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Abstract 

Multispectral video has been widely used in environmental remote sensing. Applications 

commonly employ a three camera configuration with optical filtration. Filter selection is generally 

determined by the spectral features being mapped. Filter combinations tend to consist mainly of 

discrete narrow wavebands, intended to optimize spectral resolution. Narrow band configurations 

of this sort are extremely sensitive to illumination changes and surface signal fluctuations over 

the area being mapped. Scene irradiance can vary over mapped areas to the extent that like 

target areas will not statistically cfassify as the same cover type. In an attempt to overcome this 

problem an analogue model of between band gain control has been tested for its utility in 

improving image classification and interpretation. 

The model tested employed a broadly overlapping waveband configuration designed for 

spectral redundancy. Under induced iliumirAkm changes, in a laboratory setting, between band 

manual gain adjustments were employed as a brightness adaptive process. The induced 

illumination changes, while affecting the raw digital number (DN) values substantially, did not 

result in an unacceptable chssifiition performance. While subsequent image classification 

failed to show a substantial improvement in classification accuracy, with the method as 

employed, success in restoring the rekitive reflectance characteristics of the target was achieved, 

for a subset of the conditions. 

The experimental results indicate that filter selection was the criihl factor affecting 

metM performance. The overlapping range of sensitivities afforded by the spectral redundancy 

d the configuration, proved very useful in monitoring between band gain responses under the 

experimental 
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Remote sensing is the science, art and technology of extracting earth's resources 

information, remote from the subject of investigation. A variety of imaging techniques are 

employed for this purpose. Methods of extracting the desired information include both visual 

interpretation and quantitative approaches to spectral pattern recognition. Both methods have 

inherent strengths and weaknesses. Much remote sensing research explores ways in which 

each of these methods synergistically complements the other. Spectral pattern recognition 

performed by human interpreters tends to be product rather than process intensive. Examples 

would include object recognition by color or pattern of reflectivity, such as specular reflectance 

from water surfaces. Many human cognitive processes appear to be shaped by training and life 

experience. A desire to better understand the processes underlying cognitive output has led 

researchers to examine the perceptual processes behind the product. Whether this approach will 

prove fruitful has yet to be determined; it may be akin to exploring the clockworks in an attempt to 

understand the nature of time. 

Of the growing number of tools (sensors and analytical methods) employed by the 

remote sensing community, none has as yet displaced the requirement for human interpretation. 

Technology has provided us with tools with powerful capabilities, different than those we 

possess. Among these capabilities is wavelength discrimination. The ability to record and 

analyze discrete wavelength information is the factor separating remote sensing from its origins 

in aerial photographic interpretation. Target objects may be identified by their spectral 

reflectance properties within discrete wavebands or spectral regions defined by wavelength limits, 

f he spectral reflectance properties of many of nature's objects are very similar within the visible 

portion of the spectrum. In such instances, the human eye - brain combination may see such 

objects as being essentially the same hue or color and confuse their identity. While other spatial 

cues can be employed in determining an object's identity, discrimination may still be confounded. 



The task of delineating boundaries between object types in an automated procedure is what 

remote sensing daia analysis schemes attempt io do jiiiiesand and Kiefer, i 9943. Once 

delineated by target cover types, earth's surface features can be mapped. In order to achieve 

success with such a scheme the features must be spectrally separable (Lillesand and Kiefer, 

1994). 

Both computational techniques and the devices which we employ continually improve. 

Video surveillance equipment, in the form of black and white or color video cameras, is widely 

available, inexpensive, and when configured as a multisensor array (two or more cameras, 

configured for different spectral wavebands viewing the same target region), can provide a 

valuable source of multispectral information. Used in a suitable spectral combination, 

multispectral information provides the remote sensing specialist with a powerful mapping tool. 

Unlike electronic sensors, humans are incapable of wavelength discrimination. While 

apparent contradictions to this statement can be found among painters, color printers and others 

who work intensively with color mixture and color processes, who have developed a keen sense 

of color recognition, it is generally agreed that those of us considered to have normal color vision, 

do not posses wavelength discriminati0n.l Humans do, however, posses the ability to 

consistently discriminate object color under a wide variety of illumination conditions. This ability, 

while sometimes confounded by atmospheric effects which generate for us blue distant 

mountains or fiery red landscapes under the fading light of sunset, has few other natural failures. 

An understanding of how the human visual system is able to effectively discount spectral 

variations in ambient light is yet to be determined. The continued search for an answer has 

revealed much about the mechanisms believed, at least in part, responsibie. Among the 

functions involved in discounting the illuminant, is photoreceptor adaptation. The human visual 

One apparently convincing exception to this statement was reported by the clinical neurologist 
Oliver Sacks (1995), in The Case of the Colorblind Painter, wherein the author accounts the 
perceptions of an artist patient who having lost all color vision resulting from an accident, 
exhibited some degree of wavelength discrimination under narrow band illumination conditions. 



system possesses two classes of photo:eceptors, each named for its shape. The most 

ubiquitous of these, rods. are used primarily for dark adapted vision, the other class, cones, are 

tuned to broadly overlapping waveband sets for color discrimination. 

The similariiy between the muftispectral sensors used in remote sensing and the 

photoreceptor sets of the eye is that both have imaging capabilities tuned to discrete spectral 

regions. The main difference between these two sensor types is in waveband width and degree 

of overlap in spectral sensitivity. Separation in spectral sensitivity is normally desirable from a 

photographic or electronic imaging perspective to achieve spectral separability between either 

photo emulsion layers or sensor products. Yet the human observer is capable of discriminating 

some five million colors and two hundred shades of gray, with an incredible degree of 

redundancy in spectral sensitivity (fig. 1 .I). Each of the three sets of cones records spectrally 

redundant information within the regions of waveband overlap. In what seems a completely 

contradictory approach, we in the remote sensing community continue to design imaging 

configurations which avoid spectral redundancy, in pursuit of finer wavelength discrimination. 

This design course is not without its vagaries. These highly sensitive devices require 

signal amplification which does not discriminate between system noise and signal. They also 

tend to be extremely sensitive to abrupt surface reflectance changes and changes in ambient 

light fluctuations, resulting in considerable variation in signal amplitude for a given target, Where 

sensor amplitude fluctuations are assumed to relate to target reflectance characteristics only, 

comparison between spectral waveband sets may also include spectral energy shifts, 

(illumination changes). When analytical comparisons between waveband sets are confounded by 

illumination changes, target reflectance properties must somehow be separated from scene 

irradiance. 

A rnuitiband radiometer is normally employed in separating target spectral reflectance 

from scene irradiance. Computing spectral reflectance is normally a three part process (Lillesand 

and Kiefer, 1994). The sensor (radiometer) is aimed at a calibration target of known stable 

(benchmark) reflectance. This permits the measurement of incoming radiation or irradiance at 
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Fig. 1 .I Absorption spectra for the three classes of cones 
found in the human retina. Heights have been 
adjusted to have maxima at 1.0. [According to 
Cornsweet, (1 970)] 



the target site, as a function of wavelength. The instrument is then suspended over the target 

and the radiation reflected by the target is measured. The spectral reflectance of the target 

object is computed by ratioing the reflected energy to the incoming energy in each waveband. 

The result is termed the reflectance factor. Without this type of ground based measurement, 

target reflectance cannot be separated from scene irradiance. Measurements of this sort permit 

the remote sensing analyst to discount the illuminant when mapping the spatial distribution of 

target elements by their reflectance. 

The ability of the human visual system to discount the illuminant is called chromatic 

adaptation. A subject of continued investigation, the physical processes believed responsible 

have been scrutinized by many. Just how the human visual system obtains information needed 

to regulate the adaptive mechanisms has been the focus of many computational approaches to 

chromatic adaptation and its product, color constancy. Emphasis has been placed upon theories 

of light sense wherein brightness constancy is considered the primary regulatory mechanism of 

chromatic adaptation. Speculation is offered herein regarding aspects of redundancy in human 

spectral sensitivity, to adaptive mechanisms. 

This thesis outlines an analogue approach to chromatic adaptive imaging, based upon a 

spectrally redundant waveband configuration. The experiment is designed to test the ability to 

maintain a relative degree of sensor excitation between broadly overlapping waveband sets. The 

method employs between-band gain control. as a simulation model for a photoreceptor 

adaptation function known as response compression. The experiment is intended to evaluate the 

robustness of the simulation to changes in illumination quality. The method tested assumes that 

the spectral redundancy of the configuration affords some control over maintaining the relations 

of sensitivity between waveband sets, by simple gain adjustments. In doing so, an internal white 

region is employed as a calibration benchmark target to which between-band gain adjustments 

are set. The principal thesis relies upon maintaining the relative degree of sensitivity between the 

three waveband sets, employing the white target region within the sensor field of view, as a 

benchmark. 



It is expected that this technique will obviate the need for computing the difference in 

scene inadiance between image sets, by maintaining a reiative degree of sensor excitation 

between image wavebands and improve classification accuracy. It is further expected that the 

color rendition produced by the waveband configuration will also be maintained. The results of 

the imaging experiment are evaluated both quantitatively by image classification and graphic 

representations of spectral data, and qualitatively. 



Theory 

The theoretical basis underlying this thesis is addressed by component. Chromatic 

adaptation and its adjunct mechanisms, are the departure point for the experimental approach 

taken and will be discussed first. An early and fairly accurate account of the facts of chromatic 

adaptation was postulated by von Kries in 1878 (MacAdam, 1985). Von Kries's coefficient law 

states that " visual responses are proportional to the physical stimulation of each of the three sets 

of spectrally different sensitive receptors in the eye and that only the ratios of the coefficients of 

proportionality change from one chromatic adaptation to another" (MacAdam, 1985). In other 

words, according to the von Kries law, the relative sensitivities of the individual classes of 

photoreceptors remain constant as a result of adaptation (MacAdam, 1985). Since that time 

investigators have concentrated on determining the relative sensitivities of the three classes of 

photoreceptors and the mechanisms associated with adaptation. 

The consequence of the attribute of color vision called chromatic adaptation is color 

constancy. Color constancy is the term given to the collective effects of brightness and hue 

constancy. Hue is the aspect of perception commonly called color (Cornsweet, 1970). Object 

hue tends to remain constant when the spectral composition of the source illuminant is varied 

over a wide range (Cornsweet, 1970). As a result the apparent brightness and color of an object 

remain approximately constant because the three receptor set (rgb) ratios, of object intensities 

within the field of view, tend to remain constant (Cornsweet, 1970). 

Of the one hundred and twenty-five million photosensitive cells in the human eye, 

approximately six to seven million are cones (Brown and Wald, 1963:W; Leibovic, 1 gW), $30 

named because of their cone shape. Due to their shape and slight differences in the refractive 

index inside and outside the cell, photoreceptors act as light guides 



(Leibovic, 1990). The one hundred and twenty-five million rods and cones converge on one 

million ganglion cells, beneath the bipolar and horizontal cell layers (Leibovic, 1990). 

Photoreceptor diameter and spacing are ideally matched to the optical limits of resolution, with 

the distance between cones varying between 3 pm in the center to 5 or 6 pm in the surrounding 

macula (Leibovic, 1990). 

Thomas Young was the first to propose that the three primary colors, red, green and 

blue, corresponded to the sensitivity of our cone photoreceptors, with his proposition being 

demonstrated by Rushton (1961), Marks et al(1964), Brown and Wald (1 964), Paritsis and 

Stewart (1983). While not corresponding as we might expect to the three primary colors, the 

cones' broadly overlapping bands have absorption spectra with peaks near 440, 535, and 565 nm 

(Land, 1977). In examining color vision differences and variation in spectral position of cone 

photopigments Neitz eta/., (1 991), found that long wave sensitive pigments may differ in spectral 

peak by 5 to 6 nm in populations with normal color vision. 

Visual processing begins when light reflected from objects enters the eye. Upon 

absorbing photons, photopigment bleaching produces neural signals which ultimately result in the 

visuai sensation (Cornsweet. 5970). Tne rate at which the photopigment bleaching occurs is 

protected by the depletion effects of bleaching, changing the degree of sensitivity in proportion to 

the fraction of unbleached pigment (Boynton, 1979). Cones can after their range of responses to 

different intensities, depending on average long term brightness (Mahowald and Mead, 1991). 

Boynton, (1979) points out that after bleaching and pupil size are accounted for, the cones still 

must handle light inputs covering a three thousand-fold range and to suppose that they do so 

without adapting is to imply that their responses should be linearly related to their rate of photon 

absorption. 

Boynton and Whitten, (1 970) determined by electropsyiological experiment that a 

nonlinear relation between light input and receptor output exists, in the receptor potentials of 

macaque monkeys, whose vision is very similar to that of man. Boynton, (1979), concluded that 

the three factors combined in shrinking the range of cone responses included (1) dilation of the 



pupil; (2) bleaching of the cone photopigments; (3) nonlinear cone response. Boynton, (1979) 

identified other temporal characteristics of photoreceptor potential that are not dealt with by the 

response compression model. He noted that as adaptation level increased, the light intensity 

required to elicit a response also increased and acknowledged that this is the prime manifestation 

of adaptation (Boynton, 1 979). 

Boynton (1979), noted that adaptation is selective within receptors and their associated 

pathways and points out that if the eye were neutrally adaptive the appearance of chromatic 

materials of different colors would not be resistant to moderate changes of the source illuminant. 

For example, if the source illuminant is dominated by the long wavelengths, an object's 

reflectance would, in comparison with white light, affect the longwave (red) cones more than the 

middlewave (green) cones, making those objects appear more reddish than normal (Boynton, 

1979). Instead, objects in the environment, reflecting more of the long wavelengths than they 

would under white light (broadspectrum illumination), will mediate the selective adaptive effect, of 

the red cones relative to the green cones, restoring the appearance of such surfaces, to the 

same hue that would have prevailed under white light (Boynton, 1979). Many lateral pathways 

are known to exist between cones and cone pathways, making it possible that the absorption of 

light in red cones might also alter the sensitivities of the green and blue (shortwave) cones, even 

if the two do not absorb a single photon (Boynton, 1979). 

Much research has followed regarding the influence of chromatic adaptati~n upon color 

discrimination. Hita et at., (1 989), found that an overall worsening of discriminatory capacity 

occurs under red adaptation conditions, and with adaptation to green a marked improvement in 

discrimination followed. This marked improvement in discrimination was no doubt due to the fact 

that the peak sensitivity of the human visual system is in the green-yellow spectral region at 

approximately 555 nm (MacAdam, 1985). Hita et a/., (1989) determined, that for pairs of stimuli, 

a particular adaptation altered the response of the corresponding chromatic channel, without 

producing any significant change in the others. 



While adaptation to ambient light levels is generally acknowledged as playing a role in 

both color and brightness constancy, the nature of the adaptive transforms and contributing 

mechanisms is poorly understood (Hayhoe and Wenderoth, 1991). There is, however, a general 

level of agreement that the adaptive transformations involve gain control mechanisms (Barlow, 

1965; Barlow and Levick, 1969; 1976; Andelson, 1982; Geisler, 1981 ; Walraven and Valeton, 

1984; Hayhoe eta/., 1987; Hayhoe and Wenderoth, 1991). Hayhoe and Wenderoth (1 991) 

propose that following the absorption of quanta, the photoreceptor signal is attenuated by a 

multiplicative gain control mechanism: which they attribute to some kind of feedback. The signal 

is then further reduced by subtractive lateral inhibition, followed by another subtractive 

mechanism, which slowly removes most of the original signal (Hayhoe and Wenderoth, 1991). 

Hayhoe and Wenderoth (1991), note, however, that it is not very clear where the gain centrol 

mechanisms reside or if one mechanism alone could perform the different functional 

requirements for both brightness and color adaptation. Hayhoe and Wenderoth (1 991), propose 

two separate mechanisms for brightness and color constancy, wherein color constancy only 

requires compensation for changes in the distribution of excitation across the three cone types. 

Land (1 964; 1977; 1983), asserted that color sensation results from a comparison of 

excitation between cone sets, affected by each point in a scene, including a reference point. The 

reference point is the point in the scene with the highest "integrated reflectance" in all three 

receptor sets and may be considered analogous to a benchmark to which the lightness of all 

other perceived objects is calibrated (MacDonald, 1989). In most, if not all images, objects 

having the highest integrated reflectance in all three receptor sets will result in the perception of 

white (MacDonald, 1989). Land's (1959;1977), theory asserts that the final perceptual response 

of the visual system is lightness. Experiments conducted by Land and McCann (1971), indicated 

that color pmeption is partially independent of electromagnetic energy flux (changes in the rate 

of energy flow across and object or scene), and wavelength (MacDonald, 1989). These 

observations were further supported in similar experiments by Arend et a/., (1991). 



Untike other imaging sensors, only the eye is capable of this type of chromatic adaptive 

performance. Photographic film is not as versatile and is highiy affected by shifts in wavelength. 

When one uses daylight color film indoors under tungsten light, the resulting photograph appears 

saturated by yellow light, resulting from the dominant wavelength of the source illuminant. 

How does the human visual system record true object lightness? According to Land 

(1977), each photoreceptor set (red, green and blue) integrates for each point in a given scene 

the influence of the light of all wavelengths to which the cone set is sensitive, then compares the 

degree of excitation of the cone sets that encode the same color at the reference point. Land 

(1977), speculated that the human visual system arrives at a given color sensation, through the 

comparison of the three (rgb) lightness sensations, and provided several arithmetic models, 

illustrating how the comparison could be made. 

Of key importance is the similarity of performance between the theoretical mechanisms 

believed responsible for chromatic adaptation. it is generally believed that at some point early in 

the visual process, the ratios of the outputs of the three cone types are measured in maintaining 

chromatic adaptation. This widely embraced view, that object color depends on the relative 

degree of excitation between receptor sets rather than the absolute amount of reflected light, 

dates as far back as Ernst Mach (Marr, 1982). This view persists among modern color vision 

theorists (Helson, 1938; Judd, 1940; Cornsweet, 1970; Land and McCann, 1971 ; Boynton, 1979; 

Marr, 1982; Hayhoe and Wenderoth, 1991). 

Computational Approaches to Color Constancy 

Hilbert (1987), noted "The existence of color constancy establishes the lack of correlation 

between perceived color and any characteristic of light but at the same time suggests another 

possibility for the objective basis of color". Hilbert's principal thesis: color is surface spectral 

reflectance. "If this identification can be successfully defended, then the objectivity of colors will 

be establishedn. ..." If color is reflectance, then it is possible in principal to determine the colors of 

objects without making use of the characteristics of human color experience". Probably unknown 



to many researchers reported herein, Hilbert's (1987) assertion forms the basis for many 

computational approaches to color constancy. 

Computational approaches to achieving color constancy have been in the forefront of 

color research for most of this past decade. Approaches have varied as differing degrees of 

success have been accomplished. Some models are based upon determining the specifications 

of a surfaces spectral reflectance functions and ambient light spectral power distributions, from 

which the expected color signal is calculated (Wandeli, 1987). The underlying assumption of this 

model type is that the spatial variation of the ambient light is slower than the spatial variations of 

the surface's reflectance function (Wandell, 1987). The underlying implication is that the spectral 

power distribution remains ccnstant over a local region of the image, within which there is 

significant spatial variation in the surface spectral reflectance function (Wandell, 1987). The 

calculation of photoreceptor responses, based upon a calculation advocated by Cornsweet 

(1970), must be made for every image point, after which display device intensities can then be 

adjusted, with the synthesized colors having the same visual effect as if the observer had been in 

the same position as the camera (Wandell, 1987). Models of this type reportedly work well for 

rendering color constant the images recorded by color video cameras. Remote sensing 

applications requiring standard three color images for reconnaissance purposes would no doubt 

benefit from corrective models of this type. 

Finite-dimensional linear models, such as that proposed by Gershon et a/., (1 987), have 

been among the more successful models. The idea behind the model is to describe surface 

reflectances by estimating the illuminant and using the estimated illuminant, obtain color 

descriptors. The method incorporates the use of a finite-dimensional linear model which 

represents light sources and reflectances (Gershon et al., 1987). An assumption common to the 

above mentioned color constancy modeis is that the color of the illuminant is constant throughout 

the imaged scene. 

Finlayson eta;, (1995), have more recently produced a color constancy algorithm which 

defines cobr descriptors for a set of possible illuminants. This algoriihm exploits the constraint 



inherent in the fact that illumination is usually spectrally varying rather than constant and 

outperforms the aforementioned otherwise constrained models (Finlayson et al., 1995). The 

producers of image processing software have yet to adopt and distribute software incorporating 

any of the aforementioned color constancy models for use in every day remote sensing 

applications. Software generation and distribution is hopefully forthcoming. 

Recent advancements in computational approaches to color constant imaging show 

much promise, however, their utility in applied remote sensing has yet to be determined. Within 

the remote sensing community, color composite imaging of the type to which the outlined 

computational spproaches could be applied, remains only a small part of the total imaging 

performed. One common factor shared by the aforementioned approaches is that each method 

is applied a posteriori. The only disadvantage with this application, from a remote sensing 

perspective. is that a remote sensing specialist must perform a number of existing permutations 

between data collection and map accuracy assessment; increasing this by a significant amount 

will eventually affect productivity. For this reason alone, approaches toward chromatic adaptive 

imaging requiring little a posterioriprocessing, should be pursued. 

Photoreceptor chromatic adaptation is a complex process and research is ongoing as to 

what the adaptive mechanisms are and exactly where the processes take place. While the 

implications of various research findings and their relation to color vision theory go much further 

than what is reviewed herein, the relative selective adaptive effect and between band 

sensitivities, carry important implications for multispectral digital imaging. The experimental 

procedure herein is designed to determine to what degree, overiapping range (band) sensitivities 

would provide the between-band gain responses required of a feedback mechanism for a 

muttiband video imaging system. Finally, would between-band gain control produce chromatic 

adaptive video imaging? 



B r i a h t m  Constancy and Chromatic Adaptation 

Brightness consfancy means that the apparent lightness sensation of an object tends to 

remain amstant despite changes in illumination falling upon it (Cornsweet, 1970). For example, 

when viewed in ordinary room light, an ordinary piece of white paper reflects about 90% of the 

fight incident upon it, white a piece of btack paper reftects about 10%. When viewed in direct 

sunlight the increase in intensity may be 1000- fold, yet the papers retain the same apparent 

relative brightness as when viewed indoors (Cornsweet, 1970). Various researchers have 

confirmed this phenomenon (Land. l9!%;1977; Graham, 1965; Cornsweet, 1970; Boynton, 1979; 

Brou eta/., 19%; Arend et &.,I 991). Arend eta/ ,  (1991), found that in subjects tested, lightness 

matches were remarkably invariant over a nineteen to one ( 19:l) luminance range. Luminance 

is the technical term referring to the intensity per unit area of light incoming from a surface 

towards the eye (Boynton. 1979). Most subjects show only minor departures from perfect 

Mghtness constancy. Exceptions arise when iffurnination is confined to small illuminated patches 

which exclude the background and surrounding areas (Cornsweet, 1970). 

Upon examining data coWed by Heinemnn (I 955), Cornsweet (1 %'U), concluded that 

an object's IigMness or apparent brightness depends not only on the intensity of light falling on 

the retinal image of a point, but on the relations between the intensities within the entire field of 

view of the region including both the point and its surround. 

l? is widely accepted that the three retinal cell layers, photoreceptors, horizontal, and 

bipdar cells, adapt to widely varying amounts of incoming light and in doing so, adapt their 

response to produce a signal with a much narrower dynamic range. Some of the functions 

presumed to be mormed by these three cell layers have been reproduced electronically to 

model each cell layer's rde in response compression. Mahowaki and Mead (1 ggl), produced an 

etegant e x a m  of the adaptive functions of the first three cell layers, revealing how the retina 

capes with varying inputs by stages. The fdbwhg account of cell structure and performance to 

which they moddied their design. descrirbes the performance of their silicon retina. The first layer 

of m& (hypersensitiVe phatoreceptm used maMy after dark adaptation) and cones convert 



incoming light to electrical signals. The second layer makes connections to bath photoreceptors 

and bipiar cells thi~iigh the triad synapse. Each horizontal cell is connected :o its neighbur by 

gap junctions through which ions diffuse. The potential of any horizontal cell is determined by the 

spatially weighted average of the potentials of its surrounding cells, with nearby cells contributing 

more than distant ones. 

Bipolar cells receive inputs from photoreceptors and a horizontal cell then produces a 

signal proportional to the difference between the two. Bipolar cells have an even narrower 

dynamic range than rods and cones. Bipolar cell responses are enhanced by the triad synapse 

which mediates, by reducing response to a uniform intensity, to provide feedback between 

horizontal cells and cones. The bipolar cells do not respond to absolute scene brightness but to 

the difference between the photoreceptor signal and the local average computed by the 

horizontal cell network. Both photoreceptors and horizontal cells produce logariihmic signals, 

thus the output of the bipolar cells corresponds to the ratio of the local light intensity to the 

background intensity, regardless of absolute light level (bipolar olp = local intensity 1 background 

intensity). Mahowald and Mead (IWl), postulate that local intensity includes response 

compression and the background intensity is the local average computed by the horizontal cells. 

The intensity ratios enable the retina to see detail in shaded and bright areas within the same 

scene. They report that their siticon retina behaved remarkably similar to the biological system in 

terms of response cornpression and optical illusions (simultaneous contrast, Mach bands, and 

Herring grid). 

Similar to human visual processes, the digital retina entirely lost an image without constant 

scanning motion, further indicating that onfy changes and differences convey information 

(Mahowaid and Mead, 1991 ). 

To what degree and indeed whether or not the same mechanisms are responsible for 

both c o b  and brightness COFtSfancy is yet to be determined. For some theoretical models, a 

brightness constancy mechanism alone would provide color constancy. Land's (1 964; 74; 77; 86) 

aAx vision theory asserts that the final percsptuai response of the visual system is lightness. 



Land (1977), postulated that the human visual system arrives at a given color sensation, through 

the comparison of the three cone system (blue (UOnm), green (535nm), and red (565nm)) 

lightness sensations on a point by point basis, with the process taking place somewhere between 

the retina and cerebral cortex of the brain. Land (1977) termed the comparator systems 

retinexes. The point by point comparison was made by ratioing the reflected brightness between 

neighbouring points and scaling the resulting quotient to a reference point (MacDonald, 1989). 

While proposing two separate mechanisms for brightness and color constancy Hayhoe 

and Wenderoth (1 991)' postulate that the requirement for color constancy only demands 

compensation for changes in the distribution of excitation across the three cone types. They 

speculate that some type of gain control mechanism, operating on receptor set ' feedback ' would 

fulfill this requirement. Under the conditions of a theoretical model such as Land's (1 977) retinex 

model, some form of between band gain control could satisfy the requirement set out by Hayhoe 

and Wenderoth (1991) and Land's (1977) model. Using this type of model, the requirement for a 

feedback mechanism may not be completely necessary. The degree of band overlap between 

photoreceptor sets proposed by Brown and Wald (1 963:64) and adopted by Land (1 977), could 

provide sufficient overlap in sensitivity to minimize feedback requirements. Overlapping range of 

band sensitivities, should produce overlapping responses to shifts in radiant energy flux. If this 

were the case, Boynton's (1 979), postulated depletion effects of bleaching, would provide 

somewhat of a between-band gain control and in effect, provide the capability for changing the 

relative degree of sensitivity between receptor sets at least within a portion of the range of 

overlap. 

Briahtness Constancv and Chromatic Adaptive lmaainq 

While much research interest has been focused on separating and identifying 

mechanisms of brightness and color constancy in human color vision, the problem can be 

simplified somewhat in terms of a muttiband elector- optical imaging system. The question to be 

answered is, in terms of a muttiband video imaging system, whether brightness constancy alone 



would provide chromatic adaptive imaging capabilities, given sufficient overlap in band range 

sensitivities? The signal output from a single black and white (panchromatic) video camera can 

be considered analogous to the signal output by a single photoreceptor set. Both the video 

sensing array and the photoreceptors convert the incoming light to electrical signals. 

The video gain control performs a function analogous to Boynton's (1979), theorized 

response compression. Video gain control sets the gain of the output video device to produce a 

signal of a fixed dynamic range of one hundred standard divisions, over one volt, peak to peak 

(1 V p-p). In doing so, video gain is capable of adapting the output signal to widely varying 

amounts of incoming light. In terms of raw gain (voltage), the manual gain adjustments used for 

the experiments conducted herein represent a luminance range of compression/expansion of 

approximately eight-to-one (8:i). The range of luminances tested herein represent less than half 

the range capabilities of human subjects of nineteen-to-one, (Arend et a/., 1991), . The Sony XC- 

75 cameras used for these experiments are, however, capable of handling an overall luminance 

range equal to or greater than that of humans. The video gain control can, therefore, be 

considered approximately analogous to the much hypothesized "gain control" function of 

response compression. 

By monitoring the output voltage of three panchromatic video cameras, with broadly 

overlapping band configurations, and controlling their output voltages by manual gain 

adjustments, an approximate analogue of response compression may be achieved. 

Broad vs Narrow Band Sensor Configurations 

Broad band imaging has been the most widely used method of imaging for mapping and 

reconnaissance purposes. One method of broad band imaging commonly used is that of 

panchromatic photography. The decade before the launch of the first satellite remote sensing 

systems (ca. 1970), saw the most experimentation with broad band photographic imaging, 

primarily for underwater photographic applications such as water column penetration (Boiler and 



McBride, 1974). Non-photographic broadband imaging clearly has advantages over narrow band 

configurations in terms of higher signal to noise performance, reducing background electronic 

noise or the extraneous unwanted responses associated with any electronic system (Lillesand 

and Kiefer, 1994). As well, broadband configurations tend to produce a greater range in the 

levels of signal sensed. Spectral resokrtion, or the ability to discriminate fine spectral differences 

is sacriiiced somewhat by increasing bandwidth. 

This sacrifice can be compensated for statistically in many cases. One has to realize 

that fine spectral differences are not necessarily lost using broad band configurations, they are 

merely aggregated within the overall information. In other words, broad band sensor 

configurations covering the same spectral peaks as narrow band sensor configurations are 

capable of collecting the same spectral information reflected from a target. That information must 

be separately differentiated from the aggregate of information captured. Narrow band 

configurations, on the other hand, are designed to capture only the reflected information 

characteristic of one target or cover type within the scene, excluding the aggregate of adjacent 

target reflectances. The overall objective of narrow band sensing is to capture what is commonly 

referred to in remote sensing as the "spectral signature" of a target. Target spectral signature 

implies that the spectral response patterns of given targets are unique or in some way absolute. 

In the natural world, however, spectral response patterns may not be as distinctive and are not 

necessarily unique. 

Experiments conducted by Dekker etal., (1992) on the effect of spectral bandwidth on 

spectral signature analysis of inland waters using imaging spectrometer measurements, 

suggested a minimum bandwidth of 10 nm. Dekker etal., (1992), concluded that, for the reasons 

of expense associated with increased data handling, longer integration times as absolute 

radiance levels decrease, the occurrence of shifts in spectral features within and between target 

areas, and decreased signal to noise performance, bandwidths narrower than 10 nm should be 

avoided. Frequently, the range of values (variance) captured by narrow band sensors, lacks 

sufficient breadth for reliable discrimination by classification algorithms. 



For example, Zacharias et a/., (1992). using a set of bandwidths ranging between 3.6 to 

27.8 nm, selected for their ability to differentiate between intertidal vegetation types, were unable 

to obtain reliable classifications. They reported that the only reliable classifications obtained were 

those created using Principal Components Analysis (PCA) images as input bands. This 

technique amounts, in effect, to creating a set of broad band images by aggregating a set of 

narrow band images to improve classification. 

Principal Components Analysis, also referred to as factor or Karhunen-Loeve analysis, 

can be used to identify those image components which represent the greatest contribution in 

terms of total variance cordributed, as designated by output component images (Jensen, 1986). 

The technique is intended to decrease the dimensionality or number of bands in a data set that 

must be analyzed to produce reliable results. The application of a PCA transformation to 

correlated remote sensor data will result in an uncorrelated multispectral data set, having ordered 

variance properties wherein the transformed data contain as much information as those from the 

original data set (Jensen, 1986). 

In examining the relations between the derivatives of remotely sensed data when 

correlated with known spectral features, Philpot (1 991) found that second and third derivatives 

are most sensitive to spectral features of about 30 to 40 nm bandwidths. Philpot (1991) noted 

that there are no pronounced reflectance features with a characteristic bandwidth less than 30 

nm for water and none less than 20 nm for certain vegetation types with the exception of the 

"high slope" region around 700 nm. Philpot (1991) further noted that large bandwidths are 

required to avoid high frequency atmospheric spectral fluctuations. He concluded that reliable 

correlations with detectable features, tended to be within broader bandwidths. 

With the advent of charge-couple devices (CCDs) used in both one dimensional linear 

arrays such as the Multispectral Electrooptical Imaging Scanner (MEIS II), and the two 

dimensional arrays, including CCD cameras and imaging spectrometers such as the CASI, 

spectral configurations have focused on hyperspectral or narrow bands . Very little attention has 

been paid to bandwidth, with even less attention paid to band overlap. Vora and Trussel (1 993) 



prescribed a set of scanning filters for the accurate scanning of color images. They postulate 

that scanning filters need not be exact duplicates of CIE (Commission Internationale de L' 

Eclairage / International Commission on Illumination) color matching functions, but need only be 

a nonsingular transformation of them. The CIE tristimulus values (method adopted by the CIE for 

evaluating a color in terms of calibrated amounts of primary stimuli: X (red),Y (green),and Z 

(b l~e) )~  are measured with respect to one of a set of standard illuminants. The source illuminant 

is incorporated in the color matching functions, to define a subspace by a set of vectors. The 

defined subspace for a given illuminant is termed the human visual subspace (HVSS). Vora and 

Trussel (1993), note that the accurate calculation of CIE tristimulus values b possible only if the 

space spanned by the color scanning filters includes the HVSS for the illuminant. They also note 

that a set of three scanning filters that spans the HVSS is not realizable because of limitations of 

the filter fabrication process. Vora and Trussel (1993) recommend a four filter set (Kodak 

Wratten filters: Wr. 52, Wr. 49, Wr. 726, and Wr. 57), which with the inclusion of the fourth filter, 

spans the HVSS. 

In summary, narrow band sensors, are designed to optimize spectral resolution, 

achieving the greatest number of discrete lightness vaiues possible for a given target. These 

sensors must be very sensitive in order to output a signal significantly stronger than the level of 

system noise, since noise can mask signal fluctuations that are weak in comparison to the level 

of noise. As noise levels increase even the strongest signal fluctuations can be masked. The 

quality of the output can be specified by a signal to noise ratio (SIN). The SIN ratio directly 

affects spectral resolution, as well as radiometric resolution, or the ability to detect slight radiance 

differences. 

3 - The method consists of dividing the visible spectrum into a suitable number of equal 
wavelength intervals, determining the contribution to the tristimulus values made by the light 
within each interval, and summing the results (MacAdam, 1985) For a more comprehensive 
review see MacAdam, (1 985). 



Another factor affecting SIN performance is change in radiant energy flux. Narrow band 

sensors are extremely sensitive to changes in radiant energy flux as well as to abrupt surface 

signal fluctuations. In the worst scenario this can result in unusable imagery, even in less 

extreme cases scene irradiance from one image frame to another can change to the extent that 

the same target in two adjacent frames will not statistically classify as the same cover type. 

Broad band sensors are not as adversely affected by noise as are narrow band sensors and 

have, therefore, improved S/N ratios. Human color vision research has indicated that visual 

redundancy plays a significant role in chromatic adaptation and spectral pattern recognition 

(Cornsweet, 1970; Boynton, 1979; Shipley and Shore, 1990; Wang et a/., 1991). Redundancy 

between spectral bands may prove extremely useful in chromatic adaptive imaging where 

changes in radiant energy flux may not be adequately modelled. 

Discountina the llluminant 

Methods akin to the CIE colorimetric specitication and those reviewed under the section 

dealing with computational approaches to color constancy all have one thing in common. They 

involve the source illuminant, in color specification. As previously mentioned, for purposes of 

remote sensing, where natural color images are desired for purposes of interpretation or analysis, 

such methods, or variations on the theme, represent logical approaches. These methods are, 

however, only appropriate given the assumption that the source illurninant may be determined or 

in some way, can be approximated. Among the color constancy research community, criticism 

has centered around the limitations of 'unrealistic assumptions', Those assumptions include the 

requirement of a white reflecting region, planar surfaces, no specularities, the constancy of 

illumination, and the constancy of surface reflectance (Finlayson, 1995; MacDonald, 1989). One 

might include in this list of criticisms the requirement of accounting for the source illuminant. 

Land's (1977) retinex theory tends to be the one model that provides a means by which 

the illuminant can be discounted, although requiring the inclusion of a white region. Other 

computational approaches independent of ambient tight flux have limited utility in remote sensing 



applications because of other limitations, including knowing the average spectral reflectance 

functions of all objects within an image (Buschbaum, 1980). Variations on the approach 

postulated by Buschbaum (1 980) have since then focused on estimating the chromatic 

component of the ambient light (Maloney and Wandell, 1986; Gershon et al., 1987; Finlayson, 

1995; Finlayson et al. , 1995). 

Brightness and hue constancy (hue constancy being the analogue of color constancy 

(MacDonald, 1989)), are the underlying assumptions incorporated into integrated reflectance 

procedures by Land et at. ( I  971 ; I  977). Both phenomena are contingent upon the relative 

reflectance of an object and its surround. While Land's (1977) method for calculating integrated 

reflectance of an object scene fails the color constancy test in some accounts (Maloney and 

Wandell, 1986), it remains, from a remote sensing perspective, the best departure point. 

Particularly in the realm of multispectral digital video, remote sensing applications rarely 

employ band selections conforming to the filter specifications required for computing color 

constancy descriptors. Band configurations are normally determined by the application. 

Estimations for filter requirements for band configurations are made based upon the spectral 

response paiterns of intended targets. Target areas are rarely homogenous, or restricted in 

homogeneity by scale and resolution. Surface reflectance varies almost continuously. 

Fluctuation in radiant energy varies as well, generally by unknown amounts. The need for a 

simplified approach to chromatic adaptive imaging has yet to be satisfied. The computational 

approaches to color constancy satisfy only a portion of the requirements of remote sensing 

applications, Most are computationally carking at best, given the amount of imagery associated 

with large remote sensing projects. As well, the dependency upon retrieving the source 

illuminant may be the reason many color constancy algorithms have not left the labs of their 

inventors to appear in image processing software packages. Any means of discounting the 

illuminant has ,therefore, a special appeal to the remote sensing and mapping sciences 



Summary 

The widely accepted view that color constant sensations result from the relative degree 

of excitation between three sets of photoreceptors with broadly overlapping wavebands whose 

range of sensitivities is under continuous adjustment, is the departure point for this experimental 

project. Assuming that Land's (1977), assertion that the final perceptual response of the visual 

system is lightness, and that each waveband set has its own characteristic response to the light 

stimulus of a scene with the final response being determined by the relative lightness between 

waveband sets, it is reasonable to assume that waveband overlap may contribute significantly to 

chromatic adaptation. While analytical procedures for color constancy corrections abound, and 

color constancy appears to be a product of chromatic adaptation, to the best of my knowledge, 

chromatic adaptive imaging procedures are not available. 

An analogue approach to chromatic adaptive imaging, based upon the analogue 

conditions apparently exhibited by the human visual system's chromatic adaptive functions, was 

tested. A three waveband fiber set which approximates the absorption spectra of the three 

photoreceptor (cones) sets, is not available. Three Kodak Wratten gelatin filters (Eastman 

Kodak, 1981), having transmittance peaks near the peak sensitivities of the three sets of cones 

were substituted. With the (short waveband), representing blue, (middle waveband), 

representing green, and (long waveband), representing red, the products of the three were 

combined in a color additive mixture, for color rendition. Peak transmissions of these filters do 

not exactly match cone sensitivity peaks, but they are close and perhaps more importantly have 

similar band overlap and extend reasonably close to the overlapping spectral ranges of the 

absorpticn spectra, as determined by Brown and Wald (1963;64) and used by Land (1 977). 

The degree of overlap afforded by tha three waveband configuration permits overlap in 

band sensitivities. This overlap in sensitivities means that induced radiant energy shifts should 

produce overlapping effects between waveband sets. Overlapping effects can be used to 



monitor overlapping sensor responses. By adjusting gain settings manually in a compensatory 

manor, some relative degree of sensor excitation should be maintained. The key element to 

reliably maintaining the relative degree of sensor excitation is contingent upon the availability of a 

white target region within the sensor field of view. 

Considered a constraint to some degree, the inclusion of a white region may not be 

problematic in an applied setting. Consuttation with video technical staff has revealed that such a 

demand may be accommodated by the superimposition of a white reference within a camera's 

anguiar field of view. A one millimeter thick chip of magnesium oxide has the properties of a 

perfect diffuse reflector and if illuminated by light reflected from the scene may be sufficient. 

Satisfying the requirement for an appropriate white reference in an airborne application demands 

testing a variety of possible techniques. For laboratory experimental puiposes the inclusion of a 

white target region is satisfied by the color target used. The white target region acts as a 

benchmark to which each sensor is calibrated. The one hundred standard divisions, over which 

the 1V p-p video signal is maintained, uses the white target region for its 1 volt, peak setting. 

By maintaining video responses to the benchmark setting the relative degree of sensor 

excitation can be maintained. An electronic device (waveform monitor) used to monitor video 

output, configured to be switchable between sensors, would permit overlapping band responses 

to be monitored and compensated for by manual gain adjustments. This technique provides the 

necessary feedback routine required for response compression. Success is contingent on the 

underlying assumption that sensor wavelength sensitivities and gain controls are sufficiently 

similar to produce like responses. A second assumption is that the relative lightness between 

target regions, within each individua! waveband set, remains relatively unchanged with changes 

in radiant energy flux. It is not unrealistic to expect that, given sufficient band width, this 

condition can be maintained. 

Each of the three spectral bands has its own characteristic response to the light reflected 

from the target. Target regions reflecting blue light have their highest reflectance or appear 

brightest in the blue waveband, their mid-range reflectance in the green wavebarid, and their 



lowest reflectance in the red waveband. Similarly target regions reflecting red light have their 

highest reflectance in the red band, their mid-range and lowest reflectance, in the green and blue 

bands respectively. Given the assumption that these relative reflectances can be maintained by 

gain adjustments, an approximate analogue of response compression would result. 

The series of adjustments described has been referred to herein as simulated response 

compression (SRC). While the series of adjustments is intended to result in a form of chromatic 

adaptation, the product of chromatic adaptation, color constancy, in its trwst form, is not the 

expected outcome. The term color constancy infers a replication of true color as perceived by a 

human observer with normal color vision. The color rendering capability of the filter set used is 

not expected to reproduce a true color rendition of the target. The product of chromatic adaptive 

imaging, therefore, is not in this case color constancy, but rather a maintenance of the relative 

target reflectance / absorption characteristics between waveband sets, regardless of changes in 

illumination. One might expect that the color rendition produced by an additive mixture of the 

three waveband set, under the illumination condition of an eqwl energy spectrum (white light), 

would be maintained by applying SRC. 

The intention of chromatic adaptive imaging is primarily to improve image classification 

results. By maintaining constancy of target reflectance / absorption characteristics under 

conditions of changing illumination, the repeatability of target identification should improve. This 

premise should hold true for both visual interpretation and statistical classification procedures. 



Experimental Methods 

Analoaue Chromatic Adaptation 

"If the illumination falling upon all scenes were constant the design of cameras and eyes 

could be greatly simplified" (Boynton, 1979). Boynton pointed out that the sensitivity range of the 

three sets of cone photoreceptors is under continuous adjustment over a range of luminance of 

approximately a million-to-one (1 x 106 :I), with each eye adjusting independently. He adds that 

cones are analogue devices, in the sense that they generate signals ~i paded amplitude. After 

photopigment bleaching and pupil size is account4 for, cones still handle light input. = over a 

three thousand.fold range and, if cone responses were linear and nonadapting, the problem of 

interpreting their signals by the horizontal and bipolar cells, would be similar to trying to meter 

voltage from one to three thousand volts without changing meter ranges (Boynton, 1979). 

Photoreceptor adaptation is a complex process. Three mechanisms for adaptation are 

photopigment bleaching, pupillary constriction, and photoreceptor response compression. 

Response compression has been demonstrated by Boynton and Whitten (1 970) to be the third 

retinal adaptive process after bleaching and pupil size are accounted for. Response compression 

is the nonlinear receptor adaptive process which permits the cones to handle a wide range of 

light inputs, providing in effect, a type of gain control (Boynton, 1979). It is not, however, just the 

sensitivity of a single photopic system under continuous adjustment, but that of a system with 

three inputs, capable of changing apparent color (Boynton, 1979). The most critical function of 

the first three cell layers of the retina (phdoreceptors, horizontal and bipolar cells) is adaptation. 

Photoreceptors, horizontal, and bipolar cells adapt to widely varying amounts of incoming light 

and in doing so adapt their response to produce signals within a much narrower dynamic range 

(NlahowaM and Mead, 1991). 



The output from a panchromatic video camera can be viewed as analogous to the output 

from a photoreceptor cone set. Both the video sensing array (CCD) and the photoreceptors 

convert incoming light to electrical signals. As well, both produce nonlinear output. While the 

nature of adaptation transformations and their contribution to both brightness and color constancy 

are poorly understood, there is general agreement that the adaptive transformations involve 

multiplicative gain control mechanisms (feedback) as originally proposed by Barlow and Levick to 

accomplish a steady state sensitivity (Barlow, 1965; Barlow and Levick, 1969, 1976; Hayhoe and 

Wenderoth, 1991). The human visual system's overlapping range of sensitivities has important 

implications for chromatic adaptive video imaging, referred to herein as simulated response 

compression (SRC), which deserve investigation. This degree of overlap in spectral sensitivity 

could, in a video imaging system, provide the between-band feedback (SRC) necessary to 

compensate for spectral shiis which would otherwise result in poor color renditions in target 

reproduction. 

Sensor Confiauration 

The experimental methods considered were intended to test the utifiy of chromatic 

adaptation imaging by between-band gain control (SRC). An analogue version of response 

compression was accomplished using three CCD (Charged Coupled Devices) video cameras, a 

waveform monitor to measure output voltage and controlled lighting. The three unfittered 

panchromatic cameras, were first boresighted within a horizontally configured mount designed 

inhotrse and built m the Simon Fraser University machine shop. This mount permitted removal of 

X and Y parallax by setscrew adjustment, permitting two to three pixel camera alignment. A 

standard tripod mounting thread was tapped into the base of the three camera mount. 

Camera Registration 

Boresighting was zam@kbd  by first examining a two band, two mkx composite 

image of the MacBeth cokK chedrer test pttm of t w q - f ~ ~  scierrtiicaay wepared cofored 



squares (Edmund Scientific, 1994). When boresighted, the angular fields of view of the two 

cameras were coincident, and disphyed target polygons were rendered as being without color 

when viewed as two cobr channels on a video monitor. Panchromatic input of the color target to 

a cdor video monitor produces a colorless scene when all three input angular fields of view are 

coincident. Where polygon edges exhiied a color within either edge rows or columns, 

misregistration existed and further adjustment was made to remove the parallax causing the color 

edge artifact. When each twoemera combination was aligned in both horizontal directions 

focus adjustments were required to fine tune the boresighting of all three cameras. Registration 

was achieved to between one to three pixels, and the camera lenses were taped to avoid 

accidental movement. 

Fitter selection 

As no commerciat filters have yet been produced to precisely replicate the absorption 

spectra of the three sets of cones, Kodak Wratten gelatin filters (Eastman Kodak, 1981). with 

band.uidth and transmission characteristics similar to those of the cones were used. Broadly 

wiwkpphg Sand f i#rath (fig. 3.1 j - acxmiffihed using the Kobak filters Wr. 47B for the 

short waveband (blue), Wr. 61 for the middle waveband (green), and Wr. 59 for the long 

waveband {red),. These three fifters have simih tramittameldiffuse density properties near 

the transmittance centers of 440,535, and 565 nm. The color appearances of these filters are 

best &mibed as deep Mue (Wr. 478). deep green (Wr. 61), and light green. The Wr. 478 is 

used for mkx separation and triodor prkt t i ,  
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the Wr. 61 is used for tricolor projection and color separation, the Wr. 59 is a contrast filter, with 

good blue absorption with limited yellow, green and red absorption. 

Filter mounts were adapted before boresighting to avoid disrupting boresighting 

adjustments. The filters were mounted to the vidm cameras prior to the system warm-up. 

Camera lmaaina Svstem 

The sensing system consisted of three Sony XC-75 Interline-transfer CCD panchromatic 

video cameras. Each camera imaging system consists of an effective picture element (pixel) 

array of 768 horizontal jcolumns) by 494 vertical (rows). External synchronization was provided 

by the a thirty-two bit image frame capture device. Video output was 1.0 volt peak to peak at 75 

ohms. Camera outputs were patched by matched impedance cables through a switching device 

and input to a waveform monitor. The switching device permitted the monitoring of individual 

camera output signals. The waveform monitor permitted the monitoring of video output over a 

one hundred standard division range of the one volt peak to peak (1V p-p) camera output signal. 

Manual gain was used, permitting manual adjustment to gain of the video output signal. 

Illumination Conditions 

Target illumination conditions were controlled using six one thousand watt quartz 

halogen, General Electric lamps as a source illuminant and photo effect gels in oversized filter 

sheets (12 x 22 in.) The quartz halogen illuminant had a correlated color temperature of 3030 OK 

as measured by a color temperature meter. The superimposition of the photo effect gels over the 

source illumhant produced measured cobr temperatures d 3840 O K, for the blue gel, 3030 O K, 

for the green gel, and 2480 O K for the red gel. The dominant wavelength or wavelength at which 

a blackbody radiation curve reaches a maximum, is related to temperature by Wien's 

displacement law X, = M, where X, = wavelength of the maximum spectral radiant exitance, 



pm, A = 2898 pm K, and T = temperature, K {Lillesand and Kiefer, 1994). The dominant 

wavelength for the broadspectrum illuminant and the three photo effect gels is by this equation 

equivalent to 356 pm, for the broadspectrum illuminant, .755 pm, for the blue gel, .956 pm, for 

the green gel, and 1.1 69 pm, for the red gel. 

While the spectral distribution of the quartz halogen GE 1000 lamps was not available 

from the General Electric Corporation, communication with technical staff for the company, 

reported the source as providing an equal energy spectrum, relatively flat throughout the visible 

spectrum. Exact transmittanceiabsorption spectra for the three photo effect gels was also 

unavailable from the distributor upon request. RGB optical counts for the three filters has been 

included in Appendix A and their associated transmittance characteristics are discussed in 

context with the results. 

The Static Tar~et 

The MacBeth color checker (Figure 4. .8.3), a test pattern c ~f twenty-four scientifically 

prepared colored squares designed to help determine true color balance or optical density of a 

color rendition system, was employed as a static target (Edmund Scientific, 1994). The target 

was mounted with a black matt background, held in place under a glass frame at a fixed focal 

distance from the three camera system. Illumination across the target was balanced by technical 

staff and considered to be even. The target was centered in the field of view of the cameras at a 

distance which provided sufficient resolution for analysis, while nearly filling the video image 

frame. 

Image Capture 

The experimental image set was captured under the following conditions. Analogue to 

digital conversion was provided in near real time by an Everex 32 bi video frame grab device. 

First the target was imaged under the broadspectrum condition provided by the source illuminant. 

Video output was set by manual gain control to one hundred standard divisions for the 1V p-p 



video signal for each of the three cameras using the waveform monitor as a reference source. 

This image is referred to here as the broadspectrum illumination condition. Next the blue gels 

were superimposed over the source illuminant. The three camera responses to the shifted 

spectrum were recorded by the S W O I ~ ~  captured image (bluegel illumination condition). After a 

successful image capture the waveform response to the induced spectral shift was recorded and 

adjustments to gain were made to bring all three cameras back to 1V p-p video output. The 

resutting captured image afler gain adjustment is referred to as SRCBLUE. 

The third illumination condition was induced by the superimposition of the green photo 

effect gel over the source illuminant. Individual camera waveform responses to the induced 

spectral shift were again recorded and the resulting image set greengel was captured. Next, 

adjustments to gain were made to bring all three cameras back to 1 V p-p video output and the 

image set referred to as SRCGREEN, was captured. The fourth illumination condition was 

induced by superimposition of the red photo effect gel over the source illuminant. Individual 

camera waveform responses to the induced spectral shifi were again recorded and the resulting 

image set redgel was captured. Next adjustments to gain were made to bring all three cameras 

back to 1 V p-p of video output, and the resulting image set referred to as SRCRED was 

captured. 

The prefix SRC is intended to identrfy those image sets where gain settings associated 

with all three cameras were adjusted to produce a one volt peak to peak video output as 

indicated by the waveform monitor. The target polygon located at row 6, column 4, representing 

pure white, provided the reflectance source for the maximum of one volt or the equivalent one 

hundred standard divisions of the video output gain settings. 



Preprocessing 

Upon analogue to digital conversion the captured image sets were separated into their 

rgb, three band components and formatted for analysis on the image processing package Eidetic 

RSVI E. Image preprocessing involved applying a local average smoothing operation (3 x 3 pixel 

mask) to each of the three bands (rgb) for each image set. The local average filter mask of this 

kind is designed to deemphasize high spatial frequency detail associated with random noise 

produced by electronic devices. This type of filter evaluates an input pixel brightness value, 

B V  in, and the pixels surrounding the input pixel and outputs a new brightness value, BV out, that 

is the mean of the nine pixels under examination. The spatial moving average then shifts to the 

next pixel, where the operation is repeated until all pixels have been evaluated (Jensen, 1986). 

Training Staae 

Upon completion of preprocessing each image set was prepared for classification. 

Supervised classification was conducted by first defining the representative sample sites, also 

called training sites. Training sites are used to compile a numerical interpretation key, which 

describes the spectral attributes for each class or category (Lillesand and Kiefer, 1994). The 

image processing package used permits the compilation of both calibration and test sites. 

Calibration and test sites are designed to permit the analyst to locate cover types (test sites) 

having like spectral properties to the sites of known cover type (calibration sites). Both calibration 

(C)  and test (T) sites are incorporated when computing the descriptive statistics used in the 

classification stage. 

Spatial complexity for a given target normally dictates the appropriate sampling scheme. 

The homogeneity of the target polygons was well suited to cluster sampling, When using a 

statistically based classifier, such as the maximum likelihood method used herein, the theoretical 

lower limit to the number of pixels that must be contained in a training set is n + 1, where n = the 



number of spectral bands (Lillesand and Kiefer, 1994). In practice a minimum of 10n to 100n is 

used, since the estimates of the mean vectors and covariance matrices improve as the number 

of pixels in the training sets increases (Lillesand and Kiefer, 1994). Clustered samples for C and 

T data of approximately two hundred and eighty pixels each were selected well within target 

polygons (to avoid mixed pixels associated with polygon edges). The average target polygon 

consisted of approximately fiy-nine rows by forty-five columns, totalling two thousand six 

hundred and fifty-five pixels. Training site samples of approximately five hundred and sixty pixels 

(280 x 21, representing twenty-one percent of the total for each class, were used by the classifier. 

A total of f ieen classes, the maximum permitted by the software package, was identified by 

training sets. These classes are identified by a row and column coordinate of the MacBeth color 

checker. Class number, descriptions and coordinates for the target polygons are listed in 

Tablel. 

Table 1 Taraet Classes bv Polvoon 

Class Description Row Column 

Bluish Green 

Blue Flower 

Foliage 

Blue Sky 

Orange Yellow 

Yellow Green 

Moderate Red 

Purplish Blue 

Orange 

Cyan 

Magenta 

Yellow 

Red 

Green 

Blue 



Classification 

The program set Eidetic RSVISCL, employing the Maximum Likelihood Classifier was 

used. A full overview of the maximum likelihood procedure is beyond the scope of this thesis, 

and is therefore not included. Readers interested in a full description are referred to Lawiey and 

Maxwell (1 Wl), Jdreskog (1 977), Morrison (1 976) and (Davis, 1986). The program computes 

the mean, and covariance and correlation matrices for each of the classes defined by the training 

sets. The matrices are inverted and the determinant of each is computed. The Mahalanobis 

distance, or the measure of difference between the means of two multivariate groups is 

computed for each ciass and added to the determinant for each class to define the value of the 

descriminant function for each class (Davis, 1986; Peet, 1990). In determining the most likely 

class, a test is done checking that the unknown pixel lies 'close enough' to the training data of the 

class to which it has been assigned (Peet, 1990). The analyst defines a level of probability 

termed the alpha level, which in turn defines 'close enough'. This allows the frequency 

distribution of the sample to be compared to the hypothetical, measuring the degree of 

correspondence between the forms of the two distributions (Davis, 1986). The alpha level of 5% 

was selected. The alpha level defines the critical point for the Chi-squared distribution. If the 

Mahalanobis distance exceeds the criiical distance, the unknown pixel is assigned to the null 

(unknown) class or otherwise left in the assigned class (Peet, 1990). At the alpha level of 5% 

those pixels with a Mahalanobis distance falling into the upper 5% of the chiquared distribution 

are assigned to the null class (Peet, 1990). 

Target polygons not included in the fifteen classes were expected to comprise the bulk of 

the pixels assigned io the null class. Target polygon edge pixels and border regions within the 

target were sxpectec! tc ontribute to the rest of the null class zss!gnmen?s. C!aaifica?bn errors 

of omission would also be assigned to the null class. 



Evaluation 

Classification accuracy assessment followed the most common means of expressing 

classification accuracy, that of the contingency table or error matrix (Lillesand and Kiefer, 1994; 

Fisher, 1994; CongaRon, 1988; Story and Congaiton, 4986; Rosenfeld and Fitzpatrik-Lins, 1986; 

Rosenfeld, 4986; Aroncff, 1985). This type of matrix expresses, on a category-by-category 

basis, the relationship between reference data (ground truth) and the results of the automated 

classification (Lillesand and Kiefer, 1994). In evaluating the completely random assignment of 

pixels to ciasses, the KHAT statistic was aiso computed for each error matrix. The KHAT 

statistic measures the difference between the actual agreement between reference data and the 

automated classifier used and the chance agreement between the reference data and a random 

classifier (Lillesand and Kiefer, 1994; Aronoff, 1982; Congalton eta/., 1981 ) 

The equation used to compute KHAT is: 

r = number of rows in error matrix 
x ii = the number of observations in row i and column i (on the major diagonal) 

Xi + = total of observations in row i (marginal total to right of matrix) 

x+ i = total of observations in column i (marginal total at bottom of matrix) 

N = total number of observations included in matrix 

The statistical procedure principal components analysis (pa) was also run on each of 

the image data sets. The covariance, correlation and eigenvalue matrices, provided as output 

from the principal components analysis, permitted the computation of other statistics imended to 

evaluate further the aspects of bandwidth, band overlap, redundancy and the outcome of the 



induced spectral shifts. By computing the correlation of each image band with each principal 

component it is possible to determine how each band is associated with each component 

(Jensen, 1 986). 

The equation used to compute the factor loadings which expresses the associalion is: 

akp 'b 
Rk, = 

.t/ Var, 

where: akp = eigenvector for band k and component p 

A,, = p th eigenvector (component) 

Var, = variance of band k in the covariance matrix 

This computation results in an n x n matrix of factor loadings (Jensen, 1986). 

Least Squares Analysis 

In determining the relationship between the induced illumination conditions and the 

results of the application of the SRC function for the fifteen target polygons, least squares 

method was applied to the eighteen band/illumination condition combinations. The STAT 

program accompanying Davis, (1 986) was used in producing this statistical output. This output 

provided a goodness-of-fit or coefficient of determination, expressing the degree of correlation 

between the bandtillumination condition combinations. This procedure was intended to determine 

the degree of statistical similarity between conditions which produce dissimilar color renditions, 

which in turn inhibit accurate interpretation. 

Qualitative evaluation of the color renditions produced by the induced spectral shifts and 

the results of the applied between-band gain control (SRC function) for the seven image sets, 

were included. Given the band configuration, degree of band overlap and incomplete coverage 

of the visual spectrum, an accurate color rendition of ihe static Parget would nai be expecied. 

The photographic product rqiiired for i h i ~  p u T e  was prodwed by the color grsphks recording 

device ( Matrix Camera). This device provides a photographic product of the color additive digital 

images produced by the three band sensor output. Based on the assumption that the 



pftotqraphic processing of this product was coriducted under controlled conditions, one can 

expix3 that the photographic product provides an accurate reproduction of the digital display. 

Summafv 

The sensor configuration employed was a prototype designed for laboratory use only. 

Design improvements, including vibration resistant sub-pixel camera registration would be 

required for fieid applications. As well, a variety of filter combinations, including various degrees 

of band overlap should ideally be tested. As for illumination conditions, a variety of natural 

daylight circumstances employing, at least at first, a static target, need also to be examined. The 

use of a static target eliminates the need for ground truth while incorporating a large number of 

target classes, as well as increasing accuracy at the training stage. Given the unpredictability of 

an applied test of the methods under examination, it was decided to conduct this pilot experiment 

under as controlled circumstances as possible. 



EXFERIMENTAL RESULTS 

Introduction 

The application of the simulated response compression (SRC) function as applied to the 

dats sets herein did not always prove as successful as expected. The principal thesis, that the 

application of SRC would restore the relative degree of excitation between the three waveband 

set, proved successful in only one of the three applications, SRCRED. The order of examination 

of the experimental results is by short (blue), middle (green) and tong (red) waveband sets. This 

order, while consistent with the order as addressed throughout, places the successful results last, 

after the failures. The reader is asked therefore, to bear with the examination as presented, 

while keeping in mind that there are successful results to come. Reference is made herein to the 

calibration and test data generated by the classification training stage. This actual data set, while 

too voluminous to be included in its original form has been summarized by the sample DN data 

included in Figures 4.8.1 and 4.8.2. Reference is also made to classes 1 through 15 by polygon 

color name. 

The color names refer to the MacBeth Munsell color chart used as a target and were not 

assigned by the author. Ail figures referred to in this section have been included at the end of 

Chapter Four. Tables have been included in Appendix A. Many of these could only be printed in 

landscape format because of their size and therefore; are not well suited to immediately follow 

the page upon which they are referenced. 

Classification Resu Its 

Tables 2 through 8, Appendix A, contain the error matrices resulting from classifying 

training set pixels, for the seven image data sets. These error matrices express the counts of 

agreement between classified categories and their associated training sets. The method 



commonly used to express accuracy of classified or interpreted image or map data sets is by 

statement of percentage of pixels or area that have been correctly classified when compared to 

the reference data (Story and Congalton, 1986). Normally the number of rows and columns 

equals the number of categories whose classification results are to be assessed (Lillesand and 

Kiefer,1994). For the sake of a thorough evaluation of these experimental results an additional 

category, representing the null sets or pixels unassigned to a class, has been included. 

Different measure of classification accuracy, if evaluated in isolation of each other, can 

be misleading in representing the degree of reliability of the classified data (Rosenfield, 1986). 

Several characteristics of classification performance can be evaluated using this type of matrix. 

One m examine the cksdjca!ion errors of ornIssiin (exclusion) and commission (inclusion) as 

well as overall accuracy. Errors of omission, which normally correspond to nondiigonal column 

elements (Lillesand and Kiefer.1994) have all been assigned to the null column. Commission 

errors are represented by nondiagonal row elements. Overall accuracy, as expressed by Tables 

2 through 8, can be computed by dividing the total number of correctly classified pixels (the sum 

of the elements of the majcK diagonal) by the total n u m h  of pixels under considemtion (the sum 

of the total column). 

Given the outcome of the experimental data set classifications and the extremely low 

occurem of errors of oommiss'm, accuracy assessment is primarily focused on individual class 

accuracy, based upon errors of omission. This was computed by dividing each major diagonal 

etement by the row total for that dass. Before proceeding, a point relating to interpreting the 

matrices must be considered. One will notice the absence of values, both row and column for 

c h s  thirteen, with one exception, Tabk 8. Thii target polygon is represented by a fully 

saturated red. In alf but the SRCRED image data set, pixels within this polygon were assigned to 

the null class. When computing acwracies, these mtl ciass values have been set to one to 

avokt spuriow results. 



The value representing the m e a  number of pixels per classified poiygon has been 

included in each image data set to evaluate the degree of similariiy to the expected polygon size 

(2655 pixels) as based upon selection criteria. Examination of the (rgb) image set 

"broadspectrum" before classification, revealed an average target polygon dimension of fifty-oine 

rows by forty-five columns (excluding edge errors resutting from image misregistration). Most of 

the pixeis affected by misregistration were assigr?ed to the null class but one must assume that 

some were included in the respective class assignments, particularly where the classified polygon 

dimension exceeded the expected 2655. 

The image data set representing the broadspectrum condition of illumination has been 

used as a benchmark for mparisons of classification accuracy between image data sets. The 

underlying assumption is that the best results, including overall and individual class accuracies. 

would probably be associated with the broadspecfrum condition of iliumination. Error matriies 

included in Tables 2 through 8 were not based upon training data, or estinrated, as is often the 

case, when determining classification accuracy (RosmfieW, 1986; Story and Congalton, 1986). 

The reason for not choosing this method was that accuracy assessments, incorporating training 

set data on@, mereiy provide an assessmepri of the bmogenefiy of the training sets while giving 

little indication of overall ciassification accuracy (Lillesand and Kiefer.1994). To assure adequate 

accuracy assessment a ' v v a l b t u ~  r=omptete i ~ ~ ~ ~ t n t ,  appropriate to a research sitwion, was 

used (Lillesand and Kiefer,1!394). While not wefl suited to an applied remote sensing situation, 

this method provides a more r d i  accuracy test tban estimating pracedures, by accounting for 

every classified image pixel (Congalton, 1988). 

The error matrices referenced by the TaWes 2 through 8 were not normalized (Aronoff, 

1982) as the accuracy tests herein were conducted using the same method for all ctassification 

categories. Gwen the use of the *WI-to-wati' method for establiing reference data, one can 

exp& a h i  reii&My when ccxnputing acwacis. Estabfiiing minimum accuracies for the 

pupme of evaluating dass'f icar t i  resuits has for the mmsi part been thoroughly covered where 

emxs are estimated by s m p b g  metbock (Aronoff, 1985). W k e  "waft-tud methods have 



been qpliled, choies regarding acceptable minimum accuracy levels depend upon the 

appiication. Davis (19tKi) por*nts out that setting a level of significance is the responsibility of the 

researcher. in avoiding the rejection of a true hypothesis, significance levels have, therefore, not 

h e n  set for the results confained herein. This being the case each marked deviation from the 

accwacy of the image set broadspectrum will be examined. A, K "KHAT" statistic has also 

been computed for each enor matrix. The "KHAT" statistic serves as an indicator of the extent to 

w k h  the percenfage correct values of an error matrix are due to "true" agreement versus 

'ctraffcem agreement (Congalton & a\., 1981 ; AroM, 1982; Lillesand and Kiefer,l9?4). 

Reference is aiso made to statistics computed in addition to those required for the image 

c-ificatbn, (see Appendix A). These include principal components and their associated 

matrices indicating, covariance, melatktn, eigenvalues and eigenvectors. The matrices output 

from principal components analysis have further been used to compute the correlation between 

each bend and each ownponent, or factor loadings (Jensen, 1986). From eigenvalues, the 

percentage of total variance expfained by each principal component and the percentage of total 

variance contributed by each band, has been computed to aid in examining the aspects of 

rmnctancy (Jeflsen, 1986)- 

From TaMe 2, image set lmadsp&nrrn , the computed KHAT statistic equalled 0.96. in 

irrterpreting this statistic it is important to note. that as a true agreement approaches 1 and a 

cihance agreement appioaches 0, the "KHAT' value also approaches 1. Therefore, the observed 

cbHi&ion is 96 percent better than a chance agreement (Lillesand and Kiefer,1994). Ciasses 

I (poiygon coior btuish green), at 93 percent and 12 (polygon cobr yellow), at 87 percent, are the 

on& twu clrcr;ses whictr Mer am@mo&y from the general tendency of averages for this 

matrbr. W k e  class 1 @dylgon cdor bluish green} is concerned, the small gap between 440 and 

380 nm, whse no b a d  m&ap exists (see Fwe 3.1), may be a contributing fador to its 



somewhat reduced classificatm accuracy. Considering that this polygon color has a relatively 

high mean (short waveband (blue)) reflectance (70) associated with the calibration and test data 

and this DN value increased with the introduction of the bluegel illumination condition, one might 

also suspect a lack of shortwave energy emitted by the broadspectrum illuminant, as having 

contributed to this condition. The spectral distribution of power from thermal sources such as 

incandescent filament lamps, however, is normally smooth and continuous over the entire visible 

range (MacAdam, 1985). Conversations with General Electric technical support staff, confirmed 

this for the quartz-halogen illuminant used. The spectral bands represented by the blue (shor!) 

and green (middle) and red (fong) wavebands, should adequately cover the reflectance from this 

target polygon. 

Class 12 (polygon color yellow) exhibits the most conspicuous departure from the 

general tendency. It was observed while conducting the experiments, that an anomaly (possibly 

a surface contaminant from handling) on the sensing platen of the green (middle) waveband 

camera was associated spatially with this class polygon and is considered to be the main 

contributor to the large number of omission errors for this class. Or, considering that accuracies 

for this class are substantially improved under other illumination conditions, including the SRC ... 

conditions, a discontinuity in the spectral continuum may also be a contributing factor. 

With the possible exception of class 12, all other classes in Table 2 exhibit degrees of 

accuracy sufficient for most applied remote sensing applications, considering an overall accuracy 

(sum of the diagonal elements / sum of the row total) of 96 percent. 

Image Set Blueuel 

Table 3 contains the error matrix for the illumination condition, bluegel. The computed 

overall accuracy for this matrix shows a 1 percent increase over that of the broadspectrum 

condition, resulting in a 97 percent accuracy level. Calibration and test data for this image set 

indicate a marked increase in DOJ values in short waveband (blue) va9ues for all cfasses, 



accompanied by an associated decrease in DN values within the other two bands, as well. This 

tendency indicates a spectral shift toward the shorter wavelengths as expected. 

Under these conditions, class 6, (polygon color yellow green), suffered the greatest 

decrease in accuracy, down from 98 (broadspectrum) to 88 percent. Considering that this target 

color roughly falls within the spectral range of 550 to 560 nm and both the middle (green) and 

long (red) wavebands adequately cover this spectral range, the reduced accuracy must have 

resutted from the induced spectral shift. The increased accuracy within class 1 (polygon color 

bluish green), over the broad spectrum condition, probably resutts from the increase in total 

variance contributed by the short (Mue) waveband, under this illumination condition. As 

previously mentioned, this may be related to the quartz halogen illuminant. The KHAT statistic 

for this image set is 0.97, indicating a true agreement. The increase in the mean number of 

pixels per class polygon indicates the inclusion of edge pixels associated with misregistration. 

lmaae Set Greenaei 

Table 4 contains the error matrix for ihe image set greengel. A similar performance in 

overall accuracy, 97 percent, is exhibited by the illumination condition. As in the case of !he 

bluegel, this indicates that overall conditions associated with the spectral shift had little 

deleterious effects on spectral class separati~n. In examining the most marked departures in 

class accuracy for this image set, classes 1 (polygon color bluish green) and 10 (polygon color 

cyan) will be evaluated. Both classes in this case are polygon colors associated with a mixture of 

blue and green. A marked average drop in DN values for both of these classes is evident in the 

calibration and test data (class 1, -27; class 10, -23). 

The spectral region of approximately 450 to 480 nm (blue green), is the only short wave 

spectral region within the three wavebands, with limited coverage. Figure 3.1 .d, illustrates the 

percent transmittance by wavelength, of the three combined waveband sets. At approximately 

460 nm, the percent transmittance, of the filters Wr. 47B and Wr. 59 drops to 10 percent. The 



lack of coverage in this spectral region is consistent with the reduced accuracy of polygon colors 

with a high reflectance in the blue green. 

Neither blue nor green colored polygons were similarly affected. The mean number of 

pixels per polygon rose only slightly over that of the broadspectrum, with this illumination 

condition. The KHAT statistic 0.97, again indicates a true agreement. 

lmaae Set Redael 

Table 5 contains the error matrix for the image set redgel. Under this illumination 

condition overall accuracy fell to 93 percent, the lowest for all conditions. The individual class 

accuracies of classes 1 (polygon color bluish green), 2 (polygon color blue flower), 4 (polygon 

color blue sky), and 5 (polygon color orange yellow) represent the most marked decline, and 

therefore will be examined. Calibration and test data for all of the above classes exhibit elevated 

DN values for the short (blue) waveband, when compared to the broadspectrum data. This is 

accompanied by depressed DN values in the middle (green) and long (red) wavebands. As well 

the separation between DN values within the middle and long wavebands has been considerably 

compressed, leaving these DN values very similar. This is most likely due to the degree of 

redundancy between these two wavebands. It is assumed that the lack of variance between 

these two value sets led to their being spectrally less separable. 

The anomalous increase in ON values for the short waveband, when compared to the 

broadspectrum illumination condition, deserves special attention. An explanation lies in the 

optical counts associated with the three gek. While the neutral densities of these three filters are 

very similar (0.31, 0.23, 0.27) for the red, green, and blue gels respectively, their associated RGB 

optical counts (Appendix A), are of course dissimilar. The red gel exhibits an optical count of 

0.02 for the red, 1.48 for the green, and 0.79 for the blue. The red count is consistent with a low 

optical density where red light is concerned. The green count is consistent with a high optical 

density where green iighi is concerned, (as the red fifter is a minus green filter). The blue count, 



however, indicates that this filter passes a fair amount (1 5 to 16 %) of blue light3 . This may 

account for the overall increase in short (blue) waveband ON values with this illumination 

condition. 

The KHAT statistic for this image set 0.93 again indicates a true agreement. 

jrnaae Set SRCBLUE 

Table 6 contains the error matrix for the image set SRCBLUE. The computed overall 

accuracy for this image set of 96 percent represents little change in accuracy from the bluegel or 

broadspectrum iliurnination conditions. Individual class accuracies fluctuate only slightiy about 

those of the broadspectrum illumination condition, with the exceptions of classes 12 and 15. The 

accuracy of class 12 (polygon color yellow) increased by 13 percent with SRCBLUE. Within 

class 15 (polygon color blue) ,however, class accuracy dropped by 10 percent. It appears that 

the SRC effect (between band gain response) resulted in an increase in omission errors for this 

polygon color, represented by a fully saturated blue. 

Calibration and training data for class 12 show an increase in the average short 

waveband (blue) DN values by 7 DN's, accompanied by a near match in DN value for the middle 

waveband (green), and a drop in DN's, down by 44, for the long waveband (red), when compared 

to the broadspectrum illumination condition. The increased DN's for the short waveband sel for 

this class, are a result of the increased gain (return to 100 divisions) for the SRC condition. The 

accompanying gain increase for the long waveband camera (return to 100 divisions), failed to 

restore DN values for this class, (polygon color yellow). 

Calibration and test data for class 15 (polygon cobr blue), jndwte a similar increase in 

DN values for the short waveband (blue), resulting from the increased gain (return to 100 

Conversion according to the Density-Percent Transmittance Table, KODAK FILTERS FOR 
SCIENTIFIC AND TECHNICAL USES Eastman Kodak Company, 1981, Second Ediion, pg. 88- 
89. 



divisions) with SRC. Near matching middle waveband DN's resulted from SRC, when compared 

to the broadspectrum. Long waveband (red) DN values, while close to those of the 

broadspectrum condition, are too close to those of the middle waveband to be spectrally 

separable. Class 6, (polygon color yellow green), showed a marked improvement (+I0 percent) 

in accuracy with SRC over the biuegel illumination condition, indicating some degree of success. 

Calibration and test data for the class indicate that only middle waveband DN values were 

restored to their broadspectrum condition, with SRC. 

The computed KHAT statistic for the SRCBLUE image set of 0.96, indicates a true 

agreement. 

lmaae Set SRCGREEN 

Table 7 contains the error matrix for the image set SRCGREEN. The computed overall 

accuracy for this image set is 95 percent, down slightly from the broadspectrum and greengel 

illumination conditions. Individual class accuracies do not show a overall consistent improvement 

over the greengel illumination condition nor do they match the broadspectrum condition. The 

individual accuracies of classes 1 (polygon color bluish green) and 12 (polygon color yellow) 

show an improvement with SRC over both the broadspectrum and greengel accuracies. The 

improvement for class 1 is the most dramatic of the two. The accuracy for this class is up by 13 

percent over that of the greengel illumination condition. Calibration and test data indicate very 

l i i e  spread in DN values for the image set SRCGREEN, when compared to the (rgb) DN spread 

for this class under the broadspactrum illumination condition. While the short waveband (blue) 

DN values, show an increase over those of the other associated conditions, middle waveband 

(green) DN values are for the most part unchanged and long waveband (red) values have 

dropped to those of the short waveband (blue). One might expect that under these 

circumstances of reduced variatiin between red and blue band values for this class, spectral 

separabiii would also be reduced. This, however, does not seem to be the case. 



Class 12 (polygon color yellow) shows a considerable increase in accuracy over the 

broadspectrum illumination condition with only a modest increase over the green gel illumination 

condition. This is consistent with other illumination conditions when compared to the 

broadspectrum condition. Classes 2 (polygon color blue flower) and 4 (polygon color blue sky) 

indicate considerable decreases in accuracy over both the broadspectrum and greengel 

illumination conditions. DN values for the short waveband (blue), for SRCGREEN, were 

increased over those of the two associated conditions. Middle waveband (green) DN values are 

closely matched for all three conditions, while for the SRCGREEN image set the long waveband 

DN values fell below both of the counterparts. Again, middle (green) and long (red) waveband 

DN values show too little spread under the condition SRCGREEN to be spectrally separable. 

The computed KHAT statistic for this image set is 0.95, indiicating a true agreement. 

lmaae Set SRCRED 

Table 8 contains the error matrix for the illumination condition SRCRED. The computed 

overall accuracy for this image set is 94 percent, down slightly from the broadspectrum condition 

and up one percent, compared to the redgel condition. Individual class accuracies show an 

overall improvement when compared to the redgel illumination condition. Class 1 (polygon color 

bluish green) has improved in classification accuracy by 13 percent over the redgel condition, 

while matching the accuracy of the broadspectrum condition. Class 2 (polygon color blue flower) 

shows a small increased accuracy over the redgel condition but is still well below the accuracy 

achieved under the broadspectrum condition. Class 3 (polygon color foliage) has an improved 

accuracy over the redgel condition and is within 1 percentage point of that of the broadspectrum. 

Class 4 (polygon color blue sky) shows similar improvement, being up by 6 percent over the 

redgel condition and with a 1 percentage point improvement over the broadspectrum condition. 

Ctass 5 (polygon cofor orange yellow) has improved in accuracy by 10 percent over the redgel 

wndiiion, again to within 1 percent of the broadspectrum. 



Class 6 shows a marked decrease in class accuracy, down 14 percent over that of the 

redgei and t 8 percent below the broadspectrum condition. This polygon color is yellowish green, 

and probably falls between 550 and 570 nm, well within the spectral area with the greatest 

redundancy. Calibration and test data for this class indicate good rgb spectral separation for the 

broadspectrum condition. Under the redgel condition the two redundant bands (middle and long), 

spectral separation was entirely lost, with DN values for these bands being nearly perfectly 

matched at 61 (middle) and 60 (long). SRCRED restored the separation between the two 

redundant bands, almost to within the exact proportions as those of the broadspectrum condition. 

This restored spectral separation, however, still resulted in greater than 4 times the number of 

errors of omission, accompanying the SRCRED condition. Polygon size and its associated 

misregistration errors does not seem to be a significant factor in the increased omission errors. 

Class 8 (polygon color purple blue), shows decreased accuracy, slightly below both that 

of the redgel and broadspectrum conditions. Class 9 (polygon color orange), is also only slightly 

below that of the redgel and broadspectrum conditions. Class 10 (polygon color cyan), fell to 87 

percent accuracy; below both of its other associated illumination conditions. Polygon size, which 

can affect the accuracy, having remained stable (Table 8) accounts only slightly for this 

decreased accuracy. Class 11 (polygon color magenta), shows a similar reduction in accuracy, 

down to 88 percent, 10 and 11 percentage points below the redgel and broadspectrum conditions 

respectively. Here again polygon size does not appear to be the major contributing factor to 

decreased accuracy. As well, associated DN values, from calibration and test data, do not reveal 

any obvious evidence, as the SRC function again restored the rgb separation associated with the 

broadspect rum. 

Class 12 (polygon color yellow), showed similar improvement over the broadspectrum 

condition; as it did under other illumination conditions. Class 13 (polygon color red) deserves 

special attention, The SRCRED illumination condition was the only condition under which a 

reliable classification was achieved for this polygon. All other conditions of illumination resulted in 

complete assignment to the null class for this polygon. Class accuracy for this polygon is 99 



percent. This is accompanied with a larger than average polygon size of 31 07 pixels, 

incorporating a large number of edge pixels. Calibration and test data indicate an improved 

separation between middle (green) and long (red) wavebands for this polygon; over those of the 

redgel condition. There is also a slight increased separation between these bands over that 

exhibited by the broadspectrum condition. This may account for the overall improvement. 

Classes 14 and 15 (polygon colors green and blue respectively), round to 100 percent in class 

accuracy, with few errors of omission and do not represent substantial improvement over the 

other associated illumination conditions of the redgel and the broadspectrum. 

The computed KHAT statistic of 0.93 indicates a true agreement. 

Error Matrices Summarized 

Figures 4.1 through 4.8 have been included to help summarize the results of the 

standardized accuracy assessment. Figure 4.1 indicates percent accurately classified by 

polygon color (class) for the broadspectrum and the three shifted spectral conditions represented 

by light source filters (bluegel greengel and redgel). With the exception of the yellow anomaly, 

under the broadspectrum condition all polygons have been classified to a degree of accuracy 

(>90 percent) sufficient for most remote sensing mapping appiications. Classification accuracies 

associated with the bluegel condition indicate only one polygon color (yellow green) which fell 

markedly below this level of accuracy. Similarly with the greengel condition only one polygon 

color (bluish green) fell below the 90 percent accuracy level. The greatest degree of departure 

from the benchmark condition was associated with the redgel condition where three polygon 

colors (bluish green, blue flower, and orange yellow) fell below an accuracy level of 90 percent. 

Figure 4.2 illustrates accuracies associated with the broadspectrum condition and 

associated SRC function conditions. Here it is evident that the SRC function generated mixed 

results, improving accuracies in some cases and reducing accuracies in other cases. This 



somewhat "mixed bag" of results indicates a tendency for improved classification accuracy for 

some polygon colors at the inadvertent expense of others. 

Under the three gel conditions four polygon colors (bluish green, blue flower, orange 

yellow, and yellow green) fell below the 90 percent level of classification accuracy, while under 

the SRC conditions six polygon colors (blue flower, blue sky, yellow green, cyan, magenta, and 

blue), fell below this level. Therefore, accuracy was improved only for the two polygon colors 

bluish green and orange yellow at the expense of the others mentioned. Both of these 

improvements were accompanied by twice as many inadvertent sacriiices within the same image 

set SRCRED. 

Figures 4.3 through 4.5 illustrate the accuracies associated with each spectral shift and 

its associated SRC function plotted in conjunction with the benchmark set, broadspectrum. 

Figure 4.3 illustrates a "one improved over one sacrificed" account at the 90 percent accuracy 

level. Overall the performance of the SRC function is poor with only four SRC indicators (polygon 

colors foliage, blue sky, yellow and green) appearing above (improved accuracy) their bluegel 

counterparts. Figure 4.4 illustrates a "one improved over two sacriiicxi" account at the 90 

percent accuracy level. Overall performance of the SRC function is indicated as poor with only 

four SRC indicators (polygon colors bluish green, cyan, yellow, and green) appearing above 

(improved accuracy) their grsengel counterparts. Figure 4.5 illustrates a "two improved over 

three sacrificed" account at the 90 percent accuracy level. Overall performance of the SRC 

function is indicated as moderate with eight SRC indicators (polygon colors bluish green, blue 

flower, foliage, blue sky, orange yellow, yellow, red, and blue) appearing above (improved 

accuracy) their redgel counterparts. 

Figures 4.6 through 4.8 illustrate the null class assignments representing the errors of 

omission for each spectral shift and its associated SRC function, plotted in conjunction with the 

bench mark set broadspectrum. As would be expected, increases in null class assignments 

accompany decreases in accuracy. 



Performance of Simulated Response Compression 

Blueael Illumination Condition 

Simulated response compression (SRC) or between band gain control was assessed for 

its performance in compensating for spectral shifts induced by the three gels. Mean rgb values 

were established for each class (polygon color) by sampling the individual classes, within each 

unclassified image set (see Figures 4.8.1 - 4.8.2). Means were extracted by cluster sampling. A 

total of seventy-five pixels, represented by three clusters, each blotch consisting of five by five 

pixels, were taken from within the polygons. Care was taken to avoid edge pixels. While the 

samples are much smaller than those used for training classifiers, the sampled means 

correspond very well with those from calibration and test data. 

Figures 4.9 through 4.17 illustrate graphically the degree of correspondence between 

the broadspectrum and all associated conditions, for each band. Series one represents the 

broadspectrum, series two represents the spectrally shifted condition associated with the gels 

and series three represents the results after simulated response compression (SRC). Figure 

titles indicate which bands and conditions are represented by the plots. 

The graphs were examined by the order, short (blue), middle (green), and long (red) 

wavebands. The short (Wr.470) and middle (Wr.61) wavebands are approximately equal in 

bandwidth (approximately 100 nm) with the long (Wr.59) waveband, being about twice as wide 

(approximately 200 nm), (see Figure 3.1 ). 

Figure 4.9 illustrates the short (blue) waveband, for the three conditions, broadspectrum, 

bluegel and SRCBLUE. The spectral s h i  toward short wavelengths induced by the bluege! in 

series 2, is indicated by an increase in DN values for polygon classes (1,2,4,8,lO, 1 1,15) 

reflecting in the blue region of the spectrum. Polygons represented by colors nonreflective in the 

blue (short wavelengths) were influenced far less, in terms of DN fluctuations. With the 

apprfcation of SRC, DN values of the classes most affected by the spectral shift were increased 



even further. The SRC function also increased DN values slightly, and uniformly for all classes 

nonreflective in the blue. The result of the SRC function was to exacerbate the disproportional 

reflectances induced by the spectral shift for this waveband. 

Figure 4.10 illustrates the middle (green) waveband responses for the three conditions. 

Here the spectral shift toward shorter wavelengths has resulted in an uneven but general 

decrease in DN values. Those polygon colors most affected (classes 1,6,12. and 14) all contain 

some combination of green or yellow. The polygon colors represented by classes reflecting 

beyond the spectral range of the middle (green) waveband, including blues (shorter) and oranges 

to reds (longer), are the least affected by the spectral shift. The yellow region of the spectrum 

(560nm to 590nm) is very near the edge of the spectral range of this waveband. The SRC 

function restored DN values in nearly all classes for this band. In doing so, all relative 

reflectances associated with the broadspectrum condition of illumination, were replicated. 

Figure 4.1 1 illustrates the long (red) waveband responses for the three conditions. Here 

the spectral shift toward shorter wavelengths has resulted in an overall decrease in DN values, 

although not uniformly by class. This waveband being the widest of the three covers a broader 

spectral range which includes more of the target colors (classes). The classes least affected by 

the spectral shift for this waveband include red (class 13 (longer)) and blue (class 15 (shorter)), 

which fall at the edges of the spectral range of this band. Classes containing some combination 

of green or yellow were affected in a manner similar to that of the redundant middle band (Figure 

4.10); but to a greater degree. The SRC function was unable to restore the affected DN values. 

As a result relative reflectances associated with the broadspectrum condition of illumination were 

not successfully restored. 

In summary, under the shifted spectral condition induced by the bluegel, the application 

of SRC successfully restored DN values and hence, relative reflectances, within the middle 

(green) waveband only. Overall, this band was the least affected by the induced spectral shift, as 

well. In this case the narrower, middle waveband (green), was the least affected and provided 

the best SRC results, with the short wave spectral shift. 



Greensel lflumination Condiibn 

Figure 4.12 illustrates the short (blue) waveband response to the spectral shift induced 

by the green gel. In this instance the DN values represented by series 2 have been lowered. 

One would expect this to result with a spectral shift away from the shorter (blue) wavelengths. 

Those polygon colors most affected are represented by classes 1,2 4,8,10,11, and 15. Those 

polygon cofors least affected fat! otrtside the transmittance of this waveband, as was the case in 

the bluegel illumination condition. The application of SRC in this case resulted in increased DN 

values, with poor replication of the DN values associated with the broadspectrum illumination 

condition. Hence, relative reflectances were not restored. 

Figure 4.13 illustrates the middle (green) waveband response to the induced spectral 

shift. All three series are for the most part cotlinear and coincident, indi t ing very t i le  DN 

disptacement for this band, under this illumination condition. 

Figure 4.14 illustrates the long (red) waveband response to the induced spectral shift. 

The near csllinearity and ckrse agreement of series 1 and series 2 indicates that r i l e  DN 

displacement occurred under this illumination condition, within this waveband. One could 

probably infer that little spectral shift from the broadspectrum illumination condition occurred 

within the spectral region covered by this waveband. The application of the SRC function in this 

case resulted in an overall but uneven reduction in DN values, with some degree of collinearty. 

Chsses represented by polygon cdors containing some combination of yellow or green were the 

wdl  restored by the SRC function. The SRC function failed in this case to restore DN 

values associated with the illurn-n condition, hence relative refleetames were 

afso not restwed. 

In summary the SRC function fdled to restore DN values and hence, the retatwe 

r&Wtances of target p d y p s  for tk O t u M i  condi.m, for any of the three wavebands. 



Redaei Illumination Condition 

Figure 4.1 5 illustrates the short (blue) waveband response to the redgel illumination 

condition. Under the spectrally shifted condition as indicated by series 2, DN values increased 

for polygon colors reflecting within the spectral range of this band. Again colors reflecting outside 

the spectral range of the band were the least affected. The coHinearity and near coincidence of 

series 1 and series 3 indicates an almost exact restoration of DN values, and restoration of 

relative refiectances. it therefore, must be concluded that the SRC fundion was successful. 

Figure 4,16 illustrates the middle (green) waveband response to the redgel illumination 

cundiiion. As with series 2, DN vafues were decreased generally, but to a greater degree for 

polygon colors reflecting within the spectral range of this waveband. As indicated by the 

collinearty and near coincidence of series 1 and series 3, the SRC function successfully restored 

the DN values and the relative reflectances of the broadspectrum illumination condition. 

Figure 4.17 illustrates the brg (red) waveband response to the redgel illumination 

condition. As in series 2, DN values decreased markedly overall with the two exceptions of class 

13 (polygon color red) and cfass 15 (potygon oobr blue). Again the cottinearty and near 

coincidence of series 1 with series 3 indicates successful, although not exact restoration of DN 

vafws and hence, relatiwe reRectances of the broadspectrum illumination condtiin by the SRC 

function. 

In summary, under the illumination condition induced by the redgel the application of the 

SRC function could be considered successful in restoring DN values and the relative refiectances 

assxiated with the b-nrm itlumiMion condfiion. This result persisted for ail three 

wavebands regardless of kndwkfth. 



Redundancy. Variance and SRC 

To evaluate redundancy, it is necessary to consider covariance and correlation matrices, 

matrix traces and factor loadings for each image set. These matrices may be found in Appendix 

A. The percentage total variance contributed by each band, the percentage of variance 

explained by principal component, and the correlation of bands to components, ' factor loadings ', 

were afso computed. These statistics are useful in examining the response of each band under 

varying spectral condiions. 

TaMes 9 through 15, in Appendix A, contain correlation matrices for the seven image 

sets. Band one is the short band, band two is the middle band, and band three is the long band. 

As indited by the correlation matrix for each image set, the correlation between bands two and 

three is high (.XI). A high axretation between bands indicates a substantial amount of 

redundancy (Jensen, 1936). The high degree of correlation between these bands is not 

surprising as band two lies Compfetefy within the spectral range covered by band three (see 

Figure 3. I). 

Image Set Broadspectrum 

Table 9 illustrates that the percentage of total variance contributed by each band is 22%, 

25% and 53% for the Strorf @fue), m-We (green) and long (red) bands respectively. The 

iefativety broader bmdwkith of band three has resufted in this band contributing more than twice 

the mbme of e i t k  aocompanyins band under the broadspectrum illumination condition. 

Factor bdlngs show the short waveband (blue) to be strongly correlated (.859) with the first 

piiricipaf corrtponent which atxmmts for 93 percent of the total variance of the rgb image set. 

This band mtributes onqt 22 percent of the total variance, due to its relatively m o w  bandwidth 

and the fact thai it contains the feast redundant spectral information for this target, under this 

i i l u w i o r r  condition. 



Image Set Bluegel 

Table 10 illustrates that the percentage of total variance contributed by each band has 

changed from that of the broadspectrum illumination condition. The distribution of 57%, 22% and 

21%, for the short, middle and long wavebands respectively, indicates that the spectral shift 

toward shorter wavelengths has resulted in an accompanying shift of variances contributed by 

each band. Most notably the shift has reduced the variance contributed by the long (red) 

waveband and added it (c35 percent) to the short waveband. Factor loadings for this image set 

indicate a strong correlaiion (.97j between the short waveband (biue) and the firsf principal 

component, which now accounts for 91 percent of the total variance. 

lmaae Set Greenaei 

Table 11 illustrates that the percentage of total variance contributed by each band has 

also changed from that of the broadspectrum illumination condition. The distribution of 8%, 32% 

and 60%, for the short, middle and long wavebands respectively, indicates that the spectral sts'i 

toward longer wavelengths has resutted in an accompanying shift of variances contributed by 

each band. Here again an increased variance has accompanied the spectral shift but less 

pronounced than with the Muegel. The broadest, long (red) waveband has increased (+7%) only 

sfigMty in total variance contritwted, up to 60%. Similarly the middle (Green) waveband shows 

an increise (+7%j, tvm its m&&utirn tinder the boackpxtrtm condiibn d itluninaibn. 

F&w Mi Im?e a re!&Ewe!y stray m e M h q  (.827) be?ween the EM (h!ue) wav&nc! 

and the first priwipal component, with the total \iariance contributed by this band, reduced 14% 

fmm Bs m W m  under the kxw&p&m ccmBion, to a b w  8 percent. 



h a e  Set Reduel 

Table 12 illustrates that the percentage of total variance contributed by each band in the 

redgel set has aiso changed from that of the broadspectrum illumination condition. The 

distribution of 71%, 13% and 16%, for the short, middle and long wavebands respectively, 

indicates that the spectral shift toward longer wavelenghths has resulted in an opposed shift of 

variances contributed by each band. The total variance contributed by the short (blue) waveband 

has increased by 49% over that of the broadspectrum condition, with the middle (green) and long 

(red) bands reduced by 12% and 37%, respectively, from their broadspectrum illumination 

condition. Factor loadings computed for this image set indicate a high degree of correlation 

(.983) between principal component one and the short (blue) waveband. 

Image Set SRCBLUE 

Table 13 illustrates that the percentage of total variance contributed by each band has 

atso changed from that of the broadspectrum ilfumination condition. The distribution of 48%, 27% 

and 25%, for the short, middle and long wavebands respectively, indicates that the changed 

variances induced by the spectral shift associated with the bluegel have changed only slightly 

over that condition. This indicates that the SRC function did not successfully restore the variance 

distribution accompanying the broadspectrum illumination condition. Factor loadings for the 

illumination condition SRCBLUE i n d i t e  a relatively high correlation (.949) between the short 

waveband (blue) and the first principal component. This result matches the bluegel condition 

more than the broadspectrum condition. 



ima~e Set SRCGREEN 

Table 14 iilustrates that the perceaage of total variance contributed by each band has 

also changed from that of the broadspectrum iilumination condition. The distribution of 48%, 26% 

and 26%, for the short, middle and long wavebands respectively, indicates that a good deal 

change has occurred with the SRC function over the greengel condition but the application of 

SRC has again failed to restore the variances accompanying the broadspectrum condition. The 

SRCGREEN distribution, in fact closely corresponds to the distribution of the SRCBLlff image 

set, indicating that a similar outcome resulted under both conditions with the application of SRC, 

Factor loadings indicate a stronger correlation (.945) between the short waveband (blue) of 

SRCGREEN and the first principal component, than for both of the compared conditions, 

broadspectrum (.859) and greengel (.827). 

lmaae Set SRCRED 

Table 15 illustrates that the percentage of total variance contributed by each band has 

also changed from that of the broadspectrum illumination condition. The distribution of 23%, 25% 

and 52%, for the short, middle and long wavebands respectively, indicates that a good deal of 

change has occurred wlh the SRC function over the redgei condiiion. The percentage of total 

variance contributed by each band now closely corresponds to what is found under the 

broadspectrum condition. Fador loadings for the image SRCRED correspond well with those for 

the broadspectrum condition. 



The most notable relationship between bandwidth, the induced spectral shifts, SRC 

functions, and percent total variance contributed by each band, is that the variance contributed by 

the broadest of the three bands appears to have been relatively stable under the experimental 

conditions. Table 16, factor loadings, Appendix A, illustrates that the mean percentage of the 

total contributed variance for the short (narrow) waveband is 40 percent with an accompanying 

variance of 502.2857. The mean percentage of the total contributed variince for the middle 

(most redundantlnarrow) waveband is 24 percent with an accompanying variance of 33.90476. 

The mean percentage of the total contributed variance for the long (broadest) waveband is 36 

percent with an accompanying variance of 327.8095. 

This condition is also evident when the SRC function resutts are etiminated and only the 

broadspectrum and three gels are considered. Again, the mean percentage of total variance 

contributed is sirnihr for the narrow (%var-S) and broad (%var-L) bands, with less variation 

exhibited for the broader of the two bands, While contributing less of the percerit total variance, 

the redundant band (%var-M) varies the least of the three under the experimental conditions. 

Caution should be exercised in interpreting these resutts as they relate very specifically to the 

target and illumination conditions used herein and are riot representative of all possible 

illuminatiordtarget conditions for this type of sensor and band configuration. 
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Diagram of Macbeth Color Checker Chart 

Bluish 
Green 

Class 1 

Blue 
Flower 

Class 2 

Foliage 

Class 3 

Blue 
Sky 

Class 4 
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Discussion 

Examination of the error matrices in Tables 1 .I through 1.7, has revealed that overall and 

individual class accuracies for the classification results are, with few exceptions, good. The 

spectral shifts induced by the use of the three gels, while affecting the raw DN values 

substantially, did not result in an unacceptabie classification performance. A least sqt-dres 

analysis (Charts 1 through 18) Appendix B, of the three bands, where each band, illumination 

condition and resulting SRC function was compar-d to its broadspectrum bench mark condition, 

indicated that a high degree of conetation (Goodness of Fi) exists between illumination 

conditions for each waveband. The high degree of correlation exhibited, combined with the 

robustness of the maximum likelihood classifier, resulted in overall good classification results. 

Tte charts indicate two important aspects of the data set regarding bandwidth and the 

SRC (between-band gain controt) function. The broader of the three bands (red) exhbied a 

broader dynamic range of DN values for the target than either of the narrower, short (blue) or 

middle (green), wavebands. induced spectral affected the dynamic range mostly by 

compressing it. The application of the SRC function resulted in a stretch of the compressed 

ranges, inducing a broader separation by DN values for the fifteen target polygons. 

The scatter plots of Charts 1 through 18, also indicate effects upon gain induced by the 

gels and SRC function. Channel (rgb) gain is represented by the sfope of a line defined by the 

scatter plot. Changes in stope represent changes in gain. As expected, increased slopes 

resulted, in nearly all instances where the SRC function was applied, as a response to increased 

gain. One exception to this trend was for the broadest (red) band, where superimposition of the 

green gel induced an increase in dynamic range and channel gain. This is probably due to the 

fact that the broadspectrum and green gel illumination condi ions are spectrally very similar, as 

indiied by the dominant wavefength of the two condiiions. Here also, the application of the 

SRC function resulted in reducing the overall channel gain. Another exception was for the 



narrowest (blue) band, where superimposition of the red gel resulted in a higher channel gain 

than produced by the application of the SRC function. As mentioned, this result probably relates 

to the diffuse density of the red gel and its degree of transmittance of shortwave (blue) energy. 

The application of between-band gain control, or simulated response compression (SRC) 

had mixed resubs. The slight differences between the red and green bands evident under the 

broadspectrum illumination condition were not restored with the application of SRC. While failing 

to restore relative reflectances when applied to the illumination conditions of the blue and green 

gek, the SRC function produced similar results in these cases both digitally by DN and in the 

resulting visual images. The overwhelming success of the SRC function in restoring the relative 

reflectances, both digitally and visually, of the broadspectrum condition, when applied to the 

redgel condition is important. The explanation lies in the nature of the three band filter 

configuration and the dual transmittance propetties or bi-modal spectral distribution of the long 

waveband. The lcng waveband represented by Wr. 59 has predominantly green transmittance 

with a narrow far red transmittance of approximately 680 to 700 nm. Under the illumination 

conditions induced by the blue and green gels, transmittance associated with the long waveband 

was predominantly within itre green, central portion of ihe iransmittance curve. Sensor 

excitation, being dominated by the greatest (peak) area under the transmittance curve, in 

conjunction with the spectral quality of the illumination, resulted in a three band combination of 

short waveband (blue), middie wavebauid (green), and long waveband (green) of a largely two 

cobr system. 

With the induced spectral shii generated by the superimposition of the red gel, sensor 

excitaiion shied, to be dominated by the far red transmittance component of the Wr. 59 filter. 

This condition resulted in changing the largely two color system imposed by the blue and green 

gels back into a three cdor system. The induced spectral shift resulted in an increased excitation 

for the bng waveband, with the namw 680 to 700 nm transmittance range dominating, or at least 

contributing equally to the long waveband s e m r  excitation. This effect prduced a more 

tsabnced three m b r  (blue, green. red) sensing system, with increased red sensitivity, simihr to 



that of the broadspectrum iiiumination condition. The application of SRC to the image set redgel, 

successfulty restored the relative reflectances of the broadspectrum illumination condition, largely 

because of this restoration to a three color sensing system. 

The three waveband, two cotor system explanation is further supported by the fact that 

the application of the SRC function to the bluegel and greengel image sds produced extremely 

similar color renditions for the two resulting image sets (see color transparencies, SRCBLUE and 

SRCGREEN). induced spectra! shifts associated with these two gels wouM have limited the long 

waveband contribution to the Meen-band gain control, of the SRC function. Hence, the 

between-band gain controi would have been largely a three band, two color, ftrnction. Under this 

cond@bn !Pi  rektke refledawes zssxkkd with a three band, three color swem would be 

kcking the third band, third color contribution. This would explain the failure to restore the 

relative reflectances associated with the broadspectrum illumination condition for the SRCBLUE 

and SRCGREEN image sets. This conclusion is supported by the resulting near matches in DN 

values for classes 15 and 6 (SRCBLUE) with the application of the SRC function. As well, with 

-;he application of the SRC function represented by SRCGREEN for classes 1,2,4, and 12, a drop 

in long waveband (red) DN values, resulting in near matches in DN values to those of the short 

waveband (blue) image set, further supports this conclusion. For these reasons the one-in-three 

success rate of the SRC function is very promising. The bi-modal spectral distribution of the Wr. 

59 fifter was clearly the 'weak link" in the performance of the SRC function. Further 

experimentation involving broader spectral representation with no spectral sensitivity gaps, as 

was the czse with the Wr. 59 (approx. 630 to 670 nrn.) would no doubt produce more consistently 

successful results, where W e e n  band gain control is applied. 

The a h  renMcm peckiced by the tbme band m m b i ~ t b ~  uder the experimsmal 

illuminations provide an interesting insight when interpreting the results. As the spectral bands 

fcw this experiment were chosen to only approximate the peak absorption spectra of human 

pbtore~eptors, with peak transmittarms near 440,535, and 565 m, this researcher did not 



expect a typical rgb cobr rendition. As expected the color rendition of the MacBeth color checker 

produced by additive mixture of the three spectral bands, is indeed, not true. 

A lack of complete bngwave (red) spectral coverage produced a color rendition with poor 

red representation. This condition is defined by the lack of classification accuracy for the polygon 

target or ciass normally described as fully saturated red, class thirteen. It is clearly evident that 

from an interpretation perspective, the color rendition produced under the condition of the three 

gels would seriously inhibit interpretive accuracy. The inadequate cobr rendering capacity of the 

illumination conditions generated by the superimposition of the gels, resulted in false color 

representation in neariy all instances. 

The spectral shifts induced by the three gels were recorded very reliably by the gray tone 

step array, represented by column four of the MacBeth color checker. Here, the lack of 

chromatic adaptation, is evidenced by the hues taken on by the gray tone array. The polygon 

target lxated at row six, column four, represents a pure white. This polygon represents the 

white region within the target that provided ihe benchmark for the one hundred standard 

divisions, for video gain settings. As recorded by the color additive image for the blue gel, the 

white target region has taken on a bluish hue, induced by the spectral shift. As recorded by the 

color additive image for the irnage set greengel, this same polygon has taken on a yellowish hue. 

In the cobr additive image for the image set redgel, this same polygon has taken on a bluish hue, 

similar to that induced by the blue gel. The resulting adopted hues clearly indicate a lack of 

chromatic adaptation by the sznsors. 

The additive color images representing the application of the SRC function also provide 

evidence supportive of the experimental results. Without examining each polygon target 

individually, evidence as to the performance of the SRC function is clearly supported by the 

target polygon, white (row 6, col4). kfier the application of the SRC function to the bluegel 

condition, the white polygon retained a bluish hue. Similarly, the color additive image for the 

image set SRCGREEN, resutted in a similar bluish hue for the white polygon. For the color 

additive image representing the SRCRED image set, however, the target polywn at row six, 



cofumn four? appears white as it did under tne broadspectrum iliumination condition. Again this 

provides evidence for the success of the SRC function in restoring the relative reflectances as 

recorded under the broadspectrum illumination condition. As well, the simiiarity between the 

SRCBLUE a id  SRCGREEN additive images, both having a bluish hue attached to the white 

polygon, further supports the possibility that the between-band gain control, when applied to 

these two image sets, was dominated by a two color gain balance. 

The departure point for this experimental project has embraced the widely accepted view 

that cobr constant sensations result from the relative degree of excitation between three sets of 

broadly overlapping wavebands whose range of sensitivities is under continuous adjustment. In 

terms of a multiband video imaging system. the premise has been adopted that brightness 

constancy gain control alone, would provide chromatic adaptive imaging capabilities, given 

sufficient overlap in band range sensitivities. 

Land's (1 977)' assertion that the final perceptual response of the visual system is 

lightness with the final response being determined by the relative lightness between waveband 

sets, has been successfully replicated by analogy herein. While this has been demonstrated 

under only one in three conditions, the photographic recordings of the digital images have 

provided convincing evidence of the promise of this technique. 

Conclusions 

A simulation of chromatic adaptation has been tested by means of analogue between- 

band gain control, herein referred to as SRC (simulated response compression). While the test 

parameters were not intended to fully rsplicate the consequence of human chromatic adaptation 

known as color constancy, a similarity in utility is no doubt evident. The primary intention of this 

experiment was to improve classification accuracy by monitoring gain responses to chromatic 

shiis within a three band system and compensate for those chromatic shifts by between band 

gain adjustments. 



The band composition selected for this experiment was based upon the following cfieria 

The peak transmittance centers roughly approximated those of the absorption spectra for the 

three classes of cones found in the human retina (Cornsweet, 1970). The extent of between- 

band overlap roughly approximated the overlap between the above-mentioned absorption 

spectra. Broadly overlapping bands were further chosen for this experiment for two additional 

reasons. First, overkpping band sensitivities were expected to produce overlapping effects 

indicating the extent of the between band effect and overall relative degree of sensor excitation 

and required gain adjustment. Second, very little experimentation has been conducted using 

averlapping bands for airborne imaging systems. 

The induced sp!ral shifts generated by the superimposition of photographic effect gels 

over the source illuminant, produced the desired variations of illumination quality. Color additive 

images produced by the three wavebands, indicated that color shifts generated were sufficiently 

disruptive to inhibit reliable target interpretative identification from the photographic and digital 

display products. The robustness of the maximum-likelihood classifier used, combined with the 

careful selection of training set pixels, produced very reliable classification accuracies, in spite of 

the lack of chromatic adaptation to induced spectral shifts. Classification accuracies were not 

significantly improved by the application of SRC for the following reasons. First, the three band 

fitter combination used failed under two iliumination conditions to produce a three band, three 

color, spectral composition. The interrupted red band coverage of the Wr. 59 gelatin filter used 

for the long waveband, produced bi-modal gain effects. The interruption in spectral coverage 

within the mid red portion of the spectrum for ihis waveband produced results similar in effect to 

having two filters for the one waveband. Induced short and middle wavelength spectral shifts left 

the far red sensitivity of the long waveband sensor without sufficient energy to produce a three 

color image. This condition resutted in the SRC function being unable to restore the three color 

relative ref lectam produced by the broadspectrum illuminant. This condition could easily be 

avoided by using a long waveband filter with uninterrupted red spectral coverage, which would 

provide the degree of band overtap desired, with more complete spectral coverage in the red 



region of the spectrum. WIuRispectral video systems without broad overlapping bands and 

between band gain control wouid not permit the same relative degree of excitation to be recorded 

by each waveband. Because of this the resulting brightness values are not readily comparable 

by relative degree. 

The between band gain control as applied herein, requires a white target region within 

each sensor's angular field of view, for accurate gain adjustment. The static target used in this 

experiment included a white target region to which all gain adjustments and settings were 

calibrated to one hundred standard divisions. Fietd applications of this imaging technique may 

require sensor modification to include a white region in the angular field of view. 

Whife no mmmrrciaii filters have been created to precisely replicate the absoptior, 

spectra of the three sets of human cones, filters providing sufficient band overlap to control for 

between band gain responses are available. The degree of overlap required has not been 

determined herein and should be determined by experimentation. The degree of transmittance 

within the overlapping rarlge must be sufficient to permit CCD signal responses of sufficient 

amp!itude to identify a spectral shift. The degree of overlap required shoutd be determined for 

the specific sensor and filter combination. Camera gain sensitivities should also be matched. 

During the course of the experiment it was determined that under the fixed gain settings the three 

cameras did not have the same offset, differing by as many as fifteen standard divisions (ie:15 

percent of 1 volt), when imaging, unfiltered, the same (boresighted) target, illuminated by the 

broadspectrum. Channel offset, also called intercept (the distance from the origin to a point 

where a graph crosses a coordinate axis), represents the difference in terms of a voltage 

constant, of the baseline signal, between 0 and 1 vott. Bandwidths as determined by filter 

tmnbinatkms shoukf sfso be nearfy qua1 to asswe similar output dynamic ranges. Sensor offset 

!ended m? ?o be a pi&!em, bwwer, when m a n s !  p i r r  set?Ings *ere wed. The =me 

condition would have to be true for any automatic between band gain control. 

Shadows incident in most terrain imaging, would provide the pedestal for the black 

clipping, lower end output, white an inset, white target would provide the benchmark for the 



maximum one hundred standard divisions. Under these conditions no sensor offset should be 

present. Further experiments should be conducted using a static target and imaging under 

varying daylight conditions. Under such conditions, one may find it desirable to vary sensor 

bandwidths to compensate for skylight and atmospheric constituents. 

The logicaf direction in which to proceed regarding further experimentation, would be to 

design and build an electronic controller to monitor, record and control between-band gain 

responses. Such a device would provide some degree of chromatic adaptation for multispectral 

video imaging systems. The utility of this type of between-band gain control is uncertain whsn 

used with discrete non-overlapping waveband, muftispectral sensors, 



Table 2
 

E
rror M

atrix R
esulting From

 C
lassifying T

raining S
et P

ixels Im
age S

et B
roadspectrum

 

T
rahing S

et 
D

ata 
-- 

-
 

- 
-
 - 

.
 -
 -
 -
 

C
lasses 1 through 

.
 

15-and N
ull C

lass 

C
lassification 

D
ata 

C
olum

n 
'Total 

2430 
2591 

2815 
2642 

2672 
2506 

2720 
2679 

2804 
2606 

2688 
2658 

0 

A
ccuracy A

ssessm
ent based upon om

ission error (diagonal elem
ent 1 row

 total) 

M
ean num

ber of pixels per polygon (class) =
 2668 

14 
15 

N
ull 

T
otal 

N
um

ber of pixels per a
ve

r~
g

e
 polygon based u

p
c

,~
 selection criteria =

 2655 

1
 diagonal e\em

ents = 37352 



(D N O O O N O O O O O O O O O O O  
w cn m 
$ 03 03 

Ln m 
r ~ i  

I 
! 



O O O O O O O O O O O N O O O  

% 
0) 

O O O O O O O O O O N O O O O  
m 
-4 
cn 



G
itble 5 

E
rror M

atrix R
esulting From

 C
la

ssifyin
g
 Training S

et P
ixels Im

ag
e S

et R
edgel 

-- 
- .- -

 - - -
 - 

T
rainm

a S
et 

D
ata 

C
lasses 1 throuah 15 and N

ull C
lass 

-- -- - - - - -
 . - 

1 
2 

3 
4 

5
 

6 
7 

8
 

9 
10 

11 
12 

13 
14 

15 
N

ull 
Total 

C
lassification 

D
ata 

C
olum

n 
7-0t.A 

2644 
2570 

2900 
2689 

2737 
2653 

2805 
2619 

2842 
2653 

2671 

A
ccuracy Assessm

ent based upon om
ission error (diagonal elem

ent I row
 total) 

M
ean num

ber of pixels per polygon (class) = 2693 

N
um

ber of pixels per average polygon based upon selection criteria = 2655 

j; diagonal elem
ents = 37714 



T
a~b

le 6 
E

rror M
atrix R

esulting F
rom

 C
lassifying T

raining S
et P

ixels Im
age S

et S
R

C
B

LU
E

 

T
rainingS

et 
D

ata 
- 

.. . -
.
-
-
 

-- -
 

C
lasses 1 th

ro
u

~
h

 15 and N
ull C

lass 
------ 

1
 

2 
3 

4 
5 

6 
7 

8 
9 

10 
11 

12 
13 

14 
15 

N
ull 

T
otal 

C
lassification 

D
ata 

C
olum

n 
Total 

2671 
2588 

2825 
2657 

2684 
2630 

2824 
2658 

2780 
2647 

2694 
2279 

0 
2784 

27813 
1476 38985 

A
ccuracy A

ssessm
ent based upon om

ission error (diagonal elem
ent / row

 total) 

M
ean num

ber of pixels per polygon (class) = 2679 

N
um

ber of pixels per average polygon based upon selection criteria = 2655 

'; 
diagonal elem

ents = 37509 



'Table 7
 

E
rror M

atrix R
eslulting F

rom
 C

lassifying T
raining S

et P
ixells im

age S
et S

R
C

G
R

E
E

N
 

-- 
-
 ._

 
_

T
_

~
.-

D
a

?
a

 
-
-
-
-
 

C
lasses 1

 throuah 15 and N
ull C

lass 
-- 

C
lassification 

D
ata 

C
olum

n 
Total 

2630 
2573 

2736 
2632 

2691 
2625 

2767 
2640 

2839 
2593 

2672 
2278 

0 

A
ccuracy A

ssessm
ent based upon om

ission error (diagonal elem
ent / row

 total) 

M
ean num

ber of pixels per polygon (class) =
 2661 

N
um

ber of pixels per average polygon based upon selection criteria = 2655 

14 
15 

N
ull 

Total 

2: 
diagonal elem

ents = 37253 



Table 8 
E

rror M
atrix R

esulting F
rom

 C
lassifying T

raining S
et P

ixels Im
age S

et S
R

C
R

E
D

 

C
lassification 

D
ata 

C
olirm

n 
Total 

2523 
2575 

2780 
2640 

2699 
2568 

2741 
2579 

2744 
2569 

2652 
2130 

3107 
2788 

A
ccuracy A

ssessm
ent based upon om

ission error (diagonal elem
ent / row

 total) 

M
ean num

ber of pixels per polygon (class) = 2627 '(w
here n=

14). = 2659 *(w
here n=15) 

hlitm
ber of t7ixels per average polygon based upon selection criteria = 2655 

N
ull 

Total 

5 
diagonal elem

ents = 39878 
" For tables 2 through 0, n-14 (zero values for. class 13 w

ere om
itted lo avoid skew

ed results) 



Appendix A 

Table 9 

COVARIANCE MATRIX FOR IMAGE: broadspe 
COMPaNENT PICTURES: 4 5 6 (SHORT. MIDDLE. LONG) 

CORRELATION MATRIX IS: 
1-00 0.80 0.80 
0.80 1 .OO 0.99 
0.80 0.99 1.00 

EIGENVALUES ARE: 
1817.47 0.00 O.W 

0.00 130.55 0.00 
0.00 0.00 5.00 

EIGENVECTORS ARE: 
0.42 0.91 0.00 
0.51 -0.24 0.82 
0.75 -0.35 -0.57 

PERCENT OF TOTAL VARiANCE CONTRIBUTED BY EACH BAND 

SHORT 2z04 

MIDDLE 25% 

LONG 53% 

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT 

PC1 93% 

PC2 6.7% 

PC3 -3943 

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENT) 

SHORT -859 

MIDDLE -0.1 24 

LONG -0B39 



Appendix A 

Table 10 

COVARIANCE MATRIX FOR IMAGE: bluegel 
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG) 

CORRELATION MATRIX IS: 
1.00 0.81 0.82 
0.81 1.00 0.89 
0.82 0.99 1.00 

EIGENVALUES ARE: 
994.27 0.00 0.00 
0.00 98.24 0.00 
0.00 0.00 1.73 

EIGENVECTORS ARE: 
0.77 -0.64 -0.02 
0.46 0.57 -0.68 
0.45 0.51 0.73 

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND 

SHORT 57% 

MIDDLE 22% 

LONG 21% 

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT 

PC I 91 % 

PC2 8.9% 

PC3 .I0& 

FACTOR LOADINGS fCORREUTION OF BANDS TO COMPONENTS) 

SHORT 971 

MIDDLE 361 

LONG -063 



Appendix A 

Table 1 1  

COVARIANCE MATRIX FOR IMAGE: greengel 
COMPONENT PICTURES: 4 5 6 (SHORT. MIDDLE. LONG) 

CORRELATION MATRIX IS: 
1.00 0.80 0.81 
0.80 1.00 0.99 
0.81 0.99 1.00 

EIGENVALUES ARE: 
1475.01 0.00 0.00 
0.00 40.75 0.00 
0.00 0.00 4.35 

EIGENVECTORS ARE: 
0.24 0.97 0.02 
0.57 -0.15 0.81 
0.78 -0.19 -0.59 

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND 

SHORT 8% 

MIDDLE 32% 

LONG 60% 

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT 

PC1 97% 

PC2 2.7% 

PC3 -3% 

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS) 

SHORT -827 

MIDDLE -0.043 

LONG -0.040 



Appendix 

Tabie 52 

COVARIANCE MATFllX FOR IMAGE: redgei 
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG) 

CORRELATION MATRIX IS: 
1.00 0.81 0.81 
0.81 1.00 0.99 
0.81 0.99 1.00 

EIGENVALUES ARE: 
1379.61 0.00 0.00 

0.00 112.64 0.00 
0.00 0.00 2.17 

EIGENVECTORS ARE: 
0.86 -0.51 0.00 
0.34 0.57 -0.75 
0.38 0.65 0.66 

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND 

SHORT 71 94 

MIDDLE 13% 

LONG 16% 

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT 

PC 1 92.3% 

PC2 7.5% 

PC3 .2% 

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS) 

SHORT .983 

MIDDLE .435 

LONG .061 



Appendix A 

iabie 13 

X FOR IMAGE: srcblue 
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE. LONG) 

CORRELATION MATRIX IS: 
1.00 0.81 0.82 
0.81 1.00 0.99 
0.82 0.99 1.00 

EIGENVALUES ARE: 
1769.84 0.00 0.00 

0.00 178.09 0.00 
0.00 0.00 3.32 

EIGENVECTORS ARE: 
0.69 -0.72 -0.02 
0.52 0.51 -0.68 
0.51 0.46 0.73 

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND 

SHORT 48% 

MIDDLE 27% 

LONG 25% 

PE?CENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT 

PC1 90.7% 

PC2 9.1% 

PC3 .2% 

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS) 

SHORT .949 

MIDDLE ,297 

LONG .059 



Appendix A 

Table 94 

COVARIANCE MATRIX FOR IMAGE: srcgreen 
CaMPONENT ?ICTURES: 4 5 6 (SHORT, MIDDLE, LONG) 

CORRELATION MATRIX IS: 
1.00 0.80 0.80 
0.80 1.00 0.99 
0.80 0.99 1.00 

E!GENVALUES ARE: 
1706.37 0.00 0.00 

0.00 185.09 0.00 
0.00 0.00 3.28 

EIGENVECTORS ARE: 
0.69 -0.72 -0.01 
0.51 0.49 -0.71 
0.51 0.48 0.71 

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND 

SHORT 48% 

MIDDLE 26% 

LONG 26% 

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT 

PC1 90% 

PC2 9.8% 

PC3 .2% 

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS) 

SHORT .945 

MIDDLE .300 

LONG 



Appendix A 

Table 15 

COVARIANCE MATRIX FOR IMAGE: srcred 
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG) 

CORRELATION MATRIX IS: 
1.00 0.81 0.81 
0.81 1.00 0.99 
0.81 0.99 1.00 

EIGENVALUES ARE: 
1844.49 0.00 0.00 

0.00 127.03 0.00 
0.00 0.00 6.03 

ElGENVECTORS ARE: 
0.44 0.90 -0.01 
0.51 -0.25 0.83 
0.74 -0.37 -0.56 

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND 

SHORT 23% 

MIDDLE 25% 

LONG 52% 

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT 

PC1 93.3% 

PC2 6.4% 

PC3 .3% 

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS) 

SHORT .876 

MIDDLE -0.127 

LONG -0.042 



Image-Set ; %var_S i = r ~  %var-L F-loads-S : F-loads-M  loads-^ 
'broadspe - - + - - -  2 - 2 c 2 5 L 531 0.8591 -0.124/ -- -0.039 

57; 22 1 2 1 0.971 / 0.361 / - - ---- -, - -- - -- 
8 60; 0.8271 -0.043; -0.04 

mean I 39.571 431 24.28571 
var / 502.2857 1 * -- - - ---- . -- - 
stand-dev 4 22.41 21 

I I I I--- 
I 

A - - - - -1 _ _ _ -- - 1 

Stats for Sub-set s road spectrum and Gels (Row 2 through 5. Col. B through Dl -- -- - - - -- -i- -- - - - - -- 
mean 39.51 - 2 3  / 37.5 1 -- -4 
var - 1 865.6664 yp 
stand-dev 1 25.238861 

A 

Appendix A Table 16 Factor Loadings 
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Table 17 

Transmission Densitometiy Optical Counts For Gels 

Percent Transmittance 

Bluegel 

Blue 0.05 (88.1%) 

Green 0.22 (59.6%) 

Red 1.45 (3.6%) 

Neutral 0.27 (53.2%) 

Greengel 



Chart 1 
X Variable = Broadspectrum Red 

Y Variable = Biuegel Red 
Goodness of Fit = .980986 

Appendix B 



Chart 2 
X Variable = Broadspectrum Red 

Y Variable = Greengel Red 
Goodness of Fit = -996620 
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Chart 3 
X Variable = Broadspectrum Red 

Y Variable = Redgel Red 
Goodness of Fit = -985623 
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Chart 4 
X Variable = Broadspectrum Red 

Y Variable = SRCBLUE Red 
Goodness of Fit = .979139 
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Chart 5 
X Variable = Broadspectrum Red 

Y Variable = SRCGREEN Red 
Goodness of Fit = -996703 
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Chart 6 
X Variable = Broadspectrum Red 

Y Variable = SRCRED Red 
Goodness of Fit = .986274 

Appendix 8 



. Chart 7 . 

X Variable = Broadspectrum Green 
Y Variable = Bluegel Green 
G~odness of Fit = .994430 
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Chart 8 
X Variable = Broadspectrum Green 

Y Variable = Greengel Green 
Goodness of Fit = .998383 
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Chart 9 
X Variable = Broadspectrum Green 

Y Variable = Redgel Green 
Goodness of Fit = .992527 
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Chart 10 
X Variable = Broadspectrum Greet? 

Y Variable = SRCBLUE Green 
Goodness of Fit = -9931 21 
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Chart 11 
X Variable = Broadspectrum Green 

Y Variable = SRCGREEN Green 
Goodness of Fit = .998643 
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Chart 12 
X Variable = Broadspectrum Green 

Y Variable = SRCRED Green 
Goodness of Fit = .9943lO 
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Chart 13 
X Variable = Broadspectrum Blue 

Y Variable = Bluegel Blue 
Goodness of Fit = .999031 
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Chart 14 
X Variable = Broadspectrum Blue 

Y Variable = Greengel Blue 
Goodness of Fit = .980864 
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Chart 15 
X Variable = Broadspectrum Blue 

Y Variable = Redgel Blue 
Goodness of Fit = .99 1 1 75 

d,' 
I I 
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Chart 16 
X Variable = Broadspectrum Blue 

Y Variable = SRCBLUE Blue 
Goodness of Fit = -9991 28 

Appendix B 



Chart 17 
X Variable = Broadspectrum Blue 

Y Variable = SWCGREEN Blue 
Goodness of Fit = -992327 

Appendix B 



Chart 18  
X Variable = Broadspectrum Blue 

Y Variable = SRCRED Blue 
Goodness of Fit = .989639 

Appendix B 
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