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ABSTRACT 

This thesis investigates mathematical applications of conic sections to problem 

solving from the time they were invented in 350 B.C. to the 13th century A.D. We 

begm with the classic problems of the ancient Greek geometrical tradition, then, we 

explore other problems, which arose through the course of the development of the 

theory of conic sections, that would also require the use of conic sections. In the 

second part, we present the methods of Islamic geometers in solving these same 

problems and compare their methods to those of the Greek geometers. Afterwards, 

we discuss some new problems solved by Islamic geometers, some of which they 

were able to translate into cubic equations. This will lead us to consider the 

important part conic sections played in the development of the theory of cubic 

equations. 
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The Ancient Greek Tradition 



The evolution of Greek geometry was enormously influenced by efforts within the ancient 

tradition of problem solving. Researches in geometry from the time of Hippocrates of Chios in 

the 5th century B.C. spawned interest in problems of higher geometry, that is to say, the 

quadrature of the circle, the cube duplication and the construction of regular polygons. These 

problems, in turn, required the introduction of new geometrical methods, one of which, the use 

of conic sections, proved to be indispensable for solving the problems of the cube duplication 

and the angle trisection. While various geometers applied this technique, and discovered different 

solutions, the theory of conic sections slowly took shape. By the late 2nd century B.C., 

Apollonius had composed a thorough exposition of the theory of conics with the expressed 

purpose1 of abetting the efforts of geometric problem solving. Indeed, many other problems 

arose, both in Hellenistic times and later in the Islamic world, whose solutions relied on the 

application of conic sections2. 

The ancient Greeks had a special classification scheme for geometrical problems. Pappus, 

who flourished at the beginning of the 4th century A.D., remarks in his Collection that the 

ancients divided problems into three classes: 'plane', 'solid', and 'curvilinear'. 'Plane' problems 

could be solved by means of ruler and compass; 'solid', by means of one or more sections of the 

cone but not by 'plane' methods; 'curvilinear', by means of special curves, but not by 'plane' or 

'solid' methods3. He notes that both the cube duplication and the angle trisection fall within the 

'solid' class, and that this posed problems for researchers, who were not able to construct conics 

in the plane. However, they did attack these problems with a host of different techniques4 

'This intent is expressed in the prefaces to several books of the Conics. In particular, in the 
preface to book IV. See Ver Eecke, 1923, p. 282. 

'Anong them were applications to the problem of instruments that cause burning, such as 
parabolic mirrors, but these and similar 'applied' problems lie outside the scope of this thesis. 

3 ~ h i s  classification can be found in two passages preliminary to separate discussions, the one 
devoted to the cube duplication: Collection 111, 1, the other to the angle trisection: Collection IV, 1. 

'we shall provide examples of these methods in the sections dicussing the solutions of the cube 
duplication and the angle trisection. 
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including the intersection of solids, the construction of special curves, and the use of mechanical 

motions. Even after they succeeded in finding solutions by means of conics, 3rd century 

geometers continued to find ingenious mechanical procedures. Nevertheless, Pappus records that 

the use of conic sections came to be seen as the most appropriate approach to solving 'solid' 

problems5. 

 his division of problems and criterion for the choice of construction seems to have emerged in 
large part due to Pappus. Earlier commentators such as Proclus and Eutocius did not follow this scheme. 



History of Conic Sections 

Conic sections have been studied since the time of Menaechmus (mid fourth century 

B.C.) who first used them for the cube duplication, but our knowledge of the early stages of their 

study, including their discovery, is full of lacunae. In his Collection, Pappus refers to the work of 

Aristaeus (ca. 300 B.C.) and states that Euclid wrote four books of conics. There are several 

references by Archimedes to theorems proved 'in the elements of conics', though he says nothing 

of their authorship. Archimedes was probably born in 287 B.C. in Syracuse6, and spent a 

considerable time in Alexandria where he may have worked with Euclid's successors. It is largely 

through his works7 that we can determine the status of the theory of conics before Apollonius' 

treatise became the standard work on conics. This treatise, Conics, marked a big step in the 

development of the theory of conics for it initiated a conceptual change and presented a 

comprehensive rigorous treatment of conic sections. We are able, to some degree, to trace the 

evolution of the theory of conics by investigating the methods and constructions used by the 

ancient geometers to solve geometrical problems. 

Before delving into a study of the solutions of these problems, we will present a brief 

overview of the theory of conics both before and after Apollonius. The pre-Apollonian stage is 

characterized first and foremost by the method of generation of the conic sections. The three 

sections are obtained by cutting a right circular cone by a plane at right angles to a generator. If 

the cone is right-angled this produces a parabola, if obtuse-angled a hyperbola, if acute angled 

an ellipse. The three sections were accordingly named "section of a right-angled conen, "section 

of an obtuse-angled conen, and "section of an acute-angled conen. Archimedes uses this 

terminology in his works, and Pappus attributes their naming to Apollonius's predecessors8. 

Diocles, a contemporary of Apollonius, uses this nomenclature in almost all his propositions 

6 The fact that he was killed in the sack of Syracuse in 2 12 B.C. at the supposed age of 75 enables 
us to fix such a precise date. 

7 Most importantly On Conoids and Spheroids, and The Quadrature of the Parabola. 

8 ('ollection VII, Jones I p. 114. 
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(apart from proposition 8) in On Burning Mirrors. 

With the above method of generation, each of the three curves can be characterized by 

what the Greeks called a "symptom*9. The right-angled cone with vertex A (Fig. O), and axis (the 

straight line drawn from the vertex of the cone to the center of the base) AF cut by a plane 

perpendicular to a generator AV, produces a parabola with vertex V, axis VF. If KL. be a line 

drawn from the curved section to the axis VF and at right angles to it, then VL lies on the axis, 

and one can prove that 

( 1) K L 2  = 2AV.VL 

where the magnitude 2AV (the modem parameter) is called "the double of the distance from the 

vertex of the section to the axis". Similarly for the hyperbola and the ellipse (Figs 1,2) one can 

prove that for a given section, KV, there is a constant length PV, such that 

where 2VF is a constant, twice the distance from the vertex of the section to the axis of the cone. 

In the case of the hyperbola, PV is called the transverse diameter, and in the case of the ellipse, 

PV is called the major axis. The most salient feature of this method of defining the curves is that 

they are in "orthogonal conjugationn, that is the reference diameter VL always lies on the axis 

of symmetry of the curve and the ordinate KL is at right angles to the axis. Moreover, the 

fundamental property of these two conic sections is expressed as a proportion. From these 

-- - - 

9 Thus the Greeks referred to the fundamental property associated with the curve in question. 
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defining relations, Archimedes was able to deduce other properties of the conic sections which 

were instrumental in problem solving. 

In his Conics, Apollonius introduced a new system for defining the three sections: he 

generates them by cutting the double oblique circular cone'' by a plane. According to the 

different dispositions of the plane, the three curves can be generated from the same cone. 

Apollonius found symptoms for all three curves, and defined them by the method of application 

of areas'' rather than as statements of proportion. In the case of the parabola, he represented the 

''A double cone whose axis is not necessarily perpendicular to its circular base. 

"A standard procedure for formulating geometrically problems which are, algebraically, 
equations of the second degree. 



symptom corresponding to ( la) KL2 = p.VL, (Fig 3a) 

by saying that the rectangle of side VL and area equal to the square on KL is applied to the line- 

length p (called the latus rectum). In the case of the hyperbola, since PV = PL - VL, equation (2) 

becomes (2a) KL2 = VL(p + PIa VL) (Fig. 3b) 

where a(=PV) is called the latus transversum. Apollonius expresses equation (2a) by saying that 

the rectangle with width VL and area KL2 is applied to p so that it exceeds it by a rectangle 

similar and similarily situated'' to the rectangle p.a. Similarly for the ellipse, since PV = PL + 
VL, equation (2) becomes 

(3a) KL2 = VL(p - PIa VL). (Fig 3c) 

Apollonius represents equation (3a) by saying that a rectangle of side VL is applied to p so that 

it falls short of it by a rectangle similar and similarly situated to the rectangle p.a. 

This method of generation is far more general than the older approach for two reasons. 

Firstly, i t  uses a single type of cone for all sections; therefore, the conic sections are no longer 

associated with a type of cone, rather, they are determined by the position of the cutting plane 

relative to the double oblique circular cone. Secondly, it produces a symptom which applies not 

I2T'his characterization is best understood from the diagram. 



only to the axis13 of the conic and orthogonal ordinates, but to any diameter1" and the conjugate 

ordinates1'. This method is known as "oblique conjugationn since the ordinates are not, in 

general, at right angles to the diameter. Furthermore, it immediately reveals the two branches 

of the hyperbola16. 

We will now briefly outline various solutions attributed to the ancient Greek geometers 

of the cube duplication and the angle trisection. 0f{en, the original work is not available and we 

must rely on other sources. A compendia of known solutions is found in both Eutocius' 

commentary on Archimedes' Sphere and CylinderL7 and Pappus' Collection. Since they both wrote 

after the time of Apollonius, they often recast the solutions in Apollonian terms. This makes it 

difficult to determine the actual content of the original solution. In each case, we will endeavour 

to situate the solution in its historical context and indicate significant changes that were made 

by the respective commentators. 

Beforehand, we describe the particular way the ancients approached geometric problems. 

They used a method of analysis and synthesis for the discovery and construction of solutions to 

these problems. In the analysis, one assumes the problem to be solved and deduces properties 

of the constructed figure until an element of it emerges that is known from prior results to be 

constructible. Thus, geometers could refer to constructions in the Elements or the Data of Euclid, 

and to properties of the conics developed in the theory of the conic sections. The formal 

synthesis begins from these constructible terms and proceeds back through the steps of the 

analysis in a deductive sequence until one reaches the desired construction. 

I3 Archimedes used the term diameter to refer to the axis of a conic section. 

14 The diameter of the section is defined as a line which bisects all parallel chords in the section. 

?he parallels to the tangent at that diameter. 

'6~pollonius calls them the "opposite sections". 

"~olutions to the duplication of the cube follow Sphere and Cjllinder /I:-#, where Archimedes 
assumes the construction of two mean proportionals. 



The Cube Duplication 

This ancient problem has a long and colourful history. One version of its origin is related 

by Eratosthenes, a younger contemporary of Archimedes, who relates that, 

"..when the god proclaimed to the Delians by the oracle 
that, if they would get rid of a plague, they could construct 
an altar double of the existing one, their craftsmen fell into 
a great perplexity in their efforts to discover how a solid 
could be made double of a (similar) solid ..."I8 

(Both altars were supposed to be cubical.) 

The story continues on to say that these geometers were sent to the Academy of Plato for the 

solution. In the 5th century, when Hippocrates of Chios reduced the problem to one of finding 

two mean p r ~ p ~ ~ i ~ n a l ~ 1 9  between two given lines, various solutions were found. A few examples 

include: the solution of Archytas using the intersection of solids, the use of the cissoid by Diocles, 

and the mechanical instrument known as the mesolabe attributed to PlatoZ0. 

Eutocius attributes to Menaechmus2' two solutions of the problem of finding two mean 

proportionals. Menaechmus was a pupil of Eudoxus and flourished in about the middle of the 

fourth century B.C. The problem is to find two segments X and Y given two segments A and 

B such that ( 1 )  AX=X:Y=Y:B. 

The first solution uses the intersection of a hyperbola with a parabola, and the second 

uses the intersection of two parabolas. It is difficult to imagine how Menaechmus conceived of 

constructing a solution to (1) using sections of a cone, and Eutocius' text is of little heuristic 

value in this regard for it is framed in conformity with a more developed theory of conics. There 

are two schools of thought on the issue of how conic sections and their fundamental properties 

18 As quoted by Theon of Smyra, cf. Heath 1, vol. 1, p. 246. 

19 Given two straight line segments p and q, the problem is to construct two other straight segments 
("mean proportionals") x and y in such a way that p : x = x : y = y : q. In modem algebraic notation the 
problem is equivalent to the cubic equation x3 = p2q. 

2 0 ~ e e  Heath 1, v. 1 for these solutions, and details of another mesolabe attributed to Eratosthenes. 

2 1 Actually, only one solution is explicitly attributed to Menaechrnus. The second one follows the 
first one and Eutocius says nothing of its authorship. 



were discovered, but all agree that Menaechmus is the first known source to use conic sections. 

Some think that Menaechmus discovered them in plane sections of right angled cones, 

and that it was the properties of the ordinates in relation to the abscissae on the axes which he 

arrived at first22. In a summary of previous methods of extracting the mean proportionals, 

Eutocius quotes a reference made by Eratosthenes to cone-cutting "the Menaechmean triads23". 

This line has been important in supporting the view that Menaechmus was the discoverer of the 

conic sections, and that he used them for constructing the two mean proportionals. More 

evidence is given by the 1st century AD. writer Gerninus, who, in a discussion of the discovery 

and classification of curves, states that the conic sections were discovered by Menaechmus. 

Knorr (1986, p. 63) argues a different point of view, and proposes that Menaechmus 

based his solution on curves defined with respect to the second-order relations among the mean 

proportional lines. From equation ( 1 ) , three equations can be deduced; 

(2) X2 = A Y ,  

(3) k" = B.X and, 

(4) X.Y = A.B. 

Menaechmus would then have drawn these solving curves on the basis of pointwise 

 construction^^^, and defined them as special curves having the stated properties. Knorr argues 

that the shift from point constructions to sections of cones was born, around the time of Euclid, 

out of the Greek geometers' search for a more natural way of generation for these curves. Thus, 

Menaechmus' special curves would have been renamed as sections of a cone, either by himself, 

or another geometer. This point of view, though it seems plausible, especially as seen through a 

modem mathematical approach, contradicts the only historical information we have. 

Nevertheless, the account given by Eutocius may serve as an accurate guide to the 

22 Heath 1 v.1, p. 253 

23 The triads have long been understood as referring to the three conic sections. But, as Knorr has 
pointed out, Menaechmus uses two parabolas and a hyperbola. 

24 We will see an example of a pointwise construction of the parabola in Diocles' solution of this 
problem. Knorr (1986, pp 57 - 66) argues that a Menaechmean pointwise construction would be based on 
the pseudo-Platonic device known as the mesolabe. 
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essential line of thought Menaechmus followed; that is, to derive two curves that intersect in a 

point that determines the two mean proportionals. Of course, the point where they intersect 

solves equation (1).  Although Eutocius provides both the analysis and the synthesis of the 

problem, Knorr ( 1989, p. 96) has suggested that the synthesis was Eutocius' own additionz5. A 

summary of the analysis of the second solution as given by Eutocius is as follows: 

Analvsis: (Fig 4) Let AO, OB equal the given magnitudes, 

and draw them at right angles to each other 26. Suppose 

OM, ON have been found such that A 0  : OM = OM : 

ON = ON : OB. Measure OM along BO extended and 

ON along A 0  extended. Complete the rectangle OMPN. 

Then, (5) OB.OM = ON2 = PM2 

This defines a parabola 9, with Vertex 0 ,  axis 

OM, and latus rectum OB. 

Also, (6) AO.ON = OM2 = PN2 
Figure 4 I 

So P also lies on a parabola F2 with vertex 0 ,  axis ON, and latus rectum OA. 

Thus, P is the point of intersection of the two curves, so 

A0:PN = PN:PM = PM:OB, 

and the problem is solved. 

This solution involves the two curves satisfying equations 

(2), and (3). It can easily be seen that their intersection 

yields the desired mean proportional relationship. 

The first solution as given by Eutocius is 

summarized as follows: 

Analvsis: (Fig 5) As above, complete the rectangle OMPN. 

Then equation (5) holds. 

2 5 ~ e  cites two reasons: (1) Pappus provides only the analysis of the Menaechmean solution; (2) 
Though the analyses of both commentators are characteristically pre-Apollonian in their terminology, the 
synthesis of Eutocius is decidedly Apollonian. 

2 6 ~ e  note the rectangle AO.OB represents the right hand side of equation (4). 



Also, (7) AO.OB = OM.ON = PN.PM 

So P lies on the section of a hyperbola H with asymptotes OM, ON 

Thus, P is the point of intersection of Y', and H, so 

A0:PN = PN:PM = PM:OB, 

And the problem is solved. 

This hyperbola, in effect, is a locus satisfymg a constant product relation as exemplified by 

equation (4). Although, the hyperbola was defined in terms of its symptom, this property was 

known to Archimedes, and can be stated as follows: if P be any point on the curve and PK, PL 

each be drawn parallel to one asymptote and meeting the other at  K and L respectively, then 

PK.PL = (const.)*'. 

Three related versions of the cube duplication have come down under Apollonius's name. 

Although these solutions, as preserved in our sources, all involve special constructions by means 

of sliding rulers such as the neusis 28 construction, Pappus (Collection, Book 111) mentions the 

existence of yet another Apollonian solution by means of conic sections. He does not give the 

actual construction, but Knorr (1986, p.306) has suggested that it would probably be based on 

his neusis c o n s t r ~ c t i o n ~ ~ .  In fact, there are extant solutions within the Islamic tradition of 

classical g e o m e t g  that are based on the following Apollonian neusis construction. (Fig. 6) 

Place the two given lines OA, OB at  right angles. Complete rectangle OACB, and let D 

be the point where the diagonals bisect each other. Draw a circle about OACB. Extend 

sides OA, OB. Draw a line passing through C that meets the extended sides in Z and H 

and the circle in K such that ZK = CH. Then BZ and AH are the required means. 

27Archimedes knew the property for the rectangular hyperbola, that is, when the asymptotes are at 
right angles to each other. 

2 8 ~  neusis is the insertion of a segment of given length between two given straight or curved lines 
in such a way that the segment verges towards a given point. 

29 Apollonius solved many problems using neusis constructions in his work On Neuses, but he later 
produced other works investigating planar methods for solving some of these problems. This reveals a 
transition in thought concerning geometrical constructions that may account for the attempts to replace 
neusis constructions with solid methods. 

'Owe will discuss these in the section on cube duplication in the Islamic tradition. See p. 28 
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This neusis recasts the problem in a slightly 

different way than the Menaechn~ean analysis 

thereby revealing a new relationship between the 

mean proportionals and the given line segments. 

The relationship is that the straight line through 

H and Z cuts the circle in C and K, respectively, 

such that CH = ZK. We will see how the Islamic 

geometers used this relationship to describe a 

certain hyperbola, thereby eliminating the 

necessity of a sliding ruler. 

A construction of the two mean proportionals given by Diocles introduces a different 

conception of the conic sections. In his work On Burning Mirrors, Prop. 10, Diocles provides the 

synthesis for the doubling of the cube using the intersection of two parabolas, the same method 

used by Menaechmus. The important feature of Diocles' solution is that he constructs these 

parabolas by means of a focus and directrix. This means of generating the parabola is not 

discussed by Apollonius in his Conics, and Toomer (1976, p. 17) has attributed its discovery to 

Diocles. 

Diocles states the problem as follows: for 

a given line A, we seek another line such that the 

cube of A is twice that of the other line. This € . d  
t 

formulation of the problem is quite interesting; 

in the original problem we are to construct a 

cube which is twice a given cube, yet Diocles 

attacks this problem backwards. In fact, his 

procedure is like that of an analysis in that he 8 
assumes the cube doubled and seeks the cube 

which is half the given cube. Diocles sets the line 

GD(=%A) at right angles to a line EZ(='/4) 
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such that EZ and GD bisect each other at H, in other words, EH = HZ and GH = HD. (Fig. 7). 

In order to construct the first parabola IP,, Diocles finds the points K, N, S such that their vertical 

distances from a line (the directrix) through G and parallel to EZ are equal to their respective 

distances from a fuced point D (the focus). He constructs the first parabola by joining the points 

H, K, N, and S, with a flexible ruler. Similarly, he constructs the second parabola IP, by finding 

the points C, N, R such that their vertical distances from a line through Z and parallel to GD, 

are equal to their respective distances from E. Then the curved line through C, N, R, and H cuts 

the curved line HKNS at the point N. He draws NL perpendicular to HM and proves that A3 = 

~ N L ~ .  

Diocles proves that such a curved line is indeed a parabola in Prop. 5 of the same book 

by showing that it has the defining symptom of the parabola. Furthermore, Diocles proves that 

the parameter of this parabola is equal to four times the focal distance. An extension of the 

focus-directrix property to all three conic sections is found in Pappus' Collection VII. Pappus 

proves that, given a straight line AB and a fuced point G ,  the locus of a point D such that the 

ratio of its distance from G and its vertical distance from AB is constant will be a conic, and will 

be a parabola if the ratio is equal to 1, an ellipse if less than 1, and a hyperbola if greater than 

1. The focus-directrix property of the parabola had its greatest use in the actual construction of 

the conic sections, especially in ancient Greek treatments of burning mirrors. However, it appears 

to have had minimal use in problem solving. 

Diocles' work On Burning Mirrors is a treatment of the geometry of burning mirrors that 

investigates the properties of parabolic and spherical mirrors. He is not the only ancient Greek 

geometer to have studied burning mirrors, since both Archimedes and Anthemius (6th century 

A.D.) are also known to have investigated them. In fact, Anthemius even investigated the 

elliptical contour which reflects rays from one focus of the ellipse to the other. However, we will 

not include these applications of conic sections in our present research. 
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The Trisection of the Angle 

In Book IV of the Collection Pappus presents a series of methods for trisecting the angle, 

followed by two methods for the general problem of dividing the angle in any given ratio. He 

uses these results to inscribe in a given circle a regular polygon having any specified number of 

sides. Heath (vol. I, p.235) has suggested that the problem of the trisection of any angle arose 

from attempts to continue the construction of regular polygons after that of the pentagon had 

been discovered. Indeed, the trisection of the angle is necessary to construct the nonagon, or any 

polygon the sides of which are a multiple of nine. Undoubtably though, since the ancient 

geometers were able to bisect the angle by means of ruler and compass, they sought also to trisect 

the angle. This problem proved far more difficult since it could not be solved by 'planar' 

methods. In fact, the first solutions involved neusis constructions. 

In the latter part of the 3rd century B.C. Nicomedes invented the curve known as the 

conchoid for the specific purpose of solving a neusis required for the angle trisection. A method 

via neusis also underlies an Archimedean angle trisection preserved in an Arabic work attributed 

to him, the Book @Lemmata. A variant of this neusis is one of the three unattributed methods 

of trisection presented by Pappus in Collection IV, where Pappus shows how to effect it through 

the intersection of a given circle and a given hyperbola. The second method Pappus gives is a 

direct solution by means of conics. The third method, also without a neusis, uses the focus- 

directrix property to specify the hyperbola. 

The trisection of the angle ABC can be reduced to a neusis as follows (Fig. 8) 

Consider the angle ABC. Draw AC 

perpendicular to BC. Complete rectangle 

ACBF. Produce the side FA to E. Now 

insert a straight line ED @given length 2AB 

between AE and AC in such a way that ED 

verges towards B .  Then LDBC = WABC. 

Pappus shows how to solve this neusis 

problem in a more general way in the 
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following analysis (Fig. 9): 

Given a rectangle ADCB and a line segment M, construct a straight line FEA such that 

its intercept FE between CD and BC extended equals M. 

Complete the parallelogram EDGF. 

So M=EF=DG. 

Therefore G lies on a circle with centre D and radius M. 

Since BC.CD = BF.ED (Elements 1.43) 

= BF.FG, 

G lies on a hyperbola Nwith BF, BA as asymptotes and passing through D. 

So G lies on the intersection of the hyperbola and the circle. 

In order to effect the construction we have 
3 - 

only to draw the circle of centre D, radius M 

and the hyperbola specified by its 

asymptotes, passing through the point D. 

Pappus provides a separate solution of the 

construction of such a hyperbola. The 

intersection of these two curves gives the 

point G, which solves the problem. Pappus 

applies this neusis to the trisection of any 

acute angle and then extends the method to trisect both the right and obtuse angles. 

In his second solution, Pappus shows how to trisect a given arc of a circle by constructing 

a hyperbola determined by its Apollonian parameters. We shall present a brief summary of the 

analysis (Fig. 10): 

Consider the triangle ABG of given base AG and 

whose angle at G is twice the angle at k 

Construct H such that HG = %GA. Draw BD 

perpendicular to AG. 

Then, it can be shown that 3AD.DH = BD2. 

so that BD' : AD.DH = 3AH : AH. 
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Thus B lies on a hyperbola IH whose latus rectum is three times its latus transversum AH. 

Now, (Fig. 1l)in order to trisect an arc GA of a 

circle of centre 0, draw the chord GA and divide 

i t  at H so that AH = 2HG. Construct the 

hyperbola of vertex H, latus transversum AH, and 

latus rectum 3AH. Let the hyperbola meet the 

circular arc in P. Then by the above construction 

we have LPGA = 2 LBAG, so that L AOP = 

~ L O P G .  Therefore OP trisects the arc APG. The 

construction of such a hyperbola relies on 

Apollonius' Conics 154. 
igure 11 

In the next solution to the problem, Pappus merely gives an alternate analysis of the 

problem. It is based on the same figure and leads to the same hyperbola, expressed as the locus 

relative to a given focus and directrix. He takes the same triangle ABG as before, (Fig. 12) but 

this time he bisects the angle G with the line GE, and draws EX and BD perpendicular to AG. 

Pappus thus obtains AE = EG and AX = XG. By similar triangles, AG : BG = AE : EB = AX : 

XD, and so BG = 2DX. It then follows that B lies on the locus of points such that the ratio of 

its distance from the focus G to its vertical distance to the directrix EX is equal to 2. Therefore, 

B lies on a hyperbola. 

The assorted solutions given by Pappus in his Collection and especially by Eutocius in his 

commentary to Archimedes' On the Sphere and Cylinder attest to the interest of both in 
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con~n~unicating different methods and their variations. Not only do the two collections of 

solutions expose different approaches to problem solving, but they reflect the ancient Greek 

geometers' skills in applying various aspects of the theory of conics. 

These two problems were not the only ones that the Greek geometers solved by means 

of conic sections. In a passage preliminary to the discussion of the cube duplication and the angle 

trisection, Pappus says that geometers err when they solve a problem using an inappropriate 

method. He cites as an example the neusis assumed3' by Archimedes in the book On Spirals, 

Prop. 5. According to Pappus, this problem is a 'solid' problem, and should be solved by means 

of conic sections. 

At the end of Book IV of the Collection, Pappus provides a solution to this problem. 

Archimedes' neusis construction makes the following assumption: 

(Fig. 13) Given a circle, a chord BC smaller 

than the diameter, and a point A on the circle 

such that ADE, perpendicular to BC, cuts BC 

at D such that BD>DC and meets the circle 

again in E, i t  is possible to place between the 

straight line BC and the circumference of the 

circle a straight line RP equal to DE and 

verging towards A. 

Pappus solves the more general problem of requiring RP to be equal to any given possible32 

length. He finds the solution by means of two lemmas (Fig. 14). 

The first lemma states that, if from a given point A any straight line be drawn meeting 

a straight line BC given in position in R, and if RQ be drawn perpendicular to BC and of 

length bearing a given ratio, say p, to AR, the locus of Q is a hyperbola H . He proves this 

3 ' ~ h e  neusis is said to be assumed because there is no explanation as to how it is to be effected. 

32~f ter  all, it cannot be larger than the diameter of the given circle. 
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by drawing ADA' at right angles to BDC so that QR:RA = AID:DA = the given ratio p. 

Then he takes DA" along DA equal to DA', QN perpendicular to AD, and obtains the 

relation 

QN2 : AMN.A'N = (const.). 

The second lemma proves that, if BC is given in length, and Q is a point that, when QR 

is drawn perpendicular to BC, then BR.RC = k.QR, where k is a given length, then the 

locus of Q is a parabola iP. He achieves the required relation 

QN12 = k.KN1 

by taking 0 the middle point of BC, OK at right angles to BC and of length such that 

OC" k. KO, and QN' perpendicular to OK. To solve the problem Pappus constructs the 

parabola and the hyperbola in question, and their intersection gives Q, whence R, and 

therefore ARP, is determined. 

I 



Archimedes' Problem 

We are indebted to Eutocius for his commentary on Book I1 of Archimedes' On the Sphere 

and Cylinder, where a problem arises that requires yet another solution by means of conic 

sections. Although Archimedes promises a solution to this problem that arises as an auxiliary to 

Prop. 4, it is not included in the extant form of the treatise. Eutocius presents three solutions in 

his commentary: he credits the substance of the first one to Ar~himedes~~;  the second one, by 

Dionysodorus, takes a slightly different approach; the third solution is due to Diodes. 

Proposition 4 poses the following problem: "to cut a given sphere by a plane in such a way 

that the volumes of the segments are to one another in a given ratio." Through a considerable 

manipulation of proportions and a skillful elimination of two unknowns, Archimedes reduces the 

problem to a subsidiary one, which he claims requires a diori~mos~~ . He notes however, that due 

to the conditions subsisting in the present problem (Prop. 4), the subsidiary problem can be 

stated more specifically so that it does not require conditions for the existence of a solution. 

Eutocius attacks the general subsidiary problem: (Fig. 15) Given two straight lines AB, 

AC and an area D, to divide AB at  M so that AM : AC = D : MB2. He gives both the analysis 

and the synthesis, and discusses the limits of possibility of the solution. We present in a slightly 

modern form the analysis and Eutocius' rendering of the conditions for a solution. 

33~ince Eutocius credits Archimedes with the solution, we henceforth refer to it as Archimedes' 
solution. 

W ~ n  investigation into the limits of possibility, or the conditions in which a solution exists. 
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Analysis (Fig. 16) Assume M found. Draw AB, AC at right angles. Extend CM to N such 

that EBN is parallel to AC and CE is parallel to AB. Complete rectangle CENF, and draw 

PMH parallel to AC meeting FN in P and CE in H. 

Let L be taken on EN so that CE.EL = D. 

Then, AM : AC = CE-EL : MB2 by 

hypothesis. 

And by similar triangles AM : AC 

= CE : EN = CE.EL : EN.EL. 

So PN2 = MB2 = EL.EN. 

Hence P lies on a parabola 'P with vertex E, 

axis EN, and parameter EL. Since EL is 

given35, the parabola is given in position. 

Next, since rectangles FH. AE are 

equal, FP.PH = AB.BE 

Therefore P also lies on a hyperbola36 tH with asymptotes CE, CF, passing through B. 

Thus P is determined as the intersection of the parabola and hyperbola37. Since P is given, 

M is also given38. 

Eutocius notes that since AM : AC = D : MB2, it follows that AM. MB2 = AC.D, but since 

AC.D is given and the maximum value of AM.MB2 is attained when BM = 2AM a necessary 

and sufficient condition for the existence of a solution is that AC.D must not be greater than 

l/jAB.(2/3AB)2. The proof that the maximum value of AM.MB2 is attained when BM = 2AM is 

given after the synthesis, but we shall investigate it immediately. 

35 Of course, what is given is EN and D, Diodes makes the interesting assumption that if an area D 
is given, along with a line segment EN, then the segment EL such that EL.EN = D is also given. 

36~his hyperbola is a rectangular hyperbola as its asymptotes are at right angles to each other. 

37~ince the two conic sections share a common axis and the vertex of the parabola lies within the 
hyperbola it is quite possible that they may not intersect. 

3 8 ~  Lgi~en' is a term that is known by assumption or has been shown to be determined by such 
terms. This terminology is used in Euclid's Data and in works such as Aristotle's Meteorologica. 



Proof of diorismos (Fig. 17) Let AB be divided at 

0 so that BO = 2A0. Eutocius must show that 

A0.0B2 is larger than AM.MB2 where M is any 

point on AB. 

Suppose that A 0  : AC = CE.EL1 : OB2, 

so that AO.OB2 = CE.EL1.AC . 

Join CO and extend it to N; draw EBN 

parallel to AC, and complete the rectangle 

CENF. Draw POH parallel to AC meeting 

FN in P and CE in H. Draw the parabola IP, 

with vertex E, axis EN, and parameter EL'. 

It will pass through P, and beyond P will 

meet CF in some point. Next, draw a 

hyperbola 3C with asymptotes CE, CF 

passing through B. It will also pass through 

P. Extend NE to T so that NE = TE. Draw TP meeting CE in Y and CF extended in W. 

Thus TP is tangent to the parabola at P39. 

Then, PW = PY (since BO = 2A0 and TP = 2PW = 2PY). 

Since the segment WY, between the asymptotes, is bisected at  P, and touches the 

hyperbola at P, 

WY is tangent to the hyperbola. (Conics 11.3) 

Hence the hyperbola and the parabola have a common tangent at P. 

Now suppose M is any point on AB, and through M draw QMK parallel to AC meeting 

the hyperbola in Q and CE in K. Draw GqQR through Q parallel to AB meeting CF in 

G, the parabola in q, and EN in R. 

Since rectangles GK, A .  are equal (property of the hyperbola), CMR is a straight line. 

Now, q R L  ELL'.ER (by the property of the parabola) 

3 9 ~ ~ s  is the converse of a proposition known to Archimedes; for a parabola with vertex V, 
diameter PV, and ordinate PQ, if the tangent at Q meets VP produced in T, then PV = VT. 



So, QR2< EL1.ER. 

Suppose QR2 = EL.ER. 

Then we have AM : AC = CE : ER = CE.EL : QR2 = CE.EL : MB2, 

SO AM.MB2 = CE.EL.AC. 

Therefore, AM.MB2 < CE.ELiAC = AO.OB2, which is what we wanted to prove. 

Eutocius goes on to discuss the nu~nber of solutions, which depends on the value of AO.OB2 

relative to AC.D: 

(1)  We have seen that, in order that the solution may be possible, AC.D + AO.OB2. 

(2) If AC.D = AO.OB2, then the point 0 itself solves the problem. 

(3) If AC.D < A0.0B2, there are two solutions because there will be two points of 

intersection between the parabola and the hyperbola. This can be seen by drawing 

a parabola fP, with vertex E, axis EN, and parameter EL, it will pass through Q 

and, since the parabola meets CF beyond Q, it must meet the hyperbola again 

(which has CF for its asymptote). 

The original problem of dividing the sphere into segments having a given ratio is always possible 

for we can take our point of division to be anywhere along the diameter of the sphere. But the 

more general problem considered in the previous discussion by Eutocius, and suggested by 

Archimedes, will only exist for certain choices of the given line and the given area, subject to the 

restriction Eutocius provides. 

Dionysodorus solves the less general form 

of the problem, as it is needed in Archimedes' 

problem. For AB the diameter of the sphere, it is 

required to find a plane cutting AB at right angles 

at a point M so that the segments into which the 

sphere is divided are in a given ratio, as CD:DE. 

(Fig. 18) 

Produce BA to F so that AF = OA, where 

0 is the centre of the sphere. Draw AH 

perpendicular to AB and of such length 



that FA : AH = CE : ED. Produce AH to K ~ O  so that AK' = FA.AH. Then K will lie on 

a parabola Fwi th  vertex F, axis FA, and parameter AH. Draw BK' parallel to AK and 

meeting the parabola in K'; and with BF, BK' as asymptotes describe a hyperbola *;H 

passing through H. This hyperbola will meet the parabola at some point P, between K 

and K1(since K lies above H and BK' is an asymptote of the hyperbola). Draw PM 

perpendicular to AB meeting the great circle in C', C", and from H,  P draw HL, PR both 

parallel to AB and meeting BK' in L, R respectively. Then PM.PR= AH-HL by the 

property of the hyperbola, 

so PM.MB =AH-. 

Rearranging, PM2 : AH2 = AB2 : BM2. 

Also, PM2 = FMSLH by the property of the parabola, 

or FM : AH = PM2 : AH2 = AB2 : BM2, from above. 

From this point Dionysodorus uses Archimedes' propositions on the volume of a segment of a 

sphere and Prop. 2 to show that (segmt. AC'C") : (segmt BC'C") = C D  : DE. He uses the same 

conic sections as Eutocius. 

Diocles, proceeding in a different manner, reduces a slightly generalized form of 

Archimedes' problem to three simultaneous relations. Using the results of On the Sphere and 

Cylinder Prop. 2", he proceeds to state the problem in the following form: Given a straight line 

AB, a ratio C:D, and another straight line M4*, to divide AB at M and to find two points H, H' 

on BA and AB produced respectively so that the following relations may hold, (Fig. 19) 

( l ) C : D = H M : M H 1  

( 2 ) H A : A M = A K : B M  

'OK lies on AH if A D A H .  Since we are dividing AB at H, we have AB>AH, and since 
AK2 = AF.AH, it follows that AK>AH. 

41 If C'AC" be a segment of a sphere, C'C" a diameter of the base of the segment, and K the 
centre of the sphere, and if AB be the diameter of the sphere bisecting C'C" in M, then the volume of the 
segment is equal to that of a cone whose base is the same as that of the segment and whose height is h, 
where h : AM = KB + BM : BM. 

'2~y taking any given line AK, Diocles generalizes the problem, for which AK would be !MB, 
the radius of the sphere. 



(3) H'B : BM = AK : AM 

Analvsis (Fig. 20) Suppose the problem solved, and that the points M, H, H' are all found. 

Place AK at right angles to AB, and draw BK' parallel and equal to AK. Join KM, K'M, 

and produce them to meet K'B, KA respectively in E, F. Draw KK', draw EG through E 

parallel to BA meeting KF at G, and draw QMN parallel to AK meeting EG at Q and KK' 

in N. From (2) and by similar triangles, HA : AM = FA : AM. 

Therefore HA = FA and similarly H'B = BE, 

so FA + AM = HM and EB + BM = H'M. Again, by similar triangles, 

(FA + AM) : (BK' + BM) = AM : BM = (AK + AM) : (EB + BM). 

Take AR along AH and BR' along BH' such that AR = BR' + AK. Then we obtain 

(4) HM.MHi = RM.MR1. 

For this reason, the position of R 

relative to H and A will determine 

the position of R'. 

Now, (5) C : D = RM. MR' : MH'2 

by ( 1 )  and (4) 

Measure MV along MN so that 

MV = BM. Join BV and extend it 

both ways. Draw RP, R'P' 

perpendicular to RR' meeting BV 

produced at P, P' respectively. Then 
Figure 20 



since angle MBV = 45", PP' is given in position, as are P, P'. 

And, P'V : PV = R'M : MR by parallels. 

Therefore PV. P'V = 2RM.MR1 (since PV2 = 2RM2) 

Hence, PV. P'V : MH'2 = 2C : D from (5), and so 

QV2 : PV.PfV = D : 2C, a given ratio (since QV = VM + MQ = MH') 

Suppose we take a line p such that D : 2C = p : PP" 

Then Q lies on the ellipse 8 with diameter PP', and parameter p*3, whose ordinates are 

inclined to PP' at  an angle of 4 . 5 0 ~ ~ .  

Again, since EK is a diagonal of the parallelogram GK', 

GQ.QN = Al3.BK1. 

Therefore Q also lies on the hyperbola 94 with asymptotes KG, KK', passing through B. 

Thus Q is determined as the intersection of a given ellipse and hyperbola, so M is given, 

and H, H' can be found. 

This analysis is indeed ingenious, and one wonders how Diocles amved at it. In modem terms, 

he succeeded in reducing the original problem which contained four unknowns, to two equations 

in terms of two unknowns. The other remarkable feature of this solution is that Diocles uses the 

equation of an ellipse and applied in oblique conjugation. Not only is it rare to find the ellipse 

used in geometrical constructions, but Archimedes normally used the equation in orthogonal 

conjugation. Diocles continues on to give the synthesis, which we shall omit. 

This concludes our treatment of the application of conic sections in problem solving in 

Greek geometry. We have seen how conic sections enabled the ancient Greeks to solve two of 

their classic problems. Moreover, the ancient Greek geometers saw how useful conic sections 

were both in replacing neusis constructions and in dividing certain line segments*5. These two 

specific applications of conic sections would be called on by Islamic geometers to solve the same 

problenw we have discussed above, as well as other related ones. 

- - 

43 In the notation of modem conics p= DD'Z / PP'. 

44 The property of the ellipse as given in Apollonius I. 21 is QVZ : PV.P'V = p : PP'. 

''The trisection of the angle can be formulated as a neusis construction, as we have seen, and 
Archimedes' problem involves the construction of a certain line segment. 
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The Islamic Tradition 

Arabic translations of Greek manuscripts began to be done in Baghdad on comn~ission 

for the early 9th century caliphs HBriin al-Rashid and al-Ma' mln. Euclid's Elements was studied 

and commented upon frequently, and became a basic textbook for the geometers of the Islamic 

world. The translation of Archimedes' works, such as On the Sphere and Cylinder and the (only 

partly genuine) Heptagon in the Circle, provided fertile ground for the revival of the Greek 

tradition of geometry and considerable stimulus for investigations in the conic sections. These 

investigations by Islamic mathematicians were greatly inspired by Apollonius' Conics , which 

formed a base for advanced research in geometry. 

Although Islamic geometers did not contribute to the development of the theory of conic 

sections, they were adept at presenting new variants of constructions using known Greek 

methods. However, they often refined those methods, and occasionally proposed original 

solutions using conic sections to replace the Greek constructions. Islamic geometers worked on 

perfecting the inherited tool of conic sections for problem-solving in two ways: first, by seeking 

out problems, apart from those inherited from the ancient Greeks, that would require the use 

of conic sections, and second, by finding alternative constructions of the same problem. 

Gradually, geometric problems were transformed into algebraic cubic equations, and 

Islamic geometers constructed roots to these equations. When they began to examine cubic 

equations with arbitrary coefficients, the emphasis shifted from constructing roots (which was 

now rather routine procedure) to determining when and why these cubic equations had roots. 

Through this work, they were able to display the relationships which revealed the unity 

underlying 'solid' problems, i.e. their geometrical researches led them to investigate the 

relationship of geometry to algebra and the role of conic sections in the theory of cubic 

equations. 

We begin by surveying solutions to the classical Greek problems of the duplication of the 

cube and the angle trisection. Afterwards, we will present solutions to problems inspired by the 

works of Archimedes such as the construction of the heptagon and sectioning a sphere. Finally, 

we will examine constructions of a few specific cubic algebraic equations, and the subsequent 

generalization to a theory of cubic equations. 
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The Cube Duplication 

Several constructions of two mean proportionals were transmitted from Greek into 

Arabic. This problem provided the Islamic geometers with ample opportunity to apply the theory 

of conic sections they had inherited from the Greeks. In most cases though, they rendered the 

solutions that had been found by their Greek predecessors. We will survey these solutions, as 

well as present a construction which is not found in Greek literature, and which is probably of 

Arabic origin. 

The first method, by means of a circle and a hyperbola, appears in many slightly different 

forms in the Arabic tradition. This construction, probably of Greek origin (Knorr 1989, p. 259), 

effects Apollonius' neusis construction that was discussed in the section on Greek cube 

duplications (p. 12). The 9th century geometer Abii Bakr al-Harawi adopts this approach, and 

he expresses the problem as: " to construct, between two given lines, two lines so that the four 

straight lines follow proportionately in the same ratio."46 

His construction can be summarized as follows (Fig. 2 1): 

Draw the two give lines AB, BG at right 

angles to each other, complete rectangle 

ABCD, and draw its two diagonals which 

cut each other at the point E. Draw a 

hyperbolic section with asymptotes4' AB, 

BG that passes through the point D. Draw 

a circle with centre E and radius EA, it will 

pass through the points A, B, G, D, and 

will cut the section at a point Z. Draw the 

line ZD and extend it to meet the 

asymptotes in H and T respectively. * 

46 Translation in Knon 1, p. 25 1. 

"Known as 'the two lines which do not fall on the section' 



29 

Then HD = ZT by Conics 11.8. 

Now, ZH. DH = BH.AH since H is external to the circle and ZH, BH cut the circle. 

Similarly, DT.ZT = TB.TG and, since ZH = DT and ZT = DH, it follows that 

BH.AH = TB.TG. 

Thus, TB : BH = AH : TG, 

so TB : BH = AD : AH = AH : TG = TG : DG by similar triangles. 

Hence, BG : AH = AH : TG = TG : AB, 

and AH, TG are the required lines. 

The neusis construction of Apollonius assumed drawing the line HDZT such that HD = ZT, and 

the proof continued similarly to above. The use of a hyperbola finds the point Z on the circle 

that will satisfy this property. The proof thus relies on Conics 11.8 and the secant property of 

circles. 

Abii Ja'far al-Khiizin, a 10th century 

geometer, gives a related method of cube 

duplication, and cites Abii Bakr as his source 

(Knorr 1989, p. 262). His construction is identical 

up to * except that D is specified as the vertex of 

the hyperbola. He then continues on to 

completely specify the hyperbola (Fig. 22). He 

does this by drawing through the point D a line 

parallel to AG which meets the asymptotes in H', 

T' respectively. Since AGT'D and AGDH' are 
igure 22 

both parallelograms, H'D = DT'. If H'T'Z = p. 

2DB, then 2DB is the diameter of the section and p is the latus rectum. Having specified the 

hyperbola needed for the solution, al-KhHzin resumes the proof as given by Abii Bakr. 

Al-Khizin ends his discussion with a method of cube duplication using a moving ruler; it 

is identical to the procedure used by Apollonius. This attests to his awareness of the essential 

identity of the two methods. Furthermore, in presenting them together, he makes his preference 

clear for the conic section method, which he call 'geometric'; the other 'instrumental' method is 
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not a valid proof in his view. This echoes the attitude of Pappus and is a prominent feature in 

a l - W i n ' s  work. In fact, he expresses the same preference once again in another solution to the 

cube duplication using the method of Nicomedes. This method had been rendered into Arabic 

by Thsbit ibn Quna as part of his translation of Archimedes' Sphere and Cylinder and Eutocius' 

commentary on that work. 

Thibit ibn Qurra was an important translator in the early period of Islamic science, 

working in the same circle of mathematicians as the Banii Miisii in Baghdad at the time of the 

Caliph al-Ma'miin. The Banii Miisii travelled to the Byzantine provinces in order to acquire Greek 

scientific manuscripts and they were responsible for the translation and propagation of these 

works. One of their most important works is entitled The Book ofthe Knowledge ofthe Measurement 

of Plane and Spherical Figures by the Sons of Moses: Muhammad, al-gasan, and @mad. This work 

included tracts on the trisection of the angle, and the construction of two mean proponionals. 

Thibit worked on translating many of Archimedes7 works, as well as Apollonius' Conics, and 

studied some problems inspired by these works. 

In the following construction, al-Khkin shows how a method via the hyperbola effects 

the neusis that Nicomedes works out via the conchoid.(Fig. 23) 

Draw the given lines AB, BG at right angles, and complete rectangle ABGD. 

Half AB, BG at the two points E, Z, 

and extend GB and DE so that they 

meet in H. Then BH = BG. Draw ZT 

perpendicular to BG, and GT(= AE = 

EB). Draw TH, and draw GK parallel 

to it. Extend BG to L. Then the 

required neusis is to draw a line from 

T to GL whose segment falling 

between GK and GL is equal to line 

GT. 

In order to do this, draw from T a line 

to GK parallel to HG, and let it be TK. Construct a hyperbola KM with asymptotes TH, 
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HG passing through K. Extend TK to N such that KN = TG, and draw a circle with 

centre K and radius KN, which intersects the hyperbola at (say) S. Draw KS(=TG), and 

SO parallel to KG. Join TO cutting GK at F, so that 

SO is equal and parallel to KF (since SO.OH = KG.GH via Conics 11.12, and by 

similar triangles). 

Then KS is equal and parallel to FO. Thus the neusis is completed. 

Join OD and extend it to meet BA at C; then GO, CA are the required means between 

AB and BG. 

The proof of this follows that of Nicomedes, which we will not include. An important feature of 

this construction is that the hyperbola is in oblique conjugation for the parallelogram GHTK. 

This method, which replaces a neusis construction, actually generalizes that of Pappus for the 

angle t r i~ec t ion~~.  Pappus used a hyperbola in orthogonal conjugation to effect the neusis in the 

case of a reference figure which is a rectangle rather than a parallelogram. Incidentally, Abl Ja'far 

presents a similar method for the angle trisection, which we will discuss in the following section. 

NaGr al-Din al-Ta-, who worked in the thirteenth century and is also well- known for his 

work in mathematical astronomy, adopts a method of the cube duplication similar to that of 

Abii Bakr (also in Knorr I ,  p. 255). He inserts his 

method of finding two mean proportionals 

between two given lines as a marginal comment to 

both Conics V, 52 and Sphere and Cylinder 11, prop. 

1 .  Al-Tiisi presents a very thorough and rigorous 

construction; he carefully cites theorems from the 

Conics and shows his expertise in applying them to 

this problem. 

He first considers the trivial case in which 

the two given lines AB, BG are equal and finds 

that the mean proportionals will be equal to them. 

48~ee  p. 16 for Pappus' angle trisection. The required neusis is identical save for the reference 
figure ADCB. 



This can be seen in (Fig. 24), since the circle and 

the hyperbola will not have a second point of 

intersection. Next, he takes AB > BG, places them 

at right angles, completes ABGD, draws the 

diagonals which intersect at E and constructs the 

circle with centre E, passing through A, B, G, D. 

He then draws the same line T'DD'H' through D, 

parallel to AG and cutting the circle again at D', as 

did Abii Ja'far, but explicitly states that it is tangent 

to the hyperbola with asymptotes AB, BG passing 

through D, at the point D (Fig. 25). This allows al- 

Tiisi to establish the existence and the position of the second point of intersection between the 

hyperbola and the circle. He first argues that the section and the circle cut each other between 

D and D'. Indeed, if not, the segment DD' from the arc (of the circle) and the chords in this 

segment would fall between the section and the line tangent to it. But that is impossible, since, 

according to Conics 1.32, no other line can fall between the section and the tangent. Al-Tiisi then 

argues that according to Conics IV. 35, since their convexities are opposed, they do not cut each 

other at more than two places. He proves in the same way as Abii Bakr that the second point of 

intersection Z determines the two mean proportionals. 

Together with the construction of two mean proportionals by means of a circle and a 

hyperbola, we find three other constructions of two mean proportionals in the book Istikmd of 

the Andalusian geometer Yiisuf al-Mu'taman ibn Hiid. Al-Mu'taman, was a mathematician and 

astronomer, and was King of Saragossa from 108 1 - 1085 A. D, when he was assassinated. He 

has recently become well-known in scholarly circles because of the discovery of his "Book of 

Perfection" ( I s t i b ~ l i l ) ~ ~  which unites an impressive amount of scientific literature which must 

have been available in Saragossa in the late 1 1 th century k D. The first construction, by means 

of two parabolas, is the same as in the commentary by Eutocius on Book I1 of Archimedes' On 

49 More information on the division of the Istikmd into species and sections can be found in 
Hogendijk 3; published sections of the Istikmd include Hogendijk 1,2. 



the Sphere and Cy1lmdeJ0. This construction was known to Arabic geometers such as Abii Ja'far and 

al-Sijzi through the translation of Eutocius' collection of constructions. Abii 'Abdallih al-Shanni, 

a 10th century geometer, gives the synthesis of this construction in his Disclosure ofthe Fallag of  

Abu'l - Jd (Kashf tamwih Abi'l - ~iid)"and says that it was plagiarized by Abii'l-Jiid in his lost 

work "The book on Geometrical Subjects" (Kit& fi - 1 Handasiyyit). The second construction al- 

Mu'taman gives, by means of a hyperbola and a parabola, is again the same as another one as 

found in Eutocius' commentary on Book I1 of Archimedes' On the Sphere and Cylinde?2. Once 

again, through references to Eutocius' commentary, we know that this solution was known to a 

number of Arabic geometers. The fourth construction that al-Mu'taman gives, by means of a 

hyperbola and a circle, is precisely the one we have discussed above, and most resembles the 

variation given by Abii Bakr. 

Al-Mu'taman's third construction, by means of a circle and a parabola, does not appear 

in any known geometrical work that was written in the entire Eastern Islamic world. Hogendijk 

(2, p. 19) argues that this construction was in fact unknown to Eastern Islamic geometers: since 

they were very fond of finding new solutions to old problems, i t  is unlikely that such a solution 

would have vanished without leaving a trace in the literature on conic sections that has survived 

from this period. Furthermore, since al-Mu'taman was a capable mathematicians3, we may 

assume that he was the author of this construction. 

We now present a paraphrase of this construction: (Figure 26) 

We are to find the two mean proportionals between two given segments AB < BG. Draw 

the two given lines at right angles, and through the points A, B, G draw a circle. AG will 

be the diameter of this circle since B is a right angle. Draw a parabola ff with axis GB, 

vertex G and parameter GB, and let it meet the circle at the point D. 

SO See p. I I for this construction. 

"see Hogendijk 7, p. 277, (M8). 

S 2 ~ e e  also p. 1 1 for this construction. 

S3~ogendijk notes the mathematical abilities shown by al - Mu'taman in his remarkable 
simplification in the Istikmd of the 'problem of Alhazen'. 



Draw DE (an ordinate) perpendicular to 

the axis GB. Then ED and EG are the 

required mean proportionals, that is to say 

B G : E D = E D : E G = E G : A B .  

Figure 26 

Proof: Draw DA and extend it to meet BG extended at Z. Draw DG. 

Since LGDA is a right angle (AG diameter of the circle through D), 

ZE : ED = ED : EG by similar triangles. 

Also ED2 = BG. EG since D is on the parabola. So, 

(1) BG:ED=ED:EG,thusZE=BG,andso 

(2) ZB = EG. But, 

(3) ZB : BA = ZE : ED by similar triangles, 

thus by combining (1). (2). and (3), we obtain BG : ED = ED : EG = EG : AB. 

Al-Mu'taman uses the same parabola in this construction as he does in the first two 

constructions. And the circle through A, B, G is the same as in his fourth construction. This 

shows how closely related the four constructions are, though their discoveries spanned more than 

1300 years and scores of eminent mathematicians. We will return to this problem in the last 

section and examine how it was treated as a cubic equation. The read may want to refer to Chart 

I in the appendix which provides a brief comparison of Arabic and Greek solutions of the cube 

duplication. 
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The Angle Trisection 

The trisection of the angle was a fundamental problem in Islamic geometry, as it was in 

classical Greek geometry, for two reasons: it was a great challenge to them since no 'successful' 

Greek solutions were transmitted to them, and, it became very popular as it drew the attention 

of many different geometers. We have seen how the Greeks trisected the angle using conic 

sections, and by means of the method known as neusis. Nevertheless, 10th century Islamic 

geometers such as al-Sijzi and Abii Ja'far al-Khlzin said that they did not know of successful 

trisections by the Ancients. They did know of the neusis construction which is used to trisect the 

angle in the pseudo-Archimedean Book $Lemmata through its translation into Arabic by Thiibit 

ibn Qurra. However, at least in the 10th century, they did not consider the neusis as a legitimate 

geometrical construction, and attributed the first 'acceptable' angle trisection to ThHbit ibn 

Qurra. 

As we will see, Thiibit's construction closely resembles the trisection found in Book IV of 

Pap pus' collection5*, as well as the one in the Treatise by @mad ibn Sh&r on the Trisection of the 

~ n ~ l d ' .  This latter is not surprising, for we know that ThHbit was a protege of the three brothers 

known as the Banii Miisi (one of whom was Ahmad ibn MiiG ibn ShZikir). What is surprising 

is that as far as we know, Books 1-7 of the Collection were not translated into Arabic. Hogendijk 

(8, p. 4 18) has suggested that Ahmad's construction was a translation of an unidentified Greek 

text closely related to Pappus' construction, and that Thiibit wrote his solution to simplify the 

concise and difficult one by Alpad. As a preliminary, and for reference purposes, we present the 

neusis construction found in the Book ofLemmatas6. Following that, we will describe both Ahmad 

and Thibit's solutions. Finally, we will investigate a series of other angle trisections found in 

Arabic literature using conic methods. Although we are only concerned with solutions restricting 

themselves to conic methods, they were not the only methods used by Islamic geometers to 

54~his  construction can be found on p. 16, above. 

55 See Hogendijk 9, p. 38 (25). 

56~eath 3, pp. 301 - 3 18. 
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trisect the angle. The neusis construction was widely used; indeed, we still find this method 

among the many alternatives given by the geometer al-Biriini in his "Canon" (Al-qa* al- 

Mas 'dif7, in the first half of the l l th century. 

Proposition 8 of the Book of Lemmata 

contains a neusis construction which effects the 

trisection of the angle ADE (Fig. 27): Draw a 

circle with centre D, intersecting DA in A and DE 

in E. Extend ED and insert a line segment GB, 

equal to ED (the radius of the circle), between the 

circle and ED extended such that GB verges 

toward A. Then LBDG = ',$LADE. This neusis is 

historically important since it arises in 'the 

problem of Alhazen', and is treated in its algebraic 

form by later mathematicians. 

The solution of &mad ibn Mld is 

divided into the same three parts as Pappus' 

solution: 1) a lemma on the construction of 

the hyperbola; 2) a lemma effecting a 

required neusisS8; 3) the trisection via the 

neusis. We point out the noteworthy 

differences bv referring to Figure 28, which is 

a mirror image of Pappus' Figure 9. Firstly, 

&mad does not give the analysis of the 

problem, but effects the same general neusis 

as Pappus (that is, to draw a straight line 

'igure 27 

5 7 ~ e e  for the Arabic text Al-Bi&-, AI-Qfi& al-Mas '&I4 edited with introduction by M. Nizam 
ud-Din, H.J.J. Winter, and Hasan Barani, Hyderabad 1954 - 1956. 

58 It is not the same neusis as in the Book of Lemmata; it has been described on p. 15, above, in 
conjhction with Pappus' construction. 



3 7 

from A to BG extended, such that the part of it which falls between GD and BG extended is 

equal to a given line M). Secondly, the point K is completely determined by Wmad, as lying on 

AD extended. Pappus says only: let DK = M. More importantly, Ahmad draws a segment of a 

circle KH, instead of the circumference of a circle. This is more correct, for a con~plete 

circumference would intersect the hyperbola in two points H ,  and H,, and this would lead to the 

construction of two straight lines, as indicated by the dotted lines in Figure 28. 

The next difference is in the proof of the neusis construction, and is a very subtle one. 

Pappus proceeds by establishing the equality of the areas of the rectangles BZ, ED and BG, GD 

to show that ZB : BG = GD : DE. On the other hand, &mad uses an argument of similarity 

based on: (1) AB is parallel to EG, hence ZB : BG = ZA : AE, and (2) ZG is parallel to AD, hence 

The following trisection, found in a text called The Trisection of the Rectilineal Angle, 

Composed by ThBit ibn Qurra6', follows the same three part structure. Thiibit first provides the 

construction of hyperbola in oblique conjugation as in Conics 11.4. Next, he formulates the neusis 

construction in a slightly different manner (Fig. 30): 

"The surface ABGD parallel of sides61, and the side BG has been extended in its straight 

line in the direction of G and we do not make for it an extremity. 

ZA : AE = GD : DE, to show that ZB : BG = GD : DE. 

59~his  is shown on p. 36, above. The method of Alpad is identical. 

60 See Hogendijk 9, p. 38 (24). 

Both geometers give the trisection of the 

acute angle using the above neusis constructions9. 

e m a d  remarks that the trisection of the right angle 

is easy; he then shows how to trisect the obtuse 

angle ABG (Fig. 29) by drawing BD at right angles 

to BG, and trisecting both the acute and right 

angles to obtain angle EBZ. 

6'That is, the parallelogram ABGD, however; in his diagram, Thibit actually draws a rectangle. 

E 

A 

. 
3 G 

Figure 29 



course, the context of this particular problem of the angle trisection can be specialized to the 

rectangle, as we have seen in the previous solutions. The actual construction and proof, by 

means of a circle and a hyperbola, follows exactly the same lines as above, however; ThHbit 

quotes Conics 11.12 in full, the theorem he appeals to in his proof6', before establishing the 

required equality of areas. 

Two other solutions of problems, leading to the trisection of the angle, are present in the 

of Ibn al-Haytham. He solves both these problems as lemmas to a more general one, 

that is: to construct the points of reflection on a (convex or concave) circular mirror, given the 

positions of the eye and the observer. Just as Diodes' researches into the burning mirrors 

provided him with fertile ground for studying and using conic sections, Ibn al-Haytham used 

conic sections in order to solve problems arising from his studies in the field of optics. His 

experience in solving other geometric problems by means of conic sections, such as the 

construction of the heptagon, must have been extremely useful in his solution to the famous 

"problem of Alhazenn. 

In Book V, Prop. 33 of the Optics, Ibn al-Haytham effects the following neusis 

construction, by means of a circle and a hyperbola: (Fig. 3 1 ) 

From a given point A on a circle ABG, draw a line that cuts the diameter extended in E 

And we wish to extend from point A a 

straight line which is inclined toward it so 

that what subtends the angle G from it is 

equal to the given line I". (Knorr 1, p. 278) 

ThSibit views the given line segment as subtending 

the given angle, whereas we saw that 4 m a d  (like 

Pappus) conceived it as drawn across two different 

lines. Also, Thiibit's statement of the neusis is more 

62~gain, refer to p. 16 to see when Conics 11, 12 is invoked by Pappus. 

63~ee  Sabra (1982) for a translation of the relevant parts. 

I 

Figure 30 

general as it applies to a given parallelogram. Of 



and the circumference of the circle in G in such a 

way that ED equals a given line. This implies a 

construction of Proposition 8 of the Lemmata, for 

the give line equal to the radius of the circle, and 

Ibn al-Haytham uses the same construction as in 

Pappus' Collection. However, by using a different 

property of the hyperbola (from Conics II.8), Ibn 

al-Haytham arrives at a simpler proof. The 

solutions of Pappus, Thibit, and e m a d ,  as we 

have discussed above, are all based on Conics 11.12, 

and require a longer proof. 

In Prop. 34 of the same book, Ibn al- 

Haytham effects a slightly different neusis, also by 

means of a circle and a hyperbola: (Fig. 32) From 

a given point A on a circle ABG, draw a line that 

cuts the diameter BG in E and the circumference 

in D in such a way that ED equals the given line. 

This problem also leads to the trisection of the 

angle for the given line equal in length to the 

radius of the circle. In order to make this clear, 

suppose ED = radius of the circle. Let M be the 

center of the circle, and let MF be a perpendicular 

to GB, which cuts ED produced in F. If A is not on 

FM produced, the problem has two solutions, and 

we consider the solution in which E * M 

(otherwise we are just joining A to the center M). 

Since angle EMF = 90" and ED = DM, we have 

DF = DM. Then it can easily be shown that the 

angle between AM and FM produced is three 

Figure 33 



times the angle F. 

Proposition 34 is therefore more general than the problem of the angle trisection; 

however, since the construction of Ibn al-Haytham introduces some new concepts, we present 

his solution. He uses Figure 33 in order to construct Figure 34, in which he constructs a certain 

angle that he will use, in turn, in Figure 33 to effect the neusis construction. 

Let HZ (in Fig. 34) be the given line. 

On either side of HZ, construct angles I 
a and p equal to iABE and LAGE I 
respectively (from Fig. 33). Complete 

parallelogram HKZT(back to Fig. 34). 

and draw through T the branch of the 

hyperbola X, with asymptotes KH, 

KZ. Then, with T as center and a 

radius equal to BG, draw a circle that 

may or may not cut the opposite 

branch of the hyperbola ;ld,. Suppose 

that the circle and X2 do meet, say at 

the point S. Join TS, cutting the 

asymptotes at F and Q and, through Z, draw LZM parallel to TS, and, like TS, cutting 

both asymptotes. LZM will cut the extension of HT, say in M. Finally, (in Fig. 33) draw 

GD at an angle to BG equal to LMLH, and join BD. Considerations of similar triangles 

entail the equality of DE and the given line HZ. 

Ibn al-Haythm states that from T on X,, it may not be possible to draw more than one line that 

reaches .Y2. This, of course, would be the case when the circle touches X2 at a point. He also notes 

that in some cases two such lines may be drawn, and, further, for the construction of the required 

line to be at all possible, it is necessary that BG must not be shorter than the shortest line that 

can be drawn from T to X2. He refers the reader to Propositions 34 and 6 1 of Bk. V of the Conics 

on how this shortest line should be determined. 

In this construction, Ibn al-Haytham uses three interesting techniques. The first is the 



construction of one angle equal to a given one, this can be found in the Elements I, 23. The second 

is his explicit use of both branches of the hyperbola; although geometers were aware of the two 

branches of a hyperbola, they rarely used them in their constructions. The third remarkable 

feature of Ibn al-Haytham's construction is his appeal to Book V of the Conics , which deals with 

maxima and minima problems. He displays his geometric rigour by considering the necessary 

conditions for a solution, and, in doing so, appeals to propositions that no other geometer had 

previously used. 

It is noteworthy that al-Mu'taman, in his Book ofPe$ection, also treats the "problem of 

Alhazenn. He presents a simplification and generalization of propositions 33 and 34 of Ibn al- 

Haytham by combining the two cases of the line equal to the given line being either outside 

(Prop. 33, Fig. 31) or inside (Prop. 34, Fig. 32) of the circle. His general solution is obtained by 

intersecting a circle with two branches of a hyperbola. 

Al-Sijzi worked almost a century after Thiibit, and is responsible for transmitting a series 

of related methods of the angle trisection. They appear in a tract Treatise on the division ofthe angle 

into three equal parts64 where he reviews lemmas required to trisect the angle devised by himself 

and other geometers. In the preface to this tract he affirms that the problem was first solved by 

Thabit ibn Qurra and after him by Abii Sahl al-Kiihi. Since the lemma he attributes to al-Kiihi 

is very similar to his own, al-Kiihi probably invented this method and passed it on to al-Sijzi 

(Knorr, Hogendijk). In fact, these two geometers worked together at an observatory in Shiriz in 

the same time period that al-Sijzi first copied the method. We begin by presenting al-Kiihi's 

method as found in his On the determination of two means between the two lines and the division ofthe 

angle into three pa* by AbCSahl W a y j n  b. Rustum a l - ~ w ,  and then by discussing similar lemmas 

which al-Sijzi attributes to himself. The lemma of al-Kiihi is as follows: (Fig. 35) 

Let GD, DA be two given lines containing the angle D; draw lines GB, BA such that 

BA=BGandGD:AD=AD:DB.  

Although it is not evident from the above lemma, we will see that AB is in fact arbitrary. Al-Kiihi 

64 See Hogendijk 9, p. 36 (12). 

65~nglish translation by A. Sayili "The trisection of the angle by Ab5 Sahl Wayjan ibn al-Kiihi" 
Belleten 26 (1962), p. 693 - 700. 



will be trisecting the complement of angle GDA, 

the length of AB is arbitrarily set by the choices 

of lengths for the given lines GD and DA. The 

solution begins with the synthesis, and al-Kiihi 

trisects the angle E directly, using the lemma. 

(Fig. 35) 

Draw a hyperbolic section, AB, such that 

its latus rectum is equal to its latus 

transversum BG, and such that both are 

equal to the chord AB, and let the angle of 

arrangement66 ADW be equal to the angle 

Figure 35 

of E. (This construction is demonstrated in Conics 1.55) 

Since GD.DB : AD2 = AB : BG6' via Conics 1.21 (this is the ratio property for the 

hyperbola), and AB = BG, it follows that GD.DB = ADZ. 

This is the construction required in the lemma, now al-Kiihi proves angle E has been trisected. 

Then LABD = LGAD ( triangles GDA, ADB are similar since GD : AD = AD : DB). 

And LDBA = 2 LAGD, because AB = BG, so that LGAD = 2 LAGD. 

Therefore LGAD + LAGD = 3 LAGD. 

But LADW = LGAD + LAGD, so LADW = 3 LG, therefore LG = ~/~LADW which is 

the angle of ordinates of the section. 

Hence LAGB = W E .  

6 6 ~ h e  angle between the diameter and the corresponding ordinate. This angle does not depend on 
the choice of the ordinate, since all ordinates corresponding to a certain diameter are parallel. 

67Al-~iihi actually gives the incorrect ratio by inverting the right hand side. (Knorr 1, p. 308) 



This version of the angle trisection is comparable 

to Pappus' second method of trisection6*. Pappus 

gives the analysis of constructing the triangle ABG 

(Fig. 36), of given base AG, whose angles at A and 

G are in the ratio 1 : 2; he claims that B lies on a 

hyperbola whose latus rectum is three times its 

latus transversum. Al-Kiihi's construction is based 

on a similar triangle, but with the side AB given. It 

is possible he derived his solution from a Greek 

prototype related to Pappus, although Hogendijk (9, p. 13) believes it was an original invention. 

construction of this problem is virtually identical to the 

Al-Sijzi , in his Treatise on the division ofthe angle 

one of al-Kiihi we have just seen, using exactly the 

same hyperbola. 

Al-Sijzi also gives another construction by 

means of conic sections of a problem, equivalent to 

the trisection of the angle that was invented by al- 

Biriini. Al-Biriini had proved that: (Fig. 38)given an 

isoleces triangle ABC, and a point D on the base BC 

into three equal presents all the problems to which 

Islamic geometers reduced the trisection of the angle. 

He shows, one by one, that they are all equivalent to 

the following problem: (Fig. 37) given the angle KCD, 

extend KC to A such that CA = CD and from D draw 

a line segment DE to AC such that DE.EC + EC2 = 

CD?. Then angle CDE is one third of angle KCD. His 

68 See p. 16, above. 

A K 

Figure37 

%ee Woepcke (185 1) pp. 117 - 127 for a partial translation of this treatise. 
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such that AB : BD = AD : DE, (so we have E on AB and AD = AE), then LBAD = WBAC. It 

is interesting that Al-Sijzi uses here the same circle and the opposite branch of the hyperbola 

used by al-Kiihi; the method therefore is very similar. 

Finally, there is solution by Abii'l-Jiid of a problem of al-Binini, which leads to the 

trisection of the angle7'. It is very similar to one of the problems discussed by al-Sijzi, but the 

construction involves the intersection of a parabola and a hyperbola. Al-Biriini proposes this 

problem, but is unable to solve it: (Fig. 39) given a line BC and a point A not on the line, to draw 

a line AD from A to BC such that AD.BC + BD2 = BC2. We present only Abii'l-Jiid's 

constuction, and omit the details of the proof. 

Draw AL perpendicular to BC, and WB also 

perpendicular to BC such that WB = BC. 

Draw the parabola ff with vertex W, axis 

WB and parameter BC, and the hyperbola 

3E through A with transverse axis AL and 

parameter 2.AL. Let the two conics intersect 

at a point Z. Draw ZD perpendicular to BC, 

then D is the required point. 

Abii'l-Jiid notes that if the conics intersect twice, 

points on BC will satisfy the given conditions. 

Furthermore, it is possible that there be no solution if for every point D on BC we have AD > 

BC because then AD.BC + BD2 > BC2. 

This concludes the section on the trisection of the angle. The plethora of solutions and 

related problems attests to the significance of this famous problem in Islamic mathematics. In 

addition to its usefulness in the 'problem of Alhazen', the trisection of the angle also enabled 

geometers to construct regular n-gons with n = 3k if they were able to construct regular k-gons. 

70 This solution can be found in Woepcke (1851), pp. 114 - 116. 



4 5 

The Construction of Regular Polygons 

The ancient Greeks showed some interest in the construction of regular polygons, for 

instance: Euclid showed how, by means of ruler and compass, to construct both a regular 

pentagon and a regular 15-gon in a circle (Elements IV.1 l ) ,  and Archimedes worked on the 

construction of the heptagon. We will present a problem related to Euclid's on the construction 

of a pentagon that Islamic geometers formulated, that is, the construction of an equilateral 

pentagon in a given square, a problem which may be solved by conic sections. Of course, the 

construction of the hexagon in a circle is trivial and is found in Euclid's Elements Book IV. 

However, the construction of the heptagon in a circle proved to be more complicated. Although 

Archimedes had solved this problem by means of a neusis construction, it was not until 10th 

century, when Islamic geometers attacked this problem, that a solution was found by means of 

conic sections. With the twelve different solutions they constructed, this problem offers us many 

interesting applications of conic sections. We will also look at solutions by Islamic geometers to 

the problem of constructing the nonagon. This problem follows immediately from the 

construction of an equilateral triangle and the trisection of the angle, but other methods were 

found by the ever-diligent geometers of the Islamic world. 
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The Pentagon in a Square 

The problem of inscribing an equilateral pentagon in a given square was not, to our 

knowledge, formulated by the ancient Greeks. A combination of problems found in the Elements 

leads to the construction of an equilateral and equiangular pentagon in a given square (Hogendijk 

7, p.102). However, this can only be done with four of the five angular points on the square. By 

dropping the requirement of equiangularity, Abii Ernil was able to solve the problem in the early 

tenth century, and his solution to the problem t o j n d  the side o fan  equilateral pentagon consttucted 

within a square ofside 10 is found in the second part of his famous work on algebra On the Pentagon 

and Decagon7'. He solves this case (Fig. 40) by algebraic reasoning. The more difficult case, 

involving a quartic equation, was solved by al-Kiihi in the late tenth century (Fig. 41). Al-Kiihi, 

considered the best geometer of his time, also supervised astronomical observations in an 

observatory in Baghdad, and worked as we have said with geometers such as al-Sizji and al- 

Biriini. 

Al-Kiihi's construction is remarkable because it contains the proof of the focus-directrix 

property of the hyperbola with eccentricity e = 2. The focus-directrix property of the parabola 

was known to Diocles, and Pappus used the focus-directrix property of the hyperbola in his 

71 This is the second part of Abii Kimil's Algebra; several modem translations of this work have 
been made, see Lorch 1, p. 215 for a complete list. 
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solution to the trisection of the angle. However. Apollonius does not mention this property in 

his Conics, and there are no other occurrences of it in any text by a medieval author. 

Al-Kiihi divides his solution into an analysis and 

a synthesis, each of which contain three propositions. 

The first two propositions reduce the initial problem to 

one of constructing in a given rectangle ABGD (which 

is half the original square) three lines AE, EK, KD such 

that AE = 2EK = KD, and EK is parallel to AB (Fig. 

42). This problem is solved in proposition 3, where K 

is found by means of intersecting two hyperbolas. Al- 

Kiihi shows that the point K lies on two different 

hyperbolas by deriving their fundamental properties, 

and then he identifies the elements needed to construct 

them. The details of al-Kiihi's analysis are as follows, and are divided into two parts: 

( 1) (Fig. 43) Assume the construction done and 

drop KL perpendicular to AB. 

Then AE2 = BE2 + AB2 = LK2 + AB2. But AE = 2EK by assumption, and EK = BL, 

therefore, KL2 + AB2 = 4BL2 (a). 

Bisect AB in N, take S on AB extended such that BS = YLW,  then 

4BL' - AB2 = 4(BL2 - BN2) = 4(BL + BN)(BL - BN) = 4LS.LN. (P) 
Combining (a )  and (P) we obtain 

KL2 = 4LS.LN, i.e. 

KL' : (LN.LS) = 4SN : SN. 

This is precisely the fundamental 

property of a hyperbola 31 with 

vertex N, transverse axis SN and 

latus rectum equal to 4SN. Since the 

rectangle ABGD is given, so are the 

points S and N, and therefore 3 can 



be found by Conics 1.54. 

(2) (Fig. 44) Assume the construction done and 

drop KM perpendicular onto CD, extend it to meet AG in 0. 

Since AD = 2DG, then by similar triangles MO = 2MG, and since DK = 2KE, then MO 

= DK. 

Therefore OM2 = DK* = DM2 + MK2. (Y 

Extend KM to W such that MW = MK, then 

OM2 - MK2 = (OM - MK)(OM + MK) = OK.OW (6) 

Combining (y) and (6) we obtain DM2 = OK.OW and, 

OK.OW : 0A2 = DM2 : OA2 (0 
Let C be on AG such that CF is 

I 

perpendicular to GD and CF = FD. 

Then CF = 2FG since AD = 2DG and AD is 

parallel to CF, therefore FD = 2FC or 

GD = 3FG. 

Hence F is known. 

Since AD is parallel to OM is parallel to CF, 

then DM2 : OA2 = DF2 : CA2 = FC2 : CA2, 

and (C) becomes 

on a conic section by using the converse of Conics 111. 16 which states: if AC, CF are tangent to 

a conic section at A, F and if OKW is parallel to CF intersects AC in 0 and the conic in K, W, 

then (A) holds. 

Therefore K, W lie on a conic 3' which is tangent to FC at F and to AC at k 

There are two more things that al-Kiihi must do: he must specify the conic section; and he must 

find the infom~ation necessary to construct the conic section. Firstly, he uses Conics 11.7 to 

establish that MF is the axis of the conic section. 

Since KW is perpendicular to FM and is bisected by FM, and since KW is parallel to the 

(0K.OW) : OA2 = FC2 : CA2 (1) 
Figure 44 

Al-Kiihi uses this relationship to show that K, W lie 



tangent FC at F, it follows that MF is the axis. 

This allows him to specify the conic section: 

By Conics 1.35, if the conic section is a parabola then GF = FD, but GF = MFD, therefore 

is either an ellipse or a hyperbola. 

Then, for transverse axis FV, we have GF : FD = GV : VD by Conics 1.36. 

Bu tGF:FD= 1 : 2 = G V : V D .  

This is only possible if G lies between F and V, 

hence 3 is a hyperbola with transverse axis FV. 

Lastly, al-Kiihi determines the value of the parameter p, which enables him to construct the 

hyperbola 3 using Conics 1.54. 

By the fundamental property of the hyperbola, AD2 : (DF.DV) = p : VF. 

Since AD =DV and DF = Y3DG = then p = 3VF. 

And since both T, F are known, we have sufficient information to construct 3. 

In this proposition, al-Kiihi has proved that the curve satisfying the focus-directrix property with 

eccentricity 2 also satisfies the fundamental property of the hyperbola. In proposition 4 of the 

synthesis, al-Kiihi shows the reverse, thereby proving the equivalence of the two properties. In 

addition, al-Kh- has shown considerable creativity in solving this geometrical problem, and skill 

in applying the theorems of the Conics. 



The Regular Heptagon 

The only extant Greek exact construction of the regular heptagon has been preserved in 

a 9th century Arabic translation of the Book ofthe Construction ofthe Circle, Divided into Seven Equal 

Parts, attributed to Archimedes7'. This construction is effected by means of a moving ruler using 

a method similar to a neusis, in order to construct a certain line segment which is used to find 

a side of the heptagon. Many of the Islamic geometers from the 10th and 1 1 th century 

considered such a construction of the regular heptagon inadmissible, and began to seek 

constructions by means of ruler, compass and conics only. Of the twelve constructions by Islamic 

geometers which have come down to us, we will discuss four constructions that represent the 

different methods used. 

These methods were greatly influenced by the Archimedean construction found in 

Propositions 17 and 1 873 of the Book ofthe Construction ofthe Circle, Divided into Seven Equal Parts. 

Proposition 17(Figure 45)  is a construction of point K on a given segment AB and point Z on 

AB extended such that 

( 1 )  AB.KB = ZA2, and ZK.AK = KB2. 

igure 45 

The first step is to draw the square ABDG, 

its diagonal BG, and to extend BA to E 

(Figure 46). Next, one places a ruler with 

one end on D such that i t  intersects BG, 

AG and BA extended, at the points T, H 

and Z respectively, and then one somehow 

determines a position of the ruler such 

that the area of AZAH equals the area 

aGTD (henceforth written as AZAH = igure 46 b; 
l 2 ~ h e  book as it stands is not considered to be entirely Archimedes' work. 

')T'he question of Archimedes' authorship of these two propositions is unsettled. See Hogenkjk 7, 
p. 212, 213. 

P 
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aGTD). The construction of the straight line DZ resembles the neusis constructions we 

have seen; however, none of the three segments ZH, ZT and HT has a given length. Once 

DZ has been found as required, one draws KTL perpendicular to AB, and Z, K are the 

desired points. The proof of this is easily deduced by considering the similar triangles 

ZAH, DLT and ZKT, DLT. 

Proposition 18 is the construction of a circle divided into seven equal parts using the line 

segment ZAKB as constructed above. 

One constructs the triangle AKE (Figure 

47) such that AE = AZ, and KE = KB. 

The text does not make it clear why this 

construction is possible, however, 

according to Elements 1.20-22, a triangle 

AKE can be constructed from three 

segments ZA, AK, KB if and only if each of 

the segments is smaller than the sum of 

the two remaining ones. These conditions 

can be proved from equation (1 )  above. 

Now one joins ZE and EB, and 

Fieure 47 D 

circumscribes a circle about triangle ZEB and extends EA and EK to meet the circle in G 

and D. Then arcs ZG, GD and BE are each one-seventh of a complete circumference, and 

arcs DB and ZE are two-sevenths of it. By bisecting arcs DB and ZE in P and Q, the circle 

has been divided into seven equal parts. The proof consists of two parts: first, one shows 

that arc ZG = arc EB = arc GD; secondly, one shows that arc ZE = arc DB = 2arc EB. 

Thus the complete circumference of the circle is seven times arc EB. 

One approach used by Islamic geometers to find an admissible construction of the regular 

heptagon was to discover an admissible construction of a line DTHZ in a square ABDG such that 

AGTD = a Z A H .  The geometer Abii Himid &mad ibn Mubarnrned ibn al-Husayn al-Saghini 

succeeded in doing this by means of the intersection of two hyperbolas. He claims to have 
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discovered this solution in 970 A.D. which he encloses in a letter to the prince 'Adud al-Dawla7*. 

(Figure 48) 

Extend DG towards C such that GC = DG. Draw two "opposite hyperbolasn Y, and Y? 

through D and C respectively, with asymptotes GB and GA. Draw a hyperbola X3 

through G with asymptotes BD and BA. The branch of the hyperbola 31? intersects the 

hyperbola 31, in a point F between DC and BA since it intersects the asymptote BA of the 

hyperbola 31, through G. Draw FZ perpendicular to A extended. Draw DZ cutting BG at 

T and AG at H. Then AGTD = AZAH. 

This construction is interesting for two reasons: both branches of the hyperbola, X, and X2, are 

drawn and their asymptotes are 

not perpendicular to each other. 

The term hyperbola, in the 

ancient sense, meant one single 

branch of what is nowadays the 

hyperbola. For example, Abii'l- Jiid 

refers to al-Saghihi's solution as a 

construction by means of "three 

hyperbolas"75. Although 

geometers were well acquainted 

with the properties of the two 
Figure 48 

branches of the hyperbola, they rarely used them both in their constructions. 

Proof Draw MGFO such that M lies on BD extended and 0 on BA extended. 

Then MG intersects X, in I. Since BO and BM are asymptotes of X3, 

FO = GM (Conics 11.8). 

But aMDG is similar to AFZO, since MD is parallel to FZ and DG is parallel to ZO. 
6 

Hence DG = ZO, whence DGOZ is a parallelogram. Since GH is parallel to ZF, GHZF 

74 See Hogendijk 7, p. 277 (M9). 

75 Hogendijk 7, p.223 



is also a parallelogram, and therefore ZH = FG. 

Also, since F and I are points on the opposite hyperbolas 3, and X 2  and the straight line 

FI passes through their centre76 G, 

FG = IG (Conics 1.47). 

And since DH intersects the asymptotes GB and GA of X I  (passing through I and D, with 

centre G) in T and H, and DH is parallel to IG, 

IG2 = DT.DH (Conics 11.1 1). 

It follows that ZH2 = DT.TH. 

Since ADGH is similar to AHAZ, we have ZH/DT = DGIZA and LGDT = LHZA, so 

AGTD = AZAH (Elements VI. 15). 

The construction attributed to Archimedes together with this admissible construction of the line 

DTHZ constitute an admissible construction of the heptagon. Three other Islamic geometers 

succeeded in finding admissible constructions of the line DTHZ by means of conic sections, and 

we briefly summarize them below. In the late 10th century, Abii'l-Jiid constructed the line in the 

square ABGD by means of intersecting a parabola and an equilateral hyperbola; this construction 

is in the Book $the Construcrion of the Heptagon in the The geometer Kamiil al-Din ibn 

Yiinus, in the late 12th or early 13th century, constructed it by means of intersecting two 

equilateral hyperbolas, and uses an inside/outside7' argument to determine the position of their 

point of intersection. Ibn al-Haytham, who actually believed that Archimedes possessed an 

admissible construction of DZ by means of conic sections which wasn't included in the treatise, 

used the intersection of two parabolas. 

The salient feature of Ibn al-Haytham's construction, as found in his Chapter on the Lemma 

for the Side of the ~ e p t a ~ o n ' ~ ,  can be seen in his formulation of the problem: (Figure 49) to 

76 The point which divides a diameter of a hyperbola into two equal parts. 

77 See Hogendijk 7, p. 277 (M10). 

780f course, the terms inside and outside refer to the curvature of the hyperbola. We will see this 
kind of argument in the work of S h a d  al-Din al-Tiis?. 

79 See Hogendijk 7, p. 278 (M16). 



construct a square ABGD together with a straight line 

through B that intersects the diagonal AG in Z, GD in 

H and AD extended in E such that ABZG = ADHE. Ibn 

al-Haytham does not assume that the square is a given 

one, realizing that any square ABGD together with a 

line BZHE is sufficient for constructing a regular 

heptagon by means of Proposition 18 of the treatise 

attributed to Archimedes. That is, he determines the point of intersection of the two parabolas 

without assuming that the square is a given square. In contrast, in al-Saghiini's construction 

discussed above, it was assumed that the square is a given square. 

A second approach that Islamic geometers took was to construct a line segment AGDB 

in Proposition 18 such that ADGD = DB2 and GB.DB = AG2 (Figure 50), without referring to 

the square used by Archimedes in Proposition 17 of his treatise. Three of these constructions 

have come down to us, and seem to be easier than the previous ones discussed. 

The first construction is due to Ibn al- 

I-Iaytham, who found five constructions of the 

regular heptagon during the first half of the 1 1 th 

century, which he gives in his Chapter and which 

he does according to the method of analysis 

(Figure 5 1) 

Assume that AGDB is such that ( 1 )  AD. 

GD = DB2 and (2) GD.DB = AG2. 

Draw GX perpendicular to AB such that 

GX = AG. 

Ibn al-Haytham now shows that X lies on a 



parabola 3 and a hyperbola X. 

Since (2) holds, X is on a parabola P with vertex B, axis DB and parameter DB. Extend 

BD to Q such that DQ = DB. Draw DR and QS perpendicular to AB such that 

(3) DR = QS = DB. 

Draw QR and DS. Extend XG to meet DS in Y. Draw XZ parallel to YD such that Z lies 

on DR extended. Since GY = GD, and GX = GA, 

(4) XY = AD. 

From ( l ) ,  (3). and ( 4 )  it follows that XY.GD = QS.QD. Since GD/XZ = QDIQR, we 

obtain XY.XZ = QS.QR. 

Hence X is on a hyperbola 2 through Q with asymptotes DS and DR (Conics II.12)80. 

The point X determines the point G, and since XG = AG, also the point A. If we assume that B 

and D are known, then the required line AGDB is found. Ibn al-Haytham uses this line to 

construct the regular heptagon in a slightly different manner than that of the Archimedean 

Proposition 1 881 .  

In the late 10th century, al-Kiihi found two solutions to the problem of constructing the 

line AGDB. In his Letter on the Derivation o f  the Side of  the Equilateral Heptagon in the Circleg2, he 

intersects an equilateral hyperbola and a parabola to construct the line, and in the Letter on the 

Constmdion of  the Side of  the Equilateral Heptagon in the Circles3, he intersects two hyperbolas. 

Abii'l-Jiid also uses an equilateral hyperbola and a parabola in his above-mentioned solution; 

however, he constructs the Archimedean square whereas al-Kiihi constructs a certain line 

segment. In both cases, al-Kiihi uses a method similar to the Archimedean Proposition 18 in 

80 The asymptotes of this parabola form an angle of 135" and LQDR = 90". Ibn al-Haytham has 
shown that in this case, XY.DG = QIY. 

8 ' ~ e e  Rashed, "La Construction de l'heptagon regulier par Ibn al-Haytham", Journal for the 
Hisrory ofArabic Science 3 (1979), 309 - 387, for this construction. 

82~ublished by Samplonius in German translation; see Hogendijk 7, p. 277 (M4). 

83~iscussed by Anbouba 3, p. 3 19; see Hogendijk 7, p. 277 (M5). 
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order to construct the regular heptagons4. 

The third approach taken by Islamic geometers resembles the previous one; they also 

construct a certain line segment by means of conic sections. By means of this line segment, they 

construct a certain triangle, and by inscribing a similar triangle in a given circle, they are able to 

construct the side of a regular heptagon. There are four kinds of triangles, whose angles are 

integral multiples of a= 180•‹/7, that can be related to the construction of the regular heptagon: 

( I )  with angles a ,  3a, 3a, 

(2) with angles Za, 3a, 2a, 

(3) with angles a ,  5a, a ,  

(4) with angles a, 2a, 4a. 

Nasr ibn ' ~bda l l i h*~  shows how the problem of constructing a regular heptagon leads to the 

problem of constructing the triangle (1). He then analyses the construction of such a triangle as 

follows (Figure 52): 

Assume ABG is such a triangle, and that LA = a. Extend 

AB to D such that LDGB = a. Extend AD to E such that 

DE = DG. Then LGDA = 2a, and LDEG = LDGE = a.  

Thus EG = GA = AB. Since AAGD is similar to aGBDe6, 

we have AD/GD = GD/BD; therefore 

(a) AD.BD = GD2 = DE2. 

Since AEGA - m G e 7 ,  

we have AEEG = EG/DE; therefore 

(b) ALDE = EG2 = AB2. 

The problem has now become to construct a line segment ABDE such that (a) and (b) hold. 

84 See Hogendijk 7,  p. 209 for details. 

85 The solution is found in a manuscript written in 1277A.D., but the date of the actual construction 
is unknown. 

? 'hese triangles both have angles a, 4a, 2a. 

87 These triangles both have angles a, 5a, a. 



(Figure 53) 

Assume that ABDE is like this, and draw 

DX perpendicular to ABDE such that DX 

= DE. Then X is on an equilateral 

hyperbola XI with vertex B and transverse 

axis AB since 

DX2 = DE2 = AD.BD. 

Draw AN parallel to DX such that AN = 

AB. Draw NB, draw MAK parallel to NB 

and extend XD to meet these parallels at L 

and K. So KX = AE since KL = AB, LD = 

BD, and DX = DE. 

Hence X is on a hyperbola X2 through N with asymptotes AM and AB since 

AN2 = AB2 = ALDE = KX.DX (Conics 11.1 1). 

The point X determines D, and since DX = DE, it also determines E, and the analysis is 

complete. 

This construction of the line segment ABDE such that AD.BD = DE2 and AE.DE = AB2 

is very similar to Ibn al-Haytham's construction of the line AGDB such that AD.GD = DB2 and 

GB.DB = AG2. In fact, the latter construction corresponds to the construction of triangle (4), 

whereas the former, as we have seen, corresponds to the construction of triangle (1). Triangles 

(2) and (3) can be constructed with similar line segments. Ibn al-Haytham, in his Treatise, 

presents constructions all four triangles by means of conic sections and shows how they relate 

to their respective line segments. The four problems of constructing triangles are essentially 

rephrasings of one problem, namely to construct an angle a = 180'17. 

The last construction we will discuss is probably the earliest Arabic construction of the 

regular heptagon (Hogendijk 7, p. 238), and is given in al-Sijzi's On the Construction of the 

HeptagonE8. This construction is a joint effort between Abl'l-Jiid, who first attempted to solve 



IV. 10- 1 1). Euclid treats as a preliminary (Elements IV. 10) 

an isosceles triangle such that each of the angles at the 

base is two times the angle (P) at the vertex; then the sum 

of its three angles is five times P, or P = 180'15. Similarly, 

Abii'L-Jiid treats the isosceles triangle such that each of the 

angles at the base is three times the remaining angle a, so 

that a = 180•‹/7. 

However, Abii'l-Jiid was unable to construct the 

required line segment; the construction was the work of Ibn 

the problem using a neusis construction, and AL'AII' ibn Sahl, who, at the request of al-Sijzi, 

devised a certain construction by means of conic sections. Little is known of Ibn Sahl, though he 

is thought to have been one generation older than Abii'l-Jiid and al-Sijzi. The history of the 

development of this construction is very colourful, and includes slanderous remarks made by 

competing geometers, and several accusations of plagiarism. The Islamic geometers showed 

tremendous eagerness to solve the problem of constructing the regular heptagon, and although 

they made many erroneous attempts, their combined efforts finally paid off. 

Abii'l-Jiid's task is to construct a triangle ABD (Figure . 

Sahl (Figure 56): 

54) such that LA = LD = ~ L B .  Once he has done this, he 

inscribes a triangle similar to ADB in a given circle, and the 

side corresponding to AD is the side of the inscribed regular 

heptagon. In order to construct this triangle, Abii'l-Jiid uses 

a line segment AGB such that ABAG = A 2  for a segment I 

D 

B A A 
Figure54 

satisfyng hrBG = AB/(AB + BG). 

In a letter to another geometerg9, Abii'l-Jiid claims he amved at this line segment by 

considering an analysis of a triangle ABD such that LA = L D  = ~ L B .  By drawing DX such that 

LADX = LAJ~D, and XW such that LBXW = LXBW, he proves that AD2 = A X M  and ADBX 

= AB/(AB + BX) (Figure 55). He says that he was brought to consider the triangle ABD by 

following the method used by Euclid for the construction of the pentagon in the circle (Elements 



For a given line segment AB, choose D on 

BA extended such that AD = AB. 

Complete the square ADEZ. 

Draw a hyperbola ,?I through A with 

asymptotes EZ, ED. 

Draw a parabola 01 with vertex B, axis BD 

and parameter AB. 

Let the two conics intersect in H. Draw 

HG perpendicular to AB, then G is the 

required point. Figure 56 

Proof Complete rectangle GDEI, draw HTM 

parallel to IE and ATZ parallel to GI. 

HMEI = ADEZ since H and A are on the hyperbola (Conics 11.12). 

Then GAZI = GDMH, by subtracting TMEZ and adding GHTA. 

Thus AZ.AG = GHGD and hence 

(1) GH/AG = AB/GD (since AZ = AB). But 

(2) GH2 = AB.BG, since H is on the parabola. 

Since GD = GA + AB, and for 31 = GH, we have found the required line segment ABG 

such that from (2) AB.GH = 312 where from (1) WAG = AB/(AB + AG). 

The essential part of this construction of the regular heptagon, as with the previous ones, is the 

construction by means of conic sections of a straight line segment divided in points such that 

certain conditions are satisfied. As in the third method, this line segment enables one to draw 

a certain triangle which is inscribed in a given circle in order to determine the side of the 

heptagon. 

In finding all these constructions of the regular heptagon the Islamic geometers were 

stimulated to study the theory of conic sections and its applications. Ibn al-Haytham, in his work 

on this problem, realized how seemingly different constructions all led to the construction of 

certain triangles which could be used to construct the heptagon. Islamic mathematicians would 

need this kind of realization of an underlying unity between solutions to 'solid' problems in order 



to translate them into specific cubic equations. Moreover, their experience with conic sections 

would help them in their studies of geometrical solutions to more general cubic equations. 

In fact, Islamic geometers did work on the relation between the regular heptagon and 

cubic equations. In an untitled work on algebra, Al-Khayyiim mentions the work of Abii Nasr ibn 

'IAq : 

"He used the terminology of the algebraists, and the analysis led him to (the equation): 

a cube and squares are equal to numbers. He solved it by means of conics". (Hogendijk 

9,  p. 240) 

Unfortunately, this work by Abii Nasr is not extant, and we have no further references of it. We 

investigated the conic sections used by the other geometers who solved the Archimedean lemma, 

and found that al-Saghihi's construction, for instance, is equivalent to the construction of an 

equation of the form: a cube is equal to numbers and squares. However, it is difficult to suggest 

a plausible reconstruction of Abii Nasr's reasoning. 



The Nonagon 

The construction of the nonagon may be considered as a special case of the trisection of 

the angle. If one places an angle of 40" in the centre of the circle, its chord is the side of the 

inscribed regular nonagon in the circle. The angle of 40" can be constructed by taking two angles 

of 20" together, and one constructs an angle of 20" merely by trisecting an angle of an 

equilateral triangleg0. Of course, one could also construct a nonagon by inscribing an equilateral 

triangle in a circle and trisecting its angles. This latter procedure is similar to the one Euclid uses 

in Elements IV, 11 in order to inscribe a regular pentagon in the circle. He first constructs an 

isoceles triangle with angles 36", 36", 18". then inscribes this triangle in a circle, and finally 

bisects both 36" angles to obtain the result. The former procedure is based on the central angle, 

that is, constructing the angle at the center of the circle, whose chord corresponds to one side of 

the nonagon. 

As such, this problem might have been of little interest, but in fact, it stimulated the 

discovery of a new problem in Islamic geometry. We quote the introduction of Abu'l-Jiid's answer 

to a question put forth by al-Biriini: 

"Why have we stated in the seventh proposition of the seventh section of the fourth part 
of our Book on Geometrical Subjects9' that the construction of the nonagon is by this 
proposition possible by means of algebra?" (Hogendijk, 1979) 

In his answer, Abii'l-Jiid shows how the construction of the regular nonagon can be reduced to 

another problem: solving the equation x3 + 1 = 3x. This reduction to a cubic equation is as 

follows. (Fig. 57) 

Abii'l-Jiid considers the isosceles triangle ABG, in which AG = BG and AGB = 2 0 " ~ ~ .  He 

takes D on BG such that AD = AB. By completing the triangle as in figure 57, where EZ 

= ED = AD, and ZK is perpendicular to AG, he arrives at the following relationship: 

(1) AG2 = AB(GD + 2BG) = (3BG - DB). 

gO~he construction of an equilateral triangle is shown in the Elements Book I, prop. 1 

no his lost work is the collection of tracts mentioned by 'Umar al-Khayytim in the appendix to his 
Algebra. 

'20f course, the construction of this angle is achieved by trisecting the 60" angle. 



Now Abii'l-Jiid assumes that 

AG = BG = 1, and AB = x (jidhr - the 

unknown quantity), so x is the side of a 

regular 18 sided polygon in the circle 

with radius AG = 1. 

Then AB2 = DBAG, (since triangles ABD and GAB are similar) or DB = x2 ( m d  - the 

square of the unknown). 

From ( 1) it follows that 1 = x(3 - x2). so x3 + 1 = 3x. 

From this text we learn that in the 7th proposition of the seve~lth section of the fourth part of 

the Book on Geometrical Subjects, Abu'l-Jiid solves this equation by conic sections. Unfortunately, 

this book has disappeared. 

In his Canon, al-Biriini derives the equation x3 + 1 = 3x in exactly the same way as 

described above. In addition, he reduces the construction of the nonagon to yet another cubic 

equation: x3 = 1 + 3x; x is the chord of two-ninths of the circumference of the circle, in which 

the side of the inscribed regular nonagon has length 1. Contrary to the above method, this 

problem is formulated in a way that bears little relation to the trisection of an angle (Hogendijk 

9, p. 26). 

The construction of the nonagon, as we have said, is a special case of the angle trisection, 

that is, of the 60" angle. Although 10th century Islamic geometers were well aware of the 

equivalence of the construction of the nonagon to a cubic equation, they had not yet established 

a similar equivalence for the trisection of an arbitrary angle. However, in the 15th century, the 

Islamic mathematician Jamshid Ghiyiit al-Din al-Gshi reduced the trisection of an arbitrary angle 

a to an equivalent of a cubic equation involving the chord of the angle a ,  placed in the centre of 

a circle with radius 193. 

93~ee  A. P. Youschkewitch, Geschichte der Mathematik im Mittelalter, Moscow, 196 1 (Russian), 
Leipzig, 1964 (German translation), p. 32 1. 
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Archimedes' Problem 

In the fourth proposition of On the Sphere and the Cylinder 11, Archimedes formulates a 

subsidiary problem which the ancient Greeks were able to solve by means of conic sections. 

Eutocius gives three solutions to this problem in his Commentay, each of which we have discussed 

in the first section. The subsidiary problem can be stated as follows (Fig. 58): to divide a line DZ 

at a point H such that the ratio of HZ to ZT is equal to the ratio of BD2 to DH2 where DB, BZ 

are given lengths and the ratio of BZ to BT is known94. 

igure 58 I 
According to al-Khayyiim, the first Islamic mathematician to attempt to solve this 

problem was al-Mihini, who translated i t  into its algebraic equivalent, a cube plus numbers equals 

squares. In its algebraic equivalent, the "coefficient of the squares" is the length of the line DZ 

and the "numbersn depends on the given lengths DB, BZ and the ratio of BZ to By5 .  He failed 

to solve it but his efforts merited the problem being named after him. Al-Khayyim goes on to 

say that Abii Ja'far al-Khizin successfully constructed a root of this equation in a certain treatise, 

by means of conic sections96. Almost at the same time, the problem was solved by means of a 

parabola and a hyperbola by Ibn al-Haytham97, whose construction is as follows. (Fig. 59) 

94~n Archimedes' problem DB is the diameter of the sphere, DB = 2BZ, and BZ : BT is known in 
terms of the given ratio of the problem. See p. 20 for the problem statement. 

95 For a=DZ, b=BD, and c=BZ/BT, we have x3 + b( 'I, -1) = ax2. 

96~ogendijk 7 argues that Abii Ja'far knew of Eutocius' construction of the problem (as found in 
his commentary on On the Sphere and Cylinder II), and thus remarked that al-MihM's cubic equation 

f could be solved geometrically by means of the same construction as Eutocius, which was not available to 
al-MihHni. 

 or a translation of this tract, see Woepcke (185 I), p. 91 - 94. 



Draw AD, ET, CZ perpendicular to the 

line DBTZ and all equal to DB. Draw a 

straight line through their endpoints A, E, 

C, and through the point E, draw a 

hyperbola 31 with asymptotes CZ, ZD. 

Then X will intersect AD in a point K 

between A and D. Draw a parabola P with 

vertex D, axis DA and parameter DB. 

Then P will intersect AC in a point S such 

that AS2 = AD.BD = BD2. Therefore, AS 

= BD, and since AE = DT > DB9*, we have AE > AS. Therefore E is outside P . And 

since K is inside P, the two conics P and Sld will necessarily intersect, say, at the point M. 

Draw from M a perpendicular to DZ meeting DZ in H. Then H is the required point. 

Proof: Draw NML parallel to DZ. Since M lies on the parabola, we have MN2 = BD.DN and 

also DH2 = BD.MH. Thus 

(1) BD2:DH2=BD:MH. 

Since M also lies on X , we have ML : EC = ET : MH, and also 

(2) HZ : ZT = BD : MH. 

Combining (1) and (2). we obtain the required result BD2 : DH2 = HZ : ZT. 

Ibn al-Haytham's construction corresponds to the auxiliary problem specific to Archimedes' 

problem in Prop. 4 of On the Sphere and Cylinder and, as such, does not require an investigation 

into the conditions for a solution. The construction Eutocius gives of Archimedes' solution, that 

we presented earlier, solves a more general problem for which it is necessary to investigate the 

limits of possibility. This general problem is also solved in a Ltyden manuscript by an Islamic 

geometer, who essentially discovers the same limits of possibility as Ar~himedes~~.  F. Woepcke 

98~his follows fiom the condition in Archimedes' original problem that BZ > ZT.(Heath 3, p. 64) 

99~oepcke has argued that there is a fundamental difference in their conditions - we discuss this 
on p. 66. 
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(185 1) has attributed the construction to al-Kiihi (Woepcke, p. 102)100 however, there is no 

conclusive evidence. 

The problem of Archimedes is generalized in the Leyden manuscript to the following one: 

(Fig. 60) given two lines AB and C, to divide AB at D such that (*) AD : C = C' : BD2. This is 

equivalent to the construction of the equation (AB - x) : C = C' : ~ 2 " ' .  The geometer who solves 

this problem notes that if C3 > 1/3AB.(Y3AB)2 = 4/27.AB3, the problem as i t  stands is impossible. 

That is, it would be impossible to (1; Fig. 60) divide AB at D such that (*) holds; however, he 

adds that for C3 > 4/27,AB3, one can extend AB to D such that (*) holds (2; Fig. 61). 

igure 60 0 
Now, the constructions of both (1) and (2) c 

effected using the following lemma: to find AD 

such that AD.BD" C3, where A, B, and D are 

collinear. The construction of this lemma is as 

follows. (Fig. 62, 63) 

Take BE = C, and construct the square 

BHZE. Draw a parabola P with vertex A, 

axis AB and parameter BE, and a hyperbola 

"d through Z with asymptotes EB, BH. 

Suppose 0' and .U intersect a t  a point T. 

' ?%ere  are two reasons for this opinion: (1) the construction ends on the last line of a page, and 
the following page begins by attributing a problem to al-Kh- and continues with the resolution of another 
problem. It is therefore unclear whether the previous or following problem of the manuscript is being 
attributed to al-Kiihi, and (2) al-KGhi is the author of another construction related to an Archimedean 
problem which investigates the limits of possibility. 



Draw perpendiculars TK, TD to BH, EB respectively. Then 

(I )  AD : TD = TD : BE since T lies on P, and 

(ii) BK : BE = EZ : KT i.e. TD : BE = BE : BD since Z lies on : I f .  

Since C = BE, combine (i) and (ii) to find that AD : C = C2 : BD2 or 

(iii) AD.BD2 = C3. 

Suppose (1; Fig. 62) that AD = AB - BD, then 

(iii) becomes AB.BD2 - BD3 = C3, which 

corresponds to the cubic equation x3 + c = ax2. 

Otherwise, we have (2; Fig. 63) that AD = AB + 
BD in which case (iii) becomes AB.BD2 + BD3 = 

C3, and this corresponds to the cubic equation x3 

+ ax2 = c. The geometer states that case ( 1) is 

limited since it has a solution only when 

(*) c3 4/27.AB3, 

and that case (2) always has a solution. 

The author does not indicate how he amved at the limit of possibility for a solution in 

case (1). However, we have already seen Archimedes' derivation of an equivalent condition, that 

is, that the product of the given surface and the given line segment cannot be greater than the 

product of AE.EB2 when BE = 2EA. Woepcke notes that in substituting the product of the two 

givens, linear and planar, by the cube of a single given line segment, the Islamic geometer 

succeeded in finding the modem expression (*) of this limit. Therefore, this geometer changed 

Archimedes' geometric condition for solving a particular problem to a general algebraic condition 

for solving a class of problems. This general condition will also be obtained in a clear and 

systematic way by the geometer Sharaf al-Din al-Tiisi in his discussion of the corresponding 

general cubic equationlo'. It is very interesting that in generalizing the problem of Archimedes. 

the geometer actually constructed two different forms of a cubic equation. 



Al-Kiihi's Problem 

Al-Kiihi was inspired by Archimedes to solve another problem by means of conic sections. 

The problem was never actually stated in Archimedes' On the Sphere and Cylinder, yet al-Kiihi 

claims it arises naturally from propositions 5 and 61•‹3 of this work. The problem is to construct 

a spherical segment whose spherical surface is equal to that of one segment and whose volume 

is equal to that of another. However, arbitrary choices of these segments will not necessarily lead 

to a problem with a solution. Not only does al-Kiihi solve this very difficult problem, but he 

establishes the conditions in which a solution exists. His analysis is summarized as follows'04: 

(Fig. 64) Al-Kiihi takes a point B known in 

position'05 on a line BE, also known in 

position, and assumes that the problem is 

solved by the segment ABG of height BZ 

in a sphere of diameter BD. The area of 

this segment is known, and by On the 

Sphere and Cylinder I. 42 & 43, it is equal 

to the area of a circle whose radius is the 

chord BA. 

Therefore, (1) Area = nBA2. 

Now, the volume of this segment is also 

known, and by On the Sphere and Cylinder 11.2 it is equal to the volume of a right cone 

having the same base as the segment and height TZ defined by TZEB = EZI ZD, where 

EZ = ZD + %BD. 

Therefore, (2) Volume = 1hnAZ"TZ 

lo3 Proposition 5: To construct a segment of a sphere similar to one segment and equal in volume 
to another. Proposition 6: Given two segments of spheres, to find a third segment of a sphere similar to 
one of the segments and having its surface equal to that of the other. See Heath 3, pp 79 - 84. 

 he following account is based on that of in Berggren 1996. 

105 We find definitions of the senses in which things are given in Euclid's Data. A straight line or 
an area is said to be given in magnitude when we can make others equal to them. A point or a line or an 
angle is said to be given in position when they occupy the same place. 
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Now, Al-Kiihi shows how to recast expression (1) into the form of the symptom of the hyperbola. 

From (1). since the area is known, so is the magnitude of the segment AB. Moreover, 

since xBA2 = xBD.BZ, we have an expression which describes a hyperbola with abscissa 

BD and ordinate BZ. 

The case of relation (2) is not so straightforward; however, al-Kiihi will recast it to define a 

parabola with known vertex and known parameter. In fact he derives the required expression by 

using both the 'givens' (the area and the volume): he transforms the known volume of the 

spherical segment into the cone AGT, and, he defines another cone whose base has the same area 

as the given surface. Finally, the point of intersection of the two conic sections that al-Kiihi will 

have described determines the position of D on the diameter BD. 

Al-Kiihi defines a 'cone of surface' , C, as the right isosceles cone whose base has radius 

AB. Since BA is known, so are C and the ratio of C to the cone AGT (call this ratio R). 

Now. R = 
AB.AB2 / TZ.AZ2 , and by similarity of right triangles and the definition of TZ, 

(3) R = 
AB.DB 

/ BZ.ZEa 

At this point, Al-Kiihi introduces DK, and shows 

that the point K, lying on BD extended, is known 

in position. This point K will be the vertex of the 

parabola. The trick is to show that BK is known 

in magnitude. (Fig. 65) 

Define DK by the following proportion 
AB.DK 

(4) R = / BZ2 , in other words, 

DK/BZ = DB/ZE, which assumes the existence 

of a fourth proportional, DK. 

Combining, (3) and (4), 
Figure 65 1 0  

AB.BD + AB.DK 
R = / BZ.ZE + B p  (by Elements V. 1 21•‹6), and since ZE = 3.%BD - BZ, 

AB(BD + DK) 
(5) R = / 3.VzBD.ZT 

Since AB is the mean proportional between BD and BZ, 



But BD + DK = BK, so it follows from (6) that BK is known in magnitude on the basis 

of the givens in the problem. 

It thus remains to determine the parameter of the parabola. 

Define a known line segment s by the proportion 

Then by (4) and (7),  we see that s.DK = BZ2, so if we draw DM perpendicular to BD 

such that DM = BZ, then DM is the ordinate of a parabola with vertex K and abscissa 

KD. 

Al-Ki&i now proceeds with the construction of these two conic sections which will intersect under 

certain conditions. We discuss these conditions later; let us first assume a solution exists. 

Draw the parabola P with vertex K, axis KB and parameter s. Draw the rectangular 

hyperbola 3C whose asymptotes are BE, BO, where BO is perpendicular to BE. 

Since s.DK = DMZ, the parabola passes through M, and as a consequence of (1). 

BD.DM = BD.BZ (=AB2), the hyperbola also passes through M. 

Then the point of intersection of these two conic sections M, is known in position, as is 

the point D. Thus the diameter BD is now determined and therefore the sphere is 

determined. Also BZ = DM is determined, so the segment of the sphere is determined. 

To establish the conditions under which the conic sections intersect, Al-Kiihi investigates 

the ratio R Of course, the conic sections themselves are defined in terms of R and AB, which are 

in turn defined in terms of the givens of the problem: area and volume. Al-Kiihi observes that for 
DB3 

a futed AB (so the numerator of the ratio R is fmed) R2 = /BZ.ZEZ lo' 2 2. Therefore, for R2 > 

2, the conic sections intersect twice, giving rise to two spherical segments: one smaller than a 

hemisphere and one larger. When R2 = 2, the two sections are tangent to each other at the 

point M, and in this case, BZ = %ZE, and the segment is a hemisphere. Of course, if R2 < 2, 

there is no solution. Al-Kiihi concludes with the remark that when R = 2, the solution 

determined by the perpendicular nearer B corresponds to a segment equal to the whole sphere, 

while that detern~ined by the perpendicular further away corresponds to a segment smaller than 

107 From (3) $ have R = AB.DB, 
DB3 AB. DB.ZE/ 

DVS BZ.ZE = /AB.ZE.DB. Also from (31, R = B Z . Z E ~  hence 
it follows that R2 = / BZ.ZE2. 



a hemisphere. Thus. R has an upper bound at 2 when the segment is larger than a hemisphere 

because the segment cannot exceed the whole sphere. 

We do not render the details of his proof here, as his demonstration is independent of 

conic sections. However, we note that Eutocius had shown in his Commentary on the Sphere and 

Cylinder 11.4 an equivalent relationship, that is, that BZ.ZE2 (the cone which is equivalent to the 

given volume of the segment) is a maximum when BZ = %ZEIo8. We will discuss this result and 

compare two proofs of it in the very last sectionlog. 

Al-Kiihi was able to formulate a problem that no one had yet worked on, not even the 

ancient Greeks, and his solution shows remarkable ingenuity. By introducing the ratio R, he was 

able to recast his initial expressions into the form of symptoms for a hyperbola and a parabola. 

For some comments on how al-Kiihi may have hit upon the utility of R, see Berggren 1996. 

'''see p. 2 1 for the details of this discussion. 

109 See section entitled A Comparison. 
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Some Constructions of Algebraic Equations 

In this section, we discuss examples of specific problems which were transforn~ed into 

cubic equations, and then solved by means of conic sections. The geometrical solution of a cubic 

equation is the construction of a line segment, by means of two intersecting conic sections, which 

satisfies the cubic equation. That is, the line segment enables one to construct two equal solids, 

each corresponding to a side of the cubic equation. A discussion on the development of algebra 

in the Islamic world falls outside the scope of this paper; however, we will attempt to trace the 

emergence of algebraic cubic equations used in problem solving. 

Al-Mlhiini's work on the problem arising from Prop. 4 of Archimedes' On the Sphere and 

Cylinder I1 marked the beginning of the study of cubic equations. Although he was unsuccessful 

in constructing a solution, we have seen how other geometers attacked and eventually solved the 

problem. We have already seen how Abii'l-Jiid transformed the construction of the regular 

nonagon into a certain cubic equation, and how al-Birfini discovered another, equivalent form 

of cubic equation. 

We also have evidence of the work done by Abl Nasr on the solution of a cubic equation 

associated with the construction of the regular heptagon. Furthermore, there is an extant 

geometrical construction of a solution to the cubic equation x3 + p = qx3 + rx in a Manisa 

n ~ a n u s c r i ~ t " ~  by Kamiil al-Din ibn Yiinus, which resembles the earliest construction of the 

heptagon, though K a d l  al-Din makes no mention of the relation between this construction and 

the regular heptagon. However, it is possible that he found his solution by generalizing the 

heptagon construction of Ibn Sahl that we discussed previously, which he knew of from al-Sijzi's 

On the Construction ofthe ~ e p a ~ o n " ' .  For, if we give p, q, and r specific values, the construction 

of Kamll al-Din is precisely the one of Ibn Sahl. The construction is as follows (Fig. 66) 

"O~ublished by Hogendijk 7, pp. 240 - 241. 

"'1n the Letter on the proof of the assumption of the lemma (Hogendijk 7, p. 277 (M17)) Kamiil 
al-Din mentions On the Construction of the Heptagon, and even discusses the construction of G on AB as 
required in the earliest construction of the heptagon mentioned by al-Sijd. 



Let AB = q, s = p/q2, and AG = r/sH2. I 
Draw GE perpendicular to AG with GE = 

AB. Complete rectangle AE and draw BD 

parallel to GE and ED parallel to GB. 

Draw a parabola P with vertex A, axis AB and 

parameter s. Draw a hyperbola X through B 

with asymptotes EG and ED. Let X and P 

intersect at H. Draw THK perpendicular to 

The proof follows immediately. Since H and B are on 2, then 

AG and HM perpendicular to EG. Then 

rectangle HTEM = rectangle BDEG, this translates into (q - x)(r/s - z) = q(r/s - q) or 

Figure 66 

rx + qzs = q2.s + ZXS, where AK = z. 

HK = x. 

Now, HK2 = AK.s since H is on the parabola, and q2.s = p by construction. 

Hence rx + qx2 = p + x3. 

Kamd al-Din does not say why the parabola and the hyperbola intersect, nor does he 

state the position of their intersection H relative to A, B, and G. It is possible, for certain choices 

of coefficients, that G be situated between A and B; this would have an effect on the position of 

H. He does not discuss the number of intersections either. In fact, it seems that he has specific 

values of p ,  q,  and r in mind since he does not consider the different cases that could arise from 

this general cubic equation. 

We now turn to a series of new problems which Islamic geometers formulated as cubic 

equations and solved by means of conic sections. The first is in a tract by Ibn al-Haytham, where 

he solves the following problem: to divide a given number k into two parts in such a way that the 

one part is the cube of the other, in other words, to solve the cubic equation x3 + x = k. The 

method he uses to resolve this problem is first, to find four quantities a > b > c > d such that 

. (i) a : b = b : c = c : d, (they are in continued proportion)and 

'I20f course, in the words of Kamd &Din, we construct the solid equal top with base the square 
on q and height s, and we construct the rectangle equal to r with length s. 



(ii) (a-b) : d = k3 : k. (This ratio is known since k, and thus k3 are given) 

We present the synthesis of the problem based on the translation by Sesiano 1976. (Fig. 67) 

Suppose the segment AB is given. Draw 

BG perpendicular to AB. Let D be on BG 

such that ABBD equals the given ratio k3 

: k, and draw DE parallel to AB. Complete 

rectangle AEDB. Through E, draw a 

hyperbola Y with asymptotes AB, BG. 

Extend GB to N such that BN = BD. 

Draw NQ parallel to A .  meeting EA 

extended in Q. Draw a parabola P with 

vertex N, axis NQ, and parameter NB. As 

P moves towards 0 from N, it moves away 
Figure 67 

from its axis NQ as well as from the 

segment AB arbitrarily closely, and as .Y moves towards E, it approaches the segment AB. 

Hence, I" will intersect 3d at a point Z. Draw ZT parallel to AB and ZKL parallel to GBN. 

Then TZ.ZK = DE.EA Conics 11.12, so ABIZT = ZK/BD, and 

( 1 ) ABET = ZWKL. Extend QN to M such that NM = ZT. Then 

(2) ABET = QN/NM. From (1) and (2), it follows that 

(3) QN/NM = ZWKL. Now, by the property of the parabola, LZ2 = NL.LK. Hence 

(4) NULZ = ZVLK. From (3) and (4), it follows that QM/MN = NULZ = ZVLK. 

Let X on NM be such that MX = LZ, and P on MX such that MP = LK. Then the 

quantities QM, MN, MX, MP are in continued proportion, so (I) holds. 

Moreover, since QN = BA and MP = KL = BN = BD, then 

QN/PM = AB/BD, which is the given ratio. 

But QN = QM - MN, so (ii) also holds. 

Ibn al-Haytham states that once we have found the four quantities QM, MN, MX, MP satisfying 
C 

(i) and (ii) ,  then we can solve the initial problem: to divide a given number into parts such that 

one is the cube of the other. Using elementary manipulations of proportions, he proves that if 
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XB we divide our given number, say XY, at 0 such that Ioy = 
QM - MN IMN, (Elements VI, 10) then 

X0 = YB3. Hence, Y0 + YO3 = XY. 

The work of Ibn al-Haytham is extremely precise and thorough; he quotes every theorem 

from the Elements and the Conics as they are used and carefully proves that the two conic sections 

do indeed intersect. 

The next construction of a cubic equation 

we consider is found in a treatise written 

ap~roximately two hundred years later by al- 

Khayyim entitled On the Division of  the Quarter 

circle1I3. The problem is to divide the quarter 

circle AB of a circle ABCD (Fig. 68) with center E 

in two parts at the point G, and to draw GH 

perpendicular to the diameter BD such that the 

ratio of AE to GH is equal to the ratio of EH to 

HB. 

In this treatise, al-Khayyiim seems to have more in mind than just solving the problem. 

He begins by showing how a certain analysis does not result in a figure which we know how to 

construct. He states that he did not pursue this analysis any further due to its difficulty and the 

knowledge about conic sections it would require. Then, he gives another analysis of the problem, 

which eventually leads to a cubic equation, and which he solves by means of conic sections. 

Strangely enough, the following problem in the manuscript containing On the Division of  the 

Quarter Circle is an unattributed construction of the identical problem, by a method similar to 

the previously unsuccessful one of al-Khayyiim. 

We summarize the two similar methods first, and then give a more detailed description 

of the construction of the cubic equation in the second of al-Khayyim's attempts. 

First attenlot: (Fig. 69)Al-Khayyiim draws a tangent line IBM through B, and GK perpendicular 

to €A such that they intersect in I. Then he draws the hyperbola X through E with 

asymptotes IBM, IGK. One seeks to determine the position of a point L on the hyperbola 

'I3~ublished by Rashed and Djebbar 1981, as part of the Algebra. 
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so that once the line LHG is drawn parallel to IBM, G would be known in position. 

However, L is not known in position through this analysis. 

Similar successful method: (Fig. 70) 

Complete the square CDBE. Draw a hyperbola Y through B with asymptotes CE, CD. 

Join AB, then AB is tangent to the hyperbola and lies inside the circle. Consequently, Y 

cuts the circle at another point, say G. Draw GH perpendicular to AB and GK 

perpendicular to BC. Then CK.GK = CE.EB. Subtracting rectangle HC, we obtain 

GH.EH = BD.HB. But BD = AE so W G H  = EH/HB. 

By constructing the hyperbola through B instead of through E, we can find its point of 

intersection with the circle and thus determine the required point G. 

Second attemm: (Fig. 7 1) 

Draw GI tangent to the circle. Extend EB 

to I ,  and join GE. Al-Khayyiim shows, 

through a series of manipulations of 

proportions, that 

GH = BI, GE = EB, and EG + GH = EI. 

His analysis has thus led him to the construction 

of a right-angled triangle (since LEGI = 90") 

whose hypotenuse is equal to the sum of one of 



with right angle at B, and BD drawn perpendicular to AC, satisfymg the required properties. To 

its sides and the line drawn from the right angle 

perpendicular to the hypotenuse. At this point, 

al-Khayyiim states a few other properties of the 

triangle: (1) the triangle is not isosceles; (2) EG 

< GI; (3) EG + EH = GI. Having established 

and proved these properties, al-Khaflm turns to 

begin, he proposes to use to the language of the algebraists, and, he assigns a specific length of 

a 

C 

Figure 72 

twenty to the segment AD. For BD the 'thing' '14, he uses the relations obtained above, and some 

the construction of the triangle (Fig. 72) ABC, 

algebra, to obtain the following cubic equation: x3 + 200x = 20x2 + 2000. 

Solvin~ for 'x': (Fig. 73) Let AB = 20, EG 

= 200, and EH = 1. Then the rectangle 

HG = 200. Construct a square equal to 

the rectangle HG (Elements II.14),  let the 

side of this square equal AH. Draw AH 

perpendicular to AB (Fig. 74). Take D on 

AB such that AD = 10. Draw a semi-circle 

with diameter BD, and draw ED parallel to 

AH. Complete the rectangle ADEH. Draw 

a hyperbola through D with a-symptotes 

114 The 'thing' is the unknown quantity, which we call x. 



AH, HE. Then X cuts the circle again at a point K. Draw KL perpendicular to AB. Then 

AL is the required segment 'x'. 

Proof: Extend LK to meet HE extended at I. Draw KM parallel to AL. 

Then AD.DE = KM.MH (Conics II.12), since K, D are on 31'. 

Subtract EH.MH, so that ADAM = KI.IE. 

Add LK.DL, so that AL.LK = DL.LI, or 

( 1 ) AULI = DULK. Also, 

(2) DULK = L W B ,  so combining (1) and (2), we have 

AL2/L12 = DL2/LK2 = DL2 / LB.DL = DULB. Therefore, AL2.LB = LI2.DL. 

Add LI2.AD, so that L12.AL = LI2.AD + AL2.LB. But LI2 = 200, and AL = x. 

Hence, 200x = L12.AD + AL2.LB. But LI2.AD = 2000, therefore, 

2000 + AL2.LB = 200x. Add AL3 which is equal to AL2.AL, then 

AL3 + 200.AL = 2000 + AL2.AL + AL.LB = 2000 + AL2.AB. 

Since we have assumed that AB = 20, we have shown that 

A L 3  + 200.AL = 2000 + 2OAL2. 

Al-Khayyim shows how to construct the triangle (Fig. 72) ABC, with BD perpendicular to AC. 

He takes AD = 10, DB equal to the segment AL which has been shown to be of known length. 

Join AB, draw a perpendicular to AB from B such that it meets AD extended in C, then ABC is 

the required triangle. Next, al-Khayyim shows how to construct the original problem with the 

use of this triangle. He also mentions that if one wanted to find a solution using 'arithmetic', one 

could use approximations by refering to the tables of chords in Ptolemy's Almagest, or the tables 

of sines of a trustworthy ~ i j " ' .  

In the course of solving this problem, al-Khayyim informs the reader that the geometer 

Abu'l-Jiid succeeded in solving a certain cubic equation which had stumped eminent geometers 

such as al-Kiihi and al-SaghHni. The problem is as follows: If you divide 10 into two parts, the 

"'~ersian word for chord; also, the name for astronomical handbooks containing extensive 
astronomical and mathematical tables, among the latter one containing values of the sine function. 



78 

sum of their squares plus the quotient of the greater over the smaller is 72'16; al-Khaypm says 

that the analysis camed Abu'l-Jiid to the cubic equation 'squares are equal to a cube plus roots 

plus numbers'"'. In his Algebra, al-Khayysm also informs the reader that Abii'l-Jiid was 

unsuccessful in his attempt to solve the cubic equation: a cube plus numbers are equal to squares. 

He reproduces and comments upon Abu'l-Jiid's solutions of both cubic equations. 

An algebraic quartic equation arises in an anonymous treatiseu8, and is solved by means 

of conic sections. The problem is to construct the trapezoid ABCD such that each of its sides AB, 

BC, AD equal 10, and that the area equals 90 (Fig. 75). One first draws AK perpendicular to CD, 

then, taking DK = x, we obtain (AB - x).AK = 90. And, since A3 = 10, AK2 = 102 - x2, and 

consequently (10 - x)2. (100 - x2) = 8 100, or x4 + 2000x = 20x3 + 1900. The construction is 

summarized as follows: 

Let AB = 10, and draw EB perpendicular 

to AB such that EB = 9/,, AB119. 

Complete the rectangle BZ and construct 

a hyperbola Jt which passes through E and 

has AB, AZ for asymptotes. Draw a circle 

with center B and radius AB. It will 

intersect A since AB > BE. Let C be the 

point of intersection. Draw BC (= AB), 

and construct the angle BAD = ABC such 

that AD = BC. Thus, ABCD will be the 

required trapeze. 

The proof follows easily: draw CL perpendicular to AB, then triangle CBL is similar to triangle 

116 The rational root 2 of this equation is obvious, however, the other positive one is not so evident. 

"'~ndeed, the equation for 5<x<10 is as follows: x2 + (10 - x ) ~  + x/(lO-x) = 72. 

' 18~ublished by Woepcke 185 1, pp 115 - 1 16. 

'I9That is, EB is equal to the ratio of the given area 90 to the given line segment 10. 
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ADK, hence rectangle ABCD = rectangle ALCK; but since C and E both lie on .T, 

we also have rectangle ALCK = rectangle ABEZ. Therefore, 

rectangle ABCD = rectangle ABEZ = AB.EB = 90. 

Naturally, the number and importance of problems reduced to different forms of cubic 

equations suggested the necessity of a more general theory. Abii'l-Jiid seems to have been the first 

one to have attempted, on the basis of ancient Greek geometrical procedures, to develop a 

general theory of cubic equations. But his work Book on Geometrical Subjects, mentioned by al- 

Khayyiim was lost. Included in this book were constructions of many kinds of cubic equations, 
20 notably x3 + c = ax2, x3 + bx + c = ax2, and probably x3 + c = bx and x3 = c' . Fortunately, 

the algebraic treatise of al-Khayyiim has survived, for it counts as one of the greatest works of 

Islamic mathematics. 

IZosee Hogendijk 9, p 33 on why this is probable. 



'Umar Al-Khayyiim and Cubic Equations 

'Umar Al-Khayyiim was born in the middle of the 1 lth century and lived for 

approximately 80 years. Outside the Islamic world, he is mostly admired as a poet, especially for 

the famous verses ascribed to him under the name of The Rub 3 P .  However, al-Khayyiim made 

significant contributions in both the sciences of astronomy and mathematics: at a research 

observatory in Isfahan, he conducted a programme of astronomical investigations which enabled 

him to prepare a reform of the calender, and in 1070, he completed his great mathematical work 

found in his book Algebra. 

In the Algebra, which is dedicated to the chief judge of the city of Samarqand, Abii Tiihir, 

al-Khayyiim embarks upon the project of treating all cubic equations in their general forms; a feat 

no other geometer had yet accomplished. This work was foreshadowed by his Op~scule'~~ in 

which he presents an exposition of the history of cubic equations and which serves as an 

introduction to his great work. The Algebra contains a classification of cubic equations and 

geometrical constructions of the roots of these equations as line segments obtained from the 

intersection of conic sections. Its realization draws on many different sources: the works of 

Thiibit ibn Qurra and al-KhMrizmi on the theory of equations of degree s 2, the methods and 

results, as we have seen, of previous geometers such as al-Kiihi and Ibn al-Haytham, and the 

algebraic translation by Abii'l-Jiid and al-Biriini of certain solid problems. 

In the first part of the Algebra, al-Khayyfim lists all types of equations with degree s 3. 

There are 25 species altogether, since he considers only positive coefficients, 14 of which require 

the use of conic sections for their construction. The classification of these equations depends not 

only on the degree, but also on the number of terms. Although they are expressed in words rather 

than symbols, we refer to them by their modem equivalent. Hence, the 14 species requiring the 

use of conic sections are listed as follows: 

Binomials: (1) x3 = c. 

Trinomials: ( 1) x3 + bx = c, (2) x3 + c = bx, (3) c + bx = x3, 

( 4 ) x 3 + a x 2 = c ,  ( 5 ) x 3 + c = a x 2 ,  ( 6 ) c + a x 2 = x 3 .  

12'~ublished by Rashed and Djebbar (1981); it includes the problem "On the division of the 
quarter circle" previously discussed. 



Tetranonuals: ( 1 )  x3 + ax2 + bx = c, (2) x3 + ax2 + c = bx, (3) x3 + bx + c = ax', 

(4) x3 = ax2 + bx + c, 

And (5) x3 + ax2 = bx + c, (6) x3 + bx = ax2 + c, (7) x3 + c = ax2 + bx. 

In the second part, al-Khayyiim shows how, for each case, conics can be used to produce 

a line segment from which solids that satisfy the required relation can be constructed. Before 

commencing the geometrical resolution of an equation, al-Khayyiim writes each equation in 

homogeneous form. That is, an equation such as x3 + bx = c is written as x3 + p2x = p2q. This 

transformation depends on a few theorems of elementary geometry. Throughout the discussion, 

he warns the reader that a particular case may have no solutions, one solution, or two solutions, 

depending on whether the conics intersect in 0, 1, or 2 points. 

First, we present al-Khayyiim's construction of the equation x3 + c = ax2, which appears 

in Archimedes' problem, also known as al-MHhiini's problem. We know that Abii'l-Jiid attempted 

to solve this equation in its algebraic form, but, according to al-Khayyiim, was unsuccessful. In 

our presentation of al-Khayyiim's construction, we include his corrections of the mistakes he 

found in Abii'l-Jiid's construction. (Fig. 76) 

Let AC be equal to the number of squares, 

AC = a, and construct a cube equal to the 

given number c, with side H, so that H3 = 

c. Then there are three cases; either H is 

equal to AC, is greater than AC, or is less 

than AC. The first two cases are 

impossible, since we can only have positive 

coefficients, therefore, H c AC. Take B on 

AC such that BC = H. Once again, we 

consider three cases: (1) BC = AB, (2) BC 

> AB, and (3) BC < AB. Complete the 

square BDEC. Draw a hyperbola 2' through D with asymptotes AC, CE, and a parabola 

- with vertex A, axis AC, and parameter BC. 

Case 1: Since DB2 = AB.BC, P also passes through D. There is another intersection point, 
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say I, between A and B. (Fig. 76) 

*Al-Khayyiim says here that the eminent geometer Abii'l-Jiid conlmited an error 

in claiming that the two sections are tangent at the point D. This is incorrect. 

Draw AD, extend it to meet CE in G, then AD = DG, so ADG is tangent to Y. 

Now, if the two sections were tangent then the segment from D to an arbitrary 

point on the section AD of P would fall between the section ?f and its tangent. 

But this is impossible. 

Case 2: D is outside P since DB2 > AB.BC. If the two sections intersect, then they do so 

once or twice between B and A. 

(Fig. 77) 

Again, al-Khayyim says here that 

the eminent geometer Abii'l-Jiid 

cornmited an error in claiming that 

this case is impossible, that is, that 

the two conic section do not 

intersect. Al-Khayyim gives a 

numerical example, corresponding 

to the equation x3 + 144 = 10x2, 

which disproves hii'l-Jld's claim. 

Case 3: D is inside I? since DB2 < AB.BC. 

There are two points of intersection, one 

between C and B, say I, and the other 

between B and k (Fig. 78) 

(All figures) Draw IG perpendicular to AB 

and IK perpendicular to CE. 

Then IG.IK = DB.DE. Therefore, GCBC 

= BCAG. 

But IG is an ordinate to 8, so IG2 = 

AG.BC, and BCAG = IGIGA. 



Therefore GCICB = CB/IG = IG/GA, and GC2/BC' = BCIGA. 

Hence BC3 = GC2.GA. and, we obtain 

BC3 + GC3 = GC2.AC by adding GC3 to both sides of the equation. 

Therefore, GC is the required length. 

Although he considers different cases and determines conditions under which positive solutions 

will exist, al-Khayyiim does not exhaust the problem. Already, E u t ~ c i u s l ~ ~  and, later on, al-Kiihi 

had noticed that the limit of positive roots is determined by the conditions 
4a3 (I) c = /27123, there is one solution, and for 
4a3 

c c 127, there are two positive solutions. 

On the other hand, al-Khayyiim shows that for 

(11) c s (%a)3 (cases 1 and 3), there can be two roots, for 

c > (%a)3 (case Z), there can be either one, two, or no solution, and for 

c 2 a3, there are no solutions. 
3?4a3 By writing (%a)3 = 12,, we can more easily compare conditions (I) and (11). 

We now consider a different species of cubic equation, the tetranomial. Al-Khayyiim 

writes, in his Algebra, that Abii'l-Jiid correctly constructed the solution to a certain tetranomial 

cubic equation but that since i t  had specified coefficients, he was not led to investigate the 

different cases that arise from the general cubic equation. The general form of the tetranomial 

in question is x3 + bx + c = ax2. Al-Khayyim's construction is as follows (Fig. 79): 

Let BE be equal to the number of squares, that is, BE = a, and BC be such that BC2 is 

equal to the number of roots, that is, BC2 = b. Draw BC perpendicular to BE. 

Construct a solid whose base is the square on BC, and let this solid be equal to the given 

number c12*. Let the height of this solid be AB, (then BC2.AB = c) drawn on BE 

extended. Draw the semi-circle AGE on AE. Then either C is inside the circle, on the 

122 In an equivalent form, see p. 2 1, above. 

Iz3see p. 23 for the discussion of Eutocius' solution, and p. 65 for a discussion of al-KiWs 
solution. 

'24~his  construction is possible due to a lemma that al-Khayy- establishes before treating the 
equations requiring the use of conic sections. 
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circumference of the circle, or outside of it. 

Case 1: (in which C is inside the circle) Extend BC until it cuts the circle in G,  and 

complete the rectangle AC. Construct on GC a rectangle equal to the rectangle AC, say 

rectangle CH. Then H is known in position. Now, H is either inside the circle, on the 

circumference of the circle, or outside of it. 

Case la: (in which H is inside the 

circle) Construct a hyperbola X through 

perpendicular to BG. I 

9 
/ 

the point H with asymptotes GC, CM. 

Then Y necessarily cuts the circle in two 

points, say L and N; they are thus known 

in position. Draw LK and NP 

perpendicular to AE, and LI 

Then rectangle LC = rectangle 

CH = rectangle CA (property of Figure 79 

I 

E P K b  A 

hyperbola). Adding rectangle CK 

to both, we obtain rectangle DK = rectangle IK, so 

LK/KA = DA/LI and LK2/KA2 = DA2/L12. 

But LK2/KA2 = EK/KA, since, by a property of circle, LK/KA = EKLK; therefore 

BC2/BK2 = E m ,  and so BC2.KA = BK2. KE. 

But BC2.KA = b.BK + c. Now add BK3 to both sides, so that 

BK3 + b.BK +c = BK2(KE + BK) = BE.BK2 = a.BK2. 

Hence BK is a solution to the equation, and similarly BP is a solution. 

Case lb: (in which H is outside the circle) This is the case Abii'l-Jiid mentioned 

for the determination of his problem. If 31 meets C in a point of tangency or in two 

points of intersection, then the problem is as in Case la. If 31 cannot be made to 

meet . , then the problem is impo~sible '~~.  

1 2 5 ~ 1  - Khayyiim does not prove this; presumably, one is meant to draw the conic sections for a 
given choice of coefficients and determine whether they can be made to intersect. 



Case 2: (in which C is on the circumference or is outside the circle). Extend GC 

and construct a rectangle on it equal to the rectangle AC with one angle on C, and 

such that, if we construct ?l with the above-mentioned properties passing through 

the angle opposite to C, it will intersect the circle either by a point of tangency or 

by intersection. We apply the same reasoning as in the first case. This can be 

determined emperically by drawing the conic sections. 

Al-Khayyiim finishes by noting that for a solution to exist, it must be less than EB, which is the 

number of squares (EB = a). This is certainly true, although it does not, once again, exhaust the 

problem. In fact, we see at the end of Case la and Case 2, that he does not give a precise 

condition for the existence of a solution, that is, for the two curves to intersect. He merely states 

that if they can be made to intersect then there will be one or two solutions, and if they cannot, 

then there will be no solution. For a given particular equation, on must attempt the construction 

first to see whether a solution is possible. 

Al-Khayyim, makes his equation homogeneous at the outset: he constructs the side BC 

of a square such that BC2 = b, and then a solid of height AB such that BC2.AB = c. These two 

constructions are essential to his geometric method, and are steps that were not previously taken 

in the construction of solid problems. The construction of the point H is also interesting, and 

provides a good example of a method that was fundamental in ancient Greek geometry: the 

application of areasIz6. We are essentially trying to find H such that HG.GC = AB.BC. Thus we 

are solving for HG, and since AB.BC/GC is a given magnitude, HG is known. But HG is to be 

drawn perpendicular to GC, thus the point H is known in position. 

These are two examples of al-Khayyiim's treatment of cubic equations, and his geometric 

constructions by means of conic sections of their roots. There is a question which arises naturally 

from al-Khayyiim's work: how to determine the precise conditions under which there will be one, 

two, or no solutions to cubic equations. The answer to this question, as we will see, would be 

given a century later by another mathematician Sharaf al-Din al-TGsi. There is another question, 

this case, we are to apply to a given straight line GC an area equal to a given rectangle 
AB.BC. This application, or construction of a rectangle equal to a given rectangle can be found in the 
Elements I, 45. 
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which al-Khayyiim asked himself but was unable to answer, that is: how to find numerical 

solutions to these cubic equations. Numerical solutions to quadratic equations were known to 

exist, and could be found in terms of the coefficients. However, neither al-Khayyiim nor al-Tiisi 

was able to determine the roots of cubic equations by means of an algebraic formula in terms of 

the coefficients, this would have to wait until the 16th century. 

Finally, there are two other facts that were not recognized by al-Khayyiim: (1) there are 

cases where a cubic equation can have not only two but three positive roots for suitable 

coefficients; (2) similarly, there are cases when cubic equations can have one, two, or three 

negative roots; i t  is not surprising that al-Khayyiim did not realize this since he dealt only with 

positive  coefficient^'^'. 

I2'~his does not mean to say that only equations with negative coefficients can have negative 
roots; however, al-Khayysm seemed only interested in positive quantities since he was solving these cubic 
equations by constructing geometrical figures. 



Al-Tiisi and the Theory of Cubic Equations 

Sharaf al-Din al-Tiisi worked in the late 12th century, and taught geometers such as 

K a d l  al-Din ibn Yiinus (author of a construction of the heptagon). In his Algebra, the next step 

in the development of the theory of cubic equations after that of al-Khayyiim, al-Tiisi had 

essentially two goals: first, to give a complete discussion of the conditions under which each cubic 

equation can be solved by means of intersecting conics; secondly, to devise an algorithm for 

solving the possible cases numerically'28. In this paper, as we are mainly interested in the use of 

conic sections for solving problems, we will concentrate on the first of al-Tiisi's contributions. 

The first pan of al-Tiisi's work is very similar to that of al-Khayyiim, however, there is one 

notable difference. Al-Tiisi makes consistent efforts to prove the existence of points of 

intersection of the conics, whereas al-Khayyim does not. These proofs are based on 

interior/exterior arguments that call upon the convexity and continuity of conic sections. The 

following example illustrates the method of al-Tiisc it is the construction of the cubic equation 

x3 + ax2 = C, which always has a solution. He uses the same conic sections as al-Khayyfim, a 

parabola and a hyperbola. (Fig. 80) 

Take a cube of side K and equal to c, so K3 

= c, and let AB = a. Let C be on AB 

extended such that BC = K, and complete 

BCED, a square of side BC. Draw a 

hyperbola ?5 with vertex E and asymptotes 

BC, BD and a parabola P with vertex A and 

parameter BC. Draw MC perpendicular to 

AC such that it meets P at M, then 

BCAC = MC2, therefore MC2 > BC2, since 

AC > BC. Consequently M is above E, 

I2'1n fact, he gave what is essentially the Ruflini-Homer algorithm for cubic equations. This 
method was used for the computation of cube roots before the middle of the 3rd century A.D. in China, 
and in the 10th century in the Islamic world. The generalization to arbitrary cubic equations may have 
been used in the 1 lth century by al-Bid- (Hogendijk 4, p. 79). 
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which is on ,Y; M is then interior to ", therefore ' and .ie necessarily intersect. Let H be 

their point of intersection, draw IH perpendicular to BD and GH perpendicular to AC, 

then BC.AG = HG2 (equation of P ) ,  hence 

(1 )  AG/HG=HG/BC,butwealsohave 

BIJH = BD2 = BC2 (equation of X), therefore BI/J3C = BC/IH, that is 

(2) HGDC = BCBG, hence, from (1)  and (2) we obtain 

AG/HG = HGBC = BCDG, therefore BG2.AG = BC3, whence 

BC3 = BG2.BG + BG2.AB = BG3 + AB.BG2, and consequently 

c = BG3 + b.BG2; therefore BG is the required solution. 

Al-Khayyiim executes the same construction as above, however, he does not prove that the conic 

sections intersect. Of course, it is possible that it seemed obvious to him since hyperbolas get 

arbitrarily close to their asymptotes. Nevertheless, al-Tiisi's arguments show his determination 

in rigourously establishing the existence of points of intersection. In order to show that the conic 

sections necessarily intersect, al-Tiisi first takes a suitable point M on a) and shows that M is in 

the interior of since MC > BC, that is, M is above E. Since the point A, which is the vertex of 

', is on the exterior of ?! and the c o n t i n u ~ u s ' ~ ~  curve P goes through the points A and M; then 

intersects 2'. This proof also suggests where the point of intersection will occur relative to the 

coefficients. It is obvious from the argument that the point G must fall between A and C, hence, 

the solution must be strictly smaller than K. Al-Khayyiim finds the same upper limit of the 

solution. 

The second part of al-Tiisi's Algebra is dedicated to five equations that, according to him, 

give rise to impossible cases, that is, cases where no positive solution exists. This part diverges 

significantly from the work of al-Khayyim, who was content to simply note when impossible 

cases could arise. Al-Tiisi, apart from being interested in the existence of points of intersection, 

and thus of the existence of roots, also wanted to seek out the reasons for the impossible cases. 

This would enable him to characterize them, that is, to identify them through the coefficients 

of the equation at hand. The five equations are 



( l ) x 3 + c = a x 2 ,  ( 2 ) ~ 3 + c = b x ,  (3) x3 + ax2 + c = bx, 

(4) x3 + bx + c = ax2, (5) x3 + c = ax2 + bx. 

Al-Tiisi actually shows that each of the above equations can be reduced to a species found 

in the first part of the Algebra, thus showing that al-Khayyiim's separate geometrical constructions 

for these equations are superfluous. The species to which each equation can be reduced, provided 

a solution exists, depends on the coefficients of the equation. Although there are no conic 

sections in the second pan of the Algebra, we give a brief summary of al-Tiisi's procedure. 

For the sake of completeness, we investigate equation ( I ) ,  which is the one found in 

Archimedes' problem. 

Step 1: Al-Tiisi first remarks that a > x since a.x* = x2.x + c, then a.x2 > x2.x. 

Step 2: Determination of 'maximum'. Write equation (1) as c = x2(a - x). Al-Tiisi 

determines130 a quantity m = (%)a and shows that x2(a - x) < (2/~a)~(a - V3a) for all 

positive x + m. That is, he shows that the expression x2(a - x) attains its maximum for 

x = %a. This immediately indicates that if c > (%a)2(a - %a) = 4/,7a3, there is no solution 

and if c = 4/27a3 there is exactly one solution x = m = 2ha. 

Step 3: Reduction of equation. Al-Tiisi supposes that c < 4/27a3, and for d = 4/27a3 - C. 

he considers the equation 

(6) y3 + ay2 = d. 

Step 4: Computation of a first root. The unique positive root of (6) has already been 

constructed geometrically in the first part of the Algebra by means of a parabola and a 

hyperbola, and an algorithm for the computation of this root (say y,) has also been 

described. Al-T*- then proves that x, = m + y , is a root of the original equation ( 1 ). The 

existence of this root is guaranteed by the geometrical construction of y,, and we are 

assured of at least one solution x, such that m < x, < a. Now (1) may be rewritten as 

c = ax2 - x3, an expression whose right hand side is 0 at x = 0 and x = a and attains its 

'30Al-~iisi does not explicitly state how he determines this quantity. There are two opinions on the 
matter: Rashed (1985) claims that al-Tiisi determined local minima and maxima essentially by means of 
17th century methods, and Hogendijk 4 argues that he probably found his results by means of 
manipulations of squares and rectangles on the basis of Book I1 of Euclid's Elements. 
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4 maximum /,,a3, (> C) at x = 2/3a. Hence ( 1 )  has two roots on (0,  a). Al-Tiisi recognized 

this and, so, went on to: 

Stev 5: Computation of second root. Al-Tiisi geometrically constructs a segment of length 

p such that 

p2 + p(a - x,) = x,(a - x,). (As done in the first part of the Algebra) 

He shows that x, = a - x, + p is another root of (1)  with x, < m. 

In summary, for equation ( 1 ), al-Tiisi distinguishes three cases: 

(I) c > 4/27a3, the problem is impossible; 

4 (11) c = /,,a3, the solution is m = Y3a; 

(111) c < 4/27a3, there are two positive solutions x, and x, with 0 < x, < Y3a < x, a a. 

Al-Tiisi finds that the existence of a solution, in this case, depends on the maximum value 

attained by the cubic curve. This discovery enables him to give an exact relationship between the 

number of roots and the coefficients of the equation. Although he describes a numerical 

procedure for approximating the roots, he was not able to determine them in terms of the 

coefficients; there is no solid evidence that the algebraic solution of the cubic equation was 

known before the Italian Renaissance. 



A Comparison (al-Kiihi's Problem) 

In this section, we compare the solution of al-Kiihi's problem13' with the construction of 

the root of the associated cubic equation. We are especially interested in comparing the limits 

of solvability al-Kiihi obtains with those obtained by al-Khayyiim and al-Tiisi, respectively, for 

the corresponding cubic equation. We first recall the results of each geometer, then recast their 

solutions in a way that will permit us to compare them directly. 

The problem: to construct a spherical segment whose spherical surface is equal to that of one 

segment and whose volume is equal to that of another. 

Al-Kiihi's analvsis 

The parameters: (Fig. 8 1 )  Let the spherical segment 

ABG solve the problem, AZ perpendicular to BD. 

We have shown that the problem is to determine 

BD, the diameter of the sphere, and BZ, the 

height of the segment. We remind the reader that 

p = segment AB, k = BK, x = BD, and 

y = DM, 

R = ratio of 'cone of surface' C (the right 

isosceles cone whose base has radius 

AB) to the cone AGT'32, and 

s = pm. 

K 

Fieure 81 

The solution: To determine the point M, if it exists, al-Kiihi uses the intersection of two conics. 

If M is known in position, then so is D, hence the magnitude BD. The hyperbola is defined by 

: xy = p2, 

and the parabola defined by : y2 = s(k - x), 

131 See p. 67 for our discussion of this problem. 

' 3 2 ~ h e  point T is known since the volume of the segment is known: by On the Sphere and 
Cjhnder 11.2 the volume is equal to the volume of a right cone having the same base as the segment and 
height TZ defined by TZIZB = EZ1 ZD, where EZ = ZD + %BD. 



Eliminating y yields the cubic equation 

x3 + p3R = kx*. 

The conditions: Al-Kiihi identifies the following five cases: 

( 1 )  if R < J2,  no solution. 

(2) if R = J2, one solution since H, and P, are tangent, and x = 2W3. 

(3) if J 2  < R < 2, two solutions; x, > %k, x2 c V3k. 

(4) if R = 2, two solutions, x, = 1/3k, X, > 2/3k133. 

(5) if R > 2,  such a ratio can only correspond to a solution x > %k. 

For x = 2W3, the spherical segment corresponds to a hemisphere (BZ = ZD), and for x = l/3k 

(that is, p = BD) the spherical segment corresponds to the whole sphere. Hence values of x < 

2/3k correspond to spherical segments larger than a hemisphere (BZ > ZD), and values of x > 2/3k 

correspond to spherical segments smaller than a hemisphere (BZ < ZD). 

Now we take a look at the corresponding cubic equation, and al-Khayyiim's construction 

of the root of the cubic equation xI3 + c = axt2. 

Al-Khawiim's analvsis 

In order to construct this cubic equation, al-Khayyim uses the intersection of a hyperbola and 

a parabola: 

'A 
and the parabola defined by 6: yl* = c (a - x'). 

The conditions: Al-Khayyiim identifies four cases: 

(6) if c > a3, no root. 

(7 )  if (Ma)3 < c < a3, there can be one, two, or no roots. There is one root when 

x' = Y~c, and if there are two roots then 'kc < x,', x,' < c. 

(8) if c = (%a)3, two roots, and x,' = Mc. 

(9) if c < (Ma)3, there are necessarily two roots. 

Al-Tiisi7s analvsis 

He also uses 42 and ; , however, he obtains the correct limits of solvability. Al-Khayyiim's 

133~ctually, al-Kiihi approximates the second solution; he claims it will yield a segment whose 
height is nearly on-eighth of the diameter of the sphere, or rather larger than this by a small quantity. 



conditions (6) and (7) above are inaccurate, in fact, there are no roots for 4/27a3 < c < a3 , as we 

will see below in al-Tlsi's conditions. 

The conditions: Al-Tiisi identifies three cases: 

( 10) if c > 4/27a3, no roots. 

4 ( 1  1)  if c = /,,a3, one root, x 1=4/27a3 

(12) if c < 4/27a3, two roots such that 0 < x,' < 2 h ~  < x,' < C. 

We now examine both al-Khayyiim's and al-Tiisi's conditions in terms of the ratio R. Therefore, 

from the cubic equation we take a = p3R, and c = k. Now, since R = %kip 134 , al-Khayyiim's four 

conditions become: 

(6') if R < K, no root. 

(7') if < R < J2, there can be one, two, or no roots, There is one root 

when R = J2. 

(8') if R = m, there are two roots, and x,' = lhk. 

(9') if R > c, there are necessarily two roots. 

Similarly, al-Tlsi's three conditions become: 

(10') if R < J2, no root. 

(1 1 ') if R = J2, one root, x' = %k. 

(12') if R > J2, there are necessarily two roots such that 0 < x,' < %k < x,' < k. 

The conic sections in both the above solutions become 
35 X2 : x'y' = k , and 

% 
For x' = x, and y' = R y, we have 

% 2h 2h 2h 
J 2 :  X R  y = k , hencexy = k /R = p2,0r 31, = .X2,and 

2h 'h 
j 2  : (R y ) '  = k ( p3R - x), hence y2 = pA(k - x) = s(k - x), or P,  = 6. 

Therefore, 2 ,  intersects F, if and only if 31, intersects P,. 

The following Table 1 makes the comparison much clearer, as all conditions are plotted 

 hi his follows directly from the definition of R and BK. 
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in t emx  of the ratio R. There are two R-axes that run vertically, increasing from R = 0. 

TABLE 1 

Al-KhayyBm Al- KC hi 

No roots 

No 

Solutions 
One, two, or no 

mots 

One, two, or no mots 

R = J2'OI2, 
1 TWO 

Solutions 

Two mots 

One solution 

Ysk < x < k 

\ 

No 

Roots 

R = J 2 O n e  mot 

Two 

Roots 

O < x , < ? & < x , < k  



The three geometers guarantee two roots for values of R > J2 1•‹12,. On the interval (J2 - 
.J21012,), both al-Kiihi and al-Tiisi can guarantee two roots, but al-Khayyiim cannot. On the 

interval (G, J2), both al-Kiihi and al-Tiisi can guarantee no roots, whereas al-Khayyiim 

cannot. Al-Kiihi's and Al-Tiisi's conditions are identical except that the former identifies the 

condition R = 2 which is specific to his problem and which does not enter into the considerations 

of the general cubic equation. The condition for R > 2 does not arise in the general cubic 

equation because n and c are in no way related. On the other hand, the quantities k, R and p are 

interdependent as can be seen from the relation R = %k/p. Table 1 shows immediately where 

al-Khayyiim errs in his conditions (6') and (7'). 

Both al-Kiihi and al-Tiisi invoke the 'Lemma of Archimedes' in finding their respective 

conditions for a solution. The lemma states that if a line GA be divided at B such that BG = 

2BA, then BG2. BA > GD*. DA for any other point D on the line GA (Fig. 82). This lemma first 

appeared in the solution Eutocius gave of Archimedes' problem, where he states the same result, 

and gives a proof of it by means of conic sections'35. 

I 

Al-Tiisi draws on this result directly in his determination of condition (10); he finds that 

the maximum value attained by the expression ax* - x3 = x2(a - x) = BG2.BA occurs when BG 

= 2AB. Al-Kiihi, on the other hand, uses the result when he is finding the minimum value for the 

ratio R. Since the numerator of R depends only on p, this occurs when the denominator is 

maximum. The expression on the denominator is the volume of the cone ACT which equals 

BZ.ZES. Al-Kiihi states that this expression attains a maximum when ZE = 2BZ. Neither al-Kiihi 

nor al-Tiisi states how he came to the result in the lemma of Archimedes. Perhaps we are to 

assume that it was accessible to them through the transmission of Eutocius' commentary on 

Archimedes' On the Sphere and Cylinder; however, they both provide a proof of the result without 

' 3 5 ~ e e  pp 2 1-22, above. 



using conic sections. 

Both proofs are divided into two parts; the first part shows that (Fig. 82) 

(1 )  BG2. BA > GD2. DA for any other point D between A and B, and the second pan shows that 

(2) BG2. BA > GF2. FA for any other point F between B and G. Of course, the proofs of part ( 1)  

and (2) are very similar for each geometer. The following is al-Kiihi's proof based on Berggren 

1996. (Fig. 83) 

Extend AG to E such that EG = BG, then 

BG2 = AB.BE. 

Now, since B is nearer than D to the middle of segment AE, we have 

(*) AB.BE > AD.DE, whence 

BG2 > AD.DE. 

Therefore, we can write DE'DB/ BG2 c DE.DB 
/AD.DE* SO DE'DB/ BQ < BD/m9 or 

(BD.DE).DA < BD.BG2, and by adding BG2.DA to both sides, we obtain 

BD2.DA c BG2.AB. 

Al-Tiisi's proof is almost identical except that he supplies details of the argument resulting 

in ( * )  that al-Kiihi assumes without proof. This result can be found in Euclid's Elements 11, 6; it 

applies directly to al-Kiihi's proof using the line segment E k  However, it is not as easily seen in 

al-Tiisi's proof since he does not follow al-Kiihi's procedure of extending AG to E. 

Figure 8.3 

Al-Khayyim did not recognize the. condition (10) which follows from the lemma of 

Archimedes, although he did realize that the conic sections would be tangent when BG = 2AB, 



that is, when x = 2/3~. I t  is especiallv noteworthy that al-Kiihi, who worked before both al- 

Khayyiim and al-Tiisi, not only correctly used the lemma of Archimedes, but found the simplest 

proof of it'36. Moreover, he also proves that if D, Z are on AB (Fig. 83) and if D is nearer to B 

than Z is then AD.DC2 > AZ.ZC2. 

I36 Both are significantly easier than the proof via conic sections. 



Conclusion 

The ruler and compass were the first tools that the ancient Greeks had to construct 

solutions to geometric problems. Euclid's Elements provided both a basis and a method for these 

constructions; the first three Postulates acted as postulates of construction, and the Propositions 

themselves, such as inscribing rectilineal figures in a circle and the problem of the application of 

areas, provided a method that would constantly be used by Greek mathematicians in their 

solutions to geometric problems. This already rich tradition of geometry as exemplified in the 

Elements grew considerably with the introduction of conic sections as a means of problem-solving. 

The solutions to special geometric problems such as the cube duplication, the angle 

trisection and the problem of Archimedes served to open a new class of possible constructions, 

which included neusis constructions, mean proportionals, and certain line segments satisfying 

certain relations13'. All these types of constructions would be called upon by many Islamic 

geometers for solutions to other geometric problems such as the construction of the heptagon, 

which could also be reduced to the construction of a certain triangle. Geometers could approach 

any problem, and seek to reduce it to some type of construction in this new class created by the 

use of conic sections. A prime example is the approach Ibn al-Haytham took in the problem of 

finding a number divided into two pans such that one is the cube of the other13', which he 

transformed into one of finding certain mean proportionals. Another is al-Khayyim's reduction 

of the division of the quarter circle into that of the construction of a certain triangle'39. 

This new class of constructions required the geometer to derive expressions which were 

in the form of the symptoms of conic sections relative to certain lines from the given relations 

in the problem. Naturally, this necessitated a thorough knowledge and understanding of the 

conic sections and their properties. In the problems we have surveyed, an overwhelming majority 

were solved by means of parabolas and hyperbolas; the parabolas were defined by the relation 

137 Equivalent, of course, to cubic equations. 

I3%ee p. 72 for the discussion of this problem. 

"'see p. 73 for the discussion of this problem. 



v2 = px, and the hyperbolas were often defined by the relation xy = ab. The ellipse was only 

used once, by Diocles, most likely because its symptom is a rather complicated ratio (as is the 

hyperbola's) and, since it does not have asymptotes, there is no property such as the above- 

mentioned one for the hyperbola that a geometer could appeal to. Indeed, this property for the 

hyperbola, as proved in Conics 11.4, made it much easier for geometers to describe a hyperbola 

in their analyses. 

One wonders whether the geometers thought it possible to construct their solutions by 

means of intersecting different conic sections. In the case of the cube duplication, we have four 

solutions by means of four different combinations of conic sections; it seems as though there was 

a motivation to find different combinations in this case. However, in other problems, the goal 

seemed to have been to discover simpler solutions rather than explore different combinations of 

conic sections. In fact, Abii'l-Jiid wrote a letter to argue that his construction of the heptagon was 

a simpler than the methods used by al-Kiihi and al-Saghiini. One of his arguments is that, 

according to him, it is known that the parabola is simpler than the hyperbola, so his solution by 

means of a parabola and a hyperbola is simpler than al-Saghiinj's by means of three hyperbolas. 

The task of identifymg conic sections in the anaysis of a problem was not always 

straightfonvard, as we saw in al-Ki3ii's problem, and the methods used by geometers varied from 

problem to problem. That is, there was no pattern, no general procedure that could be applied 

to all such constructions. It was perhaps the search for such a pattern that motivated both Greek 

and Islamic geometers to discover alternate solutions to a given problem. Was there a certain 

symbiosis between the problems and the methods for solving them? The answer to this question 

would come through the process of generalizing the problems themselves. 

Indeed, the process of generalizing in the field of geometric studies often stimulates by 

raising new questions for solution not posed in the special problems. This was quite apparent in 

the generalization of Archimedes' problem, which required an investigation into the conditions 

necessary and sufficient for the existence of a solution. This investigation proved to require a high 

level of geometrical rigour, as did similar investigations made by al-Kiihi and later on by al-Tiisi. 

Gradually, some geometric problems, the first being Archimedes' problem, were translated 

into algebraic form and were solved as special cubic equations also by means of conic sections. 



Islamic geometers realized that they could use the same methods for constructing these special 

cubic equations as they had in their constructions of geometric problems. Once again, the process 

of generalization led Islamic geometers to consider different fomx of cubic equations, and this 

led to the creation of some kind of general theory of cubic equations. 

Al-Khayyiim interpreted these algebraic cubic equations geometrically by constructing 

their roots by means of intersecting conic sections. The roots, of course, were the line segments 

that would make the two solids represented by each side of the cubic equation equal to each 

other. In a sense then, the construction of roots was simply the construction of two different 

solids equal in volume to one another, very much then the kind of problem Pappus identified as 

"solid". Although al-Khayyiim implies in his Algebra that cubic equations in general cannot be 

constructed by means of ruler and compass, and Descartes repeats this in 1637, it was not until 

1837 that P.L. Wantzel proved it140. Actually, it is interesting to note, in light of our earlier 

discussion on combinations of conic sections, that in his Geometn'a Descartes gave unique 

constructions of roots of cubic equations exclusively by means of a parabola and a circle. 

We have seen how early solutions of problems such as the cube duplication and the 

construction of the heptagon were attempted by 'planar' methods, that is, by means of ruler and 

compass only. It would almost seem natural, for geometers experienced in problem-solving via 

conic sections, also to attempt solving 'planar' problems by means of 'solid methods'. In fact, 

Pappus mentions such a case in Book IV of the Collection; he criticizes Apollonius for using conics 

to solve 'plane' problems in Conics V, 58 and 62. Although Pappus is correct, since Apollonius 

could have used a circle instead of a hyperbola for solving these two problems, Apollonius' 

constructions apply to a wider range of problems (Conics V, 58 - 63),  all of which could not have 

been solved by 'planar' methods. It would be interesting to discover other such cases, and to 

deternine whether the 'solid' construction is either more elegant or more general. 

In a sense, the cubic equations solved by al-Tiisi in the second part of his Algebra are 

examples of problems which do not require 'solid' constructions. Al-Khayyim had given them 

separate constructions by means of intersecting conic sections, but al-Tiisi showed that they could 

I4O~here a useful method to determine'whether a problem is constructible by means of ruler and 
compass described by Kaplanski, I. Fields and rings. Chicago - London, 1972. 



all be reduced to the cubic equations found in the first part of the Algebra. 

Over a span of almost 1500 years, conic sections became another tool not only in 

problem-solving, but in the development of the theory of cubic equations. During this time, 

ancient Creek and Islamic geometers alike were brilliantly able to turn many difficult problems 

into the construction of two simple curves. 



CHART 1 - Cornpanson of Greek and Islamic methods 

PROBLEM METHOD I GREEK SOL'N Corresponding 
CUBIC EQ'N 

x3 = C 

Corresponding 
ISLAMIC SOL'N 

Cube 
Duplicabon -- I Diocles via focus-dir-x 

?L, C Inspired by Apollonian 
neusis 

Conchoid + Nicomedes , s l i b g  ruler 

A i p d  and Thabit x3 + ch(a) = 3x 
where x = ch(%a), 
and a is the angle 
to be trisected. 

Neusis via 91, C 1 pappus 

Directly via 31 

Archimedean (?) Lemmata, Prop. 1 7 

al-K&i and al-S yi 

Archimedean (?) Lemmata, Prop. 18 

Construction of --------------- 
triangle based on a 
partition of 7. 

Nay  ibn Abdalliih XI, 
3 1 2  

Two parts; line --------------------- 
segment and triangle 

Eutocius with diorisrnos From 
Archmedes' 
Sphere and 
Cylinder II, 4 

unknown geometer 

Ibn al-Haytham 

Translation into .......................... 
dgebraic expression 



CHART 2 - Survey of Cubic Equations 

[ ] = page # in our thesis where topic is discussed. 

Problem 

Archimedes' Problem 
[8 1 I 

Al-KiWs problem 
[671 

Heptagon [72] 

Nonagon [6 11 

Division of a number 
into two parts.. . [72] 

Division of the 
Quarter Circle [74] 

Division of 10 into 
two parts such 
that.. . [77] 

Cubic Equation Name and Method of 
Geometer 

Abii'l-Jiid, incomplete, 
using X and P 

Al-Kiihi, using Sic and 

0'. complete diorismos. 

x3+p=qx2+rx  bnid al-Din, using X 
and ff 

x3+ 1 =3x Abii'l-Jiid 

x ~ =  1 +3x al-B-*- 

Ibn al-Haytham, uses X 
and ff 

al-Khayyiim, uses x 
and C 

Al-KhayyHm and al-T%i 

?i and 8', requires diorismos. 

31 and P, requires diorismos. 

X, and X2, requires diorismos. 

X and P, requires diorismos 

X and P, always has a solution. 

C and P, always has a solution. 

- - 

X and C, always has a solution. 

,?G and C, requires diorismos. 
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