
Bounds for Communication Problems in
Interconnection Networks under a Linear Cost

Model

David B. Peters

B.Sc. University of Victoria 1982

M.Math. University of Waterloo 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE O F

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ David B. Peters 1995

SIMON FRASER UNIVERSITY

December 1995

All rights reserved. This work may not be
1)

reproduced in whole or in part, by photocopy ,
or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

David B. Peters

Doctor of Philosophy

Bounds for Communication Problems in Interconnec-

tion Networks under a Linear Cost Model

Examining Committee: Dr. Slawomir Pilarski

Chair

Date Approved:

I ~ f . ~pseph Peters, Senior Supervisor

.I I - I

Dr. P~f;l'~ell, S@s&

I u - ;v - - " t - .
Dr. bhomas>hqme, Supervisor

Dr. Arthur Liestman, Examiner

,,
Y

Dr. Ching-Tien Ho, External Examiner

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

Bounds for Communication Problems in
- -

Interconnection Networks under a Linear Cost
Model.

Author: . .

(signature)

David Bruce Peters

(name)

December 5, 1995

(date)

Abstract

In the analysis of communications under the assumption of linear cost and in the

context of a distributed memory interconnection network, many authors have noted

that a good method for sending a message of length n along a path of length m

is to divide the message into some collection of equal or nearly equal packets, and

pipeline the communication. We formalize and prove that this notion is optimal in

the context of an interconnection network using store and forward communications

under the linear cost model. Armed with this proof technique and bounds, we attack

problems of broadcasting and gossiping in the contexts of a ring of processors and a

complete interconnection of processors. M'e acquire a variety of new upper bounds,

and several lower bounds to match.

Acknowledgments

An image that comes to mind is of a football receiver, after catching the first touch-

down of his career, kneeling in the end zone to pray. While I'm not catching footballs,

it's a good analogy for me: I'd like to thank God for enabling me to finish this work.

I'm not claiming that God did the work, nor that I had nothing to do with the out-

come. But that without Him, for whatever reasons, I wouldn't have got here: yes,

exactly that.

I thank my wife Robyn for her encouragement, prayers and support.

My respect and gratitude to my supervisor, Joe Peters (no biological relation).

For friendship; honesty; inspiration; patient encouragement well beyond the call of

duty. Not to mention the only good coffee on campus.

To Tom Shermer and Art Liestman: for demonstrating again and again that

approachability and frivolity can coexist happily with responsibility and competence.

My thanks to you both for your support of my academic development.

My thanks too to Binay Bhattacharya, Arvind Gupta, and Pavol Hell, for teaching

me all sorts of wonderful things that, unfortunately, don't quite make it into this work.

Not consciously, anyway.

And to my friends, the algorithms gang - in alphabetical order - Cheryl, Dave,

Patrice, Sheelagh. For camaraderie, discussions, food; more discussions; acres of

whiteboard scrawlings; help with TEX, Postscript, system administration, Emacs,

calculus, and university bureaucracy. And most importantly, for making life in the

lab more than pleasant.

Contents

... Abstract 111

. Acknowledgments iv

. List of Figures vii

1 Overview . 1

1.1 Introduction . 1

. 1.2 The structural model 3

1.3 Thecostmodel . 5

. 1.4 Motivations and results 7

1.4.1 Lower bounds . S

. 1.4.2 Upper bounds 10

2 Sending a message over several links 14

2.1 The problem . 14

2.2 Model independent preliminaries 15

2.2.1 A note about figures 17

2.3 The link bound model . 1s
I

2.4 The processor bound model 37

2.5 Sending along multiple paths 55

3 Broadcasting . 59

. 3.1 The problem 59

3.2 Broadcasting in the ring . 60

3.2.1 The link bound full duplex ring 61

3.2.2 The processor bound full duplex ring 73

3.2.3 The half duplex ring 77

. 3.3 Broadcasting in the comptete graph 85

3.3.1 The full duplex link bound complete graph 86

. 3.3.2 The half duplex link bound complete graph 88

3.3.3 A digression: the full duplex processor bound hypercube 92

3.3.4 The full duplex processor bound complete graph . . 95

3.3.5 The half duplex processor bound complete graph . . 96

. 3.4 Summary 97

. 4 Gossiping 99

. 4.1 The problem 99

. 4.2 Gossiping in the ring 99

. 4.2.1 The unidirectional link bound ring 100

4.2.2 The unidirectional processor bound ring 104

. 4.2.3 The full duplex link bound ring 109

. 4.2.4 The full duplex processor bound ring 112

. 4.2.5 The half duplex bidirectional ring 119

. 4.3 Summary 121

. 5 Conclusion 122

5.1 Theresults . 122

. 5.2 Future directions 125

. A Extra Algebra 127

. A.l The upper bound of Saad and Schultz 127

A.2 Bounds for sending in the path 129

. A.2.1 The link bound path 129

. A.2.2 The processor bound path 131

. A.3 Bounds for sending in the ring 133

. A.3.1 The link bound ring 133

. Bibliography 138

List of Figures

. 2.1 Three sample packet transfers 17

. 2.2 A pipelined transmission: n = 19, m = 5 19

. 2.3 A random transmission 21

. 2.4 The packet content digraph of a random transmission 22

. 2.5 The packet content digraph of an equal-packet transmission 23

. 2.6 Two searches in the digraph of Figure 2.4. 26

. 2.7 Two paths traced by SearchForward(v, A , L) 30

. 2.8 A backward search in the digraph of Figure 2.4. 31

. 2.9 Path A intersects B Inset is Figure 2.10. 32

. 2.10 First case: the out-edges of X(i, j) 33

. 2.11 Path A' intersects 23 Inset is Figure 2.12. 34

. 2.12 Second case: the in-edges of X(i, j) 35

. 2.13 The long path found in Figure 2.4. 37

. 2.14 A pipelined transmission: n = 19, m = 5 38

. 2.15 A random processor bound transmission 41

2.16 The packet content digraph of a random processor bound transmission . 42

. 2.17 The packet time digraph of an equal-packet transmission 43

. 2.18 An impossible lack of planarity 44

. 2.19 Two searches in the digraph of Figure 2.16. 47

. 2.20 A backward search in the digraph of Figure 2.16. 51

. 2.21 The long path found in Figure 2.16. 55

. 3.1 Example: Broadcasting a message of size 33 in C6 66

vii

3.2 Example: Broadcasting a message.of size 33 in C7 68

3.3 Example: The digraph of the forward component of Figure 3.2 69

3.4 Example: The digraph of the forward component of Figure 3.2 70

3.5 Easy case: Two paths traced by SearchForward(v, A, k) 71

3.6 Hard case: Two paths traced by SearchForward(v. A. k) 72

3.7 Example: Sending a message of size 61 in C6 74

3.8 Example: Sending a message of size 97 in C7 76

3.9 Example: Sending a message of size 99 in C6 79

3.10 Example: Sending a message of size 99 in C7 81

3.11 Example: Sending a message of size 65 in C6 82

3.12 Example: Sending a message of size 84 in C7 84

4.1 Example: Gossiping messages of size 10 in C7 105

4.2 Example: Gossiping messages of size 7 in C6 110

4.3 Example: Gossiping messages of size 10 in C8 113

4.4 Example: Gossiping messages of size 10 in C7 114

4.5 Example: Gossiping messages of size 7 in C8 120

...
V l l l

Chapter 1

Overview

1.1 Introduction

Despite huge advances in the processing power of today's con~puters over those of the

recent past, the tasks these machines are called to address grow even more rapidly.

Partly as a consequence, we see a proliferation of parallel machines being constructed:

everything from two or four CPU desktop workstations through systolic arrays or

hypercubes with thousands of processors. And where once the work of a theorist was

clear-one found the fastest algorithm for a given problem, or proved that finding such

a good algorithm was unlikely-there is now the added task of defining the machine

model under which an analysis is valid.

One of the philosophies of construction for these machines is that of achieving par-

allelism by constructing a network of many essentially identical processors joined by

point-to-point communication links. Typically, the processors run without any central

control, and communicate by passing mesmges along the links. This interconnection

network is the general setting of our work.

In this context, an algorithm that takes advantage of any parallelism will nec-

essarily involve the transfer of information between processors. In general, this will

involve sending messages along a path (or several paths) of communication links. The

act of "sending a message along a path" will decompose into a number of discrete

information transfers along single links: the transmission of packets of information.

CHAPTER 1. OVERVIEW

We refer of a collection of packet transfers.as a sending scheme: finding optimal (or

near-optimal) sending schemes for a particular model and class of network will be the

specific focus of this thesis.

In the same way that an entirely unstructured data space may be improved by the

use of data structures, the communications of a specific algorithm could conceivably

be entirely chaotic or pattern-less, yet it would seem more desirable for the data

transmission to be composed of primitives. We will concentrate on providing good

schemes for a couple of specific well-studied communication primitives: broadcastiny

and gossiping. Broadcasting is the primitive in which a processor sends copies of

a single message to all other processors. Gossiping is the primitive in which each

processor broadcasts a message to all others. Many other primitives exist - the

reader is directed to [8] for a good survey.

We want good communications schemes. What criterion determines whether a

scheme is good or not? We employ a linear cost model, in which the time to send

a packet over a single communication link is a linear function of the length of the

packet. A "good" scheme, then, is one that can be scheduled in minimum total time

under the linear cost model. In this thesis, we obtain optimal schemes under that

model for several fundamental problems, as well as good time bounds for several more

ambitious problems.

In this choice of model, we follow the lead of Saad and Schultz [22], Johnsson

and Ho [16], and Fraigniaud [7]. The unit cost model, rather than the linear cost

model, was the traditional choice. On the other hand, the choice of store-and-forward

communications is quite in keeping with most "traditional" (insofar as that word

may be applied to distributed computing) treatments. While there is work that deals

with other transmission methods (circuit-switched, wormhole, or cut-through rout-

ings; broadcast buses; etc.) store-and-forward communications are a lowest common

denominator for many distributed machines. Since we want to categorize this partic-

ular work more as foundational than exploratory, we have confined ourselves (with

the exception of the linear cost model) to the simplest or most ordinary choice in all

else.

We begin by establishing an exact bound for sending a message over a single

CHAPTER 1. OVERVlEW

directed path, and then build on that foundation. We apply the result in two dissimilar

ways: first, we update existing bounds that contain a sending scheme by employing

a provably optimal sending scheme; and second, we use some of the proof techniques

to improve bounds.

1.2 The structuralmodel

An interconnection network, in this context, is a collection of asynchronous processors,

connected one to another by communication links in some connected topology. Of

the adjective asynchronous we will not make any great fuss. It is important only

in the following limited sense: the lower bounds we will discover will not ma.ke any

restrictions upon the synchronity of the processors; and the cost model will only

reflect the time spent by the communication links, not the (potentially incomparable)

execution times of the processors.

We will make no specific assumption about the autonomy of the processors. In

fact, whether or not the processors of our networks have a centralized control makes

little difference: all our algorithms may be implemented in a distributed setting.

What, then, do we mean by "processor", "communication link", or "topology"?

We address each in turn.

An example of the sort of processor we're talking about is the Analog Devices

-21060 SHARC DSP chip [I]. It's a 40MHz multi-port processor with a local mem-

ory of 128K words and 6 direct memory access (DMA) channels for connecting to

neighbours. In general, we will denote this sort of entity by the term processor: a

computation element which has some local memory for storing instructions and data,

and a collection of associated DMA channels for communication. Processors will be

connected by communication links, which will be managed in some manner by the

DMA channels.

As to the communication links themselves, we will only concern ourselves with

static point-to-point links: we will not discuss broadcast buses, shared memory, or

even reconfigurable switches. We assume that these links are packet switched (or

store-and-forward) so that a processor must wait for all bits of a particular packet to

CHAPTER 1. OVERVlE W

arrive before it may forward any portion of the packet. We assume processors are free

to repackage information they receive in any way.

We will allow three variants of these links: a simplex (or unidirectional, or one way)

link, and both half duplex and full duplex two way connections. A simplex link has an

associated orientation: a simplex link L connecting Pi to Pj allows the transmission

of packets from P; to Pj but does not allow any transmission in the other direction. A

half duplex link, on the other hand, allows transmissions in both directions, but only

one direction may be in use at any one time. A full duplex link is essentially identical

to a pair of simplex links that share the same endpoints and have opposite direction.

Regardless of whether the individual links are simplex or duplex, the interaction

between processors and links also admits a few variants. We will follow [23] and label

the variants link bound, processor bound, and DMA bound, as follows. In the link

bound (or alLport) case, a given processor may use all of its links simultaneously.

Alternatively, in the processor bound (or 1 - ~ o r t) case, a single link might monopolize

the attention of a processor to such a degree that no other links may be employed while

the first is active. Or there could be some compromise between these two extremes

- the DMA bound (or k-port) case: the 21060 for example, regardless of how many

physical connections it has with neighbours, will not be able to employ more than its

6 DMA channels at once. We will not investigate the DMA bound case: the interested

reader is directed to [7] or [8].

The topologies we discuss are from graph theory, rather than real analysis. We

consider a network as a graph (or digraph in the case of unidirectional links), in

which the processors are the nodes, and the communication links the edges. The

possible topologies, then, are the categorizations of graphs: complete graphs, cycles,

tori, hypercubes, and the like. We will tend to confine our attentions to the cycle and

the complete graph, with only occasional forays afield into more exciting topologies.

The component parts of communication schemes will be messages, sub-messages,

packets, and occasionally rounds. We define these terms as well.

By message we will mean a set of indivisible units of data. These message units

are all of the same size, and form the basis for a measure of the size of the message: a

message of size n contains n message units. Arbitrary subsets of a message are termed

CHAPTER 1. OVERVIEW

sub-messages, and share the same size measure. The majority of the communications

algorithms we will investigate will partition the message into a collection of sub-

messages.

By packet, we mean something with a bit more solidity: a specific transfer of

a sub-message over a link of the network. So while we can divide or amalgamate

sub-messages, the same cannot strictly be said of packets: "dividing a packet" can

only be a reference to dividing the sub-message that is represented in the packet. We

will typically assume that each packet has well defined endpoints: the time it begins

transmission, and the time it finishes transmission.

A synchronous sending scheme may be divided into rounds. A round is a collection

of packets that have two properties. First, no two packets in a particular round may

be transmitted on the same link. Second, if two packets belong to different rounds,

they cannot overlap in time: either one finishes transmission strictly before the other

begins, or vice versa. A round is a convenience for analysis: the time required by an

algorithm divided into rounds is simply the sum of the times required by the largest

packet in each round.

The cost model

Traditional sequential analyses are concerned primarily with a measure of the total

.execution time that is taken by an algorithm, particularly as a function of the size

of the input. While this would also be the measure of choice in our distributed

setting, the essential asynchronity of the processors makes such a measure difficult:

the difficulty in balancing the communication time of an algorithm against the time

required for computation within a processing element pales against the simple fact

that there is not necessarily a global clock with which to measure total time.

Perhaps as a result, there is no single most approved measure of the performance

of a distributed algorithm. Most authors agree that the best measure is some function

of the messages employed by an algorithm. Some are content to count either the total

number of messages employed by a communication scheme, or the total number of

CHAPTER 1. OVERVIEW

rounds necessary to complete an algorithm: And since neither of these measures ex-

actly reflects the elusive "total time" measure, others employ more complex functions,

usually with some practical justification. We will follow the latter camp.

Traditionally, a more sophisticated analysis of a sequential algorithm measures use

of both the execution time and the space employed by an algorithm. There is often

a natural tradeoff, in practice, between these parameters: an algorithm constrained

to occupy less memory may take more time than an unconstrained algorithm; while

a minimum time algorithm could conceivably require more memory than is strictly

necessary to perform the task.

Moving into a tightly coupled parallel setting, we find that in addition to time

and space, one can also find a tradeoff between time and the number of processors

allocated to a task. Typically, a parallel analysis will end up with a time bound

parameterized by the number of processors.

The distributed setting adds more parameters. In addition to measuring commu-

nication time, it could be appropriate to also measure network load, or the proportion

of the available DMA channels used. What's more, one could consider variant topolo-

gies on n processors merely various restrictions of complete connectivity, and obtain

a three-way tradeoff in parameters that are not present in either the sequential or

tightly coupled parallel models: time, network load, topology.

The simplest treatment of communication time gives unit cost to each transmission

.of a message. There are several variants. If the network load constraint is calibrated

as "links simultaneously active", and set to 1, the total messages measure arises.

And with no constraint on network load, we get upper and lower bounds expressed

in terms of the number of rounds required to send a message. Though this unit

cost model represents the traditional majority opinion in distributed analysis, we will

not address it at all; rather the reader is directed to the recent general surveys by

HromkoviE et.al. [15] and Fraigniaud and Lazard [8], or the comprehensive survey of

Hedetniemi, Hedetniemi and Liestman [13] which catalogues the early results.

We will treat each transmission as taking time linear in the length of the message.

Specifically, any message of length L will take time /3+ LT to finish transmission, where

,O is the start-up cost for activating a link, and T the propagation cost of sending a

CHAPTER 1. OVERVlEW 7

single message unit. As a simplifying assumption, we will assert that /3 and r are the

same for each communication link.

The linear cost model permits a couple of degenerate cases. The first - when r

is zero - is equivalent to the unit cost model. The second - when P is zero - is

usually termed the round model: for a specific treatment, see [4].

In the larger three-way tradeoff, we will examine several network topologies. But

the network load parameter is partly obscured by the choice of r. Without further

constraint, r is the inverse of the bandwidth of the links, in bits per second. We can

investigate the alteration of the proportion of total bandwidth an algorithm uses sim-

ply by adjusting r. We will thus content ourselves with investigating the interrelation

of communication mode and network topology with ,B and T. problem.

1.4 Motivations and results

Why? Because it hadn't been done, of course. Any thesis says as much.

In this particular case, the spark was the "sending question":

How long does it take to send a message of length n over m communication

links under the linear cost model?

The context of this question is the general problem of finding lower bounds for com-

munication problems in interconnection networks under that linear cost constraint. A

one-to-one communication in the most restrictive possible network topology appeared

to be the ideal starting point. Certainly, it has proved a necessary first step in the

investigations of lower bounds for broadcasting and gossiping in this thesis.

Of course, the question "How long does it take . . . " can only be completely an-

swered by finding matching upper and lower bounds on the problem. ?Ve will refer to

this case idiomatically within this work by using (for example) matching lower bound

to mean implicitly that the lower bound matches an existing upper bound. We will

thus answer the sending question in chapter 2 by finding matching lower bounds for

both the link bound and processor bound cases. We address the broadcasting problem

in chapter 3 for the simplest topologies: the ring, and the complete graph. We treat

CHAPTER 1. OVERVIEW 8

gossiping in the ring in chapter 4. For both gossiping and broadcasting, we do not

always find matching bounds. We will also demonstrate some new algorithms that

improve upon the existing upper bounds, and some new lower bounds.

We employ the symbol bx(T,n) to denote the optimal time for broadcasting a

message of size n under communication model X and in topology T. Similarly, we

denote the minimum time for each processor to gossip a message of size n in topology T

under communication model X by gx(T, n). We follow the notation of Fraigniaud and

Lazard [8] in specifying the subscripts X : the labels F and H respectively denote full

duplex and half duplex links, while 1, k, or * respectively denote the processor bound,

DMA bound, and link bound cases. Rather than risk any ambiguity with regard to

the orientation of simplex links, we will specify the simplex case by restricting the

topology to a specific oriented network: the unidirectional cycle. In addition, we will

employ Sx(T, n, m) to denote the optimal time to send a message of size n to another

processor at a distance of m communication links in topology T. For our "sending

question" the topology is omitted for convenience: we employ Sx (n, m).

1.4.1 Lower bounds

The literature contains few examples of tight lower bounds for communication prob-

lems under the general linear cost constraint. One reference (Fraigniaud, Miguet

and Robert [9]) proves a matching lower bound for the problem of scattering in the

unidirectional ring. .4nd recently, Fraigniaud and Peters [lo] have demonstrated a

matching lower bound for gossiping with unit size messages under the processor bound

constraint in the complete graph K2,. Good lower bounds also exist for broadcasting

with unit size messages, but these are simply equivalent to lower bounds for the unit

cost model.

Most other approaches to lower bounds under the linear cost constraint follow

Ho [14]. He notes that a transmission is constrained separately by: its root dominance

- the time required for the source to send the whole message; its latency dominance-

the propagation delay for the last unit of the message to reach the furthest destination;

and its bandwidth dominance - the total bandwidth required divided by the available

CHAPTER 1. OVERVIEW 9

bandwidth. Yet these three characteristics have their own tradeoff. Decreasing the

root dominance could easily increase the bandwidth dominance of a transmission.

For the problems we will consider, the best previously published lower bounds are

the work of Johnsson and Ho [16] and Fraigniaud [7].

The latency dominance constraint of Ho is the starting point for each of these

bounds. In a regular graph with m nodes, diameter D and degree A, all required

information must be received by the destination processor(s): nT time for the pro-

cessor bound broadcast; n r / A time for the link bound broadcast; (m - l) n r / A time

for link bound gossiping; (m - 1)nr time for processor bound gossiping. In addition,

there must be a path of length at least D over which some information must pass

- requiring D(P + T) time. Fraigniaud noted that the latency for broadcasting is

additive. In the above enumeration, the bounds that contain a maximum are the

original bounds due to Ho, while the remainder have been updated by Fraigniaud.

Fraigniaud and Lazard [8] provide half duplex bounds, using Ho's bandwidth dom-

inance constraint. They note that the total available bandwidth in the link bound half

duplex model is m A / (2 ~) , and Lm/2J /T in the processor bound half duplex model.

The next collection of bounds follow from the requirements that at least (m - l) n

units of data be received for a successful broadcast, and that gossiping exchanges

messages with total size m(m - 1)n.

CHAPTER 1. OVERVIEW

We will see improvements in many of the full duplex bounds: those marked with

a *. On the other hand, the half-duplex bounds will not be improved upon in this

work.

1.4.2 Upper bounds

To the first approximation, the application of two concepts provide the upper bounds

for our collection of problems: pipelining and disjoint spanning trees.

Informally, by pipelining, we mean the sort of scheme that occurs in a modern

assembly-line automobile plant. Rather than a ca.r being assembled in its entirety

before the next is begun, the vehicles are placed in a line composed of (more or less)

discrete stages, each of which take (roughly) the same amount of time. While a

windshield is being put on one car, the drive train is installed in another, and the

wheels bolted to yet another. In our specific sense, a pipeline is the result of making the

analogy from sub-messages of information to automobiles, and the process of sending

a packet along a link to a st,age of the assembly. A pipeline results, for example,

when the first processor decides to send sub-messages of some (roughly) fixed size,

and all other processors both maintain the original packaging of the sub-messages,

and choose to send the information contained in the most recent packet they have

CHAPTER 1. OVERVlEW

received in preference to acquiring new information.

If we pursue the analogy yet further, we note that in an eficient pipeline, the stages

of the pipeline are as close as possible to the same size. In the automotive plant, if

each stage of assembly takes the same time the workers will be idle as little as possible.

Similarly, if each packet used in the pipeline is the same size, the communication links

will be idle as little as possible.

For our purposes, then, to pipeline a message of size n along a path of m commu-

nication links is to break the message up into sub-messages of some size k and send

the sub-messages into the path in succession. When k doesn't divide n evenly, we

allow the last sub-message to be smaller. For simplicity, in the rest of the thesis, we

refer to this sort of subdivision as dividing into LLsub-messages of size k".

So how long does a pipeline process take? For any particular cost model (and thus

choice of ,O and T) , there are only the three additional parameters we've seen: the

size n of the message; the number of links m over which to send the message, and the

size of the largest sub-message, k; we will therefore denote this time by Tx(n, m, k),

where X will be the appropriate label to distinguish the link bound and processor

bound cases.

For the link bound case, Saad and Schultz [22] note that at least [nlk] + m - 1

rounds are required by a pipeline in sub-messages of size k. As a consequence, they

employ the value

to measure the time required to pipeline a message of size n over m links in packets

of size k. Johnsson and Ho [16] note that the final round may be abbreviated when k

does not divide n evenly, giving the formula we will employ:

Specifically addressing link bound broadcasting, Johnsson and Ho [16] prove that

rather than restricting a pipeline to a single path, one could pipeline into a directed

tree: a processor simply sends each packet to each of its descendants in the tree. The

pipelined scheme that results can broadcast in packets of size k to each node of a tree

CHAPTER 1. OVERVlEW 12

with depth m in time T,(n, m, k). As a result, they tend to model broadcast problems

in a network G in terms of finding spanning subtrees for G of small depth.

For cases where a network has multiple arc-disjoint directed spanning trees, they

demonstrate a more sophisticated approach. If a network G has a collection of arc-

disjoint directed spanning subtrees {TI, TZ, . . . , Tj), then one can broadcast a message

to G by dividing the message into j sub-messages, and pipelining each one into its

own spanning tree.

The upper bounds for the processor bound cases we examine have not seen a

great deal of study. Saad and Schultz do not consider any processor bound problems.

While Johnsson and Ho treat a 1-port case, it is slightly different than ours: they

allow a processor to simultaneously listen to one port and transmit through another.

And while Fraigniaud and Lazard employ the same processor bound model we will

consider, their best upper bound for Tl(n, m, k) is T8(2n, m, k) - which is at least kr

larger then the bound we employ:

Fraigniaud and Lazard extend the directed spanning tree and multiple arc-disjoint

directed spanning tree schemes of Johnsson and Ho to the processor bound case by

adding the notion of a processor bound labeling. For any given subtree, the labeling

numbers all arcs that leave each vertex with a larger label than is on the arc that

-enters the vertex. In addition, the labeling ensures that no two edges (in any subtree)

adjacent to the same vertex have the same label. (Pairs of arcs in opposite directions

that connect two vertices may, however, have the same label.) The largest label w

in the scheme is an upper bound on the number of rounds required to send a single

packet through all subtrees. The smallest value e for which every arc adjacent a node

has distinct labels modulo e is an upper bound on the number of rounds required to

send each subsequent packet. They thus derive an upper bound of

for a processor bound broadcast.

CHAPTER 1. OVERVlEW 13

For either the link bound or processor bound case, the gossip algorithms presented

by any of these authors for the cycle are nowhere near as sophisticated as their broad-

cast techniques. Nonetheless, the gossip schemes are quite effective: they simply send

all information around the ring in one direction, until each processor has seen all

messages.

Our contribution to the upper bounds, whether for broadcasting or gossiping, is

twofold. In each case, we identify unused (or under-used) communication capacity

in the existing schemes, and attempt to exploit it. In addition, we employ sending

primitives that we prove are optimal.

Chapter 2

Sending a message over several

links

2.1 The problem

Given our linear cost models, the simplest non-trivial communication problem is that

of sending a single message of size n along a path of m communication links in some

minimum time. As defined in the introduction, we denote this minimum possible

sending time by Sl(n , m) for the processor bound and S,(n, m) for the link bound

constraints. We note that it is irrelevant whether the links are full-duplex or half-

-duplex: we will use all links in only one direction. This chapter proves matching lower

and upper bounds for this sending problem in both the processor bound and link

bound models.

There are two degenerate cases, for which a tight value of S,(n, m) is known [16]. If

n = 1 or T = 0, the message must traverse all m communication links, and S,(n, m) =

m (p + T) . If p = 0, then since the message must traverse the first link in its entirety,

and then has at least a latency of (m - l) r before reaching the destination thereafter,

S,(n, m) = (m + n - 1) ~ . The general solution we will obtain will reduce, in the

degenerate cases, to these same bounds.

This problem was first addressed by Saad and Schultz [22]. They employ the link

CHAPTER 2. SENDlNG A MESSAGE OVER SEVERAL LINKS

bound model, and provide (in our notation) an upper bound of

where p is the number of sub-messages into which the message has been divided. They

note that this upper bound is asymptotically equivalent to

In this thesis, we we will show this value is a lower bound on the problem. Based

on the formula of Saad and Schultz, a (non-asymptotic) upper bound in closed form

See Appendix A.l for the derivation of this last inequality.

2.2 Model independent preliminaries

We first establish some notation for the problem:

0 There are m + 1 processors, PI , P2, . . . , Prn+1. Processors with adjacent inc dices

are connected by a communication link: Pi and Pi+1, for example, are connected

by L;.

0 The message is an ordered set of n information units, {bl, bz, . . . , b,). (Think

of b as a mnemonic for b i t or byte .)

0 The message originates at PI and must be sent to the destination processor

Prn+l.

CHAPTER 2. SENDING A MESSAGE O V E R SEVERAL LINKS 16

We let {A(;, I) , X(i, 2), . . . , X(i, v(i))) represent the collection of v(i) packets that

are sent over L;. Since the message must be transmitted in its entirety over each

link Li, this collection of packets forms a partition of the message set.

0 The ordering of the packets in this partition is the natural order: the order the

packets are sent. That is, X(i, j) was transmitted before X(i, j') if j < j'.

0 Each packet X(i, j) has a length (or size) IX(i, j) 1 (simply the number of units in

the packet) and a start t i m e st (X(i, j)) . We will usually assume st (X(1,l)) = 0.

0 For some values of m and n , any broadcast scheme that sends a message of

length n over m links may be described by a 3-tuple (A , v, st).

0 We say that two schemes A and B are equivalent if there is a 1-1 mapping

between the packets of A and the packets of B, that preserves length and start

time for each packet.

In a theoretical sense, the problem of sending a message of size n through a network

from one processor to another has no further constraints: the order that the message

units arrive, for example, is not a factor. In practice, if a sending scheme could only

guarantee that a message would arrive, and yet had the difficulty that the message

would appear in a random order, the scheme might meet with limited acceptance.

Fortunately, as this next lemma shows, such a randomization is not a drawback of

this particular problem.

L e m m a 2.2.1 For some positive integers n and m, any scheme to send a message of

size n over m links (from PI to Pm+l, as per our notation) can be replaced by an equiv-

alent scheme in which each processor sends the message units in order b l , b 2 , . . . , b,.

Proof : We prove the lemma by induction on m.

When m = 1, there is only a single link, and any permutation of the units of the

message results in an equivalent scheme.

Suppose, then, that the lemma holds for some value m = k.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 17

Consider a transmission over k + 1 links. Much as in the single link case, we can

apply a single permutation to the transmission as a whole, and obtain an equivalent

scheme. We apply the inverse of the ordering used by the first link to all links

simultaneously-the resulting transmission (the "slightly ordered" transmission) will

necessarily be equivalent, yet the first link will transmit the message units in order.

From this slightly ordered transmission, we can isolate the last k links. By induc-

tion, we know that there is an equivalent transmission in which these last links send

the message units in order. If we splice the ordered version of these last k links onto

the ordered first link we will have an appropriately ordered equivalent transmission,

as long as the second processor is not thereby forced to send a message unit before

it has received it. In fact, this last clause cannot be satisfied: it would require that

in the slightly ordered transmission, the second processor had sent more units than it

has completely received-something prohibited by the model.

Any scheme for sending a message of size n over m links thus has an equivalent

scheme in which all links send the message in canonical order. o

As a result of this equivalence, we will only concern ourselves with schemes that

send the message in the same order along each link.

2.2.1 A note about figures

Many of the figures in this chapter will be attempting to portray a "transmission" in

some visual form. The

Link bound model

basic building block will be a packet sent between Pi and Pi+1:

Processor bound model Bidirectional Processor bound

Figure 2.1: Three sample packet transfers.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 1s

The general notion behind the diagrams is that time is the x-axis and the activity of

each processor is represented in a horizontal band. Rectangles that cross the division

between processors represent packet transfers; direction is indicated by dark shading:

information is sent toward the processor in which the horizontal edge of a dark triangle

appears. (For example, the left two samples of Figure 2.1 show a packet of size k sent

from Pi to Pi+1; the right sample shows two coincident transfers-size kl from Pi to

Pi+1 and size k2 in the reverse direction.)

Under the link bound model, a processor may exchange information simultaneously

with any of its neighbours, while in the processor bound model communication may

only occur with a single processor at a time. Since we're only at present concerned

with a line of processors, there are only two possible neighbours. The rectangle

representing a packet transfer occupies only half of a processor's vertical space under

the link bound model, so that communication is possible with the other neighbour.

Similarly, under the processor bound model, all of both processors' vertical space is

occupied by a rectangle representing a packet transfer.

Clearly, this sort of diagram is not appropriate for any topology more complex

than the ring. What's more, it doesn't do a very good job of represenhg arbitrary

two-way transmissions in the link bound model: we will tend to deal with those as

two independent unidirectional transmissions. The rightmost sample of Figure 2.1 is

sufficient to model full-duplex bidirectional processor bound transfers, however.

2.3 The link bound model

We're interested in the problem of sending a message of size n over m links in the

minimum time: we let S,(n, m) represent this minimum time under the link bound

constraint. In the link bound linear model, we assume that a processor may employ

any of its adjacent links at the same time: specifically, that a processor may both

send a message and receive another message at the same time. The "linear" portion

of the model indicates that ,B + kr time is required to transfer a single packet of size

k over one link.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Figure 2.2: A pipelined transmission: n = 19, m = 5.

Following Johnsson and Ho [16], we obtain an upper bound on S,(n, m) by exam-

ining a pipelined transmission. First we select a packet size k. We then divide the

n message units into [nlk] sub-messages: the first [nlkl - 1 of size k and the last

sub-message of size n + k - rnlkl k. Sending these sub-messages along a single link

takes time [nlkl ,G' + n r , since there are mlk] non-overlapping packets sent and a

total of n message units sent. As illustrated in Figure 2.2, each additional link adds

only ,B + k r more time to this total. The time required for sending over m links results

from sending the first sub-message (of size k) over the first m - 1 links in succession,

then sending all the packets along the last edge. As a result, a total of

time is required to send n message units over m links in packets of size k. We denote

this quantity T,(n, m, k), and note that S,(n, m) 5 T,(n, m, k) for any value of k by

construction. (The optimal choice of k to minimize T,(n, m, k) depends on n, m, ,G'

and r.)

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LlNKS 20

We will demonstrate a matching lower bound of

S,(n,m) > min T,(n,m,k)
l < k < n

for the problem of sending a message of size n over m links with any pattern of

packets permitted by the structural model. In contrast to the highly structured

pipeline transmission used in the upper bound where the division into sub-messages

is done globally and each sub-message is then sent over all links, we will assume no

identification between the sets of packets sent over two different links. We proceed by

examining the precedence structure of the set of packets in a transmission. Ideally,

we'd like to find an ordered set of packets, {A1, A Z , . . . , A v) , in which for each adjacent

pair of packets A; and A;+1 the second packet must begin its transmission only after

the first has finished, and the total time Oo send all the packets in the set is as large as

possible. We proceed by constructing a digraph in which such paths may be relatively

easily found.

We define the packet content digraph of a particular transmission, as follows:

0 The set of nodes of the digraph is the union of the sets of packets in the trans-

mission belonging to a link.

0 The edge set is the union of the collections of adjacent packet edges and over-

lapping packet edges.

Adjacent packet edges: pairs of adjacent packets on a single edge.

And overlapping packet edges: pairs of packets on adjacent links that share a

unit.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Figure 2.3: A random transmission.

As an illustration of the construction of a packet content digraph, consider the

example of Figure 2.3 and Figure 2.4. The node labels in the digraph are the sizes of

the respective packets.

The packet content digraph corresponds to the partial order in time of the trans-

mission packets - or at least, that's a good intuition. In particular, if two packets are

joined by an edge in the packet content digraph then the first packet must necessarily

finish its transmission before the second is sent. (As one would expect, in the transi-

tive closure of the packet content digraph the converse is true.) Accordingly, the total

of the times required for the packets in some path in the digraph is a lower bound on

the time required by the transmission as a whole. We'll see that every packet content

digraph contains a path that requires at least as much time as some pipelined scheme.

In order to more easily manipulate the time required by the various components

of a packet content digraph, we'll employ t () as a functor on the digraph itself, as

well as its vertices and paths. Any path in a packet content digraph D represents a

sequence of packets that may not overlap in time. The time required for a path A in

D is thus just the sum of the times required for each packet in the path. Accordingly,

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 22

Figure 2.4: The packet content digraph of a random transmission.

we define t(A(i, j)) , t(A), and t(D):

t (D) = max t(A).
A E D

Interestingly, for a transmission scheme (A , v, st) the formulation of t(D) is inde-

pendent of the start time function. As a consequence, for the remainder of this section

we will speak of transmission schemes as having just the two parameters (X,v).

Now, if D is the packet content digraph of some transmission, it would be nice

to say that t (D) is the time taken by the transmission. This might not be the case:

a transmission could contain arbitrary delays not reflected in the constraints on the

digraph. We note only that t (D) is no greater than the time required by the trans-

mission.

As an exercise of using the packet content digraph formalism, the following propo-

sition gives a consistency check for the upper bound at the beginning of this section.

CHAPTER 2. SENDlNG A MESSAGE OVER SEVERAL LINKS

Figure 2.5: The packet content digraph of an equal-packet transmission.

Proposition 2.3.1 For positive integers n and m, and for each integer k where

1 5 k 5 n , the packet content digraph of a transmission that pipelines a message of

size n over m links in packets of size k contains a path A, such that

Proof: Consider a transmission as described at the beginning of this section and

illustrated in Figure 2.2: a message of size n divided into b / k l sub-messages, the

first [n l k l - 1 of which are of size k . Each link sends the sub-messages in the same

order. Moreover, all links send in lock-step so that the start time of any two packets

X(i, j) and A(?, j') will be the same when i + j = i' + j'.
The packet content digraph (embedded in the Cartesian coordinates using the

mapping X(i, j) I-+ (i, j)) forms a rnlkl by m grid graph as in Figure 2.5

The transmission takes at least as much time as any path of packets in its packet

content digraph. For example, the path

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 24

provides a good bound. Any path beginning at X(1,l) whose only "short" packet is

X(m, b / k l) provides the same bound, namely

T.(n, m, k) = (I:] + rn - 1) ,B + ((m - 1) k + n) T

In order to prove the lower bound, it will be sufficient to demonstrate the existence

of a i so that S, (n, rn) 2 T,(n, rn, k). We will present an algorithm that finds a path

of that length in the packet content digraph of a minimal transmission.

To facilitate the description of paths through the digraph, we will first show that

the digraph is planar, and provide a standard embedding with which to position

the digraph in the plane-thus allowing the ordinary terminology of the Cartesian

coordinates to apply to the digraph as well.

We use the standard lexicographic comparison with respect to packets. A packet

X (i , j) is lexicographically greater than a packet X(it, j') if either i > i' or i = i' and

j > j'.

Lemma 2.3.1 The packet content digraph of a transmission is an acyclic planar

digraph. The straight line embedding X(i, j) I+ (i, j) into the Cartesian plane is a

plane embedding.

Proof: Let D be the packet content digraph in question.

D must be acyclic: all edges are of the form (p,pl) where p' is lexicographically

greater than p.

The only edges that could possibly cross (given the embedding in the statement

of the lemma) are two overlapping packet edges. (An adjacent packet edge can only

intersect another edge at one of its endpoints.) If two such edges cross, then we must

have four packets X(i, j), X(i, j'), X(i + l , l) , and X(i + l,e1), with j < j', e < l'
and edges (X(i, j), X(i + 1, P)) and (X(i, j'), X(i + 1, l)). That configuration implies

X(i, j) n X(i + 1,e') # 4 and X(i, j') n X(i + I,!) # 4. Let bk be a message unit in the

first intersection. Then X(i, j') c { b k + l , . . . , b,), since bk is a member of X(i, j) , and

all message units in X(i, j') strictly follow units in X(i, j) in message order. Similarly,

CHAPTER 2. SENDlNG A MESSAGE O V E R SEVERAL LINKS 25

X(i + 1, l) c {bl, b2, . . . , bk-l) since message units in X(i + 1, l) are strictly before units

of X (i + 1,11) in message order. This is a contradiction with the fact that the second

intersection is nonempty: the packet content digraph must be planar.

Suppose that we have, for some positive n and m, a transmission (v, A) with

packet content digraph D that takes time S,(n, m). We will attempt to find a long

path in D that will show (for some positive integer 1 < k L: n) the desired bound:

S, (n, m) > t (D) > T,(n, m, k). Consider the following algorithm that finds a path A

in D:

Algorithm SimpleSearchForward(v, A, k):

INPUT: transmission (v, A) , and positive integer k.

OUTPUT: positive integer p.

l e t i t l , j t l , A t +

loop

le t A t AX(i, j)

case (IX(i,.dl)
< k] d o if j = v(i) t h e n r e tu rn i [-

le t j t j + 1

COMMENT: Move to the adjacent packet neighbour of X(i, j) .

e n d do

[> k] d o if i = m t h e n r e tu rn m + v(m) + 1 - j

le t j t j' where j' is minimal given X(i, j) n X(i + 1, j') # +
le t i t i + l

COMMENT: Move to the leftmost (in the embedding) overlapping

packet neighbour of X (i , j).

e n d d o

e n d case

end loop

As an example, Figure 2.6 shows the result of running SimpleSearchForward

on the transmission that provides Figure 2.4 with input k = 4 and k = 5 .

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LlNKS

: Return 10

Figure 2.6: Two searches in the digraph of Figure 2.4.

algorithm wanders through the packet content digraph, looking for a long

path. It follows an overlapping packet edge whenever the current packet is larger

than the input parameter k, and otherwise just takes the adjacent packet edge. When

k = 0, SimpleSearchForward(u, A, 0) follows the left edge of the packet content

digraph (in the standard embedding) and returns m + v(m) while when k = n,

SimpleSearchForward follows the bottom edge of the digraph and returns 1. As

an example, the possible return values are noted about the top and right border of

Figure 2.5. There must be some value & for which both:

and

SirnpleSearchForward(u, A, &) < rn.
In Figure 2.6, for example, k = 5 satisfies the constraints.

By modifying the algorithm slightly, so that there is a non-deterministic choice

of path when faced with packets that are the same size as the input parameter k,

CHAPTER 2. SENDlNG A MESSAGE OVER SEVERAL LINKS 27

SearchForward(v, A , k) will be able to produce the output of SimpleSearchFor-

ward with both (v, A , k - 1) and (v, A , k) as inputs.

Algorithm SearchForward(v, A , k):

INPUT: transmission (v, A) and positive integer k.

OUTPUT: positive integer p.

l e t i t l , j t l , A t 4

loop

ASSERT: t(A) 2 T* x lX(i, [) I , i, k (1::)
let A t AX(i, j)

NDcase (IX(i, j)l)

< k] do if j = v(i) then return i [-
let j t j + 1

end do

[> k] do if i = m then return m + v(m) + 1 - j

let j t 3 where j is minimal given X(i, j) n X(i + 1,j) # q5

let i t i + 1

end do

end NDcase

end loop

We first establish the correctness of the loop invariant. It establishes that at each

iteration, whatever path has been traced up to but not including packet X(i, j) takes

at least as long as a pipeline in packets of size k that sends the message units that

precede X(i, j) over i links.

Lemma 2.3.2 The assertion of Algorithm SearchForward is true.

Proof: We wish to prove that

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 28

This is initially true. Assume that it remains true through some iterations of the

algorithm. Let A, i , j be the values the variables held at the beginning of the loop

where the assertion is true, and let d = AX(i, j) , i, 7 be their values at the end.

If the [< k] portion of the case was executed, then J = j + 1, and i = i.

j-1

= ((i ,) 1) 3 + ((i - l) k + x h (i , e) ~ e= 1 r + b ' + i (i . i) r

If the [> k] portion of the case was executed, then i = i + 1, and J is the smallest

index for which X(i + 1, J) n X(i, j) # 4. If we remember that the message units are

sent in the same order along each link, the definition of j requires that

with equality only happening when the packets X(i,j) and X(i, j) have the same first

message unit.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Thus, in either case, the assertion is still true at the end of the loop, thus, by

induction, the assertion must hold for all complete iterations of the algorithm.

The construction of algorithm SearchForward ensures that there is, for ea,ch

input transmission (v, A), some value 6 for which there are at least two possible

return values p and p', where p 5 m < p'. If p = m then the algorithm has found a

packet path that requires at least T.(n, m, 6) time to complete, establishing the lower

bound. Naturally, this will not necessarily be the case.

Figure 2.7 depicts the general situation. Notice that the two paths in the packet

content digraph corresponding to the two return values p and p' bound a region that

contains the last packet X(m, v(m)). If we run the "same" algorithm backwards-

using algorithm SearchBackward with the same input value 6, the resulting back-

ward path must intersect one of the two forward ones. We will show that this com-

posite path provides the required lower bound. For convenience, the possible return

values of SearchBackward are noted in the figure.

Algorithm SearchBackward(v, A , k) :

INPUT: transmission (u, A) and positive integer k.

OUTPUT: positive integer p.

le t i t m, j t v(m), l3 +-4
loop

4 4
ASSERT: t(l3) 2 T. IA(i, l)/ , m - i + 1, k

e=j+l

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Figure 2.7: Two paths traced by SearchForward(v, A , &)

let B + X(i, j)B

NDcase (IX(i, j)l)

[L k] do if j = 1 then return i

l e t j t j - 1

end do

> k] do if i = 1 then return 1 - j [-
let j t j where j is maximal given X(i, j) f l X(i - 1,j) # 4
l e t i t i - 1

end do

end NDcase

end loop

We continue with our example: Figure 2.8 shows a possible result of running the

backward search on the transmission that gave us Figure 2.4 with k = 5 .

As the proof of the loop invariant for the backward algorithm is essentially the

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 3 1

Path A' : Return 10

fl

Path B : Return -2

Figure 2.8: A backward search in the digraph of Figure 2.4.

same as for the forward one, we omit the proof.

L e m m a 2.3.3 The loop invariant assertion of Algorithm SearchBackward is true.

Again let (v, A) be a transmission of a message of size n over m links that takes

minimum time S.(n, m). Let 6 be an integer value for which SearchForward(v, A, i)
has possible return values both greater than m and less than or equal m. Let A be the

path traced by SearchForward in returning the smallest such return value p 2 m,

and let A' be the path traced in returning the largest possible return value p' > m.

And let 23 be any path traced by running the algorithm backward beginning from

packet A(m, v(m)). In the next two lemmas, we will first show that 23 intersects either

A or A' in a packet of size no more than 6, then demonstrate that the concatenation

of the two relevant ~ u b - ~ a t h s l is long enough to provide the lower bound.

'Suppose A is intersected by B. The relevant sub-paths are the minimal sub-path of A that

CHAPTER 2. SEArDlNG A MESSAGE OVER SEVERAL LINKS

Figure 2.9: Path A intersects B. Inset is Figure 2.10.

Lemma 2.3.4 B intersects either A or A' in a packet X(i, j) where IX(i, j)l 5 %.

Proof : Suppose first that A, corresponding to the return p 5 m, intersects B. (This

implies that ~X(P, v(~))l 5 %, since all returns less than or equal m are following a

small packet - one of size no more than $.) Figure 2.9 illustrates the scenario.

Let X(i, j) be the node of A farthest from X(1,l) that is also part of B. If X(i, j)

is the last element of A then i = p, and thus IX(i, j) 1 < &. Otherwise, X(i, j) has two

possible successors in A: the adjacent packet neighbour X(i, j + 1) and the leftmost

overlapping packet neighbour X(i + 1, j'). If the successor in A is the adjacent packet

neighbour, IX(i, j) 1 < % by the definition of the search algorithm.

Accordingly, we assume the worst: suppose the successor of X(i, j) in A is the over-

lapping packet neighbour-node o in Figure 2.10. Packet X(i, j) has several possible

successors in B: X(i7 j + 1) and any of the overlapping packet neighbours X(i + 1, j")

contains both A (1 , l) and the packet of intersection, and the maximal sub-path of B containing
X(m, v(m)) that does not contain the packet of intersection.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

where j' < j".

I 1 j') I(kl, j")

Figure 2.10: First case: the out-edges of X(i, j)

The successor of X(i, j) in B cannot also be the leftmost overlapping packet neigh-

bour of X(i, j) . The successor of X(i, j) in B is thus either the adjacent packet neigh-

bour X(i, j + 1) (node a in the figure) or an overlapping packet neighbour X(i + 1, j")

where j' < j" (node b in the figure). By the planarity of the packet content digraph,

23 separates node o in A from the end of A-X(~,v(p)). As a result, there must be

another node of intersection between A and B after node o: a contradiction with the

definition of X(i, j). As a result, node a must be the successor of X(i, j) in A, and so

packet X(i, j) satisfies the lemma.

If B intersects both A and A' this first case still applies, so it only remains to

consider the case where 23 intersects A' but does not intersect A. Now A and A' have

-non-empty intersection since they both contain X(1, l), but can only diverge after a

packet X(id, jd) of size exactly %. Accordingly, any intersection of A' with B must be

at a packet X (i , j) with i > id 2 1.

Let X(i, j) be the packet of A' that is also in B closest to X(id, jd), as illustrated

in Figure 2.1 1

If X(i, j) is the first element of B then j = 1, since i > 1. If B ends on the left

edge of the digraph, it must be at a small packet: it must therefore be the case that

IX(i,j)I 5 %.
Otherwise, X(i, j) is not the first element of B. There are thus two possible prede-

cessors for X(i, j) in B, namely X(i, j - 1) (node a in Figure 2.12) and the rightmost

packet X(i - 1, j") that has X(i, j) as an overlapping packet neighbour (node o in the

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Figure 2.1 1: Path A' intersects 23. Inset is Figure 2.12.

figure). If the predecessor of X (i , j) in B is node a, then X(i,j) is of size at most by
the definition of the reverse search algorithm.

We again assume t,he worst: the predecessor of X(i, j) in B is node o. As before,

either the predecessor of X(i, j) in A' must is coincident with o, or A' separates o from

the end of B: a contradiction in either case. As a result, the predecessor of X(i, j) in

23 is X(i, j - I), and IX(i, j)l 5 R .
Thus, B intersects either A or A' in a packet of size no more than R.

We've thus found a path ? in the packet content digraph that extends from X(1,l)

to X(m, v(m)) composed of sub-paths found by the search algorithms. Let A1 be the

path traced by algorithm SearchForward (a sub-path of either A or A') when the

packet being considered is X(i, j), and similarly Dl be the path traced by Search-

Backward when X(i, j) is being examined. Path ? = AIX(i, j)Bl provides the lower

bound.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

A(i-1, j') I(i-1, I")

Figure 2.12: Second case: the in-edges of X(i, j)

By the loop invariant assertions of SearchForward and SearchBackward:

(A) 2 T. (h (i , [) , i , b)

and

The time required for the whole path, then, is

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

> (i , + m - l) ~ + ((m - 1) i + n) r

Though the example is becoming tedious, we revisit Figure 2.4 one more time, to

check that the path found is indeed longer than the 79 time units required by the

pipelined transmission of Figure 2.2. The highlighted path in Figure 2.13 has nine

packets, which contain a total of 42 message units. The pipelined transmission used

p = 5 and T = 1: with those values, the highlighted path requires 87 time units.

We have thus shown:

Theorem 2.3.1 The minimum time for sending a message of size n over m links is

S, (n, m) = min
lsksn

We provide closed forms:

Corollary 2.3.1

The appropriate algebra may be found in Appendix A.2.1.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 3 7

Figure 2.13: The long path found in Figure 2.4.

The processor bound model

We now turn our attention to the considerably more restrictive processor bound model.

We are still interested in the problem of sending a message of size n over m links in

the minimum time. Following the notation of Fraigniaud [7], we let Sl (n, m) represent

this minimum time under the processor bound constraint. Again, a packet of size k

. will take p + k r time to transmit, and a processor must completely receive an entire

packet before forwarding any portion of the information contained in that packet. But

a processor is now restricted to either sending a message to a neighbour, or receiving

a message from a neighbour: both may not occur simultaneously.

We obtain an upper bound by examining a pipelined transmission. As in the link

bound case, we select a packet size k, and divide the n message units into b / k l

sub-messages. Sending these sub-messages over two links takes time 2 [nlkl ,B + 2727,

since the middle processor will first receive then send each of the b / k l sub-messages,

and will both send n message units and receive n message units. As illustrated in

Figure 2.14, each additional edge only adds the time to send a single packet. We

define Tl(n, m, k) to he the time to send a message of size n over m links in a pipeline

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Figure 2.14: A pipelined transmission: n = 19, m = 5 .

composed of packets of size k, namely

By the definition of Sl (n, m) it must be the case that Sl (n, m) 5 TI (n, m, k) for any

value of k. We will demonstrate the corresponding lower bound:

for the problem of sending-with any pattern of arbitrarily sized packets-a message

of size n over m links in a manner permitted by the processor bound model.

We use essentially the same notation as the link bound case: Processors are num-

bered PI through P,+l. For any processor Pi, we again denote the number of packets

sent by v(i), the jth packet sent (for 1 5 j 5 v(i)) by X(i, j), the size of that packet

by IX(i, j) 1 and the time required to send the packet t (X (i , j)) = ,B + [A(;, j) 1 T If we

assume that a transmission begins at time zero, we can assign a start time to each

packet that corresponds to the elapsed real time before the packet begins sending.

The start time of X(1,l) is thus zero for any transmission, and we label the start time

CHAPTER 2. SENDlNG A MESSAGE OVER SEVERAL LINKS 39

of any packet X(i, j) by st (X(i, j)) . So that we may conveniently refer to the tempo-

ral relationship between packets, we define two-parameter successor and predecessor

functions: by succ (X(i, j), A) we mean the packet with the smallest start time sent

by a processor whose index is in A that starts no earlier than when X(i, j) finishes

transmitting. If no such packet exists, succ (X(i, j), A) is undefined. The predecessor

function is similarly defined: by pred (X(i, j), A) we mean the packet with the largest

start time sent by a processor whose index is in A that finishes being sent no later

than X(i, j) starts transmitting. If no such packet exists, pred (X(i, j) , A) is undefined.

By employing these successor and predecessor operators, we can define the packet

time digraph G for any processor bound transmission as follows:

For the nodes of the digraph, we employ a new symbol: p(i, j) . The node set of

the packet content digraph was just the collection of packets of the underlying

transmission. In the case of the packet time digraph, however, the nodes do

not represent the transmission of packets over communication links, but rather

the sending and receiving of packets by processors. As many as two nodes may

represent a packet in the digraph: one corresponding to the processor that sent

it; the other corresponding to the processor that receives it. The nodes of the

digraph are thus

The majority of packets-all but those either received by P,+I or sent by PI-

are represented twice in this node set. For some fixed i (1 < i < m + 1)) the

nodes p(i, j) represent those packets that Pi either sends or receives sorted by

start time. The apparent asymmetry (beginning at 2, that is) with the link-

bound case is a result of the packet content digraph being defined against the

packets that a link transmits, while the packet time digraph is defined against

the packets seen (that is, sent or received) by a processor. We make the mapping

from vertices of the digraph to packets explicit by defining the map p : V(G) -+ A

from V(G) to the set of all packets A = { X (i , j) I 1 5 i 5 m, 1 < j 5 u(i)) as

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

follows:

The edge set is generated from the predecessor and successor operators as fol-

lows:

Adjacent packet edges that connect pairs of vertices that correspond to pairs of

packets that are consecutively active (either as a send or a receive) from the

point of view of a single processor:

or equivalently

Successor edges-joining vertices that correspond to packet-successor pairs:

And predecessor edges which join vertices that correspond to predecessor-packet

pairs:

Rather tha,n describing the physical constraints of the packet contents, this di-

graph describes the physical constraint of the packet start times. But the underlying

principle of the two digraphs are the same: nodes representing packets q and q' are

connected by an edge (q, q') if q must finish sending before q' may start sending.

As an illustration of the packet time digraph, consider the example of Figure 2.15

and Figure 2.16. In the digraph, the lighter vertices are those whose corresponding to

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 4 1

Figure 2.15: A ra.ndom processor bound transmission.

packets sent, while the dark vertices correspond to packets received. And again, the

node labels are the sizes of the corresponding packets.

For a packet time digraph G containing a path A, we define t(G) and t(A) in

concordance with the definitions of the link bound case:

t(G) = mas t (A).
AEG

The p(q) in the first definition is pedantic: q is a vertex of G, not a packet; we had

only defined t () for packets. In fact, it will be convenient to blur the distinction as

much as possible-the vertices are packets, save that most are represented twice.

Accordingly, we will drop the p0 function wherever possible, and speak casually of

141, st(q) and the like.

For any transmission (A, v, st) with corresponding packet time digraph G, the time

required to send all the packets is st (A(m, v(m))) + t (A(m, ~ (m))) . By the definition

of the successor and predecessor functions, it must be the case that for any edge (q, q')

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Figure 2.16: The packet content digraph of a random processor bound transmission.

in G , the start times of q and q' are related by st(q) + t (q) L &(q1). As a result,

In order to demonstrate the lower bound, we will need to show, for some packet

time digraph G corresponding to an arbitrary transmission and some integer k , that

- t (G) 2 TI(% m, k) .

As an illustration of the digraph mechanism, we demonstrate that if G, is a packet

time digraph corresponding to a pipelined scheme that sends a message of length n

over m links in packets of size k (a transmission that is certainly not arbitrary) then

the relation holds: t (G,) > Tl(n, m, k)

Proposition 2.4.1 (By analogy to Proposition 2.3.1) For positive integers n and m,

and for any integer k , 1 5 k 5 n, the packet time digraph of a processor bound

transmission that pipelines a message of size n over m links in packets of size k

contains a path B, that requires

CHAPTER 2. SENDlNG A MESSAGE OVER SEVERAL LlNKS

.1

[Ik] rn

[Ik] 4

[Ik] 3

[<k] 2

Figure 2.17: The packet time digraph of an equal-packet transmission.

Proof: Consider a transmission as illustrated in Figure 2.14: a message of size n

divided into [nlkl sub-messages, the first mlk] - 1 of which are of size k. The

sub-messages are sent along each link in the same order. The start time of any two

-packets X(i, j) and X(il, j') will be the same when i + 2 j = i1+2j', and the packet time

digraph (in its canonical projection into the Cartesian coordinates) forms a 2 [nlkl

by m - 1 grid graph.

The transmission takes time equal to the time for the path

~ (2 7 M 3) 1) . * P b) M m ? 2)P(m> 2 [nlkl)

which is

Tl(n ,m,k) = (2 [n/kl + m - 2) p + ((m - 2) k + 2n) r.

0

In order to demonstrate the general relation, we will again employ an algorithm

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 44

to wander through the digraph and find a long path. We will proceed much as in the

link bound case: we will first show that the packet time digraph is planar. Yet in the

link bound case, we used the canonical order together with the physical constraints

of packet content in proving the loop assertion of algorithm SearchForward. In this

case, the additional time information maintained in G allow us to dispense with the

canonical order.

Lemma 2.4.1 The packet time digraph of a transmission is an acyclic planar di-

graph. The straight line embedding p(i, j) H (i, j) into the Cartesian plane is a plane

embedding.

Proof: Let G be the packet time digraph in question.

G must be acyclic, since every edge is of the form (v, w) where st (v) < st (w).

Figure 2.18: An impossible lack of planarity.

Suppose the embedding were not planar. The only possible crossing would concern

some vertices p(i, jl), p(i, j 2) , p (i + 1, j3) and p(i + 1, j4) with jl < j2 and j3 < j4 if

there were edges (p(i, j l) , p(i+ 1, j4)) and (p(i, j2) , p (i+ l , j3)), as shown in Figure 2.18.

By the construction of the edges, it's necessary that st(p(i, jl)) < St(p(i, j2)) <
st (p(i + 1, j3)) < st (p(i + 1, j4)). The edge (p(i, jl), p(i + 1, j4)) is either a successor

edge from p(i, jl) or a predecessor edge from p(i + 1, j4). If the first, p(i + 1, j3) would

have been chosen as destination in preference to p(i + 1, j4); and if the second, p(i, j2)

would have been chosen as source in preference to p(i, j l) . As a consequence, edge

(p(i, j l) ,p(i + 1, j 4)) cannot appear in any context of this form, and the digraph must

be planar. 0

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 45

We define several more auxiliary functions for use with the packet digraph. First,

for any vertex p(i, j) in the digraph, we are interested in being able to refer to both

the number of message units received by processor P; and the number of message

units sent by the same processor prior to packet referred to by p(i, j) being sent.

With no regard at all for the finer sensibilities of the reader, we simply label these

quantities, respectively, f,. (p(i, j)) and fs(p(i, j)).

As an example, consider the vertex p(3,6) in Figure 2.16 (The grey node labeled

5 in the row associated with P3.) Before the packet associated with p(3,6) is sent, P3

has received two packets (p(3 , l) and p(3,4)) containing a total of 11 message units,

and P3 has send three packets (~ (3 , 2) , p(3,3), and p(3,5)) containing a total of 10

message units. Therefore, fs(p(3, 6)) = 10 and f,.(p(3, 5)) = 11.

We'll use the quantities fr(p(i , j)) and fs(p(i, j)) in the statement of the assertion

of the non-deterministic algorithm for this case. In order to manipulate the values,

we need the following lemma.

Lemma 2.4.2 For any vertex q of G, the following hold:

3. If (q, r) is a successor edge of G, fr(q) + fs(q) 2 f r (r) + fs(r)

Proof: We prove each point in turn:

1. fr(q) is the number of message units sent by some processor Piv1 at time st(q),

while fs(q) is the number of units sent by Pi at the same time. Since each

message unit sent by Pi must first be received from Pi-l, fr(q) > fs(q)

2. Suppose q = p(i, j), then the only information transfer done by processor Pi

between time st (q) and st (r) is exactly packet q; thus, either:

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

and in either case, fr(q) + f,(q) + 191 = f r (r) + f,(r).

3. We must have fs(r) 5 f r (r) and f,(q) 5 fr(q). We again distinguish two cases:

q is received by Pi: Then Pi does not transfer any information to Pi+1 between

st(q) and st(r). As a result, fr(r)-the number of bits P;+l has received at

time st (r)-must be equal f,(q)-the number of bits Pi has sent at time st (q).

Therefore fs(r) I fr(r) = fs(q) I fr(q).

q is sent by Pi: The only transfer of information between Pi and Pit1 between

time st(p) and st(r) is q itself. As a result, fr(r) = f,(q) + I q 1 . But since Pi was

able to send q at time st (p), it must be the case that f,(q) + Iql I fr(q). And

in addition, Pitl will not have been able to forward any of the information in q:

thus fs(r) + 141 L f r (r) .

In either case, fr(q) + fs(q) 2 fr(r) + fs(r)-

The lemma follows.

We will omit the presentation of the deterministic version of the algorithm to search

a packet time digraph. For any packet time digraph G of a link bound transmission,

there must exist some input & so that SearchFwdLink(G, &) has returns p and p',

where p < m < p'.

Algorithm SearchFwdLink(G, k):

INPUT: packet time digraph G and positive integer k.

OUTPUT: positive integer p.

l e t q t ~ (2 7 1) 7 A t 4
(We will assume that i, j are defined so that q E p(i, j))

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Path A' : Return 10

Figure 2.19: Two searches in the digraph of Figure 2.16.

[L k] do if j = v(i - 1) + v(i) then return i

let q t ij where (q, q) is the adjacent packet edge leaving q.

end do

[> k] do if i = m then return m + 1 + v(m - 1) + v(m) - j

let q t i j where (q, q) is the successor out-edge from q.

end do

end NDcase

end loop

As an example, Figure 2.19 shows two possible results of running SearchFwdLink

on the transmission that provides Figure 2.16 with input k = 5. (In fact, the path A
corresponds to the path traced by the missing deterministic algorithm with an input

of Ic = 6, and the path A to the deterministic result when k = 5.)

Lemma 2.4.3 The loop invariant assertion of Algorithm SearchFwdLink is true.

C H A P T E R 2. SENDING A MESSAGE OVER SEVERAL LlNKS

Proof: We need to prove

for any iteration of the algorithm.

This is initially true: A = g5 and the expression evaluates to zero. Assume that it

remains true through some iterations of the algorithm.

Let q (with associated i, j) and A be the values the variables held at the beginning

of the loop where the assertion is true, and let ij (with associated i,j) and d = Aq be

the values at the end of the same iteration.

Suppose first that the [< k] portion of the non-deterministic case was executed,

so (q,ij) is an adjacent packet edge, and i = i. We employ the second part of

Lemma 2.4.2.

If the [L k] portion of the non-deterministic case was executed, then (q, q) is a suc-

cessor edge, and i = i + 1. We employ the third part of Lemma 2.4.2.

t (d) = t (A) + t (q)

L t (A) + p + k ~

CHAPTER2. SEATDINGA MESSAGE O V E R S E V E R A L LINKS

Thus, in either case, the assertion is still true at the end of the loop. Therefore, by

induction, the assertion must hold for all complete iterations of the algorithm. 0

As before, there is an input value k for which the algorithm produces two pos-

sible return values p and p', where p 5 m < p'. The two paths corresponding to

these nondeterministic returns bound the "upper right" corner of the packet time

digraph-upper right, that is, in the canonical embedding. In our example Fig-

ure 2.19, a value of 5 gives the two paths. We employ a "backward" analogue of

algorithm SearchFwdLink, (one that follows the edges backward, and selects be-

tween the adjacent packet neighbour and the predecessor edge neighbour) beginning

at p(m, v(m - 1) +v(m)). The path traced by the backward algorithm will necessarily

intersect one of the two forward paths.

In the same way that f,(p(i, j)) and f,(p(i, j)) refer to the number of message

units received by Pi and the number of message units sent by Pi at the moment that

the packet associated with p(i, j) begins sending, we would like to be able to speak

of the number of message units that remain to be received or sent after a packet

-has finished sending. By analogy to f, and f,, we label these quantities, respectively

l,(p(i, j)) and l,(p(i, j)) . Accordingly, for any vertex q of the packet time digraph,

either q is sent by Pi, and

or q is received by Pi, and

In either case, we have:

CHAPTER 2. SENDING A MESSAGE O V E R SEVERAL LINKS 50

Again, consider the vertex p(3,6) in Figure 2.16 (The grey node labeled 5 in the

row associated with P3.) After the packet associated with p(3,6) is sent, P3 must still

receive one packet (~ (3 , s)) containing a total of 3 message units, and P3 must still

send two packets (p(3,7) and p(3,9)) containing a total of 9 message units. Therefore,

ls(p(3, 6)) = 9 and &(p(3, 5)) = 3. In addition, identity 2.1 holds:

We specify the "transposed" algorithm SearchBackLink explicitly:

Algorithm SearchBackLink(G, k):

INPUT: packet time digraph G and positive integer k.

OUTPUT: positive integer p.

l e t q +- p(m, u(m) + u(m - 1))) 23 +- #J
(We will assume that i , j are defined so that q = p(i , j))

loop

ASSERT: t(Z3) t ([$&(q)] + [;&(q)l + m - i) p
+ ((m - i l k + er(q) +ls(q))7.

l e t B t qZ3

NDcase (Iql)

[< k] d o if j = 1 t h e n r e tu rn i

let q t q where (q, q) is the adjacent packet edge entering q.

end d o

[> k] d o if i = 2 t h e n r e tu rn 2 - j

let q t ij where (q, q) is the predecessor in-edge into q.

end d o

e n d NDcase

e n d loop

Continuing with our small example, Figure 2.20 shows a possible backward path

traced when k = 5.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Path A' : Return 10

Figure 2.20: A backward search in the digraph of Figure 2.16.

Following the example of the previous section, we prove the loop invariant, and

then demonstrate that the "backward" path has an intersection with one of the two

forward paths in a small packet - one of size no more than k. In our example there

are three nodes in the intersection, and two are small.

Lemma 2.4.4 For any vertex q of G, the following hold:

1- [r (q) 2 l s (q)

2. If (r , q) is an adjacent packet edge of G, l?, (q) + l s (q) + 191 = & (r) + !, (r)

3. If (r , q) is a predecessor edge of G, tr (q) + &(q) L er (r) + ts (r)

Proof: As in the proof of Lemma 2.4.2, we suppose that vertex q is p (i , j) in each

case.

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 52

1. lr is the number of message units remaihing to be received by Pi, while l, is the

number of units remaining to be sent by P;. Since Pi may never have sent more

message units than it has received, lr(q) I e,(q).

3. We must have l r (r) I l , (r) and lr (q) I l,(q). We distinguish two cases:

q is sent by Pi: Then Pi-1 does not transfer any information to Pi between the

time r finishes transmitting and q finishes transmitting. As a result, l ,(r) =

lr(q): that is, the number of message units Pi has still to receive when q finishes

is the same as the number of message units that Pi-1 needs to send after r is

done.

As a consequence, lr (r) 5 l ,(r) = lr (q) 5 l,(q).

q is received by Pi: The the only transfer of information between PiF1 and Pi

between the time that r finishes sending and the time that q finishes transmitting

is represented by q itself. As a result, l ,(r) = Iql+lr (q) (or, in words: the number

of message units that must still send after r completes its transfer is 141

more than the number of message units that Pi must still receive after q has

finished sending.)

Since Pi-1 was able to send q, though, l r (r) + Iq/ 2 l , (r) and so l r (r) I lr(q).

Similarly, after receiving q, lr (q) + Iql 5 l,(q). Thus l , (r) I e,(q).

In either case, 1,. (q) + l,(q) 2 lr (r) + l,(r).

The lemma holds.

The only characteristics of fr and f, used in the proof of Lemma 2.4.3 were exactly

those proved in (the latter two parts of) Lemma 2.4.2. Since Lemma 2.4.4 proves the

same characteristics for lr and l,, the proof of the loop invariant assertion for the

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LlNKS 5 3

backward search will be essentially identical%o that for the forward. As a result, we

will only state the lemma.

Lemma 2.4.5 The loop invariant assertion of algorithm SearchBackLink holds.

Moreover, the proof that the path B traced by algorithm SearchBackLink inter-

sects one of the two forward paths A and A' traced by algorithm SearchFwdLink

in a small packet is also basically identical to that of Lemma 2.3.4. The differences

are all simply syntactic: here, the vertices are labeled with p, while in the link bound

proof they are labeled A; and here, the "vertical" edges are either successor or prede-

cessor edges, while in the link bound proof, they are overlapping packet edges. The

vast majority of the argument simply invokes the planarity of the underlying digraph:

and that, at least, is constant. We again only state the lemma.

Lemma 2.4.6 B intersects either A or A' in a vertex q where lql 5 i.

Let d be the path (either A or A') that contains the vertex of intersection q.

Following the example of the link bound section, we label by dl the maximal sub-

path of d containing p (2 , l) that does not contain q, and by B1 the maximal sub-path

of B containing p(m, v(m - 1) + v(m)) and also not containing q. By the respective

loop invariants of algorithms SearchFwdLink and SearchBackLink:

and

The path P = AlqBl in G will thus provide the lower bound:

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

+ ((m - 2) i + 2n) r

To complete the parallel, we return one last time to our example Figure 2.16 in

order to check the long path is indeed longer than the 108 time units required by the

pipelined transmission of Figure 2.14. The highlighted path in Figure 2.21 has fifteen

packets, which contain a total of 63 message units. The pipeline transmission used

,B = 5 and r = 1: with those values, the highlighted path requires 138 time units.

We have thus shown:

Theorem 2.4.1 The minimum time for sending a message of size n over m links i n

the processor bound model is

We again provide closed forms:

Corollary 2.4.1

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS

Figure 2.21: The long path found in Figure 2.16.

The appropriate algebra may be found in Appendix A.2.2.

2.5 Sending along multiple paths

We have examined the problem of sending a message of length n over m commu-

nication links. Another way to think of the problem is to send a message between

two processors at distance m from one another in the path, or unidirectional ring.

Assuming the link bound for simplicity, what happens when the topology is more

interesting?

The easiest solution to the presence of a general network is to break the problem

down into the subproblem already studied, and consider a collection of disjoint paths

over which the message may be sent. If we wished to send a message of size n in the

hypercube Q , between 6 and i, for example, we could find m disjoint paths of length

m, and thus take no more than S,([n/ml , m) time.

C H A P T E R 2. SENDlNG A MESSAGE O V E R S E V E R A L LINKS 5 6

This is in fact the approach that Saad and Schultz [22] employed as they examined

sending messages in torus networks. They demonstrate that for any two processors

Pl and P2 in a two dimensional torus, if the distance from Pl to P2 is d, there exist

four edge disjoint paths between PI and P2 whose maximum length is no more than

d + 6. As a consequence, they argue, sending a message of size n from PI to P2 takes

no more than S,(rn/41 , d + 6) time.

The parameters under which the use of disjoint paths is optimal are not completely

clear. In cases, such as the ring, where the only set of paths between two processors are

disjoint, a disjoint path solution will be trivially optima!. We present three scenarios,

to illustrate the more general case.

Consider sending a message of size n in the ring Cp from Po to Pm in minimum

time. We denote this minimum time by S,(C,, n, m) . There are two paths available for

use: the "forward path" through PI and Pm-1, and the "backward" path through Pp-l

and Pm+l. Regardless of how we choose to send the information along those paths,

any scheme that gets n message units to P, will send some no units along the forward

path, and n - no unit,s along the backward path. From Section 2.3, we know that the

minimum time required by this division is simply max {S,(no, m), S,(n - no, p - m)},

and that this time is achievable by simply employing the appropriate minimum time

pipelines in each direction. As a result, the disjoint paths provide an optimal solution:

Observation 2.5.1.

Observation 2.5.1

S,(Cp, n, m) = min max {&(no, m), S,(n - no,p - m)}
Osno s n

A closed form for Observation 2.5.1 can be found in Appendix A.3.1.

Consider sending a message from Po,o to P2,2 in the 3 x 3 grid graph. If we employ

two disjoint paths, the time to send a message of size n is S,(rn/21 ,4). A more

interesting scheme for some parameter k is:

0 Poto divides the message in half, and sends half to in packets of size 2k and

the other half to Pojl in packets of size 2k.

C H A P T E R 2. SENDING A MESSAGE O V E R S E V E R A L LINKS 57

r Po,1 divides each packet it receives in half, and sends half to PltI and half to

similarly divides the packets it receives in half, and sends the halves

to P2,-, and P1,I.

r Po,2 and P2,0 simply forward the packets they receive on to P1,2 and P2,1 respec-

tively.

r forwards each packet it receives, as well. Anything it gets from PoVl it sends

to and anything from Pl,0 it sends to P2,1.

r P2,1 and Pl12 receive pairs of packets in lock-step. They amalgamate the pairs,

and send a single packet of size 2k on to P2,2 for each pair they receive.

Rather than taking the

time required by the disjoint paths, this scheme only requires

time, which is strictly smaller. Use of simple disjoint paths, as opposed to (for lack

of a better term) recursive disjoint paths, is decidedly sub-optimal in this case.

For a more ambiguous case, consider sending a message from Po,0 to P2,1 in the

2 x 3 grid graph as follows:

r Po,o divides the message into two unequal "halves" - two-fifths and three-fifths

of the original, and sends the larger "half" to Plto in packets of size 3k and the

smaller "half7' to Po,1 in packets of size 2k. Despite the fact that the packets

are not the same size, the pairs of packets are sent in lock-step.

r Po,l forwards each packet it receives on to Pltl; similarly, P2,o forwards each

packet it receives on to P2,1.

r receives packets of size 3k from Po,o, which it splits into thirds, sending two

thirds to Pz,0 and one third to PIv1

CHAPTER 2. SENDING A MESSAGE OVER SEVERAL LINKS 58

PII1 receives two packets of size k and 2k in lock-step. (Yes, indeed: both arrive

4 P + 4 k ~ after their respective parent packets were sent by Polo). It amalgamates

the packets, and sends a single packet of size 3k to PI,^ for each pair it receives.

The disjoint path solution in this case requires

time, while the other sending scheme takes

time. For appropriate values of n, P and T , either solution could be better than the

other.

One could consider the alternate sending scheme from the last example as using

not disjoint paths, but rather overlapping paths that are partially disjoint. Essentially,

there are three paths used: Po,oPo,lPl,1P2,1 and Po,oPl,oP2,0P2,1 over which a pipeline

in packets of size 2k is sent, and Po,oPl,oPl,1P2,1 which uses a pipeline in packets of size

k . In fact, for appropriate values of n, P and r, an additional pipeline of some small

packet size along the path Po,oPo,l P1,o P2,0P2,1 would improve the time further,

since that path is underutilized in comparison to the other links.

While not likely sufficient to obtain a lower bound, an approach that might bear

investigation is the notion of contracting subgraphs. The 3 x 3 grid widget, for

example, could be considered a "path of length four" over which T has three-eighths

its normal value. The difficulty with such an approach, of course, is trying to deal

with the strange boundary conditions. The three central nodes of the path are simply

fictions; they won't be legal targets for a broadcast, for example. In addition, the

"path of length four" will behave peculiarly when fed a packet whose length is not

divisible by four. These difficulties are not insurmountable, but would require a great

deal of care to treat accurately.

In short summary, multiple paths and their treatment could bear a great deal

more investigation.

Chapter 3

Broadcasting

The problem

The general broadcast problem is fairly simply expressed: given an interconnection

network with some topology and an identified processor within that network, find a

communication scheme that will allow the processor to send a piece of information

to all its peers in the minimum time. The broadcast problem may also cast as a

construction problem: given a time bound, what topologies allow all (or some, or

one) of bheir processors to broadcast in time no larger than the bound. We will not

consider the latter sense, but refer the interested reader to [3], 1191 or even 1201.
- Despite its simplicityof specification, broadcasting (in the first sense) has proven to

be a rich area for research. Johnson and Garey showed that the problem of calculating

the time required to broadcast from a specific processor in an arbitrary graph is

NP-complete. Authors have examined (and this is only a sampling) the time required

to broadcast: in bounded degree graphs [18]; in the presence of faults [12]; in specific

topologies, such as the hypercube [16] or de Bruijn graph [2]; or using circuit switched

communications [21] rather than the store-and-forward we employ.

The limiting topologies we will consider for the broadcast problem are the complete

graph, in which each processor is connected to every other, and the ring: the minimal

processor-transitive connected graph. We begin with the ring.

CHAPTER 3. BROADCASTING

3.2 Broadcasting in the ring

We consider rings with some number p processors Po to PP-l where each processor

Pi is connected only to Piw1 and Pi+1 (processor indices taken modulo p.) We will

consider rings in two flavours: bidirectional, in which processor Pi may both send or

receive a message from either Pi-1 or Pi+1, and unidirectional, where processor Pi

receives messages from Pi-1 and sends to Pi+l.

Clearly, the results of Chapter 2 apply immediately to broadcasting in the unidi-

rectional or "oriented" ring. In a unidirectional ring of p processors if Po originates a

broadcast, it must send a message to PP-l; this informs all other processors along the

way.

Observation 3.2.1 For a processor in a unidirectional ring with p processors to

broadcast a message of size n to all other processors, S(n,p- 1) t ime is necessary and

suficient. That is,

b.(eP, n) = S.(n,p - 1)

The interesting ring is the bidirectional one. Fraigniaud and Lazard [8] enumerate

the following bounds for us:

In contrast, for the full duplex cases we will show:

bF-(C2m,n) = S*(b /2] m)

CHAPTER 3. BROADCASTING

In each case, the effective depth of the pipelined scheme has been at least halved.

And in the processor bound even ring, the depth of the pipeline has been reduced to

one quarter of the original, while the amount of information sent has also decreased.

The half-duplex bounds do not show quite the same improvement:

b ~ * (C ~ ~ , n) 5 min max , m, k), T,(n,m - 1, k)
O<k<n

bH*(C2mS1, n) 5 rnin rnax {T,(n, m - 1, k), to) where
O<k<n

to = rnin max {T,(n - no, m, k), Tl(no, m + 2, k))
O<no <n

bH1(C2m,n) I rnin max{T*(n,m,k),Tl(n,m-1,k))
O<k<n

bH1(CZm+i,n) < rnin max{Tl(n ,m-l ,k) , tb) where
O<k<n

The link bound even cycle is a strict improvement over the original. All the other

-bounds will perform identically to the originals in the worst case: when n r << mp.

As in the previous section, we look first at the link bound case.

3.2.1 The link bound full duplex ring

The ring with an even number of processors is much easier to work with than the

odd ring. In the even ring, the broadcast originator Po has an antipodal processor Pm

that must receive the entire message. Since the paths Po, PI, . . . , Pm and Po, P2m-l ,-
. . , Pm are completely independent in the link bound model, a simple lower

bound on the broadcast is

rnin {max (&(no, m), S*(n - no, m)))
l<no<n

CHAPTER 3. BROADCASTING 62

resulting from sending no units along one path, and the remainder along the other.

The next theorem demonstrates a matching lower bound.

We prove the theorem by a series of relatively uninteresting lemmas. First, a

lemma describing the properties of the function T,(n, m , k) : the minimum time re-

quired to send n units over m links in "packets of size k".

Lemma 3.2.1 Let no, n l , m , and k be positive integers.

1. If k <no , then T,(no,m,k) = T,(no+ k , m - l , k) = T,(no - k , m + l , k) .

2. If k 5 no and k < nl, then T,(no, m, k) < T,(nl, m, k) if and only if no < nl .

Proof: We prove each point in turn.

1. We invoke the definition of T,(n, m, k) , and apply a bit of algebra:

T*(no,m,k) = (mo/kl + m - l) P + ((m - l) k + n 0) 7

= (bo /k+11 + m - 2) P + ((m - 2) k + n o + k) r

= (f (no+k) / k l + m - 2) P + ((m - 2) k + n 0 + k) r

= T,(no+ k ,m - l , k)

and

T,(no,m,k) = (~ o / k - 1 1 +m)P+(mk-k+no) . r

= ([(n o - k) / k] + m) P + (m k + n o - k) r

= T,(no - k , m + 1, k) .

CHAPTER 3. BROADCASTING 63

2. If we pretend that T,(n, m, k) takes real parameters, and take the partial deriva-

tive with respect to n, we find $ ~ , (n , m, k) = r almost everywhere, and that

its value is unbounded and positive on the remaining points. Since the partial

derivative is always positive, T,(n,m, k) is monotone increasing with respect

to n.

Both points are validated: the lemma holds.

The previous lemma demonstrates that for fixed values of m and k, T,(n, m, k) is

monotone increasing wit.h n. We prove a similar result for the function S,(n, m): the

minimum time required to send n units over m links.

Lemma 3.2.2 For any positive integers no, nl , and m,

if and only if no < nl.

Proof: Let no < nl . There exists a value k such that S,(nl ,m) = T,(nl,m,k),

by the definition of S,(n, m). The second point of Lemma 3.2.1 gives, S,(no, m) 5
T1(nO, m, k) < T,(nl, m, k) = S*(nl, m). Thus, S,(no, m) < S*(ni , m).

Suppose &(no, m) < S,(nl, m). There exists a value k' such that

By the definition of S,(n, m),

and by Lemma 3.2.1 , no < nl.

Finally, a lemma that indicates how one might employ these characteristics of

T,(n, m, k) and S,(n, m) to prove Theorem 3.2.1

Lemma 3.2.3 Given an optimal transmission that sends n units from Po to P, in

packets of size k, the transmission may be easily extended to append sufixes to the

message, and send, in exactly the same amount of time, as follows:

CHAPTER 3. BROADCASTING

0 n + k units to Pm-]

0 n + 2k units to Pm-2

0 and in general, n + ik units to Pm-; for 1 4 i 5 m - 1

and in addition send prefixes of the message as follows:

0 the first n - k units to P ~ + I

0 the first n - 2k units to Pm+2

0 and in general, the first n - jk units to Pm+j for 1 L j L [(n - l) / k]

Proof: The only changes required to the standard pipeline scheme are with the

originator Po, and with the receiver P,.

Processor Po, instead of terminating the transmission after n units are sent, con-

tinues to send information in packets of size k.

Processor Pm sends the information in each packet it receives on down the line,

rather than simply listening to P,-I.

By the first point of Lemma 3.2.1, we see that it is sufficient to consider m = 1 in

the statement of the lemma.

Let k > 0. We prove by induction on n. If n < k , then the statement of the lemma

is null: true by default.

Assume that the lemma holds for all n < N . Consider a transmission of N units

in packets of size k over a single link. By our standard pipelined scheme, we send the

"odd" sized packet last: a packet q of size N + k - I; [N / k l . Consider the state of the

transmission just prior to the time that Po sends q.

By induction, at time ([N l k l - 1) P + k (r N / k l - 1) T the transmission scheme

has sent:

0 k ([N l k] - 1) units to PI

k ([N l k l - 2) units to P2

and in general, k ([N l k l - i) units to Pi for 0 5 i < [N lk l

CHAPTER 3. BROADCASTlNG 65

If at this time, each of these processors-that is, Po to PINlkl-l-sends a packet of

N + k - k [Nlkl units along to its neighbour, the scheme will have sent:

a N units to PI

N - k units to P2

a and in general, N - ik units to P;+I for 0 5 i < [N/kl - 1

thus satisfying the lemma for n = N. By the principle of mathematical induction,

the lemma holds, for some particular k > 0 for all n > 0.

All that remains to demonstrate the proof of Theorem 3.2.1 are the following two

observations.

1. Since according to Lemma 3.2.2, S, (n, m) is monotone increasing with n,

, m) = min max {S,(n - no, m), S,(no, m)) . s*([;] no<n

It follows that S,(b /2] , m) is a lower bound on the time required to send n

units to Pm along both paths, and therefore necessarily a lower bound on the

time required to broadcast n units to all processors.

are completely independent of one another, we can assign different schemes to

the two paths without any possible interference. If we employ an "extended"

pipelined transmission (after Lemma 3.2.3) that sends b /21 units along the first

path to P,, and another extended transmission (with reversed message order)

that sends [n/2J units to Pm along the second path, then in time S,([n/21 , m)

each processor will have received the n message units. If we additionally con-

strain Po to send no more than n units in each direction, no processor will receive

the same information from both directions!

CHAPTER 3. BROADCASTING 66

Figure 3.1: Example: Broadcasting a message of size 33 in Cs

As an example, consider Figure 3.1. For the values P = 5 and T = 1, the optimal

value for k is 6.

We proceed immediately to the odd case.

Theorem 3.2.2

We prove the upper and lower bounds separately. First, we examine two lemmas

that toget her demonstrate the upper bound.

Lemma 3.2.4 To broadcast a message of n units to a bidirectional ring of 2m - 1

processors,

time is suficient.

CHAPTER 3. BROADCASTIArG 67

Proof : This upper bound should be immediate: for some values of no and k , send

an extended pipelined scheme along the path of increasing index that will send no

units to Pm-l in packets of size k , and send n - no units to Pm-1 along the path

of decreasing index (modulo 2 m - 1) in packets of the same size k . As in the

proof of Theorem 3.2.1, this will provide at least n units to each processor at time

max {T,(no, m - 1, k) , T,(n - no, m, k) } .

Lemma 3.2.5 Lemma 3.2.4 provides the desired upper bound for Theorem 3.2.2.

Specifically, for positive integers n , m, and 1 5 k 5 n,

min max {T,(no, m - 1 k) , (n - o , ,) } = T* (- , m , k) .
Osno sn

Proof : By Lemma3.2.1, we have T , (no ,m-1 , k) = T , (no -k ,m , k) . We are therefore

interested in minimizing:

min {max {T,(no - k , m, k) , T,(n - no, m, k) } } ,
O<no<n

which is the same as minimizing I(n - n o) - (n o - k) l . This occurs when either no =

[(n + k) / 2] or no = [(n + k) / 2 j .

Since [(n + k) /21 - k = n - [(n + k) / 2 j and [(n + k) / 2 J - k = n - [(n + k) / 2 1 , it

.is sufficient to consider only T, (n - [(n + k) /21 , m, k) and T , (n - [(n + k) / 2 j , m, k)

in finding the maximum. Applying Lemma 3.2.1 again,

min max {T,(no, m - 1, k) , T,(n - no, m, k) } = T, (n - IT] , m, k)
O<no <n

For purpose of illustration, consider the broadcast scheme in Figure 3.2. With

,B = 5 and T = 1, the smallest upper bound that can be achieved is with k = 7.

CHAPTER 3. BROADCASTING

Figure 3.2: Example: Broadcasting a message of size 33 in C7

Processor Po sends 13 message units to P4 in the same time that it sends 20 message

units to P3.
Rather than dealing with the lower bound directly, we resort to a more primitive

technique: that of Chapter 2. Consider the problem of sending a single message along

a path from Po to Pm in minimum time so that the total of the units received by Pm

and the units received by Pm-1 is n .

Lemma 3.2.6 Let n and m be positive integers. Let M be a message of length n. In

a path of processors POPl . . . P,, the minimal time for Po to simultaneously send the

first no units of M to P,-l and the last n - no units of M to P, (where no is some

value 0 < no 5 n that makes this time as small as possible) is at least

Proof: We extend the notion of the packet content digraph that we saw in Section 2.3.

First, we are now considering transmissions that send both in the "forward" direction

CHAPTER 3. BROADCASTING

Figure 3.3: Example: The digraph of the forward component of Figure 3.2

(from Pi to P(i+l)modp) and in the "backward" direction (from Pi to P~i+l)modp). The

link-bound model makes these two directions independent: we thus imagine that we

have two separate unidirectional transmissions (vf, X f) and (vb, X b) .

Consider the packet content digraph of a forward transmission (vj, X f) from Po

that simultaneously sends prefixes of no units to Pm-1 and n - no units to P,. The

standard pipeline will satisfy the requirements for no = [n/2J in time S,(b/21 , m):

we're only interested in better schemes; as a result, no 2 b/21.

We're particularly interested in the long paths that we can find that end at either

X j (m - 1, vf (m - 1)) or Xf(m, vf (m)). We delete from the packet content digraph

all nodes that do not have a path to either of these nodes. As an example, consider

Figure 3.3. The highlighted portion of the digraph is all that remains after this

deletion.

We extend (slightly) the specification of algorithm SearchForward in Section 2.4

to deal with the fact that there are packets X(m - 1, j) that have no overlapping

packet neighbour. We would still wish to return either m or m + 1 on leaving

CHAPTER 3. BROADCASTlNG

Figure 3.4: Example: The digraph of the forward component of Figure 3.2

IX(m - 1, v(m - 1))l is no larger than the input parameter k. Accordingly, these new

returns must have values between m - 1 and m. We try to make the presence of these

extra returns obvious by having the algorit,hm return a pair of integers, rather than

just one:

0 If IX(i, j)l 5 k, return (i, 0)

We use lexicographic ordering on these return pairs.

Continuing with our illustration, Figure 3.4 contains the relevant portion of the

digraph we have been considering. The possible return codes are marked adjacent the

nodes on the upper and right hand boundaries.

As in chapter 2, there must exist some integer k so that SearchForward(v, A , k)

has returns p and p, where p 5 (m - 1,O) < p'. We examine two cases:

(The easy case.) Suppose p' 2 (m, 0). Then the respective paths A and A' traced

by SearchForward in producing the returns p and p' bound the region containing

both X(m - 1, v(m - 1)) and X(m, v(m))

We can run SearchBackward from both of these packets, and thus produce

two long paths: the one from X(m, v(m)) requiring T,(no, m - 1, k) time, and the

CHAPTER 3. BROADCASTING

Figure 3.5: Easy case: TWO paths traced by SearchForward(v, A, k)

other requiring T,(n - no, m, k) time. Since the time required for any path in the

transmission is a lower bound on the time required for the transmission as a whole,

this dual transmission requires time at least

min {max{T,(no,m - l ,k) ,T,(n - no,m, k))) .
lsksn

(The hard case.) We have m - 1 < p' < m. Again let A and A' be the paths that

were traced to generate the returns p and p' respectively. Since X(m - 1, v(m - 1)) is

contained in the region bounded by A and A', we can find a long path that requires

T,(no, m- 1, k) time by running SearchBackward from X(m- 1, v(m- 1)). To complete

the proof, we will show t (A') 2 T,(n - no, m, k).

Let X(m - 1, j,) be the rightmost (in the embedding) packet that has X(m, v(m))

as an overlapping packet neighbour, and let X(m - l ,&) be the last ~ a c k e t in A'

corresponding to the return p' = (m - 1, v(m - 1) + 1 - p'). We note that both

CHAPTER 3. BROADCASTING

h(1,l)

ure 3.6: Hard case: Two path .s traced by S

The assertion of SearchForward provides that

2 T. ~ l ~ (i , ~) l , m - l , k (I:
Since this case also has two long paths of lengths T,(no, m - 1, k) and T,(n -

no, m , k) , it must be the case that any transmission from Po that sends prefixes of no

units to P, and n - no units to Pm+l requires time at least

CHAPTER 3. BROADCASTING

By Lemma 3.2.5, we see that this bound is exactly

The lower bound for the proof of Theorem 3.2.2 follows as a corollary.

Corollary 3.2.1 To broadcast a message of n units to a bidirectional ring of 2m - 1

processors,
n + k

min T. (n - IT] , rn, k)
l s k s n

time is necessary.

Proof : Let M be a message of n units. Use a minimum time extended pipeline scheme

that sends the first [(n + k)/2J units of -74 to Pm-1 and the first n - [(n + k)/2J units

of M to Pm in the "forward" direction of a bidirectional ring of 2m - 1 processors.

In addition, send a similar scheme in the "backward" direction: the last [(n + k)/2J

units of A 4 to P, and the last n - [(n + k)/2J units of M to P,-l.

This composite scheme will necessarily be a minimum scheme that sends A4 to

both Pm and Pm-l from Po. Since it also sends A 1 to all other processors in the same

time, this scheme will also provide a lower bound for the problem of broadcasting n

units to each processor in a bidirectional ring of 2m - 1 processors.

3.2.2 The processor bound full duplex ring

The processor bound case suffers the same limitations as the link bound case: specif-

ically, that the even and odd cases are quite different, and require separate analysis.

As before, we turn our attention first to the even ring with p = 2m processors.

A broadcast scheme tha.t gives a good upper bound is reasonably simple. We

employ a synchronous scheme that sends packets of size k and employs r = m - 1 +
[nlkl rounds. During odd numbered rounds, each processor P2i communicates with

P2i+l; in even rounds P2; communicates with P2i-1-all indices (as usual) modulo p.

CHAPTER 3. BROADCASTING 74

Figure 3.7: Example: Sending a message of size 61 in Cs.

Processor Po sends packets beginning at the front of the message to PI, and beginning

at the back of the message to Pp-l; in each round, a processor other than Po will

simply send whatever it received in the previous round. If a processor has either seen

no packets, or seen nothing in the previous round, it does not send a.nything. -4nd as

a wrinkle, only n + k - k b / k l units are sent in the last round.

Consider the example of Figure 3.7. For the values ,O = 5 and T = 1, the optimal

value for k is 13. The first 6 rounds are all of size 13, while the last round is only

size 9.

Proposition 3.2.1 The given broadcast scheme provides an upper bound of:

Proof: Consider Pm (equivalently, Pm+l): it will begin receiving its ith packet at

time (m - 2 + i)(P + k ~) . Another processor Pm-j (equivalently, Pm+l+j) will start

receiving its first processor at time (m - 1 - j)(P + k ~) , and initially receive only one

packet every other round. Processor Pm-j (Pm+l+j) will start to receive its (j + l)th

packet at time (m - 1 - j + 2 j) (p + kr)-the same time that Pm (Pmtl) begins to

CHAPTER 3. BROADCASTING 75

receive its (j + l) th packet. What's more, Pml j (Pm+l+j) receives its first packet from

the other direction immediately thereafter: beginning at time (m + j) (P + k r) . As a

consequence, for any i and j , 1 5 i 5 r and 1 5 j < 2m, processor Pj will begin to

receive its ith packet no later than Pm begins to receive its ith packet. So all processors

will have received [nlkl packets no later than P,; the time bound follows.

It remains to show that ea,ch processor receives the entire message. Suppose a

processor Pj receives e packets from Po via PI and the remaining b/ kl - t! packets

from Po via P2m-1. There are two cases:

1. The the last packet Pj receives is via PI.

Then Pj receives units

bob1 - . - b(n-([nlkl-e)k)

via PI , and units

bnbn-1 . . b(n+l-([nlkl-t)k)

via P2m-l.

2. Alt'ernatively, Pj gets its last packet via P2m-1.

Then Pj gets units bobl . . . bke via PI , and units b,b,-l . . . b, via P2m-1, where

p = 1 2 + 1 - ([n / k l - l - 1) k - (n - (b / k l - 1) k) = ke+ 1.

In either case, Pj receives exactly the units in the message. The proposition follows.

0

The odd case is only a bit more involved. Suppose we're interested in broadcasting

to a ring of 2m+ 1 processors. We again employ packets of size k ; have Po send packets

beginning at the front of the message to PI , and in reverse order from the end of the

message to P2,. In the first round, round 1, we have processor Po send to PI while

P2, is idle. And in general, we design the sending pattern for round j based on letting

processor P2m+l-j be idle: P2;-j and P2;-1-j (for i = 1 . . . m) will exchange a packet.

As an example, consider Figure 3.8.

CHAPTER 3. BROADCASTING

Figure 3.S: Example: Sending a messa.ge of size 97 in C7.

Proposition 3.2.2 The given broadcast scheme provides an upper bound of

Proof: Processor Pm+l begins receiving its first message a t time m (p + kr) , and

continues to receive a sub-message each round until it is next idle, in round 3m + 1.

.In much the same way as we argued for the even case, we note that for 1 2 j 2 m,

Pm+l-j (Pm+l+j) will both begin to receive its (j + l)th sub-message at the same time

that Pm+l starts to receive its (j + l) th , and will receive its ith sub-message (where

i < j) no later than Pm+1 receives its ith. Thus, if b / k l 5 m + 1, Pm+l will receive

its last sub-message no earlier than any other processor.

If the message comprises more than m + 1 sub-messages, though, processor PZm is

the laggard: Pzm begins to receive sub-message m + l + j at time (2m+ j+ [j/2ml)(P+

kr) .

Since a total of b / k l sub-messages comprise the message, we need a function that

CHAPTER 3. BROADCASTING

compactly represents:

m + rn / k i if b / k l 5 m + 1
rounds =

m + [n / k] + [Jn'k?imm-l 1 if [n l k] > m + 1

The function is:

k (m - 1) + n
rounds = m - 1 + [n l k l +

2mk

The total time required by the scheme is no more than ,f3 + k r times the number

of rounds. We note that, as a result of the abbreviated final sub-message, the last

[n/lcl rounds send a total of n units. Accordingly, the total time is no more than

The value of k that minimizes this quantity provides the upper bound.

The proof that each processor receives the entire message is essentially the same

as the even case; we decline to reproduce it.

The example of Figure 3.8 demonstrates an minimal transmission of a message of

size 97 in C7, since for ,f3 = 5 and r = 1, the optimal value of k is 11.

3.2.3 The half duplex ring

The bounds for these half duplex cases are due to Fraigniaud and Lazard [S] . The

algorithms that produce them cut the ring C, between PLPl2, and Plp121+1 , and then

broadcast to the two independent paths that result. While the bounds are quite good,

we will provide an improvement for each one by failing to cut the ring, and employing

the extra communication capacity.

We could have employed the full-duplex results of Sections 3.2.1 and 3.2.2 by

simply doubling the number of rounds. What's more, we could quite easily enhance

those naive results by noting that in the full duplex schemes for the ring Cp, the

CHAPTER 3. BROADCASTING 78

first rp/21 rounds do not employ any edges in more than one direction. Only the

subsequent rounds would thus need be doubled.

Since 2T,(n1, m', k') - ml(P + k'r) = Tl(nl, m', k'), the resulting bounds would be:

None of these bounds are tighter than those of Fraigniaud and Lazard. (And, in fact,

only the upper bound for the processor bound even ring is as good.)

We employ an enhanced version of Fraigniaud and Lazard7s scheme: rather than

splitting the ring, we consider each edge to be unidirectional with the orientation

initially defined so that Po has out-degree 2, PrPlzl has in-degree 2, and all other

processors have both out-degree and in-degree 1. We reverse the orientation on edges

adjacent a processor (other than Po, of course) that has seen the entire message. And

we proceed in greedy fashion: the objective is to pipeline the message to all processors

with in-degree 2 as quickly as possible.

We begin with the link bound ring with an even number p = 2m of processors. We

-select a integer 0 5 k 5 n. The transmission scheme is divided into discrete phases.

In the first phase-phase 0 for convenience-the message is sent to P,: we send

an extended pipeline along the two paths to Pm in packets of size k. The "backward"

pipeline uses the reverse of the message order employed by the "forward" pipeline.

Time required: T,(rn/21 , m, k). We label this time to.

Phase 1 sees the message sent to Pm-l and Pm+l: we continue to employ the

extended pipeline scheme from Po; yet processor P, will simply send one packet to

Pm-l and Pm+l respectively to provide the balance of the message. Pm-l and Pm+l

will thus have received the entire message at time

CHAPTER 3. BROADCASTING 79

Figure 3.9: Example: Sending a message of size 99 in Cs.

The jth phase sees Pm+1-j and PmWl+j sending one packet to P,-j and Pm+j re-

spectively. If t jd l was the time at which Pm+l-j (Pm-l+j) received the entire message,

then

t . - min max {T,(n - nj, m - j , k) , tj-1 + p + n j ~) . ' - O<n,<n,-l

The scheme stops (and fails to execute phase j) when T,(n, m - j, k) 5 t j - l .

As an example, consider Figure 3.9 in which a message of size 99 is broadcast by

this scheme to C6 with k = 8. Unlike our previous examples, k = S is not the optimal

value.

The transmission scheme will employ between one and m phases. If m phases are

required, then PI will be informed from both Po and P2. But more importantly, the

total time to broadcast will have been no more than T,(n, 1, k) by the construction

of time tm-1. The other extreme case is when only one or two phases are required.

If one phase is used, then t l < to and the total time to broadcast is no more than

to = T*([n/21 , m, k) . If three phases are used, then t l = T,(n, m - 1 , k) is an upper

bound. Proposition 3.2.3 follows from an optimal choice for k.

CHAPTER 3. BROADCASTlNG

While we make no claims of optimality for the last algorithm, it is interesting

to note the ways in which it might be improved. The first inclination is to flip

the direction of more than just two edges at the end of each phase: rather than

broadcasting to Pm-l and Pm+1 in phase 1, for example, choose Pmdj and Pm+j for

some appropriate value of j. While it does not make for a proof, we have exhaustively

examined all choices for j under the assumption that the packet size k does not change

(except, as usual, in the last round): the choice j = 1 takes no more time than any

other choice. The algorithm was then designed to exploit the adjacency of the targets

of successive phases. There may indeed be some algorithm that does not have adjacent

targets for the phases that also alters the size of the packets. We have not, by any

means, exhausted all possibilities.

For the odd ring Czm+l, the broadcast scheme is very similar to what we have

just seen. But rather than broadcasting to Pm alone in phase 0, both Pm and P,+l

are targets. For this first phase, we use the transmission scheme that gave us The-

orem 3.2.2. We ignore transfers of information toward Po from Pm or Pm+1, and we

force transfers between Pm and Pm+1 to alternate direction. If Pm and P,-l exchange

no message units, that portion of the transmission ends in time Tl(no, m + 2, k), while

the remainder of the message from Po requires To(n-no, m, k) time. As a consequence,

to = min max {T,(n - no, m, k), Tl(n0, m + 2, k)) .
O l n o < Ln/2J

Phase j , then, sees P m - j (Pm+l+j) send a single packet back to Pm-j-l (Pm+2+j).

The definition of t j is unchanged. Figure 3.10 contains our next example: for param-

eters p = 5 and T = 1, the values k = 12 and no = 27 are merely illustrative.

We construct the upper bound in the same manner as for the even cycle. (Note:

we need Tl(O, m', kt) defined to be zero in order to deal correctly with the boundary

case p = 1 and T = 0. If ,B = 1 and T = 0, the time to broadcast is m, not m + 2!

The other boundary case - when P = 0 and T = 1 behaves nicely.)

CHAPTER 3. BROADCASTING

Figure 3.10: Example: Sending a message of size 99 in C7.

Proposition 3.2.4 If, for some integers n, m, and k

to = min max {T,(n - no, m, k), Tl(no, m + 2, k))
%no 5 Lnl2J

then

b~.(C2,+1,n) < min max{T,(n,m - l ,k) , to}.
O<kLn

The processor bound ring now acquires our attention. Again, we make the division

between the even and odd cases. The processor bound constraint prohibits the "single

large packet" approach of the link bound examples. As a consequence, all transfers

of information will be constrained to be packets of size k-except where that would

result in sending redundant information. Aside from that, the even case is not a great

departure from the link bound even ring. The odd case is only the expected synergy

of the processor bound full duplex "rotating wait" scheme with the link bound half

duplex scheme.

For the even ring C2, we proceed exactly as in the link bound case, and send first

to P,. For simplicity, rather than counting the time t j to the end of each phase, we

CHAPTER 3. BROADCASTING 82

Figure 3.11: Example: Sending a message of size 65 in Cs.

only count the number of packets r j that have been sent. (As a physical justification,

the node(s) that have been informed by a phase cannot take any other action until its

neighbours finish transmitting their packets, too.) From our count r j we may obtain

tj , thus

t j = rj,O + ((r j - [n / k l) k + n)r .

The numbers of packets after each phase are:

n - nl
r l = min max{ro+ b l / k] ,2[-] + m - 3)

Knl< Ln/2]

Figure 3.11 continues the set of example broadcast schemes. The choice of k = 10

is definitely sub-optimal: k = 13 gives a faster broadcast for the choice of parameters.

Again, the times to (in case of the pathology T = 0) and t l (when nl = 0) form an

upper bound on all transmissions of this form. The proposition follows from a choice

of k to minimize the bound.

CHAPTER 3. BROADCASTING

The scheme used for the odd ring C2m+l bears the same resemblance to the even

case that the scheme for the full duplex processor bound odd ring bears to the corre-

sponding even ring. The algorithm proceeds, as before, in phases: phase 0 informing

Pm and Prn+1; phase 1 informing Prn-1 and P,+l; phase j informing Pm-j and Prn+j.

Moreover, packets are sent synchronized in rounds numbered beginning with 0: in

round i , processor Pimod(2m+l) is idle.

The first phase is slightly complicated by the edge between Pm and Prn+1. Even

in the full duplex processor bound schemes we have seen, this edge would only be

used m times in every 2m + 1 rounds. This scheme is no different; but the edge is

alternatively used in the two directions until the phase is complete.

Processor P2, should again be the laggard, as it always suffers at least as many

idle rounds as any other processor. We thus examine the Pm+l to P2m half of the

ring, in forming the time bounds. Following t,he example of the preceding even ring,

we keep a count of the number of rounds.

Processor Pm+1 receives its ith packet from Pm+2 in round 2i + m - 2 + [i lml.

.And Prn+l will receive its Ph packet from Pm over the shared link in round 4e + m -

3 + [(a [- 1)lrnl. Phase 0 is thus complete in round

2 [y] + m - 2 + 121
ro = min max [rnm sno 9 4 [(nin~)l + m -3.1: (2 inO)] I)]

Note: no is not a throw-away value. We will use it (and its colleagues nj) to construct

the phase limits rj. The round in which processor Pm+1 is first able to send a packet

to Pm+2 is exactly the round in which P,+l would have received its (no + l) th packet

from Pm+2, had the direction on the edge not been reversed.

CHAPTER 3. BROADCASTING 84

Figure 3.12: Example: Sending a message of size 84 in C7.

In a similar manner, processor Pm+l+j receives its ith packet from Pm+l+j in round

2i + m - 2 - j + [ilrnl. So phase j may complete in round

As an example, consider Figure 3.12. Again, the value k = 10 is quite suboptimal:

a packet size of 28, for example, produces a faster broadcast.

The time bound is derived in the same manner as we have seen in the previous

examples. The proposition follows from choosing k to minimize the upper bound.

Proposition 3.2.6 If, for some integers n, m, and k

to = min max
O<no < n T,(n - no,m - 2 + 3

(where the second option evaluates to 0 if n = no), then

CHAPTER 3. BROADCASTING

How do these broadcast schemes stack up against the schemes of Fraigniaud and

Lazard? The schemes from this section for even rings are strictly better, while the

broadcast schemes for the odd rings are no worse than the originals. In the odd

case, our schemes employ communication capacity forbidden to those of Fraigniaud

and Lazard: when that capacity is unnecessary (such as when T = 0) the schemes

will perform identically; in any case where the pipeline employed by Fraigniaud and

Lazard's schemes are nontrivial (that is, more than one packet is sent over some edge)

our schemes will be faster. We do not, however, make any claims of optimality for

these schemes.

3.3 Broadcasting in the complete graph

For the complete graph, we have only upper bounds to present. While Fraigniaud

and Lazard [8] present good bounds (and, in fact label all four cases as 'Done') the

following bounds are incommensurable in the full duplex processor bound case, and

strictly better in the other three cases.

Recall that:

S,(n,m) = min T,(n,m,k)
l s k s n

is the minimum time to send a messa.ge of size n over m links under the link-bound

model, where

T,(n,m,k) = (rn lkl + m - 1) p + ((m - l) k + n) ~ .

Fraigniaud and Lazard present:

CHAPTER 3. BROADCASTING

While we will see:

n - k
bF,(I(,, n) 5 min T,

l<k<n

b ~ , (I < ~ , n) 5
P

where r = o (log (1 -

+ 1)) \ P (k + LP/TJ>

3.3.1 The full duplex link bound complete graph

The first bound is the result of refining the analysis of Fraigniaud and Lazard.

Proposition 3.3.1

Proof: The scheme that provides the upper bound is synchronous, as follows:

Choose a packet size k, and reserve a sub-message of size k.

Divide the remaining n - k message units into p - 1 sub-messages, as evenly as

possible; further divide these sub-messages into r = [(n - k)/(p - 1)kl chunks

of size k-where we allow the last chunk to be smaller. Let m(i, j) refer to the

jth chunk of the ith sub-message, and Im(i, j) 1 denote the size of m(i, j) . We

note that the construction may result in some m(i, r) having zero size. That

will not cause any difficulty.

CHAPTER 3. BROADCASTlNG 8 7

We pad each chunk m(i , r) to size k with the reserved sub-message giving

ml(i, r) ; and we create an additional chunk (possibly of size zero) for each

processor ml(i, r + 1) with the remainder of the reserved sub-message. This

construction ensures that Im(i, r) 1 = Iml(i, r + 1) 1 .

The chunks are sent in r + 1 rounds, as follows:

1. Po sends m(i, 1) to Pi, 1 5 i < p - 1.

2. Po sends m(i, 2) to Pi and

Pi sends m(i , l) toeach Pj, 1 < j 5 p - 1, and i # j .

r - 1. Po sends m(i, r - 1) to Pi, 1 5 i 5 p - 1 and

Pi sends m(i , r - 2) to each Pi, 1 5 j < p - 1, and i # j.

r. Po sends m'(i, r) to Pi, 1 < i < p - 1 and

Pi sends m (i , r - 1) to each Pi, 1 5 j 5 p - 1, and i # j.

r + 1. Po sends m1(i , r+ 1) to Pi, 1 < i 5 p - 1 and

Pi sends m(i, r) (not the padded version!) to each Pi, 1 5 j _< p - 1, and

i # j.

The first round takes time P + k ~ , and the remaining r rounds require a total of

r p + [n - k/(p - 1)l r ; the total time required by this scheme is

The best choice for k gives the bound of the proposition.

What's more, the scheme ensures that each processor has received all n units of

the message by the end of the (r + l) th round: Pi will receive m(j , k) in round k + 1

if j # i, and round k otherwise; the k units of the reserved sub-message will always

be received in the rth and (r + l)th rounds.

As an example, consider the problem of sending a message of size 83 in 1 ' ; pro-

cessor Po wishes to broadcast to four other processors. Letting p = 5 and T = 1 for

simplicity, as in other chapters, the optimal value of k is 10.

CHAPTER 3. BROADCASTING

Reserve b74 . . . bss.

Divide the remaining message into four sub-messages:

b1 . . . b18, b19. . . b36, b37. . . b54, and b55. . . b73.

Split the sub-messages into chunks of size k:

Make the extra chunks m':

Send the chunks, in 3 rounds:

1. Po sends m (i , 1) to Pi, for each i = 1 ,2 ,3 ,4 .

2. Po sends m l (i , 2) to Pi, for each i = 1 ,2 ,3 ,4 while Pi sends m(i, 1) to Pj

for j = 1 , 2 , 3 , 4 and j # i.

3. Po sends m 1 (i , 3) to Pi, for each i = 1 ,2 ,3 ,4 while Pi sends m (i , 2) to Pj

for j = 1,2 ,3 ,4 and j # i.

The first two rounds send packets of size 10, while the last round sends packets

of size at most 9.

3.3.2 The half duplex link bound complete graph

For the half duplex case, Fraigniaud and Lazard demonstrate an upper bound of

CHAPTER 3. BROADCASTING 89

While we could perform a slight enhancement of their analysis (following the example

of the previous proposition) to obtain

bH,(KP, n) 5 min lsksn ((2 + I) P + (2[?1 + k)) 7

we will employ a slightly different technique to further reduce the bound.

Proposition 3.3.2 For fixed values of n, p, and k, let r be the smallest integer so

that

~ ((2 ' - 1) k + (2' - r - 1) [PIT]) + k + r [PIT] 2 n,

Proof: Again, the upper bound is synchronous. In contrast to the full-duplex case,

though, the size of the rounds is not more-or-less constant; rather, each successive

round will transmit slightly more than twice as many message units as the previous

one. Moreover, we will need to employ the term phase rather than round since each

phase (other than the first) will contain pairs of packets that use the same link, in

series.

We fix k to some positive integer less than n, and we let r be the largest integer

subject to the relation in the statement of the proposition. The transmission scheme

will take r + 1 phases.

We begin by reserving a sub-message of size [(n - k - r [P / ~]) / p l 4- k + r [P/T],

leaving no more than [(n - k - r [PIT])(p - l) / ~ l message units. We divide the

remaining units into p - 1 sub-messages, as evenly as possible; each of these sub-

messages is thus of size greater than (2'-l- 1)k + (2'-' - r) [,B/T] and no larger than

(2' - 1)k + (2' - r - 1) [P/T] units by the construction.

Each sub-message is divided further into r chunks, each slightly more than twice

the size of the previous (with the exception of the last chunk, which merely contains all

the remaining units in the message): the first chunk is of size k, the ith (for 1 5 i < r)

is of size 2'-'k + (2i-' - 1) [/?/TI, and the rth has size [(n - k - r [P / ~]) / p l - (2'-' -

CHAPTER 3. BROADCASTING 9 0

l) k - .(2'-l - r) [PITJ AS in the F* case before, we let m(i , j) refer to the jth

sub-sub-message in the ith sub-message.

We extend each chunk m(i , r) , giving ml(i, r) by padding it to length (2'-' -

l) k + (2'-' - r) [PIT] from the reserved sub-message; each of the p - 1 new chunks

ml(i, r + 1) are simply the remaining portion of the reserved sub-message.

The sending scheme is in r + 1 phases, as follows:

1. Po sends m(i, 1) to Pi, 1 < i < p - 1.

2. Po sends m(i, 2) to Pi, 1 < i < p - 1 while:

(a) Pi sends m(i, 1) to each Pj, 1 < j < i then

(b) Pi sends m(i, 1) to each Pj, i < j < p - 1

r. Po sends ml(i, r) to P;, 1 < i 5 p - 1 while:

(a) P; sends m(i, r - 1) to each Pj, 1 < j < i then

(b) Pi sends m(i, r - 1) to each Pj, i < j < p - 1

r + 1. Po sends ml (i , r + 1) to Pi, 1 5 i < p - 1 while:

(a) P; sends m(i, r) (unpadded version) to each Pj, 1 5 j < i then

(b) P; sends m(i, r) (unpadded version) to each Pj, i < j 5 p - 1

Each processor receives all n units of the message by the end of the (r + l)th phase:

Pi will receive m(j , k) in phase k + 1 if j # i, and phase k otherwise; and the reserved

units will always be received directly from Po in the rth and (r + l)th phases.

The first phase takes time ,B + kr. The remaining r phases are dominated by the

time used by processors other than Po: each Pi sends 2r packets that contain a total

of 2 [(n - k - r L,B/7])/p1 units. The total time for the scheme is:

CHAPTER 3. BROADCASTING 91

Selecting the best value of k provides the bound in the proposition. 0

For illustration, consider the problem of sending a message of size 180 in K5 under

the half duplex link bound constraint. Letting P = 5 and r = 1, the optimal values

for k and r are 10 and 2 respectively.

Reserve a message of size 52: b129.. . b180.

Divide the remaining message into four sub-messages:

bl . . . b32, b33 . . . b64, b65 . . . bg6, and b97 . . . b128.

0 Split the sub-messages into chunks:

Make the extra chunks ml-)ml(i, 2) 1 = 25 and Iml(i, 3) 1 = 22:

Send the packets, in 3 phases:

1. (size 10) Po sends m(i, 1) to Pi, for each i = 1,2,3,4.

2. (size 25) Po sends ml(i, 2) to Pi, for each i = 1,2 ,3 ,4 while

(a) (size 10) Pi sends m (i , l) to Pj for 15 i < j 5 4 then

(b) (size 10) Pi sends m(i, 1) to Pj for 4 > i > j > 1

3. (size 49) Po sends ml(i, 3) to Pi, for each i = 1,2 ,3 ,4 while

(a) (size 22) Pi sends m(i, 2) to Pj for 1 5 i < j 5 4 then

(b) (size 22) Pi sends m(i, 2) to Pj for 4 > i > j 2 1

CHAPTER 3. BROADCASTING 92

3.3.3 A digression: the full duplex processor bound hyper-

cube

One of the ways to find an upper bound for processor bound complete graph is to

employ a hypercube-like sending scheme. Accordingly, we turn our attention to the

hypercube Q, on 2" nodes.

Proposition 3.3.3

b ~ l (& r n , n) 1 S*(n, m)

Proof: We employ what I'd have thought was the standard pipelined hypercube

scheme. Imagine my surprise when I discovered that Fraigniaud and Lazard employ

a labeling scheme of Johnsson and Ho [16] to provide S,(n, m + 1) as their best

hypercube bound under the full duplex processor bound constraint.

The bound I'd had in mind is again a synchronous scheme. The message is simply

divided into b / k l sub-messages of size k (where we allow the last sub-message to be

smaller). We label the ith of these sub-niessages (beginning the numbering, unchar-

acteristically, at 0) y(i). As as before, we let ly(j) 1 denote the size of the sub-message

~ (j) .
Rather than sending the sub-messages

we create a slightly different collection to send:

,g(m/kl - 1) is the first k units of the concatenation y (b / k l - l) y (b / k l - 2).

CL([n/lil) is the last ly([n/kl - 1)1 units of y([n/kl - 2).

We relabel the nodes so that the originator of the broadcast is node 8. For my

convenience, I'll both label the neighbours of by {eo, el , ern-l} and denote sub-cubes

by
- - Q {eil7ei2' .*. 'eip'ejl 'ejz'--. 'ejq - } 7

CHAPTER 3. BROADCASTING 93

meaning the sub-cube where each of the indices i l , i2,. . . , ip are 1, and each of the

indices j l , j 2 , . . . , j, are 0.

The sending scheme is fairly simple: there are [nlkl + m - 1 rounds, numbered

from 0 to r = [nlkl + m - 2.

a In round j < [nlk], 8 sends p (j) to ejrnodm.

a In round j , where [nlk] 5 j < r , 8 sends p (b / k] - 1) to ejmodm.

a In round j < r , w # sends the sub-message with the largest index it knows to

LzJ @ ejmodm-

The third point is a bit vague for a proof. In order to specify it more precisely,

we need one last bit of mechanics: let nj : V(Qm) -+ V(Qm) be the permutation that

maps

W = Wow1 . . . Wm-1 H W j W j + l . . . Wm-1Wo . . . Wj-1.

We want to be able to speak of the leftmost 1 in ~ ~ (w) : we will say that the leftmost

1 of nj(ei) is in position (i - j) mod m. The leftmost 1 of .ir3(e2 + e7), for example, is

in position 4.

In round j < r , then, processors (other than 8) send a sub-message depending on

the position of their leftmost 1 under the map nj. Specifically, if the leftmost 1 of

nj(w) is in position i, Processor w sends sub-message ~ (m i n {j - m $ i , mlkl - I)) ,

where sending a sub-messa.ge with a negative index is simply a no-op.

This rule also produces the last two points in the description of the scheme. In

round r , a processor w would send sub-messa,ge p (m l k l - 2) if and only if the leftmost

1 in ar(w) was in position 0 (as when w E Q {e(ln/kl-2)modm)) and otherwise send

p (b / k l - 1). Since these two sub-messages overlap in k - ly([nlkl) I units, there

is no need to send these particular units again: as a consequence, we employ an

abbreviated sending in the final step.

CHAPTER 3. BROADCASTING 94

The first b / k] - 1 rounds plus the last round see 5 send [n j k] packets whose

total size is n: these take time b / k] ,O + n r . The remaining m - 1 rounds each send

k units, for a total of

(b / k l + m - 1) p + ((m - 1) k + n) ~ .

If we minimize this quantity over all values of k , the result is exactly S,(n, m). 0

As a small example, consider sending a message of 19 bits to Q4. Given ,f3 = 5

and T = 1 , the optimal value of k is 5.

Divide bl . . . b19 into four sub-messages: ~ (0) = bl . . . b5, ~ (1) = b6. . . bio, ~ (2) =

bll . . . b15, and y (3) = b16 . . . b19.

Construct the alternate sub-messages p: p (0) = y(O), p (1) = y (l) , p (2) = y (2) ,

4 3) = b16 . . . b19bll, and p (4) = b l2 . . . b15.

Send the sub-messages in 7 rounds:

0. Processor 0000 sends p (0) to processor 1000.

1. Processor 0000 sends p (1) to processor 0100, while

processor 1000 sends p (0) to processor 1100.

2. Processor 0000 sends p (2) to processor 0010, while

processor 0100 sends p (1) to processor 0110,

processor 1100 sends p (0) to processor 1110, and

processor 1000 sends p (0) to processor 1010.

3. Processor 0000 sends p (3) to processor 0001, while

processor 0010 sends p (2) to processor 0011,

each processor 01i20 sends p (1) to processor 01i21, and

each processor l i l i 2 0 sends p (0) to processor l i l i 21 .

4. Each processor 000i3 sends p (3) to processor 100i3, while

each processor 001i3 sends p(2) to processor 101i3,

each processor 01i2i3 sends p (1) to processor lli2i3, and

each processor lili2i3 sends p (0) to processor 0il i2i3.

CHAPTER 3. BROADCASTlhrG

5. Each processor ioOOi3 sends p(3) tb processor io10i3, while

each processor ioOli3 sends p(2) to processor iol l i3, and

each processor i01i2i3 sends p(1) to processor i00i2i3.

6. Each processor iOi10i3 sends y(3) to processor i0illi3, while

each processor i0illi3 sends p(4) to processor iOi10i3.

With the exception of the last round, each round j doubles the number of pro-

cessors that have received {p(i) I max {j - m, 0) < i < min {j, [nlkl - 1)). And if

not for the abbreviated sending scheme, the last round would be the same. But after

the first 6 rounds in our example, each processor has received message unit bll-as a

result, bll need not be transmitted by any processor in the final step.

As it turns out, this is not very different the processor-bound hypercube sending

scheme of Johnsson and Ho [16]. The feature of this scheme missing in the original is

that the originator stays busy until the very final round.

3.3.4 The full duplex processor bound complete graph

How can we use this scheme for the complete graph? Clearly, if p = 2", the previous

scheme may be applied directly. For more general values of p, a naive solution would

be to have I<p masquerade as the hypercube Qrlog,pl. Each processor would have no

more than two separate identities. In each round, every processor would be responsible

- for as many communications as it had identities: any maximal matching in the A = 2

communication graph induced each round will partition the round into two parts

which may be scheduled in series. As a result:

Much simpler, though, is to have the originator employ the hypercube scheme to

broadcast to the largest sub-hypercube, then employ one additional step to inform

the remaining nodes:

CHAPTER 3. BROADCASTING 9 6

Interestingly, though, we can also employ the scheme for the full duplex processor

bound ring tha.t we saw in Subsection 3.2.2. That scheme differentiated between even

and odd rings:

Corollary 3.3.2 For e v e n c o m p l e t e graphs Kz,,

Corollary 3.3.3 F o r odd c o m p l e t e graphs 1(2m+l,

The upper bounds for complete graphs KP with p = 2" or p = 2m' are better than

the bound of Fraigniaud and Lazard. For p odd, however, none of the three following

bounds are clearly better than the others.

(S*(n , P - 1) Fraigniaud and Lazard

S=(% [log2 PI) + P + n r Hypercube scheme
b F l n) I

min T,(n + k
l<k<n

k (m - + , m k) Cycle scheme 1 2mk 1
3.3.5 The half duplex processor bound complete graph

.Let QL be the hypercube on 2" nodes augmented by additional edges that join

antipodal nodes.' This is normally called a folded hypercube. We can see that the

scheme of Proposition 3.3.3 may be employed (with a small alteration) in the half

duplex processor bound model:

 or some vertex w of the hypercube Q,, the antipodal node is just &--the unique node at
distance m.

CHAPTER 3. BROADCASTING 9 7

Proof: The first m - 1 rounds of the hypercube scheme are already half-duplex:

they need not change. In each other round, though, half the nodes of the hypercube

are sending exactly the same sub-message. Specifically, in round j, all nodes w whose

leftmost one of .i.rj(w) is in position 0 send sub-message p(min {j - m + i, b / k l - 1)).

If those nodes employ the antipodal edge to send, rather than their dimension j mod p

edge, the scheme is unchanged in effect.

The application is much the same as in the full duplex case. If the number of pro-

cessors in the complete graph is a power of two, we may employ the folded hypercube

scheme unchanged, and get

Corollary 3.3.4

For a more arbitrary number of processors, we can first use the folded hypercube

scheme to broadcast to 2L''gzpJ nodes. Then, in a single round, all other nodes can be

informed in time P + nr.

Corollary 3.3.5

3.4 Summary

We have seen several new upper bounds for the broadcast problem in cycles and

complete graphs (and, peripherally, for the full-duplex processor bound hypercube).

In the three simplest cases-the processor bound and link bound unidirectional ring,

and the full duplex link bound bidirectional ring-we have also provided matching

lower bounds.

The bounds presented for the various flavours of ring differ quite sharply in quality.

I think the upper bounds for the full duplex processor bound case are optimal, despite

the fact that a proof has been consistently and annoyingly elusive. It is possible that

the upper bound for the even half duplex ring under the link bound constraint is

CHAPTER 3. BROADCASTING

optimal as well, though I wouldn't go so far as to make that a formal conjecture.

The remaining half-duplex bounds, however, are quite soft. In addition to being

nowhere near optimal, they do not even tightly represent the transmission schemes

that motivate them.

The bounds for the complete graph are similarly variable. The upper bound in

the full duplex link bound case is quite good: of all the cases without lower bounds, it

is in my opinion the most likely to acquire a matching lower bound. The scheme for

the half duplex link bound complete graph also seems solid, though the expression of

the upper bound could use some algebraic tidying. The pair of upper bounds for the

processor bound constraint are fairly untidy, but that seems inherent in the problem.

Nonetheless, they can probably stand some improvement.

The bounds for the hypercube and folded hypercube are incidental: means to an

end, rather than an end in themselves. We do not mean to imply that these are the

only hypercube results that could be brought to bear on the complete graph: rather,

the opposite. There is likely much research in the area of hypercubes (and indeed,

other topologies) that could be beneficially applied to even our simple cases.

For a tabular summary of the bounds, see Table 5.1.

Chapter 4

Gossiping

4.1 The problem

Gossiping is a natural extension of broadcasting, in which each processor simultane-

ously broadcasts it's piece of information to all others. The vast majority of authors

that have addressed gossiping have employed a different cost metric than our linear

one. See [17],[6] and [15] for two early papers and a recent survey.

There are several flavours of the linear cost gossip problem. One might, for exam-

ple, look for the sparsest topologies that allow gossiping under some model in minimal

time [lo]. Alternatively, one could examine linear cost gossiping under other than our

.store-and-forward communication method. Fraigniaud and Peters [ll], for example,

compare store-and-forward algorithms for gossiping with circuit switched schemes.

We will concern ourselves with the problem of finding good time bounds for gossiping

in a fixed topology: the ring.

4.2 Gossiping in the ring

We will employ the same ring of p processors we have seen in previous chapters, and

attempt to find upper bounds on the time g(C,, n) for the gossiping problem where

each processor wishes to share a message of size n. In addition, and where possible,

we will construct a matching lower bound. To distinguish the six cases, we continue

CHAPTER 4. GOSSlPING 100

using the notation of Fraigniaud and Lazard [8] and (wherever applicable) employ

subscripts F and H for full and half duplex; and * and 1 for link and processor

bound, respectively.

4.2.1 The unidirectional link bound ring
+

For the unidirectional ring Cp of p processors, we will demonstrate matching upper

and lower bounds that show:

The upper bound is synchronous, and due to Saad and Schultz 1221. The gossip

scheme is divided up into rounds in which every processor sends a packet of size n

to its neighbour. During the first round, each processor sends its own message, and

in each subsequent round the processors send the information they received in the

previous round. After p - 1 rounds, each processor will have received n(p - 1) units

of information: the corpus of all other processors.

The lower bound is a bit more involved. Like in previous chapters, we consider

any scheme that gossips messages of size n from each processor to all others, and

construct a digraph of the packets.

We establish some notation:

The ring has p processors, Po,Pl ,. . . , Pp-1. Each processor Pi may send to Pi t l ,

and receives messages from Pi-1. We say that Pit1 is after Pi, and that Pi-1 is

before Pi in the ring.

Each processor Pi begins with a message Mi of size n, b(i, l),b(i, 2),. . . ,b(i, n).

Each processor Pi sends v(i) packets, X (i , l),X(i, 2),. . . ,X(i, v(i)). As before, we

denote the size of X(i, j) by IX(i, j) 1.

Packet X(i, j) takes t(X(i, j)) = /3 + IX(i, j) 1 T time to send. We extend the

function t () to paths A in the digraph: t (A) = C t (p).
PEA

CHAPTER 4. GOSSIPING 101

Each packet X(i, j) has a start time st (X(i , j)) <_ 0. We let s t (X (0 , l)) = 0 ,

possibly by renumbering the processors as appropriate.

We call two gossip schemes equivalent if there is a one to one mapping between

their packet sets that preserves start time. Equivalent schemes will thus form

an equivalence class.

We first establish that in a minimal scheme each processor may send the message

units in, for lack of a better term, relative anti-lexicographic order.

Lemma 4.2.1 Any minimal gossip scheme has an equivalent scheme in which each

processor Pi sends the message units in order b(i , l) , b (i , 2),. . . ,b(i, n) ,b(i - 1, l) ,b (i -

1,2) , . . . ,b(i - 1, n),. . . ,b(i - p + 2, n) , where the first index of each message unit is

considered modulo p.

Proof: Suppose the contrary.

Consider a minimal gossip scheme that has no equivalent that sends in relative

anti-lexicographic order. For each equivalent scheme S , let p (S , i) be the size of

the longest prefix of message units sent by Pi in relative lexicographic order, and

let p (S) = omi tpp (S , i) . Let S' be an equivalent scheme that maximizes p () , and

additionally has as few processors as possible that have the (k + l)th unit out of order,

where k = P(S'); and let Pi be a processor for which the (k + l) th unit is out of order

in S'.

Suppose this (k + l) th unit of Pi's is b(i l , j l) , and let the unit that would have

appeared in that position in relative anti-lexicographic order be b(i2 , j2). Now b (i l , j l)

will never be sent by Pi,-1, nor will b(i2, j 2) ever be sent by There will be at

most p - 2 processors that send both units, and these processors may be divided into

two disjoint ranges. Pi will be a member of such a range of processors: it is well

defined to speak of the processors before and after Pi in the range.

We alter S', by permuting the positions of b(i l , j l) and b(i z , j 2) in the packets sent

by Pi and all processors after it in the range that sends both units. The only possible

problem that could arise in the permuted scheme is that P; might not have received

b(i z , j 2) by the time it should be sent.

CHAPTER 4. GOSSIPING 102

In fact, b(i2, j2) will have been known by Pi in time. If k 5 n, then i2 = i, and

b(i2, j2) is part of Pi's original message. Otherwise, b(i2, j2) will be the (k - n + l)th

unit sent by Pi-1 in anti-lexicographic order: by our construction, we know it was

sent in time. Moreover, b(il, jl) is not the unit that belongs as the (k + l) th unit sent

by Pi; it must be at least the (k - n + 2)th or subsequent message unit sent by Pi-1;

and so if Pi has seen b(i2, j2), it must also have seen b(il, j l) . As a consequence, the

permuted scheme must be a valid sending scheme, and equivalent to Sf.

In the relative anti-lexicographic order, b(il, jl) and b(i2, j2) are both sent after

the kth unit by each processor in which they were permuted: in fact, they should be

sent after the (L+n)th unit by each processor in which they were permuted other than

Pi. Since the first k message units from each processor are sent in the correct order,

the permutation will not change the order of the first k units on any processor. In

addition, if the (k + l)th unit from a processor is sent in the correct order, it will also

not be altered by the permutation: a correct (k + l)th units cannot be either b(il, jl)

or b(i2,h).

This permuted scheme thus contradicts our construction of S'. The permuted

scheme has one fewer processor for which the (k + l)t" unit is out of order. As a result

of the contradiction, it must be the case that each gossiping scheme has an equivalent

that sends the message units in relative anti-lexicographic order.

Like in Section 2.3, we consider a minimal gossiping scheme in which the message

units are sent in order, and construct the packet content digraph from the collection of

packets, with adjacent packet edges (X(i, j), X(i, j+l)) where j < v(i) , and overlapping

packet edges (X(i, j), X(i + 1, j')) whenever X(i, j) n X(i + 1, j') # 4.
Rat her than running any strange algorithms, though, we employ a fairly pedestrian

induction to demonstrate the lower bound.

Lemma 4.2.2 In the packet content digraph of any minimal gossiping scheme that

sends the message units in relative anti-lexicographic order, for each 1 5 k 5 p - 1

and each processor Pi, there is a path Ai,k that ends at the packet X(i, j (i , k)) (the

packet sent by Pi that contains unit b(i - k + 1, n)) such that t(Ai,k) 2 k(P + nr) .

Proof: Not surprisingly, we prove the result by induction on L.

CHAPTER 4. GOSSIPING 103

The basis, where k = 1, is straightforward. Let Aiql = X(i, 1) . . . X(i, j (i , 1)). The

path AiVl must contain at least one packet, and transmits a total of n message units:

Suppose the lemma holds for some particular value of k in the following way: there

is a path Ai,k that ends at packet X(i, j (i , k)) where

Let Pi be any processor of the ring, and X(i, j (i , k)) the packet sent by Pi that

contains b(i - k + 1, n), as in the statement of the lemma. If unit b(i - k, n) is not

contained in X(i, j (i , k)), then (that is, if j (i , k + 1) # j (i , k))

The sub-path X(i, j (i , I ;) + 1) . . . X(i, j (i , k + 1)) must contain at least one packet, and

transmits sufficient message units so that

If X(i, j (i , k)) contains b(i - k, n) (that is, j (i , k) = j (i , k + I)) , then

is a reasonable choice, since b(i - k, n) E X (i - 1, j (i - 1, k)) fl X (i , j (i , k + 1)). In

addition, since IA(i, j (i , k + 1))l > n,

in this case as well.

CHAPTER 4. GOSSIPING 104

In either case, the induction hypothesis holds for value k + 1. As a consequence of

the principle of mathematical induction, the lemma must hold for 1 5 k < p - 1. 0

Theorem 4.2.1 follows as a corollary of the combination of the above lemma and

the upper bound.

Theorem 4.2.1 Under the linear cost model, (p - 1)(P + n r) time is necessary and

suficient for gossiping in the unidirectional link bound ring of p processors.

4.2.2 The unidirectional processor bound ring

We will demonstrate two separate results. For even rings:

The upper bounds are both synchronous. In the even case, we have p rounds,

the first and last of which send n units; all others send 2n. In even rounds, all even

numbered processors send; in odd rounds, the odd numbered processors send.

The odd case is only slightly more complicated. p + 1 rounds, the first and last of

which are of n units, and the rest of 2n. Processor Pi is idle in round i. And in round

i, processor Pi+l-2k receives a packet from Pi-2k for o 5 k 5 3 ((p - 3)) . All indices,

of course, modulo p. Figure 4.1 illustrates the scheme.

The lower bound for the even ring follows the pattern of the unidirectional ring

in the previous section. But instead of employing the packet content digraph, we use

the packet time digraph from Section 2.4.

First, we define the predecessor and successor operations on the set of packets.

succ (X(i, j), A) = X(io, jo)

where X(io, jo) is the packet that achieves the minimum

CHAPTER 4. GOSSIPING

Figure 4.1: Example: Gossiping messages of size 10 in C7

where X(il, jl) is the packet that achieves the maximum

We then construct the packet time digraph G.

The nodes of the digraph are

where for a given processor Pi, the vertices p(i, j) correspond to the packets

either received or sent by Pi, sorted by start time. Each packet X(i, j) is repre-

sented twice: as p(i, j,) in the guise of a sent packet, and as p (i + 1, j,) in the

guise of a received packet. Formally, we use the same mapping p : V(G) + A

from the node set of the digraph to the collection of packets.

Yet, we will tend to blur the distinction between the two, and treat a node

p(i, j) as if it were the packet it represents.

CHAPTER 4. GOSSIPING

0 The edges of G are the union of all: .

Adjacent packet edges (p(i, j) ,p(i , j + I)) , for all processors P;, and indices

15 j 5 v(i - 1) + ~ (2) .

Successor edges (p(i, j), p(i + 1, j')), where

and predecessor edges: (p(i - 1, j) , p(i, j)); and

(All processor indices, of course, are considered modulo p.)

In addition, we define two helper functions in order to more easily talk about

the packets and their context. For each vertex p(i , j) , we let fr(p(i, j)) denote the

number of units Pi has received, by the time that p(i, j) has finished transmitting,

and similarly let f,(p(i, j)) represent the number of message units that Pi has sent at

that same point. For convenience, we let

The following observation results from noting that a processor is only able to send

its own message, or units it has received.

Observation 4.2.1 For any node p in a packet time digraph f,(p) < n + fr(p) .

We again prove a technical lemma to obtain the lower bound. Note that while

this lemma demonstrates a lower bound for both even and odd rings, the odd bound

is not tight.

Lemma 4.2.3 Let G be the packet time digraph of a processor bound scheme that

gossips in minimal time. In addition, for each 1 5 k 5 p- 1 and for each processor P;,

let p(i, j (i , k)) be the vertex with smallest start time for which both fr(p(i, j (i , k))) 2
kn and f,(p(i, j (i , k))) 2 kn. There is then a path of at least k + 1 vertices and

whose last vertex is p(i, j (i , k)) that contains a total of at least f (p(i, j (i , k))) units

CHAPTER 4. GOSSIPING

Proof: As in the proof of Lemma 4.2.2, we.prove by induction on k.

The basis is again straightforward. When k = 1, and for any processor P;, let

Bijl = p(i, 1) . . . p(i, j(i , 1)). The path a;,, must contain at least two packets: one to

send, and one to receive; and there are exactly f (p(i , j(i, 1))) message units sent by

packets corresponding to vertices of the path.

Suppose the lemma holds for some particular value of k. Then, for each processor

Pi, there is a path that ends at vertex p(i, j (i , k)) of at least k vertices containing

at least f (p(i, j (i , k))) units.

Let Pi be a processor in the ring, and let p(i , j (i , k + 1)) be the vertex as defined

in the statement of the lemma.

We divide into two cases:

1. Suppose p(i , j (i , k + 1)) # p(i, j (i , k)). We let

to sa.tisfy the lemma: the ~ a t h p(i, j (i , k) + 1) . . . ~ (i , j (i , k + 1)) will necessarily

be composed of at least one packet, and contain at least f (p(i , j (i , k + 1))) -

f (p(i, j (i, k))) message units.

2. Suppose p(i, j (i , k + 1)) = p(i, j (i , k)). Then by the construction of p(i, j (i , k)),

it must be the case that either fr(p(i, j (i , k) - 1)) < kn or fs (p(i , j (i , k) - 1)) <
kn, but not both. The former cannot be true by Observation 4.2.1. As a

consequence, p(i, j (i , k)) must be sent by Pi, and contain strictly more than n

message units.

Let (~ (i - 1, jl): ~ (i , j (i , k))) be the predecessor edge leading into p(i, j (i , k)).

Vertex p(i - 1, j l) must exist, since there must be at least one packet sending

information into Pi to account for the (k + l) n units P; has received before

p(i, j(i , k)) starts being transmitted! We note by Observation 4.2.1 that

and thus

C H A P T E R 4. GOSSIPING

This implies both

and

Vertex p(i - 1, jl) is thus a candidate for y(i - 1, j(i - 1, k)), and can certainly

occur no earlier in time. We let

The path Z?;-l,ky(i-l, j(i-1, k)+l) . . . ~ (i - 1 , jl) is thus composed of at least k+

1 vertices (more if y (i-1, jl) # y(i-1, j(i-1, k))) containing no less than f (y(i-

1, jl)) units. Appending y(i , j (i , k + 1)) adds a packet and Ip(y(i, j (i , k + 1))) 1
units, which ensures that Bi,k+l contains more than f (y(i, j (i , k + 1))) message

units.

In both cases, the induction hypothesis is seen to be true. The lemma must hold,

for all processors Pi and 1 < k < p - 1

The following corollary restates the result of the lemma in a more usable form.

Corollary 4.2.1 In a unidirectional processor bound ring of p processors at least

pp + 2(p - 1)nr time is required to gossip.

Proof: The lemma provides that each final packet sent by any processor is part of

a path that is composed of at least p packets which contain a total of no less than

2(p - l) n units. As a consequence, these final packets must finish transmitting no

sooner than time p/3 + 2(p - 1) n ~ .

Theorem 4.2.2 thus follows as a corollary of the lemma and the upper bound.

Theorem 4.2.2 For even integers p, and under the linear cost model, p,B + 2(p - 1) ~

time is necessary and suficient for gossiping in the unidirectional processor bound

ring of p processors.

CHAPTER 4. GOSSlPlNG 109

We can tighten the bound for the odd case by a small post-analysis of the proof of

Lemma 4.2.3. We employ the notion of "bandwidth dominance" [14] in the context

of Lemma 4.2.3.

Each processor must send (p - l) n units. Thus, a total of p(p - l) n units must

be sent, if all packets in the scheme are totaled. When p is odd, at most (p - 1) / 2

processors can be sending at the same time: thus, all paths of p packets (as found by

the lemma) will require at least pP + 2pnr time to complete. In addition, one of these

paths must end "early", since at most p- 1 of the paths can be active at the end of the

gossiping scheme. This path may therefore be augmented by the size of the smallest

"final" packet. This one augmented path will thus require at least (p + l) P + 2pnr

time to complete.

Toget her with the upper bound, this demonstrates Theorem 4.2.3.

Theorem 4.2.3 For odd integers p, and under the linear cost model, (p t 1) P $ 2 p r

time is necessary and suficient for gossiping in the unidirectional processor bound

ring of p processors.

4.2.3 The full duplex link bound ring

Since we can pretend that a bidirectional link bound ring is two independent unidi-

rectional rings, we could halve each message and send in the two directions. This

provides an immediate upper bound of:

In fact, a better bound is possible. We will show

The upper bound follows from Fraigniaud and Lazard [8]. From the point of view

of a single processor, the scheme essentially halves the ring by sending the entire

message in both directions rather than halving the message, and sending one half

in each direction. Each message Mi thus only needs to be transferred over at most

b/2J links. Moreover, when p is even, Pplz+; need not receive M; in total from both

CHAPTER 4. GOSSIPING

Figure 4.2: Example: Gossiping messages of size 7 in C6

directions: as a consequence the last round need only be of size b/2l, rather than n.

Figure 4.2 illustrates the scheme.

Consider a gossip scheme S that sends messages of size n from each processor that

takes minimum time. The two directions are essentially independent: no transfer

in one direction will ever affect a transfer in the other. As a consequence, we can

examine the two unidirectional transfers separately.

Each processor Pi must receive a total of n (p - 1) units of information from its

neighbours. It must thus receive at least 1; (n (p - I))] message units from one of the

neighbours. We build an induction argument based on a version of the packet time

digraph to demonstrate that each processor must receive these 1; (n (p - I))] units in

at least [p/2J packets.

For the link bound case, we do not need to have two nodes corresponding to each

packet of the transmission. We construct a packet time digraph on both the set of

packets Af = {Xl (i , j) 10 5 i < p and 1 < j < v j (i)) sent in the forward direction

(P; to P(i+l)modp) and the set of packets Ab sent in the backward direction (P; to

P(i-1)rnodp).

Our forward packet time digraph G j is thus defined:

CHAPTER 4. GOSSIPING

The vertices of Gj are the set of packets AJ.

For each packet X(i, j) we define: an Adjacent packet edge: (X(i, j) , X(i, j + ' I)) ,

if j < v j (i) ; and a Predecessor edge: (X(i - 1 , j) , X(i, j)) , if j > 1, where j is the

maximal index so that st(X(i - 1 , j)) + t(X(i - 1, j)) < st(X(i, j)) .

The edge set of Gj is simply the collection of all adjacent packet and predecessor

edges for all packets.

The backward digraph is defined similarly.

For each processor Pi, we let j j (i , k) denote the index of the packet Xj(i, j j (i , k))
th

that contains the 1: (p - 1 - 2 ([p /2J - k))] message unit Pi sends in the forward

direction. We define jb (i , k) similarly, as well.

The following lemma provides the lower bound as a corollary.

Lemma 4.2.4 In the packet time digraph G f (Gb) for any minimal gossiping scheme

under the full duplex link bound constraint, for each 1 < k < lp/2J and each processor

Pi for which j f (i , k) (j b (i , k)) is defined, there is a path in G j (Gb) that ends at

the packet X r (i , j r (i , k)) (Xb(i, jb(i , k))) such that

Proof : We prove the lemma by induction on k . We will speak of the digraph G j ,

since the proof for the backward graph only requires textual substitution.

For k = 1, The value 15 (p - 1 - 2 (l p / 2] - k))] is at least [n/2]. Each processor

P; will have had to have received at least one packet in order to have received even

one message unit. The basis holds.

Suppose the lemma holds for some particular value of k .

Let Pi be any processor in the ring for which j j (i , k + 1) is defined. In or-

der to send XJ(i, j (i , k + 1)) on to processor Pi will have to have received

1; (P - 1 - 2 (lp/2J - k))] message units from Pi-1.

C H A P T E R 4. GOSSlPlNG 112

As a consequence, if X(i - 1, j) is the predecessor of X (i, j j (i , k + I)) , then j >
j(i - 1, k). So

satisfies the lemma.

The induction hypothesis holds for value k + 1. The lemma thus holds for all

appropriate values of k, by the principle of mathematical induction.

We've established that for every processor Pi that sends as many as 1; (n (p - I))]

message units to a neighbour, those units must have been packaged in at least b /2J

packets. Theorem 4.2.4 follows as a corollary.

Theorem 4.2.4 Under the linear cost model, b/2J ,D + (f n (p - 1)l T) time is nec-

essary and suficient for gossiping in the bidirectional link bound ring of p processors.

4.2.4 The full duplex processor bound ring

Fraigniaud and Lazard [s] provide a bound of

for odd p.

We can certainly halve the message, and use two simultaneous schemes for the

unidirectional ring, where the "backward" scheme merely piggy-backs in the unused

reverse capacity of the packet transfers of the "forward" scheme. In the case of the

even ring, at least:

gFl(Cp,n) 5 PP + 2 (~ - 1) fn/21 T.

But in the case of the odd ring, things are not so clear. The reverse scheme will not

have finished at the same time as the forward one. The "rotating idle processor"

CHAPTER 4. GOSSIPING

Figure 4.3: Example: Gossiping messages of size 10 in C8

paradigm interferes with the progress of the scheme. Regardless, these schemes are

not as good as the Fraigniaud and Lazard bounds.

For the even ring, the scheme that meets the bound in Fraigniaud and Lazard is

due to Saad and Schultz [22], and is as follows:

0 The scheme is divided into p/2 rounds, numbered 0 to p/2 - 1

0 In even rounds, Pi communicates with Pi-1, while in odd rounds, P; and Pi+1

exchange information.

0 In each round, a processor sends every unit of information it knows that it has

never sent before. Thus, round 1 sends packets of length n, while every other

round sends packets of length 2n.

Figure 4.3 illustrates the scheme.

For the odd ring Cp, a good scheme that takes time ([p/2] + 1)P + (p + 1)nr is:

0 The scheme is divided into [p / 2] + 1 rounds, numbered 0 to [p/21. Round 0 and

[p/21 send packets of length n, while the other rounds send packets of length

2n. We'll casually refer to the length of a round, and mean this size.

0 In round i, processor Pimodp is idle. And thus, for 1 5 j 5 rp/21, processor

P(i+2 j-l)modp communicates with P(;+Sj)modp.

CHAPTER 4. GOSSlPING

Figure 4.4: Example: Gossiping messages of size 10 in C7

A processor Pi keeps two queues for the information it must send: one for each

direction. Initially, both queues contain Mi. Information received is pushed

onto the end of the queue. And in each round, a processor sends either the

entire contents of the queue for the relevant direction, or the first n or 2n

(corresponding to the length of the round) units in the queue, whichever is

smaller.

Figure 4.4 illu~t~rates the scheme.

Observation 4.2.2

We will provide what is a corresponding lower bound in the even case, and not a

particularly good bound in the odd case.

Suppose we have a minimal gossip scheme for the full duplex processor bound ring.

We need yet another variant on our digraph motif. We note that in a processor

bound transmission, there is a natural twinning between packets in the forward and

backward direction: when two packets are being sent along the same link at the same

time. (In cases where a packet has no such twin, we create one by generating a packet

CHAPTER 4. GOSSIPING 115

of zero length as a place holder.) We label these pairs transfers, and let y (i , j) denote

the jth transfer (ordered by start time) over the link between Pi and P(i+l)modp.
We define, for a transfer y(i, j), some of the same collection of functions we have

for packets. In particular:

Size: Ir(i, j) 1 denotes the length of the larger of the two packets that corresponds

to the transfer.

Start time: st(y (i, j)) denotes the minimum of the two start times of the pair

of corresponding packets. In fact, there's no reason to expect that they'd be

different.

We let X1(i,j) denote the jth packet that Pi sends (counting both directions) after

adding the packets of zero length. Each XI thus corresponds to a single transfer y, and

each y contains two X's: exactly the relationship that p and X had in the construction

of the packet time digraph.

We thus construct the transfer time digra.ph G on the vertex set

{At(;, j) 1 0 5 i < p and 1 < j < vl(i)) .

For each vertex X1(i, j) we create three edges:

1. The adjacent transfer edge: (X1(i, j), X1(i, j + I)) , where j < vl(i).

2. The forward predecessor edge: (X1(i + 1, jf), X1(i, j)), where jf is as large as

possible given st(X1(i + l , j f)) < st(X1(i, j))

3. The backward predecessor edge: (X1(i - 1, jb), X1(i, j)) , where jb is as large as

possible given st(X1(i - l,jb)) < st(Xr(i, j))

The edge set of G is simply the collection of adjacent transfer edge, forward predecessor

edge and ba,ckward predecessor edge for all vertices.

We still want to be able to speak of the total number of message units Pi has

sent and received. Following the example of previous time digraphs, we let fS(Xt(i, j))

(b,(X1(i, j))) denote the total number of message units that P; has sent in the forward

C H A P T E R 4. GOSSIPING 116

(backward) direction, up to and including . k (i , j), and let fr(Xf(i, j)) (br(Xf(i, j)))

denote the total number of units that Pi has received in the forward (backward)

direction, up to and including the twin of Xf(i, j) . For convenience, we let f (Xf(i, j)) =

f s (Ar (i , j)) + fr (Af(;, j)) and b(Xr(i, j)) = bs(Xr(i, j)) + br(Xr(i, j)) .

For each processor Pi, we let j j (i , k) denote the minimal index for which both

fr (Xr(i, jJ(i , k))) > kn and fs(Xf(i, j,(i, k))) 2 kn, and let jb(i, k) similarly denote the

minimal index for which both br(Xf(i, jb(i, k))) > kn and bs(Xr(i, jb(i, k))) 2 kn.

Lemma 4.2.5 In the transfer time digraph G of a minimal gossiping scheme for

C, under the full duplex processor bound constraint, for each 1 5 k < r p / 2 1 : for

each processor Pi for which j j (i , k) is defined, there is a path in G that ends at

X1(i, j f (i , k)) that contains at least k + 1 packets; and for each processor P;I for which

jb(if, k) is defined, there is a path in G that ends at X f (i , jb(i , k)) that contains at

least k + 1 packets.

Proof: The forward and backward cases are entirely symmetric. Without loss of

generality, we only prove the forward one. The proof follows that of Lemma 4.2.3.

The basis, when k = 1 is straightforward. In order for both fs(X1(i, j f (i , 1))) > 0

and fr(Xr(i, j j(i , 1))) > 0, processor Pi must have been involved in two transfers.

A+ = Xf(i, 1) . . . Xr(i, jr(i, 1)) satisfies the lemma.

Suppose the lemma holds true for some specific value k.

Let Pi be any processor for which jj(i , k + 1) is defined.

If jj(i , k + 1) > j j (i , k), then

Ai,k+l = d;,kAf(i, j j(i , k) + 1) . . . Af (i , j j(i , k + 1))

satisfies the lemma.

Suppose, then, that j f (i , k+ l) = j j (i , k). By the construction of jr(i , k+1), it must

be the case that either fr(Xr(i, j j (i , k + 1) - 1)) < kn while f,(Xf(i, j j (i , k + 1) - 1)) 2
(k + l) n or fs(Xf(i, j j (i , k + 1) - 1)) < kn while fr(Xf(i, jJ(i , k + 1) - 1)) 2 (k + 1)n.

Since for any packet XI, f s (X f) < - f r (X f) + n, the former case cannot occur. As a

consequence, Xf(i, j j (i , k + 1)) must be sent by Pi to Pi+1.

CHAPTER 4. GOSSIPING 117

Let (Xt(i - 1, j l) , X1(i, j j(i , k + 1))) be the forward predecessor edge leading into

Xt(i, j j(i , k+ l)) . Node Xt(i-1, jl) must exist, since fr(Xt(i, j j (i , k+ l) -1)) > (k+l)n .

Now, fs(Xt(i - 1, jl)) = fr(Xt(i, j j (i , k + 1) - 1)) 2 (k + 1)n, and thus fr(Xt(i -

1, jl)) 2 kn. As a consequence, jj(i - 1, k) 5 jl. And thus,

satisfies the lemma.

In either case, the induction hypothesis is verified. The lemma must hold for all

processors Pi, and appropriate values of k.

The lower bounds are not quite immediate. We need to demonstrate that there

is a processor Pi that either both sends at least ([p/21 - 1) n message units in the

forward direction and receives at least ([p/21 - 1) n units in the forward direction, or

the equivalent statement with "backward" substituted for "forward".

In an attempt to simplify (or at least, compact) the notation, let fr(i) denote

the total number of message units fr(X1(i, vt(i))) processor Pi receives in the forward

direction. Let fs(i), br(i), and b,(i) be defined similarly. Then we need to demonstrate

a processor for which

This is equivalent to Lemma 4.2.6.

Lemma 4.2.6 In any gossip scheme in a bidirectional ring C,, for all pairs of pro-

cessors Pi and P(i+l)modp either

br(i) > [(P - 2)n/21 and b,((i + 1) mod p) > [(p - 2)n/21 (4.2)

CHAPTER 4. GOSSIPING 118

hold. In addition, there exists a pair of proctssors P;I and P(i~+l)modp for which either

f r (i t) 2 (T ~ / 2 l - 1) n and f r ((i t + 1) mod p) 2 ([p/21 - 1) n (4.3)

0 I-

br(i l) (-) n and br((il + 1) mod p) 2 (fp/21 - 1) n (4.4)

Proof: Since each processor in a gossip scheme must receive (p - 1) n units of infor-

mation, br(i) + fr (i) = (p - l) n for all processors Pi.

Regardless of the parity of p, we can color the processors: Pi black if f r (i) <
If ((p - 2) n)] ; Pi white if br(i) < ((p - 2)n)] ; and P; grey otherwise. Two adjacent

processors both not colored white satisfy 4.2; and two adjacent processors both not

colored black satisfy 4.1. We cannot have two adjacent processors colored respectively

black and white: if P; is black and Pitl white then:

A similar contradiction arises when P; is white and Pi+1 black. Every adjacent pair

of processors must thus satisfy either 4.1 or 4.2.

If p is even, then [p/21 - 1 = (p - 2) /2 and the lemma holds.

Suppose p is odd, and thus [p/21 - 1 = (p - 1) /2 . We again color the processors:

Pi white if f r (i) 2 (p - l) n / 2 , and Pi black otherwise-when b,(i) 2 (p - l) n / 2 . We

must have two adjacent processors colored with the same color: if white, then 4.3

holds; if black then 4.4.

The lemma is thus established for any gossip scheme in C,.

Theorem 4.2.5 follows as a corollary of Lemma 4.2.6 and Lemma 4.2.5.

Theorem 4.2.5 For even integers p, and under the linear cost model, EP + (p - 1) n r

time is necessary and suficient for gossiping in the bidirectional processor bound ring

of p processors.

CHAPTER 4. GOSSIPING

We also obtain a lower bound for the odd case as a corollary:

We do not believe this bound is optimal; rather, we expect it will be improved in

future.

4.2.5 The half duplex bidirectional ring

The schemes for the unidirectional ring apply without change. And while we could

employ the appropriate full duplex gossip schemes by replacing full duplex packets

with a pair of half duplex ones, the bounds thus acquired are no better than simply

employing the unidirectional bounds. We thus have the following upper bounds.

Observation 4.2.4

While we have no corresponding lower bounds, we can provide one last upper

bound for the even ring C,:

The gossip scheme is divided into p/2 $ 1 phases numbered from 0 to p/2.

Phase 0 sends packets of length n; phase p/2 sends packets of length rn/2]

for processors with odd index, and ln/2J for processors with even index; phase

p/2-1 sends packets of length r3n/21 for processors with even index, and [3n/2J

for processors with odd index; while the remainder send packets of length 2n.

When we refer to the length of a phase, we mean the length of the packets sent

in that phase.

The last two phases are not quite disjoint. Processors thus make the decision of

when to advance to the next phase independent of external synchronization.

C H A P T E R 4. GOSSIPING

Figure 4.5: Example: Gossiping messages of size 7 in Cs

In phase i, processors P(i+2j)modp (for 0 < j < p / 2) receive from their neighbours,

while the other processors send to both neighbours.

Each processor Pi considers the collection of all messages totally ordered: In the

forward direction

while within each message b(j, n) 4 b(j , n - 1) 4 . . . 4 b(j , 1) . In the backward

direct ion,

*Mi 4 M(i+l)modp 4 M(i+2)modp 4 . . - 4 M(i- l)modp

while within each message b (j j 1) 4 b(j l , 2) 4 . . . 4 b(jl, n).

If a processor P, is sending in a given phase of length !, it sends to both its

neighbours. In each direction, it sends the first P bits in the respective total

order for that direction that have not already been sent.

Figure 4.5 illustrates the scheme.

CHAPTER 4. GOSSlPING

4.3 Summary

We have examined the gossip problem for six variants of the cycle: unidirectional, full

duplex or half duplex, and link bound or processor bound. Matching lower and upper

bounds have been found for the two unidirectional rings, the link bound full duplex

ring, as well as the full duplex even ring under the processor bound constraint. We

have presented upper bounds for the remaining cases.

The upper bound for the full duplex odd ring under the processor bound constraint

is a significant improvement over the existing best upper bound. It is entirely possible

that a matching lower bound could be constructed. As it is, we present a lower bound,

but not a good one: the lower bound is considerably softer than the upper.

The half duplex bounds are (with the exception of a not-quite-synchronous scheme

for the full duplex even ring under the link bound constraint) merely the application of

the unidirectional ring bounds to the half duplex ring. Yet while these unidirectional

schemes give no poorer results than doubling the packets of the full duplex schemes,

it is likely that improvement can be made.

For a tabular summary of the bounds, see Table 5.1.

Chapter 5

Conclusion

5.1 The results

The three preceding chapters have successively examined problems of sending a mes-

sage between two processors, broadcasting a message from a single processor to all its

peers, and gossiping messages from every processor to all other processors. In each of

the three chapters, we present both lower and upper bounds. All of the lower bounds

we present are new, while some of the upper bounds (typically those that we can

match with a lower bound) are from the literature.

In one respect, the lower bounds are particularly significant. They are the first

instances of exact bounds under the linear cost model for either broadcasting or

gossiping, and after 191 and [lo] the third instance of matching lower and upper bounds

under the linear cost model for any communication problem.

In another respect, the lower bounds are not particularly interesting. It was well

known that Saad and Schultz' pipelined schemes (at least for sending) were optimal

within a multiplicative factor of two. Simply, the lower bounds themselves are nowhere

near as important as the fact of their proof.

Our primary results, then, are the proofs of Theorems 2.3.1 and 2.4.1 in Chapter 2.

These prove the matching bounds for the sending problems. In exact terms:

CHAPTER 5. CONCLUSION

Sl (n ,m) = min ((2 + m. - 2) ,O + ((m - 2) k + 2n) T
lsksn

and in closed form approximations:

and
2

(J(m-2)pOp+~) 5 <l(n,m)

Secondary results are the bounds for the broadcasting and gossiping problems.

These are derivative of the sending bounds in two ways. First, the upper bounds,

particularly for broadcasting, employ the optimal time Tx (n, m, k) to pipeline n bits

over m links under model X in packets of size k-a concept designed to match the

optimal sending bound for some value of Ic. Second, the proofs of the lower bounds for

broadcasting and gossiping make extensive use of the mechanics behind the sending

proofs.

Table 5.1 summarizes the contributions we have made to the three problems con-

sidered.

I Broadcast Bounds Gossip Bounds
Model
F *

F 1

Table 5.1: Summary of Bounds

H*
Hl

Entries in Table 5.1 refer, by default, to the best upper bound for the problem.

Gp c 2 m C,m+l 2 IGm+l
[16] 3.2.1 3.2.1 3.3.1 3.3.1
P2.3 t3.2.1 13.2.1
2.4 3.2.2 3.2.2 3.3.4 [8],3.3.4
12.4

They are either a reference to a section of this work, or a citation. A plus by a citation

ep C2m C2m+1
[22] [8] 181

14.2.1 14.2.3 e4.2.3
4.2.2 [8] 4.2.4
14.2.2 14.2.4

(r F*) 3.2.3 [22]+ 3.3.2 3.3.2
(= F1) 3.2.3 [22]+ 3.3.5 3.3.5

indicates some small enhancement to the bound cited on our part. An l prior to a

(G F*) 4.2.5 [22]
(r F1) 4.2.5 4.2.5

CHAPTER 5. CONCLUSION 124

reference indicates a lower bound that matches the corresponding upper bound in the

same cell of the table.

To attempt to ameliorate the difficulty in getting an intuitive feel for the bounds we

have produced, we present the following tables of timings. We fix the parameters P =

272ps and 7- = 0.4ps per byte: values that are representative of the Intel iPSC/860 [5] .

Entries in Table 5.2 and Table 5.3 represent the times required to broadcast messages

of 1023 bytes and 32767 bytes in the given topologies, while the entries of Table 5.4

represent the times required to gossip messages of the same sizes. If a cell contains

an entry of the form a -t b, the first value (a) represents the time that results from

the best previously published bound, while the second value (b) represents the result

of applying a bound in this work. The rest of the entries represent times that result

from the bounds in the literature.

Table 5.2: Broadcast times for C,, in ps , given P = 272ps and r = 0.4ps/byte.

Model
F*

F 1

H*

Table 5.3: Broadcast times for Ii,, in ps, given P = 272ps and r = 0.4ps/byte.

Bytes
1023

32767
1023

32767
1023

32767

Model
F*

610 G o c9

4492.4 3743.8 -+ 2246.4 3369.4 t 2041.6
25967.6 16284.8 -+ 12984.0 15524.4 t 12504.0

5244.0 4492.4 -+ 2858.8 7861.8 -+ 2858.8
42448.4 25967.6 t 21748.4 41656.4 t 23044.8

4492.4 3267.2 2383.6
25967.6 22914.8 -+ 20390.4 20464.0

Bytes
1023

I(lo r i g

635.2 -+ 626.4 646.4 -+ 635.2

CHAPTER 5. CONCLUSION

Table 5.4: Gossip times for C,, in ps, given P = 272ps and r = 0.4ps/byte.

Model
F *

There are three additional minor results buried in the text that are not repre-

sented in the table. First, matching lower and upper bounds for the problem of

sending a message in the bidirectional ring-Observation 2.5.1. Second, an improved

upper bound for broadcasting in the hypercube under the full duplex processor bound

constraint-Proposition 3.3.3. Last, an upper bound for broadcasting in the folded

hypercube under the half duplex processor bound constraint-Proposition 3.3.4.

5.2 Future directions

Bytes
1023

Where does one go from here? The following avenues await:

60 & G o c9

6130.8 5449.6 3473.6 2724.8

0 The lower bounds presented in Chapter 4 for the various flavours of the gossiping

problem follow a common thread: one constructs a digraph, then applies an ugly

technical lemma that proves a lower bound. I have crafted a different lemma

for each case, yet they are all remarkably similar. A common lemma that would

work for all cases would be a big improvement.

0 In Table 5.1, there are many lower bounds that appear feasible if sufficient ef-

fort were expended. The lower bound for the (H*, Cz,) gossiping cell looks

quite straightforward, for example. On the other hand, the (F l , Cz,) broad-

casting cell has the appearance of tractability, but has resisted more than two

(admittedly part-time) years of my best efforts.

C H A P T E R 5. CONCLUSION 126

0 One might look for lower bounds on .gossiping in the complete graph under the

linear cost model. Or lower bounds for broadcasting in topologies other than

the ring or complete graph.

0 One might equally look to other communications modes: circuit switched trans-

missions, for example.

Finally, an examination of the DMA-bound constraints F k and Hk might prove

interesting.

Appendix A

Extra Algebra

These appendices we not really intended for casual reading. The four sections provide

explicit derivations of the closed forms employed in the text.

A . l The upper bound of Saad and Schultz

Saad and Schultz [22] provide an upper bound on the problem of sending n bits over

m links of

C ' (n , m) = m i n (p + m - 1) l<p<n

where p is the number of packets into which the message has been divided. Ignoring

the "ceiling" function gives

Replacing the integral variable p

min (p + m - 1) (,D+ y) .
llpln

with a continuous x, and differentiating:

1) (P + ;)) = P -
(rn - I) nr

x2

The continuous version of the function, then, is minimized when

APPENDIX A. EXTRA ALGEBRA

which gives:

This value is a lower bound on Saad and Schultz' upper bound. As we will see in the

next section, it is also a lower bound to the sending problem.

To achieve an upper bound, the ceiling function can be replaced:

Again replacing the integral variable p with a continuous x, and differentiating:

The continuous version of the function is minimized when

The discrete version, then, will be no greater than when either

APPENDIX A. EXTRA ALGEBRA 129

One could, in fact, argue that one of these values, 1, or n will be minimum: that,

won't be necessary for our purposes. In particular, we have U(n, m)

As m and n become large as compared to /3 and T, this value becomes the asymptotic

bound

A.2 Bounds for sending in the path

A.2.1 The link bound path

From Theorem 2.3.1, our upper bound is

s*(n , m) = {([:I + m - l) P + ((m - l) k + n) r

Removing the "ceiling" gives:

APPENDIX A. EXTRA ALGEBRA

Replacing k with a continuous variable x, and differentiating:

The continuous function, then, is minimized when

and as a result, the discrete version will not be larger than when

Thus,

In a similar manner, we can deal with the lower bound:

and we can certainly replace k with a continuous value:

S.(n,m) 2 rnin ((2 + m - 1) /3 + ((m - 1) x + n) T
l < x < n x

Taking the derivative of this continuous function:

APPENDIX A. EXTRA ALGEBRA

we can see that the minimum occurs when

We therefore have

In closed form, then,

A.2.2 The processor bound path

From Theorem 2.4.1 the upper bound for this processor bound case is:

Sl(n,m) = min p + ((m - 2) k + 2 n) r
l s k s n

Removing the ceiling function:

Substituting a continuous variable x, and differentiating:

APPENDIX A. EXTRA ALGEBRA

The continuous function is minimized when

so the discrete version is certainly no larger than when

Therefore, Sl (n, m)

We can deal with the lower bound similarly:

2n
Sl(n ,m) 2 l<k<n min {(T + m - 2) p + ((m - 2) k + 2 n) r

Again, we can replace k with a continuous variable without invalidating the inequality.

If we then differentiate:

The minimum occurs when

x = p-. m - 2) r

Substituting back into the continuous function:

APPENDIX A. EXTRA ALGEBRA

So in closed form,

A.3 Bounds for sending in the ring

A.3.1 The link bound ring

The bound here is:

We're specifically interested in the lower bound, so:

1 s*(cP, n, m) 2 min {- (%(no, m) + S*(n - no,P - m))) .
l<no<n 2

We can certainly replace invocations of the function S,(n, m) with the closed form

lower bound in this context. We let no become continuous, and differentiate:

The minimum occurs when

APPENDIX A. EXTRA ALGEBRA

or, more usefully,

Substituting this back into the continuous lower bound gives S. (C,, n, m)

The upper bound is nowhere near as tight:

We can again replace invocations of the function S.(n, m); this time with the closed

form upper bound. We let no become continuous, and differentiate:

The minimum again occurs when

APPENDIX A. EXTRA ALGEBRA

Substituting this back into the continuous lower bound gives S,(C,, n, m)

Again in closed form,

S,(C,,n,m) = rnin {max{S,(no,m),S-(n -no,p--m))}
l<no<n

< (J = + ~ ~) ~ + W + P T

Bibliography

[I] Analog Devices, Inc. ADSP-2106: SHARC User's Manual. Analog Devices, Inc.,

Norwood, MA, 1995.

[2] J.-C. Bermond and P. Fraigniaud. Broadcasting and gossiping in de Bruijn net-

works. SIAM Journal of Computing, 23:212-225, 1994.

[3] J.-C. Bermond, P. Fraigniaud, a.nd J.G. Peters. Antepenultimate broadcasting.

Networks, 26:125-137, 1995.

[4) D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis. Op-

timal communication algorithms for hypercubes. Journal of Parallel and Dis-

tributed Computing, 11:263-275, 1991.

[5] H. Charles and P. Fraigniaud. Scheduling a scattering-gathering sequence on

hypercubes. Parallel Processing Letters, 3, 1993.

[6] R.C. Entringer and P.J. Slater. Gossips and telegraphs. Journal of the Franklin

Institute, 307(6):353-360, 1979.

[7] P. Fraigniaud. Communications intensives dans les architectures ci me'moire dis-

tribue'e et algorithmes paralldes pour la recherche de racines de polyn6mes. PhD

thesis, Ecole Normale Supbrieure de Lyon, December 1990.

[8] P. Fraigniaud and E. Lazard. Methods and problems of communication in usual

networks. Discrete Applied Math., 53:79-133, 1994.

BIBLIOGRAPHY 137

[9] P. Fraigniaud, S. Miguet, and Y. Robert. Scattering on a ring of processors.

Parallel Computing, 13:377-383, 1990.

[lo] P. Fraigniaud and J.G. Peters. Minimum linear gossip graphs and maximal linear

(A, k)-gossip graphs. Technical Report 94-06, Simon Fraser University, Oct 1994.

[ll] P. Fraigniaud and J.G. Peters. Structured communication in torus networks. In

28th Annual Hawaii International Conference on System Science, pages 584-593,

January 1995.

[12] L. Gargano, A.L. Liestman, J.G. Peters, and D. Richards. Reliable broadcasting.

Discrete Applied Math, 53:135-148, 1994.

[13] S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman. A survey of gossiping

and broadcasting in communication networks. Networks, 18:319-349, 1988.

[14] C.-T. Ho. Optimal communication primitives and graph embeddings on hyper-

cubes. PhD thesis, Yale University, New Haven, CT, 1990.

[15] J . HromkoviE, R. Klasing, B. Monien, and R. Peine. Dissemination of information

in interconnection networks (broadcasting & gossiping). In F. Hsu and D.-2. Du,

editors, Combinatorial Network Theory. Science Press, AMS, 1993. To appear.

[16] S.L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized commu-

nication in hypercubes. IEEE Transactions on Computers, 38:1249-1268, 1989.

[17] W. Knodel. New gossips and telephones. Discrete Math, 13, 1975.

[18] A.L. Liestman and J.G. Peters. Broadcast networks of bounded degree. SIAM

Journal of Discrete Math, 1:531-540, 1988.

[19] A.L. Liestman and J .G. Peters. Minimum broadcast digraphs. Discrete Applied

Math, 37/38:401-419, 1992.

[20] D.B. Peters and J.G. Peters. Bounded depth broadcasting. Discrete Applied

Math, 1995. To appear.

BIBLIOGRAPHY 138

[21] J.G. Peters and 14. Syska. Circuit-switched broadcasting in torus networks. IEEE

Transactions on Parallel and Distributed Systems, 1995. To appear.

1221 Y. Saad and M.H. Schultz. Data communication in parallel architectures. Parallel

Computing, 11:131-150, 1989.

[23] Q. Stout and B. Wagar. Intensive hypercube communication, prearranged com-

munication in link-bound machines. Journal of Parallel and Distributed Com-

puting, 10:167-181, 1990.

