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ABSTRACT

This research 1is concerned with the exploration of new
mathematical tools and their applications in criminology. At
present, most of the gquantitative methods being used in
criminology are statistical in nature. Even the textbooks
give the impression that quantitative techniques are
synonymous with statistics and moreover, commonly associated
with the positivistic perspective as well. However, despite
the wide spread use of statistics, researchers rarely
address their underlying assumptions about data, some of
which may be serious enough to put in question the results

obtained by their use.

This thesis argues against restricting quantitative methods
within a narrow definition of statistical techniques.
Instead, it stresses that criminological methodology ought
to include a broader wuse of mathematics, particularly
because of its rigor, clarity, the ability to structure and
display inherent ©patterns. It also points out that
mathematics has 1little to do with ‘number crunching’ and
deals with mental constructs 1like sets, tesselations and
fractals. Furthermore, mathematics also subsumes a
constructionist perspective and could be useful for

phenomenological studies as well. The thesis suggests that



mathematics, of which statistics is but one part, has a wide
range of techniques that could be useful for criminology. It
also points out that new developments in criminology are

looking for non-statistical mathematical techniques.

The thesis develops four different mathematical techniques
and demonstrates their applications in police
investigations, the ecological, spatial and the temporal
analyses of crime. In particular, the thesis presents
techniques from fuzzy logic, topology, Voronoi tesselations
and range by standard deviation methodology developed by
Mandelbrot. The thesis illustrates the availability of
different mathematical tools and suggests expansion of
research work in several new directions. It also seeks to
raise the level of interest in mathematics amongst those
endeavouring to study crime and apply the knowledge of this

subject to the control of crime.
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CHAPTER 1

INTRODUCTION

The reason people so often lie
is that they lack imagination:
They don’t realize that the truth, too

is a matter of invention.

José Ortega y Gasset

This dissertation is primarily the outcome of my concern
with the observation that almost all quantitative techniques
in criminology are statistical 1in nature. The course
contents of research methods, not only at the school of
criminology, at the Simon Fraser University but also in the
other universities, appear to treat quantitative methods as
synonymous with statistics. Naturally, these statistics
courses are not limited in nature or applications. Depending
upon student interests, techniques ranging from regression
to sophisticated factorial and time series analysis are
being taught. Statistics is of course an extremely useful

subject with wide utility in diverse fields.



However, limiting quantitative methods to the domain of
statistics has resulted in restricting perspectives and
appears to result in creating an impression in the minds of
students of criminology that the only alternative to
qualitative methods is some awesome number crunching through
statistics. Even amongst my colleagues, the view is that to
seek some alternate technique for their data analysis
implies learning the popular computer programs specially
designed for the statistical analyses in the social sciences
and browsing through statistical books. A serious problem
that has emerged from this limited view 1s that students
have necessarily remained ignorant of differing perspectives
and have failed to develop insights into other forms of data
analysis. It is forgotten that mathematics is much broader
subject than statistics and provides a wider spectrum of
techniques catering to different perspectives. It 1is for
these reasons that I have <chosen a subject for mnmy
dissertation which 1is concerned with broadening research

methodology.

My dissertation covers two major research issues. The first
issue 1is the debate between quantitative and qualitative
research methodologies. Many criminologists appear to

confine quantitative methods to some form of numerical



analysis, apparently on some deep rooted philosophical
grounds. However, as my work will point out, quantitative
methods are not as limited as many believe. There is power
and abstraction afforded through the use of mathematics.
Further, mathematics can also subsume many perspectives and,
therefore, both the quantitative and qualitative
practitioners can actually use mathematics as a research

tool.

Secondly, my work will explore several different types of
mathematics that have so far not been examined by
criminologists in particular, and show the applicability of
these new approaches in practical situations. Accordingly,
my first chapter will deal with the debate between
quantitative and qualitative methods and argue that there
are parallel debates in mathematics too. The controversy
between positivism and phenomenologism, for example, is also
seen between constructive and formalist mathematics and,
more significantly, both these schools have developed their
particular methods of analysis. Thus, even for those who
support the phenemonologist viewpoint, mathematical
techniques from constructive mathematics are available for

applications.



The second chapter will discuss the development of
statistics and identify some limitations generally
encountered in dealing with criminological data. The third
chapter will describe the world of mathematics and explain
the different viewpoints ranging from the formalist to the
constructionist schools. It will also argue that mathematics
is a creative subject and one that is capable of providing

human beings with objective tools of analysis.

In the fourth chapter, the dissertation will argue that the
recent developments in criminological theories have actually
started demanding new kinds of mathematical tools. The
chapter will outline Pattern theory and demonstrate that in
applying this theory to the understanding and control of
criminal behavior, modern and new mathematizs not seen in

criminological literature are essentially required.

The next section of the thesis will deal with the
exploration and application of these mathematical tools. In
particular, four techniques and their wutility will be
demonstrated. The first technique will be based upon fuzzy
logic and it will be shown how this mathematics could be

useful to criminological studies. It will be wused to



demonstrate its value in constructing offender profiles even
in cases where information about the offender is limited.
This technigque will Dbe wuseful in developing offender
‘templates’ as suggested by Pattern theory. Several
additional possible applications of fuzzy logic in criminal

justice studies will alsc be outlined.

The second technique based upon topology will form an
important chapter of this thesis. It 1is an area of
mathematics that has still not been used much in criminology
despite its advantages. The chapter will describe wvarious
applications of topology in understanding criminal behavior
and also show how it brings out the qualitative similarities

between the physical and temporal dimensions of crime.

The third form of technique will be based upon geometrical
figures of a particular kind. The properties of spatial
tessellations known as Voronoi diagrams will be described
and explored for possible applications in criminology. Their
utilization in the spatial distribution of c¢rime, in
recognizing patterns and in point pattern analysis will be

demonstrated.



The fourth technique, called range by standard deviation
(R/S) will be explored with a specific viewpoint. It will be
shown that mathematics is not only wuseful in the
verification of some theory but also for déveloping one. The
application of some mathematical technique in analyzing data
could lead to new questions and insights that may demand a
new explanation. It will be shown that calls for police
service that are being used in many research studies as
impartial official data may have, in fact, some built in
memory. The R/S technique will be used here to demonstrate
this memory effect. Through the use of this technique a
fractal dimension of policing in Vancouver will also be

explored.

The dissertation will also identify several other
applications in criminology that could profitably be
analyzed through the application of mathematics. Above all,
the thesis seeks to raise the 1level of interest 1in
mathematics amongst those endeavoring to study crime and

apply the knowledge of this subject to its control.

———X———



CHAPTER i

THE NATURE OF QUANTITATIVE

RESEARCH METHODOLOGY

The debate between quantitative and gqualitative research
methodologies is almost an endless one for “the
disagreements are not over relative advantages or
disadvantages but [are] a fundamental clash between
methodological paradigms” (Cook and Reichardt 1979: 9). As
Rist (1977: 43) has said, “Ultimately, the issue 1is not
research strategies per se. Rather, the adherence to one
paradigm as opposed to another that predisposes one to view
the world and the events within it in profoundly differing

ways”.

This chapter will examine the debate and the underlying
paradigms and also trace the historical developments that
have led to the common notion of statistics as the

quantitative research technique in criminology.

Quantitative & Qualitative Methodologies

Authors describing the nature of quantitative research
methods frequently do so by .contrasting them with the
alternate techniques that are said to be qualitative in

nature. The distinction between the two research



methodologies is in fact entrenched in every discipline of
the social sciences. For example, in psychology there is the
debate between experimental and clinical methods while in
sociology it is seen in the separation of observational
fieldwork and statistical work based upon questionnaires. In
criminology too, for example, analysis based on the official
data is considered a quantitative technique while that of
personal self reports content analysis based upon verbal
descriptions falls into what is usually called qualitative

analysis.

The common view of the division between quantitative and
qualitative methodologies 1is that the former employs
descriptions of objects, events and the relationships among
them in numerical forms while the latter uses descriptions
in words. This 1s generally an incorrect impression for
every number, like 10 can be represented by word ten and
every mathematical or logical association can also be stated
in verbal terms. Naturally, most words cannot be equated
with numerals, though techniques like semantic differential
(Clifton 1975) or classical content analysis can translate

aspects of verbal conczpts numerically (Hunter 1985: 645).

The distinction chiefly seems to arise from the fact that
qualitative techniques involve exploration of relationships
between or among concepts whose constituent categories are

unordered and comprise typologies, 1like 'users' or 'non-



£~

users' of cocaine. In contrast, the quantitative methods
frequently involve propositions in which at least one
concept is a set of ordered categories, like uses cocaine

'sometimes', 'often', 'frequently'’, etc. (Hunter 1985: 645).

A primary difference between the two methodologies appears
to be related more with the number and nature of subject
matters dealt by them respectively. Quantitative techniques
tend to decontextualize the issue by refining the theory and
looking for the minimum variables that can model the
phenomenon. Qualitative techniques tend to look for more
individual contexts behind the issue. For this reason too
their differences are also apparent in the approach to
operational definitions. The quantitative methods operate
upon the contextualized variables by associating them with
some kind of measurement whereas qualitative techniques
attempt to provide a 'rich' description of the situation.
According to Walker (1985) the ‘techniques that are
traditionally termed qualitative are those that are
generally intended to determine what things 'exist' as
opposed to quantitative methods that determine how many

things there are in existence.

Lazarsfeld and Stauffer's assert their position firmly on
the quantitative side since for them qualitative research is
exploratory in function and is prefatory to quantitative

research (cited in Filstead 1970).



For Babbie (1986: 85) ™“quantitative research essentially
involves numerical analysis whereas qualitative does not”.
Further, “data collection methods such as surveys and
experiments are primarily quantitative whereas others like
field research 1is qualitative”. Significantly, Babbie
asserts that “quantitative researchers become enamoured of

statistical artifacts” (198¢: 94).

According to Bryman (1986: 1) quantitative research is
tvpically taken to be exemplified by the social survey and
by experimental investigations. On the other hand
qualitative research is associated with participant

observation and is unstructured in depth interviewing.

Beland and Blais (1989: 534) state, “By quantitative methods
we mean the modalities of treating events rather than the
properties of their measurement unit.” In terms of the
scheme of inquiry in the social sciences, this distinction
is said to ©be apparent in the difference Dbetween
hypothetico-deduction and analytic induction methods

(Fielding and Fielding 1986: 10).

For Collins (1984) the distinction between quantitative and
qualitative research is the difference between numerical or
verbal measures. For McGraw and Watson (1976) the difference

between the two types also comes from the level of

10



measurement of the events studied since quantitative studies
involve rational numbers and integers while qualitative

studies involv: events in ordered or unordered form.

Unfortunately, the two groups representing these divergent
techniques exist as virtually separate subcultures,
preferring to speak within their group and “betray not only
a preference for one but also a distrust of the other”,
(Palys 1992: 3). The caricature of qualitative research is

that it is 'soft' as compared to quantitative methods that

are 'hard'; whereas qualitative researchers tease
quantitative practitioners as 'number—-crunchers’', the
riposte is that the former are 'navel-gazers' (Fielding and

Fielding 1986: 10)!

Qualitative researchers complain that the operationalization
of sociological concepts in quantitative indicators squeezes
the meaning out of them while the other school argues that
without such a process the general and universal character
of the social world cannot be understood. Qualitative
methods often involves an emphasis on process and a devotion
to the study of local and small scale social situations in
contrast to the emphasis on structure and the preference to
the analysis at the societal levels by the quantitative

methodologists (Hammersley 1989: 1-2).

11



Zelditch (1962: 567) states, ™“Quantitative data are often
thought of as hard and qualitative data as real and deep;
thus if you prefer hard data you are for quantification and
if you prefer real and deep data, then you are for
qualitative participant observation. What to do 1if you
prefer data that are real, deep and hard is not immediately

apparent”.

Quantitative research is then for many a genre that is said
to use a special language which appears to exhibit some
similarities to the manner of the mnatural scientists,
talking about variables, control, measurement and

experiment.

Most research methods text books generally define
quantitative research techniques as those associated with
different approaches to data collection, such as survey
design, experimental design and their analyses and other
such methods all lying within the realm of statistics (e.g.,
Adams and Schvaneveldt 1991; Babbie 1979; 1986; Blalock
1968; 1970; Bynner and Stribley 1979; Chadwick, Bahr and
Albrecht 1984; Doby 1967; Foruse and Richer 1973; Goode and
Halt 1952; Kidder, Judd and Smith 1986; McDaniel 1974;
Maxfield and Babbie 1995; May 1993). ™“By quantitative
methods researchers have come to mean the techniques of

randomized experiments, quasi-experiments, paper and pencil

12



'objective' tests, multivariate statistical analyses, sample

surveys, and the like” (Cook and Reichardt 1979: 7).

Quantitative Methods & Statistics

Whatever manner the definitions are given, it is clear that
for most social science researchers, quantitative methods
involve numerical measures and analysis within the framework
of statistics. However, there are several stages in the
research enterprise. Numerical treatment can occur in any
one of them. For instance, the methodological procedures in
social sciences research can be said to have three distinct
dimensions. The first dimension deals with the framework of
the research enterprise itself. This may be experimental,
quasi-experimental or non-experimental depending  upon
whether the researcher manipulates the independent variable
or whether s\he arbitrarily distributes the population among
the variables of different categories (Beland and Blais
1989: 544). It may also be cross-sectional or temporal
depending whether the analytical comparisons are made in

space or time.

The second dimension 1is concerned with the origin of
information. Thus, primary analyses could be distinguished
from the secondary according to whether the researcher
creates his\her data base or works on some available one.

This dimension may also be identified by the distinction

13



arising from the tool used for the data collection, namely,
observation, questionnaire, official or other data sources
or even content analysis. Finally, the third dimension
involves the manipulation or analysis c¢f the data in which
the difference may arise according to the type of technique

preferred, like statistics or content analysis.

It is probable that numerical measures may not be involved
in all the three dimensions and may occur in only one or any
two of the three dimensions. One 1is therefore at a loss to
describe such a nature of research for it would appear to
combine both the guantitative and qualitative techniques.
Since, the distinguishing feature of the quantitative method
is not only the involvement of numerical measures and
statistical manipulations but also the use o0f numerical
data, 1t 1is clear that numerical research in all three or
any one or two dimensions will still be designated as a

quantitative research methodology.

Thus, research in the first dimension may take the form of
social survey which 1is the common method in sociology,
generating quantifiable data for analysis and testing of
theories (e.g., Bryman 1986; Evans et al 1995; White 1992).
Hirschi's (1969) research on delinquency too symbolizes such
an approach falling in this dimension. A contrasting

technique of the same genre is that of experimental design

14



which appears to form the tradition in social psychology, an
approach exemplified by such classic works as that of
Skinner (1953); Milgram (1963) and even in criminology too

(Coombes, Wong and Atkins 1994).

In the second dimension of the quantitative research work,
data sources have been observations interview responses,
questionnaires and official statistics (e.g., Pretto 1991;
Farnworth et al 1994; Lauritsen 1993; Singer, Levise and Jou
1993; Brantingham and Brantingham 1978; Light 1990; Stoddart
1991). In all these instances, even when the nature of data
has been non-numerical, like the responses in questionnaire
that are generally in spoken languages, the data has been
converted into numerical measures through the use of some

scales or dummy variables.

In the third dimension, the analysis of secondary data,
official or collected from other sources, seen in the
classical work of Durkheim (1951) and more recently in
several studies (e.g., Sherman, Gartin and Buerger 1989;
Junger 1989; Bijleveld and Monkkonen 1991; Bachman 1991),
has of «course been restricted within the statistical
framework, whether presented through frequency descriptives,
cross—-tabulations or examined through factorial methods or

time—-series analysis like ARIMA modeling..

15



The advent of computers has attracted even more adherents to
these methods since most of the statistical computations
have become easier. A greater application of such
sophisticated techniques as factorial analysis, parametric
and non-parametric path analysis, logit and probit methods,
LISREL, all 1lying within the subject matter of the
discipline of statistics is witnessed since the late
sixties. Undoubtedly, the perception has grown and persists
that quantitative research implies the use and application

of statistics.

This is also apparent in any review of the gquantitative
techniques seen in the literature. For example, Beland and
Blais (1989) examining the use of quantitative methods in
sociological studies originating from Quebec report that ALL

the methods were statistical in nature.

Another study by Poland (1983), though exclusively concerned
with the quality and quantity of statistical methods in
leading Criminal Justice journals, also included reference
to mathematical methods. This study examined a total of 2390
articles in the following journals: Journal of Criminal Law
and Crime; Criminology, Crime and Delinguency; Journal of
Police Science and Administration; Journal of Criminal
Justice; Journal of Research on Crime and Delinguency;
Police Chief and Forensic Science Journal. In the period

1976 to 1980 Poland found 53% of these articles contained

16



any quantitative material, indicating that qualitative
procedures were equally preferred. He also identified 52
statistical techniques and reported that most common were
frequency descriptives, rates and ratios appearing in more
than 600 articles. Such descriptive parametric procedures
were 4 times more than inferential parametric procedures
such as T test, analysis of variance and the related F tests

for differences in means.

Among non-parametric procedures, the most frequently used
was the Chi-square, Spearman's rho, Goodman's gamma and
Kendall's tau. Scaling procedures were used 1in only a
handful of studies and the only mathematical procedures
found in the 1literature were 42 articles using matrix

algebra, 12 using calculus and 16 probability.

A comparative analysis of research methods in criminology
and criminal justice journals was undertaken by Holmes and
Taggart (1990). Examining 966 articles in the three journals
viz.: Criminology, Journal of Criminal Justice and Justice
Quarterly from 1976-1988, they too report that ALL
quantitative methods were statistical in nature. Cohn and
Farrington (1990) reviewing the state of British and north
American journals go so far as to recommend that British
researchers must use more quantitative methods (statistical)
in order to gain recognition from their American

counterparts!

17



As the first step in this dissertation and in an effort to
assess the strength of emphasis on statistical techniques,
the following Jjournals were examined for the methodologies
preferred by their authors: Criminology, Journal of Criminal
Justice, Canadian Journal of Criminology, Journal of
Quantitative Criminology, British Journal of Criminology,
and Australian and New Zealand Journal of Criminology. The
reason for choosing these Jjournals was their popularity
amongst criminology scholars, easy availability and the fact
that these have been referred as the mainstream journals in
the discipline by various authors (Parker and Goldfeder
1979; Fabianic 1980; Shichor, O0O’Brien and Decker 1981;

Holmes and Taggart 1991; Cohn and Farrington 1990).

All the articles published in these journals for the period
1989-1993 were selected and examined for the type of methods
used in the analysis or description of the subject matter.
In the first instance, the articles were categorized into
quantitative and qualitative techniques based upon the use
and/ or non-use of numbers in the main argument. In this,
even though some articles presented tabular data, these were
still designated as qualitative since the principal theme
did not really depend upon the data which appeared more for

purpose of illustration.
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The gquantitative articles were primarily sub-divided into an
‘advanced’ level statistics generally comprising techniques
like path analeis, log-linear analysis, 1logit, probit,
LISREL, ARIMA. Additionally, those statistical techniques in
which the authors discussed either the assumptions or the
mathematical basis in the description of the analytical

method were also designated as ‘advanced’.

All the other articles wusing statistical techniques
different from the above were sub-divided into three
categories. Such subject matter as frequency descriptors,
including tabular and graphical data were designated as
‘Descriptive’ while techniques pertaining to tests of
significance, tests of hypothesis, Chi square tests, factor
and discriminant analysis were defined as ‘Analytic’
techniques. The third category consisted of all ‘Sampling’

techniques used for the collection of data.

Articles using the statistical techniques but describing the
underlying mathematical model (like the Poisson process), or
those describing the use of any other type of mathematical
techniques were categorized into ‘Mathematics’ which also
included probability models, computer simulations and so on.
A detailed list of the classification of all these methods

is provided at appendix 1.
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The results of this analysis are described below in table

1.1
TABL];Z_I_.;
A REVIEW OF QUANTITATIVE METHODS
Journals
Stat. Methods cJC cJ CRIM JQC BJC ANZJ TOTAL
Descriptive 16 28 17 8 29 17 115
Analytic 22 60 23 8 15 3 131
Sampling 2 1 0 1 4 0 8
Advanced 10 35 58 43 6 6 158
Qualitative 30 50 35 0 52 42 209
Mathematics NIL 10 12 31 3 0 56
% statistical 62.5 67.4 67.6 659 495 382
% mathematical 0 5.4 8.2 341 27 0
% Qualitative 37.5 271 241 0 477 61.8
Total 80 184 145 91 109 68 677
CJC : Canadian Joumal of Criminology BJC : British Journal of Criminology
CJ:  Joumal of Criminal Justice JQC : Journal of Quantitative Criminology

ANZJ : Australian and New Zealand Journal of Criminology CRIM: Criminology

Quantitative Research as a Special Paradigm

Quantitative Research is therefore not only seen to be a
form of statistical analysis but is moreover portrayed to be

following the natural sciences techniques. It is stated to
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be one which uses a special language exhibiting similarity
to the ways in which the natural sciences function, a format
using concepts of variables, control, measurement and
experiment. This seems to imply that the logic and procedure
of the natural sciences is taken to provide an
epistemological vyardstick against which the empirical
research in criminology must be appraised before it can be
treated as valid knowledge. Quantitative research is
referred to mean more than the generation of quantitative
information. “The epistemology wupon which gquantitative
research is erected comprises a litany of preconditions for
what is warrantable knowledge” (Bryman 1986) . The
assumptions and practice that are inherent in quantitative
research are based upon the application of natural science's

approach to the study of society (Cohen 1989).

“The phrases qualitative methods and quantitative methods
mean far more than specific data- collecting techniques.
They are more appropriately conceptualized as paradigms”
(Filstead 1979: 34). According to such a view, quantitative
methodology 1s associated with a separate and unique
paradigmatic perspective, a predisposition toaQiew the world
and the events within it in a profoundly distinct way. Thus,
“the quantitative paradigm is said to have a positivist,
hypothetical-deductive, particularistic, objective, outcome

oriented, and natural science world view” (Cook and

Reichardt 1979: 9). Mofeover, such paradigmatic labeling 1is
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further said to be based on two assumptions that bear a
direct consequence to the use of this method. First, it is
assumed that the method 1is irrevocably 1linked to the
paradigm  so that an allegiance to the techniques
unquestionably implies that the world is seen and understood
in a certain way. Secondly, the paradigm is also assumed to
be fixed and rigid, almost cast 1in stone so that

modifications, or other perspectives are not possible.

“At the heart of the distinction between the quantitative
and qualitative paradigms 1lies the <classic argument 1in
philosophy between the schools of realism and idealism and
their subsequent reformulations” (Filstead 1979: 34). This
identification with empiricism or positivism has therefore
implied a strong emphasis on the processes of measurement,
counting, <classification, procedures that are associated
with '"number crunching' and the calculating face of
statistics. The stress on empirical measurement appears thus
to be responsible for 1linking quantitative research with
this sub-discipline of mathematics. The association to this
form of epistemological thinking has resulted in at least
some use of the statistical techniques in quantitative

research.
Nature of Qualitative Paradigm

The development of qualitative techniques 1is perhaps an

outcome of the revolt against empiricism. “Turmoil and rapid
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social change in the institutions of the society during the
eighteenth and nineteenth centuries caused the scholars to
question the logic and method of science as it applied to
the understanding of human beings” (Filstead 1979: 35). The
German scholars were perhaps in the forefront of those
advocating that mind is the source and creator of knowledge
while acknowledging that physical reality does exist
independently. Qualitative paradigm therefore adopted a
humanistic stance to the understanding of the social
reality, stressing one in which the social order evolves
according to the view of the observer. “The qualitative
paradigm perceives social life as the shared creativity of

individuals” (Filstead 1979: 35).

Since the social world is dynamic and continuously changing,
there will be multiple realities dependent upon the agents
who are constructing and making sense of this transformation
rather than responding mechanically in accordance with some
social laws. For this reason the qualitative paradigm
stresses the importance of ethnography as well as the
understanding of the situation from the perspective of the

participant.

The qualitative paradigm emphasizes that the basic technique
must be ‘grounded’ in the data implying that the concepts
and theories are derived from the data and illustrated by

characteristics examples of the data (Glaser and Strauss
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1967). Schultz (1967) calls them the first order concepts
from which the second order concepts emerge that attempt to
explain the phenomenon. Erickson vividly describes this
analytical method by stating, ™“What gqualitative research
does best and most essentially is to describe key incidents
in functionally relevant terms and place them 1in some
relation to the wider social context, using the key incident
as a concrete instance of the workings of abstract

principles of social organization” (Erickson (1977: 61).

The qualitative researcher, while keeping the existing
theoretical frameworks in mind, still prefers the ‘theory’
to emerge from the data itself, trying toc understand how the
subjects under study make sense of the social realities they
encounter (Filstead 1979: 38). The data gathering techniques
commonly used for such purposes are labeled as participant
observation, in-depth interviewing, unstructured or semi-
structured interviewing, content analysis and a combination
of several cf these methods in what is dubbed as the meta-
analysis. These researchers are therefore 1inclined to
capture their data in the actual language used by the
subject for these are thought to be critical to the process

of understanding the meaning being conveyed by the subject.

It is for this reason too that qualitative methods which are
seen linked to another kind of paradigm, a phenomenological,

inductive, holistic, subjective, process oriented and social
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anthropological world view (Palys 1992; Hammersley 1989),
are frequently seen to be of a different nature and
therefore not appropriate for being used together with
quantitative techniques (Cook and Reichardt 1979: 10).
Since, methods are associated with different paradigms that
are mutually exclusive and even antagonistic, the
understanding is the* one must choose between the two

techniques.

According to most authors the two techniques present
contrasting and a wide variety of positions involving
multiple issues. Hammersley (1989) identifies a number of
them like realism versus phenomenalism, epistemology versus
ontology or the belief that science is the single source of
knowledge versus the one that it is one amongst many. Some
other positions, 1like the belief that all the sciences
possess the same methodology or that they differ in both
assumptions and techniques, or even that the search for laws
versus the identification of limited patterns is considered
inherent in these methcdologies. This debate raging for
almost two hundred years has sometimes been unclear about
where their proponents stand in relation to these issues and
“...for these reasons no simple contrast is possible between

the two positions” (Hammersley 1989: 6).
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Quantitative Methodology & Positivism

The term methodology has an important epistemological
meaning concerned with the role of theory i1in research
efforts. In this role, methodology functions like theory in
guiding the conduct of the inquiry, as Kaplan (1956) points
out. All science begins in philosophy (Nagel 1961) and hence
methodology has a philosophical base that 1s oriented
towards techniques and ways of knowing. Methodology first
becomes an approach towards research and then evolves into

particular methods or techniques.

The philosophical base or the approach towards inquiry in
quantitative methods is closely linked to the concept of
positivism (Palys 1992). However, controversy over
positivism begins immediately the term 'positivism' is used
for there are so many different understandings about what
the term implies and how it ought to be used (Miller R.
1987). At different  Thistorical times, the term has
continually changed and developed the central ideas that are

said to form the core of this philosophical basis.

In the social sciences, allegiance to or accusations of
positivism are made in a number of different ways. Sometimes
to be positivist means no more than tc be scientific in some
undisclosed manner although that fails to discriminate from
other perspectives such as Marxism, functionalism,

structuralism etc. Sometimes, “...to practice positivist

26



sociology is to seek to establish causal explanations, or to
search for fundamental laws or human behavior or historical
change, or to insist upon objective empirical information
systematically organized to generate or test hypotheses”

(Halfpenny 1982: 1i).

Positivism is also considered a belief that only observable
phenomena whicih 1is amenable to senses warrants to be
considered as valid knowledge. In this form it is seen to be
strongly associated with empiricism and 'objectivity'. The
existence of these diverse understandings of 'positivism'
among others reveal that the issue of what positivism 1is,
and was, remains controversial. Since the nineteenth century
there have been several uses of this term and various

interpretations have emerged at different times.

Positivism, Empiricism and Realism

The name 'positivist philosophy' was originally coined by
Parisian Auguste Comte to describe his systematic
reconstruction cf the history and development of scientific
kncwledge (Rhcads 1991). According to Comte, positive
knowledge was the inevitable outcome of the development of
individual mind and human knowledge. He propounded that
positive philosophy has three components: firstly it is a
theory of historical development in which knowledge improves

and provides for social stability. Secondly, it is a theory
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of knowledge, the only kind that is trustworthy because it
is grounded in observation. Lastly, it is a kind of unity of
science thesis in which all branches can be integrated into

a single natural system (Halfpenny 1982: 15).

His propositions therefore brought together a variety of
themes that were current in nineteenth century thought and
the reaction to it. It also emphasized a departure from the
radical Kantian rationalists who insisted that knowledge can
be deduced from 'self-evident ideas of pure reason' and that
human thought alone can construct knowledge. For Comte,
thought had to be guided by experience and reason had tc be
subjugated to reality. Positive philosophy was thus the
empirical study that formulated laws like any other kind of
positive science. According to this doctrine then, the
division of phenomena into different divisions 1is an
arbitrary convenience and there are no essential differences

between various branches of knowledge.

John Stuart Mill +too supported Comte's emphasis on
empiricism but also stressed the methods of data analysis,
especially the logic of induction as another important
component (Halfpenny 1982: 16). Herbert Spencer reinforced
the positivist spirit by emphasizing the role of social
Darwinism. According to him, positivism 1is a theory of
history in which the motor of progress that guarantees the

superior forms of society is competition between

28



increasingly differentiated individuals (Halfpenny 1982:

22) .

Finally, Emile Durkheim adopted all of Comte's major themes-
empiricism, sociologism, naturalism, scientism and social
reformism. However, what 1is significance about Durkheim's
connection with the understanding of positivism is that he
added a new dimension to the abstract philosophical theme-
that of statistics. Suicide (1951) symbolizes another
conception of positivism in sociology of knowledge: a theory
according to which the natural science of sociology consists
of the collection and statistical analysis of quantitative
data about society (Halfpenny 1982: 24). This variation is
scmetimes called Baynesianism (Miller R. 1987: 160) because

of its reliance on Bayes’ theorem.

Such a brief outline of nineteenth century positive systems
does not indicate that there were no other versions and
actors on the field. In philosophy a revolt against
positivism took place in 1890s that led to the resurgence of
idealism and romanticism, vehemently opposed to empiricism
and naturalism. For scholars of this wviewpoint, the human
world 1s quite different from the natural world, Dbeing
pervaded by meanings which must be studied in ways remote
from those applicable in the sciences of nature (Outhwaite
1975). In America and Britain, sociology became involved in

documenting practical social problems and applying
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anthropological techniques for studying societies.
Throughout German speaking Europe, Marxism became a serious
candidate for the natural science of society and was widely
debated as an alternative to the French sociologistic and
Anglo-American individualistic theories of progress

(Bottomore 1979).

This is a sketch of the period but it indicates the various
interpretations of the term positivism and its use 1in
different contexts. Halfpenny's book (1982) in fact lists
twelve different interpretations of the term positivism
found in the 1literature. This itself should help in
proclaiming that quantitative methods ought not to be
restricted with one perspective. What is significant to note
is that Comte's positivism was fused with statistics by
Durkheim and the scientific study of society is now commonly
considered to involve the production and test of social laws
by the collection and manipulation of quantified social

data.

However, the association with positivism for such a 1long
period has implied that quantitative methodologies have been
ascribed with several characteristics. Not only are these
seen as involved with the wuse of numerical 1in the
description of some phenomenon but are also said to ascribe
to a logico-deductive inductive stance. The methodology is

also seen as affirming the existence of the reality of that
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phenomenon, the objective nature of which is ultimately
unfolded through careful observation, measurement, analysis

and or inductive reasoning.

Accordingly, one who prefers to use statistical methodology
is not only affirming the positivist stance but also
asserting that empiricism 1is the correct epistemology.
Moreover, the declaration is also that the objective world
can only be understood by 1logically deducing hypotheses
derived from theories built upon unbiased observations and
modified if necessary through the inductive process before
testing them with the greatest scrutiny. This process is
circular and may start either with an observation or an
explanation 1in accordance with the wheel of science as

suggested by wallace (Palys 1991: 45).

Underneath the Paradigmatic Stance

Apart from the fact that this paradigm is not well stated
nor necessarily associated with all the different types of
quantitative methods in use, the application and
conceptualization of these methods are itself wvariable in
nature. Is the researcher who uses quantitative methods
necessarily a logical positivist? This does not appear to be
the case. Many social scientists who use quantitative
techniques subscribe to a phenomenological stance. For

instance, social psychological theories of attribution are
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phenomenological in nature since they are aimed at
understanding behaviors and beliefs from the perspectives of
the actors themselves (Becker 1958). Yet, most if not all,
of attribution research is conducted in the laboratory with
quantitative techniques (DeJoy 1994; Petty and Rosen 1991).
Similarly, consider the case of introspection, a topic that
is again clearly in the realm of phenomenologism. In review
of research on introspection (Nisbet and Wilson 1977;
Laplane 1992), the vast majority of studies used
quantitative procedures such as randomized experiment and

'objective' behavioral measures.

Quantitative methods are also accused of being obtrusive
(Palys 1992) Yet, some methods such as randomized
experiments on occasion have been used 1in a completely
unobtrusive manner (Lofland and Lejeune 1960). In fact, many
field and laboratory experiments have been accused of being
deceptive because the researcher and machination were said
to be completely concealed (Davis 1961; Lofland 1961, Kelman

1972; Roth 1962; Kansas City 1977).

Similarly, quantitative methods cannot be said to be
completely objective in nature. Scriven (1972 cited in Cook
and Reichardt 1979: 12) states that the term subjective has
two separate meanings. First, it means an influence of human
judgment and second, a reference to the measurement of

feelings and beliefs. According to the first interpretation
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all techniques are subjective and there 1is a general
agreement that all facts are imbued with theory and so are
at least partly subjective. The assignment of numbers, as is
common 1in quantitative techniques, is clearly a subjective
decision or interpretation. Thus, subjectivity is involved
in the wutilization of quantitative design and analysis
(Boruch 1975). The second meaning implies that a measure is
subjective because it taps human sentiments that are
presumably not directly observable. Yet, victimization
surveys, are routinely employed and considered standard
measures for gauging public perceptions of crime and these
are prime examples of quantitative measures that are

subjective in nature.

It is commonly alleged that the researcher is insulated from
the data in quantitative methods (Palys 1992). Feinberg
(1977: 51) states, “[it] is astonishing that getting close
to the data can be thought of as an attribute of only the
qualitative approach”. Most students of Brantinghams for
example, walk the beat with the constables, pinpoint the
location of pan handlers in the city, look for architectural
designs by photographing buildings and yet do essentially
quantitative research. In the similar vein, quantitative
techniques cannot be accused of being “ungrounded, merely
confirmatory and deductive” (Walker 1985). For Glaser and
Strauss (1967: 17-18) too, “there is no fundamental clash

between the purposes and capacities of qualitative and
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quantitative methods or data” and “that each form of data is

useful for both verification and generation of theory”.

Quantitative researchers are accused of assuming that
reality is stable and unchanging (Filstead 1970). Though,
some quantitative research designs are more 'rigid' than
others, it does not seem appropriate to state that all such
investigators conceive of a invariant reality. The time
series quasi-experimental designs track temporal changes in
some program against a background of natural
transformations. “Taken to the extreme, no assessment
strategy assumes a perfectly fixed reality, since the very
purpose of the research 1is to detect change” (Cook and

Reichardt 1979: 15).

The accusations that qualitative methods are wvalid but
perhaps unreliable in contrast to quantitative techniques
that are necessarily reliable but invalid (May 1993) also
appears to be shortsighted. Reliability and validity are not
inherent attributes of any measuring instrument, whether a
ruler or the human eye (Cook and Reichardt 1979: 14). The
accuracy depends on the nature, purpose and circumstances of

usage, a quality true for both methodologies.

Finally, the split between those who advocate mathematical
formulation of theories and those who contest that verbal

statements are more appropriate for understanding of the
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natﬁre of knowledge and the social world also seems
outdated. As Collins (1984) points out, the language of
computer simulation that has developed in recent times can
be said to occupy a mediating position between the two

forms.

For example, languages such as DYNAMO, JUSSIM, STELLAR are
similar to the mathematical notations and equations in some
respect. These specify relationships between particular
variables, evaluate their quantitative levels and even offer
graphic representations, though in discrete form. Simulation
offers much of the power and precision of mathematical
methods (Hannemas 1987). However, simulation is a good deal
easier and user-~friendly than formal mathematical language.
Instead of learning about the meaning and relations between
complex symbols, DYNAMO for instance, permits them to be
entered in near verbal form. The actual calculations and
computations are carried Dby the computer with  the
mathematical formulations remaining beneath the surface of
the simulation language that operates as a higher order
language. Simulation thus offers a middle path between
mathematical language and weak statements of verbal

theories.

Lanier and Carter (1993) used such a computer simulation to
forecast homicide rates. As they display in their model,

simulation can combine both qualitative and quantitative
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data for predicting, extrapolating and comparing the macro
trends of the dynamic social systems. Computer simulation
and system's related theory have been applied for at least
two decades by demographers and economists and has been used
in criminal Jjustice arena too, e.g., JUSSIM (Belkin et al

1972) .

The above illustrates that the attributes of the paradigm is
neither inherently nor ought to be 1linked to the
gquantitative methods, a remark true of the qualitative
techniques too. This is not to say that paradigmatic stance
is unimportant in choosing the method nor to deny that
certain techniques are usually associated with specific
perspectives. Researchers who use qualitative methods do
subscribe to constructionist, phenomenological paradigm more
often than to the realist, empiricist paradigm and there 1is
an obvious correlation between the use o0f quantitative
methods and a logico-positivist approach. Historically,
quantitative methods were developed most directly for the
verification or <confirmation of the theories while
qualitative techniques were preferred for getting closer to
the data (Cook and Reichardt 1979: 17). But while the
linkage that exists between paradigms and method can
usefully guide one's <choice of research strategy, the
linkage should not determine that choice solely. The point
here is that world views or paradigms are not the exclusive

determinants of the choice of the techniques. The decision
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to use a particular research method should also depend upon
the nature of data, preference for the form of communication
and the demands of the study or inquiry at hand. That
paradigm and method have been linked in the past does not
mean that it is either necessary or wise to do so in the
future. The objective of the research is not only to gain

knowledge but also to present a fresh perspective.

Further, all of the attributes that are said to make up the
paradigms are logically independent. Just as the
quantitative techniques are not logically linked to any of
the paradigmatic attributes, the attributes themselves are
not logically linked to each other. "“There 1is nothing to
stop the researcher, except perhaps tradition, from mixing
and matching the attributes from several paradigms to
achieve the combination that 1is most appropriate for the
research problem and setting at hand” (Cook and Reichardt

1979: 18).

The charge by the qualitative methodologists that their
focus is on the social meanings that can only be understood
through interaction of individuals hardly prevents the
researcher from applying numerical techniques in this
process. Even though Erickson’s (1977: 61) decry that the
qualitative methods use descriptive terms so as to relate
them to the wider context still does not preclude the use of

mathematics. It is only because of a belief of the
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qualitative methodologists that the actual words of the
subject are critical to the process of conveying the meaning
of their intentions that makes them prefer recording the

data in the language of the subjects.

However, w~ords may need to be interpreted or translated and
finally communicated to a wider audience. Whatever may be
the underlying paradigm the task of the researcher 1is
primarily to convey the information obtained through some
form of written notation system. Moreover, the qualitative
practitioner also has the onerous task of devising an
explanation of the phenomenon being studied consistent with
its relationship with the world. The qualitative researcher
has to make sense of the social realities of their subjects
and build some theory, construct concepts and categories to

provide an acceptable explanation.

Whereas the qualitative paradigm is “marked by a concern
with the discovery of theory rather than the verification of
theory” (Filstead 1979: 38) there is no escaping the fact
that at the final stage the methodology has to put forth a
set of variables, some causes or events that ‘explain’ the
phenomenon and then perhaps generalize to other similar
situations. There is nothing significant in this process or
in this form of communication that could warrant a denial of
the use of mathematical language. When there has to be a

description, a proposition and its Justification
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mathematical terminology could certainly be utilized. The
demonstration by Nagel (1956) of the removal of ambiguity in
language through the use of mathematical notation may also
provide an argument for a greater use of mathematical

symbols by the gqualitative practitioner.

In any case, the above arguments certainly suggest that the
nature of quantitative research and its methodology ought
not to be confused nor confined to the techniques of
numerical analyses. Rather, it should be understood that
this form of research is one that is preferred by a large
number of researchers because of their stress on the

importance and use of mathematics.

The preference may be due to the observation that
mathematics is a more appropriate means of communication, a
special language, precise, concise and capable of revealing
the deeply imbedded inherent patterns. It has the capability
of not only developing the theories from 1its abstract
generalizations but also 1linking it with several other
structures hidden from the common perspectives. It 1is
because of several such reasons that mathematics is
preferable over ordinary language for communication,
expression and modeling of the social behavior.
Additionally, it could also be suggested that the difference

in quantitative and qualitative methods is essentially the
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difference of preference between mathematics and the spoken

languages.

The next chapter will point out that statistics 1is
essentially based upon more general mathematical theories
and the 1limited knowledge or lack of interest to 1its
mathematical base has created a short sighted view of the
subject matter. The chapter will also draw attention towards
some of the limitations in the use of statistics and present
illustrations of researchers going ahead with 1its wuse
without addressing its appropriateness. Thereafter, the wide
world of mathematics will be presented to suggest that it
offers a range of excellent possible techniques that are
available to social researchers, both for qualitative and

quantitative perspectives.

o W e
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CHAPTERI Il

STATISTICS

“When you can measure what you are speaking about and express it in numbers, you know

something about it, but when you cannot measure it, when you cannot express it in numbers,

your knowledge is of a meagre and unsatisfactory kind”. Lord Kelvin

The social sciences, criminology in particular, have clearly
split into two mutually antagonist camps of quantitative and
qualitative methodologies. As has been argued 1in the
previous chapter, the former is commonly associated almost
exclusively with statistical techniques. The latter group of
researchers consider such approaches a biased methodology.
They frequently charge statistics with concentrating on
irrelevant formalisms and by emphasizing humbers, causing
distraction from the real theoretical questions that
presumably can only be unearthed through verbal qualitative
techniques. The charge appears to be partially true for,
until recently, many statistical methodologist have
displayed little concern for wider theoretical formations.
The users of statistical techniques “have been the worst
offenders in imposing a narrowly positivist orthodoxy on the

field” (Collins 1984: 330).
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Ignoring Statistical Foundations
Although statistical techniques are widely applied the

problem arises primarily because most practitioners have
shown little appreciation for its foundations and
structures. For instance, many may not be aware or overlook
the fact that statistics is only a particular branch of
mathematics and its roots go deep into the logico-formalist
school. It 1is also forgotten that statistics <can be
interpreted as a substantive theory of how chance factors
operate in the world. There are underlying status
assumptions and hidden theoretical formulations that need to
be brought out into open. In this chapter an effort will be
made to present the theoretical foundations and general
manner of applying statistical techniques. Finally, several
limitations that arise in ignoring their mathematical base

will also be discussed.

Statistics are not neutral techniques. In 1857 Selvin
initiated an acrimonious debate about the value and
appropriateness of significance tests in sociology (Selvin
1957; McGinnis 1958; Morrison and Henkel 1969; Winch and
Cambell 1969). He pointed towards the “conditions under
which tests of significance may validly be used are almost
impossible of fulfillment in sociological use” (1957: 50)

and named ‘problems of design’ and ‘problems of
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interpretation’ that are peculiar to sociological research

which makes these tests inapplicable’.

Although, the problem of randomization is difficult to
establish in most research areas, the problem of
interpretation stems largely from the fact that “those who
apply tests of significance in data analysis do a very poor
job of it Dby confusing statistical significance with
substantive importance, by misinterpreting the random error
components, or by engaging in data dredging exercises”
(Namboodri, Carter and Blalock 1975: 5). There are
compromises that have to be made to model the complexities
of social life and this entails that we understand what we
are doing by way of statistical analysis and the underlying
nature of assumptions. This essentially implies a conception
and awareness that behind the statistical techniques lies
the world of mathematics, of algebra, matrices, equations,
calculus and even geometry whose own assumptions need

recognition.

Statistics as a Subject distinct from Mathematics
However, before we proceed any further, the differences if

any between mathematics and statistics need to be described.
Statistics as a distinct field has come to be recognized
only in the 20th century (Stigler 1986: 1). Edgeworth in

1885 defined the subject from three different perspectives:
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“as the arithmetical portion of the social sciences, as the
science of means and as the science of those means which
relate to social phenomenon” (cited in Stigler 1986: 363).
Stigler himself defines it as “the quantitative technology
for the empirical science” which provides the “logic and
methodology for the measurement of uncertainty and for an
examination of the consequences of that uncertainty in the
planning and interpretation of experimentation and

observation” (1986: 363).

The general usage of statistics such as the purely
descriptive presentation of numerical data by way of
frequency distributions or the application of arithmetical
operations in transforming verbal responses have never been
problematic even to the qualitative researchers. This is
because statistics has widely been regarded as a method, a
way to describe relationships and test theories, and not one
to formulate them (Collins 1984). Apart from the ordinary
use of determining the means, standard deviations and other
descriptive forms and displaying relationships between
different variables, the subject has largely been used for

testing hypotheses.

A statistical test compares some given distribution, which

one would 1like to interpret as resulting from some



particular cause, against the range of distributions that
could be regarded as produced by chance. Only 1if the null
hypothesis is rejected (that the observed distribution is a
result of chance) 1is the substantive theory supported.
Naturally, statistics goes far beyond this basic test but
usually in criminology, as seen 1in the examination of

different journals, it does not.

However, in this procedure it is also held that for such a
theory to be wvalid, the sample must be drawn without
prejudice. The data must be obtained in a way as to avoid
contamination by some systematic bias in drawing data, like
the pre knowledge on part of the researcher. "Statisticians
aim at the kind of untouched-by-human-hands mechanism by
which theories can be 'neutrally' tested against an

objective world" (Collins 1984: 331).

In this procedure the attention is focused towards the main
theory, the one that is being tested, and makes it seem as
if it were the only theory under consideration. But there is
another theory also implicitly present- the theory that, in
fact, certain distributions are produced by chance. The
question to be probed is then the meaning of the term
‘chance’. Ordinarily, <chance 1is regarded as merely a

negative classification, the absence of any degree of

45



determination. When one cannot assign a reason that
something happened, it is described as sheer accident, or

chance.

Thus, a shopper caught in the midst of an attempted robbery
and hit by a bullet ricocheting from the wall is said to be
an accidental victim. Yet, the path that bullet took from
the gun chamber to the wall and then bouncing on to the
victim's head can be described quite precisely by the law of
the acceleration of gravity, the thrust provided by the
internal chemical explosion, the momentum given by the
spring action, the hardness of the wall etc. Where it hit
was due to the direction and velocity with which it left the
chamber, the position of the offender and that of the
victim, the way the wind was blowing and so forth. The hit
by the bullet on the head was thus not at all uncaused. It
was an accident only in that one did not know the initial

conditions in which it took place.

Exactly the same can be said about social processes that
appear as random matters of chance. For example, an offender
mobility study (Capone and Nicols 1976) that concentrated- on
the series of variables leading up through the completion of
the offence say, explained only about 40 percent of the

variance 1in offender target selection. Does that mean the
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other 60 percent is purely a matter of chance? Only if we
mean by this that, knowing as much as the official data
tells us about what has happened from the commission of such
crimes, we can predict target selection in several places no
more closely than within a certain range, the argument seems
agreeable. But the other wvariation 1is not necessarily
mysterious; it is 1likely determined by other facts:
awareness spaces of the offender, 1lack of guardianship,
target attractiveness, structural changes in the economy,
(Collins 1975, Cohen and Felson 1979; Brantingham and
Brantingham 1993a) that are simply not entered into the

individual level behavior theory.

Chance, then, does not mean the absence of causality. It may
mean the absence of causality that we know about, from the
point of view of what we are looking at. Stated more
precisely, 1t means that causality has different orders that
are essentially unconnected. The fact that the victim was
standing by the counter when the offender walked and fired
the gun is also a series of causes: the intention to go to
the shopping place, to buy something that 1is further
influenced by the social class culture, which made the
victim and the offender go to that shop at that particular
time when the events took place. There need not be anything

uncaused about any aspect of the situation, either in the
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social motivation that made possible the target selection of
the shop, the decision of the victim tc shop at that place
or the physics that made the bullet hit the unfortunate

head.

However, these causal orders are unconnected for there is no
relation between the victim going to shop at the time when
the offender in the commission of the crime fired the gun
and the bullet hit as it did. It is this unconnectedness of
different causal orders in the universe that gives rise to

the phenomena of chance.

In scientific experiments too, it is common knowledge that
even careful and precise measurements never yield the same
results in successive observations. These irregularities or
‘errors’ are regarded as unavoidable due to insignificant
and perhaps undetectable causes. In accounting for such
irreqgularities, “mathematicians like Gauss and Laplace
[have] lumped together all these ‘disturbances’ or
unconnected events under the name of chance and laid the
foundation for the theory of errors of observation, a
mathematical achievement of first order” {(Newman 1956:
1457) . Chance, in this important sense, 1is not Just the

matter of luck. It has its own assumptions and mathematical
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laws, which are precisely what the discipline of statistics

has been founded upon.

These are the laws describing how wvarious distributions
arise from the combination of events that are causally
independent. It is not surprising that the mathematical
theory of statistics arose from the works of Pascal,
Bernoulli and others on gambling and the other games of
chance where the outcomes are deliberately made independent
of each other. The flipping of the coins, the drawing of
black or red balls from a container, the combination of
playing cards in some sequence are all mechanical situations
in which independent results are produced in the form of
long series. It is the counting of distributions under these
circumstances that gives rise to empirical generalizations

to which other mathematical models are fitted.

Later, these models were extended to physical situations,
like the study of heated particles by Poisson, observational
errors of astronomers by Gauss, human demographic patterns
by Quetélet, characteristics of biological populations by
Fischer and Pearson and so on (Stigler 1986). These
applications gave the distributions against which the
observed hypotheses are tested now in order to reject the

null hypothesis of causation as merely the result of chance.

49



The interpretation of these statistical distributions has
been a matter of debate for quite some time (Collins 1984:
334). The traditional 'frequency theory of probability' by
Bernoulli and others regarded distributions as empirical
facts. Statistics has also been viewed as the work of a
logical system since it can be derived mathematically by
making assumptions about the independence of the elements
and based upon axioms of additive, associative and other
rules. Further, the assumptions about independence of
elements can Dbe exchanged with that of independent
observations since these also give rise to the same form of
distributions (Collins 1984: 334). The adoption of
statistical theory to social variables by Quetélet and
Durkheim became more acceptable by supportive work from
Lexix, Galton, Edgeworth, Pearson and others (Stigler 1986).
The treatment of observations of social characteristics as
independent events and as statistical deviations from a
‘true’ average value then became a logical conclusion (Maltz

1994a) .

According to Keynes (1921) too there are several orders of
causality and each one of them implies a certain 1level of
interrelations from which a theory can be formulated. The

theory of statistical test therefore usually implies the
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existence of two different causal forms. The first produces
random distributions wherever certain aspects of the world
consists of independent orders of causality and the other is
the explicit theory under observational test (Hacking 1975;

Fine 1973; Gillies 1973; Savage 1954).

Collins (1984) draws two conclusions from the inference that
statistics implies a subjective interpretation. First that
statistics testing is not so important as a methodological
criterion of theoretical validity. It is more a matter of
faith than an ultimate criterion of truth and there are
certainly other ways of validating a theory than exclusive
reliance on the test against an empty null hypothesis. “The
fact that it 1s done 1s more a matter of social
relationships and understanding within the community of
researchers than any sign of scientific progress” (Collins

1984: 335).

The other judgment is that the value of statistics lies more
as a theory than as a method. Carrying out of statistical
tests of significance of any given pattern of relations 1is
actually a comparison of one theory with another: the theory
being tested and the theory of some sort of structure
produced by observations occurring by chance. However, as

Collins further states (1984: 335) this does not imply that
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when the null hypothesis is not rejected the phenomenon is
unexplained. Generally it means that one has extended the
range of application of a statistical model of the universe
and therefore the understanding of the world is based more

upon logical grounds than proved by statistical tests.

There 1s no way to test a statistical model statistically:
the demonstration simply compares the structure of data with
a given pattern. There is no logical way to test the
ilegitimacy of a theory of statistical distributions by
comparing it against another statistical distribution. As
Keynes (1921) pointed out, the theory of probability is not
based upon any probability and in its use for methodological
purpose 1t is accepted as a given structure, not something

to be tested in itself.

For several such reasons, statistical tests are not so
meaningful for the advancement of knowledge as commonly
assumed to be. A considerable number of assumptions, as
described below are required before one can decide that the
statistical test fits the matter at hand. The statistical
tests above all require ‘judgment of relevance’ to the
matter Dbefore application ought to be attempted. To
calculate a probability distribution requires a set of

exclusive and exhaustive alternatives of equal probability.
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However, most cases cannot be judged to be valid strictly
against this background. For instance, in a case of research
that has the experimental, control and actual data types all
available to the researcher, one cannot say which one
produces the most probable generalization. The answer cannot
be stated quantitatively for there are no grounds for

comparison.

On the other hand, in the development of theories in the
natural sciences, the evidence is weighed quite differently
(Collins 1984: 336). In physics for example, data sources as
mentioned above will be evaluated and integrated according
to how well their principles fit together logically. Those
implications that tie up with other principles that have
already been established as basic components of other
theories will be given special consideration. Thus, the
existence of Dblack holes pointed by the mathematical
solutions to theory of relativity are accepted because these
fit with the other implications of the same theory like the
collapse of the stars. 1In fact, mathematics plays the
crucial role in establishing that the new principles are in
tune with those established as the basic components of the
theory. The criterion is that of the Jjudgment of relevance
rather than some meeting or failure of an arbitrary level of

statistical significance (Collins 1984: 337).
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How much evidence it takes to disprove a theory varies with
the logical relations of that theory to the other knowledge
(Keynes 1921: 225). Choosing 0.05 or 0.001 or any other
level for the test of any hypothesis is purely arbitrary.
The common practice of reporting the results as significant
or not without the actual probability level can at best
reduce the range of information. Even then with all the
theoretical and empirical evidence available to the
researcher it is still possible be decide whether the result
is useful or not. The concept of proof is a matter of social
customs and the ability of the researcher to satisfy
everyone that he or she is not cheating or deluding through
the explanation. It appears that in criminology and other
social sciences significant statistical criterion are
imposed not because these are 1logically necessary or
required but because there is the need to guard against the
intellectual dishonesty of the researcher. “The community of
theorists are less concerned with whether a given finding is
true than with whether it can pass the hurdle of a very high

level of ritual distrust imposed upon it” (Collins 1984:
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hat in statistical tests the
procedure is to test the opposite hypothesis and accept the

result only if there 1is 1less than a mere 5% or less
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probability that this result is due to chance, a procedure

commonly misunderstood by many researchers.

Another problem with the methodology followed by many in the
social sciences 1is that generalizations are produced by
comparison with other cases that are held to be similar in a
statistically significant manner. Yet, in this methodology,
the emphasis is for a large sample simply because one cannot
compare without an adequate number of cases. But, history
for example, presents us with only a certain number of
instances of social upheavals and there is nothing one can
do about 1it. A police <chief may have only one major
breakdown of law and order situation to plan for deployment
tactics and preventive detentions. Therefore, if the
arguments propounded by practitioners of statistics are
true, then historical, social, anthropological and linguist
analysis and others with limited data such as administrative
decisions are doomed. These subject matters have little data
for comparison purposes and this means that statistical
tests cannot be used and no generalizations of their theory

is possible.

It may be pointed out that the desire to have samples in

order to make inferences about the population essentially

arises in cases where the population is large and difficult
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to examine individually. In some cases a general inference
about the population may be all that is required and in this
special case a small sample result may satisfactorily serve

the purpose.

Obviously then the statistical assumption that
generalizations cannot be made without a large sample of
cases is wrong or of limited utility. This presumption may
even lead to an amusing situation. For instance, if one had
100 cases and all were examined then no generalization is
possible because that amounts to a tautological explanation.
However, if the same generalization is made by examining 50
cases and then checking if the other 50 fit the model, the
generalization becomes acceptable. Yet, it 1s the same
generalization and the same amount of total evidence, only
in one case it 1is rejected according to the conventional

method and accepted in the other instance.

The methodological theory in question is therefore improper.
The statistical formalities do not operate to increase the
knowledge but only to express suspicions against theorists
who might cheat or cannot examine their own presuppositions.
This is a social criterion and not a logical one (Collins

1984: 339).
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Yet, research designed to test a theory based upon a small
number of cases can be acknowledged by checking if its
implications fall within the range that have become
acceptable. It is here that mathematics can in fact make an
important contributicn to establish the wvalidity of the
theory by displaying the coherence of its explanatory
principles with other well grounded theories. Thus, the
principles of some theory under consideration could be
stated in abstract terms of mathematical symbols.
Mathematical analysis could then be used to reduce the
statement to fewer terms or show its consistency with
principles and evidence found elsewhere. A theory about the
naxalite revolution (Mukherjee and Yadav 1982) could perhaps
be shown to be formally related fto theories and evidence
about peasant revolts (Das 1983) and about other revolutions
(Dasgupta 1975) through the use of mathematical symbols.
Further, mathematical analysis may suggest that these
theories are consistent with the principles induced from the

study of geopolitics of the Indian nation (Kohli 1990).

Clearly, mathematical formulation has important potential
for demonstrating theoretical coherence. Theories that can
be formulated in axiomatic and deductive form can be shown
to produce results consistent with a wide range of empirical

applications and therefore lay strong claim of validity. The

57



future of mathematics in social sciences is more significant
on the theoretical side than in the methodological form of

statistical test (Collins 1984: 344).

Limitations of Statistics
In ignoring the underlying principles of statistics

researchers also end up overlooking the limitations of these
methods in handling various kinds of data. The aspiration
that statistics would provide a powerful methodology for
criminology and the social sciences has not been successful
because the subject can be challenged from a variety of
standpoints that range from technicail disputes to
epistemological quarrels. For example, the descriptive power
of statistics can be said to be 1inadequate due to the
measurement errors in official data (Wolfgang 1963; Cicourel
1964; Phillips and Ruth 1993). This inadequacy may also be
seen as posing technical issues in estimating validity and
reliability (Zeller and Carmines 1980; Nanton 1992) or
official bias in recording procedures (Lowman and Palys

1991).

The appropriateness of multivariate statistics has even been
questioned in the past, because for a period of time,

measures of covariation had been developed only for

interval-level data (and Chi-square for nominal data)
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(Halfpenny 1982: 41). Most social science data is generally
of the ordinal ftype to which parametric statistical methods
are broadly inappropriate. The developments both in scaling
ordinal data through Likert or Thurstone scales (Upshaw
1968; Gehrlein 1990) and in devising a family of ordinal
level covariation measures (Siegel 1956; Barnhart and
Sampson 1994) appear to have overcome some of the early
technical difficulties but problems persist. Many
researchers have argued that fundamental issues about the
nature of causal relations in the social sciences have been
untouched in the application of statistical methods (Levison
1974; Davidson 1980 both cited in Halfpenny 1982), despite
the introduction of path analytical models (Blalock 1968;
Boudon 1971) or even such modern techniques as LISREL

(Hoelter 1983; Crank, Payn and Jackson 1993).

Frequently, the application of probability in tests of
significance as a means of generalizing sample data can be
controversial too like the early arguments concerning the
meaning of probability statements. Fischer (1930) had
proposed that on the basis of observations on a random
sample and &a known sampling distribution, a permissible
range for the population parameter can be calculated. Neyman

(1937) differed stating that whether or not the parameter is
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in the given interval is not a case of probability, for
either it is in (probability 1) or it 1is not (probability
0) . He suggested that the probability be associated with the
confidence interval- the probability that the interval
derived form the sample contains the population parameter,
an 1idea that seems to have become acceptable. It is
interesting to note that with the development of fuzzy
logic, Fischer’s proposition can again be examined, with the
grade of membership defining the permissible range for the

population parameters.

However, confidence interval estimation has now Dbeen
discarded in favor of hypothesis testing where the null
hypothesis is explicitly tested on the assumption that only
chance generated the sample findings (however see Broadhurst
and Loh 1995). In opposition is the alternate hypothesis
that the sample findings <can be generalized to the
population (Sinchich 1990). The standard procedure is to
derive a distribution of some feature of all the samples of
a chosen size by making some assumptions about the sampled
data. These presumptions are that the data is randomly
drawn, that its properties of interest are distributed
normally and that the null hypothesis is true for it. The
appropriate feature of the test statistics is then compared

with the sampling distribution to see how rare the sample
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is. If the probability of such a sample being drawn is say

less than o in a 100 chance (where o is typically 5, 1 or
0.1) then the null hypothesis is rejected provided the other

assumptions hold true. The finding asserted by the alternate
hypothesis 1is said to be statistically significant at o%

level.

In other words this implies that on the evidence of the
sample findings about the substantive hypothesis and

provided the assumptions about the nature of data are true,

there 1is less than a$% chance that the null hypothesis 1is

rejected when in fact it i1s true. The significance level «
is the probability of taking the sample findings to indicate
or signify that the substantive research hypothesis is true
of the population when it is in fact peculiar to the sample
only. This is called the Type I error. The chance of failing
to reject the null hypothesis when it is false is designated
as the Type I1 error. The balance would depend upon whether
it is preferable to risk rejecting what ought to be accepted

or to risk accepting what ought to be rejected.

The common mistakes that are made in the use of such

significance tests arise 1in confusing the statistical
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significance with substantive one (Namboodri, Carter and
Blalock 1975: 9). An exception may be the case where one
knows the population or when minor differences are
significant when 'n’ 1is large but of 1little practical
importance. That is, the probability that the correct
decision has been made in generalizing the sample findings
to the population is confused with the theoretical or
practical consequences. As Maltz (1994a: 440) suggests,
inferences about the population from any kind of sample may
be drawn on the basis of other kinds of arguments than

merely on the basis of the sampling distribution.

Several other kinds of confusion arise too: assuming the
level of significance with the strength of relationship;
distorting the results by stressing only the significant
results; failing to take account of the power of statistical
tests which 1s the probability of accepting the alternate
hypothesis when it is true; discarding the fact that there
are sources of errors other than sampling; and, employing
statistical tests when the data are about the whole
population and not about the sample (e.g., Atkins and
Jarrett 1979; Maltz 1994a; Morrison and Hankel 1969; Simon

1954; Sincich 1990; and Sterling 1959).
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There also seems to be a tendency amongst some social
scientists to acknowledge that the assumptions are violated
and yet talk of “robustness” and “can still produce useful
results” (cited in Maltz 1994a: 444). For instance, Tittle
and Welch (1983: 665) acknowledge that “...This approach
requires a number of assumptions”, and that “...it creates
problems 1in interpreting tests of significance for the
various contexts are not independent, violating one of the
assumptions for the statistical inference”. Nevertheless,
they justify going ahead with the statistical analysis for
“...theoretical and logical reasons”; “...to test in an
exploratory way” and to “...stimulate others”! Sentences
like “...there is always the possibility that unmeasured and
uncontrolled +variables may account for the negative
relations” (Logan 1972: 73) are also not uncommon in

criminological literature.

In a similar vein, statistical data analyses especially
regression analysis that has been an important tool in the
study of criminal behavior have been contested too. These
are based upon some underlying assumptions about the nature
of data which many contend is not always true (Maltz 1994a).
For example, any parametric statistical analysis must

establish two essential properties of the data, that of
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linearity and normality. That is, the data can be described
using only the first power and that the bell curve is an
appropriate fit for it. Failure to pass these two tests rule
out a broad range of statistical methods whose applications
assume these properties. This range includes classical
ordinary least square (OLS) regression analysis as well as
two and three stage least square analysis. Similarly, both
single and multiple variable models of crime phenomenon are
called into question if the methods used to identify and
estimate them require normality and linearity. Thus
researchers need always test for these properties before
choosing a modeling method. Before testing one does not know
whether parametric techniques (requiring normality) or non-
parametric techniques (not requiring normality) are suitable

(Neuburger and Stokes 1991).

Similarly, linear modeling methods such as OLS or 2-stage
least—-square—analysis require that the wvalue of the error
term (that is the variability not explained by the model) be
normally distributed. Failure to meet this requirement would
mean that the usual tests applied in model building (the T-
test) cannot be used. The general population is hardly ever
distributed like the classical bell shape curve, more often
it displays leptokurtosis or 'fat tail' due to the skewed

distribution of age groups in a growing or aging population.
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In this case, one would have a mirage rather than a model,
although the difference might not be readily apparent.
Before using these methods one also needs to know that the
underlying pattern (or process) one 1is modeling is really
linear or «close to 1it. However, rather than test for
linearity, model builders assume it which may again lead to
a costly error if the series is not of such nature. Linear
models, like OLS may be able to approximate non-linear
behavior over extended periods, but when the behavior moves

outside a narrow range, the approximation breaks down.

It is not as if these shortcomings have gone undetected by
the practitioners. The use of statistics in the social
sciences has gone through a number of phases in the attempt
to cover the lapses and build models in accordance with the
nature of data. The early applications of quantitative
methods in social science were the elementary statistical
techniques to observational data mainly concerned with the
description and inference concerning frequency
distributions. The transformation came with Bernoulli and
Laplace laying the foundation for the application of
probability to the measurement of uncertainty in the social

sciences (Stigler 1986: 163).
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However, it was really the efforts of Quetélet that marked
the first tangible step towards applying statistical
techniques to the social sciences. His early work Research
on population, births, deaths, prisons, poor houses etc. 1n
the Kingdom of the Low countries (1827) pleaded for a new
census through the adoption of Laplace’s method (Stigler
1986: 163). He also made two important contributions towards
the application of statistics to social data: the concept of
the average man (l1’homme moyen) and the fitting of the
probability distributions to empirical observations. Another
modification in the application of statistics to social
sciences came through Poisson’s work on probability theory.
He used it to analyze the formation of juries’ verdict and

French conviction rates.

Naturally, this did not go unchallenged and no less than
Comte himself criticized “...the vain pretension of a large
number of geometers that social studies can be made positive
by fanciful subordination to an illusory mathematical theory
of chance” (cited in Stigler 1986: 194). John Stuart Mill
too is stated to have referred to these works as “the real

opprobrium of mathematics” (Stigler 1986: 195).

Despite opposition of this kind, statistical concepts were

modified and increasingly applied to the social data by

66



pioneering efforts of outstanding mathematicians as Galtorn,
Edgeworth, Yule, Pearsoh and Fischer. “After the
introduction of least squares for the analysis of social
data a new discipline slowly came in existence, one that is
the product of many minds working on many problems in many
fields” (Stigler 1¢86: 361). From Pearson’s method of
fitting frequency curves to the general theory of parametric
inference developed by Fischer, to Yule’s contribution to
correlational and regressional techniques that opened the
world of multivariate analysis, statistics has undergone
transformations that few subjects could boast. “From the
doctrine of chances to the calculus of probabilities, from
least squares to regression analysis, the triumphs of
nineteenth century statistics are as influential as those
associated with the name of Newton and Darwin” (Stigler

1986: 361).

The developments have continued even more vigorously in the
twentieth century. For instance, dissatisfaction with the
quality of data from official sources, one on which Quetélet
and other pioneers had built their work has led to several
important developments in the design and collection of
sample data. The preference for victim and other kinds of
surveys over official data sources is an illustration of

this shift. “During the 1940s and the 1950s, it had become
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common to construct scales based on questionnaires to
measure attitudes or socic-economic status” (Collins 1984:

341).

A related phenomenon was that instead of searching for uni-
dimensional structure the large number of variables were
subjected to factor analysis that produced multi-dimensional
structures (Schmid 1960a and 1960b). A whole new approach
categorized as factorial ecology came into existence, soon
to be displaced by multivariate analyses in which the
emphasis was on establishing causal conditions and testing
them for independence from each other. This involved the
construction of <various measures of association and
significance for interval, ordinal and nominal variables. In
the 1960s the path diagrams appear to have become popular
used for measuring series of causes occurring in different
time periods. This has been followed by log-linear analysis
to examine particular influence within the context of

numerous others.

Sociological data has always been multivariate but until
recently the analysis of such data could not proceed beyond
the summary measures for each variable and simple cross
tabulations of pairs of variables. The availability of cheap

and powerful computers including the developments of user
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friendly software specially designed for the social
scientists have at last made possible a large scale effort
to probe the structure of data. Increasing technical
developments in computer based analytical procedures have
not surprisingly, greatly promoted the recent popularity of
ARIMA modeling, LISREL, probit, logit and other techniques.
It is not unusual at present to find articles in social
science Jjournals utilizing sophisticated techniques ranging
from path analysis (Prentky 1989); log-linear models (Bunn,
Caudill and Gropper 1992); cluster analysis (McShane and
Noonan 1993); discriminant analysis {(Land, McCall and Cohen
1991) ; canonical factor analysis (Regoli, Crank and
Culbertson 1991); factor analysis (Palmer, Guimond, Baker
and Bégin 1989); latent variable models (Keane 1993); and
the whole class of stochastic models (Copas and Tarling
1988) that display a kind of mathematical maturity earlier

seen only in natural science journals.

The present period appears to Dbe the stage where
mathematical modeling is increasingly being used along
within statistical methods to explore the social phenomena.
Respected periodicals such as The Journal of Quantitative
Criminology, Justice Quarterly, Crime and Delinquency and
even Criminology have articles that one would commonly

associate more with mathematical or natural science
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journals. Although, these techniques are still considered
part of statistical 1literature in form and context, one
would argue that these should rightly be regarded as part of
traditional mathematics. These techniques basically involve
matrix algebra, analysis, calculus and geometry, concepts
that are part of traditional mathematics. In the development
of these descriptive, multivariate, stochastic, structural
and hierarchical models, it is not wrong to state that the

statistician is inevitably coming back home, to mathematics!

The replacement of one technique by the other is usually
seen as a methodological advance. “Each solves some problem
previous method has been unable to tackle but this
advancement is by no means absolute. The advancement of some
techniques in favor of others constitutes a theoretical
loss” {Collins 1984: 345). For instance, multivariate
techniques at one period appeared most appropriate for
research associated with developing or testing a theory

about individual attitudes and behaviors.

However, this form of cross-sectional analysis was not
appropriate to deal with relations in time and therefore to
deal with these problems, path models were developed. These
have been wused successfully in their special area of

application: understanding how such factors as parental
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income, peer-group aspirations affect later period chronic
delinquency. But this 'advancement' actually involves
another kind of thecretical 1loss. Path diagrams, for
instance, rule out studies of the macrc dimension and the
entire macro-historical dimension is simply ruled out of
consideration by this method (Horan 1978). Similarly,
methods that aggregate characteristics across individuals
destroy all structural information about social networks,
“...like running them through a centrifuge” (Wellman 1983:

165-66, 169).

Every method has its strengths and weaknesses, its
theoretical resonance and ideological biases. However,
instead of elevating one specific method to a high status,
one should regard the various techniques as a tool box, to
be used when appropriate for different problems. In
particular, a special method ought to be chosen for its
appropriateness, the insight it provides and the linkage it
generates with other parts of the theory. Due to a narrow
focus, plus the effect of dealing in purely methodological
issues, most statistical techniques in criminology and the
social sciences seem unaware of the theoretical assumptions
involved in choosing those methods or are willing to use the
techniques to suggest a theory even when the assumptions are

knowingly violated.
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Statistical techniques have also been affected by the fact
that when non-linear dynamics are involved, a deterministic
system can generate random looking results that nevertheless
exhibit persistent trends, cycles (both periodic and non-
periodic) and long term correlation (Mandelbrot 1986: 45).
Compounding the problem is also the difficulty and lack of
criterion in deciding which statistical or mathematical
technique can be appropriately applied to a particular data
set. The rules for choosing parametric over non-parametric
methods, for example, have not really been established.
Thus, for the same data set, different methods may lead to
quite different interpretations and conclusions. Further,
developments in Chaos theory are pushing statistical work in
new directions, (e.g., Barnsley 1988; Batty 1991; DeCola
1991; Neuburger and Stokes 1991) and their applications are

not yet sought in criminology.

The technical resources needed to apply many of these newer
techniques are so daunting that not surprisingly, few
criminoclogist have ventured into its applications. The lack
of a mathematical or strong quantitative background amongst

most criminologists may also be an inhibiting factor.
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Additionally, new data sources are becoming available to
researchers that have been little utilized in criminological
work. The emergency calls for police service is a recent
trend (Sherman, Gartin and Buerger 1989) but “data from
schools and Jjuvenile Jjustice agencies, from police and fire
departments, from welfare and health agencies, from planning
and building departments’”, are also potential sources, as
suggested by Maltz (199%4c: 5-6). Moreover, as he points out,
“...not all can be used using standard statistical

techniques”, (1994c: 1).

Some of these problems can still be overcome by more
informed use of statistical tests like the use of confidence
interval when appropriate instead of the reliance over
discrete probability. “But the fundamental problem remains,
of establishing that the underlying assumptions about the
nature of data, the sampling method and the population are
valid and these cannot be met easily in social research”
(Halfpenny 1982: 44). Some researchers have maintained that
such 'technical' issues have Dbeen 'solved’ by the
development of statistical tests that do not rely on
specifying the exact form of population- the so called
distribution free or non-parametric statistics (Siegel

1956}, or by advances in sampling theory (Lazerwitz 1968) or
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by the invention of test statistics for non-random samples

like matched pairs.

However, it is debatable whether the problem of justifying
statements about the population on the basis of empirical
information from a sample are at present well established.
The difficuities in this generalization are indicators of
major epistemological problems with empiricism, causality
and induction in the social sciences, problems that
statistical techniques cannot solve by themselves. The
statistical techniques popular amongst criminological
literature “...engender a predisposition to ignore mulitple
modes of behaviour, to treat all situations as having common
origins, to embrace a single cognitive model of reality, and
to overlook any treatments that do not apply to the whole

population” (Maltz 1994a: 450).

It seems fit to reiterate that though statistics as a
technique has its limitations, the underlying world of
mathematics of which statistics is but one of several
hundred branches, appears a more appropriate methods bank to
be used 1in criminological researches. Although the
complexities of criminal behavior 1is overwhelming, the
problems that are set in theorization and research are

generally narrow and relatively simple. The theories of
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crime such as differential association, labeling, social
control or rational choice propose a limited perspective
about the complex human behavior that is considered criminal
by convention. For their expression, the rich and precise
language of mathematics becomes a powerful and useful tool.
The precision of 1its notation, the simplicity of its
exposition and the potential for expansion into complexity
gives mathematics an edge as a lanquage for communicating

and comparing these theories of crime.

As suggested earlier, one of the areas where mathematics can
immediately play an important role is with regard to the
transformation of verbal theories into mathematical ones
(Blalock 1968; 1981). The most common mathematical
formulation could involve reducing the propositions into
mathematical terms and establishing functional relations
between them. Mathematics provides a concise and simple way
of presenting issues and since elegance and simplicity are
considered significant criteria for the acceptance of a
theory in the scientific literature, mathematical
formalization should be a desired endeavor. Coleman's (1990)

efforts in this regard are noteworthy though such efforts

naturally will have their limitations.
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Further, the kind of issues that have been treated by
statistical analysis are the areas that could benefit most
by concentrating on the underlying mathematical model that
is rarely explained or acknowledged. In fact, mathematical
models play an important theoretical role and ought to be
seen as substantive theory instead of being relegated to the
quantitative research methods textbooks. Thus, human
behavior and social processes can not only be described
through the use of mathematical functions (Greenberg 1979;
Coleman 1964; Leik and Barbara 13975) but may also be modeled

by its structures (Brantingham and Brantingham 1993b).

This area seems *“o0 have been seriously neglected in the
social sciences although in the physical sciences, for
example, a mathematical model is not simply a basis against
which to test some other theory but one for providing the
model itself. Poisson's theory for the propagation of heat
as a process 1involving the independent interaction of
numerous small particles evolved from the mathematical
treatment of their movements and the mathematics itself
provided the model. The black hole theory is not tested
against some other types of theory and its mathematics
creates and describes the 'physical' entity entirely.

Surprisingly, it 1is only in the social sciences that
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mathematics 1is considered purely a procedure and not a

substantive model in itself.

In the realm of theory construction, mathematics 1is capable
of playing at least an equally important and crucial role as
any other subject. As a 1logically consistent system of
tfansformations, mathematics has the convincing property of
being capable of paralleling the general concepts of what
the theory is all about and therefore can be a powerful
language capable of building and representing theories in

criminology.

An additional advantage of applying mathematics is that
beginning with some basic concepts larger, complex
structures can be erected that may be useful in describing
criminal and social behavior. Thus, the concept of set is
almost naive but it contains properties upon which intricate
structures can be constructed from such a basic building
block. Mathematics has numerous other kinds of blocks and
structures of which statistics is but a prominent one. Thus,
different geometries like Euclidean, Reimannian or
Lobachevskian, concepts 1like fractals, groups, spaces, or
filters and relations like isomorphism, mapping,
commutativity and others constitute a Dbasic building

language for representing the characteristics of a
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particular kind of world. Topology, graph theory,
combinatorial mathematics, calculus, differential equations,
spatial tesselations, fuzzy 1logic and many others are
branches of mathematics that could be usefully applied in
the social sciences (e.g., Coleman 1964; Fararo 1973; Leik
and Barbara 1975; Greenberg 1979; Smithson 1987;

Brantingham, Brantingham and Verma 1992).

Mathematics with its symbols and functional relationships
can even serve as a proxy for theoretical and experimental
manipulations in criminological explanations. The behavior
of an actual offender, or an offence or its control process
may be predictable by the behavior of these symbols alone,
if one knows their initial conditions and appropriate
isomorphic relationships. At the least, mathematical
notations <can assist in reducing complex theoretical
explanations into simpler, easily understandable

relationships.

Before examples from the world of mathematics can be cited
for applications 1in criminology it appears fruitful to
examine the wvaried nature of mathematics. It 1is the
contention of this dissertation that mathematics, apart from
being the genesis of quantitative methodology, also provides

the 1link between qualitative and gquantitative techniques.
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Within the qualitative methodology if there is any attempt
to describe or ‘explain’ some phenomenon in terms of some
other factors, the rich language of mathematics could be
most useful. This 1s possible irrespective about the
philosophical position of the researcher for mathematics
subsumes both the perspectives. “On a deeper level the ideas
within the mathematical models and structures are not
dissimilar to the deep format of arguments in the
structuralist and phenomenological stance” (Collins 1984:
330), a matter that will be explored in the next chapter on

mathematics.
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CHAPTER IV

THE NATURE OF MATHEMATICS
unoeig oyeopetpntol  elo1t®

(entrance forbidden to non-mathematicians)

inscription over the gate of Platonic academy

As it 1is impossible to give a simple description of art or
power or humour, so with the nature of mathematics for there
is hardly any unanimity about the subject matter amongst the
scholars. Most definitions given in the texts or propounded
by mathematician themselves are illuminating and provide
some aspect about the subject but all this 1is not
sufficiently enlightening. Felix Klein describes it as the
science of self evident things; Benjamin Peirce as the
science that draws necessary conclusions; and for Aristotle
it is the study of quantity. Whitehead considers its nature
as the development of all types of formal, necessary and
deductive reasoning, while for Descartes it is the science
of order and measure. Russel considers the subject identical
with logic but for Hilbert it is a meaningless formal game.
The list can be extended with statements from other scholars
but it 1is clear that mathematics appear to have different

meanings to different people.
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Problems Associated with the Nature of Mathematics

Amongst philosophers, the nature of mathematics has always
been one of the great sources of problems. For the Greeks,
mathematics meant geometry and the problem stemmed from
Euclid's first definition: a point is one that has no
dimension, but there was clearly no way to describe this in
practice. Anything without parts seem impossible to imagine
and moreover, the world cannot be built by points for even
infinitely many points would have no extension. Since
Euclidean geometry was considered to be representative of
the physical world the problem was of assigning meaning to
these geometrical terms and whether its principles were
true. Later on, the creation of non-Euclidean geometries
introduced more problems for if those contained laws that
were incompatible with the laws of Euclidean geometry than
the notion of mathematical truth became a vague entity. One
law cannot be incompatible with another and yet both seem to

exist simultaneously.

Number theory posed even more intangible problems dealing
with the meaning of the terms used, the possibility of
attaining truth and whether truth was indeed the concern of
mathematicians. The geometries developed by the Greeks
proposed only hypothetical principles and did not assert the
existence of anything but number theory introduced the
concept of matheomatical existence. It clearly states that

there exists a number 'y' such that x times y equals x,
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whatever x (except 0) may be (Here y is 1). It 1is not
apparent what sort of existence 1is being talked about and
consequently what type of mathematical reality is being

asserted by such statements.

Another fundamental dguestion about mathematics is whether
this knowledge 1is a priori or empirical in nature. This
distinction is important since it effects clarification of
basic concepts and raises fundamental problems of knowledge
and its acquisition. Thus, physics, chemistry, archeology
all are primarily concerned with matters of empirical
knowledge and therefore must rely upon observations to
establish their conclusions. On the other hand, logic (and
for some mathematics itself) is concerned only with a priori
knowledge seeking rules governing the wvalidity of arguments.
It 1is therefore unconcerned about any observations in
reaching 1its conclusions. The nature of mathematics 1is
blurred in this respect, for it is 1like physics or 1like
logic or partly like both in some proportion. The problem is
compounded further since how a priori knowledge is attained
and exchanged between mathematicians of different

backgrounds is an equally contentious issue.

Knowiedge about Mathematics
The traditional view of mathematics going back even to Plato

has been that it is purely a rational study of immaterial
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forms. That the subject 1s concerned exclusively with
numbers, shapes, patterns and functions that do not occur in
the physical world, although there may be some imperfect
examples in the universe. The geometer studying straight
lines and circles still draws lines that are not straight,
nor perfect are the circles. Also, since the objects of
study are not physical there is no way to have any empirical
knowledge about them. Therefore, mathematics is an a priori
discipline, independent of experience. Plato is said to have
remarked that mathematicians study ideals which can be seen
only by the mind. Heinrich Hertz, the discoverer of wireless
waves also states, “one cannot escape the feeling that these
mathematical formulas have an independent existence” (cited

in White 1956: 2355).

However, such a realist interpretation of mathematics runs
into considerable difficulty in explaining for instance, the
case of natural numbers. The problem of attempting a literal
interpretation to these numbers is analogous to the problem
of explaining the nature of 'universals', the properties
such as virtue, redness or squareness. Mathematics, 1like
these universals appear to have abstract entities, located
neither in space nor time. Yet, despite their intangible,
immaterial nature there is still knowledge about it that
clearly asserts its existence. Realism propounds the claim
that mathematics, like universals consists of real abstract

entities, Jjust 1like concrete objects and that the mind has
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the power to discover and comprehend them by means of
rational insights. The position of Realists regarding the
existence of numbers is thus the assertion that numbers are
abstract entities existing independently of our thinking.
Hardy (1967: 123) states unequivocally that "“mathematical
reality lies outside us, that our (mathematician's) function
is to discover or observe it, and that the theorems which we
prove, and which we describe grandiloquently as our
'creations' are simply notes of our observations”. Edward
Everett, the first American to win a doctorate at Gottingen,
reflectively commented, “In the pure mathematics we
contemplate absolute truths which existed in the divine mind
before the morning stars sang together, and which will
continue to exist there when the last of their radiant host

shall have fallen from heaven” (cited in Bell 1931: 20).

The question as to how one gains knowledge of these abstract
objects 1is one that has Dbeen bitterly debated from the
period of Kant to present day philosophers and to which no
consensual solution has emerged. The attempt has also been
to propose the opposite view like that of physicist Bridgman
who asserts equally strongly that mathematics is a human
invention. Kasner and Newman {1940: 359) too comment that
mathematical truths have no existence independent and apart
from our own minds and moreover, non-Euclidean geometry 1is
the proof that mathematics is man's own handiwork, subject

only to the limitations imposed by the laws of thought.
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White (1956; 2351) borrowing from anthropological
terminology, mentions that mathematics in its entirety, its
truths and its realities is a part of human culture and like
languages, institutions, tools, the arts, it too is the
cumulative product of ages of endeavor of human species.
Henri Poincaré (cited in Kasner and Newman 1940: 16)
similarly supports that the axioms of geometry are mere
conventions, customs that are neither synthetic a priori

judgments nor experimental facts.

According to the sociology of mathematics then, it is the
formation of cultural tradition that facilitates progress.
The communication of concepts from person to person places
ideas 1in the mind which, through interaction, form new
syntheses that are passed on in turn to others. The locus of
mathematical reality is thus in cultural tradition, the
continuum of symbolic behavior. However, this view appears
to ignore the fact that despite cultural differences, vast
time periods and stages of societal development, scholars
have conceived the same kind of mathematics whether in
Greece, Arabia, India or China in the past when
communications systems were undeveloped. Since <cultural
differences and long distances do account for the variations
in language, dress, traditions and norms of behavior it
seems amazing that everywhere the same nature of mathematics

was developed and pursued.
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Another view is that of the nominalist who hold that there
are no abstract entities that could be identified as
numbers. For them numbers and mathematics are simply ideas
that comes into being at certain time and therefore may be
located in time if not in space. This viewpoint has been
challenged by Frege who argued that “if right angles exist
only in the mind then one should speak about my Pythagorean
theorem of my right angles and your Pythagorean theorem of
your right angles” (cited in Goodman 1991: 119). Since there
is indisputable communication about mathematical constructs
unlike some mental phenomenon as emotions or feelings, this
appears to suggest that mathematical objects are probably

not mental in nature.

Making Sense of Mathematical Propositions

For John Stuart Mill mathematics was an empirical science
differing from other empirical sciences 1like astronomy,
physics etc. because of a more general subject matter and
because its propositions have been tested and confirmed to a
greater extent. According to such a viewpoint mathematical
theorems have been so clearly established that these are
regarded as certain while the ©propositions of other
empirical subjects are still thought of as 'probable' or
very highly accepted. However, an empirical hypothesis 1is
open to refutation and, theoretically, is at least

disconfirmable (Popper 1975). Mathematical propositions 1like
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2*3= 6 cannot be refuted on empirical grounds for the
numbers are defined in a manner that the relationship is

tacitly understood to hold true without any observations.

It is because of this reason that arguments have been made
to suggest that mathematics is true by virtue of the
meanings of its words. Proponents of this viewpoint suggest
that mathematicians deduce their theorems by 1logical
inference from self evident axioms. “Mathematics is said to
be true by convention, true by definition or logically true”
(Goodman 1991: 120). This school believes that the truths
of mathematics, in contra-distinction to the hypotheses of
empirical sciences, require neither factual evidence nor any
other Justification Dbecause they are 'self-evident'.
However, many mathematical theorems are so difficult to
prove that even to the specialist they appear as anything
but self evident. It is further well known that some of the
most interesting results in fields such as set theory and
topology are contrary to the deeply ingrained intuitions and

the customary feeling of self evidence.

There are also certain conjectures in mathematics,
propositions like that of Fermat's last theorem 1 or
Goldbach's theorem 2, that show not all mathematical truths

can be self evident. These propositions, though elementary

1 1t states x™ +y™ = z1 is impossible for integer n>2.
2 that every even number is the sum of two prime numbers.
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in concept are yet undecided till the present time and
therefore impossible to state as 'self evident' in any
sense. Finally, even if one were to argue that self evidence
is attributable only to the basic postulates of mathematics
from which all other propositions follow, then one has to
conclude that 'self evidence' is a subjective criterion and
“...cannot constitute an adequate basis for decisions as to
the objective validity of mathematical propositions” (Hempel

1956: 1620).

In another sense, mathematical theorems are said to be
analytic because these are all tautological in nature. Such
an analytical nature of mathematics follows the tradition
that can be traced back to Kant for whom analytic sentences
are true by virtue of the meaning of the term involved and
differ from the synthetic type that are true by virtue of
the fact of the matter. The validity of mathematics is said
to have been derived from the stipulations which determine
the meaning of its concepts and therefore the propositions
are considered 'true by definition'. Almost all the theorems
of arithmetic, algebra and analvsis for instance, can be
deduced from ©Peano's axioms and the definition of
mathematical terms that are not 'primitives' in his system.
The deduction requires only the principles of logic and in

some cases the axiom of choice.
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Such a thesis of logicism about the nature of mathematics
therefore asserts that the propositions of mathematics are
devoid of all factual content and convey no information
whatever on any empirical subject. This form of description
lead to the conclusion that the traditional conception of
the subject as the 'science of quantity' is both inadequate
and misleading. Mathematics can draw conclusions from any
set of axioms and that the wvalidity of the inferences does
not depend upon any particular interpretation assigned to
the axioms. The sole question before the mathematician is
not whether the axioms are true but whether the conclusions
are necessary logical consequences of the initial
assumptions. This followed Russell's statement, “Pure
mathematics is the subject in which we do not know what we
are talking about, nor whether what we are saying is true”

(cited in Newman 1956: 1670).

W.V. Quine has argued against this position suggesting that
there is no way in which the concepts can be said to be
sufficiently clear to provide a precise sense in which say,
Zermelo Fraenkel set theory is analytic. Thus, set theory is
not logically true and not in any standard logical sense
true by definition. “The feeling of many mathematicians that
the axioms of set theory somehow follow from what we mean by
'set' is no more profound than the common feeling that

Newton's second law 1is a consequence of what we mean by

'force' and 'mass'“ (Goodman 1991: 122). Nobody would say
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for instance that classical dynamics is true a priori
implying thereby that the same criterion ought to be applied

to mathematics also.

Computer Aided Mathematical Proofs

The final confusion about the nature of mathematics arises
from the recent trend amongst mathematicians for relying
extensively upon computers. Appel Haken's 'solution' to the
four colour problem is a computer programme running for more
than 1200 hours of computer time (Appel, Haken and Koch
1977). The reliance 1is becoming so complete that computer
produced facts are now seen as part of mathematics and also
because no other solution is available nor often possible.
However, it is difficult to imagine that a result that can
be established only by hours of computer time is true by
virtue of the meaning of the symbols wused in its
formulations! The computer usage is thus clearly undermining
the a priori position of mathematics since an “analytic
truth ought to be recognizable as such merely by thinking”

(Goodman 1991: 122).

Tymoczko (1979) has further argued that computer useage in
mathematics has called into question the distinction between
the a priori position of mathematics and posteriori nature
of the natural sciences. Pointing to the 'proof' of 4 colour

problem he states (1979: 76) that it is unlike any other
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traditional proof in the subject. Mathematical theorems are
considered proved 1if these are convincing to other
mathematicians, are surveyable or are formalizable (that is
proveable by 1logic). However, the proof of the 4 colour
problem is not surveyable and there is no known formal
proof. The proof propounded and accepted by the mathematical
community required a computer run to fill the gap and this
run 1is not surveyable. It 1is more 1in the nature of
experimentation in mathematics for the machine was directed
to 'search' for certain configurations, test its
implications and report yes or no to the basic querry. The
truth depended upon the reliability of the machine, which is
an engineering matter and that of programming about which
little can be said of its wvalidity (Goodman 1981).

At the present stage it is difficult to state whether a
computer programme does what it is instructed to dc. It is a
task for the computer sciences and there does not exist any
general established criterion for achieving it. Programmes
are written in special languages, are quite complex and may
contain bugs or flaws that go unnoticed for a long time. For
all these reasons a mathematical proof obtained through
computer is of entirely different nature that raises several

new questions about the nature of mathematics.
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The Foundations of Mathematics

But for most mathematicians, there is an obvious advantage
in the abstract nature of mathematics since it provides the
freedom in developing a great variety of propositions in
which the meanings of the terms can become more general,
less explicit and thus their wuse much broader, the
inferences less confined. Nevertheless, mathematical
propositions flow from non-defintional set of axioms or
postulates that are not proved within the theory. Thus, in
Peano's axioms about the number system the meanings of '0',
"'natural number' and 'successor' etc. have to be clearly
explained. This implies that it cannot be determined whether
a given set of axioms underlying some system 1is internally
consistent and that no mutually contradictory proposition

can be derived from it.

So long as the axioms are about a definite domain of
objects, 1like the familiar space, the axioms can be
ascertained as true by comparison, as done for Euclidean
geometry. But with the invention of non-Euclidean geometries
this is no longer possible for they are not evidently true
of the ordinary space of our experience. The attempt by
Hilbert of converting geometric propositions into algebraic
representations still left the problem unsolved for now the
need was to demonstrate the internal consistency of the
algebraic system. The attempt by Russell and Whitehead who

advocated reducing all mathematics to the set of formal
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logic merely transformed the gquestion to whether the

fundamental postulates of logic are consistent.

It was the genius of Go&del that finally led to rest such
attempts to make mathematics a consistent formal system. In
the first place he showed that no proof is possible for the
formal consistency of the system that 1is comprehensive
enough to contain the whole of arithmetic. That is, any
prcof of inference must itself emplcy axioms that need
further proof for their own consistency. Further, he even
concluded that any other system in which say, arithmetic can
be developed, is essentially incomplete. For given any
consistent set of postulates there will be true statements
that are not derivable from this set. Thus, in the number
system, even if some additional axioms are added to take
care of theorems like that of Fermat or Goldbach to make
them derivable, there will be further arithmetic truths that
cannot be established by the augmented set of axioms. "“The
import of Goédel's conclusions suggest that an axiomatic
approach to say number theory cannot exhaust the domain of
arithmetic truths and that mathematical proof does not
coincide with the exploitation of a formalized axiomatic

method” (Nagel and Newman 1956: 1694}).

Even Kant's view that numbers like Euclidean geometry are
both a priori and synthetic defies the rature of

mathematics. According to him the synthetic a priori
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knowledge of Euclidean geometry rests upon the awareness of
space as a 'form of intuition' and upon the mind's awareness
of its own capacity to construct spatial figures in pure
imagination. But this form of reasoning commits one to the
doctrine of potential infinite or of indefinite totalities
as opposed to the doctrine of actual infinite. According to
this principle there cannot be any largest number since one
can count beyond any number up to which one has counted.
Yet, to have infinite numbers would require the mind to
imagine that many numbers presupposing an infinite length of

time to do so which is impossible.

However, for the school of intuitionist mathematicians who
subscribe to a very different nature of mathematics, there
is no contradiction in this form of reasoning since for them
the pure intuition of temporal counting serves as the point
of departure for the mathematics of numbers. For this group
of mathematicians headed by the Dutch Brouwer, Cantor's
argument that there are more real numbers than natural
numbers 1is unacceptable since it is 'non-constructive' in
practice. Intuitionism holds that the source of mathematics
is the insight which we intuitively comprehend from

experience of the external world.

Intuitionism is akin to 'constructionism' in the sense that
it asserts the truth of any mathematical object only after a

demonstration that it is possible to do so in practice. The
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reality of mathematical knowledge is true only to the extent
that has been successfully constructed by the mathematician.
This branch of mathematics then is diametrically opposed to
the positivist notion of asserting the existence of the
reality being deciphered by the mathematician. It is more in
the nature of phenomenonalism that one can know only by
actual action of the process. However, Brouwer noticed that
in dealing with the subject of say, infinite sequence of
numbers, the assertions that there is a number and there is
no such number, the relation of contradictory opposites no
longer exists. Thus, in certain mathematical problems
dealing with 1infinite sets the elementary rule of the
excluded middle is not admissible without an additional

arbitrary assumption.

The intuitionist method therefore rejected all those
previous mathematical results in whose derivation the
tertium exclusuum was used, including in particular all
those theorems which rests upon the so-called indirect
proofs. Accordingly, if for an unknown quantity X it can be
proved that the assumption that there is no such x leads to
a contradiction, then for intuitionists, the existence of x
is unproved. The students of Brouwer demand a 'constructive'

proof, a method by which the quantity x can be calculated.

From the point of view of Intuitionism, one must possess a

constructive proof of any mathematical statement before it
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can be said that the statement is true. In this sense the
intuitionist believe with Kant that whatever the mind
creates it must in principle be able to know through and
through (Barker 1989: 74). Intuitionism therefore takes a
more puritanical standard of logical rigour than
traditionally taken by mathematicians of the genre of
Cantor, Hilbert and others of different schools. It leads to
the rejection not only of Cantor's theory of transfinite but
also many others like the theorem in analysis that every
bounded set of real numbers has a least upper bound, or even

the rejection of Zermelo's axiom of choice.

Such a conceptualist philosophy of mathematics works
considerable havoc upon classical mathematics by rejecting
its important methods of reasoning and some of its axioms.
Critics have strongly objected to this doctrine arguing that
its concepts that numbers and sets are brought into
existence by pure intuition of the process of counting is
exceedingly woolly and objectionable if taken 1literally.
There is no proof that mind can only count at finite speed
in pure intuition and that it cannot construct transfinite

nunbers.

Moreover, associating this mathematics with Kantian
philosophy has also implied that its foundations have been
shaken by the course that science has since taken and the

doubts cast upon Kant's 'Critique of Pure Reason'. Thus,
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Kants ideas about the place of space and time in physics
correspond with Newtonian physics that have been overtaken
by Einstein's theory of relativity. According to Kant, space
and time have nothing to do with each other for they stem
from quite different sources- that space is the intuitional
form of our outer sense and time of our inner sense (Hahn
1956: 1957). The theory of relativity, as we all commonly
know propounds that there is no absolute space nor time,
only its combination, the ‘universe' that has absolute
physical meaning. Similarly, Kant’s thesis that arithmetic,
the study of numbers also rests upon pure intuition has been
opposed by Russell who set out to prove that in complete
contradiction, arithmetic belongs exclusively to the domains

of intellect and logic.

Mathematical Creativity

The nature of mathematics clearly defies any representation,
yet in most respects it is like other scientific theories.
It is created to solve some particular problem and then goes
on to develop a life of its own. It is difficult to support
the view that these are simply deductive structures based on
axioms. These are more of “structures of reasoning based on
conjecture and bold extrapolation” (Goodman 1991: 123).
Georg Cantor struggled with the prcblems in analysis in the
theory of Fourier series. In order to solve these problems

he was led to innovate and develop daring conjectures that

97



were regquired to solve the growing needs of his theory.
Mandelbrot attempting to measure the coastline of Britain
was forced to analyze the relation between the scale of
measurement and the dimension of the object that forced him
to introduce the concept of fractal and the 'fractional
dimension'. Every mathematical object is thus a similar
construction and outcome of the attempts to get around a

problem of synthesis and analysis.

It is precisely this activity that introduces a type of
creativity found in the fine arts. The mathematicians who
first formulated the non-Euclidean geometry displayed the
same form of creativity found in the works of Rembrant,
Chopin, Chaplin or Tagore. “A mathematician , like a painter
or a poet, is a maker of patterns that are more permanent
than theirs because they are made with ideas” (Hardy 1967:
84). Mathematical imagination equals if not surpasses that
required by the fine arts since the mathematician is not
confined by the material forms available to the other
creators. Moreover, mathematical patterns like the painter's
or poet's, are also beautiful for these ideas, 1like the
colours or the words fit together in a harmonious way (Hardy
1967). “Mathematics provides a world of pure abstraction, a
life in the 'wildness of logic' and where reason is the only
handmaiden” (Berlinghoff 1967: 2). No doubt mathematical
theories rise in response to the needs of natural and even

behavioral sciences, but the creative mathematician often
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generalizes the original solution and from it builds a
logical edifice, investigating questions of abstract

structure without further regard to the world around.

“The mathematician is entirely free, within the limits of
his imagination, to construct the worlds he pleases”
(Sullivan 1956: 2020) . “In their prosaic plodding
mathematics shows that the world of pure reason 1is stranger
than the world of pure fancy” (Kasner and Newman 1940: 362).
Since mathematics is a free activity, unconditioned by the
external world, it ought to be described as an art than a
science. It is as independent as music or art and is an
activity governed by the same rules imposed wupon the
symphonies of Ravi Shankar, the paintings of Ajanta and the
poetry of Omar Khayyam. It is no wonder that most
mathematicians describe the same feelings and experiences as
other artists, one of beauty and harmony in creating
structures, forms and elegant relations that provides them
with the same form of esthetic emotions. As Hardy (1967)
suggests, a mathematician is less interested in the results

than in the beauty of the methods.

Unlike the fine arts mathematics can also be used to
illuminate natural phenomenon although it remains subjective
and the product of the free creative imagination. As an art
mathematics creates new worlds and as a science it explores

them.
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“It is a common unifying force present in all human intellectual endeavor, forever
broadening the horizons of the mind, exploring virgin territories and organizing
new information into weapons for another assauit on the unknown. It is a
language, a tool, and a game, a method of describing things conveniently and
efficiently, a shorthand adapted at playing the game of common sense. It
demands a novelists imagination, a poets perception of analogy, an artists
appreciation of beauty and a politicians flexibility of thought- it is indeed integral

and indispensable for human existence” (Berlinghoff 1967: 2).

Further, 1like arts, mathematics is not for amusement or
merely to satisfy an esthetic emotion but also to reveal
some aspect of reality. Almost a millenium before, the
Indian sage Shankar pronounced, -Qqﬁ odd f@_\'ﬁq '_'ﬂ'ﬁ?f,
our consciousness and the external world are not two
independent entities. “The external world is largely our own
creation and we understand much of what we have created with
which we must create” (Sullivan 1956: 2021). Just as the
real function of art is to increase our self consciousness,
to make us more aware of what we are and therefore of what
the universe in which we live really is, so does mathematics

also performs this function.

The Advantages of Using Mathematics

Although, the ordinary spoken languages are capable of
providing rich descriptions and possess beauty of expression

that could stir the dullest imagination, still there exist
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several limitations to their usage. The ordinary words are
created for use in everyday life where their meanings are
familiar in limited circumstances. These could also be
extended to wider spheres without bothering if they still
have a foothold in reality. “The disastrous effects of such
[application] in the political sphere where all words have a
much vaguer meaning and human passion that often drowns the
voice of reason...” (Weyl 1956: 1836) 1s apparent to
everyone of us! Ernest Nagel (1956) in an ingenious way
translated into symbolism passages from Alice in Wonderland
and showed how the transformation of words and sentences
into symbols illustrates vividly the confusion and

ambiguities of ordinary languages.

On the other hand by its symbolic construction mathematics
has unfettered itself from the vagueness of the languages
and has built a more efficient system of communication than
the modern languages. Through its system of abstraction in
symbols, a mathematician is free to forget what the symbols
stand for and concentrate, like the librarian, only on the
catalogue alone. The details are unimportant and what
matters is that once the initial symbolic scheme S is
given, further work can be carried along by an absolutely
rigid construction that leads from Sg to Sq1 to Sy and so on.
The idea of iteration, familiarly encountered with natural
numbers can be extended in a purely symbolic manner, the

construction of not only 1 or 2 but 3, 4, 5, ... and even to
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manifold dimensions. Its characteristics of being completely
precise 1is the tool that makes long chains of reasoning

possible and exciting.

Thus, in the analysis of physical nature, the phenomenon is
reduced to simple elements each of which varies over a
certain range of possibilities that can be surveyed a priori
because these can be constructed a priori in a purely
combinatorial manner from symbolic material. For instance,
light can be polarized into monochromatic light beams with
few wvariable characteristics like wave length that wvaries

over the symbolically constructed continuum of real numbers.

It is because of this a priori construction that one can
speak of quantitative analysis of nature and the word
quantitative ought to be interpreted in this wider sense of
the term (Weyl 1956: 1844). It is in fact erroneous to think
that mathematics is the science of quantity or that of
number and space, of the countable and the measureable for
all these are too narrow. These definitions are founded on
the misconception that the activity of the mathematician
consists 1in calculating, computing or number crunching.
“Extensive areas of mathematics have nothing to do with
numbers and even when the mathematician is occupied with
numbers, it 1is generally not in a computational manner”

(Saaty and Weyl 1969: 12).
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As described before, the prime number problems associated
with Fermats, or Goldbach's theorems are examples of
investigations that are unconcerned with computation and
arithmetic in the usual sense but rather with the task of
uncovering structural relations in the order of numbers. It
is well known for instance, that even Euclid was aware that
a large branch of geometry had nothing to do with

measurement.

Finally, the connection between a given continuum and its
symbolic scheme is established by the notion of isomorphism,
a topological mapping by a continuous one-to-cne
transformation. Mathematics is therefore indispensable as an
instrument for the wvalidation of such knowledge. The
theories of empirical sciences cannot be applied universally
without the help of mathematics and these have to use the
symbols, their functional relationships for expression. Even
in the development and test of these theories and
establishment of their predictions, there is the requirement
of deduction from the general to the particular or an
induction from the particular to the general (Palys 1991:
45), a process difficult without the techniques of

mathematics.

It is for this reason that a quantitative methodology for
criminology ought to be associated with mathematics in

general rather than statistics in particular for then not
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only can the researcher tap the techniques available from a
larger bank but also break the shackles of positivist
philosophy that has surrounded it. If the model demands a
realist interpretation then mathematics of Hardy, Hertz and
others is available with its immense power and variability.
On the other hand if the researcher 1is a believer in
phenonmenalism and skeptical of the official statistics,
then too Brouwer's ‘'intuitionist' mathematics <can be
depended upon which too asserts that nothing can be believed

unless ‘constructively’ proved.

Finally, the world of mathematics is full of creation and
‘wild’ imagination that can be useful in constructing models
befitting the situation or representing an argument through
its symbolism to provide greater rigour and logical
consistency. For criminological purposes then, mathematics
can provide useful tools, appropriate models and a strict

procedure of verification that any researcher may demand.

Clearly then, there is a need to extend the nature of
quantitative methods by incorporating new tools from
mathematics that can be applied in criminology. Viewing them
as part of the general subject matter of mathematics,
quantitative techniques can then be either the familiar
number crunching type or those borrowing the structures,
relations, abstractness or the logical format of

mathematics. Moreover, quantitative methods can also call
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upon the creative powers of mathematics to explore offender
cognition, target selection and preventive measures to
develop new arrangements and tools which may provide even
deeper insights into the subject matter of crime and its
control. Just as calculus, game theory and fractals were
developed to deal with particular physical problems there is
the possibility that exploration of criminal behavior may

lead to the creation of some newer form of mathematics.

Even 1f a working model that accurately describes or
predicts criminal behavior may not be immediately possible,
the important aspect is to remember that the fundamentals
could be captured and the work can be started. Variables can
be added, relations modified and results interpreted in
other contexts. “The way to understanding is through doing
and the way to truth is through error” (Saaty and Weyl 1969:
276). Mathematics even makes possible the estimation of
errors made 1in understanding some relationship and could
suggest ways to correct them. Mathematics is the only
language that is without any bias derived from content and,
being contentless and independent of specific experience, it
is the only cosmopolitan language possessed by human beings.
It makes possible the linking of theories widely different
in content but with similar logical structure. Therefore,
descriptions of criminal behavior, although embedded in
context and differing in content could still be compared if

there 1is a common pattern underlying them. Additionally,
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different explanations of such behaviors could also be
compared through the use ofrmathematical symbols to judge if
there 1is anything common amongst them. Mathematics could

serve as the communicating language for criminology.

The concepts in pure mathematics with its study of abstract
structures can provide techniques and concepts which possess
exciting possibilities for applications in criminology. Pure
mathematics deal entirely with mental constructs as fields,
space, numbers, fractals and different forms of relations
between them. These non worldly abstract studies, concerned
with proving theorems with exactness and certitucde vyield
powerful methods These constructs and relations 1like
mapping, exclusion, continuity, commutativeness can turn out
to be extremely useful in explaining criminal behavior in
social settings if these could be given empirical content
with some segment of the social phenomenon. Simple reasoning
and conceptual relationships can help create a structure of
an abstract world that nonetheless could have practical

utility in deriving knowleage about the empirical world.

The central concern of my research work is this face of
quantitative methodology, the construction of abstract
structures and their relationships which seem to hold equal
promise for the social sciences as they have done for the

natural sciences. The following chapters will outline a few
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concepts and structures from mathematics that can provide
new tools of analyses in the study and control of criminal

behavior.

However, before describing some such new tools it 1is
pertinent to point out that recent developments in
criminology have also started demanding the applications of
a different nature of quantitative technigques. In the next
chapter a brief description of this so called Pattern theory
will be provided to assert that the need to extend the
definition of quantitative methods has been made and that new
developments in criminology are ripe for a new mathematical

perspective.
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CHAPTER V

THE PATTERN THEORY OF CRIME

This chapter will argue that the emergence of different
theories of crime create the demand for the development of
various tools of analysis. We will argue that the
developments in methodology are influenced by the parallel
growth in theories and moreover, the two also reciprocate
each other. We will then describe the exposition of Pattern
theory of crime and argue that these new developments in the
etiology of crime are paving the way for new tools of
analysis in criminology, methods that are 1looking for a
different form of mathematics than hitherto practiced so

far.

Theory and Method
This debate between theory, method and observations 1is

pertinent to this thesis since it seeks to develop new tools
of analysis and therefore needs to justify the importance of
these tools. The justification is based upon the argument
over the primacy of subject matter or of the method, that is
whether theory determines method or vice versa in

‘explaining' or dealing with the observed facts.
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One argument holds that the topics of research are set by
theoretical developments within the subject and that these
in turn make their own unique selection or development of
research techniques that have to Dbe adapted to the
particular requirement of the topic (Rose 1954: 245).
Proponents of the primacy of the method hold that there 1is
but one scientific method and that only the topics
researchable in terms of this method 1lead to wvalid

knowledge.

The claim is often made that the methodology of the social
sciences are radically different from the natural sciences.
It is for instance commonly stated that the complexities and
ever changing dynamics of the social processes cannot be
controlled , manipulated or even isolated like the physical
objects. However, as Rudner (1966: 4-5) points out, these
kind of arguments confuse the methodology with techniques.
For just as we do not 'manipulate' the galaxies to study
about the universe we do not need to control the social

processes to understand the underlying causes.

The differences of techniques in any particular discipline
are to be expected depending upon the variety of phenomena
being investigated. Thus, physics employs techniques ranging

from the measurement of physical objects to acceleration of
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atomic particles in the cyclotron. The use of the pendulum
is undoubtedly radically different from the application of

an electric circuit.

However, to say that this implies a different methodology
becomes a rather startling claim for underlying the use of
any instrument or technique, the physicist remains aware of
the basic scientific method that forms the basis of his or
her logic of justification. It is this common method of
science that forms the rationale for the rejection of any

hypothesis amongst the scientific community.

Therefore, to state that the social sciences have a
different method would imply that they have altogether a
different manner of justifying their claims or supporting
their theories. Further, “..to hold such a view is to deny
that all of the science is characterised by a common logic
of Jjustification in its rejection of the hypotheses or

theories” (Rudner 1966: 5).

The view that the social sciences are methodologically
distinct also confuses the notions of discovery and
validation. It is improper to talk about a 1logic of
discovery, meaning that there is some fixed manner in which

something is accepted as being known for the first time.
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However, a logic of explanation 1is the manner that is
asserted when we speak about the scientific method. The
context of discovery may be dependent upon the prevailing
social, psychological, political or economic conditions that
play an impertant role in thinking up new hypotheses. On the
other hand, the claim that a certain hypotheses has been
disapproved by the evidence is a matter belonging to the

subject of validation.

This distinction needs to be kept in mind when the primacy
of the method over the theory 1is being talked about.
Undoubtedly, in studying criminal behavior we are restricted
in the use of —certain techniques, like controlled
experimentation or manipulation of social wvariables. The
collection of data 1is also largely dependent upon a few
limited methods 1like survey techniques. Yet, one can get
over these limitations possibly through other non-obtrusive

techniques.

However, 1in the application of different techniques the
logic of Jjustification remains essentially the same, the
attempt to explain some phenomenon in terms of some other
situational factors. In these attempts sometimes there is a
satisfactory explanation that may develop into a theoretical

proposition and at other periods, the technique itself may
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lead to different insights into the genesis of the
phenomenon. It is impossible to hold otherwise that the
debate between theory and method is irresolvable and is akin
to the chicken and egg debate. Many-a-times it is the theory
that is formulated first and which leads to the development
of a method to test the theory. The story of Newton’s theory
of gravity is one such classic example- he formulated the
idea of gravitational force but then had to develop calculus
to prove his theory and its theoretical implications

(Cambell 1956: 1826).

However, the reverse is true too, a technique may also lead
to the growth of theoretical conceptualizations. The example
of differential equations based upon Ampére’s and Faraday’s
laws to represent electrical and magnetic forces were well
known for sometime. In working out the solutions to these
equations Maxwell experimented with the idea of
interchanging the symbols amongst themselves. This suggested
to him that so long as the symbols X, Y, Z, t were related
in some way, there might be electric current in
circumstances in which it had been believed till then that
electricity could not flow. Maxwell’s feeling for symbolism
gave him the idea that there might be such a current and
that a perturbation in one place could be reproduced at

another far off place by ‘waves’ travelling even through
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empty space. This was the genesis of radio waves as 1is well
known now (Cambell 1956: 1827-28). Subsequently, experiments
confirmed his theory and radio waves were ‘discovered’ by

Hertz in 1888 while Marconi commercialized them.

The theory of relativity was also the consequence of
solutions of mathematical equations providing Einstein the
concept of relativity of space and time. The present
developments in theoretical physics, the concept of black
hole, ‘curvature’ of the universe, big bang theory and many
others is only the exposition of what mathematical solutions
appear to be implying. The theories of physicists are only

the concretization of what the mathematicians suggest.

In some ways this dissertation presents a similar situation.
The exploration of new techniques is partly influenced by
the desire to go beyond statistics but is also inspired by
the presentation of Pattern theory of crimes by Brantingham
and Brantingham (1993a) that actually suggests the use of
new mathematical tools. Therefore, before proceeding with
the actual developments of new tools of analysis, the main
propositions of the Pattern theory will be presented. It
will be shown how these new developments in criminology

encourage looking for methods that are conceptually non-
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statistical in nature and Dbased upon non—-numerical

mathematical structures.

This we believe will aptly Jjustify the efforts of this
thesis in developing new tools of analyses in criminology.
For these tools can serve both as a means for testing the
Pattern theory of crime and additionally prepare the
groundwork for new theoretical developments in criminology.
As Einstein and Infeld (1942: 95) point out, “To raise new
questions, new possibilities, to regard old problems from a
new angle, requires creative imagination and a mark of real
advance in science”, a task that this thesis sees before

itself.

The Pattern Theory of Crime
That the environment, especially the physical supports and

restricts criminal activities is an age o0ld observation.
Ashok Priyadarshi, the Magadh emperor of India in 250 BC had
sanctioned installation of torchlights in his capital
Patliputra to keep the streets safe (Upadhyaya 1978: 45).
Research in the etiology of crime ever since the time of
Quetélet (1968) has demonstrated the complex relationship
between the environment and criminal behavior at different
levels of spatial and temporal resolutions. Criminal
activity patterns are shaped by environmental opportunity

structures (Butcher 1991; Rengert 1991; Clarke 1992; Felson
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1993). Not only are criminal events influenced by the
environment but economic and physical factors affect the
concentration of delinquents in the urban population or even
make some offenses obsolete (e.g., Shaw and McKay 1942;
Baldwin and Bottoms 1976; Walsh 1994). The residential
layouts developed even from a social objective eventually
leads to a skewed distribution of the offending population
while the environmental patterns even determine the victims

amongst the people (e.g., Wikstrom 1991; Fattah 1991).

The earlier attempts of explaining criminal behavior have
focused upon unicausal models: e.qg., Sutherland's
differential socialization (1947), Cloward and ©Ohlin's
blocked opportunity (1960) or even Taylor, Walton and
Young's capitalist societal structure (1973). As Brantingham
and Brantingham (1993a: 260) point out, the primary weakness
in these attempts have been to equate crime with
criminality, which is but one of the factors influencing the
crime occurrence. An alternate theoretical movement since
the 1970s under the name of 'Environmental Criminology' has
attempted to develop a different frame for criminal events
by incorporating an inter-disciplinary approach in which
Y. ..crimes are viewed as etiologically complex” [patterns of

behavior] (Brantingham and Brantingham 1993a: 264).
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This approach argues that the appearance of a criminal event
is not spontaneous but begins with someone who is in a state
of readiness, who either has a motivation or is able to spot
some opportunity. Any of these desires in turn are formed

over a long period of time based on the goals or objectives
set out by the individual. Further, these goals are
dependent upon the psychological, social, cultural and
economic background of the person. Naturally, this also
implies that opportunities and the state of readiness will
be non-uniformly distributed in the society since these will
vary with the characteristics of the offender and the target

or victim.

Finally, the 'backcloth' (Brantingham and Brantingham 1993b:
6) of environment composed of such factors as social, legal,
economical, ©political, physical and even atmospherical
factors forms the settings in which some specifﬁc behavior
takes place and gets the label 'crime'. Such a new approach
to crime pays particular attention to understand how an
individual perceives and gains knowledge of his or her
environment that shapes the motivation and which
additionally, is facilitated by the presence of criminal
opportunities (e.g., Carter and Hill 1979; Felson 1987;

Cornish and Clarke 1986).
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Despite the fact that such a view of crime is complex and
complicated, this theory still suggests the existence of
discernible patterns in the phenomena of crime. The pattern
recognition is based upon the study of “...specific criminal
events, the site, the situation, the activity backcloth, the
probable crime templates, the triggering events and the
general factors influencing the readiness or willingness of
the individuals to commit crimes” (Brantingham and
Brantingham 1993a: 284-285) . These patterns are
“recognizable inter-connectiveness of objects, processes and
ideas” (Brantingham and Brantingham 1993a: 264) observed
through the cognitive process of seeing similarities 1in
actions and locations, and viewing the decision process in
conjunction with the surrounding environments. This broad
outlook, described as the Pattern theory points towards the
recognition and understanding of Dboth individual and
aggregate patterns of behavior at many levels of resolution,
levels which depend upon “...the backcloth, the site, the
situation, an individual's readiness, the routine activities
and the distribution of targets” (Brantingham and

Brantingham 1993a: 266).

Backcloth, Nodes, Paths and Templates
The theory asserts that the difficulties in identifying

discernible patterns can be overcome by placing the criminal

event over varying layers of resolution on a backcloth and

117



to consider changes in this backcloth itself as the various
levels of resolution are examined. Thus, for example,
Pattern theory describes the environmental backcloth of the
physical dimension through the concept of nodes, paths and

templates at different levels.

Nodes have been described as the points of concentration of
crime in any region. These concentrations appear to occur
for all types of criminal .behavior ranging from robberies,
thefts, homicides and even family troubles. These ‘hot
spots’ of crimes as they have popularly been labeled, are
almost universal phenomenon and have been reported in such
diverse places as Chicago, Vancouver, Sweden and even Madras
in India that these are now well known in criminological
literature (e.qg., Sherman, Gartin and Buerger 1989;
Brantingham, Mu and Verma 1994; Wikstrom 1991; Sivamurty

1982).

There 1is something peculiar about these points for
irrespective of time periods, changing social and economic
conditions and despite cultural variances, almost every
urban centre appear to be plagued by such hot spots of
crime. It is clear that these are the outcome of some
specific structural arrangement that leads to the creation

of major opportunities and victimization in these places. As
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Brantingham and Brantingham (1984; 1991) have clarified,
these nodes appear to be the intersecting points of
movements to and from home to work to entertainment places
and are also observed on the pathways falling enroute. Every
offender develops knowledge about his or her area based upon
these daily routine activities and therefore tends to commit
crimes in familiar surroundings, where targets are

recognized and get away routes are learned.

It is no wonder that “most property crime targets generally
fall near the nodal points of offenders’ routine daily
activity patterns along their normal travel paths” (Rengert
and Wasilchick 1985) while personal <crimes tend to
concentrate in homes or places of drinking and socializing
(e.g., Roneck and Pravatiner 1989; Fattah 1991; Wikstrom
1991). Undoubtedly, <crime 1is largely concentrated around
major attractors like shopping places, sport arenas,
offices, schools and arterial roads. As Cohen and Felson
(1979) and Felson (1993) have pointed out, crime is highly

patterned by routine activities of everyday life.

Pattern theory explains this by drawing a network of nodes
and paths of routine activities of individual offenders.
This is of course true for any individual who generally

moves in limited regions and through familiar routes for
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most of the times. These areas are then known by daily
transactions and provide opportunities or reveal targets for
persons looking for them or noticing them over and over
again. The familiar ‘distance decay’ model also explains the
same phenomenon pointing out that most property offenders
tend to commit crimes near their homes. Research by Porteous
(1977), Rengert and Wasilchick (1985), Feeny (1986), Gabor
et al (1987) and Cromwell, Olson and Avary (1991) all have
reported similar patterns, that crime occurs near Kknown

places and travel routes of individual offenders.

Even crime sites of multiple offenders tend to concentrate
around high activity nodes sometimes described 1in the
literature as ‘crime generators’ or ‘hot spots’. As
Brantingham and Brantingham (1993a) argue, these clusters
are the result of general development of cognitive images,
environmental perception, distance and direction recognition
that leads towards target selections. Further, these
‘awareness spaces’ (1993a: 270), whether based on places
where someone eats or drinks, or where someone works, or so
on, influence what that person knows about the environment.
Once such knowledge is acquired and forms part of a person’s
general awareness space, it begins to influence other types

of behavior, such as choosing a place to burglarize, or
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places to buy (or steal) cigarettes, or corners to hang out

on.

The routes between these nodes are also the sites for high
criminal offences although the concentration is naturally at
the end points of these paths. Major road arteries with high
volume of traffic are areas that fall within the awareness
space of large number of people and thus may show trends of
higher rates of crimes than other areas (Alston 1994;
Beavon, Brantingham and Brantingham 1994; Brantingham and
Brantingham 1984; Duffala 1976). Pattern theory suggests
that the structure of road networks influences how far
crimes spread from the major pathways. Complex inter-
connectivity of side roads pose long term learning problems
for those passing near by and theréfore would show lesser
rates of crimes than simple grid structured road networks

around important road layouts.

Pattern theory also points towards the research about how
people 1learn about pathways, about cognitive maps and
representations (Garling, Book and Lindberg 1984; Garling
1989; Garling and Golledge 1989). The work by Letkemann
(1973), Gabor et al (1987), Rengert and Wasilchick (1985)
aiso supports these assertions that usual travel paths leads

to identification of attractive targets for most offenders.
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However, not all places beccme attractive targets for these
are not seen as ‘suitable’ for reasons of expected booty or
for the difficulty in penetrating the place or because the
offender is after something else. It is seen that targets
that are seen as attractive for robbery are not so for
burglary or theft and so on. Pattern theory therefore also
talks about the ‘distinctiveness’ of the target that varies
by the offender, by site, by situation and with the

variations in the environmental backcloth (1993a: 266).

Since the choice of a particular target 1is guided by
decisions based upon different factors, the theory also
develops concepts 1like ‘crime templates’ to explain how
these decisions are made. Brantingham and Brantingham
(1993a: 269-270) suggest that the environment provides cues
about the immediate characteristics and backcloth that is
reinforced by experience into an overall template, a sort of
mental map or model that assists in identifying objects,
places or situations. These templates are “...more [of] a
holistic image with complex interaction of pasts and
relationships seen ifrom varying perspectives” (1993b: 12)

depending upon the cone of resolution.

The distinctiveness of targets or images are influenced by

the edges bounding the areas, its homogeneity, the pathways
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and landmarks within the areas. Garling and Golledge (1989)
and Garling (1989) also suggest that images or perceptions
are shaped Dby sharp Dbreaks or wvariations in wvisual
landscapes, although the interests and learning differences
may give rise to differential images. The importance of the
edge effect has been well established by Brantingham and
Brantingham (1975; 1978) by using sophisticated topological
technique in their study of Tallahassee, Florida. This has
also been borne out in studies of Shaw and McKay (1942),
Herbert and Hyde (1985) and Walsh (1986) in which the
gradual or sharp transitions between housing forms and
densities influence concentration of crimes in these
‘transitional’ areas. Newman’s ‘defensible space’ (1972) 1is
another similar concept emphasizing the distinctiveness of

residential architecture in the study of crime patterns.

Pattern theory also suggests that crime and criminal events
are better understood as processes, like ™“mathematically
functional relationships” [which would reveal] “*the
variations in the links between different elements and how
they interact” (Brantingham and Brantingham 1993a: 277). The
patterns then become understandable when the decision
process, the activities of both the offenders and victims,
seen against the backcloth of environmental processes which

encourage, restrict or support them and the triggering
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events are all analyzed as different streams but flowing

together or towards each other.

“[These] patterns are understandable because they contain some
similarity or commonality when viewed from the perspective of the processes in
activities and criminal decision making: the use of goals for actions; the
construction and use of templates in search behavior; the development of a state
of readiness awaiting a triggering event; the process of the triggering event
itself* .

(Brantingham and Brantingham 1993a: 286)

The Cognition of Space

However, our understanding of spatial representation and its
relationship with behavior is encumbered by the difficulty
of defining and describing space. There is no unanimity in
even its basic conceptualization. Plato and Clark believed
space to be absolute while Leibnitz and Kant argued that
"empty space' has no relevance and that space can only be
expressed as an expression of a set of relationships among
objects (Liebenn 1981: 4). Despite this conceptual pluralism
much of the work in psychology and criminology on spatial
concepts still seem to assume implicitly that the mature
concept of space is only a 3-dimensional Euclidean model. In
contrast physics and other natural and physical sciences,

like bio-chemistry, astronomy have adopted non-Euclidean
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models in their theoretical formulations, thereby enhancing
the strengths of their models, a process which needs to be

followed in criminology too®.

Further, the manner in which humans perceive their space and
develop their 'cognitive map' (Downs 1981: 160} 1is a
significant and important question in pattern theory, but
there 1is still, only a rudimentary understanding of its
process. There are several types of problems in building any
typology of this process chiefly because the key building
terms 'space', 'environment’ are still quite fuzzy concepts.
For example, space with respect to a person has been
variously described as not only a simple location but as an
expression of feeling, a conceptual abstraction, a tool for

memory and problem solving (Lieben 1981: 8).

Moreover, the many and diverse differences across physical
environments, make it difficult for categorizing their
relevant variables. The fact that there are relatively few
standardized measures of the physical environment is not
unexpected given the incredible diversity in the
environments and variables of potential interest. Many a

times it may not be possible to use such standardized

2Alston (1994) and Rossmo (1995) have made a beginning by
using manhattan distances
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measures 1if the definition of the units imply differing
scales. Thus, the earlier concept of hot spot (Sherman,
Gartin and Buerger 1889) differs from that of Weisburd for
whom it means a corner, a block or even a number of blocks
depending upon the kind of drug dealing activities. There
are also both 'built' and 'natural' environments and each is
divisible into major and minor settings depending upon the
context of interest. Without a generally-accepted taxonomy
of important environmental variables, it is indeed difficult
to document how these variables affect spatial behavior and

its perception.

Some attempts to distinguish the environment can be made on
the extent to which they are differentiated. For example,
the number and types of units in a given area may vary:
thus, neighborhoods may become discernible by the highly
individualized or highly similar residential units.
Neighbourhoods might be distinguished by uniformity or
irregularity of spacing of dwelling units. Similarly, land
marks are an important variable for spatial representation.
Apart from the number and diversity of elements within
environments there could also be variations in the manner

and extent to which these elements are organized.
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Two regions may contain an equal number of roads but one may
be organized into a neat grid while the other may not have
any regular arrangement at all. The former may then be more
conducive to learning the layout of the area, to a better
environmental cognition (Hart 1981: 206) and may enhance the
use of cartesian coordinates in conceptualizing spatial
abstraction. The former 1is 1likely to Dbe represented
topologically with concepts of similarity and connectedness,
the way children conceive their school layouts (Siegel 1981:

171) .

Environments can be differentiated in other, more
qualitative ways as well, as 1in the distinction between
‘carpentered’ and ‘uncarpentered’ environments (Lieben 1981:
24). Westerners are typically exposed to angular shapes but
other traditional cultures as those of Zulus in Africa and
Santhal tribals in 1India, emphasize roundness. These
distinctions may be related to the natural conception of
spatial distances rather than through the cartesian, polar

or some other ‘artificial’ coordinate systems.

Not only spatial concepts are enhanced by environment's
differentiation, but the opposite holds true too. Berry
(1971), reported that Canadian TInuits are more field

independent than the Temme of West Africa which occurs as
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result of differences in ecologies. Apparently, Inuits learn
to pick out seemingly minor variations from a generally
monotonous barren land while Temme need not do so because of
being surrounded by a highly differentiated Jjungle. The
differences 1in perspectives are really the outcome of both
the external environment as well as the socio-cultural

traditions.

Finally, the characteristics of the individuals are
important too in the construction of their cognitive maps.
Thus, a city may present a highly differentiated and diverse
space, but this is functionally true only for the
individuals who have the capacity and motivation to explore
that environment. An older person is less likely to venture
far from his or her home than a younger, energetic
individual. The cultural values too affect the social and

environmental experiences.

For example, different cultures vary with respect to the
freedom children are permitted to explore areas away from
home. Restrictions for movements outside the home
environment are placed even upon women in many cultures. The
discouragement to explore space and have less opportunity to
acquire spatial knowledge and skills may in turn reduce

ability to assimilate spatial information in the future due
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to the lack of developing prerequisite knowledge (Lieben

1981: 28).

Modeling the Criminal Event

Although this discussion of influences on spatial
representation and behavior 1is sparse, 1t does illustrate
the large complexity and reciprocity of influences. It
points to the importance of attending not only to
individuals, but to their broader biological, social and

historical contexts in which these are embedded.

Crime is not only a matter of individual behavior but ought
to be seen as a complex event. It not only involves the
actions of offenders, victims, and /or guardians Dbut
situational and environmental factors too. However, despite
the differences in spatial and behavioral representations,
there do exist similarities that can be understood and
modelled. Pattern theory argues that these similarities are
to be found in ways people ‘see’ their environment, the
manner in which cognition is sharpened to select suitable
targets and develop appropriate Ccrime templates. Such
cognitive behavior 1is suggested to be modelled through the
concept of nodes, edges and templates; concepts that are
difficult to deal through the present statistical techniques
and which therefore require a different framework for

describing and analyzing them.
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Representation of a backcloth, edges or templates requires
imagination and methodological innovation since traditional
techniques are limited to Euclidean measures and finite
number of variables. Brantingham and Brantingham (1993b: 8-
9) therefore rightly argue for mathematical models that use
non-statistical mathematical teéhniques such as topology,
fractal geometry so that “...patterns, designs, edges ‘stand
out’ 1in attempts at representation of the uncountable

complexity of the never static backcloth”.

The theme that emerges most consistently from the above
discussion is the need to recognize and respect multiple
definitions of space and spatial representations, and
correlatively, a need to use diverse tools for studying
these factors. Maltz (199%4c: 19) for instance, has argued
for a new way of analyzing crime related data, through the
application of computer graphical techniques to let the
“data speak for themselveé, not mediated through a

statistical model”.

Brantingham and Brantingham (1993a: 286) too have asserted,

“...future advancements in this field of [criminal] research may require more
reliance on alternative analytic tools such as point-set or algebraic topology, or non-

linear models and fractal constructs as well as a continual expansion into alternative
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methodolcgies to gain a better understanding of crime occurrence within a cognitive as

well as a more objectively defined environment”,

a position we cannot but agree wholeheartedly and which
forms the raison d’étre of this dissertation. As pointed out
by Maltz (1994a: 456), there is a growing trend towards the
applications of new methods borrowed from ecology,
epidemiology, event history, survival analysis,
sociolinguistics, life course analysis, geography, computer
mapping and simulations, one that is attempting to move away
from statistical methodology. All this appears to strengthen
the belief that criminologists are becoming dissatisfied
with the common statistical techniques and are searching for
alternative ways to explore and analyze the crime data. The
demand for ‘new tools of analysis 1in <criminology’ 1is

therefore undisputed and growing.

The next phase of this dissertation is to develop some such
new tools and demonstrate their applications in different
spheres. In the next chapter we will explore a kind of
mathematics that appear to promise excellent techniques in
constructing the templates of the offender. As explained by
pattern theory, “people [tend to] use a template as a mental
short cut in appraising places and situations” (Brantingham

and Brantingham 1993b: 12). Since every offender tends to
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develop a particular kind of a template, one way to model it
is through the identification of what the detectives tend tc
describe as their ‘modus operandi’. In practice this becomes
a difficult task for the variables used in matching the
factors that constitute any modus operandi are generally
fuzzy in nature. For this reason we will explore in the next
chapter a technique based upon fuzzy logic and see how this
kind of mathematics can be useful in profiling the crime

template for a specific offence.

—_———X e ——
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CHAPTER VI

CONSTRUCTION OF OFFENDER PROFILES USING
FUZZY LOGIC

In the previous chapter a brief outline of the pattern
theory of crime was presented in which it was suggested that
offenders develop a kind of ‘mental’ template in searching
for suitable targets. At present, there is no established
technique that could profile any such a template since it is

so individualistic and involves a large number of factors.

However, we know and the theory also asserts that despite
such individual differences there are set patterns that are
understandable. In fact, police detective work is dependent
on deciphering such patterns that are determined by habitual
actions of offenders. In the commission of crime, most
habitual offenders adopt a fixed mode of behaviour, in terms
of chosen time period, target preference, region of
operation and even the manner of committing the crime. In
common police terminology such behavioural pattern is
described as the 'modus operandi' of the offender and a good
detective attempts to established this by looking for

recognizable style in the commission of the crime.

Thus, in burglary cases, the pattern sought is the time,

place, mode of entry into the premises and the items stolen
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or left behind that usually forms such a modus operandi. In
serial killings, apart from the place, time and mode of
killing, the characteristics of the victim, the nodes of the
residence, work place and acquaintances of the offender may

form the set pattern or the modus operandi (Alston 1994).

Although, context makes clear some of the factors involved
in the commission of the c¢rime, like the name of an
associate, still some variables remain roughly estimated and
pose problems for the police 1in establishing the modus
operandi. Since these factors are imprecise in nature it is
difficult to use or develop any of the standard mathematical
techniques to profile the offender. In this chapter we will
explore a new kind of mathematics based upon fuzzy logic
that could be useful in understanding the templates of the

offenders.

The Need for ‘imprecise’ Logic

In everyday conversation we generally use imprecise and
implied terms like ‘it’s a hot day’, or that ‘it’s an early
morning meeting’, and ‘there is only a short time allotted
to each speaker’. Ordinarily, we understand intuitively the
implied meanings of these terms even though each is
individual specific. For some people, early morning implies
a time period before 9:30 AM while for others it may be 6.00

BAM. Yet, we can communicate easily in such fuzzy terms that
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the best computer is unable to replicate. There are several
reasons for this difference but a significant characteristic
is the capability of human beings to communicate in fuzzy
terms. “The difference between human brain and the computers
lies in the ability of the former to think and reason in
imprecise, non-quantitative terms” (Zadeh cited in Kaufmann

1975) .

It is this proficiency that makes it possible for humans to
decipher different scripts, handwriting, comprehend a
variety of sounds, interpret multiple meaning responses and
focus on information that is relevant in order to make the
decision. Also, unlike the computer, human brain has not
only the powers of similar reasoning and thinking logically
but of taking things globally, peripherally and
holistically. Cognition comes even though the term may be

imprecise or having several shades of meanings.

Again, wunlike the computer that deals with dichotomous
categorizations, human beings can still communicate in
nuances that may have multiple interpretations. Thus, a
human being can perceive and treat a piece of information
that is fuzzy in nature and respond to it in an unambiguous,

clear manner by taking a range of possible interpretations.

At present, our analytical procedures generally follow the

Boolean logic system in which the law of the excluded middle
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is deeply entrenched. For this reason at present we can deal
with data that can have only two possible interpretations-
either it is true or false, either it means yes or no and so
on. This system precludes any possibility of a situation
falling in between, like something not being true but not
false also. The Boolean logician would place this into an
‘impossible’ category and thus reject its wvalidity. Yet,
from experience we know that despite best efforts there are
situations in which it is not possible to take either of the
extreme possibilities. Perhaps, realizing the need to deal
with such cases, Zadeh (1965) developed a new form of logic
system that he called fuzzy logic in which he stipulated
that an element can be a member of a given set 1in an

uncertain manner.

Unlike the classical mathematical set theory in which an
element can be only in two situations, a member of the set
or not its member, fuzzy logic generalizes the possibilities
and introduces the concept of shades of membership patterns.
It\fherefore incorporates the condition that an element is
either a member or not a member of some set but also extends
the condition by introducing the possibility of membership

falling in mixed modes.

Apart from the natural generalization to the concept of
belongingness, another clear advantage of wusing such a

theory of logic is that it allows the structuring of all
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that 1is separated by imprecise terminology. Uncertain
situations, language, thoughts, expressions, feelings and
even perceptions <can now Dbe modeled by mathematical
techniques based upon this system of logic. The system is
essentially based upon the axiom that there exists “Fuzzy
sets or classes with unsharp boundaries in which the
transition from membership to non-membership 1s gradual

rather than abrupt” (Kauffman 1975 XIII).

Applications of Fuzzy Logic based Techniques

The techniques based upon fuzzy 1logic can find several
applications in criminal Jjustice fields. For instance, it
has been shown to be useful in dealing with the wvast amount
of data on criminal profiles (McDowell 1990; Wu and Desail
1994). This kind of data available with the investigative
departments has grown into unmanageable proportions due to
the development of criminal information systems. The Violent
Crime Location Analysis System (VICLAS) that maintains
information about violent crime and serial offenders
developed by the Royal Canadian Mounted Police (RCMP) for
example, uses more than 500 wvariables as input. Although,
the VICLAS system has been developed to maintain records of
violent predators, especially sex offenders and serial
killers, even with a modest number of cases, the information
stored in the system becomes unwieldy and difficult to

process. Similarly, the police computer aided dispatch
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systems that keep records of every emergency call are also
growing extremely large for investigators and managers to

handle comfortably.

Even other specialized systems 1like for instance, the
computer archive with the Chicago police department has
reportedly more than 18000 records on homicide cases alone;
the Criminal Investigation Departments of police in India
are obligated to maintain records of ALL the serious
cognizable (indictable) offences till the period of final
disposal of the case by the court. This has implied
maintaining records for about fifteen years- due to the
pendency of cases in the courts. All these record systems
have grown so large in volume that it is difficult to keep
track of information contained within these archives

(National Crime Record Bureau 1992).

This is now the situation with most of the North American
and other large police forces that are collecting and
recording vast amounts of information. Investigations that
depend upon the need to analyze the information contained in
these systems are becoming almost impossible to carry out.
Similarly, efforts to construct the templates of serial or
multiple offenders is generally running into even greater
difficulties due to the lack of tools dealing with the fine

gradations of the information variables.
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This section deals with one such application in police
investigation where clues pointing towards the 1likely
offender are generally imprecise and admit a range of
possibilities. We will outline a model based upon fuzzy
logic that can help the investigators in constructing a
comparative template which may point towards the 1likely
offender(s). The model 1is actually the Modus Operandi
technique which is used by most police officers in narrowing
down the list of likely suspects. Since the modus operandi
method attempts to match 1likely suspects against the
approximate profiles built from the scarce evidence the
technique of fuzzy logic appears appropriate and could be

profitably used in such investigations.

As a practical example we will use the case of Motor Vehicle
theft in which multiple offences by a single individual are
more probable. The technique could be applied in any type of

an offence.

Fuzzy Set Theory

A set S 1s said to be fuzzy when an element can belong
partially to it, rather than having to belong completely or
not at all. Fuzzy set theory therefore begins with an
assignment of grade of membership values which are not

restricted to 0 (non-membership) or 1 (full membership).
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In classical set theory, membership is binary, since there
are only two possible states, membership and non-membership.
Conventionally, these are assigned the wvalues 1 and O
respectively. These two values comprise what can be called
the valuation set, which is the set of possible membership
values. However, a set is said to be fuzzy if the wvaluation
set contains values between 0 and 1. In most versions of
fuzzy set theory, the valuation set is the interval ([0,1].
The higher the membership value, the more an element belongs

to the concerned set S (Zadeh 1965; Zimmerman 1985).

Note that the valuation set need not contain numerical
values. Verbal membership values have also been utilized by
Kempton (1978) 1in his anthropological studies of fuzzy
linguist categories such as 'absolutely not a'; 'in some
ways a'; 'sort of a'; 'primarily a', 'best example of a'
etc. These membership values are merely an ordered set of
verbal hedges, but they successfully elicit fuzzy judgments
from respondents (Nowakowska 1977). Given the concept of
degree of membership in the set S, the corresponding degree
of membership in 'not-S' (7 1S) called the negation of S 1is
denoted as mS(x) = 1- mS(x) where mS(xX) is membership wvalue

in S (Smithson 1982).
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Technique

Let Q be the set of auto suspects. An auto thief (suspect)
jo) Q, can be categorized by assigning to it the values of
a finite set of fuzzy parameters relevant to him/her.
Examples of such parameters may include places or times of
operation, preferred vehicle type, busy or isolated road
conditions of theft sites, value of the vehicle or the goods
inside, mode of getting into the car, purpose of theft and
so on, where the highlighted parameters are fuzzy in concept
(Zadeh 1965). Each parameter is specific to some feature of

the offender p in question.

Thus, p can be associated with a mathematical object Fy =
[mq (p), mo (p), m3(p),...Mp(p)] where m;i (p) is the
measurement procedure of parameter 1 and mj(p) 1is that
particular value. For example, we may have my(p)= time
period i.e. day, evening or night; or my(p)= place which
refers to the boundary limits of some particular
neighborhood; mj (p)= value in terms of costly or low priced

car and so on.

Here Fyp will be called the pattern class and many such
pattern classes Fixer of mathematical objects could be
associated with p. This will depend upon the various
combinatorial values of mj(p) where I = 1....r. The set F of
all such mathematical objects will be called the pattern

space. The objective is then to assign a given object to a
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class of objects similar to it, having the same structure.
According to Zadeh (1965), such a class is often a fuzzy set
F,. A recognition algorithm when applied to i*t yields the
grade of membership Mp(p) of p in the class F. In case the
parameter 1is exactly known, such as the time of theft
(someone may have noticed the car being driven away), then
the grade of membership in time parameter will be 1 1in

accordance with the definition of fuzzy set.

We will first define a fuzzy pattern class F based upon the
measures of parameters in question. The easiest way of doing
this 1is to assign this <class a ‘'deformable' prototype
(Dubois & Prade 1980: 317) constructed through the
information available from convicted and old suspects. The
assignment can be done by giving an interval of measures to
each of the selected variables. Thus, young may mean 15-19
years of age, costly may imply a dollar wvalue of around
5,000 dollars etc. Other features like ethnicity (Chinese
looking), casually dressed, tall, local could also be added
based upon the information made available from statements of
victims or knowledge of detectives about the active
suspects. The measurement of these variables could be
carried out through some form of smaller or larger scale

developec. for this purpose.

A prototype may then be something like- {young, Asian, smart

looking, Robson/Granville street areas, evening, (prefers)
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Japanese cars, medium valued, 1lighted locations, (uses)
duplicate keys... and so on}. As can be seen, all these are
fuzzy variables with a range of membership values. However,
with larger data sets of suspects and over the years, more
and more information gets built into the system which would
help in reducing some of the fuzzy measurements or in

building more representative prototypes.

Finally, a new auto theft offence will be analyzed about its
attributes and for its membership values in each parameter.
Some definite information will always be available, such as
the make of the car and place of theft. Based upon these
values and the information provided by the complainant or
witness, the investigating officer can then assign the
values of 1 or 0 or decide upon the grade of membership into

other parameters.

Mathematically, let Fi.; be a fuzzy prototype pattern class
defined by the fuzzy features f,...f,, where f; is the fuzzy
values of feature i. Symbolically, Fy= {fq...f,} where fq is
(tall), f» is (Chinese looking), f3 1s (...around Robson
street) f4 is (busy street...), fg is (shabby clothes) and
so on. Each f; will be having an interval of values. For
example, busy may imply the situation when 15-25 cars pass a
street crossing per minute. An information about some

suspect hanging around Robson street could mean the area 1is
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within four blocks on either side of Robson street and so

on.

Fy will have a minimum value n obtained by aggregating all
the minimum values of f; and similarly a maximum value m. An
object p, that 1is a suspect of this theft will be
characterized with respect to the class Fr by the r
membership values- fymj (p), i=l..r. The value of p, denoted
by MEJp) will be constructed by aggregating the mj (p)s in
some manner. This ME}(P) can then be compared to the maximum
and minimum values of different prototype pattern classes
Frer which provides a numerical measure of the likelihood of
a suspect belonging to a specific pattern class Fy (a group

of suspects or a particular gang).

Aggregation Techniques

Several aggregating schemes have been developed (Zadeh et al
1975; Smithson 1987) but literature review suggests that the
choice of aggregation is very context dependent (Dubois &
Prade 1980: 319). We will outline two different aggregation

techniques which are Dbased upon Zadeh's (1965) original

paper.

Given an object p with membership values Fier mj (p) where i
= 1....r and each Fy is a feature class, we can extend the

classical union and intersection of ordinary set theory
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concepts to these fuzzy sets also by the following
procedure:

N (mA, mB)= min (mA, mB) and

U (mA, mB)= max(mA, mB) where
l is the logical 'and' and U is the 'or' operator on the

fuzzy sets A, B.

These operators have the following properties:
1. min(0,A)= 0 for any A # 0.

2. max(l1, A)= 1 for any A # 1.

W

. min(A, A)= max(A, A) = A (idempotency)
4. min(A, B)= min(B, A) &

max (A, B)= max (B, A) (Commutativity)
5. min {(min(A, B), C)= min(A, {(min(B, C))

& max {(max(A, B), C)= max (A, {(max(B, C))

(Associativity)
6 min (A, max(B, C))= max (min(A, B),min(A, C))
and
max (A, min(B, C))= min {(max(A, B), max(A, C))
(Distributivity).

Another technique suggested is to use the product operators:
N (mA, mB)= mA*mB and

U (mA, mB)= mA + mB - mA*mB.

The product operators have all the properties listed above

except i1dempotency and distributivity. However, we can
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replace idempotency by an inequality since we know that

any positive numbers x and y, such that x < 1 and y < 1,

x*y < min(x,y) .
Both the min-max and product operators have graphical
interpretations along the lines of useful Venn diagrams.

See figures 6.1 and 6.2 below:

Min-Max Operator

1mn

1-mE mB

Product Operator

for
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N (mA,MB)

U (mA,mB)

Finally, after selecting an assigning procedure (say the

min-max one) the value MFy(p) can be calculated by
aggregating all the values mj(p) for i = 1..... r.
Usually there are several fuzzy pattern classes Fq...Fg and

the problem could be to assign a given object to a definite
class. When the membership values Mpj (p) are available, p
can be assigned to the class Fy such that

MFy (p) = maxy MFj(p), j=1....s,

otherwise a new pattern class Fgy] may be created for p.

Hypothetical Example

Consider the situation in which an investigator obtains some
fuzzy information about the suspect from the descriptions
provided by few ‘eye’ witnesses. In such a hypothetical
situation the fuzzy terms could be analyzed following the
technique as mentioned above. For instance, suppose the
witnesses mentioned that the offender was tall, with brown
colour hair, wearing dirty clothes and was a young person.
As indicated, these are fuzzy terms that mean different

characteristics to different witnesses. To determine the
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overlapping range of these characteristics, the investigator
could hold an in depth examination of their perceptions to
fix a range within which they could be describing these

characteristics.

Consider the fuzzy characteristic tallness, it 1is fuzzy
because for one witness 166 cms. and above 1is the height
that makes a person tall. For witness 2, only a height of
172 cms. and above is tall while for the third a person is
tall if he /she is over 170 cms. How about 168 cms. or 166
cms.? Is this height ‘tall’ for witness 1? A detailed
examination of this witness’ perception may suggest that for
him/her, any person of height 165 cms. or below is
definitely not tall (membership value is 0) while 166-167 is
tall perhaps with 0.15 membership value. It is possibly 0.7
for 169-170 and 1 for over 173 cms. Thus for each witness,
there ié a minimum range of height of membership value <0.1
and a maximum range of value >0.9 for describing this fuzzy
characteristics of tallness. As suggested above, the police
investigator could obtain this information and possible
ranges with membership values by a detailed examination of
perceptions of each of the witnesses. This may be done by
displaying a measuring scale and letting the witness point

out the range over which he/she considers someone as ‘tall’.
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Such membership wvalues could then be obtained for the other
characteristics too by developing a suitable scale of
references. Thus, shades of brown on a scale of ten could be
shown to the witnesses to determine the minimum and maximum
placement of membership values for the fuzzy description of
‘brownness’ of hair. Thus, for witness 1 the brownness may
begin with the shade marked 4 with membership wvalue of 0.1
and may end with value 0.8 for the shade marked 8 on this
scale. Continuing further, for each witness a range of
shades could similarly be determined for what they perceive
and describe as brown. Finally, each of the fuzzy
characteristics that the witnesses provided about the
suspected offender could thus be reduced to a range of
numbers on a suitable scale. The hypothetical information,
in terms of minimum and maximum values of a ‘young’ suspect
being ‘tall’, with ‘brown’ hair, wearing ‘dirty’ clothes

obtained from four witnesses 1is suggested in table 6.1

below.:
TABLE 6.1
Fuzzy Offender Characteristics
Tall Brown Dirty Young
Hair Clothes
measuring units cms scale 1-10 scale 1-12 years
Witness | 167-172 6-8 79 22-28
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Witness I 166-170 7-8 7-9 20-24

Witness lil 169-173 6-9 8-10 21-25

Witness IV 168-171 7-9 8-9 20-27

Here, the given values are the minimum and maximum values
provided by the subjective Jjudgment of each of the
witnesses. Using the min-max operators, the descriptions
from the three witnesses of the likely suspect may then be

sumnarized as shown in table 6.2:

TABLE 6.2

Summary of Witness Statements

Tall Brown Dirty Young
Hair Clothes
measuring units cms scale 1-10 scale 1-10  years
Min range 166-69 6-7 7-8 20-22
Max range 170-73 8-9 9-10 24-28

The suspect is then likely to have the following features:
an average height of 169.5 cms, brown hair shade of 7.5 on a
uniform scale, dirtiness of the clothes being 8.5 on some
other scale and age around 23.5 years. Here, the average of

the min-max values have been taken though other
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combinations, like min-min and max-max could also be
experimented. The investigator could determine this by
judging how well this information matches with other

evidence available to him/her.

Summary

To sum up, the above technique suggests the following
procedure:

1. Determine all the variables (features) which relate a
crime type to the suspected offender/s. For example, their
physical characteristics, socio-economic background, crime
type, modus-operandi used, time/place preferred, present
activity, friends or associates etc. This kind of
information is usually maintained by all police departments
for property offences. Indian police, for instance,
maintains a register called Crime Directory Part II which
contains the above mentioned details about the offenders
suspected, arrested or convicted for crimes of dacoities,

burglaries, house thefts, theft from vehicles etc.

2. Develop a set of prototypes (profiles) of likely suspects
based upon variables determined above. This may be done by
first clustering all suspects into different groups based
upon their past activities and involvement 1in different
crimes. For example, all offenders associated with the crime

of burglary during night time in a particular area of city

151



may be grouped together. They may further be classified on
the basis of descriptions or scores on the above selected
variables, like economic condition, preference for stolen
goods and so on. Finally, a profile of prototype fo: each
suspect falling in this sub-classification could be
developed based wupon the available information. Some
variable may have a definite value, like date of birth, mole
on cheek, present address and for others a range of min-max
values could be considered in these prototypes. Thus, Hari
Singh, previous suspect in burglary may have this possible
profile: Height- 168 cms.; age- 22 years, 4 months; colour
of hair- 6-8 black on some scale of 10; operates near mall
road area- 2-3 Dblocks around mall road; keeps few

associates- 1-2 friends; etc.

3. For any new crime, collect information about the offence,
modus operandi and suspected offenders. Some of this
information may be definite, physical in nature while the
other fuzzy depending upon the statements given by the

witnesses.

4., There is no problem in handling the definite or clear
avidence about the suspect. The fuzzy descriptors could then
be manipulated by assigning membership wvalues to their
features and aggregating their values using some operating

scheme taking in account their grades of memberships.
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5. Determine the prototypes to which these aggregated wvalues
belong and choose that prototype whose maximum value 1is

close to this aggregated value.

6. If no prototype can be assigned, create another and add

to the set of original ones.

Implications:

Fuzzy logic can provide a powerful method for applications
in the criminal Jjustice fields. Since a large category of
data such as citizen responses, attitudes, opinions and even
official data involving hundreds of variables 1is generally
fuzzy in nature, the possibilities for the utilization of
this form of mathematics is extensive. The following

suggests a few such cases:

The nature of evidence accepted in the court for final
determination of guilt or innocence is as fuzzy in character
as one collected by the police investigating agencies. The
characteristics of physical and oral evidence 1is generally
described in terms that involve shades of meaning and
interpretations, one so skillfully maneuvered by the legal
professionals. Furthermore, legal terminology usually gets
embroiled in differences that are based more on historical,
jurisdictional and societal norms rather than on language.

An act reprehensible to the established ‘morality’ of the
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society (Shourie 1980), 1is the kind of statement that
confronts most legal practitioners and in which there are
multiple layers of understanding involved. Such fuzziness
or the sha”=2s of meanings that are introduced during
testimonies or cross examination by the defense lawyers
could create difficulties for the prosecution to
successfully prove ‘beyond any reasonable doubt’ the guilt

of offenders charged by the police.

A possible field of application is that of comparative
studies n law. It is generally acknowledged that
international comparative legal studies are difficult since
the meaning of offences differ considerably (Kuner 1991;
Booysen 1993; Peletz 1993; Brugger 1994; Yang 1994). For
instance, ‘Law’ in Chinese language may mean ‘fa: a set of
rules’ or ‘shizhaifa: a living law’. Similarly, ‘legality’
could mean ‘fazhi: rule of the law or rule by law’ in
translation. It is interesting to note that Chinese scholars
define another kind of legality, ‘socialist legality’ a

fuzzy concept in itself!

Legal terms like ‘good faith’ of section 52 Indian Penal
Code (IPC) or ‘lurking’ house trespass of section 443 of IPC
(Government Of India 1966), ‘goondaism (Government Of India
1975), ‘hooliganism’ (liu-mang: in Chinese law) have
different shades of meanings even within these respective

countries. Further, legal terminology that is commonly used

154



in almost all the written codes, 1like ‘human rights’,
‘official responsibilities’, ‘social morality’, ‘duties of
the citizen’, ‘due process’, ‘fundamental rights’,
‘autonomy’, ‘reasonable person’, and ‘due diligence’ that
are commonly used but mean differently to different people.
These are even more fuzzy in nature and could admit a large

number of different interpretations (Tamanaha 1989).

The use of fuzzy logic technique in determining the grade of
meanings of such legal terms is therefore likely to narrow
down and pin-point the different range of interpretations.
This obviously calls for a new form of research work but the

possibility is immense and exciting.

Similarly, as indicated earlier (chapter TII-III), fuzzy
logic techniques are likely to be useful for qualitative
analysts too. The qualitative researchers collect data
through various techniques that attempt to interpret the
subjectivity of some phenomenon. They always face the
problem of matching their records with one another and even
with their own subsequent research work. In fact validity of
their technique is generally considered doubtful due to the
differences that arise from the nature of their data
recording procedures (Maxfield and Babbie 1995). These
problems are said to arise when they attempt to give meaning
to their recorded data for the terminology is left open to

interpretation.
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Similarly, in data collection through observational method
that involves more than one observer, it is always
problematic to reconcile the records of all the researchers
since there are bound to be individual differences in the
significance of the observed events. The same action may be
interpreted differently- a possibility that the
practitioners acknowledge openly and which in fact is stated
to be the reason of preference for this method. It here that
fuzzy logic could assist by quantifying their differences
and thus reducing the range of possible interpretations.
Since fuzzy logic can deal with such shades of meanings, it
is reasonable to expect that it could begin to reconcile
these individual differences. Ironically, fuzzy logic based
mathematics could turn out to be bridge that is crossed by

both the qualitative and quantitative practitioners!

Fuzzy logic techniques can also be useful to the police
managers for not only building offender profiles but also
for analyzing other kinds of data that is non-dicotonomous
and fuzzy in nature. Thus, for example, fuzzy logic could be
useful in weighing the contribution made by an officer for
promotional purposes since some of it may be ‘good’ and some
‘weak’, concepts that are <clearly fuzzy in nature.
Similarly, the hot spots analysis involves 1imprecise
boundaries in which the area under consideration may vary

upon the meaning of the term ‘high’ rates of crime. By
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extending the notion of fuzzy boundaries, it is possible to
determine the seriousness of the actual threat in these
small areas that may be useful to the officers in man-power
deployments. A regionalization procedure that involves such

fuzzy boundaries will be introduced in the next chapter.

Clearly, fuzzy logic can provide a vast range and varieties
of applications in the criminal justice fields since most of
the data 1is fuzzy in nature. Undoubtedly, there are
limitations to the fuzzy logic based techniques since this
kind of mathematics has a formal structure that depends upon
the interpretation given by the mathematician and the user
to the fuzzy words. There are several constraints to the
capability of reducing words or nuances to a numerical
measure. Above all, a strong mathematical technique that can
handle imprecise and fuzzy data is undoubtedly going to
strengthen the analytical capabilities of the social

researchers.
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CHAPTER VII

HOT SPOTS AND BURNING TIMES

A TOPOLOGICAL ANALYSIS OF CRIME SPACE

Brantingham and Brantingham (1993a) have introduced the
concept of Nodes, Edges and Templates in their exposition of
Pattern theory. They have suggested that the 'Environmental
Backcloth' creates neighborhood edges, general movements and
awareness patterns which gets focused on certain 'activity
nodes' and the 'travel paths' between and to these nodes.
These nodes and adges partition areas into low or high
criminal activities. Further, the awareness of these areas
and boundaries assists in the development of crime
'templates' by the motivated offenders who can thus identify
'suitable targets'. The model fthus proposes several levels
of analysis to explain criminal behaviors: activity nodes
and the travel paths, regional edges and the crime templates
developed Dby the offenders. We will propose some

mathematical techniques to identify and study these levels.

Topological Properties
We will begin by exploring the use of Point-Set Topology
which we believe provides better tools of analysis and can

trigger new ideas and understandings of criminal behavior.
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Topology is gualitative mathematics (Mansfield 1963: 1), one
without numbers. It 1is concerned with the intrinsic
qualitative properties of spatial configuration that are
independent of size, location or shape. Thus, for example, a
rubber band even after stretching or bending retains its
property of a close circuit which is an intrinsic property

of the rubber band.

Pretzels

Mobius Strips

Figure 7.1

In figure 7.1 above a double pretzel on the upper left is
topologically homeomorphic to the linked arm pretzel on the

upper right. The next two figures display a broad rubber
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band that can be converted into a single and multiple mobius
strips, all being similar topologically. Indeed, a
topologist has been described as one who does not know the
difference between a doughnut and a coffee cup since both
these objects have the same topological property! The
objects whose 1intrinsic properties can be studied by
topology can be virtually anything: a geometric figure, the
physical surface of some landscape, a collection of

functions or processes and even some ‘abstract space’.

These areas of mathematics can also focus on the spatial
relations where the concept of 'space' may be modified
according to the need. The definition need not be limited to
geographical space but could be extended +to social
relations, conceptual interactions and temporal connections.
There 1is no restriction in extending the technique to
concepts being looked into by the researcher for the
property common to all objects of topological study is that
they are sets. The elements of the set may be anything, a
crime site, a criminal event, a police function, a time

period or group of police officers.

The definitions of composing sets can thus be extended to
criminal events, locations, modus operandi, gang members,
police operations, criminal justice policies and naturally
targets of offenders. The rules for union and intersection

of these sets could be adopted to suit the convenience and
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then topological techniques could be applied to construct
models of continuity, interior or exterior —regions,
neighborhoods to look for intrinsic qualitative properties

that remain invariant for the comparison of different sets.

A literature review reveals that although Lewin (1936)
pointed towards the applicability of topological spaces in
Psychology, the only application in criminolecgy so far has
been in the classical paper by Brantingham and Brantingham
(1975) where the concept was used to construct connected
spaces amongst residential blocks. The topological spaces so
generated clearly revealed the ‘edge effect’ between block
neighborhood boundaries; crime was significantly dgreater
near boundary areas than in interior regions. This paper
suggested a process of 'Regionalization' using topological
techniques. We will outline this technique based on Point
Set Topology and apply it in a preliminary manner to show

its applicability for the Pattern theory of crime.

Basic Elements of Topology

The set is used in mathematics to denote a collection of
objects and we will use the term ‘point’ to denote an
element or member belonging to the set. If A is a set and p
is a point of A we write p € A. If p is not a point then we
write p ¢ A. Two sets A and B are said to be equal if for

all p € A implies p € B and vice versa. B is subset of A
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means that every p € B also € A. From elementary set theory
we learn that for these sets the operation of union,
intersection can be defined and that these operations have
the properties of being commutative, associative,
idempotative and distributive. Further, index sets can be

used that helps in proving the theorems of De Morgan:

Let { B4 : @ € A } be an indexed collection of subsets of a
set X where A is any set.

Then

It

a) X ~uU { By ¢ O € A} N { X ~DB : 0 € A} and

U { X ~DBg : 0 €A}

b) X ~n { Bg : 0 € A}

We will also be using the following definitions:
i) An open interval is any set of the form { p €R: a< p <b}
where R is the set of all real numbers and a, b are real

numbers such that a < b.

ii) A set Q c R is said to be open if (a) Q = & or (b) Q #
@ and for each p € Q there is an open interval ¥ such that

pe ¥ and ¥ c Q.
iii) Let f be a function whose domain and range are subsets

of R, and let Q be a subset of R. The inverse image under f

of Q denoted by f'[Q] is the set { p € Rl f£(p) € Q}.
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iv) Let f a be a function whose domain is all of R. The
function f is defined to be continuous if the inverse image

under f of every ow-open set is a w-open set.

v) Let X be a non-empty set and I' be a collection of subsets
of X. The collection I' is said to be a topology for X if T
satisfies each of the following three conditions:

a) X eI and O e T.

b) If A, € T for all a € A, then

[ { A ] aer}] eT.
c) If Ay where o =1, 2, 3, 4, ...n are members of T
then
[~ { Rgl ¢ =1, 2, 3, 4, ...n} ] € T.

If T is a topology for the set X, the members of I are
called T'-open sets of the topology, and the pair (X, I) is

called a topological space.

vi) Let X be a set and let I' and Il be two topologies for X.
If II ¢ T, that is if every Il-open set is I'-open set, then
we say that Il is coarser than I or that I' is finer than II.

IfII T and I' ¢ II, then Il and I' are not comparable.
vii} Let (X, T) be a topological space. A subset F of X 1is

said to be I'-closed if (X~ F) € I'. That is F is I'-closed if

and only if X~ F is I'-open.
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viii) Let (X, T) be a topological space and p € X. A subset
N of X is called a I'-neighbourhood of p if and only if there

is a I'—open set G such that p € G < N.

ix) Let ® be a family of subsets of a set X. Then the
family of all sets, each of which is the wunion of a
subfamily of ®, is called the family generated by ® and is
denoted by ®*. We also say that ® generates ®*. Then, for a
topological space (X, TI) @ 1is called a base for the

topology I iff ®* =T.

x) Two subsets A and B of a space X are said to be separated
iff A# 3, B# O, and A n B = A" n B, where A" and B are

the complements of A and B respectively.

xi) A subset 8 of a topological space (X, I) is said to be

connected iff 8 is not the union of two separated sets.

xii) Let (X, T) be a topological space and let 8 be a subset
of X. The point p € X is said to be a cluster point of 9§ if
every I'~neighbourhood of p contains at least one point of §
other than p. That is, p is a cluster point of 8 iff N, a I'-
neighbourhood of p implies that

{N~ (P} "3 +3.
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xiii) Let (X, I) be a topological space and let 8 be a
subset of X. A point p is a I'-interior point of 8§ if 8 is a

I'-neighbourhood of p.

xiv) All points belonging to the complement of 8§ are said to

be exterior points.

xv) Let A and B be two non empty sets. The Cartesian product
of A and B, denoted as A x B is the set of all ordered pairs
(a,b) such that a € A and b € B. That is A x B= {(a,b)| a €

A, and b € B}.

Xxvi) Let A and B be two non empty sets. A function f from A
to B is any non empty subset of A x B with the property that
no two distinct members of f have the same first coordinate.
Thus (a,b) € £ and (a,c) € f implies b = c. The function £
is said to be a mapping of A into B if the domain of f is A
and the range of f is some subset of B. This is described as
f: A-->B. The function f is said to be a mapping of A onto B

if the domain of f is A and the range is B.

onto

This may be described as f: A- ->B.
xvii) The function f is said to be 1-1 (one to one) if
distinct points of A have distinct images under f in B. That

is, £ is 1-1 iff (a;, b} £ and (a;, b) f implies a; = a;.



xviii) Let (A, I') and (B, II) be two topological spaces and
let £ be a mapping from (A, I') into (B, II). The mapping f
is said to be continuous (or more precisely I'-Il continuous)
if f!'(G) is TI-open whenever G is Il-open. That is, the
mapping is continuous iff the inverse image under f of every
IT-open set is a I'-open set. If f(H) is Il-open set whenever

H is a I'-open set, then f is called bicontinuous.

Finally, the function f is called a I'-Il homeomorphism of A
onto B if f is 1-1 and bicontinuous mapping of A onto B. The

spaces (A, I') and (B, II) are said to be homreomorphic.

Two topological spaces are said to be topologically
equivalent iff they are homecmorphic. A property when
possessed by a topological space is also possessed by every
space homeomorphic to the given space and this is called a
topological invariant or an intrinsic qualitative property

of the space.

Application of the Technique

We will show how the above mentioned mathematical concepts
can be adopted to construct Topological spaces of sets of
variables representing different characteristics of the
urban milieu by using the concept of Basis. These variables
could be Social Housing (H); Young males (M); Unemployment

levels (E); Single parent Family (F); Housing
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classifications (C); Types of tenure (T) Social economic
status (SE) Family size (Z) and so on. Depending upon the
availability of data, other such variables can also be
added- like rates of Alcohol consumption, school drop out,
numbers of shops/ malls/ offices/ restaurants, the flow
pattern of commuters etc. The criterion is the particular
theoretical model one is using for causal explanation. Thus
U, a set of urban areas can be identified as the set of
vectors consisting of factors (H,M,E,F,C,T,SE,Z...). For
instance, an enumeration area’ (Ea;) € U may be
characterized by h;- percentage of social housing 1in the
area; m;—- percentage of young males in the population; e;-

percentage unemployed; and so on. Thus Ea; = {h;, my, e;

These factors may exist at different spatial or temporal
levels like census tracts, enumeration areas, police beats
etc. but any 1level can Dbe Dbroken down into the basic,
smaller units which forms their building blocks and then
combined into a higher level of regionalization. Brantingham
and Brantingham (1975) have shown how these building blocks
can be conceived as open sets of a basis that can then be

used to construct a topological space.

! Epumeration area is the smallest geographical unit in Canada census for population enumeration
purposes.

167



According to their proposition, each variable of interest
may be used to create a separate topology and in each such
space, the Dbasis could be constructed by clustering the
smallest unit of analysis- blocks, police beats, enumeration
areas or census tracts. Naturally, smaller the unit, the
more sharper will Dbe the topological structure, but
constraints of data availability may inhibit such analysis.
The technique then suggests to cluster these units by
maintaining internal unit to unit similarity or what is
defined as their homogeneity. For example, all units having
population densities within an acceptable range will be

combined to form larger regions.

Thus, the basis set is the set of all contiguous units such
that inter unit wvariation of the variable under scrutiny is
less than some predetermined percentage. By changing the
percentage, the inter unit variation 1s changed and new
basis sets are constructed, which provides a large number of
varieties of sets. These building sets can thus be used to
partition the wurban space 1into homogeneous and non-
homogeneous regions with respect to that characteristic. For
instance, by considering the percentage to be 20% which will
imply that two adjacent units have population density within
20% difference of each other, all such contiguous units will
be clustered into a larger ‘homogeneous’ region. Based on

these concepts Brantingham and Brantingham (1978) suggested
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the following mathematical technique to construct the basis

sets:

Let Bj be a basis set and e be a unit (perhaps a block,
enumeration area or the census tract) Let f(by) be a
functional value associated with the unit, say unemployment
rate, percent non-English speaking families, proportion of
young males, etc. Then a basis set is

Bi = { by | f£(bj) - f£(bh) I< max { af(by), af(bp) } }
where bj [} bp # 0 and by B;.

(The units have a street of vacant lot in common)
0<a<1l by #bpand I =1, 2, 3 ... n; h=1, 2..... m
For example, if the mean proportion of young males in a
household 1is being considered, then f(bj) 1is the mean
proportion of young males for the unit area. If the
variation from unit to unit is fixed at say 5% then a = 0.05
and the basis sets are all contiguous units where the inter
unit variation is less than 5%. Each group of units which
cluster together for a fixed inter unit variation form a set
and the family of sets which are generated as wvariation
ranges from zero to sufficiently large N, forms the basis of
the urban area. As the inter unit variation is changed, new
basis sets are constructed and the boundaries of the

contiguous regions change accordingly.

Moreover, for aj-j < aj < aj41, all real and less than 1

there will exist the relation:

169



--- By (aj-1) € By (aj) < By (aj+1)---

As seen above, many chains and nests of basis sets and
boundary regions are created as the inter unit variation is

increased or decreased.

Based wupon this fascinating technique, Brantingham and
Brantingham (1975) could demonstrate the importance of
topological boundaries, showing that these so called edges
partition regions into ‘natural’ or commonly understood
neighbourhoods. From these topological partitions they could
deduce that the burglary rates for the boundary blocks are

higher than the corresponding rates for the interior blocks.

We will extend this concept by introducing the notion of
fuzzy edges and permeability of borders. Once the above
technique has been used to construct contours of homogeneocus
and heterogeneous regions for each variable of interest, we
can then look for the regions which are heterogeneous for
most of the wvariables. These will be the ones whose
boundaries change with different characteristics. Here we
are making the similar assumptions as made by Brantingham
and Brantingham (1975) that a homogeneous region 1is one
where concept of ‘my’ area or ‘my’ neighborhood, commonality
and similarity exist on grounds that people with similar
socio-economic, social wvalues and cultural background would

be 1living together. Therefore, an outsider would stand
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exposed as a stranger, thus minimizing the possibility of

crimes by outsiders.

On the other hand, heterogeneous region will have no common
characteristic and thus 1likely to be the play field of
persons from other regions. By identifying the composing
blocks (smallest units) of these regions, we can then use
Venn diagram method to identify those regions which are most
heterogeneous. Such regions are likely to have high activity
nodes as proposed by Pattern theory because these are the
regions where strangers are unlikely to be detected and thus

it will be a place for greater criminal opportunities.

The urban area set U will thus be partitioned into several
regions, with high 1level of homogeneity in one part and
heterogeneity in another. If we stipulate that interunit
variation may be graded, that is the value of ‘a’ is an
interval rather than discrete, or that ‘a’ values change at
small intervals then one may consider some units to be
slowly blending into another. We will describe regions or
such units as being fuzzy homogeneous if their borders
‘slowly’ blend into neighboring units and others as being

strongly homogeneous with sharp borders.

Next, we will consider another characteristics, say
unemployment rate (u) and construct a new topology for U in

a similar manner. This will partition U again in homogeneous
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(same unemployment rate) and fuzzy homogeneous (varying
unemployment rate) contours. This partitioning may put units
in different contiguous relations than the earlier
partitioning. Therefore, examining the units which remain
homogeneous or fuzzy homogeneous in both the cases, will

give us overlapping contours over two characteristics.

Thus, suppose units B,, B,, B, are homogeneous for the
variable young males and B,, B,, B, are homogeneous for the
variable unemployment, then clearly units B, and B, are
homogeneous over both. On the other hand, B, and B, change
their boundaries over these characteristics and will thus be
considered to have fuzzy boundaries. Even for the same
characteristic if boundaries of some units are changed with
a '"small' modification in the wvalue of 'a', we will still
call these units as being fuzzy homogeneous. {'Small' will

naturally be dependent upon our own definition}.

This exercise will be carried for all the other variables
under consideration and for some values of ‘a’. We will then
identify the regions which remain homogeneous or fuzzy
homogeneous over all the variables. Clearly, these areas
have very distinct characteristics. Homogeneous areas are
those which have ‘impermeable’ boundaries, where all members
are more or less the same and therefore likely to have very
similar behavior patterns. ‘Fuzzy’ homogeneous regions will

have permeable boundaries with gradations of pcrousity and
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will show mixed characteristics. Their members behaviors
will also be varied and these areas will likely be having

the high activity crime nodes.

As Brantingham and Brantingham (1975) have further
suggested, the process may be simplified if all these
topologies are considered simultaneously, as a product
topology over U. Thus My X; may be defined as the product
space formed by the Cartesian product of all single
topological spaces. The basis for this product space is the
collection of all sets of the form M) B;, where B; is open
in X; and I is the finite index set. Obviously, an area
which has the same basis set for all the composing
topologies and even for different wvariations will be
distinct and with sharp boundaries. On the other hand,
complex patterned nests and chains of fuzzy borders are
created if the bordering units are different for composing
variables in their topologies. Our interest 1lies in those
units which remain distinct, that 1i1s these are the ones
which are strongly homogeneous or constantly fuzzy
homogeneous and are thus going to have low or high activity
nodes respectively. The nodes are likely to be the ‘hot’
spots of crime if the units are fuzzy homogeneous or will be
low crime neighborhoods if the units are strongly

homogeneous.
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Application 1: Topological Connectivity

We will now outline an application of topology in
identifying concentrations of offender activities in an
urban area. In particular, we will consider a theoretical
model similar to one proposed by Wikstrom (1991) in which
units of Stockholm were categorized into varying degrees of
criminal activities by using factorial ecological techniques
for certain census variables. We will suggest a fuzzy
topological technique with the added notion of ‘fuzzy’ edges
determining the ‘porosity’ of borders for such a model of

urban space.

Wikstrom argued that the for any city, its population size,
density, heterogeneity, social background are all important
in determining the characteristics of the inhabitants and
that social control will be weaker in large urban centers.
In particular, the regional differences in types of housing
like single dwelling or multi-storeyed, rented or owned
types generally influences the composition of the
population. This is usually true since preference for houses
depends upon family strength and economic capabilities. This
further implies that more crime prone social groups, those
which are economically and socially weak, are segregated to
certain regions and this in turn influences the social
control over the younger people. Thus, the area variations

in type of housing strongly influence population composition
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which in turn influences the area offender rate (1991: 178-

180).

By looking into the distribution of variables constructed
from Thousing, (tenure, residence type etc.) familism
(composition of population, family size, dependents etc.)
and social-economic status (family income, type of job), the
distribution of 'social problems areas' (identified by
offender residences), of Stockholm could be explained.

Wikstrom (1991: 182) used the following relationship for

explanation:
FAMILISM
HOUSING — —  SOCIAL PROBLEMS
—— T
OFFENDINGEEVELS 7

SOCIO-ECO. STATUS

We will analyze a similar theoretical model using fuzzy
topology (Zadeh et al 1975). Instead of constructing
artificial wvariables 1like housing, familism used in the
statistical technique, we will construct topological spaces,
formed by the concept of basis sets from different variables
and look for their intersecting regions. The different
levels of intersections may be construed as the ‘loadings’
on constituent wvariables, though naturally the attempt is
not to explain their variance. Thus, the housing space can
be built by considering the basis sets formed by the

variables like proportion of residents in ‘detached houses’,
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in ‘social housing projects’, in ‘privately rented flats’ in
‘multi storied buildings’ and in ‘multi family units’ etc..
Units with mean proportion of houses having similar
characteristics as these could be Jjoined in different
combinations to form the basis set where the combinations
will vary as the value of ‘a’ 1is 1increased from 0 to

infinity.

Moreover, by analyzing the level of contiguity (the value of
‘a’ as above), we can identify the units or their composite
contours as being strong or fuzzy homogeneous. That is if
for large ‘a’ the units remain distinct then these are to be
called strongly homogeneous, if these could be combined for
smaller values of ‘a’ then we will call them fuzzy
homogeneous and heterogeneous for very small value of ‘a’.
Thus, the basis sets of this topology will partition the
urban area into contours of homogeneous and fuzzy
homogeneous units that may consist of enumeration or census

areas (or wards as used by Wikstrom 1991).

In a similar fashion, other explanatory factors 1like
familism and socio-economic status could also be considered
by building their own topological spaces. The basis sets for
these could be the average size of household, proportions of
family income, ethnicity, educational 1levels of parents,
nature of employment, recipients of public assistance, and

such variables as also used by Wikstrom (1991).
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By ‘superimposing’ the partitions of the urban space,
through different variables, on one another, we can then
check their combined state of homogeneity. Thus, it may be
possible that some regions show strong homogeneity for most
of the variables while others may change their status. In
our topological notation, the former is an area having the
same basis sets for all the component topologies and for
many 1levels of variation. If the model 1looks for the
congregation of the social problems in terms of say low rent
housing, family composition through single or working parent
families, and social status in terms of family income,
nature of occupation and ethnicity, (as tested by Wikstrom
1991) then the above procedure will identify these areas as
being composed of regions or units intersecting on all the

variables.

Once the urban area has been partitioned into different
contours of homogeneity, we can then use Venn diagram method
to identify the regions which intersect for most of the
above variables. The result will be the identification of
those enumeration areas, census tracts or basic units which
have a higher proportion of social problems as defined by
the composing variables. We may not expect similar
identification as obtained by Wikstrom since the objective
is not to explain variance but to present the combination of

factors in a more visible manner. The overlapping contours
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in the Venn diagram would show the process being followed
and the graphical representation will be more meaningful
than the ‘cold’ numbers of the Gini index and Factorial

values of Wikstrom's method.

This model was tested on the census tracts of Vancouver in
the following fashion: At first, the census tracts of
Vancouver were examined to determine which ones are
geographically adjacent to each other. Figure I gives the
census boundaries of Vancouver city and the tract numbers
from which adjoining tracts were observed. From the above
map a matrix of census tracts connected physically was first
constructed. The matrix of this connectivity is shown on

appendix 2.

As the next step, a theoretical model which suggests
concentration of <criminal Dbehavior in regions where
ethnicity, single parent families, low income housing and
population density are in greater proportion than
neighbouring regions was considered. These variable
elsewhere have been shown to correlate highly with crime
variables (Brantingham and Brantingham 1978; 1984 and
Wikstrom 1991). It was hypothesized that places where most
of the topological spaces formed from these variables would
intersect will show higher rates of burglary than places
where the intersection level is smaller. The argument here

is the same as presented by Brantingham and Brantingham
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(1975) where they had hypothesized strangers committing such
crimes around the neighbourhood edges. The 1literature
supporting this kind of hypotheéis is extensive in
criminological studies (Aitken and Prosser 1990; Baldwin and
Bottoms 1976; Bennett 1989; Brantingham and Brantingham
1984; Brower, Dockett and Taylor 1983; Brown and Altman

1991; Butcher 1991; Cromwell, Olson and Avary 1991).

To develop a test for such a hypothesis, the values of
census variables of population density, ethnicity, rented
housing and single family were obtained from Statistics
Canada (1992). Based upon the technique described above, for
each of these variables, the connectivity of geographically
adjoining tracts was estimated at the ‘a’ level cuts of 10,
25 and 40 percent. The three values of a were chosen with
the expectation that the absolute differences between the
various census tracts will stand out and show clear
distinction between the homogeneous and heterogeneous

regions.

The procedure was as follows: first for each of the census
tracts, the percentages of the four variables mentioned
above was determined from the census. These values were then
compared for each of the census tracts with the values of
the tracts that were contiguous to it (from appendix ii) and
if the absolute difference was less than the corresponding

‘a’ than the two tracts were declared connected. Such
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comparisons were made for all the census tracts, for all the
four variables and for the three values of the ‘a’ cuts. The
matrices of connectivity for each of these variables was
thereafter constructed for each of the three ‘a’ cuts. These

can be seen on appendix 3-14.

The figure II for example gives the connectivity of census
tracts at 25% ‘a’ cut by ethnic population, calculated on
the basis of mother tongue. The matrix upon which the above

picture was constructed is given on appendix 8.

The connectivity of each census tract was examined for the
selected four census variables. This involved four
possibilities: two contiguous tracts, were connected for one
census variable, or two or three or for all the four
variables. Further, for each variable, the level of
connectivity could also vary for the three values of ‘a’
giving in total 12 levels of connectivity and 3 levels of

complete non-connectivity.

According to our criteria we would expect differences in the
permeability of census edges based upon the level of
connectivity. We would say that 12 level connectivity
indicates a complete porous edge while smaller levels
indicate fuzzy permeability. Thus, ‘0’ level would indicate

a strong or an impermeable edge.
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Finally, all connected census tracts were classified into
topologically similar or homogeneous regions at the level of
twelve, eleven, ten and smaller levels of connectivity, for
all the variables and at the three different percentage
levels. For instance, 10 level would mean the tracts are
connected for all the four variables but for ‘a’ cut of only

40% for one of the variables.

From this larger set two subsets were selected. The first
set of tracts was the one whose edges had connectivity at 12
level, that is: these were the basis sets for which the ‘a’
cut was 10% and the connectivity criteria held for all the
four census variables. The second set consisted of all those
tracts whose edges remained disconnected even when the ‘a’

cut was 40% for all the four wvariables.

Results

The following results were obtained:

There were a total of nine edges that were ‘impermeable’
even at 40% cuts for all the four variables. In contrast,
there were eleven edges that were ‘porous’ for all the four
variables at the smallest 10% level cut. These edges are

shown in figure III.
According to our criteria the latter set would be expected

to be troubled by outsiders while there appears smaller

possibility of strangers victimizing around the former set
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of edges. The burglary offences around these two sets of
edges for the year 1993 were estimated two blocks along both
sides of these Dboundaries. The rates of crimes were
estimated by using the length of the corresponding edges as
the denominator since the permeability was considered
dependent upon the tract length that provided the corridor
of movement. These crime totals, length of edges and the

calculated rates are shown in table 7.1 below:

Table 7.1

BNEs along Topologically Connected Census Tracts

40%CONNECTIVITY 10%CONNECTIVITY

BNETOT EDGE-LENGTH BNERATE BNETOT EDGE-LENGTH BNERATE
24 1.78 13.48315 23 1.18 19.49153
1 0.97 1.030928 7 0.6 11.66667
3 1.04 2.884615 9 0.84 10.71429
3 0.92 3.26087 2 0.9 2.222222
1 0.93 1.075269 28 1.17 23.93162
3 0.87 3.448276 11 1.24 8.870968
3 0.98 3.061224 13 1.32 9.848485

5 0.95 5.263158 37 0.94 39.3617
28 0.92 30.43478 24 1.73 13.87283
15 0.94 15.95745

39 0.76 51.31579

Here, the BNETOT refers to the total incidents of burglary
that were 1located around that edge, while BNERATE was
obtained by considering the edge length as the denominator

without any standardization. For the two rates that were
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obtained, a T-Test was done to determine if there were any

significant differences between them.

The t-statistics had a value of -2.17093126 while the
P(T< t) one tail was found to be 0.02219313. The T test
result shows that crime rate was significantly lower for the
set that had 0 level of connectivity when compared to the

set that had 12 level of topological connectivity.

Although, this study is still in a preliminary stage and
makes assumptions about criminal behaviours that may be
unwarranted, the topological regionalization technique does
appear to assist in identifying between regions of high and
low crime rates. To strengthen the fuzzy demarcation of
these edges we need to employ more variables and ‘a’ cuts of
smaller differences. Naturally, the technique of combining
tracts into larger regions through Venn diagram method
becomes complicated as the variables and ‘a’ values are

increased.

Although, the above mentioned procedure has limitations but
clearly, it does demonstrate that the areal distribution of
crime may be analyzed using such an alternate technique. The
advantage of this simple technique is that it 1looks at
regions connected topologically, to the way in which
cognition of a place might take place; a task that appears

difficult through statistical techniques.

183



The concept of nodes and edges have been developed from the
research done on the c¢riminality of place. It has been
argued for example that criminal behavior is facilitated by
certain opportunities seen 1in a particular place by the
motivated offender. A strong component of this argument is
the theory of routine activities that points to the coming
together of the offender and the victim at a place in the
absence of the guardian (see Cohen and Felson 1979 for the

original workj.

However, in this situation it is not only the layout of the
place that is crucial but alsc the time period. The coming
together of the offender and the victim is determined not
only by the 1location but equally by the timing of their
movement. The day or evening period they may go to work or
for recreation 1s significant 1in determining when the
criminal event can take place at the location of their
interaction. Obviously, the criminality of some place 1is not
in the building or its location but in the nature of routine
activities that take creates the possibility of the criminal
event there. Since, these activities come into operation
only at a specific time period, the criminality of that
place can be alleged for only those specific periods. At

other time periods these places are as ‘normal’ or crime
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free as any other. We may sum this by saying that such
criminogenic spots are ‘hot’ only during definite times. In
other words, if there are hot spots than there will be

‘burning’ times!

We will establish this relationship between the concept of
the criminality of place with its time period by the simple
technique of topological homeomorphism. We have already seen
the usefulness of topology in determining the ‘edges’ as
described by Pattern theory and how it can help in
identifying high, medium or 1low regions of crimes as
influenced by different social characteristics. Recalling
that topology is the study of qualitative characteristics,
the mathematics suggests that these qualitative properties
of nodes, fuzzy edges, interior exterior regions ought to be
retained even after any transformation of the topological

space.

For instance, if topology assists in determining the nodes,
edges and boundaries on the physical plane, it also points
towards the possibility of a similar situation in the
temporal dimension. Thus, if we can show that the physical
and the time dimensions of a crime space are homeomorphic
then topclogy states that two homeomorphic spaces are
topelogically invariant and share the same qualitative

intrinsic properties. We will demonstrate this concept now

and point towards some of its implications.
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Let (X, I') be a topological space where X is the set of all
crime locations of a region, city, police district under
consideration. A member of X designated as c¢c is then some
crime site which has distinct x and y coordinates on the
map. Here x and y may be the longitudes and latitudes, the
Universal Transverse Mercator (UTM) coordinates or any such

other in some different projection of the map of the city.

Then X = {c| ¢ 1s a crime site with some specific

geographical parameters (a,b)}.

Let I' is a subset of X defined as follows:
I'' = {c € X | ¢c is a set of all crime sites 1lying on a

segment of street between any two intersections}.

The intersection of any two subsets of I' is the segment of
street common to any two different streets and thus € T.
Similarly, the union of two sets of I' is the combined street
segment which also € I'. The null set € I and since any
crime site lies on some street segment, X € I also. Clearly
this defines a topology with the usual union and

intersection operations on c.
Similarly, let Y be the set of specific time of crimes
occurring at the above mentioned crime sites. Since every

crime record has a time period associated with it, this set
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actually exists and is non empty. Thus, Y = {t] t is the
specific time of occurrence of the crime in that region}.
Here t may be measured in date or time coordinates, for
example (930126, 225604) where 930126 is a specific date and

225604 is the usual hour, minute, second time unit.

Let ¥ be the set of all time segments of Y. That is

¥Y = {t € Y| t is any specific time > 0}.
The intersection of any two subsets of ¥ is the time period
common to two different periods and thus € Y¥. Similarly,
the union of two sets of ¥ is the combined period of time
which also € W. The null set € ¥ and since any crime occurs
at some specific time, X € ¥ also. Clearly, ¥ too defines a
topology since the usual union and intersection operations
on its elements result in some time segments that are also
members of ¥. Thus (Y, W) defines a topological space in

the common mathematical sense.

Let f be a mapping of X into Y by the following rule:

f(c) = t.
That is the function f maps every crime site into the time
dimension, the specific time of occurrence of that crime.
Since every crime incident is distinct, therefore f is 1-1.
(It is extremely unlikely that two crime incidents occur at
the same site and at the same small unit of time. In such

cases these are treated as the same incident if it involves
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different violations of the criminal code and more than one

victims or offendersj.

The same situation would work for the geographical
components. When a common address of two incidents is a
building then the two would still be distinct 1if located
through a smaller unit of measurement, say down to a meter,
elevation etc. Therefore, in the case when different crimes
may be registered from the same address one could still
argue that the actual incident would have taken place at a
distinct location. Thus, even if the official record shows
the same geographical coordinates pertaining to the same
address, one could distinguish between them by considering
smaller coordinate scales of the x and y values, say 1in
minutes. This procedure would make £ ‘onto’ for every
distinct time period in Y will be associated with a specific
crime site and by definition the domain of f is X and the

range 1is Y.

Finally, f is also a continuous mapping of X onto Y since
the inverse image of any set of time periods in Y are
associated with a set of crime sites that lie in some street
segment. That is £ '[Q] is the set {c € X| f(c) € Q} and
where Q is some time segment of Y. Since Q by definition is
an open set in ¥ and f'[Q] € T then f'[Q] is T-open. On
the other hand, the image of any set G € I, £(G) is the set

of time segments associated with those crime sites that lie
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in the street segment G. This makes f(g) an open set in Q.
We can thus say that the mapping f : X—> Y represents a
1-1, onto, continuous and bicontinuous mapping of the
topological spaces {X, I') and (Y, Q). But this makes these
two topological spaces homeomorphic and thus similar in

every way.

The 1implications of this mathematical relationship are
interesting. As there are connected regions in the physical
dimension so too are there connected time periods for the
phenomenon of crime. If there are sharp boundaries on the
physical plane then there are also sharp boundaries 1in the
time dimension. If there are ‘hot spots’ of crime sites on
the city map then there are ‘burning times’ on the time map.
We will illustrate this by exploring the physical and
temporal distribution of the crime phenomenon for the period
of 31 days of January 1993 from the records of Vancouver
police 911 call data. In order to compare these two spaces
we examined the frequency distributions of calls for these

two dimensions- the geographical and the temporal planes.
Results

In the physical plane all calls for service for the month of
January 1995 were first geocoded for illustrative purposes.
These were then grouped by street names and aggregated for

each distinct street.
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The results are shown below in table 7.2:

Table 7.2

Distribution of Calls for Police Service in the Physical Plane

# of streets | Total calls for service | % of total calls | Cumulative % of total calls
6 4412 16.4 16.4
8 2595 9.8 26.2
20 3939 14.7 40.9
14 1866 8.01 48.9
26 2619 16.06 58.9
39 2735 10.1 69.0
71 2786 10.1 79.1
99 2308 - 9.1 88.2
989 3072 11.8 100

Considering that there are a total of 1281 distinct streets
in Vancouver and in January the calls for service recorded
by the police total 26822, it is clear that a mere 3.75% of

streets account for almost 48% of all the calls.

Similarly, the same calls were identified by their time of

call to the police and aggregated at hourly intervals. The
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results for this situation in the temporal plane is shown

below in table 7.3:

Table 7.3

Distribution of Calls for Police Service in the Temporal Plane

# of Hourly Total # of calls % of total calls | Cumulative % of
segments for service total calls
32 2631 9.81 9.81
43 2705 10.09 19.90
51 2701 10.08 29.98
55 2652 9.90 39.88
62 2702 10.08 49.96
66 2667 9.95 59.91
73 2707 10.10 70.01
80 2678 9.97 79.98
97 2687 10.02 90.0
184 2692 10.0 100

Thus, 32.6% of hourly time segments account for 49.97% of
all the calls. Analogously, there are few ‘burning times’
that contain a large percentage of crime ‘periods’ in the

temporal plane. If the calls are aggregated at smaller time
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intervals, like minutes or less, the results may be even

more dramatic.

The relationship could be illustrated graphically too as
follows: The calls could be aggregated for a comparable unit
for both the dimensions and then plotted on similar scales.
Thus, for the month of January, in the temporal dimension if
calls are aggregated hourly it involves 31*24 = 744 points
in the temporal plane. These could be compared to the
aggregation of crime sites falling within the 770
enumeration areas that involve virtually similar number of

units on the geographical plane.

The matrix of the 744 temporal points for the month of
January 1s given on appendix 16. The three dimensional
figures, one for the physical plane and the other for the
temporal plane are given on figures IV and V which
illustrate their topological surfaces. As may be seen on the
two figures, both the three dimensional plots show peaks and
valleys and concentration of crime ‘points’ in their
temporal or spatial distributions. The sharp and gradual
edges as seen in the figure suggest a comparative fuzziness
of boundaries on the temporal plane too. Just like the
physical dimension, there are homogeneous time intervals

with permeable ‘borders’, both for high and low crimes.
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Implications

The implications fiowing from such a topological analysis
are far reaching. Not only does there exist a clear one to
one correspondence Dbetween the physical and temporal
topological spaces but the same homeomorphism can be shown
to exist between other indices of the criminal event too as
pointed by the Pattern theory. The ‘topological spaces’ of
offenders, victims, and 1legal codes that can be formed
through some criteria of open sets have obvious relationship
with the physical and temporal spaces. By defining a similar
one-to-one and onto function that maps say the offender
‘space’ to the corresponding physical, temporal or victim
‘space’ would suggest that these have the same qualitative

properties.

Thus, amongst the set of all offenders, there are a few who
are involved in most of the crimes, the ‘serious’ repeat
offenders. Amongst the group of victims there are some who
are victimized repeatedly or more frequently than cthers and
it should be no surprise if these kind of wvictims and
offenders share a large number of common characteristics-
like income, social status, living space, family background

and naturally activity spaces.

The concept of homeomorphism suggests that a similar
characterization is likely to be seen in the case of legal

‘space’ too. Not surprisingly, amongst all the legal
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provisions only a few are violated more frequently. Cheats,
forgerers and white collar criminals are involved only in
violating legal contracts, regulations and breaches of trust
cases. On the other hand, ‘serious’ offenders transcend
property and body offence codes. Thus, likewise we can say
there exists ‘hot’ codes 1in the 1law that are infringed

repeatedly.

The proper relationship amongst all these concepts can only
be worked out by a greater amount of knowledge than
available at present but the mathematics behind it appears
reasonably straight forward. Topology provides a powerful
approach for analyzing the relationships between these
different aspects of the crime phenomenon that can inject
new perspectives into the way we view and deal with criminal

behavior.

——— X =
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CHAPTER Vil

VORONOI DIAGRAMS:

ANALYSIS OF NODES AND PATHS

The attempt to distinguish between various shapes and sizes
may perhaps have been the motivation for the Greeks to
develop the geometrical concepts of point, line and angle,
but from the earliest Euclidean geometry to the Reinmann and
Fractal geometry, this branch of mathematics has come a long
way. The underlying concept behind geometry is the
partitioning of space into a set of regions based upon some
criteria and ©proportionality. The 1line, arc, radius,
circumference, angle, area, projection, distance between
points are some of the building blocks that have found wide
spread applications in civil engineering, organic chemistry,
nuclear physics, archaeology and even in the efforts to

determine the shape of the universe.

Application of Geometrical Techniques in Criminology
In criminology too, the spatial distribution of criminal

events, offender residences, police sting operations,
location of courts have been studied through geometrical
techniques( for e.g., Coburn 1988; Harries 1990; Wikstrom
1991; Langworthy and Lebeau 1990; Lamber and Luskin 1991).

In this section we will describe a particular kind of
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mathematics based upon such geometrical properties. After a
brief exposition about the mathematical technique of spatial
tessellation, its usefulness in analyzing the properties of
nodes and even the backcloth as called for by the Pattern

theory will be outlined.

A branch of algebraic topology, graph theory is a well
developed mathematical tool to analyze nodes and the paths
and of modeling a variety of relationships amongst a large
set of point like objects. It is capable of revealing the
connectivity amongst the nodes, examine routes, paths and
cycles and has already found wide application in geography
(Tinkler 1972; Good 1975) and even in sociometry. However,
for analytical purposes, graph theory reduces the node to a
point and does not take into account the neighboring space
around the node. Thus, for a crime site or an activity node,
the interest 1is not only in the exact location but in the
immediate surrounding space as well. For these and other
reasons we will look into the applicability of a geometrical
technique that suggest methods to construct and consider
the sphere of influence around the point 1like and other

shaped objects.
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The Concept of Voronoi Diagrams
The mathematics of the Voronoi diagram and spatial

tessellation, variously known as Thiessen polygons or
Dirichlet domains (Okabe, Boots and Sugihara 1992) is based
upon a simple concept. These tesselations are formed by
associating with each point in the pattern all locations in
the study area that are closer to it than to any other point
in the pattern space. Thus, if there are two points the
perpendicular bisector of the line joining the two points
divides the space between them. For three points the picture
becomes more complicated because it now involves the
division through the bisectors of three 1lines and the
process goes for greater number of points in a similar
fashion. Those locations in the study area that are
equidistant from two points will lie on the boundary of two

adjacent polygons.

Similarly, any locations that are equidistant from three or
more points in the pattern will form the vertices of
adjacent polygons. The result 1is the creation of a
tessellation of contiguous space exhaustive polygons or
Voronoi diagrams. These contiguous spaces represent the
partitioning of the area into the neighborhoods of the

points.
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In these polygons three edges are incident at each vertex.
The occurrence of more than three edges at a vertex is very
rare since for this to form four neighboring points in the
pattern must lie on the circumference of a circle whose
interior contains no other points. In this partitioning of
space a second diagram called a Delaunay tessellation, can
be constructed by Joining those points that share a common

Voronoi edge.

The following figure 8.1 illustrates the concept:

-——- Delaunay Triangles
—— Voronoi Diagrams
Fig. 8.1
These two partitioning of space have found wide spread usage
in such diverse fields such as anthropology, archaeology,
astronomy, biology, crystallography, geography, metrology,

operations research, physics, physiology and urban planning
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(Okabe, Boots and Sugihara 1992: 2). Applications in these
fields have used the concept of Voronoi space along with
different mathematical techniques based upon matrices, set
theory, calculus, graph theory and even stochastic point
processes. We will Dbriefly outline the definitions,
descriptions and mathematical properties associated with
Voronoi diagrams and then describe some techniques for

analyzing different kinds of crime patterns.

Mathematical Properties of Voronoi Diagrams
Consider a finite number of n distinct points in the

Fuclidean plane labeled as pi, DpP:...Pnsr each having the

location vectors x;, Xs...X,. These points are distinct and
X; N X5 i#j, i, J I,. Let p be some point with the
location vector x. Then the distance between p and another
point p; is given by

dip, Pi)= Ilx=x:11 = sqrtl(x: - xn)® + (%2 = x32)7].
If p: is the nearest point to p then we have the relation

x - x:11 £ 11x - %51 for j # i, i, 7 In.

Finally, if P = {pi; pz2--.P.} 1is the set of points and

X; * xy for i#j, 1i, 3 I,, the region

Vips) = [ 21 Ilx - x:11 £ 11x - x5/ for i#j, i, j  Ip]
is called the Voronoi polygon associated with the point p

and the set V = {V(pi1), Vi(p2), ... V(py} is called the
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Voronoi diagram generated by the set of points P. For this
reason, the set P is called as the generator set for the

Voronoi diagram.

Since the relation between nearest points 1is defined in
terms of < and not strictly <, the Voronoi polygons form a

closed set where the set of its boundaries which consists of

line segments or infinite lines are known as Voronoi edges.
Clearly, Vi(pi) mn V(p;) # & and the set V(pi) m V(p;) gives a

Voronoi edge.

This definition can easily be extended to any m dimensional
plane as follows:- If P = {pi, Pz, ...Pn} < R", where as
before 2 £ n < © and x; * x; for i#3j, i, J In,.
The region given by:

Vipi)= [ %] |Ix - =11 £ lix - %511 for i#j, i, 3  Ip]
is the m dimensional Voronoi polyhedron associated with p;

and the set V = {V(pi), VI(p2), ce. Vi(pa)} 1s the m

dimensional Voronoi diagram generated by P.

Since any polygon could be defined in terms of its half

planes, the Voronoi diagram could also be expressed in

alternate terms. Let the bisector line between the points p;
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and p; be b(pi, p;j). Clearly, any point on this bisector 1is

equidistant from the two points p; and p; and so

b(pi, ps)= {x| llx=x:|] < |Ix=-x311} 1#].

The bisector divides the plane into two half planes given
by: H(pi, p3)= (x| Ilx-x1] S [x-x311} 1i#].

In such a case the region V(pﬂ==j£l] H(pi, p;) associated
with the generator pi and where x; # x; for i#j, i, j € I, is
called the Voronoi polygon for p; while V(P)j= {V(pi),
...V(p2)} is the planar Voronol diagram generated by the set
P= { pi,.. Pn}. This alternate definition is useful 1in
computing the vertices of the Voronoi diagrams and it could

similarly be extended to the m-dimensional plane.

Just as any planar graph has its dual graph, the Voronoi
diagram has its dual tessellation called Delaunay
tessellation that is formed when the set of points pi., P2,
ee« DPn are not on the same line, since otherwise a
triangulation cannot be obtained. Thus, for the Voronoi

diagram V(P), generated by the set of non- collinear points

P = (pll Pz, ... pn) where 3 < n < o,
Let Q = {qi, 92, ... dn} be the set of Voronoi vertices in
V(P) and X;1;, -.. Xk be the location vectors of those

Voronoi polygons that share the vertex q;. Then the set
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D= [Ty, T2, ....Tn] where T; is defined as
K k
T; = { X l X = Z ijij, where Z )\;j = l, A, > O, j S Iki }
Fl 7l

is called the Delaunay triangulation of P.

The Delaunay triangle is similarly a closed set and it
contains the line segments of its boundaries. Although, a
triangle is defined for a two dimensional space, the
definition of Delaunay tessellation can be similarly

extended to multiple dimensions.

Voronoi diagrams have several interesting properties; for
instance a Voronoi polygon is a non- empty convex set and
the wunion of all Voronoi polygons cover the space.
Specifically, v V(p;) = R® while

[V(p:) \ OV(pi)] m [V(py) \ 0V(p;) 1= for i#j, i, jJ In
where 0V (p;) represents the edge of the polygon. The Voronoi
diagram V(P) is thus a unique tessellation for P and it has
several topological properties with respect to the number of
Voronoi vertices, edges and polygons. To examine the
topological properties, the planar graph induced from the
Voronoi diagram first needs to be constructed. Let N=
{n;,... n,t} be the vertices and M= { m,... M } be the

edges of V(P). Since a geometric graph does not have
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infinite edges, the infinite edges of the Voronoi diagram
needs to be modified. This can be done by placing a dummy
point n, far away from the diagram, cutting every infinite
Voronoi edge at some point and joining its end points to n,.

Let {mpi, ... Mnn_} be the edges induced from {m;,... m,} with

modifications and let M= [M\{my, ... mu}] YV {mpi,... mmc}.

Then N.;= N U (ng) and M, will form a planar graph G(N.;, M) .

For such a Voronoi graph, the Euler formula applicable to
any planar graph will hold true and so we have the relation
(n, + 1) - n. + n =2. This implies that for any Voronoi
diagram in R®, n, - n. + n =1

where the three represent the number of vertices, edges and
generators points respectively. Since every vertex in the

Voronoi graph has at least three edges, the number of edges

in it is not less than 3(n, + 1)/2. This implies that for 3

<n<oow, n. < 3n -6 and n, < 2n -5.

The Delaunay triangle is also a unique tessellation and its
vertices, edges have <close relations with that of the
Voronoi diagrams. The number of Delaunay vertices equal the
number of generating points P while its circumcentres equal
the number of Voronoi vertices. In general, the number of

edges of the Delaunay triangle is greater than or equal to
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that of the corresponding Voronoi diagram. The Delaunay
triangulation of the points P may also be regarded as a
connected graph consisting of nodes given by the points of P

and the paths formed by the edges of its triangle.

There are several other properties of the Delaunay graph
that have special names like Gabriel subgraph, relative
neighbourhood graph and the nearest neighbour graph (Okabe,
Boots and Sugihara 1992: 115). An important property is that
of the size of the angles of these triangles which we will
demonstrate as another kind of geometrical technique for

analyzing the distribution of some criminal events.

The beauty of mathematics lies in its ability to generalize
starting from simple concepts. This has been done in the
case of Voronoil tesselations too by introducing different
structures and processes in the generation of these figures.
Thus, 1in case the set of points P 1is generated by a
homogeneous Poisson process the resulting tessellation are
known as Poisson Voronol diagrams and Poisson Delaunay
triangles respectively. The manner of their generation and
properties of their sides, angles, edge lengths, area
perimeter have been widely explored in several kinds of
applications. For instance, Poisson Voronoi diagrams have

been utilized in investigating the quantum field theory,

204



conductivity of granular composites and in modeling the
growth of clusters formed by metal vapour (cited in OQkabe,
Boots and Sugihara 1992: 278-9). Their most significant use
lies as a normative model against which other ‘ncrmal’

tesselations can be compared.

Similarly, the concept of straight 1line distance can be
generalized by considering ‘obstacles’ between the set of
points. These may arise from such natural obstructions as
rivers, roads or buildings. Due to their presence one cannot
take the direct shortest distance 1line and has to ‘go
around’ them. Voronoi tesselations can take these into
account by developing the ‘shortest’ path or the wvisible

shortest path diagrams.

For instance, let B be the set of obstacles,
B = (0, 0 ... O0,) and 2. nn 0 = J for i#*¥j. Then in the
region S = R*\O the distance between a point p and another

p: can be defined as the length of all the shortest paths

amongst continuous paths connecting p and p; that do not

intersect obstacles O:\ ¢0:, i, j In.

Fig. 8.2
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The figure 8.2 above demonstrates the method. Further
generalization is possible by considering objects that are
not point 1like. Thus, instead of the generator set of
points P, one may consider the set of line like objects
L={L,, L, ... L.} where
L; nLy=00 for i#j i, ] I, and the distance
from a point p to L ; is given by

Ds(p,Li) = min x; { |lx-x¢ || | x4 L }.

The Voronoi diagram for such line objects is then the set
V(L;) = [p | Ds(p,Li) £ Ds(p, Ly, ), i¥j i, J In.
Note that the line here may be a straight segment or a

curved arc. The concept is 1illustrated in the figure 8.3

with a line, an arc and a point as the generators shown

below.

Fig. 8.3

ol

In an almost identical fashion, the concept can then be

extended from the line to an area.
Let A:{Al, Az, ...An}

where A; n"nAs; =0 for i¥j i, J In
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Since the area may not be convex, it could have ‘holes’ in
which other areas may reside. The shortest distance from a
point to any area A; can similarly be defined as

Ds(py Ai) =min x5 { jlx-x; || | x5 A }.

Correspondingly, the area Voronoi diagrams are given by the

set:

V((A;) = [p | Ds(p, A;) £ Ds(p, Aj ) lij i, j In]'

The figure 8.4 below illustrates an area Voronoi diagram.

Fig. 8.4

Until now no distinction has been made between the objects
themselves except for their locations. Sometimes it may be
necessary to assign weights to the generator objects, like a
homicide site being more important than burglary for police
response purposes. Voronoi tesselations can be modified to
reflect the different weights of each of the generators by
considering a weighted distance between the respective

objects.
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For instance, a set of points P = { pi, p2, -.. pPn} may have
some weights w; attached with each of them. If W = {wi, w3,
... Ws} are the corresponding weights then the weighted
distance may be given by the following definition:
D, = 1/w; { |Ix-x:!! } where w; > 0.

Clearly, weights may be defined 1in a variety of ways
depending upon the model being proposed. The gravity model
where D, = 1/w” is one such famous model that has its roots
in Voronoi diagrams. The Voronoi diagram in figure 8.5 below

reflects the weights of generator points:

Fig. 8.5

Finally, Voronoi tesselations can be drawn on surfaces other
than the two dimensional Euclidean plane, like spheres,
cylinders, cones or polyhedrals. Further generalization is
possible by combining some or all of these different
possibilities like considering an area object, weighted by
its size and drawn on a curved surface with lakes and

buildings as natural impediments.
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Pattern Analysis of Voronoi Point Generators
We will demonstrate different applications of the Voronoi

tesselations in analyzing the distribution of criminal
events by examining the angles of Delaunay triangles and the
effect of point and line generators. The technique seems
appropriate since a distribution of crime sites may be
represented as a set of n distinct points, S= {si, Sz, ...

s,}, in a bounded region B in either R? or R’.

We call them empirical point patterns even though individual
crime sites or the objects affecting their distribution may
not be points themselves, like burgled houses, railway
lines, or even districts with law and order breakdowns.
However, it is possible to consider them as points because
the physical sizes of these locations will be very small
relative to both the distances between them and the extent
of region in which they occur. (Troublesome districts would
be analyzed relative to the other districts in the province
or even the country and therefore could still be considered

as a point element).

The examination of these empirical point patterns may be
useful in learning more about the phenomena represented and
the processes responsible for creating it as suggested by

Pattern theory. For one, their analysis may lead us to
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develop an explanatory model that could throw light upon the
locational behavior of the phenomenon. For example, even
when the knowledge is rudimentary, information obtained from
the analysis of such patterns may enable us to acquire some
initial insight into the process. The realization that
objects are placed differently towards the margins of the
boundary than they are at the centre may lead us to
investigate the possibility of different forces operating at
those locations or the same forces but operating with

different intensities.

In instances where the focus is upon the location of the
individual points of S with respect to other points of S or
on their distribution over the bounded region B, then
polygons constructed through the Voronoi diagrams can be
utilized. At other times we may be interested in how the
members of S are located with respect to other objects that
are not members of S but are still located in B. These
objects may be point, line or area type and for which the
technique of nearest neighbourhood analysis is particularly

suitable.

In the case when the focus is only on the members of S it is

useful to consider a theoretical point pattern with respect

to which other patterns can be compared. Such a theoretical
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point pattern can be obtained from the operation of a
Poisson point process as mentioned before. The Poisson
Voronoi diagram is such an illustration. This could be
considered as one that is created randomly in a completely
undifferentiated manner and used as an idealized standard.
Even if little is known about the process we can test it by
hypothesizing that it has been created by chance. The tests
can then be done based upon some selected characteristics of
the Voronoi tessellation, like the length of the edges, the

angles of triangles, the distance between objects and so on.

Several classes of point patterns can be recognized using
complete spatial randomness (CSR) as a benchmark. Clustered
point ©patterns are those in which the points are
significantly more grouped in the bounded region B than they
are 1in CSR whereas regular patterns or dispersed point
patterns are those in which the points are more spread out
over B than they would Dbe in CSR. Environmental
inhomogeneity is said to be the case in which some subareas
of B are less likely to receive a point than other subareas.
The establishment of neighbourhood watch system, or
intensive patrolling may be one reason for such a situation.
In these circumstances, we would expect to find more points
in the subareas of B favoured by offenders than elsewhere,

thereby producing a clustered pattern.

211



Another situation is when points may either attract or
repulse one another. Drug dealing locations for instance may
act as an attractor for consumers while sites for gang
hangouts may act as repellent for ordinary citizen since
these places may appear dangerous. The former is likely to
produce a clustered pattern whereas the latter will likely
produce a spread out pattern. The hypothesis of CSR or any
other concerning the spatial nature of the empirical point
pattern can then be tested by comparing measures of selected
characteristics of the empirical point pattern with those of

the hypothesized pattern.

There are two possible types of measures: arrangement
measures that describe the location of points relative to
other points; and dispersion measures that take into account
the locations in relation to the area included within the
bounded region. In other words, arrangement measures are
concerned with those characteristics of the pattern that
remain invariant under translation, rotation and reflexion
and under change of scale, while dispersion measures may
change under such conditions. In the following sections we
will first outline two technigues under the dispersion
measure system and then apply a triangle based test using

the Delaunay tessellation concept.
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Nearest Neighborhood Distance Technique for Voronoi Diagrams
We have already seen that algebraic topology, especially

graph theory can provide a good arrangement measure for
point pattern analysis. A variation of the Voronoi diagram
based pattern analysis is the nearest neighbour method (NND)
that involves a form of dispersion measure. There 1is a
common NND method too which 1is a statistical technique
examining the distribution of point 1like objects over a
region that has other physical objects. The technique
involves estimating the nearest neighbour distances and then
comparing them with those expected under CSR using a variety
of tests. However, this technique “does not directly deal
with the physical objects affecting the distribution of
these point like objects” (Okabe, Boots and Sugihara 1992Z:

422) .

The NND method as an application of Voronoi diagram can be
utilized for examining the effects of various kinds of
Voronoil generators upon the distribution of certain elements
over the same region. Here we will describe the procedure of
this particular NND method by considering how point 1like
objects, for instance bars or line like objects such as

truck routes affect specific crimes around their vicinity.
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NND Analysis for Point Generators
Consider a region S in which m physical point objects (the

bars for instance) are located in the region and n point
like objects (the crime sites) are distributed over the
region excluding the area occupied by the objects. A set of
m objects in the region R® can be represented by a set of

points denoted by
0= (01, 02,... Op) (I £ m < )
where 01 M 04 = g, i#j, 1, 7 In.
A set of the n point like elements can be represented by a

set of points distributed over the remaining space

se= s\U o,
i=1
and as before can be denoted by

P = {pi, Pzy---sPn}, (1 £ n < x)

with location vectors {xi, X, ...,%X,.}.

Given O and P, we can define the distance from a point Pj; in
R’ to an object in 0y by

d(pi,04)= minui{lxi—uj! X5 Oj}
where |xj-uy| 1s the Euclidean distance {d(pj,0)} between
X4 S, and uj O;. With d(pi,03), we next define the
distance from a point pi to the nearest object 0; in O by

d(pl,O) = minui{ d(pil Oj)l ] In }
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We will call this distance the nearest neighbor distance, or
briefly the NN distance, from p; to O. These d(pj, O) can be
efficiently computed using the Voronoi diagram for the
objects 0. We first observe in which Voronoi polygon V the
point pi is located. Once pj V(Oj) is known, d(pji,0) is

readily given by d(pi,0;).

Third, we define D as follows:
D= 1/n Z d(p;, O)
i=1

We will call D the average nearest neighbor distance, or the
average NN distance. Now, consider the contention that
points P are independently and randomly distributed
according to the uniform distribution over S,. This premise
implies that objects O do not affect the distribution of
points P. Under this presumption the NN distance Di =
d(p;,0) 1s a random variable; consequently D is also a
random variable. Let E(D) be its expected value and D be an
observed value of D. If the pattern 1is as expected the

observed value D is close to E(D). Using this property, we

can define an index by R= D/E(D).
If this were so we may expect that R be close to unity. If

we observe R < 1 this represents a pattern where the points

P are more closely distributed around objects O than they
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would be in the random distribution. If we observe R > 1
then the points P are more sparsely distributed around

objects O than they would be in the random distribution.

Since D is the average of independent random variables D;
having the same distribution with a finite mean, the central
limit theorem then guarantees that the distribution of D
asymptotically approaches the normal distribution with mean
E(D)= E(D;) and variance Var (D)= Var(D;)/n, where D; =
d(p;,0) is the NN distance from a point p; to 0. It follows
from this property that the random variable R= D/E(D)
asymptotically follows the normal distribution with E(R)=1
and Var (R)= Var (D;)/{nE(D;)?} as n increases. This variable
then could be used as a test statistics to determine whether
the points P are independently and randomly distributed
according to the uniform distribution over S,. The test
could help us find out for example, if the distribution of
crime sites (points P) is affected by the location of bars
(objects O).

The NND technique could also be used to examine the impact
of line like objects, such as the effect of truck routes
upon the distribution of robbery sites. It 1is known that
robberies are frequently committed by using some get away
vehicles for avoiding detecticn (Capone and Nichols 1976;

Langworthy and Labeau 1990; Canter 1993). Moreover, “[a]reas
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along major travel paths are known by many persons and,
consequently, by more potential offenders” (Beavon,
Brantingham and Brantingham 1994: 119). It 1is therefore
probable that arterial roads that serve as major truck
routes and high speed highways are likely to influence the
location of such robberies for these will provide quick get

away routes known to the motivated robbers.

NND Technique for Line Objects

When the area occupied by an object 0O; is very narrow and
long relative to the whole region S,, we may regard the
object as a line segment and O as a set of line segments. To
calculate d(p;,0) one can assume that set of line like
objects O is represented by set of chains of straight line
segments. A curved line could also be approximated by the
chain of connected small straight line segments. With this
modification, the procedure is the same as that of the NND
method for point like sbjects described above. First the
construction of Voronoi diagrams V = {V(01),...,V(On)}
generated by the decomposed set of the line generator set O
is undertaken. Next, find in which Voronoi region a point p;
is placed. Once p; V(0;) is known, the NN distance d(p;,0) is
immediately given by d(p;,0;). The rest of the technique

closely follows the one described above.
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This technique could also be extended for area like objects.
Since in the real world there will be more than one type of
objects the index R could be generalized into a multivariate
index 1like r= ( di/E(d:}); ...dy/E(d,)) where each d; is the

average NN distance defined for the objects o;, i € I,. This

technique could be useful in analyzing the spatial
distribution of crimes around the ‘awareness space’ of some
offender since that consists of home, work place, travel
paths and entertainment areas (Brantingham and Brantingham
1984) which are point, line or area like objects

respectively.

In the application of this Voronoi diagram based NND method,
a number of additional assumptions may have to be made
regarding the nature of data. For instance, it is taken for
granted that the crime sites are point like when in some
cases these may be line like (Hit and run) or area like
(B&E) depending upon the type of case. If this is considered
significant then d(p:i,0) may have to be modified
accordingly. Secondly, the objects themselves, like the bars
or the truck routes will not be the only objects influencing
the crime sites, other commercial establishments or such
objects will be present too. Their impact may have to be
discarded or reduced by choosing suitable time period or

region for examination.

218



Thirdly, and more importantly, it is assumed that the points
are randomly distributed in a two dimensional plane.
However, the distribution of crime sites is generally not
independent and constrained by objects all around. The use
of multi NND method may have to be considered. Lastly, the
shortest Euclidean distance measure (distance along the
straight line joining the two points) may need to be

modified by taking the Manhattan distance.

In estimating the index R one will require to compute the
mean of D to carry out the statistical test. This requires a
knowledge about the probability distribution function F (D),
of D that is generally difficult to obtain. This function
will depend upon the size and shape of the area under
consideration that will vary from case to case. However, by
using the Voronoi diagram concept Okabe, Bocts and Sugihara
(1992: 425-431) have suggested partitioning the Voronoi
polygons into smaller triangles and then using the area
functions to estimate the function F(D). Since this type of
computation 1increases exponentially with the number of
generators, the estimation of E(D), the mean of the average
nearest neighbor distance is quite complicated and beyond
the scope of this exploratory study. Voronoi diagram based

NND studies are rather difficult to carry out in practice
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and would require elaborate computer programming for various
kinds of computations but these techniques appear promising

for criminology.

Application of Delaunay Triangle based Technique
As before let P be a set of points generated by some Poisson

process and D(P) be its Delaunay triangles. In R? the
probability density function f(x) of x, a random angle of

any randomly selected triangle has been derived as
f{x) = 4[(m - x)cosx + sinx]sinx/3m {0 < x < 7}
(Okabe, Boots and Sugihara 1992: 417).

The probability F(¢ < x) for ¢ < x can therefore be

X

determined by integrating f(x) as: F{¢p < x) = j f(p) do end
0

therefore

F(p < x)= (1/3) 2sing + {@cos2¢ - (3s5in2¢)/2 + 2¢}n’’ ]x
0

However, in this procedure one is required to take a random
sample of triangles from the set of Delaunay triangles and
then examine and compare their angular values with some
theoretical distribution. Instead, Mardia, Edwards and Puri
(1977) have suggested to use the information available from

the value of the angles themselves. Miles (1970) derived the
probability density function of a pair of angles %, O

selected at random from an arbitrary triangle of the Poisson

Delaunay triangle D, as
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f(x,8)= {(8/3) n}siny sind sin(yx+d)] (x>0,8>0, (y+d) <.
By integrating over all the values of angle & we can obtain

f(x)= 4[(n - y%)cosy + sinylsiny/ (3n) (0 <x< T)
as the pdf of a ‘randomly selected angle of an arbitrary
triangle of Dg.
Mardia, Edwards and Puri (1977) have then derived the
minimum angle of an arbitrary Delaunay triangle as

f(xmin)= (2/7)[ 7t= BYmin)SIN2%min + COS2Ymin - COS4Ymin ] (O < Amin < /3).
Assuming that the wvalues 0Of Ynin are independent for the
triangles of the Delaunay triangles the marginal density
function of the minimum angle Y. 0f all the triangles in
D(S) can then be used as a possible comparative parameter.
In such a case the marginal density function for probability
Of Ymin £ X Will be given by:

F(qmin< X)= {141/(27)  {Bxmin ~27}COS2%min ~SiN2min ~SiNdxmin}  {0< X < 7/3}
0

Values of P(z) for angles between 1 and 60 degrees have been
derived from this equation (Boots & Getis 1988: 75-76). The

proposed procedure 1is then to identify and estimate the
minimum angle Ymn- These observed frequencies are then

cumulated to give F(z) as the proportion of %mn 1in some

specific interval. The edge effect is discounted here by not

considering the triangle whose circumcentre does not lie in
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the bounded region B.

The values of F(z) so obtained could then be compared with
the corresponding values P(z) produced by some complete
spatial random set of triangles using a one-sample
Kolmogorov-Smirnov test (Yeates 1974; Massey 1951). This
test involves taking the absolute difference between the
values of F(z) and P(z) for corresponding values of z and
the largest of the values determines the test statistics
Dnax, which 1is compared with the appropriate wvalue from
statistical tables of critical values (Okabe, Boots and

Sugihara 1992: 417-422).

The principle behind the test is that if the points were
arranged perfectly regularly, all the Voronoi diagrams would
be regular hexagons and all the triangles will be
equilateral. If the points were located so that they
approximate a square grid, the resulting diagram will all be
four sided and the triangles close to right angled with
minimum angles being 45 degrees or so. Thus, a significant
excess of angles close to 60 degrees or 45 degrees indicate

a pattern close to hexagon or square grid respectively.

Finally, in a pattern that has clusters of points some

Delaunay triangles will have edges that represent 1links
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between points on the periphery of different clusters. Such
triangles will be obtuse so that their minimum angles will
be small. The distributions of such points will be
indicative of a clustered arrangement of points, again
pointing towards a behavior pattern. If the points are
weighted then instead of taking the perpendicular bisector,

a proportional bisection may be considered.

As a way of an explanatory example we will demonstrate this
mathematical technique by examining the spatial distribution
of certain kind of auto theft locations between February
1991 and December 1992. This period was chosen for
illustrative purposes only. We will examine those crimes in
which 'Chevy' auto was involved assuming that the selection
of a particular type of vehicle may be suggestive of a
specific behavior pattern. This illustration is limited for
descriptive purposes and simplicity of tables, though the
technique naturally can be applied for a larger set of
points in n~dimension space too.

The chart on figure VI shows the locations, the tessellation
spaces and Delaunay triangles for a set of 10 auto thefts
involving Chevy cars in Burnaby. These 10 were chosen for
illustrative purposes because these were located in one area
and therefore could be the crimes committed by the same set

of offender(s) (Fleming 1994). The following values of the
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minimum angles (in degrees) were obtained from the chart:
12, 13, 17, 21, 22, 23, 24, 25, 27, 40 . The table 8.1 below

gives the cumulative totals, probability and differences:

Table 8.1

Summary of Results from Delaunay Triangle Analysis

Degrees | Frq | Cum.Frq | Cum.Prop. F(z) Cum.Ex Prop.P(z)
0-5 0 0 0.0 0.0152
6-10 0 0 0.0 0.0602
11-15 2 2 0.2 0.1331
16-20 1 3 0.3 0.2302
21-25 5 8 0.8 0.3464
26-30 1 9 0.9 0.4743
31-35 0 9 0.9 0.6056
36-40 1 10 1.0 0.7309
41-45 0 10 1.0 0.8408
46-50 0 10 1.0 0.9266
51-55 0 10 1.0 0.9812
56-60 0 10 1.0 1.0000
Finally, the absolute differences of F(z)-P(z) are

calculated and the maximum D,.. is then obtained. From the
table we get the maximum value to be 0.4536. The critical
value from the tables for a«¢ = 0.10 is 0.368 for n = 10

(Massey 1951). The result is not found to be significant for
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any smaller values of a. The conclusion that these auto
theft sites form a cluster is not so strongly supported,
though the result appears to hold for with a type I error of
10%. It may therefore be worthwhile for the investigator to
examine these nodes together, for these may be part of the

same operation or modus operandi.

Implications
The technique of Voronoi diagrams can easily be extended to

any n-dimensional space where points become objects with
vector values. Furthermore, the spatial analysis of crime
sites, offender residences, the territorial boundaries of
gangs, areas of operation of serial offenders and police
patrol coverage, can all be analyzed by Voronoi diagram
based techniques. It brings into play powerful geometrical
concepts, along with sharp analytical techniques of
calculus, analysis, algebra and trigonometry to offer
exciting possibilities for the researcher. It also
demonstrates how beginning with simple concepts,
mathematical techniques can gradually be built upon into
complex structures that could be applied in a variety of
fields with some fruitful results.

e B e e
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CHAPTER IX

THE FRACTAL DIMENSION OF POLICING

In the previous chapters we have seen how mathematical
techniques lead to the development of new and different
perspectives in the study of criminal behaviour. We have
presented the mathematics of fuzzy logic that can provide a
powerful tool and model to explore the holistic and fuzzy
nature of human thinking and communicating abilities. BRased
upon it a technique was developed that could be applied in
profiling offender templates and differences that are fuzzy

in nature.

Topology on the other hand provides a useful Dbag of
techniques that appear Dbetter able to model the natural
surroundings through the conceptualization of interior,
exterior regions, edges and boundaries in our habitat.
Topology was also seen to provide a link between the spatial
and temporal dimensions of the criminal events. Similarly,
voronol diagrams provide another set of powerful techniques
that are useful in exploring the geometrical properties of
the nodes, edges, physical situation factors and awareness

spaces.
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However, moving beyond templates, activity spaces and beyond
the subject matter of criminal behaviors, many different
kinds of mathematical technique can also be examined to
explore the criminal justice system dynamics. The manner of
handling citizen problems, responding to calls for service,
or managing the resources to meet new challenges has been
handled through a variety of ways. One of the most useful
and indeed widely utilized methodology is that of operations

research (OR).

As (Maltz 1994 b: 201-202) points out, “The criminal justice
system is an information-intensive public bureaucracy”, that
“...1s overflowing with data, providing excellent
opportunities for studies aimed at detecting patterns in the
data”. Not surprisingly, efforts to find patterns in this
vast body of data has led to the development of several
kinds of mathematical modeling techniques that have found
applications in such diverse fields as simulation techniques
of the system, studying criminal careers, recidivism, the
deterrent effect of death penalty, 1in projecting prison
populations, or in estimating the size o0f criminal
populations (e.g., Belkin et al 1972; Blumstein et al 1988;
Ehlrich 1975; Greenberg 1978; Lattimore and Baker 1992;
Maltz 1984; Rossmo and Routledge 1990; Stull 1994). Another

major area of application of these techniques have been in
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police studies ranging from resource management to patrol
allocation models (e.g., Larson 1975; Chaiken and Dormont
1978b; Bodily 1978; Chelst 1978; Green and Kolesar 1984;

Colville 1989).

Time Series Analysis in Criminological Research
Similarly, examining the system on a longitudinal basis to

see how it behaves over a period of time and to look for
inherent patterns has also been a common methodology. Such
time series analysis 1is an indispensable tool for the
studies in criminology and large contribution to the
literature has been made on these techniques (Bennett 199%1;
Hale and Sabbagh 1991; Lin, MacKenzie and Gulledge 1986;

Macmillan 1995; Powers, Hanssens and Hser 1993).

However, time series analysis have commonly  imposed
artificial restrictions to study patterns within the data.
In some ways restrictions themselves have created artificial
patterns that may even have hidden the basic nature of the
stochastic process. In this chapter we will briefly outline
the limitations in the common statistical analysis of tiﬁe
series data and explore another method that attempts to
provide a different insight into the phenomenon. As an
example we will use the police calls for service data,
spread over a limited time period and analyze it through

this technique. We will demonstrate that such police data
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has a fractal dimension and that it calls into question
various kinds of assumptions made upon this data as well as
the system dynamics that is considered neutral in its data

entry practices.

The Nature of Time Series Analysis:
One of the purposes of a time series analysis is the need to

forecast events based upon the information from past events.
The basic procedure 1is to analyze the past time data,
identify a pattern and then extend this pattern into the
future to prepare the forecast (Bowerman and 0O’Connell 1979:

5).

Naturally, the underlying expectation is that the identified
pattern will continue in the future. However, the time
series data ¥X; (T= 1,2,...,n) with interval between X: and Xiy;
being fixed and constant is different from other kinds of
data because the order of the values is equally important.
Time series has four major components: trend, cycle,
seasonal variations and irregular fluctuations, that
commonly occur in any combination or may occur all together.
It is for this reason that no single best forecasting
technique exists and all time series models include some

degree of errors.
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In general, error terms are included to take care of unknown
factors that may affect dependent variable, or to account
for measurement problems and thirdly to account for the
unpredictable element of randomness in human responses
(Ostrom 1978: 12). Due to the probabilistic nature of the
equations in temporal series, some assumptions about the
error terms have to be made. In particular, the following

kinds of assumptions are made:

I. Error terms have expected mean of value 0.
IT. Errors have constant variance over all the
observations.

ITI. Terms corresponding to different points in time

are not correlated.

Additionally, a major problem is that of the aggregation of
data over some fixed interval. Some variables have a
continuous existence, like process of aging, movement of
people, temperature and so on. Some are aggregated and then
presented, like official statistics, census variables and
offenders incarcerated in state prisons. In some cases there
is little control over the time frame and in others usually
there 1is some choice but not an unlimited one. In all such
cases there is the need to give attention to the selection
of the time interval over which values are being aggregated.

Clearly then, 1in time series analysis there will not be
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uncontested and universal rules for analyzing the data: a
great deal will depend upon the objective of the study

(Kendall 1973: 6).

In this section we will examine a particular kind of time
series analysis that attempts to avoid making some of the
above mentioned assumptions and shifts the focus from crime,
event, time to system response. Such a change in perspective
also calls for an alternative approach, a process that
involves a different nature of analytical methodology. The
technique that we will outline here leads to an unexpected
result about the temporal distribution of the data points
and demands a new look at the way system is functioning and
recording the events. It also presents the case where a
technique raises new questions and throws new light upon the
situational factors. We will demonstrate this technique with
reference to the calls for police service that are recorded
by the computer aided dispatch (CAD) system of Vancouver
police department. The nature of these calls range from
complaints about the commission of some crime to need for
police assistance in handling disputes, public annoyance,
officer assistance call and so on. These calls form the
emergency response basis for the Vancouver police patrolling
units and the registration system for public complaints

about crime.
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Emergency Calls for Police Services as Useful Crime Data
The number of calls for service received by the police

department have great significance and several utilities,
both for organizational planning and for its daily
operations. Calls for service have been used as measures of
crime; as arrest patterns on developing robbery trends and
for analyzing informal social control in residential urban
environments (Bursik, Grasmick and Chamlin 1990; Warner and
Pierce 1988; Taylor, Gottfredson and Brower 1981). Sherman,
Gartin and Buerger (1989) have discussed its strengths and
weaknesses and found 1t to be a suitable source of

information on crime and police functions.

Although, there exists a large literature regarding the
problems of using police data (e.g., Wolfgang 1963; Kituse
and Cicourel 1963; Biderman and Reiss 1967; Wheeler 1967;
Black 1970; Hindelang 1974; Skogan 1975; Hindelang, Hirschi
and Wels 1981; Bottomley and Pease 1986; Lowman and Palys
1991) the data obtained from the CAD system is said to
overcome some of the earlier criticisms of the official
sources. The CAD system in use with most large police
departments is primarily meant for the efficient dispatch of
police officers in response to calls for service. As an
incidental resu.t of performing 1its primary functions, the

CAD system also provides a number of benefits as collection
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and output of crime related information. In this system, the
911 calls are centrally processed at one location where the
computer system automatically stamps the time of receipt of
the call. The system adds the day, month and year and the
time in hours, minutes and seconds for every call being

recorded.

The category and nature of the call is identified by a
police handler who directs a patrolling car, if required, to
visit the place of call origin. The nature of call by code
is also simultaneously entered into the system by the
handler. Thus, within a short period, the call for service
is coded and registered into the system as a permanent

record.

Primarily, it is the largest data collection procedure that
is moreover unscreened (Sherman, Gartin and Buerger 1989).
The citizen action of dialing 911 immediately results in
automatic recording of the location and time of the call. Of
course we have already shown how the temporal dimension of
criminal events are homeomorphic to their spatial space, are
non-uniformly distributed and have peaks and valleys. These
clearly reflect patterns of criminal events that apparently
are guided by activities of everyday life. However, the

police records upon which the temporal space was constructed
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is itself the result of different kinds of processes. These
are the decisions of victims and offenders that leads to the
commission of the criminal event, the individual decisions
that result in a call to the police as well as the decision
made by the dispatcher in recording this information into a
set category. The third process too is equally significant
though it has been maintained by scholars to be free of

human discretion (Sherman, Gartin and Buerger 1989: 35).

The CAD recording system is meant to keep a stable and
consistent definition of incidents over time. On receiving
the information, the complaint is promptly coded into a
specific nature of the incident that is modified only later
by actual description by the visiting officers. The data is
also easily accessible to researchers and machine readable
for analytical purposes. The system 1is therefore said to

increases uniformity and reduce errors in the recording.

Apart from the above mentioned facilities, the CAD system
includes Standard Automated Management Reports, which assist
analyses relatea to Response Time, Incident Queuing,
Dispatch Activity, Workload, Units Fielded, Officer Activity
and even perscnnel services (MU and Brantingham 1992).

Undoubtedly, CAD is beginning to be seen as a vital and
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practical source of information both for crime incidents and

policing purposes.

A major problem with this data is that the time stamped by
the computer is about the origin of the call and not the
time of offense itself. Frequently, the time of the offense
is never learnt, as in auto theft cases in which only the
time of discovery are known to the police. However, police
response 1is typically based upon the time complaint 1is
received and the actual time of the offence is frequently
estimated only by the visit of investigating officers to the
scene of crime. Moreover, as the previous analysis of
‘burning times’ suggests, the emergency calls for service do
correspond to the seriousness of the offences. Thus, even
with the time period of the receipt of the call, this data
set is a useful source of information. However, the
limitation of this data set is that the spatial coordinates
are of the place from where the call was made rather than
where the event took place. Since in general the call for
service is usually made from within a block or so of the
place where the event took place the data does approximate

the place of event.

Although the “under reporting is not the outcome of decision

making practices of the department or the patrol officers”
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(Bursik, Grasmick and Mitchell 1990: 437), the discretion of
recording the calls “generally lies with the operators who
dispatch the cars” (Antunes and Scott 1981: 168). Despite
some limitations the system is designed to ensure minimal
human intervention and discretion thereby creating a system

of increased accuracy in recording of the crime data.

As Biderman and Reiss (1967) suggest, there is no ‘true’
count of criminal events, only different socially organized
ways of classifying them, each with different flavors and
biases. With this understanding calls to police provide the
most faithful and extensive account of what the public tells
the police about crime or order maintenance (Sherman, Gartin
& Buerger 1989). Considering that Vancouver police receive
around 30000 calls for service in a month, information of
this nature is valuable and at present, impossible to obtain

from survey techniques or other sources.

Utility of the CAD System
For the police this automated computer aided dispatch system

has become an 1indispensable data bank for manpower
deployment, emergency planning, resource allotment and
policy matters. In Vancouver, this data bank is also being
used in operations and in information exchange with the city
government. The number of calls per some unit time period

determine how police resources and manpower reserves are
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deployed. Thus, evening hours that usually have much larger
number of calls for service require greater number of police
officers and patrol cars to be sent to the streets than

early afternoon hour periods when calls are less.

Supervisors and police administrators frequently struggle
with work shift policies such as rotating vs. fixed days
off, the 5 to 8 versus 4 to 10 plan or the 1 to 2 officer
per car schedules due to the uncertain nature and number of
calls. “Such issues lie at the heart of proper allocation of
police resources and changes in deployment policies can have
a major impact on the productivity and efficiency of a

department” (Police Chief 1989).

However, all such decisions are dependent upon the expected
number and nature of calls. A proper estimate of the number
of calls for service at some period of time is thus crucial
for any police manager to plan the optimum and efficient use
of his her resources. An ideal department always strives to
have extra officers and material resources to respond
quickly to any citizen call for service, the response time
being as short as possible. 1Indeed, OR based 1linear
programming techniques are useful in this form of modeling
and have been applied in police studies (e.g., Caulkins

1993; Green 1984; Kern 1989; Police Chief 1989).
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Since the number of calls varies from a low around midnight
hours to an unmanageable high during evening shifts, with
wide fluctuations in between, it is always a problem to
anticipate the number of calls and keep in reserve, surplus
officers to respond promptly. Ideally, if the number of
calls are 1low, the department would wish to deploy fewer
officers, and during ‘rush’ periods would like to have more
officers. The perfect match is to have one and only officer
ready as soon as the call is received. A large number of
these problems have been studied through operation research

techniques (Kern 1989; Caulkins 1993; Maltz 1994Db)

“The police patrol administrator is always faced with the
difficult task of using scarce resources to serve an
uncertain demand” (Kern 1989). In practice, the response
time varies considerably, being chiefly dependent upon the
availability of officers. This may 1lead to a dangerous
situation when no officer is available at the receipt of a
high priority call. On the other hand, it is uneconomic to
have officers waiting with no call in sight. The problem
therefore is to adopt a policy so as to match the number of
calls received with the available number of officers without

creating undue delays.
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In analyzing the frequency distribution of calls the
standard method has been to determine their mean and
variance and estimate a range which has a high degree of
confidence level. Police administrators have sought to
improve the performance of patrol deployment by making in
general two highly inter-related decision types: patrol
sector design, in which the officers are assigned a sector
and allowed to patrol in their own manner. In the second
type, patrols are assigned on a geographical basis such that
all together the area is covered by the shortest response
time period (Kern 1989). Numerous management scientists have
also attempted to develop patrol allocation models and
algorithms for minimizing the response time in view of the
uncertain or random nature of calls for service (e.g.,
Larson 1975; Kansas City 1977 wvol. I & II; Beltrani 1977;
Bodily 1978; Chaiken and Dormont 1978a & b; Chelst 1978;

Green 1984; Kesslu 1985; Birge and Pollock 1989).

Now, almost all ©police departments follow either the
sectoral or the geographical coverage systems for patrolling
purposes and sometimes innovate for specific tasks.
Generally, such plans for personnel or vehicle deployments
are based upon the standard form of statistical analysis,
estimating for means and standard deviations to obtain the

confidence interval. However, as any police manager knows,
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the methodology is not perfect and there are periods where
the confidence 1level 1is seriously Dbreached. The fault
naturally does not lie in the mathematical ability of the
concerned manager but in the common use of statistical
techniques for the situation where the underlying
assumptions of the model used may not be wvalid (Maltz

1994a) .

In fact, in the use of statistical methods, little thought
if ever 1is given to the nature of data. Although,
statistical methods of this type clearly require the data to
be randomly generated and to come from a uniformly
distributed population, this requirement is never verified
and rarely given any serious consideration. The methodology
of determining the confidence interval for such calls for
police service 1is  thus, essentially based upon the
assumption that these calls are a random selection from a
uniformly distributed population. Hence, if these
assumptions are violated then the whole class of statistical
methods whose application assumes these properties ought to
be ruled out. Consequently, building confidence intervals to
estimate the fluctuations of police call data may be totally
inappropriate (and therefore faulty) if the nature of data

is different for the underlying assumptions of the model.
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Additionally, the range of fluctuations of calls around its
average 1is dependent upon the time interval over which the
range 1s examined. This range would naturally change
according to the length of time used for measurement. If the
series of calls is random 1in nature, then the range will
increase with the square root of the interval length in
accordance with the T¥? rule. But for any non-random time
series, such as the police call data, the statistical
analysis would be dependent upon the time period chosen. The
average number of calls and its variance will vary if the
interval is a day or a week or a month. The police patrol
administrator will determine different range of minimum and
maximum calls depending upon the chosen interval of time.
This is naturally quite artificial for different
interpretations have to be given for different time periods
of considerations. Thus, any statistical modeling for police
data 1is at best a crude artificial exercise capable of

providing any form of result as desired.

Instead of treating the recording of police data as an
outcome of random external processes, these fluctuations
should really be seen as being in part dependent upon the
police system: number and type of dispatchers, recording

procedures, citizens faith and reliance upon Dpolice
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services, workload and shift duty system where there is a

constant change in personnel (Larson 1975; Kern 1989).

The nature of calls to police is also dependent upon
disputes, actions continuing from before- the police call
being the last straw, the flash point of dispute or the
discovery of criminal behaviour after it has taken place.
Police officers also learn to recognize nature of calls from
previous experiences and thus learn to record, categorize in
manner from old habits. Thus, any time series of calls (as
also perhaps spatial) is likely to have a memory effect, a
dependency upon previous conditions. It 1is pertinent to
point out that the two Dbear a strong topological

relationship, as described in chapter VII.

What we propose to show is that the police call data and
thus all criminal events, are not random in their
distribution and have a longitudinal memory. The assertion
is that past events influence the present, and that the data
of 911 calls for service are not records of random events
happening at the recorded time but data of events continuing
from before. We will also show that this data has a fractal
dimension, a constant number that provides an estimate of
its memory time period. The results would suggest that

common statistical techniques are inappropriate for
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analyzing police data for deployment as the underlying
assumptions about the data are Dbeing violated. The
implications are clear: police managers must adopt other
kinds of methods, perhaps from Chaos theory or other

branches of mathematics for analyzing their data.

Since, common statistical analysis can be done only if the
call data is randomly distributed some other more complex
statistical techniques have been developed for the time
series but which make other kinds of assumptions. Therefore,
what we propose here is the R/S analytical technique that
makes no such assumptions. This methodology has been
developed by Mandelbrot (1972) and which is based upon the
Hurst exponent (1951). In this method, range of fluctuations
around an average are calculated for different time periods
and the measure is standardized by division of its variance
(thus also called as the Rescaled Range analysis). The
examination of the variation of this rescaled range with the
different time periods provides an estimate of the inherent

trend in the observations recorded.

Analytical Tools and Data Sources:
This analysis will be based upon the data obtained from the

911 calls for service of Vancouver police through their CAD
system. The CAD data has Dbeen made available under

controlled access to the Simon Fraser University Research
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Data library by Vancouver police and the data is available
in machine readable format. A computer program routine has
been built in that facilitates retrieval by time period,
nature or place of call, or many other variables as
required. The data used in this analysis was obtained from
the period 1990-1993 for different months and for different
crime types. The strengths and weaknesses of this data
source has already been discussed above and therefore we

will directly proceed to the development of the technique.

TECHNIQUE
Based upon the procedure developed by Hurst in his study of

fluctuations of Nile river 1in Aswan Dam, we define an

existing time series as follows:

X(t,N)= i(iz-AN) (1)

z=]

where
X(t,N)= cumulative deviations over N periods

i, = number of calls in hour z

Ay Average number of calls over N periods.

The range then becomes the difference between the maximum

and minimum levels attained in (i) above.

Thus R = Max [X({t,N)] - Min[X(t,N)]

where R range of X; Max(X)= maximum value of X

and Min(X)= minimum value of X.
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Based upon the above definitions, we examined an hourly
frequency distribution of police service calls and
calculated its range of fluctuations for different time
periods. To explore this technique we picked a month’s data,
the hourly frequencies of emergency calls for the month of
June 1991. This provided 720 data points (24 x 30) from
which the wvalues of R were calculated for time periods
starting from 5 to 360. Thus, the 720 data points were first
divided into 145 non-overlapping intervals of five hourly
time periods (720/5) and range of each of these periods was
calculated. Standard deviation of the calls around the means
of each intervals for each time period was also calculated.
This provided 145 values of R and a similar number of values
of standard deviations. From these 145 values of R/S were
calculated and their mean value taken for that interval.

This procedure was repeated for N = 5, 6,7...360".

The frequency distribution of the calls and the estimated
R/S values for different time periods were then calculated
by this program and plotted as on a log-log graph shown on

figure VII.

'The complete program written for this purpose is attached
as appendix 16.
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According to Hurst, R/S = (a*n)” (Hurst 1951) where H is the
hurst exponent. In order to estimate the value of H we can
take logs of both sides and plot log (R/S) vs. log(N). The
slope of the graph will indicate an estimate of H. This
procedure makes no assumption about the shape of the
underlying distribution and thus makes no demand upon the

nature of data.

The impact of the present on the future can be expressed as
a correlation C = 2! - 1 (Peters 1991: 64). Here C is the
correlation measure and H 1is the Hurst exponent. For the
case when H = 0.5, C = 0, that is the series is random and
there is no correlation between the past and the present.
For values of 0 < H < 0.5, the series 1is ergodic: if the
past values are large then the present will be small and
vice versa. When 0.5 < H < 1 it is a trend reinforcing
series; high values of past are likely to push the present
values even higher. Such persistent series are defined as
‘Fractional Brownian moction’ and are more common in nature
{Mandelbrot 1986: 8). It is known that H = 0.5 for series
which 1is a random walk and its cumulative deviations

increase with the square root of the time period.

Our calculation of the police call data from the log-log

plot gives the value H = 0.621. This indicates that many of
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the calls are associated with events that are not
independent. In other words, the recording of the calls for
service at the present time 1is being determined by past

events.

In order to test whether the calls for service records were
being influenced by past events or some additional factor
that has time dependency or ‘effective memory’, the data was
scrambled, that is randomly distributed. This was done by
entering random numbers from a table along-side the
distribution of calls and then sorting the two distributions
by the column of random numbers. This procedure scrambles
the calls in a random fashion. The ‘new’ series of calls was
again analyzed for its R/S values by the same procedure. The
time series of (i) was used again but with the scrambled
‘new’ frequency distribution of calls and through the same
program routine. The ‘new’ SR/S values were similarly
plotted on log-log graph against the varying time interval

from 5 to 360 (see figure VIII).

Interestingly, when the call data (720 points) were
scrambled (arranged randomly) the same analysis gives the
value of H to be 0.49, a value close to 0.5. A similar

treatment of random numbers also led to the same result,
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H = 0.50, despite any type of scrambling of these random
numbers. The implications are clear: scrambling destroys the
‘memory’ effect and makes the time series random in nature.
But in other words, the police call data does reflect a
‘memory’ and bears influence of the past values. This
demonstrates that it is not randomly distributed over time
and application of any statistical technique that assumes

independence over it is likely to be misleading.

Implications
Mandelbrot (1972) has shown that the inverse of the Hurst

exponent, 1/H is the fractal dimension of the distribution.
Accordingly, the fractal dimension of police call data is
1/0.62 which is 1.61. For H = 0.5, a random series the
fractal dimension is 2 and for all other values this
dimension 1lies between 1 and 2. Peters (1991: 101) has
suggested that the value at which the slope of the graph in
R/S vs. N log/log plot starts dropping provides an estimate
of the average cycle of the original data series. In our
case the slope drops approximately at log(N) = 3.4, that is

N = 30.

In order to judge the stability of this result, a similar
analysis was done for some other months and for some
specific crime types. In particular, frequency distributions

of calls for service for the period June 1992, to compare
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the results for another year and January 1993 to explore

another different time period was undertaken.

Similar analysis of specific crime types like ‘thefts from
autos’ and ‘assaults’ was also done about their underlying
patterns and periodic cycles. These particular crime types
were chosen because these have a much greater ‘density’ of
distribution than the others that have a large number of
‘gaps’ with zero values. All these time series data was
analyzed using the same computer program and from the
resultant graphs, an estimate was made about their slopes.
The results constituting the period and type of crime
analysis, the slope of the R/S series, the Hurst component

values and the ensuing fractal dimensions are summarized

below:
Crime Type H Fractal Dimension
Assaults
R/S values 0.59531 1.68
SR/S values .488934 2.04
Theft from Auto
R/S values 0.57163 1.75
SR/S values .548452 1.82
calls-Jan’ 93
R/S values 0.62214 1.61
SR/S values 0.49312 2.02

calls—-June’ 92
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R/S wvalues 0.622076 1.61

SR/S values 0.475337 2.05
The log-log graphs of the R/S values and the scrambled SR/S

values for the crime of assaults and theft from motor

vehicles are displayed as figure IX - XII.

The greater value of the fractal dimension for a series
implies it fluctuates more widely (Peters 1992). Thus, the
higher fractal dimension for the crimes of assaults and
thefts from autos indicates that their periodicity 1is
greater than for the total calls for service. The fractal
dimension therefore provides a unit of analysis for the
fluctuations cf different types of calls anda a different
method of examining the time series data. Moreover, R/S
offers a method to analyze such fluctuations of specific
crime series without demanding anything about their

underlying nature.

This is only a tentative examination of the technique and
its application to the ©police call data. Further,
examination of data for different months and for longer time
needs to be done before a more precise value for the
fractal dimension can be estimated. Since this is a new
technique that is being applied to the police call data it

is difficult to conjecture the reasons for such a fractal
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dimension to this time series. This requires research beyond

the scope of such an exploratory analysis.

Impact of Method upon Theory
Clearly then, R/S technique appears to initiate a stage

where the method will influence the theory. In the
application of statistical techniques, by making some
assumptions about the nature of the data, useful results
could be obtained to explain the reason for the trends in
the time series. On the other hand, a different nature of
mathematical analysis which avoids making the same kind of
assumptions ends up creating a radically different

perspective that now demands a new theoretical exXplanation.

By eliminating any assumptions about the nature of the data,
the technique does assist in displaying some inherent trends
but these in turn naturally raise several questions. Why do
different crime types display periodicity if the argument is
that the police handlers are somehow influencing the
recording procedure? What is the periodicity of the series
telling us? These are questions that remain unanswered at
present and call for greater in depth analysis of the data
as well as an examination of the procedures involved in

recording of the data.
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Moreover, as this thesis has been arguing, criminologists
need to pay dJgreater attention to the other kinds of
mathematical techniques and structures. Fractals have been
used 1in the description of the shape of the universe
(Martinez 1990; Perdang 1990; Iuo and Schramm 1992), in
ecological studies (Meltzer and Hastings 1992), 1in the
exploration of geographical data (The Geographical Magazine
1992), in studying organizations (Wheatley 1993), in
examining the structure of materials (Fahmy, Russ and Koch
1991), in medical sciences (Majumdar, Weinstein and Prasad
1993) and in many other kinds of subject matters. This kind
of mathematics that reveals patterns within patterns appears
to be the kind most appropriate and useful in explaining the
crime phenomenon. The patterns at the micro 1level have
similar characteristics at the macro level and this is a
clear indication of the state that has a fractal dimension.
Above all, this kind of mathematics provides a useful
concept to develop a different nature of criminological

inquiry, one that sees events from the individual stage but

transcending to the group level.
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CHAPTER X

CONCLUSION

This dissertation has argued for placing a greater emphasis
upon mathematics in criminology and to assert that
quantitative methods ought to be associated with mathematics
rather than Jjust statistical techniques. The dissertation
also pointed out that at the philosophical level mathematics
bridges the gap between quantitative and qualitative
methodologies and therefore mathematics should not be a
pariah to the latter group of researchers. The essential
difference between the two kinds of approaches lies
generally in a preference by the researcher for mathematics

over language as a tool of communication.

Furthermore, the major effort of this dissertation has been
in the exploration and description of some mathematical
techniques, little or never applied so far in criminology
and displaying their usefulness for this subject. The
treatment of these techniques in such an exploratory study
had to be necessarily limited to the analysis of some small
data sets with the wish to demonstrate their potentiality.
Much work remains ahead to probe deeper into these and other

mathematical techniques and to explore their applications in
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a wide variety of crime data. However, the dissertation
hopefully contributes to the growth of criminological
literature by raising awareness amongst its practitioners of
new possibilities and approach to the study of crime. The
consequence of this work may widen the debate about the
utility of quantitative methods and different kinds of

mathematical techniques in exploring the crime phenomena.

In each of the sections that describe the techniques,
possibilities for several new fields that <could Dbe
investigated through them have also been pointed out.
Nevertheless, it needs to be stated that these are not the
only appropriate techniques that could be used. Mathematics,
as has been stated again and again, is rich 1n terms of
techniques and there are several other branches that could
profitably be used by the criminologist. The subject matter
of mathematics in this respect has 1immense possibilities
chiefly Dbecause of the creativity it affords to the
researcher. Mathematics provides a powerful impetus to
mental imagery, intuition and the freedom to move across a
multidimensional field of data that may be unconnected or
connected inappropriately. The interplay between mathematics
and creative imagination and the application of its powerful
techniques to criminal Jjustice system data is 1likely to

provide strength in understanding the fascinating world of
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criminal behaviour. As Miller A. (1987: 312) points out,
“...mental 1imagery 1s a key ingredient in <creative
scientific thinking”, and there is no better tool than
mathematics to unleash creative imagination in

criminological research.

Some indication about the potential of mathematics has been
given by Greenberg’s book ‘Mathematical Criminology’ (1979)
where the author demonstrates the application of such
diverse techniques as calculus, 1linear algebra, matrix
algebra, probability theory and certain kinds of stochastic
processes. Coleman (1964), Fararo (1973), Leik and Meeker
(1975) too have outlined different techniques that may be
applied in criminological studies. Maltz (1994b) has further
opened the field by outlining the wutility of operation

research techniques in the study of criminal justice system.

Several other authors have demonstrated application of
Network analysis (Sarnecki 1890), different kinds of
econometric modeling techniques (Reilly and Witt 1992;
Alkan, Demange and Gale 1991) and computer simulations
(Stull 1994; Kern 1989) that appear to be initiating a new
era of quantitative methods to the discipline of

criminology. Further ©possibilities could 1lie 1in the
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mathematics of group theory, fourier series analysis,

differential equations, vector algebra and fractal geometry.

The movement towards a search for new techniques going
beyond statistics has already emerged in criminology
literature and the number of methodologists searching for
alternative ways to analyze crime data is growing steadily.
Therefore, 1if this dissertation succeeds in generating
interest amongst the criminology fraternity for a greater
and creative usage of mathematics and an approach different
from the standard statistical techniques then this effort

would be considered to be well rewarded.

-——x———
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APPENDIX 1

CLASSIFICATION OF QUANTITATIVE TECHNIQUES

The articles were classified on the basis of the dominant
technique used for the analysis and Jjustification of the
subject matter. In the instance where the author himself
/herself indicated the technique, as in the ‘Keyword’, that
was accepted, otherwise amongst all the techniques used, the
one that was most ‘advanced’ in nature was determined as the
dominant one. In general, the following chart provides the
types of techniques and their classification scheme followed

consistently:

Descriptive: Summary statistics, including table frequencies

and graphs, charts.

Analytical: Correlations, Testing of hypotheses through T-

tests, Chi-square tests, Regression, ANOVA, Factorial

Analysis, Discriminant Analysis, Principal Component
Analysis.
Sampling: Any quantitative techniques discussing or

illustrating sampling of population.
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Advanced: Multivariate Analysis, Canonical Correlation, Non-
Parametric Statistics, Cluster Analysis, MANOVA, OLS, Logit,
Probit, Tobit, Path Analysis, ARIMA, LISREL, Time Series
analysis, Stochastic processes, Survival Function Analysis,

Causal Modeling.

Mathematics: Poisson process models, Probability models,

Markov chain models, Growth-Decay models, Econometric
models, Network analysis, computer simulation techniques.
Those advanced statistical methods that discussed the
assumptions, built the mathematical model through equations,
relationship amongst variables etc. have also been included

under this classification.

Qualitative: Apart from the common techniques under this

head, the articles where the numbers were at best used for
illustration rather than for any analysis or Jjustification

of the argument have also been included.
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APPENDIX 2

CONTIGUITY OF CENSUS TRACTS

l

|

| i

TRACTS Adjacent tracts
AB AC |AD J|AE |AF AG AH Al A AK

1 2y 15.01; 15.02

2 11 15.02 15.01 14 3] 13.02

3 2 13.02 11 4

4 37 13.02 11 6 5

5 4 6 7

é 5 4 11} 1072 7

7 5 6] 10.02| 10.01 9 8

8 7 9 22 23 24

9 8 7 22 21 23 20/ 10.01] 10.02
10.01 9: 10.02 7 21 20 19 12 11
10.02 7 6 11 12} 10.01 9

11 4 3| 13.02, 13.01 12| 10.01] 10.02 6
12 11; 13.02] 13.01] 18.02 19 20; 10.01; 10.02
13.01 13.02 14| 18.01; 18.02 19 12 11
13.02 3 2 14, 13.01 12 11 4

14 2 15.02} 17.01| 18.01; 13.01: 13.02
15.01 1 2 15.02] 16.01
15.02 2 11 15.01; 16.01: 17.01 14
16.01 15.01! 16.62] 17.02! 17.01! 15.02
16.02 16.01! 17.01} 17.02 35 36.01 36.02
17.04 15.02] 16.01] 16.02] 17.02; 34.01| 18.01 14, 34.02
17.02 17.01] 16.01} 16.02 35| 34.02; 34.01
18.01 14 17.01; 34.01 23! 18.02 13.01
18.02 13.01! 18.01: 34.01 33 30 18 12

19 12, 18.02 33 30 29 20. 10.01; 13.01
20 10.01 12 19 29 28 21! 9

21 9 10.01 20 28 40 41 27 22
22 9 21 27 23 8

23 8 22 27 26 25 24

24 8 23 26 25

25 24 23 26 42 43

26 23 27 41 42 25 24

27 22 21 41 4z 26 23

28 20 29 39 40 41 21

29 20 19 30] 31.01 39 40 28

30 19! 18.02 33 321 31.02, 31.01 29
31.01 30 31.02 38 39 29
31.02 30 33 32 37 38 39; 31.01

32 33| 34.01! 34.02 37 38! 31.02 30

33 18.02! 18.01; 34.01! 34.02 32; 31.02 30 19
34.01 18.01: 17.01; 17.02; 34.02 32 33] 18.02
34.02 34.01; 17.02] 17.01 35 37 32 33
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TRACTS Adjacent tracts

35 17.02] 16.02] 36.01 52.01 51/ 50.02 37 34.02
36.01 16.02] 36.02! 52.01 51 3

36.02 16.02] 36.01] 52.01 | J;

3 32/ 34.02 35 51 50.02 50.01 38 31.02

38 31.02 32, 37 50.01; 49.01 39/ 31.01

39 29, 31.01. 31.02 38/ 50.01, 49.01 40 28

40 28] 29 39] 49.01. 48 41 21,

41 270 21 28 407 49.01 48] 46 4502 42 26

42 25 260 41 46 45.02 44, 43

43 25 42, 45.02 44

44 43 42 4502 45.01

45.01 44 45.02 46, 47

45.02 42 41 46 47 45.01 44 43

46 41 48 47 4501 4502 42

47 46 48] 45.011 45.02 | %

48 41 40 49.01] 49.02 47 46

49.01 40: 39 38/ 50.01/57..0 | 59.01 49.02 48 41
49.02 49.01' 48

50.01 38 37 50.02 56 571 59.01/ 49.01 39
50.02 37! 35. 51! 54 56 57 50.01

51 35 36.01 52.01 52.02 54 56/ 50.02 37
52.01 36.01! 36.02! 35 51 54 52.02

52.02 52.01 51 541 53

53 52.02 54 5501 55.02

54 511 52.01 52.02] 53 55.01 56! 50.02

55.01 54 531 5502 56

55.02 55.01 53 56 % f

56 50.02 51 541 5501 55.02 58 57 50.01

57 4901 50.01 50.02 56 58 59.01

58 56 57 59.01

59.01 49.01| 50.01 57 58] 59.02 64 65 66
59.02 59.01 60 64 65

60 59.02 61 63 64

61 60 62 63 64

62 61 63 67 68

63 60 61 62 64 65 67

64 €0 61 63 67 65 59.02] 59.01

65 64! 59.02] 59.01 66 67 63

66 65| 59.01 67

67 68 62 63 64 65 66

68 62 63 67
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APPENDIX 3

CONNECTIVITY BY ETHNICITY 10% CUT

TRACTS Adjacent tracts

AB AC | AD AE AF | AG AH Al AJ AK
1.00 0 0 D | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
2.00 0 1 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
3.00 0 1 0 0 | #N/A | #N/A | #N/A | #N/A | #NJA | #N/A
4.00 0 1 1 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
5.00 0 0 0 T #N/A [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
6.00 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
7.00 0 0 0 0 0 0 | #N/A [ #N/A | #N/A | #N/A
8.00 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
9.00 0 0 0 1 1 0 0 0 | #N/A | #N/A
10.01 0 0 0 0 1 1 0 0 | #N/A | #N/A
10.02 0 1 0 1 0 0 | #N/A T #NIA T #NIA | #NIA
11.00 1 0 0 1 1 . 0 0 0 | #N/A | #N/A |
12.00 1 0 0 1 0 | 0 0 1| #N/A | #N/A |
13.01 1 1 1 1 0 | 0 1 #N/A | #N/A | #N/A |
13.02 1 0 1 1 0 1 1 #N/A | #NIA T #EN/A
14.00 0 0 1 1 1 1 T#HN/A T #N/A T ENIA | ENA
15.01 0 1 1 1 1 [HN/A | #N/A T #EN/A | EN/A T #N/A | #NIA
15.02 1 0 K 0 0 | #N/A L #N/A | #N/A | #N/A
16.01 1 1 0 | 0 1 T #N/A | #N/A  EN/A | #N/A | #NA
16.02 1 1 1 1 1 1 T #N/A  #N/A | #NA | #NA
17.01 0 0 1 1 1 1 1 . 1 | #N/A | #N/A
17.02 1 0 1 1 1 1 U#N/A #NIA T EN/A | #N/A
18.01 1 1 1 0 1 1 #NJA T #EN/A | #N/A | #N/A
18.02 1 0 1 1 0 0 1 T#NA  #NA | #ENIA
19.00 0 0 0 1 0 0 1 . 0 | #NA #NA
20.00 1 0 0 0 0 0 . 0 #NA  #NA  #N/A |
21.00 1 0 0 0 0 0 | 0 0 ! #NA #NA
22.00 0 0 C 0 0 | #N/A | #N/A | #N/A T #NIA | #N/A
23.00 0 0 0 0 1 1 | #N/A  #N/A | #N/A T #EN/A
24.00 0 1 0 1 T#HN/A | #N/A D EN/A | #N/A T #N/A | ENIA
25.00 1 1 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
26.00 0 1 0 0 0 0 | #N/A | #N/A | #N/A | #NIA
27.00 0 0 0 0 1 0 | #N/A | #N/A | #NJA | #N/A
28.00 0 0 0 0 0 0 | #N/A | #N/A | #NIA | BN/A
29.00 0 0 0 0 0 0 0 | #N/A | #N/A | #N/A
30.00 1 0 1 1 1 0 0 | #N/A | #NA | #N/A
31.01 0 0 | 0 0 1 T #N/A | #N/A | #N/A T #NIA | #N/A
31.02 1 1 1 10 0 0 0 | #N/A | #N/A | #N/A
32.00 1 1 1 10 0 1 1 | #N/A | #N/A | #N/A
33.00 1 0 1 1 1 1 1 0 | #N/A | #N/A
34.01 1 1 1 1 1 1 1 #N/A T #NIA L #NA
34.02 1 1 1 1 0 1 1 [ #N/A | #N/A | #N/A
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TRACTS Adjacent tracts

35.00 1 1 1 1 1 0 0 1 #N/A | #N/A
36.01 1 0 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
35.02 1 0 0 #N/A | #N/A | BN/A | #N/A | #N/A | #N/A | ENVA
37.00 0 0 0 0 0 1 0 0 #N/A | #N/A
38.00 0 0 0 0 0 0 0 #N/A | #N/A | #N/A
39.00 0 0 0 0 0 0 0 0 #N/A | #N/A
40.00 0 0 0 0 0 1 0 #N/A | #N/A  #N/A
41.00 0 0 0 1 0 0 1 1 0 0

42.00 0 0 0 0 1 0 1 #N/A | #N/A | #N/A
43.00 0 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
44.00 1 0 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.01 0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.052 1 1 1 0 | 0 1 1 #N/A | #N/A | #N/A
46.00 1 0 0 0 1 0 #N/A  #N/A | #N/A T #N/A
47.00 0 1 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
48.00 0 0 0 0 1 0 #N/A | #N/A | #N/A | #N/A
49.01 0 0 0 : 0 | #NA 0 0 | 0 0 ' #N/A
49.02 0 0 #N/A | #HNIA  #N/A L #N/A | ENIA | #NJA | #NJA T #ENJA
50.01 0 1 0 0 | 0 0 0 0 | #N/A | #N/A
50.02 0 0 0 0 0 0 0 ¢ #N/A | #N/A | #N/A
51.00 1 1 1 1 1 0 0 1 | #N/A | #N/A
52.01 1 0 1 1 1 1 #N/A | #N/A | #N/A | #N/A
52.02 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
53.00 1 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
54.00 1 1 1 1 0 0 0 #N/A | #N/A | #N/A
55.01 0 1 0 & 0 | #N/A | #N/A L #N/A  #N/A | #N/A | #N/A
55.02 0 o 1 #N/A O EN/A L #N/A L EN/A  #N/A | #N/A T EN/A
56.00 0 0 c . 0 @ 1 0 0 | O #N/A | #N/A
57.09 0 0 ¢ 0 . 0 0 | #N/A | #N/A | #N/A | #N/A
58.00 0 s} 0 . #N/A  #N/A | #N/A T #N/A | #N/A | #N/A | #N/A
59.01 0 0 0 0 : 0 0 1 © 1 | #N/A @ #N/A
59.02 0 1 1 1 0 #N/A U #N/A | #N/A | #N/A | #N/A  #N/A
60.00 1 1 G 1 H#N/A | EN/A  #N/A | #N/A | #N/A L BN/A
61.00 1 0 0 | 1 [ #NJA T #N/A | #N/A  #N/A | #N/A | #N/A
62.00 0 0 0 1 IN/A L EN/A | EN/A | #N/A T #NJA | #N/A
63.00 1 0 0 1 0 1 0 #N/A | #N/A | #N/A | #N/A
64.00 1 1 0 0 0 1 0 #N/A | #N/A | #N/A
65.00 0 0 1 1 0 1 #N/A | #N/A | #N/A | #N/A
66.00 1 1 1 #N/A L #N/A | #N/A | #N/A | #N/A | ENJA L #N/A
67.00 0 0 0 0 0 1 #N/A | #N/A | #N/A | #N/A
68.00 1 0 0 #N/A | #N/A | BN/A | #N/A | #NJA | #N/A | #N/A
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APPENDIX 4
CONNECTIVITY BY POPULATION DENSITY 10% CUT
TRACTS Adjacent tracts
|__density AB A:C A:D AE AF | AG AH Al Ad AK
1.00 0 0 0 | #N/A | #N/A | #EN/A L BN/A | EN/A | #N/A | #N/A
2.00 0 0 0 0 0 0 | #N/A | #NJA | #N/A | #N/A
3.00 0 ) 0 0 | #N/A  #N/A | #N/A | #N/A L #N/A | #N/A
4.00 0 o i 1 0 | 0 #N/A #N/A | #N/A | #N/A | #N/A
5.00 0 0 . 0 | #N/A#NA #NA #NA | #N/A | #N/A | #N/A
6.00 0 0 ¢ 0 i O 0 | #N/A | #N/A | #N/A | #N/A | #N/A
7.00 0 0 0 0 0 | 0 | #N/A | #N/A | #N/A | #N/A
8.00 0o i 0 : O 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
9.00 0 i 0 . 0 0 1 0 0 0 | #N/A | #N/A
10.01 0 1 | 0 0 0 1 0 0 | #N/A | #N/A
10.02 0 i 0 | 0 0 1 0 | #N/A | #N/A | #N/A | #N/A
11.00 1 1 ¢ . 0 0 0 0 ) 0 | #N/A | ENA
12.00 0 0 | 0 0 0 0 0 | 0 | #N/A | #NA
13.01 1 0 : 0 0 0 0 0 | #N/A | #N/A | #N/A
13.02 0 0o 1 1 0 0 0 | #N/A | #N/A | #N/A
14.00 0 0 0 0 1 1 #N/A | #N/A T #N/A | #N/A
15.01 0 0 1 O | #N/A L #N/A | #N/A | #N/A | #N/A | #N/A
15.02 0 0 1 0 0 0 | #N/A L #N/A | #N/A | #N/A
16.01 0 0 0 0 | 0 [ #N/A | #N/A | #N/A | #N/A | #N/A
16.02 0 1 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
17.01 0 0 1 ) 0 0 1 #N/A | #N/A
1702 0 0 0 0 | 0 0 | #N/A | #N/A | #N/A | #N/A
18.01 0 0 1 0 0 0 | #N/A | #N/A | #N/A | #N/A
18.02 0 0 0 1 0 0 0 | #N/A | #N/A | #N/A
1900 ;| 0 | © 0 0 0 0 1 0 | #N/A | #N/A
20.00 0 | 0 0 0 0 1 0 | #N/A | #N/A | #N/A
21.00 0 0 1 0 0 0 0 0 | #N/A | #N/A
22.00 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
23.00 0 0 0 1 1 1 0 | #N/A | #N/A | #N/A | #N/A
24.00 0 0 0 1 #N/A | #NIA | #N/A L #N/A T #N/A | #N/A
25.00 1 1 1 0 0 | #N/A | #N/A | #N/A T EN/A | #N/A
26.00 1 0 0 0 1 1 U #N/A T #N/A C#N/A | #N/A
27.00 0 0 | O 0 0 0 #NA | #NA | #NA  #NA
28.00 0 0 | 0 ) 0 © 0 | #N/A ' #NA  #N/A | #NA
29.00 0 0 ; O 0 0 : 0 0  #N/A  #N/A | #N/A
30.00 ] o 0 0 0 0 | 0 | #N/A @ #N/A #NA
31.01 0 1 1 1 0  #NJA | #N/A | #N/A | #N/A | #N/A
31.02 0 c ! o 0 1 1 1 1 [ #NA#NA : #NA
32.00 0 ¢ | 0 0 0 . 0 | 0 | #NA #NA  #NA
33.00 1 ¢ i} 0 0 ¢ 0 | 0 | 0 @ #NA #NA
3401 1 0 0 0 0 | 0 | 0 |#NA #NA #NA
3402 | O 0 1 0 0 | 0 | 0 1#N/A|#NA | #NA
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TRACTS Adjacent tracts
35.00 0 0 1 1 0 0 0 0 | #N/A | #N/A
36.01 0 1 1 0 1 #N/A | #NIA | #N/A | #N/A | #N/A
36.02 0 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
37.0G 0 0 0 0 0 0 0 0 | #N/A | #N/A
38.00 1 0 0 0 0 1 1 #N/A | #N/A | #N/A
39.00 0 1 1 1 0 0 0 0 | #N/A | #N/A
40.00 0 0 0 0 0 0 0 | #N/A | #N/A | #N/A
41.00 0 0 0 0 0 0 0 . 0 0 0
42.00 0 0 0 0 0 0 0 | #N/A | #N/A  #N/A
43.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
44.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.01 0 1 0 0 | #N/A | #N/A | #N/A | #N/A T #N/A | #N/A
45.02 0 0 0 0 1 0 0 | #N/A | #N/A | #N/A
46.00 0 0 0 0 0 0 ! #N/A | #N/A T #N/A T #N/A
47.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A

| 48.00 0 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
49.01 0 0 0 0 | #N/A 1 0 0 | 0 . #NA
49.02 0 0 | #N/A L #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
50.01 0 0 0 1 1 0 ' 0 0  #N/A | #N/A
50.02 0 0 0 0 0 0 | O 0 | #N/A | #N/A | #N/A
51.00 0 0 0 o 1 | 1 0 0 | #N/A | #N/A
52.01 1 0 1 0 0 1 #N/A | #N/A | #N/A | #N/A
52.02 1 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
53.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
54.00 1 0 0 0 1 1 0 | #N/A | #N/A | #N/A
55.01 1 0 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
55.02 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
56.00 o 1 1 1 i 1 1 0 0 0 1 #N/A | #N/A
£7.00 o i 0o i 0 . 0O 0 0 | #N/A | #N/A | #N/A | #N/A
58.00 0 | 0 O I #N/A | BN/A T EN/A | #N/A | #N/A | #N/A | #N/A
59.01 1 0 0 | 0 0 | 0 0 0 | #N/A | ¥N/A
59.02 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
61.00 0 0 0 1 #N/A | #N/A | #N/A T #N/A | #N/A T #N/A
62.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
63.00 0 0 0 0 0 | 0 | #N/A #NA | #N/A | #N/A
64.00 0 1 0 0 0 0 0 | #N/A | #N/A | #N/A
65.00 0 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
66.00 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 0 ) 0 0 0 | #N/A | #N/A | #N/A | #N/A
68.00 0 0 | 0 | #N/A#ENA | #N/A | #NA | #N/A | #N/A | #N/A
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APPENDIX 5 |

CONNECTIVITY BY RENTED HOUSING 10% CUT ¢
TRACTS Adjacent tracts
AB A:C AD AE AF AG | AH Al Al AK
1.00 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
2.00 0 1 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
3.00 0 0 1 1 T#N/A T #NIA | #N/A T EN/A | #N/A | #ENJA
4.00 1 0 0 1 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A
5.00 0 0 0 | #N/A | #N/A T HENA T #N/A T EN/A T EN/A T #EN/A
6.00 0 1 0 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A
7.00 0 0o 0 0 0 | 0 | #N/A | #N/A | #N/A | #N/A
8.00 0 0 i 0 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A
9.00 0 0 0 0 1 0 0 0 | #N/A | #N/A
10.01 0 1 0 0 0 11 0 | #N/A | #N/A
15.02 0 1 ) 0 0 0 | #N/A T #N/A T EN/A L EN/A
11.00 0 1 0 1 1 0 | 0 0  #N/A | #N/A
12.00 1 0 0 0 0 0o : 1 0  #N/A | #N/A
13.01 0 0 1 1 0 0 1 #N/A | #N/A | #N/A
13.02 0 0 0 o | 1 0 0 | #N/A | #N/A | #N/A
14.00 0 1 0 0 1 0 | #N/A | #N/A | #N/A | #N/A
15.01 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
15.02 1 ) 0 0 0 1 #N/A T #N/A | #N/A | #N/A
16.01 0 0 0 0 0 | #N/A | #N/A | #N/A T #N/A | #N/A |
16.02 0 ) 0 0 0 0 | #N/A | #N/A T #N/A | #N/A
17.01 0 0 0 0 1 0 0 0 | #N/A | #N/A
17.02 0 0 0 1 0 1 #N/A | #N/A | #N/A | #N/A
18.01 0 0 1 1 0 1 #N/A | #N/A | BN/A | #N/A
18.02 1 1 0 1 1 0 0 | #N/A | #N/A | #N/A
19.00 1 0 ) 0 0 0 1 1 0 | #N/A | #NA
20.00 0 0 0 0 0 1 0 | #N/A | #N/A | #N/A
21.00 0 0 1 0 0 0 0 0 | #N/A | #N/A
22.00 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
23.00 1 0 0 0 0 1 #N/A T #N/A T #N/A | #N/A
24.00 1 1 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A |
25.00 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
26.00 0 1 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
27.00 0 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
28.00 0 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
29.00 0 1 0 1 0 0 0 | #N/A | #N/A | #N/A
30.00 0 1 1 0 0 0 0 | #N/A  #N/A | #N/A
31.01 0 1 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A
31.02 0 0 0 0 0 | 0 | 1 T#NAT#N/A  #NA
32.00 0 0 1 0 0 0 0 | #N/A | #N/A ' #N/A
33.00 1 1 1 0 0 0 | 1 . 0 #N/A @ #NA
34.01 0 0 1 1 0 11 #N/A T #N/A | #N/A
34.02 1 0 0 1 0 1 0 | #N/A  #NA  #N/A
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TRACTS Adjacent tracts

35.0 1 0 0 0 1 0 0 1 #N/A | #N/A
35.01 0 1 0 0 0 | #N/A | #N/A | #N/A T #N/A | #N/A
36.02 0 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
37.00 0 0 0 0 0 0 0 0 #N/A | #N/A
38.00 0 0 0 1 0 1 0 #N/A | #N/A T #N/A
39.00 0 0 0 1 0 0 1 0 #N/A | #N/A
40.00 0 0 1 0 0 0 0 #N/A | #N/A | #N/A
41.00 0 0 0 0 0 1 0 1 0 0

42.00 0 0 0 0 0 1 0 | #N/A | #N/A | BN/A
43.00 0 0 0 0 [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
44.00 0 1 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.01 0 1 0 0O | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.02 0 1 0 0 0 0 0 #N/A | #N/A | #N/A
456.00 0 1 1 0 1 0 | #N/A | #NJA | #N/A | #N/A
47.00 1 1 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
48.00 1 0 0 1 1 1 #N/A | #N/A | #N/A | #N/A
49.01 0 0 0 0 | #N/A 0 0 0 0 | #N/A
49.02 0 1 #N/A | BN/A | #N/A T #NJ/A | #N/A T #N/A | #N/A | #N/A
50.01 1 0 i 1 1 1 0 0 | 1 #N/A | #N/A
50.02 0 0 ' o 0 0 1 1 [ #NIA T #N/A | EN/A
51.00 1 0 ! 0 1 7 1 0 0 0 | #N/A | #N/A
52.01 0 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A
52.02 0 1 0 0  #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
53.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
54.00 0 0 0 0 0 0 0 #N/A | #N/A | #N/A
55.01 0 0 1 1 0 [ #N/A | #N/A | #N/A T #N/A | #N/A | #N/A
55.02 1 0 0 | #N/A  #N/A | #N/A | #N/A T #N/A | #N/A | #N/A
56.00 1 0 0 0 0 ! © 0o | 1 1 #N/A | #N/A
57.00 0 1 1 1 1 0 0 #N/A | #NIA | #NIA T #N/A
58.00 0 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
59.01 0 0 0 1 0 1 1 0 #N/A | #N/A
59.02 0 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
61.00 1 0 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
62.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
63.00 1 1 0 0 1 1 #N/A | #N/A | #N/A | #N/A
64.00 1 1 0o | 1 1 1 1 #N/A | #N/A | #N/A
65.00 1 1 1 1 11 0 #N/A | #N/A | #N/A | #N/A
66.00 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 1 0 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
68.00 0 1 1 #N/A | BN/A | #N/A | #N/A | #N/A | #N/A | #N/A
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"APPENDIX 6

CONNECTIVITY BY SINGLE PARENT 10% CUT

TRACTS ! Adjacent tracts
AB AC : AD AE AF | AG AH Al AdJd & AK

1.00 0 0 0 | #N/A T #HNIA | #N/A | #N/A #N/A L ENIA T #N/A
2.00 0 0 0 0 1 1 1 #NIA #NIA | #NIA | #NIA
3.00 1 1 1 0 [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4.00 0 0 0 | 1 1 [#NA | #NA T #N/A | #N/A | #N/A
5.00 0 1 0 | #N/A [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
6.00 1 0 0 | 0 | 0 |#N/A#NA  #N/A | #N/A  #N/A
7.00 0 0 0 0 1 1 0 @ #N/A | #N/A | #N/A  #NIA
8.00 0 0 0 1 1 THN/A EN/A | #NA L ENIA  #NIA
9.00 0 1 1 0 1 0 | 0 | 0 #NA; #NA
10.01 0 0 0 0 0 0 0 0 : #N/A  #N/A
10.02 0 0 0 0 0 0 . #N/A | #N/A | #N/A . #N/A
11.00 0 1 1 0 0 0 0 | 0  #N/A  #N/A
12.00 0 0 1 1 0 0 0 : 0  #N/A #NA
13.01 0 1 0 1 C 1 0 ., #N/A  #N/A @ #N/A
13.02 1 1 0 0 0 1 0 | #N/A | #N/A | #N/A
14.00 0 0 0 0 1 0 | #N/A | #N/A | #N/A | #N/A
15.01 0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
15.02 0 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
16.01 0 1 0 0 0 | #N/A | #N/IA | #N/A | #N/A | #N/A |
16.02 0 0 1 1 0 0 | #N/A | #N/A | #N/A | #N/A
17.01 0 0 0 c 0 0 0 0 | #N/A | #N/A
17.02 0 0 1 1 0 0 | #N/A | #N/A | #N/A | #N/A
18.01 0 0 1 1 1 0 | #N/A | #N/A | #N/A | #N/A
18.02 1 1 1 1 1 0 1 T #N/A T #N/A | #N/A
19.00 0 0 0 0 0 0 0 0 | #N/A | #N/A
20.00 0 0 0 0 0 1 0 | #N/A | #N/A | #N/A
21.00 0 0 1 0 0 0 0 0 | #N/A | #N/A
22.00 1 0 i 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A
23.00 1 1 1 1 1 0 1 [ #N/A | #N/A | #N/A | #N/A
24.00 1 1 1 0 | #N/A | #N/A | #N/A | #N/A | #NIA | #N/A
25.00 1 1 0 0 1 | #N/A | #N/A | #N/A | #N/A | #N/A
26.00 1 1 0 0 0 | 1 | #N/AT#N/A | #N/A | #N/A
27.00 1 0 0 0 1 T 1 [ #N/A | #N/A | #NIA | #NIA
28.00 0 0 0 1 0 0 | #N/A | #N/A | #N/A | #N/A
29.00 0 0 1 0 0 0 0 | #N/A | #N/A | #N/A
30.00 0 1 1 0 1 0 1 T #NIA | #NIA L #NIA
31.01 0 1 0 1 0 | #N/A | #NJA | #N/A | #N/A | #N/A
31.02 1 0 1 0 0 | 1 1 T #NIA L #NIA L #ENIA
32.00 0 1 1 0 K 1 | #N/A | #N/A | #N/A
33.00 1 1 0 0 0 0 1 0 | #N/A | #N/A

01 0 0 0 0 1 1 1 T #N/A | #N/A | #NIA
34.02 0 0 0 | 0 0 @ 1 0 | #N/A | #N/A | #N/A
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TRACTS Ad;]acent tracts

35.00 1 1 0 0 0 0 0 = 0 | #N/A | #N/A
36.01 0 1 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A
36.02 0 1 0 | #N/A [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
37.00 0 0 0 0 0 1 1 0 | #N/A  #N/A
38.00 ¢ 0 1 1 0 0 0 | #N/A | #N/A | #N/A
39.00 0 1 1 0 0 0 0 0 | #N/A | #N/A
40.00 1 0 0 0 0 0 0 | #N/A | #N/A | #N/A
41.00 0 0 0 0 1 0 0 0 1 0

42.00 0 0 1 0 0 0 0 | #N/A | #N/A | #N/A
43.00 1 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
44.00 0 0 0 0 [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4501 0 1 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.02 0 0 1 0 1 0 0 | #N/A | #N/A | #N/A
46.00 0 1 0 1 1 0 | #N/A | #N/A | #N/A | #N/A
47.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
48.00 0 0 0 0 0 1 #N/A | #N/A | #N/A | #N/A
49.01 0 0 0 0 [ #NA O 0 0 1 #N/A
49.02 0 0 ! #N/A | #N/A | #N/A T #N/A L #NIA | #N/A | #N/A | BN/A
50.01 1 1 . 0 o | 1 0 0 | 0 | #N/A | #N/A
50.02 0 0 0 0o 1 0 0 | #N/A | #N/A | #N/A
51.00 0 0 0 I 0 0 0 | #N/A | #N/A
52.01 0 0 n 0 @ 0 0 | #N/A | #N/A | #N/A | #N/A
52.02 0 0 0 1 U #N/A | #N/A | #NIA | #N/A | #NJA L #NIA
53.00 1 0 0 0 | #N/A [ #N/A | #N/A | #N/A | #N/A | #N/A
54.00 1 0 0 0 0 0 0 | #N/A | #N/A | #N/A
55.01 0 0 1 0 | #N/A | #N/A | #N/A | #N/A : #N/A | #N/A
55.02 1 0 0 | #N/A T #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
56.00 1 0 0 c 0 0 0 0  #N/A | #N/A
57.00 0 1 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
58.00 0 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A |
59.01 0 ) 0o 0 . O 0 0 | 1 #N/A | #N/A
59.02 0 o) 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 0 0 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
61.00 0 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
62.00 0 0 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
63.00 0 0 0 0 0 1 #N/A | #N/A | #NIA | #N/A
64.00 1 0 0 0 1 0 0 | #N/A | #N/A | #N/A
65.00 1 0 0 0 0 0 | #N/A | #N/A | #N/A | #N/A
66.00 0 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 0 0 1 1 1 0 | #N/A | #N/A | #N/A | #N/A
68.00 1 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
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APPENDIX 7 |

;

CONNECTIVITY BY ETHNICITY 25% CUT
T g i |

| | i
TRACTS ADJACENT TRACTS

AB |AC |AD |AE AF |AG |AH Al AJ (AK
1.00 |1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
200 0 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A
300 |0 0 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
400 0 0 1 1 0 #N/A | #N/A | #N/A | #N/A | #NIA
500 |0 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
600 |1 1 1 1 0 C#N/A | #N/A | #N/A | #N/A | #N/A
700 0 0 0 0 c 0 #N/A | #N/A | #N/A | #N/A
8.00 |0 0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A
900 |0 0 0 0 1 0 1 1 #N/A | #N/A
10.01 |0 1 0 10 0 1 0 1 #N/A | #N/A
10.02 0 0 1 0 1 0 THENJ/A | ENIA | #N/A | BN/A
11.00 1 1 0 0 0 1 1 E #N/A | #N/A
12.00 |0 1 1 0 0 0 0 0 #N/A | #N/A
13.01 1 1 0 1 0 1 0 [ #N/A | #N/A | #N/A
13.02 0 0 1 1 1 0 0 THN/A | #N/A | #NIA
14.00 |0 0 1 £ £ 1 #N/A | #N/A | #N/A | #N/A
15.01 |1 0 1 0 ANJA | #N/A | #N/A | #N/A | #N/A | #NIA
15.02 10 1 1 0 1 0 #N/A | #N/A | #N/A | #N/A
16.01 0 1 1 0 0 #N/A | #N/A | #N/A | #N/A | #N/A
16.02 |0 1 1 1 1 0 #N/A | #N/A | #N/A | #N/A
17.01 1 0 1 1 0 0 1 1 #N/A | #N/A
17.02 1 1 H 0 1 1 #N/A | #N/A | #N/A | #N/A
18.01 1 0 9 1 1 1 #N/A | #N/A | #N/A | #N/A
18.02 1 1 1 1 0 0 1 #N/A | #N/A | #N/A
19.00 |0 0 0 0 1 0 1 0 #N/A | #N/A
20.00 |0 0 0 0 0 1 0 #N/A | #N/A | #N/A
21.00 0 0 1 1 0 0 0 0 #N/A | #N/A
2200 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A
23.00 0 0 0 1 1 1 1 #N/A | #N/A | #N/A
24.00 [0 1 1 1 #NJA | #N/A | #N/A | #N/A | #N/A | #N/A
25.00 1 1 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A
26.00 1 1 0 1 1 1 #N/A | #N/A | #N/A | #N/A
27.00 10 0 0 0 0 0 #N/A | #N/A | #N/A | #NIA
28.00 1 0 0 0 0 1 #N/A | #N/A | #N/A | #N/A
29.00 0 1 1 0 0 0 #N/A | #N/A | #N/A

0 0 0 1 0 0

0 1 1 1 0

0 1 1 0 1

1 0 1 0 0

1 1 1 1 1

1 0 K 0 1

0 0 1 1 0

30.00 1 #N/A | #N/A | #N/A
31.01 U#N/A | #N/A | #N/A | #NIA | #N/A
31.02 1 1 #N/A | #N/A | #N

32.00 0 1 #N/A | #N/A | #N/A
33.00 1 0 0 #N/A « #N/A
34.01 1 1 #N/A | #NIA | #N/A
34.02 1 0 #N/A | #N/A - #N/A
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TRACTS ADJACENT TRACTS

3500 |0 0 1 1 0 0 0 1 #N/A | #N/A
35.01 [0 1 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A
36.02 [0 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
37.00 |0 0 0 0 1 0 1 1 #N/A | #N/A
38.00 |1 1 0 0 0 1 1 #N/A | #N/A | #N/A
39.00 |0 1 1 1 0 0 0 0 #N/A | #N/A
40.00 |G 0 0 0 0 0 0 C#N/A | #N/IA L #N/A
41.00 |0 0 0 0 0 1 0 K 1 0

42.00 |1 1 0 0 0 0 1 CHNIA | #NIA | #NIA
43.00 1 1 0 0 #NIA | #N/A  #N/A | #N/A | #N/A | #N/A
4400 [0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A T #N/A
45.01 |0 1 0 0 #N/A | #N/IA T #NIA L #NIA T #NIA | #NIA
4502 |0 1 0 0 ] 0 0 C#N/A | #NIA T #NJA
46.00 |0 0 0 i1 0 C#HN/A L #EN/A T #EN/A  BN/A
47.00 [0 0 0 0 C#HNIA T #NIA T #ENIA T #EN/A L #N/A T EN/A
48.00 |1 0 0 0 0 0 #N/A | #N/A | #N/IA | #NIA
4901 [0 0 0 0 #N/A 1 0 0 0 L #N/A
4802 10 0 #N/A | #N/A | #N/A | #NIA T #NIA | #NIA | #NIA | EN
50.01 |0 0 ) 1 1 0 0 0 T #N/A | #N/A
50.02 1 0 0 0 0 0 0 #N/A | #N/A T #N/A
51.00 |0 1 1 1 i 1 0 0 L #N/A | #N/A
52.01 1 1 1 0 0 i1 #N/A | #N/A | #N/A | #N/A
52.02 |1 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
53.00 [0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
54.00 |1 K] 1 0 1 1 0 #N/A | #N/A | #N/A
55.01 |1 0 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
55.02 1 0 1 L #N/A | EN/A | #EN/A | #N/A T EN/A T #NIA | #N/A
56.00 0 1 1 T 1 0 1 1 #N/A | #N/A
57.00 0 i 10 1 1 0 #N/A | #N/A | #N/A | #N/A
53.00 0 0 i1 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
59.01 |1 0 0 1 0 0 0 0 #N/A | #N/A
59.02 |1 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 O 1 0 1 #N/A | #N/IA | #N/A | #N/A | #N/A T #N/A
61.00 1 0 0 1 P #N/A T EN/A | #N/A | #N/A | #N/A | #ENIA
62.00 |0 0 0 0 #N/A | #N/A  #N/A | #N/A | #N/A | #N/A
63.00 1 0 0 0 1 0 #N/A | #N/A | #N/A | #N/A
64.00 [0 1 0 0 0 0 0 #N/A | #N/A | #N/A
65.00 [0 0 0 0 0 1 #N/A | #N/A T #N/A | #N/A
66.00 |0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 |0 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A
68.00 |0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
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APP I
CONNECTIVITY BY POPULATION DENSITY 25% CUT
l l 1
TRACTS ADJACENT TRACTS
AB A:C AD AE AF AG AH Al Al AK
1.00 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
2.00 0 1 1 0 0 0 #N/A | #N/A | #N/A | #N/A
3.00 0 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4.00 1 1 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A
5.00 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
6.00 0 0 0 1 0 #N/A | #N/A | #N/A | #N/A | #N/A
7.00 G 0 0 0 1 0 #N/A | #N/A | #N/A | #N/A
8.00 0 1 1 1 1 #N/A | #N/A | #EN/A | #N/A | #N/A
$.00 1 0 0 1 1 0 0 0 #N/A | #N/A
10.01 0 1 0 0 1 1 1 0 #N/A | #N/A
10,02 [0 1 1 1 1 0 #N/A | #N/A | #N/A | #N/A
11.00 1 1 1 1 1 0 1 1 #N/A | #N/A
12.00 |1 1 1 1 1 0 1 1 #N/A | #N/A
13.01 1 1 1 1 0 1 1 #N/A | #N/A | #N/A
13.02 |1 0 1 1 1 1 N #N/A | #N/A | #N/A
14.00 |1 1 1 1 1 1 | #NJA | #N/A | #N/A | #N/A
15.01 0 1 1 1 #N/A | #NJA | #NJA - #NJA L #NJA | #N/A
15.02 i1 0 1 1 1 1 #N/A | #N/A | #N/A | #N/A
16.01 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
16.02 1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
17.01 1 1 1 1 1 1 1 | P #NJA | #N/A
17.02 1 i1 1 1 1 1 [ #NJA ¢ #N/A § #NIA | #ENIA
18.01 1 i1 i1 1 1 1 U#N/A L #NIA L #EN/A | EN/A
18.02 i1 1 1 1 1 1 R - #N/A ‘ #N/A | #N/A
19.00 |1 1 1 " 0 K 1 0 C#EN/A | #N/A
20.00 1 0 1 0 1 0 0 CHN/A L #EN/A L #EN/A
21.00 1 0 0 0 0 0 0 0 #N/A | #N/A
2200 0 0 0 0 1 CHN/A OENIA D #NJA | ENJA | ENJA
23.00 1 0 0 0 1 1 1 CHN/A L EN/A | #N/A
24.00 1 1 0 i1 T #N/A | EN/A | #N/A | #N/A  #NJA | #NJA
25.00 1 1 0 i1 1 #N/A | #N/A | #NJA | #N/A | #N/A
26.00 1 1 0 0 1 1 C#ENJA L #EN/A L #ENJA | #N/A
27.00 0 1 0 0 1 1 L #N/A | #N/A | #N/A L ENA
28.00 1 i1 1 0 0 0 #N/A | #N/A | #N/A | #N/A
2900 0 0 0 1 1 0 1 #N/A | #N/A | #N/A
30.00 1 1 1 1 i 0 0 #N/A | #N/A | #N/A
31.01 0 0 0 1 1 #N/A | #N/A | AN/A | #N/A | #N/A
31.02 1 1 1 1 0 0 0 A | #NIA | #N/A
32.00 1 1 1 1 0 1 1 #N/A | #N/A | #N/A
33.00 1 1 g 1 1 1 1 1 #N/A | #N/A
34.01 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
34.02 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
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TRACTS ADJACENT TRACTS

35.00 |1 1 1 1 1 0 1 1 #N/A | #N/A
36.01 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A | EN/A
36.02 |1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
37.00 |1 1 1 1 1 1 1 1 #N/A | #N/A
38.00 |0 0 1 0 0 0 1 #N/A T #N/A | #N/A
39.00 |1 0 0 0 0 1 0 0 | #N/A | #N/A
40.00 [0 0 0 0 1 1 0 #N/A | #N/A | #N/A
41.00 |0 0 0 1 1 1 i K : 0

42.00 |1 0 1 1 1 1 1 | #N/A T ENIA | EN/A
43.00 |0 1 1 1 #N/A | #N/A T #N/A T EN/A | #N/A | EN/A
44.00 |1 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4501 |0 0 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.02 1 1 1 1 1 1 #N/A | #N/A | #N/A
46.00 |1 1 1 0 1 K C#N/A | #N/A T #EN/A L ENJA
47.00 {1 1 1 0 CHN/A L EN/A | #NIA C#NIA | #ENJIA T ENIA
48.00 1 1 0 1 1 “ C#N/A  #NJA | #N/A | #ENJA
49.01 |1 1 0 0 #N/A 10 1 0 #N/A
49.02 | 1 DEN/A L HNIA | #ENIA D #NIA O #ENIA | #NJA | #NJA | #NJA
50.01 1 1 1 0 0 0 0 0 C#EN/A  #N/A
50.02 1 0 0 0 1 0 0 C#N/A #NIA L #N/A
51.00 1 1 i1 1 1 0 0 1 L #N/A T EN/A
52.01 |1 1 T 1 1 CHEN/A | #N/A | #N/A L #N/A
52,02 1 1 1 1 #N/A | #N/A | #NIA | #N/A | #N/IA | #N/A
53.00 1 1 1 i0 CHENIA L ENIA T EN/A L ENJA T #ENIA | #NIA
54.00 |1 1 1 1 1 0 1 FEN/A | #N/A | #N/A
55.01 1 1 0 0 #N/A | #N/A | #N/A | #N/A T #N/A | #N/A
5502 0 0 1 CHN/A O EN/A L AN/A D EN/A L ENJA | #NVA | #N/A
56.00 1 0 0 0 1 F 0 0 C#HN/A | #N/A
57.00 (0 0 0 0 0 CHN/A T #NIA #ENIA | #NIA
58.00 1 0 0 #N/A  #N/A  #N/A | #N/A  #NIA T #NIA | #N/A
59.01 1 0 0 0 " i1 1 M1 L #N/A | #N/A
59.02 1 1 1 1 P #N/A T ENIA  #N/A  BN/A | #N/A | EN/A
60.00 1 1 1 1 D HEN/A T #N/A | ENJA L #NJA T #N/A T EN/A
61.00 1 1 1 1 #N/A | #N/A | #NIA | #NIA | #N/A | #N/A
62.00 |1 0 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #NIA
63.00 |1 1 1 1 1 1 #N/A T #N/A | #N/A | #N/A
64.00 |1 1 1 0 1 1 #N/A | #N/A | #N/A
65.00 1 1 1 i 1 #N/A | #NIA | #N/A | #N/A
66.00 |1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 |0 0 1 0 1 1 #N/A | #N/A | #N/A | #N/A
68.00 |1 0 0 #N/A | #N/A | #NIA | #N/A | #NIA | #NIA | #N/A
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APPENDIX 9

CONNECTIVITY BY RENTED HOUSING 25% CUT
TRACTS ADJACENT TRACTS
AB AC ADD AE AF AG AH Al Al AK
1.00 0 0 0 #N/A | #N/A | #N/A L #N/A | #N/A | #N/A | #N/A
2.00 0 1 0 0 1 1 #N/A | #N/A | #N/A | #N/A
3.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
£.00 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
5.00 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
6.00 1 1 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A
7.00 1 1 1 1 1 1 i #N/A | #N/A | #N/A | #N/A
8.00 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
9.00 1 1 1 0 1 0 1 1 #N/A | #N/A
10.01 1 1 1 1 1 0 0 0 #N/A | #N/A
10,02 0 0 0 ‘0 1 0 #N/A - #N/A | #N/A | #N/A
11.00 1 i1 1 0 1 i1 0 i1 #N/A | #N/A
12.00 1 1 1 1 0 0 0 0 | #N/A | #N/A
43.01 0 1 i 1 " “1 1 CHN/A | EN/A  #N/A
43.02 1 i1 0 0 0 i1 0 C#N/A L #N/A T #EN/A
14.00 1 0 0 1 1 0 #N/A | #N/A | #N/A | #N/A
15.01 0 0 1 0 CHEN/A D HN/A | #N/A L EN/A L ENJA | #EN/A
15.02 1 0 1 0 i1 0 #N/A | #N/A | #N/A | #N/A
16.01 0 1 1 0 0 C#NJA L #N/A  #N/A L #N/A L #N/A
16.02 1 1 1 R i1 1 #N/A | #N/A | #N/A | #N/A
17.01 1 0 1 1 0 1 0 0 #N/A | #N/A
17.02 1 i1 1 “1 0 " CHN/A L ENJA L #N/A L HNJA
18.01 1 g i1 “ 1 i1 | #N/A | #EN/A L #NIA | ENIA
18.02 1 i1 1 K 1 0 1 D #N/A L #N/A  #N/A
19.00 1 1 0 1 1 0 0 1 L #N/A | #N/A
20.00 1 0 0 0 i1 1 0 D #N/A O #N/A  #N/A
21.00 0 0 1 0 0 :0 0 0 C#N/A  #N/A
22.00 1 0 i1 1 1 U #N/A | #N/A | #N/A | #N/A | #N/A
23.00 1 1 1 1 1 1 L #N/A | #N/A | #N/A | #N/A
24.60 1 1 1 1 #N/A - #N/A | #N/A  #N/A | #N/A | #N/A
25.00 |1 1 1 1 1 #N/A | #N/A | #N/A L #N/A | #N/A
26.00 1 1 0 0 1 1 #N/A | #N/A | #N/A | #N/A
27.00 1 0 0 0 1 1 #N/A | #N/A | #N/A | #N/A
28.00 1 0 0 1 0 1 #N/A | #N/A | #N/A | #N/A
29.00 0 1 1 1 1 0 0 #N/A | #N/A | #N/A
30.00 0 1 1 1 1 1 1 #N/A | #N/A | #N/A
31.01 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
31.02 1 1 1 0 0 1 1 P #N/A | EN/A L #EN/A
32.00 1 1 1 0 0 1 1 #N/A + #N/A 1+ #N/A
33.00 1 1 1 0 i1 1 1 0 #N/A | #N/A
34.01 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
34.02 1 1 0 1 1 1 1 #N/A | #N/A | #N/A
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TRACTS ADJACENT TRACTS I
35.00 |1 1 1 0 1 0 0 1 #N/A | #N/A
36.01 |1 1 0 0 1 #N/A | #N/A T #N/A | #N/A | #N/A
36.02 |1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #NJA
37.00 1 1 0 0 1 1 1 0 #N/A | #N/A
38.00 |0 1 1 1 0 1 1 #N/A | #N/A | #N/A
39.00 |1 1 1 0 0 1 0 ] #N/A | #N/A
40.00 |1 0 0 0 0 0 1 #N/A | #N/A | #N/A
44.00 |0 0 0 0 1 1 i 1 0
42.00 |1 0 1 1 1 1 1 #N/A | #N/A | #N/A
43.00 |1 1 0 1 C#EN/A | #N/A | EN/A | ENJA | EN/A | #N/A
44.00 |1 0 0 0 #N/A | #N/A | #NJA | #ENIA | #NJA | #NJA
45.01 |0 1 1 1 #N/A | #N/A L #NIA | #NIA | #N/A T #NIA
4502 |1 1 1 0 1 0 0 C#N/A | #N/A | #N/A
46.00 1 0 1 1 1 #N/A | #N/A | #N/A  #N/A
47.00 |0 q 0 0 #N/A | #N/A | #N/A | #N/A T #N/A | #N/A
48.00 |1 0 1 0 0 1 #N/A | #N/A  #N/A | #N/A
49.01 [0 1 0 0 #N/A |0 0 ‘1 : #N/A
4902 0 1 #N/A  #N/A | #N/A T EN/A D ENJA  #N/A T #ENJA T #NJA
50.01 1 1 1 0 1 0 0 1 #N/A | #N/A
50.02 |1 0 0 0 1 i ;1 #N/A | #N/A | #N/A
51.00 |1 0 1 1 1 0 0 0 #N/A | #N/A
52.01 |0 0 0 1 1 0 #N/A | #N/A | #N/A T #N/A
52.02 0 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
53.00 1 11 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
54.00 |1 ‘0 1 1 0 0 0 #N/A | #N/A | #N/A
5501 [0 o 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
55.02 |1 0 0 C#EN/A | EN/A T ENJA | #N/A | #N/A | #NJA | #N/A
56.06 1 0 0 1 1 1 0 1 #N/A | #N/A
57.00 0 1 ‘0 0 1 0 #N/A | #N/A | #N/A | #N/A
58.00 1 i 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
59.01 0 0 0 0 1 0 0 1 #N/A | #N/A
59.02 1 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 0 0 1 1 #N/A | #N/A | #N/A T #N/A T #N/A | #N/A
6100 [0 i1 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
62.00 |1 0 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
63.00 |1 c 0 1 1 1 #N/A | #N/A | #N/A | #N/A
64.00 |1 0 1 1 1 0 0 #N/A | #N/A | #N/A
65.00 |1 0 0 0 1 1 #N/A | #N/A | #N/A | #N/A
66.00 0 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 0 0 1 1 1 0 #N/A | #N/A | #N/A | #N/A
68.00 |1 0 0 #N/A | #N/A | #N/A | #N/A | #NJA | #NJA | #N/A
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APPENDIX 10
CONNECTIVITY BY SINGLE PARENT 25% CUT
% ¥ A
TRACTS ADJACENT TRACTS
AB AC A:D AE A:F A:G AH Al AJ AK

100 |0 0 1 #N/A | #N/A | #N/A | #NJA | #N/A | #N/A | #NJA
200 |0 1 0 1 1 1 #N/A | #N/A | #N/A | #N/A
3.00 |1 1 1 1 L#N/A T #N/A | #NIA T #NJA | #N/A | #N/A
4.00 |1 1 1 1 0 #N/A | HN/A | #N/A T EN/A | BN/A
5.00 |0 0 0 #N/A | #N/A T #NIA | #N/A T #N/A T #N/A | #N/A
6.00 |0 1 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A
700 0 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A
800 |0 0 0 1 1 #N/A | #NIA | #N/A | #N/A T #N/A
9.00 |0 0 0 0 0 0 1 1 | #N/A | #N/A
10.01 |1 1 0 0 0 1 1 1 #N/A | #N/A
10.02 |0 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
11.00 |1 1 1 1 1 1 0 1 #N/A | #N/A
12,00 |1 1 1 1 0 1 1 #N/A | #N/A
13.01 |1 1 1 1 0 1 1 C#N/A | #N/A | #N/A
13.02 0 1 0 1 0 1 0 #N/A | #N/A | #N/A
1400 1 1 0 1 i 0 #N/A | #N/IA | #N/A | #N/A
15.01 |0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
15.02 |1 0 0 0 0 1 #N/A | #N/A | #N/A | #N/A
16.01 0 1 0 0 1 #N/A | #N/A | #N/A | #N/A | #NIA
16.02 |1 0 1 1 0 0 #N/A | #N/A | #N/A | #N/A
17.01 |0 o 0 0 0 1 0 0 #N/A | #N/A
17.02 1 0 1 1 1 1 C#N/A T #N/A | #N/A | #N/A
- 18.01 1 |1 1 1 " L #N/A | #N/A | #N/A T #N/A
18.02 1 1 K " 1 0 1 #N/A | #N/A | #N/A
19.00 |1 1 1 X 1 0 K 1 L #N/A | #NIA
2000 0 0 0 0 0 1 0 C#N/A T #EN/A T #NIA
2100 0 0 1 0 0 0 0 0 C#EN/A | #N/A
22.00 1 0 C 0 0 CHEN/A EN/A  ENIA  #NJA T ENJA
23.00 1 0 0 0 0 1 - #N/A | #N/A T #N/A T #NJA
24.00 1 1 0 1 CHN/A CEN/A O HEN/A  #N/A  #NJ/A O #N/A
2500 1 1 0 0 0 CHN/A L #NIA  EN/A L #ENJIA  ENIA
26.00 0 1 0 0 1 0 | #N/A T #N/A | #NJIA | #N/A
27.00 0 0 0 0 K ‘0 C#HN/A | ENIA L BNIA | ENIA
28.00 0 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A
2900 0 1 0 1 0 0 1 #N/A | #N/A | #N/A
30.00 |1 1 1 1 0 0 0 #N/A | #N/A | #N/A
3101 0 1 0 0 1 #N/A | BN/A | #NIA | #N/A | #NIA
31.02 |0 0 1 0 0 0 1 #N/A | #N/A | #N/A
32.00 |1 1 1 0 0 1 1 #N/A | #N/A | #N/A
33.00 |1 1 1 1 1 0 1 1 #N/A | #N/A
3401 |1 0 1 1 1 1 1 #N/A | #N/A | #N/A
34.02 |1 1 0 1 0 1 1 #N/A | #N/A | #N/A
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TRACTS ADJACENT TRACTS
35.00 |1 1 1 1 1 0 0 K C#N/A | #NJA
36.01 |0 1 0 0 0 #N/A | #N/A | #N/A | #N/A | #NJA
36.02 0 i 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #NJA
37.00 10 0 0 0 1 1 1 0 #N/A | #N/A
38.00 [0 0 1 1 0 1 0 #N/A | #N/A | #N/A
39.00 0 0 0 1 1 0 1 0 #N/A | #N/A
40.00 0 0 1 0 1 1 0 #N/A | #N/A | #N/A
41.00 0 0 0 0 1 1 1 1 0 0
4200 [0 0 0 0 0 1 K #N/A | #N/A | #N/A
4300 0 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A

| 44.00 1 1 0 0 #N/A | #N/A | #N/A T #N/A | #N/A | EN/A
501 0 0 1 #N/A | #N/A | #N/A | #N/A T EN/A L #N/A
4502 0 1 0 1 K 0 0 L #N/A L EN/A | EN/A
46.0C 1 K K 1 1 0 CHN/A L EN/A | ENJA L EN/A
47.00 1 T 1 1 CHNJA C#N/A T EN/A C ENJA T ENJA T EN/A
48.00 |1 1 1 1 N 1 C#N/A | BNJA . BN/A L BN/A
49.01 |0 0 0 0 [ #N/A 10 1 0 1 - #N/A
49.02 1 1 C#HN/A | EN/A D ENJA EN/A  #NJA L ENJA L BENJA  #N/A
50.01 1 1 1 1 1 K 0 ¥ L #N/A  #N/A
50.02 1 0 0 0 K 1 X #N/A © #N/A - #NJ/A
51.00 1 1 1 K 1 10 0 0 C #N/A | #N/A
5201 0 0 1 1 1 1 #N/A | #N/A | #N/A | BN/A

| 52,02 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A L #NJA
53.00 |1 1 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | BN/A
54.00 1 0 1 1 0 0 0 #N/A | #N/A | #N/A
55.01 0 0 1 1 DEN/A T EN/A | #N/A T ENJA T EN/A | EN/A
55.02 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
56.00 |1 0 0 1 1 1 1 1 #N/A | #N/A
5706 0 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
58.00 1 1 1 #N/A | #N/A | #NJA | #NJA | #N/A | #NJA | #N/A
59.01 |0 1 1 1 1 1 1 1 | #N/A | #N/A
59.02 |1 1 1 1 #N/A | #N/A | #N/A | #NJA T BNJA | ENJA
60.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
61.00 |1 1 1 1 #N/A | #N/A | #N/A  #N/A L #N/A | #N/A
62.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #NJA
63.00 1 5 1 1 1 1 #N/A | #N/A | #N/A | #N/A
64.00 |1 |1 1 K 1 1 K #N/A | #N/A | #N/A
65.00 |1 1 1 11 1 1 D #N/A | ENIA | EN/A | #NJA
66.00 |1 1 1 #N/A T #NIA | #N/A | #NJA | #N/A | #N/A | #N/A
67.00 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
68.00 |1 1 1 #N/A | #N/A | #N/A | #N/A | #NIA | #N/A | #N/A
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APPENDIX 11
| - -
CONNECTIVITY BY ETHNICITY 40% CUT
i [T 4
TRACTS ADJACENT TRACTS !
AB AC AD |AE AF |AG |AH A1 AJ  AK

100 [0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
2.00 1 1 1 1 0 1 #N/A | #N/A T #NIA T #NIA-
3.00 |1 1 1 1 CH#N/A | BNJA | ENJA | #NJA T ENIA T ENVA
400 1 1 1 1 0 #N/A [ #N/A [ #N/IA T #N/A T #NJA
500 [0 0 0 #N/A | #N/A | #N/A T #NJA T ENIA | #N/A L #NJA
600 [0 1 1 1 1 #N/A | #N/A | #N/A T #N/A T #NIA-
7.00 |1 0 0 0 1 1 #N/A | #N/A | #N/A | #N/A
800 0 1 1 11 1 C#N/A | #N/A | #NJA | EN/A | #ENJA
2.00 |1 1 1 1 K 0 0 0 C#N/A | #N/A
1001 0 1 0 1 1 1 U #NIA | #NIA
10.02 |1 1 1 1 E 0 LHEN/A T HNJA L #NIA T ENIA
11.00 |1 1 1 1 E 1 1 D #N/A L #N/A
12.00 |1 K 1 1 K A 1 1  #N/A | #N/A
13.01 |1 L 1 K " 1 " #N/A #N/A T ENIA
13.02 |1 1 1 " 1 CHNIA | ENIA T ENA
14.00 |1 1 1 1 K 1 CHN/A L HNJA T #NIA T #ENIA
15.01 1 1 i 11 CHNJA T ENIA T ENIA L ENTA | #NTA | HENIA
1502 |1 1 1 K K K #N/A | #N/A | #N/A | #N/A
16.01 |1 K 1 1 1 #N/A | #N/A | #NIA | #N/A | #N/A
16.02 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
17.01 1 1 H 1 1 1 1 1 #N/A | #N/A
17.02 1 1 " " " 1 #N/A T #N/A | #N/A | #N/A-
18.01 1 K " 1 g 1 #N/A | #N/A | #NIA | #N/A
18.02 1 1 1 L K 1 1 C#N/A T #N/A T #N/A
19.00 |1 i 1 1 " 1 1 1 #N/A | #N/A
20.00 1 1 K 1 1 0 0 #N/A | #NJA | #N/A
21.00 1 ‘0 0 1 1 " 1 K C#N/A | #N/A
2200 0 0 0 0 K CHN/A | #N/A L #N/A | EN/A T #N/A
23.00 1 1 E 1 1 1 1 L #NIA | ENJA T #N/A
24.00 1 1 1 1 #N/A T #N/A T #HNIA #ENIA T #NJA | #NJA
2500 1 i 1 1 1 CHEN/A HEN/A | #N/A T ENIA T #N/A
26.00 1 1 0 1 1 1 CH#N/A | #N/A T #N/A T #NJA
27.00 0 1 0 1 1 1 C#N/A | #NIA | #N/A T #ENIA
28.00 1 1 i 0 0 1 CH#HN/A T #HNIA T #NIA | #EN/A
29.00 |1 0 0 1 1 0 1 U #N/A T #NJA T #N/A
30.00 1 1 1 1 1 1 0 #N/A | #N/A | #NJA
3101 0 0 1 1 1 #N/A | #N/IA | #N/A | #N/A | #N/A
31.02 1 1 1 1 1 0 0 #N/A | #N/A | #N/A
3200 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
33.00 |1 1 1 1 1 1 1 1 #N/A | #N/A
3401 |1 1 1 1 1 1 1 #N/A | #N/A | #N/A
34.02 |1 1 1 1 1 1 1 #N/A | #N/A | #N/A
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TRACTS ADJACENT TRACTS

35.00 |1 1 1 1 1 1 1 #N/A | #N/A
36.01 |1 i1 i1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
36.02 |1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
37.00 |1 1 1 1 1 1 A #N/A | #N/A
38.00 |1 1 L i 0 0 1 #N/A | #N/A | #N/A
39.00 |1 | 0 0 0 1 1 1 #N/A | #N/A
40.00 0 0 0 1 1 i 0 #N/A | #N/A | #N/A
4100 0 0 0 1 1 K L 0

42.00 1 0 i K 1 i1 " #N/A | #N/A | #N/A
43.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4400 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4501 10 0 0 1 #N/A | #N/A | BN/A | ENIA | #N/A | #N/A
15.02 11 1 1 1 1 1 1 #N/A | #N/A | #N/A
46.00 1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
47.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A L #N/A | #N/A
48.00 1 1 0 1 1 1 #N/A | #N/A | #N/A | #EN/A
49.01 |1 1 0 0 #N/A |1 i #N/A
49.02 |1 1 #N/A | #N/A | BN/A | ENIA | #NJA | #NIA | #N/A | #NTA
50.01 |} 1 1 1 0 0 0 0 #N/A | #N/A
50.02 |1 1 1 1 1 0 1 #N/A | #N/A | #N/A
51.00 |1 1 1 1 1 1 1 #N/A | #N/A
5201 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
52.02 |1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
53.00 |1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
54.00 |1 1 1 1 1 1 1 #N/A | #N/A | #N/A
55.01 |1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
5502 |1 0 1 #N/A | #NJA | #N/A | #N/A | #N/A L #NJA | #N/A
56.00 |1 0 0 1 1 1 0 0 #N/A | #N/A
57.00 10 1 0 0 0 0 #N/A | #N/A | #N/A | #N/A
58.00 |1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
59.01 |1 0 0 0 1 1 1 #N/A | #N/A
59.02 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 |1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
61.00 |1 1 1 1 #N/A | B#N/A | #N/A | #N/A | #N/A | #N/A
62.00 1 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
63.00 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
64.00 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
65.00 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
66.00 |1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
68.00 |1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A | #NJA | #N/A
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APPENDIX 12
==
CONNECTIVITY BY POPULATION DENSITY 40% CUT
% | ! | .
TRACTS ADJACENT TRACTS
AB (AC |AD J|AE |AF AG |JAH Al Al AK

1.06 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | E#N/A
2.00 1 0 0 0 0 0 #N/A | #N/A | #N/A - #N/A
3.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4.00 1 0 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A
5.00 1 1 0 #N/A | #N/A | #NJA L #N/A | #NJA | #N/A | #N/A
6.00 1 1 1 1 0 #N/A | #N/A | #N/A | #N/A | #N/A
7.00 0 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A
8.00 0 0 0 0 0 #N/A | #N/A | #N/A | #NIA | #N/A
9.00 0 0 0 0 1 0 1 1 #N/A | #N/A
10.01 1 1 1 1 0 1 0 1 #N/A : #NJ/A
10.02 1 1 1 0 1 1 #N/A | #NJA | #N/A T #N/A
11.00 |1 1 0 0 1 1 1 1 #N/A | #N/A
12.00 11 1 1 1 1 0 1 1 | #N/A | #N/A
13.01 1 1 1 K 0 1 1 #N/A | #N/A | #N/A
13.02 |1 0 1 1 i1 1 0 #N/A | #N/A | #N/A
14.00 |0 1 1 1 X 1 #N/A | #N/A | #N/A | #N/A
15.01 1 0 1 0 #N/A | #N/A | #NJA L ENJA | #NIA | #NJA
15.02 |1 1 1 0 1 1 #N/A | #N/A | #N/A | #N/A
16.01 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
16.02 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
17.01 1 1 K 1 0 1 1 1 #N/A | #N/A
17.02 1 i1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
18.01 1 i1 i1 1 1 1 L #N/A | #EN/A | E#NJA | #N/A
18.02 1 i1 i1 1 1 0 1 #N/A | #N/A | #N/A
19.00 0 0 0 0 i1 1 1 0 #N/A | #N/A
20.00 [0 0 0 0 1 1 0 #N/A | #N/A | #N/A
21.00 10 0 1 1 0 0 0 0 #N/A | #N/A
22.00 0 0 0 10 0 #N/A | #N/A | #N/A | #N/A | #N/A
23.00 10 0 1 K 1 1 1 #N/A | #N/A | #N/A
24.00 0 1 1 1 L #N/A | #NIA | #NIA L #NJTA L #N/A | #NJA
2500 1 1 1 1 K CHN/A T #NIA | #NIA T ENIA L #ENIA
26.00 1 1 0 1 1 1 #N/A | #N/A | #N/A | #N/A
27.00 0 1 0 0 1 1 #N/A L EN/A | #NJA | #N/A
28.00 i1 0 0 0 0 1 CHN/A L #NJA T #NJA | #N/A
29.00 0 1 1 0 o 0 1 #N/A | #N/A | #N/A
30.06 i1 1 1 1 C 0 1 D #N/A | #N/IA | #N/A
31.01 1 1 1 1 0 #N/A | #N/A | #N/A | #N/A L #N/A
31.02 1 1 1 1 1 1 i1 #N/A | #NA | #N/A
32.00 1 1 1 0 1 1 1 #N/A | #N/A | #N/A
33.00 1 1 1 1 1 1 1 0 #N/A ¢+ #N/A
34.01 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
34.02 |0 1 1 1 0 1 1 #N/A | #N/A | #N/A
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TRACTS ADJACENT TRACTS i

3500 [0 1 1 1 1 0 0 1 #N/A T #EN/A
36.01 1 1 1 1 1 C#N/A | #N/A | #N/A  ENA T #NIA
36.02 |1 1 1 #N/A | #N/A  #N/A | #N/A  #N/A  #N/A © #N/A
37.00 1 0 0 1 1 0 1 1 C#EN/A  #N/A
38.00 1 1 1 1 0 B 1 CHN/A | #N/A | E#N/A
39.00 0 K 1 1 1 0 0 0 | #N/A T #N/A
40.00 0 0 0 0 0 0 0 C#N/A T #N/A  #EN/A
4100 0 ‘0 0 0 0 1 0 1 K ;

42.00 1 1 1 0 0 0 1 C#HN/A T #N/A O #EN/A
43,00 1 x 1 0 CHNIA | #N/A #N/A L #NIA | #N/A  #NIA
4400 0 0 0 0 CHN/A | #N/A  #N/A  #EN/IA | #NIA L EN/A
4501 0 1 E 0 #N/A | #N/A C#N/A | #N/A  #N/A O EN/A
4502 1 1 1 0 1 0 1 C#N/A #N/A L #N/A
46.00 1 0 B 1 1 0 CHN/A  #N/A L #EN/A  #ENIA
47.00 1 0 ‘0 0 UHNIA | #N/A T #N/A  #NIA  #NIA | #N/A
48.00 1 0 0 0 0 0 CHN/A | #N/A  #N/A  #N/A
4501 0 0 0 ¢ T EN/A 1 0 0 0 - #N/A
49.02 0 1 CEN/A T #ENIA HENIA  ENIA | ENIA | #NIA | #NIA L #NIA
50.01 |1 0 0 1 1 0 0 1 #N/A | #N/A
50.02 1 0 0 0 0 10 0 L #N/A | #N/A | #N/A
51.00 1 1 1 1 1 1 0 0 #N/A | #N/A
52.01 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
52.02 |1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
53.00 |0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
54.00 |1 1 1 0 1 1 0 #N/A | #N/A | #N/A
5501 1 0 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
55.02 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
56.00 |0 1 1 1 1 1 1 1 #N/A | #N/A
57.00 1 1 0 1 1 1 #N/A | #N/A | #N/A | #N/A
58.00 0 1 T #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
59.01 1 0 0 1 1 0 0 0 #N/A | #N/A
59.02 1 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
6000 0 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
61.00 |1 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
62.00 |1 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
63.00 |1 1 ) 0 1 0 #N/A | #N/A | #N/A | #N/A
64.00 |1 1 0 0 0 0 0 #N/A | #N/A | #N/A
65.00 1 0 0 0 0 1 #N/A | #N/A | #N/A | #N/A
66.00 0 0 0 #N/A | EN/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 |0 0 0 0 0 0 #N/A | #N/A | #N/A | #N/A
68.00 0 0 0 N/A | #N/A T #N/A | #N/A | #N/A | #N/A | #N/A
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APPENDIX 13
CONNECTIVITY BY RENTED HOUSING 40% CUT |
TRACTS 5 ADJACENT TRACTS

AB |AC AD AE AF AG AH Al JAJ  AK
1.00 |1 0 1 #N/A | #N/A | #NIA T #N/A #N/A T #NJA | #NIA
2.00 1 1 0 1 1 1 #N/A | #N/A | #NIA T #N/A
3.00 1 1 1 1 ENAEYNEYNEYIEYIENN
400 i1 1 1 1 0 #N/A | #N/IA | #N/A | #N/A | #N/A
500 |0 0 0 #N/A T #NJA | #N/A | #N/A T #ENA T ENIA | #NTA
6.00 10 1 1 1 1 #N/A [ #N/A | #N/A | #N/A | #N/A
7.00 0 0 0 0 0 0 #N/A | #N/A | #NJA | #N/A
8.00 10 0 0 1 1 #N/A | #N/A T #N/A T #N/A | #N/A
5.00 [0 0 1 0 0 0 1 1 #N/A [ #N/A
10.01 |1 1 1 0 0 1 1 1 #N/A | #N/A |
1002 1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
11.00 |1 1 1 1 I 1 1 1 [ #N/A | #N/A
12.00 |1 1 1 1 1 0 1 1 T#N/ATT #NIA
13.01 11 " 1 " 1 1 1 #N/A T #N/A | #NIA
13.02 |1 1 1 " 1 1 K #N/A | #N/A | #N/A
1400 |1 1 1 1 1 1 #N/A | #N/A | #N/A T #N/A |
15.01 |0 0 0 0 EYENEYNENIEYIEYY
15.02 |1 1 0o N 1 1 CHN/A T ENJA T ENIA T #N/A
16.01 |0 1 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A
16.02 |1 1 1 1 1 1 #N/A T #N/A | #N/A | #N/A
17.01 |1 0 0 1 1 1 0 0 #N/A | #N/A
17.02 1 0 1 1 1 1 #N/A T #N/A | #N/A T #N/A
18.01 |1 1 1 1 1 1 #N/A [ #N/A T #N/A T #N/A
18.02 |1 1 1 1 1 1 1 #N/A | #NIA | #NIA |
19.00 |1 1 1 i 1 0 1 1 #N/A | #N/A
20.00 |0 0 0 0 0 1 0 #N/A | #N/A | #N/A
21.00 |0 0 1 0 0 0 0 0 #N/A | #N/A |
22.00 |1 0 0 0 0 #N/A | #N/A | #N/A | #N/A | #N/A
23.00 |1 0 0 0 1 1 #N/A | #N/A | #NJA | #N/A
24.00 |1 1 0 1 #N/A | #N/A | #N/A | #N/A T EN/A | #N/A
25.00 1 1 1 0 0 #N/A | #N/A T #NIA T #N/A | #N/A
26.00 10 1 0 0 1 1 #N/A | #N/A | #N/A | #N/A
27.00 |0 0 0 0 1 0 #N/A | #N/A | #N/A | #NIA
28.00 [0 1 0 0 0 0 #N/A | #N/A | #N/A | #N/A
2800 10 1 1 1 0 0 1 #N/A | #N/A | #N/A
30.00 |1 1 1 1 1 0 1 #N/A | #N/A | #N/A
3101 1 1 0 0 1 #N/A | #N/A | #N/A | #N/A | #NJA
31.02 |1 1 1 1 0 0 1 #N/A | #N/A | #N/A
3200 |1 1 1 0 0 1 1 #N/A | #N/A | #N/A
33.00 |1 1 1 1 1 1 1 1 #N/A | #N/A
34.01  [1 1 1 1 1 1 1 #N/A | #N/A | #N/A
34.02 |1 1 1 1 0 1 1 #N/A | #N/A | #N/A

281



TRACTS ADJACENT TRACTS

35.00 1 1 1 1 1 0 0 1 #N/A | #N/A
36.01 [0 1 0 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
36.02 0 1 0 #N/A T #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
37.00 |1 1 0 0 1 1 1 1 #N/A | #N/A
38.00 1 0 1 1 1 1 1 #N/A | #N/A | #N/A
39.00 1 1 1 1 1 K 1 0 #N/A | #N/A
40.00 0 0 1 1 1 1 0 #N/A | #N/A | #N/A
41.00 0 0 0 1 1 1 1 1 0

42,00 0 1 0 0 1 1 1 #N/A | #N/A | #N/A
4300 0 1 0 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
44.00 1 1 0 0 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
4501 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.02 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
46.00 1 1 1 1 1 0 #N/A | #N/A | #N/A | #N/A
47.00 1 1 1 1 #N/A | #N/A - #N/A | #N/A | #N/A | #N/A
48.00 1 1 1 1 1 1 #NIA | #NIA | #N/A T #N/A
4901 0 ‘0 ‘0 1 L #N/A 10 1 1 #N/A
4902 1 1 CHEN/A L HNIA C#NIA L #ENIA  ENJA  #NJA C#N/A L #N/A
50.01 1 T 1 1 1 1 K 1 C#N/A | #N/A
50.02 1 0 0 0 1 1 1 CHN/A O EN/A L #N/A
51.00 1 i1 1 K " 0 0 0 D #N/A | EN/A
52.01 1 1 1 1 1 1 CHN/A O #N/A L #N/A  #N/A
52.02 1 1 1 K CHEN/A L EN/A T ENJA L EN/A D EN/A | ENIA
53.00 |1 1 0 0 #N/A T #N/A | #N/A | #N/A L #N/A | EN/A
54.00 |1 1 1 H 0 0 0 #N/A | #N/A | #N/A
55.01 0 0 1 K #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
55.02 |1 0 " #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
56.00 |1 0 0 1 1 1 1 1 #N/A | #N/A
57.00 |1 “ 1 1 1 " #iN/A | #N/A | #N/A | #N/A
58.00 1 i1 1 CHN/A T #N/A T #NJA | #NJA T ENJA | #NJA | #NJA
59.01 [0 i1 1 Ik 1 1 1 1 #N/A | #N/A
59.02 1 i1 1 K #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 |1 1 1 ¥ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
61.00 |1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
62.00 |1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
63.00 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
64.00 |1 1 1 1 1 1 1 #N/A | #N/A | #N/A
65.00 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
66.00 |1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 |1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
68.00 |1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
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APPENDIX 14

CONNECTIVITY BY SINGLE PARENT 40% CUT
z 1 | s %
TRACTS ADJACENT TRACTS ‘
AB  AC  AD AE | AF  AG | AH @ Al AJd | AK
1.00 1 0 0 #N/A ¢+ #N/A | #N/A | #N/A | #N/A | #N/A ; #N/A
2.0C 0 1 1 1 1 1 D #N/A | EN/A L #N/A L #N/A
3.00 1 1 1 1 #N/A | #N/A #N/A | #N/A | #N/A | #N/A
4.00 1 1 1 . 1 1 #N/A - #N/A L #N/A  #N/A | #N/A
5.00 1 4 1 D #N/A C #N/A  #N/A D #N/A | #N/A | #NJA | #N/A
6.00 1 1 1 . 1 1 #NA C#N/A | #N/A T #N/A L #N/A
7.6G 1 1 1 1 1 A1 #N/A | #NIA 7 #N/A | #N/A
3.00 1 1 1 1 1 1 #N/A D #EN/A | BNIA L #N/A | #N/A
9.00 1 1 1 1 0 1 1 A 1 | #N/A #NLA__
10.01 1 1 1 1 0 0 1 #N/A  #N/A
10.92 1 0 0 0o 1 1 < #N/A |+ #N/A © #N/A  #N/A
11.00 1 1 1 1 1 1 1 1 K L #N/A  #N/A
12.00 1 1 1 1 1 0o @ 1 0 ; #N/A . #N/A
13.01 1 1 1 1 1 1 1 #N/A  #N/A | #N/A
13.02 1 1 0 1 1 1 1 #N/A  #N/A | #N/A
14.00 1 1 1 1 1 1 #N/A - #N/A | #N/A - #N/A
15.01 0 0 1 0 #N/A | #N/A | #N/A | #N/A | #N/A #N/A
15.02 1 0 1 o 1 |0 #N/A © #N/A | #N/A | #N/A
- 16.01 0 1 1 1 1 #N/A | #N/A © #N/A | #N/A #N/A
16.02 1 1 1 1 1 1 #N/A - #N/A T EN/A T #N/A
17.01 1 1 1 11 1 1 1 0 #N/A | #N/A
17.02 1 1 1 1 1 1 #N/A - #N/A #N/A? #N/A
18.01 1 1 1 1 1 1 #N/A ¢ #N/A | #N/A - #N/A
18.02 1 1 1 1 1 11 1 #N/A | #N/A | #N/A
19.00 1 1 1 1 1 0 0 1 #N/A | #N/A
20.00 1 0 0 0 1 1 1 #N/A | #N/A |+ #N/A
21.00 0 1 1 1 1 0 1 1 #N/A | #N/A
22.00 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A
23.00 1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
24.00 1 1 1 1 #N/A | #N/A | #N/A | #N/A | #N/A L #N/A
25.00 1 1 1 1 1 5 #N/A T #N/A | #N/A | #N/A | #N/A
26.00 1 1 0 0 17 1 #N/A | #N/A |+ #N/A | #N/A
27.00 1 1 0 1 1 | 1 #N/A | #N/A | #N/A | #N/A
28.00 1 0 0 1 0 1 #N/A | #N/A | #N/A | #N/A
29.00 0 1 1 1 1 1 1 #N/A © #N/A | #N/A
30.00 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
31.01 1 1 1 1 1 #N/A | #N/A | #N/A L #N/A | #N/A
31.02 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
32.00 1 1 1 1 1 1 1 #N/A T #N/A | #N/A
33.00 1 1 1 1 1 1 1 1 #N/A | #N/A
34.01 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
34.02 1 1 1 1 1 1 1 #N/A | #N/A | #N/A

283



TRACTS ADJACENT TRACTS

35.00 1 1 1 1 1 0 0 1 | #N/A | #N/A
36.01 1 1 0 1 1 [ #N/A | #N/A | #N/A | #N/A | #N/A
36.02 1 1 0 [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A |
37.00 1 1 1 1 1 1 1 1| #N/A | #N/A
38.00 1 1 1 1 1 1 1 | #N/A | #N/A | #N/A
39.00 1 1 1 1 1 1 0 0 | #N/A | #N/A
40.00 1 0 0 0 0 0 1 | #N/A | #N/A | #N/A
41.00 1 0 1 1 1 1 1 1 1 1
42.00 1 1 1 1 1 1 1 #N/A | #N/A | #N/A
43.00 1 1 1 1 #N/A | #N/A T #N/IA | EN/A | #NIA | #NJA
44.00 1 1 0 0 [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
45.01 1 1 1 1 #N/A | #N/A | #NJIA | #NIA | #NIA | #NIA
45.02 1 1 1 1 1 1 1 | #N/A | #N/A | #N/A
46.00 1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
47.00 1 1 1 1 #N/A T #N/A | #NIA | #N/A | #N/A | #N/A
48.00 1 0 1 1 1 1 T #N/A | #N/IA | #N/A | #N/A
49.01 1 1 0 0 [ #NA | 1 0 1 1 | #N/A
49.02 1 1 N/A | #NIA | #N/A | #N/IA | #N/IA | #N/A | #N/A | #N/A
50.01 1 1 1 1 1 0 1 1 #N/A [ #N/A
50.02 1 0 1 0 1 1 1 #N/A | #N/A | #N/A
51.00 1 1 1 1 1 .0 0 1 #N/A | #N/A
52.01 0 1 1 1 1 1 1 #N/A | #N/A | #N/A | #N/A
52.02 0 1 1 . 1 T#NA | EN/A | #NJA | #NIA | #NIA | #N/A
53.00 1 1 0 | 0  #N/A | #N/A | #N/IA | #N/A | #N/A | #N/A
54.00 1 1 1 11 0 o0 0 #N/A | #EN/A | #NIA
55.01 1 1 1 1 1 [ #N/A | #N/A | #N/A | #N/A | #NIA | #NIA
55.02 1 1 1 T#HN/A T #EN/A | #N/A L #BNIA T ENIA | BNJA | #NIA
56.00 1 0 0 @ 1 1 1 1 1 | #N/A | #N/A
57.00 1 1 1 1 1 0 | #N/A | #N/A | #N/A | #N/A
58.00 1 1 0 [ #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
59.01 0 0 0 0 1 1 1 1 T #N/A | #N/A
59.02 1 0 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
60.00 1 1 1 1 ] #N/A | #N/A | #NIA | #N/A | #N/A | #N/A
61.00 0 1 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
62.00 1 0 0 1 1 #N/A T #NIA | #NIA | #NJ/A | #N/A | #N/A
63.00 1 0 0 | 1 1 1 #N/A | #N/A | #N/A | #N/A
€4.00 1 1 1 1 1 1 1 | #N/A | #N/A | #N/A
65.00 1 1 1 1 1 1 | #N/A | #NIA | #N/A | #N/A
66.00 1 1 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
67.00 0 0 1 1 1 1 #N/A | #N/A | #NIA | #N/A
68.00 1 0 0 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A
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APPENDIX 15
! I
TEMPORAL DISTRIBUTION OF TOTAL CALLS

DATE DAILYFRQ % CALLS CUM % HOURS HRLYFRQ % CALLS CUM %
930101 849 3.17 3.17 0 1130 = 421 | 421
930102 706 2.63 5.80 1 1010 @ 377 | 7.98
930103 590 2.20 8.00 2 876 = 3.27 11.24
930104 718 268 10.68 3 687 2.56 13.80
930105 789 2.94 13.62 4 495 1.85 15.65
930106 837 3.12 16.74 5 358 1.33 16.98
930107 799 2.98 19.72 6 325 1.21 18.19
930108 825 3.08 22.80 7 541 2.02 20.21
930109 837 3.12 25.92 8 1071 3.99 24.20
930110 745 2.78 28.69 9 1492 5.56 29.77
930111 842 3.14 31.83 10 1339 4.99 34.76
930112 889 3.31 35.15 11 1444 5.38 40.14
930113 817 3.05 38.19 12 1320 4.92 45.06
930114 842 3.14 41.33 13 1471 5.48 50.55
930115 911 3.40 4473 | 14 1536 5.73 56.28
930116 906 3.38 48.11 15 1692 6.31 62.58
930117 748 279 | 5090 16 1270 473 67.32
¢30118 992 3.70 | 54.59 17 1348 5.03 72.34
930119 784 292 | 5752 18 1284 479 77.13
930120 1034 3.86 61.37 19 1433 5.34 82.47
930121 963 3.59 64.96 20 1131 422 86.69
930122 904 3.37 68.33 21 1221 4.55 91.24
930123 1016 3.79 72.12 22 1158 432 | 9556
930124 748 2.79 74.91 23 1190 444 | 100.00
930125 | 911 3.4C 78.31 ?
930126 945 3.52 81.83

930127 922 3.44 85.27

930128 1043 3.89 89.16

930129 925 3.45 9260 |

930130 1129 421 96.81

930131 856 3.19 100.00
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APPENDIX 16

PROGRAM FOR ESTIMATING THE R/S VALUES

real xtn(140,360), mn(140), sdv(140), rxtn(l140), rbys(140)

100

200

300

400

500

600

1000

2000

real cl(720), maxxtn(140), minxtn(140), rbysm
integer ng

write (*,*) "enter number of calls"

read (*,*) n

open (unit=1l, file='sj93tcar.inp')

open (unit=2, file='srs93car.out')

do 100 i=1l,n

read (1,*) cl(i)

write (*,*) "enter min & max numbers in each group”

write(*,*)"the numbers should be +ve integers between 5 and 360"

read (*,*) ng min, ng max
do 2000 ng=ng min, ng max
rbysm=0
ing=n/ng
do 1000 i=1,ing
mn (i)=0
do 200 j=(i-1)*ng+l, i*ng
mn (i)=mn(i)+cl (J)
mn(i)=mn (i) /ng
sdv(i)=0
do 300 j= (i~1)*ng+l, i*ng
sdv{i)=sdv{i)+(cl(j)-mn(i))*(cl(j)-mn(i))
sdv(i)=sqrt{sdv(i}/ (ng-1))
do 400 j=1,ng
xtn(i,j)=0
maxxtn(i)=-1000
minxtn (i)=1000
do 600 j=1,ng
do 500 k=(i-1)*ng+l, (i-1) *ng+j
xtn(i,j)=xtn(i,j)+{cl(k)-mn(i))
if(xtn{i,j} .gt. maxxtn(i)) maxxtn(i)=xtn(i, J)
if(xtn(i,j) .1lt. minxtn(i)) minxtn(i)=xtn(i,j)
rxtn(i)=maxxtn (i) -minxtn (i)
rbys (i)=rxtn{i)/sdv(i)
rbysm= rbysmtrbys (1}
continue
rbysm=rbysm/ing
write(2,*)ng, rbysm
stop
end
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FIGURE |l

TOPOLOGICAL CONNECTIVITY
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TOPOLOGICAL CONNECTIVITY
VANCOUVER CENSUS TRACTS
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FIGURE IV

HOT SPOTS BY ENUMERATION AREAS
VANCOUVER- JAN ‘95
CALLS FOR POLICE SERVICE

FRQS.

49.2 -123.22

FRQS.
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FIGURE V
BURNING TIMES

VANCOUVER- JAN ‘95
CALLS FOR SERVICE

FRQS.

930110

0 930100
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FIGURE VI

VORONOI DIAGRAM & DELAUANY TRIANGLES
CHEVY AUTO THEFT ANALYSIS

Numbers represent Angles in the Triangles
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R/S VALUES FOR ALL CALLS

JUNE '91

(srdN

8SE.LL.8'S
G2ZBBLER'S
CG2BEBL'S
EIPEEEL’S
92.1089'S
S.10v29'S
t0csv9s'S
2862105'S
2CLEEYV'S

226219¢'S
LE02EBT'S
L6¥861°'S

SGY6S01'S
€9Y6E00'S
L6YE068'Y
6EL129L'Y
S0cLSioY
1131 T4 4 A4
sooLvee'
61620.6'E
6.16019°E
peesyyoe
6LEV609'L

LN(N)

293




SR/S VALUES FOR ALL CALLS

JUNE ‘91

(srasiN

=]

£€5088'S

L0O18YER'S
$.6898L'S
€2LS9EL'S
86.5€89'S
1129429'S
SYYEBIS'S
S1E€505'S
€6.L08EY'S
9/6S9¢€'S

192882'S

1900%02'S
8/86111°'S
£5€9010'S
86€8.68'Y
9y890LL'Y
ge.L6veo'y
ELYEYSY' Y
esevsvey
$86886'¢

c98S.LEO'E
S2yoleo’e
S6SL16L°)
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