { for all } j \in\{1,2, \ldots, m-1\}, \text { (because } C_{-1}[4 m-2] \neq H_{-1}[4 m-2]\right)
\end{aligned}
$$

and

$$
\left.b_{j}[4 m-2], \text { for all } j \in\{2,3, \ldots, m-1\} \text { (because } C_{1}[4 m-2] \neq H_{1}[4 m-2]\right)
$$

First of all, $P_{a_{i}}^{\prime}=P_{a_{i}}, 1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1, P_{b_{i}}^{\prime}=P_{b_{i}}, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor, P_{c_{i}}^{\prime}=P_{c_{i}}$, $1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil-1$, and $P_{d_{i}}^{\prime}=P_{d_{i}}, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$, because none of the 2 -paths in these trails is one that was either removed or changed by using the Hamilton cycles in \mathcal{C} instead of the Hamilton cycles in \mathcal{H}.

The trail $P_{c_{\frac{m}{2}}^{2}}^{\prime}$ when m is even and the trail $P_{\frac{d_{m+1}}{2}}^{\prime}$ when m is odd are completely different from $P_{\frac{c_{m}^{2}}{2}}$ and $P_{d_{\frac{m+1}{2}}}$, respectively. This is not surprising given that we need a different set of digons in S_{0}^{\prime} than in T_{0}^{\prime}. They use the 2 -paths $c_{i}[4(m-i)+2]$,
$1 \leq i \leq m-1$, and $d_{i}[4(m-i)+4], 2 \leq i \leq m$. These are marked with a superscript $\dagger(e)$ or $\dot{\dagger}(o)$ in the trails of $T_{\mathbf{0}}^{\prime}$. (Again, (e) stands for the case when m is even and (o) stand for the case when m is odd.) They also use the new 2-paths $c_{m}[1,2], d_{1}[4 m]$, $c_{i}[4(m-i)+1], 1 \leq i \leq m-1$, and $d_{i}[4(m-i)+3], 1 \leq i \leq m$. Note that they do not use any of the 2 -paths that were in $P_{c \frac{m}{2}}$ or $P_{d_{\frac{m+1}{2}}}$.
$P_{c \frac{m}{2}}^{\prime}, m$ even :

$$
\begin{array}{rcll}
c_{\frac{m}{2}}[2 m+1] & b_{\frac{m}{2}} & c_{2}[2 m+2] & \\
d_{\frac{m}{2}+1}[2 m] & a_{\frac{m}{2}} & d_{\frac{m}{2}+1}[2 m-1] & \\
d_{\frac{m}{2}}[2 m+3] & a_{\frac{m}{2}+1} & d_{\frac{m}{2}}[2 m+4] & \\
c_{\frac{m}{2}+1}[2 m-2] & b_{\frac{m}{2}-1} & c_{\frac{m}{2}+1}[2 m-3] & \\
& & & \\
c_{\frac{m}{2}-j}[2 m+4 j+1] & b_{\frac{m}{2}+j} & c_{\frac{m}{2}-j}[2 m+4 j+2] & \\
d_{\frac{m}{2}+j+1}[2 m-4 j] & a_{\frac{m}{2}-j} & d_{\frac{m}{2}+j+1}[2 m-4 j-1] & \\
d_{\frac{m}{2}-j}[2 m+4 j+3] & a_{\frac{m}{2}+j+1} & d_{\frac{m}{2}-j}[2 m+4 j+4] & \\
c_{\frac{m}{2}+j+1}[2 m-4 j-2] & b_{\frac{m}{2}-j-1} & c_{\frac{m}{2}+j+1}[2 m-4 j-3] & 0 \leq j \leq \frac{m}{2}-2 \\
& & \\
c_{2}[4 m-7] & b_{m-2} & c_{2}[4 m-6] & \\
d_{m-1}[8] & a_{2} & d_{m-1}[7] & \\
d_{2}[4 m-5] & a_{m-1} & d_{2}[4 m-4] & \\
c_{m-1}[6] & b_{1} & c_{m-1}[5] & \\
& & & \\
c_{1}[4 m-3] & b_{m-1} & c_{1}[4 m-2] & \\
d_{m}[4] & a_{1} & d_{m}[3] & \\
d_{1}[4 m-1] & d_{m+1} & d_{1}[4 m] & \\
c_{m}[2] & c_{0} & c_{m}[1] &
\end{array}
$$

and

$$
P_{d_{\frac{m+1}{2}}}^{\prime}, m \text { odd }:
$$

$$
\begin{array}{rlll}
d_{\frac{m+1}{2}}^{2}[2 m+1] & a_{\frac{m+1}{}} & d_{\frac{m+1}{}}[2 m+2] & \\
c_{\frac{m+1}{2}}^{2}[2 m] & b_{\frac{m-1}{2}}^{2} & c_{\frac{m+1}{2}}[2 m-1] \\
c_{\frac{m-1}{2}}^{2}[2 m+3] & b_{\frac{m+1}{}}^{2} & c_{\frac{m-1}{2}}[2 m+4] & \\
d_{\frac{m+3}{2}}[2 m-2] & a_{\frac{m-1}{2}} & d_{\frac{m+3}{2}}[2 m-3] & (j=0) \\
& & & \\
d_{\frac{m+1}{2}-j}[2 m+4 j+1] & a_{\frac{m+1}{2}+j} & d_{\frac{m+1}{2}-j}[2 m+4 j+2] & \\
c_{\frac{m+1}{2}+j}[2 m-4 j] & b_{\frac{m-1}{2}-j} & c_{\frac{m+1}{2}+j}[2 m-4 j-1] & \\
c_{\frac{m-1}{2}-j}[2 m+4 j+3] & b_{\frac{m+1}{2}+j} & c_{\frac{m-1}{2}-j}[2 m+4 j+4] & \\
d_{\frac{m+1}{2}+j+1}[2 m-4 j-2] & a_{\frac{m-1}{2}-j} & d_{\frac{m+1}{2}+j+1}[2 m-4 j-3] & 0 \leq j \leq \frac{m-3}{2} \\
& & \\
d_{2}[4 m-5] & a_{m-1} & d_{2}[4 m-4] & \\
c_{m-1}[6] & b_{1} & c_{m-1}[5] & \\
c_{1}[4 m-3] & b_{m-1} & c_{1}[4 m-2] & \left(j=\frac{m-3}{2}\right) \\
d_{m}[4] & a_{1} & d_{m}[3] & \\
& & \\
d_{1}[4 m-1] & d_{m+1} & d_{1}[4 m] & \\
c_{m}[2] & c_{0} & c_{m}[1] &
\end{array}
$$

The remaining trails of T_{0}^{\prime} are all modified at least once to make them the trails in S_{0}^{\prime}. We remove 1 or 2 subtrails from each and then use the new 2-paths that are still available and the 2-paths marked with a superacript $\dot{\ddagger}(\epsilon)$ or $\dot{\ddagger}(o)$ in $P_{c_{\frac{m}{2}}}$ or $P_{d_{\frac{m+1}{2}}}$, respectively, to join the trails together again and to create two new trails.

First consider the 2-paths that are marked with a superscript $*$ in the trails on T_{0}^{\prime}. These are $a_{2 i-m+1}\left[H_{-1}: 4 m-2\right]$ in $P_{a_{t}},\left\lceil\frac{m}{2}\right] \leq i \leq m-1$, and $a_{2 i-m}\left[H_{-1}\right.$: $4 m-2]$ in $P_{c_{i}},\left[\frac{m}{2}\right]+1 \leq i \leq m-1$, giving $a_{j}\left[H_{-1}: 4 m-2\right]$ exactly once for each $j \in\{1,2, \ldots, m-1\}$. Replace the 2 -path $a_{j}\left[H_{-1}: 4 m-2\right]=a_{m-1} a_{j} b_{m-1}$ with the following trail:

$$
a_{j}[4 m-2] c_{m}[4 j] c_{j}[4 m] d_{m+1}[4 j] a_{j}[4 m]=a_{m-1} a_{j} c_{m} c_{j} d_{m+1} a_{j} b_{m-1}
$$

The 2-paths $b_{2 i-m}\left[H_{1}: 4 m-2\right]$ in $P_{b_{i}},\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m-1$, and the 2-paths $b_{2 i-m-1}\left[H_{1}: 4 m-2\right]$ in $P_{d_{i}},\left\lfloor\frac{m}{2}\right\rfloor+2 \leq i \leq m$, are also marked with a superscript $*$, giving $b_{j}\left[H_{1}: 4 m-2\right]$ exactly once for each $j \in\{2,3, \ldots, m-1\}$. For each $j \in\{2,3, \ldots, m-1\}$, replace the $2-$ path $b_{j}\left[H_{1}: 4 m-2\right]=d_{m} b_{j} c_{m-1}$ with the trail

$$
b_{j}[4 m] c_{m}[4 j+2] d_{j+1}[4 m] d_{m+1}[4 j+2] b_{j}[4 m-2]=d_{m} b_{j} c_{m} d_{j+1} d_{m+1} b_{j} c_{m-1}
$$

The following subtrail is marked with superscripts $*(o)$ or $\dagger(0)$ in $P_{b_{\frac{m+1}{2}}}$ when m is odd, and with superscripts $*(e)$ or $\dagger(e)$ in $P_{\frac{d m}{2}+1}$ when m is even.

$$
\begin{gathered}
b_{1}\left[H_{1}: 4 m-2\right] c_{m-1}\left[H_{0}: 6\right] d_{2}\left[H_{0}: 4 m-4\right] a_{m-1}\left[H_{-1}: 4\right] \\
=d_{m} b_{1} c_{m-1} d_{2} a_{m-1} c_{0}
\end{gathered}
$$

Replace it with

$$
\begin{gathered}
b_{1}[4 m] c_{m i}[6] d_{2}[4 m] d_{m+1}[6] b_{1}[4 m-3] d_{m-1}[5] c_{1}[4 m-5] a_{m-1}[3] \\
=d_{m} b_{1} c_{m} d_{2} d_{m+1} b_{1} d_{m-1} c_{1} a_{m-1} c_{0}
\end{gathered}
$$

For the remaining changes to the trails in T_{0}^{\prime}, we have to consider m even and odd separately.

Case 1: If m is odd, then $P_{\varepsilon_{i}},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, and $P_{d_{i}},\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m$, require no more changes to become $P_{c_{i}}^{\prime},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, and $P_{d_{i}}^{\prime},\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m$, respectively. The subtrail in $P_{a_{i}}$ comprising the four 2 -paths that are marked with superscripts $*(o)$ or $\frac{1}{i}(o)$,

$$
\begin{aligned}
b_{\frac{3 m-1}{2}-i}\left[H_{1}: 4\left(i-\frac{m-1}{2}\right)+\right. & 2] c_{i-\frac{m-1}{2}}\left[H_{0}: 4\left(\frac{3 m-1}{2}-i\right)+2\right] \\
& d_{\frac{3 m-1}{2}-i+1}\left[H_{0}: 4\left(i-\frac{m-1}{2}\right)\right] a_{i-\frac{m-1}{2}}\left[H_{-1}: 4\left(\frac{3 m-1}{2}-i\right)\right] \\
& =a_{i-\frac{m-1}{2}+1} b_{\frac{3 m-1}{2}-i} c_{i-\frac{m-1}{2}} d_{\frac{3 m-1}{2}-i+1} a_{i-\frac{m-1}{2}} b_{\frac{3 m-1}{2}-i-1}
\end{aligned}
$$

becomes

$$
\begin{aligned}
& b_{\frac{3 m-1}{2}-i}\left[4\left(i-\frac{m-1}{2}\right)+1\right] d_{i-\frac{m-1}{2}}\left[4\left(\frac{3 m-1}{2}-i\right)+1\right] \\
& \quad c_{\frac{3 m-1}{2}-i}\left[4\left(i-\frac{m-1}{2}\right)-1\right] a_{i-\frac{m-1}{2}}\left[4\left(\frac{3 m-1}{2}-i\right)-1\right] \\
& =a_{i-\frac{m-1}{2}+1} b_{\frac{3 m-1}{2}-i} d_{i-\frac{m-i}{2}} c_{\frac{3 m-1}{2}-i} a_{i-\frac{m-1}{2}} b_{\frac{3 m-1}{2}-i-1}
\end{aligned}
$$

completing the trail $P_{a_{i}}^{\prime}$, for $\frac{m+1}{2} \leq i \leq m-1$.
The subtrail in $P_{b_{i}}, \frac{m+3}{2} \leq i \leq m-1$, comprising the four 2-paths that are marked with superscript $*(o)$ or $\dagger(o)$,

$$
\begin{gathered}
b_{i-\frac{m-1}{2}}\left[H_{1}: 4\left(\frac{3 m-1}{2}-i\right)+2\right] c_{\frac{3 m-1}{2}-i}\left[H_{0}: 4\left(i-\frac{m-1}{2}\right)+2\right] \\
\quad d_{i-\frac{m-1}{2}+1}\left[H_{0}: 4\left(\frac{3 m-1}{2}-i\right)\right] a_{\frac{3 m-1}{2}-i}\left[H_{-1}: 4\left(i-\frac{m-1}{2}\right)\right] \\
=a_{\frac{3 m-1}{2}-i+1} b_{i-\frac{m-1}{2}} c_{\frac{3 m-1}{2}-i} d_{i-\frac{m-1}{2}+1} a_{\frac{3 m-1}{2}-i} b_{i-\frac{m-1}{2}-1},
\end{gathered}
$$

becomes

$$
\begin{aligned}
b_{i-\frac{m-1}{2}}\left[4\left(\frac{3 m-1}{2}-i\right)+1\right] d_{\frac{3 m-1}{2}-i} & {\left[4\left(i-\frac{m-1}{2}\right)+1\right] } \\
& c_{i-\frac{m-1}{2}}\left[4\left(\frac{3 m-1}{2}-i\right)-1\right] a_{\frac{3 m-1}{2}-i}\left[4\left(i-\frac{m-1}{2}\right)-1\right] \\
= & a_{\frac{3 m-1}{2}-i+1} b_{i-\frac{m-1}{2}} d_{\frac{3 m-1}{2}-i} c_{i-\frac{m-1}{2}} a_{\frac{3 m-1}{2}-i} b_{i-\frac{m-1}{2}-1}
\end{aligned}
$$

completing the trail $P_{b_{i}}^{\prime}$, for $\frac{m+3}{2} \leq i \leq m-1$.
Case 2: If m is even, then $P_{a_{i}},\left\lceil\frac{m}{2}\right\rceil \leq i \leq m-1$ and $P_{b_{i}},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, require no more changes to become $P_{a_{i}}^{\prime},\left\lceil\frac{m}{2}\right\rceil \leq i \leq m-1$ and $P_{b_{i}}^{\prime},\left\lfloor\frac{m}{2}\right\rfloor+1 \leq i \leq m-1$, respectively. The subtrail in $P_{c_{i}}, \frac{m}{2}+1 \leq i \leq m-1$, comprising the four 2 -paths that are marked with superscript $*(e)$ or $\dagger(e)$,

$$
\begin{aligned}
& b_{\frac{3 m}{2}-i}\left[H_{1}: 4\left(i-\frac{m}{2}\right)+2\right] c_{i-\frac{m}{2}}\left[H_{0}: 4\left(\frac{3 m}{2}-i\right)+2\right] \\
& d_{\frac{3 m-i+1}{2}}\left[H_{0}: 4\left(i-\frac{m}{2}\right)\right] a_{i-\frac{m}{2}}\left[H_{-1}: 4\left(\frac{3 m}{2}-i\right)\right] \\
& =a_{i-\frac{m}{2}+1} b_{\frac{3 m}{2}-i} c_{i-\frac{m}{2}} d_{\frac{3 m}{2}-i+1} a_{i-\frac{m}{2}} b_{\frac{3 m}{2}-i-1}
\end{aligned}
$$

becomes

$$
\begin{aligned}
b_{\frac{3 m}{2}-i}\left[4\left(i-\frac{m}{2}\right)+1\right] d_{i-\frac{m}{2}} & {\left[4\left(\frac{3 m}{2}-i\right)+1\right] } \\
& c_{\frac{3 m}{2}-i}\left[4\left(i-\frac{m}{2}\right)-1\right] a_{i-\frac{m}{2}}\left[4\left(\frac{3 m}{2}-i\right)-1\right] \\
= & a_{i-\frac{m}{2}+1} b_{\frac{3 m}{2}-i} d_{i-\frac{m}{2}} c_{\frac{3 m}{2}-i} a_{i-\frac{m}{2}} b_{\frac{3 m-i-1}{2}}
\end{aligned}
$$

completing the trail $P_{c_{i}}^{\prime}$, for $\frac{m}{2}+1 \leq i \leq m-1$.
The subtrail in $P_{d_{i}}, \frac{m}{2}+2 \leq i \leq m$, comprising the four $2-$ paths that are marked with superscript $*(e)$ or $\dagger(e)$,

$$
\begin{aligned}
b_{i-\frac{m}{2}}\left[H_{1}: 4\left(\frac{3 m}{2}-i\right)+2\right] & c_{\frac{3 m}{2}-i}\left[H_{0}: 4\left(i-\frac{m}{2}\right)+2\right] \\
& d_{i-\frac{m}{2}+1}\left[H_{0}: 4\left(\frac{3 m}{2}-i\right)\right] a_{\frac{3 m-i}{2}}\left[H_{-1}: 4\left(i-\frac{m}{2}\right)\right] \\
= & a_{\frac{3 m}{2}-i+1} b_{i-\frac{m}{2}} c_{\frac{3 m}{2}-i} d_{i-\frac{m}{2}+1} a_{\frac{3 m}{2}-i} b_{i-\frac{m}{2}-1}
\end{aligned}
$$

becomes

$$
\begin{aligned}
b_{i-\frac{m}{2}}\left[4\left(\frac{3 m}{2}-i\right)+1\right] d_{\frac{3 m}{2}-i} & {\left[4\left(i-\frac{m}{2}\right)+1\right] } \\
& c_{i-\frac{m}{2}}\left[4\left(\frac{3 m}{2}-i\right)-1\right] a_{\frac{3 m}{2}-i}\left[4\left(i-\frac{m}{2}\right)-1\right] \\
= & a_{\frac{3 m}{2}-i+1} b_{i-\frac{m}{2}} d_{\frac{3 m}{2}-i} c_{i-\frac{m}{2}} a_{\frac{3 m}{2}-i} b_{i-\frac{m}{2}-1}
\end{aligned}
$$

completing the trail $P_{d_{i}}^{\prime}$ for $\frac{m}{2}+2 \leq i \leq m$.
The remaining two trails that use the four edges $\infty_{1} c_{m}, \infty_{1} d_{m+1}, \infty_{2} d_{m}$, and $\propto_{2} d_{m+1}$, do not follow the pattern of starting on an edge containing ∞_{1} and ending on an edge containing \propto_{2}. Instead, they are

$$
\begin{gathered}
c_{m}[4 m] d_{m+1}[4 m]=\infty_{1} c_{m} d_{m+1} \infty_{1} \text { and } \\
d_{m+1}[1] c_{0}[4 m-1] d_{m}[1]=\infty_{2} d_{m+1} c_{0} d_{m} \infty_{2}
\end{gathered}
$$

We have now used all of the new 2-paths as well as those that were marked with a superscript $\dot{\ddagger}(e)$ in $P_{c_{\frac{m}{2}}}$ or with a superscript $\dot{\ddagger}(o)$ in $P_{d_{\frac{m_{+1}}{2}}}$.

In the following claims. we show how to use the 2-paths centred at ∞_{1} and ∞_{2} to complete the S_{i}^{\prime} into Euler tours.

Claim 3.3.3 Assume m is odd. Let

$$
\begin{gathered}
S_{a}=S_{0}^{\prime} \cup \infty_{1}\left[C_{1}: 2,4,6, \ldots, 4 m\right] \cup \infty_{2}\left[C_{1}: 1,3,5 \ldots .4 m+1\right] \text { and } \\
S_{b}=S_{0}^{\prime} \cup \infty_{1}\left[C_{m}: 1,3,5, \ldots, 4 m+1\right] \cup \infty_{2}\left[C_{1}: 2,4,6, \ldots, 4 m\right]
\end{gathered}
$$

Then S_{a} and S_{b} are Euler tours of $K_{4 m+2}+J$, and the set of Euler tours, $\left\{S_{i}: 0 \leq i \leq\right.$ $4 m-1\}$, where $S_{i}=\tau^{i}\left(S_{s}\right)$ if $0 \leq i \leq 2 m-1$, and $S_{i}=\tau^{i}\left(S_{b}\right)$ if $2 m \leq i \leq 4 m-1$, is a perfect set of Euler tours of $K_{4 m+2}+J$.

Figure 3.5: S_{n} when m is odd and $m \geq 3$.

Proof.

Figures 3.5 and 3.6 show, respectively, that S_{a} and S_{b} are Euler tours. The different edges in the graph are defined the same way as those for T_{a} and T_{b} with the additional vertical dashed edge from c_{m} to d_{m+1} in the left-hand column of vertices representing the trail $\infty_{1} c_{m} d_{m+1} \infty_{1}$, and the vertical dashed edge from d_{m+1} to d_{m} in the righthand column representing the trail $\infty_{2} d_{m+1} c_{0} d_{m} \infty_{2}$.

We should probably note for the sake of the proof of Claim 3.3.1, that for all $i \in\{0,1,2, \ldots, 4 m-1\}, S_{i}^{i}$ is indeed a subset of the S_{i} defined in this claim.

Figure 3.6: S_{b} when m is odd and $m \geq 3$.

The following claim for the case of $m=2$ is given without proof.

Claim 3.3.4 Let

$$
\begin{gathered}
S_{a}=S_{0}^{\prime} \cup \infty_{1}\left[C_{2}: 2,4,6,8\right] \cup \infty_{2}\left[C_{1}: 1,3,5,7,9\right] \text { and } \\
S_{b}=S_{0}^{\prime} \cup \infty_{1}\left[C_{1}: 1,3,5,7,9\right] \cup \infty_{2}\left[C_{0}: 2,4,6,8\right]
\end{gathered}
$$

Then S_{a} and S_{b} are Euler tours of $K_{10}+J$, and the set of Euler tours, $\left\{S_{i}: 0 \leq i \leq 7\right\}$, where $S_{i}=\tau^{i}\left(S_{a}\right)$ if $0 \leq i \leq 3$, and $S_{i}=\tau^{i}\left(S_{b}\right)$ if $4 \leq i \leq 7$, is a perfect set of Euler tours of $K_{10}+J$.

Claim 3.3.5 Assume $m>2$ is even. Let

$$
\begin{aligned}
S_{a} & =S_{0}^{\prime} \cup \infty_{1}\left[C_{m}: 2,4,6, \ldots, 4 m\right] \cup \infty_{2}\left[C_{1}: 1,3,5, \ldots, 4 m+1\right] \text { and } \\
S_{b} & =S_{0}^{\prime} \cup \infty_{1}\left[C_{m+1}: 1,3,5, \ldots, 4 m+1\right] \cup \infty_{2}\left[C_{1}: 2,4,6, \ldots, 4 m\right]
\end{aligned}
$$

Then S_{a} and S_{b} are Euler tours of $K_{4 m+2}+J$, and the set of Euler tours, $\left\{S_{i}: 0 \leq i \leq\right.$ $4 m-1\}$, where $S_{i}=\tau^{i}\left(S_{a}\right)$ if $0 \leq i \leq 2 m-1$, and $S_{i}=\tau^{i}\left(S_{b}\right)$ if $2 m \leq i \leq 4 m-1$, is a perfect set of Euler tours of $K_{4 m+2}+J$.

Proof.

Figures 3.7 and 3.8 show S_{a} and S_{b} are Euler tours.
\square

This completes the construction of a perfect set of Euler tours of $K_{4 m+2}+J$ and the proof of Theorem 3.1.1.

Figure 3.7: S_{a} when m is even and $m \geq 4$.

Figure 3.8: S_{b} when m is even and $m \geq 4$.

Chapter 4

Another Question of Kotzig's

The results in this chapter were motivated by Kotzig's question [12]: What is the smallest k for which there is a perfect set of Hamilton decompositions of $K_{2 k+1}$? The difficulty of this question led us to consider two related problems. In Section 4.1 we show that for any k there are at least $2 k-2$ pairwise compatible Hamilton path decompositions of $K_{2 k}$. A simple corollary of the proof of this theorem is that there exists a set of $4 k-2$ Hamilton path decompositions of $K_{2 k}$ such that every 2-path is in exactly two of the Hamilton paths. In Section 4.2 we add a new vertex ∞ to Hamilton path decompositions similar to those constructed in Section 4.1 to get a lower bound on the number of pairwise compatible Hamilton decompositions of $K_{2 k+1}$, when k is even.

4.1 Pairwise Compatible Hamilton Path Decompositions

The graph $K_{2 k}$ has $k(2 k-1)(2 k-2)$ 2-paths. A Hamilton path decomposition of $K_{2 k}$ contains $k(2 k-2) 2$-paths. We would like to construct a set of $2 k-1$ pairwise compatible Hamilton path decompositions of $K_{2 k}$: a perfect set of Hamilton path decompositions of $K_{2 k}$. However, when $k=2$, it is possible to find at most two compatible Hamilton path decompositions. In Theorem 4.1.1 we extend this result
by constructing $2 k-2$ pairwise compatible Hamilton path decompositions of $K_{2 k}$ for all values of k. There is however no reason to suppose for $k>2$ that it is not possible to find $2 k-1$ pairwise compatible Hamilton path decompositions.

Theorem 4.1.1 The complete graph $K_{2 k}$ has a set of $2 k-2$ pairwise compatible Hamilton path decompositions for all $k>1$.

We first prove three lemmas. The second lemma and part 2 of the first are only used in Section 4.2, but it is convenient to prove the results all at once.

We assume that all addition is modulo $2 k-1$ with residue classes $0,1, \ldots, 2 k-2$, unless otherwise stated. Let $V\left(K_{2 k}\right)=\left\{\infty_{1}\right\} \cup\{0,1, \ldots, 2 k-2\}$ and $V\left(K_{2 k+1}\right)=$ $V\left(K_{2 k}\right) \cup\{\infty\}$. For $0 \leq i \leq 2 k-2$ and $x, y \in\{0,1,2, \ldots, 2 k-2\}$, let $F_{i}=\left\{\infty_{1} i\right\} \cup$ $\{x y: x \neq y$ and $x+y \equiv 2 i(\bmod 2 k-1)\}$.

We define a "length" function on the edges in $K_{2 k}$ that do not contain vertex ∞_{1} as follows. Let $\ell(x y)=\min (x-y(\bmod 2 k-1), y-x(\bmod 2 k-1))$. We say two edges $v_{1} v_{2}$ and $u_{1} u_{2}$ in $K_{2 k}$ are parallel if none of the vertices is ∞_{1} and if $u_{1}+u_{2} \equiv v_{1}+v_{2}(\bmod 2 k-1)$. For example, for each $i \in\{0,1,2, \ldots, 2 k-2\}$, the edges in F_{i} that do not contain ∞_{1} are pairwise parallel.

Suppose for some $a, b \in\{0,1, \ldots, 2 k-2\}$ that $F_{a} \cup F_{b}$ is a Hamilion cycle H of $K_{2 k}$. We can assume that $H=\left(w_{1} w_{2} \cdots w_{2 k}\right)$, that the edge $w_{1} w_{2}$ is in F_{a}, and that $w_{1}=\infty_{1}$. We want to consider the $2-$ paths in $\left\{w_{2 j-1}\left[F_{a}\right] \cup w_{2 j}\left[F_{b}\right]: 1 \leq j \leq k\right\}$. This set contains $2-$ paths of the form $\infty u v$ and so the union of the 2 -paths in $\left\{w_{2 j-1}\left[F_{a}\right] \cup w_{2 j}\left[F_{b}\right]: 1 \leq j \leq k\right\}$ will contain trails that start and end at vertex ∞. For the moment we want to consider trails in $K_{2 k}$ and not in $K_{2 k+1}$, so we will omit 2-paths containing ∞. This is equivalent to constructing the trails in $K_{2 k+1}$ and then removing ∞. We don't want to forget about the 2 -paths that contain ∞ altogether, because in the next section, we will use these 2-paths to join the Hamilton paths in $K_{2 k}$ into Hamilton cycles in $K_{2 k+1}$.

Lemma 4.1.2 Given that $F_{a} \cup F_{b}$ is \boldsymbol{a} Hamilton cycle $H=\left(w_{1} w_{2} \cdots w_{2 k}\right)$ of $K_{2 k}$, where $w_{1}=\infty_{1}$ and $w_{1} w_{2} \in F_{a}$, the trails formed by the set of $2-p a t h s$ in $\left\{w_{2 j-1}\left[F_{a}\right] \cup\right.$ $\left.w_{2 j}\left[F_{b}\right]: 1 \leq j \leq k\right\}$ have the following two properties:

1. They form a Hamilton path decomposition of $K_{2 k}$, and
2. The Hamilton path that begins on vertex $w_{1}=\infty_{1}$ ends on vertex $w_{k+1}=$ $2^{-1}(a+b)(\bmod 2 k-1)$.

Proof.

The outer cycle in Figure 41 is the Hamilton cycle $H=F_{a} \cup F_{b}$ when k is even. When k is odd, a similar figure is obtained.

Proof of 1): The subtrail of $\left\{w_{2 j-1}\left[F_{a}\right] \cup w_{2 j}\left[F_{b}\right]: 1 \leq j \leq k\right\}$ in $K_{2 k}$ that starts on w_{1} is the Hamilton path P given by the boldface edges. It is not hard to see that the trails that start on the other vertices form Hamilton paths in exactly the same way. In fact, if we let ρ be the following permutation of $V\left(K_{2 k}\right)$,

$$
\rho=\left(w_{1} w_{2} \cdots w_{2 k}\right)
$$

then the other trails formed by the set of 2-paths in $\left\{w_{2 j-1}\left[F_{a}\right] \cup w_{2 j}\left[F_{b}\right]: 1 \leq j \leq k\right\}$ are $\rho^{j}(P)$, for $1 \leq j \leq k-1$.

Proof of 2): By the definitions of F_{a} and F_{b}, we can describe vertices $w_{i}, 2 \leq i \leq 2 k$, in terms of a and b. The Hamilton path P shown in this figure obviously starts at $w_{1}=\infty_{1}$ and ends at $w_{k+1} \equiv k a-(k-1) b \equiv k b-(k-1) a \equiv 2^{-1}(a+b)(\bmod 2 k-1)$.

Lemma 4.1.3 When k is even, the Hamilton paths formed by the set of 2-paths in $\left\{w_{2 j-1}\left[F_{a}\right] \cup w_{2 j}\left[F_{b}\right]: 1 \leq j \leq k\right\}$, have the following property:

The length of the edges in $K_{2 k}$ determined by the first and last vertices of each of the Hamilton paths, except P, is a constant. That constant is

$$
\min \left(2^{-1}(a-b)(\bmod 2 k-1), 2^{-1}(b-a)(\bmod 2 k-1)\right)
$$

Proof.

Assume k is even. From the action of ρ on P in Figure 4.1, we see that if we start a trail at vertex $w_{i}, 2 \leq i \leq k$, that it will finish at w_{i+k}, where addition on the subscripts is modulo $2 k$, with residue classes $1,2, \ldots, 2 k$. By definition of

Figure 4.1: P and ρ
F_{a} and F_{b}, if i is even, $w_{i+k} \equiv k(a-b)+w_{i} \equiv 2^{-1}(a-b)+w_{i}(\bmod 2 k-1)$. If i is odd, then $w_{i+k} \equiv k(b-a)+w_{i} \equiv 2^{-1}(b-a)+w_{i}(\bmod 2 k-1)$. In either case, $\ell\left(w_{i} w_{i+k}\right) \equiv \min \left(2^{-1}(a-b)(\bmod 2 k-1), 2^{-1}(b-a)(\bmod 2 k-1)\right)$.

The proof of the third lemma is heavily based on the proof of Theorem 1 in [1]. Note that k can again be odd as well as even.

Lemma 4.1.4 Assume that $c>d$, where $c, d \in\{0,1,2, \ldots, 2 k-2\}$. If $c-d$ and $2 k-1$ are relatively prime, then $F_{c} \cup F_{d}$ is a Hamilton cycle, where $F_{i}=\left\{\infty_{1} i\right\} \cup\{x y$: $x \neq y$ and $x+y \equiv 2 i(\bmod 2 k-1)\}$, for $i \in\{c, d\}$.

Proaf.

Let F_{c} and F_{d} be two such 1-factors of $K_{2 k}$ so that $c-d$ and $2 k-1$ are relatively prime. Consider an l-subset of those edges in F_{c} that do not contain ∞_{1}. The sum of the vertices in these edges will be congruent to $2 l c(\bmod 2 k-1)$, since an edge $x y$ in $F_{c}, x \neq \infty_{1} \neq y$, satisfies $x+y \equiv 2 c(\bmod 2 k-1)$. Similarly for F_{d}. Suppose $F_{c} \cup F_{d}$ is not a Hamilton cycle of $K_{2 k}$. Then there is an even length $2 m$-cycle in $F_{c} \cup F_{d}$ that
does not contain ∞_{1}, where $2 \leq m \leq k-1$. We can sum the vertices in this cycle as edges of F_{c} or as edges of F_{d} to get that $2 m c \equiv 2 m d(\bmod 2 k-1)$. This contradicts the fact that $c-d$ and $2 k-1$ are relatively prime.

Define σ and τ to be the following permutations of $V\left(K_{2 k}\right)$:

$$
\begin{gathered}
\sigma=\left(\infty_{1}\right)(012 \cdots 2 k-2) \text { and } \\
\tau=\left(\infty_{1}\right)(k)(01)(22 k-2)(32 k-3) \cdots(k-1 k+1)
\end{gathered}
$$

Note that $\tau\left(F_{0}\right)=F_{1}$ and $\tau\left(F_{1}\right)=F_{0}$.
Each of $H_{0}, H_{1}, \ldots, H_{k-2}$ and $H_{0}^{\prime}, H_{1}^{\prime}, \ldots, H_{k-2}^{\prime}$ will be a set of 2 -paths, and our objective is to show that each of these sets of 2-paths is a Hamilton path decomposition of $K_{2 k}$. We will list the 2-paths in H_{0}, show how to determine the H_{j} and H_{j}^{\prime} so they are similar to H_{0}, show that no two of $\left\{H_{0}, H_{1}, \ldots, H_{k-2}\right\} \cup\left\{H_{0}^{\prime}, H_{1}^{\prime}, \ldots, H_{k-2}^{\prime}\right\}$ have a $2-$ path in common, and prove that H_{0} is a Hamilton path decomposition of $K_{2 k}$.

Define the 2-paths in H_{0} to be

$$
\begin{aligned}
& \infty_{1}\left[F_{0}\right] \\
& 0\left[F_{1}\right] \\
& 2 i\left[F_{0}\right] \text { for } i \in\{1,2, \ldots, k-1\}, \text { and } \\
& (2 i-1)\left[F_{1}\right] \text { for } i \in\{1,2, \ldots, k-1\} .
\end{aligned}
$$

Let $H_{0}^{\prime}=\tau\left(H_{0}\right), H_{j}=\sigma^{2 j}\left(H_{0}\right)$, for $1 \leq j \leq k-2$, and $H_{j}^{\prime}=\sigma^{2 j}\left(H_{0}^{\prime}\right)$, for $1 \leq j \leq k-2$. By definition, the H_{j} and H_{j}^{\prime} are all similar to H_{0}.

Claim 4.1.5 The 2 -paths in H_{0}^{\prime} are $\propto_{1}\left[F_{1}\right], 0\left[F_{0}\right]$, and $2 i\left[F_{1}\right]$ and $(2 i-1)\left[F_{0}\right]$ for $i \in\{1,2, \ldots, k-1\}$.

Proof.

This follows immediately since $\tau\left(F_{0}\right)=F_{1}$ and $\tau\left(F_{1}\right)=F_{0}$.

Claim 4.1.6 For any $j \in\{0,1, \ldots, k-2\}$, the set of $2-$ paths in H_{j} and H_{j}^{\prime} contains every $2-$ path in $K_{2 k}$ with end vertices from an edge in $F_{2 j}$ or $F_{2 j+1}$ exactly once.

Proof.

By definition and by Claim 4.1.5, we know that H_{0} and H_{0}^{\prime} between them contain every 2 -path with end vertices from F_{0} or F_{1}, exactly once. Let $j \in\{0,1, \ldots, k-2\}$. Since $H_{j}=\sigma^{2 j}\left(H_{0}\right)$ and $H_{j}^{\prime}=\sigma^{2 j}\left(H_{0}^{\prime}\right)$, and $F_{2 j}=\sigma^{2 j}\left(F_{0}\right)$ and $F_{2 j+1}=\sigma^{2 j}\left(F_{1}\right)$, we know that H_{j} and H_{j}^{\prime} between them contain every 2 -path in $K_{2 k}$ with end vertices from an edge in $F_{2 j}$ or $F_{2 j+1}$ exactly once.

It follows that no two of $\left\{H_{0}, H_{1}, \ldots, H_{k-2}\right\} \cup\left\{H_{0}^{\prime}, H_{1}^{\prime}, \ldots, H_{k-2}^{\prime}\right\}$ have a 2 -path in common. In fact we have all possible $2-$ paths exactly once except those with end vertices an edge in $F_{2 k-2}$.

Claim 4.1.7 The 2-paths in H_{0} form a Hamilton path decomposition of $K_{2 k}$.

Proof.

By Lemma 4.1.4, $F_{0} \cup F_{1}$ is a Hamilton cycle of $K_{2 k}$. We can therefore use part 1 of Lemma 4.1.2 to prove that the 2 -paths in H_{0} form a Hamilton path decomposition.

This completes the proof of Theorem 4.1.1.
It would seem to be difficult to find a perfect set of Hamilton path decompositions of $K_{2 k}$. However, we can find a set of Hamilton path decompositions of $K_{2 k}$ that contain every 2 -path exactly twice as a simple corollary to the proof of Theorem 4.1.1.

Corollary 4.1.8 The complete graph $K_{2 k}$ has a set of $4 k-2$ Hamilton path decompositions so thai every 2-path in $K_{2 k}$ is in exactly two of them.

Proof.

Let $H_{0}, H_{1}, \ldots, H_{2 k-2}$ and $H_{0}^{\prime}, H_{1}^{\prime}, \ldots, H_{2 k-2}^{\prime}$ be the Hamilton path decompositions we want to construct. Define H_{0} and H_{0}^{\prime} as in the proof of Theorem 4.1.1. Let $H_{j}=\sigma^{2 j}\left(H_{0}\right), 0 \leq j \leq 2 k-2$, and $H_{j}^{\prime}=\sigma^{2 j}\left(H_{0}^{\prime}\right), 0 \leq j \leq 2 k-2$. Exactly as before, we can show that for all $j \in\{0,1, \ldots, 2 k-2\}, H_{j}$ and H_{j}^{\prime} between them contain every 2-path in $K_{2 k}$ with end vertices from an edge in $F_{2 j}$ or $F_{2 j+1}$, where addition on the subscripts of the 1 -factors is modulo $2 k-1$, with residue classes $0,1, \ldots, 2 k-2$.

It seems appropriate to mention the next two results as they tie in with the result in Theorem 1.2.22. The first is an obvious coroliary of Corollary 4.1.8; the second is a corollary of Theorem 1.2.22 [11].

Corollary 4.1.9 There exists a set of Hamilton paths of $K_{2 k}$ that between them contain every 2-path of $K_{2 k}$ exactly twice.

Corollary 4.1.10 There exists a set of Hamilton paths of $K_{2 k+1}$ that between them contain every 2 -path of $K_{2 k+1}$ exactly twice.

4.2 Pairwise Compatible Hamilton Cycle Decompositions

In Section 4.1 we found a set of $2 k-2$ pairwise compatible Hamilton path decompositions of $K_{2 k}$. If the edges determined by the end vertices of each of the Hamilton paths were distinct, we could add a new vertex ∞ to each Hamilton path decomposition and join the ends of each Hamilton path through ∞ to construct $2 k-2$ pairwise compatible Hamilton decompositions of $K_{2 k+1}$. Sadly this doesn't happen. We sow attempt to get a lower bound on the number of pairwise compatible Hamilton decompositions of $K_{2 k+1}$, when k is even, by constructing a different (smaller) set of pairwise compatible Hamilton path deconpositions of $K_{2 k}$. and making sure that we will be able to join the ends of all the Hamilton paths together with distinct 2-paths centred at a new vertex ∞. (The restriction to even k arises because the result in Lemma 4.1.3 does not hold for odd k.)

The following lemmas are needed to find pairs of 1-factors of $K_{2 k}, F_{a} \cup F_{b}$, on which the Hamilton deccmpositions will be based. The 1-factors. $V\left(K_{2 k}\right)$, and $V\left(K_{2 k+1}\right)$ are still defined as in Section 4.1.

Lemma 4.2.1 Let $u v$ and $r y$ be tuo edges in $K_{2 k}$ such that none of the vertices is ∞_{1}. If $u v$ and $x y$ are not parallel, then $2^{-1}(u+v) \neq 2^{-1}(x+y)(\bmod 2 k-1)$.

Proof. Assume $2^{-1}(u+v) \equiv 2^{-1}(x+y)(\bmod 2 k-1)$. Then $u+v \equiv x+y(\bmod 2 k-1)$, and $u v$ and $x y$ are parallel.

Lemma 4.2.2 If $k>2$ and even, then there exists a set S of $\left\lceil\frac{2 k}{3}\right\rceil$ disjoint edges in $K_{2 k}$ such that:

1. No two of the edges are parallel,
2. No two of the edges have the same length, and
3. None of the edges contains the vertex ∞_{1}.

Moreover, we can always find a subset S^{*} of S with at least three edges that have lengths relatively prime to $2 k-1$.

If $k=2$ there is only one such edge.
Proof. The proof is divided into the three cases of $k \equiv 0(\bmod 6), k \equiv 2(\bmod 6)$, and $k \equiv 4(\bmod 6)$.

If $k \equiv 0(\bmod 6)$:

$$
\begin{aligned}
S & =\left\{0 k-1,1 k-3,2 k-5, \ldots, \frac{k}{3}-1 \frac{k}{3}+1\right\} \\
& \cup\left\{2 k-2 k+1,2 k-3 k+3,2 k-4 k+5, \ldots, \frac{5 k}{3} \frac{5 k}{3}-3\right\} \\
& \cup\{k-2 k+2\} .
\end{aligned}
$$

The set S has $\frac{2 k}{3}$ edges. Let $S^{*}=\left\{0 k-1, \frac{k}{3}-1 \frac{k}{3}+1, k-2 k+2\right\}$.
If $k \equiv 2(\bmod 6):$

$$
\begin{aligned}
S & =\left\{0 k-1,1 k-3,2 k-5 \ldots, \frac{k-2}{3} \frac{k+1}{3}\right\} \\
& \cup\left\{2 k-2 k+1,2 k-3 k+3,2 k-4 k+5, \ldots, \frac{5 k-1}{3} \frac{5 k-7}{3}\right\} \\
& \cup\{k-4 k+2\}
\end{aligned}
$$

In this case, S has $\frac{2 k+2}{3}$ edges if $k>2$. (It has only one edge if $k=2$.) Let $S^{*}=\left\{0 k-1, \frac{k-2}{3} \frac{k+1}{3}, \frac{5 k-1}{3} \frac{5 k-\bar{\tau}}{3}\right\}$ when $k>2$.

If $k \equiv 4(\bmod 6):$

$$
\begin{aligned}
S & =\left\{0 k-1,1 k-3,2 k-5, \ldots, \frac{k-4}{3} \frac{k+5}{3}\right\} \\
& \cup\left\{2 k-2 k+1,2 k-3 k+3,2 k-4 k+5, \ldots, \frac{5 k-2}{3} \frac{5 k-5}{3}\right\} \\
& \cup\{k-2 k\} .
\end{aligned}
$$

In this case S has $\frac{2 k+1}{3}$ edges. Let $S^{*}=\left\{0 k-1, \frac{5 k-2}{3} \frac{5 k-5}{3}, k-2 k\right\}$.

Theorem 4.2.3 Suppose $k>2$ is even. There are at least $\max \left(\left\lceil\frac{2 k}{3}\right\rceil-(k-1-\right.$ $\left.\left.\frac{0(2 k-1)}{2}\right), 3\right)$ pairwise compatible Hamilton decompositions of $K_{2 k+1}$.

Proof. By Lemma 4.2 .2 we can find a set S of $\left\lceil\frac{2 k}{3}\right\rceil$ disjoint edges in $K_{2 k}$ so that no two of the edges are parallel, no two of the edges have the same length, and so that none of the edges contains ∞_{1}. There are at least $\left\lceil\frac{2 k}{3}\right\rceil-\left(k-1-\frac{\rho(2 k-1)}{2}\right)$ disjoint edges $a b \in S$ such that $(a-b, 2 k-1)=1$. If $\left\lceil\frac{2 k}{3}\right\rceil-\left(k-1-\frac{\phi(2 k-1)}{2}\right) \geq 3$, choose S^{\prime} to be this subset of S. If $\left\lceil\frac{2 k}{3}\right\rceil-\left(k-1-\frac{\rho(2 k-1)}{2}\right)<3$, choose $S^{\prime \prime}$ to be the set $S^{\text {² }}$ defined in Lemma 4.2.2, so that $\left|S^{\prime}\right|$ is always at least 3 . Consider an edge $a b \in S^{\prime}$. Since $\infty_{1} \notin\{a, b\}$, both F_{a} and F_{b} are defined and, by Lemma 4.1.4, we know that $F_{a} \cup F_{b}$ is a Hamilton cycle. By Lemma 4.1.2 and (since k is even) Lemma 4.1.3 we can construct a Hamilton path decomposition of $K_{2 k}$ with the property that the Hamilton path that starts on vertex \propto_{1} ends on vertex $2^{-1}(a+b)(\bmod 2 k-1)$, and the length of each the edges, $\left\{w_{i} w_{i+k}: 2 \leq i \leq k\right\}$, determined by the first and last vertices of each of the other Hamilton paths is a constant, $\min \left(2^{-1}(a-b)(\bmod 2 k-1), 2^{-1}(b-a)(\bmod 2 k-1)\right)$, dependent on the length of the edge $a b$. We can extend these Hamilton paths to Hamilton cycles of $K_{2 k+1}$ by adding the 2 -paths $\propto_{1} \infty 2^{-1}(a+b)$ and $\left\{w_{i} \propto w_{i+k}\right\}$. These Hamilton cycles together comprise a Hamilton decomposition of $K_{2 k+1}$. Doing this for each such edge $a b \in S^{\prime}$ gives $\left\lceil\frac{2 k}{3}\right\rceil-\left(k-1-\frac{\phi(2 k-1)}{2}\right)$ Hamilton decompositions of $K_{2 k+1}^{\prime}$. Since the edges in S^{\prime} are disjoint, the end vertices of 2-paths centred at any vertex $v \in V\left(K_{2 k}\right)$ come from different 1-factors in each of the Hamilton path decompositions. Since no two edges in S have the same length, all the 2 -paths centered at \propto that do not contain \propto_{1} will be distinct. And since none of the edges
in S are parallel, we know by Lemma 4.2 .1 that all the 2 -paths centered at ∞ that do contain ∞_{1} will be distinct.

Given k, we can possibly do better than Theorem 4.2 .3 by actually counting the number of edges in the set S that have lengths relatively prime to $2 k-1$. Also, given k, we could deliberately construct a set S^{\dagger}, as in the following corollary, so as to improve the number of pairwise compatible Hamilton decompositions.

Corollary 4.2.4 Suppose k is even. Let S^{\dagger} be any set of disjoint edges in $K_{2 k}$ such that ∞ is not in any of the edges, no two of the edges are parallel, no two of the edges have the same length, and such that $(a-b, 2 k-1)=1$ for all edges $a b \in S^{\dagger}$. There are at least $\left|S^{\dagger}\right|$ pairwise compatible Hamilton decompositions of $K_{2 k+1}$.

More specifically, if $2 k-1$ is prime, then the union of any two of the 1 -factors of $K_{2 k}$ is a Hamilton cycle.

Corollary 4.2.5 Suppose k is even and $2 k-1$ is prime. Then there at least $\left\lceil\frac{2 k}{3}\right\rceil$ pairwise compatible Hamilton decompositions of $K_{2 k+1}$.

Chapter 5

Conclusions

In Chapters 2 and 3 we verify Kotzig's and McKay's conjectures by constructing perfect sets of Euler tours of $K_{2 k+1}$ and of $K_{2 k}+I$, and by showing that they lead to Hamilton decompositions of the line graph of the complete graph.

Chapter 3 was motivated by a desire to extend the idea of Conjecture 1.2.1 to $K_{2 k}$. We chose to define a perfect set of Euler tours of $K_{2 k}+I$ as we did because we wanted to complete the verification of McKay's conjecture. For completeness, we mention here a couple of other suggestions for extending Kotzig's conjecture to complete graphs on an even number of vertices.

Problem 5.1.6 Let I be a 1 -factor of $K_{2 k}$. Does there exist a set of Euler tours of $K_{2 k}-I$, such that every ${ }^{2}$-path of $K_{2 k}-I$ is in exactly one of the tours?

Necessarily, this would require $2 k-3$ Euler tours. (This is trivial to do when $k=2$ and not hard when $k=3$.) It would however be more satisfying to have a definition that contains every 2 -path of $K_{2 k}$.

Problem 5.1.7 Suppose that $\mathcal{I}=\left\{I_{1}, I_{2}, \ldots, I_{2 k-1}\right\}$ is a given 1 -factorization of $K_{2 k}$. Does there exist an Euler tour of each $K_{2 k}-I_{i}, 1 \leq i \leq 2 k-1$, so that every 2 -path of $h_{2 k}$ is in exactly one of the tours?

In this case we would need $2 k-1$ Euler tours. This again is trivial when $k=2$ and not hard when $k=3$. A solution would imply the existence of a decomposition
of $L\left(K_{2 k}\right)$ into cycles of length $k(2 k-2)$, so that each vertex of the graph is missed by exactly one of the cycles. Certainiy a desirable result. However, the choice of \mathcal{I} might radically affect the problem.

The problems that were posed at the end of Chapter 1 about pairwise compatible Hamilton decompositions and pairwise compatible Hamilton path decompositions are still open. We have shown that $K_{2 k}$ has at least $2 k-2$ pairwise compatible Hamilton path decompositions for all $k \geq 2$, and have mentioned that this is best possible when $k=2$. It remains to discover for which k it is possible to find $2 k-1$ pairwise compatible Hamilton path decompositions.

It is interesting that it is so much harder to find pairwise compatible Hamilton decompositions of $K_{2 k+1}$ than it is to find pairwise compatible Euler tours, and that perfect sets of Hamilton decompositions of $K_{2 k+1}$ do not even exist for small k. Perhaps another way of tackling this problem would be to look for properties of $K_{2 k+1}$ that might put an upper bound on the maximum number of pairwise compatible Hamilton decompositions. Finally, when k is cdd, there is nothing known about the maximum number of pairwise compatible Hamilton decompositions of $K_{2 k+1}$, beyond the fatuous statement that there must be at least one. Is it even possible to show that there must be at least three, as we have shown when k is even?

Bibliography

[1] B.A. Anderson, Finite topologies and Hamiltonian paths, J. Combin. Theory B 14 (1973) 87-93.
[2] J.-C. Bermond, Problem 97, Discrete Math. 71 (1988) 275-276.
[3] B.A. Cox and C.A. Rodger, Cycle systems of the line graph of the complete graph, J. Graph Theory 21 (1996) 173-182.
[4] H. Fleischner, A.J.W. Hilton, Bill Jackson, On the Maximum Number of Pairwise Compatible Euler Cycles, J. Graph Theory 14 (1990) 51-63.
[5] K. Heinrich, M. Kobayashi, and G. Nakamura, Dudeney's round table problem, Discrete Math. 92 (1991) 107-125.
[6] B. Jackson, Compatible Euler tours for transition systems in Eulerian graphs, Discrete Math. 66 (1987) 127-131.
[7] B. Jackson, On Circuit Covers, Circuit Decompositions and Euler Tours of Graphs, "Surveys in Combinatorics. 1993", K. Walker ed., CUP, (1993) 191-210.
[8] B. Jackson, A characterization of graphs having three pairwise compatible Euler tours, J. Combin. Theory Ser. B 53 (1991) 80-92.
[9] B. Jackson and N.C. Wormald, Cycles containing matchings and pairwise compatible Euler tours, J. Graph Theory, 14 (1990) 127-138.
[10] M. Kobayashi, Kiyasu-Zen'iti and G. Nakamura, A solution of Dudeney's round table problem for an even number of people, J. Combin. Theory Ser. A 63 (1993) 26-42.
[11] M. Kobayashi and G. Nakamura, Exact coverings of 2-paths by Hamilton cycles, J. Combin. Theory Ser. A 60 (1992) 298-304.
[12] A. Kotzig, Problem Session, Proc. $10^{\text {th }}$ S.E. Conf. Combinatorics, Graph Theory and Computing, Congressus Numerantium XXIV (1979) 914-915.
[13] A. Kotzig, Moves without forbidden transitions in graphs, Mat. Casopis Sloven. Akad. Vied 18 (1968) 76-80.
[14] A. Muthusamy and P. Paulraja, Hamilton cycle decompositions of line graphs and a conjecture of Bermond, J. Combin. Theory Ser. B 64 (1995) 1-16.
[15] D.A. Pike, Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree, Australasian Journal of Combinatorics, to appear.
[16] S. Zhan, "Circuits and Cycle Decompositions", Ph.D. thesis, Simon Fraser University, Canada (1992).

