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Abstract 

In this thesis we investigate perfect sets of Euler tours of complete graphs Kn and 

Hamilton decompositions of the line graphs of complete graphs L .  We also 

present some partial results in the area of pairwise compatible Hamilton path decom- 

positions of the graph hK. and pairwise compatible Hamilton decompositions of the 

graph K 2 k + l .  

Chapter 1 contains definitions and notation, and an introduction that outlines 

some of the work that has been done in the areas of pairmise compatible Euler tours 

of graphs, Hamilton decompositions of L(h' , ) ,  and Dudeney sets. We also present 

the problems that will be considered iri the thesis. 

Eiotzig conjectured in 19'79 that has a perfect set of Euler tours for all 

positive integers k. In Chapter 2 we give a constructive proof of his conjecture. 

McKay conjectured that L(Kn)  has a Hamilton decomposition for all n. When n is 

odd, this conjecture is a corollary of Kotzig's conjecture. 

In Chapter 3 we consider one n-ay in which we could extend the definition of a 

perfect set of Euler tours to  include IGk. a graph that has no Euler tour. Since our 

goal is to  have a Hamilton decomposition of L ( h k )  as a corollary. we define a perfect 

set of Euler tours of K2k f I. where I is a 1-factor of J t ; k .  to be a set of Euler tours 

of h;& + I such that every ?-path of KZk is in exactly one of the tours and such that 

for every edge a b E I. each qf the Euler tours either uses the digon a ba or the digon 

ba 6. We then give a constructive proof of a perfect set of Euler tours of + I, and 
" = *  thereby give a cornpiexion of the proof oi ~1lcECay's conjecture. 

The results in Chapter 4 were motivated by another question of Kotzig's: What is 

the smallest k for which there is a perfect set of Hamilton docompositions of KZkS1? 



-* * 

We prove for aii k > I that has at ieast 2k - '2 pairwise compatible &milton 

path decompositions. This is one less than the maximum possible of 2k - 1. In the 

case of K4, it is straightforward to show it is best possible. \?7e then construct a set of 

411: - 2 Hamilton path decompositions of that between them contain every 2-pat h 

of the graph exac t l~  twice. ?Ye also find a lower bound on t-he number of pairwise 

compatible Hamilton decompositions of 

Vlk present our concIusions in Chapter 5. 
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Chapter 1 

Introduction 

This chapter consists of two sections. Section I. I contains the definitions and notation 

that will be used in the thesis. Section 1.2 is background and a description of the 

problems that will be considered In the following chapters. 

1.1 Definitions and notation 

We will use If;, to denote the compiete graph on n vertices. The line graph 

of Kn, denoted L(Kn).  is defined as follows: V(L(K,))  = and two vertices 

el,e2 E V(L(h',)) are adjacent in L(&) if and only if el and ea are adjacent edges 

in A',. 

Let G be a finite graph on n vertices. A trail in G is a finite sequence 

of vertices and edges in G such that for 1 5 i 5 k, v;-1 v; = e;, and for 1 5 i < j 5 k, 
E; # ej. We will write this trail as ~0 cl - - - vk. A tour in G is a trail with the added 

condition that 2:o = uk-~ and a1 = ax-, (implying el = ex-), Note that this definition 

allows a trail to begin and end on the same vertex and yet still not be a tour. (A tour 

is said to be a closed trail.) An EuZer tour is a tour that contains every edge of the 

graph. If G has an Euler tour, G is said to be Euferian. Similarly, if G does not have 
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an Euler tour, G is non-Eiiieriun. A walk in G is a finite sequence 

of vertices and edges in G such that for 1 5 i 5 E, v,-1 v, = e,, so the condition 

that the edges be ,dl different is removed. Exactly as with a tour, a walk can be 

closed. A p d h  (cycle) is a trail (tour) in which all the vertices are different, (except of 

course for the fact that in a tour vo = v k - ~  and v1 = vk ) .  A Hamilton path (Hamilton 

cycle) is a path (cycle) containing all n vertices. We will call a decomposition of E(G') 

into tours a tour-decomposifian. An Euler tour of an Eulcrian graph G is c lear l~  a 

tour-decomposition of G into one tour. A k-path is a path on k + 1 vertices. We 

will mostly he concerned with 2-paths. which we will write as uo t.1 2.2. We will call 

c0 and v2 the end vertices of the 2-path v o q  29, and vl its centre vertex. and we 

will say that vo vl v2 is centred at i.1. Trails. tours and tour-decompositions of G can 

obviously be described by listing the set of 2-paths they contain. This idea will be 

used in all of the constructions in this thesis. ;-Z digon is a sequence of vertices and 

edges V O ,  el. v l ,  e2, vop where t:o # e l ,  and el = ez  = uo vl:  we will write this digon as 

'Go U1 Z'J. 

If p is an automorphism of G. and t is the trail 2.02.1 c2 el-1~1. then p ( t )  = 

p(uo ZQ v2 - - - VI-1 2;/) is the trail p(z.0) p(rl)  ~ ( 2 ' ~ )  - - - p ( ~ [ - ~ )  p(vI j. W will call two 

trails (and hence two tour-decompositions) t l  and t 2  in G' similar if there exists an 

automorphism p of G such that t2  = p(tl). We are mostly concerned with complete 

graphs in this thesis so it will be enough for p to be a permutation of V(G'). 

The constructions in Chapters 2 and 3 involve removing a 2-path from a trail. 

This does not mean that the edges in the 2-path are removed. only that the trail is 

broken. So, if t is the trail 

r o  1'1 2.2 - - - 2.1- 1 I?[ ,  

then t - V;-I 2:; v ; + ~ ,  where 1 5 i 5 1 - 1: is simply the following two trails: 

Suppose n is even. Let a b be an edge and v a vertex in G. By v[a b] we mean 

the 2-path a2: b. A 1-factor in G is a spanning subgraph of G' in which every vertex 
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has degree 1, In Chapger 2, we will be using 1-factors of to determine the 

end vertices of 2-paths in Euler tows of f<2k+l.  Let F be a. 1-factor of If 

(vl w1; v2 w2,. . . , vk w k )  i s  an ordering of the edges in F, we will call v; wi the ith edge 

of F ,  for i f (1, 2,. . . , k)? and denote it. by [F : if. Let T/'(I<2k+l) = I1(Kzk) U ( m ) .  

For u E V(Iir2k), u[F]  will be the set of 2-pa.ths 

together with the 2-path 

cc u v;: where u = w;, for some i. 

By m [ F ]  we mean the set of 2-paths {v;oow; : 1 5 i 5 k). We will often use 

the notation v[F : ij intead of vlu; vij, where v E T/'(K2k+l j- We  wi!i sometimes use 

.u[F : i ] [ F j ]  for the two 2-pat.hs v [F  : i] and v[F : j], where v E V(&k+l) ,  and 

15 i , j  5 k ,  

A 1-factorization of G is a partition of the edges of G' into 1-factors. A 1- 

factorization F is said to be perfect if the union of any two of the 1-factors in F 
forms a Hamilton cycle in G'. A partition of the edges of a graph G' into Hamilton 

cycles or into Hamilton cycles and a 1-factor - depending on the parity of n - is 

called a Hamilton decomposition of G. In Chapter 3, we will be using Hamilton cycles 

CI fikVl to determine the end vertices of 2-paths in Euler tours of the multigraph 

Kzk + I ,  where I is a 1-factor of I&,. Let V(1<2k) = V(1<2k-l) u {ool). Let H 

be a Hamilton cycle of 112k-1- If (vl ~ 2 , 2 7 2  113,213 vd, . . . , v2k-1 v l )  is an ordering of the 

edges in H, we will call v;v;+l the ith edge of H, for 1 < i 5 2k - 1, and denote 

it by [H : i], where addition on the subscripts of the vertices is modulo 21; - 1 r i t h  

residue classes 1,2,. . . ,2k - 1. If v; # z: # v;+~, then by v[H : ij, we mean the 2-path 

v; v v;+l. If v; equals v, then v[H : i] is t:he 2-path oq v v ; + ~ .  Similarly, if v = v;+l, 

v [H : i] = v; v cq .  When it; is obvious which Hamilton cycle the end vertices of the 

2-paths centered at a vertex -v are coining from, we will abbreviate v[H : j ]  to v[j]. 

The list of 2-paths and digons centred at vertex v in an Euler tour of I<2k in 

Chapter 3 will be specified in one of six ways. Let 1 5 t 5 k - 1. By v[H : 

1,3,5,.  . . ,2t - 1, 2t, 2t + 2,. . . ,2k - 21, we mean the set of 2-paths {v [H : j] : j E 



I 3  {1,3,5,. . . ,2t-I22t.2t+2:. . . ,2b-2)). BY u[N : 2,4,6, .  . . .2t, 2t+!. 2tT:J.. . . ,2k- 

13.wemeantheset of2-paths { v [ H :  j]: j E {2,4,6 ,.... 2i.2t+1,2t+3 ..... 2k-1)). 

By u[H : 1; 3; 5; .  - . : 2t - 1, 2t + 2 . 2  + 4,. . . ,2k - 21. we mean the set of 2-paths 

{ u [ H  : j ]  : j E {1,3?5,. .. :2t - 1.2t +2;2t + 4 , .  . . ,2k-2) )  as well as the digon L u z l ,  

where u = [ H  : 2tf fl fH : 2t + 11. By r [ H  : 2,4,6,. . . ,.St. 2t + 3,2t + 5, .  . . .2k - I], 

we mean the set of 2-paths {vjH : jf : j E {2,4,6,. . . .2t. 2t + 3.2t + 5 , .  . . .2k - 1)) 

as well as the digon u v u, where u = [ H  : 2t + 11 n [H  : 2t + 21. Towards the end of 

each of the two proofs in Chapter 3 we will also use v [ H  : 1.3,5. . . . , 2 k  - lj to mean 
9k - ~71 the set of 2-paths {v jH : j ]  : j E {1.3.5.. . . .2k - 1)). and v [ N  : 2.4.6,. . . , - -1 

to  mean the set of 2-paths { v [ H  : j ]  : j E (2.4.6.. . . .2k - 2 ) )  as well as the digon 

u v u 7  where u  = [H : I] J-I [H  : 2k - 1). If in this last case v = u ,  then the digon will 

be cml u  c q .  

Since the degree of every vertex of 1<2k+l is even. 1<2k+l is Eulerian. An Euler 

tour of K2k+1 contains k ( 2 k  + 1) 2-paths. In total, 1{2k+l contains k(2E + 1)(2k - 1) 

2-paths. It is natural to ask if a set of 2k - 1 Euler tours of can be found 

so that every 2-path of 1<2k+l is in exactly one of the tours. Towards this end. we 

make the following two definitions: two tour-decompositions of a n  Eulerian graph 

are compatible if they have no 2-path in common; arid a perfect .set Ilf Euler tours of 

K2k+l is a set of 2k - 1 pairwise compatible Euler tours of 1<2k+l. In other words, it 

is a set of 2E - 1 Euler tours that partition t>he set of 2-paths in In Chapter 2, 

we comtruct a perfect set of Euler tours of 1<2k+l for all k. 

On the other hand. I<2k has no Euler tour because the degree bf ever3 vertex is 

odd. There are several w a p  we could modify the graph SO that we could define 

for it something that approaches the idea of a perfect set of Euler tours of 1<2k+l. 

We choose the following definition because it implies the existence .~tf a Hamilton 

decomposition of L(1<2k)- A perfect set of Euler tours of + I .  where I is a 1- 

factor of ITzrc, is a set of 2k - 2 Euler tours of I i ; k  + I such that every 2-path of 

is in exactly one of the Eiikr toiii-s, and for each of the edges aE E I. each Eiiler tour 

either uses the digon aba or the digon bab. but not both. In Chapter 3: we construct 

a perfect set, of Euler tours of + I for all k > 1. 
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Finally, for Chapter 4; we need the following definitions. A Hamilton path decom- 

position of K2k is a decomposition of E(KZk) into Hamilton paths. Since a Hamilton 

decomposition of KZkfl  is also a tour-decomposition, we have already defined two 

Hamilton decompositions of 1{22k+l to be compatible if no 2-path in the graph is in 

more than one of the Hamilton cycles. We extend the definition of compatibility to 

a non-Eulerian graph by saying that two Hamilton path decompositions of I{21; are 

compatible if no 2-path in the graph is in more than one of the Hamilton path de- 

compositions. We also define a perfect set  of Hamilton decompositions (Hamikt o n path 

decompositions) of  bktl ( K 2 k )  to be a set of 2k - 1 pairwise compatible Hamilton 

decompositions (Hamilton path decompositions) of the graph. 

We will use the notation (a.  b)  for t.he greatest common factor of two integers a and 

b, and #(n) for the Euler 6 function. We will use 2-'a (mod 2k - 1) to indicate either 
5+2k- l " (mod 21; - I), if a is even, or 2 (mod 2k - l), if a is odd. This is multiplication 

by 2-' in the ring ZzkV1. 

Finally, a Dvdeney  set in K,  is a set of Hamilton cycles of K, so that 

every 2-path of the graph is in exactly one of the Hamilton cycles. 



1.2 Background and a Description of the Problems 

In Chapter 2 we prove the following conjecture: 

Conjecture 1.2.1 (Kotzig [12]) The graph 1CZk+1 has a perfect set of Euler tours 

for all positive integers E .  

This is a special case of the folloxing problem suggested by Hilton in 1983 at an 

Open Vniversity Combinatorics Ilbrkshop (see Jackson [7] 1. 

Problem 1.2-2 (Hilton) Determine the maximum number of pair~ise compatible 

EuEer tours in a given Ezrlerian graph G. 

In a related area, Rermond [2] has conjectured 

Conjecture 1.2.3 (Bermond [2]) If u graph G has u Hamiii on decomposition then 

its line graph L(G)  can be decomposed into Numilfon cyc1e.j.. 

More specifically. B. McIiaj, (personal communicztion) conjectured 

Conjecture 1.2.4 (McKay) The l ine  graph aJ the cornplcfe gmph i , ( K , )  can be 

decomposed into Hamilton cycles. 

The existence of a perfect set of Euler tours of i<2k+f immediately implies the 

existence of a Hamilton decomposition of L!I<2k+l j: each Euler tour of induces 

a Hamilton cycle of LfK2k+l ' f .  and since the Euler tours partition the ?-paths of 

hkhl - the induced HamiIton cycles partition the edges of L ( l f r k + l ) .  Therefore. when 

n is odd. a proof of McKa~--s conjecture is an immediate corollary of the validity of 

Kotzig-s conject ure. The two conjectures are probably not equivalent: the t ~ o  edges 

abbe and bcbd in a line graph could certain1~- be adjacent in some cycle in the line 

graph, but, back in the original graph. the two 2-paths a bc and c bd could not be 

adjacent in a tour. 



it is not hard to construct a perfect set of Euler tours of K3 or K5: but2 to my 

knowledge, no other perfect sets of Euler tours of complete graphs had been found 

until now. 

In Chapter 3 we present results on one way of extending the idea of a perfect set 

of Euler tours to the graph IGk, which itself has no Euler tour. We choose to define 

a perfect set of Euler tours of K2k as we do because as a corollary we immediately 

have a Hamilton decomposition of L(K2k). This seems to justify our definition as it 

parallels the odd case. Thus our construction of a perfect set of Euler tours of K2k + I 
completes the proof of Mc&- a conjecture since it implies that the graph L(I{2k) does 

have a Hamilton decomposition for all k > 1. Again there is no reason to suppose 

that the two results are equivalent. 

There has been much work done trying to solve Problem 1.2.2. Jackson gives a 

review in I?]. We use d(v) to  indicate the degree of a vertex v E V(G) and S(G) to 

indicate the minimum degree of G. A block in a graph is a maximal 2-connected sub- 

graph. In giving an overview of the results in this area, we will assume for simplicity 

that the Eulerian graphs have no vertices of degree 2. 

Suppose G is an Ederian graph with S(G) > 4, and let v be a vertex of G of degree 

S(G). If u v E E(G) then there are S(G) - 1 2-paths u v w, w E V(G). Therefore, 

there are at  most S(G) - 1 pairwise compatible Euler tours of G. Moreover, if there is 

a 2-path u v z such that G - u z. - v x is disconnected, then no Euler tour of G could 

use the %path ucz: so there are at  most E(G) - 2 pairwise compatible Euler tours 

of G. Jackson conjectured that one of these bounds must hold: 

Conjecture 1.2.5 (Jackson [6]) Th.e maximum number of pairwise compatible Eu- 

ler t o a m  of an Ezrlerian graph G is either S(G) - 1 or S(G) - 2. 

This conjecture is valid for S(G) = 4 [13] and for S(G) = 6 [8]. Although it has not 

been possible to prove this conjecture in general, Jackson and Wormald, by extending 

a result from f6], were able to  prove: 

Theorem 1.2.6 (Jackson and Wormdd [9]) An finite Ezllerian graph G with S(G) > 
4 has  at least f6(G) pairwise compatible Euler tours. 
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Fleischner et al. [4] proved the following two theorems, using the first to prove the 

second. 

Theorem 1.2.7 Given a 1-factor L of I(2k, there is a 1-factorization L1 ,  L2 , .  . . , L2&2 

of Kzk  - L such that L U L; is a Hamilton cycle of I<2k for i E (1: 2, . . . 21; - 2) .  

Theorem 1.2.8 If G is a connected, Jinite, Eulerian graph with 6 ( G )  2 4 such that 

every cycle in G is a block of G,  then G' has S(G) - 2 pairwise compatible Euler tours. 

N0t.e that in Theorem 1.2.8 the number S(G)  - 2 is best possible. 

Results about Hamilton decompositions of L(K,) tend to appear as corollaries to 

more general theorems. 

Theorem 1.2.9 (Muthusumy and Paulraja [P4]) I f G  has a Hamilton decompo- 

sition into an even number of Hamilton cycles, then L ( G )  has a Hamilton decompo- 

sition. 

Corollary 1.2.10 The line graphs L(IC4m+t) and L(I<4,+2) each have a Hamilton 

decomposition for all m. 

Theorem 1.2.11 (Cox and Rodger [3]) Let 1 0 (mod 4 ) .  If n - 1 (.mod 21), or 

n r 0 or 2(mod 1 ) ;  then there exists a partition of the edges of L(K,)  into cycles of 

length 1. 

Corollary 1.2.12 The line graph. L(K4,) has a Hamilton decomposition for all m 

Theorem 1.2.13 (Muthusumy and Paulraja [14], Zhan [16]) If G has a Hamil- 

fon decomposition in fo  an odd number of Hamilton cycles, then the edges of L ( G )  can 

be partitioned into Hamilton cycles and a 2-factor. 

Corollary 1.2.14 Th.e edges of the Iiae graph L(1i4,;3) can be decomposed into 

Hamilton cycles and a 2-factor for all m,. 

We also mention a result of Pike's that has implications for the existence of Hamil- 

ton decompositions of L ( G k  - I). 
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Theorem 1.2.15 (Pike [15]) If G is  a 2k-regular graph that has a perfect l-factori- 

sation, then L(G) has a Hamilton decomposition. 

Corollary 1.2.16 The line graph of I{2k - I has a Hamilton decomposition whenever 

K2k has a perfect 1-factorization, where I is a 1-factor of 

Pike provides a list of the values of k for which perfect 1-factorizations of Kak exist. 

It includes k prime, 2k - 1 prime, and 16 other values. 

This is of interest here because the graph l i ; k  - I is Eulerian, and asking for a 

perfect set of Euler tours of K2k - I would be another way of extending the idea 

behind Kotzig's Conjecture 1.2.1 to the graph Corollary 1.2.16 would also be a 

corollary to such a result.. 

Chapter 4 is motivated by another question of Kotzig's [12]: 

Problem 1.2.17 (Kotzig [12]) What is the smallest E > 1 for which there i s  a 

perfect set of Hamilton decompositions of I{2k+l ? 

It is possible t.hat no such k exists. It is not hard to show that there cannot be 

tw compatible Hamilton decompositions of K5,  let alone three, which is the number 

needed for a perfect set. Kotzig states in [12] that it is known that K7 does not have 

a perfect set of Hamilton decompositions, but does not say how many pairwise com- 

patibze Hamilton decompositions are possible. The fact that perfect sets of Hamilton 

decompositions do not exist for these small cases leads us to ask instead: 

Problem 1.2.18 Given k, what is the maximum number of pairwise compatible Hamil- 

ton decompositions i n  Ii2k+l iZ 

Since a set of I pairwise compatible Hamilton decompositions of 1<2k+l implies the 

existence of a set of I pairwise compatible Hamilton path decompositions of we 

can back up still further and ask: 

Problem 1.2.19 Given k, what is the maximum number of pairwise compatible Hamil- 

ton path decompositions i n  K2k ?' 
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Problems 1.2.17 and 1.2.113 are related to the existence of Dudeney sets in K2k+l 

because a perfect set of Hamilton decompositions of I&k+l is simply a resolvable 

Dudeney set. Also: since whenever there exists a Dudeney set of I{,, we immediately 

have a set of Hamilton paths of Kn-l that partition the 2-paths of 1 k e l ,  results 

about Dudeney sets may have implications for Problem 1.2.19. Since Dudeney sets in 

Kn when n is odd have proven hard to find, we should perhaps assume that solving 

Problem 1.2.17 will be difficult. There is only one known infinite family of Dudeney 

sets of K2k+l: 

Theorem 1.2.20 (Heinrich, Kobayashi, Nakamura [ 5 ] )  There is a Dudeney set 

in i f  p is prime and 2 is a generator of the multiplicative subgroup of G F ( p ) .  

There are also a few sporadic cases known: see [lo]. 

However, when n is even. the existence of Dudeney sets has been solved completely. 

Theorem 1.2.21 (Kobayashi, Kiyasu-Zen'iti, Nakamura [lo]) There exists a 

Du,deney set in I(, when n is even. 

Before proving Theorem 1.2.21, Kobayashi and Nakamura [llj gave an elegant 

construction of the following result.. 

Theorem 1.2.22 (Kobayashi, Nakamura [Ill) There exists a set of Hamilton cy- 

cles of Kn when n. is even that between them contain every 2-path of K, ezactly twice. 

As a corollary, there is a set of Hamiltoa paths of I<2k-1 that between them contain 

every 2-path of h ; k - l  exactly twice. Similarly, if we change Problem 12.19 to ask 

for every 2-path twice instead of once, we are able to find a set of Hamilton path 

decompositions of K2k SO that every 2-path is in exactly two of the Hamilton paths. 

We also give a construction for a set of 2k - 2 pairwise compatible Hamilton path 

decompositions of Kzk 2nd thereby show that the solution to Problem 1.2.19 is either 

2k - 2 or 2k - 1. (A perfect set of Hamilton path decompositions of would 

contain 2k - 1 Hamilton path decompositions.) In the case of k = 2, two Hamilton 

path decompositions is best possible. These results are the first section of Chapter 4. 
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In the second section of Chapter 4, we give a lower bound to Problem 1.2.18 when 

k > 2 is even. The first and last vertices in a Hamilteon path determine an edge, and 

the set of such edges determined by a Hamilton path decomposition is a 1-factor in 

K2k- If we construct a set of I pairwise compatible Hamilton path decompositions 

of Gk with the added condition that the 1-factors induced by each Hamilton path 

decomposition are pairwise disjoint, then we immediately have a set of 1 pairwise 

compatible Hamilton decompositions of 

When k > 2 is even we are able to show that there are at least 

pairwise compatible Hamilton decompositions of 1i2k+l. tVhen k > 2 is even and 

2k - 1 is prime, this means we have at least [F] pairwise compatible Hamilton 

decompositions of K2k+l. 



Chapter 2 

A Perfect Set of Euler Tours of 

2.1 Main Result 

In this chapter we prove t-he following theorem and corollaries. 

Theorem 2.1.1 For all k, fc2k+l has a perfect set of EuEer tours. 

Corollary 2.1.2 For all k, L(f<2k+l ) has a Hamilton decomposition. 

Corollary 2.1.3 There exists a closed walk of in which every 3-path occurs 

exactly once. 

The proof of Corollar_v 2.1.2 is straightforward and we give it here. The proof of 

Corollary 2.1.3 requires details of the proof of Theorem 2.1.1, so we will present it in 

the last section of this chapter. 

Proof  of Corollary 2.1.2. Given a perfect set of Euler tours of I h k + l .  simply 

replace each 2-path a b c in each of the tours by the edge ab bc in L(I{2k+l ). Since 

each tour covers each edge of K2k+l exactly once; in the line graph the correspond- 

ing subgraph will cover each vertex exactly once, and hence be a Hamilton cycle. 

Since each 2-path of KZk+* is used exactly once in exactly one of the tours, every 
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edge of L(KZk+1) is covered exactly once in the Hamilton cycles, giving a Hamilton 

decomposition. EI 

Since contains k(2k+1)(2k-1) 2-paths, and an Euler tour of 1{2k+l contains 

k(2k+ 1) 2-paths, a perfect set of Euler tours of would have 2k - 1 Euler tours. 

The Euler tours in the perfect set of Euler tours of K2k+1 that we construct here are 

pairwise similar. In fact there exists a permutation a of 1f(I<2k+l) such that if T is 

one of the Euler tours, then {ai(T) : 0 < i _< 2k - 2) is the set of all the Euler 

tours. Thus, there exists a permutation T of V(L(Gk+l  )), such that if H is one of 

the Hamilton cycles of L(K2k+l), then { r i ( ~ )  : 0 < i < 2k - 2) generates all of the 

Hamilton cycles in the Hamilton decomposition. 

The proof of Theorem 2.1.1 is divided into two sections, the first for the case when 

k is even, and the second for the case when k is odd. The constructions a.re divided into 

a series of claims and proofs of the claims. In both sections, the key to the construction 

of the Euler tours is the choice of a particular 1-factorization F of I(,,. Let V(1C2k) = 

{1,2,. . . ,2k). It is well known that t.he following generates a 1-factorization of I{21c. 

Let a1 be the permutation (2 3 4 - - .2k - 2 2k - 1 2k) of the vertices of that fixes 

vertex 1 and cyclically rotates the others. Then F = IFo7 PI , .  . . , FZk-~), where Po is 

the I-factor (1 2,32k,42k-1;. . . , k + l  k+2) and F; = ai(Fo), 1 < i < 2k - 2, is a 

1-factorization of 

It is fundamental (though perhaps trivial) to understand how we will be joining 

together trails and 2-paths to  form Euler tours. Given a trail in KglS+l that ends at 

vertex v and another that starts at v, suppose we want to join them together at u to 

form a single trail. It is first necessary to know more about them. We need to know 

which 2-path centred at v this larger trail would use. In order to know that, we need 

tc; know the last edge of the first trail, say it is u v, and the first edge of the second, 

say v w. We can then take the two trails and the 2-path u u w and form a single trail. 

The main idea of the proof when k is even is to construct one Euler tour To of 

K2k+l and a permutation a of the S/(K2k+l) so that {ai(To) : 0 < i < 2k - 2) is 

a perfect set of Euler tours. We describe To by listing the 2-paths that are centred 

at each of the vertices in it. It should be clear that in an Euler tour, or indeed, in 
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a tour decomposition of KZk+lt that if we construct edges from the end vertices of 

each of the 2-paths centred at a given vertex v, then these edges form a 1-factor of 

= KZk+1 - (v}. Also. the union of the 1-factors formed by the end vertices of 

the 2-paths centred at v in each of the Euler tours in a perfect set of Euler tours 

forms a 1-factorization of IGk. With this in mind, in listing the 2-paths centred at  

v in To, we start with a 1-factor fib of such that (ai(Fo) : 0 < i < 2k - 2) 

is a 1-factorization of -1(2,+. We then say that the 2-paths centered at L) in To are 

( U  D w : u w E E f d ( F o )  1); where the cnoice of j depends on t.. When we take 

aZ(To) for 0 5 i < 2E + 2. we are effectively generating 2-paths centred at  .r7 with 

end vertices from each of the 1-factors d+'(Fo) ,  0 5 i 5 2E + 2. In other words, 

from a 1-factorization of The difficulty lies in choosing which 1-factor &(E0 j 

will determine the end vertices of the 2-paths centred at a given vertex v. Having 

provided a list of the 2-paths in To, it is then necessary to prove that they do indeed 

form an Euler tour of 1<2k+11 and not just a tour decomposition. (\Ve necessarily have 

at  least have constructed a tour decomposition.) To prove this. we consider To minus 

the 2-paths centred at  a fixed vertex x, and hence investigate and make use of the 

underlying structure of To. 

The proof when k i odd, is similar to and relies h e a d y  on the proof when k is 

even. 

2.2 A Perfect Set of Euler Tours of K4,,+i 

Let E = 2 3 .  Denote the 4m - 1 Euler tours required in a perfect set of Euler tours of 

by {To, T I ,  . . . , Tjm-2}.  \Ye will construct To by providing a list of the 2-pat hs 

that it contains. and construct T,, 1 5 i 5 4m - 2, by defining a permutation a of 

V(&,+l), and letting Ti = at(To). Thus the tours will be pairwise similar and it will 

only be necessary to  prove that To is an Euler tour and that the T,. 0 5 i < 4772 - 2, 

partition the 2-paths of &,+I- 

Construct the following 1-factorization of &, using the idea described in Sec- 

tion 2.1. Let I'(K4rn) = A U B U C .  whereA= { a l , a 2  ,-.., a,) .  B = {bl .b2 , . . - ,  b,); 
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and C = (cl,c2,. . . , ~2,) .  Let V(lt/qrn+1) = I ~ ' ( I ~ , )  U jm), and let a be the permu- 

tat ion 

of V(Ii'4,+1) that fixes CG and generates a ]-factorization of I{*, on the vertex set 

AUBUC, beginning with the initial 1-factor Fo, where Fo is given by {u;  c2i-1 : 1 5 i 5 
m }  U (bi  czi : 1 _< i 5 m}. We now have the 1-factorization .F = (Fo, Fl , .  . . , F4m-2)7  

where Fi = ai(Fo), 0 < i 5 4m -2. 

Since we want every edge of I<4m+l to be in To exactly once, every vertex of To 

will have 2m edge-disjoint 2-paths centred at it. The set of 2-paths used to specify 

To will be based on the 1-factors F4m-2, FO, and Fl, and is listed below. From now on 

we will denote F4m-2 by FV1 in order to emphasize that a-l(Fo) = F-1. The 2-paths 

in To are: 

uj[F,l], for all a j  E A, 

bj[F1j, for all bj f B, 

cj [Fo], for all cj E C, and 

[Pol 

where notation is as in Section 1.1. 

Sow let Ti = ai(To), for 1 5 i 5 4m - 2. By definition the Ti are pairwise similar. 

Claim 2.2.1 The Ti, 0 < i 5 4m - 2, partifion the 2-paths in 

Proof. Since a fixes both m and c1, and .F is a 1-factorizatior, of I<*,, it is clear 

that the Ti partition all the 2-paths centered at either of these vertices. 

Let v E V(K4,) - {cl}. Let t v s  be a 2-path in I(4rn+l, and assume t $ rn and 

s  # m. Then the edge ts = [F; :  k] for a unique i E {O,1,2 ,... ,4m - 2) and a 

unique E E (1,2, . . . ,2m). There are three cases. If v = ai(cj) for some cj E C, then 

I v s  = O'(C~[F~ : q), and since cj[Fo : kl E To, t v s  E T,. If v = oi(aj) for some 

o j E A, then u = d-'(bl) for some b, E B. So t v s = oi-'(bl [Fl : k]), and since 

br[Fl : k] E To, t u s E Ti-l. If zi = d(b j )  for some bj E B,  then v = ai+'(al) for some 

at E A. So t  u s  = ~ ~ + l ( a ~ [ ~ _ ~  : k]), and since al[F-l : k] E To, t  v s  E T,+l. 
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Now assume that t = x. Then there exist i and k such that c s  = [F, : k]. An 

argument similar to the above will show that m v s E T, for some j .  follows. 0 

Our goal now is to show that To is an Euler tour. To accomplish this we give an 

exact description of the order in which the 2-paths occur in To. It is obvious that 

the removal of any one vertex divides an Euler tour of lh,+l into exactly 2m trails. 

We consider the removal of vertex x. from To. Our first step is to partition all the 

2-paths in To except those centred at vertex cx, into 2m parts, G;, 1 5 i 5 2m, and 

to prove that each part- forms a single trail that begins and ends at vertex m; our 

second step is to prove that the ?-paths centred at vertzx cc: m[Fo], join these trails 

together in such a way that they form an Euler tour. 

We begin by ordering the edges in the three 1-factors used in the construction of 

To - 
[ F o : ' S j - I ]  = U , C ~ , - ~ ,  1 L j  L m .  

F  : - 3  = b,c,,, 1 L j L r n .  

We now define a partition of all the 2-paths in To except those centred at vertex 

.x and label the parts G,. 1 5 i 5 2m. To prove each G, forms a single trail, we will 

show that for i 5 m - 1. G;+l contains a subtrail similar to G, minus one 2-path, as 

well as nine other 2-pat.hs. and for i > m + -3. G,-l contains a subtrail simiiar to G, 

minus one 2-path, as well as nine other 2-paths. Before showing each G; is a trail 

we 111 determine which 2-paths in G; contain vertex ~CG. This is necessary as we 

ultimately need to determine how the trails G; will fit together when joined by the 
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2-paths centred at vertex x.. in listing the 2-paths in G; we will use the notat<ion 

u[Fi : j ]  described in the introduction in Chapter 1. If j should happen to be less 

than 1 or greater than 2m, we assume that no 2-path results. To reiterate, we first 

simply assign certain 2-paths to G;, and then, in a series of claims, verif, that they 

do indeed produce t.he tra,ils as described. 

The 2-paths in G;, i E (1,2,. . . , m) are: 

The 2-paths in G;, i E (m + 1, m + 2,. . . ,2m) are: 

Claim 2.2.2 The G;, 1 5 i < 2m, partition the 2-paths in  To - m[Fo] .  

Proof. It is straightforward to check that in the union of the G; each vertex in 

k-(&,) occurs as the centre vertex of 2m 2-paths with end vertices determined by 

the edges of the appropriate 1-factor of &,. 

Claim 2.2.3 There are precisely two aertices in each (2; that ore centres of 2-paths 

with vertex ca as an end vertex. These vertices are b* and c, if i is odd, at+, and 
2 2 

c; i f i  is even and i  5 2m-2,  andal  andc2, i f i  =2m.  

Proof. It is easy to check that the 2-paths cl bl co and a1 cl rn are in GI, that 

a s  b s  m and a* q r~ are in Gi, i > 1 odd, that bL at+, co and b t  ci m are in Gi, 
2 2 2 2 2 2 

1 7  i < 2m even, and that bm a1 cx, ana om czm m are in GZm. 

By construction, there are exactly 4m 2-paths in To that have oo as an end vertex. 

Since we have accounted for 4m such %paths, we are done. 0 
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In order to prove that each G, is a trail. we shail show that if 1 5 i 5 rn - 1. then 

G;+I contains a subtrail sic-tilar to  all of G, minus one 2-path. and if m + 2 5 i 5 2777, 
then Gi-1 contains a subtrail similar to all of G, minus one %path. Towards this end, 

let 7 be the following permutation on the vertices of 1<4,+1: 

We next determine where 7 maps the edges in the three I-factors. Fo. Fl and F-l. 

~[([FI : 11) = 3(b1 CI)  = a2 c2, 

?(IFl : 2 j  - I]) = ?(a, b,) = b, a,+l = fF-l : 2j], 2 < j < r n - - 1 .  

~ ( [ F I  : 2 m  - 11) = ?(arn b,) = b, ul  = [F-* : ?m],  

~([FI  : Q]j = 3 ( ~ 2 ~  c Z ~ + ~ )  = c z j + ~  = [FF1 : 2 j  + 11. 1 5 j < rn - 1. 

?([El : 2 m j )  = ?(al  c2,) = bl cl. 

Sofor 1 < k < 2m-1, ~([l;b: k]) = [Fo: k +  I]: for 2 < - k < - 2m-1, 3([F1 : k]) = 

: k +  I]; and for 15 k 5 2m -2, 3([FA1 : k]) = [Fl : k-k  I]. 
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Claim 2.2.4 For 1 5 i 5 m - 1 ,  all the 2-paths in y(Gi) are in G;+l. ercept for 

?lb.;fFl : 11). 

Proof. We know exactly d i c h  %paths are in Gi, 1 5 i < rn - 1, and how 7 behaves 

on the \rertices of h;, and on the edges of Fo, Fl and F-I. We can therefore list the 

%paths in y(Gi) .  1 5 i 5 rn - 1. 

..r we now prove b~ induction that each Gi2 i 5 i 5 m, is a single traii. Tne foliowing 

two claims contain the basis of the induction and the induction step, respectively. 

Claim 2.2.5 f i r ;  pad GI is a single trail. and GI - 6\1[Fl : I] is the union, of a trail 

wifh first edge ca q amd bad edge CI B\lr and the single edge lq m. 
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Proof. It is easy to see from the list of the 2-paths in GI that G1 is the trail 

cxj cl a1 cz cl bl a. The second point in the statement of the claim is obviously true. 

0 

Claim 2.2.6 Each o f the  parts, G;. 1 5 i 5 m, is a trail, and G; - bi[Fl : 11) is one 

trail from r. ci to cl b;, and a second from bi bl to b* 2 m, if i is odd, and to  'o. 

i f ' ;  is ecen. 

Proof. Assume i 5 rn - 1 is odd. BJF induction we can assume Gi is a trail and 

G'; - b;[Fl : 11 is two trails: one from .xi c; to c1 b i  and one from b; bl to bs m. By 
2 

Claim 2.2.4, we know that 7(Gi - bi[Fl : I]) = r(G; - cl bi bl)  is a subset of G';+l. So, 

Giil contains one trail from x c;+l to c2 ai+l? and one trail from a;+l a2 to a*+, m. 
2 

Define these two subtrails of Gi+l to be t l  and t 2 ,  respectively. Sote that t 2  is the 

single edge a2 CG if i = 1. From the list of the 2-paths in G'i+l and the proof of 

Claim 2-24, we see that the 2-paths in Gi+1 that are not in y(Gi) are: 

Then G;+l is the trail 

When i = i note that a 2 [ E l  : 21 = bl a2 

Now suppose i < m - 1 is even. 

The only difference in this case is that the final edge in Gi is a ~ + ,  x. If we again 
2 

Iet t l  and t2 be the two subtrails in y(Gi - cl bi b l ) ,  then tl is stil! a trail &om xi ci+l 

to cz ai+l, but tz is now a trail from ai+l a2 to bi+, m. The new 2-paths fit in exactly 

as in the case when i was odd. 
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The second result in the statement of the claim is easily seen by inspecting the 

above trail. CI 

We also know which 2-paths are in Gi when m + 2 5 2. < 2m., and so can list the 

2-paths in ?-'(G;). Note that bi-,[Fl : 2m] is a 2-path in G;. 

Claim 2-2.7 For  rn + 2 5 i 5 2m, all of t h e  2-paths in yel(G;) are in G;-l, except 

for r-f (bi-, [Fl : 2m]). 

Proof. Recall that for 2 5 k 5 2m, -j-'([Fo : k]) = [Fo : k - I]; and for 3 5 k 5 2m, 

*i-l([F-l : k]) = [Fl : k - 11; and for 2 5 k < 2m - 1, y-l([F1 : k]) = [F-l : k - I]. 

We obtain the following: 
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y-1(~21-2miF0 : 2mj), 
- - ~ q i - ~ ) - 2 , + ~ f F ~  : 2m - 11. 

-f-l (ck[Fo : 2i - k]  [FO : 2i - k + 11 ). 2 i - 2 m + 1  < k < 2 m  

= ck-l[FO: 2i - k- l ] [ F O :  2i - k] 

= ck-l[Fo : 2(i  - 1 )  - jk - l ) ] [Fo  : 2(2 - 1)  - ( k  - 1) + 11: 
2 ( i - 1 ) - 2 r n + 2 < k - 1 < 2 ~ n - l  - - 

The resulting 2-paths are all in G;-l except ?-'(b;-, [Fl : 'Sm]). 

We again use induction to prox7e in the following two claims that each of the parts 

G;. rn + l 5 i 5 2 m ,  is a trail. 

Claim 2.2.8 The part G2m is a single trail. Also, G2, - b,[Fl : 2m] is made up of 

a trailfrom mc2, to ~2~ b,, and a trailfrom b, a1 to al m. 

Proof. The part G2, consist~s of the trail m c2, b, a1 m. The second statement in 

the claim is obvious. EI 
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Claim 2.2.9 Each of the parts, G;, m + 1 5 i 5 2m - 1, is a trail, and G; - bi-, [Fl : 

2m] is one trail from oo c; to c2, b;-,, and a second trail from b;-, a1 to b* oo, when 
2 

i is odd. When i is even, the second trail starts on the edge bi-, al and goes to the 

edge ai+, cm. 
2 

Proof. Assume by induction that Gi is a trail for some i ,  m + 2 5 i 5 2m, and that 

G; - bi-,[F1 : 2m] is as described in the statement of the claim. 

If i is even then G; is a trail from ooc; to ai+, CQ, unless i = 2m,  and then it is 
2 

a trail to al oo. By Claim 2.2.7, y-l(G; - b;-,[al cam]) is a subset of GiF1, we know 

by induction that Gi-l must contain a trail from oo ci-1 to c2,-l a;-,, and one from 

a;-, b, to bi cm. Define these two subtrails of G;-l to be t l  and t Z ,  respectively. 
2 

From the list of 2-paths in G;-l and the proof of Claim 2.2.7, we know that the 

2-paths that are in Gi-l that are not in -(-*(G;) are: 

a1[FW1 : 2(i - 1 )  - 2m] = a*-n ~1 bi-l-m 

a;-n[F-l : 2m - l][F-l : 2m] = czm-l a;-, cz, and 

b n  ai-m a1 

bn[Fl : 2(i - 1) - 2m] = c~(;-~- , )  bm ~ 2 ( ; - ~ ) - 1  

bi-l-m[Fl : 2m] = a1 b;-l-, c2, 

c ~ ~ [ F ~  : 2(i - 1)  - 2n][Fo  : 2(i - I j - 2m + 11 = bi-l-m cam cp(i-l-,) and 

If i is odd then G; - bi-,[al cZm] is a trail from oo c; to clrn bid,, and a trail from 

hi-, al to b- m. So G;-l must contain a trail from oo ci-1 to c ; z ~ - ~  ai-,, and one 
2 

from ai-, b, to a* m. The new 2-paths fit in exactly as they did when i was odd. 
2 

Note that after removing the %path bi-l-n[Fl : 2m] from G;-l, we obtain the desired 

subtrails for the second part of the statement of the claim. 
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Since each Gi is a trail by Claims 2.2.6 and 2.2.9, and since G; starts and ends 

on the edges specified in Claim 2.2.3, we can now show that the union of the G;, 

1 5 i 5 2m7 with the 2-paths centred at vertex oo yields an Euler tour. We have 

seen that oo c; is the first edge of Gi, for all i .  Let fi be the vertex such that fi m is 

thelast edgeinG;. Then {f;: 1 s i 5 2 m )  = A u B .  So F'= {f ic i :  1 5  2.5 2m) is 

a 1-factor of I<4m. By construction, the end vertices of the 2-paths centred at vertex 

cx, are from Fo. The following claim proves that the union of these two 1-factors is a 

Hamilton cycle and thus that To is an Euler tour. 

Claim 2.2.10 The union of the following two 1-factors of li;, on the vertex set 

A U B U C is a Ham.ilton cycle: 

Fo = {a; czi-1, b; c2i : 1 5 i 5 rn) and 

F* = {b; c2i-l : 1 5 i 5 m - 1) U {ai c2i-2 : 2 5 i 5 m) U {al ~ 2 m )  

Proof. The proof of this claim is easily seen. The Hamilton cycle is 

This completes the construction of a perfect set of Euler tours of K4rn+l 

2.3 A Perfect Set of Euler Tours of K4m+3 

Now let k = 2nz + 1. The construction of a perfect set of Euler tours of &,+3 is very 

similar to  our construction in Section 2.2. The proof requires the Euler tour To that 

was constructed for h'lz,+i. so, to avoid confusion, we will partition the 2-paths in 

&,+3 into {So, Sl, . . . Sam), where each S, is a tour-decomposition of lc4m+3. The 

S; will be pairwise similar so that we need only check that So is an Euler tour to be 

sure they all are. 

We also want to let F = {Fo, Fl, . . . , F4,-z} be the same 1-factorization of Ihm 
as io Section 2.2, so we will let I = {EO, El.. . . , E4m), as defined below, be the 

1-factorization of K4m+2 on which we base the S,. 
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Recall that V(K4,) = AU B U  C, where A = {a1 , a2, . . . , am) , B = {bl , b2,  . . . , bm), 

and C = {c1,  ~ 2 , .  . . , ~ 2 ~ ) .  Let V(K4m+2) = V(K4,) U { d l ,  d z }  and V(K4,+3) = 

V(K4m+2) U { m ) .  We use the same idea as before to construct the 1-factorization E. 

Let T be the following permutation of V(K4m+3): 

' ' - bi C2m-2i+2 C2i+l am-i+1 

. * b- d2 dl cm+l cm+2 a- bF cm-1 cm+4 ~ m - 1  
2 2 

' ' - bi ~2m-2i+2 ~ 2 i + 1  am-i+l 

- . . bm-l c4 c ~ ~ - ~  a2 b, c2) ,  if m is odd. 

Let E = {Eo, El , .  . . , E4m), where Eo is the 1-factor Fo U { d l  d 2 }  and Ei = ri(Eo), 

0 5 i 5 4m.. 

The set of 2-paths for specifying So will be based on the l-factors E4m, Eo, and 

El ,  as well as E2 or E3, and is listed below. V17e will refer to E4m as E-1- 

aj [E-11, for all aj  E A, 

bj[El], for all bj E B, 

Cj[Eo], for all cj E C, 

dl [Eof ? 

d2[Eo], and 

x [ E 2 ] ,  if rn > 1: or m[E3],  if rn = 1. 

Wow let S; = .ri(S0), for 0 < i < 4m, so that the Si are all pairwise similar. The 

p m f  of the following claaaim is wry like that of Claim 2.2.1 axid is not given. 

Claim 2.3.3 The S;, 0 < i 5 4m, partition. the 2-paths in K4m+3. 
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Before listing the 2-paths in So and proving they form an Euler tour, we determine 

the edges in E-l, Eo, El ,  and write them in terms of F-1, d;b, and Fl. 

When m is even, we have 

Note that the edges [PI : m + 11 = ay+l b7+l and [F-1 : m + I] = cm+l cm+2 have 

each been removed and replaced by two new edges. 

When m is odd. we have 

Note that the edges [F1 : m + !] = c,+~ c,+2 and [El : m + 11 = bm+l have 
2 2 

again each been removed and replaced by two new edges. 

NOW partition all the 2-paths in So except those centred at vertex 'x, into 2m + 1 

parts, Hi, 0 5 i 5 2m. For some of the i E {1,2,. . . 2m), Hi will equal Gi. For the 
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rest, Hi will be a copy of G; with two of its 2-paths replaced by ten new 2-paths. The 

part Ho is new. We will prove that each Hi is a trail starting and ending at vertex 

m, and then that the 2-paths centred at vertex ca do indeed join these trails into an 

Euler tour. To do this, we will show that the first and last edges of H;, 1 5 i 5 2m, 

are the first and last edges of G;. 

First consider m even. Since the Hi will be described in terms of the G;, we need 

to determine which 6'; will be affected by changing the 2-paths with end vertices from 

the edges [Fl : rn + 1] or [F-l : m + 11. Since n + 1 is odd, in both cases we would 

need 22 - 2k + 1 = rn + 1, implying i = 7 + k. Since 1 < k 5 m, the only G; that 

contain such 2-paths are those for which 5 + 1 5 i < F. 
Construct the partition of the 2-paths of So as follows: 

The 2-pat hs in No are simply dl [oo d2] and d2 [oo dl]. 

For 1 < i  < 5, and % + 1  < i < - 2m, Hi = Gi. 

F ' o r 5 + l < i < F ,  

Claim 2.3.2 Men.  m is even, the Hi, 0 < i < 2m, partition all the 2-paths of So 

except those centred at vertex m. 

Proof. We show that for each vertex v E V(K4,+2), the Hi partition the 2-paths 

centred at  v. 

It is clear that the Hi partition the 2-paths centred at any vertex in A U B U C ,  

given the way Hi is based on G;. 
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We pick up the two 2-paths centred at vertex dl ,  dl[Fo : 2i - m - l ][Fo : 2i - m] 

in the part Hi for i E { y  + 1 , 7 + 2, . . . , F}. Similarly for &. The part Ho contains 

the 2-paths m dl d2 and oo d2 d l .  EI 

Claim 2.3.3 When m is even, the part Ho is a trail beginning on the edge oo di and 

ending on the edge d2 m. Each Hi, 1 < i < 2m, is a tra.il beginning and ending on. 

the same edges as Gi. 

Proof. Obviously Ho is the trail oo dl d2 m. 

When 1 < i < 7 and 9 + 1 5 i < 2m, Hi = Gi3 and so Hi is a single trail 

beginning on the edge CQ ci for all i, and ending on the edge b~ m if i is odd, OE the 
2 

edge a,+, m if i is even and i < 2m - 2, and on the edge a1 oo if i = 2m. 
2 

W h e n 7 + l < i i y  , \17e use the fact that G'; is a trail containing the 2-paths 

em+] a;-7 cm+z and am+] bi- m by+], not necessarily in this order. In Hi, the 2-path 
2 2 

C ~ + I  a;- 7 ~ m + 2  in Gi becomes the trail 

and the 2-path a%+] b;-% b ~ + ~  2 in G; becomes 

Since this includes all 2-paths in Hi, Hi is a trail. Since these trails do not contain 

vertex oo, Hi begins and ends on the same edges as G;. 0 

Now consider m odd. (Again we want to describe the Hi in terms of the G;, show 

that each Hi is a trail, and prove that. the first and la.st edges of Hi are the same as 

t,hose of Hi, for i E {1,2.. . ,2m).) 

We again consider which 2-paths in G; have end vertices from the edges [Fl : m + 11 
and [F-1 : rn + I]. In this case, m + 1 is even, so we have to consider the vertices in 

A and the vertices in B separately. 

For any bk E B, the 2-path bk[Fl : rn + 11 is in the part Gi when 2i - 2k = m + 1 ,  
- m+l or z = 7 + k. Since I < k < m? the 2-paths in Gi that are centred at a vertex in 

3m+l B only have end vertices from [Fl : m + 11 if < i < - 2 - 
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The 2-path al[F-l : nz + 11 is in 
2 

Now consider vertex ar, E A, where 2 < k < m. The 2-pa,th ak[F-1 : m + 11 is in 

the part Gi when 2i-2kf 2 = m+ 1, or i = + k. Since 2 5 k < m, the %paths 

in Gi that are centred at a vertex in A - { a l )  have end vertices from [Fdl : m + 11 
n+3 < i < 3m--1 when - - - 2 .  

The net result is that we define tl, = Gi for 1 5 i < and for < i < 2rn. 

Now construct the remaining Hi. The 2-paths in Ho are d l [ m  da] and d 2 [ m  d l ] .  

m+3 < i < 3m-1 For 7 - - 2 '  

u ~ 2 n  [dl d2] - 

The proof of the following claim is similar to that of Claim 2.3.2 and is not given. 

Claim 2.3.4 When n is  odd, the Hi, 0 5 i < 2m, partition all of the 2-paths in ,S'o, 

escept those centred at vertex oo. 
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Claim 2.3.5 When m is odd, the part Ho is a trail beginning on the edge oo dl and 

ending on the edge d2 cx;. Each Hi, 1 < i < 2m, is a trail beginnukg an,d ending on 

the same edges as G;. 

Proof. Ho is again the trail x dl d2 m. 

When 1 5 i < and < i < 2m, Hi = G;. 
3rz - 1 When < i 5 - c, Gi is a trail containing the 2-paths b- ai m;l a* and 

h + l  bi m;i cm+2, not necessarily in this order. In Hi? b y  ai - n e  becomes the 
2 2 

trail 

and cm+l bi m+1 cm+2 becomes the trail 
2 

3m+l When i = 7, GI= is a trail containing the 2-paths bmsl a1 u s  and cm+l b, Cm+> 
2 2 2 

In Harn+l, the first of these 2-paths. b- ul a*, becomes the trail 
2 2 2 

and the second. c,+l bm c,.+z. becomes 

As befort, we have not affected the first and last edges of G'; in constructing Hi. 
D 

It remains to prove that the 2-paths centred at vertex s join the H, together to 

form an Euler tour. For 4m + 3 > 11. we consider the union of the 1-factor E2 of 

which dictates the end vertices of the %-paths centred at vertex x, in So, with 

the I-fact*or F' U ( d l . & ) .  Recall that F' is the 1-factor of K4, whose i f h  edge is 

u c if w 71 and t~ xi are the first arid last edges of f',. ?Yhen 4m + 3 = 7. we use the 

1-factor E3 instead of E2. 

The proof of the following claim is easily seen. 
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Claim 2.3.6 &"hen 4m -t- 3 = 11, the union. of the two 1-jactors of Klo,  E2 = 

(q cg: b~ c3: b2 a2,d1 c2,d2 al) and F'Udl d2 = {dl d2, cl bl,  c2 a2, c3 b2: c4 a * )  is a Hamil- 

ton cycle of Kla. 

Claim 2.3.7 When m is e m n  and 4m + 3 > 11, the union of 

and 

is a Hamilton cycle of h'4m+2. 

Proof. It is straightforward to  check that the union of the t~wo 1--factors is the 

following Hami l t~n  cycle. 

The proof of the next claim is again easilj- seen. 

CIaim 2.3.8 H%en 4rn 4 3 = 5, the union of the two 1-factors of KG, E3 = 

( q  dl,d2 c2,al h )  and F' U (d1.d2) = {dl d2-c1 bl. cz a l )  is n Hamilton cycle. 
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Claim 2.3.9 When rn is odd and 4m + 3 > '7, the union of 

m - 1  m + 3  
U { a ;  C Z ; + ~  : 2 5 i < - --- < i s m - 1 )  

2 2 - 

and 

is a Hamilton cycle of lir;lm+?. 

Proof. The two I-factors form the following Hamilton cycle. 

By Claims 2.3.6 and 2.3.T. the 2-paths centred at vertex x join the parts H,.  

0 5 i 5 2m. together so that So is an Euler tour when 7n is even. Sirnilarl_v. by 

Claims 23.8 and 2.3.9. -So is an Euler tour when 771 is odd. I\? hnve shown that 

fi4m+3 has a perfect set of Euler tours for all nr. 

This completes the proof of Theorem -2.1 - 1 .  

2.4 A Corollarv U of the Main Result 

l&k now prove CoroHary 2-13 I\-hich states that it is possible to  traverse the edges of 

K2R+1 SO that ewry %pa& occurs exactly once. 
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Proof of Corollary 2.1.3. Case 1: Suppose k = 2m is even. The Euler tour T; 

constrvceed in Section 2.2 contains the %-path oi(al) x. cl for all i f ( O , l ,  2, . . . ,4712 - 

2). Let be the trail Ti \ (ai(al) ca cl) for all i E (0.1: 2.. . . ,4m - 2) and assume 

that goes from .mc1 to  ai(al) m. Then the following union of trails and 2-paths 

is the required walk in K4rn+]: 

Case 2: Sm- suppose k = 3m i 1 is odd. If m > 1. then the Euler tour '5; con- 

structed in Section 2-3 contains the 2-path oi(c2,) m cl for all i E ( O , l ,  2,.  . . ,4m). 

Let ,$;' be the trail .Sj k (ai(cz,) for all i f (0,1,2,. . . .4m) and assume that St 
gws from x cg !O d ( ~ ~ ~ )  X- Then the fdm-ing union of trails and 2-paths is the 

required walk in &,+3: 

When rn = 1. we had ba use a different 1-factor to  determine the %--paths centred 

at  ;so. The result follows exactl- as before hut now we have the 2-path dl m cl in So 

instead of czrn SG cl. so replace evert- occurrence c2, in the above traversal by d l .  0 

It. is interesting to  note that since we are merely tracing out the edges of one Euler 

trail after another, this ordering of the edges has the added property that each edge 

in bfr+1 is traversed exact ty j times before any edge is traversed more than j times, 

forall j E ( l t 2  ,,.-, 2 k - 2 ) .  



Chapter 3 

A Perfect Set of Euler Tours of 

3.1 Main Result 

In this chapter we prove the following theorem and corollary. 

Theorem 3.1.1 For all k > 1. + I has  a perfect set of Euler tours. 

Recall that we defined a perfect set of Euler tours of I<2k +I, where I is a l-factor 

of K2/; to be a set of 2k - 2 Euler tours of + I such that ever; 2-path of lhk is 
in exactly one of the Euler tours. and for each of the edges a b E I :  each Euler tour 

either uses the digon a b a or the digon b a b. 

Corollary 3.1.2 For all k > 1. L f 1 C 2 k j  has a Hamilton decomposition. 

Proof, Gi-ien a perfect set of Euler tours of I<2k + I, replace each 2-path a b c with 

the edge ub bc in L(KZk) ,  and ignore the digons. ( A  sequence of 2-paths and digons 

such as a be. b c  b. c b d  a d 1  become the two adjacent edges ab bc and cb bd in L(1ir2k).) 

The proof now follorvs in exact1.r- the same way as that of Corollary 2.1.2. O 

This chapter is divided into two sections as the two cases of k even and k odd 

are again considered separately In both sections we use the following well-known 
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construction of a Hamilteon decomposition 'FI of I{2k-1: Let T/(1~2k-1) = {1,2 ,  . . . ,2k- 

1).  Let 01 be the permutation 

of the vertices of Iir2k-l that fixes vertex 1 and cyclically rotates the others. Then 

'FI = {Ho ,  H I , .  . . , Hk-21, where Ho is the Hamilton cycle 

and = o f ( ~ o ) ,  0 < i 5 k - 2, is a Hamilton decomposition of I{2k-1. We actually 

want to construct Hi = a;(Ho) ,  for 0 5 i < 2k - 3, so that we generate each Hamilton 

cycle twice. Thus for all i E {0 ,1 ,2 , .  . . ,2k - 31, Hi+k-1 = Hi, where subscript 

addition is modulo 2k - 2 on the residue classes O,1, . . . ,2k - 3. 

3.2 A Perfect Set of Euler Tours of Kq, + I 
Let k = 2m. Let V(&m-l) = {a2) u A u B U C :J D, where A = { a l ,  a2,. . . , a m - I ) ,  

B = {bl,b2, -.., bm-l), C = {co,cl,c2 ,..., h - 1 )  and D = {d l ,&  ,..., dm-l ,dm).  Let 

V(K4,) = V(I{4,-1) U (001). 

We use the a.bove construction of a Hamilton decomposition of but with 

the new labeling on the vertex set. Let a be the following permutation of V(h;,) 

that fixes ml and generates a Hamilton decomposition of on the vertex set 

(002) U A U B U C U D. The Hamilton cycle Ho (shown in Figure 3.1) is 

and we now have the Hamilton decomposition 'FI = {Ho ,  H I , .  . . , where Hi = 

ai(Ho) ,  0 < i 5 2 m  - 2. As mentioned in Section 3.1, we actually want to consider 

I-r; = a i ( H O ) ,  0 < i < 4rn - 3. 

We order the edges of H;,  i E {0,1.2,.  . . ,4m - 3): so that m z o i ( c o )  is its first 

edge, aijco) o i (d l )  is its second edge, and so on, counting off the edges around the 
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Figure 3.1: Ho and a 

cycle, so that ~ ~ ( b , - ~ )  a'(&) and a l ( d m )  mz are its (4m - % ) t h  and (4m - l)th edges, 

respectively. (?Ve will be using that fact that [H,  : j] = [Hz+2m-l : 4m - j ] . )  

Our aim is to find a perfect set of Euler tours of K4,  + I. We choose the 1-factor 

I to  be those edges of &, that are fixed by a2"-', so that I is itself fixed (setwise) 

by a. Thus, 

We call the 4m - 2 Euler tours of I<*, +I that we will construct T,, 0 5 j 5 4nz - 3. 

It is sufficient to specify each T, bj- providing a li:+ of the 2-paths and digons it 

contains. It is then necessary to prove that the T, do indeed partition the set of 

2-paths of It;, and to prove that each T, is really an Euler tour of I{4m + I that 

satisfies the condition on the digons. 

In order to construct T,, 0 5 j < 4rn - 3, we first construct q, 0 < j _< 4m - 3, 

where each Ti contains only the 2-paths in T, t.hat are centred at vertices in A U B U 

CUD. and not those that are centred at ml or c q .  We do this because the Ti will all 
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be pairwise similar, and we can est.ablish their basic structure merely by considering 

TL. Once we have proved that Ti is a set of 2m trails that start at vertex col and 

end at vertex m2, we will know that the same is true of each Tj'. We can then find 

2-paths centred at  vertices col and co2 that will join the trails in each Ti into the 

Euler tour, Ti. 
The set of 2-paths for specifying T; will be based on the edges in the Hamilton 

cycles H4m-3, HO, and HI. As usual, we denote H4m-3 by H-l in order to emphasize 

that a-l(Ho) = H4m-3. The edges of these three Hamilton cycles are ordered as 

described above and listed below. 
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0 0 2  d l ,  

dl C l  7 

C l  CO: 

~0 d2, 

dk+l U k , l  L k L m - 1,  

ukck+l , l  < li's 772-2, 

ck+l bk, 1 5 k 5 rn - 2 ,  

bk dk+2, 1 < k 5 m. - 2: 

am-1 bm-I 7 

bm-1032- 

We use the notation described in Chapter 1 to list the 2-paths in TA: 

ci[Ho : 1: 3 ,5 , .  . . , d ( m  - i j  - 1,  4 m  - i), 4(m - i) $2,4(m - i) + 4,. . . ,4m - 21, 

all for 1 < i < rn - 1,  as well as 

co[Ho : 1, :3 ,5 , .  . . ,4-m - 31 and dm[Ho : 1: 2 , 4 , .  . . ,4m - 21. 

For each centre vertex r ,  the two adjacent edges at which the change from an odd 

numbered edge to an even numbered edge is made are the two edges that contain v', 

where z . d  E I. This ensures that the correct digons are included in the tour. 

Sow let Tj = oJ(T4). fur ! _< j 5 In - 3. Since a fixes I. a is an automorphism of 

+ 1. Therefore, the Ti. 0 5 j 5 I n  - 3, are pairwise similar. We need to prove 

they partition the set of %paths of &, that are not centred at ml or ocz. 
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Claim 3.2.1 The T', 0 5 j < 4m - 3, partition the set of 2-paths in Ii,, that are 

centred at a vertex in A U B U C U D. 

Proof. 

We show that for each vertex v in A u B U C u D, for each r E {1,2,. . . ,4n2 - I ) ,  

and each j E {O, 1,2,. . . : 2m - 21, we have each 2-path aj(v[Ho : r]) in one of the T/. 

These 2-paths are all different and we have (4m - 2)(2m - 1)(4m - 1) of them. As 

this is the number of 2-paths in K4, that are not centred at 001 or 0 0 2 ,  we must have 

every such 2-path exactly once. Addition on the subscripts of the Ti will be modulo 

4m - 2. 

Case 1: Consider ci E C,  1 5 i 5 m - 1. By construction, the 2-paths in 

c;[Ho : 1,3,. . . ,4(m - i )  - 1, 4(m - i),4(m - i) + 2,. . . , I m  - 21 and in b,-;[HI : 

1,3,. . . ,4i - 1, 4i + 2,4i + 4,. . . ,4m - 21 are in Ti. Now ~~" -~ (b , - i )  = c; for all 
- u2m-2 I i E {1,2,. . . , m - 1): and U ~ " - ~ ( H ~ )  = Therefore, Tim-2 - (To) will 

conta.in the 2-paths in: 

using the fact that [Hj+2m-l : k] = [Hj : 4m - k]. 

Therefore, we have each of the 2-paths c;[Ho : r], r E {1,2,. . . ,4m - I) ,  at 

least once in one of TA or T;m-2, and hence each of the 2-paths a j ( c ; [ ~ ~  : r]), r E 

{l, 2,. . . ,4m - 11, in one of Ti = oj(TA), or = uJ(T~/,-~), for each j E 

(0,1,2, . . . ,4m - 3). This is equivalent to having each of the 2-paths aJ(c; [Ho : r] ), 

r E {I, 2,. . . ,4m - 11, 0 < j < 2m - 2, and a j ( a , - ; [ ~ ~  : r ] ) ,  r E {1,2,. . . ,4m - I ) ,  

O 5 j < 2m - 2, in some T:, since 02"-*(c;) = am-;, for all i E {1,2,. . . , m - I ) ,  and 

Ho = Hz,-r. 

Case 2: Consider d; f D, 1 5 i 5 m - 1. The 2-paths in di[Ho : 1,3,. . . ,4m - 

& + I ,  4m-4i+2,4rn-4i+4 ,..., 4m-21 and i n~ , - ; [H-~  : 1,3  ,..., 4i-3, 4i,4i+ 

2,. . . ,4m - 21 are in TL, and (r2"(a,-;) = d;,  for all i E {1,2,. . . , m  - 1): and 
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a2"(HV1) = Hz,-'. Thus Tz', contains the 2-paths in 

Therefore, we have each of the 2-paths d,[Ho : r], r E {1,2,. . . ,4m - I ) ,  at least 

once in one of TA or Tirn, and hence each of aJ(d,[Ho : r]), r E {1,2, .  . . ,4m - l), in 

at  least one of or T,',+,, for each j E {O,1, 2, . . . ,4m - 3). This is equivalent to 

having each of the 2-paths aJ((cl,[Ho : 1-11, r E {1,2,. . . ,4m - I) ,  0 5 j 5 2m - 2, and 

a3(bm-,[Ho : r]), {1,2,. . . ,4m - 11, 0 5 j 5 2772 - 2, a t  least once, since a2"-'(d,) = 

bm-%, for all i E {1,2 ,.,., m -  I ) ,  

Case 3: Finally, we consider the vertex Q. The 2-paths in %[Ho : 1,3,5. .  . . ,4m - 

31 and in dm [Ho : 1.2.4. . . . .4m-21 are in TL. Also, a2"-' (dm) = Q, and a2"-'(Ho) = 

H2n-1. Therefore, Ti,-, contains the 2-paths in 

giving @[Ho : rf . r E (1.2, . . . .4m - 1). at least once in one of Ti or Ti,-, . Therefore, 

we have the %paths aJ(%[H0 : r]). r E {1,2.. . . .4m - 1) in either T: or T;,-l+,, 

for each j E (0.1.2.. . . ,4m - 3). This is equivalent to having d(co[Ho : r]) ,  r E 

{1,2,.. . ,4m - 1). 0 5 j 5 2m - 2, and a3(dm[Ho : r]), r E (1.2,. . . ,4m - I) ,  

0 5 j 5 2m - 2, each at least once. 

In total, for c E -4 U B U C U D. we ha~re aJ(v[Ho : 1,2. .  . . ,4m - 11) for all 

j E {O,l, .... 2m - 2 ) -  n 

The following claim establishes the structure of Ti- It will be important to know 

the first and last edges of each trail in TA when we come to put in the 2-paths centred 

at ml and m a .  

Claim 3.2.2 The list of 2-paths giaen for Tl forms a set of 2m - 1 trails, each of 

which starts on ocil and ends on m 2 .  W e  will calf the trail that starts on the edge 
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m l  v ,  P,, for all v E A U B U C U D. The trails, with their first and last edges, are as 

follows: 

Pa,, 1 < i < [?I - 1,  a trail from m l  a; to a2i m 2 ,  

Phi, 1 < i < [ Y J ,  a trail from ml b; to ~2i-1932, 

PC,, 0 < i < - 1,  a trail from wl c; to ~ 2 ;  ma, 

Pdi, 1 < i < L f j ,  a trail from 051 di to a2i-1x9, 

PC, wh.en m is even, a trail from ml c y t o  dm w 2 ,  
2 

Pdy  , when m is odd, a trail from ml d~ to dm m 2 ,  
2 

P,,, 171 < i < m - 1, a trail from ml a; to b2(m-i)-1 002, 

Pbit + 1 < i < m - 1, a trail from m1 bi to d2(m-i) ~ 2 ,  

PC,, + 1 < i < rn - 1,  a tra.il from ml ci to b2(m-i) 932, and 

Pdi, [ f l  + 1 < i < rn, a trail from ml d; to d2(m-;)+l m2. 

Proof. 

To prove this claim, we list the order in which the 2-paths occur in the trails. We 

will not mention which Hamilton cycle the edges that determine the end vertices of a 

2-path come from, as it should be clear that 2-paths centred at a vertex in A, B or 

CUD, h.we their end vertices from H-l ,  H I ,  or Ho, respectively. Some of the 2-paths 

have a superscript. These superscripts are relevant only in Section 3.3.2. 

In order to check that we have covered every edge exactly once, it is enough to 

verify that every 2-path listed below is actually in TA, that every two adjacent 2-paths 

overlap in an edge, and to count the number of edges covered by the trails. Since any 

edge containing ml or m2 is in only one 2-path in TA, these edges must determine 

the ends of trails. If these trails cover Sm2 - 2 edges, then we have covered all the 

edges in I&, - (ml 002) u ( I  - {lxl 002)) exactly once. It is not necessary to check 

that the edges covered are all distinct: once you start a trail at an edge, say, cml v, 

then the rest of the trail is completely determined because every edge (except those 

containing 001 or m2) is in exactly two 2-pat.hs. It is obvious that the following trails 

a11 start on different edges. 

Counting the edges in the P, does yield Sm2 - 2 edges, as required. 

The trails are as follows and the verification of the above although dreadfully 
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tedious is not difficult. Within each trail there are several patterns on sets of four 

2-paths. We will show a patstern and specify that it occurs for ql 5 j 5 q2, for some 

ql and q2. We will also show the pattern for j = ql and j = q2 because this helps 

when verifying that every pair of adjacent 2-paths do overlap in an edge. A 2-path 

will be underlined if it happens to be the end of a pattern for some j. 
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PC= when m is even : 
2 
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Pd*, m odd : 

?Ve are now at the point of joining the trails in each of the T,' together with 2-paths 

centred at ool and lm2 to form the Euler tours T,. Currently, the T,' are all pairwise 

similar. However, in order to use every 2-path centred at ml or ~ 0 2  exactly once, 

we have to have some Euler tours that contain the digon col x 2  ml. and some that 

contain the digon 032 ool 0 2 2 -  The following two claims, covering the two cases of m 

odd and n even, show how to join the trails in Td together with 2-paths centred at 

xi1 and C ? C ~  to construct one Euler tour of I{4m +I that contains the digon x l  o o 2  ool 

and another that contains the digon m2 xl c q .  We then use these two Euler tours 

to generate a perfect set of Euler tours. 

Claim 3.2.3 Assvme m- is odd. Lef. 

T, = T '  U mI[& : 2,4,6, .  . . ,4m - 21 U m2[& : 1 , 3 , 5 , .  . . ,4m - 11 and 
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Then 

1. Ta and Tb are Euler tours of Kqm + I, and 

2. The set of Euler tours, {Ti : 0 5 i < 4m - 3): where Ti = a i m )  if 0 < i < 
2m - 2 and Ti = ai(Tb) if 2m - 1 5 i < 4m - 3, is a perfect set of Eder  tours 

of K4m + I .  

Proof. 

Assume m > 1. 

Proof of 1): To construct Ta we need to know that the 2-paths and digon that 

are in ool[Ho : 2,4,. . . ,4m. - 21 are ~ o o l  dl, ajool cj, 1 5 j < m - 1, bj ool dj+1, 

15 j 5 m-1,andco2c01m2. The2-pathsinm2[Ho: l ,3 ,  ... ,4m-l]areoo1c02co, 

dj 0 0 2  aj, 1 5 j 5 m - 1, cj oo2 bj, 1 5 j < m - 1, and dm 0 0 2  ool. 

To construct Tb we need to know that the 2-paths in eq[Ho : 1,3,. . . ,4m - 11 

are oo2 Q, dj m l  aj, 1 < j < m - 1, cj ool bj, 1 5 j < m - 1, and dm ool 032. The 

;?-paths in m2[Hm : 2,4,. . . ,4m - 21 are a j  0 3 2  bm-j, 1 < j 5 m - 1, and cj 0 0 2  dm-j, 

0 j 5 m - 1, together with the digon ~ 1 0 0 2  ool. 

The left-hand diagram in Figure 3.2 shows how the 2-paths centred at ool and 0 0 2  

join the trails in TA together to form the Euler tour Ta. As well as col and 002, there 

are two columns of vertices in the diagram, each containing V(K4m-2). A dashed 

line between vertex 1 in the left-hand column and vertex r in the right-hand column 

indicates the trail in TA that starts on the edge ool 1 and ends on the edge r 002. This 

is the trail labeled Pr in Claim 3.2.2. A solid line between two vertices ll and 12 in 

the left-hand column indicates the 2-path Zl ool Z2. A solid line between two vertices 

rl and r2 in the right-hand column indicates the 2-path rl oo2 r2. Finally, the dotted 

lines represent actual edges in the Euler tour To. 

In exactly the same manner, the right-hand diagram in Figure 3.2 shows how the 

2-paihs centred at ool and at m2 join the trails in TA together to form the Euler tour 

Tb. 

Proof of 2): It is not hard to see that the set of Euler tours {Ti : 0 < i 5 4m - 3) 

contains every 2-path centred at col or m2 exactly once, and hence that we have 

constructed a perfect set of Euler tours of K4, + I. 
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Figure 3.2: Ta and Tb when m is odd and rn 2 3. 

?Yhen rn = 1 the diagrams in Figure 3.2 do not apply. It is however easy to check 

this case sepa.rately. 0 

Claim 3.2.4 Assume m. is ewn. Let 

T, = T i ~ r x ~ [ H ~ :  '2,4,6 ,... ,4m -21 u coz[Ho : 1;3,5 ,...; 4m - 11 and  

Tb =Tiuml[Ho: 1,3,5 ,..., 4m- ~ ] U W ~ [ H , + ~  : 2,4,6 ,...? 4m -21 i fm  > 2 and 

Tb = T~u.c;oljiil : 1,3,5 :...: 4m- I ] L I C O ~ [ H ~  : 2 , f , 6  ,...: 4m -21 if m =  2. 

Then T, and Tb a m  Euder tours of I{4m + I ,  and the set of Euler tours, (Ti : 0 5 i < 
4m - 31, where Ti = oi(Ta) if O < i 5 'Sm - 2 and  Ti = ai(Tb) if 2m - 1 < i 5 4m - 3, 

is a perfect set of Eder tows of K4, + I .  
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Proof. 

When m > 2 is even the only difference in 2-paths centred at ml or m2 from the 

odd case is the set of 2-paths centred at 0 0 2  in Tb. These 2-paths are aj 0 0 2  bm+l-j, 

2 ~ j 5 m - 1 , c j m 2 d m - l - j , 0 ~ j 5 m - 2 , a l m 2 ~ , - ~ ,  blm2dm a n d o o l c q c q .  

Figure 3.3 proves that T, and Tb are Euler tours. The result follows exactly as in 

the odd case. 

The case m = 2 is readily verified. E 

This completes the construction of a. perfect set of Euler tours of IT4, + I. 

3.3 A Perfect Set of Euler Tours of K4m+2 + J 

We have constructed a perfect set of Euler tours of + I when k is even. Now 

assume k is odd and let k = 2m + 1. 

3.3.1 A Perfect Set of Euler Tours of K6 + J 

The general construction that follows in Section 3.3.2 for a perfect set of Euler tours 

of 1Grn+2 + J does not work when m = 1, so we do this case separat'ely by giving 

four Euler tours To, TI, T2, T3, that form a perfect set of Euler tours. Let V ( I 6 )  = 

{1,2,3,4,5?6) andlet J =  {12 ,34 ,56) .  

3-3-2 A Perfect Set of Euler Tours of K4m+2 + J ,  rn > 1 

Let V(h',m+l) = {m2) UAUBUC'U D', where C' = CU{C,) and D' = DU {dm+l) 

and A, B, C and D are as in Section 3.2. Let V(1{4m+2) = V(&,+l) U {ool). We 

construct a perfect set of Euler tours of IC4,+2 + J ,  where J is a 1-factor of Gm+2, 
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I d2 @ - - - - -  a3 
Pattern &ats 

bm-2 

dm-2 

Figure 3.3: T= and Tb when rn is even. 
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by partitioning the 2-paths of K4m+2 into 4m parts, and then showing that the 2- 

paths in each part do indeed form an Euler tour of K4m+2 + J .  We will be using the 

trails in TA that were constructed for hjm + I to accomplish the latter half of this, so 

in this section we will partition the 2-paths in I<4m+2 into {So, Sl, . . . , S4m-l}. For 

i E { O , 1  , 2, . . . ,4m - 1) let 5';' be only those 2-paths in S; that are centred at a vertex 

in AU B U  C'U D'. 
We use the construction mentioned in Section 3.1 to obtain a Hamilton decompo- 

sition of &,+, . We label the vertices so that as many of the trails as possible in SA 
will be the same as, or similar to, a trail in T;. Let T be the following perm~tat~ion 

of V(K4m+2) that fixes xl and generates a Hamilton decomposition 

of &m+l on the vertex set {x2} U A U B U C' U D'. The Hamilton cycle Co (shown 

in Figure 3.4) is given by 

(m2  ~g dl a1 CI bl d2 a2 c2 b2 - - - di a; c; b; - - - dm-l am-1 bm-l dm dm+1 c,), 

and we now have the Hamilton decomposition C, where C; = 7;(CO), 0 5 i 5 
2m - 1. We can obtain a set of 4m Hamilton cycles by letting Ci = ri(Co) for 

i E {0,1,2,. . . ,4m - 1). Note that Ci = Ci+2m, for all i, where addition on the 

subscripts is modulo 4m. It is easy to see from Figure 3.4 that when we choose edges 

that are fixed by r2" to be the I-fact.or J of I~4m+2 ,  we have 

which is itself fixed (setwise) by r. 

We will use the Hamilton cydes Coy Cl and C4m-1 = C-l to list the 2-paths in 

5';. Order the edges in these three cycles as follows: 
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Figure 3.4: & and T 
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The 2-paths in SA are: 
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for i E {1,2,. . . , m), and 

%[Co : l ,3 ,5 , .  . . ,4m - 11 and dm+l[Co : 1,4,6,8, .  . . ,4m]. 

Define S: = rJ'(S':,), 0 < j < 4m - 1. Since T is an automorphism of K 4 , + 2  + I, 
the S;' are all pairwise similar. 

Claim 3.3.1 The Si, 0 < j < 4m - 1, partition the set of2-paths in K r n + 2  that a.re 

centred at a vertex in A U B U C' U D'. 

Proof. The proof is very similar to the proof of Claim 3.2.1. 

Case 1: Let c; E C' \ {co,  em). Then the 2-paths 

are in SS, and the 2-paths 

are in S;,+,. This second set of 2-paths is equal to 

Combining these two sets, we have each 2-path in c,[Co : r], r E {1,2, .  . . ,4m + I ) ,  

at least once in S':, or Slm+,. Therefore, we have each 2-path in rJ(ci[Co : r]) ,  r E 

{1,2, . . . ,4m+l}, 0 5 j < 4m-1, at  least once somewhere in the 5';. This is equivalent 

to  having each %path in rj(c;[Co : r]), r E {1,2,. . . ,4m + I ) ,  0 < j 5 2m - 1, and 

in ~~(b , - ; [Co  : r]), r E {1,2,. . . ,4m + I}, 0 5 j 5 2m - 1, at least once, since 

r2"(ci) = bm-; for all i E (1,2,. . . , m - 1). 

Case 2: Let di f D' \ {dl, dm+l}. Then the 2-paths 

are in SA and the 2-paths 
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are in Sirn-,. This second set of 2-paths is equivalent to  

Combining these two sets, we have each 2-path in d; [Co : r] , r E {1,2, . . . ,4m + 11, at 

least once in SA or Sirn-,. So we get each 2-path in rj(di[C0 : r]), r E {I, 2, .  . . ,4m + 
l ) , O < j < 2 r n - l , a n d i n r j ( a , - i + l [ C o : r ] ) , r ~ { 1 , 2 ,  . . . ,  4 r n + l ) , O ~ j < 2 m - l ,  

a t  least once, since rZrn(di) = am-i+l for all i E {2,3,. . . , m). 

Case 3: The 2-paths co[Co : 1,3, . . . ,4m - 11 in SA and the 2-paths 

in S;, together give Q[CO : r], r E {1,2, . . . ,4m + 11, at least once in SA or Si, . 
Therefore, we have each 2-path in rj(%[Co : r]), r E {1,2,. . . ,4m+1), 0 < j < 2m-1, 

and in rj(crn [Cg : TI), r E {1,2, . . . ,4m + I ) ,  0 < j < 2m - 1 , at least once somewhere 

in the S(. 

Case 4: The 2-paths dl[Co : 1,3, .  . . , 4m - 1,4m] in SA and the 2-paths 

in S;, together give dl[Co : r], r E {I,  2 , .  . . ,4m + 11, at least once in SA or Sam. 

Therefore, we have each 2-pat.h in rj(dl[Co : r]), r E {1,2,. . . ,4m + 11, 0 < j 5 
2 m - l , a n d i n ~ ~ ( d ~ + ~ [ ~ ~ : r ] ) , r  E {1,2, ..., 4m+l} ,O < j 5 2 m - 1 ,  at  leastonce, 

Altogether, for each v E A U B U C' U D' and each j E (O,1,. . . ,2m - 1) we have 

~ ' (v[Co : T I ) ,  r f {1,2,. . . ,4m + 11, a t  least once. This means we have every 2-path 

at least once, and hence, exactly once. 

Claim 3.3.2 The 2-paths in 5'; fit together to form 2m trails. Of these, 2rn - 2 start 

on an edge containing ml and end on an edge containing 032. Label such a trail Pi, 

where 031 v is the first edge of the trail. The trails in SA with their first and last edges 
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c, 14m.l dm+1[4m] = 001 c, ml and 

Proof. 

There are relatively few 2-paths on which TA and 5'; differ and we can use the trails 

in 1: to determine the structure of the ttrails in 5';. We will do this by considering 

where the 2-paths in SA differ from those in TA. For most pairs cu and k ,  a E { - 1,0, i } , 
k E {I,  2,. . . ,4m - 21, the edges [He : k] and [C, : k] are the same. The edges that 

differ that will affect 2-paths in 5'5, are C1 [4m - 21 # HI [4m - 21 and C-1 [4m - 21 # 
H-1[4rn- 21. Also, any 2-path in S; that is centred at cm or dm+l, or has end vertices 

from the 4mth or (4m - l) th edge of one of the Hamilton cycles, Co, C-1 or C1 must 

be new. 

From now on we will no longer mention which Hamilton cycle Co, C17 or C-1 

the end vertices of the 2-paths in SA come from, since 2-paths centred at a vertex 

in A always have end-vertices from C-l. 2-paths centred at a vertex in B always 

have end-vertices from Clt and 2-paths centred at a vertex in C' U D' always have 

end-vertices from Co. We will however mention which Hamilton cycle, H-1, Ho, or 

HI, the 2-paths in TA come from, mostly to stress that we are considering a 2-pat h 

in TA and not one in Sh. 

The 2-paths thai are iu TA but not in Sk are those that are marked in the trails of 

TA with a superscript r ,  *(o) (only applies when rn is odd), or + ( e )  (only applies when 
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m is even). Whether m is odd or even, the 2-paths that are marked in this way are: 

U;[H-~ : 4(m-i)],  15 i 5 m - 1, 

b;[Hl : 4(m - i )  + 21, 1 5 i 5 m - 1, 

c;[Ho : 4(m -i)],  15 i 5 m - 1, 

di[Ho : 4(m - i )  + 23, 1 5 i 5 m, 

aj[H-l : 4m-21, for all j E {1,2 ,..., m -  I) ,  and 

bj[Hl : 4m - 21, for all j E {2,3,. . . , m  - 1). 

The 2-paths that are in ,C but not in Ti are: 

v[4m], for all v E A U  B u C'U Dl \ { ~ ) , ~ [ 4 m  - 11, and dl[4m - 11, 

c,[l,2,4,6 ,..., 4m - 21 and d,,+l[l,4,6,8 ,..., 4m -21, 

ai[4(m - i )  - 11, 1 < i < m - 1, 

bi[4(m - i )  + I], 1 5  i 5 m - 1, 

c;[4(7~2 - i )  + 11, 1 5 i 5 m - 1, 

d;[4(m - i )  + 31, 2 5 i < - ?  m 

aj[4m - 21, for all j E {1,2,. . . , m  - I),  (because C-l[4rn - 21 # H-l[4rn - 21) 

and 

bj[4m-21, for a l l j  E {2,3, ..., m-1)  (because Cl[4m-21 #Hl/4m-21). 

First of all, Pil = Pal, 1 < i < 171 -1 ,  PLl = Pb,, 1 < - i - < Lmj 2 7  Pf, = PG, 

1 5 < - 1, and P:, = P d l ,  1 < i < 171, because none of t.he 2-paths in these 
trails is one that was either removed or changed by using the Hamilton cycles in C 

instead of the Hamilton cycles in If. 

The trail Pi CE when rn is even and the trail Pim when m is odd are completely 
2 -3- 

different from PC, and Pd, , respectively. This is not surprising given that we need 
2 + 

a different set of digons in SA than in TL. They use the 2-paths c;[4(rn - i> + 21, 
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1 _< i 5 m - 1, and di[4(m - i) + 41: 2 5 i 5 m. These are marked with a superscript 

i ( e )  or i ( o )  in the trails of TA. (Again, (e) stands for the case when m is even and (o) 

stand for the case when m is odd.) They also use the new 2-paths c,[1,2]. dl [$m], 

c;[4(m - i) + 11; 1 5 i _< m - 1, and 4[4(m - i )  + 31; 1 5 i 5 m. Note that they do 

not use any of the 2-pat.hs that were in PC, or PdT.  
2 

P;,, m even : 
2 
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and 

Pi, , ?rn odd: 
-8- 

The remaining trails of Ti are dl modified at least once to make them the trails in 

5';. We remove 1 or 2 subtrails from each and then use the new 2-paths that are still 

available and the %paths marked with a superm-ipt $(el or $(o) in PC, or P d y ,  
2 

respectively. to join the trails together again and to create two new trails. 

First consider the 2-paths that are marked with a superscript * in the trails on 

TA. These are . ~ i - ~ + l  [H-l : Im - 21 in Pa* : 171 5 i 5 m - 1 : and uzi-,[W-, : 

Sn - 21 in P,. f- 1 < i 5 rn - 1. giving a,jHdl : 4rn - 21 exad& once for each 

j E {1,2,.. ..m - I). Replace the %-path : 4m - 21 = a,-] a, b,-l with the 

following trail: 
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The 2-paths b2;-,[B1 : 4m - 21 in Phi, + 1 5 i < m - 1, and the 2-paths 

b2i-m-1 [fi : 4m - 21 in Pd,, Lyj + 2  < i _< m, are also marked with a superscript 

*, giving bj[Hl : 4rn - 21 exactly once for each j f (2 ,3 , .  . . , m - 1). For each 

j E {2 ,3 , .  . . , m - 1); replace the 2-path bj[Hl : 4.m - 21 = dm bj cm-1 with the trail 

The following s~lbtrail is marked with superscripts *to) or f(o) in Pb+, when m 

is odd, and with superscripts *(e) or j(e) in Pdp+, when m is even. 

= d, bl c,-l d2 u,-l CO.  

Replace it with 

For the remaining changes to the trails in TL, we have to consider rn even and odd 

separately. 

Case 1: If rn is odd. then PC,. 171 + 1 < - i 5 m - 1, and Pd,, + 1 5 i < nz, 

require no more changes to become P! -. . j - YJ $1 5 i 5 rn -1. and Pj,. $1 5 i 5 n2, 

respectively. The subtrail in Pat comprising the four 2-paths that are marked with 

becomes 
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completing the trail PL,, for < i < - rn - 1. 

The subtrail in Psi, < i 5 rn- 1, comprising the four 2-paths that are marked 

with superscript *(o)  or i(o), 
3m-1 bi-+[H1 : 4(7 - i )  -+ 21 csrn-1 i[Ho : 4(i - y) + 21 

2 

di -;I : l [ H o :  4 ( y  - i )]  C Z ~ ~ - I  i[H-l : 4(i - )I 
2 

becomes 

bi m-1[4(? - i ) + l ] d -  - [ 4 ( i - y ) + l ]  
2 2 -l 

3n-1 * ci m-1[4(7-- - z )  - 1] a3m-~ ;[4(i - 9) - 11 
2 2 

completing the trail Pit, for 5 i < m - 1. 

Case 2: If rn is even, then Pa,, 5 i 5 m - 1 and Pst, 171 + 1 5 i < m - I ?  

require no more changes to become PL, , 5 i m - 1 and PLt , 171 + 1 5 i 5 m - 1, 

respectively. The subtrail in PC, + 1 _< i 5 m - 1? comprising the four 2-paths 

that are marked with superscript *(el or i(e), 

- [HI  : 4(i - 7 )  + 2 ] c 4 H O  : 4 ( 5  - i) + 21 b a d ,  2 

dk-i+l [Ho : 4(i - y)] ai- : 4(? - i)] 2 
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completing the trail Pi,, for 5 + 1 < i < rn - 1. 

The subtrail in PdZ7 + 2 5 i 5 m. comprising the four 2-paths that are marked 

with superscript * ( e )  or i ( e ) :  

bi-?[H1 : 4(? - i )  + 21 c*-,[& : 4( i  - y )  + 21 
2 

di-?+* [Ho : 4(% - i ) ]  U ? - ~ [ H - ~  : 4(i - F ) ]  

becomes 

bi-?[4(? - i )  + l] de-;[4(i 2 - :) + 11 
3m c i -Z[4 ( -  2 2 - Z )  - - 11 ~ % - ~ [ 4 ( i  - 7 )  - 11 

2 

completing the trail Pi, for + 2 < i < m. 

The remaining two trails that use the four edges xl c,. fxl . x 2 d m ,  and 

X S ~  do not follow the pattern of starting on an edge containing cxjl and ending 

on an edge containing x z .  Instead. they are 

We have now used all of the new \.-paths as well as those that were marked with a 

superscript $ ( e )  in PC, or with a superscript f(o) in Pdm . O 
2 + 

In the following claims. we show how to use the 2-paths centred at xl and 0 2 2  

to complete the Si into Euler tours. 

Claim 3.3.3 Assume m is odd. Let 

S, =SAuml[C1 :2.4.6 ..... l r n j ~ ! x ~ [ C ~  : 1.3.5  ..... Am+ I] and 

Then ,C, and ,C5 are Evler fours of fi4m+2+.J, and the set of Euler tours. (5'; : 0 5 i 5 
4m - I),  where Si = r i ( S . )  $ 0  < i < 2rn - 1 ,  and S; = T'(&) if2m 5 i < - I m  - 1 ,  

is a perfect set of Euler lours of h;,+z + J .  
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Figure 3.5: Sc when m is odd and m 2 3. 

Proof. 

Figures 3.5 and 3.6 show. respectively- that Sa and Sb are Euler tours. The different 

edges in the graph are defined the same way as those for T, and Ta with the additional 

vertical dashed edge from c, to d ,  in the left-hand column of vertices representing 

the trail m1 C, dmtl ml. and the vertical dashed edge from dm+l to dm in the right- 

hand column representing the trail OQ dm+] % dm 0 0 2 .  

We shouid probably note f a  the sake of the  proof of Claim 3.3.1, that for all 

i E (0, I t  2,. . - ,4m - 11, 5f is indeed a subset of t.he Si defined in this claim. 

n 
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Figare 3.6: SB when rn is odd and rn > 3. 
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The following claim for the case of rn = 2 is given without proof. 

Claim 3.3.4 Let 

S, = S':, Uml[C2 : 2:4,6,8] U m2[C1 : 1,3,5,7,9] and 

Sb = S& U ml[C1 : 1,3,5? 7,9] U m2[CO : 2,4,6,8]. 

Then Sh and Sb are Euler tours ~ f f t ; ~ + J ,  and the set of Euler tours, {Si : 0 < i 5 71, 

where Si = ~ ~ ( 5 ' ~ )  i f0 5 i < 3: and S; = ri(Sb) i f  4 < i < 7? is a perfect set of Euler 

tours of Klo + J .  

Claim 3.3.5 -4ssume nz > 2 is ezen. Let 

S, = S& u ccl[Cm : 2,4,6, .  . . ,4m] u mz[C1 : 1,3,5, .  . . , 4m + 11 and 

Sb = Sh u ml[Gtl : 1,3,5, .  ...4rn + 11 u 0o2[Cl : 2,4 ,6 . .  . . ,4rn]. 

Then S, and Sb are Euler fours o ~ K ~ ~ + ~  + J ,  and the set of Euler tours, {Si : 0 < - i < - 
4m - 11, where S; = .ri(,S,) if 0 < i 5 2m - 1,  and Si = T ~ ( S ~ )  if2m < i 5 4m - 1 ,  

is a perfect set of Euler lours of K4m+2 + J .  

Proof. 

Figures 3.7 and 3.8 show ,Ch and Sb are Euler tours. 

This completes the construction of a perfect set of Euler tours of Kdrn+2 + J and 

the proof of Theorem 3.1 -1. 
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Q) * - - - - - - - 'b \ 
0 - - - - - - -  9 5 :  * -- - - - - -  *fi * - - - - -  - - * b, 
;I) - - - - - - - a-% Pat lrrn rrpcat s 

l - - - - - - -  acl, 
(b - - - - - - - * aa 

*-------*dl * - - - - - - -  *C2 
0 - - - - - - - * h i  

Figure 3.7: Sa when nr is even and rn 2 4. 
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: Pattern repeats 

- _ _ _ - -  
m 2 (mod 4 )  

Figure 3.8: Sa when m is even and rn > 4. 



Chapter 4 

Another Question of Kotzig's 

The results in this chapter were motivat,ed by Kotzig's question [12]: What is the 

smallest k for which there is a perfect set of Hamilton decompositions of The 

disculty of this question led us to consider two related problems. In Section 4.1 we 

show that for any k there are at least 2k - 2 pairwise compatible Hamilton path 

decompositions of I<2k. A simple corollary of the proof of this theorem is that there 

exists a set of 4 k - 2  Hamilton path decompositions of Ii;k such that every 2-path is in 

exactly two of the Hamilton paths. In Section 4.2 we add a new vertex 'x, to Hamilton 

path decompositions similar to those constructed in Section 4.1 to get a lower bound 

on tahe number of pairwise compatible Hamilton decompositions of I{2k+l,  when k is 

even. 

4.1 Pairwise Compatible Hamilton Path Decom- 

posit ions 

The graph &, has k(2k - f j(2k - 2 )  2-paths. A Hamilton path decomposition of 

KZk contains k (2k  - 2) 2-paths. We would like to construct a set of 2k - 1 pairwise 

compatible Hamilton path decompositions of K2k: a perfect set of Hamilton path 

decompositions of JGk. However, when k = 2, it is possible to find at most two 

compatible Hamilton path decompositions. In Theorem 4.1.1 we extend this result 



CHAPTER 4. ANOTHER & UESTION OF KOTZIG 'S 71 

by constructing 2k - 2 pairwise compatible Hamilton path decompositions of I{2k for 

all values of k. There is however no reason to suppose for k > 2 that it is not possible 

to find 2k - 1 pairwise compatible Hamilton path decompositions. 

Theorem 4.1.1 The complete graph K2k has a set of 2k - 2 pairwise co.mpatible 

Hamilton path decompositions for all k > 1 .  

We first prove three lemmas. The second lemma and part 2 of the first are only 

used in Section 4.2, but it is convenient to prove the results all at once. 

We assume that all addition is modulo 2k - 1 with residue classes 0,1, . . . ,211: - 2, 

unless otherwise stated. Let V(K2k) = {wl) U {O,l,. . . ,2k - 2) and V(K2k+1) = 

V(KZk) U (00). For 0 5 i 5 2k - 2 and x, y E {0,1,2, . . . ,211: - 21, let Fi = {CQ i )  U 

{zy : x #  y and x+yr2 i (mod2k-1 ) ) .  

We define a "lengthn function on the edges in that do not contain vertex 

001 as follows. Let l ( z  y) = min(x - y (mod 2k - I),  y - J: (mod 2k - 1)). We say 

two edges vl v2 an2 211212 in fi ik are parallel if none of the vertices is oq  and if 

211 f U P  S V ~  + v2 (mod 2k - 1). For example, for each i E {O,1,2,. . . ,2k - 21, the 

edges in Fi that do not contain ml are pairwise parallel. 

Suppose for some a ,  b f (0: 1,. . . ,2k - 2) that Fa U Fb is a Hamilton cycle H of 

K2k. We can assume that H = (wl w2 - - wZk), that the edge wl w2 is in Fa, and 

that wl = ml. We want to consider the 2-paths in { W ~ ~ - ~ [ F ~ ]  U w ~ ~ [ F ~ ] :  1 5 j 5 k). 

This set contains 2-paths of the form m u v  and so the union of the 2-paths in 

{w2j-1 [Fa] U w2j[Fb]: 1 5 j 5 k) will contain trails that start and end at vertex ca. 

For the moment we want to consider trails in and not in K2k+1, SO we will omit 

%-paths containing oo. This is equivalent to constructing the trails in and then 

removing m, We don" want to forget about the 2-paths that contain cx, altogether, 

because in the next section, we will use these 2-paths to join the Hamilton paths in 

ITzk into Hamilton cydes in hrZk+1. 

Lemma 4.1.2 Given that f.', u fab is G Hamilton cycle H = f wl w2 - - - wZk) of 

where wl = ool and wl w2 E Fa, the trailsfomzed by the set of2-paths in { w ~ ~ - ~ [ F ~ ]  U 

wj[Fbj : 1 5 j 5 k) hawe the following two properties: 



CHAPTER 4. ANOTHEE QLrESTION OF KOTZIG7S 

2. They form a Hamilton path decomposition of and 

2. The Hamilton path that begins on vertex wl = ml ends on vertex wk+l = 

2-'(a + 6) (mod 2k - 1) .  

Proof. 

The outer cycle in Figure 4 1 is the aamilton cycle H = Fa u Fb when k is even. 

When k is odd, a similar figure is obtained. 

Proof of 1): The subtrail of { W ~ ~ - ~ [ F ~ ]  U wZj[Fb] : 1 5 j 5 k )  in IGk that starts 

on wl is the Hamilton path P given by the boldface edges. It is not hard to see that 

the trails that start on the other vertices form Hamilton paths in exactly the same 

way. In fact, if we let. p be the following permutation of V ( K Z k ) ?  

then the other trails formed by the set of 2-paths in [Fa] U w2j IF5] : 1 5 j 5 k )  
are $(P) ,  for 1 < j < k- 1. 

Proof of 2): By the definitions of F, arid Fb, we can describe vertices to;, 2 _< i 5 2 k ,  

ir: terms cf a and b. The Hamilton pzth P shown in this figure obviously starts at 

wl = c q  and ends at wk+l -- ku-(k-1)b -- Jib - (k - l ) a  = T 1 ( a  + 6) (mod 2k - 1). 

13 

Lemma 4.1.3 i%en k is even, the Hamilton paths formed by the set of 2-paths in 

( t ~ ~ ~ - ~ f F , ]  U I D ~ ~ [ F ~ ] :  1 5 j 5 k), hare the following property: 

The length of the edges in determined by the Jirst and last vertices of each of 

the Hamilton pafhs, except P .  is a constant. I'hat constant is 

Prccf. 

Assume k is even. From the action of p on P in Figure 4.1: we see that if we 

start a trail at vertex ZL~;, 2 5 i 5 k. that it will finish at wi+k? where addition 

on the subscripts is modulo 2k. with residue classes 1,2, . . . ,2k. By definition of 
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Figure 4.1 : P and p 

Fa and Fb, if i is even, wi+k -- k(a - b) + w; S?-'(a - b) + w; (mod 2k - 1). If i is 

odd, then w ; + k  - k(b - a) $ w; 2-'(b - a)  + w;(mod 2k - 1). In either case, 

!(w; 2 ~ ' ; + ~ )  z min(2-'(n - b) (mod 2k - 1),2-'(b - a) (mod 2k - I)). 0 

The proof of the third lemma is heavily based on the proof of Theorem 1 in [I]. 

Xote that k can again be odd as well as even. 

Lernrna4.1.4 Assume that c > dt where c ,d  E {O,1,2 ,...: 2k-2) .  I f c - d  and 

2k- 1 are relatively prime, then F,LIFd is a Hamilton cycle, whew Fi = { c q  i) U (a: y : 

z # y  a n d z + y  r 2 i ( m o d 2 k - - 1 ) ) , f o r i ~  (c,d). 

Proaf. 

Let F, and fi be two such I-factors of KZk SO that c  - d a d  2 1  - i are relatively 

prime. Consider arn I-subset of those edges in F, that do not contain s l .  The sum sf  

the vertices in these edges will be congruent to Zlc(mod 2k - 11, since an edge z y in 

& s f wl # y, satisfies z + y r 2c(mod 2k - 1). Similarly for Fd. Suppose PC U Fd 

is not a Hamilton cycle of hk, Then there is an even length 2m-cycle in F, L; Fd that 
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does not contain gml, where 2 < rn < k - 1. We can sum the vertices in this cycle as 

edges of F, or as edges of Fd to get that 2rnc z 2md (mod 2k - 1). This contradicts 

the fact that c - d and 2k - 1 are relatively prime. 

Define a and T to be the following permutations of V(li'2k): 

a = (ool)(O 12  . - - 2k-2) and 

Yote that 7(FO) = Fl and 7(F1) = FO. 

Each of Ho, HI, . . . ; Hk-2 and HA, H i ,  . . . , HL-2 will be a set, of 2-paths, and our 

objective is to show that each of these sets of 2-paths is a Hamilton path decomposi- 

tion of Xzt. We will List the 2-paths in Ho. show how to determine the H j  and H,! so 

they are similar to Ho, show that no two of {Ho7 HI, . . . , U {HA, Hi, . . - , 
have a 2-path in common, and prove that Ho is a Hamilton path decomposition of 

K2k. 

Define the 2-paths in Ho to be 

.XI; [FoI 

OfFlI 
2i[Fo] for i E {1,2, . . . , k  - l ) ,  and 

(2 - l)[Fl] for i E {1,2,. . . , k - 1). 

Let HA = 7(H0), Hj = 0 2 j ( ~ o ) ,  for 1 < - j < - k-2, and Hj = 02j(HA), for 1 < j < k-2. 

By definition, the Hi and HJ are all similar to Ho. 

Claim 4.1.5 The 2-paths in HA are ~cxjl[Fl]~ OIFo], and 2i[Fl] and (2i - l)[Fo] for 

i €  {132 ,*.., k-1).  

Proof. 

This f d o m  immediately since IT(&) = Fl and 7(Fl) = F3, 0 

Claim 4.1.6 For any j E { O ,  1 . .  . . , k - 2): the set of2-paths in H, and Hj contains 

every 2-path zn with end uertices from an edge in FZj or F2j+l exactly once. 
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Proof. 

By definition and by Claim 1.1 -5: ire know that Ho and HA beheen them contain 

every 2-path with end 1-ertices from Fo or Fl, exactly once. Let j E (0, I , .  . . , k - 2). 

Since Hj = oZJ(Ho) and H: = ozj(H;): aud FZ, = oZ'(Fo) and F2j+l = oZj(4),  we 

know that 4 and between them contain every 2-path in K2k with end vertices 

from an edge in Fzj or Fzj+l exactly once. 

It follows that no two of HI.. . . ? Hk-2} U (H;. H,'. . . . Hi-,) have a 2-path 

in common. In fact we hase all possible 2-paths exact1~- once except those with end 

vertices an edge in F2k-2. 

Proof. 

By Lemma 4.1.4: f;o 14 FI is a Hamilton cycle of K2k. 'C\*e can therefore use part 1 

of Lemma4.1.2 to prove that the ?-paths in Ho form a Hamilton path decomposition. 

0 

This completes the proof of Theofem 4.1.1. 

It would seem to be difficult to find a perfect set of Hamilton path decompositions 

of f ik .  However, we can find a set of Hamilton path decompositions of lhk that 

contain every %path exactly twice as a simple corollar_v to the proof of Theorem 4.1.1. 

Corollary 4.1-8 The complete graph kk has a set o j - ik  - 2 Hamilton path decom- 

positions sa thai ecery 2-path in bk is in exactly h a  of them. 

Proof. 

k t  Ho: HI,. . - : H2k-2 and &.Hi.. . . , Hik-:! be the Hamilton path decompositions 

we want to co~struct.  Define Ho and HA as in the proof of Theorem -1.1 . I .  Let 

Hj = cZ'(H0), 0 < j $2b  - 2. and H '  = o%(~h),  0 < j < 2k - 2. Exactly as before. 

we can dim &a? fur all J E ( O .  2 ,  . . . .2k - 2). Hj  and rY,! betweii them contaii; ever:; 

%path in K2k with end vertices from an edge in Fzj or FS+] where addition on the 

subscripts of the 1-factors is modulo 2k - 1, with residue classes 0.1,. . . ,2k - 2. 0 
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It seems appropriate to mention the nest, two results as they tie in with the result 

in Theorem 1.2.22. The first is an obvious coroliary of Corollary 4.1.8; the second is 

a corollary of Theorem 1.2.22 fll]. 

Corollary 4.1.9 There exists a set of Hamilton paths ~ f l { ~ ~  that between them con- 

tain every 2-path of Ksk exactly twice. 

Corollary 4.1.10 There ezists a set of Harnikton paths of that between them 

contain every 2-path of KZkgl exact1y twice. 

4.2 Pairwise Compatible Hamilton Cycle Decom- 

positions 

In Section 4.1 we found a set of 2k - 2 pairwise compatible Hamilton path decompo- 

sitions of h r 2 k .  If the edges determined by the end vertices of each of the Hamilton 

paths were distinct, we could add a new x-ertex x to each Hamilton path decomposi- 

tion and join the ends of each Hamilton path through x to construct %k - 2 pairwise 

cer,.tpat,ib!e Hamiltm decompositions of 2q2k-i. Szdly this doesn-t happen. We i:ow 

attempt to get a lower bound on the number of pairwise compatible Hamilton de- 

mposit ions of h;k+t- when k is even. by constructing a different {smaller) set of 

pairwise compatible Hamiftor, path decotnpositions of I<2k. and making sure that we 

wiIf be able to join the ends of all the Hamilton paths together with distinct 2-paths 

centred at a new vertex za. {The restriction to even k arises because the result in 

Lemma 4 - 1 3  does not hold for odd X-.) 

The foHowing lemmas are 13eeded to find pairs of 1-factors of Kclr,. F,UFb. on which 

the Hamilton deccmpositiom \d he h a d .  The 1-factors. and 1'-(1<2k+l ) 

arc. still defined as in Sect ia11 4.1. 
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Proof. Assurne2-'(u + u )  G 2-I (X + y) jmod 2k - I). Then u + t~ x + y jmod 2k - 1); 

and u u and x y are parallel. CI 

Lemma 4.2.2 i f  k > 2 and even, then th.ere exists a set S of [ y ]  disjoint edges in 

KZk s w h  that: 

1. No f wo of the edges are parallel: 

2. Xo tzoo of the edges haze the same length, and 

5'. Xone of the edges cont~ins  the vertex cq. 

Moreover? we can always _find a subset S* o j  S with at least three edges that have 

lengths relatively prime to 2k - 1. 

I f k  = 2 there is o d y  one such edge. 

Proof. The proof is divided into the three cases of k = 0 (mod 6 j k  r 2 (mod 6), 

and k G 4 (mod 6). 

If k r O(mod 6): 

The set S has $ edges. Let 9' = (Ok-1: 5-1 $+I, k - 2 k + 2 ) .  

If k r 2Cmod 6): 

In this case, S has edges if k > 2. (It has only one edge jf k = 2 )  Let 
k-2 k+l 5k-1 5b-7 Y =  {Ct-3, 7. - -) when k > 2. 
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If k r 4 (mod 6): 

2k+1 In this case S has , edges. Let P = { O  k-1, y2 k - 2  k}. 
n 

Theorem 4.2.3 Szppose k > 2  is eren. There are at least max([y] - ( k  - 1 - 
i ( 2 k - 1  +): 3) poinuise compofible Harnilfon decompositions of K z k i l .  

Proof. By Lemma422 we can find a set S of disjoint edges in SO that no two 

of the edges are parallel. no t ~ o  of the edges have the same length, and so that none of 
o(2k-1)  the edges contains rl. There are at least [$I - (k - 1 - 7 ) disjoint edges a b E $5' 

2k such that ( a  - b. 2k - 1 j = 1. If la]  - ( k  - 1 - -) 2 3. choose S' to be this subset 

of S. If - (k- 1 - F) < 3. choose Sf to be the set 5'. defined in Lemma 4.2.2, 

so that fS'1 is always at least 3. Consider an edge a b E S'. Since 4 (a. b) .  both 

Fa am? Fb are dehed 2nd. by Lemma 4 .! -4. we know that F, LI Fb is a Hamilton cycle. 

By Lemma 4.1.2 and (since k is even) Lemma 4.1.3 we can construct a Hamilton 

path decomposition of hk with the property that the Hamilton path that starts on 

vertex xl ends on vertex 2-' ( a  i b)  (mod 2k - 1). and the length of each the edges, 

(q w ; + k  : 2 < i < k): determined by the first and last vertices of each of the other 

Hamilton paths is a constant. minl-3-l ( a  - b) (mod 2k - 1 j. 2-I j b - a )  (mod 2k - I)),  

dependent on the length of the edge a b. \Ve can extend these Hamilton paths to 

Hamilton cycles of hkS1 by adding the ?-paths l x l  x 2 - l ( u  $ b )  and {u*, x L L ' , + ~ } .  

These Hamilton cycles together comprise a Hamilton decomposition of 1<?k+l. Doing 
%?k7 this for rach such edge a b E S' $ ~ e s  I - " -  7 - ( k  - 1 - -) A >  Hamilton decompositions 

of Since the edges in S' are disjoint, the end vertices of 2-paths centred 

at any vertex t. f come from different 1-factors in each of the Hamilton 

path decompositions. Since no two edges in S have the same length. all the 2-paths 

centered at cx: that do not contain m1 wili be distinct. And since none of the edges 
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in S are pardlel; we know f;:; Lemma 42.1 that all the 2-paths centered at m that 

do contain oq will be distinct.. 

Given k, we can possibly do better than Theorem 4.2.3 by actually counting the 

number of edges in the set S that have lengths relatively prime to 2k - 1. Also, given 

k7 we could deliberately construct a set St, as in the following corollary, so as to 

improve the number of pairwise compatible Hamilton decompositions. 

Corollary 4.2.4 S~ppose  k is ecen. Let St be any set of disjoint edges in such 

that rn is not in any of the edges, no two of the edges are parallel, no two of the edges 

have the same length, and such that ( a  - b, 2k - 1 )  = 1 for all edges a b E St. There 

are at least ISt/ pairwise compatible Hamilton decompositions of KZk+1. 

More specifically, if 2k - 1 is prime, then the union of any two of the 1-factors of 

is a Hamilton cycle. 

Corollary 4.2.5 Suppose k is even and 2k - 1 is prime. Then fhere at least 

pairwise compatible Hamilton decompositions of K2k+l. 
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Conclusions 

In Chapters 2 and 3 we w-ify Kotzig-s and McKay's conjectures by constructing 

perfect sets of Euler tours of and of K2& + I ,  and by showing that they lead to 

Hamilton decompositions of the line graph of the complete graph. 

Chapter 3 was motivated h_\- a desire to extend the idea of Conjecture 1.2.1 to 

hiF- We chose to define a perfect set of Euler tours of + I as we did because 

we wanted to complete the verification of McKay's conjecture. For completeness, 

we mention here a couple of other suggestions for extending Tiotzig's conjecture to 

complete graphs on an even number of vertices. 

Problem 5.1.6 Let I be a 1 -factor of I<2ii. Does there exist a set of Euler tours of 

f ik  - I7  such that ecery %path of Ii2k - I is in exac~ly  one o f t h e  tours? 

Yece~sarily~ this would require 2 k - 3  Euler tours. (This is trivial to do when k = 2 

and not hard when k = 3.1 It would however be more satisfying to have a definition 

that contains every %path of K 2 k .  

Problem 5.1.1 Suppose that Z = (Il. 1 2 .  . . . . 12k-1) is a gicen 1 -factorization o ~ I { ~ ~ .  

Does  !here erkf an Eder  f o u ~ -  ~j each KZk - I i ,  1 5 i 5 2k - 1 ,  so that ecery ?-path 

of&k is i~ exactly one of the tours? 

In this case we would need 2k - 1 Euler tours. This again is trivial when k = 2 

and not hard when k = 3. A solution would imply the existence of a decomposition 
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of L(KZk) into cycles of length k(2k  - 2) ,  so that each vertex of the graph is missed 

by exactly one of the cycles. Certainiy a desirable result. However, the choice of Z 

might radically affect the problem. 

The problems that were posed at the end of Chapter 1 about pairwise compatible 

Hamilton decompositions and pairwise compatible Hamilton path decompositions are 

still open. We have shown that KZk has at least 2k - 2 pairwise compatible Hamilton 

path decompositions for all k 2 2, and have mentioned that this is best possible 

when k = 2. It remains to discover for which k: it is possible to find 2k - 1 pairwise 

compatible Hamilton path decompositions. 

It is interesting that it is so much harder to find pairwise compatible Hamilton 

decompositions of h>k+l than it is to find pairwise compatible Euler tours, and that 

perfect sets of Hamilton decompositions of firZk+l do not even exist for small k .  Per- 

haps another way of tackling this problem would be to look for properties of Ic2k+l 

that might put an upper bound on the maximum number of pairwise compatible 

Hamilton decompositions. Finally, when k is cdd, there is nothing known about the 

maximum number of pairwise compatible Hamilton decompositions of 1<2k+l, beyond 

the fatuous statement that there must be at least one. Is it even possible to show 

that there must be at least three, as we have shown when k is even? 
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