Perfect Sets of Euler Tours of Complete Graphs

Helen Verrall
B.Sc. University of Victoria, 1988

M.Sc. Simon Fraser University, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Department
of

Mathematics and Statistics

(© Helen Verrall 1996
SIMON FRASER UNIVERSITY
April 1996

All righis reserved. This work may not be
reproduced in whole or in part, by phctocopy

or other means. without the permission of the author.



National Lib
g Il

Acquisitions and

Biblicthéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliograph.ques

365 Wellington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontario)
K1AONA K1A GN4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Ioan,
distribute or sell copiec of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your file Voire référence

Our Hte  Notre rélécence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéeque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cetie
théese a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-17159-0

Canada



PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my
thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a
request from the library of any other university, or other
educational institution, on its own behalf or for one of its users. 1
further agree that permission for multiple copying of this work for
scholarly purposes may be granted by me or the Dean of Graduate
Studies. It is understood that copying or publication of this work
for financial gain shall not be allowed without my written
permission.

Title of Thesis/Project/Extended Essay

el Sets of Tedin Toro of Grmpleh Craphes

Author:
(signature)
He Jer Vé&m@f .
(name)

Apnd is /4

(date)



APPROVAL

Name: Helen Verrall
Degree: Doctor of Philosophy
Title of thesis: Perfect Sets of Euler Tours of Complete Graphs

Examining Committee: C. Schwarz
Chair

K. Heinrich

Senior Supervisor

L. Goddyn

N. Reilly

P. ﬁ orwein

B. Jackson, Professor
Goldsmith’s College

External Examiner

i 1996
Date Approved: April 25,




Abstract

In this thesis we investigate perfect sets of Euler tours of complete graphs K, and
Hamilton decompositions of the line graphs of complete graphs L{K,). We also
present some partial results in the area of pairwise compatible Hamilton path decom-
positions of the graph K3, and pairwise compatible Hamilton decompositions of the
graph Kogyq.

Chapter 1 contains definitions and notation, and an introduction that outlines
some of the work that has been done in the areas of pairwise compatible Euler tours
of graphs, Hamilton decompositions of L{K,), and Dudeney sets. We also present
the problems that will be considered in the thesis.

Kotzig conjectured in 1979 that K5y, has a perfect set of Euler tours for all
positive integers k. In Chapter 2 we give a constructive proof of his conjecture.
McKay conjectured that L{ K, ) has a Hamilton decomposition for all n. When n is
odd, this conjecture is a corollary of Kotzig’s conjecture.

In Chapter 3 we consider one way in which we could extend the definition of a
perfect set of Euler tours to include K5, a graph that has no Euler tour. Since our
goal is to have a Hamilton decomposition of L(K>3) as a corollary, we define a perfect
set of Euler tours of Kot + I, where I is a 1-factor of Ky, to be a set of Euler tours
of Ky + I such that every 2-path of K5 is in exactly one of the tours and such that
for every edge a b € I, each ~f the Euler tours either uses the digon a ba or the digon
bab. We then give a constructive proof of a perfect set of Euler tours of Ky + I, and
thereby give a completion of the proof of McKay’s conjecture.

The results in Chapter 4 were motivated by another question of Kotzig’s: What is

the smallest k for which there is a perfect set of Hamilton decompositions of K417

11



We prove for all £ > 1 that K, has at least 2k — 2 pairwise compatible Hamilton
path decompositions. This is one less than the maximum possible of 2k — 1. In the
case of Ky, it is straightforward to show it is best possible. We then construct a set of
4k — 2 Hamilton path decompositions of Ky that between them contain every 2-path
of the graph exactly twice. We also find a lower bound on the number of pairwise
compatible Hamilton decompositions of Kgm4i.

We present our conclusions in Chapter 5.
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Chapter 1
Introduction

This chapter consists of two sections. Section 1.1 contains the definitions and notation
that will be used in the thesis. Section 1.2 is background and a description of the

problems that will be considered in the following chapters.

1.1 Definitions and notation

We will use K, to denote the complete graph on n vertices. The line graph
of K,, denoted L(K,). is defined as follows: V(L(K,)) = E(K,) and two vertices
e1,e2 € V(L(K,)) are adjacent in L(K,) if and only if €; and e; are adjacent edges
in K,.

Let G be a finite graph on n vertices. A trail in G 1s a finite sequence

Yo, €1, Uy, €2,-..,Vk—1, €k, Uk

of vertices and edges in G such that for 1 <: < k,v;_yv;=e;,and for1 <1< j <k,
e; # e;. We will write this trail as vovy ---vs. A tour in G is a trail with the added
condition that vy = vx_, and v; = vx, (implying e; = e;). Note that this definition
allows a trail to begin and end on the same vertex and yet still not be a tour. (A tour
is said to be a closed trail.) An Fuler tour is a tour that contains every edge of the

graph. If G has an Euler tour, G is said to be Fulerian. Similarly, if G does not have
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CHAPTER 1. INTRODUCTION 2

an Euler tour, G is non—-Fulertan. A walk in G is a finite sequence

Vg, €1, U1, €25+ . ,Vk—1, €k, Uk

of vertices and edges in GG such that for 1 < : < k, v;_yv; = €;, so the condition
that the edges be all different is removed. Exactly as with a tour, a walk can be
closed. A peth (cycle) is a trail (tour) in which all the vertices are different, (except of
course for the fact that in a tour vo = v4_; and vy = vx). A Hamilton path (Hamilton
cycle) is a path (cycle) containing all » vertices. We will call a decomposition of E(G)
into tours a tour—-decomposition. An Euler tour of an Eulerian graph G is clearly a
tour-decomposition of GG into one tour. A k-path is a path on k£ 4 1 vertices. We
will mostly be concerned with 2-paths, which we will write as vg vy vo. We will call
vg and vy the end vertices of the 2-path vov,ve, and v, its centre vertex, and we
will say that v vy vy 1s centred at ©y. Trails, tours and tour-decompositions of G can
obviously be described by listing the set of 2-paths they contain. This idea will be
used in all of the constructions in this thesis. A digon is a sequence of vertices and
edges vo, €1, vy, €2, Vg, Where vy # vy, and e; = €3 = vpvy; we will write this digon as
Vo U1 Ty

If p is an automorphism of G, and ¢t is the trail vovyve -+ vj_y vy, then p(t) =
plvevi vy --- vi—yvy) 1s the trail p(vo) p(vy) p(rv2) - -+ p(vim1) p(v). We will call two
trails (and hence two tour-decompositions) ¢; and ¢, in G similar if there exists an
automorphism p of G such that t; = p(f;). We are mostly concerned with complete
graphs in this thesis so it will be enough for p to be a permutation of V(G).

The constructions in Chapters 2 and 3 involve removing a 2-path from a trail.
This does not mean that the edges in the 2-path are removed, only that the trail is
broken. So, if ¢ is the trail

Lotp g --- U1 Uy,

then ¢ — v;_; v; vij1, where 1 <1 <[ —1, is simply the following two trails:
Vo1 --- Vio1 U and v vy - vioq U

Suppose n is even. Let ab be an edge and v a vertex in G. By v[a b} we mean

the 2-path avb. A 1-factor in (G is a spanning subgraph of GG in which every vertex
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has degree 1. In Chapter 2, we will be using 1-factors of Ky to determine the
end vertices of 2-paths in Euler tours of K3ty,. Let F be a 1-factor of Ko, If
(vy w1, vawy,. .., vewy) is an ordering of the edges in F', we will call v; w; the :** edge
of F, forz € {1,2,...,k}, and denote it by [F :¢]. Let V(K1) = V(Kak) U {o0}.
For u € V(Ky), u[F] will be the set of 2-paths

{vivw; : 1 <i <k and v; # u # w;,v;w; € E(F)}
together with the 2-path
ocuv;, where u = w;, for some 1.

By oo[F]| we mean the set of 2-paths {v;oow; : 1 <1 < k}. We will often use
the notation v[F : i] intead of v[u; vi], where v € V(Kqt11). We will sometimes use
v[F : i|[F}] for the two 2-paths v[F : 7] and v[F : j]|, where v € V(K2k41), and
1<4,5 <k,

A 1-factorization of G is a partition of the edges of G into 1-factors. A 1-
factorization F is said to be perfect if the union of any two of the 1-factors in F
forms a Hamilton cycle in G. A partition of the edges of a graph G' into Hamilton
cycles or into Hamilton cycles and a 1-factor — depending on the parity of n — is
called a Hamilton decomposition of G. In Chapter 3, we will be using Hamilton cycles
ci Kox—1 to determine the end vertices of 2—-paths in Euler tours of the multigraph
Kor + I, where 7 is a 1-factor of Kok. Let V(Ko) = V(K1) U {o01}. Let H
be a Hamilton cycle of Kor_y. If (v1v2,v9v3,v304,...,V96—101) 1s an ordering of the
edges in H, we will call v;v;y; the :** edge of H, for 1 < i < 2k — 1, and denote
it by [H : 1], where addition on the subscripts of the vertices is modulo 2k — 1 vith
residue classes 1,2,...,2k — 1. If v; # v # vi}1, then by v[H : 7], we mean the 2-path
v;vviy1- If v; equals v, then v[H : 7] is the 2-path coj vw;s;. Similarly, if v = v;4,
v[H : i} = vivoc;. When it is obvious which Hamilton cycle the end vertices of the
2-paths centered at a vertex v are coming from, we will abbreviate v[H : j] to v[j].

The list of 2—paths and digons centred at vertex v in an Euler tour of Ky in
Chapter 3 will be specified in one of six ways. Let 1 <t < k—1. By v[H :
1,3,5,...,2t — 1, 28,2t + 2,...,2k — 2], we mean the set of 2-paths {v[H : j]: j €
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{1,3,5,...,20~1,24,2¢42, ..., 2k—2}}. By o[H : 2,4,6,....2¢, 204+1.2t43. ..., 2k~
1], we mean the set of 2-paths {v[H : j]: j € {2,4,6,...,2¢,2t+1,2t+3.....2k—1}}.

By v[H : 1,3,5,...,2t — 1,2t + 2,2t + 4,...,2k — 2], we mean the set of 2-paths
{v[H:j]:7€{1,3,5,...,2t—1,2t +2,2t +4,...,2k—2}} as well as the digon u vu,

where u = [H : 2tJN[H : 2t +1]. By v[H : 2,4,6,...,2¢, 2t + 3,2t +5....,2k = 1],
we mean the set of 2-paths {v[H : j]: j € {2,4,6,....2¢.2¢ + 3,2t +5,....2k — 1}}
as well as the digon uvwu, where u = [H : 2t + 1] N [H : 2t + 2]. Towards the end of
each of the two proofs in Chapter 3 we will also use v[H : 1.3,5,...,2k — 1] to mean

the set of 2-paths {v[H : j] : 7 € {1.3.5.....2k — 1}}, and v[H : 2,4.6,...,2k — 2]
to mean the set of 2-paths {v[H : j]:j € {2.4,6,....2k — 2}} as well as the digon
uvu, where u = [H : 1)N[H : 2k — 1]. If in this last case v = u, then the digon will
be 001 v 00;.

Since the degree of every vertex of Kjryq is even, Nopy; 1s Eulerian. An Fuler
tour of Ky contains k(2k + 1) 2-paths. In total, Kzry; contains &(2k + 1)(2k — 1)
2-paths. It is natural to ask if a set of 2k — 1 Euler tours of A5y can be found
so that every 2-path of K34 1s in exactly one of the tours. Towards this end, we
make the following two definitions: two tour-decompositions of an Eulerian graph
are compatible if they have no 2-path in common; and a perfect set of Fuler tours of
Koiyq 1s a set of 2k — 1 pairwise compatible Euler tours of Kxy1. In other words, it
is a set of 2k — 1 Euler tours that partition the set of 2-paths in Ksiyy. In Chapter 2,
we construct a perfect set of Euler tours of K5y, for all k.

On the other hand, K¢ has no Euler tour because the degree of every vertex is
odd. There are several ways we could modify the graph A3 so that we could define
for it something that approaches the idea of a perfect set of Euler tours of Kjiq;.
We choose the following definition because it implies the existence »f a Hamilton
decomposition of L(K3x). A perfect set of Euler tours of Kop + I, where I is a 1-
factor of Ky, 1s a set of 2k — 2 Euler tours of Ky + I such that every 2-path of Ky
is in exactly one of the Euler tours, and for each of the edges ab € I, each Euler tour
either uses the digon aba or the digon bab, but not both. In Chapter 3, we construct
a perfect set of Euler tours of Ky + I for all & > 1.
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Finally, for Chapter 4, we need the following definitions. A Hamilton path decom-
position of Ky is a decomposition of E(K5;) into Hamilton paths. Since a Hamilton
decomposition of Kj;y; is also a tour—decomposition, we have already defined two
Hamilton decompositions of K31 to be compatible if no 2-path in the graph is in
more than one of the Hamilton cycles. We extend the definition of compatibility to
a non-Eulerian graph by saying that two Hamilton path decompositions of Ky are
compatible if no 2-path in the graph is in more than one of the Hamilton path de-
compositions. We also define a perfect set of Hamilton decompositions (Hamilton path
decompositions) of Kopi1 (Kak) to be a set of 2k — 1 pairwise compatible Hamilton
decompositions (Hamilton path decompositions) of the graph.

We will use the notation (a, b) for the greatest common factor of two integers a and
b, and ¢(n) for the Euler ¢ function. We will use 27'a(mod 2k — 1) to indicate either
2 (mod 2k — 1), if a is even, or 2261 (mod 2k — 1), if @ is odd. This is multiplication
by 27! in the ring Zyx_;.

Finally, a Dudeney set in K, is a set of L“;l)i(lf—?l Hamilton cycles of K, so that

every 2-path of the graph is in exactly one of the Hamilton cycles.
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1.2 Background and a Description of the Problems

In Chapter 2 we prove the following conjecture:

Conjecture 1.2.1 (Kotzig [12]) The graph K11 has a perfect set of Euler tours

for all positive integers k.

This is a special case of the following problem suggested by Hilton in 1985 at an

Open University Combinatorics Workshop (see Jackson [7]).

Problem 1.2.2 (Hilton) Determine the mazimum number of pairwise compatible

Euler tours in a given Fulerian graph G.
In a related area, Bermond {2] has conjectured

Conjecture 1.2.3 (Bermond [2]) If a graph G has a Hamiiion decomposition then
its line graph L(G) can be decomposed into Hamilton cyeles.

More specifically, B. McKay (personal communication) conjectured

Conjecture 1.2.4 (McKay) The line graph of the complete graph L(K,) can be

decomposed into Hamilton cycles.

The existence of a perfect set of Euler tours of Nsiyy immediately implies the
existence of a Hamilten decomposition of L{K,;41): each Euler tour of K3, induces
a Hamilton cycle of L(A3:41). and since the Euler tours partition the 2-paths of
K5i41. the induced Hamilton cycles partition the edges of L{ K3;41). Therefore. when
n is odd, a proof of McKay's conjecture is an immediate corollary of the validity of
Kotzig’s conjecture. The two conjectures are probakly not equivalent: the two edges
abbc and bcbd in a line graph could certainly be adjacent in some cycle in the line
graph, but. back in the original graph. the two 2-paths a bc and c¢bd could not be

adjacent in a tour.
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it is not hard to construct a perfect set of Euler tours of K3 or Ks, but, to my
knowledge, no other perfect sets of Euler tours of complete graphs had been found
until now.

In Chapter 3 we present results on one way of extending the idea of a perfect set
of Euler tours to the graph Ky, which itself has no Euler tour. We choose to define
a perfect set of Euler tours of K;; as we do because as a corollary we immediately
have a Hamilton decomposition of L(K3z;). This seems to justify our definition as it
parallels the odd case. Thus our construction of a perfect set of Euler tours of Ky +1
completes the proof of McK#7- . conjecture since it implies that the graph L{/5;) does
have a Hamilton decomposition for all ¥ > 1. Again there is no reason to suppose
that the two results are equivalent.

There has been much work done trying to solve Problem 1.2.2. Jackson gives a
review in [7]. We use d(v) to indicate the degree of a vertex v € V() and 6(G) to
indicate the minimum degree of G. A block in a graph is a maximal 2-connected sub-
graph. In giving an overview of the results in this area, we will assume for simplicity
that the FEulerian graphs have no vertices of degree 2.

Suppose G is an Eulerian graph with §(G) > 4, and let v be a vertex of G of degree
8(G). If uv € E(G) then there are §(G) — 1 2-paths uvw, w € V(G). Therefore,
there are at most §(G) — 1 pairwise compatible Euler tours of G. Moreover, if there is
a 2-path uvz such that G —uv — vz is disconnected, then no Euler tour of G could
use the 2-path uv z, so there are at most é(G) — 2 pairwise compatible Euler tours

of G. Jackson conjectured that one of these bounds must hold:

Conjecture 1.2.5 (Jackson [6]) The mazimum number of pairwise compatible Eu-

ler tours of an Eulerian graph G is either §(G) — 1 or 6(G) — 2.

This conjecture is valid for §(G) = 4 [13] and for §(G) = 6 [8]. Although it has not
been possible to prove this conjecture in general, Jackson and Wormald, by extending

a result from [6], were able to prove:

Theorem 1.2.6 (Jackson and Wormald [9]) An finite Fulerian graph G with §(G) >

4 has at least 16(G) pairwise compatible Euler tours.
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Fleischner et al. [4] proved the following two theorems, using the first to prove the

second.

Theorem 1.2.7 Given a 1-factor L of Ky, there is a 1-factorization Ly, Lo, ..., Lojs_o
of Ko — L such that LU L; is a Hamilton cycle of Ko for 1 € {1,2,...,2k — 2}.

Theorem 1.2.8 If G is a connected, finite, Fulerian graph with 6(G) > 4 such that
every cycle in G is a block of G, then G has 6(G) — 2 pairwise compatible Fuler tours.

Note that in Theorem 1.2.8 the number 6(G) — 2 is best possible.

Results about Hamilton decompositions of L(K,,) tend to appear as corollaries to

more general theorems.

Theorem 1.2.9 (Muthusumy and Paulraja [14]) If G has a Hamilton decompo-
sition into an even number of Hamilton cycles, then L(G) has a Hamilton decompo-

sition.

Corollary 1.2.10 The line graphs L(Ksmt+1) and L(Kygny2) each have a Hamilton

decomposition for all m.

Theorem 1.2.11 (Cox and Rodger [3]) Let [ = 0(mod4). If n = 1(mod 21), or
n = 0 or 2(mod l), then there exists a partition of the edges of L(K,) into cycles of
length 1.

Corollary 1.2.12 The line graph L(K,,,) has a Hamilton decomposition for all m.

Theorem 1.2.13 (Muthusumy and Paulraja [14], Zhan [16]) IfG has a Hamil-
ton decomposition into an odd number of Hamilton cycles, then the edges of L(G) can

be partitioned inte Hamilton cycles and a 2—factor.

Corollary 1.2.14 The edges of the line graph L(Kyni3) can be decomposed into

Hamilton cycles and a 2—factor for all m.

We also mention a result of Pike’s that has implications for the existence of Hamil-

ton decompositions of L(Ky — I).
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Theorem 1.2.15 (Pike [15]) IfG is a 2k-regular graph that has a perfect 1-factori-

zation, then L(G) has a Hamilton decomposition.

Corollary 1.2.16 The line graph of Ky — I has a Hamilton decomposition whenever

K5, has a perfect 1-factorization, where I is a 1-factor of K.

Pike provides a list of the values of k& for which perfect 1-factorizations of Kj; exist.
It includes k prime, 2k — 1 prime, and 16 other values.

This 1s of interest here because the graph Kj; — I is Eulerian, and asking for a
perfect set of Euler tours of Ky — I would be another way of extending the idea
behind Kotzig’s Conjecture 1.2.1 to the graph Kj;. Corollary 1.2.16 would also be a
corollary to such a result.

Chapter 4 is motivated by another question of Kotzig’s [12]:

Problem 1.2.17 (Kotzig [12]) What is the smallest k > 1 for which there is a

perfect set of Hamilton decompositions of Kagy1?

It is possible that no such k exists. It is not hard to show that there cannot be
two compatible Hamilton decompositions of K3, let alone three, which is the number
needed for a perfect set. Kotzig states in [12] that it is known that K7 does not have
a perfect set of Hamilton decompositions, but does not say how many pairwise com-
patible Hamilton decompositions are possible. The fact that perfect sets of Hamilton

decompositions do not exist for these small cases leads us to ask instead:

Problem 1.2.18 Given k, what is the mazimum number of pairwise compatible Hamil-

ton decompositions in Kypqq?

Since a set of [ pairwise compatible Hamilton decompositions of K;x4+; implies the
existence of a set of [ pairwise compatible Hamilton path decompositions of Ky, we

can back up still further and ask:

Problem 1.2.19 Given k, what is the mazimum number of pairwise compatible Hamil-

ton path decompositions in Ky ?
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Problems 1.2.17 and 1.2.18 are related to the existence of Dudeney sets in Kpi
because a perfect set of Hamilton decompositions of Ksiy; is simply a resolvable
Dudeney set. Also, since whenever there exists a Dudeney set of K,,, we immediately
have a set of Hamilton paths of K,_; that partition the 2-paths of K,_q, results
about Dudeney sets may have implications for Problem 1.2.19. Since Dudeney sets in
K, when n is odd have proven hard to find, we should perhaps assume that solving
Problem 1.2.17 will be difficult. There 1s only one known infinite family of Dudeney

sets of Koryq:

Theorem 1.2.20 (Heinrich, Kobayashi, Nakamura [5]) There is a Dudeney set
in Kyp2 if p is prime and 2 is a generator of the multiplicative subgroup of GF(p).

There are also a few sporadic cases known: see [10].

However, when n is even, the existence of Dudeney sets has been solved completely.

Theorem 1.2.21 (Kobayashi, Kiyasu-Zen’iti, Nakamura [10]) There ezists a

Dudeney set in K,, when n is even.

Before proving Theorem 1.2.21, Kobayashi and Nakamura [11] gave an elegant

construction of the following result.

Theorem 1.2.22 (Kobayashi, Nakamura [11]) There exists a set of Hamilton cy-

cles of K, when n is even that between them contain every 2-path of K, exactly twice.

As a corollary, there is a set of Hamilton paths of Ky;_; that between them contain
every 2-path of K,y exactly twice. Similarly, if we change Problem 1.2.19 to ask
for every 2-path twice instead of once, we are able to find a set of Hamilton path
decompositions of Ky so that every 2—path is in exactly two of the Hamilton paths.

We also give a construction for a set of 2k — 2 pairwise compatible Hamilton path
decompositions of K5, and thereby show that the solution to Problem 1.2.19 is either
2k — 2 or 2k — 1. (A perfect set of Hamilton path decompositions of K,; would
contain 2k — 1 Hamilton path decompositions.) In the case of k¥ = 2, two Hamilton

path decompositions is best possible. These results are the first section of Chapter 4.
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In the second section of Chapter 4, we give a lower bound to Problem 1.2.18 when
k > 2 is even. The first and last vertices in a Hamilton path determine an edge, and
the set of such edges determined by a Hamilton path decomposition is a 1-factor in
K,i. If we construct a set of [ pairwise compatible Hamilton path decompositions
of Ky with the added condition that the 1-factors induced by each Hamilton path
decomposition are pairwise disjoint, then we immediately have a set of ! pairwise
compatible Hamilton decompositions of Ko41.

When k£ > 2 is even we are able to show that there are at least

k $(2k — 1)

2
max([ 5] - (k= 1- 85-2),3)

pairwise compatible Hamilton decompositions of Kzx4;. When £ > 2 is even and
2k — 1 is prime, this means we have at least [-2—3'5] pairwise compatible Hamilton

decompositions of Kakyg.



Chapter 2

A Perfect Set of Euler Tours of

Kop 11

2.1 Main Result

In this chapter we prove the following theoremn and corollaries.
Theorem 2.1.1 For all k, Koryy has a perfect set of Fuler tours.
Corollary 2.1.2 For all k, L(Kaky1) has a Hamilton decomposition.

Corollary 2.1.3 There exists a closed walk of Kyryq in which every 2-path occurs

exactly once.

The proof of Corollary 2.1.2 is straightforward and we give it here. The proof of
Corollary 2.1.3 requires details of the proof of Theorem 2.1.1, so we will present it in
the last section of this chapter.

Proof of Corollary 2.1.2. Given a perfect set of Euler tours of Kjryq, simply
replace each 2-path abc in each of the tours by the edge abbc in L(K2zk41). Since
each tour covers each edge of Koy exactly once, in the line graph the correspond-
ing subgraph will cover each vertex exactly once, and hence be a Hamilton cycle.

Since each 2-path of Ky, 1s used exactly once in exactly one of the tours, ever
p + Y Yy
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edge of L(Kqk41) is covered exactly once in the Hamilton cycles, giving a Hamilton

decomposition. O

Since K341 contains k(2k+1)(2k—1) 2-paths, and an Euler tour of K;4; contains
k(2k+1) 2-paths, a perfect set of Euler tours of Ko, would have 2k — 1 Euler tours.
The Euler tours in the perfect set of Euler tours of Ksry; that we construct here are
pairwise similar. In fact there exists a permutation ¢ of V(K 3k41) such that if T is
one of the Euler tours, then {o*(T) : 0 < i < 2k — 2} is the set of all the Euler
tours. Thus, there exists a permutation 7 of V(L(K2k41)), such that if H is one of
the Hamilton cycles of L(K241), then {7*(H) : 0 < i < 2k — 2} generates all of the
Hamilton cycles in the Hamilton decomposition.

The proof of Theorem 2.1.1 is divided into two sections, the first for the case when
k 1s even, and the second for the case when k is odd. The constructions are divided into
a series of claims and proofs of the claims. In both sections, the key to the construction
of the Euler tours is the choice of a particular 1-factorization F of Ky. Let V(K3 ) =
{1,2,...,2k}. It is well known that the following generates a 1-factorization of K.
Let oy be the permutation (234 ---2k—22k—12k) of the vertices of Ky that fixes
vertex 1 and cyclically rotates the others. Then F = {Fy, Fi,..., Fy;_2}, where Fy is
the 1-factor {12,32k,42k—1,...,k+1k+2} and F; = 0i(Fp), 1 <i <2k -2 isa
1-factorization of Ky.

It is fundamental (though perhaps trivial) to understand how we will be joining
together trails and 2-paths to form Euler tours. Given a trail in K5,y that ends at
vertex v and another that starts at v, suppose we want to join them together at v to
form a single trail. It is first necessary to know more about them. We need to know
which 2-path centred at v this larger trail would use. In order to know that, we need
tc know the last edge of the first trail, say it is uv, and the first edge of the second,
say vw. We can then take the two trails and the 2-path u v w and form a single trail.

The main idea of the proof when % is even is to construct one Euler tour Ty of
Ky, and a permutation o of the V(K1) so that {o*(Tp) : 0 < 1 < 2k — 2} is
a perfect set of Euler tours. We describe Ty by listing the 2-paths that are centred

at each of the vertices in it. It should be clear that in an Euler tour, or indeed, in
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a tour decomposition of Kyi,, that if we construct edges from the end vertices of
each of the 2-paths centred at a given vertex v, then these edges form a 1-factor of
Ko = Kogy1 — {v}. Also, the union of the 1-factors formed by the end vertices of
the 2-paths centred at v in each of the Euler tours in a perfect set of Euler tours
forms a 1-factorization of K,;. With this in mind, in listing the 2-paths centred at
v in Ty, we start with a 1-factor Fy of Ky, such that {o*(Fp) : 0 < @ < 2k — 2}
is a 1-factorization of K. We then say that the 2-paths centered at v in T, are
{uvw : vw € E(0?(Fy))}, where the cnoice of j depends on v. When we take
O'i(TO) for 0 < 7 < 2k + 2, we are effectively generating 2-paths centred at v with
end vertices from each of the 1-factors o7*(Fy), 0 < i < 2k + 2. In other words,
from a 1-factorization of K. The difficulty lies in choosing which 1-factor o7(Fp)
will determine the end vertices of the 2—-paths centred at a given vertex v. Having
provided a list of the 2-paths in Ty, it is then necessary to prove that they do indeed
form an Euler tour of K51, and not just a tour decomposition. (We necessarily have
at least have constructed a tour decomposition.) To prove this, we consider 75 minus
the 2-paths centred at a fixed vertex oc, and hence investigate and make use of the
underlying structure of Tp.

The proof when %k is odd, is similar to and relies heavily on the proof when £ is

evel.

2.2 A Perfect Set of Euler Tours of Kj,,11

Let £ = 2m. Denote the 4m — 1 Euler tours required in a perfect set of Euler tours of
K1 by {70, T7,. .., Tym—2}. We will construct Ty by providing a list of the 2-paths
that it contains, and construct 7;, 1 < ¢ < 4m — 2, by defining a permutation ¢ of
V(K4ms1), and letting T; = O'i(TO). Thus the tours will be pairwise similar and it will
only be necessary to prove that Ty is an Euler tour and that the T;, 0 <: < 4m — 2,
partition the 2—paths of Kymy1-

Construct the following 1-factorization of Ky, using the idea described in Sec-

tion 2.1. Let V(Kym) = AUBUC, where A = {a;,a2,...,am}, B = {b1,b2,...,b,},
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and C = {c1,¢c,...,¢om}- Let V(Kymip1) = V(K ) U {00}, and let o be the permu-

tation

(00)(01)(01 b1 com 3 A, by com—2¢5 - - Ap—i42 b; Com—2i42 C2i41 " *

--azbm_1c4Com_1 a2 by, C2)-

of V(K4n+1) that fixes oo and generates a 1-factorization of K4, on the vertex set
AUBUC, beginning with the initial 1-factor Fy, where Fy is given by {a; i1 :1 < i <
m} U {b;cy : 1 <1< m}. We now have the 1-factorization F = {Fo, Fi,..., Fam_2},
where F: = 0'(Fp), 0 <i < 4m —2.

Since we want every edge of K4m41 to be in T exactly once, every vertex of Tp
will have 2m edge-disjoint 2-paths centred at it. The set of 2-paths used to specify
T, will be based on the 1-factors Fym—2, Fo, and F, and is listed below. From now on
we will denote Fj,,_, by F_, in order to emphasize that o~!(Fy) = F_;. The 2-paths

in Ty are:

a;[F-1], for all a; € A,
b;[Fy]. for all b; € B,
¢;[Fo), for all ¢; € C, and
oo[ Fo)

where notation is as in Section 1.1.

Now let T; = o*(Tp), for 1 < ¢ < 4m — 2. By definition the 7; are pairwise similar.
Claim 2.2.1 The T;, 0 < i < 4m — 2, partition the 2—paths in K4m41.

Proof. Since o fixes both oo and ¢;, and F is a 1-factorization of Ky, it is clear
that the T; partition all the 2-paths centered at either of these vertices.

Let v € V(K4m) — {c1}. Let tvs be a 2-path in K441, and assume ¢ # oo and
s # oco. Then the edge ts = [F;: k] for a unique ¢ € {0,1,2,...,4m — 2} and a
unique k € {1,2,...,2m}. There are three cases. If v = o'(c;) for some c; € C, then
tvs = a'(c;[Fo : k]), and since ¢;[Fp : k] € Tp, tvs € T.. If v = o'(a;) for some
a; € A, then v = ¢°"}(f) for some b € B. So tvs = o' *(h[F, : k]), and since
blF, : k] € Ty, tvs € Tiy. I v = o'(b;) for some b; € B, then v = 6"+!(a;) for some
a; € A. So tvs = oY aF_; : k]), and since a/[F_1 : k] € To, tvs € Tipa.
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Now assume that ¢ = oc. Then there exist z and k such that vs = [F;: k]. An

argument similar to the above will show that covs € T} for some j. follows. O

Our goal now is to show that T; is an Euler tour. To accomplish this we give an
exact description of the order in which the 2-paths occur in Tp. It 1s obvious that
the removal of any one vertex divides an Euler tour of Ky4,,4) into exactly 2m trails.
We consider the removal of vertex oc from 7p. Our first step is to partition all the
2-paths in T except those centred at vertex oo into 2m parts, G;, 1 < ¢ < 2m, and
to prove that each part forms a single trail that begins and ends at vertex oc; our
second step is to prove that the 2-paths centred at vertex oc, oo[Fp], join these trails
together in such a way that they form an Euler tour.

We begin by ordering the edges in the three 1-factors used in the construction of

5.

[Fo:2)—1] = ajcy1, 1 <7 <m,
{Fg . 2]} = bj C25, 1 S] S m.
[Fl . 1} = bl C1,

{F12J—1} = Cljbj, 2§]§m

[F112]-} = cyjCaj41, 1 <j<m-—1,
[F1:2m] = a;com,

[F—l . 2] — 1] = C25-1Czj, 1 S] S m,

[F_y:25] = bjajyp. 1<j<m-—1.

[F1:2m] = b, a.

We now define a partition of all the 2-paths in Tj except those centred at vertex
oc and label the parts G;, 1 < < 2m. To prove each G; forms a single trail, we will
show that for : < m — 1, Gy, contains a subtrail similar to (G; minus one 2-path, as
well as nine other 2-paths, and for 7 > m + 2, (G,_; contains a subtrail similar to G;
minus one 2-path, as we'l as nine other 2-paths. Before showing each (; is a trail
we \ ‘ll determine which 2-paths in G; contain vertex ooc. This is necessary as we

ultimately need to determine how the trails G; will fit together when joined by the
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2-paths centred at vertex co. In listing the 2-paths in G; we will use the notation
u[F; : j] described in the introduction in Chapter 1. If j should happen to be less
than 1 or greater than 2m, we assume that no 2-path results. To reiterate, we first
simply assign certain 2-paths to (G;, and then, in a series of claims, verif, that they
do indeed produce the trails as described.

The 2-paths in G;, 7 € {1,2,...,m} are:

ay[F_q1:2t—1],

ak[Fl 20 =2k +1)[F1 : 26 -2k+2], 2<k<

bl Fh - 21—2k][F1.2z—2k+1], 1<k<i,

The 2-paths in G;, i € {m+1,m+2,...,2m} are:

a1[F_q : 21 — 2m],
Py 2= 2k 4 1)[Fa 20— 2k 42, it LSk S,
bk[Fl Qk][Fl 91—2k+1] z——mSkSm,
Ck[Foin—*k][F()ZQl*k—*—l]? 2t —2m < k < 2m.

Claim 2.2.2 The G;, 1 <i < 2m, partition the 2-paths in Ty — oo[Fy).

Proof. It is straightforward to check that in the union of the (; each vertex in
V(K4m) occurs as the centre vertex of 2m 2-paths with end vertices determined by

the edges of the appropriate 1-factor of Ky,. O

Claim 2.2.3 There are precisely two vertices in each G; that are centres of 2-paths
with vertex oo as an end vertex. These vertices are b%-_x and ¢; if 1 is odd, s and

¢ if 1 is even and 1 < 2m — 2, and a; and ¢, if 1 = 2m.

Proof. It is easy to check that the 2-paths ¢; b; o0 and @, ¢; oo are in (4, that
a_j»_b_-f_ooand @ig1 ¢; 00 are in G;, 1 > 1 odd, that b' @iy 00 and b: ¢; oo are in Gj,
1< 2m even, and that b, a; oo and b,, ¢3,, 00 are in Ggm.

By construction, there are exactly 4m 2—paths in T, that have oo as an end vertex.

Since we have accounted for 4m such 2-paths, we are done. O



CHAPTER 2. A PERFECT SET OF EULER TOURS OF K3k 41 18

In order to prove that each G is a trail, we shail show that if 1 <: < m — 1, then
G4 contains a subtrail siriilar to all of G; minus one 2-path, and if m+2 <7 < 2m,
then G;_; contains a subtrail similar to all of GG; minus one 2-path. Towards this end,

let v be the following permutation on the vertices of Ky, 41:

le) =cipr. 1<i<2m—1,
F:'I(CZm):le

la;) = b, 1<:<m,
b)) =aip1, 1<1<m—1
¥(bm) = ay.

¥(>c) = oc.

We next determine where ~ maps the edges in the three 1-factors. Fy, Fy and F_;.

W([Fo:2j — 1)) = 4(aj25m1) = bjey = [Fo: 2], 1< j<m.
1) = v(bjco;) = aj41 €541 = (Fo:27+1), 1<j<m—1,

v 1])=”f(b1c1)=a2cz
0 2) — 1)) = v(a;b;) = bjaj4 = [F_y : 2j] 2<)j<m-1
1]) = (am b)) = b ay = [F_; : 2m]

)
2 =Alcejm) =g =F_1:2j+1]. 1<j<m-1.

:2m)) = (a1 com ) = by 4.
1:2) — 1)) = vezjr ) = e = [F1:2j], 1<j<m—1.

1 - 2]” = ’}'f‘b'(l,'.;.l) =daj41 i)j.;.] = iFl 2] + 1}. 1 Sj S m — ]
12 ]): b 1) = d, b}.

’

F_
[Fl1:2m — 1]) = v(cam-1 Cam) = Cam 1.
F_
F_

Sofor 1 <k<2m—1,y([Fo:k})=[Fo:k+1}ifor 2<k<2m—1.+([F1:k]) =
[Foy:k+1and for 1 <k <2m—2, 5([F_1: k]) = [F1: k+ 1]
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Claim 2.2.4 For 1 <i < m — 1, all the 2—-paths in v(G;) are in G;y,, except for
y(b:[F3 2 1).

Proof. We know exactly which 2-paths are in G;, 1 < i < m —1, and how 7 behaves
on the vertices of Ky, and on the edges of Fy, F; and F_,. We can therefore list the
2-paths in 7(G;), 1 <7<m—1.

(Fy:2i) = b[F;:2(i+1) -2

-
—,
=
—
r-:m
1
[+
b
-~
)._\
\.m...o
ll
5
i,
N
[Soctnf
>

Yax[Foy 22 — 2k + [F_;: 21 —2k+2]), 2<k<i
= by[F) : 2 — 2k + 2l[F} : 2 — 2k + 3]
= b[F 24+ 1) =28 s 20i+ 1)~ 2k +1], 2<k<(i+1)—1

(be[Fy -2 —2K)[Fy = 2i — 2k +1]), 1<k<i—1
= @ppr[F-1 220 — 2k + 1][F_y : 20 — 2k + 2]
=ak+1{F_1:2(>1-E—1)—2(k-§—1)+1][F_1: (f+1)—=2(k+1)+2],

< k+1<(i+1)~1

(bl F1 2 1]) = ainfaz e, ¢ Gin

WerlFo:2t —kj[Fo: 21 —k+1}). 1<k<21-1
=cppfFo: 20— k+1)[Fo:2i —k+2]
= c[Fo: 200+ 1) — (K + 1)][Fo:2(: +1) — (K +1) +1],
2<k41<2i+1)~2

‘}(ngEFg : ID = c‘?(i-t-l)—-l [Fo z 2}

aths above are in Gy, except for v(b;[F; : 1]). O

We now prove by induction that each G;. 1 <7 < m, is a single trail. The following

two claims contain the basis of the induction and the induction step, respectively.

Claim 2.2.5 The part G, is a single trail. and G, — by[F] : 1] is the unica of a trail
with first edge oo ¢; and last edge ¢, by, end the single edge by oc.
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Proof. It is easy to see from the list of the 2-paths in G that G; is the trail
oG €1 4y ¢3¢ by oo. The second point in the statement of the claim is obviously true.

O

Claim 2.2.6 Each of the parts, G;, 1 <i<m, is a trail, and G; — b;[F; : 1]) is one
trail from oc c; to ¢y b;, and a second from b; by to bits 00, if 1 is odd, and to @y 4y 00,
2

if 1 1s even.

Proof. Assume : < m — 1 is odd. By induction we can assume Gj i1s a trail and
G; — b;[Fy : 1] is two trails: one from oo ¢; to ¢; b;; and one from b; b; to b% oco. By
Claim 2.2.4, we know that +(G; — b;[F} : 1]) = v(G;: — ¢1 b; by) 1s a subset of Gi4q. So,
G;41 contains one trail from oc ¢;¢1 t0 ¢ ¢i41, and one trail from a;4, a2 to g1 4y 0O.
Define these two subtrails of G, to be t; and i, respectively. Note that ¢, is the
single edge ay 00 if 7 = 1. From the list of the 2-paths in Gi;; and the proof of

Claim 2.2.4, we see that the 2-paths in Gy, that are not in v(G;) are:

BuFy:26+1)—1] = aiss br biss
b [Fi:1] =bibiy1q
ar[F_1:2(14 1) — 1] = coip1 a1 iy
aip[Foq 2 1)[F_1:2] =c1aip1 ¢ and by aiyq a2
alFo:2(1+ 1) = 1}[Fo:2(1 + 1)] = a;41 €1 €2i41 and b4y €1 C2i42
cziivny-11fo: 1] = a1 iy a

caisnylFo: 1] = a1 crizacar.

Then G4, is the trail
1y €1 C2ig1 @1 Coig2 €1 bigy by £s.

When : = 1 note that ay{F_; : 2] = b; az oc.

Now suppose 1 < m — 1 1s even.

The only difference in this case is that the final edge in G; is @14y 0. If we again
let #; and ¢; be the two subtrails in v(G; — ¢1 b; b, ), then ¢, is still a trail from oo ¢; 4
to c2 @;11, but 15 1s now a trail from a;;, as to b 541 00 The new 2-paths fit in exactly

as in the case when 7 was odd.
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The second result in the statement of the claim is easily seen by inspecting the

above trail. O

We also know which 2—paths are in G; when m + 2 < < 2m, and so can list the
2-paths in v7}(G;). Note that b;_,.[F; : 2m] is a 2~path in G;.

Claim 2.2.7 For m+2 <1 < 2m, all of the 2-paths in v"(G;) are in G;_4, except
for v Y (bi_n[Fy : 2m]).

Proof. Recall that for 2 < k < 2m, v ([Fo: k]) = [Fo: k — 1]; and for 3 < k < 2m,
YN [F_1: k) =[Fi:k—1];and for 2 < k < 2m — 1, v} ({F1: k]) = [F_1: k—1].
We obtain the following:
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YN ar[Fo1: 21 —2m]) = b [Fy 12 —2m — 1] = by [Fy : 2(2 — 1) — 2m + 1]

Y N ak[F-1 : 20 — 2k + 1][F_1 : 21 — 2k + 2)), 1—m+1<k<m
= by_1[F1: 2t — 2k][F} : 20 — 2k + 1]
=beq[F1:20-1)=2(k=D][F1:2(: 1) = 2(k — 1) + 1],

i—-1)—-m+1<k—-1<m-1

v {bi_m[Fy = 2m))

= ai——m["f_l(al) 7 A{c2m)] - ai—m{bm C?m—l] € Gi——l

A (b [Fy 2 21 — 2k][Fy - 21 — 2k + 1)), t—m+4+1<k<m
= ai[F_1: 21 — 2k — 1][F_y : 21 — 2k]
=ap[F_1:2(0—1) =2k + 1][F_1: 20— 1) — 2k + 2],
(t—1)—-m+4+2<k<m

7 (cai—am[Fo : 2m]),
= Cy(i—1)—2m+1Fo : 2m — 1].
v er[Fo : 20 — K)[Fo: 21 — k +1]). 20-2m+ 1<k <2m
=cp1[Fo: 21 — k—1][Fo: 21 — k]
=cp[Fo:2( —1) — (k= D][Fo:2( = 1) — (k—1) + 1],
20—-1)—-2m+2<k-1<2m-—1

The resulting 2-paths are all in G;_; except v~ '(b;_,[F; : 2m]). O
We again use induction to prove in the following two claims that each of the parts
G;.m+1<171<2m,is a trail.

Claim 2.2.8 The part Gy, is a single trail. Also, Goy — by[F) : 2m] is made up of

a trail from oo ¢y to Co2m b, and a trail from b, ay to a, oo.

Proof. The part G4, consists of the trail oo ¢y, b, a1 00. The second statement in

the claim is obvious. O
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Claim 2.2.9 FEach of the parts, G;, m+1 <1 < 2m—1, is a trail, and G; —b;_,[F} :
2m] is one trail from oo ¢; to cop biom, and a second trail from b;_,, a; to b%i oo, when
¢t 1s odd. When 1 is even, the second trail starts on the edge b;_,, a; and goes to the

edge sy 00.

Proof. Assume by induction that G; is a trail for some z, m 4+ 2 < : < 2m, and that
G; — b;_[F} : 2m] is as described in the statement of the claim.

If 2 is even then G; is a trail from oco¢; to @iy 00, unless 1 = 2m, and then it is
a trail to a; co. By Claim 2.2.7, y71(G; — bi—m[a; c2m]) is a subset of G;_y, we know
by induction that G;_; must contain a trail from oo ¢;_1 to ¢zm—1 @;—m, and one from
Qi by, tO b% co. Define these two subtrails of G;_; to be #; and t,, respectively.

From the list of 2-paths in G;_; and the proof of Claim 2.2.7, we know that the
2-paths that are in G;_; that are not in v7'(G;) are:

a1[F-1:2(1— 1) —2m] = ai—m a1 bic1-m
aim|F_1 :2m — 1][F_1 : 2m] = cC2m—1 @i—m C2m and
by Giem Q1
bn[Fy :2(2 — 1) = 2m] =  C(i—1-m) bm C2(i-m)—1
bi—l—m[Fl : 2m] = a1 bi1_mCom

Com[Fo:2(1 —1) —2m][Fo:2(1 —1) = 2m + 1] = bi_1-m Cam C2(i-1-m) and
Qi—m C2m C2(i~m)~1
02(5—1)—2m[F0 : Qm] = by C2(i—1—m) C2m

Ca(i—m)—1[Fo : 2m] = bm Cai=m)-1 C2m

So G;_; 1s:

t1 Cam Co(i=m)—1 bm Ca(i—1-m) C2m bi1-m a1 t2.

If ¢ is odd then G; — b;_m[a; cai] is a trail from oo ¢; to c2m bi—m, and a trail from
bi—m ay to b%l oco. So G;_; must contain a trail from ococ;_; t0 C2m-1 @i—m, and one
from a;_,, b,, to a i1 00. The new 2—paths fit in exactly as they did when : was odd.
Note that after removing the 2-path b;_;_,,[F} : 2m] from G;_1, we obtain the desired

subtrails for the second part of the statement of the claim. O
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Since each G; is a trail by Claims 2.2.6 and 2.2.9, and since G, starts and ends
on the edges specified in Claim 2.2.3, we can now show that the union of the G;,
1 <1 < 2m, with the 2—paths centred at vertex oo yields an Euler tour. We have
seen that ocoe¢; is the first edge of G;, for all 7. Let f; be the vertex such that f; 00 1s
the last edge in G;. Then {f;: 1 <i<2m} =AUB. So F*={fic;: 1 <i<2m}is
a 1-factor of K4,. By construction, the end vertices of the 2—-paths centred at vertex
oo are from Fy. The following claim proves that the union of these two 1-factors is a

Hamilton cycle and thus that Tp is an Euler tour.

Claim 2.2.10 The union of the following two 1-factors of K4, on the vertexr set
AU BUC is a Hamilton cycle:

Fo={aicyi_1,bicoi : 1 <i<m} and
F* = {bic2i—l 01 S ) S m — ].} U{aiCQi_g : 2 S ] _<_ m} U {GICQm}.
Proof. The proof of this claim is easily seen. The Hamilton cycle 1s

(Gl (5] b1 Co - Q;C2i bi Co; = Um Coam—1 bm C2m)-

This completes the construction of a perfect set of Euler tours of Ky,41.

2.3 A Perfect Set of Euler Tours of K,,,.3

Now let £ = 2m + 1. The construction of a perfect set of Euler tours of K, 3 is very
similar to our construction in Section 2.2. The proof requires the Euler tour Ty that
was constructed for K441, so, to avoid confusion, we will partition the 2—-paths in
Kymys into {So, S1,-..,S4m}, where each S; is a tour-decomposition of Ky,,43. The
S; will be pairwise similar so that we need only check that Sg is an Euler tour to be
sure they all are.

We also want to let F = {Fy, F1,..., Fyn_2} be the same 1-factorization of Ky,
as in Section 2.2, so we will let £ = {FEy, E,....,Esn}, as defined below, be the

1-factorization of Ky, 12 on which we base the S;.
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Recall that V(K4 ) = AUBUC, where A = {a1,a2,...,am}, B = {b1,bs,...,bn},
and C = {61,62,. .. ,Cgm}. Let V(K4m+2) = ‘/(K4m) U {dl,dz} and ‘/(I{4m+3) =
V(Kims2) U {co}. We use the same idea as before to construct the 1-factorization €.

Let 7 be the following permutation of V(Kymt3):

T = (OO)(Cl)(al by com c3am b2 Cam—2 C5 Am—1
-+ b; cam—2i+2 C2it1 Gm_it1
<o b-’;‘- Cm+2 Cm+1 dy dy azi1 b—2"l+1 Cm Cmy3 a2

-ee by Com—2i+2 €241 Am—i+1

-+ byp_1 C4 Com—y G2 by, c2), if m is even, and

7= (00)(c1)(a1 b1 cam €3 am by Com—2 €5 Gm—1
-+ bi Com—2i42 C2i41 Am—it1 ‘
‘.- bﬂ;ﬂ dy dy Cnt1 Cmy2 amg1 b%s Cm—1 Cm+4 Am=1
- b Com—2i42 Coit1 Am—ig
<+ o b1 €4 Com_1 a2 by 2}, if m is odd.
Let £ = {Fo, Ev, ..., Esn}, where Eg is the 1-factor Fo U {d; dz} and E; = 7(Ey),
0<21<4m.
The set of 2-paths for specifying So will be based on the 1-factors E4nm, Eo, and

E,, as well as F, or Es, and is listed below. We will refer to Ey,, as E_,.

a;|E-1], for all aj € A,

b;[E,], for all b; € B,

c;[Fo), for all ¢; € C,

(),

dy[Ey), and

oo[Es], if m > 1, or co[F3), if m = 1.

Now let S; = 7%(Sp), for 0 < i < 4m, so that the S; are all pairwise similar. The

proof of the following clzim is very like that of Claim 2.2.1 and is not given.

Claim 2.3.1 The S;, 0 < i < 4m, partition the 2—-paths in Kym43.
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Before listing the 2-paths in Sp and proving they form an Euler tour, we determine
the edges in F_;, Fy, F,, and write them in terms of F_;, Fp, and Fj.

When m is even, we have

U {d; da}

By ={[F:j1<j<2m,j#m+1)
U {(1.72L‘.+1 d]}
U {b%-*-l d2}

Ey ={[Fa:j],1<j<2m,j#m+1}
U {emt1 do}
U {cms2di}
Note that the edges [F; : m + 1} = am i b%ﬂ and [F_; : m + 1] = ¢n41 Cms2 have
each been removed and replaced by two new edges.

When m is odd, we have

Eo = {[fo:j],1 <7 <2m}
U {d; d2}

E, ={[F1:7],1<7<2m,5 #m+1}
U {cm+1 dr}
U {Cm+2 d?}

E-l '—“{[.FL]]].].S]SQ?TL,]#TR'{‘].}
U {Gﬂ;& dl}
Note that the edges [Fy : m + 1] = ¢ppy1 Cmy2 and [F_y :m + 1] = bmyr amgs have
2
again each been removed and replaced by two new edges.

Now partition all the 2-paths in Sy except those centred at vertex oo into 2m +1

parts, H;, 0 <7 < 2m. For some of the i € {1,2,...,2m}, H; will equal G;. For the
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rest, H; will be a copy of G; with two of its 2—paths replaced by ten new 2-paths. The
part Hj is new. We will prove that each H; is a trail starting and ending at vertex
oo, and then that the 2-paths centred at vertex co do indeed join these trails into an
Euler tour. To do this, we will show that the first and last edges of H;, 1 <1 < 2m,
are the first and last edges of G;.

First consider m even. Since the H; will be described in terms of the G;, we need
to determine which G; will be affected by changing the 2—paths with end vertices from
the edges [Fy : m + 1] or [F_; : m + 1]. Since m + 1 is odd, in both cases we would
need 2 —2k +1 =m + 1, implying ¢ = 2 + k. Since 1 < k < m, the only G; that
contain such 2-paths are those for which 2 41 <17 < %’3‘—

Construct the partition of the 2—paths of S as follows:

The 2-paths in H, are simply d;[co dz] and da[oo d4].

For 1 <i<2,and 3 +1<:<2m, H; =G

For 2 +1<:< 32,

H;=G; Udi[Fo:2i—m —1][Fo:2i —m]
U do[Fo:2i —m — 1][Fp : 20 — m]
U a;i-m[cmi1 do][emi2 di]
- ai-—'—;‘—[cm+1 Cmet2]
U biom[ampyr di][bzyr do]
— bizfapi1 by
U cai—m—1]d1 d2]
U caimm[d1 d3).

Claim 2.3.2 When m is even, the H;, 0 < i < 2m, partition all the 2—-paths of So

except those centred at vertex oo.

Proof. We show that for each vertex v € V(Kyny2), the H; partition the 2-paths
centred at v.

It is clear that the H; partition the 2-paths centred at any vertex in AU B U C,
given the way H; is based on Gj.
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We pick up the two 2-paths centred at vertex dy, di[Fp : 2 — m — 1][Fp : 22 — m)]
in the part H; fore € {4+ 1,2 +2,..., %’E} Similarly for d;. The part Hy contains
the 2—paths cody d; and cody dy. O

Claim 2.3.3 When m is even, the part Hy is a trail beginning on the edge cod; and
ending on the edge dyoo. Each H;, 1 <1 < 2m, is a trail beginning and ending on

the same edges as Gj.

Proof. Obviously Hp is the trail oo d; d3 0.

When 1 < ¢ < % and -3;—“— +1 <1< 2m, H; = G4, and so H; is a single trail
beginning on the edge 0o ¢; for all 7, and ending on the edge b%l_ oo if 7 1s odd, on: the
edge Gsqq OO if 2 is even and ¢ < 2m — 2, and on the edge ¢, 0o if 1 = 2m.

When 2 4+1 <17 < 37”7, we use the fact that (; is a trail containing the 2—paths
Crmt1 @i-22 G2 and amiy bi_l;_ b%ﬂ, not necessarily in this order. In H;, the 2-path

Crmt1 Qim Cmt2 in GG; becomes the trail
Cmt1 Gi—2 d3 Coim—1 d1 @G-z Crya,
and the 2-path amyg b,-_% b%ﬂ in (7; becomes
CL%_{,] bi_% d] Cai—m d2 bi_% b%_{,] .

Since this includes all 2—paths in H;, H; is a trail. Since these trails do not contain

vertex oo, H; begins and ends on the same edges as G;. O

Now consider m odd. (Again we want to describe the H; in terms of the G;, show
that each H; is a trail, and prove that the first and last edges of H; are the same as
those of H;, for z € {1,2...,2m}.)

We again consider which 2-paths in G; have end vertices from the edges [F; : 2 + 1]
and [F_; : m + 1]. In this case, m + 1 is even, so we have to consider the vertices in
A and the vertices in B separately.

For any b; € B, the 2—path bi[F; : m + 1] is in the part G; when 2 — 2k = m + 1,
ori= mT“ + k. Since 1 < k < m, the 2-paths in G; that are centred at a vertex in

B only have end vertices from [Fy : m + 1] if mTH— <:1< 3—"‘2—tl—
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The 2-path a4[F_1 : m + 1] is in Gams .

Now consider vertex a; € A, where 2 < k < m. The 2-path ax[F_; : m + 1] is in
the part G; when 2i —2k+2 =m+1, or i = 2% + k. Since 2 < k < m, the 2-paths
in G; that are centred at a vertex in A — {a;} have end vertices from [F_; : m + 1]

when ﬂ;—?’ <:< 3’%:1
The net result is that we define H; = G; for 1 <: < mTH and for 3’"2—+3 <1< 2m.
Now construct the remaining H;. The 2-paths in Hy are dq[oo d2] and da[oo d;].

For =8 < < =l

H;=G; Ud[Fo:2t—m —1]|[Fp: 2t —m]
U da[Fo : 2t — m — 1][Fp : 21 — m)]
U ai_m_;-_g_[bﬂ;_l dg][amQ-_s di]
— @ mza[bmps ampo]
U b;_mt1[cmyr di[emy2 do]
- bi_m2'—1[cm+1 Cmy2]
U €2i—m—1[d1 d2].
U coioml[dy d2)

When ¢ = 3741

Homir = Gomin U di[Fo : 2m][Fy : 1]
U dq[Fp : 2m][Fp : 1]
Ua [bﬂ;_l dg][am?-_s di]
- [bm2i am2-_s]
U bim[cm1 di][em2 d2]
— bn[cmy1 Cmt2]
U ¢1[d1 do)
U cam|[dy da].

The proof of the following claim is similar to that of Claim 2.3.2 and is not given.

Claim 2.3.4 When m is odd, the H;, 0 <1 < 2m, partition all of the 2—paths in S,

ezxcept those centred at vertex co.
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Claim 2.3.5 When m is odd, the part Hy is a trail beginning on the edge oo d, and
ending on the edge dyoo. Fach H;, 1 <1 < 2m, s a trail beginning and ending on

the same edges as G;.

Proof. Hy is again the trail oo d; dy 0.
When 1 <@ <248 and 2282 <7 < 2m, H; = G

When ﬂ;—*g <1< i”f—l, G; is a trail containing the 2-paths bmt1 ¢, _m-1 amys and
2 2 2

Crmt1 b;_ mi1 G2, not necessarily in this order. In H;, bm2il (;_m=1 Gmis becomes the

trail
bmil a; _m-—1 d2 Coi—m d1 A, _m-1 dmt3,
2 2 2 2

and ¢p41 b;_m41 ¢y becomes the trail
2

Cm+41 bi__i_mz 1 dy C2imm—1 do bi__i_mz 1 Cny2-

When 7 = 34+ (341 is a trail containing the 2—paths bms1 @ ¢ meas and €mpq bm Cmga.
2 2 > ] 5 + +

In Himy1, the first of these 2-paths. bmt1 ¢; amis, becomes the trail
2 2 2
bmir aydycy dy ay ames,
2 2
and the second, ¢;q1 b, Cy2. becomes

Cm+1 bmdl Com d? bm Cm+2'

As before, we have not affected the first and last edges of G; in constructing H;.

0

It remains to prove that the 2-paths centred at vertex oc join the H; together to
form an Euler tour. For 4m + 3 > 11, we consider the union of the 1-factor F, of
Kymy2, which dictates the end vertices of the 2-paths centred at vertex oc in Sg, with
the 1-factor F~ U {d;,d>}. Recall that F~ is the 1-factor of Ky, whose i*" edge is
uv if oou and v oo are the first and last edges of G;. When 4m + 3 = 7, we use the
1-factor E3 instead of E,.

The proof of the following claim is easily seen.
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Claim 2.3.6 When 4m + 3 = 11, the union of the two 1—factors of Kyo, E2 =
{Cl C4, b1 C3, b2 as, d] C2. dg al} and FiUdl d2 = {d] d2, Cy b], Cy A2,C3 bg, Cq4 al} 1s @ Hamil-

ton cycle of Kqp.
Claim 2.3.7 When m is even and 4m + 3 > 11, the union of

EQ = {bic2"_2:2§i 2

i/\
I/\

m}

m—1}

U {Cl Com, b1 C3. 01 Ay, (11 Crmy A2 Cry3, az41 b-',;+1}

+
+2<

IN
NISMIS

[\)l 3&)‘ 3
I/\

U {(l,'CgH.] 12 S )

and

Fru{d,,d2} = {aici-2,2<i<m}
U {bic2i—lal <z Sm}
U {a1com,dy da}

is a Hamilton cycle of Kym 2.

Proof. It is straightforward to check that the union of the two l-factors is the

following Hamilton cycle.
(b) CadsC35 -+ - b_!;'_ Cm—2 (I.L;‘_ Crm41

bl;—i—l al—;‘—+l Cm dl d2 Crmiy3 b?+'2 Crmi4-2 (l_'2'l+2 Cm45 " bm—l C2m—-4m—-1C2m-1

b C2m—2 G, A1 C20y C1 bl 6‘3)-

The proof of the next claim is again easily seen.

Claim 2.3.8 When 4m + 3 = 7, the union of the two 1-factors of K¢. E3 =
{erdy,dyca,a1 by} and F~ U {d.dy} = {d1 dz.c1 bi.c2 a1} is a Hamilton cycle.
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Claim 2.3.9 When m is odd and 4m + 3 > 7, the union of
m+1 m+5 .

B, = {bicoip:2<2< 5 9 <i<m}
oom—1 mi|-3 i
U {aiep :2<1< 55 <i<m-1}

{Cl Com, b1 C3,a1 4, dy aﬂ_;_ly d, bl;’_:’ y Cm41 Cm+2}
and

Frul{d),dy} = {aicri2,2<1<m}
U {bicsi-1,1 <2 <m}
U {aicom,d; da}

is a Hamilton cycle of Kgpnya.

Proof. The two 1-factors form the following Hamilton cycle.

(bg ColgoCs - -+ bm_1 Chn—-3ldm-1 Cpp, bmi—l Cp—1 Um+t (],1 dz
3 2 2 2

bm2i3 Cm42Cm+1 A m$2 Cm4y bmﬂii- Crm+3d mzis Crz6 """
y4 z

b1 Com—1 m_1 C2n—1 b, Com_2 @y, @) Comm €1 by C3).

By Claims 2.3.6 and 2.3.7. the 2-paths centred at vertex >c join the parts f;,
0 <1 < 2m, together so that Sy is an Euler tour when m is even. Similarly. by
Claims 2.3.8 and 2.3.9. Sy is an Euler tour when m is odd. We h.’}.\'e shown that
Ky, 13 has a perfect set of Euler tours for all m.

This completes the proof of Theorem 2.1.1.

2.4 A Corollary of the Main Result

We now prove Corollary 2.1.3 which states that it is possible to traverse the edges of

K341 so that every 2-paih occurs exactly once.
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Proof of Corollary 2.1.3. Case 1: Suppose k = 2m is even. The Euler tour 7}
constructed in Section 2.2 contains the 2-path o*(a;) cc ¢, for all 7 € {0,1,2,...,4m—
2}. Let T be the trail T; \ {o'(a;) coc;} for all 7 € {0,1,2....,4m — 2} and assume

that T goes from oc ¢; to 0*(a;)co. Then the following union of trails and 2-paths

is the required walk in Ky 4;:
T; ar00 e Tj ol{ay) oo ¢ Ty 0%ay)o0cr---Th o' =2(a;) oo ¢;.

Case 2: Now suppose k = 2m + 1 is odd. If m > 1, then the Euler tour S; con-
structed in Section 2.3 contains the 2-path o*(cyn) 00 for all i € {0,1,2,...,4m}.
Let ST be the trail S;\ {o'(czm) o0y} forallz € {0,1,2,...,4m} and assume that S}
goes from 0o ¢; to o'{cz,) oc. Then the following union of trails and 2-paths is the

required walk in K4, 43:

e o 1 4 Ul 2 = 4
S5 camoc 1 Sy o' (cam)oc ey S5 0%{cam) o0 €y -+ Shpn 0 (C2m) 0 €1

When m = 1. we had to use a different 1-factor to determine the 2-paths centred
at oc. The result follows exactly as before but now we have the 2-path d; co¢; in S

instead of cs,, 00 ¢, so replace every occurrence ¢y, in the above traversal by d;. O

It is interesting to note that since we are merely tracing out the edges of one Euler
trail after another, this ordering of the edges has the added property that each edge
m Aoy is traversed exactly j times before any edge is traversed more than ; times,

forall j € {1,2,...,2k —2}.



Chapter 3

A Perfect Set of Euler Tours of
K 9L 1 I

3.1 Main Result

In this chapter we prove the following theorem and corollary.
Theorem 3.1.1 For all k > 1. Ky + [ has a perfect set of Euler tours.

Recall that we defined a perfect set of Euler tours of A'5; + 1, where [ is a 1-factor
of Ky to be a set of 2k — 2 Euler tours of K3 + [ such that every 2-path of Ky is
in exactly one of the Euler tours, and for each of the edges ab € I. each Euler tour

either uses the digon a ba or the digon bab.
Corollary 3.1.2 For all k > 1. L(K5) has a Hamilton decomposition.

Proof. Given a perfect set of Euler tours of Ky + I, replace each 2-path abc with
the edge abbc in L(K:), and ignore the digons. (A sequence of 2-paths and digons
such as abc,beb, cbd will become the two adjacent edges abbc and ¢bbd in L(K3;).)

The proof now follows in exactly the same way as that of Corollary 2.1.2. O

This chapter is divided into two sections as the two cases of k£ even and k odd

are again considered separately. In both sections we use the following well-known

34
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construction of a Hamilton decomposition H of Kp;_1: Let V(K1) = {1,2,...,2k—

1}. Let oy be the permutation
(1)(234 ---2k—3 2k—2 2k—1)

of the vertices of Kyx_; that fixes vertex 1 and cyclically rotates the others. Then

H = {Hy, Hy,...,Hr_2}, where Hy is the Hamilton cycle
(122k—132k-24 -k k+1),

and H; = U{(HO), 0 <7< k-—2,is a Hamilton decomposition of Kox_1. We actually
want to construct H; = o' (Hp), for 0 < i < 2k—3, so that we generate each Hamilton
cycle twice. Thus for all : € {0,1,2,...,2k — 3}, Hiyx—1 = H;, where subscript

addition is modulo 2k — 2 on the residue classes 0,1,...,2k — 3.

3.2 A Perfect Set of Euler Tours of K4, + 1

Let k = 2m. Let V(Kym—1) = {002} UAU BUCJ D, where A = {a1,a,...,am-1},
B = {b;,bs,...,bp,1}, C ={co,c1,¢2,. . Cm-1} and D = {dy,ds, ..., dp_1,dr}. Let
V(Kam) = V(Kgm-1) U {001}

We use the above construction of a Hamilton decomposition of Ky,_; but with

the new labeling on the vertex set. Let o be the followihg permutation of V(Ky,,)
(001)(002)(fl1 brazbs -+ am-1bm-1dm Cm-1dm_1 Cm_2dm_2 -+ c1dx Co)

that fixes 0o; and generates a Hamilton decomposition of K4,—1 on the vertex set

{002} UAU BUC U D. The Hamilton cycle Hy (shown in Figure 3.1) is
(002 codiarcrbideazcyby---diaicibi- - dm_y Gm_q Cme1 b dm)a

and we now have the Hamilton decomposition H = {Hy, H1, ..., Haym—2}, where H; =
o*(Hp), 0 < i < 2m — 2. As mentioned in Section 3.1, we actually want to consider
H; =0'(Hp), 0 <i<4m —3.

We order the edges of H;, i € {0,1,2,...,4m — 3}, so that 0o, 0'(cp) is its first

edge, o'(co) o*(dy) is its second edge, and so on, counting off the edges around the
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Figure 3.1: Hy and o

cycle, so that ¢'(b,_1) 0'(d,,) and o'(d,, ) 0o, are its (4m — 2)** and (4m — 1)** edges,
respectively. (We will be using that fact that [H; : j]| = [Hiyom_1 : 4m — J].)

Our aim is to find a perfect set of Euler tours of K4, + 1. We choose the 1-factor
I to be those edges of K, that are fixed by ¢?™~}!, so that [ is itself fixed (setwise)
by o. Thus,

I = {00100, c0dn}U{aicm-i:1 <i<m-1}U{bidn_;:1<i<m-—1}.

We call the 4m —2 Euler tours of Ky, +/ that we will construct 77,0 < j < 4m—3.
It is sufficient to specify each T; by providing a li-t of the 2-paths and digons it
contains. It is then necessary to prove that the 7; do indeed partition the set of
2-paths of K4, and to prove that each 7; is really an Euler tour of Ky, + [ that
satisfies the condition on the digons.

In order to construct 73, 0 < j < 4m — 3, we first construct T;, 0<y5<4m -3,
where each T7 contains only the 2-paths in 7} that are centred at vertices in AU B U

CU D, and not those that are centred at oc; or oc,. We do this because the TJ( will all
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be pairwise similar, and we can establish their basic structure merely by considering
T5. Once we have proved that T is a set of 2m trails that start at vertex oco; and
end at vertex co,, we will know that the same is true of each TJ{. We can then find
2-paths centred at vertices co; and oo that will jein the trails in each T]f into the
Euler tour, 7}.

The set of 2-paths for specifying T} will be based on the edges in the Hamilton
cycles Hym_3, Ho, and H;. As usual, we denote Hy,,_3 by H_; in order to emphasize
that o~ !(Hy) = Hym—-3. The edges of these three Hamilton cycles are ordered as

described above and listed below.

[Ho:1] = o030,

[Ho:2] = cody,
[Ho:4k —1] = dyar,1 <k<m—1,

[Ho:4k] = aren, 1 <k<m—1,
[Ho:4k+1] = b, ]l <k<m-—1,
[Ho:4k+2) = bidiy1,1 <k<m—1,
[Ho:4m —1] = d,, coq.

= 0024,

]
[Hy :4k—2] = arecp—1,1 <k<m—1,

[Hy:4k—1] = cprbel <k<m-—1,
[Hy:4k] = bpdp,1 <k<m—1,
[Hy:4k+1] = drag1,1 <k <m—2,
[Hy:4m ~ 3] = dp-1dn,
[Hi:4m —2] = dpcm_,

[Hy:4m —1] = c¢poq00s.
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[H—l 1] = 00ydy,

[H_1:2] = die,

[H.:3] = cico,

[Ho1:4] = cody,
[Hoy:4k+1] = dipanl <k<m-—1,
[Hoi:4k+2] = aren,l<k<m—2,
[H_1 :4k+ 3] = crpr1 b, 1 <E<m -2,
(H_y:4k+4) = brdiy2,1 <k<m—-2,

]
[H__l :4dm — 2] = Uy, bm—l;
[H_; :4m — 1]

= bm—l Q2.

We use the notation described in Chapter 1 to list the 2-paths in T{:
a;[H_1:1,3,5,...,4m —1) =3, 4(m ~i),4(m — i)+ 2,4(m — 1) +4,...,4m — 2],

bi[Hy:1,3,5,...,4m—i) =1, 4m — ) +2,4m — 1) +4,4(m — 1) +6,....4m — 2],
ci[Ho:1,3,5,...,4(m —¢)—1,4(m —i),4(m — i)+ 2,4(m — i)+ 4,...,4m — 2],
di[Ho :1,3,5,....4m—)+ 1, 4(m — )+ 2,4m — i)+ 4,4(m — 1)+ 6,...,4m — 2],

all for1 <:<m —1, as well as
co[Ho:1,3,5,...,4m — 3] and d,,[Ho : 1,2,4,...,4m — 2].

For each centre vertex v, the two adjacent edges at which the change from an odd
numbered edge to an even numbered edge is made are the two edges that contain v/,
where vv’' € I. This ensures that the correct digons are included in the tour.

Now let T} = o?(T3), for 1 < j < 4m —3. Since o fixes I, o is an automorphism of
Kim + I. Therefore, the T7, 0 < j < 4m — 3, are pairwise similar. We need to prove

they partition the set of 2-paths of Ky, that are not centred at oo; or oco,.
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Claim 3.2.1 The T}, 0 < j < 4m — 3, partition the set of 2-paths in Ky that are
centred at a verter in AUBUCUD.

Proof. ;

We show that for each vertex v in AUBUCUD, for each r € {1,2,...,4m — 1},
and each j € {0,1,2,...,2m — 2}, we have each 2-path o7 (v[Ho : r]) in one of the 7T}.
These 2-paths are all different and we have (4m — 2)(2m — 1)(4m — 1) of them. As
this is the number of 2—paths in K,,, that are not centred at oc; or ooq, we must have
every such 2-path exactly once. Addition on the subscripts of the 77 will be modulo
dm — 2.

Case 1: Consider ¢; € C, 1 < ¢ < m — 1. By construction, the 2-paths in
¢[Ho : 1,3,...,4(m — i) — 1, 4(m — 2),4(m — 1) + 2,...,4m — 2] and in b,_;[H; :
1,3,...,4i — 1,41+ 2,4i + 4,...,4m — 2] are in Tj. Now o*™ ?(b,,_;) = ¢; for all
i€{1,2,...,m —1}, and ¢*™ %(H,) = Hyp_y. Therefore, T, _, = o®™*(T}) will

contain the 2-paths in:

O'2m—2(bm_i[H1 :1,3,...,4e-1, 40+ 2,42 +4’”.,4m_2]')
- Ci[H2m_1:173""’42:_174i+2)4i+43-.-,4m~2]
= clHo:2,4,...,4m—1) =2, 4(m — i)+ 1,4(m = i) +3,...,4m — 1],

using the fact that [Hjjom—1 : k] = [H; : 4m — k].

Therefore, we have each of the 2-paths ¢;[Hp : 7], r € {1,2,...,4m — 1}, at
least once in one of T, or T, ,, and hence each of the 2-paths o?(¢;[Hy : 7)), r €
{1,2,...,4m — 1}, in one of T} = o?(T3), or T3, _,,; = o/(T},._,), for each j €
{0,1,2,...,4m — 3}. This is equivalent to having each of the 2-paths ¢?(c;[Hp : ]),
re{1,2,...,4m —1},0<; <2m —2, and 0/ (an_i[Ho: 7]), 7 € {1,2,...,4m — 1},
0 <3 <2m—2,in some T}, since 0™ (¢;) = apm—;, for all s € {1,2,...,m 1}, and
since Hg = Hop_y.

Case 2: Consider d; € D, 1 < < m — 1. The 2-paths in d;[Hp : 1,3,...,4m —
4141, 4m—4i+2,4m—41+44,...,4m—2]and in a,,—;[H-1 : 1,3,...,4:— 3, 41,41 +
2,...,4m — 2] are in Ty, and 0*™(a,_;) = d;, for all i € {1,2,...,m — 1}, and
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0*™(H_1) = Hapm—y. Thus T, contains the 2-paths in

0™ (am_i[H_1:1,3,...,41 —3, 41,42+ 2,...,4m — 2])
= di[Hom-1:1,3,...,4i —3,4i,4i + 2,...,4m — 2]
= di[Ho:2,4,...,4m — 41, 4m — 41 + 3,4m + 4i + 5,... ,4m — 1].

Therefore, we have each of the 2-paths d;[Hy : r], r € {1,2,...,4m — 1}, at least
and hence each of 07(d;[Hy : 7)), 7 € {1,2,...,4m — 1}, in
at least one of T} or T3, ., for each j € {0,1,2,...,4m — 3}. This is equivalent to
having each of the 2-paths ¢(d;[Hy : r]), r € {1,2,...,4m—1},0 < j < 2m —2, and
07 (bm—i[Ho : 7)), {1,2,...,4m — 1}, 0 < j < 2m — 2, at least once, since 0>™71(d;) =
bpn—i, for allz € {1,2,...,m — 1},

Case 3: Finally, we consider the vertex ¢o. The 2-paths in ¢o[Hp : 1,3,5,...,4m —
3]and in d,,[Ho : 1,2,4,...,4m—2] are in T;. Also, 0™~ !(d,,) = cg, and o*™ "} (Hp) =

Hs,.—y. Therefore, T,,,_, contains the 2-paths in

: ! !
once in one of Ty or T,

o™ Y dn[Ho: 1,2,4,...,4m — 2])
= c¢o[Hom-1:1,2,4,...,4m — 2]

= CO[HO : 2,4....,4771— 2,4m~ 1],

giving ¢o[Ho : 7}, r € {1,2,...,4m —1}, at least once in one of Tj or T, _,. Therefore,
we have the 2-paths 0/(co[Ho : r]), r € {1,2,...,4m — 1} in either T} or T}, _,,;,
for each j € {0,1,2,...,4m — 3}. This is equivalent to having o/(co[Hp : 7]), 7 €
{1,2,...,4m — 1}, 0 < j < 2m — 2, and o (dn[Ho : 7)), r € {1.2,...,4m — 1},

0 <j <2m ~— 2, each at least once.
In total, for v € AU BU C U D, we have o/(v[Hp : 1,2,...,4m — 1]) for all
je{0,1,....2m—-2}. O

The following claim establishes the structure of 7. It will be important to know
the first and last edges of each trail in T when we come to put in the 2-paths centred

at ooy and oo,.

Claim 3.2.2 The list of 2-paths given for T, forms a set of 2m — 1 trails, each of

which starts on oc; and ends on ocy. We will call the trail that starts on the edge
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oo1v, P, for allve AUBUCUD. The trais, with theiwr first and last edges, are as
follows:

P,,1<i< f%] — 1, a trail from 0oy a; to ay; 009,

By, 1 << 7], a trail from 00y b; to cp;y 003,

P,,0<:i< f%] — 1, a trail from ooy ¢; to ¢y; 009,

Pi,1<:< L—’;‘—J, a trail from 00y d; to ag;_q 002,

PC% when m s even, a trail from 0o, cmto d,, 00,

Pd%ﬂ, when m is odd, a trail from oo, dﬂ?ﬂ to d,, 003,

Py, [Z] <t <m—1, a trail from co; a; to by(m_i)—1 002,

By, 5] +1<:<m—1, a trail from ooy b; to dy(m_;) 002,

P, 3] +1<t<m—1, atrail from co; ¢; to bym_i) 002, and

Py, f—’;—‘] +1 <i <m, a trail from 00y d; to dym—iy41 002

Proof.

To prove this claim, we list the order in which the 2-paths occur in the trails. We
will not mention which Hamilton cycle the edges that determine the end vertices of a
2-path come from, as it should be clear that 2-paths centred at a vertex in A, B or
C'U D, have their end vertices from H_,, Hy, or Hy, respectively. Some of the 2-paths
have a superscript. These superscripts are relevant only in Section 3.3.2.

In order to check that we have covered every edge exactly once, it is enough to
verify that évery 2—path listed below is actually in T}, that every two adjacent 2-paths
overlap in an edge, and to count the number of edges covered by the trails. Since any
edge containing 0oy or oo, is in only one 2-path in T}, these edges must determine
the ends of trails. If these trails cover 8m? — 2 edges, then we have covered all the
edges in Ky, — {001 002} U (I — {001 002}) exactly once. It is not necessary to check
that the edges covered are all distinct: once you start a trail at an edge, say, oo; v,
then the rest of the trail is completely determined because every edge (except those
containing oc; or 0o,) is in exactly two 2—paths. It is obvious that the following trails
all start on different edges.

Counting the edges in the P, does yield 8m? — 2 edges, as required.

The trails are as follows and the verification of the above although dreadfully
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tedious is not difficult. Within each trail there are several patterns on sets of four
2-paths. We will show a pattern and specify that it occurs for ¢; < 7 < ¢, for some
q1 and ¢2. We will also show the pattern for j = ¢; and 7 = ¢ because this helps
when verifying that every pair of adjacent 2-paths do overlap in an edge. A 2-path

will be underlined if it happens to be the end of a pattern for some j.
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Py, 1<i<[B]—1;

aildi + 1] dip1[di — 1] di[di + 3] Qi [4i - 3] G =0)
n..l..;\:.*.au..*.: 5+~.+L3.l~€.l.: QH.IN.EN..TNC..TB 5.+~.+~T~.I\C.lu_ 0<yj <i-—-1

a,[8i - 3] doy[3] dy[8i — 1] ani[1] (G=i-1)
NUD:_\.MW:_ MslAIS'H
ET:..T w_ P‘+;AL P.T: + \: aj4a T: - w_ C = Ov
P.I.Q.T:.T\C.Tm_ P.+.~.+LAN.I.A.L n..lu.T:.T\C..T.\: a-.+u.+;~:lxc.l.w_ OM.«MM‘SIMIM
agi—m42[4m — 6] cm—1[8i — 4m + 8] Cai-mta[dm — 4] W18 — 4m + 6] (j=m=-i-2)
nm..l3+;é3~l w_..
bin-1[8% — 4m + 2) 2o m[dm — 2] (87 — 4m) i~ [dn — 4] (j =0)

bpij-1 ﬁmml?:li.*..&
G_.u :._IAﬁAAMII_\E:_ +OH_ Aev
bpop i E-TED+Y dipa (122 ) i) -3

C2imaneg (A0 =45 ~ 2]
copmn (2] ) +21)

Ay [8i—4m—475)
Apap i (=[] +a]1

¢lap i (1= 3])-1]

bop it (4015 -] dipayy[4(|2
@MASI&?_ R;mAS
emT:I—.vl 1 ﬁ:

I.Nsw._lu..l.w.vlw_ Clam | ?Aul_.adq._.l.w.vl:
— 1)+ 1] ¢atm—i)[3)]

A2imgpj [AI—45 — 4]
i (22— )]0
a2 [4(1%) ~) -5 (=0
Gifm) (1P ]~))-8) 0<j<i-[2]-
a1[8(m — 1) - 1]
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P 1<i< ]
bi[4i — 1) ci1[di + 1]
biyi[Ai—dj~1] eij_ [4i+4541)
boi—o[7] 187 — 7]
bai—1[3)] co[87 — 3]
SE....T_.S odd :
bmgs [2m + 9] s [2m + 4]
eﬁr_isan G+2 dop_ [2m+45 +
bim-2[12] dz[4m — 6]
bn—-1[8] da[dm — 2]
Em-1[6]1() da[4m — 4]1()
dm-1[1]

Py [B14+15i<m=1:
bi[41]

biy;[47 ~ 4]

bin-2[87 — 4m + 8]
bm-1[87 — 4m + 4]

baiep[4m = 2]°
baieng[Am—4;—2)

b (4[5 ] —i)+2)°
bi-pm (L3 ) —1)-3]
bi-rg1-; [4(1 3] ~i—5)=3]
ba(8(m — i) + 5]

by [8(m — 1) + 1]

col8(m — ) = 1]

d;[4i + 2]

&..IQ.TT. 445 + w_
dai_p2[4m — 6]

doi gy [4m — 2]
em-1[87 — 4m 4 2]
Cmmjt1 (81— 4N — 45 +2)

¢ ap (10 [51)+6)1
diam i [A(i=[5])+1]
diag i [A0=~T B 1)
datm—-iy41[9]

da(m-iy[5)

dagm-i)[1]

[ A il

GMi=3] b i+ (=0)
Cii[4i=45=3] bi_j_\[di+4j+3] 0<j<i—2
cai—2(5) by[87 — 5] (J=i-2)
coi-1[1]
&.F»ﬁ [2m] Fﬁw.LwE -+ 0] (7=0)
1) mﬁmiwsl 43) ?.mf.u.?:f:% 6} 0<jg =8
dpm-1[10] ba[dm — 4] (= 25%)
dp (0] by[4m — 2)*(2)

-} T:Aou

l_.+_ T:. - E
diyjpi[4i—4j -2
dp-1[87 — dm -+ 6]
dn[87 = din 4 2)

i ypgr [11n — 4]
daimeja [Am~4j—4]
di-pppe[1(| 3] =)
ci-r1 (L5 ) =) -5
Cimfg7-5[4(L %2 ]-i=5)-5]
c2[8(m ~ 1) + 3]

c1[8(m — i) ~ 1]

co[4m — 5]

bimy [1i 4 4] (J=0)
F.Iu.l_T_s..T\_.g..T\: om.w..ma:.ls.lw
?':.l:_+_?§ - \: C =m-i- wv

U1 [8F — 4m)

— o~
.
]
(=)
~—r

Aot (8 =AM —4j] 0<j<i=[%]-1
g lG=TE1F 1 (= im12 1)
03 i [~ [2) 1] (=0)
o i [0 0<j<i-[2] -2
as(m-iy41{7] (J=i-[2]-2)

awT:l..sz
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ﬁﬂ..o Mm Mm ﬂMWd -1:

ci[4i+ 1] bi[4i + 3]
n_.+._._w:|\~.~.+: SILATTAQFT&
cai-1(5] by[8i - 1]
nu_._”:
n:_.m._+~ <m-—1:
ci[4i] a;[4i - 2]
ci—j[4i + 45) aip;[4i—4j - 2]

C2i—m+2[dm — 8]
C2i—m41[4m — 4]
b—1[87 — 4m ~ 2)
bmjr [8i—4m—4j—2)
bragl(i=%])+2]"®
brapyiy [4(i= %)) =3]
di| g [4([ 3]~

di| g -1 ([ 3] ~i=5) - 3]
dy[8(m — 1) + §)

am-2[87 — 4m + ]
A1 (8¢ — 4m + 2]

n?.l.,:l;xrz. - w“_

C2imm—j1 [AM— 45 — 2]

Co(m—i)+1 _”uu_

cif 2 [4([ 2] =)+ 2]t

—1)—3] crapyan [4(i- 3 ]) - 5]

biti[4i - 1] ci-1{4i + 5] (J=0)

biyjr{di—45-1] Ciojo1[di+4j+5] 0< M i—1

bai[3] co[8i + 1] (G=i-1)
Gi 1[4 + 2] cip1[di — 4] (G = 0)
ai~j—1[4i + 45 + 2] Citj41{di— 45 — 4] 0<j<m—-i—-2
a2i-m+1[4m — 0] Cm-1{8i — 4m + 4] (J=m-1i-12)

Qi [dm - 2"

d[87 — 4m — 4] Azi-m-1[dm — 4] (=0
dmj [8i—dm—4j—4] Ui [AT— 4~ 4] 0<jLi=[2]-1
dramy gy [16- 15 )1 ai| g [1([R] =) (G =i-1%1-1)
i -y (1% ] =1)—5] f?.f&?? 121)=7] (G=0)
@iy gt (PP == 0)=8)  bpapqyy[A(i=[2]=4)-7) 0<j<i—|B) -2
ay[8(m — i) + 3] bagm-i)[1] (G=i-1%]-2)
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oL <iS|B
d:[4i = 1]

di_;[Ai4+4j-1]
do[8i = 9]
dy[8i — 5)

wat LI even

da gy [2m + 2]
dagjpr[2m —4) + 2]
dy-1[10]

din[6]

Ay [4]*(2)

Po, |5l +2<i<m:

di[4i - 2]
diys[4i—4j — 2]
Ayt (81 — Am -+ 2]
Ay [81 — 4 — 2]
bag o1 [4m ~ 2]
bojemag—1[dm — 45 = 2)

F_ - T_ L

N

bicggpja [4([ 3R] -1)~3]

bi g i (PP =1=0)~3]  dpapmyiyo (10— 2] =) -
F _”mT.; - sv + m_ &w?:i.,v+~ TL
co[8(m —4) + 3] mezl.i;:

]

a;[47 = 3]
i4j T:o.._.\.!“&
LT VT\L
:..r.i;,:

ba [2m 4 4]

\...m_;..i [2m 4 45 + 1]

bo[din — 4]
by[m — 2)*(e)

co[dm — 5]

?.:.,.!_T: -+ \C._
bag—yn[tm ~ 4]

Conet [81 =~ A = 2]
Conmgot [Ri e Arit = 4 = 2]
bio gy (T3] = 1) 4 2)2(®) crapy [0 =B ) +2]HO)

m

dpamy [4(i= [ 2]) 3]

:m..._T:. -+ :
:.‘r&,t;.«:.,*i_.\«*. :

m Tf b J

\.Zw, +1 ESL
e.:l 1 TL

a.:i;o.f,?.v
yp T_

bi[di — 4]

bigj (i = dj = d]
by [Bi = A1)

dojyn [hm ~ 4]
gy [0 A = 4]
;_..,_ 4 [( ?E.,
el

=t (3] =i =)= 5]
)+ 3]

w_ «.T_
ey [8(m —7)

emp Fjr (20 14

l_.+;\: . .ﬂ
digjpr[1i—=45~5] 0 < j m P2
~\.....Ai~Tz

d s [2m -+ 6]
do_j[2m 44546 0<j < -2
dyfdm — 2]

du[dm — 4]tCe)

dir [0 + 2]
it [AT 4 A5 4 2)
i [Arm 2]

et [8E — 42y = 4]

Aot [87 = A10 = 4 f = 4]

— i)t apam s (= [2]))7©)
~0)=5  apspgen G- %])-5)

LTS | [4(

(i-12]=)=5] 0<j<in
@2(m—iy41[3] (j=i=-
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Pep
2

when m 1s even :

ez [2m)te)
dz[2m + 1)
dz3[2m — 24
cm_1[2m + 3P}
ez yjf2m — 45]
dz_j[2m + 45 + 1P
+i+1[2m — 45 — 211
_j—1[2m + 45 + 3

d

c

SR ]

Cm—zfsl'“)
d2{4m - ‘;}HC,‘!
dm—} EGE’“I;

c1[4m — 3]

cm_li,ﬁ'@e,‘
d; {4111 - 31:“}
dm?zgngei

c;[’?.m - 1]:(6)
dz[2m + 2]7(2)
dzy1[2m — 34
6_271_1{2171 + 4]'(6')

cmii[2m — 45— 1]HO
d=_j[2m+ 45 + 2](©)
dzyj41[2m — 45 — 3)He

ex_j2m+4j+4]"9 0<;j< 2 -2

cm_:_,m!(e)
d2[4m — 6]*(¢)
dm_l[5]1(t‘)
Cy [4171 _ 4]'(6)

Con—1 [3]1(6)
d; {4"1 - 2]"8)
d,,,;fl}”"")

il

w3
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P4, ,modd:
drmgs [2m]*(2)
cmT.l[2m + 1]
Cmgs [2m — 2]~
dm_;_x_[Qm + 3)He)

dmgs , [2m ~ 451
cmo1_ [2m + 45 + 1]
c%tl_”[?m —4j — 2]
dpoy_[2m + 45 + 3JHO)

bm-l

Co

d g1 [2m — 1]H)
Cm=s [2m + 2]*(9)
Cgt_;}i [2m hand 3]1(0)

d o1 [2m + 4]7()

45 — 1)i)
dngs;[2m — 45— 1]
cmor_[2m + 45 + 2]

cmpry;[2m — 45 - 34

dg_;_x_][2m+4]+4]*(0) OS]5m2—3

dp—1 [5]¢(o)
c1[4m — 4]*(")
Conm1 [3]1(0)

dy[4m — 2]*(9)

dps [1]H)
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We are now at the point of joining the trails in each of the T} together with 2—paths

centred at 0o, and ooy to form the Euler tours 7;. Currently, the T} are all pairwise

similar. However, in order to use every 2-path centred at oo, or oo, exactly once,

we have to have some Euler tours that contain the digon oo, co; 001, and some that

contain the digon oo, 00y 00s. The following two claims, covering the two cases of m

odd and m even, show how to join the trails in T} together with 2-paths centred at

oo and oo, to construct one Euler tour of Ky, + [ that contains the digon oo, 0o, 00,

and another that contains the digon oo, 00, 002. We then use these two Euler tours

to generate a perfect set of Euler tours.

Claim 3.2.3 Assume m is odd. Let

T, =Ty U oos[Hp : 2,4.86,. ..

T, =ToU oo [Hp:1,3,5,...,4m — 1] U coy[H,pn : 2,4,6,...,4m —2].

,Am —2]U coo[Hp : 1,3,5,...,4m — 1] and
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Then

1. T, and T, are Euler tours of K4y, + 1, and

2. The set of Fuler tours, {T; : 0 < i < 4m — 3}, where T; = o"(T,) if 0<:1<
o2m —2 and T; = o'(T}) of 2m —1 <i<4m—3, is a perfect set of Fuler tours
Of K4m + I.

Proof.

Assume m > 1.

Proof of 1): To construct T, we need to know that the 2-paths and digon that
are in oo [Hp : 2,4,...,4m — 2] are ¢goo1 dy, ajoor¢j, 1 < 3 < m—1, bjoo1d;y1,
1 < 7 <m-—1,and 0oy 001 005. The 2-paths in cos[Hp : 1,3, ...,4m—1] are co; 003 ¢,
djoozaj, 1 <j<m—1,c¢jo0rb;,1 <j<m~—1,and d; 0o, 00;.

To construct T} we need to know that the 2-paths in ooy[Hp : 1,3,...,4m — 1]
are 0oy 001 Cg, dj 001 a5, 1 <j<m—1,¢jo0o1b;,1 <j<m—1,and d, co; 002. The
2-paths in coo[H,, : 2,4,...,4m — 2] are a; 002 by_j, 1 <7 <m —1, and ¢; 003 d;—j,
0 <j <m—1, together with the digon 0o, coy 00;.

The left-hand diagram in Figure 3.2 shows how the 2-paths centred at co; and ooy
join the trails in T} together to form the Euler tour T5,. As well as 0o; and oo, there
are two columns of vertices in the diagram, each containing V(K4m-2). A dashed
line between vertex [ in the left-hand column and vertex r in the right-hand column
indicates the trail in T} that starts on the edge co; [ and ends on the edge r 0o,. This
is the trail labeled P; in Claim 3.2.2. A solid line between two vertices [; and /3 in
the left-hand column indicates the 2-path {; oco; [,. A solid line between two vertices
r1 and 75 in the right-hand column indicates the 2-path ry 0oy 7. Finally, the dotted
lines represent actual edges in the Euler tour 7p.

In exactly the same manner, the right-hand diagram in Figure 3.2 shows how the
2-paths centred at co; and at oo, join the trails in T together to form the Euler tour
7.

Proof of 2): Tt is not hard to see that the set of Eulef tours {T;:0 <17 < 4m — 3}
contains every 2-path centred at co; or oo, exactly once, and hence that we have

construcied a perfect set of Euler tours of Ky, + 1.
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dy
dm
bm—1
a3

<1

I
—— - al

& ----od

- = d
- i
e-----9o
R

R O
) G

Pattern repeats

I oo

Pattern repeats

(o0} ..'.

002

dm—l

Am—1

d m—1

Cm-—1
bm—l
bm—1

(o4 1

m—

Figure 3.2: T, and T, when m is odd and m > 3.
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When m =1 the diagrams in Figure 3.2 do not apply. It is however easy to check

this case separately. O

Claim 3.2.4 Assume m is even. Let

T, =TyUoc,[Hp:2,4,6,...,4m — 2] U coa[Hp : 1,3,5,...,4m — 1] and

T, =TyUooy[Hp:1,3,5,...,4m — 1] U coo[Hpyy : 2,4,6

.....

dm —2] if m > 2 and

T, = TygUocoy[Hy 1 1,3,5,...,4m — 1JU ooq[H, : 2,4,6,...,4m — 2] if m = 2.

Then T, and T, are Fuler tours of Ky, + I, and the set of Euler tours, {T;:0 <1 <
4m —3}, where T; = o*(T,) if 0 < i1 <2m—2 and T; = o*(T},) if 2m—1 < i < 4m -3,
15 a perfect set of Euler tours of K4, + 1.
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Proof.

When m > 2 is even the only difference in 2—-paths centred at ooy or co, from the
odd case is the set of 2-paths centred at oo, in T;. These 2-paths are a; 0oz byyy1-j,
2<;<m—1,¢joordm-1-j,0 <7 <m—2, a1 003 €1, by 002 d,, and o0y 004 00;.

Figure 3.3 proves that 7, and T, are Euler tours. The result follows exactly as in
the odd case.

The case m = 2 is readily verified. G

This completes the construction of a perfect set of Euler tours of Ky, + I.

3.3 A Perfect Set of Euler Tours of Ky,,.0+ J

We have constructed a perfect set of Euler tours of Ko, + I when k is even. Now

assume k is odd and let k£ = 2m + 1.

3.3.1 A Perfect Set of Euler Tours of Kg + J

The general construction that follows in Section 3.3.2 for a perfect set of Euler tours
of K4my2 + J does not work when m = 1, so we do this case separately by giving
four Euler tours Ty, T, T3, T3, that form a perfect set of Euler tours. Let V(Kg) =
{1,2,3,4,5,6} and let J = {12,34,56}.

To: 4 1 2 3 25162434565 3641
Tv: 4212343625605 135 46 1:4 2
T,: 51 216 31434656 23524351
3: 521 26 4 23 6 5613435145 2

3.3.2 A Perfect Set of Euler Tours of K4, 9 +J, m>1

Let V(Kymy1) = {002} UAUBUC'UD', where C' = CU{c,,} and D' = DU{dp41}
and A, B, C and D are as in Section 3.2. Let V(Kyni2) = V(HKms1) U {o01}. We

construct a perfect set of Euler tours of Ky, 42 + J, where J is a 1-factor of Kgmy2,
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Pattern repeats

Pattern repeats

_____ co
doyr @----- i drm—1
am 4, é ————— -? bin—a
a2 ®- - - - - ® a
dp e — - —— a3

™ 41 I ————— bm—2
34 @ - - - - 9 dnz
by ®----- &
a @----- e2
dmyr @ ~-~- 1 dm—3
amy2 o----- 9 bm—s
a3 -~~~ & us

|
I
|

dm—l ‘ ————— ‘é dS
Am—1 @~ - - — - by
cm e - - - Z dm
bm ‘ ————— -’ Cm-—1
d - ---- o
ay - - - - - ., ap
1z @----- © bm
dzvit. ‘ _____ Ay
Cm—1 @@= -~ -~ I by
b1 @

bhm
2
< Z-1 - - - - - Cm—-2
dm @ -- -~ d;
T

Figure 3.3: T, and T, when m is even.
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by partitioning the 2-paths of K4mn+2 into 4m parts, and then showing that the 2-
paths in each part do indeed form an Euler tour of Kgnt2 + J. We will be using the
trails in T that were constructed for K4, + I to accomplish the latter half of this, so
in this section we will partition the 2-paths in K442 into {So, S1,...,Sam~1}. For
i €{0,1,2,...,4m—1}, let S! be only those 2-paths in S; that are centred at a vertex
in AUBUC'UD'.

We use the construction mentioned in Section 3.1 to obtain a Hamilton decompo-
sition of K4m4;. We label the vertices so that as many of the trails as possible in 5

will be the same as, or similar to, a trail in 7. Let 7 be the following permutation
(001)(002) (@1 by azbs ... @1 b1 dint1 Cm din €1 di—1 .. €1 d1 o)
of V(K 4m+2) that fixes oo; and generates a Hamilton decomposition
C ={Co,C1,...,Com-1}

of K4my4, on the vertex set {oos} U AU BUC’U D’. The Hamilton cycle Cy (shown
in Figure 3.4) is given by

(002 codrarc1bidaazcaby--- diaicib;--- dm—10m_1 Cm-1 b1 dm dm+1 Cm),

and we now have the Hamilton decomposition C, where C; = 7(Cy), 0 < i <
2m — 1. We can obtain a set of 4m Hamilton cycles by letting C; = 7¢(Cp) for
: € {0,1,2,...,4m — 1}. Note that C; = Cjiyom, for all 7, where addition on the
subscripts is modulo 4m. It is easy to see from Figure 3.4 that when we choose edges

that are fixed by 72" to be the 1-factor J of K442, we have

J = {oo0)002,¢0Cm,d1dms1}
U {aidn-iy1:1<i<m-—1}
U {bicmn-i:1<i<m—1},
which is itself fixed (setwise) by 7.
We will use the Hamilton cycles Cp, C; and Cy,,—y = C_; to list the 2-paths in
Sg- Order the edges in these three cycles as follows:
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Figure 3.4: Cy and 7

[Co: 1]
[Co:2]

[Co: 1k —1]
{Co : 1k]
[Co: 4k +1]
[Co: 4k + 2]
[Co:dm — 1]
[Co = 4m]
[Co:dm +1]

{C'l - 1}

2 Co,

cody,
diag. 1 <k<m-—1,
apcr, 1 <k<m-—1,
b 1 <hk<m-—1.
bdii1,1 <k<m-—1,
A dmi s

dmt1 Cm,

Crm X09.

OCo U,

apcp_1,1 <k <m—1,
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[Cy - 4k — 1]

[C) : 4K]
[Cy : 4k + 1]
[Cy : 4m — 3]
[Cy : 4m — 2]
[Cy:4m —1]

[Cy - 4m]
[C1 :4m + 1]

[C_y:1]
[C_1:2]
[C_y: 3]
[C_1:4]
[C_y: 4k + 1}
[C_q: 4k +2]
[C_1: 4k + 3]
[C_y : 4k + 4]
[C_1:4m + 1]

The 2-paths in Sj are:

k-1 bk, 1 <k <m-—1,
brdr,1 <k <m-—1,
diagy1,1 <k<m-—2,
dm-1dm41,

dmt1 Cm1,

Cm—1Cm,

Cm

dm 02,

co da,

diyrar,1 <kE<m-—1,
ar cki1,1 <k <m-—1,
1 br, 1 <k<m-—1,
bpdipa, 1 <k <m—1,

dm+1 003.

35

a;[C_1:1,3,5,...,4(m—1)—1,4(m —1)+2,4(m —1)+4,4(m —13)+6,...,4m] and

b;[C1:1,3,5,...,4m—9) +1,4(m — i)+ 4,4(m — 1) + 6,4(m — ) + 8,...,4m)],

forz € {1,2,...,m — 1},

¢lCo:1,3,5,...,4m—1)+ 1, 4(m — )+ 2,4(m —2) + 4,4(m — i) +6,...,4m] and

d;{Co:1,3,5,...,4(m —3)+ 3, 4(m — 1) +4,4(m — i)+ 6,4(m — 1)+ 8,...,4m],
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for: € {1,2,...,m}, and
c0[Co:1,3,5,...,4m — 1] and dpn41[Co : 1,4,6,8,...,4m].

Define S! = 77(S}), 0 < 5 < 4m — 1. Since 7 is an automorphism of K42 + 1,

the S} are all pairwise similar.

Claim 3.3.1 The S}, 0 < j < 4m — 1, partition the set of 2-paths in Ky, that are
centred at a vertez in AUBUC'UD .

Proof. The proof is very similar to the proof of Claim 3.2.1.
Case 1: Let ¢; € C’"\ {cp,¢cm}. Then the 2-paths

calCo:1,3,...,4(m —1)+ 1,4(m —1) +2,4(m — 1) + 4,...,4m]
are in Sj and the 2-paths
W@, 5[Coy 1,3, 0,40 — 1,40 + 2,40 + 4, ..., 4m)])
are in S5,,,,. This second set of 2-paths is equal to
ci[Co:2,4,...,4(m —1),4(m — 1)+ 3,4(m — 1) +5,...,4m + 1].

Combining these two sets, we have each 2-path in ¢;[Co : r], r € {1,2,...,4m + 1},
at least once in Sj or S, ,. Therefore, we have each 2-path in 7(ci[Co = 7)), T €
{1,2,...,4m+1},0 < 7 < 4m—1, at least once somewhere in the S]. This is equivalent
to having each 2-path in 77(¢;[Co : 7)), r € {1,2,...,4m + 1}, 0 < 7 < 2m — 1, and
in 79(bp-i[Co : 7)), v € {1,2,...,4m + 1}, 0 < j < 2m — 1, at least once, since
72™(¢;) = bp—; for all 7 € {1,2,...,m — 1}.

Case 2: Let d; € D'\ {dy,dmy1}- Then the 2-paths -

di[Co:1,3,...,4(m — )+ 3,4(m — i) +4,4(m — ) +6,...,4m]
are in S) and the 2-paths

T2m_1(bm—i+l[cl . 1,3, . ,42 - 3,42,42 -+ 2, . ,4m])
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are in S5, _,. This second set of 2—paths is equivalent to
&[Co:2,4,... 4(m — i)+ 2,4(m — i) + 5,4(m — i) + 7,...,4m + 1].

Combining these two sets, we have each 2-path in &;[Co : 7], 7 € {1,2,...,4m +1}, at
least once in S} or S5, ;. So we get each 2-path in 77(d;[Co : 7]), r € {1,2,...,4m +
1},0<j<2m—1,and in 77(@m—iz1[Co:7]), 7 € {1,2,...,4m+1},0< j <2m —1,
at least once, since 7™(d;) = am-;41 for all i € {2,3,...,m}.

Case 3: The 2-paths ¢o[Cp : 1,3,...,4m — 1] in S} and the 2-paths
™ (en[Co 1 1,2,4, ..., 4m]) = co[Co : 2,4, ..., dm, 4m + 1]

in S}, together give co[Co : r], r € {1,2,...,4m + 1}, at least once in S} or S},..
Therefore, we have each 2-path in 77(¢o[Cp : 7)), 7 € {1,2,...,4m+1},0 < j < 2m—1,
and in 77(c,[Co i 7]), r € {1,2,...,4m +1},0 < j < 2m — 1, at least once somewhere
in the 5.

Case 4: The 2-paths d1[Co : 1,3,...,4m — 1,4m] in S} and the 2—paths

T (dms1[Co : 1,4,6,...,4m]) = di[Co : 2,4, ...,4m — 2,4m + 1]

in S5, together give d;[Co : 7], r € {1,2,...,4m + 1}, at least once in S; or S;,..
Therefore, we have each 2-path in 77(dy[Co : 7)), 7 € {1,2,...,4m +1},0 < 5 <
2m —1, and in 77(dm41[Co: 7]), 7 € {1,2,...,4m+1},0 < j < 2m —1, at least once.

Altogether, for each v € AUBUC’U D’ and each j € {0,1,...,2m — 1} we have
I(v[Co: 7]), r € {1,2,...,4m + 1}, at least once. This means we have every 2-path

at least once, and hence, exactly once. O

Claim 3.3.2 The 2-paths in S, fit together to form 2m trails. Of these, 2m — 2 start
on an edge containing co; and end on an edge containing coz. Label such a trail P.,
where 001 v is the first edge of the trail. The trails in S§ with their first and last edges
are as follows:

P,,1<: < [2] =1, from 0oy a; to az 00z,

Pg‘., 1 S 'l S I_%J, f'rom (o9} ] bi to C2i-1 009,
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Pl,0<i<[Z]~1, from corci to ¢y 00z,
P, 1<:< [Z], from co1d; to azi—q 002,

P!, when m is even, from 0o cpto cp 002,

cm ?
2

Pém_éu’ when m is odd, from 0o, dﬂgi to ¢, 002,
P, [2] <i<m—1, from 001 a; 10 by(m-i)-1 002,
P, 2] +1<i<m—1, from ooy b; to dy(m—i) 002,
P, |53 +1<i<m—1, fromooic; to ba(m—i) 002,
P, [2]+1<i<m, from co1d; to dym—i)41 002

In addition we have the two trails
em|Am] dppy1[dm] = 001 € digq 001 and
dmi1[1] co[dm — 1] dm[1] = 003 dipy1 €o dm 002.

Proof.

There are relatively few 2-paths on which T and S}, differ and we can use the trails
in 77 to determine the structure of the trails in S3. We will do this by considering
where the 2-paths in S differ from those in Tj. For most pairs o and &, o € {—1,0, 1},
ke {l,2,...,4m — 2}, the edges [H, : k] and [C, : k] are the same. The edges that
differ that will affect 2-paths in S} are Cy[4m — 2] # Hi[dm — 2] and C_;[4m — 2] #
H_y[4m —2]. Also, any 2-path in S} that is centred at ¢, or dmy1, or has end vertices
from the 4m** or (4m — 1) edge of one of the Hamilton cycles, Cop, C_; or Cy, must
be new. 7

From now on we will no longer mention which Hamilton cycle Cy, Cy, or C_4
the end vertices of the 2-paths in Sj come from, since 2-paths centred at a vertex
in A always bhave end-vertices from C_;, 2-paths centred at a vertex in B always
have end-vertices from C;, and 2-paths centred at a vertex in C’ U D’ always have
end-vertices from Co. We will however mention which Hamilton cycle, H_;, Hp, or
H,, the 2-paths in Ty come from, mostly to stress that we are considering a 2-path
in T} and not one in .Sg.

The 2-paths thai are in 7 but not in Sy are those that are marked in the traiis of

T} with a superscript *, *(0) (only applies when m is odd), or *(e) (only applies when
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m is even). Whether m is odd or even, the 2-paths that are marked in this way are:

alH 1 :4(m~1),1<i<m-—1,

bi[Hy:4(m —14)+2],1<i<m—1,
GlHo: 4(m —i)],1<i<m—1,
di[Ho: 4(m —1)+2],1 <i < m,
aj[H_ 1 :4m —2], for all j € {1,2,...,m — 1}, and
bj[Hy :4m ~ 2], for all j € {2,3,...,m — 1}.

The 2-paths that are in S} but not in T} are:
v[d4m], for allv € AUBUC'U D"\ {c},co[dm — 1], and d;[4m — 1],

em(1,2,4,6,...,4m — 2] and d,,41[1,4,6,8,...,4m — 2],
afd(m —i)—1,1<i<m—1,
bi[dm —i)+1,1<i<m-—1,
cldm—-1)+1],1 <i<m-—1,
d[A(m — ) +3],2 <i<m,
a;[4m — 2], for all j € {1,2,...,m — 1}, (because C_;[d4m — 2] # H_,[4m — 2])

and
bj[dm — 2], for all j € {2,3,...,m — 1} (because C,[4m — 2] # H,[4m — 2]).

First of all, P/, = P, 1 <i < [2] -1, P, = B, 1 <i < 2], P. = P,,
1< < f%] —l,and P} = P;,1<:< | %], because none of the 2-paths in these
trails is one that was either removed or changed by using the Hamilton cycles in C
instead of the Hamilton cycles in H.

The trail P/, when m is even and the trail P;  when m is odd are completely
different from P;? and Py mg1 > respectively. This is not surprising given that we need

a different set of digons in S; than in T3. They use the 2-paths ¢;[4(m — ) 4 2],
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1 <t<m-—1,and d;[4(m — 1) + 4], 2 < i < m. These are marked with a superscript
f(e) or j(o) in the trails of Tj. (Again, (e) stands for the case when m is even and (o)
stand for the case when m is odd.) They also use the new 2-paths ¢,,[1,2}, d1[4m],
cldm —1)+1},1 <i<m—1, and d;[4(m —7) 4+ 3], 1 <7 < m. Note that they do

not use any of the 2-paths that were in F.,, or Fy,,,, -
2 2

!
Pcv_'n_’
2

m even

ca2m+1]  bm  cm[2m + 2]
dpi[2m]  am  dmy[2m—1]
d% [2m + 3] amyq d%{Qm + 4]
czyi[2m =21 bm_y  cpyy[2m - 3] (7 =0)
cz_;j2m+4j+1] bmy;  cm_j[2m+4j5 + 2]
doyin[2m—45] az_;  dzija[2m— 45— 1]
do_;j2m+4j+3] apyjp do_j[2m+45+4]
cmyin2m—4i =2 bn_jy cmyulPm—4j-3] 0<j<Z -2
c2[dm — 7] bn_z  ca[dm — 6]
drn—1{8] az  dn 7]
dofdm — 3] am—1  dafdm — 4]
cm-1[6] b1 cm[3] V=%-2)
aldm—3] b1 alim — 2]
d[4] ay dn|3]
difim =1} dpy dijam]
eml2] o cnmll]
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and

Py .. .modd:

e
cmi1[2m]  bmo Compr [2m — 1]

r4
Cmo1 Pm+3] bmpr  cmaa[2m+ 4]

—z

622:1_][2m+4]+3§ bml_” 612—_1__j[2m+4j+4]

d’-"—zfl+j+1['2m —4) -2} amu_; d’—",zi‘+j+1[2m —4j-3] 0<;5< mT_E'

d2[4m - 5; dy g (lg {4TII- — 4]
Cm—1 [6} by Cm -1 [5]
€y {4?‘!’1 - 32 bm_] C {477’1 - 2]

drfl] a1 dn{3] (=25

dif4m — 1] dpy  difdm]
caf2] @  ewll]

The remaining trails of T} are all modified at least once to make them the trails in
Ss- We remove 1 or 2 subtrails from each and then use the new 2-paths that are still
available and the 2-paths marked with a superzcript i(¢) or (o) in PC% or by mg1
respectively, to join the trails together again and to create two new trails.

First consider the 2-paths that are marked with a superscript * in the trails on
Ty. These are azimya[H-y : 4m —2Jin P,, [3] < i < m -1, and az_n[H_; :
4m —2}in P, [T+ 1 <i<m-—1, giving a;[H_; : 4m — 2] exactly once for each
7 €1{1,2,...,m —1}. Replace the 2-path a;{H_; : 4m — 2] = a,,_; a; b,,_, with the

following trail:
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a;[dm — 2] ca[47] c;ldm] dm1[47] aj[4m] = a1 aj Cm €; dmy1 @5 by

The 2-paths by;_p[H;y : 4m — 2] in B, [2]4+1 <2 < m — 1, and the 2-paths
boi—m—1[Hqy : 4m — 2] in Py, | 3] +2 <@ < m, are also marked with a superscript
*, giving b;[Hy : 4m — 2] exactly once for each 7 € {2,3,...,m — 1}. For each
j €42,3,...,m— 1}, replace the 2-path b;[H, : 4m — 2] = d,,, b; c,n—1 with the trail

bJ[4m] Cm[4j + 2] dj+1 [4771] (lm+1 [4_] + 2] bJ [4m - 2] = dm bJ Co, dj+1 Clm+1 bJ Cpr—1-

The following subtrail is marked with superscripts *(o) or (o) in F;,,, when m
2

is odd, and with superscripts *(e) or {(e) in Pd%_ﬂ when m is even.
bi[Hy : 4m — 2] ¢y [Ho : 6] d2[Ho : 4m — 4] app_q[H -1 : 4]

- dm bl Cm-1 d2 m—1 Co-

Replace it with
bi{4m] ¢, [6) da[4m] ;o 1]6] b1 [dm — 3) di—1 [5] ¢ [Am — 5] ay—1 (3]

- dm bl Cm d2 dm+l bl dm—l €1 Q-1 Co-

For the remaining changes to the trails in T, we have to consider m even and odd
separately.

Case 1: f mis odd, then P,. [3]+1<i<m-1,and Py, [F]+1<:<m,
require no more changes to become P! . {Z|+1 <i<m-—1,and P}, [F]+1 <i<m,

respectively. The subtrail in P, comprising the four 2-paths that are marked with

_m=1
3

superscripts *(o) or (o),
[Ho: 4321 — 1) + 2]
d-’_?«_rr;_;l_{‘!’l iHO z ‘]:(l- — 111;1)] a'-_m

—_ ai_ m2—1 +1 b?ﬂnz—l —i C]—_ m;} d3m2—1 —it1 (Li_ m;l b31712~1 —i—1

becomes
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bamos ;[4(6 — 251) + 1] d;_mes [4(F — 1) + 1]
comar 4G — 752) — 1] a;_ma [4(3552 —4) — 1]

=a;_ m2—-1 +1 b3n12-—1_- d. m—i Cam—1 g m2——1 b31112-—1 i1

e e

completing the trail P, , for m+1 <i:<m-1.
The subtrail in B, ’-”—;ﬁ <1 < m—1, comprising the four 2-paths that are marked
with superscript *(0) or {(o),
bi—-m—;l-[Hl . 4(% - 1) + 2] Ca_m_z:-_l___i[H(] : 4(2 _ ’m"i:l) + 2]
di—ﬂ;l+1 [Ho : 4( as";——l—i[Hvl t4(i ~ 5]

= a3m—-l —it1 bi m2—1 Cam2 1 -d-_ m2—1 +1 (1.317;—1 _i bi_mz—l —13

-1 1

becomes

by mes [A(P% — i) + 1] damas_[4(i — 757) + 1]

7

ci_mT.l[zL(ém-z:—l — i) — 1] aama_;[4(i - zmely — 1]
= aam—x —it1 bi m;—l d3n12— _i Ci_mT—l a3m2—1 - bi_ﬂ;-_l_l,

completing the trail P;, for 22 <7 <m — 1.

Case 2: If m is even, then P, [Z] <i<m—~1land P, || +1 <2<m—1,
require no more changes to become P, , [2] <i<m-—1land P, | Z|+1 < <m—1,
respectively. The subtrail in P, 2 +1 <2 < m — 1, comprising the four 2-paths
that are marked with superscript *(e) or i(e),

am_[Hy:4(i = 3) + 2] ciop[Ho : 4(5F — 1) + 2]
dam _;41[Ho: 4(1 — P ai—m[H_y : 43 — )]

= (1,'__’21+1 bam - C,.._ dgﬂ_H_l ,,_.!ﬂ ba—’"—i-l

becomes
bam ;[4(i — 3) + 1] dio2[4(F — 1) + 1]
esp_ 46— 2) — arn[4(3E — i) — 1]

= (1,‘_22'.+1 b37m._,' di—-%’- C3T'"_¢' (1,'_.’2'1 b3T’"—i—1a
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completing the trail P, for 2 +1 <2:<m~— 1.

The subtrail in Fy;, 7 +2 <2 < m, comprising the four 2-paths that are marked
with superscript *(e) or j(e),
bi_m[Hy : 4% — i) + 2] CaTm_i[Hg (4 — ) + 2]

di—-'2’l+1 [Hp : 4(37"1 — 1)) aaTm_,-[H_l 41 — -73-)]

becomes
bip[4(3 — i)+ 1]dep 4G - 3) + 1]
o422 — i) — Uasp_[4(i — 2) - |

= ag;_n__i_H b,-_.%l_ dzm ; Ci-m asTm - b{_%'._l,

completing the trail Py for 2+ +2 <z < m.
The remaining two trails that use the four edges o0y ¢, 001 dmy1, oc2dm, and
003 dp 41, do not follow the pattern of starting on an edge containing oc; and ending

on an edge containing oc,. Instead, they are
em[dm] dp i1 [4m] = o0y ¢y dig1 001 and
dyny1[l} co[dm — 1] d, [1] = 002 dpyy co dim 002
We have now used all of the new 2-paths as well as those that were marked with a

superscript i{e) in P.,, or with a superscript i(o) in Pdm;_,. O
2

In the following claims. we show how to use the 2-paths centred at oc, and oo,

to complete the S} into Euler tours.
Claim 3.3.3 Assume m is odd. Let
S, = 85U 001[C1 :2.4,6,....4m] U ocy[Cy : 1.3,5.....4m + 1] and

Sp = SqUoc1[Crm 1 1.3.5.....4m + 1] U 00p[C : 2,4.6,... . 4m].

Then S, and Sy are Euler tours of Kyyy2+.J, and the set of Euler tours, {S;:0<i <
4m — 1}, where S; = 7(S,) f 0< i <2m —1, and S; = 7(S}) if 2m < i < 4m — 1,
is a perfect set of Euler tours of Kypmyo + J.
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Com 3
dosy

A
Comot
3
L2 18
Crm-t
doyr
e

/

r Pattern repeats

Figure 3.5: S, when m is odd and m > 3.

Proof.

Figures 3.5 and 3.6 show. respectively. that S, and Sy are Euler tours. The different

edges in the graph are defined the same way as those for T, and T; with the additional

vertical dashed edge from c,, to d,, 41 in the left-hand column of vertices representing

the trail 0o ¢,; dnyq 901, and the vertical dashed edge from d,41 to d, in the right-

hand column representing the trail 0os dyny1 co dim 002.
We should probably note for the sake of the proof of Claim 3.3.1, that for all
t€{0,1,2,...,4m — 1}, S is indeed a subset of the S; defined in this claim.

O
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The following claim for the case of m = 2 is given without proof.

Claim 3.3.4 Let
Sa = ‘S'(’) U 001[02 : 2;4,6, 8] U 002[01 s 1,3253 7, 9] and

Sy = 85U 004 [Ch : 1,3,5,7,9] U 002[Co : 2,4, 6, 8].

Then S, and Sy are Euler tours of K10+J, and the set of Euler tours, {S; : 0 <1 < 7},
where S; = 74(S,) if0<i< 3, and S; = 7(Sy) if 4 < i < T, is a perfect set of Euler
tours of Ko + J.

Claim 3.3.5 Assume m > 2 is even. Let
Sa = Sy U001[C : 2,4,6,...,4m] U 00,[C1 : 1,3,5,...,4m + 1] and

Sb = S(’) U OOI[C,,H_] : 1,3,5, .- ,4m + 1] U 002[61 : 2,4,6? PR .4777.]
Then S, and Sy are Euler tours of Kymy2+J, and the set of Euler tours, {S; : 0 < i <
4m — 1}, where S; = 7(S,) if 0<i < 2m — 1, and S; = 7°(S}) if 2m < i < 4m — 1,

is a perfect set of Fuler tours of Kymys + J.

Proof.
Figures 3.7 and 3.8 show S, and S, are Euler tours.

a

This completes the construction of a perfect set of Euler tours of Ky4,,42 + J and

the proof of Theorem 3.1.1.



CHAPTER 3. A PERFECT SET OF EULER TOURS OF Ky + 1

LA [ S
Lo ®
.. @
I R @ N\
Ty @ ok \
b @ L 22
€orl @po-mmmm a5
dx ®------- Y Pattern repeats
b1 @------- 94
ay Q------- o9
. @------- ok
o @------- o
G Q- Y
2l e - & :
d= @®------- .
I Y T2
2 @------- o
d= . ------- & A3
o
res

Figure 3.7: S, when m is even and m > 4.
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Chapter 4
Another Question of Kotzig’s

The results in this chapter were motivated by Kotzig’s question [12]: What is the
smallest k for which there is a perfect set of Hamilton decompositions of K17 The
difficulty of this question led us to consider two related problems. In Section 4.1 we
show that for any k there are at least 2k — 2 pairwise compatible Hamilton path
decompositions of K,;. A simple corollary of the proof of this theorem is that there
exists a set of 4k—2 Hamilton path decompositions of Ky such that every 2-path is in
exactly two of the Hamilton paths. In Section 4.2 we add a new vertex oo to Hamilton
path decompositions similar to those constructed in Section 4.1 to get a lower bound
on the number of pairwise compatible Hamilton decompositions of K44y, when k is

even.

4.1 Pairwise Compatible Hamilton Path Decom-
positions

The graph Koy has k(2k — 1)(2% — 2) 2-paths. A Hamilton path decomposition of
Ky contains k(2k — 2) 2-paths. We would like to construct a set of 2k — 1 pairwise
compatible Hamilton path decompositions of K;: a perfect set of Hamilton path
decompositions of K3;. However, when & = 2, it is possible to find at most two

compatible Hamilton path decompositions. In Theorem 4.1.1 we extend this result

70
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by constructing 2k — 2 pairwise compatible Hamilton path decompositions of K for
all values of k. There is however no reason to suppose for k > 2 that it is not possible

to find 2k — 1 pairwise compatible Hamilton path decompositions.

Theorem 4.1.1 The complete graph K has a set of 2k — 2 pairwise compatible
Hamilton path decompositions for all k > 1.

We first prove three lemmas. The second lemma and part 2 of the first are only
used in Section 4.2, but it is convenient to prove the results all at once.

We assume that all addition is modulo 2k — 1 with residue classes 0,1,...,2k — 2,
unless otherwise stated. Let V(K2) = {o01} U {0,1,...,2k — 2} and V(Ky41) =
V(Kax) U {oo}. For 0 <i<2k—2and z,y € {0,1,2,...,2k — 2}, let F;;= {co1:} U
{zy:z #yand z+y =2¢(mod 2k —1)}. ‘

We define a “length” function on the edges in K3 that do not contain vertex
oo; as follows. Let ¢(zy) = min(z — y(mod 2k — 1),y — z (mod 2k — 1)). We say
two edges v; v and wu; us in Ky are parallel if none of the vertices is co; and if
Uy + uy =vq + v2(mod 2k — 1). For example, for each i € {0,1,2,...,2k — 2}, the
edges in F; that do not contain oo, are pairwise parallel.

Suppose for some a,b € {0,1,...,2k — 2} that F, U F} is a Hamilion cycle H of
Kyr. We can assume that H = (w; w, -- - wy), that the edge w, w, is in F,, and
that w;, = co;. We want to consider the 2—paths in {wy;_1[F,] Uwy;[F3]: 1 <7 < k}.
This set contains 2-paths of the form ocuv and so the union of the 2-paths in
{wa;—1[Fa] U wy;[Fy): 1 < j < k} will contain trails that start and end at vertex co.
For the moment we want to consider trails in K3 and not in Kjiyq, so we will omit
2-paths containing oc. This is equivalent to constructing the trails in K544 and then
removing co. We don’t want to forget about the 2-paths that contain co altogether,
because in the next section, we will use these 2-paths to join the Hamilton paths in

K5 into Hamilton cycles in Kop .

Lemma 4.1.2 Given that F, U F, is ¢ Hamilton cycle H = (wy w, - - - wa) of Ky,
where wy = 001 and wy wp € F,, the trails formed by the set of 2—paths in {w;_,[F,]U
wo;[F3] : 1 < 7 < k} have the following two properties:
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1. They form a Hamilton path decomposition of ng,‘ and

2. The Hamilton path that begins on wvertez w; = oo, ends on vertexr wry, =

271(a + b) (mod 2k — 1).

Proof.

The outer cycle in Figure 4 1 is the Hamilton cycle H = F, U F} when £ is even.
When £ is odd, a similar figure is obtained.

Proof of 1): The subtrail of {ws;_1[F,] U w;[F3] : 1 <7 < k} in Ky that starts
on wy is the Hamilton path P given by the boldface edges. It is not hard to see that
the trails that start on the other vertices form Hamilton paths in exactly the same

way. In fact, if we let p be the following permutation of V(Ky;),
P = (wl Wy --- w2k)7

then the other trails formed by the set of 2-paths in {wq;_1[Fa]Uwq;[F] : 1 <j < k}
are P (P),for 1 < j <k—1.

Proof of 2): By the definitions of F;, and F}, we can describe vertices w;, 2 < < 2k,
in terms of ¢ and 4. The Hamilton path P shown in this figure obviously starts at
wy = ooy and ends at wiyy = ka—(k—1)b=kb— (k — 1)a =27 (e + b) (mod 2k — 1).

0

Lemma 4.1.3 When k s even, the Hamilton paths formed by the set of 2-paths in
{waj—1[Fa) Uwy;[Fb): 1 < j <k}, have the following property:
The length of the edges in Ky determined by the first and last vertices of each of

the Hamilton paths, except P, is a constant. That constant is
min(2~'(a — b)(mod 2k —1),27'(b — a) (mod 2k — 1)).

Proof.
Assume k is even. From the action of p on P in Figure 4.1, we see that if we
start a trail at vertex w;, 2 < ¢ < £k, that it will finish at w;;x, where addition

on the subscripts is modulo 2k, with residue classes 1,2,...,2k. By definition of
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wy_y=2a—5h - " wy = 3a ~2b

wak—z = 3b ~ 2a ws =4b - 3a
L ]
L ]
. . - L] -
Wiys = (k ~ 4)a — (k — 5)bg wp_y = (k—3a— (k= 4)h
wiyq = (k—3)b— (k- 4)a wiq = (k~2)b—(k—3)a

Vs

lwk =(k~1)a—(k—~2)b

wess = [k —2ja — (k- 3)b

weey = (B~ 1)b— (k—2)a wiyy = kb—(k—1)a

Figure 4.1: P and p

F, and Fy, if 7 is even, wiyx = k(a — b) + w; =27'(a — b) + w; (mod 2k — 1). If i is
odd, then wix = k(b — a) + w; = 271(b — a) + w;(mod 2k — 1). In either case,
#(w; wiyx) = min(2~(a — b) (mod 2k — 1), 21 (b — a) (mod 2k —1)). O

The proof of the third lemma is heavily based on the proof of Theorem 1 in [1].

Note that k can again be odd as well as even.

Lemma 4.1.4 Assume that ¢ > d, where ¢,d € {0,1,2,...,2k —2}. Ifc—d and
2k—1 are relatively prime, then F,UFy is a Hamilton cycle, where F; = {o0,1}U{zy :
x#y and z + y =2t (mod 2k — 1)}, fori € {c,d}.

Proof.

Let F. and F; be two such 1-factors of Ky so that ¢ —d and 2k — 1 are relatively
prime. Consider an [-subset of those edges in F, that do not contain oc;s. The sum of
the vertices in these edges will be congruent to 2lc(mod 2k — 1), since an edge ¥ in
F., ¢ # ooy # y, satisfies  + y = 2¢(mod 2k — 1). Similarly for F;. Suppose F. U Fy
is not a Hamilton cycle of K5;. Then there is an even length 2m—cycle in F.U F; that
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does not contain oo, where 2 < m < k — 1. We can sum the vertices in this cycle as
edges of F, or as edges of Fy to get that 2mc = 2md(mod 2k — 1). This contradicts
the fact that ¢ — d and 2k — 1 are relatively prime. O

Define o and 7 to be the following permutations of V(Ko;):
o =(001)(012---2k—2) and

T = (001)(k)(01)(22k—2)(32k—3) - - (k—1k+1).

Note that 7(Fp) = F1 and 7(F) = Fo.

Each of Hy, Hy, ..., Hy_» and H}, Hy,...,Hj_, will be a set of 2-paths, and our
objective is to show that each of these sets of 2—paths is a Hamilton path decomposi-
tion of K. We will list the 2-paths in Hg, show how to determine the H; and HJ’~ SO
they are similar to Hy, show that no two of {Ho, Hy,...,He—2} U{H}, Hy,...,H._,}
have a 2-path in common, and prove that Hy is a Hamilton path decomposition of
Koy

Define the 2—-paths in Hy to be

001 {Fo)
0[F3)
2i[Fp) for 2 € {1,2,...,k— 1}, and

(2t — 1)[F1} for 2 € {1,2,...,k —1}.

Let Hj = 7(H,), H; = 0% (Hp), for 1 < j < k—2,and H} = 0¥ (Hy),for 1 < j < k-2,
By definition, the H; and H J’ are all similar to Hy.

Claim 4.1.5 The 2—-paths in H| are oc1[F}, 0[Fo), and 2:[Fy] and (2 — 1)[Fy] for

Proof.

This follows immediately since 7(Fg) = F; and 7(F}) = F;. O

Claim 4.1.6 For any 3 € {0,1,...,k—2}, the set of 2-paths in H; and H; contains

every 2-peth in Ky with end vertices from an edge in F,; or Fyjy, ezactly once.
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Proof.

By definition and by Claim 4.1.5, we know that Hp and H| between them contain
every 2-path with end vertices from Fy or F, exactly once. Let ;7 € {0,1,...,k —2}.
Since H; = 0% (H,) and H} = 0% (H}), and F; = 0% (Fp) and Fyj4 = 0¥(Fy), we
know that H; and H; between them contain every 2-path in Kj; with end vertices

from an edge in F3; or F3j41 exactly once. O

It follows that no two of {Hp, Hi....,Hy_2} U {H}. H},...,H;_,} have a 2-path
in common. In fact we have all possible 2-paths exactly once except those with end

vertices an edge it Fyr_».
Claim 4.1.7 The 2-paths in Hy form a Hamilton path decomposition of Ksy.

Proof.
By Lemma 4.1.4, Fy U F} is a Hamilton cycle of K,;. We can therefore use part 1
of Lemma 4.1.2 to prove that the 2-paths in Hy form a Hamilton path decomposition.

O

This completes the proof of Theorem 4.1.1.
It would seem to be difficult to find a perfect set of Hamilton path decompositions
of K3.. However, we can find a set of Hamilton path decompositions of Ky that

contain every 2—-path exactly twice as a simple corollary to the proof of Theorem 4.1.1.

Corollary 4.1.8 The complete graph Kor has a set of 4k — 2 Hamilton path decom-

positions so thai every 2—path in Ky is in exactly two of them.

Proof.

Let Ho, H1, ..., Hyx—2 and H}, Hy...., H},_, be the Hamilton path decompositions
we want to construct. Define Hy and Hj as in the proof of Theorem 4.1.1. Let
H; =0%(Hy), 0 < j <2k —2, and H! = 0%(H}), 0 < j <2k —2. Exactly as before,
we can show that for all j € {0,1,....2k—2}, H; and H} between them contain every
2-path in Ky with end vertices from an edge in F3; or F3j41, where addition on the

subscripts of the 1-factors is modulo 2k — 1, with residue classes 0.1....,2k— 2. O
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It seems appropriate to mention the next two results as they tie in with the result
in Theorem 1.2.22. The first is an obvious coroliary of Corollary 4.1.8; the second is

a corollary of Theorem 1.2.22 [11].

Corollary 4.1.9 There exists a set of Hamilton paths of Ky that between them con-

tain every 2-path of Ksr exactly twice.

Corollary 4.1.10 There exists a set of Hamilton paths of Kaxyy that between them

contain every 2-path of Kapyy exactly twice.

4.2 Pairwise Compatible Hamilton Cycle Decom-
positions

In Section 4.1 we found a set of 2k — 2 pairwise compatible Hamilton path decompo-
sitions of Ay;. If the edges determined by the end vertices of each of the Hamilton
paths were distinct, we could add a new vertex oc to each Hamilton path decomposi-
tion and join the ends of each Hamilton path through oc to construct 2k — 2 pairwise
compatible Hamilton decompositions of K. Sadly this doesn’t happen. We now
attempt to get a lower bound on the number of pairwise compatible Hamilton de-
compositions of Kjxiy. when & is even. by constructing a different (smaller) set of
pairwise compatible Hamiltor path decouapositions of A,. and making sure that we
will be able to join the ends of all the Hamilton paths together with distinct 2-paths
centred at a new vertex oc. (The restriction to even k arises because the result in
Lemma 4.1.3 does not hold for odd k.)

The following lemmas are needed to find pairs of 1-factors of KA. F,UF}. on which
the Hamilton deccmpositions will be based. The 1-factors. V{Ky;). and V(Ro41)

are still defined as in Section 4.1.

Lo 4.
U€ 1

anmn 4.2.1 Fof 2eas pad oo
CININA 4.0 LEI UV GG Iy ot
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Proof. Assume2  (u +v) =27%(z + y)(mod 2k —1). Thenu + v =z + y(mod 2k — 1),

and uv and z y are parallel. O

Lemma 4.2.2 If k > 2 and even, then there exists a set S of I—%_I disjoint edges in
Koy such that:

1. No two of the edges are parallel,

o

. No two of the edges have the same length, and

None of the edges contains the verter oc;.

Moreover, we can always find a subset S* of S with at least three edges that have
lengths relatively prime to 2k — 1.
If k =2 there is only one such edge.

Proof. The proof is divided into the three cases of £ = 0(mod 6), £ = 2(mod 6),
and k = 4(mod 6).
If £ = 0(mod 6):

S = {0k-1,1k-3,2k—5,... 51541}
U {2k—2k+1, 2k—3k+3, 2k—4k+5.... % % _3)
U {k—2k+2}.

The set S has Z edges. Let S* = {0k—1, £1%541, k—2k+2}.
If k = 2(mod 6):

2 ._ 92 9L_=x k=
S {0k—1, 1k-3, 2k—5.... 52 &1}

U {2k—2k+1, 2k—3k+3, 2k—4 k+5,..., 2L 25T

U {k—4k+2}

L | x5

In this case, S has g{::;_f-g edges if £ > 2. (it has only one edge if £ = 2.) Let
k

§* = {Ck—1,

2 k+1  5k—1 5k=T7 .o L~ D
3 "3 55 25} when k> 2.
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If £ = 4(mod 6):

2k—5 k-4 k43

{2k—2k+1, 2k—3 k+3, 2k—4 k+5,... 252 3k=2
{k—2k}.

(——

U
U
In this case S has 25 edges. Let S* = {0k—1, k=2 3k=5 k—2k}.

O

Theorem 4.2.3 Suppose k > 2 is even. There are at least max([Z] — (k-1 -

E’—(%-11)3) pairwise compatible Hamilton decompositions of Koxy1.

Proof. By Lemma4.2.2 we can find a set .S of f23—k] disjoint edges in K so that no two
of the edges are parallel. no two of the edges have the same length, and so that none of
the edges contains ocy. There are at least [23—L] —(k—-1- 9—(-2—’;—3—11) disjoint edges a b € S
such that (a—b,2k—1) = 1. I [%] —(k—1-— ?—(%) > 3. choose S’ to be this subset
of S. U [Z]—(k—1— ﬂz’;—_]l) < 3. choose S’ to be the set S* defined in Lemma 4.2.2,
so that |5’ is always at least 3. Consider an edge ab € S’. Since o, ¢ {a, b}, both
F, and F; are defined and. by Lemma 4.1.4. we know that F, U F; is a Hamilton cycle.
By Lemma 4.1.2 and (since k is even) Lemma 4.1.3 we can construct a Hamilton
path decomposition of K with the property that the Hamilton path that starts on
vertex oc; ends on vertex 27'(a + b) (mod 2k — 1), and the length of each the edges,
{wiwiyr : 2 <1 < k}, determined by the first and last vertices of each of the other
Hamilton paths is a constant. min(27(a — b) (mod 2k — 1),27!(b — a) (mod 2k — 1)),
dependent on the length of the edge ab. We can extend these Hamilton paths to
Hamilton cvcles of Ky, by adding the 2-paths ooy oc27(a + b) and {w; oc witr}.

These Hamilton cycles together comprise a Hamilton decomposition of Ks;4;. Doing
i‘?iﬂ _

this for each such edge ab € 5’ gives [57] —(k—1- QQ-_E—-—Q) Hamilton decompositions

of Kyty1. Since the edges in S’ are disjoint, the end vertices of 2-paths centred
at any vertex v € V(RA3) come from different 1-factors in each of the Hamilton
path decompositions. Since no two edges in .S have the same length, all the 2-paths

centered at oc that do not contain oc; will be distinct. And since none of the edges
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in S are parallel, we know by Lemma 4.2.1 that all the 2-paths centered at co that

do contain oc; will be distinct. O

Given k, we can possibly do better than Theorem 4.2.3 by actually counting the
number of edges in the set S that have lengths relatively prime to 2k — 1. Also, given
k, we could deliberately construct a set ST, as in the following corollary, so as to

improve the number of pairwise compatible Hamilton decompositions.

Corollary 4.2.4 Suppose k is even. Let ST be any set of disjoint edges in Ko such
that oo is not in any of the edges, no two of the edges are parallel, no two of the edges
have the same length, and such that (¢ — b,2k —1) =1 for all edges ab € ST. There

are at least |St| pairwise compatible Hamilton decompositions of Kaky1-

More specifically, if 2k — 1 is prime, then the union of any two of the 1-factors of

K5 is a Hamilton cycle.

Corollary 4.2.5 Suppose k is even and 2k — 1 is prime. Then there at least [%’5]

pairwise compatible Hamilton decompositions of Koqy.




Chapter 5
Conclusions

In Chapters 2 and 3 we verify Kotzig’s and McKay’s conjectures by constructing
perfect sets of Euler tours of A5x4y and of Ky, + I, and by showing that they lead to
Hamilton decompositions of the line graph of the complete graph.

Chapter 3 was motivated by a desire to extend the idea of Conjecture 1.2.1 to
K3:. We chose to define a perfect set of Euler tours of K4 + I as we did because
we wanted to complete the verification of McKay’s conjecture. For completeness,
we mention here a couple of other suggestions for extending Kotzig's conjecture to

complete graphs on an even number of vertices.

Problem 5.1.6 Let I be a 1-factor of Nar. Does there erist a set of Euler tours of

Ky — 1, such that every 2-path of Ksx — I is in ezacily one of the tours?

Necessarily, this would require 2k —3 Euler tours. (This is trivial to do when & = 2
and not hard when &k = 3.) It would however be more satisfyving to have a definition

that contains every 2-path of K.

Problem 5.1.7 Suppose thatT = {I,. I,.... Iy_,} is a given 1 —factorization of Ky.

Does there exist an Fuler tour of each KNop — I;, 1 < i <2k — 1, so that every 2-path

of Ky 1s in exactly one of the tours?

In this case we would need 2k — 1 Euler tours. This again is trivial when k& = 2

and not hard when k£ = 3. A solution would imply the existence of a decomposition

80
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of L(K5;) into cycles of length k(2k — 2), so that each vertex of the graph is missed
by exactly one of the cycles. Certainiy a desirable result. However, the choice of 7
might radically affect the problem.

The problems that were posed at the end of Chapter 1 about pairwise compatible
Hamilton decompositions and pairwise compatible Hamilton path decompositions are
still open. We have shown that K5 has at least 2k — 2 pairwise compatible Hamilton
path decompositions for all £ > 2, and have mentioned that this is best possible
when k = 2. It remains to discover for which % it is possible to find 2k — 1 pairwise
compatible Hamilton path decompositions.

It is interesting that it is so much harder to find pairwise compatible Hamilton
decompositions of K5;41 than it is to find pairwise compatible Euler tours, and that
perfect sets of Hamilton decompositions of Kzry1 do not even exist for small k. Per-
haps another way of tackling this problem would be to look for properties of Ky 44
that might put an upper bound on the maximum number of pairwise compatible
Hamilton decompositions. Finally, when k is cdd, there is nothing known about the
maximum number of pairwise compatible Hamilton decompositions of K24;, beyond
the fatuous statement that there must be at least one. Is it even possible to show

that there must be at least three, as we have shown when £ is even?
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