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Abstract 

Many graph partition problems seek a partition into parts with certain internal constraints 

on each part, and similar external constraints between the parts. Such problems have been 

traditionally modeled using matrices, as the so-called M-partition problems. More recently, 

they have also been modeled as trigraph homomorphism problems. This thesis consists of 

two parts. In the first part, we survey the literature dealing with both general and restricted 

versions of these problems. Most existing results attempt to classify these problems as NP- 

complete or polynomial time solvable. In the second part of the thesis, we investigate which 

of these problems can be characterized by a finite set of forbidden induced subgraphs. We 

develop new tools and use them to find all such partition problems with up to five parts. 

We also observe that these problems are automatically polynomial time solvable. 

Keywords: matrix partitions; forbidden subgraphs; minimal obstructions; generalized colour- 

ings; trigraph homomorphisms 
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Chapter 1 

Introduction 

A trigraph H consists of a set of vertices V(H) and two symmetric binary relations E(H)  

and N(H)  such that E(H) U N(H) = V(H) x V(H). Let m = IV(H)I. The adjacency 

matrix of a trigraph adj(H) is defined to be a symmetric m x m matrix MH (with each 

vertex v E V(H) corresponding to one row and one column of MH over { O , l ,  *) such that 

MH has the entries: 

Figure 1.1 illustrates a trigraph and its corresponding adjacency matrix. In this figure 

(and all future figures of trigraphs), we use solid lines to indicate pairs in the relation E(H) 

and dotted lines to indicate pairs in the relation N(H).  

X Y Z  
x o *  1 
y * 1 0  
Z l O *  

Figure 1.1: A trigraph and its adjacency matrix 
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We will refer to the pair uv as a 0-edge, 1-edge or *-edge when MH(u, v) = 0, MH(u, v) = 

1 and MH(u, v) = * respectively. Likewise a vertex v is referred to as a 0-vertex, 1-vertex 

or *-vertex when MH(v, v) = 0, MH(v, v) = 1 and MH(v, v) = * respectively. Note that v 

is a 0-vertex if and only if the loop vv is a 0-edge, v is a 1-vertex if and only if the loop vv 

is a 1-edge, and v is a *-vertex if and only if the loop vv is a *-edge. 

A graph G (in the usual meaning of graphs without loops and multiple edges) consists 

of a set of vertices V(G) and one binary relation E(G) on V(G). A pair uv in the relation 

E(G) is commonly referred to as an edge in G. Note that there are two ways (conventions) 

in which a graph G can be viewed as a trigraph H.  

Convention 1: G can be viewed as a trigraph H with 

Convention 2: G can be viewed as a trigraph H with 

Let u, v be two vertices in V(G). The first convention adds a pair uv in N(H)  when 

uv $ E(G), and the second convention adds every possible pair uv to N(H). Thus, graphs 

are viewed as a subset of trigraphs. Both conventions are useful depending on the situation 

in which the graph is being used. The precise details of when each convention is used will 

be addressed later in this chapter. To illustrate these two conventions consider graph G and 

trigraphs HI, H2 in Figure 1.2. Applying convention 1 to graph G results in the trigraph 

H I  and applying convention 2 to graph G results in the trigraph H2. 

1.1 Homomorphism 

A homomorphism of a trigraph G to a trigraph H is a mapping : V(G) + V(H) such that 

the following properties hold: 
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Figure 1.2: A graph and the result of applying convention 1 and 2 

uv E E(G) implies f (u) f (v) E E(H)  

uv E N(G) implies f (u) f (v) E N(H) 

A trigraph G that has a homomorphism to trigraph H is said to be H-colourable or 

admit an H-colouring. The Trigraph Homomorphism Problem is defined for a fixed trigraph 

H as follows. 

Instance: A trigraph G. 

Problem: Is there a homomorphism of G to H? (i.e., is G H-colourable?) 

Homomorphism applies to graphs as well. A homomorphism of a graph G to a graph H 

is a mapping : V(G) + V(H) such that uv E E(G) implies f (u) f (v) E E(H).  A homomor- 

phism of a graph G to a graph H can be restated as a trigraph homomorphism if we apply 

the conventions stated earlier. Let G' be the resulting trigraph from applying convention 

1 to graph G and HI be the resulting trigraph from applying convention 2 to graph H. It 

follows from the construction of GI and HI that there is a (graph) homomorphism of G to H 

if and only if there is a (trigraph) homomorphism of G' to H'. Note that when converting 

a graph to a trigraph, convention 1 is always used for the input graph G, and convention 2 

is always used for the fixed graph H. 

In this thesis we focus on situations in which G is a graph and H a trigraph. A ho- 

momorphism of a graph G to a trigraph H is a mapping f : V(G) -+ V(H) such that the 

following holds. 

uv E E(G) implies f (u) f(v) E E(H) 
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uv 4 E(G) and u # v implies f (u) f (v) E N(H)  

The Basic Trigraph Homomorphism Problem is defined for a fixed trigraph H as follows. 

Instance: A graph G. 

Problem: Is there a homomorphism f of G to H ?  

A homomorphism f can also be viewed as a partition of the set of vertices V(G) in G, 

into sets f-'(x), x E V(H). In other words, for each x E V(H), consider fP'(x) = {v E 

V(G) : f (v) = x) to be the sets that partition V(G). 

Other types of homomorphisms that we will review in Chapter 2 are surjective homo- 

morphisms and list homomorphisms. Let G be a graph and H a trigraph. A surjective 

homomorphism of G to H is a homomorphism f of G to H such that for all x E V(H), the 

set fP'(x) is non-empty. Now let G be a graph with lists L, C V(H) for all v E V(G). A 

list homomorphism of G to H is a homomorphism f of G to H such that for all v E G, we 

have f (v) E L,. 

Let G be any (input) graph and M be a fixed symmetric m x m matrix over {O,1 ,  a). The 

M-partition problem first introduced in [18] is defined for a fixed m x m matrix M over 

{0,1, *) as follows: 

Instance: A trigraph G. 

Problem: Is there a partition of the vertices V(G) into m parts PI,. . . , P, such that if 

M(i ,  j) = 0 every vertex placed in Pi is non-adjacent with every vertex placed in Pj, and if 

M(i ,  j) = 1 then every vertex placed in Pi is adjacent to every vertex placed in Pj. Note 

that if M (i, j) = * then there are no restrictions on edges between Pi and Pj. 

Note that when M(i, i) = 0, the vertices in Pi induce an independent set in G, and when 

M(i ,  i) = 1 the vertices in Pi induce a clique in G. 

Let H be a trigraph and MH its adjacency matrix. The MH-partitiOn problem corre- 

sponds to the trigraph homomorphism problem on trigraph H .  Since H and MH define an 

identical structure, the trigraph homomorphism problem and the matrix partitions problem 
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are identical problems. It is easy to check that the following terminology is used to describe 

the same fact: 

There is a homomorphism of G to H 

G admits an H-colouring 

The M-partition problem was originally defined graphically by 3 kinds of circles and 

3 kinds of edges [18]. An empty circle represents a 0-vertex x E V(H), a crosshatched 

circle represents a 1-vertex y E V(H) and a hatched circle represents a *-vertex z E V(H). 

Similarly a regular (non-bold) edge xy represents a *-edge, a bold edge represents a 1-edge 

and a non-edge represents a 0-edge. Pictorially, Figure 1.3 shows a graphical representation 

of a M-partition as it was originally defined, and a trigraph that represents the identical 

structure. 

Figure 1.3: A trigraph and a M-partition 

1.3 Obstructions 

An obstruction to a trigraph H is a graph G which does not admit an H-colouring. A 

minimal obstruction to a trigraph H is an obstruction G to H such that for any vertex 

v E V(G), the subgraph G - v admits an H-colouring. Thus, any graph G that does 

not admit an H-colouring must have an induced subgraph that is a minimal obstruction. 
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Clearly there is no homomorphism of G to H if and only if G contains an induced subgraph 

isomorphic to a minimal obstruction to H .  Minimal obstructions to trigraph H can be 

viewed as forbidden subgraphs that characterize which graphs G admit a homomorphism to 

H .  

Let H be a trigraph. The complement z of H has V ( H )  = V ( H ) ,  E ( Z )  = N ( H )  and 

N ( H )  = E ( H ) .  Thus, the adjacency matrix adj(H) of H is obtained from the adjacency 

matrix adj(H) of H by exchanging 0's for 1's and 1's for 0's. Since the relations E and N 

are complementary in H and p, we have the following result. 

Proposition 1.3.1 G admits an H-colouring if and only if admits an 27-colouring. 0 

It follows that G is an obstruction to H if and only if is an obstruction to p. 

The focus of this thesis is to find whether a fixed trigraph H has an infinite or a finite set 

of minimal obstructions a. That is, whether there is a finite and complete set of forbidden 

induced subgraphs that characterize whether graph G admits an H-colouring. Note that 

having a finite set of minimal obstructions implies that there is a bound on the size of a 

minimal obstruction while an infinite set of minimal obstructions implies that the size of 

minimal obstructions is unbounded. Let a be a set of minimal obstructions to trigraph H.  

We denote by a the minimal obstructions to z consisting of obstructions for all 0 E a. 

Theorem 1.3.2 If H is a trigraph which has finitely many minimal obstructions, then the 

trigraph homomo~h i sm problem to H can be solved in polynomial time. 

Proof. For a trigraph H that has a finite set of minimal obstructions we can apply the 

algorithm below to check whether a graph G admits an H-colouring. 

Algorithm: Generic Polynomial Time Recognition Algorithm 

Input: A graph G and a finite set S = { 0 1 ,  02,. . . , Op)  of minimal obstructions to 

trigraph H and t = max{lV(O)I : 0 E S ) .  

Action: Check whether each subgraph GI of G consisting of 1 < r < t vertices is iso- 

morphic to Oi in time O(nT) .  If it is, then G does not admit a H-colouring since GI is an 

obstruction to H and does not admit an H-colouring. Since we have a finite set of minimal 

obstructions for H, we can simply check every obstruction in time O(nt ) .  0 
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The trigraph homomorphism problem for a fixed trigraph H having a minimal obstruc- 

tion with at most t vertices can be solved in time O(nt). We note however that more efficient 

algorithms are sometimes possible [37, 401. 

Although a finite set of minimal obstructions for H implies there is a polynomial time 

algorithm for the trigraph homomorphism problem on H, having an infinite set of minimal 

obstructions to H neither implies the trigraph homomorphism problem on H is polynomial 

time solvable nor that it is NP-complete. For example, both the 2-colouring and 3-colouring 

problem modeled by trigraphs HI  and H2 in Figure 1.4 respectively have an infinite set 

of minimal obstructions. For the 2-colouring problem it is the set a1 = {C2n+l : n > 01, 

and for the 3-colouring problem 02 contains the set {C2n+l + u : n > 0). The 2-colouring 

problem is known to be polynomial time solvable, while the 3-colouring problem is known 

to be NP-complete [27]. 

Figure 1.4: Trigraphs corresponding to a Zcolouring and 3-colouring 

1.4 Summary of results 

In this thesis we look at undirected graphs and trigraphs, that is, graphs and trigraphs 

with symmetric relations N(H), E(H) and symmetric adjacency matrices. Relaxing these 

restrictions leads to the study of digraph partitions and directed trigraph homomorphisms 

[21]. It is obvious that for trigraphs H with a *-vertex, an H-colouring of a graph G is 

always possible. Thus, in our results and discussions from Chapters 3 to 7, we shall assume 

that trigraphs do not have any *-vertices. 

We will first review some known results and tools in Chapter 2. In Chapter 3, we will 

prove that all trigraphs with an induced subtrigraph isomorphic to B or B in Figure 1.5 



CHAPTER 1. INTRODUCTION 

have infinitely many minimal obstructions. 

Figure 1.5: A trigraph B and its complement B 

In Chapter 4, we define two trigraph families that have finitely many minimal obstruc- 

tions. In Chapter 5, we show the precise minimal obstructions for all trigraphs with up to 

two vertices. For trigraphs with up to five vertices, we show that the only trigraphs with in- 

finitely many minimal obstructions have an induced subtrigraph isomorphic to B or B, and 

all other trigraphs have finitely many minimal obstructions. Finally, in Chapter 6, we will 

give an example of a trigraph with six vertices that does not have an induced subtrigraph 

isomorphic to B or B, but still has infinitely many minimal obstructions. 



Chapter 2 

A survey of existing results 

Since its introduction by Feder et. al. in [18], the M-partition problem, later modeled as a 

trigraph homomorphism problem, has been studied by many [14, 15, 17, 18, 19, 20, 211. In 

this chapter, we give an overview to a selection of known results in this area and introduce 

some terminology and techniques commonly used in solving these types of problems. In 

addition we will show that trigraph homomorphisms can model a variety of interesting graph 

theoretic concepts that have been studied in the past. The study of trigraph homomorphisms 

is motivated in part by the study of these different concepts since trigraph homomorphism 

model, unifies, and in many cases generalizes, these concepts. A majority of the terminology 

and techniques that are given in this chapter are adapted from [14, 15, 17, 18, 19, 20, 211, 

to correspond to the trigraph homomorphism terminology. 

2.1 Terminology 

We first introduce some terminology that will come up in our literature review and in 

various parts of the thesis. Four common types of trigraph homomorphism problems will be 

introduced. In addition, three well-known graph families, and two trigraph families will also 

be defined. We will later review some general results as well as some special cases pertaining 

to these different families. 
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2.1.1 Variations of t rigraph homomorphisms 

There are four common variations of trigraph homomorphisms that we consider in our re- 

view: an (ordinary) homomorphism (formulated in Chapter I), a surjective homomorphism, 

a labeled homomorphism and a list homomorphism. 

The (ordinary) homomorphism variation is perhaps the most natural way to think of 

the trigraph homomorphism problems. Let G be a graph and H a trigraph. In this case, 

one simply seeks a homomorphism f of G to H without additional restrictions. The Basic 

Pigraph Homomorphism Problem is defined for a fixed trigraph H as follows: 

Instance: A graph G. 

Problem: Is there a homomorphism f of G to H ?  

As we will see, all other variations of the trigraph homomorphism problem that we 

consider adds restrictions on where vertices of G may map to. 

The Su jective Homomorphism Problem is defined for a fixed trigraph H as follows: 

Instance: A graph G. 

Problem: Is there a homomorphism f of G to H such that I f  - l(x) I > 0 for all x E V(H)? 

Recall that a surjective homomorphism is a homomorphism with the added restriction 

that f maps to every vertex of H at least one vertex of G. Surjective homomorphisms 

are used to model many different kinds of partition problems. They include certain cutset 

problems which will be explained in more detail in a later section. 

The Labeled Homomorphism Problem is defined for a fixed trigraph H as follows: 

Instance: A graph G with vertices v E V(G) labeled A or B. 

Problem: Is there a homomorphism f of G to H such that f (v) is a 0-vertex for each 

A-labeled vertex v and f ( v )  is a 1-vertex for each B-labeled vertex v. 

Finally, the List Homomorphism Problem is defined for a fixed trigraph H as follows: 

Instance: A graph G and a list L, E V(H) for all v E V(G). 

Problem: Is there a homomorphism f of G to H such that f (v) E L, for all v E V(G)? 
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The list trigraph homomorphism problem is the most general of all the variations men- 

tioned. In particular, a polynomial time algorithm for the list trigraph homomorphism 

problem implies a polynomial time algorithm for the other three. For example, an instance 

G of the basic trigraph homomorphism problem for a trigraph H can be described as an 

instance for the list trigraph homomorphism problem for H, if we set all lists L, = V(H) 

for vertices v E V(G). Thus, we can formulate the following theorem. 

Theorem 2.1.1 [18] A mapping f is  a homomorphism of G t o  H i f  and only if it is  a list 

homomorphism with respect to  the list L,. 0 

Below, we describe a polynomial time algorithm that uses a solution to list homomor- 

phism to solve the surjective trigraph homomorphism problem. 

Algorithm: Solving the surjective trigraph homomorphism problem with a list homomor- 

phism algorithm. 

Let H be a fixed trigraph with vertices XI, .  . . , x,. 

Input: A graph G. 

Action: For all tuples (vl,. . . v,) of vertices of G we proceed as follows: First, assign 

each vi to xi. In other words, we assign lists L,, = {xi) and lists L, = V(H) for all vertices 

u # vi in G. We then apply our list homomorphism algorithm to H and G with respect to 

our constructed lists L,, and L,. If there is a list homomorphism of G to H ,  then we have a 

surjective homomorphism of G to H .  Otherwise, we continue to the next tuple (vl , .  . . , v,). 

Over all tuples of m vertices of G, if none admits a list homomorphism of G to H, then G 

does not admit a surjective homomorphism to H .  

Theorem 2.1.2 [18]There exists a surjective homomorphism of G to  H i f  and only if there 

exists a tuple (vl, . . . urn) of vertices of G and a list homomorphism of G t o  H with respect 

t o  the lists L,, = {xi) for i 5 m, and L, = V(H) for all u # vi i n  G. 0 

For each tuple of m vertices in G, the assignment of lists to these vertices guarantees 

that a list homomorphism f of G to H maps at least one vertex vi of G to each vertex X i  of 

H.  Suppose list homomorphism for trigraph H can be solved in time O(T). By checking all 
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m-tuples in G, we exhaust every possible surjective homomorphism of G to H .  Checking 

all m-tuples can be done in time O(nm). For each assignment we use list homomorphism, 

thus surjective homomorphism can be solved in time O(nmT). Therefore, a polynomial 

time algorithm for list homomorphism implies a polynomial time algorithm for surjective 

homomorphism. 

It is not hard to see that the labeled homomorphism problem is also a special case of 

the list homomorphism problem. An instance G of the labeled homomorphism problem 

for a trigraph H  can be described as an instance of the list homomorphism problem for 

H, if we replace each A-labeled vertex v E V(G) and B-labeled vertex u E V(G) with list 

L, = {x : x is a 0-vertex in H )  and list L, = {x : x is a 1-vertex in H) respectively. Thus 

we can formulate the following theorem. 

Theorem 2.1.3 [I71 A mapping f is a labeled homomorphism of G to H  if and only i f  i t  

is a list homomorphism with respect to lists L, and L,. 

Labeled homomorphisms are especially useful in this thesis as they play a critical role 

in one of the main proofs in Chapter 4. 

2.1.2 Graph families 

In addition to the variations of the trigraph homomorphism problems, there are also results 

to other kinds of trigraph homomorphism problems in which the input graph G is restricted 

to the family of cographs, chordal graphs, or perfect graphs. In some cases, the complexity of 

certain trigraph homomorphism problems that are NP-complete in the general case, become 

polynomial time solvable in the restricted cases. In other restricted cases, the bounds on 

the size of a minimal obstruction may be lowered, improving the efficiency of the generic 

algorithm given in the first chapter. 

Let G be a graph and S a subset of the vertices in G. We denote by G[S] the subgraph 

of G induced by the vertices in set S .  A graph G is a cograph if it has no induced path 

P4 with four vertices [9]. Equivalently [9], G is a cograph if G is a single vertex, or the 

vertices of G (or its complement c) can be partitioned into two sets X and Y such that 

the subgraphs G[X] and G[Y] are cographs and every vertex in X is non-adjacent to every 

vertex of Y. Cographs can be recognized in linear time [9]. 
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Let G be a graph and n the number of vertices in G. Graph G is chordal if it has no 

induced cycle Ct with t > 3 [28]. Equivalently [28], G is chordal if there is an enumeration 

of the n vertices vl, . . . , v, of G, such that for 1 5 i < j < k 5 n the pair vjvk is an edge in 

G whenever the pairs vivj and vivk are edges in G. Again, chordal graphs can be recognized 

in linear time [28]. 

There has been much attention given to the study of perfect graphs. Indeed, both 

cographs and chordal graphs are members of the perfect graph family [9, 281. Let G be a 

graph. Recall, the chromatic number of G, denoted by x(G), is the fewest number of colours 

needed to colour the vertices of G. Recall again, the clique number of G, denoted by w(G), 

is the size of the largest clique in G. Graph G is perfect [28] if the chromatic number is 

equal to the size of the largest clique for the graph itself and all of its induced subgraphs. 

The strong perfect graph theorem, originally conjectured by Berge in the early 19601s, and 

finally proven by Chudnovsky, Robertson, Seymour, and Thomas [lo] in 2003, states that a 

graph G is perfect if and only if it has no induced cycle Czn+1 with n > 1 or its complement 
- 
C2n+l with n > 1 [lo]. Perfect graphs are of interest since they include many well studied 

graph families, strictly including cographs and chordal graphs. The problem of finding the 

chromatic number and clique number for perfect graph is polynomial time solvable [30]. 

Thus, the chromatic number and clique number for cographs and chordal graphs can be 

found in polynomial time as well; however for these special cases, more efficient algorithms 

are possible [28]. 

2.1.3 Special classes of trigraphs 

Let H be a trigraph. We define the sets SA,SB, SC,SD to be a partition of the pairs 

V(H) x V(H) = SA U SB U SC U SD of H as follows. 

SA = {uv : u, v are distinct 0-vertices in V(H)) 

0 SB = {UV : U,V are distinct 1-vertices in V(H)) 

Sc = {uv : u is a 0-vertex and v is a 1-vertex in V(H)) 

SD = {uv : u = v in V(H)) 

Note that sets SA, SB, SC a11 contain edges, and set SD contain all loops or what we 

have referred to as 0-vertices and 1-vertices. Recall that there are no *-vertices in H by our 
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main assumption in Chapter 1. A trigraph H is constant if the sets SA, SB, SC each contain 

only 0-edges, 1-edges or *-edges. In other words, in a constant trigraph, all pairs of distinct 

vertices u, v incident to the same kind of vertices have the same kind of edges. Figure 

2.1 illustrates two constant trigraphs H I  and H2 on four and six vertices respectively. For 

trigraph HI, vertices a, b are 1-vertices and vertices c, d are 0-vertices. The set SA = {ab) 

contains only 1-edges, SB = {cd) contains only 0-edges and Sc = {ac, ad, bc, bd) contains 

only *-edges. A constant trigraph H is also defined in terms of its adjacency matrix MH 

and was originally introduced in [17]. 

Figure 2.1 : Two constant trigraphs 

A trigraph H is normal if the sets SA, SB, SC each contains only *-edges or no *-edges 

(i.e. only 0-edges and 1-edges). In other words, in a normal trigraph, all pairs of distinct 

vertices u, v incident to the same kind of vertices are either all *-edges or no *-edges. Figure 

2.2 illustrates two normal trigraphs H1 and H2 on four and six vertices respectively. For 

trigraph HI, vertices a,  b are 1-vertices and vertices c, d are 0-vertices. The set SA = {ab) 

contains no *-edges, SB = {cd) contains no *-edges and Sc = {ac, ad, bc, bd) contains only 

*-edges. Again, a normal trigraph H is also defined in terms of its adjacency matrix MH 

and was originally introduced in [19]. 

2.2 Problems trigraph homomorphisms can model 

We now give an overview of some problems trigraph homomorphisms can model which 

include many popular partition and characterization problems. We define a selection of 

these problems and we give a detailed explanation of how trigraphs can model them. Some 
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H1 H2 

Figure 2.2: Two normal trigraphs 

of the problems presented are NP-complete in the general case, but when restricted to certain 

families of graphs, some problems become polynomial time solvable. These restricted forms 

of trigraph homomorphisms will be presented in a later section. 

2.2.1 m-colouring 

An m-colouring [28] of a graph G is a partition of the vertices V(G) into sets V(G) = 

Vl U . . . U V, such that all vertices in each set V, are independent in G. The following 

dichotomy is known for m-colouring. 

Theorem 2.2.1 [27] Finding an m-coloum'ng is polynomial time solvable zf and only if 

m 5 2 and NP-complete otherwise. 0 

Finding a colouring or finding the chromatic number of a graph is useful for many 

graph theoretic problems. Many types of scheduling problems can be modeled as colouring 

problems. Some common examples are the scheduling of final exams for a university, or 

the scheduling of departure times of planes for an airport terminal. These and many other 

examples can be found in most graph theory texts [8, 26, 29, 451. 

Let G be a graph and H a trigraph on m 0-vertices with only *-edges. It is easy to see 

that a homomorphism of the trigraph H models m-colouring. All vertices mapped to the 

same vertex in H must be independent and there are no restrictions among vertices mapped 

to different vertices in H. 
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Proposition 2.2.2 [33] There is  an  m-colouring of G if and only i f  G admits an  H -  

colouring. 0 

For example, consider the two trigraphs H I ,  H2 illustrated in Figure 2.3. A graph G is 2- 

colourable if and only if there is a homomorphism of G to HI, and a graph G is 3-colourable 

if and only if there is a homomorphism of G to Hz.  

Figure 2.3: Trigraphs used to characterize 2-colourability and 3-colourability 

Let H be a graph with m vertices. Recall from Chapter 1 that an H-colouring of a graph 

G is a homomorphism f of G to H .  The study of graph homomorphism began in the early 

1960's, and was pioneered by Sabidussi, Hedrlin, and Pultr [41, 351. In 1990, the complexity 

of the graph homomorphism problems was completely classified by Hell and Nesetril. 

Theorem 2.2.3 [32] Let H be a fixed graph. If H is  bipartite or contains a loop, then 

the H-colouring problem can be solved i n  polynomial time; otherwise the problem is  NP- 

complete. 0 

Graph homomorphisms are a generalization of graph colouring and have gained much in- 

terest over the past four decades. Graph homomorphisms have been used for the recognition 

of certain graph families. They arise in other areas of computer science and mathematics 

such as complexity theory, artificial intelligence, telecommunications and statistical physics 

WI. 

Let G and H be graphs and H' be the trigraph that results from applying convention 2 

(from Chapter 1) to H. 
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Proposition 2.2.4 Graph G admits a n  H-colouring if and only if it admits a n  H'-colouring. 

0 

A detailed survey of graphs and homomorphisms can be found in [32]. 

2.2.3 Split graphs 

A graph G is split [28] if its vertices can be partitioned into two sets V(G) = VA U VB such 

that vertices in VA are independent in G and vertices in VB induce a clique in G. Split 

graphs are well studied and have many interesting graph theoretic properties. They are 

chordal, and the complement of a split graph G is also a split graph. They can also be 

characterized by three forbidden subgraphs as illustrated in Figures 2.4. 

Theorem 2.2.5 (251 A graph G i s  split if and only if it does no t  contain 2K2 ,  Cq and C5 

as a n  induced subgraph. 0 

Recognition and many optimization problems can be done efficiently for split graphs. 

Note that the recognition of spit graphs can be done in linear time O(n + m) [25]; a great 

improvement to the generic algorithm described in Chapter 1. Later in Chapter 4, we will 

classify a family of graphs that closely resembles split graphs and show that they too have 

a finite set of minimal obstructions. 

Figure 2.4: Forbidden induced subgraphs for split graphs 

The question of whether a graph G is split is modeled by trigraph homomorphisms as 

well. Consider trigraph H in Figure 2.5. By definition a graph G is split if it can be 

partitioned into a clique and an independent set. In a homomorphism of G to H, vertices 
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mapped to a must be independent and vertices mapped to b must induce a clique. Thus, 

we have the following proposition. 

Proposition 2.2.6 [I71 Let G be a graph and H the trigraph in Figure 2.5 . Graph G is 

split if and only if it admits an H-colouring 0 

Figure 2.5: A trigraph used to characterize split graphs 

2.2.4 (a ,  b)-graphs 

A graph G is an (a,b)-graph [2] if its vertices can be partitioned into sets V(G) = Vl U 

. . . U Va U Va+l U . . . U Va+b such that for 1 5 i < a, vertices in set V, are independent 

in G and for a < j 5 a + b, vertices in set 4 induce a clique in G. In other words, G 

can be partitioned into a independent sets and b cliques. It is not difficult to see that 

(a, b)-graphs are a generalization of split graphs. By definition, a (1, 1)-graph is precisely 

a split graph. When a is greater than 2 or when b is greater than 2, the complexity of 

recognizing an (a, b)-graph is NP-complete and can be be reduced to 3-colouring [27]. In 

[5], Brandstadt et. al. investigated a special case of (a, b)-graphs. They showed that the 

recognition of (2,l)-graphs and (1,2)-graphs are polynomial time solvable. Later in [18], 

Feder et. al. showed more generally that partition problems of a certain type are polynomial 

time solvable. Their original proof implies the following. 

Theorem 2.2.7 [I81 Let G be a graph and a, b # 3 with a + b 5 4. There is a polynomial 

time algorithm to decide whether G is an (a, b)-graph. 0 

The problem becomes more interesting when we restrict graph G to be chordal. Feder 

et. al. showed that there is exactly one forbidden subgraph for a chordal (a, b)-graph. 
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Theorem 2.2.8 [ZO] A chordal graph is an (a, b)-graph if and only if it does not contain 

(b + l)K,+l as an induced subgraph. 0 

They also presented a simple O(n(m + n)) algorithm for the recognition of chordal (a, b)- 

graphs. Again, this is a significant improvement over the generic algorithm from Chapter 

Let H be a trigraph with a 0-vertices and b 1-vertices and only *-edges. 

Proposition 2.2.9 Let G be a graph. Graph G is an (a, b)-graph if and only if it admits 

an H -colouring. 0 

For example, consider trigraphs H I ,  H2 in Figure 2.6. A graph G is a (1,2)-graph if and 

only if there is a homomorphism of G to HI and a graph G is a (2,2)-graph if and only if 

there is a homomorphism of G to Hz.  

Figure 2.6: Trigraphs used to characterize (1,2)-graphs and (2,2)-graphs 

2.2.5 Cutsets 

A cutset in a connected graph G is a set of vertices C c V(G) such that G-C is disconnected. 

Some of these problems require G[C] to be a clique, stable set, or complete bipartite. Cutset 

problems are of interest because certain types come up in solutions to many optimization 

problems [42] and in the recognition of perfect graphs [lo]. 

A clique cutset in a connected graph G is a cutset C such that the subgraph G[C] is a 

clique. Equivalently [46], G has a clique cutset if and only if it can be partitioned into three 
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non-empty sets V(G) = Vl U Vz U V3 such that vertices of V3 induce a clique in G and every 

vertex of Vl is non-adjacent to every vertex of V2 in G. 

Theorem 2.2.10 [.6] Let G be a graph. A clique cutset in  G can be found in  polynomial 

time. 0 

A stable cutset in a connected graph G is a cutset C such that the subgraph G[C] is an 

independent set of vertices. Equivalently [43], G has a stable cutset if and only if it can 

be partitioned into three non-empty sets V(G) = Vl U Vz U V3 such that vertices of V3 are 

independent in G and every vertex if Vl is non-adjacent to every vertex of V2 in G. 

Theorem 2.2.11 [23] Let G be a graph. Finding a stable cutset in  G is NP-complete. 0 

A skew cutset in a connected graph G is a cutset C such that the subgraph G[C] can 

be partitioned into two non-empty sets U and V such that each vertex of U is adjacent to 

each vertex of V. Equivalently [18], G has a skew cutset if and only if it can be partitioned 

into four non-empty sets V(G) = Vl U Vz u V3 U V4 such that every vertex of V2 is adjacent 

to every vertex of V4 in G and every vertex of V; is non-adjacent to every vertex of V3 in G. 

In [18], a quasi-polynomial time algorithm, of complexity (n0( log  n)), is given for finding a 

skew cutset in a graph. It was later shown by du Figueiredo et. al. to be polynomial time 

solvable. 

Theorem 2.2.12 [24] Let G be a graph. A skew cutset in  G can be found in  polynomial 

time. 0 

All three of the cutset problems described can be modeled as a surjective trigraph ho- 

momorphism. 

Proposition 2.2.13 Let G be a graph and H1 the trigraph in  Figure 2.7. There is a clique 

cutset in  G if and only if there is a surjective homomorphism f of G to H1 0 

Note that the vertices of a connected graph G mapped to vertex c in H1 is a clique 

cutset of G. 
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Proposition 2.2.14 Let G be a graph and Hz the trigraph in Figure 2.7. There is a stable 

cutset i n  G if and only if there is a surjective homomorphism f of G to H2 0 

Note that the vertices of a connected graph G mapped to vertex c in H2 is a stable 

cutset of G. 

Proposition 2.2.15 Let G be a graph and H3 the trigraph in  Figure 2.7. There is a skew 

cutset i n  G if and only if there is a surjective homomorphism f of G to H3 0 

Note that the vertices of a connected graph G mapped to vertex c or d in H3 is a skew 

cutset of G. 

Figure 2.7: Trigraphs used to model cutset problems 

Notice that surjective trigraph homomorphisms generalize many cutset problems. Indeed 

it is possible to describe many other types of cutset problems in addition to the ones given 

above. For example, a split graph cutset, in a connected graph G is a cutset C of G such 

that the subgraph G[C] is a split graph. Finding a split graph cutset can be modeled 

by trigraph H I  illustrated in Figure 2.8 in the same way as the previous cutset problems. 

A 2-independent clique cutset in a connected graph is a cutset C such that the subgraph 

G[C] consists of two non-adjacent cliques. Again, finding such a cutset can be modeled by 

trigraph H2 in Figure 2.8. By using trigraphs to model cutset problems, we can restrict 

the cutset to have any property that can be modeled by a trigraph. For example, we may 

restrict the cutset to be an (a ,  b)-graph, n-cliques, or n-independent clique cutset. 
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Figure 2.8: Two trigraphs used to model new cutset problems 

2.2.6 The Winkler problem 

The Wznkler Problem proposed by Winkler in 1998 asks whether a graph G can be parti- 

tioned into four non-empty sets V(G) = Vl U V2 U V3 U V4 with the following restrictions: 

0 every vertex in Vl is non-adjacent to every vertex in V3 

every vertex in V2 is non-adjacent to every vertex in V4 

at least one adjacency between vertices in Vl and V2; V2 and V3; V3 and V4; and V4 

and Vl. 

Equivalently, the problem can be stated as a homomorphism of a graph G to a cycle on 

four vertices C4 with the third restriction. The problem was shown to be NP-complete by 

Vikas a year later in 1441. 

Let G be a graph and H a trigraph with four *-vertices a,  b, c, d such that ab, cd are 

0-edges and the remaining pairs ac, ad, bc, bd are *-edges as illustrated in Figure 2.9. A 

surjective trigraph homomorphism f of G to H with the added restriction that for each 

*-edge zy in H, some vertex in f-l(z) is adjacent to some vertex in f - l ( y )  corresponds to 

the Winkler Problem. 

As we have shown, trigraph homomorphisms of varying types model many different kinds 

of well-known partition and characterization problems. Truly, trigraphs are very versatile 

in modeling these and other types of problems which gives us further motivation to study 

them. 
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Figure 2.9: A trigraph used to model the Winkler problem 

2.3 Tools 

Recall from Chapter 1 that the trigraph homomorphism problem is very similar to the 

graph homomorphism problem. In this section we introduce some tools that will be helpful 

in proving some of the results in this thesis. Some of the results and tools have been taken 

from the study of graph homomorphisms and adapted for trigraphs, others have been taken 

and adapted from the study of M-partition problems and some are specific to trigraphs. 

2.3.1 Retraction and domination 

Let H  be a trigraph and HI an induced subtrigraph of H .  A retraction f of H  to HI is the 

trigraph homomorphism f of H  to HI such that f ( x )  = x  for all x  E V ( H 1 ) .  If there is 

a retraction of H  to HI we say H  retracts to HI, and HI is a retract of H .  Alternatively, 

retractions can be expressed in terms of their adjacency matrices. Recall the adjacency 

matrix of a trigraph H  is denoted by MH. There is a retraction of H  to HI if the following 

conditions hold: 

. f ( x )  = x  for all x  E V ( H 1 )  

Since retracts are not unique, there may be many induced subgraphs of H  that trigraph 

H  retracts to. The core of a trigraph is an induced subtrigraph HI of H  such that HI is a 

retract of H  and there is no proper induced subtrigraph H" of HI that is a retract of H .  Let 

H1, H2 be two trigraphs with cores Hi ,  H i  respectively. Trigraph H1 is homomorphically 

equivalent to Hz if and only if Hi is isomorphic to Hi.  We have adapted the preceding 
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terminology which was originally introduced in [32] for graph homomorphism to apply to 

trigraph homomorphism as well. Figure 2.10 illustrates three homomorphically equivalent 

trigraphs HI, H2, H3, with a core isomorphic to H3. 

Figure 2.10: Three homomorphically equivalent trigraphs 

Let G be any graph and H a trigraph with adjacency matrix MH. Let u ,v  be two 

distinct vertices in H corresponding to two rows and two columns in MH. A row (column) 

u dominates row (column) v in matrix MH if for any w E V ( H )  we have M(u, w) = M(v, w) 

or M(u, w) = *. Domination was introduced by Feder et. al. in [18] as a tool for solving M- 

partition problems. It  was proposed that if u dominates u, then there is a homomorphism of 

G to H if and only if there is a homomorphism of G to H - v. Let Hq be the subtrigraph of 

H after repeated deletion of q dominating vertices in H (we may assume Ho = H). Notice 

that for 0 5 j 5 i 5 q, Hi is a retract of Hj. Thus, if we maximize q and remove all 

dominating vertices from H, the resulting subtrigraph Hq is the core of H. We present the 

following two facts regarding retracts and homomorphically equivalent trigraphs. 

Proposition 2.3.1 Let r be a retraction of trigraph H to core R. Trigraph G admits a 

homomorphism f of G to H if and only if G admits a homomorphism f' of G to R. 
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Proof. (To prove from left to right). Suppose G admits a homomorphism f of G to H .  

Since there is a retraction r of H to R any vertices placed in vertex x E V(H) can be 

placed in r(x) instead. Thus, if there is a homomorphism f of G to H, then there is a 

homomorphism f' = r o f of G to R. (To prove from right to left). Suppose G admits 

a homomorphism f' of G to R. Since R is a core of H, it is isomorphic to some induced 

subgraph of H. Thus, there is a homomorphism f = f' of G to H .  0 

Corollary 2.3.2 Let HI, H2 be two homomorphically equivalent trigraphs. Then the com- 

plete set of minimal obstructions OH, to HI is the same as the complete set of minimal 

obstructions OH, to H2. 

Proof. Since H1 and H2 are hom0m0rphi~a11y equivalent, they have an isomorphic core 

R. Thus by Proposition 2.3.1 OH, = OH,. 0 

A basic technique for solving 'simple' list trigraph homomorphism problems is to reduce 

the problem to the 2-satisfiability problem [18] known to be polynomial time solvable. The 

2-satisfiability problem is defined as follows [27]: 

Instance: A set S of boolean variables and a collection C of clauses over S with each 

clause in C having at most two literals. 

Problem: Is there a satisfying truth assignment for C? 

We will now describe a polynomial time reduction from an instance of the list trigraph 

homomorphism problem to the Zsatisfiability problem. 

Let H be a trigraph with two vertices and G a graph with list L. Suppose each vertex 

v E V(G) is assigned an ordered set (list) L, V(H) containing two elements L, = {a ,  b}  

or one element L, = { a ) .  Let x, be the literal corresponding to vertex v E V(G) and 

S = {x, : v E V(G)} the set of variables. We interpret the truth assignment x, = 1 to mean 

v maps to a and an assignment x, = 0 to mean v does not map to a. We now construct 

clauses for the Zsatisfiability problem from the trigraph homomorphism problem. Note that 

there are two types of clauses. Each type imposes a restriction that corresponds to some 

constraint dictated by the trigraph. 
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The first set of clauses corresponds to constraints that are imposed by each vertex 

b E V(H). Suppose b is a 0-vertex. By definition, any homomorphism f of G to H cannot 

map adjacent vertices u, v E G to b. Thus, for every pair of adjacent vertices u, v in G with 

b E L, and b E L,, we construct a clause that restricts no more than one of u or v to be 

mapped to b. For example, if L, = {a, b) and L, = {b, c), we construct the clause (xu VG). 

Similar clauses are constructed for the case when b is a 1-vertex. For example, again, if 

Lu = {a, b) and L, = {b, c), we construct both the clauses (G V x,) and (xu V xu). 

The second set of clauses corresponds to constraints that are imposed by the 0-edges 

and 1-edges in H. Suppose zz' is a 0-edge in H. Again, by definition, any homomorphism 

f of G to H cannot map adjacent vertices u, v E G to z, z' respectively. Thus, for every 

pair of adjacent vertices u, v in G with z E L, and z' E L,, we construct a clause that 

prevents both u from mapping to z and v from mapping to z' simultaneously. For example, 

if L, = {w, z) and L, = {w, z'), we construct the clause (xu V 2,). Again, similar clauses 

are constructed for the case when zz' is a 1-edge. The collection of all clauses C (from the 

first and second set) become the input to the 2-satisfiability problem. 

The same technique also applies as long as each list Li has at most two vertices. We can 

now formulate the following theorem. 

Theorem 2.3.3 [I81 There is a polynomial time algorithm which solves any list M-partition 

problem restricted to the instances in which the list of every vertex of the input graph has at 

most two vertices. 0 

2.3.3 Odd girth and chromatic number 

Erdos [12] first showed that there exist graphs with arbitrarily large chromatic number and 

girth. The construction of these graphs is difficult. The following slightly weaker statement 

is easy to prove. 

Theorem 2.3.4 [33] Let g and k be positive integers, g 2 3 odd. Then there exists a graph 

S(g, k) with odd girth greater than g and chromatic number greater than k .  0 

The only difference between the two theorems is that the weaker one allows short even 

cycles. This result will be used in the next chapter to show the construction of infinitely 

many minimal obstructions to certain types of homomorphisms. 
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2.3.4 Labeled and unlabeled graphs 

A graph G is labeled if each vertex v E V(G) is assigned an A or B label. Let G be a labeled 

graph and H be a trigraph. Recall a labeled homomorphism of G to H is a homomorphism 

of G to H such that A labeled vertices map to 0-vertices and B labeled vertices map to 

1-vertices. As with the (unlabeled) homomorphism problems, a labeled obstruction G is a 

labeled graph that does not admit a labeled homomorphism of G to H. A minimal labeled 

obstruction is a Iabeled obstruction such that for any vertex v E V(G), the subgraph G - v 

admits a labeled homomorphism of G to H. 

Let Ho and HI be the induced subgraphs of H on 0-vertices and 1-vertices respectively. 

A graph G that admits both a homomorphism to Ho and a homomorphism to HI has at 

most r = IV(Ho) 1 x IV(H1) 1 vertices [18]. Feder and Hell [15] proved that a bound on the size 

of a minimal labeled obstruction to H implies a bound on the size of a minimal (unlabeled) 

obstructions to H .  In other words, if H has finitely many minimal labeled obstructions then 

H has finitely many minimal (unlabeled) obstructions. 

Theorem 2.3.5 [15] If every minimal labeled obstruction to H has at most t vertices, then 

an minimal (unlabeled) obstruction to H has at most 2t2'" vertices. 0 

This theorem will be used to help us prove finitely many minimal obstructions in some 

of the more difficult cases of trigraphs. Examples of these difficult trigraphs will come up 

in Chapters 4 and 5. In addition, in Chapter 5 we will prove the converse of Theorem 2.3.5 

stated below. 

Theorem 2.3.6 Let H be a trigraph. If every minimal unlabeled obstruction to H has at 

most t vertices, then a minimal labeled obstruction to H has at most t vertices. 0 

2.4 General results 

We now review how the tools discussed above are used to derive general results on M- 

partitions of arbitrary graphs. These have been focused on small matrices (when the size 

of matrix M is at most four) [7, 18, 241, and on matrices without * entries [14]. In trigraph 

terminology, these problems focus on trigraphs H with at most four vertices, and trigraphs 

H without *-edges. 
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2.4.1 Small matrices 

Feder et. al. investigated in [18] the basic trigraph homomorphism problem on general 

graphs, as well as the more general list trigraph homomorphism problem on general graphs. 

Their results again focused on relatively small trigraphs of no more than four vertices. In 

particular, recall from Theorem 2.3.3 that all list trigraph homomorphism problems for 

trigraphs with two vertices are reducible to 2-SAT, and hence polynomial time solvable. 

They further classified the list trigraph homomorphism problems for all trigraphs on three 

vertices. 

Theorem 2.4.1 [I81 Let H be a trigraph with at most three vertices. Then the list tri- 

graph homomorphism problem on H is NP-complete when H corresponds to the 3-colouring 

problem, or to the stable cutset problem, and is polynomial time solvable otherwise. 0 

When the trigraph H has four vertices, they have only shown that the list trigraph ho- 

momorphism is NP-complete when H has an induced subgraph isomorphic to the trigraphs 

corresponding to the two stated problems (3-colouring and stable cutset). For all other tri- 

graphs with four vertices, they have shown the list trigraph homomorphism problem to have 

a quasi-polynomial time algorithm [18]. Cameron et. al. [7] extended the results and showed 

that up to four vertices, with the exception of the trigraph named the 'stubborn problem' 

illustrated in Figure 2.11 (and its complement), all other list trigraph homomorphism prob- 

lems not classified by Theorem 2.4.2 are indeed polynomial time solvable. Whether there is 

a polynomial time algorithm for stubborn problem still remains open. 

Figure 2.11: Trigraph that models the 'stubborn problem' 

Theorem 2.4.2 [I81 Let H be a trigraph with at most four vertices with no *-vertex. If H 

contains an induced subgraph corresponding to the 3-colouring or stable cutset problem then 
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the list homomorphism problem on H  is NP-complete; and it is polynomial time solvable 

otherwise. 0 

Note that the above theorem implies the classification of all basic trigraph homomor- 

phism problems for trigraphs with four vertices. 

2.4.2 Full homomorphisms 

In this section, we will be discussing M-partitions in the case when the matrix M has 

no * entries; we will do this in the language of full homomorphisms. Let G and H be 

graphs. A full homomorphism of G to H  is a mapping f : V ( G )  t V ( H )  such that uv 

is an edge of G if and only if f ( u )  f (v) is an edge in H .  Again, full homomorphisms can 

be modeled by trigraph homomorphisms. Let GI and HI be the trigraphs resulting from 

applying convention 1 to graphs G  and H  respectively. There is a full homomorphism of G 

to H if and only if there is a trigraph homomorphism of GI to HI. In [14], Feder and Hell 

proved that determining whether G  admits a full homomorphism to H is characterized by 

a finite set of minimal obstructions, and therefore polynomial time solvable. They showed 

that each minimal obstruction 0 to a full homomorphism of graph G to graph H is bounded 

by at most ( k  + 1)(1 + 1) vertices such that k is the number of vertices with loops and 1 is 

the number of vertices without loops in H .  A different proof can be found in [6]. We also 

provide a simple proof that the size of a minimal obstruction to a full homomorphism is 

bounded in Chapter 4.1. 

Theorem 2.4.3 [ I d ]  Let H  be a trigraph with 1 0-vertices and k 1-vertices. Then every 

minimal obstruction to H has at most ( 1  + l ) ( k  + 1)  vertices, and there is at most one 

minimal obstruction with exactly ( 1  + 1) (k  + 1) vertices. 0 

2.4.3 Directed graphs 

Trigraph Homomorphisms can be further generalized if we consider directed graphs and 

directed trigraphs. The adjacency matrix MN of a directed trigraph is not necessarily 

symmetric. In [21], Feder, Hell and Tucker-Nally gave a complete classification of the list 

trigraph homomorphisms for directed trigraphs H  with at most three vertices 
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Theorem 2.4.4 [21] Let G be a directed graph and H a directed trigraph with at most 

three vertices. Then the list trigraph homomorphism problem for H is NP-complete i f  H is 

isomorphic to one of the trigraphs i n  Figure 2.12 and polynomial otherwise. 0 

Figure 2.12: NP-complete directed trigraphs 

Note that the first two trigraphs H I ,  H2 in Figure 2.12 correspond to the 3-colouring 

problem and the stable cutset problem which are well known to be NP-complete. Recall 

that with the exception of the trigraph corresponding to the stubborn problem (and its 

complement), (undirected) list trigraph homomorphisms problems have been classified as 

NP-complete or polynomial time solvable for trigraphs with up to four vertices. Since 

a polynomial time algorithm for the stubborn problem is seemingly difficult, it is likely 

difficult to classify all list trigraph homomorphism problems for all directed trigraphs with 

four vertices. 
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2.5 Homomorphisms of graph families 

So far, the trigraph homomorphism problems that we have discussed applies to general 

graphs. In [16], Feder and Hell showed that all list trigraph homomorphism problems 

are NP-complete or solvable in quasi-polynomial time (n0(log n) ) .  Although some quasi- 

polynomial time algorithms have been improved to polynomial time, a true dichotomy of 

which list trigraph homomorphism problems are NP-complete and which are polynomial 

is still not known. Again, an example of this is the trigraph illustrated in Figure 2.11, 

which corresponds to the 'stubborn problem'. Note that even for the easier variation, basic 

trigraph homomorphism, a dichotomy is not yet known. 

As with many graph theoretic problems, a natural question is to ask the complexity of 

a problem when restricted to certain families of graphs. Indeed, there are results to the 

trigraph homomorphism problem when the input graph is restricted to the family of perfect 

graphs [15], cographs [17], and chordal graphs [19, 201. Many trigraph homomorphism 

problems, when restricted to one of these three families, become polynomial time solvable 

when their counterpart, general graphs, are NP-complete. We note, however, that there are 

still problems that remain NP-complete even in these restricted cases. As well, there are 

some problems where the complexity remains unknown or became unknown in the restricted 

cases. Thus, for certain families of graphs, dichotomy for trigraph homomorphisms (with or 

without lists), may not be known. We will review the main results for each of these three 

graph families below. 

2.5.1 Perfect graphs 

Dichotomy for trigraph homomorphisms (without list) is not known even for perfect graphs. 

The results that are known only apply to restricted families of trigraphs. In 1151, Feder and 

Hell showed that when restricted to normal trigraphs, the trigraph homomorphism problem 

is polynomial time solvable. Recall again that I is the number of 0-vertices in H and k is 

the number of 1-vertices in H. 

Theorem 2.5.1 [15] Let H be a normal trigraph with 1 5 k. A minimal (perfect) obstruc- 

tion to H has at most 2(k + 1)21k+1 vertices 0 
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They also included an improved bound of ( k  + 1)(1 + 1) vertices for three subsets of 

normal trigraphs. Recall SA is the set of edges incident to two 0-vertices, SB is the set of 

edges incident to two 1-vertices, and Sc is the set of edges incident to one 0-vertex and 

one 1-vertex. The first of these subsets is a normal trigraph with the property that sets 

SA, SB, SC all contain no *-edges. Note that this has already been proven for general graphs 

by Theorem 2.4.3. The second subset of normal trigraphs restricts vertices in SB to contain 

only 1-edges, and the third restricts vertices in SB to contain only 0-edges. 

2.5.2 Cographs 

Feder, Hell and Hochstattler [17] were the first to consider trigraph homomorphisms for 

cographs. They showed that when restricted to cographs, there is a bound on the size of a 

minimal obstruction to every trigraph homomorphism problem. 

Theorem 2.5.2 [I71 Let H be a trigraph with 1 0-vertices and k I-vertices. A minimal 

(cograph) obstruction to H has at most 0 ( 8 z f k / m )  vertices. 0 

This implies that there are finitely many minimal (cograph) obstructions to the trigraph 

homomorphisms restricted to cographs. They also proved a similar result for the more 

general homomorphism variation, list trigraph homomorphism, again showing that there are 

finitely many minimal (cograph) obstructions (with lists) to list trigraph homomorphisms 

restricted to cographs. For constant trigraphs, bounds for (non-list) homomorphisms are 

greatly improved. 

Theorem 2.5.3 [I 71 Let H be a constant trigraph. A minimal (cograph) obstruction to H 

has at most (k + 1)(1+ 1) vertices. 0 

Cographs are the largest family of graphs that have been shown to have bounded minimal 

obstruction sizes for the list trigraph homomorphism problem. Unfortunately, the other two 

families that we review do not share this property. 

2.5.3 Chordal graphs 

Recall that chordal graphs are a subclass of perfect graphs, thus all of the results for perfect 

graphs apply to chordal graphs as well. However, for chordal graphs, Feder et. al. [19] 
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showed that the bound on minimal (chordal) obstructions could be improved upon when 

normal trigraphs are further restricted. 

Let H be a normal trigraph and SA, SB, SC, SD a partition of its pairs V(H) x V(H) 

as defined in Section 2.1.3. The improved bound on minimal (chordal) obstructions are as 

follows. Note that the case when SA, SB, and Sc all contain *-edges has been discussed 

earlier in Section 2.2.4. 

If SA contains no *-edges and Sc contains all only *-edges then the a minimal (chordal) 

obstruction to H has at most 2(6k+3)1+111 vertices. 

If SA and Sc contains only *-edges then a minimal (chordal) obstruction to H has at 

most 2(l + 1)(4'+2)kt2 vertices. 

By imposing stricter restrictions on H, these bounds can be further improved as follows: 

If SA contains only 1-edges and SB, SC contain only *-edges then the a minimal 

(chordal) obstruction to H has a t  most 2(2k + 2)' vertices. 

If SA contains only 1-edges, SB contains only 0-edges and Sc contains only *-edges 

then the a minimal (chordal) obstruction to H has at  most 2(8k2 + 25k + 5)' vertices. 

If SA, SC contains only *-edges and SB contains only 0-edges then the a minimal 

(chordal) obstruction to H has at  most 2(1 + 1)(1+2)kf1 vertices. 

Surprisingly, there are certain kinds of the basic trigraph homomorphism problem that 

are NP-complete, even when restricted to chordal graphs. 

Theorem 2.5.4 [19] There exists a trigraph H for which the basic trigraph homomorphism 

problem restricted to chordal graphs is NP-complete. 0 

However, for certain kinds of trigraphs H, the basic and list trigraph homomorphism 

problems for chordal graphs can be solved in polynomial time. In particular, these are 

trigraphs H for which the adjacency matrix MH has no restrictions on SA, SB, but has 

restrictions on Sc. 

Theorem 2.5.5 [19] Let H be a trigraph. If Sc consists of only *-edges, or has no *- 
edges, then the list trigraph homomorphism problem for H, restricted to chordal graphs, is 

polynomial time solvable. 0 
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2.6 Table of known results 

Below we give a table detailing the results that have been reviewed and some of our new 

results. Each row in the table details a particular trigraph homomorphism and its known 

results. The first column specifies restrictions on the input graph G. In this column, any 

rows marked by the superscript indicate that the result is new and will be presented in later 

chapters. The second column specified restrictions on the fixed trigraph H with I 0-vertices 

and k 1-vertices. The shorthand 'E' is used to mean edge(s) and 'V' to mean vertex(ices). 

Some list homomorphism problems marked by the superscript 9 indicate that the results 

hold even when *-vertices are allowed. The third column specifies whether the problem 

has a polynomial time algorithm. An entry of FMMO indicates the problem was classified 

polynomial by finitely many minimal obstructions. For relatively smaller obstructions, the 

bound on the number of vertices is given. The fourth column indicates whether the problem 

has infinitely many minimal obstructions (IMMO). This column is primarily for results new 

to this thesis. The last column indicates what type of dichotomy is known, if any, for the 

given problem. 
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Graph G 
List Digraph 
List Digraph 

Digraph 

List General 
List General 

General 
General 
General 

GeneralQ 
General' 
General' 

List Perfect 
Perfect 
Perfect 
Perfect 
Perfect 

List Cograph 
Cograph 
Cograph 

List Chordal 
List Chordal 
List Chordal 
List Chordal 
List Chordal 
List Chordal 

Chordal 
Chordal 

Table 2.1: Table 

Trigraph H 

Any 
- < 3 verticesq 

Any 

Any 
- < 2 vertices 

Any 
no *-E 

5 4 vertices 
5 5 vertices 

Messy 
Nice 

Any 
Any 

Normal 
Normal, Sc all 0-E 
Normal, Sc all 1-E 

Anyq 

Any 
Constant 

Any 
no *-E in SA 
no *-E in SB 

no *-E in SA, no 1-E in Sc 
no *-E in SA, no 0-E in Sc 

only 0-V 

Any 
only *-E 

Dichotomy 
open 

P/NPc 
open 

Quasi-P/NPc 
- 

Quasi-P/NPc 
- 

P/NPc 
FMMO/IMMO 

- 
- 

open 
open 

- 
- 
- 

- 

- 

open 
Quasi-P/NPc 
Quasi-P/NPc 

P/NPc 
P/NPc 

- 
open 

- 

of known results 

Polynomial 
- 
- 
- 

- 

o ( 4  
- 

(k + l ) ( l+  1) 
- 
- 

FMMO 

- 
- 

FMMO 
(k + l ) ( l  + 1) 
(k + 1) (1 + 1) 

FMMO 
FMMO 

(k + l ) ( l  + 1) 

- 
- 
- 

- 
- 

o(n@l>l) 
- 

o(n(n  + 4 )  

I M M O  
- 

- 
- 

- 
- 
- 

- 

- 
-- 

- 
IMMO 

- 

- 
- 

- 

- 

- 
- 

- 
- 
- 

- 
- 
- 
- 



Chapter 3 

Infinitely many minimal 

obstructions 

We shall assume from now on that all trigraphs 
do not have any *-vertices. 

We start our investigation into minimal obstructions to trigraph homomorphism by 

dealing with a family of trigraphs that have infinitely many minimal obstructions (IMMO). 

A trigraph H is messy if it has two vertices u, v such that both u, v are 0-vertices or both 

u, v are 1-vertices and the pair uv is a *-edge. Graphically, trigraph H is messy if and only 

if it has an induced subtrigraph of H isomorphic to B or B in Figure 3.1. For convenience, 

the trigraphs B and B will refer to the trigraphs in Figure 3.1 for the remainder of the 

thesis. We prove in this chapter that every messy trigraph H has infinitely many minimal 

obstructions. It is interesting to note at this point that we will later provide an example 

trigraph H that has infinitely many minimal obstructions, but is not messy. We will devote 

all of Chapter 6 to this trigraph and the obstructions to it. 

Before we begin the main proofs in this chapter, we first need to define some terminology 

and review a classical result for Zcolouring. Let G be a graph. The odd circumference c(G) 

of G is the length of the longest odd cycle in G; if G has no cycles, then we define c(G) 

to be infinite. The odd girth of g(G) of G is the length of the shortest odd cycle in G; 

if G does not contain an odd cycle, then we again define g(G) to be zero. Let H be a 
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Figure 3.1: A trigraph B and its complement B 

trigraph. A set of minimal obstructions a = {GI, G2, .  . .) to H is useful if a is infinite and 

g(Gi) I c(Gi) < g(Gi+l) for i 2 1. 

In [36], Konig first showed that a graph G admits a 2-colouring if and only if G has no 

odd cycle. In our terminology this result can be formulated as follows. 

Lemma 3.0.1 A graph G admits a B-colouring if and only if G has no odd cycle. 0 

Corollary 3.0.2 Both B and B have infinitely many minimal obstructions. 

Proof. Let C be an odd cycle. By Lemma 3.0.1, C does not admit a B-colouring, hence it is 

an obstruction to B.  Let v be a vertex of C. The graph C-v is a path, and again by Lemma 

3.0.1, C - v admits a B-colouring. Thus, C is a minimal obstruction to B. By Proposition 

1.3.1, since C is a minimal obstruction to B, the graph is a minimal obstruction to B. 
Since there are infinitely many odd cycles, there are infinitely many minimal obstructions 

to B and B. Cl 

3.1 Messy trigraphs have IMMO 

In this section we will extend the result in Corollary 3.0.2 to all messy trigraphs H. The 

proof is broken into three parts. The first part shows that a messy trigraph without any 

1-vertices has infinitely many minimal obstructions. The actual statement will be stronger, 

and will also be used in the second and third parts. The second and third parts, when applied 

recursively, will result in infinitely many minimal obstructions to any messy trigraph. 
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Theorem 3.1.1 Let H be a messy trigraph with no 1-vertices. Then H has a useful set of 

minimal obstructions. 

Proof. Since H has no 1-vertices, it must have an induced subgraph isomorphic to B. 

Let m = IV(H)I and g = 4. By Theorem 2.3.4 there exists a graph G1 with odd girth gl  

greater than g and chromatic number greater than m. In particular, G1 does not admit an 

m-colouring. We note that G1 is an obstruction to H; indeed any homomorphism of G1 to 

H would be an m-colouring of G I .  

Let Gi be an induced subgraph of G1 such that G/1 is a minimal obstruction to H. By 

Lemma 3.0.1, Gi must contain an odd cycle, otherwise Gi would admit a B-colouring and 

thus it would also admit an H-colouring since H contains B. The graph Gi,  of non-zero 

odd girth gl = g(Gi) and finite odd circumference cl = c(G/1), will be our first obstruction 

to H .  We can now recursively construct infinitely many additional minimal obstructions as 

follows. 

Let Gi be a minimal obstruction to H with odd circumference ci and odd girth gi. By 

Lemma 2.3.4 there exists a graph Gi+1 with odd girth gi+l greater than ci and chromatic 

number greater than m. As above, Gi+1 does not admit an H-colouring, and we let GI+1 

be an induced subgraph of Gi+1 such that G:+l is a minimal obstruction to H.  Again, G:+l 

must contain an odd cycle, and hence an odd cycle of length at least gi+l vertices. The 

odd girth ga+l of is strictly larger than the odd circumference cl of G:. Note that 

GI+, is not isomorphic to Gi or any Gj  with j < i. Applying this technique recursively, we 

construct a useful set containing infinitely many minimal obstructions to H .  0 

We now consider messy trigraphs H with both 0-vertices and 1-vertices, and distinguish 

whether H contains B or B. 

Theorem 3.1.2 Assume H contains B and x is a 1-vertex of H .  If H - x admits a useful 

set of minimal obstructions a,  then H also admits a useful set of minimal obstructions a'. 

Proof. Let Oi be any obstruction in a and let the graph Gi = 20i be 2 disjoint and 

non-adjacent copies of Oi. Suppose there is a homomorphism f of Gi to H. Since Oi is 

an obstruction to H - x there is at least one vertex v E Oi mapped to x by f .  Since Gi 

consists of 2 disjoint and non-adjacent copies of 0, there are two independent vertices vl, v2 
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in Gi (taken from each copy of Oi in Gi) that are mapped to x by f .  Vertex x is a 1-vertex, 

thus vertices vl and v2 must be adjacent and we have a contradiction. Therefore Gi is an 

obstruction to H .  

Let 0; be an induced subtrigraph of Gi such that 0: is a minimal obstruction to H .  

Trigraph H  contains B, thus by Theorem 3.0.1, 0; must contain an odd cycle. Recall a  is 

useful and g(Oi) < ~ ( 0 ~ )  < g(Oi+l) < C ( O ~ + ~ ) .  Since 0; is an induced subgraph of 20i we 

have g(Oi) 5 g ( 0 ; )  < ~(01) < ~ ( 0 ~ ) .  It follows that g(O;) 5 ~ ( 0 ; )  < g(O1+l) < c(O:+~). 

Thus, applying this technique to every obstruction Oi in the useful set a  we construct a 

useful set a'. 0 

Let H  be a messy trigraph with an induced subgraph isomorphic to B and let H' be 

the induced subgraph of H  consisting of 0-vertices in H .  Applying Theorem 3.1.1 we can 

get an useful set of minimal obstructions OH, to H'. We can recursively add 1-vertices to 

H' and apply Theorem 3.1.2 to find an useful set of minimal obstruction OH to H .  Thus, 

we have the following fact. 

Corollary 3.1.3 Let trigraph H  contain B . Then H  has infinitely many minimal obstruc- 

tions. 0 

For trigraphs H with an induced subgraph isomorphic to B, we can use apply the same 

theorems on the complement H of H .  Note that H has an induced subgraph isomorphic to 

B. 

Theorem 3.1.4 Let trigraph H  contain B. Then H  has infinitely many minimal obstruc- 

tions. 

Proof. Let f;i: be the complement of trigraph H .  By Theorems 3.1.1 and 3.1.2, there is a 

useful set of minimal obstructions a' to p. Let G E a' be any minimal obstruction to p. 
By Proposition 1.3.1, is a minimal obstruction to H .  The set a' contains infinitely many 

minimal obstructions to H .  Therefore, there are infinitely many minimal obstructions to 

H .  0 

A messy trigraph H  has an induced subgraph isomorphic to B or B. By Corollary 

3.1.3 a trigraph containing B has infinitely many minimal obstructions. By Theorem 3.1.4, 
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a trigraph containing B has infinitely many minimal obstructions. Thus, we have the 

following fact. 

Corollary 3.1.5 Let H be a messy trigraph. T h e n  H has infinitely m a n y  minimal  obstruc- 

tions. 0 



Chapter 4 

Finitely many minimal 

obstruct ions 

In the previous chapter, we introduced the family of messy trigraphs. A messy trigraph H 

has an induced subgraph isomorphic to B or B in Figure 3.1. Recall that messy trigraphs 

have infinitely many minimal obstructions. A trigraph is clean if it is not messy. In other 

words, a clean trigraph has no induced subgraph isomorphic to B or B. In this chapter, we 

will only consider clean trigraphs. We also introduce two trigraph families that have finitely 

many minimal obstructions. In the next chapter, we will use the results from Chapters 2, 

3, and 4 to complete our classification of all trigraphs up to five vertices. 

4.1 Split-friendly trigraphs 

We first provide our simple proof of Theorem 2.4.3, that the size of a minimal obstruction 

to a full homomorphism is bounded. Recall 1 is the number of 0-vertices in H, k is the 

number of 1-vertices in H and m = k + 1. Although our bound of m(2max(k, 1) + 2) vertices 

is not as tight as the one detailed in [14], it still implies there are only finitely many minimal 

obstructions. 

In a graph G, two vertices u, v E V(G) are similar if u and v have the same set of 

neighbours other than u and v. That is N(u) - v = N(v) - u. (Note that the definition 

applies both when u is adjacent to v, and when u is non-adjacent to v). Without loss of 

generality, we assume 1 < k .  (We can ensure this by complementation). 
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Theorem 4.1.1 Let H be a trigraph with 1 < k and without *-edges. Then every minimal 

obstruction to H has at most m(2k + 2) + 1 vertices. 

Proof. Suppose a graph G is a minimal obstruction to H with more than m(2k + 2) + 1 

vertices. Thus G has at least m(2k + 2) + 2 vertices. Let v be any vertex in G. Since G is a 

minimal obstruction, the subgraph G - v must admit an H-colouring f .  Since G - v has at 

least m(2k + 2) + 1 vertices and H has m vertices, by the pigeonhole principle, there exists 

a vertex x in H such that the set S of vertices mapped to x by f has at least 2k + 3 vertices. 

Since there are no *-vertices and no *-edges in H, all vertices in the set S are similar in 

G - v. Suppose x is a 0-vertex. (An analogous argument can be made if x is a 1-vertex.) 

Each pair vu, u E S, is either an edge or non-edge in G, hence there is a set T c S with 

k + 2 vertices that are similar in G. 

Therefore G contains an independent set T of k + 2 similar vertices. Let t E T. The 

subgraph G - t must again admit an H-colouring g since G is minimal. Since T - t has 

k + 1 independent vertices, g must map at least one of them, say t' # t, to a 0-vertex y in 

H since 1 5 k. Since t' is similar to t in G, and the pair tt' is a 0-edge, t may be mapped to 

y as well, and we have a contradiction. Therefore every minimal obstruction G has at most 

m(2k + 2) + 1 vertices. 0 

A trigraph H is split-friendly if every pair of 0-vertices uu' in H is a 0-edge and every 

pair of 1-vertices vv' in H is a 1-edge. In other words, SA has only 0-vertices and SB has 

only 1-vertices. Figure 4.1.2 illustrates 3 split-friendly trigraphs HI, H2 and H3. In trigraph 

H3, we have SA = {xy, xz, yz) and SB = {uv, uw, vw). Note that a split-friendly trigraph 

is clean. Let G be a graph and H be a split-friendly trigraph. Recall from Section 2.2.3 

that if G admits an H-colouring, then G must be a split graph. However, not every split 

graph admits an H-colouring. 

Theorem 4.1.2 A split-friendly trigraph has finitely many minimal obstructions. 

Proof. We will consider two cases in our proof; when the split-friendly graph H has no 

*-edges and when it has at least one *-edge. First, suppose H has no *-edges. By Theorem 

4.1.1, every minimal obstruction to H has at most m(2k + 2) + 1 vertices. In other words, 

H has finitely many minimal obstructions. 
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Figure 4.1: Split-friendly trigraphs 

Now suppose H  has a *-edge uv. Since H  is split-friendly, the edge uv must be incident 

to a 0-vertex and a 1-vertex. Without loss of generality, let u be a 0-vertex in H  and v be 

a 1-vertex in H .  Let HI be a subtrigraph of H  induced by only the vertices u, v. Note that 

HI is isomorphic to Figure 4.2. We will define a retraction f from H  to HI as follows. 

f ( x )  = u whenever x  is a 0-vertex in H .  

f ( x )  = v whenever x  is a 1-vertex in H .  

Now we show that f is a retraction. For this, verify that: 

If pair xy  E E ( H )  then f ( x )  f ( y )  E E(H1) .  

If pair xy E N ( H )  then f ( x ) f ( y )  E N ( H 1 ) .  

If the pair xy  E E ( H )  then xy  is not a 0-edge. In a split-friendly graph, this means that 

vertices x  and y are not both 0-vertices, so either both x and y are 1-vertices, or one is a 

0-vertex and the other a 1-vertex. Hence f ( x )  f ( y )  = vv or uv, and both vv E E ( H ' )  and 

uv E E ( H 1 ) .  An analogous argument can be made when we have the pair xy  E N ( H ) .  

By Corollary 2.3.2, the complete set of minimal obstructions OH to H  is the same as 

the complete set of minimal obstructions OH! to HI. It is well known [28] that CHI = 

{C4, C5, 2Kz), thus H  also has the same set of minimal obstructions. Therefore H  has 

finitely many minimal obstructions. 0 
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Figure 4.2: A trigraph used to characterize split graphs 

4.2 Labeled trigraphs 

It is often easier to prove that there are only finitely many minimal obstructions for labeled 

graphs than for unlabeled graphs. Let H be a trigraph and G a labeled graph. A labeled 

homomorphism f of G to H is a homomorphism from G to H such that A-labeled and 

B-labeled vertices in G map to 0-vertices and 1-vertices in H respectively. A labeled graph 

G is a labeled obstruction to H if there is no labeled homomorphism of G to H. A labeled 

graph G is a minimal labeled obstruction to a trigraph H if G is a is a labeled obstruction 

such that for any vertex v E V(G), the subgraph G - v (with the same labels) admits a 

labeled homomorphism of G to H. 

Let G' be the unlabeled graph underlying the labeled graph G. (In other words G' is 

obtained from G by deleting all labels.) Recall 1 and k are the number of 0-vertices and 

1-vertices in H respectively and r = 1 x k. By Theorem 2.3.5, if a labeled obstruction to H 

has at most t vertices, then an unlabeled obstruction to H has at most 2t2r+1 vertices. Thus, 

if H has finitely many minimal labeled obstructions then H also has finitely many minimal 

unlabeled obstructions. In this section, we only consider labeled graphs G; however, by 

Theorem 2.3.5, these results will apply to unlabeled graphs G as well. 

4.2.1 Similarity 

For this chapter, we will use a weaker definition of similarity than the one used in Section 

4.1. Let G be a labeled graph. A pair of A-labeled vertices u, v E V(G) is similar if u and 

v are non-adjacent and have the same A-labeled neighbours. A pair of B-labeled vertices 

u, v E V(G) is similar if uv and v are adjacent and have the same B-labeled neighbours 

other than u and v. Note that an A-labeled vertex is never similar to a B-labeled vertex. 

Similarity is defined for trigraphs as well. Let H be a trigraph. Recall that in this 



CHAPTER 4. FINITELY MANY MINIMAL OBSTRUCTIONS 45 

chapter we assume that trigraph H is clean. A pair of 0-vertices u, v E V(H) is similar if 

for every 0-vertex w, the following holds: 

the pair wu is a 0-edge if and only if the pair wv is a 0-edge. 

the pair wu is a 1-edge if and only if the pair wv is a 1-edge. 

Note that similar 0-vertices u, v have a 0-edge uv. This is evident when we choose w to 

be either u or v. Since trigraph H is clean, it does not have an induced subgraph isomorphic 

to B or B and so, wu and wv cannot be a *-edge. Similar 1-vertices are defined analogously. 

Note again that a 0-vertex is never similar to a 1-vertex. 

It is easy to check that similarity is an equivalence relation on the vertices of both a 

graph and a trigraph. Thus we obtain a partition of the vertices into equivalence classes 

which we shall call the similarity classes. 

Identifying similarity classes is helpful in solving the trigraph homomorphism problems. 

We first prove some facts involving similarity classes. These results will be used in the last 

theorem in this chapter to prove that our second trigraph family has finitely many minimal 

obstructions. 

Lemma 4.2.1 Let H be a clean trigraph, G a labeled graph, and f a labeled homomorphism 

of G to H .  If u and v are non-similar vertices of G, then f(u) and f (v) are non-similar 

vertices of H. 

Proof. Suppose u and v are both A-labeled vertices. Since u, v are non-similar, there 

exists an A-labeled vertex w E V(G) that distinguishes u and v. In other words, one of 

wu, wv is an edge and the other a non-edge. Note that neither wu nor wv can be a *-edge 

since H is clean. 

Now consider the vertices f (u) and f (v). Both are 0-vertices since u and v are A-labeled 

vertices and f a labeled homomorphism. Without loss of generality, suppose w is adjacent 

to u and non-adjacent to v. The relation f (w) f (u) cannot be a 0-edge and the relation 

f (w) f (v) cannot be a 1-edge. Since H is clean, it follows that f (w) f (u) must be a 1-edge 

and f (w) f (v) must be a 0-edge. The vertex f (w) distinguishes f (u) and f (v), therefore 

vertices f (u), f (v) are non-similar in H. 0 
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Let NA, NB be the number of similarity classes of A-labeled vertices and B-labeled 

vertices in G, respectively. Let No, N1 be the number of similarity classes of 0-vertices and 

1-vertices in H, respectively. The following fact involving the number of similarity classes 

in G and H is derived directly from the previous lemma. 

Corollary 4.2.2 Let H be a clean trigraph, and G a labeled graph. If there exists a labeled 

homomorphism of G to H, then NA 5 No and NB 5 N1. 

Proof. Suppose NA > No, (analogously NB > N1). Let v1, . . . , VNA be non-similar 

vertices taken one from each similarity class of A-labeled vertices in G, and let f be a 

homomorphism of G to H .  By Lemma 4.2.1, the vertices f (vl), . . . , f ( v ~ A )  are not similar 

in G. There are only No similarity classes in H ,  so by the pigeonhole principle, at least two 

distinct vertices vi, vj have f (vi) = f (vj), and we have a contradiction. Therefore we have 

NA 5 No and NB 5 N1. 0 

Note that the converse of Lemma 4.2.1 does not hold. Let H be the trigraph and G 

the graph illustrated in Figure 4.3. Trigraph H has 4 similarity classes (each containing 

one vertex). Graph G has two similarity classes: one class contains vertex b and the other 

vertices a and c. In a homomorphism f of G to H, vertices a and c may map to non-similar 

vertices of H. For example, the homomorphism f maps vertices a ,  b, c to vertices w, x, y 

respectively. However, note that no vertex of G was mapped by f to z. 

Figure 4.3: A trigraph H and a graph G 

A labeled homomorphism f of labeled graph G to trigraph H is sim-surjective if for each 

similarity class C of H there exists a vertex x E V(G) with f (x) E C. 
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Lemma 4.2.3 Let H be a clean trigraph, G a labeled graph, and f a sim-surjective homo- 

morphism of G t o  H. If u i s  similar t o  v in G, then  f (u) i s  similar t o  f ( v ) .  

Proof. Let u, v be A-labeled vertices, and f (u), f (v) non-similar 0-vertices. (We proceed 

analogously if u, v are B-labeled vertices and f (u), f (v) are non-similar 1-vertices). Since 

f (u), f (v) are non-similar, by definition there exists a 0-vertex z adjacent to one of f (u), f (v) 

and non-adjacent to the other. In other words, one of the pairs z f (u,) or zf (v) is a 0-edge 

and the other is a 1-edge. Let C be the similarity class containing z. By assumption, there 

exists a 0-vertex z' in C that has an A-labeled vertex x of G mapped to z' by f .  Thus, x 

must be adjacent to one of u, v but not the other, and we have a contradiction to the fact 

that u, v are similar. 0 

Corollary 4.2.4 Let H be a clean trigraph and G a labeled graph. ~f N~ < No or  NB < N1 

then  n o  labeled homomorphism f of  G t o  H i s  sim-surjective. 

Proof. Let NA < No. (We proceed analogously if NB < N1). Suppose f is sim-surjective. 

By Lemma 4.2.3, similar vertices u, v are mapped by f to similar vertices f (u), f (v). Thus, 

vertices of one similarity class in G are mapped by f to vertices of one similarity class in H .  

Since the number of similarity classes involving A-labeled vertices is less than the number 

of similarity classes involving 0-vertices, there exists a similarity class C of 0-vertices with 

f (x) $ C for all x E V(G). Therefore, f is not sim-surjective. 0 

4.2.2 Nice trigraphs 

A trigraph H is nice if it is clean and has no similar 0-vertices or has no similar 1-vertices. 

Figure 4.4 illustrates two nice trigraphs HI and Hz. Trigraph H1 has no similar 0-vertices 

and trigraph H2 has no similar 1-vertices. 

Let H be a trigraph, G a labeled graph and G ~ ,  GB denote the induced subgraphs of 

G on the A-labeled and B-labeled vertices respectively. Let HO, HI denote the induced 

subtrigraphs of H on the set of 0-vertices and 1-vertices respectively. An AB-mapping is 

a mapping s : V(G) t V(H) such that s is a homomorphism of both GA to H0 and of 

GB to HI. We denote by MAP(G, H )  the set of all AB-mappings s : V(G) + V(H), and 
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Figure 4.4: Two nice trigraphs 

HOM(G, H) the set of all homomorphisms f : V(G) + V(H). Recall that in a homomor- 

phism of G to H, all A-labeled vertices are mapped to 0-vertices and all B-labeled vertices 

are mapped to 1-vertices. Thus, it is not hard to see that HOM(G, H )  C MAP(G, H). 

In other words, f is a homomorphism of G to H only if f is also an AB-mapping of G 

to H .  Note that the only difference between a mapping in MAP(G, H) and a mapping 

in HOM(G, H )  is that a mapping in HOM(G, H )  guarantees edges incident to both an 

A-labeled vertex and a B-labeled vertex is preserved, while a mapping in MAP(G, H) does 

not guarantee this. 

Let H be a clean trigraph and SH the set containing all proper induced subgraphs of H 

obtained from H by deleting one similarity class; let also S'& (respectively S;) denote the 

subset of SH obtained by deleting a similarity class of 0-vertices (respectively of 1-vertices). 

Recall again that 1 denotes the number of 0-vertices in H, and k denotes the number of 

1-vertices in H. Our main result in this chapter can be formulated as follows. 

Theorem 4.2.5 Let H be a nice trigraph. Suppose for each H' in S H ,  all minimal labeled 

obstructions to H' have at most t vertices. Then every minimal labeled obstruction to H 

has at most 

maz(NOt, N1t, NO + 1, N1 + 1, k, 1, NO!N1!(k + 1)) 

vertices. 

Proof. We will assume H has no similar 0-vertices. (We proceed analogously if H has no 

similar 1-vertices). Our proof is broken into three cases. Each case will address a different 
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property a minimal labeled obstruction may have. In the first case we consider the case 

when NA < No or NB < N1, in the second case we consider when NA > No or NB > N1, 

and in the third case we consider when NA = No and NB = N1. For each case, we show a 

bound for a minimal labeled obstruction to H .  

Case 1: Consider a min. labeled obst. G with NA < No (analogously with NB < N1). 

Since G does not admit a labeled homomorphism to H, it does not admit a labeled 

homomorphism to any H' E X H .  There are exactly NO trigraphs H' in 3;. Each such H' 

identifies a subset S of at most t vertices of G such that G[S] does not admit an HI-colouring. 

Let G' be the subgraph of G induced by the union of all such sets S. Then G' has at most 

Not vertices. Note that G' also satisfies NA < No. Thus, Corollary 4.2.4 implies that there 

is no sim-surjective homomorphism of G' to H .  In other words, for any homomorphism f 

of G' to H there is a class C in H with f (x) 4 C for all x E V(G1). We know from the 

proof of Corollary 4.2.4 that class C contains only 0-vertices of G'. Now the definition of G' 

ensures that G' does not have any homomorphism to H .  Thus the minimality of G implies 

that G = G', i.e., that G has at most Not vertices. 

Case 2: Consider a min. labeled obst. G with NA > No (analogously with NB > N1). 

Let G' be an induced subgraph of G with No + 1 non-similar A-labeled vertices. By 

Corollary 4.2.2, G' is a labeled obstruction to H .  Thus, the minimality of G implies that 

G = G' and hence has at most No + 1 vertices. 

Case 3: Consider a minimal labeled obstruction G with NA = No and NB = N1 

We now may assume that MAP(G, H) # 8, else the minimal labeled obstruction G has 

at most k or I vertices. We claim that G has at most N0!N1!(lc + 1) vertices. 

Let f E MAP(G, H) be any AB-mapping. By definition, f is a homomorphism of 

both G~ to HO and of GB to HI. By Lemma 4.2.1, non-similar vertices u,v in G have 

f (u), f (v) non-similar in H .  Since NA = No and NB = N1, a homomorphism of G~ to 

HO maps vertices of one similarity class in G~ only to vertices of one similarity class in 

HO. (Analogously for a homomorphism of GB to HI). In other words, f assigns to each 

similarity class in G, a unique similarity class in H .  Let Ail Bj be the similarity classes of 

A-labeled and B-labeled vertices in G respectively and Yi, Zj be the similarity classes of O- 

vertices and 1-vertices in H respectively, with 1 5 i 5 No and 1 5 j 5 N1. By assumption, 

each class Y,  consists of a single vertex since H has no similar 0-vertices. 
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For each bijective assignment of Ai to Yi and Bj to Zj we shall identify k + 1 vertices 

used to ensure that f 6 HOM(G, H) for any f corresponding to this assignment. Without 

loss of generality, let each Ai be assigned to Y,  and each Bj be assigned to Zj. Since each 

Y,  has a single vertex, any f corresponding to this assignment maps all vertices of Ai to 

this vertex. If each B-labeled vertex v, say v E Bj, could be mapped to some vertex in the 

corresponding 2'' so that the edges and non-edges to the A-labeled vertices are preserved 

by f ,  we would have f E HOM(G, H). Thus there exists a B-labeled vertex v E Bj  for 

which each choice of u E Zj has an A-labeled vertex w preventing v from mapping to u. 

Since there are at most k vertices in any Bj, we obtain at most k of these vertices w, which 

together with v induce a labeled subgraph of G with at most k + 1 vertices that does not 

admit a homomorphism to H .  

Recall that there are No similarity classes of 0-vertices and N1 similarity classes of 1- 

vertices, thus there are NO!N1! possible assignments. For each of the assignments, a minimal 

labeled obstruction has at most k + 1 vertices, thus a labeled obstruction for any possible 

assignment has at most NO!N1!(k + 1) vertices. Therefore, the minimal labeled obstruction 

G (for this case) has at most max(k, 1, NO!N1!(k + 1)) vertices. 

Every minimal labeled obstruction G falls under one of these cases, thus a minimal 

labeled obstruction to H has at most 

vertices. 



Chapter 5 

Trigraphs with up to five vertices 

We have now built up enough tools in the previous three chapters to complete our classifica- 

tion of finitely or infinitely many minimal obstructions to all trigraphs of up to five vertices. 

To summarize, any messy trigraph H with an induced subgraph isomorphic to B or B in 

Figure 3.1 has infinitely many minimal obstructions, we will apply previous results to de- 

duce that all other trigraphs of up to five vertices have finitely many minimal obstructions. 

Recall that we made the basic assumption that trigraphs do not have *-vertices. 

In this chapter, all minimal obstructions for trigraphs with one and two vertices will be 

provided. For trigraphs with more than two vertices, the precise set of minimal obstructions 

to a homomorphism of a graph G to a trigraph H is difficult and/or tedious to prove in many 

instances. However, we will show that all trigraphs with three and four vertices are covered 

by theorems presented in previous chapters, thus classifying them as having infinitely or 

finitely many minimal obstructions. Of the remaining trigraphs with five vertices, we will 

show that most are covered by theorems in the previous chapters as well. A detailed proof 

of the remaining exceptional cases of trigraphs with five vertices that are not covered will 

be given in the last section of this chapter. A clean trigraph H is exceptional when it has 

a pair of similar 0-vertices, a pair of similar 1-vertices and it is not split-friendly. In other 

words, exceptional trigraphs are clean and non-nice and not split-friendly. We will show 

that all exceptional trigraphs with five vertices have finitely many minimal obstructions. 
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5.1 Trigraphs with one vertex 

There are only three trigraphs H1, H2 and H3 with exactly one vertex as illustrated in Figure 

5.1. We included H3 for completeness; however note that it is not considered since it is a 

*-vertex. Trigraph HI is simply a 0-vertex, and trigraph H2 is simply a 1-vertex. It is easy 

to verify that each has exactly one minimal obstruction. 

Figure 5.1: Trigraphs with exactly one vertex. 

Theorem 5.1.1 There is only one minimal obstruction to HI, namely, K2. 

Proof. Clearly a graph G without edges admits a homomorphism to HI; and if G contains 

K2 then it does not. 0 

Theorem 5.1.2 There is only one minimal obstrmction to Hz ,  namely %. 

Proof. By Theorem 5.1.1, the only minimal obstruction to H1 is K2. Trigraph H2 is the 

complement of trigraph HI, thus by Proposition 1.3.1, the graph K;! is the only minimal 

obstruction to H2. 0 

5.2 Trigraphs with two vertices 

Excluding trigraphs with a *-vertex, there are only 9 non-isomorphic trigraphs with two 

vertices. The first three trigraphs H4, H5,  H6 are illustrated in Figure 5.2. The common 

trait shared by these three trigraphs is that they consist of only 0-vertices. Since there are 

only three kinds of (non-loop) edges and each trigraph has one edge, there are only three 

trigraphs with this trait. Trigraphs H4 has a 0-edge, H5 has a 1-edge and H6 has a *-edge. 
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Figure 5.2: Trigraphs with two 0-vertices 

Trigraph H4 consists of two 0-vertices u,v with 0-edge uv. There is an obvious re- 

traction of H4 to an induced subgraph isomorphic to HI. In other words, H4 and HI are 

homomorphically equivalent. Thus, by Corollary 2.3.2, they have the same set of minimal 

obstructions. 

Theorem 5.2.1 There is only one minimal obstruction to H4, namely K2.  0 

A graph G that admits an H5-colouring can be partitioned into two sets V(G) = Vx U Vy 

such that both Vx, Vy are independent sets and every vertex of Vx is adjacent to every vertex 

of Vy. In other words, G is a complete bipartite graph. 

Theorem 5.2.2 There are only two minimal obstructions to H5, namely 6 and K3. 

Proof. Graphs 6 and K3 are illustrated in Figure 5.3. It is easy to verify that graphs 6 
and K3 are obstructions to H5. We claim that these are the only minimal obstructions to 

H5. Let G be a minimal obstruction to H5 that is non-isomorphic to and K3. Let v be 

any vertex in G and x, y vertices in H5. Since G is minimal, the subgraph G - v admits an 

H-colouring f .  The mapping f partitions subgraph G - v into two sets V(G) = Vx U Vy. 

Recall Vx and Vy are independent sets in G, and every vertex of Vx is adjacent to every 

vertex of Vy. We now consider vertex v and its adjacencies in G. 

If v is adjacent to no vertices in G and Vx (or analogously Vy) is empty, then v may be 

placed in Vy (or Vy), and we have a contradiction. 

If v is adjacent to no vertices in G, and sets Vx and Vy are non-empty, then G has an 

induced subgraph isomorphic to 6 and we have a contradiction. 
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If v is adjacent to vertex v' in V,, and non-adjacent to vertex vft in V,, then the subgraph 

induced by vertices v, v', v" is isomorphic to 6 and we have a contradiction. A similar 

argument applies to set V,. 

If v is adjacent to vertex v' in Vx and adjacent to vertex vt' in Vy , then the subgraph 

induced by vertices v, v', v" is isomorphic to K3, and we have a contradiction. 

If v is adjacent to every vertex in Vx and non-adjacent to every vertex in Vy, then v may 

be placed in V,, and we have a contradiction. An analogous argument applies when v is 

adjacent to every vertex in Vy and non-adjacent to every vertex in V,. Therefore, the only 

minimal obstructions to H5 are 6 and K3. 0 

Figure 5.3: Obstructions to H5 

Trigraph H6 is a messy trigraph, so by Corollary 3.1.5, it has infinitely many minimal 

obstructions. A graph admits a H6-~010~ring if and only if it is bipartite. In other words, the 

trigraph homomorphism problem for trigraph H6 models the problem of deciding whether 

a graph is bipartite or not. Forbidden subgraph characterization for bipartite graphs are 

well known. These subgraphs are the minimal obstructions to H6. 

Theorem 5.2.3 (281 The minimal obstructions for H6 are exactly the odd cycle C,, n 2 3. 

0 

The next three non-isomorphic trigraphs with two vertices, H7, H8, Hg, are illustrated 

in Figure 5.4. The common trait for these three trigraphs is that every vertex in H7, H8, H9 

is a 1-vertex. Trigraphs H7 has a single 1-edge, H8 a single 0-edge and Hg a single *-edge. 

It is easy to see that trigraphs H7, H8, and Hg are the complements of H4, H5, and 

H6. Since obstructions are known for trigraphs H4 and H5, by Proposition 1.3.1, they are 
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Figure 5.4: Trigraphs with two 1-vertices 

known for H7 and H8. Trigraph Hg is messy, so by Corollary 3.1.5 it has infinitely many 

minimal obstruction. In particular, these obstructions are the complements of odd cycles. 

Theorem 5.2.4 There is only one minimal obstruction to  H7, namely K.  0 

Theorem 5.2.5 There are only two minimal obstructions to H8, namely P3 and z. 

Theorem 5.2.6 (281 The minimal obstrmctions for Hg are exactly the complements of odd 

cycle G, n 2 3. 0 

The final three non-isomorphic trigraphs Hlo, Hll, H12 with two vertices are illustrated 

in Figure 5.5. Again, the common trait for the three trigraphs here is that each trigraph 

has exactly one 0-vertex and one 1-vertex. Trigraphs Hlo has a 0-edge, Hll has a 1-edge 

and H12 has a *-edge. 

Figure 5.5: Trigraphs with one 0-vertex and one 1-vertex 

Theorem 5.2.7 There are only two minimal obstructions to Hlo, namely 2K2 and P3. 
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Proof. Graphs 2K2 and P3 are illustrated in Figure 5.6. It is easy to verify that they 

are minimal obstructions to Hlo. We claim that these are the only minimal obstructions to 

Hlo. Let G be a minimal obstruction to Hlo that is non-isomorphic to 2K2 and P3. Let v 

be any vertex in G and x, y vertices in Hlo. Since G is minimal, the subgraph G - v admits 

an H-colouring f .  The mapping f partitions subgraph G - v into two sets V(G) = V, U Vy. 

We shall assume IV,I # 1. In other words, if G-  v is an independent set, f maps all vertices 

of subgraph G - v to y. The sets V, induces a clique in G, Vy an independent set in G, and 

every vertex of V, is non-adjacent to every vertex of Vy . We now consider vertex v and its 

adjacencies in G. 

If v is adjacent to no vertex in G then v may be placed in Vy and we have a contradiction. 

If v is adjacent to every vertex in V, and no vertex in Vy then v may be placed in V, 

and we have a contradiction. 

If v is adjacent to two vertices v', v" in Vy, then the subgraph induced by vertices v, v', v" 

is isomorphic to P3. 

If v is adjacent to vertex v' in Vy and V, is empty, then both v, v' may be place in V, 

and we have a contradiction. 

If v is adjacent to vertex v' in and V, has at least two vertices u, u', then the subgraph 

induced by vertices v, v', u, u' is isomorphic to 2K2. 

If v is adjacent to vertex v' in V, and non-adjacent to vertex v" in V,, then the subgraph 

induced by vertices v, v', v" is isomorphic to P3. Therefore, the only minimal obstructions 

to Hlo are 2K2 and P3. 0 

It is easy to see that trigraph HI1 is the complement of trigraph Hlo. So by Corollary 

3.1.5, the only minimal obstructions to Hll are C4 and s. 
Theorem 5.2.8 There are only two minimal  obstructions t o  Hll, namely C4 and E. 

Trigraph H12 is isomorphic to the trigraph illustrated in Figure 2.5. In other words, 

every graph that admits a H12-colouring is a split graph. Recall that the only minimal 

obstructions to H12 are 2K2, C4, and C5. 
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Figure 5.6: Obstructions to Hlo 

Theorem 5.2.9 There are only three minimal obstructions to H12, namely 2K2, C4, and 

C5. 0 

Note that trigraphs H6, and H9 are the only two with infinitely many minimal obstruc- 

tions since they are isomorphic to either B or B in Figure 3.1. The other trigraphs in this 

section are in fact covered by applying Theorems 4.1.1 and 2.3.5. In other words, they 

have both finitely many minimal labeled obstructions and finitely many minimal unlabeled 

obstructions. 

5.3 Trigraphs with three vertices 

As we alluded to earlier, obtaining the precise obstructions to trigraphs with three or more 

vertices is tedious and in some cases difficult to prove. Instead, we will show that our 

previous results from Chapters 2, 3 and 4 can be applied to prove that there are only finitely 

many minimal obstructions. In the previous section, we showed that trigraphs H4, H5, and 

Hlo all have finitely many minimal obstructions. By applying Proposition 1.3.1, we showed 

that the complements to H4, H5, and Hlo, namely trigraphs H7, Hs, and Hll respectively 

have finitely many minimal obstructions. In this, and the following sections, we will consider 

up to complementation, non-isomorphic trigraphs that are clean. 

Let ((a, b) denote the family of clean trigraphs with a 0-vertices and b 1-vertices. Let H 

be a clean trigraph with exactly three vertices. All clean trigraphs with three vertices belong 

to one of the 4 families ((0,3), [(I, 2), ((2, I), and ((3,O). Up to complementation, families 

((0,3) and [(I, 2) are equivalent to families C(3,O) and ((2,l) respectively. Therefore, up 

to complementation, all non-isomorphic, clean trigraphs with three vertices belong to one 

of the following families. 
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Recall that by Corollary 3.1.5, messy trigraphs have infinitely many minimal obstruc- 

tions. It is easy to see that a trigraph H in the family 5(3,0) has no *-edges. Thus, by 

Theorem 4.1.1, every ((3,O) trigraph has finitely many minimal obstructions. 

Trigraph H of the family [(2,1) has exactly one 1-vertex, thus it is impossible to have 

two similar 1-vertices. So by Theorem 4.2.5 every [(2,1) trigraph has finitely many minimal 

labeled obstructions and by Theorem 2.3.5 every 5(2,1) trigraph has finitely many minimal 

unlabeled obstructions. 

5.4 Trigraphs with four vertices 

In the previous sections, we have used Theorem 2.3.5 to show a trigraph with finitely many 

minimal labeled obstruction has finitely many minimal unlabeled obstructions. We now 

formulate the following theorem for the converse. 

Theorem 5.4.1 Let H be a trigraph with m vertices. If every minimal unlabeled obstruction 

to H has at most t vertices, then any minimal labeled obstruction to H has at most t vertices. 

Proof. Suppose G is a minimal labeled obstruction with more than t vertices. Thus, G 

has at least t + 1 vertices. Let unlabeled graph G' be the result of replacing each A-labeled 

vertex u in G with an independent set I, of size m + 1 and each B-labeled vertex v in G 

with a clique K, of size m + 1. Graph GI is an obstruction to H since at least one vertex 

from each independent set I, must map to a 0-vertex and at least one vertex from each 

clique K, must map to a 1-vertex. Thus, there is a minimal induced subgraph G" of GI 

that is an obstruction to H. By assumption, GI1 has at most t vertices, so all vertices of 

G" must come from no more than t distinct sets I, or Kv. Since there are at least t + 1 

such sets, at least one set S may be removed from GI such that the subgraph GI - S is an 

obstruction to H. 

Let x be the vertex in G corresponding to set S.  Since G is minimal, the subgraph G - x 

admits a homomorphism f to H. Let unlabeled graph G* be the result of replacing each 
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A-labeled vertex u in G - x with a independent set I, of size m + 1 and each B-labeled 

vertex v in G - x with a clique Kv of size m + 1. Note that graph G* is isomorphic to 

subgraph G' - S. Recall that A-labeled vertices maps to 0-vertices and B-labeled vertices 

map to 1-vertices. There is a homomorphism of G* to H if we map all vertices in I, to f (u) 

and all vertices in Cv to f (v), and we have a contradiction. Therefore, a minimal labeled 

obstruction to H has at most t vertices. 0 

Let H be a clean trigraph with exactly four vertices. Again, each vertex must either 

be a 0-vertex or a 1-vertex. Thus all clean trigraphs with four vertices belongs to one of 

the five families <(0,4), ((1,3), C(2,2), ((3, I), and 5(4,0). Up to complementation, clean 

trigraphs with four vertices belong to one of the following families. 

Similar to the previous section, all trigraphs in the <(4,0) family have no *-edges, and can 

be resolved by Theorem 4.1.1. All trigraphs in the <(3,1) have no similar pair of 1-vertices 

and can be resolved by Theorem 4.2.5. 

We now consider the 5(2,2) family. Let H be a 5(2,2) trigraph with two 0-vertices 

a,  b, and two 1-vertices c, d. Trigraphs of the c(2,2) family can be further divided into the 

following subfamilies with respect to the pairs ab and cd. 

1. The pairs ab and cd are 0-edges; or the pairs ab and cd are 1-edges. 

2. The pair ab is a 1-edge and the pair cd a 0-edge. 

3. The pair ab is a 0-edge and the pair cd a 1-edge. 

Let H be a trigraph from the first subfamily. In trigraph H, either the pair ab is a 

1-edge, or the pair cd is a 0-edge. In both cases, H has either no similar 0-vertices or no 

similar 1-vertices. Thus, by Theorems 4.2.5 and 2.3.5, trigraphs of the first subfamily have 

finitely many minimal labeled and unlabeled obstructions. 
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Let H be a trigraph from the second subfamily. It is easy to see that H has no similar 

0-vertices and no similar 1-vertices, and we may apply Theorems 4.2.5 and 2.3.5, again to 

get finitely many minimal labeled and unlabeled obstructions. 

It is obvious that all trigraphs from the third subfamily are split-friendly. Thus, by 

Theorem 4.1.2 they have finitely many minimal obstructions, and by Theorem 5.4.1 they 

also have finitely many minimal labeled obstructions. 

5.5 Trigraphs with five vertices 

Let H be a clean trigraph with exactly five vertices. Up to complementation, all clean 

trigraphs with five vertices belongs to one of the following three families. 

Similar to techniques used in the previous sections, we can show that trigraphs in the 

((5,O) and <(4,1) family have finitely many minimal obstructions. Trigraphs from the ((3,2) 

can be further divided into two subfamilies, namely those trigraphs that are nice those that 

are not nice. We may apply Theorems 4.2.5 and 2.3.5 to nice trigraphs and have finitely 

many minimal obstructions. Thus, we need only consider 5(3,2) trigraphs that are clean 

and non-nice. In other words, exceptional ((3,2) trigraphs. 

Let H be an exceptional <(3,2) trigraph with three 0-vertices a, b, c and two 1-vertices 

d, e. By definition, H must have two similar 0-vertices and two similar 1-vertices. Since 

there are only two 1-vertices dl el the pair de must be a 1-edge. Among the 0-vertices, there 

are exactly two possible ways in which there are similar 0-vertices. The first possibility is 

when all pairs ab, bc, ac are 0-edges. If this occurs, then we observe that H is split-friendly 

and we may apply Theorem 4.1.2 to show that H has finitely many minimal obstructions. 

The second possibility is when two of the pairs ab, bc, ac are 1-edges, and the other is a 

0-edge. Without loss of generality, suppose ab, bc are 1-edges and ac is a 0-edge. This 

situation defines a general structure of what the remaining exceptional trigraph looks like 

as illustrated in Figure 5.7. Note that in this figure, the remaining six pairs of vertices 
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ad, ae, bd, be, cd, ce are not shown. These pairs may be any combination of 0-edges, 1-edges 

and *-edges. Since each pair has the choice of being any of the 3 kinds of edges, there are 

36 exceptional trigraphs with five vertices. Even up to isomorphism, the number is high, so 

we only illustrate the general structure and not the precise trigraphs. 

Figure 5.7: The general structure of an exceptional trigraph 

We now examine all exceptional trigraphs with five vertices. The only similar vertices 

in H are between vertices a,  c and between vertices dl e. Thus, there are three similarity 

classes in H. Let X, Y,  Z be the similarity classes in H, with a, c E X, b E Y, and d, e E Z 

as illustrated in Figure 5.8. 

Figure 5.8: Similarity classes for the general structure of an exceptional trigraph 
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Let H be a clean trigraph and X H  the set containing all proper induced subgraphs of 

H obtained from H by deleting one similarity class. Recall that 1 denotes the number 

of 0-vertices in H, and k denotes the number of 1-vertices in H.  Recall again that NA 

and NB denote the number of similarity classes involving A-labeled and B-labeled vertices 

respectively, and No and N1 denote the number of similarity classes involving 0-vertices 

and 1-vertices respectively. Our main result in this chapter is formulated below. Note that 

clean trigraphs are hereditary. That is, every induced subgraph of a clean trigraph H is also 

clean. 

Theorem 5.5.1 Let H be an exceptional trigraph with five vertices. Suppose for each proper 

induced subgraph HI of H, all minimal labeled obstructions to HI have at most t vertices. 

Then every minimal labeled obstruction to H has at most 

vertices. 

Proof. Our proof is broken into three cases. Each case will address a different property an 

arbitrary input graph G may have. In the first case we consider the case when N~ < No or 

NB < N1, in the second case we consider when NA > No or NB > N1, and in the third case 

we consider when NA = No and NB = N1. For each case, we show a bound for a minimal 

labeled obstruction to H. Note that each trigraph HI in X H  is a proper induced subgraph 

of H, so by assumption all minimal labeled obstructions to HI has at most t vertices. 

Case 1: Consider a labeled graph G with NA < No, (analogously with NB < N1) 

Identical to case 1 from the proof of Theorem 4.2.5. Thus, a minimal labeled obstruction 

for this case has at most max(NOt, N1t) vertices. 

Case 2: Consider a labeled graph G with NA > No, (analogously with NB > N') 

Identical to case 2 from the proof of Theorem 4.2.5. Thus, a minimal labeled obstruction 

for this case has at most max(NO + 1, N1 + 1) vertices. 

Case 3: We now assume a labeled graph G has NA = No and NB = N1 

Since the number of similarity classes in H is the same as the number of similarity classes 

in G, we can assign each similarity class of G to a similarity class of H. Recall, X and Y 

are similarity classes of 0-vertices in H and Z is the similarity class of 1-vertices in H. Let 
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U, V be the similarity classes of A-labeled vertices in G and let W be the similarity class 

of B-labeled vertices in G. Without loss of generality, let U, V, W be assigned to X, Y, Z 

respectively. We first find a bound on a minimal labeled obstruction to H for this assignment, 

and then compute the bound on a minimal labeled obstruction for any assignment. 

We assume every vertex of U is adjacent to every vertex of V, else the minimal la- 

beled obstruction G has 2 vertices; one vertex from similarity class U and one vertex from 

similarity class V. 

Suppose pairs bd and be are both 0-edges (or analogously when they are both 1-edges). 

If some pair vw with v E V and w E W is an edge in G, then it is a minimal labeled 

obstruction to this assignment. If every pair vw with v E V and w E W is a non-edge then 

every vertex in V is non-adjacent to every vertex in W .  In other words, any minimal labeled 

obstruction to H does not involve any vertices from the similarity class V. Let H' = H - Y. 

Recall that H' E X H .  In this scenario, since we have assigned V to Y, a graph G admits a 

H-colouring if and only if G - V admits an HI-colouring. Thus, by assumption, a minimal 

labeled obstruction in this subcase has at most t vertices. 

Suppose one of the pairs bd, be is a 0-edge and the other is a 1-edge. Without loss of 

generality, let bd be a 0-edge and be a 1-edge. Any vertex v E V distinguishes vertices 

in W as being mapped to d or e. In other words, vertices in W are partitioned into two 

parts W = Wd U We such that every vertex in V is non-adjacent to every vertex in Wd and 

adjacent to every vertex in We. If no such partition exists then there is a minimal labeled 

obstruction consisting of a vertex w and any two vertices v, v' E V with wv an edge and wv' 

a non-edge. We now assume that a partition W = Wd U We exits. If vertex u E U cannot 

map to vertex a in H it is due to a some vertex wl in W and if u cannot map to vertex c 

in H it is due to some vertex w2 in W .  Thus, a minimal labeled obstruction for this case 

has at most 4 vertices, namely vertices v, u, wl , and w2. 

Suppose pairs bd and be are both *-edges. Then there are no minimal labeled obstructions 

involving vertices in V. Let H' = H - Y. Recall again that HI E X H .  As with the second 

subcase, a graph G admits an H-colouring if and only if G - V admits an HI-colouring. 

Thus, a minimal labeled obstruction to this subcase has at most t vertices. 

Suppose exactly one of bd, be is a *-edge. Without loss of generality, let bd be a *-edge 

and be a 1-edge. We know that the graph G consists of one clique W and a complete 
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bipartite graph with independent sets U and V. Since the pair be is a 1-edge, any vertex 

w of W which is non-adjacent to a vertex of V must map to d. Let H' = H - Y. If such 

a vertex w does not exist, then G admits an H-colouring if and only if G - V admits an 

HI-colouring, and we have a minimal labeled obstruction of size at most t vertices for this 

subcase. Thus suppose that such a vertex w does exist. Let Wd be the set of all such vertices 

w (non-adjacent to some vertex of V). If the pair ad (or similarly for cd) is a *-edge, then 

there are no labeled minimal obstructions to this subcase. Vertices in similarity class U are 

mapped to a (or similarity c), vertices in similarity class V are mapped to b, and vertices 

in similarity class W are mapped to d. Thus, we assume neither ad nor cd is a *-edge. In 

other words, we have one of the following scenarios. 

0 ad, cd are both 0-edges 

ad, cd are both 1-edges 

0 one of ad, cd is a 0-edge and the other is a 1-edge 

Consider the first case. (We proceed analogously for the second case). Recall the set 

Wd from above. Let We be the set of all vertices of W adjacent to some vertex of U .  

Such vertices must map to vertex e. If Wd n We # 0 then we obtain a minimal labeled 

obstruction with three vertices. Let wl, w2 be any two vertices in We adjacent to vertices 

ul, u2 in U respectively. If wl, wz force a different mapping of vertex us in U because of 

their connections to us,  then we have a minimal labeled obstruction with five vertices. If 

neither of above occurs, then G is not a labeled obstruction to H .  

Now consider the third scenario. Recall vertex w of W from above. It now separates U 

into two sets U = Ua U Uc with vertices in Ua mapping to a and vertices in Uc mapping to c, 

otherwise we have a minimal labeled obstruction on four vertices. For each vertex w' # w 

in W ,  there is a vertex from each of Ua, Uc, V preventing w' from mapping to d or e. Thus, 

a minimal labeled obstruction for this scenario prevents w1 from mapping to either d or 

mapping to e and has at most 9 vertices. 

We have now shown that a minimal labeled obstruction for this assignment has at most 

max(9, t )  vertices. Recall there is 1 similarity class of 1-vertices, N1 = 1, and 2 similarity 

classes 0-vertices, NO = 2, thus there are only 2 possible assignments. For each assignment 
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a labeled obstruction has at most max(9, t)  vertices, thus a minimal labeled obstruction for 

this case has at most 2max(9, t )  vertices. 

Every graph G falls under one of these cases, thus a minimal labeled obstruction to H 

has at most 

max(NOt, N1t, NO + 1, N1 + 1, 18, 2t) 

vertices. 0 

We have shown that all exceptional trigraphs with five vertices have finitely many mini- 

mal labeled obstructions, thus by Theorem 2.3.5 they have finitely many unlabeled obstruc- 

tions. Although we are fortunate to show this for all exceptional trigraphs with five vertices, 

this fact is not true in general. We will show in the next chapter that there exists a clean, 

non-nice (i.e. exceptional) trigraph H with infinitely many minimal obstructions. 



Chapter 6 

An exceptional trigraph with 

IMMO 

In the previous chapter we have seen a complete classification of trigraph homomorphisms 

(as having FMMOIIMMO) for trigraphs up to five vertices. It was shown that all clean 

trigraphs H with at most five vertices have infinitely many minimal obstructions. This 

classification, however, is not true for all trigraphs with more than five vertices. In this 

chapter, we will show that there is a clean trigraph H with six vertices, illustrated in Figure 

6.1, which has infinitely many minimal obstructions. Note that H is an exceptional trigraph. 

Although exceptional trigraphs with five vertices have finitely many minimal obstructions, 

H does not. 

Figure 6.1: An exceptional trigraph and its corresponding partition 
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6.1 Clam graphs 

We now define an infinite family of graphs that do not admit a homomorphism to H. Let 

n 1 5. A graph G with 2 n  vertices V(G) = vl, . . . ,van is a clam graph if all its edges are as 

follows. 

0 vava+l for a < 2 n  

VlV2b+l  for b < n 

0 Vacvzd for c, d < n and c # d 

In other words, G is a clam graph if vl, . . . , van is a path, vertex vl is adjacent to all odd 

numbered vertices greater than 1, all even numbered vertices less than 2n induce a clique, 

and there are no other edges. Figure 6.2 illustrates a clam graph on 10 vertices (i.e., with 

n = 5). In some instances, Figure 6.2 will be used to illustrate some of the processes for 

the proofs in this chapter. It will be easy to see how the proofs can be applied to larger 

clam graphs. Note that since clam graphs are defined for n 1 5, the family of clam graphs 

is infinite. 

Figure 6.2: A clam graph 

6.2 Every clam graph is an obstruction to H 

We will first prove that every clam graph is an obstruction to H. In the next section we 

will prove that every clam graph is also a minimal obstruction to H. 

Theorem 6.2.1 Let G be a clam graph and H be the trigraph in Figure 6.1. Then G is an 

obstruction to H .  
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Proof. Suppose there exists a homomorphism f of G to H. We will prove by contradiction 

that vertex vl cannot be mapped by f to any of the six vertices in H. The proof is broken 

into 6 cases. Each case will make the assumption that vl is mapped by f to one of the six 

vertices in H. 

Case 1. Suppose vl is mapped to xl by f 

There are three independent vertices v3, v5, v7 adjacent to vl. Since xl is a 1-vertex, 

at most one of these three vertices may be mapped to xl by f ,  thus two must be mapped 

to the same vertex xq (or x5) by f .  Without loss of generality, suppose v5, v7 are mapped 

to 2 4  by f .  The vertices v4, v6 are non-adjacent to vl, thus they cannot be mapped to xi. 

Since they are both adjacent to at least one of v5 or v7, they both cannot be mapped to 

x2,x3, xq, 26. Since they are adjacent to each other, they cannot be mapped to x5 and we 

have a contradiction. 

Case 2. Suppose vl is mapped to x2 by f 

The vertices vl, v2, v3 induce a clique in G, thus at least one of 212,213 is mapped to x2 by 

f .  Without loss of generality, let f (v2) = x2. Vertex v5 is adjacent to vl but non-adjacent 

to v2 (or v3) and so v5 must be mapped to x6 by f .  Now consider vertex us. It is adjacent 

to v2 (or v3) but not vl so it must be mapped to x6. But v4 is adjacent to v5 and 2 6  is a 

0-vertex, so we have a contradiction. 

Case 3. Suppose vl is mapped to x3 by f 

The vertices vl, v2, v3 induce a clique in G, thus one of v2 or v3 is mapped to x3 by f or 

both v2 and v3 are mapped to xl by f .  We begin by addressing the first scenario. Without 

loss of generality, suppose f (v2) = x3 . Vertex v5 is adjacent to vl but non-adjacent to v2 

and so v5 must be mapped to x6 by f .  Now consider vertex v4. It is adjacent to v2 but not 

vl so it must be mapped to x6. But v4 is adjacent to v5 and x6 is a 0-vertex, so we have 

a contradiction. Now in the second scenario, we assume both v2 and v3 are mapped to xl 

by f .  Vertices v5,v7, vg are all adjacent to vl but non-adjacent to vertices v2, us, thus they 

must be mapped to X6. Consider vertex v4. It is adjacent to vertices v2,v3,v5 so it must 

map to xg, but it is not adjacent to v7, so we have a contradiction. 

Case 4. Suppose vl is mapped to x4 by f 

The vertices vl, v2, v3 induce a clique in G, thus at least one of v2, v3 must be mapped 

to xl by f .  The vertices v2,-1, VZn-3 are independent and adjacent to vl. Since both are 
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also non-adjacent to 212, V Q ,  both must be mapped to x5 by f .  Now consider vertex van. It 

is non-adjacent to v2, v3 SO it cannot be mapped to either xl or x3 by f .  It is non-adjacent 

to V2n-3 SO it cannot be mapped to either x4 or x6 by f . It is adjacent to van-l so it cannot 

be mapped to either x2 or x5 by f and we have a contradiction. 

Case 5. Suppose vl is mapped to xs by f 

The vertices vl ,  v2, v3 induce a clique in G, thus at least one of v2, v3 is mapped to xl 

by f .  More precisely, v2, v3 may be mapped by f in exactly three different ways: 

Suppose we have the first scenario. Vertex v6 is adjacent to v2 and non-adjacent to vl ,  v3 

so it must be mapped to 25 by f .  Vertex vg is adjacent to vl but not V 6 ,  so it must be 

mapped to X I .  But xl is a 1-vertex and vg is non-adjacent to vertices v2, v3 and we have a 

contradiction. 

Suppose we have the second scenario. Vertex vg is adjacent to vl ,  vlo, and vertex vlo is 

only adjacent to vg. Thus, vg must be mapped to x6 and vlo must be mapped to 22. Vertex 

v8 is adjacent to v2, vg, but not vl ,  so it must map to x3. Vertex v7 is adjacent to vl ,  v8, 

but not adjacent to va, SO it must map to X 6 .  By the same logic, we force V6 to 23 and v5 

to 26. Now v4 must map to x5 since it is adjacent to both us, v5, but is it also adjacent to 

x6, x8 and the pair 23x5 is a 0-edge, so we have a contradiction. 

Suppose we have the third scenario. We arrive at the same contradiction if we apply the 

same proof as in the second scenario. 

Case 6. Suppose vl is mapped to x6 by f 

The vertices vl ,  v2, vs induced a clique in G, thus either both v2, v3 are mapped to x2 

or they are both mapped to x3 by f .  Vertices v6, v8 are adjacent to v2 but not us, so they 

must map to X 6  by f .  But 26 is a 0-vertex and v6 is adjacent to v8, so both us, v8 cannot 

map to X 6  and we have a contradiction. 
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We have now shown that vl cannot be mapped to any vertex in H. Thus, there is no 

homomorphism from G to H and G is an obstruction to H. 0 

6.3 Every clam graph is a minimal obstruction to H 

Now that we have established that every clam graph G is an obstruction, we will prove that 

every clam graph G is also a minimal obstruction. 

Theorem 6.3.1 Let G a clam graph and H be the trigraph in  Figure 6.1. Then G is a 

minimal obstruction to H .  

Proof. By Theorem 6.2.1, we have shown G to be a obstruction to H .  We will now show 

that G is a minimal obstruction to H. Let vj be any vertex in G. In particular, we will 

show that the graph G - vj admits an H-colouring f .  Our proof is broken into 3 cases. For 

each case, we will define a homomorphism f from G to H. 

Case 1. suppose vj = vl 

Let i < n - 1. We define f (vzi) = x3, f (vai+l) = x6 and f (vz,) = x2. Vertices mapped 

to x3 induce a clique in G, vertices mapped to x6 are independent in G, and the vertex 

mapped to x2 is non-adjacent to any vertices mapped to x s  

Case 2. suppose vj = v2, 

Let i 5 n - 1. We define f ( v l )  = x5, f ( ~ 2 ~ )  = xl and f (vzi+l) = xq. Vertices mapped 

to xl induce a clique in G, vertices mapped to 24 are independent in G, and the vertex 

mapped to x5 is adjacent to all vertices mapped to x4. 

Case 3. suppose vj # 1, v2, 

Let 1 < a < lj/2j and [j/21 < b < n - 1. We define 

0 f ( ~ 2 ~ )  = x4 for 2a # j 
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f ( ~ 2 ~ )  = x3 for 2a # j 

In other words, we define f such that vertex vl maps to xs, vertex vn maps to x2, all 

even labeled vertices less than j map to XI,  all odd labeled vertices less than j map to 2 4 ,  

all even labeled vertices greater than j map to x3 and all odd labeled vertices greater than 

j map to X6. 

It  is easy to confirm that all vertices mapped to XI ,  23  induce a clique in G - v, all 

vertices mapped to x3, X6 are independent in G - v and are all adjacent to vl, all vertices 

mapped to XI are not adjacent to any vertex mapped to X6, all vertices mapped to x3 are 

not adjacent to any vertex mapped to x*, and vn is only adjacent to vertices mapped to x6. 

We have shown a homomorphism of G - v to H, and we know by Theorem 6.2.1 that G 

is an obstruction, therefore G is a minimal obstruction to H .  0 

We have shown that every clam graph is a minimal obstruction to H .  Since the family 

of clam graphs is infinite, there are infinitely many minimal obstructions to H. 



Chapter 7 

Conclusion 

In Chapter 2, we reviewed some general tools, such as retractions and ZSAT, that have been 

used in solving partition problems. These, along with other techniques, were used in the 

classification of almost all 'small' list trigraph homomorphism problems as NP-complete or 

polynomial time solvable [7, 181. In particular, all trigraphs having up to four vertices, with 

the exception of the trigraph corresponding to the 'stubborn problem' (and its complement) 

has been classified. 

In our original contribution, we focused our attention on small trigraphs and obstruc- 

tions. In particular, we investigated all trigraphs having up to five vertices and ask whether 

they have finitely many minimal obstructions (FMMO) or infinitely many minimal ob- 

structions (IMMO). Recall that a trigraph having FMMO is automatically polynomial time 

solvable. We developed tools in Chapters 3 and 4 to aid in proving that up to five vertices, 

there is an easy classification of these trigraphs. Namely, those trigraphs that are messy have 

IMMO, and those trigraphs that are clean have FMMO. However, this simple dichotomy of 

trigraphs does not apply in general. In particular, we gave an example of a clean trigraph 

on six vertices in Chapter 6, and proved that it has IMMO. 

From the tools that were developed, we are also able to define two infinite families of 

trigraphs that have FMMO. The split-friendly family is defined to contain precisely those 

trigraphs with only 0-edges in SA and only 1-edges in SB. Trigraphs in this family are all 

split-friendly, and thus have FMMO. A trigraph H is very nice if it has only 1-edges in SA 

or only 0-edges in SB. Very nice trigraphs have the hereditary property of being nice, and 

thus they also have FMMO. The trigraphs in Figure 4.4 are in fact very nice. 



CHAPTER 7. CONCLUSION 

7.1 Future work 

It  would be nice to give a necessary and sufficient condition for when a trigraph H yields 

a trigraph homomorphism problem with FMMO. Our distinction of clean versus messy 

trigraphs was based on the observation that the structures B,B were the only causes for 

IMMO for the trigraph homomorphism problems for small trigraphs H. In Chapter 6, we 

found a second structure H (and its complement H )  that yielded IMMO for the trigraph 

homomorphism problem. It may be possible to show that structures H, H and perhaps 

finitely many others structures are the only minimal trigraphs that cause IMMO. 

Of those trigraphs classified as having IMMO, it would be interesting to identify whether 

the basic trigraph homomorphism problem is NP-complete or polynomial time solvable. It is 

clear that any messy trigraph with an induced subtrigraph corresponding to the 3-colouring 

problem is NP-complete. However, little is known about other messy trigraphs and in 

general, other trigraphs with IMMO. 

As we have extended the results from [7, 181 by considering the IMMOIFMMO view 

for undirected trigraphs, it is also interesting to consider this same IMMOIFMMO view for 

directed trigraphs. A complete classification of NP-complete or polynomial time solvable was 

achieved for all directed trigraphs with up to three vertices in [21], however the classification 

of these directed trigraphs in terms of their obstructions has yet to be investigated. 
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