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Abstract 

The von Mises distribution is often useful for modelling circular data problems. We con- 

sider a model for which von Mises data is contaminated with a certain proportion of points 

uniformly distributed around the circle. Maximum likelihood estimation is used to produce 

parameter estimates for this mixture model. Computational issues involved with obtaining 

the maximum likelihood estimates for the mixture model are discussed. Both parametric 

and goodness-of-fit based test procedures are presented for selecting the appropriate model 

(uniform, von Mises, mixture) and determining its adequacy. Parametric tests presented 

in this project are based on the likelihood ratio test statistic and goodness-of-fit tests are 

based on Watson's goodness-of-fit statistic for the circle. A parametric bootstrap is per- 

formed to obtain the approximate distribution of Watson's statistic in situations where the 

true parameter values are unknown. 

Keywords: goodness-of-fit; model selection; parametric bootstrap 
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Chapter 1 

Introduction 

Most scientific fields (Biology, Chemistry, Physics, Medicine, . . .) have applications in which 

directions are collected and statistically analysed. Some examples of directional data include 

animal orientations (associated with migration, homing, escape or exploratory activity) [2] 

and wind directions. Circular representations are also often used with cyclic time series 

data. For example the times in which patient deaths occur can be recorded and given a 

circular representation with a full 24 hour period corresponding to 360'. 

The von Mises distribution is commonly used as a model for many circular data problems. 

In some situations, the von Mises model appears appropriate but is unable to sufficiently 

model both the number of points that are tightly concentrated around the mean direction 

and the number of points that are more dispersed at the opposite end of the circle. One can 

potentially explain the above situation as resulting from a certain proportion of data coming 

from a von Mises distribution while the remaining proportion is randomly (or uniformly) 

scattered around the circle. In this project a mixture of von Mises and circular distributions 

are used to provide a model that is suitable for data in which the von Mises model appears 

appropriate but for the reasons described above is not able to sufficiently model the data. 

An experiment done on the behavior of ants in the presence of a light source (see Chapter 

2, Section 2.6 for references and details) is an example for which the mixture model is 

appropriate. Ants were placed into an arena one at a time, and the directions they chose 

relative to an evenly illuminated black light source placed at 180' were recorded. The 

orientations of 100 ants are illustrated in Figure 1.1. 

In Chapter 2, the von Mises model is fit to the ant data. Maximum likelihood parameter 
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Figure 1.1: Circular data plot of orientations of 100 ants 

estimates are provided and large sample theory is used to provide the asymptotic distribution 

of the MLE. The P-P plot is discussed as a way of graphically assessing the fit of the model. 

A shortcoming of the use of the P-P plot for circular data is that visual assessment of the 

goodness-of-fit of the data may depend on how the data has been oriented around the circle 

and this shortcoming is also discussed. 

The von Mises distribution is not able to sufficiently model both the number of ants 

that are concentrated in directions around the light source and the number of ants that 

are scattered about in the opposite direction. In Chapter 3, the mixture model that is 

introduced provides a better model for explaining the behavior of the ants. Maximum 

likelihood parameter estimates are provided for the mixture model and large sample theory 

is used to provide the asymptotic distribution of the MLE. 

In Chapter 4 various computational details concerned with the calculation of the MLE 

for the mixture distribution are discussed. A simple algorithm is provided for obtaining the 

maximum likelihood parameter estimates for the von Mises distribution. A discussion is 

provided on the ill behavior of the likelihood function of the mixture distribution in certain 

regions of the parameter space. While it does not fit in with our motivation for the mixture 

model. the mathematical possibility of the mixture distribution having a proportion of von 

Mises distributed data greater than 1 is discussed. A circular data example is provided where 
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the likelihood function has higher values when the proportion of von Mises distributed data 

is allowed to be more than 1. This situation does not fit in with our initial motivation 

for the model, and von Mises proportions greater than 1 are not practical for use with the 

mixture model. Thus we provide a simple way of detecting wether or not higher likelihoods 

exist for von Mises proportions greater than 1 and in that event the von Mises model can 

be used instead. Finally we provide an algorithm for obtaining the MLE for the mixture 

distribution, including the calculation of initial parameter estimates. 

In Chapter 5 we examine the goodness-of-fit of the ant data to the different models. 

Two different approaches for testing fit and selecting the appropriate model are discussed. 

A non-parametric approach is discussed in which Watson's u2 statistic is used to assess 

the fit of a model. To obtain the approximate distribution of the u2 statistic in situations 

where the true parameter values are unknown, a parametric bootstrap sample is taken. 

A parametric based approach is also provided in which likelihood ratio tests are used for 

testing for uniformity against the von Mises alternative and for testing for von Misesness 

against the mixture alternative. 



Chapter 2 

The von Mises Distribution 

In this chapter we discuss modelling circular data using the von Mises distribution. An 

introduction to the von Mises distribution is given in Section 2.1. We provide the maximum 

likelihood estimator for the parameters of the von Mises distribution in Section 2.2 and 

its asymptotic distribution is given in Section 2.3. A graphical method for assessing the 

goodness-of-fit of the von Mises model is discussed in Section 2.4. A circular data example 

is presented in Section 2.5 and we fit the von Mises model to this data. In Section 2.6 we 

conclude with an example of circular data for which the von Mises model alone does not 

provide a good fit and a better fit for the data would be the mixture model discussed in 

Chapter 3. 

2.1 Introduction 

The most commonly used distribution for modelling circular data is the von Mises distribu- 

tion. The probability density function of the von Mises distribution is given by 

1 
~ V M  (0; P, IF.)  = exp{~~.cos(B - p)}, 0 < 8 < 27r, IF. 2 0, 0 < p < 27r, 

2 ~ I o  ( I F . )  

where Io(IF.) is the zeroth order modified Bessel function of the first kind, and can be ex- 

pressed as 
1 2= 

Io(IF.) = 1 exp{n COS(B)} dB. 

The mean direction is specified by the p parameter. The parameter IF. influences how con- 

centrated the distribution is around the mean direction. Larger values of IF. result in the 
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distribution being more tightly clustered about the mean direction. 

Figure 2.1: Probability density functions of several von Mises distributions 

theta (degrees) 

The density functions of several von Mises distributions with mean direction, p = 18O0, 

and various concentration parameters, K,, are plotted in Figure 2.1. 

2.2 Maximum Likelihood Estimation 

Often we wish to model circular data according to a von Mises distribution for which the 

parameters p and K, are unknown. Suppose that t!ll,. . . ,8, are n independent random 
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directions drawn from a von Mises distribution with unknown parameters p and fi. Let 

q5vkI = (p, fi). The log-likelihood function is given by 

We will give the maximum likelihood parameter estimates shortly but first we need to 

define the resultant vector and mean angular direction. Definitions for the result ant vector 

and mean angular direction have been given by Jammalamadaka and SenGupta in [8] (p. 13), 

for example, and for convenience have been repeated below. 

Each of the angles O1,. . . , On can be converted from polar to rectangular co-ordinates by 

using the transformation, xi = (cos(O~) ,  sin(Oi)), .i = 1, . . . , n. The component-wise sums of 

these unit vectors are defined below. 

C = 1 COS(Q~) ,  and S = 1 sin(Oi). 

The resultant vector and resultant length are defined as 

R = ( C , S ) ,  and R =  d m ,  

respectively. 

The mean angular direction, 8, is not defined for R = 0 (or equivalently, for C = 0 and 

S = 0). For R > 0, the mean angular direction is given by 

The angle 8 is the angle between the resultant vector and the positive x-axis; that is, the 

vector R,, points in the direction of 8. Notice that 0 < 8 < 271.. 

Now, we give a derivation for the maximum likelihood parameter estimates, we follow the 

presentation of Mardia and Jupp in 1131 (p. 85). First note that by using the trigonometric 

identities 

cos(0 - 8 + 8 - p) = cos(O - 8) cos(8 - p) - sin(O - 8) sin(8 - p), 
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C O S ( ~  - 8) = cos(t9) cos(8) + sin(0) sin($), and 

sin(t9 - $1 = sin(t9) cos(8) - sin($) cos(t9), 

the log-likelihood can be re-expressed in the form 

~ v M ( + V M )  = KR C O S ( ~  - P) - n [ log(2~) + log {Io(K))] 

In this form, the maximum likelihood estimate of p can be seen to be fi = 8, since cos(x) 

has its maximum at x = 0. 

We will also need some results concerning Bessel functions. In general, the jth order modified 

Bessel function of the first kind, Ij (K) ,  is given by 

The derivative of the zeroth order modified Bessel function of the first kind is equal to the 

first order modified Bessel function of the first kind. 

Now, differentiating the log-likelihood function with respect to K gives 

where A(&) = IL(K)/Io(K). Thus the maximum likelihood estimate k of K is the unique 

solution of 

A(k) = Rln,  

2.3 Large Sample Asymptotic Distribution of the NILE 

L,et po and KO be the true parameter values of p and K; respectively. As mentioned by Mardia 

and Jupp in [13], standard theory of maximum likelihood estimators, as can be found in [4] 

(pp. 294-296), can be used to show that (fi, k), is asymptotically normally distributed, 
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where I denotes the Fisher information matrix, 

based on a single observation. Thus fi and k are asymptotically independently normally 

distributed with means variances given by 

E (fi) = PO, Var(fi) - -L- and 
nlcA(lc) ' 

respectively. 

An algorithm for obtaining the maximum likelihood parameter estimates for the von 

Mises distribution is provided in Section 4.1. 

2.4 Graphical Assessment of Goodness-of-fit 

One method of graphically assessing the goodness-of-fit of the von Mises model is to con- 

struct a Probability-Probability (P-P) plot. To construct a P-P plot we first sort our n 

angular data values 01,. . . , O n ,  in order from smallest to largest to obtain 0(1), . . . ,O(,). 

We then calculate the cumulative distribution function, FvM(O(i); T, k )  and plot it against 

(i - 0.5)/n, for i = 1, .  . . , n. If the von Mises model is a good model, then the points on the 

plot should approximately be along the line y = x. 

It is, however, important to mention that our visual perceptions as to the goodness-of-fit 

od the model based on a P-P plot may depend on rotations of the data. We can potentially 

obtain quite different looking P-P plots simply by rotating the data as illustrated in Figures 

2.3 and 2.4 in Section 2.5. Since typically circular data problems are arbitrary assigned 

starting directions (ie 0" is arbitrarily assigned to a direction), the lack of consistency 

in appearance of P-P plots based on rotations of the data is not a particularly desirable 

characteristic. More formal goodness-of-fit tests that are based on Watson's u2 statistic 

and do not depend on rotations of the data and are presented in Chapter 5. 

The P-P plot can still be useful in identifying situations in which the model is quite 

clearly inadequate. If the P-P plot deviates significantly both above and below the line 
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y = x, then Watson's u2 statistic will be relatively large. Large deviations both above and 

below the line are indication that the model may not be appropriate. 

2.5 Example 1 

We will now provide an example of data that are approximately von Mises distributed and 

provide the maximum likelihood parameter estimates. 

The directions of slope of 44 lamination surfaces of sandstone rock are given in Table 

2.1 and have also been illustrated in the circular data plot in Figure 2.2. The data in Table 

2.1 are taken from the first of two samples that Pearson and Stephens [I51 (p. 129) use in 

determining whether or not the samples come from the same von Mises population. Pearson 

and Stephens originally took the data from Kiersch [lo]. 

Table 2.1: Directions of slope of 44 lamination surfaces of sandstone rock 

Figure 2.2: Circular data plot of directional sandstone rock data 
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A von Mises model can be fit to this data by using the maximum likelihood parameter 

estimates in place of the true parameters. The maximum likelihood parameter estimates 

and associated standard errors are provided in Table 2.2. 

Table 2.2: von Mises maximum likelihood parameter estimates for Example 1 

Figures 2.3 and 2.4 show two different P-P plots for the same von Mises model with 

parameters given above. In Figure 2.3, the fit appears poor but by simply rotating the 

data by (180" - f i )  = -19.4" in Figure 2.4, the fit appears much more reasonable. Thus, in 

assessing goodness-offit to the von Mises distribution we need methods which do not depend 

on which angle is chosen to be the 0" point on the circle. As mentioned in the Section 2.4, 

goodness-of-fit tests based on Watson's u2 statistic can be used to make such rotationally 

independent assessments of the fit of the model. These tests are presented in Chapter 5. 
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Figure 2.3: von Mises P-P plots of directional sandstone rock data (not rotated) 

Empirical Probabilities, (i-0.5)ln 
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Figure 2.4: von Mises P-P plots of directional sandstone rock data (rotated by -19.4") 

Empirical Probabilities, (i-0.5)ln 
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2.6 Example 2 

For some data sets, the von Mises distribution does- not sufficiently model the number of 

data points that are observed to fall far away from the mean direction. In this example we 

consider data collected from ants that were placed in an arena. An evenly illuminated black 

target was placed in a position centered at 180" and each ant was then placed individually 

into the arena and the optical orientation of the ant was recorded. The ants tended to run 

towards the illuminated black target. These data are taken from Fisher [7] (p. 243) and 

are a random sample of size 100 taken from Jander's larger data set in [9] (Jander's figure 

18A). The data in [7] are grouped in the sense that the directions have been recorded to 

the nearest 10". We do not yet have a method for analyzing grouped data with the mixture 

distribution. We have therefore adjusted Fisher's data by adding, to each angle given by 

Fisher, an independent random quantity uniformly distributed between -5" and 5". For 

this data set, the grouping is not severe. It is therefore not expected that analyzing the 

grouped data instead would make a dramatic difference. The adjusted ant data, rounded to 

the nearest O.lO, is given in Table 2.3 and is displayed graphically in the circular data plot 

in Figure 2.5. 

Table 2.3: Orientations of 100 ants 
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Figure 2.5: Circular data plot of orientations of 100 ants 

A von Mises model was fit to the adjusted ant data. The maximum likelihood parameter 

estimates and associated standard errors are provided in Table 2.4. 

Table 2.4: Von Mises maximum likelihood parameter estimates for Example 2 

The P-P plot in Figure 2.6 shows that the von Mises model is not a particularly good 

fit for the ant data since there a points both significantly above and below the y = x line. 

While many of the ants appear to be heading in the approximate direction of the illuminated 

black target, there are also several ants heading in directions far away from the target. The 

von Mises model is not sufficient to capture both the concentration of the ants heading in 

directions that are close to the target and the frequency of ants that are heading in directions 

far away from the target. In Chapter 3 we will introduce a mixture model that contains 

both a von Mises and a uniform component. This more flexible model is more adequately 

able to model the ant data. 
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Figure 2.6: von Mises P-P plot of directional ant data 

0.4 0.6 

Empirical Probabilities, (i-0.5)In 



Chapter 3 

The Mixture Distribution 

In this chapter we consider mixture models for data sets where the von Mises distribution 

does not provide an adequate fit. An introduction to the mixture model is given in Section 

3.1. A rough outline of a method for obtaining the maximum likelihood parameter esti- 

mates of the mixture distribution is provided in Sec-tion 3.2 and in Section 3.3 we give the 

asymptotic distribution and variance of these estimates. In Section 3.4 we revisit Example 

2 from Section 2.6 and provide maximum likelihood estimates for the parameters of the 

mixture model along with P-P plots that suggest an improved fit is obtained when using 

the mixture model rather than the von Mises model. 

3.1 Introduction 

One possible way to explain the behavior of the ants shown in the circular data plot in 

Figure 2.5 of Section 2.6, is that some of them are influenced by the illuminated black 

target while others are not. Suppose an ant is influenced by the target with probability p 

and heads off in the general direction of the target according to a von Mises distribution. 

In addition, suppose the same ant has a probability 1 - p of remaining uninfluenced by the 

target, in which case it heads off in a random direction. Then, the distribution of directions 

an ant will travel in is a mixture distribution and has probability density function given by 

where f V M ( Q ;  n, P )  is the von Mises density given in Section 2.1 and f u ( Q )  = 1/27r, is the 

uniform density. When p = 1 the model simplifies to the von Mises model discussed in 
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Chapter 2 and when p = 0 the model simplifies to a uniform model. 

Several probability density functions of mixture distributions with various parameter 

values of p and K have been plotted in Figure 3.1. In the figure, the columns correspond, 

from left to right, to K = 0.5,l  and 2 while the rows correspond, from top to bottom, to 

p = 0.5,0.75 and 1. In each panel p is 180". 

Figure 3.1: Probability density functions of various mixture distributions 

p0.75, kap a=0.5 

o o  b===== 

theta (degrees) 
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Notice that an increase in either p or n increases the density around the mean angular 

direction and decreases the density in the tails of the distribution. The last row of plots 

correspond to p = 1 and are von Mises distributions. One can also observe that the plot 

with parameters p = 0.5 and n = 2 has a similar density around the mean angular direction 

as the von Mises density with parameters p = 1 and n = 1. However, in the plot that 

has p = 0.5, the density drops off more rapidly as we move away from the mean angular 

direction and a higher density is left in the tails of the distribution. The mixture model can 

be a good alternative to the von Mises distribution in situations where it looks as though a 

portion of the data is von Mises distributed but a fitted von Mises distribution is not able to 

model adequately both the number of data points that are concentrated around the mean 

angular direction and the number of points that are in the tails of the distribution. 

3.2 Maximum Likelihood Estimation 

In this section we discuss a method for obtaining maximum likelihood parameter estimates 

for the mixture model. Unfortunately, the mixture distribution does not belong to the 

exponential family so we can not use the general method of obtaining maximum likelihood 

parameter estimates for exponential family distributions as can be done for the von Mises 

distribution. 

We can obtain maximum likelihood parameter estimates for the mixture model by identi- 

fying the parameter values which maximize the likelihood function or equivalently maximize 

the log-likelihood function. Suppose that 01, . . . , O n  are n independent random directions 

drawn from the mixture distribution above and we wish to estimate the parameters p, p,  

and n. 

Let q5 = (p, p, n), then the log-likelihood function is given by 

The maximum of the log-likelihood function will either be on the boundary of the parameter 

space, or a point within the interior of the parameter space which is a relative maximum. 

In the latter case, the maximum will have first derivatives of I equal to 0. 
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The score function, U(@), is the vector of first derivatives of the log-likelihood function and 

can be useful for identifying potential relative maxima. It is given by 

where 

are the first order partial derivatives of the log-likelihood function and where A(&) = 

I l (~) /Io(~);  the jth order modified Bessel function of the first kind, Ij(a), is defined in 

Section 2.2. We can identify one or potentially more critical points, by finding the solutions 

to the likelihood equations given by U(@) = 0. The solutions to the likelihood equations will 

be relative maxima if the second derivative matrix of the log-likelihood function is negative 

definite. 

3.3 Large Sample Asymptotic Distribution of the MLE 

Let 6 = ( I j ,  f i ,  A) be the maximum likelihood parameter estimate for the vector of true 

parameters for the mixture distribution, @o = (PO, pol 60). If @o is an interior point of the 

parameter space, then standard theory of maximum likelihood estimators [4] (pp. 294-296) 

can be used to show that 6 is asymptotically normally distributed, 

where I denotes the Fisher information matrix, based on a single observation, 
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Here, Hl(q50), is the second derivative matrix of the logarithm of the mixture density 

function evaluated at the true parameter values, and is given by 

Numerical solutions can be obtained for I can be obtained by numerical integration of 

There is, however, no real need to evaluate this integral because we can use the result 

that v($) /n  is asymptotically equal to I, where v($) is the observed information matrix 

evaluated at 4. The observed information matrix can be expressed as v($) = -H,~($), 

where H,~($) is the hessian matrix (second derivative matrix of the log-likelihood function) 

and is given by 

f f n  (4) = 

Thus if q50 is an interior point of the parameter space, then $ will have an asymptotically 

multivariate normal distribution, with mean vector q50, and approximate variance covariance 

matrix v-'($). If q50 is not an interior point in the parameter space, then q50 must either 

lie outside or on the boundary of the parameter space and the above limiting distributional 

theory does not hold. In the case where q50 is on the boundary of the parameter space, 

then either po = 0 or po = 1. If po = 0, then the uniform model applies and there are no 

parameters to estimate. When, po = 1, then the von Mises model applies, and we need only 

estimate p and K and the theory presented in Chapter 2 applies. In Chapter 5, tests are 

provided for making the decision whether po = 0, po = 1, or po is somewhere between 0 

and 1. It is recommended that these tests first be used to decide which of the three models 

(uniform, von Mises, mixture) is most appropriate. 
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For convenience, the second order partial derivatives of the log-likelihood function are 

provided below. For simplification, fu, fv~bf, and f will be used as shorthand for frr(Bi) ,  

~ V M  (ei; p, K ) ,  and f (ei; p, p,  K )  , respectively. 

a2z(4) 
n 

- = p ~ ? [ n ( l - p  
span fvu - fu) {cos(Bi - p) - A(n)} + 1 sin(Bi - p). 

i=l f I 
The second order partial derivatives are symmetric so a21(4)/apap = a"(4)/apap, 

a2z (4 ) / adp  = a2z(4)/apan, and a2z(4)/anap = a2z(4)/apan. 

An algorithm for obtaining the maximum likelihood parameter estimates for the mixture 

distribution is provided in Section 4.6. 

3.4 Revisiting Example 2 from Section 2.6 

We now revisit the data that was collected for the directions chosen by 100 ants in response 

to an evenly illuminated black target and previously given as Example 2 in Section 2.6. We 

fit both the von Mises and mixture models and make a graphical comparison of fit using 

P-P plots. Maximum likelihood parameter estimates and their associated standard errors 

for each of the two models are provided in Table 3.1. 
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Table 3.1: Maximum likelihood parameter estimates for Example 2 

1 mixture 1 0.646 1 0.065 1 185.5" 1 3.2" 1 7.34 1 1.86 

Model 
von Mises 

Comparing the von Mises and mixture maximum likelihood estimates one can make 

several observations 

1. The ii; estimate is much higher for the mixture model than for the von Mises model. 

This is because, having the added flexibility of modelling a proportion of directions to 

be randomly dispersed around the circle, allows the model to more accurately reflect 

the tightness of observations that are dispersed around the mean direction in the von 

Mises component. 

2. Only approximately 65% of ants travel in a direction that is influenced by the black 

illuminated target. The other 35% of the ants remain uninfluenced by the target. 

p 
- 

3. The estimated mean direction, fi, differs little between the von Mises and mixture esti- 

mates. This is to be expected because Emixture(R) = poEvM(R) and the expectant 

resultant vectors point in the same mean direction. In large samples, we therefore 

expect the estimated mean directions to be approximately equal for both models. 

stderr(fi) 
5.9" 

The P-P plots for the von Mises and mixture models are given in Figures 3.2 and 3.3. One 

can clearly see that the P-P plot in Figure 3.3 appea,rs to fit fairly well along the line y = x 

while there clearly seems to be some curvature in the P-P plot in Figure 3.2, indicating that 

the fit is not as good. Therefore the mixture data model appears to be the more appropriate 

model based on the P-P plots. The improved fit in the mixture model is obtained from its 

added flexibility of allowing many directions to be fairly tightly dispersed around the mean 

direction, while still being able to model sufficiently the proportion of points that are far 

away from the mean direction. A more formal assessment of the goodness-of-fit of the von 

Mises and mixture models using Watson's U 2  statistic is provided in Chapter 5. 

stderr(p) 
- 

fi 
183.3" 

k 
1.55 

stderr(k) 
0.21 
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Figure 3.2: von Mises P-P plot of' directional ant data 

0.4 0.6 

Empirical Probabilities, (i-0.5)In 
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Figure 3.3: Mixture P-P plot if directional ant data 



Chapter 4 

Computational Details 

In this chapter, we discuss some of the computational details that were used in obtaining 

maximum likelihood estimates for the von Mises and mixture distribution. In Section 4.1 

we provide and algorithm for obtaining maximum likelihood estimates for the von Mises 

distribution. A characteristic of the mixture distribution having ill-behaved and unbounded 

likelihoods when values of K are very large is discussed in Section 4.2. An example is 

provided in Section 4.3 of a situation where the maximum likelihood estimate for p under 

the mixture model is greater than 1 and falls outside the allowable parameter space. In 

Section 4.4 we elaborate on this phenomena in a little more detail, discussing what values of 

p and K are required for f (6';p, p, K )  to be a valid probability density function. We discuss 

how to identify situations, where higher likelihoods exist for values of p > 1 in Section 4.5. 

In Section 4.6 we discuss how to obtain initial approximations for the parameters of the 

mixture distribution. An algorithm for obtaining the MLE for the mixture distribution is 

presented in Section 4.7. 
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4.1 Algorithm for von Mises Maximum Likelihood Estima- 

tion 

Prior to discussing the algorithm for obtaining maximum likelihood estimates for the von 

Mises distribution, some details from Chapter 2 are required. The von Mises density along 

with a description of its parameters is given in Section 2.1 and maximum likelihood esti- 

mation for the von Mises distribution is covered in Section 2.2. Definitions for the length 

of the resultant vector, R, the mean angular direction, 8, and the jth order modified Bessel 

function of the first kind, Ij(r;,), are also provided in Section 2.2. 

The maximum likelihood estimate for p is given by f i  = 8 and the maximum likelihood 

estimate for r;, is implicitly given by A(k) = Rln,  where A(&) = Il(r;,)/Io(r;,). Equivalently, 

the maximum likelihood estimate for r;, can be found by differentiating the log-likelihood 

function with respect to r;, and solving the likelihood equation, 

By using the relations 

d d I1 (4 
-Io ( r ; , )  = Il ( n )  and - I1 ( K )  = 10 

- 7, dr;, dr;, 

the derivative of UvM, can be seen to be 

Let- R = R/n. A good initial approximation, ko, for k is. given by Fisher [7] (p.88), 

An algorithm for obtaining maximum likelihood estimates from the von Mises distribu- 

tion is given below. 

Algorithm 

Step 1: Calculate 8, and R as given in Section 2.2. 
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Step 2: Calculate 20 as previously described. 

Step 3: Set fi = 6 and r2 = Newton-Raphson(20, Uvmr, HvM). 

Step 4: Calculate the estimated variances for fivmI and kvM as 

1 
Var(ji) = - and ~hr(r2)  = 

1 
nkA(k) ' ,n[1 - A(r2)" A(k)/k] ' 

The Newton-Raphson algorithm used in step 3 is provided in Appendix A. 

4.2 Behavior of Mixture Likelihood for Large Values of K 

The mixture distribution was previously introduced in Section 3.1 along with a description 

of its parameters, p, p and rc,. The log-likelihood function for the mixture distribution is 

given in Section 3.2. As with many mixture models, the likelihood function is ill-behaved 

for values of 0 < p < 1 when a concentration parameter, rc, in the von Mises case, is large. 

If we allow the values of rc, to approach infinity, then the log-likelihood function will also 

approach infinity for values of p that are equal to one of the data points. To illustrate 

this characteristic of the mixture distribution a little better, a simple example is illustrated 

below. 

Consider a situation in which we have only 3 angular data points: 135", 180•‹, and 225". 

A contour plot of the log-likelihood function surface when p is fixed at 113 and rc, and p are 

allowed to vary is given in Figure 4.1. Figure 4.2, plots the same data but is a 3-dimensional 

plot and provides a different view of the log-likelihood function surface. 

As can be seen in Figures 4.1 and 4.2, the log-likelihood function is highest for large 

values of rc, at values of p corresponding to each of the 3 angular data points. As previ- 

ously mentioned, if rc, is allowed to increase indefinitely, then the log-likelihood function will 

approach infinity at  values of p that are equal to any of the 3 angular data points. 
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Figure 4.1: Contour plot of log-likelihood function when p is fixed at 1/3 
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Figure 4.2: 3-dimensional plot of log-likelihood function when p is fixed at 113 
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Although the parameter p was set to 113 in the plots, the same ridges are present for 

every value of 0 < p < 1. A simple example was chosen with only 3 data points so that 

the plots do not become too cluttered but the same concept applies to problems with more 

data. It is not particularly reasonable to consider that the true parameter value for K. is 

very large and the true parameter value for p is most likely to be arbitrarily any one of the 

data points. Most data problems for which the mixture distribution is a natural choice do 

however have a local maximum of the log-likelihood !unction at a point that is a solution to 

the likelihood equations given in Section 3.2. Fortunately, the log-likelihood function is well 

behaved near the local maximum and standard maximum likelihood theory can be applied. 

If an algorithm such as the Newton-Raphson algorithm is used to obtain the solution 

to the likelihood equations, then some care needs to be taken with the initial choice of 

parameter values. As long as the initial values are close enough to the solution of the 

likelihood equations as to be in a region near the solution, the Newton-Raphson algorithm 

should work well. If however, starting values are far away from the solution or chosen in a 

region where the log-likelihood function is ill-behaved, the Newton-Raphson algorithm will 

not converge. Typically one should be cautious using large initial values for the K. parameter, 

particularly when the initial values for the p parameter are small. 

4.3 Example of MLE for p that is Greater than 1 

The mixture model is a natural choice in situations where it appears as though there is 

both a good proportion of von Mises data that is clustered fairly tightly around the mean 

and there is also a significant proportion of uniform data dispersed throughout the rest of 

the circle. If the data is not tightly clustered around the mean and thus has a low value 

of K., then there is little difference between the von Mises and uniform distributions. In 

such situations, the mixture model has less appeal than using either the von Mises or the 

uniform distributions. For most problems for which the mixture model is a natural choice, 

the likelihood function has a local maximum for some value of p between 0 and 1 and 

a reasonable value of K.. However, in the example below, the mixture distribution is not 

a natural fit for the data and there is no solution to the likelihood equations within the 

allowable parameter space. 
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4.3.1 Example 3 

The counts of the number of births of children born with anecephalitis in Birmingham, 

England were recorded for the years 1940-1947. These data were originally obtained from 

Edwards in [6] and tested for discrete uniformity using Watson's U2 statistic by Choulakian, 

Lockhart and Stephens in [3]. The p-value for Choulakian, Lockhart and Stephens' test is 

0.031 and thus the null hypothesis of these data belonging to a discrete uniform distribution 

is marginally rejected at the typically used 0.05 significance level. Although there does seem 

to be significant evidence against these data belonging to a discrete uniform distribution, 

the evidence is not overwhelming. 

The count data for each month is given in Table 4.1. Since monthly data is recorded for 

each birth rather than the exact day and time, the data is discrete. 

Table 4.1: Counts of births of children born with anecephalitis 

Counts of monthly data are often displayed around a circle divided in 12 sectors. Prior 

to analyzing the data each birth was assigned an angle between 0" and 360•‹, based on the 

months that the births were recorded in. Each of the 12 sectors in the circle corresponds to 

a 30" slice with the months January to December assigned the slices 0" to 30•‹, . . . ,330" to 

360" respectively. Note that Choulakian, Lockhart and Stephens conducted the goodness- 

of-fit test for uniformity using discrete birth count data. Since we have not yet developed 

the theory yet for extending the mixture model to discrete data we use a simplistic trans- 

formation of the discrete birth count data to a continuous scale. Each birth is randomly 

assigned an angle within the interval corresponding to the month the birth was in. 

July 
7 

Jan. 
10 

Aug. 
10 

Sep. 
13 

Feb. 
19 

Oct. 
23 

Mar. 
18 

Nov. 
15 

Dec. 
22 

Apr. 
15 

May 
11 

June 
13 



CHAPTER 4. COMPUTATIONAL DETAILS 

The data are displayed in the circular data plot in Figure 4.3. 

Figure 4.3: Circular data plot of anecephalitis birth count data 

Visually this data do not seem to lend itself naturally to the mixture model as a good 

choice since the data do not seem tightly concentrated around any particular point in the 

circle. The von Mises maximum likelihood parameter estimates for the anecephalitis birth 

count data are NN 1.52O, and k % 0.288. The value for n is quite close to 0. Recall from 

Chapter 2 that the von Mises distribution is equivalent to the circular uniform distribution 

when n = 0, so this is another indication that there is little difference between the von Mises 

and uniform models. 

Unlike in most problems where the mixture distribution is a natural choice for the 

data, we do not have a local maximum for the likelihood function that is a solution to  the 

likelihood equations in this example. Figure 4.1 shows the maximized profile log-likelihood 

function for the mixture distribution when the parameter p is held fixed and the likelihood 

function is maximized with respect to the other 2 parameters. As can be seen in the figure, 

the maximum likelihood estimate for p is undefined since the maximized profile likelihood 

function asymptotically approaches its maximum as p approaches infinity. 

Figures 4.5 and 4.6 show how the restricted maximum likelihood estimates change for n 

and p when the profile likelihood function is maximized at different fixed levels of p. 
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Figure 4.4: Profile log-likelihood function for mixture distribution when p is held fixed 
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Figure 4.5: Values of tc that maximize profile likelihood for fixed values of p 
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Figure 4.6: Values of p that maximize profile likelihood for fked values of p 
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In addition to not fitting in with out initial motivation for constructing the mixture 

model, it is not convenient to permit the parameter estimates for p to approach co and K, 

to approach 0. As such, it is better to either to go with one of the simpler uniform or von 

Mises models (provided there is a good fit) or to consider other models which fall outside 

the scope of this paper. Model selection, including discussion of goodness-of-fit based tests, 

are considered in Chapter 5. 

4.4 Further Discussion of Values of p that Fall Outside Pa- 

rameter Space 

Although it does not fit with our original motivation for using the mixture model, values of p 

that are greater than 1 can still be legitimate distributions provided that the corresponding 

values of K, are sufficiently small to keep the density positive everywhere from 0 to 2n. Recall 

that the probability density function for the mixture distribution is 

where fVM(e; K,, p) is the von Mises density and fu(t9), is the uniform density. 

In order for f (O;p, p, K,)  to be a continuous probability density function, it must satisfy 

both of the following properties: 

The first property is satisfied as long as values of p and K, satisfy the following equation, 

exp{~, cos(8 - p)} 1 
2 a 1 ~ ( l ~ )  

+(I-P)-- L 07 
2n 

e x p { ~  cos(8 - p)} 
P + (1 -P) L 0. 

I 0  (4 
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Note that cos(9 - p) 2 -1,'d I9 E [O, 27~). 

Thus, 

and it is then easily shown that 

Maximum allowable values of p for corresponding values of K so that f (19; p, p, K) is still a 

valid probability density function are given in Table 4.2. 

Table 4.2: Maximum allowable values of p for corresponding values of K 

It is straightforward to show the second property is always satisfied by noting that both 

fVhl(6; p,  K) and fu(19) are probability density functions and thus 

4.5 Identification when the MLE for p is Outside Parameter 

Space 

To avoid unnecessary computation, it is useful to be able to identify situations in which 

higher likelihoods exist for values of p > 1 than for 0 < p < 1. It is relatively easy to 

identify these situations by simply examining the partial derivative of the log-likelihood 

function with respect to the parameter p, evaluated at p = 1 and the other parameters, 

p and r; equal to their von Mises MLE values. If this derivative if positive, then higher 

likelihoods do exist for values of p > 1. We do not want to consider values of p > 1 out of 

practical considerations, so the parameter estimate for p can then simply be set to 1 and 

the parameter estimates for p and K can be set to their von Mises MLE values. 
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4.6 Initial Parameter Estimates for Mixture Distribution 

As mentioned in Section 4.2, initial parameter values that are too far away from the solution 

to the likelihood equations can result in problems for the Newton-Raphson algorithm con- 

verging on the correct solution. Convergence can be particularly problematic if the initial 

parameter value for p is significantly underestimated and the initial parameter value for n is 

significantly overestimated. Thus some care needs to be taken in choosing initial parameter 

values that are reasonable enough to result in the Newton-Raphson algorithm performing 

as desired. 

To avoid confusion with mixture distribution parameter estimates, we will refer to the 

maximum likelihood parameter estimates for the von Mises model as bvhI and kvhI through- 

out the rest of this chapter. 

In Section 3.4 it was mentioned that we expect the parameter estimates for the mean 

direction parameter, p to be approximately equal for both the von Mises and mixture 

models. Thus a reasonable initial estimate for the mean direction of the mixture distribution 

is fi0 = CvM. 
A simple way of obtaining an initial estimate for the proportion, p, of data that is von 

Mises distributed is to first count the number, nq, of points in the quadrant of the circle 

that is centered 180" away from Go. As long as the concentration parameter of the von 

Mises component is reasonably large, we expect that most of these points will be from the 

uniform component. Since n, counts only the number of points in one of the four quadrants 

of the circle, a reasonable initial estimate for q = 1 - p is 

An initial estimate for p is then 

Since the uniform data is mixed with von Mises data, some points we count as being uniform 

distributed may in fact be von Mises rather than uniformly distributed. Thus our estimate 

qo is positively biased and our estimate po is negatively biased. However, as long as the 

concentration parameter, K ,  for the von Mises component is reasonably large, this bias won't 

be too extreme. Under certain circumstances there is still the risk that our estimate for p 

will be low to such an extent as to result in convergence problems. In an extreme example, 
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po could even potentially be negative. It is therefore a good idea not to allow lj, to be less 

than 0.5. Thus our initial estimate for p becomes 

The calculation of an initial estimate for p is illustrated in Figure 4.7 using the ant data 

from Example 2 in Section 2.6. As can be seen in the figure there are n, = 8 points in the 

quadrant of the circle that is centered 180' away from Go. Thus our initial estimate for p 

becomes, 

This is reasonably close to the final maximum likelihood estimate for the parameter p, 

namely, p % 0.646. 

If the parameter, p, for the proportion of von Mises distributed data is close to 1, then 

kvPI would be a reasonable initial estimate for the concentration parameter, n. Typically, 

kVpI underestimates n because inclusion of the uniform component in the model tightens 

the concentration of the remaining von Mises component. This is, however, not a serious 

problem because using initial parameter estimates for n that are too small does not typically 

put us in a region where convergence would not be possible as could be the case if n were 

significantly overestimated as discussed previously in Section 4.2. We can still improve a 

little on this crude initial estimate by maximizing the profile likelihood when p is fixed at 

po and p is fixed at Go to obtain a better initial esti~nate for n. 

Our initial estimate for n then becomes 

6 = Newton-Raphson(kv-PI, U,, H,), 

where U,(n) and H,(n) are given by 

n 
dl(po, Po, 4 - - ~ V M  (ei; PO, n) 

U,(n) = 
dn PO ' f(ei;  PO, PO, 6) 

{cos(8i - PO) - A(&)} 
i=l 

and 

- (PO fviw(ei;"7 f ( H i ; ~ 0 ,  ~ 0 , ~ )  "') {c;os(ei - Po) - A(&))2) 
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Figure 4.7: Illustration of the calculatio~i of an initial estimate for p 
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4.7 Algorithm for Mixture Maximum Likelihood Estimation 

Now that many of the components are in place from discussion in the previous sections, the 

calculation of maximum likelihood estimates for the mixture distribution is fairly straight- 

forward. Let 4 = (5, b, k )  be the maximum likelihood estimate for 4 = (p, p, &). The 

algorithm for the calculation of 4 is given below. 

Algorithm 

Step 1: Calculate the von Mises maximum likelihood estimates, bvM and kvmI as de- 

scribed in Section 4.1. 

Step 2: Evaluate 

Step 3: If the derivative in Step 2 is positive, then no solution exists to likelihood equa- 

tions for 0 5 p 5 1 and the restricted range likelihood function is at  its maximum when 

p = 1 and the other parameters are at  their von Mises MLE values so set 6 = (1, bvM, kvM). 

Step 4: Else set 

6 = Newton-~a~hson(&, U ,  H,),  

where $o = ($0, Go, kO) is the set of initial parameter values which were provided in Section 

4.6, and U ( 4 )  and H,(@) are given in Section 3.2. 

Step 5:  Obtain the estimated variance covariance matrix for 6 using, 

v&($) = {-~n($)}- '  - 
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It is important to mention that while the initial values provided in Section 4.6 are usually 

sufficiently close to the maximum likelihood estimates for the Newton-Raphson algorithm 

to converge (about 95% of the time for bootstrap samples generated for Examples 1 and 

2 from Chapter 2), there can be some exceptions. If convergence cannot be obtained, 

there are more advanced algorithms such as Powell's Dog Leg algorithm and the Levenberg- 

Marquardt algorithm that ensure that the step sizes are taken to be sufficiently small so 

that the sum of the squared components of the score function decreases (typically ensuring 

that the log-likelihood function increases) with each step. These algorithms can be found 

in [14], for example. 

In some rare cases, the combination of the initial values in Section 4.6 with the more 

advanced algorithms is still not sufficient to obtain the solution to the likelihood equations 

in a reasonable number of iterations. Six different sets of initial values that are used to try 

to obtain solutions to the likelihood equations are listed below: 

1. Initial values from Section 4.6. 

2. Parameters of the distribution that generated the sample (if known). 

3. von Mises maximum likelihood estimates, and p = 1. 

4. Starting with initial values from 3, maximize the likelihood function with respect p, 

6, and p, one parameter at a time, holding the other two parameters fixed. Repeat 

up to 50 times or until the maximum absolute value of the components of the score 

function is 0.001. 

5. Using the initial value for p from 4, perform a 100 x 100 grid search for values of p 

between 0 and 1, and values of 6 between 0 and min(100, 10 x initial value of 6 from 

4)- 

6. Starting with initial values from 5, repeat 4 again up to 200 more times. 

The three algorithms (Newton-Raphson, Powell's Dog Leg and Levenberg-Marquardt) 

are applied to each set of initial values. 
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To ensure that the desired maximum likelihood estimates are obtained several checks are 

also performed after a convergent result has been returned which have been listed below: 

1. H, (6) is negative definite (all eigenvalues are negative). 

3. if k > 50 then check to ensure that the log-likelihood function decreases when k is 

increased by 20% and other parameters are held fixed at their returned values (this 

check was performed to ensure that we are not on one of the ridges discussed about 

in Section 4.2). Note that this check never failed. In the parametric bootstrap sample 

taken for Example 1 (described in more detail on the next page), there were 14 out 

of 10,000 samples that had k > 50 and all 14 of these cases passed this check. Some 

of these samples were investigated further and it was verified that there was indeed 

a significant proportion of data that was very tightly concentrated around the mean 

angular direction. Therefore the large values for the maximum likelihood estimates of 

the K parameter appear to be reasonable for these 14 cases. 

If any of these checks fail, then the MLE is not returned and one of the other methods is 

attempted. 

To avoid computational errors several other checks are performed on the parameter 

estimates generated at each iteration. Let q5i = (@i, &, ki) be the parameter estimates 

obtained for the ith iteration. The checks performed on each iteration have been listed 

below: 

2. Io(ki) and Il(ki) are small enough so as not to result in overflow error (or on some 

software packages, like R for example, are small enough so as not to be set to infinity). 

3. the log-likelihood function evaluated at Ji is negative and does not involve taking the 

log of a negative number. 

4. H,(&~) is not approximately singular (so that ~ , n ( & i ) - l  can be calculated). 

If any of these checks fail, then the algorithm in which the check failed is halted, the MLE 

is not returned and one of the other methods is attempted. 
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In Chapter 5 a likelihood ratio test is performed on the data from Example 1 in Chapter 

2. The null hypothesis is that the data are von Mises distributed and the alternative 

hypothesis is that the data come from a mixture distribution. To obtain the approximate 

distribution of the likelihood ratio statistic under the null hypothesis, a parametric bootstrap 

sample of size 10,000 was taken. Samples were generated using n = 44, ,LL = 199.4" and 

K = 1.07, the sample size and parameter estimates for a von Mises fit to Example 1. 

Table 4.3 gives a summary of the number of samples out of 10,000 that did not converge 

to the mixture MLE after the specified set of initial values and algorithms were applied to 

bootstrap samples generated for Example 1. In the table, the abbreviations NR, PDL, and 

LM are used to specify the Newton Raphson, Powel's Dog Leg, and Levenberg-Marquardt 

algorithms, respectively. The initial values in the table are as described in the list on page 

42. 

Table 4.3: Number of bootstrap samples not converging to MLE for Example 1 

Initial 
Value 
Set 
1 
2 
3 
4 
5 
6 

NR PDL 8 
Based on the results in the table, after the Newton-Raphson and Powel's Dog Leg 

algorithms have been applied to the original set of initial values, solutions for the mixture 

MLE have been found in about 98.3% of the samples. The Levenberg-Marquardt algorithm 

does not seem to have a significant impact in finding additional solutions. Also, it appears 

that solutions could be found in at least 99.3% of the samples by only using the Newton- 

Raphson and Powel's Dog Leg algorithms applied to the initial values sets, 1 and 4. 



Chapter 5 

Tests of Fit and Model Selection 

In this chapter, we discuss how to assess whether or not the mixture model provides a sta- 

tistically adequate fit to the data and provide a procedure for selecting the most appropriate 

model within the mixture distribution family (uniform, von Mises, or mixture of uniform 

and von Mises). An overview of procedures that can be used to select the appropriate 

model is provided in Section 5.1. In Section 5.2, goodness-of-fit tests based on Watson's u2 
statistic are discussed for the uniform, von Mises and mixture models. Parametric methods 

for testing for the uniform model against the von Mises model alternative and for testing for 

von Mises model against the mixture model alternative are given in Section 5.3. The model 

selection procedures discussed in Section 5.1 will be applied to the examples from Chapters 

2 and 3 in Section 5.4. 

5.1 Overview of Model Selection Procedures 

There are two basic approaches to selecting the appropriate model within a family of distri- 

butions. The most commonly used approach starts with the simplest model and gradually 

adopts increasingly more complex models when there is statistically significant evidence 

that the simpler models are inadequate. Another approach starts with the most complex 

model within a family of distributions and gradually adopts the simper models provided 

there is not statistically significant evidence the more complex model should be kept. The 

approach of starting with the simplest model, which in our case is the uniform distribution, 

is more commonly used because it has the appeal of not requiring examination of the more 

complex models unless the simpler models are found to be inadequate. For this reason we 
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will present test procedures that start with the uniform model and adopt the more complex 

von Mises and mixture models when the uniform model model is found to be inadequate. 

Of course, if examination of the data very clearly reveals that there is a mode in which most 

of the data is clustered around, then one could consider starting with the von Mises model 

as the uniform model would be quite clearly inadequate. 

There are also two types of tests, goodness-of-fit tests and parametric specific tests, 

that can be performed and each type lends itself to a different model selection procedure. 

Goodness-of-fit tests examine differences between the empirical cumulative distribution func- 

tion and the cumulative distribution function in determining whether or not the fit is ade- 

quate. Parametric tests consider a specific alternative in assessing the fit. For example, a 

test for uniformity(& = 0) against the von Mises(6 > 0) alternative would be a parametric 

test. 

A goodness-of-fit test based model selection procedure uses only goodness-of-fit tests in 

determining whether or not more complex models need to be considered. The flowchart in 

Figure 5.1 illustrates the steps involved in performing a goodness-of-fit test based model 

selection procedure. 

A parametric test based model selection procedure uses parametric tests with specific 

parametric alternatives at each step in determining which between the simpler null model 

and the alternative model is more appropriate. One advantage of using parametric tests 

is that if the specific alternatives are true, then the tests are more powerful than their 

goodness-of-fit test counterparts. A disadvantage with using parametric tests is that not 

all alternatives are examined, so if the true populakion is something quite different than 

specified by the alternative, then the test may not be very powerful in identifying the 

inadequacy of a simple model. The flowchart in Figure 5.2 initially uses parametric tests 

in finding the model that is most appropriate and uses goodness-of-fit tests to confirm that 

the model is still sufficient when there is no restriction placed on a specific alternative. 
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Figure 5.1: Flowchart for goodness-of-fit test based model selection procedure 
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Figure 5.2: Flowchart for parametric test based model selection procedure 

Yes 

3 Ha: von Mises . 

Yes 
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Some situations can arise in which a parametric test suggests the simpler model is suffi- 

cient but a goodness-of-fit test on the simpler model suggests that it is inadequate. Careful 

consideration needs to be given in these situations. If the goodness-of-fit test suggests only 

marginally significant evidence that the simpler model is inadequate, then one could con- 

sider perhaps still using the simpler model. If, however, there is strong statistical evidence 

that the simpler model is inadequate, the parametric test may have failed to identify the 

inadequacy as a result of the alternative model also being a fairly poor choice. One could 

consider then fitting the most complex model in the family, the mixture distribution. If 

a goodness-of-fit test also reveals that the mixture distribution is inadequate, then it is 

probably a good idea to reject the uniform, von Mises and mixture models and consider 

alternative models outside the scope of this paper. 

5.2 Goodness-of-fit Tests 

Section 5.2.1 provides on overview of a test procedure that can be applied using Watson's 

U 2  statistic on any distribution. Details for carrying out a goodness-of-fit test based on 

Watson's u2 statistic for the uniform, von Mises, and mixture distributions are given in 

Sections 5.2.2, 5.2.3, and 5.2.4 respectively. 

5.2.1 Overview 

A commonly used test statistic in circular data problems is Watson's U 2  statistic, first 

presented and discussed by Watson [21]. A desirable property of Watson's U 2  statistic 

is that it is location invariant and thus does not depend on how the starting direction is 

assigned on the circle. 

Let B1, . . . , 0, be a random sample drawn from a population with a specified cumula- 

tive distribution function F (0) and let F, (0) be the empirical distribution f~inction. After 

changing the limits of integration appropriately for circular distributions and making some 

notational changes from Watson's paper, Watson's U 2  statistic can be expressed as 
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Suppose we wish to test the null hypothesis, Ho, that the random sample of @-values 

comes from the distribution specified by F(@). As outlined by Lockhart and Stephens in 

1121 but changing the notation slightly, the U2 statistic is calculated as follows: 

1. obtain maximum likelihood estimates for all unknown parameters; 

2. for each i in 1, . . . , n,  calculate zi = F(Qi), where unknown parameters are replaced 

by their maximum likelihood estimates if necessary; 

3. put the zi in ascending order to obtain z ( ~ ) ,  . . . , z(,); 

4. calculate the u2 statistic as 

where 2 = Cy=l zi/n is the sample average of the z values. 

P-value calculation when all ~arameters are known: 

If all parameters are known, then Watson's large sample result can be used to obtain a 

p-value, 
CO 

p-value = P ( U ~  > v) = x(-1)k-12exp (-2k27r2u2) 
k= 1 

A simple adjustment can be made to Watson's asymptotic result to make the p-value 

calculate more accurate for finite n as mentioned by Stephens [18]. The adjustment can 

be made by simply replacing u2 with U* = (u2 - O.l/n + 0.1/n2) (1 + 0 . 8 1 ~ ~ )  in the above 

p-value calculation. 
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P-value calculation when some ~arameters are unknown: 

If some of the parameters are unknown, then obtaining pvalues is somewhat more com- 

plicated. When we substitute maximum likelihood estimates in place of the true parameter 

values, values of u2 typically decrease substantially. A parametric bootstrap sample can 

be taken to obtain the approximate distribution for u2 when true parameter values are re- 

placed by maximum likelihood parameter estimates. A method of obtaining p-values using 

a parametric bootstrap approach is outlined for a general distribution specified by F(B) 

below. 

1. obtain maximum likelihood estimates for any unknown parameters and calculate U" 

as described earlier. 

2. Let NBs be the specified number of bootstrap samples to take. For each j E 1, . . . , NBs, 

(a) generate the jth bootstrap sample, elj , .  . . , BTLj, from the distribution specified by 

F(B), using maximum likelihood estimates from the original sample in place of 

any unknown parameters. 

(b) obtain maximum likelihood parameter estimates for any unknown parameters 

using the jth bootstrap sample. 

(c) for each i in 1,. . . , n, calculate zij = F(Bij), where unknown parameters are 

replaced by the maximum likelihood estimates obtained in (b). 

(d) put the zij in ascending order to obtain z(l)j , . . . , z(,,) j. 

(e) calculate the u2 statistic for the jth bootstrap sample as 

where Zj = Cy=l zij/n is the sample average of the zij values for the jth bootstrap 

sample. 
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Let Nl be the number of bootstrap samples that have a U 2  statistic that less than the 

U 2  statistic for the original sample. An approximate p-value for the test specified by Ho is 

then given by 

if Nl = 0 then 
0.5 

p-value z 1 - - 
NBS ' 

else if Ni < NBs then 

else 

Nl pvalue = 1 - - 
NBS ' 

0.5 
pvalue z - 

NBS ' 
where NBs is the total number of bootstrap samples. 

5.2.2 Uniform Goodness-of-fit Test 

The uniform goodness-of-fit test can be carried out as outlined in Section 5.2.1, replacing 

F(0) with F,(O) = 0 1 2 ~ .  Since the uniform distribution has no parameters, there is no need 

for a parametric bootstrap. 

5.2.3 von Mises Goodness-of-fit Test 

The von Mises goodness-of-fit test can be carried out as outlined in Section 5.2.1, replacing 

F(0) with 

where fvM(O;  p, K) is defined in Section 2.1. Typically p and 6 will not be known and need 

to be estimated. Thus, in the typical case, the parametric bootstrap mentioned in Section 

5.2.1 will be required to obtain a p-value. 

An alternative method that uses large sample theory to obtain the asymptotic distribu- 

tion of Watson's u2 statistic has been developed by Lockhart and Stephens. The theoretical 

details along with a table containing asymptotic critical points for various significance levels 

and all known/unknown parameter combinations are given by Loclthart and Stephens in 

1121 - 
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For moderate to large sample sizes (ie n 2 50) both the parametric bootstrap approach 

and the asymptotic distribution approach used by Lockhart & Stephens produce similar 

results and either of these methods should be sufficiently accurate for all practical purposes. 

5.2.4 Mixture Goodness-of-fit Test 

The mixture goodness-of-fit test can be carried out as outlined in Section 5.2.1, replacing 

F(0) with 

where f (O;p, p, K) is defined in Section 3.1. Typically p, p, and K will not be known and 

need to be estimated. Thus, in the typical case, the parametric bootstrap mentioned in 

Section 5.2.1 will be required to obtain a pvalue. 

5.3 Parametric Tests 

In this section two parametric tests are provided. Tests of uniformity again the von Mises 

alternative are discussed in Section 5.3.1 and a test of the von Mises family against the 

mixture alternative is given in Section 5.3.2. 

5.3.1 Tests of Uniformity Against the von Mises Alternative 

Using the Neyman-Pearson lemma, the likelihood ratio test (also referred to  as Rayleigh's 

test as will be explained later) can easily be shown to be the uniformly most powerful 

invariant test of uniformity against the von Mises alternative as mentioned in [1] (p. 348), for 

example. Consequently this test has been widely discussed by many authors. A discussion 

of the likelihood ratio test of uniformity against the von Mises and other alternatives is 

given by Stephens in [20] (pp. 347-349) and a more detailed discussion of tests of uniformity 

against unimodal and bimodal von Mises alternatives is given by Stephens [19]. 

We summarize some of the details for the likelihood ratio test. Let Ol,. . . , O n  be a 

random sample of circular data points. Some details required in explaining the likelihood 

ratio test below have already been provided in Chapter 2. The von Mises density, along with 

a description of its parameters p and K is given in Section 2.1. The von Mises log-likelihood 

function. Ivfir(p, K),  and maximum likelihood estimates fi  and k are provided in Section 2.2. 
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A likelihood ratio test procedure can be performed to test the null hypothesis 

Ho : the points are uniformly distributed around the circle(& = 0), 

against the alternative hypothesis, 

HA : the points are von Mises distributed around the circle(& > 0). 

This leads to the likelihood ratio test statistic 

where lu = -n log(27r) is the uniform log-likelihood, the resultant length, R, and the zeroth 

order modified bessel function of the first kind, I0(&), are defined in Section 2.2. 

On first examination it may appear as though we are performing a one tailed rather 

than a two-tailed test since the null hypothesis, K = 0 appears to be on the boundary of 

the parameter space rather than an interior point. However, we restrict values of K to being 

nonnegative merely for convenience since the parameters K* = - K  and p* = p + 7r specify 

the same von Mises distribution as the parameters K and p. Consider re-parameterizing 

the von Mises distribution with parameters q!q = K cos(p) and 42 = &sin(p). The null 

hypothesis for testing for uniformity against the von Mises alternative then becomes 

which can be seen to be an interior point in the parameter space. Therefore standard theory 

for likelihood ratio tests can be used to show that the likelihood ratio test statistic has an 

asymptotic X 2  distribution or equivalently has an asymptotic exponential distribution with 

mean parameter 2. An approximate p-value can be obtained using 

pvalue m exp(- LR/2). 

Rayleigh developed a commonly used test of Ho against HA using the test statistic Rln. 

The likelihood ratio statistic can be expressed as a monotone function of R l n  and therefore 

Rayleigh's test statistic produces a test that is equivalent to the likelihood ratio test. More 

details for Rayleigh7s test can be found in Batschelet [2]. 
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Rayleigh [I?] showed that the statistic 2 ~ ~ / n  is asymptotically Xz distributed and in 

large samples, 
2 pvalue = Prob(R >_ r )  % exp(-r In) .  

Both Rayleigh's and the likelihood ratio statistic approximate p-value calculations are 

reasonably accurate for large sample sizes (n > 50). In the extreme tail of the distribution 

though neither of these approximations will be very accurate. 

Many approximations have been proposed by various authors for smaller sample sizes. 

Stephens [19] uses the first four moments of R~ to fit Pearson curves which yield very ac- 

curate approximations for the distribution of Rln.  Critical values for the R l n  statistic for 

various sample sizes and significance levels that were obtained by this method are provided 

in [19] (Table 2, p. 285). A table of the approximate sample sizes required to correctly 

identify when the data come for a von Mises rather than circular uniform distribution for 

various desired detection probabilities and values of 6 is also provided in [19] (Table 4, p. 

288). Stephens' approximation is sufficiently accurate even for small sample sizes for all 

practical purposes. 

Exact Distribution of R 

Pearson initially posed the problem of finding the distribution of R as a random walk 

problem in [16]. Shortly after, Kluyver [ll] solved the problem and obtained an expression 

for the exact cumulative distribution of R, 

where Jo(x) and Jl(x)  are the usual Bessel functions, 

An exact p-value is therefore given by 

p-value = Prob(R > r )  = 1 - Prob(R < r )  = 1 - r {JQ(x)}~ Jl(rx)dx. 1 
Durand and Greenwood [5] use quadrature to obtain numerical results for equation 5.1, 

accurate to 5 decimal places, and provide a table for samples of size 6 through 24 and various 
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values of r on page 235. With improved computer technology and using adaptive quadrature 

with double precision for all numerical operations, it is possible to obtain p-values accurate 

to about 10 decimal places for sample sizes less than or equal to 100. Due to propaga- 

tion of round off errors though, it is still not feasible to obtain accurate p-values in the 

extreme tail of the distribution, particularly when the sample size is large. For all practical 

purposes, though, accuracy of p-values beyond the 3Td decimal point is of no real importance. 

Com~arison of the y2 ap~roximations 

For n _> 50, p-values can be approximately obtained using the either the X 2  approxima- 

tions for the likelihood ratio statistic or the 2R2/n statistic. A brief investigation was done 

in an attempt to determine which of these approximations is better over different regions of 

the distributions of R. 

Figure 5.3 compares the exact p-values with the p-values obtained from the 2 different 

approximations for n = 50 and over the most critical part of the distribution (p-values 

between 0.01 and 0.05) where the cutoff point is typically made in deciding whether or not 

to reject the uniform null hypothesis. As can be seen in the figure, the exact p-value is 

always between the two approximations. The approximation based on the 2R2/n statistic 

is overly conservative and does not reject often enough while the reverse is true of the 

likelihood ratio statistic. The approximation based on the 2R2/n statistic appears slightly 

more accurate for most of the critical region and is noticeably more accurate for p-values 

around 0.05. For large samples (n  > 50)  though, both of these approximations appear to 

be sufficiently accurate. 

Many samples exist that have very strong evidence of belonging to a von Mises rather 

than uniform population. In these samples the p-values can often be very small. As men- 

tioned earlier, exact p-values are difficult to obtain when they are in the extreme tail due to 

propagation of round of errors. Accurate p-values in the extreme tail are not particularly 

important though because p-values in the extreme tail are an indication that either a highly 

unlikely sample was obtained or that the null hypothesis is false. Ultimately the accuracy of 

the p-value in the extreme tail really has no bearing on whether or not the null hypothesis 

of uniformity is rejected since p-values less than 0.01 result in rejecting the null hypothesis 

by almost all standards and typically the null hypothesis is rejected when the p-value is less 

than 0.05. 
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Even though the accuracy of p-values in the extreme tail is not particularly important, 

it may still be somewhat useful to have at least some idea as to their accuracy in the 

extreme tail since pvalues are frequently reported. Wilson [22] comments on not being 

able to find an accurate approximation for the probability of a large resultant in a random 

walk in the literature. In an attempt to obtain a rough idea of the accuracy of the pvalues 

obtained using the two X 2  different approximations, p-values obtained using the two different 

app~oximations aTe cornpaTed with exact p-values of f o ~  samples of size n = 50. . .200 in 

Figure 5.4. Once again, the exact p-value appears to be bounded by the two approximations. 

As can be seen in Figure 5.4, the approximation based on the likelihood ratio statistic is 

much closer to the exact pvalue and hence appears to be the more accurate approximation 

in the extreme tail of the distribution. 
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Figure 5.3: Comparison of X 2  approximations in the critical region of the distribution 

(n = 50) 

ChiSq(2R2/n) 
Exact 
ChiSq(LR) 
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Figure 5.4: Comparison of X 2  approximations in the extreme tail of the distribution 

ChiSq(2RZ/n) 
Exact 

5.3.2 Test of the von Mises Family Against the Mixture Alternative 

Let el, . . . ,en be a random sample of circular data points. Some details required in explain- 

ing the likelihood ratio test below have already been provided in chapters 2 and 3. The von 

Mises density, along with a description of its parameters p and m, is given in Section 2.1. 

The von Mises log-likelihood function, lvhI (p, m),  and maximum likelihood estimates fi and 

ri; are provided in Section 2.2. To avoid confusion with the mixture maximum likelihood es- 

timates, the von Mises maximum likelihood estimates for p and m will be referred to  as fivM 
and kVM throughout the rest of this section. The mixture density, along with a description 
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of its parameters p, p and rc, is given in Section 3.1. The mixture log-likelihood function, 

l(p, p,  rc), and maximum likelihood estimates, p, f i  and k are provided in Section 3.2. 

A likelihood ratio test procedure can be performed to test the null hypothesis, 

Ho : the points are von Mises distributed around the circle(p = I) ,  

against the alternative hypothesis, 

HA : the points are a mixture of uniform and von Mises distrubted data(p < 1). 

By the Neyman-Pearson lemma, the likelihood ratio test is the uniformly most powerful 

invariant test of Ho against HA. The likelihood ratio test statistic is given by. 

It is important to mention the null hypothesis is on the boundary of the parameter 

space(ie we restrict values of p to be no greater than 1). If there were no restriction placed 

on p, then the asymptotic distribution of LR under the null hypothesis would be Xf. Recall 

from Chapter 4 that we set the mixture MLE equal to the von Ivlises IvILE when the partial 

derivative of the mixture log-likelihood with respect to the parameter p evaluated at the von 

Ivlises MLE is greater than 0. In these situations, the likelihood ratio statistic will be equal 

to 0 and in large samples, under the null hypothesis, this will occur with an approximate 

probability of 1/2. Thus, in large samples, the p-value for the likelihood ratio test can be 

calculated using 
1 - Fx7(LR) 

p-value z 
2 7 

where F z(x) is the cumulative distribution function of the X: distribution. x1 
For samples of size n >_ 50 using the X: approximate distribution for the likelihood ratio 

statistic yields sufficiently accurate results for all practical purposes. For smaller samples, 

it is a good idea to take a bootstrap sample from a von Ivlises population with parameters 

set to the von Ivlises IvILE to obtain the approximate distribution of the likelihood ratio 

statistic under the null hypothesis. An approximate p-value based on the likelihood ratio 

statistic from the original sample can then be obtained similarly to what was described in 

Section 5.2.1 for p-value calculations when parameters are unknown but replacing Watson's 

~"tat is t ic  with the likelihood ratio statistic. 
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5.4 Examples 

5.4.1 Tests of Fit for Example I 

The two different model selection procedures discussed in Section 5.1 were applied to the 

sandstone rock data from example 1 in Section 2.5. All tests were performed at a significance 

level of 0.05. Tables 5.1 and 5.2 provide p-values for the tests used by the two different 

procedures. 

Table 5.1: P-values of goodness-of-fit tests for Example 1 

Bootstrap samples of size 10,000 were taken for performing the von Mises goodness-of-fit 

test. 

Table 5.2: P-values of parametric tests for Example 1 

I Null Model I R I LR statistic I p-value I 
/ uniform 1 20.7 1 20.7 1 3.7 x 1 
I von Mises 1 

I ! 

0.727 1 0.23 / 

The pvalue for the uniform null model against the von Mises alternative is exact. 

The pvalue for the von Mises null model against the mixture alternative is obtained 

using a parametric bootstrap sample of size 10,000 to approximate the distribution of the 

likelihood ratio statistic. The likelihood ratio statistic could not be obtained for one of the 

bootstrap samples but this has no impact on the p-value reported to 2 decimal places. The 

pvalue obtained using the the large sample X 2  approximation is 0.20 and is reasonably 

consistent to the p-value obtained from taking a parametric bootstrap. Since the sample 

size is somewhat small, n = 44, the p-value obtained using the parametric bootstrap is 

thought to be more accurate. 
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Both the goodness-of-fit test based and parametric test based model selection procedures 

find the von Mises model to be the most appropriate model when the tests are performed 

at the 0.05 significance level. In both cases, the uniform model is very clearly rejected. 

5.4.2 Tests ofFit for Example 2 

The two different model selection procedures discussed in Section 5.1 were applied to the 

ant data from example 2 that was fit to the von Mises model in Section 2.6 and was fit to 

the mixture model in Section 3.4. Tables 5.3 and 5.4 provide pvalues for the tests used by 

the two different procedures. 

Table 5.3: P-values of goodness-of-fit tests for Example 2 

Bootstrap samples of size 10,000 each were taken for performing the von Mises and mixture 

goodness-of-fit tests. 

For the von Mises goodness-of-fit test, all 10,000 bootstrap samples had a smaller value 

for Watson's u2 statistic than was obtained from the original sample. Therefore the actual 

p-value may well be less than 5.0 x 

Table 5.4: P-values of parametric tests for Example 2 

pvalue 
8.4 x 
5.0 x lo-" 
0.87 

Model 
uniform 
von Mises 
mixture 

 tatis is tic 
2.243 
0.288 
0.019 

The p- 

Null Model 
uniform 
von Mises 

)r uniform null model against the von Mises alternative and the von Mises 

null model against the mixture alternative are obtained using the X 2  approximation of the 

likelihood ratio statistic. 

Both the goodness-of-fit test based and parametric based model selection procedures 

find the mixture model to be the most appropriate   nod el when the tests are performed at 

R 
60.9 

LR statistic 
83.0 
25.5 

p-value 
9.4 x lo-'' 
2.2 x l0V7 
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the 0.05 significance level. In both cases, the uniform and von Mises models are very clearly 

rejected. 



Chapter 6 

Future Work 

Three areas for future work are discussed in this chapter. A discussion of a future Monte 

Carlo study to verify the power and accuracy of the tests is in Section 6.1. Extensions of 

the mixture model to grouped data and to spherical data are discussed in sections 6.2 and 

6.3, respectively. 

6.1 Monte Carlo study 

The accuracy and power of the tests for the mixture distribution given in Chapter 5 have 

not been studied yet. Specifically the u2 goodness-of-fit test for the mixture distribution 

discussed in section 5.2.4 and the likelihood ratio test for testing for von Misesness against 

the mixture alternative discussed in 5.3.2 need to be studied further. A future Monte Carlo 

study is planned where we will: 

1. verify the accuracy of the tests for various parameter values for the mixture distribu- 

tion and sample sizes 

2. estimate and compare the power of the goodnessof-fit and parametric tests for various 

distributions 

6.2 Extending mixture distribution to grouped data 

The mixture distribution and associated tests used in this project were all based on con- 

tinuous data. In some situations, data can be grouped and it is only known what interval 
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each of the points is in as in example 3 in section 4.3.1. A proper analysis a grouped data 

requires that the likelihood function be based on the probabilities of each of the points being 

in their specific intervals. The maximum likelihood estimates would then be obtained using 

the grouped rather than continuous likelihood function. The tests of fit used for continuous 

data in chapter 5 also could be updated to facilitate the analysis of grouped data problems. 

The goodness-of-fit test for discrete uniformity based on Watson's u2 statistic has already 

been developed by by Choulakian, Lockhart and Stephens in [3]. 

6.3 Extending mixture distribution to spherical data 

The von Mises distribution is the special circular(1-dimensional) case of the more general 

N-dimensional von Mises-Fisher distribution. The same concept of the mixture distribu- 

tion that was introduced for circular data in this project can be extended to the sphere. 

For spherical data, a model could be considered for analysing spherical(2-dimensional) von 

Mises-Fisher distributed data that is mixed with points uniformly distributed around the 

sphere. 



Appendix A 

Newton-Raphson Algorithm 

The Newton-Raphson algorithms requires an initial value, xo, derivative function, U, and 

hessian matrix, H, as inputs and attempts to find a solution, 2 ,  to U(x) = 0. Let hf be 

the maximum number of iterations and tol, the tolerance, be the maximum allowable abso- 

lute value of the components of U(x). A basic Newton-Raphson algorithm is provided below. 

Step 1: Set i = 0 

Step 2: While (i  < &I) and (max {abs(U(xi))) > tol) repeat Steps 3 and 4 

Step 3: Set i = i + 1 

Step 4: Set xi = xi-1 - H ( X ~ - ~ ) - ~ U ( X ~ - ~ )  

Step 5: If (max {abs(U(xi))) < tol), then set 2 = xi 

Step 6: Else algorithm has exceeded maximum number of iterations. 

Values of ,$I = 50, and to1 = lop8 were used as defaults for the Newton-Raphson algo- 

rithm. 
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