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Abstiract

Muttispectral video has been widely used in environmental remote sensing. Applications
commonly employ a three camera configuration with optical filtration. Filter selection is generally
determined by the spectral features being mapped. Filter combinations tend to consist mainly of
discrete narrow wavebands, intended to optimize spectral resolution. Narrow band configurations
of this sort are extremely sensitive to illumination changes and surface signal fluctuations over
the area being mapped. Scene irradiance can vary over mapped areas to the extent that like
target areas will not statistically classify as the same cover type. In an attempt to overcome this
problem an analogue model of between band gain control has been tested for its utility in
improving image classification and interpretation.

The model tested employed a broadly overlapping waveband configuration designed for
spectral redundancy. Under induced illumir.ation changes, in a laboratory setting, between band
manual gain adjustiments were employed as a brightness adaptive process. The induced
illumination changes, while affecting the raw digital number (DN} values substantially, did not
result in an unacceptable classification performance. While subsequent image classification
failed to show a substantial improvement in classification accuracy, with the method as
employed, success in restoring the relative reflectance characteristics of the target was achieved,
for a subset of the conditions.

The experimental results indicate that filter selection was the critical factor affecting
method performance. The overlapping range of sensitivities afforded by the spectral redundancy
of the configuration, proved very useful in monitoring between band gain responses under the

experimental conditions.
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introduction

Remote sensing is the science, art and technology of extracting earth’s resources
information, remote from the subject of investigation. A variety of imaging techniques are
employed for this purpose. Methods of extracting the desired information include both visual
interpretation and quantitative approaches to spectral pattern recognition. Both methods have
inherent sirengths and weaknesses. Much remote sensing research explores ways in which
each of these methods synergistically complements the other. Spectral pattern recognition
performed by human interpreters tends to be product rather than process intensive. Examples
would include object recognition by color or pattern of reflectivity, such as specular reflectance
from water surfaces. Many human cognitive processes appear to be shaped by training and life
experience. A desire to better understand the processes underlying cognitive output has led
researchers to examine the perceptual processes behind the product. Whether this approach will
prove fruitful has yet to be determined; it may be akin to exploring the clockworks in an attempt to
understand the nature of time.

Of the growing number of tools (sensors and analytical methods) employed by the
remote sensing community, none has as yet displaced the requirement for human interpretation.
Technology has provided us with tools with powerful capabilities, different than those we
possess. Among these capabilities is wavelength discrimination. The ability to record and
analyze discrete wavelength information is the factor separating remote sensing from its origins
in aerial photographic interpretation. Target objects may be identified by their spectral
reflectance properties within discrete wavebands or spectral regions defined by wavelength limits.
The spectral reflectance properties of many of nature’s objects are very similar within the visible
portion of the spectrum. In such instances, the human eye - brain combination may see such
objects as being essentially the same hue or color and confuse their identity. While other spatial

cues can be employed in determining an object'’s identity, discrimination may still be confounded.



The task of delineating boundaries between object types in an automated procedure is what
remote sensing data analysis schemes atiempt to do (Lillesand and Kiefer, 1994). Once
delineated by target cover types, earth's surface features can be mapped. In order to achieve
success with such a scheme the features must be spectrally separable (Lillesand and Kiefer,
1994).

Both computational techniques and the devices which we employ continually improve.
Video surveillance equipment, in the form of black and white or color video cameras, is widely
available, inexpensive, and when configured as a multisensor array (two or more cameras,
configured for different spectral wavebands viewing the same target region), can provide a
valuable source of multispectral information. Used in a suitable spectral combination,
multispectral information provides the remote sensing specialist with a powerful mapping tool.

Unlike electronic sensors, humans are incapable of wavelength discrimination. While
apparent contradictions to this statement can be found among painters, color printers and others
who work intensively with color mixture and color processes, who have developed a keen sense
of color recognition, it is generally agreed that those of us considered to have normal color vision,
do not posses wavelength discrimination.]  Humans do, however, posses the ability to
consistently discriminate object color under a wide variety of illumination conditions. This ability,
while sometimes confounded by atmospheric effects which generate for us blue distant
mountains or fiery red landscapes under the fading light of sunset, has few other natural failures.

An understanding of how the human visual system is able to effectively discount spectral
variations in ambient light is yet to be determined. The continued search for an answer has
revealed much about the mechanisms believed, at least in part, responsibie. Among the

functions involved in discounting the illuminant, is photoreceptor adaptation. The human visual

I One apparently convincing exception to this statement was reported by the clinical neurologist
Oliver Sacks (1995), in The Case of the Colorblind Painter, wherein the author accounts the
perceptions of an artist patient who having lost all color vision resulting from an accident,
exhibited some degree of wavelength discrimination under narrow band illumination conditions.



system possesses two classes of photoreceptors, each named for its shape. The most
ubiquitous of these, rods, are used primarily for dark adapted vision, the other class, cones, are
tuned to broadly overlapping waveband sets for color discrimination.

The similarity between the multispectral sensors used in remote sensing and the
photoreceptor sets of the eye is that both have imaging capabilities tuned to discrete spectral
regions. The main difference between these two sensor types is in waveband width and degree
of overlap in spectral sensitivity. Separation in spectral sensitivity is normally desirable from a
photographic or electronic imaging perspective to achieve spectral separability between either
photo emulsion layers or sensor products. Yet the human observer is capable of discriminating
some five million colors and two hundred shades of gray, with an incredible degree of
redundancy in spectral sensitivity (fig. 1.1). Each of the three sets of cones records spectrally
redundant information within the regions of waveband overlap. In what seems a compietely
contradictory approach, we in the remote sensing community continue to design imaging
configurations which avoid spectral redundancy, in pursuit of finer wavelength discrimination.

This design course is not without its vagaries. These highly sensitive devices require
signal amplification which does not discriminate between system noise and sighal. They also
tend to be extremely sensitive to abrupt surface reflectance changes and changes in ambient
light fluctuations, resulting in considerable variation in signal amplitude for a given target. Where
sensor amplitude fluctuations are assumed to relate to target reflectance characteristics only,
comparison between spectral waveband sets may also include spectral energy shifts,
(ilumination changes). When analytical comparisons between waveband sets are confounded by
illumination changes, target reflectance properties must somehow be separated from scene
irradiance.

A multiband radiometer is normally employed in separating target spectral reflectance
from scene irradiance. Computing spectral reflectance is normally a three part process (Lillesand
and Kiefer, 1994). The sensor (radiometer) is aimed at a calibration target of known stable

(benchmark) reflectance. This permits the measurement of incoming radiation or irradiance at



Relative proportion of
incident light absorbed

1.0

08

0.6

0.4

0.2

0.0

1

1
500 600 700
Wavelength (nm)

Fig. 1.1 Absorption spectra for the three classes of cones
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the target site, as a function of wavelength. The instrument is then suspended over the target
and the radiation reflected by the target is measured. The spectral reflectance of the target
object is computed by ratioing the reflected energy to the incoming energy in each waveband.
The result is termed the reflectance factor. Without this type of ground based measurement,
target reflectance cannot be separated from scene irradiance. Measurements of this sort permit
the remote sensing analyst to discount the illuminant when mapping the spatial distribution of
target elements by their reflectance.

The ability of the human visual system to discount the illuminant is called chromatic
adaptation. A subject of continued investigation, the physical processes believed responsible
have been scrutinized by many. Just how the human visual system obtains information needed
to regulate the adaptive mechanisms has been the focus of many computational approaches to
chromatic adaptation and its product, color constancy. Emphasis has been placed upon theories
of light sense wherein brightness constancy is considered the primary regulatory mechanism of
chromatic adaptation. Speculation is offered herein regarding aspects of redundancy in human
spectral sensitivity, to adaptive mechanisms.

This thesis outlines an analogue approach to chromatic adaptive imaging, based upon a
spectrally redundant waveband configuration. The experiment is designed to test the ability to
maintain a relative degree of sensor excitation between broadly overlapping waveband sets. The
method employs between-band gain control. as a simulation model for a photoreceptor
adaptation function known as response compression. The experiment is intended to evaluate the
robustness of the simulation to changes in illumination quality. The method tested assumes that
the spectral redundancy of the configuration affords some control over maintaining the relations
of sensitivity between waveband sets, by simple gain adjustments. In doing so, an internal white
region is employed as a calibration benchmark target to which between-band gain adjustments
are set. The principal thesis relies upon maintaining the relative degree of sensitivity between the
three waveband sets, employing the white target region within the sensor field of view, as a

benchmark.



It is expected that this technique will obviate the need for computing the difference in
scene irradiance between image sets, by maintaining a reiative degree of sensor excitation
between image wavebands aind improve classification accuracy. it is further expected that the
color rendition produced by the waveband configuration will also be maintained. The results of
the imaging experiment are evaluated both quantitatively by image classification and graphic

representations of spectral data, and qualitatively.



Theory

The theoretical basis underlying this thesis is addressed by component. Chromatic
adaptation and its adjunct mechanisms, are the departure point for the experimental approach
taken and will be discussed first. An early and fairly accurate account of the facts of chromatic
adaptation was postulated by von Kries in 1878 (MacAdam, 1985). Von Kries's coefficient law
states that " visual responses are proportional to the physical stimulation of each of the three sets
of spectrally different sensitive receptors in the eye and that only the ratios of the coefficients of
proportionality change from one chromatic adaptation to another" (MacAdam, 1985). In other
words, according to the von Kries law, the relative sensitivities of the individual classes of
photoreceptors remain constant as a result of adaptation (MacAdam, 1985). Since that time
investigators have concentrated on determining the relative sensitivities of the three classes of
photoreceptors and the mechanisms associated with adaptation.

The consequence of the attribute of color vision called chromatic adaptation is color
constancy. Color constancy is the term given to the collective effects of brightness and hue
constancy. Hue is the aspect of perception commonly called color (Cornsweet, 1970). Object
hue tends to remain constant when the spectral composition of the source illuminant is varied
over a wide range (Cornsweet, 1970). As a result the apparent brightness and color of an object
remain approximately constant because the three receptor set (rgb) ratios, of object intensities
within the field of view, tend to remain constant (Cornsweet, 1970).

Of the one hundred and twenty-five million photosensitive cells in the human eye,
approximately six to seven million are cones (Brown and Wald, 1963:64; Leibovic, 1990), so
named because of their cone shape. Due to their shape and slight differences in the refractive

index inside and outside the cell, photoreceptors act as light guides



(Leibovic, 1990). The one hundred and twenty-five million rods and cones converge on one
million ganglion cells, beneath the bipolar and horizontal cell layers (Leibovic, 1990).
Photoreceptor diameter and spacing are ideally matched to the optical limits of resolution, with
the distance between cones varying between 3 um in the center to 5 or 6 um in the surrounding
macula {Leibovic, 1990).

Thomas Young was the first to propose that the three primary colors, red, green and
blue, corresponded to the sensitivity of our cone photoreceptors, with his proposition being
demonstrated by Rushton (1961), Marks et af (1964), Brown and Wald (1964), Paritsis and
Stewart (1983). While not corresponding as we might expect to the three primary colors, the
cones' broadly overlapping bands have absorption spectra with peaks near 440, 535, and 565 nm
(Land, 1977). In examining color vision differences and variation in spectral position of cone
photopigments Neitz et al., (1991), found that long wave sensitive pigments may differ in spectral
peak by 5 to 6 nm in populations with normal color vision.

Visual processing begins when light reflected from objects enters the eye. Upon
absorbing photons, photopigment bleaching produces neural signals which ultimately result in the
visual sensation (Cornsweet, 1970). The rate at which the photopigment bleaching occurs is
protected by the depletion effects of bleaching, changing the degree of sensitivity in proportion to
the fraction of unbleached pigment (Boynton, 1979). Cones can alter their range of responses to
different intensities, depending on average long term brightness (Mahowald and Mead, 1991).
Boynton, (1979) points out that after bleaching and pupil size are accounted for, the cones still
must handle light inputs covering a three thousand-fold range and to suppose that they do so
without adapting is to imply that their responses should be linearly related to their rate of photon
absorption.

Boynton and Whitten, (1970) determined by electropsyiological experiment that a
nonlinear relation between light input and receptor output exists, in the receptor potentials of
macague monkeys, whose vision is very similar to that of man. Boynton, (1979), concluded that

the three factors combined in shrinking the range of cone responses included (1) dilation of the



pupil; (2) bleaching of the cone photopigments; (3) nonlinear cone response. Boynton, (1979)
identified other temporal characteristics of photoreceptor potential that are not dealt with by the
response compression model. He noted that as adaptation level increased, the light intensity
required to elicit a response also increased and acknowledged that this is the prime manifestation
of adaptation (Boynton, 1979).

Boynton (1979), noted that adaptation is selective within receptors and their associated
pathways and points out that if the eye were neutrally adaptive the appearance of chromatic
materials of different colors would not be resistant to moderate changes of the source illuminant.
For example, if the source illuminant is dominated by the long wavelengths, an object's
reflectance would, in comparison with white light, affect the longwave (red) cones more than the
middlewave (green) cones, making those objects appear more reddish than normal (Boynton,
1979). Instead, objects in the environment, reflecting more of the long wavelengths than they
would under white light (broadspectrum illumination), will mediate the selective adaptive effect, of
the red cones relative 1o the green cones, restoring the appearance of such surfaces, 1o the
same nue that would have prevailed under white light (Boynton, 1979). Many lateral pathways
are known to exist between cones and cone pathways, making it possible that the absorption of
light in red cones might also alter the sensitivities of the green and blue (shortwave) cones, even
if the two do not absorb a single photon (Boynton, 1979).

Much research has followed regarding the influence of chromatic adaptation upon color
discrimination. Hita et al., (1989}, found that an overall worsening of discriminatory capacity
occurs under red adaptation conditions, and with adaptation to green a marked improvement in
discrimination foliowed. This marked improvement in discrimination was no doubt due to the fact
that the peak sensitivity of the human visual system is in the green-yellow spectral region at
approximately 555 nm (MacAdam, 1985). Hita et al., (1989) determined, that for pairs of stimuli,
a particular adaptation altered the response of the corresponding chromatic channel, without

producing any significant change in the others.
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While adaptation to ambient light levels is generally acknowledged as playing a role in
toth color and brightness constancy, the nature of the adaptive transforms and contributing
mechanisms is poorly understood (Hayhoe and Wenderoth, 1991). There is, however, a general
level of agreement that the adaptive transformations involve gain control mechanisms (Barlow,
1965; Barlow and Levick, 1969; 1976; Andelson, 1982; Geisler, 1981; Walraven and Valeton,
1984; Hayhoe et al., 1987; Hayhoe and Wenderoth, 1991). Hayhoe and Wenderoth (1991)
propose that following the absorption of quanta, the photoreceptor signal is attenuated by a
multiplicative gain control mechanism, which they attribute to some kind of feedback. The signal
is then further reduced by subtractive lateral inhibition, followed by another subtractive
mechanism, which slowly removes most of the original signal (Hayhoe and Wenderoth, 1991).
Hayhoe and Wenderoth (1991), note, however, that it is not very clear where the gain centrol
mechanisms reside or if one mechanism alone could perform the different functional
requirements for both brightness and color adaptation. Hayhoe and Wenderoth (1991), propose
two separate mechanisms for brightness and color constancy, wherein color constancy only
requires compensation for changes in the distribution of excitation across the three cone types.

Land (1964; 1977; 1983), asserted that color sensation results from a comparison of
excitation between cone sets, affected by each point in a scene, including a reference point. The
reference point is the point in the scene with the highest "integrated reflectance” in all three
receptor sets and may be considered analogous to a benchmark to which the lightness of all
other perceived objects is calibrated (MacDonald, 1989). In most, if not all images, objects
having the highest integrated reflectance in all three receptor sets will result in the perception of
white (MacDonald, 1989). Land's (1959;1977), theory asserts that the final perceptual response
of the visual system is lightness. Experiments conducted by Land and McCann (1971), indicated
that color perception is partially independent of electromagnetic energy flux (changes in the rate
of energy flow across and object or scene), and wavelgngth (MacDonald, 1989). These

observations were further supported in similar experiments by Arend et al., (1991).
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Unlike other imaging sensors, only the eye is capable of this type of chromatic adaptive
performance. Photographic film is not as versatile and is highly affected by shifts in wavelength.
When one uses daylight color film indoors under tungsten light, the resulting photograph appears
saturated by yellow light, resulting from the dominant wavelength of the source illuminant.

How does the human visual system record true object lightness? According to Land
(1977), each photoreceptor set (red, green and blue) integrates for each point in a given scene
the influence of the light of all wavelengths to which the cone set is sensitive, then compares the
degree of excitation of the cone sets that encode the same color at the reference point. Land
(1977), speculated that the human visual system arrives at a given color sensation, through the
comparison of the three (rgb) lightness sensations, and provided several arithmetic models,
illustrating how the comparison could be made.

Of key importance is the similarity of performance between the theoretical mechanisms
believed responsible for chromatic adaptation. It is generally believed that at some point early in
the visual process, the ratios of the outputs of the three cone types are measured in maintaining
chromatic adaptation. This widely embraced view, that object color depends on the relative
degree of excitation between receptor sets rather than the absolute amount of reflected light,
dates as far back as Ernst Mach (Marr, 1982). This view persists among modern color vision
theorists (Helson, 1938; Judd, 1940; Cornsweet, 1970; Land and McCann, 1971; Boynton, 1979;

Marr, 1982; Hayhoe and Wenderoth, 1991).

Computational Approaches to Color Constancy

Hilbert (1987), noted "The existence of color constancy establishes the lack of correlation
between perceived color and any characteristic of light but at the same time suggests another
possibility for the objective basis of color”. Hilbert's principal thesis: color is surface spectral
reflectance. "If this identification can be successfully defended, then the objectivity of colors will
be established". ..."If color is reflectance, then it is possible in principal to determine the colors of

objects without making use of the characteristics of human color experience”. Probably unknown
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to many researchers reported herein, Hilbert's (‘1 987) assertion forms the basis for many
computational approaches to color constancy.

Computational approaches 1o achieving color constancy have been in the forefront of
color research for most of this past decade. Approaches have varied as differing degrees of
success have been accomplished. Some models are based upon determining the specifications
of a surfaces spectral reflectance functions and ambient light spectral power distributions, from
which the expected color signal is calculated (Wandell, 1987). The underlying assumption of this
model type is that the spatial variation of the ambient light is slower than the spatial variations of
the surface’s reflectance function (Wandell, 1987). The underlying implication is that the spectral
power distribution remains ccnstant over a local region of the image, within which there is
significant spatial variation in the surface spectral reflectance function (Wandell, 1987). The
calculation of photoreceptor responses, based upon a calculation advocated by Cornsweet
(1970), must be made for every image point, after which display device intensities can then be
adjusted, with the synthesized colors having the same visual effect as if the observer had been in
the same position as the camera (Wandell, 1987). Models of this type reportedly work well for
rendering color constant the images recorded by color video cameras. Remote sensing
applications requiring standard three color images for reconnaissance purposes would no doubt
benefit from corrective models of this type.

Finite-dimensional linear models, such as that proposed by Gershon et al., (1987), have
been among the more successful models. The idea behind the model is to describe surface
reflectances by estimating the illuminant and using the estimated illuminant, obtain color
descriptors. The method incorporates the use of a finite-dimensional linear model which
represents light sources and reflectances (Gershon et al,, 1987). An assumption common to the
above mentioned color constancy models is that the color of the illuminant is constant throughout
the imaged scene.

Finlayson et ai., (1995), have more recently produced a color constancy algorithm which

defines color descriptors for a set of possible illuminants. This algorithm exploits the constraint
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inherent in the fact that illumination is usually spectrally varying rather than constant and
outperforms the aforementioned otherwise constrained models (Finlayson et al., 1995). The
producers of image processing software have yet to adopt and distribute software incorporating
any of the aforementioned color constancy models for use in every day remote sensing
applications. Software generation and distribution is hopefully forthcoming.

Recent advancements in computational approaches to color constant imaging show
much promise, however, their utility in applied remote sensing has yet to be determined. Within
the remote sensing community, color composite imaging of the type to which the outlined
computational approaches could be applied, remains only a small part of the total imaging
performed. One common factor shared by the aforementioned approaches is that each method
is applied a posteriori. The only disadvantage with this application, from a remote sensing
perspective, is that a remote sensing specialist must perform a number of existing permutations
between data collection and map accuracy assessment; increasing this by a significant amount
will eventually affect productivity. For this reason alone, approaches toward chromatic adaptive
imaging requiring little a posteriori processing, should be pursued.

Photoreceptor chromatic adaptation is a complex process and research is ongoing as to
what the adaptive mechanisms are and exactly where the processes take place. While the
implications of various research findings and their relation to color vision theory go much further
than what is reviewed herein, the relative selective adaptive effect and between band
sensitivities, carry important implications for multispectral digital imaging. The experimental
procedure herein is designed to determine to what degree, overiapping range (band) sensitivities
would provide the between-band gain responses required of a feedback mechanism for a
muttiband video imaging system. Finally, would between-band gain control produce chromatic

adaptive video imaging?
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Brighiness Constancy and Chromatic Adaptation

Brightness constancy means that the apparent lightness sensation of an object tends to
remain constant despite changes in illumination falling upon it (Cornsweet, 1970). For example, |
when viewed in ordinary room light, an ordinary piece of white paper reflects about 90% of the
light incident upon it, while a piece of black paper reflects about 10%. When viewed in direct
sunlight the increase in intensity may be 1000- fold, yet the papers retain the same apparent
relative brightness as when viewed indoors (Comsweet, 1970). Various researchers have
confirmed this phenomenon (Land, 1959;1977; Graham, 1965; Cornsweet, 1970; Boynton, 1979;
Brou et al,, 1986; Arend ef a/,1991). Arend et al,, (1991), found that in subjects tested, lightness
matches were remarkably invariant over a nineteen to one ( 19:1) luminance range. Luminance
is the technical term referring to the intensity per unit area of light incoming from a surface
towards the eye (Boynton, 1979). Most subjects show only minor departures from perfect
brightness constancy. Exceptions arise when illumination is confined to small illuminated patches
which exclude the background and surrounding areas (Cornsweet, 1970).

Upon examining data collected by Heinemann (1955), Cornsweet (1970), concluded that
an object's lightness or apparent brightness depends not only on the intensity of light falling on
the retinal image of a point, but on the relations between the intensities within the entire field of
view of the region including both the point and its surround.

It is widely accepted that the three retinal cell layers, photoreceptors, horizontal, and
bipolar cells, adapt to widely varying amounts of incoming light and in doing so, adapt their
response 1o produce a signal with a much narrower dynamic range. Some of the functions
presumed to be performed by these three cell layers have been reproduced electronically to
model each cell layer’s role in response compression. Mahowald and Mead (1991), produced an
elegant example of the adaptive functions of the first three cell layers, revealing how the retina
copes with varying inputs by stages. The following account of cell structure and performance to
which they modelled their design. describes the performance of their silicon retina. The first layer

of rods (hypersensitive photoreceptors used mainly after dark adaptation) and cones convert
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incoming light to electrical signals. The second layer makes connections to both photoreceptors
and bipolar cells through the triad synapse. Each horizontal cell is connected to its neighbour by
gap junctions through which ions diffuse. The potential of any horizontal cell is determined by the
spatially weighted average of the potentials of its surrounding cells, with nearby cells contributing
more than distant ones.

Bipolar cells receive inputs from photoreceptors and a horizontal cell then produces a
signal proportional to the difference between the two. Bipolar cells have an even narrower
dynamic range than rods and cones. Bipolar cell responses are enhanced by the triad synapse
which mediates, by reducing response to a uniform intensity, to provide feedback between
horizontal cells and cones. The bipolar cells do not respond to absolute scene brightness but to
the difference between the photoreceptor signal and the local average computed by the
horizontal cell network. Both photoreceptors and horizontal cells produce logarithmic signals,
thus the output of the bipolar cells corresponds 1o the ratio of the local light intensity to the
background intensity, regardless of absolute light level (bipolar o/p = local intensity / background
intensity). Mahowald and Mead (1991), postulate that local intensity includes response
compression and the background intensity is the local average computed by the horizontal cells.
The intensity ratios enable the retina to see detail in shaded and bright areas within the same
scene. They report that their silicon retina behaved remarkably similar to the biological system in
terms of response cornpression and optical illusions (simultaneous contrast, Mach bands, and
Herring grid).

Similar to human visual processes, the digital retina entirely lost an image without constant
scanning motion, further indicating that only changes and differences convey information
(Mahowald and Mead, 1991).

To what degree and indeed whether or not the same mechanisms are responsible for
both color and brightness constancy is yet to be determined. For some theoretical models, a
brightness constancy mechanism alone would provide color constancy. Land's (1964; 74; 77; 86)

color vision theory asserts that the final perceptual response of the visual system is lightness.
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Land (1977), postulated that the human visual system arrives at a given color sensation, through
the comparison of the three cone system (blue (440nm), green (535nm), and red (565nm))
lightness sensations on a point by point basis, with the process taking place somewhere between
the retina and cerebral cortex of the brain. Land (1977) termed the comparator systems
retinexes. The point by point comparison was made by ratioing the reflected brightness between
neighbouring points and scaling the resulting quotient to a reference point (MacDonald, 1989).
While proposing two separate mechanisms for brightness and color constancy Hayhoe
and Wenderoth (1991), postulate that the requirement for color constancy only demands
compensation for changes in the distribution of excitation across the three cone types. They
speculate that some type of gain control mechanism, operating on receptor set ' feedback ' would
fulfill this requirement. Under the conditions of a theoretical model such as Land's (1977) retinex
model, some form of between band gain control could satisfy the requirement set out by Hayhoe
and Wenderoth (1991) and Land's (1977) model. Using this type of model, the requirement for a
feedback mechanism may not be completely necessary. The degree of band overlap between
photoreceptor sets proposed by Brown and Wald (1963:64) and adopted by Land (1977), could
provide sufficient overlap in sensitivity to minimize feedback requirements. Overlapping range of
band sensitivities, should produce overlapping responses to shifts in radiant energy flux. If this
were the case, Boynton's (1979), postulated depletion effects of bleaching, would provide
somewhat of a between-band gain control and in effect, provide the capability for changing the
relative degree of sensitivity between receptor sets at least within a portion of the range of

overlap.

Brightness Constancy and Chromatic Adaptive Imaging

While much research interest has been focused on separating and identifying
mechanisms of brightness and color constancy in human color vision, the problem can be
simplified somewhat in terms of a multiband elector- optical imaging system. The question to be

answered is, in terms of a multiband video imaging system, whether brightness constancy alone
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would provide chromatic adaptive imaging capabilities, given sufficient overlap in band range
sensitivities? The signal output from a single black and white (panchromatic) video camera can
be considered analogous to the signal output by a single photoreceptor set. Both the video
sensing array and the photoreceptors convert the incoming light to electrical signals.

The video gain control performs a function analogous to Boynton's (1979), theorized
response compression. Video gain control sets the gain of the output video device to produce a
signal of a fixed dynamic range of one hundred standard divisions, over one volt, peak to peak
(1V p-p). Indoing so, video gain is capable of adapting the output signal to widely varying
amounts of incoming light. In terms of raw gain (voltage), the manual gain adjustments used for
the experiments conducted herein represent a luminance range of compression/expansion of
approximately eight-to-one (8:1). The range of luminances tested herein represent less than half
the range capabilities of human subjects of nineteen-to-one, (Arend et al,, 1991), . The Sony XC-
75 cameras used for these experiments are, however, capable of handling an overall luminance
range equal to or greater than that of humans. The video gain control can, therefore, be
considered approximately analogous to the much hypothesized "gain control” function of
response compression.

By monitoring the output voltage of three panchromatic video cameras, with broadly
overlapping band configurations, and controlling their output voltages by manual gain

adjustments, an approximate analogue of response compression may be achieved.

Broad vs Narrow Band Sensor Configurations

Broad band imaging has been the most widely used method of imaging for mapping and
reconnaissance purposes. One method of broad band imaging commonly used is that of
panchromatic photography. The decade before the launch of the first satellite remote sensing
systems (ca. 1970), saw the most experimentation with broad band photographic imaging,

primarily for underwater photographic applications such as water column penetration (Boller and
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McBride, 1974). Non-photographic broadband imaging clearly has advantages over narrow band
configurations in terms of higher signal to noise performance, reducing background electronic
noise or the extraneous unwanted responses associated with any electronic system (Lillesand
and Kiefer, 1994). As well, broadband configurations tend to produce a greater range in the
levels of signal sensed. Spectral resolution, or the ability to discriminate fine spectral differences
is sacrificed somewhat by increasing bandwidth.

This sactifice can be compensated for statistically in many cases. One has 1o realize
that fine spectral differences are not necessarily lost using broad band configurations, they are
merely aggregated within the overall information. In other words, broad band sensor
configurations covering the same spectral peaks as narrow band sensor configurations are
capable of collecting the same spectral information reflected from a target. That information must
be separately differentiated from the aggregate of information captured. Narrow band
configurations, on the other hand, are designed to capture only the reflected information
characteristic of one target or cover type within the scene, excluding the aggregate of adjacent
target reflectances. The overall objective of narrow band sensing is to capture what is commonly
referred to in remote sensing as the "spectral signature” of a target. Target spectral signature
implies that the spectral response patterns of given targets are unique or in some way absolute.
In the natural world, however, spectral response patterns may not be as distinctive and are not
necessarily unique.

Experiments conducted by Dekker et al., (1992) on the effect of spectral bandwidth on
spectral signature analysis of inland waters using imaging spectrometer measurements,
suggested a minimum bandwidth of 10 nm. Dekker et al,, (1992), concluded that, for the reasons
of expense associated with increased data handling, longer integration times as absolute
radiance levels decrease, the occurrence of shifts in spectral features within and between target
areas, and decreased signal to noise performance, bandwidths narrower than 10 nm should be
avoided. Frequently, the range of values (variance) captured by narrow band sensors, lacks

sufficient breadth for reliable discrimination by classification aigorithms.
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For example, Zacharias et al,, (1992), using a set of bandwidths ranging between 3.6 to
27.8 nm, selected for their ability to differentiate between intertidal vegetation types, were unable
to obtain reliable classifications. They reported that the only reliable classifications obtained were
those created using Principal Components Analysis (PCA) images as input bands. This
technigue amounts, in effect, to creating a set of broad band images by aggregating a set of
narrow band images to improve classification.

Principal Components Analysis, also referred to as factor or Karhunen-Loeve analysis,
can be used to identify those image components which represent the greatest contribution in
terms of total variance coiitributed, as designated by output component images (Jensen, 1986).
The technique is intended to decrease the dimensionality or number of bands in a data set that
must be analyzed to produce reliable results. The application of a PCA transformation to
correlated remote sensor data will result in an uncorrelated multispectral data set, having ordered
variance propetties wherein the transformed data contain as much information as those from the
original data set (Jensen, 1986).

In examining the relations between the derivatives of remotely sensed data when
correlated with known spectral features, Philpot (1991) found that second and third derivatives
are most sensitive to spectral features of about 30 to 40 nm bandwidths. Phiipot (1991) noted
that there are no pronounced reflectance features with a characteristic bandwidth less than 30
nm for water and none less than 20 nm for certain vegetation types with the exception of the
"high slope" region around 700 nm. Philpot (1991) further noted that large bandwidths are
required to avoid high frequency atmospheric spectral fluctuations. He concluded that reliable
correlations with detectable features, tended to be within broader bandwidths.

With the advent of charge-couple devices (CCDs) used in both one dimensional linear
arrays such as the Multispectral Electrooptical Imaging Scanner (MEIS 1l), and the two
dimensional arrays, inciuding CCD cameras and imaging spectrometers such as the CASI,
spectral configurations have focused on hyperspectral or narrow bands . Very little attention has

been paid to bandwidth, with even less attention paid to band overlap. Vora and Trussel (1993)
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prescribed a set of scanning filters for the accurate scanning of color images. They postulate
that scanning filters need not be exact duplicates of CIE (Commission Internationale de L'
Eclairage / International Commission on [llumination) color matching functions, but need only be
a nonsingular transformation of them. The CIE tristimulus values (method adopted by the CIE for
evaluating a color in terms of calibrated amounts of primary stimuli: X (red),Y (green),and Z
(blue))? are measured with respect to one of a set of étandard illuminants. The source ifluminant
is incorporated in the color matching functions, to define a subspace by a set of vectors. The
defined subspace for a given illuminant is termed the human visual subspace (HVSS). Vora and
Trussel (1993), note that the accurate calculation of CIE tristimulus values is possible only if the
space spanned by the color scanning filters includes the HVSS for the illuminant. They also note
that a set of three scanning filters that spans the HVSS is not realizable because of limitations of
the filter fabrication process. Vora and Trussel (1993) recommend a four filter set (Kodak
Wratten filters: Wr. 52, Wr. 49, Wr. 72B, and Wr. 57), which with the inclusion of the fourth filter,
spans the HVSS.

In summary, narrow band sensors, are designed to optimize spectral resolution,
achieving the greatest number of discrete lightness vaities possible for a given target. These
sensors must be very sensitive in order to output a signal significantly stronger than the level of
system noise, since noise can mask signal fluctuations that are weak in comparison to the level
of noise. As noise levels increase even the strongest signal fluctuations can be masked. The
quality of the output can be specified by a signal to noise ratio (S/N). The S/N ratio directly

affects spectral resolution, as well as radiometric resolution, or the ability to detect slight radiance

differences.

2 The method consists of dividing the visible spectrum into a suitable number of equal
wavelength intervals, determining the contribution to the tristimulus values made by the light
within each interval, and summing the results (MacAdam, 1985) For a more comprehensive
review see MacAdam, (1985).



21

Another factor affecting S/N performance is change in radiant energy flux. Narrow band
sensors are extremely sensitive to changes in radiant energy flux as well as to abrupt surface
signal fluctuations. In the worst scenario this can result in unusable imagery, even in less
extreme cases scene irradiance from one image frame to another can change to the extent that
the same target in two adjacent frames will not statistically classify as the same cover type.
Broad band sensors are not as adversely affected by noise as are narrow band sensors and
have, therefore, improved S/N ratios. Human color vision research has indicated that visual
redundancy plays a significant role in chromatic adaptation and spectral pattern recognition
(Cornsweet, 1970; Boynton, 1979; Shipley and Shore, 1990; Wang et al., 1991). Redundancy
between spectral bands may prove extremely useful in chromatic adaptive imaging where

changes in radiant energy flux may not be adequately modeiled.

Discounting the [luminant

Methods akin to the CIE colorimetric specification and these reviewed under the section
dealing with computational approaches to color constancy all have one thing in common. They
involve the source illuminant, in color specification. As previously mentioned, for purposes of
remote sensing, where natural color images are desired for purposes of interpretation or analysis,
such methods, or variations on the theme, represent logical approaches. These methods are,
however, only appropriate given the assumption that the source illuminant may be determined or
in some way, can be approximated. Among the color constancy research community, criticism
has centered around the limitations of 'unrealistic assumptions’. Those assumptions include the
requirement of a white reflecting region, planar surfaces, no specularities, the constancy of
illumination, and the constancy of surface reflectance (Finlayson, 1995; MacDonald, 1983). One
might include in this list of criticisms the requirement of accounting for the source illuminant.

Land's (1977) retinex theory tends to be the one model that provides a means by which
the illuminant can be discounted, although requiring the inclusion of a white region. Other

computational approaches independent of ambient light flux have limited utility in remote sensing
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applications because of other limitations, including knowing the average spectral reflectance
functions of all objects within an image (Buschbaum, 1980). Variations on the approach
postulated by Buschbaum (1980) have since then focused on estimating the chromatic
component of the ambient light (Maloney and Wandell, 1986; Gershon et al., 1987; Finlayson,
1995; Finlayson ef al., 1995).

Brightness and hue constancy (hue constancy being the analogue of color constancy
(MacDonald, 1989)), are the underlying assumptions incorporated into integrated reflectance
procedures by Land et al. (1971;1977). Both phenomena are contingent upon the relative
reflectance of an object and its surround. While Land's (1977) method for calculating integrated
reflectance of an object scene fails the color constancy test in some accounts (Maloney and
Wandell, 1986€), it remains, from a remote sensing perspective, the best departure point.

Particularly in the realm of multispectral digital video, remote sensing applications rarely
employ band selections conforming to the filter specifications required for computing color
constancy descriptors. Band configurations are normally determined by the application.
Estimations for filter requirements for band configurations are made based upon the spectral
response patterns of intended targets. Target areas are rarely homogenous, or restricted in
homogeneity by scale and resolution. Surface reflectance varies almost continuously.
Fluctuation in radiant energy varies as well, generally by unknown amounts. The need for a
simplified approach to chromatic adaptive imaging has yet to be satisfied. The computational
approaches to color constancy satisfy only a portion of the requirements of remote sensing
applications. Most are computationally carking at best, given the amount of imagery associated
with large remote sensing projects. As well, the dependency upon retrieving the source
illuminant may be the reason many color constancy algorithms have not left the labs of their
inventors to appear in image processing software packages. Any means of discounting the
illuminant has ,therefore, a special appeal to the remote sensing and mapping sciences

community.
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Summary

The widely accepted view that color constant sensations result from the relative degree
of excitation between three sets of photoreceptors with broadly overlapping wavebands whose
range of sensitivities is under continuous adjustment, is the departure point for this experimental
project. Assuming that Land's (1977), assertion that the final perceptual response of the visual
system is lightness, and that each waveband set has its own characteristic response to the light
stimulus of a scene with the final response being determined by the relative lightness between
waveband sets, it is reasonable to assume that waveband overlap may contribute significantly to
chromatic adaptation. While analytical procedures for color constancy corrections abound, and
color constancy appears to be a product of chromatic adaptation, to the best of my knowledge,
chromatic adaptive imaging procedures are not available.

An analogue approach to chromatic adaptive imaging, based upon the analogue
conditions apparently exhibited by the human visual system's chromatic adaptive functions, was
tested. A three waveband filter set which approximates the absorption spectra of the three
photoreceptor (cones) sets, is not available. Three Kodak Wratten gelatin filters (Eastman
Kodak, 1981), having transmittance peaks near the peak sensitivities of the three sets of cones
were substituted. With the (short waveband), representing blue, (middle waveband),
representing green, and (long waveband), representing red, the products of the three were
combined in a color additive mixture, for color rendition. Peak transmissions of these filters do
not exactly match cone sensitivity peaks, but they are close and perhaps more importantly have
similar band overlap and extend reasonably close to the overlapping spectral ranges of the
absorpticn spectra, as determined by Brown and Wald (1963;64) and used by Land (1977).

The degree of overlap afforded by th= three waveband configuration permits overlap in
band sensitivities. This overlap in sensitivities means that induced radiant energy shifts should

produce overlapping effects between waveband sets. Overlapping effects can be used to
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monitor overlapping sensor responses. By adjusting gain settings manually in a compensatory
manor, some relative degree of sensor excitation should be maintained. The key element to
reliably maintaining the relative degree of sensor excitation is contingent upon the availability of a
white target region within the sensor field of view.

Considered a constraint to some degree, the inclusion of a white region may not be
problematic in an applied setting. Consultation with video technical staff has revealed that such a
demand may be accommodated by the superimposition of a white reference within a camera's
anguiar field of view. A one millimeter thick chip of magnesium oxide has the properties of a
perfect diffuse reflector and if illuminated by light reflected from the scene may be sufficient.
Satisfying the requirement for an appropriate white reference in an airborne application demands
testing a variety of possible techniques. For laboratory experimental puiposes the inclusion of a
white target region is satisfied by the color target used. The white target region acts as a
benchmark to which each sensor is calibrated. The one hundred standard divisions, over which
the 1V p-p video signal is maintained, uses the white target region for its 1 volt, peak setting.

By maintaining video responses to the benchmark setting the relative degree of sensor
excitation can be maintained. An electronic device (waveform monitor) used to monitor video
output, configured to be switchable between sensors, would permit overlapping band responses
to be monitored and compensated for by manual gain adjustments. This technique provides the
necessary feedback routine required for response compression. Success is contingent on the
underlying assumption thai sensor wavelength sensitivities and gain controls are sufficiently
similar to produce like responses. A second assumption is that the relative lightness between
target regions, within each individual waveband set, remains relatively unchanged with changes
in radiant energy flux. It is not unrealistic to expect that, given sufficient band width, this
condition can be maintained.

Each of the three spectral bands has its own characteristic response to the light reflected
from the target. Target regions reflecting blue light have their highest reflectance or appear

brightest in the blue waveband, their mid-range reflectance in the green waveband, and their
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lowest reflectance in the red waveband. Similarly target regions reflecting red light have their
highest reflectance in the red band, their mid-range and lowest reflectance, in the green and blue
bands respectively. Given the assumption that these relative reflectances can be maintained by
gain adjustments, an approximate analogue of response compression would result.

The series of adjustments described has been referred to herein as simulated response
compression (SRC). While the series of adjustments is intended to result in a form of chromatic
adaptation, the product of chromatic adaptation, color constancy, in its truest form, is not the
expected outcome. The term color constancy infers a replication of true color as perceived by a
human observer with normal color vision. The color rendering capability of the filter set used is
not expected to reproduce a true color rendition of the target. The product of chromatic adaptive
imaging, therefore, is not in this case color constancy, but rather a maintenance of the relative
target reflectance / absorption characteristics between waveband sets, regardless of changes in
illumination. One might expect that the color rendition produced by an additive mixture of the
three waveband set, under the illumination condition of an equal energy spectrum (white light),
would be maintained by applying SRC.

The intention of chromatic adaptive imaging is primarily to improve image classification
results. By maintaining constancy of target reflectance / absorption characteristics under
conditions of changing illumination, the repeatability of target identification should improve. This

premise should hold true for both visual interpretation and statistical classification procedures.
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Experimental Methods

Analogue Chromatic Adaptation

*If the illumination falling upon all scenes were constant the design of cameras and eyes
could be greatly simplified" (Boynton, 1979). Boynton pointed out that the sensitivity range of the
three sets of cone photoreceptors is under continuous adjustment over a range of luminance of
approximately a million-to-one (1 x 10° :1), with each eye adjusting independently. He adds that
cones are analogue devices, in the sense that they generate signais o graded amplitude. After
photopigment bleaching and pupil size is accounted for, cones still handie light inputs over a
three thousand-fold range and, if cone responses were linear and nonadapting, the problem of
interpreting their signals by the horizontal and bipolar cells, would be similar to trying to meter
voltage from one to three thousand volts without changing meter ranges (Boynton, 1979).

Photoreceptor adaptation is a complex process. Three mechanisms for adaptation are
photopigment bleaching, pupillary constriction, and photoreceptor response compression.
Response compression has been demonstrated by Boynton and Whitten (1970) to be the third
retinal adaptive process after bleaching and pupil size are accounted for. Response compression
is the nonlinear receptor adaptive process which permits the cones to handie a wide range of
light inputs, providing in effect, a type of gain control (Boynton, 1979). It is not, however, just the
sensitivity of a single photopic system under continuous adjustment, but that of a system with
three inputs, capable of changing apparent color (Boynton, 1979). The most critical function of
the first three cell layers of the retina (photoreceptors, horizontal and bipolar cells) is adaptation.
Photoreceptors, horizontal, and bipolar cells adapt to widely varying amounts of incoming light
and in doing so adapt their response to produce signals within a much narrower dynamic range

(Mahowald and Mead, 1991).
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The output from a panchromatic video camera can be viewed as analogous to the output
from a photoreceptor cone set. Both the video sensing array (CCD) and the photoreceptiors
convert incoming light to electrical signals. As well, both produce nonlinear output. While the
nature of adaptation transformations and their contribution to both brightness and color constancy
are poorly understood, there is general agreement that the adaptive transformations involve
multiplicative gain control mechanisms (feedback) as originally proposed by Barlow and Levick to
accomplish a steady state sensitivity (Barlow, 1965; Barlow and Levick, 1969, 1976; Hayhoe and
Wenderoth, 1991). The human visual system's overlapping range of sensitivities has important
implications for chromatic adaptive video imaging, referred to herein as simulated response
compression (SRC), which deserve investigation. This degree of overlap in spectral sensitivity
could, in a video imaging system, provide the between-band feedback (SRC) necessary to
compensate for spectral shifts which would otherwise result in poor color renditions in target

reproduction.

Sensor Configuration

The experimental methods considered were intended to test the utility of chromatic
adaptation imaging by between-band gain control (SRC). An analogue version of response
compression was accomplished using three CCD (Charged Coupled Devices) video cameras, a
waveform monitor to measure output voltage and controlled lighting. The three unfiltered
panchromatic cameras, were first boresighted within a horizontally configured mount designed
inhouse and built in the Simon Fraser University machine shop. This mount permitted removal of
X and Y parallax by setscrew adjustment, permitting two to three pixel camera alignment. A

standard tripod mounting thread was tapped into the base of the three camera mount.

Camera Registration
Boresighting was accomplished by first examining a two band, two color composite

image of the MacBeth color checker test pattern of twenty-four scientifically prepared colored
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squares (Edmund Scientific, 1994). When boresighted, the angular fields of view of the two
cameras were coincident, and displayed target polygons were rendered as being without color
when viewed as two color channels on a video monitor. Panchromatic input of the color target to
a color video monitor produces a colorless scene when all three input angular fields of view are
coincident. Where polygon edges exhibited a color within either edge rows or columns,
misregistration existed and further adjustment was made to remove the parallax causing the color
edge artifact. When each two-camera combination was aligned in both horizontal directions
focus adjusiments were required to fine tune the boresighting of all three cameras. Registration

was achieved to between one to three pixels, and the camera ienses were taped to avoid

accidental movement.

Filter selection

As no commercial filters have yet been produced to precisely replicate the absorption
specira of the three sets of cones, Kodak Wratten gelatin filters (Eastman Kodak, 1981), with
bandwidth and transmission characteristics similar to those of the cones were used. Broadly
overilapping band filtration (fig. 3.1) was accomplished using the Kodak filiers Wr. 47B for the
short waveband (blue), Wr. 61 for the middle waveband (green), and Wr. 59 for the long
waveband (red),. These three filters have similar transmittance/diffuse density properties near
the transmittance centers of 440, 535, and 565 nm. The color appearances of these filters are
best described as deep biue (Wr. 47B), deep green (Wr. 61), and light green. The Wr. 47B is

used for color separation and tricolor printing,
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the Wr. 61 is used for tricolor projection and color separation, the Wr. 59 is a contrast filter, with
good blue absorption with limited yellow, green and red absorption.
Filter mounts were adapted before boresighting to avoid disrupting boresighting

adjustments. The filters were mounted to the vidso cameras prior to the system warm-up.

Camera Imaging System

The sensing system consisted of three Sony XC-75 Interline-transfer CCD panchromatic
video cameras. Each camera imaging system consists of an effective picture element (pixel)
array of 768 horizontal (columns) by 494 vertical (rows). External synchronization was provided
by the a thirty-two bit image frame capture device. Video output was 1.0 volt peak to peak at 75
ohms. Camera outputs were patched by matched impedance cables through a switching device
and input to a waveform monitor.  The switching device permitied the monitoring of individual
camera output signals. The waveform monitor permitted the monitoring of video output over a
one hundred standard division range of the one volt peak to peak (1V p-p) camera output signal.

Manual gain was used, permitting manual adjustment to gain of the video output signal.

llumination Conditions

Target illumination conditions were controlled using six one thousand watt quartz
halogen, General Electric lamps as a source illuminant and photo effect gels in oversized filter
sheets (12 x 22 in.) The quartz halogen illuminant had a correlated color temperature of 3030 °K
as measured by a color temperature meter. The superimposition of the photo effect gels over the
source illuminant produced measured color temperatures of 3840 © K, for the blue gel, 3030 °K,
for the green gel, and 2480 ° K for the red gel. The dominant wavelength or wavelength at which

a blackbody radiation curve reaches a maximum, is related to temperature by Wien's

displacement law A, = A/T, where A, = wavelength of the maximum spectral radiant exitance,
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um, A = 2898 um K, and T = temperature, K (Lillesand and Kiefer, 1994). The dominant
wavelength for the broadspectrum illuminant and the three photo effect gels is by this equation
equivalent to .956 um, for the broadspectrum illuminant, .755 um, for the blue gel, .956 xm, for
the green gel, and 1.169 um, for the red gel.

While the spectral distribution of the quartz halogen GE 1000 lamps was not available
from the General Electric Corporation, communication with technical staff for the company,
reported the source as providing an equal energy spectrum, relatively flat throughout the visible
spectrum. Exact transmittance/absorption spectra for the three photo effect gels was also
unavailable from the distributor upon request. RGB optical counts for the three filters has been
included in Appendix A and their associated transmittance characteristics are discussed in

context with the resulits.

The Static Target

The MacBeth color checker (Figure 4.8.3), a test pattern of twenty-four scientifically
prepared colored squares designed to help determine true color balance or optical density of a
color rendition system, was employed as a static target (Edmund Scientific, 1994). The target
was mounted with a black matt background, held in place under a glass frame at a fixed focal
distance from the three camera system. lllumination across the target was balanced by technical
staff and considered to be even. The target was centered in the field of view of the cameras at a
distance which provided sufficient resolution for analysis, while nearly filling the video image

frame.

Image Capture

The experimental image set was captured under the following conditions. Analogue to
digital conversion was provided in near real time by an Everex 32 bit video frame grab device.
First the target was imaged under the broadspectrum condition provided by the source illuminant.

Video output was set by manual gain control to one hundred standard divisions for the 1V p-p
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video signal for each of the three cameras using the waveform monitor as a reference source.
This image is referred 1o here as the broadspectrum illumination condition. Next the blue gels
were superimposed over the source illuminant. The three camera responses to the shifted
spectrum were recorded by the second captured image (bluegel illumination condition). After a
successful image capture the waveform response to the induced spectral shift was recorded and
adjustments to gain were made to bring all three cameras back to 1V p-p video output. The
resulting captured image after gain adjustment is referred to as SRCBLUE.

The third illumination condition was induced by the superimposition of the green photo
effect gel over the source illuminant. Individual camera waveform responses to the induced
spectral shift were again recorded and the resulting image set greengel was captured. Next,
adjustments to gain were made to bring all three cameras back to 1V p-p video output and the
image set referred to as SRCGREEN, was captured. The fourth illumination condition was
induced by superimpossition of the red photo effect gel over the source illuminant. Individual
camera waveform responses to the induced spectral shift were again recorded and the resulting
image set redgel was captured. Next adjustments to gain were made to bring all three cameras
back to 1 V p-p of video output, and the resulting image set referred to as SRCRED was
captured.

The prefix SRC is intended to identify those image sets where gain settings associated
with all three cameras were adjusted to produce a one volt peak to peak video output as
indicated by the waveform monitor. The target polygon located at row 6, column 4, representing
pure white, provided the reflectance source for the maximum of one volt or the equivalent one

hundred standard divisions of the video output gain settings.



Preprocessing

Upon analogue to digital conversion the captured image sets were separated into their
rgb, three band components and formatted for analysis on the image processing package Eidetic
RSV1E. Image preprocessing involved applying a local average smoothing operation (3 x 3 pixe!
mask) to each of the three bands (rgb) for each image set. The local average filter mask of this
kind is designed to deemphasize high spatial frequency detail associated with random noise
produced by electronic devices. This type of filter evaluates an input pixel brightness value,
BV in, and the pixels surrounding the input pixel and outputs a new brightness value, BV out, that
is the mean of the nine pixels under examination. The spatial moving average then shifts to the

next pixel, where the operation is repeated until all pixels have been evaluated (Jensen, 1986).

Training Stage

Upon completion of preprocessing each image set was prepared for classification.
Supervised classification was conducted by first defining the representative sample sites, also
called training sites. Training sites are used to compile a numerical interpretation key, which
describes the spectral attributes for each class or category (Lillesand and Kiefer, 1994). The
image processing package used permits the compilation of both calibration and test sites.
Calibration and test sites are designed to permit the analyst to locate cover types (test sites)
having like spectral properties to the sites of known cover type (calibration sites). Both calibration
(C) and test (T) sites are incorporated when computing the descriptive statistics used in the
classification stage.

Spatial complexity for a given target normally dictates the appropriate sampling scheme.
The homogeneity of the target polygons was well suited to cluster sampling. When using a
statistically based classifier, such as the maximum likelihood method used herein, the theoretical

lower limit to the number of pixels that must be contained in a training set is n + 1, where n = the



number of spectral bands (Lillesand and Kiefer, 1994). In practice a minimum of 10n to 100n is
used, since the estimates of the mean vectors and covariance matrices improve as the number
of pixels in the training sets increases (Lillesand and Kiefer, 1994). Clustered samples for C and
T data of approximately two hundred and eighty pixels each were selected well within target
polygons (to avoid mixed pixels associated with polygon edges). The average target polygon
consisted of approximately fifty-nine rows by forty-five columns, totalling two thousand six
hundred and fifty-five pixels. Training site samples of approximately five hundred and sixty pixels
(280 x 2), representing twenty-one percent of the total for each class, were used by the classifier.
A total of fifteen classes, the maximum permitted by the software package, was identified by
training sets. These classes are identified by a row and column coordinate of the MacBeth color

checker. Class number, descriptions and coordinates for the target polygons are listed in

Tablet.

Table 1 Target Classes by Polygon
Class Description Row Column
1 Biuish Green 1 1

2 Blue Flower 2 1

3 Foliage 3 1

4 Blue Sky 4 1

5 Orange Yellow 1 2

6 Yellow Green 2 2

7 Moderate Red 4 2

8 Purplish Blue 5 2

9 Orange 6 2
10 Cyan 1 3

11 Magenta 2 3
i2 Yellow 3 3
13 Red 4 3
14 Green 5 3
15 Blue 6 3
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Classification

The program set Eidetic RSV1SCL, employing the Maximum Likelihood Classifier was
used. A full overview of the maximum likelihood procedure is beyond the scope of this thesis,
and is therefore not included. Readers interested in a full description are referred to Lawley and
Maxwell (1971), Joreskog (1977), Morrison (1976) and (Davis, 1986). The program computes
the mean, and covariance and correlation matrices for each of the classes defined by the training
sets. The matrices are inverted and the determinant of each is computed. The Mahalanobis
distance, or the measure of difference between the means of two multivariate groups is
computed for each ciass and added io the determinant for each class io define the value of the
descriminant function for each class (Davis, 1986; Peet, 1990). In determining the most likely
class, a test is done checking that the unknown pixel lies 'close enough' to the training data of the
class to which it has been assigned (Peet, 1990). The analyst defines a level of probability
termed the alpha level, which in turn defines 'close enough'. This allows the frequency
distribution of the sample to be compared to the hypothetical, measuring the degree of
correspondence between the forms of the two distributions (Davis, 1986). The alpha level of .5%
was selected. The alpha level defines the critical point for the Chi-squared distribution. If the
Mahalanobis distance exceeds the critical distance, the unknown pixel is assigned to the nuli
(unknown) class or otherwise left in the assigned class (Peet, 1990). At the alpha level of .5%
those pixels with a Mahalanobis distance falling into the upper .5% of the chi-squared distribution
are assigned to the null class (Peet, 1990).

Target polygons not included in the fifteen classes were expected to comprise the bulk of
the pixels assigned to the null class. Target polygon edge pixels and border regions within the
target were expected to contribute to the rest of the null class assignments. Classification errors

of omission would also be assigned to the null class.
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Evaluation

Classification accuracy assessment followed the most common means of expressing
classification accuracy, that of the contingency table or error matrix (Lillesand and Kiefer, 1994;
Fisher, 1994; Congalton, 1988; Story and Congaiton, 1986; Rosenfeld and Fitzpatrik-Lins, 1986;
Rosenfeld, 1986; Aroncff, 1985). This type of matrix expresses, on a category-by-category
basis, the relationship between reference data (ground truth) and the results of the automated
classification (Lillesand and Kiefer, 1994). In evaluating the completely random assignment of
pixels to classes, the KHAT statistic was also computed for each error matrix. The KHAT
statistic measures the difference between the actual agreement between reference data and the
automated classifier used and the chance agreement between the reference data and a random

classifier (Lillesand and Kiefer, 1994; Aronoff, 1982; Congalton et al., 1981 )

The equation used to compute KHAT is:

r r
N ¥ Xxj . L Xy Xy4i)
i=1 i=1
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where:

r = number of rows in error matrix
X jj = the number of observations in row i and column i (on the major diagonal)

Xj 4 = total of observations in row i (marginal total to right of matrix)
X, j = total of observations in column i (marginal total at bottom of matrix)

N = total number of observations included in matrix

The statistical procedure principal comporients analysis (pca) was also run on each of
the image data sets. The covariance, correlation and eigenvalue matrices, provided as output
from the principal components analysis, permitted the computation of other statistics intended to

evaluate further the aspects of bandwidth, band overlap, redundancy and the outcome of the
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induced spectral shifts. By computing the correlation of each image band with each principal
component it is possible to determine how each band is associated with each component

(Jensen, 1986).

The equation used to compute the factor loadings which expresses the association is:

B X VA,
R =
v Var,
where: a, = eigenvector for band k and component p
A = p th eigenvector (component)

Var, = variance of band k in the covariance matrix

This computation results in an n x n matrix of factor loadings (Jensen, 1986).

Least Squares Analysis

In determining the relationship between the induced illumination conditions and the
results of the application of the SRC function for the fifteen target polygons, least squares
method was applied to the eighteen band/illumination condition combinations. The STAT
program accompanying Davis, (1986) was used in producing this statistical output. This output
provided a goodness-of-fit or coefficient of determination, expressing the degree of correlation
between the band/illumination condition combinations. This procedure was intended to determine
the degree of statistical similarity between conditions which produce dissimilar color renditions,
which in turn inhibit accurate interpretation.

Qualitative evaiuation of the color renditions produced by the induced spectral shifts and
the results of the applied between-band gain control (SRC function) for the seven image sets,
were included. Given the band configuration, degree of band overlap and incomplete coverage
of the visual spectrum, an accurate coior rendition of the static target would not be expected.

The photographic product required for this purpose was produced by the color graphics recording
device ( Matrix Camera). This device provides a photographic product of the color additive digital

images produced by the three band sensor output. Based on the assumption that the
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photographic processing of this product was conducted under controlied conditions, one can

expeci that the photographic product provides an accuraie reproduction of the digiial dispiay.

Summary

The sensor configuration employed was a prototype designed for laboratory use only.
Design improvements, including vibration resistant sub-pixel camera registration would be
required for field applications. As well, a variety of filter combinations, including various degrees
of band overlap should ideally be tested. As for illumination conditions, a variety of naturai
daylight circumstances employing, at least at first, a static target, need also to be examined. The
use of a static target eliminates the need for ground truth while incorporating a large number of
target classes, as well as increasing accuracy at the training stage. Given the unpredictability of

an applied test of the methods under examination, it was decided to conduct this pilot experiment

under as controlled circumstances as possible.
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EXPERIMENTAL RESULTS

Introduction

The application of the simulated response compression (SRC) function as applied to the
data sets herein did not always prove as successful as expected. The principal thesis, that the
application of SRC would restore the relative degree of excitation between the three waveband
set, proved successful in only one of the three applications, SRCRED. The order of examination
of the experimental results is by short (blue), middle (green) and long (red) waveband sets. This
order, while consistent with the order as addressed throughout, places the successful results last,
after the failures. The reader is asked therefore, to bear with the examination as presented,
while keeping in mind that there are successful results to come. Reference is made herein to the
calibration and test data generated by the classification training stage. This actual data set, while
too voluminous to be included in its original form has been summarized by the sample DN data
included in Figures 4.8.1 and 4.8.2. Reference is also made to classes 1 through 15 by polygon
color name.

The color names refer to the MacBeth Munsell color chart used as a target and were not
assigned by the author. All figures referred to in this section have been included at the end of
Chapter Four. Tables have been included in Appendix A. Many of these could only be printed in
landscape format because 6f their size and therefore; are not well suited to immediately follow

the page upon which they are referenced.

Classification Results

Tables 2 through 8, Appendix A, contain the error matrices resulting from classifying
training set pixels, for the seven image data sets. These error matrices express the counts of

agreement between classified categories and their associated training sets. The method
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commonly used to express accuracy of classified or interpreted image or map data sets is by
statement of percentage of pixels or area that have been correctly classified when compared to
the reference data (Story and Congalton, 1986). Normally the number of rows and columns
equals the number of categories whose classification results are to be assessed (Lillesand and
Kiefer,1994). For the sake of a thorough evaluation of these experimental results an additional
category, representing the null sets or pixels unassigned to a class, has been included.

Different measures of classification accuracy, if evaluated in isolation of each other, can
be misleading in representing the degree of reliability of the classified data (Rosenfield, 1986).
Several characteristics of classification performance can be evaluated using this type of matrix.
One can examine the classification errors of omission (exclusion) and commission (inclusion) as
well as overall accuracy. Errors of omission, which normally correspond to nondiagonal column
elements (Lillesand and Kiefer,1994) have all been assigned to the null column. Commission
errors are represented by nondiagonal row elements. Overall accuracy, as expressed by Tables
2 through 8, can be computed by dividing the total number of correctly classified pixels (the sum
of the elements of the major diagonal) by the total number of pixels under consideration (the sum

of the total column).

Given the outcome of the experimental data set classifications and the extremely low
occurrence of errors of commission, accuracy assessment is primarily focused on individual class
accuracy, based upon errors of omission. This was computed by dividing each major diagonal
element by the row total for that class. Before proceeding, a point relating to interpreting the
matrices must be considered. One will notice the absence of values, both row and column for
class thirteen, with one exception, Table 8. This target polygon is represented by a fully
saturated red. In all but the SRCRED image data set, pixels within this polygon were assigned to
the null class. When computing accuracies, these null class values have been set to one to

avoid spurious results.
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The value representing the mean number of pixels per classified polygon has been
included in each image data set to evaluate the degree of similarity to the expscted polygon size
(2655 pixels) as based upon selection criteria. Examination of the (rgb) image set
“broadspectrum® before classification, revealed an average target polygon dimension of fifty-nine
rows by forty-five columns (excluding edge errors resulting from image misregistration). Most of
the pixels affected by misregistration were assigned to the null class but one must assume that
some were included in the respective class assignments, particularly where the classified polygon
dimension exceeded the expected 2655.

The image data sei representing the broadspectrum condition of illumination has been
used as a benchmark for comparisons of classification accuracy between image data sets. The
underlying assumption is that the best results, including overall and individual class accuracies,
wouid probably be associated with the broadspectrum condition of illumination. Error matrices
included in Tables 2 through 8 were not based upon training data, or estimated, as is often the
case, when determining classification accuracy (Roseniield, 1986; Story and Congalton, 1986).
The reason for not choosing this method was that accuracy assessments, incorporating training
set data only, merely provide an assessment of the homogeneity of the training sets while giving
little indication of overall classification accuracy (Lillesand and Kiefer,1994). To assure adequate
accuracy assessment a "wall-to-wall" complete account, appropriate to a research situation, was
used (Lillesand and Kiefer,1994). While not well suited to an applied remote sensing situation,
this method provides a more reliable accuracy test than estimating procedures, by accounting for
every classified image pixel (Congalton, 1988).

The error matrices referenced by the Tables 2 through 8 were not normalized (Aronoff,
1982) as the accuracy tests herein were conducted using the same method for all classification
categories. Given the use of the "wall-to-wall” method for establishing reference data, one can
expect a high reliability when computing accuracies. Establishing minimum accuracies for the
purpose of evaluating classification resuits has for the most part been thoroughly covered where
errors are estimated by sampling methods (Aronoff, 1985). Where “wall-to-wall® methods have
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been applied, choices regarding acceptable minimum accuracy levels depend upon the
application. Davis (1986) points out that setting a level of significance is the responsibility of the
researcher. in avoiding the rejection of a true hypothesis, significance levels have, therefore, not
been set for the results contained herein. This being the case each marked deviation from the
accuracy of the image set broadspectrum will be examined. A, g "KHAT" statistic has also
been computed for each error matrix. The *KHAT" statistic serves as an indicator of the extent to
which the percentage correct values of an error matrix are due to “true” agreement versus
“chance” agreement (Congalton et al,, 1981; Aronoff, 1982; Lillesand and Kiefer,1904).
Reference is also made to statistics computed in addition to those required for the image
classification, (see Appendix A). These include principal components and their associated
matrices indicating, covariance, corelation, eigenvalues and eigenvectors. The matrices output
from principal components analysis have further been used to compute the correlation between
each band and each component, or factor loadings (Jensen, 1986). From eigenvalues, the
percentage of total variance explained by each principal component and the percentage of total

vanance contributed by each band, has been computed to aid in examining the aspects of

redundancy (Jensen, 1986).

Set Br Tum

From Table 2, image set broadspectrum , the computed KHAT statistic equalled 0.96. In
interpreting this statistic it is important to note, that as a true agreement approaches 1 and a
chance agreement approaches 0, the "KHAT” value also approaches 1. Therefore, the observed
classification is 96 percent better than a chance agreement (Lillesand and Kiefer,1994). Classes
1 (polygon color biuish green), at 93 percent and 12 (polygon color yellow), at 87 percent, are the
only two classes which differ conspicuously from the general tendency of averages for this
mairix. Where class 1 (polygon color bluish green) is concerned, the small gap between 440 and

480 nm, where no band overlap exists (see Figure 3.1), may be a contributing factor to its
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somewhat reduced classification accuracy. Considering that this polygon color has a relatively
high mean (short waveband (blue)) reflectance (70) associated with the calibration and test data
and this DN value increased with the introduction of the bluegel illumination condition, one might
also suspect a lack of shortwave energy emitted by the broadspectrum illuminant, as having
contributed to this condition. The spectral distribution of power from thermal sources such as
incandescent filament lamps, however, is normally smooth and continuous over the entire visible
range (MacAdam, 1985). Conversations with General Electric technical support staff, confirmed
this for the quartz-halogen illuminant used. The spectral bands represented by the blue (short)
and green (middle) and red (long) wavebands, should adequately cover the reflectance from this
target polygon.

Class 12 (polygon color yellow) exhibits the most conspicuous departure from the
general tendency. It was observed while conducting the experiments, that an anomaly (possibly
a surface contaminant from handling) on the sensing platen of the green (middle) waveband
camera was associated spatially with this class polygon and is considered to be the main
contributor to the large number of omission errors for this class. Or, considering that accuracies
for this class are substantially improved under other illumination conditions, including the SRC...
conditions, a discontinuity in the spectral continuum may also be a contributing factor.

With the possible exception of class 12, all other classes in Table 2 exhibit degrees of
accuracy sufficient for most applied remote sensing applications, considering an overall accuracy

{sum of the diagonal elements / sum of the row total) of 96 percent.

Image Set Bluegel

Table 3 contains the error matrix for the illumination condition, bluegel. The computed
overall accuracy for this matrix shows a 1 percent increase over that of the broadspectrum
condition, resulting in a 97 percent accuracy level. Calibration and test data for this image set

indicate a marked increase in DN values in short waveband (blue) values for all classes,



accompanied by an associated decrease in DN values within the other two bands, as well. This
tendency indicates a spectral shift toward the shorter wavelengths as expected.

Under these conditions, class 6, (polygon color yellow green), suffered the greatest
decrease in accuracy, down from 98 (broadspectrum} to 88 percent. Considering that this target
color roughly falls within the spectral range of 550 to 560 nm and both the middle (green) and
long (red) wavebands adequately cover this spectral range, the reduced accuracy must have
resulted from the induced spectral shift. The increased accuracy within class 1 (polygon color
bluish green), over the broad spectrum condition, probably results from the increase in total
variance contributed by the short (blue) waveband, under this illumination condition. As
previously mentioned, this may be related to the quartz halogen illuminant. The KHAT statistic
for this image set is 0.97, indicating a true agreement. The increase in the mean number of

pixels per class polygon indicates the inclusion of edge pixels associated with misregistration.

| e Set Greengel

Table 4 contains the error matrix for the image set greengel. A similar performance in
overall accuracy, 97 percent, is exhibited by the illumination condition. As in the case of the
bluegel, this indicates that overall conditions associated with the spectral shift had little
deleterious effects on spectral class separation. In examining the most marked departures in
class accuracy for this image set, classes 1 (polygon color bluish green) and 10 (polygon color
cyan) will be evaluated. Both classes in this case are polygon colors associated with a mixture of
blue and green. A marked average drop in DN values for both of these classes is evident in the
calibration and test data (class 1, -27; class 10, -23).

The spectral region of approximately 450 to 480 nm (blue green), is the only short wave
spectral region within the three wavebands, with limited coverage. Figure 3.1.d, illustrates the
percent transmittance by wavelength, of the three combined waveband sets. At approximately

460 nm, the percent transmittance, of the fitters Wr. 47B and Wr. 59 drops to 10 percent. The
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lack of coverage in this spectral region is consistent with the reduced accuracy of polygon colors
with a high reflectance in the blue green.

Neither blue nor green colored polygons were similarly affected. The mean number of
pixels per polygon rose only slightly over that of the broadspectrum, with this illumination

condition. The KHAT statistic 0.97, again indicates a true agreement.

Image Set Redgel

Table 5 contains the error matrix for the image set redgel. Under this illumination
condition overall accuracy fell to 93 percent, the lowest for all conditions. The individual class
accuracies of classes 1 (polygon color bluish green), 2 (polygon color blue flower), 4 (polygon
color blue sky), and 5 (polygon color orange yellow) represent the most marked decline, and
therefore will be examined. Calibration and test data for all of the above classes exhibit elevated
DN values for the short (blue) waveband, when compared to the broadspectrum data. This is
accompanied by depressed DN values in the middle (green) and long (red) wavebands. As well
the separation between DN values within the middle and long wavebands has been considerably
compressed, leaving these DN values very similar. This is most likely due to the degree of
redundancy between these two wavebands. it is assumed that the lack of variance between
these two value sets led to their being spectrally less separable.

The anomalous increase in DN values for the short waveband, when compared to the
broadspectrum illumination condition, deserves special attention. An explanation lies in the
optical counts associated with the three gels. While the neutral densities of these three filters are
very similar (0.31, 0.23, 0.27) for the red, green, and blue gels respectively, their associated RGB
optical counts (Appendix A), are of course dissimilar. The red gel exhibits an optical count of
0.02 for the red, 1.48 for the green, and 0.79 for the blue. The red count is consistent with a low
optical density where red light is concerned. The green count is consistent with a high optical

density where green light is concerned, (as the red filter is a minus green filter). The blue count,



46

however, indicates that this filter passes a fair amount (15 to 16 %) of biue light> . This may
account for the overall increase in short (blue) waveband DN values with this illumination

condition.

The KHAT statistic for this image set 0.93 again indicates a true agreement.

e Set SRCBLUE

Table 6 contains the error matrix for the image set SRCBLUE. The computed overall
accuracy for this image set of 96 percent represents little change in accuracy from the bluegel or
broadspectrum illumination conditions. Individual class accuracies fluctuate only slightly about
those of the broadspectrum illumination condition, with the exceptions of classes 12 and 15. The
accuracy of class 12 (polygon color yellow) increased by 13 percent with SRCBLUE. Within
class 15 (polygon color blue) ,however, class accuracy dropped by 10 percent. It appears that
the SRC effect (between band gain response) resulted in an increase in omission errors for this
polygon color, represented by a fully saturated blue.

Calibration and training data for class 12 show an increase in the average short
waveband (blue) DN values by 7 DN's, accompanied by a near match in DN value for the middle
waveband (green), and a drop in DN's, down by 44, for the long waveband (red), when compared
to the broadspectrum illumination condition. The increased DN's for the short waveband set for
this class, are a result of the increased gain (return to 100 divisions) for the SRC condition. The
accompanying gain increase for the long waveband camera (return to 100 divisions), failed to
restore DN values for this class, (polygon color yellow).

Calibration and test data for class 15 (polygon color blue), indicate a similar increase in

DN values for the short waveband (blue), resulting from the increased gain (return to 100

3 Conversion according to the Density-Percent Transmittance Table, KODAK FILTERS FOR

SCIENTIFIC AND TECHNICAL USES Eastman Kodak Company, 1981, Second Edition, pg. 88-
89.
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divisions) with SRC. Near matching middie waveband DN's resulted from SRC, when compared
to the broadspectrum. Long waveband (red) DN values, while close to those of the
broadspectrum condition, are too close to those of the middle waveband to be spectrally
separable. Class 6, (polygon color yellow green), showed a marked improvement (+10 percent)
in accuracy with SRC over the biuegel illumination condition, indicating some degree of success.
Calibration and test data for the class indicate that only middle waveband DN values were
restored to their broadspectrum condition, with SRC.

The computed KHAT statistic for the SRCBLUE image set of 0.96, indicates a true

agreement.

Image Set SRCGREEN

Table 7 contains the error matrix for the image set SRCGREEN. The computed overall
accuracy for this image set is 95 percent, down slightly from the broadspectrum and greengel
illumination conditions. Individual class accuracies do not show a overall consistent improvement
over the greengel illumination condition nor do they match the broadspectrum condition. The
individual accuracies of classes 1 (polygon color bluish green) and 12 (polygon color yellow)
show an improvement with SRC over both the broadspectrum and greengel accuracies. The
improvement for class 1 is the most dramatic of the two. The accuracy for this class is up by 13
percent over that of the greengel illumination condition. Calibration and test data indicate very
littie spread in DN values for the image set SRCGREEN, when compared to the (rgb) DN spread
for this class under the broadspectrum illumination condition. While the short waveband (blue)
DN values, show an increase over those of the other associated conditions, middle waveband
(green) DN values are for the most part unchanged and long waveband (red) values have
dropped to those of the short waveband (blue). One might expect that under these
circumstances of reduced variation between red and biue band values for this class, spectral

separability would also be reduced. This, however, does not seem fo be the case.
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Class 12 (polygon color yellow) shows a considerable increase in accuracy over the
broadspectrum illumination condition with only a modest increase over the green gel illumination
condition. This is consistent with other illumination conditions when compared to the
broadspectrum condition. Classes 2 (polygon color blue flower) and 4 (polygon color blue sky)
indicate considerable decreases in accuracy over both the broadspectrum and greengel
illumination conditions. DN values for the short waveband (blue), for SRCGREEN, were
increased over those of the two associated conditions. Middle waveband (green) DN values are
closely matched for all three conditions, while for the SRCGREEN image set the long waveband
DN values fell below both of the counterparts. Again, middle (green) and long (red) waveband
DN values show too little spread under the condition SRCGREEN to be spectrally separable.

The computed KHAT statistic for this image set is 0.95, indicating a true agreement.

Image Set SRCRED

Table 8 contains the error matrix for the illumination condition SRCRED. The computed
overall accuracy for this image set is 94 percent, down slightly from the broadspectrum condition
and up one percent, compared to the redgel condition. Individual class accuracies show an
overall improvement when compared to the redgel illumination condition. Class 1 (polygon color
biuish green) has improved in classification accuracy by 13 percent over the redgel condition,
while matching the accuracy of the broadspectrum condition. Class 2 (polygon color blue flower)
shows a small increased accuracy over the redgel condition but is still well below the accuracy
achieved under the broadspectrum condition. Class 3 (polygon color foliage) has an improved
accuracy over the redgel condition and is within 1 percentage point of that of the broadspectrum.
Class 4 (polygon color blue sky) shows similar improvement, being up by 6 percent over the
redgel condition and with a 1 percentage point improvement over the broadspectrum condition.
Class 5 (polygon color orange yellow) has improved in accuracy by 10 percent over the redgel

condition, again to within 1 percent of the broadspectrum.
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Class 6 shows a marked decrease in class accuracy, down 14 percent over that of the
redgel and 18 percent below the broadspectrum condition. This polygon color is yellowish green,
and probably falls between 550 and 570 nm, well within the spectral area with the greatest
redundancy. Calibration and test data for this class indicate good rgb spectral separation for the
broadspectrum condition. Under the redgel condition the two redundant bands (middle and long),
spectral separation was entirely lost, with DN values for these bands being nearly perfectly
matched at 61 (middle) and 60 (long). SRCRED restored the separation between the two
redundant bands, almost to within the exact proportions as those of the broadspectrum condition.
This restored spectral separation, however, still resulted in greater than 4 times the number of
errors of omission, accompanying the SRCRED condition. Polygon size and its associated
misregistration errors does not seem to be a significant factor in the increased omission errors.

Class 8 (polygon color purple blue), shows decreased accuracy, slightly below both that
of the redgel and broadspectrum conditions. Class 9 (polygon color orange), is also only slightly
below that of the redgel and broadspectrum conditions. Class 10 (polygon color cyan), feil to 87
percent accuracy; below both of its other associated illumination conditions. Polygon size, which
can affect the accuracy, having remained stable (Table 8) accounts only slightly for this |
decreased accuracy. Class 11 (polygon color magenta), shows a similar reduction in accuracy,
down to 88 percent, 10 and 11 percentage points below the redgel and broadspectrum conditions
respectively. Here again polygon size does not appear to be the major contributing factor to
decreased accuracy. As well, associated DN values, from calibration and test data, do not reveal
any obvious evidence, as the SRC function again restored the rgb separation associated with the
broadspectrum.

Class 12 (polygon color yellow), showed similar improvement over the broadspectrum
condition; as it did under other itlumination conditions. Class 13 (polygon color red) desefves
special attention. The SRCRED illumination condition was the only condition under which a
reliable classification was achieved for this polygon. All other conditions of illumination resulted in

complete assignment to the null class for this polygon. Class accuracy for this polygon is 99
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percent. This is accompanied with a larger than average polygon size of 3107 pixels,
incorporating a large number of edge pixels. Calibration and test data indicate an improved
separation between middle (green) and long (red) wavebands for this polygon; over those of the
redgel condition. There is also a slight increased separation between these bands over that
exhibited by the broadspectrum condition. This may account for the overall improvement.
Classes 14 and 15 (polygon colors green and blue respectively), round to 100 percent in class
accuracy, with few errors of omission and do not represent substantial improvement over the
other associated illumination conditions of the redgel and the broadspectrum.

The computed KHAT statistic of 0.93 indicates a true agreement.

Error Matrices Summarized

Figures 4.1 through 4.8 have been included to help summarize the resuits of the
standardized accuracy assessment. Figure 4.1 indicates percent accurately classified by
polygon color (class) for the broadspectrum and the three shifted spectral conditions represented
by light source filters (bluegel greengel and redgel). With the exception of the yeliow anomaly,
under the broadspectrum condition all polygons have been classified to a degree of accuracy
(=90 percent) sufficient for most remote sensing mapping applications. Classification accuracies
associated with the bluegel condition indicate only one polygon color (yellow green) which fell
markedly below this level of accuracy. Similarly with the greengel condition only one polygon
color (bluish green) fell below the 90 percent accuracy level. The greatest degree of departure
from the benchmark condition was associated with the redgel condition where three polygon
colors (bluish green, blue flower, and orange yellow) fell below an accuracy level of 90 percent.

Figure 4.2 illustrates accuracies associated with the broadspectrum condition and
associated SRC function conditions. Here it is evident that the SRC function generated mixed

results, improving accuracies in some cases and reducing accuracies in other cases. This
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somewhat "mixed bag" of results indicates a tendency for improved classification accuracy for
some polygon colors at the inadvertent expense of others.

Under the three gel conditions four polygon colors (bluish green, blue flower, orange
yellow, and yellow green) fell below the 90 percent level of classification accuracy, while under
the SRC conditions six polygon colors (blue flower, blue sky, yellow green, cyan, magenta, and
blue), fell below this level. Therefore, accuracy was improved only for the two polygon colors
bluish green and orange yellow at the expense of the others mentioned. Both of these
improvements were accompanied by twice as many inadvertent sacrifices within the same image
set SRCRED.

Figures 4.3 through 4.5 illustrate the accuracies associated with each spectral shift and
its associated SRC function plotted in conjunction with the benchmark set, broadspectrum.
Figure 4.3 illustrates a "one improved over one sacrificed” account at the 90 percent accuracy
level. Overall the performance of the SRC function is poor with only four SRC indicators (polygon
colors foliage, blue sky, yellow and green) appearing above (improved accuracy) their biuegel
counterparts. Figure 4.4 illustrates a "one improved over two sacrificed” account at the 90
percent accuracy level. Overall performance of the SRC function is indicated as poor with only
four SRC indicators (polygon colors bluish green, cyan, yellow, and green) appearing above
(improved accuracy) their greengel counterparts. Figure 4.5 illustrates a "two improved over
three sacrificed" account at the 90 percent accuracy level. Overall performance of the SRC
function is indicated as moderate with eight SRC indicators (polygon colors bluish green, blue
flower, foliage, blue sky, orange yellow, yellow, red, and blue) appearing above (improved
accuracy) their redgel counterparts.

Figures 4.6 through 4.8 illustrate the null class assignments representing the errors of
omission for each spectral shift and its associated SRC function, plotted in conjunction with the
bench mark set broadspectrum. As would be expected, increases in null class assignments

accompany decreases in accuracy.
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Performance of Simulated Besponse Compression

Bluegel llumination Condition

Simulated response compression (SRC) or between band gain control was assessed for
its performance in compensating for spectral shifts induced by the three gels. Mean rgb values
were established for each class {polygon color) by sampling the individual classes, within each
unclassified image set (see Figures 4.8.1 - 4.8.2). Means were extracted by cluster sampling. A
total of seventy-five pixels, represented by three clusters, each blotch consisting of five by five
pixels, were taken from within the polygons. Care was 1aken to avoid edge pixels. While the
samples are much smaller than those used for training classifiers, the sampled means
correspond very well with those from calibration and test data.

Figures 4.9 through 4.17 illustrate graphically the degree of correspondence between
the broadspectrum and all associated conditions, for each band. Series one represents the
broadspectrum, series two represents the spectrally shifted condition associated with the gels
and series three represents the results after simulated response compression (SRC). Figure
titles indicate which bands and conditions are represented by the plots.

The graphs were examined by the order, short (blue), middle (green), and long (red)
wavebands. The short (Wr.47B) and middle (Wr.61) wavebands are approximately equal in
bandwidth (approximately 100 nm) with the long (Wr.59) waveband, being about twice as wide
(approximately 200 nm),(see Figure 3.1).

Figure 4.9 illustrates the short (blue) waveband, for the three conditions, broadspectrum,
bluegel and SRCBLUE. The spectral shift toward short wavelengths induced by the bluege! in
series 2, is indicated by an increase in DN values for polygon classes (1,2,4,8,10,11,15)
reflecting in the biue region of the spectrum. Polygons represented by colors nonreflective in the
blue (short wavelengths) were influenced far less, in terms of DN fluctuations. With the

application of SRC, DN values of the classes most affected by the spectral shift were increased



even further. The SRC function also increased DN values slightly, and uniformly for all classes
nonreflective in the blue. The result of the SRC function was to exacerbate the disproportional
reflectances induced by the spectral shift for this waveband.

Figure 4.10 illustrates the middle (green) waveband responses for the three conditions.
Here the spectral shift toward shorter wavelengths has resulted in an uneven but general
decrease in DN values. Those polygon colors most affected (classes 1,6,12, and 14) all contain
some combination of green or yellow. The polygon colors represented by classes reflecting
beyond the spectral range of the middle (green) waveband, including blues (shorter) and oranges
to reds (longer), are the least affected by the spectral shift. The yellow region of the spectrum
(560nm to 590nmy} is very near the edge of the spectral range of this waveband. The SRC
function restored DN values in nearly all classes for this band. In doing so, all relative
reflectances associated with the broadspectrum condition of illumination, were replicated.

Figure 4.11 illustrates the long (red) waveband responses for the three conditions. Here
the spectral shift toward shorter wavelengths has resulted in an overall decrease in DN values,
although not uniformly by class. This waveband being the widest of the three covers a broader
spectral range which includes more of the target colors (classes). The classes least affected by
the spectral shift for this waveband include red (class 13 (longer)) and blue (class 15 (shorter)),
which fall at the edges of the spectral range of this band. Classes containing some combination
of green or yellow were affected in a manner similar to that of the redundant middle band (Figure
4.10); but to a greater degree. The SRC function was unable to restore the affected DN values.
As a result relative reflectances associated with the broadspectrum condition of illumination were
not successfully restored.

In summary, under the shifted spectral condition induced by the bluegel, the application
of SRC successfully restored DN values and hence, relative reflectances, within the middle
(green) waveband only. Overall, this band was the least affected by the induced spectral shift, as
well. In this case the narrower, middle waveband (green), was the least affected and provided

the best SRC results, with the short wave spectral shift.



Greengel lliumination Condition

Figure 4.12 illustrates the short (blue) waveband response to the spectral shift induced
by the green gel. In this instance the DN values represented by series 2 have been lowered.
One would expect this to result with a spectral shift away from the shorter (blue) wavelengths.
Those polygon colors most affected are represented by classes 1,2 4,8,10,11, and 15. Those
polygon colors least affected fall outside the transmittance of this waveband, as was the case in
the bluegel illumination condition. The application of SRC in this case resulted in increased DN
values, with poor replication of the DN values associated with the broadspectrum illumination
condttion. Hence, relative reflectances were not restored.

Figure 4.13 illustrates the middle (green) waveband response to the induced spectral
shift. All three series are for the most part collinear and coincident, indicating very little DN
displacement for this band, under this illumination condition.

Figure 4.14 illustrates the long (red) waveband response to the induced spectral shift.
The near collinearity and close agreement of series 1 and series 2 indicates that little DN
displacement occurred under this illumination condition, within this waveband. One could
probably infer that little spectral shift from the broadspectrum illumination condition occurred
within the spectral region covered by this waveband. The application of the SRC function in this
case resulted in an overall but uneven reduction in DN values, with some degree of collinearty.
Classes represented by polygon colors containing some combination of yeliow or green were the
least well restored by the SRC ‘unction. The SRC function failed in this case to restore DN
values associated with the broadspectrum illumination condition, hence relative reflectances were
also not restored.

In summary the SRC function failed to restore DN values and hence, the relative

reflectances of target polygons for this illumination condition, for any of the three wavebands.



Redgel Hiumination Condition

Figure 4.15 illustrates the short (blue) waveband response to the redgel illumination
condition. Under the spectrally shifted condition as indicated by series 2, DN values increased
for polygon colors reflecting within the spectral range of this band. Again colors reflecting outside
the spectral range of the band were the least affected. The collinearity and near coincidence of
series 1 and series 3 indicates an almost exact restoration of DN values, and restoration of
relative reflectances. it therefore, must be concluded that the SRC function was successful.

Figure 4.16 illustrates the middle (green) waveband response to the redgel illumination
condition. As with series 2, DN values were decreased generally, but to a greater degree for
polygon colors reflecting within the spectral range of this waveband. As indicated by the
collinearty and near coincidence of series 1 and series 3, the SRC function successfuily restored
the DN values and the relative reflectances of the broadspectrum illumination condition.

Figure 4.17 fllustrates the long (red) waveband response to the redgel illumination
condition. As in series 2, DN values decreased markedly overall with the two exceptions of class
13 (polygon color red) and class 15 (polygon color blue). Again the coliinearty and near
coincidence of series 1 with series 3 indicates successful, although not exact restoration of DN
values and hence, relative reflectances of the broadspectrum illumination condition by the SRC
function.

In summary, under the illumination condition induced by the redgel the application of the
SRC function could be considered successful in restoring DN values and the relative reflectances
associated with the broadspectrum illumination condition. This result persisted tor all three

wavebands regardless of bandwidth.



Redundancy, Variance and SRC

To evaluate redundancy, it is necessary to consider covariance and correlation matrices,
matrix traces and factor loadings for each image set. These matrices may be found in Appendix
A. The percentage total variance contributed by each pand, the percentage of variance
explained by principal component, and the correlation of bands to components, ' factor loadings ',
were also computed. These statistics are useful in examining the response of each band under
varying spectral conditions.

Tables 9 through 15, in Appendix A, contain correlation matrices for the seven image
sets. Band one is the short band, band two is the middle band, and band three is the long band.
As indicated by the correlation matrix for each image set, the correlation between bands two and
three is high (.99). A high correiation between bands indicates a substantial amount of
redundancy (Jensen, 1986). The high degree of correlation between these bands is not
surprising as band two lies completely within the spectral range covered by band three (see

Figure 3.1).

Image Set Broadspecirum

Table 9 illustrates that the percentage of total variance contributed by each band is 22%,
25% and 53% for the short (blue), middle (green) and long (red) bands respectively. The
reiatively broader bandwidth of band three has resulted in this band contributing more than twice
the variance of either accompanying band under the broadspéctrum illumination condition.
Factor loadings show the short waveband (blue) to be strongly correlated (.859) with the first
principal component which accounts for 93 percent of the total variance of the rgb image set. 7
This band contributes only 22 percent of the fotal variance, due to its relatively narrow bandwidth
and the fact that it contains the least redundant spectral information for this target, under this

ilumination condition.
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Image Set Bluegel

Table 10 illustrates that the percentage of total variance contributed by each band has
changed from that of the broadspectrum illumination condition. The distribution of 57%, 22% and
21%, for the short, middle and long wavebands respectively, indicates that the spectral shift
toward shorter wavelengths has resulted in an accompanying shift of variances contributed by
each band. Most notably the shift has reduced the variance contributed by the long (red)
waveband and added it (+~35 percent) to the short waveband. Factor loadings for this image set
indicaie a strong correlation (.97) between the short waveband (blue) and the first principal

component, which now accounts for 91 percent of the total variance.

Image Set Greengel

Table 11 illustrates that the percentage of total variance contributed by each band has
also changed from that of the broadspectrum illumination condition. The distribution of 8%, 32%
and 60%, for the short, middle and long wavebands respectively, indicates that the spectral shift
toward longer wavelengths has resulted in an accompanying shift of variances contributed by
each band. Here again an increased variance has accompanied the spectral shift but less
pronounced than with the bluegel. The broadest, long (red) waveband has increased (+7%) only
slightly in total variance contributed, up to 60%. Similarly the middle (Green) waveband shows
an increase (+7%), over its contribution under the broadspectrum condition of illumination.
Factor loadings indicate a relatively strong comrelation (.827) between the short (blue) waveband
and the first principal component, with the total variance contributed by this band, reduced 14%

from its contribution under the broadspectrum condition, 1o a low 8 percent.



| Set Redgel

Table 12 illustrates that the percentage of total variance contributed by each band in the
redgel set has also changed from that of the broadspectrum illumination condition. The
distribution of 71%, 13% and 16%, for the short, middle and long wavebands respectively,
indicates that the spectral shift toward longer wavelenghths has resulted in an opposed shift of
variances contributed by each band. The total variance contributed by the short (blue) waveband
has increased by 49% over that of the broadspectrum condition, with the middle (green) and long
(red) bands reduced by 12% and 37%, respectively, from their broadspectrum illumination
condition. Factor loadings computed for this image set indicate a high degree of correlation

(.983) between principal component one and the short (blue) waveband.

Image Set SRCBLUE

Table 13 illustrates that the percentage of total variance contributed by each band has
also changed from that of the broadspectrum illumination condition. The distribution of 48%, 27%
and 25%, for the short, middle and long wavebands respectively, indicates that the changed
variances induced by the spectral shift associated with the biuegel have changed only slightly
over that condition. This indicates that the SRC function did not successfully restore the variance
distribution accompanying the broadspectrum illumination condition. Factor loadings for the
illumination condition SRCBLUE indicate a relatively high correlation (.949) between the short

waveband (blue) and the first principal component. This result matches the bluegel condition

more than the broadspectrum condition.
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Image Set SRCGREEN

Table 14 illustrates that the percentage of total variance contributed by each band has
also changed from that of the broadspectrum illumination condition. The distribution of 48%, 26%
and 26%, for the short, middle and long wavebands respectively, indicates that a good deal
change has occurred with the SRC function over the greengel condition but the application of
SRC has again failed to restore the variances accompanying the broadspectrum condition. The
SRCGREEN distribution, in fact closely corresponds to the distribution of the SRCBLUE image
set, indicating that a similar outcome resulted under both conditions with the application of SRC.
Factor loadings indicate a stronger correlation (.945) between the short waveband (blue) of
SRCGREEN and the first principal component, than for both of the compared conditions,

broadspectrum (.859) and greengel (.827).

Image Set SRCRED

Table 15 illustrates that the percentage of total variance contributed by each band has
also changed from that of the broadspectrum illumination condition. The distribution of 23%, 25%
and 52%, for the short, middle and long wavebands respectively, indicates that a good deai of
change has occurred with the SRC function over the redgel condition. The percentage of total
variance contributed by each band now closely corresponds to what is found under the
broadspectrum condition. Factor loadings for the image SRCRED correspond well with those for

the broadspectrum condition.
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Summary

The most notable relationship between bandwidth, the induced spectral shifts, SRC
functions, and percent total variance contributed by each band, is that the variance contributed by
the broadest of the three bands appears to have been relatively stable under the experimental
conditions. Table 16, factor loadings, Appendix A, illustrates that the mean percentage of the
total contributed variance for the short (narrow) waveband is 40 percent with an accompanying
variance of 502.2857. The mean percentage of the total contributed variance for the middle
{most redundant/narrow) waveband is 24 percent with an accompanying variance of 33.90476.
The mean percentage of the total contributed variance for the long (broadest) waveband is 36
percent with an accompanying variance of 327.8095.

This condition is also evident when the SRC function resuits are eliminated and only the
broadspectrum and three gels are considered. Again, the mean percentage of total variance
contributed is similar for the narrow (%var_S) and broad (%var_L) bands, with less variation
exhibited for the broader of the two bands, While contributing less of the percent {otal variance,
the redundant band (%var_M) varies the least of the three under the experimental conditions.
Caution should be exercised in interpreting these results as they relate very specifically to the
target and illumination conditions used herein and are not representative of all possible

illumination/target conditions for this type of sensor and band configuration.
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Accuracy Assessment Based Upon Errors of Omission
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Accuracy Assessment Based Upon Errors of Omission
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Accuracy Assessment Based Upon Errors of Omission
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fig. 4.5

Accuracy Assessment Based Upon Errors of Omission
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BROADSPECTRUM
R 128 | R 89 R 72 R 27
G 97 G 63 G 57 | G 25
B 7 B 2¢ B 66 | B 23
R 74 R 115 | R 51 R 36
G 56 G 91 G 38 | G 31
B 80 B 2% B 64 | B 29
R 50 R 134 | R 58
G 42 G 98 | G 46
B 28 B 30 | B 44
R 64 R 45 R 32 | R 9
G 50 G 34 G 26 | G 73
B 63 B 38 B 27 | B 70
R 48 R 76 | R 146
G 38 G 64 | G 108
B 72 B 29 | B 105
R 60 R 34 | R 217
G 41 G 28 | G 156
B 28 B 62 | B 155
GREENGEL
R 120 | R 80 R69 | R 26
G 96 G 60 G 57 | G 25
B 44 B 24 B 41 B 20
R 69 R 109 R 4 | R 35
G 55 G 90 G 37 | G 30
B 49 B 24 B 41 B 25
R 49 R 124! R 56
G 43 G 97 | G 46
B 24 B 25 | B 31
R 61 R 42 R 31 R 90
G 50 G 33 G 26 | G 73
B 41 B 29 B 24 | B 45
R 46 R75 | R 138
G 37 G 65 | G 108
B 47 B 24 | B 64
R 55 R 33 | R 207
G 40 G 28 | G 157
B 24 B 43 | B 92
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Fig 4.8.1

BLUEGEL
R 69 R 44 R 44 R 20
G 75 G 47 G 48 G 23
B 84 B 34 B 79 B 27
R 44 R 59 R 32 R 25
G 46 G 69 G 33 G 29
B 94 B 34 B 75 B 35
R 31 R 67 R 34
G 35 G 73 G 38
B 33 B 34 B 53
R 38 R 28 R 22 R 52
G 41 G 29 G 25 G 57
B 75 B 44 B 32 B 83
R 31 R 44 R 77
G 33 G 52 G 83
B 85 B 35 B 126
R 34 R 25 R 112
G 35 G 26 G 118
B 33 B 75 B 186
REDGEL
R 64 R 51 R 39 R 20
G 64 G 45 G 41 G 22
B 98 B 42 B 90 B 29
R 42 R 60 R 33 R 25
G 41 G 62 G 31 G 27
B 116 | B 41 B 94 B 40
R 32 R 72 R 37
G 34 G 68 G 37
B 40 B 45 B 64
R 39 R 3% R 24 R 54
G 39 G 29 G 24 G 53
B 93 B 57 B 40 B 105
R 31 R 45 "R 79
G 32 G 49 G 76
B 110 | B 42 B 161
R 40 R 25 R 117
G 35 G 26 G 110
B 41 B 93 B 234




SRCBLUE
R 94 R 57 R 57 R 22
G 101 G 59 G 61 G 25
B 98 B 36 B 91 B 28
R 56 R 80 R 38 R 28
G 58 G 91 G 39 G 31
8 111 B 37 B 87 B 37
R 38 R 89 R 44
G 43 G 98 G 48
B 36 B 37 B 61
R 49 R 33 R 25 R 69
G 52 G 34 G 27 G 75
B 87 B 50 B 34 B 97
R 38 R 56 R 105
G 40 G 67 G 111
B 100{ B 38 B 149
R 41 R 28 R 156
G 40 G 29 G 163
B 34 B 87 B 222
SRCRED
R 116 R 87 R 65 R 26
G 90 G 60 G 53 G 24
B 69 B 32 B 63 B 23
R 71 R 109 | B 51 R 35
G 53 G 87 G 37 G 30
B 81 B 32 B 66 B 30
R 50 R 133 { R 57
G 42 G 96 G 46
B 3 B 34 B 46
R 63 R 48 R 36 R 95
G 50 G 34 G 27 G 73
B 66 B 42 B 31 B 73
R 48 R 76 R 149
G 38 G 65 G 110
B 77 B 32 B 111
R 67 R 35 R 224
G 43 G 29 G 161
B 32 B 66 B 159
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Fig 4.8.2

SRCGREEN

R 91 R 61 R 53 | R 22
G 96 G 61 G 57 G 24
B 92 B 38 B &6 | B 28
R 54 R 84 R 37 | R 28
G 55 G 91 G 38 | G 32
B 108 | B 39 B 87 | B 38
R 39 R 95 | R 44
G 43 G 9% | G 47
B 38 B 41 | B 60
R 47 R 33 R24 | R70
G 49 G 33 G2 | G 74
B 88 B 53 B 37 | B 99
R 36 R 57 | R 105

G 38 G 65 | G 109

B 103 | B 40 | B 151

R 44 R 27 | R 155

G 41 G 29 | G 159

B 38 B 88 | B 219
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Diagram of Macbeth Color Checker Chart

Bluish Orange Cyan Black
Green Yeillow (1.50)*
Class 1 Class 5 Class 10
Blue Yellow Magenta Neutral
Flower Green 3.5
(1.05)*
Class 2 Class 6 Class 11
Foliage Purple Yellow Neutral
5
Class 3 Not Used (.70)*
Class 12
Blue Moderate Red Neutral
Sky Red 6.5
(.44)*
Class 4 Class 7 Class 13
Light Skin Purplish Green Neutral
Blue 8
(.23)*
Not Used Class 8 Class 14
Dark Skin Orange Blue White
(.05)*
Not Used Class 9 Class 15

Fig 4.8.3

*Optical Density
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Discussion

Examination of the error matrices in Tables 1.1 through 1.7, has revealed that overall and
individual class accuracies for the classification results are, with few exceptions, good. The
spectral shifts induced by the use of the three gels, while affecting the raw DN values
substantially, did not result in an unacceptable classification performance. A least squares
analysis (Charts 1 through 18) Appendix B, of the three bands, where each band, illumination
condition and resulting SRC function was compar.d to its broadspectrum bench mark condition,
indicated that a high degree of correlation (Goodness of Fit) exists between illumination
conditions for each waveband. The high degree of correlation exhibited, combined with the
robustness of the maximum likelihood classifier, resulted in overall good classification results.

Thre charts indicate two important aspects of the data set regarding bandwidth and the
SRC (between-band gain control) function. The broader of the three bands (red) exhibited a
broader dynamic range of DN values for the target than either of the narrower, short (blue) or
middle (green), wavebands. Induced spectral shifts affected the dynamic range mostly by
compressing it. The application of the SRC function resulted in a stretch of the compressed
ranges, inducing a broader separation by DN values for the fifteen target polygons.

The scatter plots of Charts 1 through 18, also indicate effects upon gain induced by the
gels and SRC function. Channel (rgb) gain is represented by the slope of a line defined by the
scatter plot. Changes in slope represent changes in gain. As expected, increased slopes
resulted, in nearly all instances where the SRC function was applied, as a response to increased
gain. One exception to this trend was for the broadest (red) band, where superimposition of the
green gel induced an increase in dynamic range and channel gain. This is probably due to the
fact that the broadspectrum and green gel illumination conditions are spectrally very similar, as
indicated by the dominant wavelength of the two conditions. Here also, the application of the

SRC function resulted in reducing the overall channel gain. Another exception was for the
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narrowest (blue) band, where superimposition of the red gel resuited in a higher channel gain
than produced by the application of the SRC function. As mentioned, this result probably relates
to the diffuse density of the red gel and its degree of transmittance of shortwave (blue) energy.

The application of between-band gain control, or simulated response compression (SRC)
had mixed results. The slight differences between the red and green bands evident under the
broadspectrum illumination condition were not restored with the application of SRC. While failing
fo restore relative reflectances when applied to the illumination conditions of the blue and green
gels, the SHC function produced similar results in these cases both digitally by DN and in the
resulting visual images. The overwhelming success of the SRC function in restoring the relative
reflectances, both digitally and visually, of the broadspectrum condition, when applied to the
redgel condition is important. The explanation lies in the nature of the three band filter
configuration and the dual transmittance properties or bi-modal spectral distribution of the long
waveband. The icng waveband represented by Wr. 59 has predominantly green transmittance
with a narrow far red transmittance of approximately 680 to 700 nm. Under the illumination
conditions induced by the blue and green gels, transmittance associated with the long waveband
was predominantly within the green, central portion of the transmittance curve. Sensor
excitation, being dominated by the greatest (peak) area under the transmittance curve, in
conjunction with the spectral quality of the illumination, resulted in a three band combination of
short waveband (blue), middle waveband (green), and long waveband (green) of a largely two
color system.

With the induced spectral shift generated by the superimposition of the red gel, sensor
excitation shifted, to be dominated by the far red transmittance component of the Wr. 59 filter.
This condition resulted in changing the largely two color system imposed by the blue and green
gels back into a three color system. The induced spectral shift resulted in an increased excitation
for the long waveband, with the narrow 680 to 700 nm transmittance range dominating, or at least
contributing equally to the long waveband sensor excitation. This effect produced a more

balanced three color (blue, green, red) sensing system, with increased red sensitivity, similar to



that of the broadspectrum illumination condition. The application of SRC to the image set redgel,
successiully restored the relative reflectances of the broadspectrum illumination condition, largely
because of this restoration to a three color sensing system.

The three waveband, two color system explanation is further supported by the fact that
the application of the SRC function to the bluegel and greengel image sats produced extremely
similar color renditions for the two resulting image sets (see color transparencies, SRCBLUE and
SRCGREEN). Induced spectral shifts associated with these two gels would have limited the long
waveband contribution to the between-band gain control, of the SRC function. Hence, the
beitween-band gain control wouid have been largely a three band, two color, function. Under this
condition the relative reflectances associated with a three band, three color system would be
lacking the third band, third color contribution. This would explain the failure to restore the
relative reflectances associated with the broadspectrum illumination condition for the SRCBLUE
and SRCGREEN image sets. This conclusion is supported by the resulting near matches in DN
values for classes 15 and 6 (SRCBLUE) with the application of the SRC function. As well, with
the application of the SRC function represented by SRCGREEN for classes 1,2,4, and 12, a drop
in long waveband (red) DN values, resulting in near matches in DN values to those of the short
waveband (blue) image set, further supports this conclusion. For these reasons the one-in-three
success rate of the SRC function is very promising. The bi-modal spectral distribution of the Wr.
59 filter was clearly the "weak link" in the performance of the SRC function. Further
experimentation involving broader spectral representation with no spectral sensitivity gaps, as
was the czse with the Wr. 59 (approx. 630 to 670 nm.) would no doubt produce more consistently
successful results, where between band gain control is applied.

The color renditions produced by the three band combinations under the experimental
illuminations provide an interesting insight when interpreting the results. As the spectral bands
for this experiment were chosen 1o only approximate the peak absorption spectra of human

photoreceptors, with peak transmittances near 440, 535, and 565 nm, this researcher did not



expect a typical rgb color rendition. As expected the color rendition of the MacBeth color checker
produced by additive mixture of the three spectral bands, is indeed, not true.

A lack of complete longwave (red) spectral coverage produced a color rendition with poor
red representation. This condition is defined by the lack of classification accuracy for the polygon
target or class normally described as fully saturated red, class thileen. It is clearly evident that
from an interpretation perspective, the color rendition produced under the condition of the three
gels would seriously inhibit interpretive accuracy. The inadequate color rendering capacity of the
ilumination conditions generated by the superimposition of the gels, resulted in false color
representation in nearly all instances.

The spectral shifts induced by the three gels were recorded very reliably by the gray tone
step array, represented by column four of the MacBeth color checker. Here, the lack of
chromatic adaptation, is evidenced by the hues taken on by the gray tone array. The polygon
target located at row six, column four, represents a pure white. This polygon represents the
white region within the target that provided ihe benchmark for the one hundred standard
divisions, for video gain settings. As recorded by the color additive image for the blue gel, the
white target region has taken on a bluish hue, induced by the spectral shift. As recorded by the
color additive image for the irnage set greengel, this same polygon has taken on a yellowish hue.
In the color additive image for the image set redgel, this same polygon has taken on a bluish hue,
similar to that induced by the blue gel. The resulting adopted hues clearly indicate a lack of
chromatic adaptation by the sensors.

The additive color images representing the application of the SRC function also provide
evidence supportive of the experimental results. Without examining each polygon target
individually, evidence as to the performance of the SRC function is clearly supported by the
target polygon, white (row 6, col 4). Afier the application of the SRC function to the bluegel
condition, the white polygon retained a bluish hue. Similarly, the color additive image for the
image set SRCGREEN, resulted in a similar bluish hue for the white polygon. For the color

additive image representing the SRCRED image set, however, the target polygon at row six,
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column four, appears white as it did under the broadspectrum illumination condition. Again this
provides evidence for the success of the SRC function in restoring the relative reflectances as
recorded under the broadspectrum illumination condition. As well, the similarity between the
SRCBLUE and SRCGREEN additive images, both having a bluish hue attached to the white
polygon, further supports the possibility that the between-band gain control, when applied to
these two image sets, was dominated by a two color gain balance.

The departure point for this experimental project has embraced the widely accepted view
that color constant sensations result from the relative degree of excitation between three sets of
broadly overlapping wavebands whose range of sensitivities is under continuous adjustment. In
terms of a multiband video imaging system, the premise has been adopted that brightness
constancy gain control alone, would provide chromatic adaptive imaging capabilities, given
sufficient overlap in band range sensitivities.

Land's (1977), assertion that the final perceptual response of the visual system is
lightness with the final response being determined by the relative lightness between waveband
sets, has been successfully replicated by analogy herein. While this has been demonstrated
under only one in three conditions, the photographic recordings of the digital images have

provided convincing evidence of the promise of this technique.

Conclusions

A simulation of chromatic adaptation has been tested by means of analogue between-
band gain control, herein referred to as SRC (simulated response compression). While the test
parameters were not intended to fully replicate the consequence of human chromatic adaptation
known as color constancy, a similarity in utility is no doubt evident. The primary intention of this
experiment was to improve classification accuracy by monitoring gain responses to chromatic
shifts within a three band system and compensate for those chromatic shifts by between band

gain adjustments.
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The band composition selected for this experiment was based upon the following criteria.
The peak transmittance centers roughly approximated those of the absorption spectra for the
three classes of cones found in the human retina (Cornsweet, 1970). The extent of between-
band overiap roughly approximated the overlap between the above-mentioned absorption
spectra. Broadly overlapping bands were further chosen for this experiment for two additional
reasons. First, overlapping band sensitivities were expected to produce overlapping effects
indicating the extent of the between band effect and overall relative degree of sensor excitation
and required gain adjustment. Second, very little experimentation has been conducted using
overlapping bands for airborne imaging systems.

The induced spectral shifts generated by the superimposition of photographic effect gels
over the source illuminant, produced the desired variations of illumination quality. Color additive
images produced by the three wavebands, indicated that color shifts generated were sufficiently
disruptive to inhibit reliable target interpretative identification from the photographic and digital
display products. The robustness of the maximum-likelihood classifier used, combined with the
careful selection of training set pixels, produced very reliable classification accuracies, in spite of
the lack of chromatic adaptation to induced spectral shifts. Classification accuracies were not
significantly improved by the application of SRC for the following reasons. First, the three band
filter combination used failed under two ililumination conditions to produce a three band, three
color, spectral composition. The interrupted red band coverage of the Wr. 59 gelatin filter used
for the long waveband, produced bi-modal gain effects. The interruption in spectral coverage
within the mid red portion of the spectrum for this waveband produced results similar in effect to
having two filters for the one waveband. Induced short and middle wavelength spectral shifts left
the far red sensitivity of the long waveband sensor without sufficient energy to produce a three
color image. This condition resufted in the SRC function being unable to restore the three color
relative refiectances produced by the broadspectrum illuminant. This condition could easily be
avoided by using a long waveband filter with uninterrupted red spectral coverage, which would

provide the degree of band overlap desired, with more complete spectral coverage in the red



87

region of the spectrum. Mufltispectral video systems without broad overlapping bands and
between band gain control would not permit the same relative degree of excitation to be recorded
by each waveband. Because of this the resulting brightness values are not readily comparable
by relative degree.

The between band gain control as applied herein, requires a white target region within
each sensor's angular field of view, for accurate gain adjustment. The static target used in this
experiment included a white farget region to which all gain adjustments and settings were
calibrated to one hundred standard divisions. Field applications of this imaging technique may
require sensor modification to include a white region in the angular field of view.

While no commercial iiliers have been created to precisely replicate the absomtion
spectra of the three sets of human cones, filters providing sufficient band overlap to control for
between band gain responses are available. The degree of overlap required has not been
determined herein and should be determined by experimentation. The degree of transmittance
within the overlapping range must be sufficient to permit CCD signal responses of sufficient
amplitude to identify a spectral shift. The degree of overiap required should be determined for
the specific sensor and filter combination. Camera gain sensitivities should also be matched.
During the course of the experiment it was determined that under the fixed gain settings the three
cameras did not have the same offset, differing by as many as fifteen standard divisions (ie:15
percent of 1 voit), when imaging, unfiltered, the same (boresighted) target, illuminated by the
broadspectrum. Channel offset, also called intercept (the distance from the origin to a point
where a graph crosses a coordinate axis), represents the difference in terms of a voltage
constant, of the baseline signal, between 0 and 1 volt. Bandwidths as determined by filter
combinations should also be nearly equal to assure similar output dynamic ranges. Sensor offset
tended not to be a problem, however, when manual gain settings were used. The same
condition would have to be true for any automatic between band gain control.

Shadows incident in most terrain imaging, would provide the pedestal for the black

clipping, lower end output, whiie an inset, white target would provide the benchmark for the



maximum one hundred standard divisions. Under these conditions no sensor offset should be
present. Further experiments should be conducted using a static target and imaging under
varying daylight conditions. Under such conditions, one may find it desirable to vary sensor
bandwidths to compensate for skylight and atmospheric constituents.

The logical direction in which to proceed regarding further experimentation, would be to
design and build an electronic controller to monitor, record and control between-band gain
responses. Such a device would provide some degree of chromatic adaptation for multispectral
video imaging systems. The ultility of this type of between-band gain control is uncertain whan

used with discrete non-overlapping waveband, muitispectral sensors.



Table 2 Error Matrix Resulting From Classifying Training Set Pixels Image Set Broadspectrum

Training Set Data Classes 1 through 15 and Null Class

89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Null Total
Classification
Data
1. 2430 O 0 0 0 0 0 0 0 0 0 0 0 0 0 184 2614
2. 0 2581 O 0 0 0 0 0 0 0 0 0 0 0 0 14 2605
3. 0 0 2815 O 0 0 0 0 0 0 0 0 0 0 0 3 2818
4. 0 0 0 2642 0 0 0 0 0 0 0 0 0 0 0 88 2730
5. 0 0 0 0 2672 0 0 0 0 0 0 0 0 0 0 80 2752
6. 0 0 0 0 0 2506 O 0 0 0 0 0 0 0 0 141 2647
7. 0 0 0 0 0 0 2720 0 0 0 0 0 0 0 0 104 2824
8. 0 0 0 0 0 0 0 2679 O 0 0 0 0 0 0 102 2781
9. 0 0 0 0 0 0 0 0 2804 0O 0 0 0 0 0 36 2840
10. 0 0 0 0 0 0 0 0 0 2606 O 0 0 0 0 112 2718
11. 0 0 0 0 0 0 0 0 0 0 2688 0 0 0 0 20 2708
12. 0 0 0 0 0 0 0 0 0 0 0 2658 0 0 0 389 3047
13. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14. 0 0 0 0 0 0 0 0 0 0 0 0 0 2715 0 49 2764
15. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2826 52 2878
Column
Total 2430 2591 2815 2642 2672 2506 2720 2679 2804 2606 2688 2658 0 2715 2826 1374 38726
Accuracy Assessment based upon omission error (diagonal element / row total)
(1-15) 93% 99% 100% 97% 97% 98% 96% 96% 99% 96% 99% 87% 0% 98% 98%

Mean number of pixels per polygon (class) = 2668

Number of pixels per average pelygon based upci selection criteria = 2655

U diagonal elements = 37352
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Table 3 Error Matrix Resulting From Classifying Training Set Pixels Image Set Bluegel

Training Set Data

Classes 1 through 15and Null Class

1 2 3 4 5 6 7 8 9
Classification
Data
1. 2698 0 0 0 0 Q 0 0 0
2. 0 2641 0 0 0 0 0 0 0
3 0 0 2846 0 0 0 0 0 0
4, 0 0 0 2713 0 0 0 0 0
5. 0 0 0 0 2767 0 0 0 0
6. 0 0 0 0 0 2675 0 0 0
7. 0 0 0 0 0 0 2849 0 0
8. 0 0 0 0 0 0 0 2709 0
9. 0 0 0 0 0 0 0 0 2908
10. 0 0 0 0 0 0 0 0 0
11. 0 0 0 0 0 0 0 0 0
12. 0 0 0 0 0 0 0 0 0
13. 0 0 0 0 0 0 0 0 0
14, 0 0 0 0 0 0 0 0 0
15. 0 0 0 0 0 0 0 0 0
Column

Total 2698 2641 2846 2713 2767 2675 2849 2709 2908
Accuracy Assessment based upon omission error (diagonal element / row total)
(1-16) 99%  98% 98% 97% 100% 88% 98% 97% 99%
Mean number of pixels per polygon (class) = 2749

Number of pixels per average polygon based upon selection criteria = 2655

! diagonal elements = 38484
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Table 4 Error Matrix Resulting From Classifying Training Set Pixels Image Set Greengel

e Training_Set Data Classes 1 through 15 and Null Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Nuli  Total
Classification
Data
1. 2616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 492 3108
2. 0 2665 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2673
3. 0 0 2809 0O 0 0 0 0 0 0 0 0 0 0 0 6 2815
4, 0 0 0 2696 O 0 0 0 0 0 0 0 0 0 0 49 2745
5, 0 0 0 0 2676 0 0 0 0 0 0 0 0 0 0 21 2697
6. 0 0 0 0 0 2519 0 0 0 0 0 0 0 0 0 91 2610
7. 0 0 0 0 0 0 2849 0 0 0 0 0 0 0 0 30 2879
B. 0 0 0 0 0 0 0 2719 0 0 0 0 0 0 0 64 2783
9, 0 0 0 0 0 0 0 0 2754 0 0 0 0 0 0 41 2795
10. 0 0 0 0 0 0 0 0 0 2627 O 0 0 0 0 252 2879
11, 0 0 n 0 0 0 0 0 0 0 2755 0 0] 0 0 17 2772
12, 0 0 0 0 0 0 0 0 0 0 0 2098 0O 0 0 55 2153
13, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14, 0 0 0 0 0 0 0 0 0 0 0 0 0 2756 0 22 2778
15. 0 C 0 0 0 0 0 0 0 0 0 0 0 0 2864 42 2906
Column

Total 2616 2665 2809 2696 2676 2519 2849 2719 2754 2627 2755 2098 O 2756 2864 1190 38593
Accuracy Assessment based upon omission error (diagonal element / row total)

(1-15) 84°%  100% 100% 98% 99% 97% 99°,  08% 99% 91% 99% 97% 0% 99%  99%

Mean number of pixels per polygon (class) = 2672

Number of pixels per average polygon based upon selection criteria = 2655

U diagonal elements = 37403



92

Table 5 Error Matrix Resulting From Classifying Training Set Pixels lmage Set Redgel

Training Set Data Classes 1 through 15 and Null Class

1 2 3 4 5 6 7 8 9 10
Classification
Data
1. 2644 0 0 0 0 0 0 0 0 0
2. 0 2570 0 0 0 0 0 0 0 0
3. 0 0 2900 0 0 0 0 0 0 0
4. 0 0 0 2683 O 0 0 0 0 9
5. 0 0 0 0 2737 O 0 0 0 0
6. 0 0 0 0 0 2653 0 0 0 0
7. 0 0 0 0 0 0 2805 0 0 0
8. 0 0 0 0 0 0 0 2619 0 0
9. 0 0 0 0 0 0 0 0 2842 0
10. 0 0 0 0 0 0 0 0 0 2644
11, 0 0 0 0 0 0 0 0 0 0
12. 0 0 0 0 0 0 0 0 0 0
13. 0 0 0 0 0 0 0 0 0] 0
14, 0 0 0 0 0 0 0 0 0 0
15. 0 0 0 0 0 0 0 0 0 0
Column

Total 2644 2570 2900 2689 2737 2653 2805 2619 2842 2653
Accuracy Assessment based upon omission error (diagonal element / row total)
(1-15) 80% 78% 95% 92% 88% 94% 99% 99% 100% 93%
Mean number of pixels per polygon (class) = 2693

Number of pixels per average polygon based upon selection criteria = 2655

V. diagonal elements = 37714
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Table 6 Error Matrix Resulting From Classifying Training Set Pixels Image Set SRCBLUE

Training Set Data Classes 1 through 15 and Null Class

1 2 3 4 5 6 7 8 9 10 11
Classification
Data
1. 2671 0 0 0 0 0 0 0 0 0 0
2. 0 2588 0 0 0 0 0 0 0 0 0
3. 0 0 2825 0 0 0 0 0 0 0 0
4, 0 0 0 2657 O 0 0 0 0 9 0
5. 0 0 0 0 2684 Q 0 0 0 0 0
6. 0 0 0 0 0 2630 O 0 0 0 0
7. 0 0 0 0 0 0 2824 0O 0 0 0
8. 0 0 0 0 0 0 0 2658 0 0 0
9. 0 0 0 0 0 0 0 0 2780 0 0
10. 0 0 0 0 0 0 0 0 0 2647 0
11. 0 0 0 0 0 0 0 0 0 0 2694
12 0 0 0 0 0 0 0 0 0 0 0
13. 0 0 0 0 0 0 0 0 0 0 0
14, 0 0 0 0 0 0 0 0 0 0 0
15, 0 0 0 0 0 0 0 0 0 0 0
Column

Total 2671 2588 2825 2657 2684 2630 2824 2658 2780 2647 mmoa.

Accuracy Assessment based upon omission error (diagonal element / row total)
(1-15) 92% 98% 99% 98% 95% 98% 97% 95% 97% 96% 98%
Mean number of pixels per polygon (class) = 2679

Number of pixels per average polygon based upon selection criteria = 2655

Y. diagonal elements = 37509
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Table 7 Error Matrix Resulting From Classifying Training Set Pixels image Set SRCGREEN

— Training Set_Data Classes 1 through 15 and Null Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Null  Total
Classification
Data
1. 2630 O 0 0 0 0 0 0 0 0 0 0 0 Q 0 93 2723
2. 0 2573 0 0 0 0 0 0 0 0 0 0 0 0 0 939 3512
3. 0 0 2736 0 0 0 0 0 0 0 0 0 0 0 0 69 2805
4, 0 0 0 2632 0 0 0 0 0 0 0 0 0 0 0 348 2980
5. 0 0 0 0 2691 0 0 0 0 0 0 0 0 0 0 93 2784
6. 0 0 0 0 0 2625 0 0 0 0 0 0 0 0 0 89 2714
7. 0 0 0 0 0 0 2767 0 0 0 0 0 Q 0 0 83 2850
8. 0 0 0 0 0 0 0 2640 O 0 0 0 0 0 0 62 2702
9. 0 0 0 o 0 0 0 0 2838 0 0 0 0 0 0 32 2871
10. 0 0 0 0 0 0 0 0 0 2583 0 0 0 0 0 222 2815
11. 0 0 0 0 0 0 0 0 0 0 2672 0 0 0 0 58 2730
12. 0 0 0 0 0 0 0 0 0 0 0 2278 0 0 0 4 2282
13. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14, 0 0 0 0 0 0 0 0 0 0 0 0 0 2770 0 7 2777
15, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2807 95 2902
Column
Total 2630 2573 2736 2632 2691 2625 2767 2640 2839 2593 2672 2278 0 2770 2807 188039133

Accuracy Assessment based upon omission error (diagonal element / row total)

(1-1) 97% 73% 9B% 88% 97% 97% 97% 98% 99% 92% 98% 100% 0% 100% 97%
Mean number of pixels per polygon (class) = 2661

Number of pixels per average polygon based upon selection critetia = 2655

3. diagonal elements = 37253
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Table 8 Error Matrix Resulting From Classifying Training Set Pixels Image Set SRCRED

) Training Set Data Classes 1 through 15 and Null Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Null Total
Classification
Data
1. 2523 0 0 0 0 0 0 0 0 0 0 0 0 0 0 190 2713
2. 0 2575 0 0 0 0 0 0 0 0 0 0 0 0 0 603 3178
3. 0 0 2780 0 0 0 0 0 0 0 0 0 0 0 0 22 2802
4. 0 0 0 2640 O 0 0 0 0 0 0 0 0 0 0 54 2694
5. 0 0 0 0 2609 O 0 0 0 0 0 0 0 0 0 61 2760
6. 0 0 0 0 0 2568 0 0 0 0 0 0 0 0 0 645 3213
7. 0 0 0 0 0 0 2741 0 0 0 0 0 0 0 0 46 2787
8. 0 0 0 0 0 0 0 2579 0 0] 0 0 0 0 0 186 2765
9. 0 0 0 0 0 0 0 0 2744 O 0 0 0 0 0 97 2841
10. 0 0 0 0 0 0 0 0 ¢ 2569 O 0 0 0 0 391 2960
11. 0 0 0 0 0 0 0 0 0 0 2652 0 0 0 0 365 3017
12. 0 0 0 0 0 0 0 0 0 0 0 2130 O 0 0 56 2186
13. 0 0 0 0 0 0 0 0 0 0 0 0 3107 O 0 28 3135
14, 0 0 0 0 0 0 0 0 0 0 0 0 0 2788 0 7 2795
15. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2783 10 2793
Column :
Total 2523 2575 2780 2640 2699 2568 2741 2579 2744 2569 2652 2130 3107 2788 2783 2761 42639
Accuracy Assessment based upon omission error (diagonal element / row total)
(1-15) 93% 81% 99% 98% 98% 80% 98% 93% 97% 87% 88% 97% 99% 100% 100%

Mean number of pixels per polygon (class) = 2627 *(where n=14). = 2659 *(where n=15)
Number of bixels per average polygon based upon selection criteria = 2655

v ) diagonal elements = 39878
" Fortables 2 through 8. n=14 (zero values for class 13 were omitted to avoid skewed results)



Appendix A
Table 9

COVARIANCE MATRIX FOR IMAGE: broadspe
COMPONENT PICTURES: 4 5 6 (SHORT. MIDDLE, LONG)

434.42 366.25 53492
366.25 487.77 703.73
534.92 703.73 1030.83

CORBELATION MATRIX IS:
1.00 0.80 080
0.80 1.00 099
080 099 1.00

EIGENVALUES ARE:
181747 (0.00 0O.0C
0.00 13055 0.00
0.00 0.00 5.00

EIGENVECTORS ARE:
042 091 0.00
051 -024 082
0.75 -035 -0.57

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND
SHORT 22%

MIDDLE 25%

LONG 53%

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT
PC1 93%

PC2 6.7%

PC3 3%

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENT)
SHORT .859

MIDDLE -0.124

LONG -0.039
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Appendix A
Table 10

COVARIANCE MATRIX FOR IMAGE: bluegel
COMPONENT PICTURES: 4 5 6 (SHORT. MIDDLE, LONG)

624.66 31539 308.42
31539 24369 232.83
308.42 232.83 225.88

CORRELATION MATRIX IS:
1.00 081 082
6.8t 1.00 099
0.82 099 100

EIGENVALUES ARE:
99427 000 000
0.00 9824 0.00
000 000 173

EIGENVECTORS ARE:
0.77 -064 -0.02
046 057 -0.68
045 051 073

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND
SHORT 57%

MIDDLE 22%

LONG 21%

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT
PC1 91%

PC2 8.9%

PC3 1%

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS)

SHORT 971
MIDDLE .361
LONG 063
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Appendix A
Table 11

COVARIANCE MATRIX FOR IMAGE: greengel
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG)

123.95 197.06 271.27
197.06 485.99 660.51
271.27 660.51 910.17

CORRELATION MATRIX IS:
100 080 0.81
0.80 1.00 0.99
0.8t 099 1.00

EIGENVALUES ARE:
1475.01  0.00 0.00
0.00 40.75 0.00
0.00 000 435

EIGENVECTORS ARE:
024 097 0.02
057 -0.15 081
0.78 -0.19 -0.59

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND
SHORT 8%

MIDDLE 32%

LONG 60%

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT
PC1 97%
PC2 2.7%

PC3 3%

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS)
SHORT .827

MIDDLE -0.043

LONG -0.040
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Tabie 2

COVARIANCE MATRIX FOR IMAGE: redgel
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG)

1054.47 366.89 414.27
366.89 193.39 216.18
41427 216.18 246.57

CORRELATION MATRIX IS:
1.00 081 081
0.81 1.00 0.99
081 099 1.00

EIGENVALUES ARE:
1379.61 0.00 0.00
0.00 11264 0.00
0.00 0.00 217

EIGENVECTORS ARE:
0.86 -0.51 0.00
034 057 -075
0.38 065 066

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND
SHORT 71%

MIDDLE 13%

LONG 16%

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT
PC1 92.3%

PC2 7.5%

PC3 2%

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS)
SHORT .983

MIDDLE 435

LONG .061
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Appendix A
Table 13

COVARIANCE MATRIX FOR IMAGE: srcblue
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG)

934.57 565.18 559.09
565.18 522.21 504.69
559.09 504.69 494.47

CORRELATION MATRIX IS:
100 081 082
0.8t 1.00 0099
082 099 1.00

EIGENVALUES ARE:
1769.84 0.00 0.00
0.00 178.09 0.00
0.00 0.00 332

EIGENVECTORS ARE:
069 -0.72 -0.02
0.52 051 -068
0.51 046 073

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND
SHORT 48%

MIDDLE 27%

LONG 25%

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT
PC1 90.7%

PC2 9.1%

PC3 2%

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS)
SHORT .949

MIDDLE .297

LONG .059
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Appendix A
Table 14

COVARIANCE MATRIX FOR IMAGE: srcgreen
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG)

908.30 534.54 539.86
534.54 490.87 489.93
539.86 489.93 495.58

CORRELATION MATRIX IS:
1.00 080 0.80
0.80 100 0.99
0.80 099 1.00

EIGENVALUES ARE:
1706.37 0.00 0.00
0.00 185.09 0.00
0.00 000 328

EIGENVECTORS ARE:
069 -072 -0.01
0.5t 049 -0.M
051 048 0.71

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND
SHORT 48%

MIDDLE 26%

LONG 26%

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT
PC1 90%

PC2 9.8%

PC3 2%

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS)
SHORT 945

MIDDLE .300

LONG .057
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Appendix A
Table 15

COVARIANCE MATRIX FOR IMAGE: srcred
COMPONENT PICTURES: 4 5 6 (SHORT, MIDDLE, LONG)

464.60 386.88 562.27
386.88 486.41 700.16
562.27 700.16 1026.53

CORRELATION MATRIX 1S:
1.00 081 0.81
0.81 1.00 0.99
0.81 099 1.00

EIGENVALUES ARE:
184449 0.00 0.00
0.00 127.03 0.00
0.00 0.00 6.03

EIGENVECTORS ARE:
044 090 -0.01
051 -025 083
0.74 -0.37 -0.56

PERCENT OF TOTAL VARIANCE CONTRIBUTED BY EACH BAND
SHORT 23%

MIDDLE 25%

LONG 52%

PERCENT OF VARIANCE EXPLAINED BY PRINCIPAL COMPONENT
PC1 93.3%

PC2 6.4%

PC3 3%

FACTOR LOADINGS (CORRELATION OF BANDS TO COMPONENTS)
SHORT .876

MIDDLE -0.127

LONG -0.042



103

Image_Set [%var S  [%var M %var L |F loads S |F loads M |F_loads L
broadspe 22 25 53 0.859 -0.124 -0.039
biuegel 57 22 21 0.971 0.361 0.063

greengglrwr i ) 8] W 7 732 60 0.827 -0.043 -0.04
redgel 71

dgel | 71 13 16 0.983 0.435 0.061
'SRCBLUE | 48 27 25 0.949 0.297 0.059
SRCGREEN; 48, 26/ 26 0.945 0.3 0.057
SRCRED | 23 25 52 0.876 -0.127 -0.042
mean | 39.57143 24.28571| 36.14286
var 502.2857, 33.90476/ 327.8095

stand dev | 22.412|  5.823  18.106

t

Stats for Sub-set Broadspectrum and Gels (Row 2 through b, Col. B through D)
mean 39.5 23 37.5

var | 865.6667| 62| 493.6667
stand_dev | 25.23886] 7.874008] 22.21861

Appendix A Table 16 Factor Loadings



Bluegel

Blue 0.05(88.1%)

Green 0.22 (59.6%)

Red  1.45(3.6%)

Neutral 0.27 (53.2%)
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Appendix A
Table 17

Transmission Densitometry Optical Counts For Gels

Percent Transmittance

Greengel Redgel

1.12 (7.6%) 0.79 (16.1%)
0.17 (66.8%) 1.48 (3.3%)
2.02 (.9%) 0.02 (94.4%)
0.23 (58.3%) 0.31 (48.5%)
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Chart 1
X Variable = Broadspectrum Red
Y Variable = Bluegel Red
Goodness of Fit = .980986
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160 -
Chart 2
144 _ X  Variable = Broadspectrum Red
Y Variable = Greengel Red
Goodness of Fit = .996620
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160 i
i Chart 3
144 § X Variable = Broadspectrum Red
| Y Variable = Redgel Red
Goodness of Fit = .985623
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Chart 4
X Variable = Broadspectrum Red
Y Variable = SRCBLUE Red
Goodness of Fit = .979139
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Chart 5
X Variabie = Broadspectrum Red
Y Variabie = SRCGREEN Red
Goodness of Fit =.996703
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Chart 6
X Variable = Broadspectrum Red
Y Variable = SRCRED Red
Goodness of Fit = .986274
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Chart 7 .
X Variable = Broadspectrum Green
Y Variable = Bluegel Green
Goodness of Fit = .994430
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Chart 8

X Variable = Broadspectrum Green

Y Variable = Greenge! Green
Goodness of Fit = .998383
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Chart 9
X Variable = Broadspectrum Green
Y Variable = Redgel Green
Goodness of Fit = .992527
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Chart 10

X Variable = Broadspectrum Green
Y Variable = SKT”BLUE Green
Goodness of Fit = .993121
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Chart 11

X Variable = Broadspectrum Green
Y Variable = SRCGREEN Green

Goodness of Fit = .998643
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Chart 12
X Variable = Broadspectrum Green
Y Variable = SRCRED Green
Goodness of Fit = .994310
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Chart 13
X  Variable = Broadspectrum Blue
Y Variable = Bluegel Blue
Goodness of Fit = .999031
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Chart 14
X Variable = Broadspectrum Blue
Y Variable = Greengel Blue
Goodness of Fit = .980864
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Chart 15
X Variable = Broadspectrum Blue
Y Variable = Redgel Blue
Goodness of Fit = 991175
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Chart 16

‘ X Variable = Broadspectrum Biue

1 Y Variable = SRCBLUE Blue

} Goodness of Fit = .999128
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Chart 17
X Variable = Broadspectrum Blue
Y Variable = SRCGREEN Biue
Goodness of Fit = .992327
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Chart 18
X  Variable = Broadspectrum Blue
Y Variable = SRCRED Blue
Goodness of Fit = .989639
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